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Preface

In the seventeenth century, it was a common opinion among those interested in
ancient Greek mathematics that there were four great mathematicians in antiquity:
Euclid, Archimedes, Apollonius — and Pappus of Alexandria. Especially the fourth
and seventh book of the Collection were widely read and avidly discussed. They do
indeed contain a host of interesting material on ancient Greek geometry that is not
attested elsewhere. The fourth book in particular offers quite a few vignettes on
“higher” Greek mathematics, treating of the classical problems of squaring the
circle, doubling the cube, and trisecting the angle. Also reported is an intriguing
little piece on mapping the sequence of natural numbers into a closed configuration
of touching circles. Despite his importance as a historical source, Pappus has nowa-
days become something like the ugly stepchild among the ancient mathematicians.
The present edition is intended to provide a basis for giving the writer Pappus
another hearing, to rekindle scholarly interest in him. It contains a new edition of
the Greek text of Collectio IV (based on a fresh transcription from the main manu-
script Vat. gr. 218), an annotated translation, and a commentary. The text offers an
alternative to Hultsch’s standard edition. The commentary provides access to quite
a few aspects of the work that have so far been somewhat neglected. Above all, it
supports the reconstruction of a coherent plan and vision within Collectio IV.

This edition is developed out of a complete revision of my 1997 German dis-
sertation in the Mathematics Department (Section History of Mathematics) at
Mainz University (published in microfiche form in 1998). In difference from the
earlier version, a Greek text was included, a new translation into English was made,
and the commentary was reformulated as well.

Numerous people have supported and helped me over the years with the Pappus
project. To all of them, my warmest thanks. In particular, David Rowe, my disserta-
tion advisor, has been extremely generous with his time, support, and advice. Henk
Bos, as second reader for the original dissertation, gave encouraging, yet incisive
and helpful advice. Bob Berghout discussed Pappus with me, pointed me to Ath
Treweek’s edition, and let me consult Ath Treweek’s material on Collectio 1V.
Siegmund Probst (Leibniz-Archiv, Hannover) introduced me to the art and trade of
editing manuscripts. Jeremiah Hackett helped me gain access to the Vat. gr. 218.
I should also like to thank the Bibliotheca Apostolica Vaticana for the generous
hospitality and the inspiring atmosphere they provide for scholars consulting their

vii
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collection, and especially for allowing me to study the text and figures of Vat. gr. 218
for the present edition. Ms. Regine Becker proofread the entire Greek text. Ms. Lisa
Weis improved my English in numerous places. My deepest gratitude is owed to the
members of my family, who have, generously, if not always voluntarily, been living
with Pappus for a number of years. That is why this book is dedicated to them.

Mainz/Columbia, August 2008 Heike Sefrin-Weis
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General Introduction

Without a doubt, Pappus of Alexandria’s Collectio 1V is one of the most important
source texts for the history of Greek mathematics. Undisputed is specifically the
importance of its second half (especially Props. 19—34), because it contains our main,
and in most cases even our only direct, access to otherwise lost contributions of the
Hellenistic mathematicians to ‘“higher” geometry. Inter alia, Props. 19-22 give us an
alternative Archimedean treatment of the plane spiral (one that employs a “mechanical”
approach), Props. 26-29 provide the only extant description of the quadratrix, the
squaring of the circle with it, and the only two surviving examples for analysis of loci
on surfaces, and Props. 31-34 contain the extant ancient sources on angle trisection,
among them the only one that gives a complete construction via conics. The Hellenistic
solutions for all three classical problems (squaring the circle, doubling the cube,
and trisecting the angle) are attested in Coll. IV. Likewise undisputed is the fact that
Coll. 1V, together with Coll. VII, played a crucial role in the reception and transfor-
mation of ancient Greek geometry during the early modern era.

Nevertheless, a complete English translation of this important work is at present
still a desideratum. Whereas A. Jones published an edition, translation and com-
mentary of Coll. VII in 1986, the only complete translation of the Coll. (II-VIII)
into a modern language is (Ver Eecke 1933b) into French. A German translation of
Coll. 1V is contained in (Sefrin-Weis 1998)'. The main purpose of the present work
is to provide a Greek text and an English translation of the complete text of Coll.
IV, and to make Coll. IV accessible as a whole to the modern reader. This purpose
is indeed a dual one. A complete translation makes the famous passages accessible,
in their original context. It also provides the basis for making sense of those very
passages beyond their local mathematical content, as part of a comprehensive
picture that emerges out of the book as a whole. Currently, no such comprehensive
view of Coll. IV exists. The present work will help close this gap, and this is its
second purpose.

Perhaps, partly as a result of the fact that Coll. IV was not available in an acces-
sible edition, it has so far not been understood, even appreciated, as a thoughtfully
planned, coherent composition by a well-informed author. Another reason for this
lack of appreciation is the fact that unity and coherence has been sought on the

'German translation and commentary, listed under primary sources, Pappus.
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Xiv General Introduction

level of mathematical content. While such a perspective is quite understandable,
given that Coll. IV contains arguments that are of primary interest because of their
mathematical content, it cannot make sense of the work as a whole. It is not, I would
contend, the perspective from which the work was composed. Coll. IV contains a
host of mathematical examples, on various topics and with various degrees of
difficulty and complexity. They do not form a thematic unity. Topics reach from
constructing the irrational Minor to trivial theorems on segments in a circle to
squaring the circle to a quadrature of a curved surface in space (see section “Survey
of Coll. IV”). The sources on which Pappus draws are equally non-uniform and
cover a considerable time span. As long as one looks for unity and coherence on
the level of mathematical content only, one would have to agree with the negative
judgment on Coll. IV as it is given by many scholars, and summed up in Jones’
verdict that Coll. IV lacks an “overall governing plan” (Jones 1986a, p. 6).

The picture changes radically, however, if one takes a different perspective, one
that focuses on methodology rather than content. Such a perspective emerges quite
naturally when one takes Pappus’ own meta-theoretical remarks, which appear
about half-way into the book, into account. In a famous passage, he differentiates
between three kinds of geometrical research according to the types of curves
needed for construction and problem solving. Furthermore, a homogeneity require-
ment applies, thereby associating to each problem one of these distinct classes, or
rather kinds, of geometry: plane (using only circle and straight line), solid (using
conics in addition), and linear (using “higher” curves), kept apart on method-
ological grounds. Within these three distinct kinds, Pappus looks for further sub-
specifications of methods, strategies, and styles of mathematical argumentation,
and illustrates them with attractive, famous, or just methodologically well-designed
(easy) examples, so as to be able to tell a story about the character of Classical and
Hellenistic geometrical discourse. His examples are thus chosen from the point of
view of the methods they are exemplifying, and their content, though it is prefera-
bly one that captures the reader’s attention, is subordinated to the overall plan of
profiling the methods of ancient geometry in a comprehensive way. This is the way
I propose Coll. IV should be read, and it obviously has consequences also for the
evaluation of the well-known passages. My thesis is that Coll. IV can be read, and
was intended to be read, as a unified, coherent and essentially exhaustive survey of
the classical geometric tradition from the point of view of methods. The meta-
theoretical passage, which was taken seriously in the present work as program-
matic, is not to be understood, necessarily, as the expression of a communis opinio
among ancient mathematicians. In fact, I rather doubt it was that. It generalizes
certain features of Apollonius’ analytical work in plane geometry, and probably
was not shared by the mathematicians as a description of their views on the meth-
ods of mathematical discourse. It was, however, important and useful for Pappus.
He brought it into play in Coll. 111, and repeated it in a shorter version in Coll. VIL.
It served him well as a guiding principle to select, revise, and structure his material
in Coll. IV, in order to give a coherent profile of the mathematical tradition. It pro-
vides a unifying perspective for the text of Coll. IV. Coll. IV then tells us a reason-
ably coherent, and astonishingly comprehensive, story about how classical Greek
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mathematics worked. The present translation and commentary traces and docu-
ments this story. It can be useful for a reader coming to Pappus’ Coll. IV for the
first time, trying to appreciate it as a whole, as a coherent account. And it can be
useful as a basis for further historical and philosophical investigations that attempt
to take Pappus seriously as a writer, not just as a mine. Unlike the great Hellenistic
mathematicians Archimedes and Apollonius, the author Pappus did not endeavor to
produce new, original, creative work that would develop his field toward the future.
He was essentially a commentator, who attempted to preserve, transmit, and explain
the tradition. He does not proceed mindlessly or randomly, though. He is a compe-
tent mathematician trying to make sense — with respectable success — of the tradi-
tion. His goals as a writer simply differ from those of the writers of the “golden age”
of Greek mathematics. There is no need to view these goals, or the testimony that
results from them, as inferior or of lesser intrinsic value for historical scholarship,
as has often been done in the past. Whether or not it makes sense to view the period
of late antiquity as an era of intellectual and cultural decline, the current trend in
historical scholarship on ancient Greek mathematics, with a renewed emphasis on
taking ancient authors (of any period) seriously as writers in their own context and
on their own terms could be fruitfully applied to Pappus as well.

1 Life and Works of Pappus of Alexandria

The following remarks draw mostly on Ziegler’s article in the RE, with additional
information from Jones!' 1986a, pp. 1-20, to which the reader is referred for further
information. My assessment of Coll. IV differs from the one given in these sources.

1.1 Pappus’ Life and Times

Detailed biographical information on Pappus is extremely scarce. His lifespan falls
either into the reign of Theodosius, i.e., the second half of the fourth century AD,
or perhaps the reigns of Diocletian and Constantine, i.e., the time around 300 AD.
It was a time in which Christianity had become the dominant religion in the Roman
Empire. The pagan cultural elite, to which Pappus belonged, was in the defensive,
and it was fighting an increasingly hopeless battle for the survival of the cultural
tradition that was its heritage. Mathematics was part of that tradition. Before the
century was over, Christianity had transformed from a persecuted religion (the last,
rather brutal wave of persecutions occurred in 302/303) to the only religion allowed
in the State (395). Under its control, the ancient pagan culture was rigorously,
sometimes aggressively, suppressed. In some regions, especially in Alexandria, the
tides of clashing world views ran particularly high, and had done so already at the
end of the third century. In 415, the pagan mathematician Hypatia was murdered

I'see also Jones 1986b, Treweek 1957.
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there on account of her commitment to Neoplatonism. In short, it was a period of
fundamental transitions, with accompanying widespread social and even existential
insecurity. It is perhaps not insignificant that Pappus lived and was probably born
at Alexandria, in all likelihood had Neoplatonic leanings (as did most of the edu-
cated pagans during that period), and wrote his survey of the classical mathematical
tradition under the circumstances just described. For this may help explain why
Pappus, when dealing with geometry, looks constantly backward, to the classics in
the field, and attempts to make them accessible, just as the culture of which they
formed a part was increasingly marginalized, and was soon going to be history.
It is almost as if he was trying to make sense of the tradition of his field so that he
could leave to posterity a key to it, since there was not going to be a thriving ongoing
tradition of instruction. This was perhaps a time to look backward, and save and
defend what could be saved rather than a time to build for the future. From this
perspective, the much deplored lack of originality, which has been detected in the
works of Pappus and others during this time (e.g., Theon of Alexandria, who was
the father of Hypatia, and the most influential editor of Euclid’s Elements), becomes
understandable. It should not be equated with a lack of mathematical competence.

1.2 Pappus’ Works

Almost all of Pappus’ work belongs to the field of mathematics. Four areas can be
identified, and they are all “classics”: geometry, geography, astronomy, and
mechanics. The latter three are “mixed sciences,” applied geometry, if you will. In
what follows, I will give a brief list of Pappus’ works, starting with a few remarks
on the Collectio. I will be a little more detailed with respect to the geometrical
works, and focus again on Coll. IV specifically at the end.

The Collectio is the only one of Pappus’ works that survives in Greek, and there-
fore our main source for Pappus’ mathematics (his commentary on Elements X
survives in Arabic, see section “Geometry Proper”). Book I of the Collectio is lost
(unless identical with the commentary on Elements X), and of Book II only a part
survives. The rest of the collection is more or less preserved intact in the original
Greek. There are gaps, e.g., the proem and conclusion of Book IV, or the instrumental
constructions in Book VIII, as well as its conclusion. The work was not conceived
by its author as a single, closed, coherent opus, as the different addressees men-
tioned in the proems, the numerous duplicates, the divergent subject matters, and
finally some explicit cross references to “a preceding book™ attest. In fact, I will
list Book VI as an astronomical work, and Book VIII as a work on mechanics.
Both are, of course, also works on “applied” geometry.

1.2.1 Geometry Proper

(a) Commentary on Euclid, Elements X. This work, perhaps in two books, is
preserved in an Arabic translation. An edition with English translation is
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available (Junge and Thomson 1930). It replaces an earlier German translation
by Suter and an even earlier French translation of excerpts by Woepcke. Jones
suspects that this commentary could be the otherwise lost Book I of the Collectio.
It deserves scholarly attention, for it could contribute to our understanding of
the ancients’ theory of irrationals (cf. Coll. IV, Props. 2 and 3).

(b) Geometrical books within the Collectio. Book II contains a kind of game in
numbers, around a hexameter verse. On the basis of this example, numerical
operation with large numbers is illustrated. Perhaps the relevant techniques
were those developed by Apollonius. Jones contradicts the common assump-
tion, put forth originally by Heiberg, that the material stems directly from
Apollonius’ Ocytokion.

Book III, addressed to the head of the mathematics division at the Platonic
Academy in Athens, a woman called Pandrosion, treats of construction prob-
lems that were of special interest to Platonists. Pappus starts off by criticizing
three flawed arguments by students of hers, and adds further, more general
explanatory remarks on an elementary level. The first problem discussed is cube
duplication. Pandrosion’s student had attempted a plane solution (circles and
straight lines, calculation of ratios). It is refuted by extensive critical analysis,
and Pappus then moves on to formulate his meta-theoretical position on the three
distinct kinds in geometry and the impossibility to achieve a correct solution
from the “wrong” kind. An exact geometrical solution for the cube duplication
requires conic sections. The cube duplication thus is an example for a “solid”
problem. Pappus is trying to make the case that if one wants to restrict oneself
to the argumentative scope provided by circle and straight line, one has to
restrict oneself to corresponding problems, i.e., those that are “by nature” plane.
The meta-theoretical passage is a duplicate of the meta-theoretical passage in
Coll. TV. Pappus does not give an exact solution for the cube duplication via
conics in Coll. 111, however. Apparently, he is trying to do justice to the level of
mathematical education in his particular audience. Instead, he proposes simple
ruler manipulation as a device to establish the crucial neusis (not claiming that it
is an exact mathematical construction).! The next topic is the geometrical rep-
resentation of the three Pythagorean means.? Here, too, Pappus starts from a
student argument, which he criticizes, and then proceeds to a discussion and
construction of ten means. His approach shows affinities to the methods
employed by the Neopythagorean Nicomachus (who is usually seen as the
authority in this branch of investigating numbers), but Pappus’ ten means are not
completely identical with the ones Nicomachus lists. A third part of Coll. III is
devoted to the construction of a triangle inside a given right-angled triangle

' A neusis is a geometrical construction, in which a straight line of given length has to be placed
between two other given lines in such a way that its continuation verges (Greek verb neuein)
toward a given point. On neusis constructions see the commentary on Props. 23-25 below.

>The original Pythagorean means were the arithmetical, geometrical, and the harmonic mean.
A special kind of number theory, or number speculation, arose around them, and their number was
increased to 10. This kind of consideration was of special importance in the Neopythagorean
school. The reader is referred to Nicomachus, Introductio Arithmetica, and the literature on it.
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under the condition that the sum of the two sides is larger than the sum of hypot-
enuse and one kathete. Again, Pappus starts from a discussion of a flawed argu-
ment presented to him, and moves on to generalizing elementary considerations.
As a source for his exposition on the topic, he mentions an otherwise unknown
author Erycinus. The book concludes with a constructive inscription of the
Platonic solids into a sphere. The presentation is in analytic-synthetic form and
differs decisively from the one given in Elements XIII. An appendix to Coll. 111
revisits the problem of cube duplication, offering an alternative discussion to the
first group of propositions mentioned above.

Book IV, as I hope the present complete translation and commentary will docu-
ment, is a representative portrait and survey of the methods in the three kinds
that make up classical geometry, on the basis of illustrious examples for the
most part, exhausting the classical geometrical tradition down to the time of
Apollonius. The authors and sources used are Aristaeus, Euclid, Archimedes,
Nicomedes, and Apollonius. The book has three parts, in correspondence to
the partition of geometry into three kinds: plane, linear, and solid. For a more
detailed account of Coll. IV see the following sections.

Book V studies isoperimetric figures. Within the collection, it is the book that
shows the most signs of careful polishing. It contains two proems, and consists
of two parts. Part I discusses isoperimetric figures in the plane. It is based on a
work of Zenodorus. Part II discusses isoperimetric figures in space. It is less
comprehensive than the first part. Contained are considerations on semiregular
polyhedra, as well as the Platonic solids and their relation to each other and the
sphere. Perhaps Pappus is using a work by Archimedes as his source.! For he
ascribes a work on semiregular polyhedra to Archimedes, and numerous argu-
ments in Coll. V show a close conceptual connection to arguments in
Archimedes, De Sphaera et Cylindro.

On Book VI see section “Astronomy/Astrology”.

Book VII is a handbook in catalog form. It is addressed to a certain Hermodorus,
and was intended for use while going through the works belonging to the ana-
Iytical field in mathematics, as a kind of running commentary.? The main, though
not the only, author in this field was Apollonius. For each of the works dis-
cussed, Pappus gives a list of content, a synopsis, and elementary auxiliary lem-
mata for intermediate steps, presumably closely following the actual sequence
in the texts. His lemmata mostly consist in reductions to, or deductions from,
propositions in Elements I-VI (elementary geometry). They seem to be intended
to facilitate reading the actual texts themselves, and the reader is expected to
have them in front of him or her. Unfortunately, most of the texts in the analyti-
cal field are lost (notable exceptions are the Data and the Sectio rationis), so that
Coll. V11 is in fact our main source for a reconstruction of the treasury of analysis
(not quite its original purpose!). Its value for research in the history of mathe-

'Jones (1986a, pp. 578-580) argues for a possible connection of a part of these propositions to
Aristaeus’ lost work on the Platonic solids. Pappus may have used it as an additional source.
2See Jones (1986a) for a translation and commentary of Coll. VII. The book also contains most
valuable information on Pappus, the Collectio, and Greek geometrical analysis.
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matics therefore lies not so much in its actual content, but in the fact that this
content provides an indirect and partial access to the vast field of Greek analyti-
cal geometry, which is now lost to us.

On Book VIII see section “Mechanics.”

1.2.2 Geography

Two works are attested:

(a) Chorography of the known world. 1t is based on Ptolemy’s Geography and con-
tains, among other things, curiosities in ethnography. Fragments are preserved in
Armenian, in a text dating from the seventh century. Ziegler mentions a French
translation, Jones cites a newer one into English by Hewson from 1971.

(b) Rivers in Libya. The book is listed in the Suda. No other traces survive.

1.2.3 Astronomy/Astrology

The sheer number of titles, and their projected volume, indicates that this was an
area of special interest to Pappus, maybe his main focus. Unfortunately, not much
of it is preserved.

(a) Commentary on Ptolemy’s Almagest. Some remarks on Books V and VI sur-
vive in the original Greek. They were edited by Rome within a more compre-
hensive work which also contained Theon’s commentary (Rome (1931-1943),
cited from Jones (1986a)). Cross-references and a reference in Eutocius con-
firm that commentaries on Books I, III, and V existed. According to Jones, it is
very likely that Pappus commented on all 13 Books. The commentary must
have been a very extensive work.!

(b) Commentary on Ptolemy’s Planisphaerium. This work is not preserved, but
Fihrist mentions it in connection with an Arabic translation by Thabit ibn Qurra.
Ptolemy’s work dealt with stereographical projection, and is preserved, accord-
ing to Jones, in an Arabic translation.

(c) Commentary on the Analemma of Diodorus. This work is mentioned in Coll.
1V, in connection with the discussion of the conchoid (see Prop. 23). The ana-
lemma was a method for problem solving in spherical geometry, and derived
from astronomical applications in connection with the sun dial. Neither Diodorus’
work nor Pappus’ commentary survive. Perhaps fragments of the commentary
are contained in one of the Bobbio manuscripts (cf. Jones 1986, p. 12).2

(d) Book VI of the Collectio: Astronomical Field. This work is fully preserved.
Like Coll. VII (see above), it is a kind of handbook with explanations in catalog
form, to accompany the study of the so-called minor astronomical works as a

'Cf. Neugebauer (1975, p. 966).
20n Diodorus and the Analemma see also Neugebauer (1975, pp. 840 ff).
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running commentary. The text presupposes knowledge of Elements I-VI. In a
first part, Pappus attempts to correct mistakes commonly made, and gaps unduly
left in the usual teaching (!) of Euclid’s Phaenomena, Theodosius’ Spherics,
and Theodosius’ Days and Nights. A second part contains excerpts and explanatory
remarks on theorems associated with Autolycus and Aristarchus (compared to
Hipparchus and Ptolemy), and with Euclid’s Optics.!

(e) Astrological Almanach. According to Jones, an excerpt from this work ascribed
to Pappus is preserved in a Florentine compilation book of astrological texts.
In addition, Jones mentions a reference to an astrological work by Pappus in an
astrological manuscript from the thirteenth century.

(f) Alchemistic Oath. This is a rather short formulaic text with theological-spiritual
content. According to Tannery (1912) and Bulmer-Thomas (in his DSB article),
ithas to be accepted as essentially authentic. Its main part is strongly Neoplatonic
in outlook. The conclusion shows gnostic influence, and therefore Jones argues
that this sentence (loosely connected to the main text) should be viewed as an
interpolation.

1.2.4 Mechanics

Book VIII of the Collectio. This work was circulated in late antiquity independently
from the rest of the Collectio under a title like “introduction to mechanics.” It was
apparently widely distributed, and was received into the Islamic culture at a rela-
tively early date. Extant Arabic translations could be used to close some gaps in the
Greek text as it has come down to us. Because of its special history, a few remarks
on its content may be appropriate, even though it is not directly relevant for Coll.
IV. The introduction characterizes the field of mechanics from a methodological
point of view, and differentiates two sub-disciplines, or branches: theoretical and
practical. The division is given by reference to Heron of Alexandria, the major
authority in the field. The relation of geometry and mechanics is described in terms
that are strongly reminiscent of Aristotelian concepts of science in general, and of
the “mixed sciences” in particular. Archimedes is named as the founder of the theo-
retical branch of mechanics; Carpus and Heron are mentioned as important figures
as well. Finally, the introduction gives a survey of the book. Most of the material
in Coll. VIII probably rests, directly or indirectly, on Heron’s work in mechanics.
A first group of propositions deals with classical problems in ancient (theoretical)
mechanics: centers of gravity, motions of a weight on an inclined plane. For the
latter, Heron’s Baroulkos is referred to. A second group of theorems targets instru-
mental techniques for dealing with (practical?) problems in mechanics. Concrete
instruments for construction are discussed. Inter alia, the construction of the neusis

"Heath (1921, II, p. 397) and Neugebauer (1975, p. 767) both give a rather negative judgment of
this work of Pappus. Perhaps a more favorable judgment would result, if the “didactic” scope and
purpose of the work were taken into account.
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used in cube duplication by simple manipulation with a marked ruler (cf. Coll. IV,
discussion of the conchoid), and the determination of the base of a chipped-off
cylinder (broken column?) with the help of an ellipse through five points, are sub-
jects. Constructions with a ruler and a compass with fixed distance can be restored
from Arabic translations. The book concludes with extensive excerpts from works
by Heron on cogwheels and screws.

2 Survey of Coll. IV

Coll. 1V, the subject of the present translation and commentary, belongs to the
geometrical works proper (see above). Its beginning, including the proem, is missing.
We have no explicit statement of Pappus’ intentions and goals in the work and need
to reconstruct its subject matter from the text itself. This is not a trivial task. For the
text shows no overall thematic coherence on the level of mathematical content.
Only weak motivic connections can be detected, and they constitute something like
a bare red thread, establishing partial and very loose coherence on the literal level.
As a result of this lack, the judgment on Coll. IV has so far been that it is just a
random collection of diverse, indeed very diverse, mathematical vignettes. In my
opinion, this goes too far. An overall governing plan can, after all, be detected in
Coll. TV. Tt is to be found not on the level of literal, mathematical content, but on
the level of methodology. The famous programmatic statement on the three kinds
of geometry serves as a focal point of reference for the material presented by
Pappus. In all the vignettes he presents, even where the topic he chooses to exem-
plify a certain methodological approach is very appealing and interesting in itself
(e.g., squaring the circle), it is the methods that are profiled and emphasized, with
the content serving as an incentive, to capture the reader’s interest. Just as the copy-
ist indicates at the end of Coll. IV, the book contains “splendid theorems, plane,
solid and linear ones.” It divides into three parts. Pappus surveys the methods of all
three branches of classical Greek geometry, using examples that are either clearly
designed by himself so as to exhibit methodological aspects, or by drawing on
famous mathematicians and their results (preferably spectacular ones, like the
squaring of the circle or the duplication of the cube or the trisection of the angle):
Euclid, Archimedes, Nicomedes, and Apollonius.! Despite this restriction to just a
few major authors, and the rigorous restriction to relatively short argumentative
units as “exemplifiers,” Pappus succeeds in presenting a rich and rather differenti-
ated picture of the different styles and traditions within classical Greek geometry.
His representation is not exhaustive, and not intended as a complete documentation.
Rather, it is consciously and planfully selective. His approach is via exemplary

"Perhaps Aristacus’ work on solid loci was also used directly. At present, it cannot be decided to
what degree Pappus may have drawn directly on pre- Euclidean sources. Compare below, Props.
31-34.



XXii General Introduction

arguments that are didactically sound and representative. He makes an effort to
select arguments that can be made accessible on the basis of a knowledge of
Elements 1-VI1 (elementary geometry), while nevertheless exhibiting the typical
features of a particular style in mathematics.

The three parts of Coll. IV are:

I Plane contributions Props. 1-18

II Linear contributions, Props. 19-30

Meta-theoretical passage on the three kinds of geometry, with homogeneity
requirement

IIT Solid contributions, transition from solid to linear, demarcating solid from plane
problems, Props. 31-44

Props. 1-3 illustrate classical synthetic argumentation in direct connection to
Euclid’s Elements. All three of them follow the standard pattern of apodeixis
(proof) familiar from the Elements: a proposition is formulated, set down in the
concrete (ekthesis), with ensuing construction (kataskeue); a deductive proof, drawing
on the diagram, then leads to the conclusion.! Prop. 1, a theorem, gives a general-
ization of the Pythagorean theorem and is closely modeled on the argument given
in Elements 1, 47. It illustrates the form of a classical synthetic proof. Props. 2 and
3 are problems?; they construct irrational lines in close connection to Elements X.?
Prop. 2 gives a surprisingly simple construction of the Minor; it is closely modeled
on Elements XIII, 11. Prop. 3 starts from a configuration that is very similar to that
for Prop. 2 and gives a construction for an irrational that is not contained in
Elements X, but is one level “higher.” Perhaps it shows how one can work beyond
Euclid, while remaining firmly within the Euclidean framework.

Props. 46 illustrate the structural schema of (plane) analysis-synthesis. The second
part of this two-partite procedure is essentially a synthetic proof, like the ones given
in Props. 1-3. The first part, the analysis, is essentially a heuristic strategy with the
goal of identifying grounds for a deductive proof. One starts from the assumption
that one has already solved the problem at hand (or that the proposition is in fact
true), and then transforms and transposes features in this “target situation,” until
one reaches a situation which is indeed already corroborated. This phase of the
analysis is called “apagoge” or “epagoge.” One operates via reductions or deduc-
tions, and via suitable extensions of the configuration. In a second phase of the

"For the format and ingredients of a classical synthetic argument, specifically a synthetic proof,
see the introductory remarks and the proof protocol in the commentary on Prop. 1 with references.
See also Heath (1926, pp. 129-131). A very helpful investigation of classical Greek mathematical
proof is Netz (1999).

*In a theorem, one proves a proposition, most often by constructive proof. In a problem, one constructs
arequired entity, and then shows that this construction has the required properties. On theorems versus
problems in Greek geometry cf. Heath (1926, pp. 124—129).

3For an explanation of the term “irrational lines,” and for some information on Elements X, including
the Minor, see the introduction to Props. 2 and 3 in the commentary.
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analysis, one then shows that the end state, as it were, of the apagoge is independent
from the initial analysis-assumption (the assumption that the problem is solved, or
the theorem in fact true). One needs to show that the ingredients of the end state of
the apagoge are given (roughly speaking: determined and constructible)! within the
original configuration or via suitable input from elsewhere, and determine, if need
be, conditions for solvability as well as sub-cases (diorismos). This second phase
of the analysis is called (in a modern term) resolutio. After a successful resolutio, the
synthesis can pick up and provide a deductive proof, drawing on the material and
steps in the analysis. In many cases, the synthesis will be obvious after a successful
analysis, echoing the resolutio, and then retracing the steps of the analysis backward.?
Obviously, the analysis carries the burden, contains the creative mathematical work,
in an analysis-synthesis. The synthesis nevertheless is the part that carries the proof.
The mathematical content of Props. 4-6 is not very spectacular. Instead, the method
itself, the interplay of analysis and synthesis, and their respective roles, are made
very transparent. Pappus himself is probably the author of these theorems.

Props. 7-10 center on a special case of the so-called Apollonian problem (given
three circles, find a fourth one that touches them all). Apollonius’ Tactiones, though
not explicitly quoted, clearly form the background of this group of propositions. The
arguments target the strategy of geometrical analysis only (i.e., they are not complete
theorems/problems). No complete solution even to the special case discussed is
given; the arguments focus specifically on the resolutio phase of analysis, and within
it, the determination of given features. Prop. 7 is unrelated in content to the problem
at hand, and illustrates the operation with Euclid’s Data, to show that for a quadri-
lateral with all four sides given in length, and a right angle at one corner point, the
diagonal that does not subtend this angle is given as well. Obviously, it is not this
content, but rather the methods that are in view. Prop. 8, for which perhaps an argu-
ment from Apollonius, Tactiones 1, 16/17, served as a source (see “Translation and
Commentary”), is the most intrinsically interesting proposition in the group.
Unfortunately, it is not fully worked out and edited. It appears that Pappus himself
has constructed this group of propositions, in the form presented, as well. The group
yields a sketch of the methods employed in the analytic field (for plane problems),
with an emphasis on illustrating the crucial resolutio phase. By integrating Prop. 7,
Pappus makes the point that Euclid’s Data are to be viewed as a basic and central
reference work in this area (even against a trend in his source text for Prop. 8). What
is sadly missing in this portrait of the resolutio strategy is an adequate representation
of the diorismos. It was central for Apollonius, who was the main authority in this
area of plane analytic Greek geometry.

'This is a technical term: Latin: data, Greek: do¥€vta. See the introduction to Prop. 7 in the
commentary.

*For the schema of analysis-synthesis, its ingredients, its significance, and its relation to classical
synthesis, see the introduction to Props. 4—12 in the commentary. Compare also Pappus’ general
characterization of the method in the proem of Coll. VII.
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Props. 11 and 12 round off the picture of plane analysis-synthesis, focusing on
the apagoge phase of the analysis. Again, the content of the propositions is not
mathematically relevant. Prop. 11 is purely synthetic. An easily reconstructible
analysis would be limited to the non-algorithmic strategy of suitably extending the
configuration. In such a situation, the analysis work completely disappears into the
kataskeue (construction) within the synthesis, and does not leave any traces in the
apodeixis. Perhaps this was what Pappus wanted to illustrate with Prop. 11.! Prop.
12, the last proposition in Pappus’ portrait of plane analysis-synthesis, contains a
full analysis and synthesis, just like the first proposition in this group did. In the case
of Prop. 12, the apagoge consists solely in reduction, and it is purely deductive. The
result is that the resolutio is minimal, and the synthesis exactly retraces the steps of
the analysis, because all the steps used in the apagoge are also convertible. Prop. 12
represents the original, and probably also historically original, core of ancient geo-
metrical analysis: the idea of reduction. Unless he drew on otherwise unattested
examples from early Greek geometry, these two propositions are constructed by
Pappus — presumably with the intention, at least for Prop. 12, to illustrate the
analytical strategy in the apagoge phase.

Props. 1318 form by far the largest coherent bit of text in Coll. IV. In fact, we
get a kind of monograph in miniature format (in an abridged, and therefore some-
what fragmented form). The subject of this charming, clever group of propositions
is the arbelos configuration (cf. the figure in Prop. 16). In it, a surprising connection
manifests itself between the ratios of diameters and perpendiculars in a finite con-
figuration with an infinite series of inscribed tangent circles on the one hand, and the
natural numbers on the other. The mathematical subject matter connects to consid-
erations on points of similarity, and in this sense, it reaches rather deeply and taps
into an area that was much later systematically developed in projective geometry.
The argumentative means are purely synthetic, and astonishingly simple. The author
succeeds in capitalizing ingenuously on means from elementary plane geometry,
while presenting his material “locally” in a rather conservative style. The central
theorem in the group employs a nuclear form of complete induction. The mathematical
content of Props. 13—18 is thus highly attractive, and beautifully, thought-provokingly
displayed. The group of theorems has been associated with Archimedes as a poten-
tial original author. Despite its fragmented form, one may very well think it (or
rather its more extended original) worthy of Archimedes. Even though such an
ascription cannot be verified, the arbelos treatise exhibits a well-defined mathemati-
cal style, the features of which warrant the label “mathematics, Archimedean style”
for this type of plane ancient geometry.

Without explicitly stating so, Props. 19 ff. make the transition from plane to
linear geometry. Even without an explicit remark by Pappus, he may have reason-
ably expected his audience to note that we are dealing now with problems of a
different character, and with mathematics of a different kind. The author of Props.

'But see the commentary on Props. 11 and 12.



General Introduction XXV

19-22 is Archimedes. These propositions deal with the plane spiral in a way that
shows some connection to theorems from Spiral Lines, but nevertheless radically
differs in the investigative and argumentative methods employed. Among other
things, Prop. 21 (stating that the area of the spiral is one third of the circle in which
it is inscribed) employs Archimedes” mechanical method,' and operates with indi-
visibles (or else an implicit argument via transition to infinity). Prop. 22 gives a
theorem on the size of spiral sectors. The propositions are a valuable source for the
heuristic background of Archimedes’ study of spiral lines. They belong to the con-
text of squaring the circle, and probably illustrate the seminal contribution made by
Archimedes toward the mathematical investigation of motion curves (the “linear
kind” in Pappus’ terminology). Such curves are typically generated by abstract
idealized motions, a quasi-mechanical ingredient. When dealing with them, one has
to make a transition to mathematically graspable symptomata, which then are the
basis for the geometrical investigation as such. Obviously, for the development
of the mathematics of such curves, one has to mathematize suitably. In antiquity,
two paths were pursued for this: either one proceeds by fully exploiting the
mechanical metaphor (Archimedes), or by conducting an analysis of loci (Nicomedes,
inter alia, see following sections). At least this is the picture that emerges from
the developmental story Pappus tells.2 Both the concern for an adequate mathemati-
cally acceptable definition of the curves and the concern for establishing a valid
geometry on them are of major interest.

Props. 23-25 target a second motion curve, the conchoid of Nicomedes.? The
propositions are drawn from Nicomedes’ (lost) treatise on the conchoid. The genesis
of the curve is via motions, but unlike Archimedes’ spiral, where the symptoma is
derived directly from the motions, Nicomedes’ conchoid is characterized point-
wise, in a quasi-analytical way, as the locus of all points that have a certain neusis
property: all points on the curve have the property that the straight line from them,
verging toward the pole, cut out a line of fixed length between the curve and a given

'On the ingredients and the significance of Archimedes’s “mechanical method” see the introduction
to Props. 19-22 in the commentary with bibliographical notes; cf. also Archimedes, Ephodos and
Quadratura Parabolae.

*See the introduction to Props. 19-30 in the commentary, on the symproma-mathematics of
motion curves, also on the terms “mechanical,” “instrumental,” genesis, symptoma, and on the
question how, and to what degree, this field of study is viewed as geometry. Descartes obviously
had this part of Coll. IV in view when he developed his classification of curves, and excluded what
he defined as “mechanical” curves. He seems to have assumed (erroneously) that the ancients
dismissed all these curves and all mathematics on them, whereas he dismissed only some. Newton,
drawing likewise on Coll. 1V, came to a different assessment. See the commentary on Props.
19-30 passim.

3This curve arises when one moves a ruler that is attached to a fixed point (pole), along a fixed
straight line (canon), with the stipulation that any intercept between that straight line and the curve
has to have a fixed length. The main branch of the arising curve has the shape of a shell, hence the
name for the curve. See the figure in the translation, Prop. 23 with introductory paragraphs.
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straight line (the canon)." This may very well mark a transition toward a different
characterization of the higher curves, via analysis (see Props. 28 and 29). With a
neusis construction that can be won from the conchoid (construct a line that verges
toward a fixed point and creates an intercept of given length inside a given angle,
i.e., between two given straight lines, Prop. 23), Props. 24 and 25 establish the cube
duplication, indeed the production of a cube that has a given ratio to a cube that is
put forth. The text in Props. 23-25 has a partial duplicate in Coll. III, and another
one in Coll. VIII. The most extensive source on ancient cube duplications is, in this
case, not Pappus, but Eutocius In Arch. Sph. et Cyl. II, pp. 54—106 Heiberg.
Eutocius’ report also contains Nicomedes’ construction (pp. 98—104 Heiberg), and
a passage very similar to Prop. 24.

The author Nicomedes forms a bridge to the next group of propositions. Props.
26-29 deal with the quadratrix, its genesis (generation), symptoma (characterizing
mathematical property), discussion of some fundamental problems with the curve
(source: Sporus), two symptoma-theorems on it (Prop. 26, rectifying the circle,
Prop. 27, squaring the circle), and two arguments via analysis of loci on surfaces
that seek to show, via analysis, that the quadratrix is uniquely determined, relative
to either an Apollonian helix or an Archimedean spiral. The quadratrix itself is a
transcendental curve in the plane. It was probably invented in the fifth or fourth
century BC (i.e., before Euclid) for the division of an acute angle in a given ratio.
It can, however, also be used to square the circle, and it is this property from which
the curve takes its name.? Nicomedes is explicitly associated with the quadratrix
and the quadrature (Props. 26 and 27). He may be the author of Prop. 29 as well.
Props. 26-29, along with the minor quadratrix theorems in Props. 3541, are our
only source on the ancient quadratrix, and Props. 26-29 are our only sources on
squaring the circle with it. The analytical characterizations in Props. 28 and 29 are,
in addition, our only testimonies on analysis of loci on surfaces. Thus, this part of
Coll. 1V is especially interesting in terms of its mathematical content. But even so,
it is again the investigative and argumentative methods, this time for linear geometry
and its characteristic symptoma-mathematics, that are the focus of Pappus’ presen-
tation. It remains unclear to what degree the analytical characterization of curves
like the quadratrix, as in Props. 28 and 29, is representative, and what the Hellenistic
mathematicians who specialized in this area thought and produced on this issue.
Among other things, the status of the curves, even after analytical characterization,
remains somewhat shady. Yet in Pappus’ portrait, results like Props. 28 and 29

!'On the meaning of the term “neusis,” and for examples for neusis constructions in ancient geometry,
see the commentary on Props. 23-25.

>More specifically, the quadratrix directly yields the rectification of the arc of a quadrant. From
there, quadrature is immediately available, once one has a theorem like Archimedes, Circ. mens. 1.
Whether the discovery of the quadrature property is pre-Euclidean (Dinostratus, fourth century BC)
or post-Archimedean (Nicomedes, third/second century) BC is a matter of dispute. On this issue,
and generally on the quadratrix, see the commentary on Props. 26-29.
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represent the culmination of a tradition of justifying the foundations of symptoma-
mathematics of the higher curves via analysis. He explicitly accepts the symptoma
— theorems on the quadratrix as geometrically valid.

Prop. 30 returns to Archimedes, also the author of the first propositions in
Pappus’ portrait of the geometry of motion curves. He appears to have been the
initiator of this branch of mathematics, while working specifically along a path of
investigation that incorporates quasi-mechanical methods. A spiral is generated on
the surface of a hemisphere, via two synchronized uniform motions (speeds in the
ratio 1: 4). From this genesis, the main symptoma of the spiral is directly read off.
Then an area theorem is proved: The area cut off on the sphere above the spiral is
eight times the segment cut off from a quadrant of a maximum circle when one
connects the end points of the arc, and the surface cut off on the hemisphere below
the spiral is eight times the remaining triangle in the quadrant, i.e., it is equal to the
square over the diameter of the sphere. This theorem constitutes the first example
for a successful quadrature of a curved surface in space. Prop. 30 is perhaps some-
what harder to read than the other contributions in Coll. IV, because of the cumber-
some notations it uses. Nevertheless, its result is rather interesting. Connections to
De Sphaera et Cylindro abound. The argumentative strategy resembles the one used
in Prop. 21 (limit process, mechanical method). Pappus’ portrait suggests that
Archimedes was the main representative of this quasi-mechanical branch of math-
ematics of higher curves. His successors seem to have favored the analytical path.

At this point, Pappus concludes his portrait of the mathematics of the linear kind.
A few further examples on the symproma-mathematics of the quadratrix will come
up in part III. Part I focused on the big topics, as it were, especially the foundations,
and the methodological horizon, of “higher” mathematics. Pappus moves on to a
general remark on the three kinds of geometry, and the methodological consequences
to be drawn from this tri-partition. This is the famous meta-theoretical passage. There
are to be three non-overlapping kinds of mathematics, determined by the methods
used to solve problems and accomplish constructions. First, there is plane geometry.
It uses only circles and straight lines. This branch of mathematics and its different
sub-branches were the subject of Props. 1-18. Next come problems that cannot be
solved with circle and straight line alone, but need one or more conic sections in
addition. This kind of mathematics is called solid, because conics “have their gen-
esis” in a cone, i.e., a solid figure (circle and straight line are generated in the
plane). Pappus’ presentation suggests that the geometry of conics developed out of
an attempt to solve problems that were unsuccessfully attacked with plane means at
first. He specifically points to the angle trisection. In the parallel text in Coll. 111, the
cube duplication plays this role. Schematic though it is, Pappus’ account may very
well be more or less accurate. His picture concurs with the estimate of most modern
scholars on the development of the theory of conic sections. So far, Pappus has not
presented any “solid” arguments. They will be the subject of Props. 31-34 and
42-44. A third kind of mathematics is to be called “linear.” Its basic curves cannot
be characterized as precisely as the circles, straight lines, and conics of the other two
kinds. In fact, this kind of mathematics covers all the rest of mathematical curves.
It is not as easy to see how they form a single “kind.” Instead of a characterization
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by means of basic curves, Pappus gives a longer description which is not quite
uniform. He differentiates two “paths” toward the fundamental curves: they are
either generated by motions, or determined via analysis. Pappus mentions a few
contributors, but their works, and their curves, are lost, so that we cannot take
recourse to any text outside of Coll. IV to evaluate Pappus’ description of the third
kind. Pappus shows some uneasiness with regard to the status of the curves.
Nevertheless, he unequivocally counts the mathematics on them, i.e., the symproma-
mathematics of the curves, as fully legitimate geometry. Examples for this kind of
mathematics were given in Props. 21 and 22, 23, 26 and 27, and 30; further examples
on the symptoma-mathematics of the quadratrix will be given in Props. 35-41.

Given that geometry is to have these strictly separate kinds (gene), a homogeneity
criterion applies. It is required that mathematical problems must be solved with the
means that are appropriate to the specific nature of the particular problem, i.e., they
must be “akin” to the problem. Obviously, this targets not so much attempts to solve
problems with means that are insufficient (a solid problem simply cannot be solved
by plane means, since “solid” means “in need of using at least one conic section”).
Rather, the requirement targets solutions that use “higher” curves than required, e.g.,
solid solutions where plane methods would have sufficed, and linear solutions where
solid or plane methods would have sufficed. They are rejected, because they fail
to capture the object of investigation for what it essentially is. They are not “akin” to
it, they come from the wrong genos. This homogeneity requirement is different from
modern ways of thinking about appropriate means, even when the same label is
used. With Pappus, it is closely connected to an essentialist view on definition and
scientific argumentation,' not just to the idea of minimalizing the means required.
Pappus’ homogeneity criterion was noticed, much discussed, and also appropriated
in various ways, by the mathematicians in the sixteenth and seventeenth century
reading Pappus, e.g., by Vieta, Descartes, and Newton, and developed and trans-
formed from thereon. It is doubtful whether it was operative in this generality in
antiquity. However, a similar criterion was developed by Apollonius for the differ-
entiation of plane versus solid neusis problems and loci. He did in fact require that
plane neuses must be constructed with plane means. And he developed a toolbox for
differentiating the level of problems, where the question was whether a problem was
plane or solid. Apollonius himself may have been more interested in minimizing
operational tools and procedures than in an essentialist justification such as the
one Pappus employs. Nevertheless, the resulting restriction requirement was his.
Apparently, it was used by others after him to scrutinize already existing neusis argu-
ments, and other theorems as well. Perhaps the two examples for arguments that
fail to meet the homogeneity requirement mentioned by Pappus, a neusis from
Archimedes’s Spiral Lines, and Apollonius’ construction of a normal to the parabola,
come from this very context. An analysis of the Archimedean neusis, with the inten-
tion of showing that it is solid, is given in Props. 42—44.

'Cf. Aristotle’s theory of science, especially Posterior Analytics 1, 1-13; see the remarks on the
meta-theoretical passage in the commentary.
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Props. 31-34 present three different solutions for the problem of angle trisection
(divide a given angle into three equal parts). In Pappus’ portrait, the angle trisec-
tion appears as an exemplary problem of the solid kind. In Coll. 11, the cube
duplication plays this role. In fact, all problems that are solid in Pappus’ sense
reduce to either of these two problems. Thus, Pappus is quite correct in his assess-
ment of the importance of the trisection. The material in Props. 31-34 consists of
four layers. Props. 31-33 give an angle trisection via neusis. Within it, an older
version in which the neusis was not constructed via conics is still present (Props. 31
and 32). The neusis in question can be constructed with Nicomedes’ conchoid.! In
the original, possibly pre-Euclidean argument, the neusis was probably constructed
by simple ruler manipulation. This older layer was then worked over, and the result
is an anlytical-synthetical argument. In Prop. 31, the neusis is reduced, via analy-
sis, to the construction of a hyperbola through a given point with given asymptotes,
and in Prop. 33, this hyperbola is constructed in an analytical-synthetical argu-
ment. Prop. 33 may be close to Apollonius’ lost analytical-synthetical solution for
the angle trisection, though Pappus seems to have played a major role in spelling out
the details of the argument as presented in Coll. IV. It is noteworthy that a much
simpler, purely synthetical solution for Prop. 33 is possible via Konika 11, 4.
Apparently Pappus wants to make the point that the characteristic working strategy
in “solid” geometry is analysis-synthesis. All his examples from solid geometry are
analytical. Prop. 34 contains two further angle trisections, avoiding the neusis.
The analysis is emphasized, with the synthesis only sketched for 34a, and left to
the reader for 34b. Both arguments employ the same hyperbola, under different
representations. Prop. 34b contains an older layer that goes back, in all likelihood, to
an argument from Aristaeus’ (lost) Loci on Surfaces. The hyperbola is determined
through its focus-directrix property. Prop. 34a builds on Prop. 34b. It is the simplest
of the three solutions via conics, and rests on an analysis reducing the problem to
Konika 1, 21. Pappus was probably the author of Prop. 34a. To what degree he
himself revised Aristaeus, or else an intermediate source drawing on Aristaeus,
cannot be determined with certainty. Props. 31-34 handle conic sections as loci.
A tendency toward algorithmization and reduction to standard configurations can
be detected in Pappus’ portrait of the typical methods, despite the fact that he
chose examples that come from very different time periods.

General angle division is, as Pappus remarks, not a problem that can be solved
via conics. In Coll. IV, the problem serves to illustrate how a transition from the
second to the third kind of geometry takes place when we generalize problems.
Props. 35-38 are examples for symproma-mathematics of the quadratrix. They may
derive from Nicomedes’ work on the curve. Prop. 35 shows how the quadratrix, or,
alternatively, the Archimedean spiral, can be used to divide a given angle in a given
ratio. Props. 37 and 38 show how it is possible to construct a regular polygon with
any given number of sides. These two propositions are visibly analogous to

' Vice versa, the neusis construction via conics, in Props. 31/33, which probably goes back to
Apollonius, can be used for the cube duplication.
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Elements 1V, 10/11. No attempt is made to single out angle divisions that would
become plane, or solid.

Props. 39-41 continue the symptoma-mathematics of the quadratrix. The focus now
is on the rectification property of the curve (Prop. 26). Some perhaps rather unspec-
tacular consequences are drawn from it: As Prop. 26 rectifies the circle, one can also
use the quadratrix to find, conversely, a circle the circumference of which is equal to
a given straight line (Prop. 39), one can construct a circular arc that has a given ratio
to a given line segment, as a chord under it (Prop. 40), and one can define and construct
incommensurable and irrational arcs (or angles), drawing on the definition of incom-
mensurable straight lines (Prop. 41). The above-mentioned demarcation problem
does not arise for these problems. Circle rectification is, as it were, by nature linear.

In the final group of propositions (Props. 42—44), Pappus comes back to the
demarcation question, and specifically to the criticism he has voiced against the neuses
in Archimedes’s Spiral Lines: that they are solid, whereas a plane argument would
have sufficed. Props. 42—44 pursue two goals, to show via analysis that the neusis is
indeed solid, and to present an analysis that is useful also for working on numerous
other solid problems. The second goal may explain the particular choice of the neusis.
For Pappus chooses not SL 7 or SL 8, the ones one might expect, but rather another
neusis, closely related to SL 9 and to a neusis employed in a now-lost angle trisection.
It is, however, also related to all of SL 5-9. Given the connection to the angle trisection,
Pappus was correct in claiming that the analysis could be useful for many other
solid problems. The analyses in Props. 42-44 show features of typifying and stan-
dardization very much like the arguments in Props. 31-34. They do indeed lead to the
result that the locus for a solution of the Archimedean neusis is, in general, deter-
mined by the intersection of a hyperbola and a parabola. Apparently, Pappus believed
this shows that the neusis is solid. His analytical argument does not show this beyond
doubt, though. Specifically, he does not attempt to apply diorismos to identify plane
cases or impossible cases, and he cannot guarantee that his analysis has exhausted all
the information available in the configuration, including information that might make
a plane solution possible. Nevertheless, Props. 42—44 are again interesting both for
their mathematical content, and for methodological reasons. They contain three of the
very few examples for analytical arguments on solid loci that are preserved from
antiquity, and they illustrate how one might have used analysis for determining
whether a problem is, in general, solid or plane.

3 Summary: Coll. IV at a Glance

I Plane Geometry

(a) 1-6 Plane geometry, Euclidean style (scope: Elements)
1 Generalization of the Pythagorean theorem, synthetic
2/3 Applications of the theory of irrational magnitudes of the first order, synthetic
4-6 The basic structure of plane geometric analysis; theorems, analytic-synthetic
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(b) 7-12 Plane geometry, Apollonian style (scope: Treasury of analysis, plane
problems)
7 Role and use of Data; analytic
8—10 Resolutio for a special case of the Apollonian problem; analytic
11/12 Effects of analysis as mere extension of configuration,' and as pure
reduction; synthetic/analytic-synthetic

(c) 13—18 Plane geometry, Archimedean style (scope: Elements and beyond)
Arbelos theorem (synthetic; monographic)

II Linear Geometry: Symptoma-Mathematics of Motion curves

(a) 19-22 Plane spiral (Archimedes, quasi-mechanical methods)

(b) 23-25 Conchoid (Multiplying the cube, Nicomedes, quasi-analytical methods)

(c) 26-29 Quadratrix (Squaring the circle, Nicomedes, transition from mechanical
to analytical characterization of the genesis)

(d) 30 Spherical spiral (Archimedes, quasi-mechanical method)

Meta-Theoretical Passage on the Three Kinds of Geometry:
Homogeneity criterion

III Solid Geometry, Transition “Upward,” Demarcation
“Downward”

(a) 31-34 Angle trisection (solid loci/conic sections, several stages of methodology,
pre-Euclidean, Aristaeus, Apollonius, Pappus)

(b) 35-38 Angle division and applications (linear, as a result of generalization;
symptoma — mathematics of quadratrix and spiral, Nicomedes?)

(c) 3941 Symptoma-mathematics of the quadratrix, rectification property (linear
by nature, Nicomedes?)

(d) 4244 Analysis of an Archimedean neusis (analysis of solid loci, determining
the level of a proposition or problem; Pappus)

The intermediate status of solid geometry accounts for the position of its examples
after the presentation of the other two kinds, and also for the occurrence of issues
of transition “upward” and “downward” in this part of Coll. IV. Solid geometry is
the bridge between the two extreme kinds, and it was the area with regard to which
demarcation issues became virulent, propelled the development of techniques, and
were investigated systematically (above all, by Apollonius).

'But see the commentary on Prop. 11. This evaluation of Prop. 11 is highly tentative.
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Introductory Remarks on Part I

The following remarks draw on (Treweek 1957), (Jones 1986b) and (Jones 1986a),
pp- 18-65 for the text and transmission of the Collectio. The reader is referred
there for further information.

Tradition, Reception, and Editions of the Text of the Collectio

The text of the Collectio, as it has come down to us, was not conceived, or
published, as a single coherent work by Pappus himself. Probably, it was compiled,
edited, and published shortly after Pappus’ death by an unknown author. An
exception is Book VIII, which may have been published by Pappus separately.
It has an independent tradition, with clearly documented reception in the Islamic
culture. For all the other books of the Collectio, no traces of a thorough reception
can be documented, neither in late antiquity, nor in Islamic or in Byzantine culture.
The extant text goes back to a single Byzantine manuscript (Vat. gr. 218, called
A here) from the tenth century, in turn at least two, but probably not many more
steps removed from Pappus’ original autograph. This archetype is found in the
Vatican Library today. All later copies, dating from the sixteenth century and later,
stem directly or indirectly from this manuscript. There are about 40 such derived
complete or partial copies. For a detailed description of the history of A, and
for a stemma for the manuscript tradition, see Treweek (1957), with additions in
Jones (1986a).

As said above, all copies of A date from the sixteenth century or later. Thus, the
Collectio did not have a reception in Western Europe during the Middle Ages that
has left significant documented traces. There is one possible exception, the isolation
of which rather proves the general point. The manuscript A was already in Rome in
the thirteenth century. Unguru (1974) made the case that Witelo (thirteenth century)
may very well have had indirect access to at least the part of Collectio VI that deals
with propositions from Euclid’s Optics. Perhaps William of Moerbeke, who was at
Rome during that time, perused A and translated such passages from Collectio VI
for Witelo as seemed useful for his Perspectiva.

The first complete printed edition of the Collectio, by Commandino (pub-
lished posthumously), appeared in 1588. It contains a Latin translation, and

H. Sefrin-Weis, Pappus of Alexandria: Book 4 of the Collection, 3
Sources and Studies in the History of Mathematics and Physical Sciences,
DOI 10.1007/978-1-84996-005-2, © Springer-Verlag London Limited 2010
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critical as well as explanatory notes. Commandino’s work went through several
reprints, the last one was Bologna 1660 (with revisions). In the decades after
the first publication, an intensive reception and discussion of Pappus’ work
took place. Above all, the search for the ancient analytical method and also
general methodological questions, besides several mathematical vignettes from
Pappus, notably the part of Coll. IV that deals with “higher curves,” inspired the
mathematicians of the day to study Pappus and use him toward further mathe-
matical progress. The impact of both Coll. VII and Coll. IV on seventeenth
century mathematics was enormous. This topic would certainly deserve further
exploration.! During the following centuries, several projects for a complete
edition of the Greek original were launched, but none was brought to comple-
tion. Jones (1986a) lists the most significant partial editions. Among them,
Halley’s 1706 edition of the (Arabic translation of the) Sectio rationis, with an
excerpt from Coll. VII (Pappus’ commentary on the work), and Torelli’s edition
of Coll. 1V, # 30-35 (on the quadratrix), are perhaps worth mentioning here, as
illustrations of the general practice. The first complete critical edition was pub-
lished by Hultsch 1875-1878 (referred to as Hu in part I of the present edition).
It contains the Greek text with critical apparatus, and a Latin translation and
notes. To this day, it remains the standard text (excepting Coll. VII, for which
see also Jones (1986a)). Treweek’s 1950 new critical edition of Coll. II-V (Tr)
has unfortunately never been published. The only complete translation of the
Collectio into a modern language is by Ver Eecke (1933b). For Coll. IV, a
German translation was given by Sefrin-Weis (1998; see bibliography, primary
sources, Pappus). An English translation is provided here.

Remarks on the Greek Text Printed Here

The Greek text of Collectio IV that is given here is essentially an edition of Vat.
gr. 218 (A), f. 33r-55v.2 For the text, a transcription was made from photographs
of A. It was then collated with the original in the Vatican library, and with
Hultsch’s and Treweek’s editions of Coll. IV (Hu and Tr). Wherever the text
printed here diverges from Hu,? I have put the respective readings in italics, not-
ing Hu’s and Tr’s readings in the apparatus. Additions to the text of A are marked
by angular brackets (<>), deleted or suspected phrases are put in square brackets
([1). The lines as written in A were kept, and the beginning of pages in A are
indicated with headers in English. In the case of a few very infelicitous hyphen-
ations, I have put the full word in either of the lines and noted the hyphenation in

I'Cf., e.g., Bos (2001).
*Manuscript sigla adopted from (Treweek 1957), who incorporated Hultsch’s sigla.

3For the first part of Prop. 44, the emended version in appendix Hu pp. 1232f., with emendations
by Hultsch and Baltzer, was used as a standard of reference.
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the apparatus. Thus, the text as given here provides an alternative to both Hu and
Tr, while remaining closely connected to these fully critical editions. It can be
read in parallel with them, and with A as well.

The apparatus in the present edition is a reduced one. It was constituted as
follows. Wherever the adopted text diverges from A, A’s reading is reported in the
apparatus, excepting mere orthographic corrections. If a correction or addition can
be traced back to the manuscripts B or S, I have noted this fact as well, in addition
to documenting Hu’s and Tr’s readings (and occasionally, Co’s).! T have not had the
opportunity to collate the manuscripts B and S, or any of the recentiores for Coll.
IV, directly. Instead, I have relied on concurrence between Hu and Tr for readings
in B and S. Whenever I report an emendation as attested in Hu, Co and/or Tr, I do
not intend to imply that the emendation originates with them. For a more complete
documentation of manuscript readings in the recentiores, the reader is referred to
Tr. Most of the adopted emendations are clearly required by the mathematical
sense, and probably result from scribal errors such as A for A, or other erroneous
labels for points. One would have resorted to them in any case. Whenever an emen-
dation was not thus clearly justified by the mathematical content, A’s reading was
adopted, even in the face of grammatical or stylistic irregularities.

Remarks on the Translation

As said above, the Greek textis based on Vat. gr. 218 (A) and closely connected to
Hultsch’s critical text of Collectio IV (Hultsch 1876—1878, Hu). Hultsch’s anno-
tated Latin translation in Hu was very helpful for the English translation and com-
mentary presented here as well. Also useful were Commandino’s translation and
commentary in his 1588 edition and the 1660 revised edition of the same work
(Co), Ver Eecke’s 1933 French annotated translation, and my own 1998 German
annotated translation with commentary. The translation tries to be as close to the
original Greek as possible. I have made an effort to render the peculiar formulaic
way of expression in the Greek mathematical arguments into English by using
standardized phrases corresponding to the Greek formulae. Greek mathematical
prose is, however, extremely elliptical. A literal English translation would be
incomprehensible. As a compromise, additions were implemented so as to produce
tolerably complete English sentences. The additions are put in angular brackets
(<>), so that the reader can get an idea of Pappus’ own way of expressing mathe-
matical thoughts. For the structuring of the text, I have used Hultsch’s separation
into propositions (right margin and header in Hu, in the Latin translation), because
separation into units of mathematical content facilitates understanding. The

' Among the recentiores, it is mostly the manuscripts B and S that contain helpful alternative readings
throughout Coll. IV. Compare the apparatus in Hu and Tr. For a list of the extant manuscripts and
their interconnection see Jones (1986a, pp. 56-62), and Treweek (1957).
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numbering of propositions is identical with Commandino’s in Co, except for Prop.
44, which is missing in Co. In addition, the chapter divisions of the Greek text in A
(Roman numerals in Hu at the beginning of paragraphs in the Latin translation,
Greek numerals in Hu at the beginning of paragraphs in Hultsch’s Greek text,
labeled as #1ff. here) are included. Wherever possible, the translation is close to
Hultsch’s text, even where I disagreed with his choice for particular readings. In a
few cases, for example in the concluding passage on Sporus’ criticism of the
quadratrix (Prop. 26), I have translated what I believed to be the correct reading,
and have documented my deviation in the notes. The result is, I hope, a readable
English version of the Greek text that is rather close to the original, and can be used
together with Hultsch’s edition and Latin translation, as well as with Ver Eecke’s
French translation (Ver Eecke follows Hultsch very closely, both in his translation
and in his notes). My intention is that Pappus’ mathematical argumentation
should be accessible from his prose. I have therefore used (very limited) transfor-
mations into modern notation and algebraic language only in the notes, or in the
commentary.

The notes to the translation do, however, provide references to theorems from
Euclid’s Elements (and some other standard ancient texts, notably Euclid’s Data,
Apollonius’ Konika, and Archimedes’ works, in the standard critical editions), or
quasi-algebraic explanations that justify Pappus’ intermediate argumentative
steps. While I do by no means intend to imply that this is how an ancient math-
ematician would have proceeded (i.e., justify his steps via explicit reference to
Euclid), I do believe that Euclid’s Elements had the role of a basis and center for
geometrical instruction for Pappus. I take it that he wanted his readers to bring
the relevant content to bear, and, if unable, to consult Euclid as they were working
their way through Collectio IV. What I am doing in quoting Euclid is just provid-
ing one such possible path of justification. For the references to Euclid’s
Elements, 1 have used Heath’s 1926 English edition instead of the standard criti-
cal edition, because (Heath 1926) is widely accessible and very reliable and help-
ful. References to individual propositions in the Elements will be given in Roman
numerals, followed by Arabic numerals (e.g., I, 47 refers to Elements Book I,
Proposition 47 in (Heath 1926)), references to books will be given in Roman
numerals alone. The commentary (see Part IT) complements the notes to the trans-
lation. It will give proof protocols so as to facilitate surveying whole arguments
at a glance and identifying crucial ideas and steps in a proof. In addition, it con-
tains historical background information in outline, bibliographical information,
and attempts to provide a context for groups of propositions, both with regard to
Collectio IV, and more generally with regard to the history of Greek mathematics.
Furthermore, it locates issues where Pappus’ propositions, or groups of proposi-
tions, might be useful for further investigations. Explanatory remarks on central
keywords, e.g., “analysis-synthesis,” “neusis” “angle trisection,” are provided
there as well, again in the form of general outlines with bibliographical informa-
tion for further in-depth study, (see below, Part II with introductory remarks). In
addition to technical mathematical information, the notes to the translation

» e
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contain some philological remarks. Salient stylistic peculiarities, hapax legomena,
and the use of specific Greek words were noted, when I thought their occurrence
could be especially significant for further interpretation, though this route is not
pursued in detail in the present translation and commentary. I have restricted
myself to simple documentation and obvious direct inferences, as a possible basis
for further study. For example, in the introduction to Prop. 28, Pappus announces
an analysis of the genesis of the quadratrix, and consequently uses the word
“analuesthai” (subject to geometrical analysis). This is significant, because inter-
preters starting with Hultsch have read this word, erroneously, as equivalent to
“luesthai” (solve), and believe that Pappus is trying to provide a mathematically
exact solution for the quadrature of the circle, which, of course, he cannot
achieve. Attention to the actual word used can help clarify the meaning of Prop.
28 (see following sections). In the present study, I have restricted myself to just
pointing out the use of “analuesthai,” and drawing the obvious inference that
what we get in Prop. 28 is a geometrical analysis of the genesis, not a (failed)
solution of the quadrature. My documentation of such “salient Greek terms” is
not exhaustive.

Remarks on the Diagrams

In A, the figures for individual propositions appear at the end of each argument,
as inserts in indented spaces — alongside the beginning of the following proposi-
tion. In the present edition, I have relocated the diagrams. They appear as inserts
in the translation, wherever possible, directly after the statement of propositions.
The lettering is in Latin, in accordance with the translation. For a concordance of
Greek diagram letters and their rendering in Latin letters see the final page of this
introduction. The diagrams were modeled as closely as possible on the figures in
A. Gross distortions in comparison to the argument in the mathematical text were
ameliorated. For example, points were shifted so as to make congruent angles and
lines appear as congruent. For diagrams that contain only circles and straight
lines, as for example, in Props. 1-18, minimal intrusion of this sort was sufficient.
In A, all curves are represented by circular arcs, however. The diagrams for
propositions dealing with higher curves were therefore subject to more vigorous
revisions (with the exception of propositions on the plane spiral). Thus, the dia-
grams containing the quadratrix (Props. 26, and 35 ff.) are somewhat close to A,
but reshaped considerably, and the diagrams containing the conchoid and those
referring to three-dimensional objects were completely redrawn. Specifically, the
figures for Props. 23-30 are not connected to A. The diagram for Prop. 44 was
drawn afresh as well, since it is missing in A. Descriptions of the changes made
in the constitution of the diagrams are given in an appendix. The appendix also
contains a drawing of the diagram for the limit case in Prop. 15, which is not dealt
with in Pappus’ text.
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List of Sigla and Abbreviations

Manuscripts
A

A2

B2 B3

Vat. gr. 218 Tenth century

Archetype for all existant manuscripts, sole independent witness to
the text of Pappus, Collectio IV. In the Vatican library. For a
description, see Jones (1986, pp. 30-35), and Treweek (1957).
Corrector’s hand in A

Par. gr. 2440 Sixteenth century, before 1554

Earliest of the known copies of the lost Strasbourg manuscript R,
which in turn was a copy of A.

Corrector’s hands in B

Leiden Scal. 3 after 1562

Copy of the Paris manuscript C (1562), which was made for
Ramus from a lost manuscript x, in turn a copy of A.

Editions and Translations

Co

Eut.

Hu
Hu/Baltzer

app. Hu
To

Tr

Commandino (1588, 1660)

Latin translation with notes.

Eutocius In Archimedis De sphaera et cylindro 11
Contains an alternative version of Prop. 24
(Hultsch 1876-1878)

Critical edition, Latin translation and notes
Hu appendix p. 1232f.

Revised text for first part of Prop. 44
Apparatus in Hu

Torelli (1789)

Contains # 30-35, cited in app. Hu
(Treweek 1950)

Critical edition. Unpublished dissertation.

Mathematical Symbols and Abbreviations Used in the Notes
and Commentary

~

~

a:b

(a:b) X (c:d)
AABC

AB?

AB x CD
ZABC
AB| CD
ABL1CD

Equality of line segments, angles, areas,
Equivalence of ratios

Similarity of triangles

Congruent triangles

The ratio of a to b

The compounded ratio of a:b and c:d
The triangle ABC

The square over AB

The rectangle contained by AB and CD
The angle ABC

AB is parallel to CD

AB is perpendicular to CD
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Concordance of Greek Letters (A) and Latin Equivalents
(Translation, Commentary, Diagrams)

A A
B B
r C
A D
E E
zZ zZ
H H
S T
I I

K K
A L
M M
N N
E X
o o
IT P

P R
> S

T T
Y Y
(O F

X X’
Q W






Part Ia
Greek Text

Pappus, Collectio IV. Vat. gr. 218 (Codex A, f. 33r° - 55 v°)

f. 33r (Prop. 1)

Prop. 1

#1 ¢av 7 Tplywvor TO ABT, kal dmd Tév AB BT dvaypadf Tuxov-
Ta TapaAAAdypappa T ' AB AE BI' ZH?, xal ol AE ZH
ExBANBGo Y €l TO O, kal émevxdi N OB, ylvetar Ta AB

AE BI' ZH? mapal\n\dypappa {oa 7 0o Tov AT OB

TEPLEXONEVY TaparAnloypdipe €v yovia 1 éoTw {on ovvap-
doTépw TH UTO BAT AOB. éxBeBAjobu* yap 1 OB émi 10 K, kal

SLa Tov A T OK mapdA\nlot fixboocav at AA TM, kal éme-
LelxBw M) AM. émel® Tapa \nAGypappdy éotw 70 AAOB, at AAOB’
{oar Té elow kal mapdA\Anot- opolos kal at MIT OB {oal Té elow
kal TapdAAniot, ¢oTe kal at AA MT {oat Té elow kal TapdA\n-
Mot. kal at AM AT dpa {oat Te kal TapdAAniol elow: mapal\n-
\oypappov dpa €oTiv 70 AA MI® év yovia T Umd AAT, TouTéoTw!®

f. 33v (Prop. 1 and 2)

ouvapdpoTépy TH Te VO BAT kal vmd AGB- {om ydp éoTw

N umo AOB T UTo AAB. kal émel TO [amd]'? AABE mapal\n\dypajL-
pov 7 AA OBV {oov €oTiv, énl Te yap Ths avThis Pdoeds éoTw Ths

YTuxor Ta onueta mapalnAdypauua A, corr. Hu,Tr
ABAE BI'ZH Co, Hu, Tr
SABAE BI'ZH B, Hu, Tr
4EkBANOR yap A

Sdistinx. BS, Hu, Tr

S€mt mapalAnAdypaupor A

"AA OB Hu, Tr

8OB A corr. Co, Hu, Tr

AA MI" AB coniunx. S Hu, Tr
070D - T éoTw A TouTéoTw Hu
"ABIC AB corr. S Hu, Tr

2gm0 del. Hu, Tr

BSAABO Hu, AAGB Tr

H. Sefrin-Weis, Pappus of Alexandria: Book 4 of the Collection,
Sources and Studies in the History of Mathematics and Physical Sciences,
DOI 10.1007/978-1-84996-005-2, © Springer-Verlag London Limited 2010
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AB kal év Tals adTals Tapal\ilots Tals AB AG, d\\da 16 AA OB'
TO® AA KN? {oov éoTiv, éml Te yap Ths alThs Bdoeds éoTw

Ths AA® kal €v Tals avTals Tapal\jlols Tals AA OK, kal T

AA EB*dpa 1§ AA KN°{oov éotiv. Sud Ta adTd kai 70 BH ZI'® T(
KN I'M" {oov éoTtiv: Td dpa AA BE BH ZI'® mapa \n\dypapLpa

7O AA IT'M°{ca' éotiv, TovTéoTw TO UTO AT OB év yovig TH

Um0 AAT, 1 éotw {om ouvapdoTtépats Tals o BAT BOA. kal
€oTL ToDTO KaBoAkTEPOr!! TOANG ToD év Tols dpBoywviols

EML TOV TeTpaydrwr év Tols aTolxelols dedelypévov'?.

T
E H
B
L N M
D z
A K C

Prop. 2
#2 Nuuctkhlov éml Ths AB pnTiv €xov
T SudpeTpov, kal TH €k TOD

'AAB® Hu, Tr
2coniunx. Hu, Tr
SAB Tr

“coniunx. Hu, Tr

Sconiunx. Hu, Tr

Sconiunx. Hu, Tr

"NKI'M Hu, Tr

SAABE BHZI" Hu Tr

9coniunx. Hu, Tr

Yioar A corr. Hu, Tr

"kal olkdTepov A corr. Hu, Tr

Pial 1OV opolwr kal opolws dvayeypappévor lib. 6 Element. add. V2 (178, 12 app. Hu)
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kévtpou ton! kal < TH AB > 2 ém elbelas 1

BT, kai édamTopévn 1 TA, kal

8ixa N BA mepidépera ¢ E on-

pelw, kal émelelxdo 1 T'E: olTws?

N TE d\oyds ot 1) kalovpévn

ENdoowv. elMdBw TO Z kévTpov

ToD Nuwkukhiov, kal émelevxBooar at ZA ZE. émel 6pbn éoTw

N vmo ZAT, év fukvkhi éoTiv 7 ém Ths ZIT, ob Kkév-

Tpov éoTiv TO B. kal Ths BA émlevxbeions Lodmievpor yi-

veTat T0 BZA Tplywvov, GoTe dipoipov pév éoTwv 1) Umo AZB yo-
via, TpiTov 8¢ 1) vmo EZB. X060 kdbeTos dmd Tod E éml v

AB Sudpetpov 1) HE: tooydviov dpa 10 TZA Tpiyevor 1) EZH
TpLydr, kol €éoTw ws 1 ZI mpods ™y TA, | EZ* mpos ZH. émiTpL-
Tov 8¢ TO amd ZT Tob dmd TA- émiTpitov dpa kal TO amd EZ

ToD 4mo ZH- Adyos dpa Tod amwd EZ mpos 1O dmd ThHs ZH dv 1!
TpOS 1P, ToU 8¢ dmd ZT mpos <70 >°dmd EZ dv E8 mpos L. kal Tod
amo ZT dpa mpos 1O dmd ZH \oyos éoTiv Ov E8 mpos P €oTw &7°
ZB teTpamiacia Ths BO- kal €oTw Ths BZ Sumhaciwy’

N ZI- \oyos dpa Ths ZI mpos v ZO v 1! mpos €, kal® Ths

f. 34 (Prop. 2 and 3)

ZO 1pos O dv e mpos y" kal Tod amo Ths ZI' dpa mpds TO Ao
THs ZO \oyos éaTiv Ov E8 mpos ke'. EdelxOn 8¢ Tod dmd I'Z mpos TO
amo ZH \oyos 6v €8 mpos B kal Tod amd OZ dpa Tpos TO dmo ZH
\oyos €oTiv 0s? ke Tpos P al OZ ZH dpa pnTal elow Suvdpel
pévov olppeTpot, kal 1} OZ Tis ZH pellov dlvaTtat T¢ Ao d-
OURRETPOU €auTi. kal 6AN'® 1) ZO olppeTpds éoTw pnTi TH AB-
amoToun dpa TeTdptn!! €otiv 1} OH. pnTN'? 6¢ 1) ZT kal <1 > SumAf
abThs: N dpa duvapévn 16 <8is > Umd ZI' HO dloyds €oTw 1) kahou-

'/op AB corr. S Hu, Tr
2777 AB add. Co, Hu

367t Hu, Tr

‘EH A, corr. Co, Hu, Tr
570 add. S, Hu, Tr

°éoTw 51 Hu éoTat 5n A
Sumhaciov S 8/Mifov A
S mpos €, kal TAs Hu H mpos //// mhs A
°6v Tr &s A Hu

Y6Ap A corr. S Hu, Tr
WretdpTy A corr. Hu, Tr
2607 A corr. Hu, Tr

1377 add. Hu, Tr

48ls add. Co, Hu, Tr
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pévn éxdooowr [EoTw]'. kal dvaTtar T0 Sis vmo I'Z HO 1) T'E- é\do-
owv dpa éoTiv 1) T'E. 6Tt 6¢ 1 TE 8lvaTar 16 dis vmo I'Z HO,
oUTos éoTat Sfilov: émelelxbo 1 EO. émel? 10 amo EI toov éoTiv
Tols amo Tov E® OT kal 7¢ Sis vmo I'© OH, éoTw 8¢ kal T2

amo E® OZ {oa ¢ amo EZ kal 1§ dis Umo ZO OH. [dvdlo-

yov? dpa €oTv s TO amo T'E mpos Ta* amd E® OI petd Tob 8ls
umo TOH, oltws Td® dmd E® O©Z mpos 70 amo EZ peTda Tod Sis
umo ZHO®. kal ws &v mpos &v, mdvTa < Tpos Tdvta >, kal {oov éoTiv TO Ao
I'E Tols amo EOT kal 79 Sis vmo M'OH®, {oa dpa kal Ta

awo TE EO® OZ Tols amo EO® OI EZ kal T4 dis vmo THE

peTa Tod Sis vmo ZOH, TovTéoTw TGO Sis LMo I'Z HO. kowov
adnpnode'® 76 amd EO- Aoura dpa ta amo EI ZO {oa éoTiv

Tols 4md EZ OT kal T Sis vmd T'Z HO. ov 10 dmd ZO {oov

Tols amo Tov EZ OT, T0 pev ydp dmod Ths ZO éoTiv ke!, TO 8¢

amo Ths O 0, kal 10 amo EZ s houmov dpa 16 amo TE

{oov éoTiv TQ Sis vmo ZI' HO™.

Prop. 3

'éorw del. Hu, Tr

270 A corr BS Hu, Tr
3dvdloyov... amd EOT kal 70 8is Umd I'OH del. Hu
470 A corr. Co, Hu, Tr

570 A corr. S Hu, Tr

°ZOH Hu, Tr

Tmpos mdvTa add. Tr

SEOH A corr. Hu, Tr

‘TOH Hu, Tr

a-pnpricbw A apppriobar Tr
"Or'E A corr. Co, Hu, Tr
2ZI'NO A, corr. Hu
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# 3 Nuukthiov 7O dmo! Tfs AT

pHTY €xov TNV SLdpeTpov,

kal TH ék ToD kévTpou tom

éoto M TA, kal ébamTopévn

N AB, kal 8{xa TeTpRobo 1

Um0 TAB yovia [n]? 0m0 Ths AZ" oUtws? 1| AZ vmepoxt| é0Tw 1)
vmepéxel M €k 800 dvopdTov Ths peTd pnTob péoov TO Ghov
Torovons. elA|dbw yap TO H kévTpov Tod fpkvkiiov, kal
émelelxBo N BH, kal éml THs HA yeypddbo fpLkdkitov TO

f. 34v (Prop. 3)

HB <D >4 kal ékBeBAjobo 1) ZA <éml 70 > K3 {on dpa éoTiv 1) BK mept-
dépera < T KH mepipepeia > °. Nxbo

kdBeTos éml v AT 1) KA. kal émel éEaydvov éoTiv Thevpd 1) BH,
Nuioeta 8¢ Ths Tod” EEarydvov 1) KA, ékBallopévn ydp THv SLTAAY

Tfis KH mepidpepeias UmoTelvel, Simhacia dpa | BH Tfis KA,

TovTéoTw 1) K Tfis KA. kal éoTw 6p01) 1) v KA émiTpLTov dpa
eoTw?® 7O 4mo KT Tov amd TA, TouTéoTw <10 amo >2 AT Tov amo TA- at AT’ TA
dpa pnTal elow duvdpel pévov oppetpol, kal 1 AI' Tis TA

petlov dtvatal T¢ dmd cuppéTpov'® éauTi, kal N pellov 1

AT olppeTpds éoTwv pnTi't T§ AT €k 8o dvopdTwr dpa mpd-

™ éoTiv 1 AA, pnTT) 8¢ 1) HA: 1) dpa TO vmo Tov HAA xwplov Svu-

vapérn dhoyds éoTw 1 kalovpévn ék 8o dvopdTov. ShvaTtal ¢

advTod 1) AK'2, 8Ld ydp TO tooydvior elvar 70 HAK Tplywvor T AAK®
TpLydre éoTiv os 1| HA mpos AK, 1) KA mpos AA- 7 [6&]" AK dpa ék

800 dvopdTov éoTiv. kal émel’ Supoipov éoTiv 1} VO BHI yovia kal

{on <1 > ' HB T HI, todmievpor dpa éoTiv TO BHT Tpiywvov. fx6w

1¢m Co, Hu, Tr

1) del. Hu

36711 Co, Hu, Tr

‘170 HB* A 70 nB S Co 70 HBA B Hu, Tr

51 ZAK ABS 7 AZK Co 1§ AZ ém 10 K Hu, Tr

°r; KH meptpepeia add. Tr 7 KH add. Hu

"Tov om. Hu

S¢oriv om. Tr

970 dmo add. Hu, Tr

Vamo dovupuérpov AS dmo ths dovuuérpov B corr. Co, Hu, Tr
"UonTn AB corr. S Hu, Tr

2H AK A corr. Hu, Tr

BHAK A corr. Co, Hu, Tr

148¢ del. Hu, Tr

5¢m AB corr. S Hu, Tr

ofgn *** 1§y Al {on * HB 77) A2 {on 1 HB 7 B Hu, Tr



16 Part Ia Greek Text

81 kdBeTos N BO! SumAf dpa éoTiv i HT, ToutéoTw 1 AT, THis
I'O. kal é8elxOn 76 dmd AT Tob dmd TA émiTpiTov: T dpa
amo AT Tpumhdolév éotw Tod amo I'O- ai AT I'O dpa pnral
b I ’ 7 \ ° ~ ’ 7
elow duvdpel povor oUppeTpot, kat | AT Ths T'O pellov dvvaTal
TQ Amo dovppéTpov €auTi), kal TO éAacoov Gvopa 7O I'O gijL-
peTpov éoTw pnTH TH A" 1) AO dpa dmoTout| éoTw TéERTTT.
\ 9 \ \ \ e \ 2 v 9 \ ~ b A \ 2 ’ 3
Kal emel 17O pev vmo AHO®? {oov eoTlv 76 amo BH dwa 10 looydvia
ewvar Ta BHO® BHA Tplyova, 10 8¢ 1m0 AHA* {oov éoTiv TO
amo KH? Sua 10 tooydvia eivat Ta KHA KHA Tplyova, éoTw dpa®
0 TO Umo AHO 1pos 1O amo BH, olrws 70 <umd >7 AHA mpos T0 amo KH. éva-
A€ 8¢ 05 TO® U0 AHO Tpos TO o AHA, < o0Tws TO dmo BH mpos TO 4o
KH. os 8¢ 70 U0 AHO Tpos 10 Um0 AHA, >° oltws 1) OH mpos v
HA, kowov'® yap (os 10 AH kal os dpa 1) OH wpos Ty HA, ov-
Tos TO dmd BH, ToutéoTw TO 4md ZH, mpods TO < amd > ' HK- SteAdvTi dpa
éoTal'? ws 1} OA Tpos AH, oltws 10 VO TOv AH AO mpos TO UTO AHA.
\ 9 /7 v \ 3 \ ~ ~ b \ 4 b \
Kat €delxOn toov 1O vmo TGv AHA 19 amo HK: loov dpa kal
TO VMO TOv AH A® 7§ dmo KZ. kal éoTw 1) pev A® dmoTopn
/ e \ e 4 Q b e A\ e ~ ya \ 14
mERTTY, 1 66 AH pn™° 1 dpa KZ n peta pntot pécov 1O OAov
~ 7 b 9 /7 \ \ 4 b 7/ 9 7/ . e v 14
ToLoUod €oTw. €6elxOn de kat 1 AK €k 6V0 ovopdTov: n dpa

f. 35 (Prop. 3 and 4)

AZY Vmepox €oTw 1) Umepéxel <1 > ék 800 dvopndTwr'® TS peTd pnTod
péoov TO

S\ov morovons.

'kaBeTos HBA® AB, corr. Hu, Tr

290 AHO ABI1S corr. B3 Hu, Tr

dooydvi-a A

49m0 BHA A corr. Hu, Tr

Samo KA A corr. Hu, Tr

®Gpa éoTiv A corr. Hu, Tr

Yo add. Hu, Tr

SKH. kal éval\dé. os 8¢ 10 Hu

90UTws; AHA add. Tr

Yowov yap tos 70 AH del. Hu

"0 AHK A corr. Hu, Tr

2¢o7wv Hu, Tr

Boltws 10 dmo KZ mpos 70 amo HK. kal Hu
Y)ourrn dpa 17 Hu

BSAZ A corr. Hu, Tr

1o Umepéxetl éx Svo ovoudTwy A corr. Hu, Tr
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Prop. 4

#4 &oTw kUK os O ABT, ov kévTpov

¢oto 10 E, SudpeTpos 8¢ 1) BT, kal

épamrTopérn 1 AA cvpi-

mrovoda TH BT katd 70 A, kal

Suix0w M AZ, kal émilev-

x0etoa 1 AE éxBePAicbo éml

70 H, kal émeledxBuwoav at ZKH HA®: olTtws! {on éoTiv 1) EK T EA.
yeyovéTo, kal fix0w TH KA mapdAinlos 1| OZM- {on dpa kal 1| MZ

TH 20. fix0w dmo Tod E ém TNy ZO kdbeTos N EN- {on dpa éoTiv

N ZN 7§ NO. v 8¢ kal ) ME T§ 20" mapd\nios? dpa éoTiv 1) NE T MZ*
oUTos dpa ton éoTiv ) OO TOV ONE TH Um0 TOV NZM, TovTéoTi?

TH VM0 TOV OAE- oUTws dpa év kik\p éoTly Ta ANZO* onuela-

oUTws dpa tom éoTiv N OO TOV ANO yovia TH Um0 TGV AZEO,
TouTéoTw TH VO TOV AEA- oltws dpa év kik\y éoTiv Ta A A E N° on-
peta. €oTw 8¢- dpdn ydp EoTw ékaTépa TOV UmO TOv EAA ENA. cuvvTe-
OrjoeTal 81 olTws. émel 0ponY éoTwv ékaTtépa TOY UTO TOV EAA ENA,

év klkhp €oTlv Td AA EN® onpeta: {on dpa éoTiv 1) vmo ANA TH 010
AEA. d\N' 1) 00 AEA {om éoTiv TH Umo AZ0O 8ud’ TdS Tapal\y-

\ovus Tas EA Z0@% v kikke dpa Ta ANEE® onpela- {on dpa €oTiv 1
Um0 OAE yovia TH Um0 ONZ. dAN 111 vmo OAE {om éoTiv TH V1O

'67t Hu, Tr

2{on AB corr. S Hu, Tr

3ro0T'éoT A TouTéoTt BS TouTéoTiv Hu, Tr
‘A N Z O distinx. B Hu

SAEN A distinx. BANEAHuA AENTr
°AA EN ASA A EN BHu, Tr

8to Tas mapaliijlovs AB corr. S Hu, Tr

87a EZO A corr. Co Hu, Tr

A NE O Hu, Tr

YalAn A corr. Hu, Tr
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< ©ZM- (on dpa éoTiv n vTo OZM T Umo > !

ONZ- mapd\\nlos dpa éoTiv 1) ZM? 7§ NZE. kal éoTw {on 1) ZN

T NO- {om dpa €oTiv kal | ME 1§ Z0. kal éoTw ws 1| ZH mpos

HE, olUTos 1 pev EM mpos EK, 1 63 OF wpos AE- kal os dpa 1 EM
mpos EK4, olTws 1} OF mpos AE. kal éval\dé. kal {om éotiv ) ME T
Z0- {on dpa kal 1 KE Tf AE.

Prop. 5

#5¢0To kiklos O ABT, kal ébamTé-
pevatr at AA AT, kal émelev-

x0w N AT, kai Suixbw 1 EZ, éoTw
{on M EH ) HZ’: ofTws® kal

M OH <Tf H> K’ éoTiv {on. fxbo

f. 35v (Prop. 5 and 6)

TH AT mapd\nlos 1 EM, kal eiMidbo 10 [K]® kévTpov Tod kiklov

TO A, kai émeletybuoav ai AA AZ A" AM < AE >° AH. émel {om éoTiv 1) EH
TH HZ, {on éoTtiv kal | MT" 1§ T'Z. kai €oTw mpos 0pBas’® TH TA-

{on dpa €éoTiv | AZ TH AM. kal émel {om éoTiv 1} AA T AT, {on

YOZM- ion; ) Omo add. Tr. T[] vmo OZM- mapdiAnlos pro T vm0 ONE" TapdAAnlos Hu
2ZHM A corr. Co, Hu, Tr

377 8¢ A corr. Hu, Tr

“@K AB corr. S Co, Hu, Tr

Séotw 5¢ 1 EH {on 7i) HZ Hu €oTw 8¢ 1j €n {on 11 nd S

%611 Co, Hu, Tr

"//m 1nx0w A suppl. Hu, Tr

8del. Hu, Tr

°AE add. S Hu, Tr.

Yyal éotwv 1 M mpos dpfds S Hu
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éotiv 1) AE T MT. éoTw 8¢ kal | AA Tf AT {om, kal dpb1) 1) UTO
TOv EAA 6p8f) TH vmo Tov MI'A éotiv {on: {on dpa éoTiv kal 1

EA T AM, TouTéoTw TH AZ. dA\\d kal 1) EH T§ HZ éoTiv {on | HA
dpa kdbetés éoTw ém v EZ- {om dpa éoTiv 1} OH Tf HK.

Prop. 6

#6 €07 KUKNOS O ABT, kal éda-

TTépeval <ai >' AA AT, kal éme-

LelxBo N AT, kal Suixbw

N EZ, kal éoto ton 1 HO T

HK: ofTws? kal } EH 7§ HZ

éoTiv {om. eiMjdbo TO kév-

Tpov Tob kUK ou TO A, Kal

émeletybooar al EA AA A

AH < AZ >?. émel 6pbn éoTw éxatépa Tov UmO TOV* EAA EHA,
<év kikhp éoTlv Ta E A H A onpeta: >3 {on <dpa > ¢ éoTiv 1) Um0
Tov HAA yovia Tf Um0 Tov HEA yoviq. mdAw émel dpdy

Yal add. Hu, Tr

2671 Co, Hu, Tr

3AZ add. Tr EA AA AH AZ A" Hu
‘€katépa Tov avTor AB corr. S Hu, Tr
S€v kUKkAw...onuela add. Co, Hu, Tr
¢dpa add. Co, Hu, Tr

19
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éoTw ékatépa TOV VO TOV AHK' AT'Z, év «ik\p? éoTiv Ta AHZI®
onpeta: {on dpa éoTiv 1 VMO TOY HIA* yovia, TouTéoTwv 1) UM
TOv HAA®, ToutéoTw 1 0o TOv HEA, Tf 00 TOv HZA- {om

dpa €éoTiv kal | EA TH AZ. kal éoTw kdBeTos | AH- {on dpa éoTiv
f EH i HZ.

Apollonian problem
Eav oo Tpels kUKAoL, TH
0éoel kal TO peyébel Sed6-
pevol kal €pamTopevol d-
Mlov, kal 6 mepthappd-

K \ 7 \
VOV dUTOUS KUKAOS dobels
€oTal TO peyédel. Tpoypd-
deTal de Tdde.

Prop. 7

#7 TeTpdThev-

pov TO ABTA 6pbnv éxov v 1md ABT yoviav kal 8obeloav
éxdotny TGV AB BI' TA AA €08eLdv: Setéal Sobeloav Ty émilev-

f. 36 (Prop. 7)

'AHZ Hu, Tr

2ktkAwv A €v kikdp Co, Hu, Tr
3distinx. BS Hu, Tr

“HAT A corr. Hu, Tr

SHAK ABS corr. Hu, Tr
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yriovoav Ta A B onpela v BAL éCevybu? © AT kal kdbe-

Tol AxBwoav ém pev v TA 1y AH, éml 8¢ v < AT 1) BE. émel owv
éxatépa >3 TOv AB BI'

800etod éoTw [7] €v dpiBuois]t, kal 6pdY éoTw 1) Umd ABT, kal

kdBeTds éoTw 1 BE, Sobeloa dpa éoTat kal ékdotn TOV AE EI

AT BE, kal yap 76 vmo ATE {oov dv 16 dmd BIT yiveTatr Sobév-

kal 80Betod éoTw 1 AT, doTe ékdotn TGV AE ET" BE® éoTal 8obeioa.
Td v émel 800elod éoTw €kdoTn® Tdr AT TA AA €VBeldv, kal

kdBeTbs éoTwv 1) AH, 80Belod éoTL kal éxdoTn Tov AH HI' < AH > 8, kal ydp 1
vmepoxn ToU dmd AT mpos TO dmd AA mapd ™ TA mapaBin-

Betoa ToLel Sobetoav THv ThHs TA? mpos HA Umepoxny, us €oTL

Mppa: doTe kal ékdotny Tov AH HTAH 8e8608at. kal émel ioo-

vy éotv 1O AHT Tplywvor T4 TEZ Tprydvy, éoTw os 1) HI

mpos TE olTws 1| Te AT mpods I'Z kai 1) AH mpos Ty EZ. kal €oTL

8obels 6 TAis HI' mpods TE oyos: 8obeloa < dpa >0 éoTal kal éxdon' Tov I'Z
ZE. d\\a kal éxdorn'? Tév EB BT kal ékdoTn dpa TGV ZB BI' I'ZP
Sobeloa. fixBn 81 kdbeTos éml v I'Z 1) BO- Sobeloa dpa éoTiv

€xdoTn TOV ZO OT BO- doTe kal €xatépa Tov A® OB Sobelod

€oTL. kal 0pdY éoTw 1 UTO BOA- Sobeloa dpa éoTiv 1) BA.

'7nv BA del. Co, Hu

2élevxbw ABS émelevyOw Hu, Tr
3AT 1) BE- éxatépa add. Hu, Tr

47 év dpiuols del. Hu, Tr

Stov AE EI éotat A Tov AE EI éotat Co Tov AE EI" BE Hu, Tr
*éxdoTy forsan éxdorn A corr. Hu, Tr
" AH A corr. Co, Hu, Tr

8AH add. Hu, Tr

°T'H A corr. Hu, Tr

Ydpa add. Hu, Tr

Uekdorn A Tr ékatépa Hu

2ékdorn A Tr ékatépa Hu

BTI'A A corr. Hu, Tr
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AANOS.

# 8 fx0w kdBeTos éml THv AT

N AE, kal éxBepriodo éml

TO Z. émel Sobelod éoTwv ékdoTn

70V AA AT TA, kal kdBeTos

N AE, Sobeloa éoTal ékatépal

TOv AE ET. kal émel Looydvidy

éoTw 10 ABT Tplywvor T4 TEZ Tprydve, éoTw os 1) TE mpos EZ,

N T'B mpos BA. 80bels 8¢ 6 Tfis I'B mpos BA \oyos: Sobeis dpa kal O
Tfis TE mpos EZ \oyos. kal 808elod éoTw 7 TE- dobetoa dpa kal

N EZ. v 8¢ kal 1 AE 808eloa kal 6\n dpa 1) AZ éoTal dobeloa.
KaTd TavTa SobfoeTal kal €katépa TOV BZ ZI', 65 yap 1} AT

mpos BIT, oUtws 7 ZI' mpos TE. kal 8obels 6 ThHs AL mwpos I'B Aoyos.
X060 81 TdAw dmd Tod A kdbeTos 1) AH: Sobeloa dpa ékaTé-

pa TOV TH HZ*, GoTe kal ékaTépa TOv BH HA Sobelod éoTu’. kal

f. 36v (Prop. 7 and 8)
0p01) éoTw N H yovia: Sobeloa dpa éoTiv kal 1 BA.

Prop. 8

#9 (ool kOkhot TR Béoel kal TG peyédet
SobévTes, o kévTpa Ta ABY, kal
doBev onuetov 76 T, kal dwa Tov T
ébamTéperos TOV KOK\wY, OV

Yéotal kal ékatépa Co, Hu
*ZH HI Hu

3éoTt Hu

“AB AB distinx. S Hu, Tr
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kév- Tpa Td AB!, yeypddbw 6 TEZ: 8L

800etod éoTw alTod 1) didpeTpos.

émelebxBuoav at EZH I'ZO I'MII AB T'E I[1ZK K ©H?* y{veTat &7
mapdAntos 1} HO 19 TE 8ud 10 TdS kaTtd Kopudnv yovias Tds

Umo EZIT HZO {oas elvat, kai 6polas Tas EMNZ HKZ? mepidepel -

as kal 70 EI'Z Tplywvov looydviov ¢ ZHO Tprydre. kal

Sta Ta avta kal 1} OK TH II'* éoTiv mapdAnlos. kal {cot eloiv

ol ki ot, OV Td kévTpa T AB’ Ton dpa 1) ZH 79 AE. fxbwoav
kdbeToL at AX BA- {om dpa 1) AX Tf BA* doTe kal 1| pév BM T

MA éoTiv {om, 1| 8¢ AM Tf MZ, 800 yap Tplyovd éoTw Td BAM
AZM Tds 8o yovias Tas kata kopudny {oas éxovta kal

TAas mpos Tols A T onpelots 0pbds, €xel 8¢ kal plav mhevpav piq
mhevpd® tomy v BA [kal kdBeTov]” TH AZ. kal S00elod 0Ty
€kdotn TOV MA AB MX ZA® [o0Tws kal 1) ZH AE kai BA AX]’ Sobel-
oa dpa kal ékatépa TGV BM MA elfeldr. dA\a kal ékaTépa

Tov AT T'B 8obelod éoTw [AI BI” Sobeiod éoTiv]', Oécel [evbetal' yap Ta A
B T onpeta: 808év dpa 10 AB <T > 2 tplywror T4 eldet- kal § M
dpa 800eloa €oTal kaBéTov dxbeions dmo Tod I' &ml Trv AB.

kal émel 800elod éoTwv 1) NP Sudpetpos Tod HOK klkhou, dId kal

N MA S06¢€loa, kal out dpa 1) MP 8oBetod éoTw. kal émel’® So-

0év éoTw TO VMO NMP, Sobev dpa kal 76 vmo HMZ, ToiT' éoTiv'

TO Um0 EMZ, < TouTéoTw TO > 5 1md Tdv TMI. kal 500€iod éotwv ) TM- Sobeloa
dpa kal 1) TTIL. émel olv Béoel kal peyébel éoTiv KUKAOS, OV KEVTPOV
TO A, kal 80Beloa TH 6éoel kal TH peyédel M T'TI, kal dinypévat

ai MIZK T'ZO, dote mapd\\nlov elvar T Tl Tiv'® KO, So-

Betod éoTw 7 SidpeTpos Tob mept TO I'ZIT Tplywrov kiKk\ov,
TouTéoTw TOD T'EZ.

'AB A distinx.BS Hu, Tr

*al EZHTZO I'MII ABI' ETl Z K O K yivetat A corr. Hu, Tr
3SHNO A corr. Co, Hu, Tr

4TIT A corr. Co, Hu, Tr

Sdistinx. Hu, Tr

*uia mhevpa A corr. Hu, Tr

"kal kdBeTov del. Hu, Tr

YA A corr. Hu, Tr

YoUTws* BA AX del. Hu

10bis scripta del. B Hu, Tr

9éoer A2 in marg. evfeia Al 6éoel evdeia S corr. Hu, Tr
25" add. Co, Hu, Tr

B¢m A corr. Hu, Tr

Yrovréorww Hu, Tr

SrovréoTiy To add. Hu, Tr

o777 KO A corr. Hu, Tr
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f. 37 (Prop. 9, 10, and 11)

Prop. 9

#10 Tplyovov 70 ABI €xov ékdoTnv TOV

TAEVPOY SoBetaav, kal onpelov évTos!

TO A, kal ¢ Umepéxel 1| AA Ths

TA, To0T UTepexéTo kal 1 TA

THis AB, kal éoTo UTepoxT So-

feloa: 6TL €kdaTn TOV AA AT

AB 500€t0d €0Tw. €Tel 1) TOV AA

AT vmepoxn 800elod éaTwv, €0Tw

T vmepoxT) (om €kaTtépa

Tov AE BZ: al Tpels dpa at EA AT AZ {oat d\\frats eloiv. yeypd-
dBw mTepl kévTpov TO A kUkAos 6 TEZ: Sia 81 T mpoyeypappévov
Sobetlod éoTw N AZ. fis 1) BZ? éoTlv 80Beloa [éoTw]’s §) Aoumn dpa T

lev Tois A corr. B Hu, Tr
s 1) BZHu ov 1 BZ A Tr
3bis scriptum del. Hu, Tr
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BA éoTiv 80Betoa. dAd kal 1) Tov AA ATl < Umepoxti éoTiv Sobetoa doTe
kal ékaTépa Tov AA A" Sobeiod éoTiv. éxdoTn dpa Tdv AA > A" AB éoTiv
dobetoa.!

Prop. 10

#1174 pev obv Mjppata TadTa,

TO 8¢ dpxtior? Tpels kiKAoL

dvigot ébamTépevol AAHAwY

dobeloas €xovTes Tas Stapé-

Tpovs, (v kévTpa TA ABI®, kal

TePL AVTOVS KUKNOS éda-

TTépevos avTdv 6 AEZ, ol 8éov

€oTo eUpely TV SudpeTpov. €0To 8¢ avTol TO kévTpor TO N*, kal
€Tl Td kévTpa Tad ABIP émelebxBuoav at AB AT T'B kal €Tt

ai NAA NBZ NI' < E > ¢mel ovv ai SudpeTpol TOV KUK\wv, GV kévTpd
Td ABI, 8obeloal elow?, yevioeTal kal €kdoTn Tév AB BI' TA
SoBetoa. kal at Tov AN NI" NB® Stadopal Sobeloat: dia dpa T0

YdAa kal 1) Tdv AA AI" A" AB éoTiv S0feioa A vmepox ... Tov AA. add. Tr dAa kal éxatépa
Tor AA AT S0beiod éoTv: éxdoTn dpa Tov AA AT AB éoTiv Sobeioa Hu

2dpxaikdr A, Hu dpyucor Hu appendix, Tr

3distinx. BS Hu, Tr

“‘NATrH Hu

Sdistinx. Hu, Tr

°NAA NBZ NI' A NAA NBZ NI'E Tr HAA HBZ HI'E Hu
"distinx. B Hu, Tr

SéoTiv A

AN NI' NB ABS Tr AH HI" HB Hu
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Tpoyeypappévor 808etlod éotv 1 AN d\\d kal 1| AA SoBetod

9 L4 ~ ’ b e ’ ~ 7 A\ ~ A\
€0TWY, OOTE B00elad €oTY 1 SLdpeTpos ToU AEZ kUkAov. Kal ToUTO Pev
€vdde pot mépas €xel, Ta 8¢ oLTd VTOYpddo.

Prop. 11

#12 €oTw Nukikhior 7O ABT, < kal > 2 kek\d-
00w N TBA, kal 8utix0w N TA, kal

éoto 1 BI'lon? cwapdotépw

T AB T'A, kal kdbeTol Nxbwoav

<ém ™ Al >*al BE AZ® 1L 1) AZ Sumhaciov

f. 37v (Prop. 11 and 12)

¢oTiv Ths BE’. [kal]® kelobw yap TH pev AE {on 1 EH, 7§ 8¢ AB {on
N BO’, kal émelelxbuoar® evdetal at A® OH OZ, kal kdbetos 1xOw
N OK, kal émelelxBw’® 1 BK. émel 1) TB {on éoTiv cuvapdoTépw

T AB AT, ov §) BO 7§ BA éotiv {om, houmy dpa 1) OF louri

™ TA éoTiv {on" kal 70 dmo Ths T'A dpa {oov éoTiv T Ao

Ths I'©. 16 8¢ dmo Ths Al {oov éoTiv TO UTO TOv AT'Z: kal

'AN Tr AH A Hu

2iat add. Hu, Tr

Skal éoTw 1 Bl {on Tr kal {on éoTw 17 I'B Hu lacunae in A
4éml Tnr AT add. Hu

SBH A corr. Co, Hu, Tr

®kal del. Hu

"BO A corr. S Hu, Tr

Sémlevydwoar A corr. BS Hu, Tr

Yémlevxfw A corr. BS Hu, Tr

0rz A corr. Co, Hu, Tr
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TO UM TOV AI'Z dpa {oov éoTiv 7@ amo Ths I'O- {om dpa éoTiv

N o Tov ZOT yovia TH vmo Tov OAH yovig. Td\w émel

70 vmo TOv TAE {oov éoTiv 7O amd Ths AB, kal 7o 8is dpa

Um0 Tov TAE, TovtéoTw 170 Um0 TOV TAH, {oov éoTiv T(! Sis dmo
TAs AB, ToutTéoTw T Ao THs A®- {on dpa éoTiv 1) UTTO TOV

AOH yovia TH vmo TGV OI'Z yovig? éoTw 8¢ kal 1 vmo TOv OAH
{on TH Mo TOV ZOT \oum dpa 1) UTO TGV AHO Mouti

TH Um0 TOV OZT éotiv {on: kal 1) HO dpa 7 OZ éotiv {on?.

kal kdBetos NkTal 1) OK: {on dpa éotiv ) ZK 9 KH. kal émel

op01 eoTw ékatépa TGV VO TdV ABO AKO, kal < év > kiKk\y - 0Ty
T0 AB OK’ TeTpdmievpor- lom < dpa > €éoTiv 1 U0 TOV BOA yovia TH
o TOV BKA. Nuioovs 8¢ éoTw 1) o Tov BOA- fjploous dpa

€oTiv kal M vmo TOv BKA. 6pbny 8¢ éoTw 1) vmo Tov BEK: (o dpa
¢oTtiv 1) BE ) EK. Tis 8¢ EK 8umAfj éoTw 1) AZ, émelmep 1) pév AE
TH EH éoTiv {om, 1 8¢ ZK 7 KH' kai Tfis EB dpa Sum\fj éoTw

N AZ, dTep ¥

Prop. 12

#13 €oTw Ypuclkhior 7O ABT, kal

Kek\dobo 1) ABA, kal é0Tw

{on ) AB Tf BA, kal 7§ BA

TpOs 0pas fxOw N AE, kal

émelelxBw N BE, kal alTf mpos

6pBas fxBw N EZ, kal 70 kévTpov 7O H, kal €oTw 05 1) AH mpos
HA olUtos 1) A® mpos OZ, kal émelelxbo 1 OF- 6TL 1) U0 TOV
BEA yovia ton éoTiv TH Um0 Tov AE® yovia. fx6w dmd Tod H
émi v BE kdfeTos 1) HK {om dpa éoTiv 1) BK T KE. kal éoTw

Yoov éotlv Tdv A corr. Hu, Tr

27...ywvia A corr. Hu, Tr

Skal 17 HO...OZ éotiv A, Tr kal 1 om0 OHZ dpa 7 vmo OZH éotiv Hu
‘kal kKA A €v add. Tr év kikdp Hu

Sconiunx. Hu, Tr

dpa add. Hu
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Op01) 1) VO TOv BAE- al Tpets dpa ai BK KA KE {cat dAMjlats
elolv. kal mapd\An\és éoTw 1) HK Tf EZ, kal émel {(nTd V!

f. 38 (Prop.12)

o TOv KEA yoviav T Umo Tov AE® yovia? lonw. kal éoTw {om

N AK ) KE, 81t dpa {on éoTiv 1} Um0 KEA yovia TH Umd KAE,

6T dpa kal M vmo KAE 7§ 00 AE@? {om éoTiv, 6T dpa mapdA\n-
\os éoTw 1} AK TH EO. fjx0w kal 7§ AE mapdA\nios 1 KA kal éx-
BePA\ioBw 1) TA* &Ml T A, kal émelelxBw 1) BA. émel otv 1) pev KA
TH AE éoTilv mapdA\nlos, 1 8¢ KH 7f EZ, {nTelTar 8¢ kai 1 KA

T EO® mapd\\nlos, 8T dpa Std T Looydviov etval TO pev KAH
Tplyovor 7§ EAZ Tprydve, T0 8¢ AKH 79 EOZ, éoTw oS pev

N AH wpds HK, 1} AZ mpos ZE, os [T€]® 8¢ | KH mpos HA, 1) EZ wpos
ZO- &1L dpa kal os 1) AH mpos HA, oUtws 1) AZ mpos ZO, &t {ocov
ydp: &6TL dpa kal ©s 1) AA Tpos TNHv AH, olTws 1) A® Tpos TNy OZ,
SLeNvTL ydp. vmékelTo 8¢ kal ws 1 A® mpos OZ, oUTwes 1| AH

mpos HA" &7t dpa éoTiv os 1) AA mpos AH, olTws 1) A® Tmpos OZ,
TovTéoTw 1) AH mpos HA- 811 dpa {om éoTiv | AA TH AH® &7u dpa
kal ) AA Tf AH éoTiv {om. d\\d kal 1) AB Tf] BA éoTiv {on: §TL
dpa kal | AB 7§ BH éoTiv {om. d\\a 1) BH ékatépa TOV AA

AH éotiv {on: 671 dpa kal 1) BA Tf AA éoTiv {om. €oTw 8¢ émel
vap mapdAn\és éotw 1) KA 1§ AE, kal éotw {on f AK T KE, {-
omn éoTiv kal N vmo TOv BKA yovia TH vmo Tov AKA. émel

olv Tom éoTiv 1} BK Tf KA kal yovia 1 vmo Tév BKA yovig

TH Um0 TOV AKA éoTiv {om, kal 1) BA dpa T AA éoTiv {om.

kal 1 olvBeots dkohoVBws TH dvalioer. émel yap {om éoTiv

N AK T KE, {on kal yovia 1 Um0 KAE Tf vmo KEA. AN 1) pev

o KAE T 06 AKA” éoTiv {om, 1 8¢ vmo KEA® TH Umo BKA
éoTiv {om Sua Tas KA EA mapal\jlovs: kal 1) vmo BKA dpa T

o AKA® éoTiv {om. éoTwv 8¢ kal 1} BK evfeta TH KA {on: kal
Bdois dpa 1) BA Bdoel TH AA éoTiv {om, woTe kal 7' yovia
M 0mo TOv ABA TH Um0 BAA!, TovTéoTw TH OO AAB,

'scriptura non satis perspicua in A ¢(n7a Tnv Tr é/rjTovr Tnv Hu
2ywviav A corr. Hu, Tr
SAEXY AB corr. S Hu, Tr
‘TAAHuTA Tr

S7e del. A2, Hu, Tr
°AH AB corr. S Hu, Tr
"BKA A corr. Hu, Tr
SKAE AB corr. S Hu, Tr
°KAA AB corr. S Hu, Tr
03 ABS del. Hu

""BA AA AB corr. S Hu
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TouTéoTw TH UmO ABH. kown ddnpicbo 1) Umd ABA* lout

dpa M) vO ABA Mourfy TH 00 ABH éoTiv {om. d\\d kal 1

umo BAH 7§ Umd BAA éoTiv {on® 8lo &1 Tpliywvd éotw Ta BAH

BAA Tas 8bo yovias Tals 800 yoviais {oas éxovTa kal plav mhevpav
v AB TH BA!" {om dpa 1) pev BH Tf BA, 1) 8¢ AH T AA, doTe kal

f. 38v (Prop. 12, arbelos theorem, and Prop. 13)

1 AA TH AH éoTiv? {om. émel ovv Umékettat os 1) AH mpos HA, 1 A®
mpos O©Z, lon 6¢ ) AH T AA, éoTw dpa os 1) AA Tpos AH, 1} A®

mpos OZ: cwhévTL < dpa >3 ws 1) AH mpos HA, 1) AZ mpos ZO. éoTw 8¢ kal
os 1 AH mpos HK, 1) AZ mpos ZE- < 8u {oov dpa >*kal ws 1) KH mwpos HA,
N EZ mpos ZO.

kal €otw {om 1 Umo EZO T vmd KHA’ 8id 10 Tapal\ilovs etvat

Tas EZ KH- {on dpa kal 1 vmo EOZ 1§ vmo KAH® mapdAAnios dpa

€otwv kat ) KA 19 E®- {om dpa éotiv 1) <m0 >7 KAE, ToutéoTw 1) 0T KEA,
yovia 7§ Um0 AE®.

Arbelos Theorem

#14 dépeTal €v TIow dpxaia

mpéTaoLS ToLavTn® UTo-

keloBo Tpla HukdrkAia®

EpamTédpeva G-

\ov Ta ABT AAE EZT, kal

€ls TO peTall TOV mepLdpepeldr avTdY Ywplov, O 81 kalodow dpfniov,

'7nv AB 17js BA A corr. B Hu, Tr

27 AB éotir AB corr. S Hu, Tr

}dpa add. Hu

4€¢ loov dpa add. Hu corr. p. 1227 appendix Hu
SKHA ABS corr. Co, Hu, Tr

®KA n A corr. Hu, Tr

7ymo add. Hu, Tr

87otavTy A corr. Hu, Tr

dNuLkUkAL - a A
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9 I 7 b 7 ~ e 7’ \ b
eyveypadbooar KUKAOL €GATTOILEVOL TOV TE MULKUKALWY KAl OA-
Mlov 6cotdnmoToly, 0s ol Tepl kévTpa Td [Z] H OKA'" 8etéar v
pev amo Tod H kévtpov kdbetov émt v AT {omy Th Stapétpo

~ \ \ / \ RN ~ ’ / ~
ToU mepl T0 H kUkhov, TN & amo 1ol O kdbeTov dimhaclar THS
StapéTpov Tob mepl TO O klKklov, THV &' amod Tod K kdbeTov Tpimha-
olav, kal Tas €Efis kaBéTovs TOV olkelwy SLapéTpor ToAATAA-
olas kaTta Tovs €EfS povddt dAMwY UTepéxovTas dplipovs
ém dmeLpov yevopévns? Ths Tov kiklov éyypadfis. SetxOioeTal ¢
[Ta]® mpdTepor Ta AapBavépeva.

Prop. 13

#15 éoTwoar 8o kik\ot ol ZB

BM Tmepl kévtpa Ta AT*

EpamTépevol ALY

kaTd TO B, kal pellwv éoTo O

BM, d\os 8¢ Tis édamTope-

VoS adTOV kaTtd Ta KA®

mepl kévTpor TO H 6 KA®,

kal émeletyBooar ai TH AH. mecobvTatr 87 dua 1OV KA’ kal 1) éml Ta
KA? émilevyvupérn elbela ékBallopévn Tepel pev Tov ZB kikhov?,
cuptmimTel 8¢ TH Sia TOY AT kévTpwv EkBallopérn evdela Sial!

'ZH OKA A distinx. BSH © K A Co, Hu, Tr
2ywopérns Hu

37¢ del. Hu, Tr

4distinx. BS Hu, Tr

Sdistinx. BS Hu, Tr

*OKA A corr. Hu, Tr

7distinx. BS Hu, Tr

8distinx. BS Hu, Tr

*1ov /B kvkhov A Tov ZB kvkAov Hu Tov I'B kvkAov Tr
10distinx. BS Hu, Tr

Yevbeia /// A Star add. BS Hu, Tr



Part Ia Greek Text 31

f. 39 (Prop. 13)

TO peidova eivar Ty AK mevpdar This TA Tod AK AT tpameleilov'.
oUpTTTéTO oVV KaTd TO E Tépvovoa TOV? kUK\oV KaTd TO A-

Set€at 6T éoTlv ws 1) AB mpos BIN, oUtws 1| AE wpos EI. éoTw 8¢
davepov émlevyBelons Ths TA* yiveTal yap looydvia Ta

TAA AKH Tplyova Tds kata kopudny yovias mpos 1@ A* loas éxovTa
kal mepl Tas TH® yovias Tds mhevpdas dvdloyov €xovral, doTe

{oas elval Tas Umd ATH’ THA yovias éval\dé, kal mapd\-

Aov T TA [kal]® T AH®, kal os T\v AE wpos v EIN, Tiv AK
mpos TA, TovtéoTw v AB Tpos BT kal TO dvacTpddiov d¢

davepdy EoTv. Edv yap f ws 1 AB mpos BT, ovTws 1 AE mpos ET, 1
KA ér' evfelas yivetalr T AE. mapdAAn\és Te ydp éoTw 1) AK T

T'A kal éoTw os 1} AB mpos BIN, TovtéoTw os M AE mpos ET, 1 AK
mpos TA- ém' evfelas dpa éoTiv 1) KA TH AE. €l yap 1 Sud Tov KE!
oV Ti€el kal St Tod A, dA\a Sid Tod O, yiveTal ws 1 AE mpos EI, 1
AK mpos 'O, bmep ddlvaTov. dpolns o0de Tod A €kTos fEel Té-
pwvovoa THY TA ékpAndetoav, olov kaTd 10 N éoTal ydp mdw

os 1 AE mpos EI', 1) AK mpos I'N, 8mep ddvatov: €oTw yap mpos
v TA. §} oUTws. dtd Tod K Tf AE mapdAinlos 1 KN fx0w, kal
viveTar mapaAn\éypapporv 70 ATKN®2, kal {om 1 AK 9 I'N.

kal émel éoTw os 1 AE mpos EI, olTos 1 AK, TovtéoTw 1 I'N, mpos
TA, Ste évTL 0s 1} AT mpos TE, 1) NA mpos AL éval\a€ os n AT,
TouTéoTw ws 1 KN, mpos NA, oltos n EI mpos T'A. kal mept Tds {oas
yovias Tas mpos Tols NI al mhevpal dvdloydv elow: Spotov dpa
¢otiv 70 EAT Tplyovov 79 ANK Tpuydve- lon dpa éoTiv 1) UTo

EAT yovia Tf Um0 NAK. kal éoTw €bBeta 1) I'N- elfela dpa kal

N KAE. Myo 80 671 kal 70 Umo KEA {oov éoTlv T dmo EB. émel yap
os N AE mpos EIN, oUtos 1| AB mpos BIT, ToutéoTw mpos I'Z, éoTat kal
N houvmn i BE mpos doumy ™ EZ os 1 AE wpos EI', TovtéoTw

os 1 KE wpos EA. dAN os pev 1) KE mpos EA, oltos 10 1o KEA

'700 AKAT tpameliov Hu, Tr
2rnr A corr. BS Hu, Tr
3émlevyxdeions Ths T'A del. Hu
41mpos 1@ A del. Hu

Sdistinx. BS Hu, Tr

*€éyovta del. Hu

"AHT A corr. Hu, Tr

Skar del. B Hu, Tr

°AK A corr. Hu, Tr

A A corr. Co, Hu, Tr
distinx. Hu, Tr

2AI'KN ABS AI'NK Hu, Tr
BNIC AS distinx. B Hu, Tr
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mpos 7O O AE EA, os 8¢ ©) BE mpos EZ, olTws TO dmo Ths BE
mpos TO UTo BEZ, kal éotw {oov 70 Um0 AE EA T4 0mo BE EZ- {oov dpa
kal 7O vmo KEA T( dmd EB.

f. 39v (Prop. 14)

Prop. 14

#16 800 fuklkAta Ta BHI! BEA, kal ébamTépevos adTdv kikhos 6 EZ
HE?, a6 8¢ Tob kévTpou avTod Tob A kdBeTos Mxbw éml Ty BT Bdow
ToV Hukuk ov § AM- 6T éoTv < s > 1) MB mpos Ty €kt Tod kéuTpou Tob
EZHO «ik\ov, oUTws €Tl eV Ths mpaTns KaTaypadiis <ouvw — > apdodTepos?
N T'B BA mpos v vmepoxnv adTdv ThHv TA, éml 8¢ This devtépas kal
TpiTns olTwes 1 TGV T'B BA Umepoxt) TpOs cuvapndpdTepor THv

I'B BA, < TouvtéoTw v TA > 5 fx00 dia Tod A TH B Tapdiinlos 1) OZ.
émel olv 800

kUk\ot ol BHI' EZ HO' épdmtovtar aAMAwy kaTd 70 H, kal SidpeTpot

&v avtols TapdAniol elow at BT ZO8, elbela €otal fte Sia Tov HOB
kal <1 >0 8wa Tov HZIM. méhw émel 8o kikhot ot BEA EZ HO'™ ébdmTovTat
AoV kaTd TO E, kal év avtols TapdiAnlot Sidpetpol elow ai OZ

'HBI" AB corr. Co, Hu, Tr
2coniunx. B Hu, Tr

3¢s add. Hu, Tr

*EK A corr. Hu, Tr

Sovr- add. Tr commendavit Hu appendix p. 1227
®rovréoTiv Tnv T'A add. Hu
7coniunx. BS Hu, Tr

8ZE A corr. Hu, Tr

9distinx. Hu, Tr

1977 add. S Hu, Tr

distinx. B Hu, Tr

2¢coniunx. BS Hu, Tr
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BA, elbela éoTal fjTe dia Tov ZEB! kal M dia Tov OEA%. fixfwoav kal
amo Tov OZ° onpelov kdbeTol at OK ZA- €oTal 87 did pev TNy o6-
potéTTa TOv BHI BOK Tpuydrev s 1 BI' mpos BH, olTws 1) BO

mpos THv BK*, kal 10 Umo 'B BK mepLexbpevov xwplov {oov TG 110

HB BO, Swa 8¢ v opotétnTa TOv BZA BEA Tpuydrev s 1) AB mpos
v BE, olTus 1| BZ wpds BA, kal 76 o AB BA {cov T( Umd ZB BE,
kal €oTw {oov 70 vmo HB BO T vmo ZB BE- {oov dpa kal 70 Umo T'B
BK 10 Um0 AB BA, dv 8¢ 1 dmd Tob Z kdbeTos éml TO A mimTY, TO d-

m0 Ths BA. éml pev dpa Ths mpdtns kataypadiis os 1 I'B mpos BA,
olTws | AB mpos Ty BK, doTe kal < ds > ° cuvapuddTepos 1) I'B BA mpos i
vmepoxNV avTtov THY < T'A, olTos kal cvvapdpdTepos 1) AB BK mpos Thv
vmepoxNV avTtov THY > KA. kal €oTL cvwapdoTépov pev Ths AB BK nui-

f. 40 (Prop. 14)

oeta ) BM, 8td 16 {onv etvat Ty KM 9 MA, Tis 8¢ AK fuloeta 1

MK? kal ws dpa cvvapuddTepos 1) I'B BA mpos T TA, oltws 1) BM mpos MK,
ToUTéTTL® TPOS TNV €K TOU KévTpou Tob EZ HOY kik\ov. ém 8¢ Ths SeuTépas kal
TpiTns kaTaypadiis, émel 7O Umd I'BK {oov é8elxOn [kal kowds]! ¢ U1O
ABA, 05 dpa 1) TB mpods BA, oltws 1) AB mpos Ty BK. cuvbéuTt os 1) TA mpos
AB, 1) KA mpods KB- ¢oTe kal os 1) TA mpds T Tév I'B BA Umepoxiv, ovTws
N KA mpos Ty Tov AB BK Umepoxfv. kal €ott Ths pév KA fploeta <1 > 2 ék
ToL Ké&rTpoU <Tob > B EZ HO™ kixhov [Tt Ths AM], 1) 8¢ BM npicela Ths Tav AB
BK Umepoxfis Sta 70 {omv elvat Ty AM T MK, doTe kal s 1) MB mpos
TV €k Tob kévTpov Tod EZHO kikAov, olTws ém'” pév Ths mpdTns kata-
ypadfis cvvapdéTepos | T'B BA mpos THv UmepoxNy avTdv Thv TA,

'distinx. B Hu, Tr

2distinx. B Hu, Tr

3distinx. S Hu, Tr

“@K AB corr. S Hu, Tr

S{oov 70 AB corr. S Hu, Tr
°¢s add. Tr

"TA...Tnv add. Hu, Tr
Spuioetav Tnv MK ABS corr. Hu, Tr
*rovTéoTr B Hu

O¢coniunx. BS Hu, Tr

Wral kowaos del. Hu

1277 add. Hu, Tr

Brov add. Hu, Tr

4coniunx. BS Hu, Tr

BSqavri s AM del. Hu

1AK ABS corr. Hu, Tr AZ Co
"§mws 1 A corr. Co, Hu, Tr
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ém 6¢ s Sevtépas kal Ths TpitTns N < TOv > ' T'B BA Umepoxm) mpos cuvapudd-
Tepov T ITBA, TouTéoTw < Tt >2 TA [dvdmalw ydp. cubewpeiTal 148, it
kal TO U TOv BK AT {oov éoTiv T 4T ThHs AM>. Std ydap THv opoldtnTa
Tov BOK ZAT Tprydvor éotwv os 1) BK mpos KO, oltes 1) ZA mpos v AT, kal
70 Umd BK AT {oov ¢ Um0 OK ZA, TouTéoTw T amo Ths AM. ylvetatr 6¢
kal? SLd pev o elvat s Ty BT mpds v TA, ovtes v BA mpos KA, 1O
umo BT kal Ths KA, TovtéoTw Ths Tob kUkAov StapéTpov, {oov T vmod
BA AT®, 814 8¢ 70 €al s Thy BA mpos T TA, ottes T BK mpos KA, T0 Umd
Ths BA kal Ths KA, ToutéoTw Tis Tob klkhovu Stapétpov, ioov 10 Umd BK AT

a H bH E
AZ I M K
P C B D
T
E< Z A
B K M L D C
c T A z
H E
C D
K B M L

'7¢v add. Hu

27nv add. Hu, Tr

Sdvdmaly ydp del. Hu
‘oubewpeiTar 67, 6Tt Hu

570 dmo Ths AM A corr. BS Hu, Tr
°70 vmo BK A" A corr. Co, Hu, Tr
"kat om. Tr

SBI" AI" ABS corr. Co, Hu, Tr
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f. 40v (Prop. 15)

Prop. 15

#17 TOV avTOY VTokeLpévor yeypddduw kikhos O OPT ébamTd-

pevos Tov Te €€ dpxfs Mukvkiior kal Tod EHO kiklov kaTd

Td OPT' onuela, kal amo Tov AIP kévtpov kdbeTol fxbwoav

émi v Bl Bdow at AM IIN: Myw 6TL éoTlv s 1) AM peTa TAS Sia-
pétpov Tod EH klkhov mpos Thv dtdpeTpor adTod, olTws 1 IIN mpos THv
ToD OPT klklov SidpeTpov. fxbw TH BA mpos dpbds 1 BZ- éddmre-

Tatr dpa Tod BHI fjpkvkiov. kal émilevxfeloa 1 AIl éxPe-

BB €l TO Z. émel Sid TO TpodelxBev 05 cuvapndidTepos M

I'BA mpos Ty Umepoxny abtdr v T'A, olTwes kal 1) BM éml < pév >3 Tfis
TPOTNS KaTaypadfis < mpos T €k Tob kévTpov Tob EHO kiklouv >4, éml
8¢ Ths Sevtépas < kal TplTns >3 ws 1) VTepoxT avTOHY

TpOS cuvapdGTepor, TouTéoTw ws 1) TOv I'B BA Umepoxn mpos

v TA, o0Tws 1) MB mpos TV ék Tob kévTpouv Tob EHO kiKklov, kal

N BN mpos T éx Tob kévtpov Tod OPT klkAov, éoTal dpa kal éval-

€ ©s M MB mpos v BN, 11 A® &k T0d kévtpov Tob EHO kiklov

mpos TN OII ék Tob kévTpou < Tod >°¢ OPT ki ov. AAN ws 1) MB7 mpos
BN, 1) AZ mpos ZI1. émlevxBelons yap Ths ZM &oTar ws 1) MB

mpOs THv BN, o0Tws 1| MZ mpos THv ZE. kai < os dpa > 1) AZ mpos TNy
ZI1, oUTws

N A® éx 10 kévTpov Tod EHO kikhov mpos < v > OII ék Tod Kkév-
Tpov ToD OPT kiKklov'. kal Toév EHO POT kik\wv épdmTeTal

Tis kUkAos 60 BPEA katda Ta PE" onpeta: 8ua'? dpa 1O mpodetxbev Le!
Bedpnua <m > Ta PE" onuela émlevyviovoa ebbela

'distinx. BS Hu, Tr

2distinx. BS Hu, Tr

3pér add. Hu

41pos...Tov EHO kvklov add. Co, Hu
Skal TpiTns add. Co, Hu, Tr
®7ov add. BS Hu, Tr

"ME A corr. Co, Hu, Tr

8¢5 dpa add. Hu, Tr

*rnv add. Hu, Tr

scticdw A corr. Hu, Tr
distinx. BS Hu, Tr

28ta dpa 0 mpodSeiybér te' fedpnua Ta PE onueia add. Al in margine €' fedpnua inter-
polatori attribuit Hu

35 add. Hu, Tr
“4distinx. Hu, Tr
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ExBallopérn ém 1O Z' onpetov mecelTat, kal ioov €oTal TO

o EZP meplexdpevor dploydriov 1o amd Ths OZ TeTpa-

véve. €oTwv 8¢ kal TG dmo Ths ZB TeTpaydve loov TO UTO

EZP: {oov dpa kal T0 dmo ZB 7@ amd ZO- {on dpa 1 BZ T

ZO. émel? 6¢ kal 1 pev MA ékpindeloa tépver T Tod EHO

kOk\ou Teptdépetav katd 16 X, 1 8¢ IIN Tépvelr Tv Tob OPT

kKUK ov TepLdépetar katda 1O O onpetor, {on <1 > pev® AO TH AZ, 1 &¢
IO T§ M\, kalt <7 >* Ta O onueta émlevyviovoa el dta Tod O
{on ydp éoTw 1 Um0 OAT yovia 7§ Um0 OIIO yovig évai-

NGE, kal tooydvidr éoTw 7O AOT Tpliywvor T4 I1OO TpLys-

Vo, kal éoTw etdeta 1 Al elbela dpa éoTiv kal 1) Std TOv T O O°
onpelov drayopévn. f€el 8¢ kal dta Tod B7: elbela yap 1 OOB Sia
TO elvat os ™V BZ mpos ZO, oltws Thr OIT mpos v 110, {cwv

f. 41 (Prop. 15)

ovoOY TV UTO BZO OI1O yovidv év Taparljlots Tals BZ

OIT" kal TodTo yap TpodédeikTat te'. émevxbeloa 6¢ Kkal 1

BIT €kBePAMioBo kal ocvpmmTéTo TH MA ékpAndelon?®

kata 7O K. émel obv v 0s 1) MB mpds BN, Toutéotw os 1) KB mpos

™V BII, o0Tes 1| AZ mpos ZII kal 1| A® wpos OIl, [olTws 1] AZ mpos ZIT
kal 1 A@ mpos OIT]° éotal kal ws 1) KB mpos BII, 1 AX mpos

IO, kal M TK < wpos I1O- {on dpa 1} AT 7 > °

TK. émel obv 8\n 1y AK 8\ T StapéTpe Tod EHO Ki-

KAov €oTlv (oM, kal éoTw ws 1) KM mpos K, olTes <1 > ! NII mpos OII,
€oTat kal

os 1 MK mpos v KA, ToutéoTw ws 1) MA peTd Ths StapéTtpov Tod
EHO kik\ov mpods Thv SudpeTtpor, ovTos 1) NII wpos Ty Tod OPT ki-
KAou StdpeTpov, Omep ¥

(f. 41v: diagrams Prop. 15)

'70 H onuetov A corr. Co, Hu, Tr

2éoTiv 86 kal A éoTt 8¢ kat BS émel 8¢ kat Hu, Tr €7t 8¢ kal coni. Tr
3{on pév add. A2 in marg. 1y add. Tr {on dpa éotiv 1 pév Hu
45 add. Hu, Tr

>distinx. BS Hu, Tr

®cOO0 super evanidam scripturam A2 £ © O BS Hu, Tr

"BE A corr. Co, Hu B[E] Tr

8éxPAnbeions A corr. Hu, Tr

°bis scripta del. Co, Hu, Tr

Y17pos...1 AX 7 add. Hu, Tr

5 add. Hu, Tr
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a K b T
H P
D
R E
M
z T H c B[ N D
S A
P
o T A
R
E S
X
B N M D c <
c K
S
A
H N
NG
N7H
X
C BN M D

f. 42 (Prop. 16)

Prop. 16

# 18 ToUTwV mpoTebewpnpérov UTokeladw fkikitov TO BHIL, kal &ml
This Bdoews atTob TuxOv onpelor eiMiddo TO A, kal éml TOY BA

AT fukdkhia yeypddbo Ta BEA AYT, kal éyyeypddbooav eis TOV
peTalv TOTOV TOV Tplov TEpLdEPELOY TOV Kalovpevor dpPn-

\ov kUK oL €pamTdpervol TOV NUKUKA oY kal dAflov dool -
dnmoTolv, ws ol! mepl TA KévTpa Ta AIIO?, kal Amod TOV Kév-

Tpov avTov kdbetol éml Ty BI fixbwocav at AM IIN OZ- Myw 6Tt

'4¥s 0 ABS corr. Hu, Tr
2distinx. BS Hu, Tr
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N pev AM {on éoTiv TH Stapétpy Tod Tepl TO A kiklov, 1) 8¢ TIN St-
T\ €oTi! ThHs Stapétpou Tob mepl TO IT kikhov, 1) 8¢ O TpLTAf

THs StapéTtpov Tob mept TO O? kUkov, kal al €ERs [at]® kdbeTol

TOV olkelov StapéTpor molamTidoLatl katd Tovs €ERS povddt

ARV UTepéxovTtas dptdpols. fxbw SidpeTpos 1) OZ mapd\-

Anlos TH BT, kal kd@etol ai OK ZA- éoTat 81 kaTd Td TPOyeypaL-
péva 7o pev vmo I'B BK mepLexdpevor dpboydviov {oov TG 11O

AB BA, 76 8¢ Um0 BT TA* 7 vmo KTA. kal dta TodTo ws 1 BK mpos

KA, oUtos 1| KA [mpos] mpos’ AT ékdTepos yap Moyos 6 avTds éoTw
T® Tis BA mpos AT, émel ydap 10 Umd I'B BK {oov éoTiv T4 UTO

AB BA, éotw dpa ws 1) B mpos BA, oltos 1| AB mpos BK: éval\aé

os 1 I'B mpds BA, oltws 1) AB mpos BK: StelévTi s 1) TA mpos

AB, 11 AK mpos KB dvdmalw os 1) BA mpos AT, 1 BK mpos KA.

md\w émel 76 Uo BT TA {oov éoTiv ¢ Umd K TA, éoTw dpa oS

N BI wpos T'K, otTws 1) A wpods TA- évaila€ os 1 BT mpos Ty

TA, 1) KI" mpos v TA* StedévTi [6s]” dpa éoTiv os 1) BA mpos AT, olTws
1 KA mpos iy AT fv 8¢ kal os 1) BA mpos miv TA, 1) BK mpos i

KA- kai s dpa 1) BK mpos Ty KA, <1) KA > 8 mpos v ATL. loov dpa 1O Umd
Tov BK TA 7§ dmo This KA. mpodédeiktar’ 8¢ 76 vmd BK AT {oov

kal T¢ amo AM: {on éoTiv dpa'® vy AM 17 KA, TovtéoTw T ZO
StapéTpp Tod Tepl TO A kiklov. émel 8¢ kal ToDTo TPoSédel-

kTat, 6TL €oTiv 0s 1| AM petd THs ZO mpos TNy ZO, olTes 1

TIN mpos T Tob mept TO IT kikAov StdpeTpor, kal €oTwv <1 > AM peTd
THs ZO 8umAf} Ths ZO, éotal kal 1 IIN Ths StapéTpov Tod

mepl 7O IT kikhov StmAfy. 1} TIN dpa petd Ths StapéTpou

f. 42v (Prop. 16)
~ \ \ 4 ’ ~ / \ b4 2 ~
Tob mepl TO IT klkhov Tpimhaoia THs StapéTpov, kal €0Tw év T@
K ~ 7’ e \ A I ~ \ \ 7 \ 9
avT® Aoyo n OX mpos Ty SidpeTpor Tob mept TO O kUkAov kat 1 OX
dpa Tpimhacia THS StapéTpov Tod Tepl TO O Kl ov. Kal Opol-
oS kal N Tob €Efis kiklov kdBeTos TAs SLapéTpov TeTpamiaoia,
kal < at > 2 €Efs kdBeToL TOV Kka® alTds StapéTpur evpedioovTal morka-

'éoTt del. Hu

2mept 7o © A corr. Hu, Tr

3q1 del. Hu, Tr

470 Um0 AB BA, 170 8¢ vmo BI' TA Al 7{ corr. A2 Um0 BI' IT'A Hu, Tr
Sbis scriptum (sed alterum 7pods expunctum) del. Hu, Tr
°7 I'A Hu

"¢s del. Hu, Tr

877 KA add. Tr odTws 17 KA Hu

*mpoodédettar A corr. Hu, Tr

Y{on dpa éoriv Hu

177 add. Hu, Tr

244 add. Hu, Tr
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TAdoLal kaTd Tovs €ERs povddt dA oY UTepéxovTas dpldpols,

kal TodTo oupPatvov éml TO dmelpor dmodelxdjoeTall. dv <& > 2 dv-
TL TOv BHI" AYT mepidepeldv evfelat oo dpdal mpos Ty BA?,

oS ém TAS TplTns?* €xel kaTaypadfis, Td abTa cvpprHoeTal Tepl
ToUs éyypadopévovs kikhovs: adTdBev’ yap 1) dmd ToU A kév-

Tpov kdBeTos éml TNV BA® {om ylveTar TH Tob mepl TO A Kkl ou
StapéTpp’. dv 8¢ ai peév® BHI BEA pévoow meptdéperat, avti 8¢ ThHs
AYT mepLdpepeias evbela vmoTed, ws ém ThHs TeTdpTns

&xel kaTaypadfis, 1 AZ°® 6pdn mpos Ty BT, Ths pév BI mpos
™ TA TeTpayovikov év dplBpots A\oyov éxolons, oUILLETPOS
gotar 1 4md ToU A kdBeTos TH StapéTpy TOD TEPL TO A KU-
K\ov, €l 8¢ uY, doUppeTpos. kabdlov yap Ov €xel Adyov ©) BI' mpos Ty
T'A, TodTov €xel TOV Adyov duvdpel 1) AZ! mpods TNV SLdpeTpov Tod
mepl TO A kUK o, 0s €Efis SelkvuTal. olov Qv 1) TETpATAA-

ola piker 1 BT Tfis TA, ylveTal SLmAf puhkel 1) AZ'2, TovtéoTv

N dmo Tod A kdBeTos, Ths StapéTpov Tod Tepl TO A Kkiklov, kal

N pev amo Tod I Tpumhf, 1) 8 dmo Tod O TeTpam\f, kal €Efs

KaTd ToUs €ERS dpLOpovs.

10

a

YamodeiybjoovTar ABS corr. Hu, Tr
28" add. Hu, Tr

3BI’ A corr. Hu, Tr

“I" A corr. Hu, Tr

SavTo* Gev A

°BI" A corr. Hu, Tr
"Stapérpov ABS corr. Hu, Tr
8uer superscriptum A2

A= A corr. Co, Hu, Tr
Youvuperpor A corr. Hu, Tr
TAZ A corr. Hu, Tr

2AZ A corr. Hu, Tr
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f. 43 (Prop. 17)

Prop. 17

#19 70 UmepTedEY Mppa. qukikita Ta BHT BAA, kal 6pon 1 AE, kal
KOKAoS épamTépevos 6 OH ZA" §TL éoTv <os >2 1 BI' wpos v TA prjket,
olrws I AZ mpds Ty SudpeTpor Tob OH ZA® < kixhov >* Sudpel. fixbw StdpeTpos
N OZ: edbelal dpa at ZAB OAA. kdbeTos fxbo 1) OK- éoTal dpa

Sla < Ta >3 mpodederypéva O UTO TOY I'B BK TepLexSpevov xwplov {oov
TO amo Ths BA TeTpaydve: os dpa 1) BT mpos TA, o0Tws 1) BA mpos

AK, TouTéoTw mpos OZ. ws 8¢ 1) BA mpos OZ, 1 AA mpos OA, ws S¢

N AA Tpds AB, o0Tws TO dTd TAS ZA mpos TO dmd Ths OZ. dpho-

f. 43v (Prop. 17, 18, and 19)

yaviov ydp éoTw TO OZA, kal kdfeTos éml TV UToTelvovcav
ZA. kal 0s dpa 1y BT mpos TA, oUTos 10 dmd ThHs ZA mpOs TO Amo
Ths StapéTpov Tob OH ZA° khk\ov.

B K D C

Prop. 18

#20 €TL kal To0TO” SLa TGV TpO-

YEYPARPEVOY A\NURATOY

TebedpnTal. €0Tw MULKD-

ikhta Ta ABTT AAE, kal

yeypddbooav ébamTd-

pevoL TOV TepLdepeLOV

abTOV kUKAoL ol Tepl Ta KévTpa Ta ZHEP, kal ol cuvexels avTols

'coniunx. BS Hu, Tr
2¢js add. Hu, Tr
3coniunx. Hu, Tr
‘kUidov add. Hu

Sta add. S Hu, Tr
Sconiunx. Hu, Tr
"ToUTw A corr. Hu, Tr
8distinx. BS Hu, Tr
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oS €l TO A. 8TL eV obv 1 4o Tod Z kdbeTos ém v AT Ton

€oTl T €k Tob KévTpou TobD Tepl TO Z kkhov dHdov: Méyw & ETL kal
N pev amo Tod H kdbeTos Tpimhacia Ths ék Tob kévTpou Tod

mept TO H kdkhov, 1) 8¢ dmd Tod © TevTamiacia, kal <al > ' €Efis kd-
BeTol TOV ék TOV KéVTpwy ToNaTAdoLAL? KaTd TovS €EfS

TepLooovs dplBpols. émel yap mpodédelkTal ws 1 Amod To Z Kd-
feTos peTd TAHS dtapéTpov TpoOs THY StdpeTpor, oVTwS 1) 4TO TOD

H kdBeTos mpos Ty idlav SidpeTpov, kal €oTw 1) amd Tob Z Kd-
feTos peTa ThHs StapéTpov HuLorla Ths StapéTpou, ThHS dpa ék

ToD kévTpou €oTal TpLmhacia. md\w émel éoTw ws 1) dmo Tod H
kdBeTos peTd THS StapéTpov mpoOs THY didpeTpor, oUTwS 1 ATO TOD
O kdbeTos mpos TV dudpeTpov, 1 8 dmd Tod H kdbeTos peTd Ths
StapéTpouv TpOs TNV SudpeTpov Noyov €xet dv €xel Td TévTe TPOS Td
800, €€et kal 1) 4o Tod O KkdbeTos TPOS TNV SLdpeTpov TOV aAVTOV
\oyov: Ths dpa ék Tod kévTpov €oTal mevTamAacia. opolws
SelxOoovTal kal at €Efls kdBeToL TOV ék TOV KEVTPWY TOANA-
TAdoLal kaTtd Tovs €ERS TepLoools dpldpols.

Prop. 19

#21 70 éml Ths é\kos Ths
év émmédy ypadopé-

vns Bedpnpa mpolTewe
pev Kévov 6 Zdpios® yew-
péTpns, amédelEer 8¢

T Apxtpiidns? avpaoTi

f. 44 (Prop. 19, 20, and 21)
TwL xpnodpevos émPolf. €xel 8¢ yéveow 1) ypapun ToradTnr. €0Tw
KOKAOS 0V kévTpov eV TO B, 1 8¢ &k Tod kévTpou 1) BA. kekw-

'al add. Hu. Tr

2roAdamlacta A corr. Hu, Tr
3kdvwv 6 odutos A corr. Hu, Tr
*apxtundns A corr. Hu, Tr
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0w’ 1) BA €lfela olTos dote TO peév B pérew, 76 8¢ A Opads dépecbat
KaTd THs ToU kik\ou meptdepeias, dpa 8¢ avth dpEdpevdr Tu
onpetor amd Tob B dpepéobu kat alThs Opalds ws €m TO A,

\ 9 b4 ’ ’ -~ A\ / \ \
kal €v (oo xpdve 76 Te B onueior” Ty BA Siepxéobo kal TO
A v Tob klkhov TepLdéperav: ypdisel 81 TO kaTa THr? BA kwov-
pevov onuetov év TH Teptdopd ypapunv ola éoTiv 1) BEZAY, kal
apxn pev avTiis éoTal TO B onuetov, dpxn) 8¢ Ths meptpepeias’
e 4 6 \ e A 14 ~ \ \ 9 A K ~
N BA. admn® 8¢ 1 ypappn ENE kalelTal. kal TO dpxXlkov abThs
€0TL OCUUTTORA TOLoDTOV. ATLS Yap dv Staxdf mpos almiv os 1 BZ
kal €kPANGR, €oTv 0s 1 GAn Tod Kik\ou TepLdéperla TpoOs TNV
AAT mepLdéperar, ovTos 1 AB eVfeta mpos THv BZ. TodTo 8¢ cuvidely
pasdlov €k Ths yevéoens: év ¢ pév yap TO A onuelov THv GAnv

7 /’ ’ 9 / \ \ 7 A 9 T \
KUKAOU TEpPLEPELAY BLEPXETAL, €V TOUTW Kal TO B’ Ty BA, €v ¢ 6¢
TO A Tv AAT mepLdépeLav, év ToUTe kal 70 B [Ty BI* T\v BZ €b-
Betav. kal elolv at kwhoels avTal® éavTtdls LooTaxels, GoTe Kal
avdloyov eilvat.

Prop. 20
e \ U,
bavepov 6€ kal ToUTO, OTL AlTwes av dtaxfdow
amd Tod B mpos THY ypappny elbelatl {oas mepLéxovoal ywvi-
as, 70 (o AR AwY < UTepéxovoy > ',

A

Ykextvniobw A Hu kwelobw Tr

276 e B onuetov A Tr 70 amo Tov B onuelov Hu
*7nv A Hu 77js appendix Hu p. 1229, Tr

*BZ EA A corr. Co, Hu, Tr

STiis meptpepelas A Tr Tis meptpopds Hu

®aquTn sine acc. A avTn Hu adrn Tr

770 B A Tr 70 amo Tov B Hu

8kal To B Tiv B A Triv B del. Hu, Tr kal 70 amd To0 B Hu
Savtat sine acc. A avtaw Hu avrar Tr

08exbaoov A corr. Hu, Tr

Womepéxovor add. S vmepéyovoir Hu, Tr
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Prop. 21

#22 SelkvuTal 8¢ TO mepLeXxOpeEVor oXHa

umd Te Ths élkos kal Ths evbelas

[Tfs é\kos kal TAs evBelas]!

Tfis év dpxf Ths TepLpopds

TplTov pwépos Tod mepL apBdvov-

Tos adTNV KUK\ov. €0Tw yap OTe

KUKAOS Kal 1) mpoeLpnpévn?

ypappy, kal éxkelobo Tapa\nAdypappov opboydviov 10O KN AIT,
kal dmet\ddo 1 pev AT mepidépela pépos [€oTiv]® TL ThHs TOD
KUKk oU epLdepelas, 1 8¢ KP elbeta Ths KIT 10 alTo pépos, kal
émeletxbooav fite TB kal 1 KA, kal TH pév KN mapdAinios

M PT, T§ 8¢ KIT' 1) QOM, kal mepl 70 B kévtpov mepitdépera 1 ZH.
el ol éoTw 65 1 AB elbéla mpos AH, ToutéoTw 1) BT mpos T'Z, <olrws 1) >8 8\

f. 44v (Prop. 21)

ToD kikhov Teptdépeta Tpos TV TA, TodTo ydp éoTw TO dpxLKOV

This é\kos cOpmTopd, os 8¢ 1 Tod kik\ov mepLdépela mpos TNy TA,

N K mpos KP, os 8¢ 1) IIK mpos v KP, 1 AK mpos v KQ, TovtéoTw
N PT mpos v PQ, kal s dpa 1 BI' mpos Ty I'Z, | TP mpos PQ. kai
avaocTpébartt kal ©s dpa TO dmd THs B mpos TO amod Ths BZ, olTws
70 amo Ths PT wpos 10 amd Ths TQ. AN s pev 10 dmod ThHs B

TpOS TO dmd Ths BZ, oltos O ABI Topels mpos Tov ZBH® Topéa. os 8¢
70 amo PT wpos 10 amo TQ, olTws 6 dmd Tob KT mapal\nioypd-

pov kOAWSpos Tept dEova Tov NT mpos Tov amd Tod MT Tma-
PaAANAOYpd Lo KOAWSpov mepl TOV adTov dEova: kal s dpa O

I'BA Topevs mpos Tov ZBH' Topéa, oiTos <6 > ' dmo Tob KT mapaiinio-
ypdppouv kOASpos mepl dEova TOVv NT mpos Tov dmd Tod MT
TApaAANNOYpdppov KOASpor mepl TOV alTov dEova. opolws 8¢

¢av Th pev AT {ony 0opev v TA, Tf 8¢ KP tonv v PX,

kal Td alTd kaTaokevdowper, €oTal ws 6 ABT” Topels mpos Tov EOBY,

'bis scripta ABS del. Hu, Tr
2mpoetpnupévn A corr. Hu, Tr
370 KN AIT A coniunx. S Hu, Tr
*ABI” A corr. Hu, Tr

5éotiv del. Hu, Tr

°KA A BA Co, Hu KA Tr

"KM A corr. Hu, Tr

So0Tws 1j add. S man. rec. Hu, Tr
°*ZB.n A corr. Hu, Tr

Wrov ZBH A2 ex Tov *BH

16 add. S Hu, Tr

270y EOB A Tr Tov EBGO Co, Hu
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oUTOS O Amd Tod PO mapaAAnloypdppov kOAWSpos Tepl dEova

TOv T® mpOs TOV dmd Tod ZP® mapalinroypdppov kKiAvdpov Te-

pl TOV avTov dEova. TO & alTd Tpdémw édodeloavTes delEoper

oS Glov TOV klKk oV TpOS TdvTa Ta €yyeypappéva TH €Nkl

€k Topéov oxHuaTta, oUtes Tov dmd Tod NIT mapaAAn\oypdppouv
KOAMSpor Tepl dEova TOv NA mpos TdvTa Td TG dmd Tod

KNA Tprydvov! mept Tov AN dEova kdve éyypaddpeva éx kuAvdpwr
oXHLATA, Kal TAAY ©s TOV KUK\ov Tpds TAvTa Td TepLypadOpeva TH
ENKL €k Topéor oxApaTa, olTws TOV KUAYSpov Tpos TdvTa Td TO abT
KOve €k KUMVSpwv Teprypaddpeva oxfpaTta €€ ol dpavepdv 6Tl as O
KUKAOS TpOs TO LeTalv Ths €lkos kal THS AB elbeias oxfqpa?, olTws 6
KOAMVSpos TpOs TOV kdvov. TpLmAdotos 8¢ O kOAwdpos ToD kdvov: TpL-
mAdoLos dpa kal O kik\os ToD elpnpévov oxHILATOS.

NTF L

f. 45 (Props. 21 and 22)

#23 79 & alTd TpéTE SelEoper GTL, kdv Staxdf Tis els T élka s M
BZ «al 8ta Tob Z mepl <TO >3 kévtpov TO B ypadfi kikhos, TO mepLtexOperor oxn-
pa [ypadn]* Umd Te Ths ZEB élkos kal Ths ZB edbelas TpiTov pépos
€oTiv Tod meptexopévov oxfpaTos VTo Te THs ZHO mepidpepeias Tod
KOKAOU Kkal TOV ZBO®’ e€lfeldv. 1) pév obv dmédeléls TolavTn Tis

€oTw, €€fs 8¢ ypddoper Bedpnua mepl THV abTHY ypappny LTdp-

xov toToplas dElov.

"Tptydve A corr. Hu, Tr

2oxnuarta A corr. Hu, Tr forsan 7a oxrpata
370 add. Hu

Yypagpn del. Co, Hu, Tr

5ZBH ABS corr. Hu, Tr
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Prop. 22

#24 €0Tw yap GTe kUKAOS O TpoeLpn -

pévos €v T yevéoel, kal 1) éNE

al™ N AZ EB" Myo 8T1% fijTis av

Staxdfj os N BZ, éoTw os TO UTO

THis 6\ns €\wkos kal Tfis

AB el0elas mepLexduevor oxi-

pa mpos TO VIO THS ZEB é\i-

kos kal THs BZ elbelas meptexpevor, oUiTos 6 amd Ths AB kOBos

TpOS TOV Ao Ths ZB? kiBov. yeypddbw yap Std Tod Z kdkhos

mepl kévtpov TO B 6 ZHO. émel otv éoTwv ws TO vmd Ths AZEB

ypappfs kal Ths AB elfelas meptexdpevor oxfpa mpos TO VO

Tfis ZEB ypappufs kal this ZB* elbelas mepexdpevor oxfpa, ov-

Tos 0 ATA klkhos mpos TO UTO Ths ZHO mepidepelas kal TOV

ZBO elfeLdv mepLexOpevor oxfpa, €KdTepor yap EKATEPOU TplTOV
€deixOn pépos, 6 8¢ ATA kikhos TpOs TO UTO TOV ZBO €lbeldr kal

Tfis ZHO® mepidpepeias dmorappavipevor’ xnplov Tov cuykelLevor

éxetl Noyov &k Te Tod dv €xel 6 ATA klkhos mpds TOov ZHO kiklov kal €€ ov
v &xel O ZHO klikhos <mpos >° 70 Umd Tov ZBO elbeldv kal Ths ZHO mepide-
petas dmolapBavdpevor’ xoplov, AN ws pév 6 ATA kUkhos mpos Tov ZHO
KUK OV, 0UTwS TO Ao THS AB Tpos TO amo Ths BZ, o5 8¢ 6 ZHO kik\os
mpOS TO elpnpévov xwplov, 1 6An avTod mepidépeta Tpos TNy ZHO, Tov-
TéoTw M 10U ATA klKkhov Tepidépera mpos THv TAA, TouvTéoTwy SLd TO
olpumTopa ThHs ypappfs 1 AB evfeta mpos v BZ, kal 10 peTa&v

Ui EME avTn 1) AZ EB AS 1) éEME avtny 7 AZEB Tr 1 EME 17 avtn 17 AZEB coni. Hu
2)Aéyw JTis A corr. BS Hu, Tr

31hs ZO A corr. Hu, Tr

4ZB in rasura A

SdmodauBdvor ABS corr. Hu, Tr

®mpos add. Hu, Tr

TdmodauBdvor ABS corr. Hu, Tr
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dpa Ths é\kos kal Ths AB elfelas oxfpa mpos TO peTaly Ths éNkos kal
Ths BZ Aoyov éxel TOv ouykeljevov ék Te Tob < amod > ' Ths AB mpos TO 4o Ths
ZB kai €k Te Tov? THs AB mpds BZ. oTos 8¢ 6 \éyos 6 alTds EoTL TH

f. 45v (Prop. 22 and conchoid)
ToD dmo Ths AB k¥Bov mpos TOV? dmd ThHS BZ kipov.

a A

&

#25 &k 81 TolTOU davepov 6L, Eav THS

éXLkos UTokeLpérvns Kal Tod

mepl avTNY kiAo ékPBANOR 7

AB éml 170 A kal mpos dpdas av-

TH dx0f N I'Z EK*, olov éoTiv évds

TO petaév <Ths >° BAE ypapufs kal THs

BE elfelas xwplov, TololTov éoTiV

TO pev petalv tis NME ypap-

piis kal TOv NBE® edfeldv xoplov émnTd’, T0 8¢ peTall THs ZON? ypajL-
pfs kal 7OV ZBN elfelov 10, 76 8¢ petalv Ths AZZ ypappfs kal TOv
ABZ elbeov N\, 8fila yap TabTta éx [T€]’ Tod mpodedelypévov Bewpripa-

Ydmo add. Tr, appendix Hu p. 1229
2K Moo A

370 A corr. BS Hu, Tr

“coniunx. B Hu, Tr

>7hs add. Hu, Tr

°NB A corr. S Hu, Tr

"xwplov émra A corr. BS Hu, Tr
8ZOH ABS corr. Co, Hu, Tr

%7€ del. S Hu, Tr
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Tos, kal 8Tt olwv éoTiv 1) AB 8, 1) pév ZB TpLov, 1) 8¢ BN &lo, 1} 8¢ BE
€vés: kal yap TodTo Sfilov ék Te Tod THS ypappfis cupTTApATOS Kal
Tod Tds AT TA AK KA mepidpepeias {oas elvat.

b A

Conchoid

#26 els TOV SLTAacLAoLOY ToD KUBOV

TapdyeTtal Tis VO Nikopn-

Sous? ypappn kal yéveoww €xel

ToLatTn. ékkeloBw evbela 1

AB, kal avTh? mpos Opdas 1

T'AZ, kal €iMjdbo TL onpelov

ém Ths TAZ 800V 10 E, kal pé-

vovTos Tod E onpelov év ¢ éoTwv Témp 1) TAEZ elfela depéodu
kaTd THS AAB elBelas élcopévn Sua Tob E onpeiov olTws woTe
Sua mdvTos dépecbal TO A éml Ths AB elfelas kal pr) éxmiTTew
Ecopévns Ths IA EZ* Sua Tod E. Toraltns 81 kwhoews
vevopérns éd' ékdTepa, pavepor §Tu 1O T’ onpelor ypddset
ypappny ola éotiv 1) ATM, kal €oTw adThs TO cUUTTORA ToLoDTOV.
oS av evdeta mwpooTiTTy TIS® dATd Tob E onpelov mpos TV ypaj-
Wiy, TV dmoapBavopévnr petald Ths Te AB elbelas kal

Ths ATM ypappfs (onv etvar® 16 TA ebbelq’ pevovons ydp

Tfis AB kal pévovtos Tob E onpelov, Stav yévnTtal 16 A émi

70 H, 1) TA eV0eta TH HO édpappdoel kal 10 I’ onpelor ém 70 OF

'ABA AB AB teoodpor X AB §' Hu, Tr
2vikounSovs A corr. Hu, Tr

‘avtn a A corr. S Hu, Tr

*coniunx. S Hu, Tr

>1is A corr. Hu, Tr

®motel coni. Hu

v TA evfeiav A corr. S man. rec. Hu, Tr
8eml 70 O meoeiTar Hu
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f. 46 (Conchoid and Prop. 23)

{on dpa €éotiv 1) TA 7§ HO. opolos kal éav étépa Tis amod Tod E
onpelov TpOS TNV Ypappuny TpooTéon, TNV ATOoTELVoLévny

o THS ypappfs kal Ths AB elbelas {ony mojoer T4 TA

[émeldn TalTh {oatr elolv al mpoomimTovoat]'. kakelobw &€, dpnoiv, M

pév AB elbela kavdr, TO 8¢ onpetov moNos, StdoTnpa 8¢ 1

TA, émeldn TatTi loat elolv <al >? mpoomimTovoal wpos THv AI'M ypaj-
Wiy, adTn® 8¢ 1) ATM ypapun koxhoeldns?* mpdTn?’, émeldn

kal 1 Sevtépa kal 1 TplTn kal 1) TeTdpTn éxTifeTaL® els dN-

\a BewpripaTa Xpnotpevovoat.

#27 6TL 8¢ dpyavikes ShvaTal

ypddeohal M ypappn kal €

éEXaTTor” del oupmopeveadal®

TO kavévL, TovTéoTw OTL Ta-

obv TOV amd Twoev onpel-

ov This ATO ypappfis éml

™V AB elBelav kabéTov

peylon éoTiv N TA kdBeTos, del 8¢ 1 €yylov? Tiis TA dyopévn kd-
BeTos ThHs amdTepov pellwv éoTiv, kal 6TL, els TOV peTal T6-

IE,7T€[5T}...7TpOO'7TL/TTTOUO'aL del. Hu, Tr

2q1 add. B2 Hu, Tr

3avTn sine spirit. et acc. A avTh Hu adtn Tr

‘royxoetdns Al corr. A2 BS

SmpdTn A corr. Hu, Tr

*éxtifeTar A Hu éxtifevTar Tr, coniecit Hu

Té-m élatTor A

Sovumopeveabar ABS Tr cuumopeveTar Hu

°n eyyetov sine spirit. et acc. A spirit. et acc. add. B corr. S Hu, Tr
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oV Tod kavévos kal THs kox oeldols! édv Tis i) elbela, k-
BaAlopévn TundioeTal UTO ThHS KoXAoeLd0Ds?, avToS dTé-
SeLtEev O Nucopndns?, kal Mels év 14 els 7O dvdAnppa ALodo-
pout, Tpixa Tepelv TV yoviav Bovopevol, kexpipeda 1
TPOELPNILEVT YPALLILT.

Prop. 23

SLa 81N TOV elpnpévov davepor ws

SuvaTtév ot yovias Sobeions os ThHs O HAB kal onpelov
€xTos avThs Tob I Stdyew ™y TH kal motelv THv KH peTalv
TS ypappfs kal Ths AB {onv T4 Sobelomn. Nxdw kd-

BeTos amo Tob I' onpelov émt v AB 1) I'© kal éx-
BePAiobo, kal TH® Sobelon {on €oTw 1 AO, kal o e eV

7O T, Staomipatt 8¢ 1§ 800évTL, TouTéoTww TH AO, Kavdui

8¢ TG AB yeypddbn koxAoetdns® ypapuun mpdTn 1 EAH™
ovpBdAiel dpa T AH Sua 1O mpolexBév. cupnBaINéT®

kaTd 7O H, kal émelelxbw 1) TH: {om dpa kai | KH T
Sobeio.

f. 46v (Prop. 24)

#28 Twes 8¢ TS Xproews éveka Tapa-
TIOévTes? kavova 1o T kwolow

alTév, €ns dv ék Ths melpas 1

petalv amolappavopévn Ths

Ykoxdoet5o0s A1B2S Hu vy superscriptum, A expunctum Al
2koxAoetdovs A1B2S Hu y superscriptum, X expunctum Al
Soméderéer 6 vikounidns A corr. Hu, Tr

4Stoddpov A corr. Hu, Tr

St om. Tr

®koxAoetdhs A1B2S Hu y superscriptum, X expunctum Al
"mpésTy 17 EAH A corr. BS Hu, Tr

SapatedévTes ABS corr. Hu, Tr
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AB el0elas kal ThHs EAH ypap-
pfs ton yévnrar T4 Sobelon-

/ \ b4 \ 7’ 9 b ~ 7 / \ 7
ToUTOV Ydp OvTOoS TO Tpokeipevor €€ dpxis Selkvutal: Myw 8¢ kiBos
kUBou Stmhdolos eUplokeTal. mpdTepor 8¢ 800 800eLody elPeLBY
8vo péoat kata TO cvvexes! dvdloyor AappdvovTar: ov 6 Niko-
pudns? THY kaTaokevny €E€0eTo pdvor?, Nuels 8¢ kal THv dmo-

SelEw édnppdoaper TH kaTaokevi TOV TpdTOV TODTOV.

Prop. 24

5€86-

oBwoav ydap 800 elBelal ai TA AA mpos dpbds dAHAAaLs, ov el 8vo
péoas drdloyov KaTd < TO > ouveXes?t eVpely, Kal CUPTETATPHOOW TO
ABT'A mapal\nA\éypajppov, kal TeTufobo Sixa ékaTtépa TOV AB

BTI" Tols AE’ onuelots, kal émlevyBeloal pév 1 AA éxBePricbo

kal ovpmmTéTo’ TH I'B ékpAndeion® katda 10 H, TH 8¢ Bl

mpos dpbds 1 EZ, kal mpooPePAiodu 1 T'Z {on ovoa TH AA, kal
emelebxBo 1 ZH® kal abti mapdAnlos 1 'O, <kal > yovias olons
THs UTo Tov KI'O damo 8obévtos Tod Z Sufxbw 1 ZOK motoloa

{onv Ty OK 71 AA f) T I'Z, TodT0 yap ws duvaTtov édeixOn

Sta Ths koxhoeldols! ypapufs, kal émlevyBeloa 1 KA éxPe-

BAoOw kal cupmmTéTw TH AB ékPAndelon kaTd TO M- AMyw 8TL

¢oTv 05 ) AT mpos 72 KT, ) KT" mpos MA kal 1) MA mpos Ty AA. émel
N Bl TétunTat dixa 79 E kal mpéokettar abti® ) KT, 10 dpa 0o
BKI™ petd Tob < dmo > T'E {oov éoTv T dmo EK. kowov mpookelobw TO 4o
EZ: 70 dpa vmd BKT petda TOv amdo TEZ', ToutéoTw Tob dmo I'Z, {oov
éoTiv Tols amo KEZ, ToutéoTw T 4mo KZ. kal émel s 1) MA mpos

AB, 1 MA mpos AK, us 8¢ 1 MA mpos AK, oUtws f) BI' mpos T'K, kai

Yovvexel A corr. Hu, Tr

2vikounidns A corr. Hu, Tr

judvnr A povov Hu, Tr

‘kata ovveyes AS Tr 70 add. B1 Eut. Hu

Sdistinx. S Hu, Tr

Sémlevyfetoav A corr. BS Hu, Tr

TovummTéTw A corr. Hu, Tr

S€xPAnbeion A corr. Hu, Tr

°n ZH om. Tr

Yyal add. Eut. Hu, Tr

UxoxdoetSois A1B2S Hu vy superscriptum, A expunctum Al
277 om. Hu

Bavtn A corr. Hu, Tr

“BI'K ABS corr. Hu, Tr

5gmo add. Eut. Hu, Tr

Yuerad Tov améo AEZ ABS corr. Hu, Tr peta 7ov dmo I'E EZ Eut.
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oS dpa | MA mpos AB, oUtws 1 BI'' mpos TK. kal €oTL THs pév AB
Nuioeta 1 AA, Ths 8¢ BT Sum\fj § TH: €oTal dpa kal os 1

MA mpos AA, oUTws 1) HI mpos KI'. AN os ©) HI™ mpos T'K, otTws

N ZO 1pos OK Sia Tas mapal\jlovs < Tas > HZ T'O* kal cuwbévTL dpa
ws 1 MA mpos AA, 1) ZK mpos KO. {on 8¢ vmdkertal kal 1 AA

f. 47 (Props. 24 and 25, and Quadratrix)

TH OK, émel kal T I'Z {on éoTiv 1) AA* Tom dpa kal 1| MA T§

ZK: {oov dpa kal 10 4md MA T4 dmod ZK. kal €oTt T pév dmdo MA

{oov 7O UM BMA* peTd 1o dmd AA, T) 8¢ dmd ZK {oov é5eixOn

70 Umd BKTI peta Tob amd ZIN, ov 16 dmo AA {oov T amd T'Z. {on

vap vmokeltal | AA ) T'Z. {oov dpa kal 7O VO BMA 7§ Um0

BKTI™ ¢s dpa ) MB mpos BK, 1) TK mpos MA®. d\\' ©s 1) BM mpos BK,

N AT mpos TK: os dpa 1} AT wpods T'K, <1} T'K mpos AM. €oTL 8¢ kal oS 1
MB mpos BK, >°1 MA mpos AA" kal os dpa

N AT mpos TK, 1) TK mpos AM, kal 1) AM mpos AA.

M
A L
D
B E C
H K

Prop. 25

#29 ToUTOUL deLyxBEVTOS TPHSNNOV
6mos Sel kiPov 808évTos

KUBov d\\ov eUpely kaTtd TOvV
800évTa Adyov. €oTw yap O

'BI' A Hu BK Tr

25 ZI'O A corr. Hu, Tr Tas HZ I'O Eut.

3émel kal Tfj I'Z lon éoTiv 1) AA del. Hu

470 dmo BMA ABS corr. Hu, Tr 70 970 BMA Eut.

51 A" mpos T'K ABS corr. Hu, Tr 17 KI” mpos AM Eut.

¢y I'K...mpos BK om. ABS restit. Hu, Tr 1) TK 7pos AM. €07t 6¢ kal és 1 A" mpos T'K Eut.
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80Bels Noyos ThAs A evBelas

mpos T B, kal Tov AB' 800

péoat dvdloyov katd TO GU-

vexes eiMdBooar at TA* €oTal

dpa ©s | A mpos THv B, oUTws 6 dmo Ths A kiBos mpos TOV
amo s T kiBov, TodTo yap Sfilov ék TOV oTolxelwy.

Quadratrix

#30 els TOV TETpAYOVLTPOV TOD KO-

KAOU Tapedon TLs

UTo AewooTpdTou kal Niko-

puNdous? ypappn kai Twev

AoV veoTépor amd TOD

TePL AVTNY CUPTTARATOS Aafoloa ToUVopd, KANELTAL YAp

U adTOY TeTpaywvilovoa kal yéveow éxel ToralTny. ék-

keloBw TeTpdywvov 7O AB I'A*, <kal >° mepl kévTpov TO A mepLdépeLa
veypddbo <1 >° BEA, kal kwelobo 1 pev AB olTws GoTe TO pev A onpel-
ov pévew, 16 8¢ B dépeabal kata Ty BEA Tepidéperav, 1 8¢

BT" mapd\\n\os del Siapévovoa TH AA TG B onpelo de-

popéve’ kaTda Ths BA cuvakolovbeiTo?, < kal >° év {ow xpdre fTeE

AB kwovpérn'® 6paids iy Umo BAA yoviav, ToutéoTw

!distinx. B Hu, Tr
2distinx. BS Hu, Tr

39m0 SetvooTpdTov kal vikodrpov AB3 corr. S Hu, Tr 0m0 mikootpdTov B mucopridov Bl
To

“coniunx. B Hu, Tr

Skal add. To, Hu, Tr

7 add. Hu, Tr

70 B onuetov ¢epov év @ ABS corr. To, Hu, Tr

Skata Ths B ovvakolovdel T@ AS corr. To, Hu, Tr cvrvakolovlel 70 B
9xal add. To, Hu, Tr

Yxwovpérns AB3S kwovpérn Bl Hu, Tr
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TO B onuelov THv BEA < mepidépertar > !, Stavvéto, kal | BT T BA elfelav
TapodevéTn, TouTéoTw TO B onpelor kata THs BA depéobu. oup-

f. 47v (Quadratrix and Sporos)

BriceTar dHhov? TH AA evBela dpa Epappdlew éxatépav® THv Te

AB kal Tv BT. Totaltns 81 ywopévns kwhoens Tepodow

aA\\as év Th dopd al BT BA elfelal katd TL onpelor aiel
ouppedloTdpevor avTals, v oU onpelov ypddeTal TiS év TO peTakvy
TOTY TOV Te BAA evfeldv kal THs BEA mepidepelas ypaj-

i €T TA avTd Ko\, ola éoTiv 1) BZH, <7 >* kal Xpetddns® elvat Sokel
TPOS TO TH 808évTL KUK\ TeTpdywrov Loov elpely. TO 8¢ dpXLKOV
alThs opmTopa TolodTér éoTv: IS Yap dv Staxdf Tvxoloa

< eVBeta mpos TN TepLdéperar, us 1| AZE, éoTal oS 17 6An >©
meptdépera Tpos TNv EA, 1} BA [meptdéperal’ ebbela Tpos Ty ZO-
ToDTO Yap €Kk TS Yevéoens ThHs Ypappufs davepdy éoTiv.

#31 SvoapeoTelTal 8¢ avTH® 6
>m6pos® e dyws Sta Tab-
Ta. TPOTOV EV Yap

'reptpéperar add. To, Hu

289dov A Hu SnlovdTe vel 8y coni. Hu 8nfAov] Tr [SjAov] Eberhard

3éxaTepa A éxatépa B corr. S Hu, Tr

41 add. Hu, Tr

Sxpetwdes ABS corr. To, Hu, Tr

*evfeta mpos Ty meptpépetar, s 1 AZE, éoTal ds 17 6An add. Tr mpos Ty mepLpépetav,
ds 1) AZE, éotat s SAn 1 add. Hu evfeta mpos tny mepidépetav, ds 1 BZE, éotar 6An 1
BEA add. To

Tmeptpépeta del. S Hu, Tr

$auTd coni. Hu

Yomdpos A corr. Hu, Tr
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N - ,
TPOS O BOKEL XPELOONS
ewval mpaypd, ToUT év
3 / 1 I ~
vmobéoel! Aappaver. Tos
\ /7 4 ’ kb / b A ~ ~
yap duvvatov, §to onpeilwv dpEapévor amo Tob B kwelobat,
\ \ K 7’ 9 \ \ \ \ \ /7 b \
TO pev kat elbelas éml TO A, TO 8¢ kaTd TepLdepelas éml
70 A &v2 oy xpdve cvvamokaTacTAvar® pi mpdTepor TOV Aoyov!
~ K 7’ \ A / b 7 b
Ths AB evbelas mpos T BEA mepidéperav emoTdpevo; ev
yap ToUTE TG MOyw® kal Td Tdxn TOV Kwhoewy draykaioll. émel
TOs olovtal’ cvvamokaTacTival® Tdxeow dikplTols Xpopeva’,
AV el p) av'® kata TOxnY moTe!! cupPh'3; TobTo 8¢ TS ok d\-
oyov; émelta 8¢ TO Tépas adThS @ XPOVTAL TPOS TOV TETPAYWVL-
opov Tob kikhov, TouTéoTwy kad & Tépvel onuelor TN AA
eVBelar, ovx eUplokeTal. voeloBw 8¢ émL THS mpokelpévns Td
\eydpeva kataypadfis: oméTav <ydp >3 at T'B BA depbpevar cvvarmo-
KaTaoTaddow, épappécovor THr AA™ kal Topny oUkéTL
Totjoouow €év dAMAlats® TadveTal yap 1 Toun mpos TAs! éml
Y AA édappoyfs, fmep Toun mépas dr'® éyéveto Ts
ypappfs kad O TH AA evfela cvvémimTer. TANY €l pn Aéyol
TS émoelobal mpooekBANOEVNY THY YPARUTY S
UmoTLOéeda Tas evfelas s THs AA- TodTO & 00X EmeTaL

f. 48 (Sporos and Prop. 26)
Tals vmokeLpévats dpxals, dAN s & av'? \ndbein 10 H onpelov
TpoelAnppévov Tod ThHS mepLdpepeias mpos THV eVBelar Adyou. xwpls

'Y - mobécer A

270 AE K A corr. S Hu, Tr 70 Sen B

SovvamokaTtaoTioat Hu

*Todov A Ov superscriptum prima manu 70 dAov B To Tov Adyor S

Sév yap 7@ avTe Adyw coni. Hu

Sdvaykaiov ABS Tr dvaykaiov elvat (omisso posthac émet) To drdykn elvat Hu

Témel mws otovtat (sine acc.) A mas olovtat ydp To émel mas oldv Te BS Hu, Tr quo pacto
arbitrantur Co

SovvamokaTaoTioat coni. Hu

*Xpdpevor coni. Hu

qv del. To, probat et ocvuBain coni. Hu

""rd7€ A corr. To, Hu, Tr

2guupn sine acc. A

Byap add. Hu

“ri AA Hu, Tr éml Trjv AA To

YS1rpos s ABS mpo Ths To, Hu, Tr

qy Hu

TG A ds 8 dv AB To, Tr dAMws 8 dv S dAN ¢s dv Hu
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8¢ T0d Sobfjvar Tov Noyov TobToV, 00! Xpn TH? TOV €UpdrTOV AUSpdy
86En? moTebovTas Tapadéxeohal TV YPALUTY PNXAVLIK®-

Tépav ThS ovoav [kal €ls TOAG TPOPARRATA X PNOLIEVOVTAY

Tols pmxavikois]!, moAv mpdTepov mapadektéov éoTl TO SU avl-
TS Setkvipevor mpopAua.

Prop. 26

TeTpaydvov yap évtos Tob ABIA® kal

TS pev mepl 10 kévTpov 70 T mepidepelas Ths BEA, Tis

8¢ BHO’ tetpayovilolbons ywopérns, us mpoeipnTal, delkvuTat,

os 1 AEB mepidépera mpos v BT elbetar, olTws 1 BT mpos

™V I'O evdetav. el yap urj éoTus, fiTol mpos pellova €oTar THs I'O °
mpOs €Ndooova. éoTw TpdTEpov, el duvaTdy, mpos peilova T TK,

kal mepl kévtpov TO T meptdépera 1) ZHK yeypddbo Tépvov-

oa THY ypappny katda 1O H, kal kddeTos 1) HA, kal émlev-

x0eloa 1) TH ékPePriobo ém 7O E. émel olv éoTw ws 1) AEB
meptdépeta mpos THY BIT elbelar, olTws 1 BT, ToutéoTw 1 T'A, Tpos
v T'K, os 8¢ 1 TA mpods ™ T'K, 1) BEA meptdépeta mpos THv

ZHK mepidépeLav, os ydp 1 didpeTpos Tod kOkhov mpos TN dLdpeTpor,
N mepLdépela Tod kikhov TpOS TNV TepLdéperar, davepor GTL

{on éoTiv 1) ZHK mepidépera TH BT evbela. kal émeldn

Sua 7O ovpmTopa THs ypappfs éotw os 1) BEA mepidépeLa

mpos THv EA, oVTws 1) BT mpos Tiv HA, kal os dpa 1 ZHK mpos

v HK mepidépetav, oUtos 1 BT elbela mpos Tiv HA. kal é8ei-

x0n ton 1) ZHK mepitdépera TH BI elbeiq ton dpa kal 1) HK
meptdépeta TH HA e€lbeiq, émep dTomov. olk dpa éoTiv 0S 1

BEA mepidépera mpos v BIT evbelav, oltws 1 BIC mpos peilova Ths I'O.

#32 Méyw 8¢ 6TL 008¢ TpoOs ENdooova.
el yap Swatdr, €oTw mpos THv KT,
kal mepl kévTpor TO T mepLdé-

peta yeypddpbu 1) ZMK, kal mpos
opBas T TA | KH tépvov-

'n A 1 BS To, Tr o0 Hu

21y A corr. Hu, Tr

386¢n A corr. Hu, Tr

‘kal els... unxavikols del. Hu, Tr

SmoAl mpdTepor mapadextéor éori ABS Tr dAdd mpdTepor mapadexTéov €ori Hu
mapadoTéov coni. Hu cf. versio Latina

SABI" ABI corr. B2S Co, Hu, Tr

"BE® A corr. To, Tr, Hu

Sun eoTw sine acc. A urj éotwv Tr un éorv Hu
°1hHs T'OH ABlcorr. B2S Hu, Tr
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oa T TeTpaywrilovoar kaTa
70 H, kal émlevyPeloa 1) TH

f. 48v (Prop. 26, 27, and 28)

ExBePAioBo éml TO E. Opolons 8¢ Tols mpoyeypappévols SelEopev kal
v ZMK mepidéperav Tf BT edelq {ony, kal ws T\ BEA mept-
dépetav mpos T EA, ToutéoTw! s T ZMK mpos v MK, olTws
v BT elbetav [mpos tnr MK odtws Ty BI” evfeiav]? mpos v HK.
¢E ov davepov 6T Tom €otal | MK mepidépera TH KH evbeiq, dmep
dtomov. otk dpa €oTal ws 1) BEA mepidépera mpos Ty BT evbetav,
oUtos 1 BT mpos é\dooova Ths I'O. édelxOn 8¢ §T1 ovde mpos pello-
va: mpos avTtny dpa Ty I'O.

a b
B A B A
E
E z
H

H
C T D C L T K D
c
B A
Z E

H

M

C K T D

70076 éoTiv AB ToutéoTwv S Hu, Tr
%bis scripta del. S Hu, Tr
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Prop. 27

goTL 8¢ kal TodTO davepdy, &TL 1

Tov O I'B ebBeldv Tpitn dvdroyov hapBavopévn! evdela lon
¢otar T BEA mepLdepela, kal 1 TeTpamiaciov alThs TH Tob
Shov klk ou TepLdpepeiqa. epnpévns 8¢ TH Tob klkAov TepL-
depelq lons evBelas, mpddniov 0s S€i? kal alTd TG KUKAY Pd-
Stov {oov TeTpdywvor cuothcachal: TO yap UTO THS TePLPLETPOU
ToD kOkhov kal TAs €k ToD kévTpov SLTAdoLéV €oTL ToD klkAov,
oS’ ApxLpunons? amédelEev.

Prop. 28

#33 altn pev ov 1 yéveols Tiis

ypappfs éoTw, oS elpnTat, un-

XAVIKOTEPA" YEWLETPLKOS

8¢ Sua Tov mpos émdavelats

TéTOVY dvalbechal dlvaTat

TOV TpoOTOV TODTOV. Béoel kU-

KAou TeTapTndplor 7O ABT, kal Sutixfw, os éTuxev?, | BA, kal kd-
BeTos éml v BI' 1) EZ \dyov €xovoa 808évta mpos THv Al mept-
dépetav: 8TL mpos ypauunt® To E. voelobw yap dmd ThHs AAL
meptdepelas 0pBod kuivdpou émiddrera, kal év alTh ENE
veypappévn Sedopérn® Tf 0éoel 1) THO, kal mhevpd’ Tod kUAvSpou 1
OA, kal TG Tob kUK ov émmédp dpbal fxdwoar ai EIBA® d-

veoTapéval opdal’®, Sta 8¢ Tod O T BA TapdA\nios 1) OA. émel

< 600€ls pév éori >\oyos'! This EZ elfetlas™ mpos Ty AIN mepLdépeLav, Ths 5& AT
dta TV élka \oyos mpos TNy AOM, €oTal kal THs EZ wpos EIY \o-

vos 80fels. kal elolv al ZE EI mapda 6éoel kal 1 ZI dpa émlev-

"1piTy dvdloyov AapBavouévy ABS corr. To, Hu, Tr

25¢t AB To 67 S Hu, Tr

dapxiuridns A corr. Hu, Tr

*0s éTuynr ABI corr. B3S Hu, Tr

Smpos ypauuny ABS mpos ypauun Hu, Tr

°EME yeypauuévny SeSouévn A corr. B Hu, Tr

"ITA AB corr. S Hu, Tr

8EI BA A EI AB B Hu, Tr

YaveoTauévatr opbai del. Hu

Ysia 8¢ Tov K ABS corr. Co, Hu, Tr

ém Adyos ABS émidoyos To émel Adyos Hu ofels pév éore add. Tr
2175 El evfeias Hu

Brepipépetav, THs AE A" ABS corr. Tr meptpéperdr éotiv Sofels Hu
“1hs 8¢ AL Sta v éltka Adyos mpos Trv AO@ (ABS) Tr Sobels ¢ kal 6 This EZ Adyos
mpos T AT Hu

SH ABS corr. Tr
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~ A\ /7 \ b4 ’ b A\ A . }a kd ~1 b
x0eloa Tapa BégeL. kal €oTwv kdBeTos eml THY BI'* €r 0pfip' dpa
9 /7 e e’ \ \ b4 \ \ 9 ~ 9
emMTEdW N ZI, woTe kal ToO 1. €0TW &€ KAl €V KVALVEPOELOEL €L~

f. 49 (Props. 28, 29, and 30)

davela?, dépeTat yap 1 OA Sud Te® This OHI é\kos kal Ths AB elbelas kal al-
THs T 0éoel dedopérns alel TapdAAn\os ovod TG VTOKELPEVY ETL-
médW* mPOS ypauunt dpa o I, GoTe kal TO E. ToUTO pév olv dveidn kafd-
ov, &v 8 6 Tis EZ etdelas mpos Ty AT Tepbépetar’ Aoyos 6 airos 1 76 Tis
BA mpos ™V AA I, 1| mpoeLpnpévn TeTpaywrilovoa ylveTatr ypappy.

Prop. 29

# 34 SvaTtal 8¢ kal dia Ths év Emmédy

ypadopévns €élkos avalleabat

Tov Gpotov TpdTov. €oTw yap 6 Ths EZ

mpos TV AT < mepidépetar > \dyos 6 aiTos 7O THs AB
mpOs TN AAT mepidéperav, kal év ¢

1 AB elfela mepl TO B kwoupévn?

'6pb@ (vix legibile) A Tr TeprdrTt Hu

2év kI Widavela A......... émpaveia BS év kvAwdpoeldel émpaveia To év kvAwdpikh
émpaveia Hu v koxloeldel émpaveia Tr év mlexToeldel émparela coniecit Ver Eecke
38td Se Ths A corr. To, Hu, Tr

4mpos ypauuny ABS mpos ypauul Hu, Tr

Stnr AO meptpéperar ABS corr. Co, Hu, Tr

7 (sine spirit. et acc.) A corr. Hu, Tr

7coniunx. Hu, Tr

Septpépetar add. Hu

Ykwvovpérvy A corr. Hu, Tr
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mapodevel TNV AAT! TepLdépeLar, on-

petov ém alths dpEdpevov amd Tod B éml 10 I mapayevéobw’

0éow Aapolons v <T'B Tfs >* AB, kal TolelTo Tv BH A’ é\wka. éoTwv
dpa ©s | AB mpos BH, 1} AAT mepidépera mpos v TA, kal

EVaANdE. d\\a kal 1) EZ wpos AT {om dpa 1y BH Tf ZE. fix00

TO Emmédy 0pdn M KH {on ) BH: év kuhwdpoeldel dpa

émbavela TH dmo Ths élkos TO K. d\\a kal év koviki,

émlevxbeloa yap N BK év koviki® yiveTar émdaveiq

Nuioetav 6pfis kekpérn’ mpos TO UTokelpevor kal

Nypévy Sud doBévtos Tob B mpos ypappf® dpa 1O K. fixbw dia

ToD K Tf EB mapd\\nlos 1) AKI, kal dpBal T¢ émiméde

at BA EI' év mAnktoetdel® dpa émbaveia 1 AKI, dépetar ydp

dLd Te TAs BA evBeias Béoel olons kal Sud Béoel ypappis mpos 1

70 K- kal 10 I dpa < év > émdavelq'®. dA\a kal év émmédy, Lon ydp

N ZE Tf EI, émel kal TH BH, kal y{veTal mapa 6éoel 1 ZI kdbeTos

ovoa ém T BT mpos ypappf! dpa 10 1 [0]2, doTe kal TO E. kal Sfilov §Tu
dv opAn <1 > B3 1) umo ABT ywnia, 1) mpoelpnpévn TeTpaywidovoa ypapt yiveTa.

'mnr AA meptdpépetar A corr. Co, Hu, Tr

2q10 100 B éml 70 I' A dmo 100 A éml 70 B Hu, Tr
‘rapyevéobu A mapayevéobw To, Tr mapaywéobw Hu

‘T'B 77js add. Hu, Tr

Sconiunx. Hu, Tr

Syoviky) A corr. S Hu, Tr

"kekAtpévns AB corr. S Hu, Tr

8mpos ypauun A Tr mpos yeypauuévny Bl corr. B2 vel B3 To, Hu mpos ypauuny S
*mAérxToeLdel Hu

émdavera (sine acc.) A émgdreia BS év émpaveiq To, Hu, Tr
Wirposypauun A mpos ypauun B mpooypauun S corr. To, Hu, Tr
24 del. Hu, Tr

137 add. Hu, Tr
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Prop. 30

#35 Gomep < év > Emmédy voelTal yi-
vopévn Tis ENE depopé-

vou onpelov kat' evbelas kv-

KAov TepLypadolons, Kal

¢ oTEpedY depoLévov

f. 49v (Prop. 30)

onpelov kata pds mhevpds TN émiddretar meplypadol-

omns, olTw S&* kal ém odalpas Eka voelv dkdlovddv éoTi ypado-
pévmy Tov Tpoémov TolTov. €oTw év odalpy wéyLoTos kik oS O
KAM tepl méhov T6° © onpelor, kal dmod Tod © peyloTou k-
KAOU TeTapTnudpLov yeypdddn 10 ONK, kai 1 pev ONK Te-
pLdépera, mepl TO O pévov depopérn kata Ths émidavelas

os ém Ta A M° puépn, dmokadioTdobw mdiw éml TO avTd,

onpetov 8¢ T depdpevor ém adThs? dmd Tod O ém TO K ma-
paywéobu- ypddel 81 Twa ém Ths émidavelas Elka,

ola éoTiv ) OOIK, kal fTLs v amod Tod O ypadf) peyloT < ov ktkdov meptdépeta,
ot s > 1 Tov

KUK AOU mepLdpépela, Tpos TN KA < mepidépetav Adyov €xel dv > 1 AO
mpos THY OO0 Méyn 8

6T, v €kTedf TeTapTnudpov Tod peyloTov év TH odal-

pa kUk\ov T' ov ABT meptdépera, kévtpov 1O Al kal émi-

Levxdf 1) TA, ylveTar os 1 Tod fuLodatplov émiddrera Tpos

Y peTall Ths OOIK élkos kal THs KNGO mepide-

petas dmolapBavopévnr'? émddverav, oiTus 6 ABI'A

Topevs mpos TO ABT Tufpa. fxbo yap ébamtopévn Ths
meptdepelas M T'Z, kal mepl kévTpov 7O T' 8La Tod A ye-

vpddbn'? meptdépeta 1) AEZ: {cos dpa 6 ABTA Topels

'éy add. Hu, Tr

2l pepouérov A Emeita ¢epopévov voluit Co €mi oTepedv depopévov Hu év dpdi
kdvov gepopévov Tr

v A Tr 7o' Hu

‘ouTw S¢ A oUTws S5n Hu, Tr

Smepl modov Tov © onuelor A corr. Hu, Tr

°ra AAM pépn A corr. Co, Hu, Tr

'dm avtis A corr. Hu, Tr

Spueyiorn To0 A —ov...dbs add. Tr peyioTov Hu

?Adyor €xet 6v add. Hu

¢xTedn A corr. Hu, Tr

100 ABT meptpépeta kévrpor A 70 ABT mepl kévrpov Hu 7ol ABIT Tr
2gamrolapBavouévns ABS corr. Hu, Tr

BSia Tov AT eypddbw A corr. Hu, Tr



62 Part Ia Greek Text

T® AEZT, Sumhaoia pev yap 1 mpos 70 A yovia Ths

Um0 ATZ, fjplov 8¢ 70 dmd AA Tod dmo AT. &Tu dpa kal

os al elpnpéval émddretar mpds dAilas, olTws 6

AEZT! Topels mpos 70 ABIT Tpfjpa. €éoTtw pépos? 1) KA mept-
dépeta ThHs 6\ns Tod Kkiklov TepLdepeias, kal TO abTO pPépos
[66€ pépos) W) ZE Ths ZA, kal émelelxBw 1) EI* €oTal 81 kal 1
BI" Tfis ABT 70 adT0 pépos. 6 8¢ pépos 1 KA Ths 8\ns
TepLdepelas, TO avTo kal 1 OO ThHs OOA. kal éoTw (om

1 ©O0A* Tf ABT {om dpa kal 1} ®0 1§ BI. yeypdddo mepl
mélov Tov O Sta Tod O mepidépera 1) ON, kal Sta Tod B

mepl 70 T kévtpov 1} BH. émel ovv os 1) AKO odaipiki
Emddvera mpos THv O O N, 1 6An Tob Nuodatplov émddrera®
TpOS THY Tod TUARpaTos’ émiddvelar ov 1) ék®

Tod ToAov €oTiv ) B0, s & 1)° Tod NModatplov Emddrera
TPpOS TNHY Tod TpipaTos émbdverar, olTws €TV TO ATO

f. 50 (Prop. 30 and metatheoretical passage)

Ths Ta @AY émlevyvvolons ebfelas TeTpdywvov Tpos TO ATO THS

Eml Ta OO0, f) T0 amo Ths El TeTpdywvor mpos TO amod Ths BT, éoTal
dpa kal s 0 KA® Topevs év T émdbaveiq < mpos > 2 Tov OGN, olTwS
6 BZT Topels mpos Tov BHI. 6polos delfopev 6Tt kal < os > mdvTes ol
év 1O nuodaiple Topels ot tool T KAG, of elow 1 6\ Tod™
nuodatpiov émddrera mpos ToUs TepLypadopérovs mepl

™V é\ka Topéas opoTayels T OON, oUTos < mdvtes > P ol v 1) AZI
Topels ol toot TQ EZT, ToutéoTwv hos 6 AZT Topels, Tpods Tovs
mepLypadopévovs mepl 7O ABT Tufipa Tovs!® dpotayels TO

YAEI'Z AS corr. B Hu, Tr

20 pnépos Hu

30 8¢ pépo 11 A 85¢ uépos 1 B 86¢ pepn S 6 5¢ pépos del. Tr mepipépera Hu
4®0A AB2S corr. B1 Hu, Tr

Sconiunx. Hu, Tr

*mpos...E€mpdrera add. A2 in margine

Tty Tod fjuogaipiov ABS v Tod Tuijpatos Co, Hu, Tr v évTos To0 fuiodaiplov coni.
Hu

800K €k A corr. Co, Hu, Tr

967 A 8% Hu, Tr

10distinx. B1S Hu, Tr

distinx. B Hu, Tr @ O, tovréoTir Co

277p0s add. Hu, Tr

B¢s add. Hu, Tr

“ovelow ot oAn A corr. S Hu

Srdvres add. Hu, Tr

“7o0s A Hu Touéas Tr
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I'BH. 70 & adTd Tpdme SetxdioeTal kal os 1 Tod fuLodaipl-
ov < émddreta > mpos Tovs Eyypadopévovs Th EAkL Topéas, olrws O AZIT To-
Pevs Tpos Tovs €yypadopérvovs T ABI TpdpaTt Topéas,

GoTe kal ©s N ToO Nodarplov émiddvera Tpos THY VO

Tfis é\kos dmoapBavopévny émdbdverar, olTos 6 AZI
Topels, TouTéoTw [0s]* TO ABTA TeTaptnudpLov, mpos 70 ABT
TpApa. cvwdyeTatr 8¢ dua ToUTOU ) Pév Amd THS EALKOS
amolapBavopévn émddvera mpos T ONK meptdé-

petav dktamhacia Tod ABT TuipaTos, émel kal 1 To 1jL-
odatpiov émddvera Tod ABTA Topéws, 1) 8¢ petakd Ths

éXkos kal THs Bdoewns Tob Nodarplov émddvera dkTa-
mhacia Tob ATA Tprydvov, TovtéoTww ton TG dmd Ths da-
pétpov Ths odaipas TeTpaydve.

Metatheoretical passage

#36 TNv dobetoar yoviav evdiypappov eis Tpla {oa Tepelv ol Taiatol
veopéTpal BeMjoavtes Nmépnoav v attiav ToradTny. Tpla

véun daper elval TOY v yewpeTpla mpoPAnpdTov, Kal TA eV

abtov émimeda kakelobat, Td 8¢ oTeped, TA 8¢ YpaLpLKd.

f. 50v (metatheoretical passage)

\ \ 3 | 9 7 \ 7 ’ 7 7
Ta eV ovr O evbetlas kal KUk ov TepLdepelas duvvapeva \-
eoBal AéyorTo AV’ elkdéTos émimeda: kal yap al ypappal Su wv evpl-
oKeTAL TA ToLaDTa TpoPAMjLaTa TNV yéveaw €xovoy év Emmédy.
doa 8¢ MeTtalr mpoP\jpaTta Tapalappavopévns els T yéveot
LS TOV ToD KOYov TOPOY 1) Kal TAELOVOV, OTEPEAd TAVTA KEKAN-

'émodreta add. Hu, Tr

2¢s ABS del. Hu, Tr

}Aéyort'dr Hu

‘els v yéveow ABS els v katackevny Co els Tnv elpecty Hu
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Tal: mPOS yap TNV KATACKEVTIV Xpfoachdl oTepedr oxnudTov
émdavelats, Myo 8¢ Tals kovikals, dvaykalov. TpiTov 8€ TL mpo-
BANdTOY UToXelTETAL YéVOS, TO KANOUPLEVOV YPAPULKOY® YpaLpal
vap €Tepat Tapd TAS elpnpévas els TNV kaTackevny Aappdvov-

Tal ok wTépav €xovoat TN yéveow kal Befracpévny pwak-

\ov, €€ dTakToTépur émidaveldr kal kKlwioewy ETLTETAEYLE-

vov yevvopeval. Totadtal 8é elow ailTe év Tols mpos émidavelals
kalovpévots TéToLS evpLokdpeval ypappal, éTepal Te ToUTOY TOL-
KINOTepal kal Tolal TO mARos UTO AnpnTpiov! Tod AleEav-
Spéws? év Tdls ypappikals émoTdoeat kal ®ilwvos Tod Tvavéws?
€€ émumhokfis mAnkToeLSOV* Te kal €Tépwy TavTolwy émida-

VeLdY eUpLokSpeval, TOMNA Kal BaAULACoTA CULTTORATA TeEpL

avTtas’ Exovoat. kal Twes alTOr VTO TOV vewTépwr NELG-

Onoar Aoyov mhelovos, pla 6é Tis éE alTdv éoTw 1 kal TapddoEos
Um0 ToD Meveldov® kAnbBetoa ypappr. Tod 8¢ avtod yévous €Te-

pat é\kés elow TeTpaywvilovoal Te kal koxAoeldels’ kal kiLo-
00€eLdels. Sokel 8¢ Tws apdpTna TO ToLoDTOV 0V ULKPOV €Lvdl TOLS
veopéTpats, dtav émimedov mpdBANpa SLa TOV KOVIKOD §j TOV
YPARULKOY VTG Tvos evploknTal, kal TO olvolov STav é€ dvot-
kelou AMinTat yévous, olév éoTw 10 €V TG méPTTE® TOY AToAwriov®
KoVLKOV éml THs TapaBoriis mpépAnpa kai <1 > '2év T4 mepl ThHs
EXkos U’ ApxLpidous!! hapBavopévn orepea vevois'? ém ki-
KAoUP* undevi ydp TPooXPAOPEVOV OTEPED dSuvaTOV €Vpely TO VT AVTOD
ypaddpevor Bedpnpa, Ayw 81 TO TNV meptdépetar Tod év TH

TpdTY TepLdopd ki ov tomy dmodeléat TH Tpos dpbas

dyopévn elBeiq' T ék Ths yevéoews < €ws > Ths ébamTopérns Ths
EXLkos. ToLavTns 81 Ths Stadopds TOV mpoPANLdTOY UTapxov-

ons ol TpdTepoL yewpéTpal TO mpoeLpnpévor ém Ths yovias

'Snuntplov A corr. Hu, Tr
2d\ebavSpéws A corr. Hu, Tr

3pidwvos To Tv*avews A corr. Hu, Tr
‘mlexToetSor Hu

Smepl avTas ABS corr. Hu, Tr
®ueveldov A corr. Hu, Tr

TkoxAoetdels AB Hu, Tr koyyoetdels S
81T voluit Hu

Samolwviov A corr. Hu, Tr

1977 add. Hu, Tr

Ydapxiundovs A corr. Hu, Tr

2grepea vevoels A oTeped vevots B Tr oTepeal vevoels S oTepeol vevots Hu
Bém kikdor Hu

Ydyouévn evbeia A corr. BS Hu, Tr
5¢ws add. Hu, Tr
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f. 51 (metatheoretical passage Prop 31 and 32)

TrpoB)\nua ™ d)voa OTEPEOV umdpyov Std TOV EmméSwy CnTovweg

ovx olof <7 > foav EUpLOK€LV 0VSéTL Yap al To kdvou Topal cuviPels Hoav
avTols, kal Std TobTo Nmdpnoav: VoTEPOV PEVTOL LA TOV KOVLIKOY
ETprxoTéunoar? Ty yoviav, els T elpnow xpnodpevotr TH vmo-
veypappévn veloel.

Prop. 31

TapaAAn\oypdppov 806évtos dpboywriov Tob

ABT'A kal ékBAndeions Ths BT, 8ov éoTw Stayayévta v AE morely
v BZ elfetav {onv 1§ 80belon. yeyovéTw, kal Tals EZ EA?
TapdA\nlot Axfwcar ai AH HZ*. émel ovv dobelod éotw 1) ZE kal éoTw
{on TH AH, 800etoa dpa kal 1) AH. kal So8ev 70 A 70 H dpa mpos Béoel
KUKAOU TepLdepelq. kal émel 7O UTO BI'A 808¢v kal €oTw {oov T(

Um0 BZ EA’, 800¢v dpa kal 70 vmo BZ EAS, TovtéoTw TO Umo BZH”

70 H dpa mpos dmepPolniA. AN kal mpos 0éoel kikhov TepLde-

pelqa’ Sobev dpa TO H.

a
B C z
E
H
A D

#37 ovvTedoeTal 61 TO TPORANRa
oUTwS. €0T TO 0BV Tapak-
MASypappor 1O ABTA, 1} 8¢
Sobeloa evbela TG peyédel M

A add. Hu, Tr

2etpiyatounoav A corr. BS Hu, Tr
3ZA ABS corr. Co, Hu, Tr

*HO ABS corr. Co, Hu, Tr

SBE ZA A corr. Hu

®*BE ZA A corr. Hu

"BOH A BZH Hu BEH Tr

$7pos vmepPoAf] Hu, Tr
*eptpépeta ABS corr. Hu, Tr
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M, kal {on adTh €éoTo 1 AK, kal

veypddbo Std pev Tod A Tepl AoupnTTHTOUS TdS ABIT UmepBoln 1
AHO, TolT0 yap €Efs amodelEoper, Sia 8¢ Tob K mepl kévtpor 1O A
kUK ov epLdépera | KH Tépvovoa v UmepBolty kaTd

70 H, kal 4" AT mapar\hrov dxOeions ThHs HZ émelelxw

N ZA: Myo 6TL 1) EZ {on éoTiv TH M. émelelxBu yap 1 HA kal TH
KA mapdAAnlos fAx00 1 HA® 10 dpa Umo ZHA, ToutéoTw TO vmd BZH,
{oov éoTiv T(? U0 TAA, TouTéoTw TO UTO BI' TA. éoTw dpa os 1) ZB
mpos BIT, TouTéoTw os 7 TA mpos AE, olTws 1) TA mpos ZH: 1) dpa EA
{on T ZH. mapaAAn\éypappor dpa 10 AE ZH- {om dpa 1) EZ TH

AH, TovtéoTw 17 AK, TouTéoTw TR M.

Prop. 32

#38 8edelypévov 61 ToUTOU Tpixa
TépveTal 1 Sobeloa yovia
€VBUypappos olTws. €0Tw yap
OEela mpbTepor 1) UTO ABT,

Kal amd Twos onpelov kd-

f. 51v (Prop. 32 and 33)

BeTos N AT, kal cupnmAnpwdévtos Tod I'Z mapaAAnloypdppov 1) ZA
€xPePiobo ém 7O E, kal mapal\nloypdppov dvtos dpboywriov

ToD I'Z kelobw peTald TOv EAT e€bela 1) EA vetovoa éml 10 B lon

TH Sumhaciq THs AB, TodTO Ydp 0S SvvaTov yevéobal Tpoyé-
ypatmTaL: Myo 81 6Tt This dobelons yovias Tfs vmo ABIT Tpi-

Tov pépos €oTiv 1 o EBI. TeTunodo yap 1 BA Sixa ¢ H, kal éme-
LelxBw 1) AH* al Tpels dpa ai AH HA HE {oal eioiv: SumAfy dpa 1) AE

'7hs AB corr. S Hu, Tr
270 A corr. BS Hu, Tr
3coniunx. Hu, Tr

*AE A corr. Co, Hu, Tr
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Tfis AH. d\\a kal THs AB 8umAfy- {on dpa éoTiv 1) BA T AH, kal
N 0o ABA yovia TH Um0 AHA. 7 8¢ Umo AHA Sumhacia Tfs

umo AEA, ToutéoTw TRs vmo ABI kal 1) Umd ABA dpa [StmAR]
SLTAR! éoTw Ths OO ABT. kal éav v vmod ABA 8ixa Tépopev,
éoTtaw [1j vmo ABA Sixa Téuwper, éotat)* ) vmo ABI yovia Tpixa
TeTpnpévn.

#39 éav 8¢ 1 Sobeloa yovia opd
Tuyxdrn, dmolaBévTes Twa

v BT ioémievpov ém avThis

ypdsoper 1O BAT, kal Thv 010

ABT? yoviav 8ixa Tepdvtes €€opev
Tpixa TeTpmuévny Ty vmo ABT yoviav.
#40 €07 8¢ dpPAeta 1) yovia kal TH

I'B wpos dpbas 1N BA, kal Tfs pev

Um0 ABIT TpiTov dmetAMidbw

pépos 1 UmO ABZ, This 8¢ 1T

ABA déelas yovias TplTov 7

umo EBA, TadTa ydp (v mpo-

8édekTal: kal SAns* dpa THs UmO ABI yovias TpiTov pépos

éoTiv 1) 0o EBZ. < éav 8¢ TH vmo EBZ >’ {onv cvotnodpeda mpos ékat-
épav Tov ABT,

Tpixa Tepodpev TN dobetoav yoviav.

a b c
z A EA D E D 7
A
H
D
B C B C B C
Prop. 33

#41 7O 8¢ UmepTEDEY TPSBAN LA
viv dvalioopev. Béoel ovoGY 500
€00eLdr TGV ABT kal 800évTos
onpelov Tob A, ypdisal dta Tob A
Tepl doupumTdTOoUs Tas ABT

'SumAf bis scriptum sed prius expunctum del. Hu, Tr

25 Omo ABA Sixatepwpuer éoTar (sic) bis scripta corr. et alterum del. Hu, Tr
39mo AI” ywviar AB corr. S Hu, Tr

46An A corr. Hu, Tr

Séar- EBZ add. Hu, Tr
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f. 52 (Prop. 33)

UTepBONiV. YeYOVéTo, Kal yeypddbw 1 BEAZ, kal fx0w dmd Tod A ébamTo-
pévn abThs 1) AAT, kal StdpeTpos 1) HBA, kal Tf BT mapdiinios

N AO. Béoel dpa al HA AB', kal 800¢v TO O. kal émel dovpmTwTOl €low
at ABI” Tfis vmepBofis, kal ébamtopévn 1 AT, {on dpa 1) AA

TH AT, kal 70 dd' ékaTtépas alTdv TeTpdynvov loov éoTiv T TeTdp-

T ToD mpos ThH HA eldovs: Tadta ydp év T) SevTépy TOV KOVIKOY
amodédeikTat. émel ovv ton 1 TA TH AA, {om kal 1) BO Tf OA, kal
SoBetoa 1) BO- 800eloa dpa kal 1) OA. kal 808év 1O O 08¢V dpa kal TO
A Béoel dpa 1) AAT <kal >2 SobBeloa ¢ peyédel M) AT, doTe kal TO <amo >4
AI 8obév EoTw.

kal €oTw {oov T mpos TH HA eldel- Sobev dpa kal TO mpos Tf HA
€180s. kal Sobeloa 1) HA, SLmAf ydp éoTw THs BA 7O peyébel Sedopé-
NSt Sta < 1O >7 Sobev éxdTepor elval TOV BAY Sobeloa dpa kal 1) dpbla
ToU eldous mhevpd. yéyover 81 mpdBAnLa TotodTov: Béoel kal peyédet
800 SoBelodr evleldv Ths Te HA kal THis dpblas ypdbar mepl

StdpeTpov Ty HA UmepBoiv, Nis map' fiv Slvavtal® €éotat 1) Aot
€V0ela, kal ai kaTayopeval TeTaypévos ém v HA mapdAiniot

EoovTal Béoel Twi elBelq!® TH AT. TodTo 8¢ dvarélvTat év T4

TPOTH TOV KOVIKOV.

#42 cuvTedjoeTal 81 oUTwS.

éoTooav ai pev T Béoel

Sobeloal evOetal at ABT,

TO 8¢ 8obev onpetov TO

A, xal T pev BT wa-

pdAAnlos fxfo 1 AO,

TH 8¢ BO {on 1 OA, kal

émlevxbeloa 1 AA ékBeBiobo ém 10 T, émlevxBeloa 8¢ kal 1

BA ékBepMjobo kal TH BA {om kelobw 1 BH, kal 1§ dmo Ths AT
{oov €oTw TO VMO Ths HA kal éTépas Twos THs k, kal mepl SLdpeTpor THY
HA kal opbiav Ty k' yeypddBw vmepPo-

M 1) EAZ, GoTe Tds kaTayopévas ém Thy HA mapal\ilovs elvat
TH A" 1) dpa AT éddmreTar This Topfs. kal éoTw 1 AA TH AT {om,

Yai HA AO ABS corr. Co, Hu, Tr

2iat add. Hu, Tr

376 A corr. Hu, Tr

‘amo add. Co, Hu, Tr

570 A’ ABS 70 dmo AI" Co, Hu, Tr

®SeSouévy A corr. Hu, Tr

770 add. Hu, Tr

8distinx. B Hu, Tr

*mapny Svvavtar A corr. Hu, Tr map' fjy Stvatar S
Yevbera (sine acc.) A corr. Hu, Tr

yeal mepl Stduetpov-tn* K add. A2 in margine corr. Co, Hu, Tr



Part Ia Greek Text 69

émel kal 1 BO 19 OA, kal davepov 6Tt 10 ad' €xatépas Tov AA AT TéTap-
Tév €oTL

ToD mpos TH HA €lSovs al dpa ABI dovpmTtoTol elol THs EAZ UmepPorfis.
véypamTat

dpa dLa Tod A mepl Tas dobeloas elbelas doupTTdTOUS UTEpPOrL.

f. 52v (Prop. 33 and 34)

Prop. 34

#43 kal d\\ws Ths Sobelons mept-

depelas TO TplTov ddatpel-

Tal pépos, Xupls THs vev-

O€ws, 8Ld aTEPEOD TOTOL TOL-

oUTov. BéoeL 1) dLa TOY AT?, Kal

amd dobévTtov Tard ém adThs?

TOV Al kek\doBo 1) ABT &t-

mhaclay motodoa® TTv

Umo ATB” yoviav Ths 010

TAB: 67t 70 B mpos umepBolij®. fixbw kdbetos 1 BA, kal TH° TA {on
amelMidbo M AE- émevxBeloa dpa 1 BE ton éoTal T AE. kel-

YWmepBoAly A corr. Hu, Tr

2AI’ AB1 distinx. B2S Hu, Tr

370r om. Hu

‘ar " avtiis A ér” avtis Co, Hu, Tr

SAI AS distinx. B Hu, Tr

Srotovoar AS corr. B Hu, Tr

TABI" A corr. Co, Hu, Tr

SmpooumepPoln A mpos UmepPolny B mpos vmepBoAf S Hu, Tr
o717 A corr. Hu, Tr
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00w kal T AE {on f) EZ: Tpumhacia dpa ) TZ Tfis TA. éoTw kal 1

AT Tfis TH Tpumhacia- éotal 81 800ev 70 H, kal houmn 1) AZ Ths

HA Tpumhacia. kal émel TO dmd < BA Tov dmo > BE EZ vmepoxq éoTw!,
ot 8¢ kal

TO U0 AA AZ ToOV alTdr UTepoxy, €oTat [{oov]* TO vmd AAZ, TOouTéOTWY
TO Tpls Um0 AAH?, {oov 7@ dmo BA' mpos UmepPori* dpa TO B, NS
mhayla pev Tod mpos dEovt €lSous 1) AH, ) 8¢ dpBla TpLmhacia

Tfis AH. kal davepov 6Tu 70 T onpetov dmolappdvel mpos TH

H kopudf THs Topfis ™ TH fpioetar Ths mhayias Tod elSovs

mhevpds TAs AH. kal 1) olvbeots davepd: Sefoel yap THv AT

Tepelv dote Stmhaciav elvar T AH Tfs HI, kal mepl dEova

Tov AH ypddal 8ud Tod H UmepBoliv, fis dpbla Tod elSovs mhevpd
Tpumhacia Tis AH. kal Selxvvral® moroboav alTiv TOV elpn-

pévov Sumhdotov Noyov TOV yoviov. kal 0Tl THs dobelons ki-

K\ov mepLdepelas TO v dmoTépvel® wépos 1 TobTOV Ypadopévn

TOv TpdToV UTEPPOAT) ouvLdetv’ padiov TV AI™® onpelwv

TepdTov THs Tepidepeias vmokelpévoy.

A zZ E H D C

#44 Etépos 8¢ Y avdlvow Tod Tpl-
XA TERLEWV TNV yoviav 1| mepL-
dépetav €E€BevTd Twes dvev

THs veloews. é0Tw 8¢ éml TepL-

Yémel 70 dmo BE EZ Vmepoxni éoTiv A BA Tov dmo add. Tr émel Tov dmo BE EZ Umepoxn
éoTw 10 dmo BA Co, Hu

2{oov del. Tr dpa Hu

SAAH A corr. Co, Hu, Tr

‘mpocumepPoly AB mpos vmepBolly S Hu, Tr

SSetkvivar Hu

°70 I' amotéuverr ABS 70 y* amotéuver Hu 10 tpiTov dmotéuver Tr

Tovvetdetr A corr. BS Hu, Tr

8distinx. BS Hu, Tr
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depelas 6 Noyos, ovde! yap dia-
dépet yoviav 1) mepipéperav

f. 53 (Props. 34 and 35)

Tepelv. yeyovéTw 81, kal Ths ABT mepidpepeias TplTov dmetliddo

pépos 1 BT, kal émelevxbwoav at AB BT [uépos 1 BI'? TA- Sumhaciwy?
dpa 1) <O >* AT'B® Tfis Um0 BAT. TeTpfobo Sixa 1 vmd AI'B T TA, kal
kdBeToL at AEZB® {om dpa ) AA TH A7, doTe kal 1| AE Tf ET'* Sobev
dpa 10 E. émel owv éotw os 1 A mpds I'B, olTws 1§ AA mpds AB,
TOUTEOTLY

N AE mpos EZ, kal éval\a€ dpa éoTiv os M TA mpos AE, 1) BI' mpos

EZ. Sum\f) 8¢ ) TA 7hs AE®: Sum\fj dpa kal 1) BT Ths EZ. TeTpam\d-
olov dpa TO amd BT, TovtéoTww Ta dmo TOv BZI, Tod amo Ths EZ.

&mel olv V0 808évTa éoTiv TA EI, kal 6pfn 1) BZ, kal \éyos éoTiv

ToD dmo BZ mpos Ta dmd Tov BZT, 70 B dpa mpods UmepPorfiil. dANA

kal [Ta] mpos Béoel mepidpepela'?: Sobev dpa TO B. kal 1 olvbeats
bavepd.

Prop. 35
#45 1O eV oy TV dobeloar yoviay
N TepLdépeLar Tpixa TEPELY

lovder Hu

2uépos 1 BT del. Co, Hu, Tr

3StmAdotor A corr. Hu, Tr

4md add. Hu, Tr

SAIB A corr. S Hu, Tr

°*AE ZB BS Hu, Tr

"ths A" A corr. Hu, Tr

87 AE A Hu 17s Tr

°n B A BI'Co, Hu, Tr

WETr" ABI1S distinx. B3 (vel B2) Hu, Tr
UrpocvmepBoln A mpos UmepPor] S Hu, Tr
2kal Ta mpoobéoel meptpepeiars ABS corr. Hu, Tr
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oTepedy €0TLY, S TPOSESeLKTAL"

TO 8¢ TN Sobetoav yoviav 1

mepLdépelar els TOV SoBévTa \o-

YOV TEPELY YPpAPLPLKOY 0TIV, Kal

S8édelkTal pev Umo TV vewTépor, ypadioeTal 8¢ kal V" LY Si-

X0s. éoTw yap kiklov Tob KA® mepidépera 1 ABO, kal Séov éoTw Tepelv
abTv ets 800évTa \dyov. ém 1O kévTpov at AB®, kal T BO

mpos 0pBas 1) BK, kai Sta Tod K yeypddbo TeTpaywvilovoa ypaj-

pun 1 KA AT, kal kdBeTtos dxBetoa | AE TeTufobw katd TO Z, GoTe
evat os ™Y AZ mpos ZE, oUTwes Tov 80BévTa Noyov els Ov Stelelv Bé-
Nopev TV yoviav, kal TH pev BIT mapdAinlos 1 ZA. émelelxbo 8¢

1N BA, kal kd6eTtos 1) AH. émel ovv 8Ld TO CUNTTORA TAS YPARPLAS éoTw
os N AE mpos AH, TovtéoTw mpods ZE, ©) vmd ABIT yovia mpos THv UTO
ABT, Ste évTL dpa éoTiv 0s 1) AZ mpos ZE, TovTéoTwv s O dobels Aoyos,
oUTws N Umo* ABA yovia mpos Ty’ vmo ABIT, TouTéoTw 1) AM mepLdépela
TpOSs MO.

#46 ETépos 8¢ TépveTal < kikhov >* Tob AHT 1) AT
mepLdépeta. opolns Em TO Kév-

Tpov at ABT, kal yeypddbo Sia

To0 B 1j éMé 1) BZ A5 fis 1) év T

f. 53v (Props. 35, 36, and 37)

vevéoel elBela 1 TB, kal T) 800évTL Moy O alTos €07’ O Ths AE mpos
EB, kai Sta Tod E mepl kévTpov TO B klkhov mepidépela 1) EZ Té-
provoa THY élka kaTd TO Z, kal émlevxdetoa 1) BZ ékPePrn-

00w ém 1O H' éoTw dpa Sta ™ élka os 1) AB” mpos BZ, TovtéoTv
mpOs BE, oltws 1) AHI® mepidépera mpos T'H, kal Stelévti ws 1) AE mpos
EB, olTws 1) AH mepidépera mpos HI. 6 8¢ This AE mpos EB \oyos

€oTiv 6 adTOS TO SoBévTL: kal 6 Ths AH dpa mepidepelas mpos Ty

HI \éyos 6 adTés éoTwv TG S08évTL. TéTunTal dpa. *

'coniunx. BS Hu, Tr

2amo Hu

3mpos 1) ABS corr. Hu, Tr
*icvicdov add. Hu

S6ta To0 B EME 1) BZAT Hu
°éoTar AB corr. S Hu, Tr
"AB A corr. S Hu, Tr

8AI" A corr. Co, Hu, Tr



Part Ib
Annotated Translation of Collectio IV

Props. 1-3: Euclidean Plane Geometry: Synthetic Style

Prop. 1: Generalization of the Pythagorean Theorem

#1 When ABC is a triangle, and over AB and BC any parallelograms ABED and
BCZH' are described, and DE and ZH are produced to T, and TB is joined, then
the parallelograms ABED and BCZH <taken together> turn out to be equal to the
parallelogram comprised by AC/TB, with an angle <at A> that is equal to the sum
of the angles BAC and DTB.

T
E H
B
L N M
D z
A K C

For:
Produce TB to K, and through A and C draw the parallels AL and CM to TK,
and join LM.

'The text of Prop. 1 shows a number of idiosyncrasies in labeling parallelograms. I have followed
Hu in standardizing.

H. Sefrin-Weis, Pappus of Alexandria: Book 4 of the Collection, 83
Sources and Studies in the History of Mathematics and Physical Sciences,
DOI 10.1007/978-1-84996-005-2, © Springer-Verlag London Limited 2010
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Since ALTB is a parallelogram,' AL and TB are equal and parallel. Similarly, MC
and TB are both equal and parallel as well, so that LA and MC, also, are both equal
and parallel. Therefore, LM and AC are both equal and parallel as well. Therefore,
ALMC is a parallelogram with angle LAC, i.e.: with an angle that is the sum of angle
BAC and angle DTB. For the angle DTB is equal to the angle LAB.2

And since the parallelogram DABE is equal to the parallelogram LABT (for
they are both (erected) over the same base AB, and (lie) within the same parallels
AB and DT?), but LABT is equal to LAKN (for they are both (erected) over the
same base LA, and <lie> within the same parallels LA and TK*), ADEB is therefore
equal to LAKN as well.

For the same reason, BHZC is equal to NKCM as well. Therefore, the parallelo-
grams DABE and BHZC <taken together> are equal to LACM, i.e.: to the <paral-
lelogram spanned by> AC/TB, with the angle LAC, which is equal to the sum of the
angles BAC and BTD.

And this is much more general than what was proved in the Elements about
right-angled <triangles> concerning the squares.’

Prop. 2: Construction of a Minor*

#2 <Let there be given> a semicircle over AB that has a rational” diameter, and let
BC be on AB produced and equal to the radius, and CD a tangent <to the semicircle>,
and let the arc BD be bisected in [the] point E, and CE joined.

<I claim> that® CE is an irrational,’ the so-called Minor.

D

A V4 HB T C

'By construction.

’1, 29.

°1, 35.

41, 35.

SReference to I, 47; Hu 178, 13 + app. Hu notes that a later manuscript has added a phrase that

establishes a connection to VI, 31, which is not envisaged in Prop. 1; see the apparatus to the
Greek text and the commentary.

For the definition of a “Minor” see X, 76, for its classification see X, 82, and for its construction
(used here in Prop. 2) see X, 94.

"For the meaning of “rational” see the commentary.

$The manuscript A has “oVtdc,” Hultsch changes to the standard étu (cf. also Co p. 58 A).
Treweek follows him. The use of the differing conjunction is an idiosyncrasy of Props. 2-6. In the
Greek text, I have kept the reading of A in all instances.

°For the meaning of the term “irrational” in this context see the commentary.
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Take Z as the center of the circle, and join ZD and ZE. Since the angle ZDC is
a right angle, it lies in the semicircle over ZC,! the center of which is B. And when
BD is joined, the triangle BZD turns out to be equilateral, so that the angle DZB is
two thirds <of a right angle>, and the angle EZB one third <of a right angle>.

Draw the perpendicular HE from E onto the diameter AB. Then the triangle
CZD is equiangular to the triangle EZH, and EZ is to ZH as ZC is to CD.? However,
the square over ZC is 4/3 of the square over CD.? Therefore, the square over EZ is
4/3 of the square over ZH, also.* Therefore, the ratio of the square over EZ to the
square over ZH is the one that 16 <has> to 12, whereas the ratio of the square over
ZC to the square over EZ is the one that 64 has to 16, and therefore the ratio of the
square over ZC to the square over ZH is the one that 64 has to 12.

However, let ZB be 4BT.° ZC is 2BZ, also. Therefore, the ratio of ZC to ZT is the
one that 8 has to 5, and the ratio of ZT to TC is the one that 5 has to 3. Therefore, the
ratio of the square over ZC to the square over ZT is the one that 64 has to 25, also.’

It has, however, been shown that the ratio of the square over CZ to the square
over ZH is the one that 64 has to 12. Therefore, the ratio of the square over TZ to
the square over ZH is as 25 to 12, also.? Therefore, TZ and ZH are rationals, com-
mensurable in square only, and TZ in square exceeds ZH in square by a square
whose side is incommensurable with it.® And the whole <line> ZT is commensu-
rable with the rational <line> AB'°. Therefore, TH is a fourth Apotome."!

However, ZC is rational, and its double is so, also. Therefore, the line the square
of which is two times the rectangle ZC/HT is an irrational, the so-called Minor."
And the square of CE is double the rectangle CZ/HT"?; therefore, CE is a Minor.

That, however, the square of CE is two times the rectangle CZ/HT will be clear
in the following way: Join ET. Since the square over EC is equal to the <sum of
the> squares over ET and TC, plus two times the rectangle CTH,!* whereas the
<sum of the> squares over ET and TZ is equal to the square over EZ plus two times

11, 31.

2V 4.

31, 47: CD? = 3ZB?, and ZC? = 4ZB>.

4VI, 23.

37C =27B,7ZE =7B.

%Choose T on ZB, Z — B — T, with TB = 1/4ZB.
7ZT =3BT; ZC = 2ZB = 8BT; TC = 5BT.

8V, 23 with V, 16.

97T2(ZT? — ZH?) = 25:13; X, 9 with X, 5/6.
07T =3BT; AB =2ZB = 8BT; X, 9.

X, 73; X, 84 a 4. The Apotome is introduced in X, 73, divided into subtypes in X, 84, with
geometrical constructions in X, 85-90.

12X, 94.

13This will be shown below.

411, 12.
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the rectangle ZTH, also,' the <sum of the> squares over CE, ET, and TZ is therefore
equal to the <sum of the> squares over ET, TC, and EZ, plus two times the rectangle
CTH, together with two times the rectangle ZTH, i.e.: with two times the rectangle
CZ/HT. Take the common square over ET away. Then the remaining <sum of the>
squares over EC and ZT is equal to the <sum of the> squares over EZ and TC,
together with two times the rectangle CZ/HT. Of these, the square over ZT is equal
to <the sum of> the squares over EZ and TC (for the square over ZT is 25, whereas
the square over TC is 9, and the square over EZ is 16). Therefore, the remaining
square over CE is equal to two times the rectangle ZC/HT.

Prop. 3: Construction of an Irrational Beyond Euclid

#3 <Let there be given> a semicircle over AC that has a rational diameter, and let
CD be equal to the radius, and DB tangent <to the semicircle>, and let the angle?
CDB be bisected by DZ.

<I claim> that DZ is the excess by which a Binomial* exceeds a Line that
produces with a rational area a medial whole.®

B

1, 13 generalized. The proof and theorem of I, 13 in the Elements specifies acute-angled triangles,
but it can easily be extended (cf. Heath 1926 I, pp. 406—409). Within the present translation and
commentary, I will refer to “II,12/13 generalized,” assuming that Pappus expects familiarity with
the generalized versions. A theorem much like II, 12/13 generalized seems to be invoked inter alia
in Prop. 7 and Prop. 8. The following piece of text is bracketed by Hultsch as a later addition:
Therefore, proportion holds. As the square over CE is to the (sum of the) squares over ET and TC,
together with two times the rectangle, so is the sum of the squares over ET and TZ to the square
over EZ, together with two times the rectangle ZTH (in A:ZH®). And as one to one, so are all (to
all, add. Hu). And the square over CE is equal to the sum of the squares over ET and TC, plus two
times the rectangle CTH (in A:TE®H).

’I.e., 25 BH% BH? appears as a unit of measure. The areas of squares are directly identified with
numbers. This is unusual.

*Note the connection to Prop. 2. There the arc between point of touch and base was bisected, here
it is the angle between the tangent and the base.

4The Binomial is introduced as a sum in X, 36, shown to be uniquely determined this way in X, 42,
split up into six types in X, 47-53, and geometrically constructed and characterized in X, 54.
SThe Line that produces with a rational area a medial whole is introduced as a difference of lines
in X, 77, the uniqueness of this determination is proved in X, 83, and the line is constructed and
characterized geometrically in X, 95.
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For:

Take H as the center of the semicircle, and join BH, and describe over HD the
semicircle HBD,! and produce DZ to K. Then the arc BK is equal to the arc KH.
Draw the perpendicular KL onto AC. And since BH is the side of a hexagon,?
whereas KL is half of the side of a hexagon (for when it is produced, it subtends
two times the arc KH), BH is therefore two times KL, i.e.: CK is two times KL.
And the angle KLC is a right angle. Therefore, the square over KC is 4/3 of the
square over CL,? i.e.: the square over DC is 4/3 of the square over CL. Therefore,
DC and CL are rationals, commensurable in square only,* and the square of DC
exceeds the square of CL by the square over a line that is commensurable with it,’
and the larger <line> DC is commensurable with the Rational AC. Therefore, LD
is a First Binomial,® whereas HD is rational. Therefore, the line the square of which
is equal to the area of the rectangle between HD/DL is an irrational, the so-called
Binomial.” However, the square of DK is equal to this <area> (for on account of the
fact that the triangle HDK is equiangular to the triangle DLK,® KD is to DL as HD
is to DK?®). Therefore, DK is a Binomial.

And since the angle BHC is two thirds <of a right angle>, and HB is equal to
HC, the triangle BHC is therefore equilateral. Now, draw the perpendicular BT;
then HC, i.e.: DC, is two times CT.!° And it has been shown that the square over
DC is 4/3 of the square over CL. Therefore, the square over LC is three times the
square over CT. Therefore, LC and CT are rationals, commensurable in square
only, and the square of LC exceeds the square of CT by the square over a line that
is incommensurable with it, and the smaller item CT is commensurable with the
Rational AC."! Therefore, LT is a fifth Apotome."> And since the rectangle DHT is
equal to the square over BH on account of the fact that the triangles BHT and BHD
are equiangular,'® whereas the rectangle DHL is equal to the square over KH, on
account of the fact that the triangles KHL and KHD are equiangular,' the rectangle
DHL is, therefore, to the square over KH as the rectangle DHT is to the square over BH.

'B on the semicircle, because ZHBD = 7/2.
’Ie., of a regular hexagon inscribed in the circle with diameter HD.
3See Prop. 2 for this intermediate step.

4X, 9.

X, 9.

°X, 47 al.

X, 54.

8V, 8.

VI, 4; VI, 17.

0Equilateral triangle HBC.

X, 9.

12X, 84 a5.

BV 4; VI, 17.

“VI, 4; VI, 17.
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And alternate.! As the rectangle DHT is to the rectangle DHL, however, so is TH
to HL.? And therefore, as HT is to HL, so is the square over BH, i.e.: the square
over ZH, to the square over HK. Separando, therefore, as TL is to LH, so is the
square over KZ to the square over HK.> And it has been shown that the rectangle
between DH/HL is equal to the square over HK. Therefore, the rectangle between
DH/LT is equal to the square over KZ, also. And LT is a fifth Apotome, whereas DH
is rational. Therefore, KZ is a Line that produces with a rational area a medial
whole

However, it has been shown also that DK is a Binomial. Therefore, (the remain-
ing) DZ is the excess by which a Binomial exceeds a Line that produces with a
rational area a medial whole.

Props. 4-6: Plane Analysis Within Euclidean Elementary
Geometry

Prop. 4: Structure of Analysis-Synthesis

#4 Let ABC be a circle with center E and diameter BC, and AD a tangent intersect-
ing BC in D, and let DZ? be drawn, and AE produced, after it has been joined, to
H, and let ZKH and HLT be joined;

<I claim> that EK is equal to EL.

'V, 16; rectangle DHT:rectangle DHL = BH:KH?”.

>The following phrase was bracketed by Hultsch; it translates to: For the height is equal.
3V, 17.

4X, 95.

SDZ secant to the circle, chosen at liberty between DC and DA.
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Assume that it has turned out to be so,! and draw the parallel TXM to KL. Then
MX is equal to XT, also.? Draw the perpendicular EN from E onto ZT. Then ZN
is equal to NT.? However, MX was equal to XT, also. Therefore, NX is parallel to
MZ. Thus,* the angle between TN/NX is equal to the angle between NZ/ZM,’ i.e.:
to the angle between TA/AX.® Thus, the points A, N, X, and T lie on a circle.’
Thus, the angle between AN/NT is equal to the angle between AX/XT, i.e.: to the
angle between AE/EL.® Thus, the points A, N, E, and D lie on a circle.’

They do, however <lie on a circle>. For the angles between EA/AD and EN/ND
are both right angles.'°

Now, the argument will be put together!! in the following way. Since the angles
between EA/AD and between EN/ND are both right angles, the points A, D, E,
and N lie on a circle.!? Therefore, the angle AND is equal to the angle AED. But
the angle AED is equal to the angle AXT, on account of the parallels ED and XT."?
Therefore, the points A, N, X, and T lie on a circle.!* Therefore, the angle TAX
is equal to the angle TNX. But the angle TAX is equal to the angle TZM."?
Therefore, ZM is parallel to NX. And ZN is equal to NT.!¢ Therefore, MX is equal
to XT, also. And as XH to HE, so is, on the one hand, XM to EK, and, on the other
hand, TX to LE; and therefore: as XM to EK, so <is> TX to LE. And <equation
holds after> alternation.'” MX is equal to XT as well. Therefore, KE is equal to
LE, also.

! Analysis — assumption: EK = EL.

>AHKE ~ AHMX; AHEL ~ AHXT; VI, 4 and V, 16; KE = EL by assumption in the analysis.
I, 3.

“0btmg apa; the occurrence of this phrase is a peculiarity of the analysis in Prop. 4. It will be
translated as “thus.”

°1, 29.

o111, 21.

"Converse of III, 21; see the commentary.

8111, 215 1, 29.

?ZAND = ZAED. The analysis proper ends here.

1°T11, 31. Note that this observation constitutes the resolutio for the analysis in Prop. 4. The position
of E, N, A, and D on a circle is independent from the analysis-assumption.

""Technical term: cuv@etricetat. The synthesis begins here.

12111, 31; compare the above resolutio. See the commentary.

3By construction, I, 29.

14See the commentary. An appeal to the converse of III, 21 is not permissible in the synthesis.
STII, 21.

1°111, 3.

17V, 16 yields MX:TX = EK:LE.
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Props. 5/6: Reciprocity in Plane Geometry

Prop. 5
#5 Let ABC be a circle, and AD and DC tangents, and let AC be joined, and EZ drawn
through the interior <of the angle>. EH, however, should be equal to HZ.

<I claim> that TH is equal to HK, also.

B

D

Draw the parallel EM to AC, and take L as the center of the circle, and join LA,
LZ,LC, LM, LE, and LH. Since EH is equal to HZ, MC is equal to CZ, also.' And
it is perpendicular to CL.2 Therefore, LZ is equal to LM.? And since AD is equal
to DC,* AE is equal to MC.> However, AL is equal to LC, also, and the right angle
between EA/AL is equal to the right angle between MC/CL. Therefore, EL is equal to
LM, also, i.e.: to LZ.® But EH is equal to HZ, also. Therefore, HL is a perpendicular
onto EZ.” Therefore, TH is equal to HK.?

'AMZE ~ ACZH, VI, 2.

2111, 18.

3L 4.

‘Triangle LAC is isosceles; therefore, ZLAC = ZLCA (I, 5); therefore, ZCAD = ZACD, and
triangle ACD is isosceles (I, 6). Co refers to 111, 36, with corollaries; cf. 191, * Hu.

SAC || EM; therefore, AEDM is isosceles (I, 29; I, 6). Co refers to VI, 4; Hu’s Latin paraphrase
suggests using VI, 4, also.

°L, 4.

"AEHL = AZHL,; therefore, the neighboring angles at H are equal.

811, 3.
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Prop. 6

#6 Let ABC be a circle, and AD and DC tangents, and let AC be joined, and
EZ be drawn through <the interior of the angle>; HT, however, should be equal
to HK.

<I claim> that EH is equal to HZ, also.

D

Take L as the center of the circle, and join EL, LA, LH, LZ, and LC. Since the
angles between EA/AL and between EH/HL are both right angles, the points E, A,
H, and L lie on a circle.! Therefore,? the angle between HA/AL is equal to the
angle between HE/EL.? Again, since the angles between LH/HZ and between
LC/CZ are both right angles, the points L, H, Z, and C lie on a circle.* Therefore,
the angle between HC/CL, i.e.: the angle between HA/AL,’ i.e.: the angle between
HE/EL, is equal to the angle between HZ/ZL.¢ Therefore, EL is equal to LZ, also.”
And LH is a perpendicular <onto EZ®>. Therefore, EH is equal to HZ.

I, 18; 111, 3.

2111, 31.

11, 21.

111, 31; compare above.
Tsosceles triangle ACL; 1, 5.
o111, 21.

"Isosceles triangle ELZ; 1, 5.
8111, 3.
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Props. 7-10: Analysis, Apollonian Style (Focus: Resolutio)

Theorem (cf. Prop. 10)

Whenever there are three circles, given' in position and size, touching each other,
the circle comprising them? will be given in size as well.
Before <discussing this theorem>, however, the following is written down.

Prop. 7: Determination of Givens

7a: First Example for Prop. 7

#7 Let ABCD be a quadrilateral that has a right angle ABC, and each of the lines
AB, BC, CD, and DA are given.
<The task is> to show that the line joining the points D and B is given.

a B

D H Z T c

Join AC and draw the perpendiculars AH onto CD, on the one hand, and BE onto
AC, on the other hand.* Now, since AB and BC are both given, and the angle ABC is
aright angle, and BE is a perpendicular <onto AC>, each of the <lines> AE, EC, AC,
and BE will therefore be given, also. For the rectangle ACE turns out to be given,
because it is equal to the square over BC,* and AC is given,® so that each of the

'For information on the technical term “given” (Latin:datum, Greek:500&v) see the introduction to
Prop. 7 in the commentary. Determining givens (data) is the central task of the resolutio stage of
Greek geometrical analysis (see introduction to Props. 4-12). The terminology will also be
employed in Props. 28 and 29, 3541, 42-44, and 31-34. In the latter cases, Pappus is operating
outside the scope of plane geometry, and the analysis serves very different functions.

’I.e., the circumscribed circle, touching each of the three given ones.

*E is on AC. Its position must be A — E — C because of the right angle at B. H is on DC. Its position
D — H — C implies a special configuration for Prop. 7. See the commentary. Z is taken to lie on
DC and BE.

4Le.: itis given in size. Elem. VI, 8, Porisma, and VI, 17: BC?> = AC x EC. Data 52: with BC given,
BC? is given.

31, 47: AC? = AB? + BC?, Data 52: AB, BC given = AB?, BC? given; Data 3: AB* + BC? given,
i.e., AC? given, Data 55: AC given.
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<lines> AE, EC, and BE will be given.' Again, since each of the lines AC, CD,
and DA is given, and AH is a perpendicular <onto DC>, each of the <lines> DH,
HC, and AH is given as well. For the excess of the square over AC over the square
over DA, when it is applied to CD, makes the excess of CD over HD a given one,
as is stated in a lemma, so that each of the <lines> DH, HC, and AH will have been
given, also.? And since the triangle AHC is equiangular to the triangle CEZ, as HC
<is> to CE, so are both AC to CZ and AH to EZ.> And the ratio of HC to CE is
given.* Therefore, both CZ and ZE will be given.’ But so are both EB and BC.
Therefore, each of the <lines> ZB, BC, and CZ is given as well.® Now, draw the
perpendicular BT onto CZ.” Then each of the <lines> ZT, TC, and BT is given.? so
that both DT and TB are given, also.” And the angle BTD is a right angle. Therefore,
BD is given."”

7b: Second Example for Prop. 7

b B
VA

'Data 57: AC x EC given, AC given = EC given. Data 4: AC, EC given = AC — EC, i.e., AE
given. 1, 47: BC? = BE? + EC?, i.e.: BC? — EC? = BE?; Data 52: BC, EC given = BC?, EC? given.
Data 4: BC? — EC? given; Data 55: BE given.

2 According to Hultsch, no such lemma is still extant. He provides a proof for “CD — HD is given”
at Hu p. 193, # 4. 11, 12/13 generalized: AC*> = AD? + DC? — 2DC x DH; therefore: AC> — AD? =
DC x (DC - 2DH). Data 52: AC?* AD? given; Data 4: AC* — AD? given, i.e., DC x (DC — 2DH)
given; Data 57: DC, DC x (DC — 2DH) given = DC — 2DH given; Data 4: DC, DC — 2DH given
= 2DH given; Data 2: DH given. Data 4: DC, DH given = HC given. 1, 47: AD?> = AH? + DH?,
i.e., AH? = AD? — DH?; Data 52: AH?, DH? given; Data 4: AD*> — DH? given, i.e., AH? given; Data
55: AH given.

3VL 4, V, 16.

“Data 1 (HC and CE are given).

>Data 2 (AC, AH, and HC:CE are given).

®Data 3 (ZB = ZE + BE).

"H is assumed to lie on DC, with D — Z — T — C. This means that, again, only one of several
possible sub-cases is discussed here; see the commentary on the purpose of Prop. 7.

8AZBT ~ AZEC implies BZ:ZT = CZ:ZE; Data 2: BZ, BZ:ZT given implies ZT given. Data 4:
CZ - ZT = TC given. 1, 47: BT?> = BZ? — ZT°. Data 52, Data 4: BT? given; Data 55: BT given.

’Data 4: DC, CT given implies DT given. BT was shown to be given already.

107, 47: BT? + DT? = BD? Data 52: BT?, DT? given; Data 3: BD? given; Data 55: BD given.
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#8 Draw the perpendicular DE onto AC and produce it to Z.!

Since each of the <lines> AD, DC, and CA is given,? and DE is a perpendicular,
the <lines> AE and EC will both be given.* And since the triangle ABC is equian-
gular to the triangle CEZ, CB is to BA as CE <is> to EZ.* The ratio of CB to BA
is, however, given. Therefore, the ratio of CE to EZ is given as well. And CE is
given. Therefore, EZ is given as well.> However, DE was given, also.® Therefore,
the whole DZ will be given as well.” For the same reason, BZ and ZC will both be
given, also. For as AC <is> to BC, so <is> ZC to CE; and the ratio of AC to CB is
given.® Now again, draw the perpendicular DH from D <onto BC’>. Then ZH and
HC are both given,'* so that BH and HD are both given as well.!' And the angle at
H is a right angle. Therefore, BD is given as well.!?

Prop. 8: Analysis, Apollonian Style

(Apollonius, Tangencies, cf. Coll. VII, Props. 102-107)

#9 Let there be given <two> equal circles in position and size, with centers A and
B, and let the point C be given," and through C the circle CEZ touching the circles
with centers A and B should be described.

'E is on AC, and Z is on BC. Again, the position A — E — C constitutes one of several possible
cases. Furthermore, the argument will assume B—Z — H — C for the relative position of the inter-
section points of DE and BC, and the perpendicular. As remarked above, Pappus covers only
two of a number of possible cases. The proof is completely analogous in all cases (cf. 195, * Hu).
See the commentary on Prop. 7.

2As in Prop. 7a: I, 47: AC*> = AB? + BC?; with AB, BC given, Data 52, Data 4: AC? given; Data
55: AC given.

3As in 7a, for DH, HC, AH; II, 12/13, generalized: AC> = AD? + DC? — 2CE x AC, i.e., AC(AC +
2CE) = AD? + DC?; with AD, DC given, Data 52, 3: AC (AC + 2CE) given; AC, AC(AC + 2EC) given
= AC + 2EC given (Data 57); Data 4, Data 2: EC given. With Data 4: AE given.

‘VIL 4.

>Data 1: CB:BA given, i.e., CE:EZ given. Data 2: CE, CE:CZ given = EZ given.

°1, 47: DE? = DC? — EC?% Data 52, 4: DE? given; Data 55: DE given.

"Data 3 (DZ = DE + EZ, and DE, EZ are given).

8 Apply VL, 4, for similar triangles ABC, CEZ:AC: BC = CZ:EZ; Data 1: AC:BC (thus: CZ:EZ)
given; Data 2: CZ given (EZ, CZ:EZ are), Data 4: BZ given (BZ = BC — ZC).
°H on BC; the relative position B — Z — H — C constitutes one of several possible cases. See the
commentary.

1911, 12/13, generalized: ZC? = DZ* + DC? — 2DC x ZH; Data 52, 4: DC x (DC — 2ZH) given;
Data 57: DC — 2ZH given Data 4, 2: ZH given; Data 4: ZC — ZH, i.e., HC given. Compare 7a for
AABC with lines DH, HC.

" Data 4: BH given (BC — HC), 1, 47: ZH? + HD? = DZ?, i.e., HD?> = DZ? — ZH>. Data 52: DC?, HC?
given, Data 4, HD? (= DC? — HC?) given; Data 55: HD given; compare the argument for AH in 7a.
121, 47, BD? = BH? + DH?; with BH, HD given: Data 52, Data 3: BD? given; Data 55: BD given.
Compare the last step in 7a.

13Co p. 66, B points out that the argument in Prop. 8 implies that CA, CB are given in position
and size.
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<I claim> that its diameter is given.!

Join EZH, CZT, CMP, AB, CE, PZK, TK, and TH.?

Now, HT turns out to be parallel to CE on account of the fact that the vertex angles
EZC and HZT are equal, and the arcs EPZ and HKZ similar,® and the triangle ECZ
is equiangular to the triangle ZHT. For the same reasons TK is parallel to PC,
also. And the circles with centers A and B are equal. Therefore, ZH is equal to DE.*

"Prop. 8 gives the resolutio for a special configuration in one of the cases treated in Apollonius,
Tangencies. The Tangencies are lost, but Pappus’ commentary on it can be found in Coll. VIL.
Coll. VII, Props. 102-107, are directly relevant for Prop. 8, as can be seen in the footnotes below.
It is quite possible that Prop. 8 is in fact a (so far overlooked) testimony for a fragment from
Apollonius’ lost work. The connection of Prop. 8 to Apollonius’ Tangencies, specifically the case
of three touching circles, is noted also in Heath (1921, II, pp. 182—184).

2Extension of the configuration. Inconsistencies of labeling occur throughout Prop. 8 (compare
194/196 + app. Hu). Some of them probably go back to Pappus. For Prop. 8 shows clear signs of
a not quite complete revision of a source text, after the insertion of additional material. See the
commentary on this issue.

*For a proof, compare Coll. VIL, Prop. 102, p. 826 Hu. (Jones 1986a, Vol. 1 p. 234, # 164). The
proposition in Coll. VII is Pappus’ commentary on Apollonius, Tangencies, 1, 16. Also, compare
Hultsch, p. 197, #2; Co p. 66/67, Lemma in E for a different explanation via similar arcs.

“For a proof, compare Coll. VII, 106, p. 833/834 Hu (Jones 1986a, Vol. 1. p. 238, # 169). The
proposition in Coll. VII is a lemma by Pappus on Apollonius, Tangencies 1, 17. Also, compare
p. 197, #3 Hu and Co p. 67, G for a different explanation via similar arcs.
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Draw the perpendiculars AS and BL <onto AB>. Then AS is equal to BL,' so that,
on the one hand, BM is equal to MA, and, on the other hand, LM <is equal> to MS
as well. For BLM and ASM are two triangles that have the same vertex angles <at
M> and right angles at the points L and S, and finally they also have one side, BL,
equal to one side, AS.> And each of the <lines> ML, LB, MS, and SA is given.?
Therefore, the lines BM and MA are both given. But the lines AC and CB are both
given as well (for the points A, B, and C <are given> in position).* Therefore, the
triangle ABC is given in kind.> Therefore, CM will also be given (when the perpen-
dicular from C onto AB is drawn).® And since the diameter NR of the circle HTK is
given,” but MA is given, also, the remaining MR is therefore given, also.® And since
the rectangle NMR is given, the rectangle HMZ, i.e.: the rectangle EMZ, i.e.: the
rectangle CMP is therefore given as well.” And CM is given, therefore, CP is given,
also.!® Now, since the circle with center A is <given> in position and size, and CP is
given in position and size, and the <lines> PZK and CZT are drawn through the

11, 14.

>The explicit argument for BM = MA, LM = MS is much more elementary than the rest of the
inferences in Prop. 8. Hultsch (196, 9-16 app.) suspects interpolation. Another possibility is that
Pappus himself inserted this elementary material and has not fully integrated his resulting overall
argument. There are further problems with the transmitted text and its line of reasoning (see 196,
17-198, 18 + app. Hu).

3Hultsch deletes the following here: “and in the same way both ZH and DE and BL and LS” (196,
18/19 + app. Hu). The phrase does not fit the context of the argument as given. Perhaps it is a
leftover from a version of the text that was replaced by the suspected lines discussing BM, MA,
LM, LS. Compare the preceding footnote. The implicit argument given for the status of ML, LB,
MS, SA as givens — which the reader is perhaps meant to supply — shows strong affinities to
Prop. 7. Compare p. 197/199, #4 Hu, including a reference to notes #2 and #3 on Prop. 7. A shorter
route, avoiding the connection with Prop. 7, would have been to infer B, A given =AB given
(Data 26) = BM, MA given (Data 7).

“Data 26.

>Data 39. Indeed, the triangle is then given in position and size as well. The ensuing argu-
ment does not take advantage of these facts, and this may be yet another sign that Pappus has
introduced material (from the Data, this time) into an argument that perhaps did not use the
Data.

¢ Appeal to Prop. 7; compare p. 193, #3 Hu. Hultsch brackets the reference to the drawing of a
perpendicular (thus, the reference to Prop. 7 is eliminated) and offers alternative arguments for
“CM given” at 199, # 5 Hu. Evidently, Hultsch viewed the reference to Prop. 7 as something that
is not of one piece with the main body of the argument in Prop. 8. We have yet another indication
for Pappus’ introduction and incomplete integration of material into Prop. 8.

"Data, def. 5: AR given; Then NR (its double) is given, also. The argument will use AR.

8 Data 4; compare 199, # 6 Hu (covering NR, AR, MR, MN).

°111, 35; 111, 36.

' Data 57. Note that CP is in fact given in position and size.
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interior in such a way that KT is parallel to CP, the diameter of the circle <circum-
scribed> around the triangle CZP is given' i.e.: the <diameter> of the circle CEZ.

Prop. 9: Lemma for Prop. 10

#10 Let ABC be a triangle that has each of its sides <as> given, and let D be an
internal point, and let the difference of AD and CD be equal to the difference of CD
and DB.? and let this difference’® be given*

<I claim> that each of the <lines> AD, DC, and DB is given.

Since the difference of AD and DC is given, let AE and BZ both be equal to
this difference.” Then the three <lines> ED, DC, and DZ, are equal to one
another.® Describe the circle CEZ with center D. Now, on account of what has been

'That Z (and therefore all sides of the triangle CZP) is given, can be shown by Coll. VII, 105, pp.
830-831 Hu (Jones 1986a, Vol. 1, p. 236, # 168). That it is the point of touch for the sought circle
with the circle around A, can be derived via Coll. VII, 104, pp. 828-829 Hu (Jones 1986a, Vol. 1,
p- 234, # 166). Both lemmata are taken from Pappus’ commentary on Apollonius, Tangencies 1,
16. The latter lemma is the converse of Coll. VII, 102, quoted above.

2AD > CD > DB. A more literal translation of the sentence is: (let) that by which CD exceeds DB
be equal to that by which AD exceeds CD.

3The text has “excess” (Onepoy). In Prop. 10, Pappus will use the word “difference” (Stodopdl).
4d=AD - CD =CD - DB, and d is given.

SE lieson AD, A—E-D;Zlieson DB,D -B - Z.
*ED=AD-d,DZ=DB +d=DB + (AD-CD)=AD -d. DC=AD -d.
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written down above, DZ is given.! Of it, BZ is given.? Therefore, the remaining BD
is given.? But AD and DC are both given,* also. Therefore, each of the lines AD, DC,
and DB is given.

Prop. 10: Resolutio for a Sub-case of the Apollonian Problem

#11 Now these are the lemmata, whereas the following is the initial <problem>:

<Given are> three unequal circles with centers A, B, and C, with given diameters,
touching each other, and the circle DEZ <circumscribed> around them and touching
them <is sought>; let the task be to find its diameter.

Z

Let its center be H.® then, and join AB, AC, and CB toward the centers A, B, and
C, and in addition <join the lines> HAD, HBZ, and HCE.”

Now, since the diameters of the circles with centers A, B, and C, are given, each
of the <lines> AB, BC, and CA will turn out to be given, also. The differences® of

'Prop. 8: the diameter of the circle CEZ is given. Then its radius is given, also.

BZ =d.

3Data 4.

4AD = DZ + BZ; Data 3; DC = DZ.

SProp. 10 (in a much more general version) was announced before Prop. 7. Prop. 10 is essentially
the resolutio of an analysis for a single very specific case out of several possible cases for the
Apollonian problem. Construction and apodeixis are not offered. See the commentary.

®Whereas A labels the center of the (sought for) comprising circle with “H” here, the accompanying
diagram, and parts of the text further down take the center to be N.

"D, E, Z will be the points of touch with the sought circle: III, 11 and 12.
8Here, the word used in A is Stagopd, whereas in Prop. 9, the word Umepox1| was used.
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<the lines> AH, HC, and HB are given as well. Therefore, on account of what has
been written down above, AH is given.! But AD is given, also, so that the diameter
of the circle DEZ is given.

And this (issue) has an end for me here, whereas I will write down the rest
later on.?

Props. 11 and 12: Analysis: Extension of Configuration®/Apagoge

Prop. 11: Chords, Perpendicular, and Diameter in a Circle

#12 Let ABC be a semicircle; let CBA be bent, and CD be drawn through the interior,
and let BC be equal to the sum of AB and CD,* and let the perpendiculars BE and
DZ <onto AC> be drawn.’

<I claim> that AZ is two times BE.

For:
Position EH, on the one hand, equal to AE, and BT, on the other hand, equal to AB,°
and join AT, TH, and TZ, and draw the perpendicular TK <onto AC>, and join BK.”

' Pappus appeals to Prop. 9. However, in Prop. 9, the additional assumption was made that d = AD
— DC =DC - CB, and this is not stated in Prop. 10. Pappus would have had to furnish an extension
of Prop. 9, or else formulate an appropriate restriction on the configuration for Prop. 10. Hultsch
p- 201, #3, supplies part of an argument, via Prop. 9, to establish that AH is given. On the issue of
the gap in Prop. 10 see also appendix Hu p. 1227, and the commentary.

>The issue is not picked up again in Coll. IV. Perhaps Pappus intended to revise Props. 7-10.
*But see the commentary on this tentative interpretation of Prop. 11.

*D is chosen on the circumference so that CD = BC — AD.

5T have translated the text as read/reconstructed by Treweek, treating the phrase “ém v A as
an explanatory addition (cf. 202, 3 + app. Hu).

*Hon AC,A-E-H,AE=EH; Ton BC,B - T - C, BT =BA.

"This passage contains the extension of the configuration (five auxiliary lines and points). From
here, the symperasma can be directly deduced using the resulting triangles. See the commentary
for a conjecture on how this might be indicative for the purpose of Prop. 11 within a group of
propositions on analysis-synthesis.
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Since CB is equal to the sum of AB and DC, of which BT is equal to BA, the remaining
TC is therefore equal to the remaining CD. Therefore, the square over CD is equal to
the square over CT, also. However, the rectangle between AC/CZ is equal to the square
over DC.! Therefore, the rectangle between AC/CZ is equal to the square over CT, also.
Therefore, the angle between ZT/TC is equal to the angle between TA/AH.?

Again, since the rectangle between CA/AE is equal to the square over AB,? two
times the rectangle between CA/AE, i.e.: the rectangle between CA/AH,* is there-
fore equal to two times the square over AB, i.e.: to the square over AT, also.
Therefore, the angle between AT/TH is equal to the angle between TC/CZ.
However, the angle between TA/AH is equal to the angle between ZT/TC, also.
Therefore, the remaining angle between AH/HT is equal to the remaining angle
between TZ/ZC. Therefore, the angle THZ is equal to the angle TZH, also.” And
TK has been set forth as a perpendicular.® Therefore, ZK is equal to KH.” And since
the angles between AB/BT and AK/KT are both right angles, the quadrilateral
ABTK lies on a circle.!® The angle between BT/TA is therefore equal to the angle
between BK/KA.!! However, the angle between BT/TA is half a right angle.!
Therefore, the angle between BK/KA is half a right angle as well. However, the angle
between BE/EK is a right angle. Therefore, BE is equal to EK.!* However, AZ is
two times EK (since AE is equal to EH, whereas ZK is equal to KH). Therefore,
AZ is two times EB, also. This is what was required to prove.

Prop. 12: Plane Analysis via Apagoge; Chords, Parallels,
and Angles in a Circle

#13 Let ABC be a semicircle, and let ABD be bent, and let AB be equal to BD,!*
and DE drawn at a right angle <to BD>, and let BE be joined, and EZ drawn at right

'"AADC ~ ADZC; V1, 8, VI, 4, VI, 17.

2AATC ~ ATZC; VI, 17, VI, 6.

SAABC ~AAEB: VI, 8; VI, 4, VI, 17.

*AH = 2AE by construction.

31, 47.

SAATC ~ AATH (VI1, 17, VI, 6), and AATH ~ ATZC has been shown.

"Complementary angles; AHTZ is therefore isosceles (I, 6), and TZ = TH. In the manuscript A,
TH = TZ is claimed directly (202, 19 f. + app. Hu). Perhaps the manuscript reading would have
been preferable.

8TK is perpendicular to AC by construction.

°1, 26 for ATKH, ATKZ.

19Circle with diameter AT; 111, 31.

I, 21.

2AABT is isosceles, and the angle at B is a right angle by construction.

3 ABEK has a right angle at E, half a right angle at K; it is isosceles (I, 6).

“Note the similarity of the starting configuration to the one in Prop. 11. An implicit assumption
in Prop. 12 is arc ABC < arc of quadrant.
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angles to it, and let H be the center <of the semicircle>, and let DT be to TZ as AH
is to HD,! and let TE be joined,;
<I claim> that the angle between BE/ED is equal to the angle between DE/ET.

L A D H T Z ¢

Draw the perpendicular HK from H onto BE. Then BK is equal to KE.? And the
angle between BD/DE is a right angle. Therefore, the three <lines> BK, KD, and KE
are equal to each other.> And HK is parallel to EZ.* And since one sought <to show>
that the angle between KE/ED is equal to the angle between DE/ET, and <one knows
that> DK is equal to KE, therefore <one knows> that the angle KED is equal to the
angle KDE, therefore <one needs to show>> that the angle KDE is equal to the angle
DET, also. Therefore <one needs to show> that DK is parallel to ET.°

Draw the parallel KL to DE, also, and produce CD to L, and join BL. Now, since
KL is parallel to DE, whereas KH <is parallel> to EZ, and it is sought, however,
that KD is parallel to ET,’ therefore (on account of the fact that the triangle KLH is
equiangular to the triangle EDZ, whereas <the triangle> DKH <is equiangular> to
<the triangle> ETZ), <it is sought> that DZ is to ZE as LH is to HK, whereas EZ
is to ZT, as KH <is> to HD.® Therefore, <one needs to show,> also, that DZ is to
ZT as LH <is> to HD (namely, ex aequali®). Therefore, <one needs to show,> also,
that DT is to TZ as LD <is> to DH (namely, separando'®).

"Choose Ton AC, A-D -H-T -Z, with DT:TZ = AH:HD.

2111, 3.

11, 31.

41, 29.

>Prop. 12 contains several series of phrases starting with “therefore, that X, all dependent on

some single “one sought to show that Y. Within Coll. 1V, this stylistic feature is unique. To facilitate
reading, I have added the implicit phrases in brackets.

¢1, 29. The analysis in Prop. 12 is predominantly reductive and deductive (with minimal input by
extension of configuration). All steps are also convertible, and the synthesis will therefore mirror
the analysis exactly. See the commentary on Prop. 12, and the introduction to Props. 4-12 on
analysis-synthesis for this feature of the analysis in Prop. 12 in the context of plane geometry.

" Above, the claim in Prop. 12 was reduced to this statement.

81f KD is parallel to ET, ADKH ~ AETZ (AKLH ~ AEDZ by construction; I, 29); then the above
mentioned proportions hold. The claim of the statement has been reduced to yet another condition
that must be fulfilled.

°V, 22.

10V, 17. At this point, the initial claim has been reduced to: LD:HD = DT:ZT.
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It was, however, assumed, also, that as DT <is> to TZ, so <is> AH to HD.!
Therefore, <one needs to show> that DT is to TZ, i.e.: AH to HD, as LD <is> to
DH.? Therefore, <one needs to show> that LD is equal to AH?; therefore, that LA
is equal to DH, also.* But AB is equal to BD as well.’> Therefore, <one needs to
show> that LB is equal to BH as well.® But BH is equal to both LD and AH.
Therefore, <one needs to show> that BL is equal to LD, also.’

However, this is the case <i.e.: BL is in fact equal to LD>.® For since KL is parallel
to DE, and DK is equal to KE,? the angle between BK/KL is equal to the angle
between LK/KD.!° Now, since BK is equal to KD and the angle between BK/KL is
equal to the angle between DK/KL, BL is therefore equal to LD, also.!!

And the synthesis follows the analysis step by step.!?

For since DK is equal to KE,'* the angle KDE is equal to the angle KED, also.'*
But the angle KDE is equal to the angle DKL, whereas the angle KED is equal to
the angle BKL on account of the parallels KL and ED." Therefore, the angle BKL
is equal to the angle DKL as well. However, the straight line BK is equal to <the
straight line> KD,'¢ also. Therefore, the base BL is equal to the base LD as well,"
so that the angle between LB/BD <is equal> to the angle BDA, also, i.e.: to the

"Hypothesis of Prop. 12.

2 Using the result of the first sequence of reductions.

’V, 9.

‘LA =LD - AD; DH = AH - AD.

SHypothesis of Prop. 12.

Since AB = BD, the reduced claim LA = DH implies that ALAB ~ AHDB must hold (I, 4).

"BH = AH: radii of initial semicircle; AH = LD needs to be shown (see above); therefore, the
claim of Prop. 12 has been reduced to BL (= BH = AH) = LD.

8Beginning of the resolutio. BL = LD holds independently of the analysis-assumption.

By construction.

191, 29,1, 5, 1, 29.

"BK = KD by construction; I, 4 for ALBK, ALDK. The resolutio ends here.

2Greek word: dxolovBwg (translation: following step by step). This term was subject to consid-
erable debate in the discussion about the interpretation of Greek geometrical analysis and its
logical structure. Some authors hold that it must mean “logically derived”, and maintain that
analysis is deductive, since it proceeds “akolouthos.” I agree with Hintikka and others that it does
not have to be interpreted so narrowly, and that it rather means “follows in sequence, in an
orderly fashion”. Co p. 70 translates “compositio vero resolutioni congruens erit.” See the excur-
sus on analysis-synthesis in the introduction to Props. 4-12 in the commentary. The synthesis is
not a direct logical deduction from the analysis. Further occurrences of this word and its deriva-
tives in Coll. IV, where regularly it does not carry the force of “logical derivation” will be noted
ad locum.

I, 3; 110, 31.
“L, 5.

15T, 29.

1°TIT, 31; 111, 3.
T, 4.
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angle DAB, i.e.: to the angle ABH.! Take away the common angle ABD. Then the
remaining angle LBA is equal to the remaining angle DBH. But the angle BDH is
equal to the angle BAL, also.? Now, BDH and BAL are two triangles that have two
angles equal to two <corresponding> angles and one side, AB, equal to, <one
side,> BD. Therefore, BH is equal to BL, whereas DH is equal to LA,? so that LD
is equal to AH, also.* Now, since it was assumed that, as AH is to HD, <so is> DT
to TZ,> whereas AH is equal to LD, DT is therefore to TZ as LD is to DH.
Componendo, then: as LH <is> to HD, so <is> DZ to ZT.® However, as LH <is> to
HK, so is DZ to ZE, also’; and as KH <is> to HD, so <is> EZ to ZT.}

And the angle EZT is equal to the angle KHD on account of the fact that EZ and
KH are parallels.” Therefore, the angle ETZ is equal to the angle KDH, also.!
Therefore, KD is parallel to ET as well.!" Therefore, the <angle> KDE, i.e.: the
angle KED, is equal to the angle DET."?

Props. 13-18: Arbelos Treatise: Plane Geometry,
Archimedean Style

#14 In certain <books> an ancient proposition of the following sort is reported.

Posit three semicircles ABC, ADE, and EZC, touching each other, and into the
space between their circumferences, which is in fact called “arbelos,”'* describe any
number of circles, touching both the semicircles and each other, like the ones
around the centers H, T, K, and L."*

Tsosceles triangles, I, 5.

*Isosceles triangle ABD, 1, 6.

*1, 26.

4Add AD.

>Hypothesis of Prop. 12.

°V, 18.

"ALKD ~ ADEZ; VI, 4.

8V, 22.

°T, 29.

V1, 6.

71, 27, the corresponding step in the analysis (converse) rests on I, 29.

21,29; L 6.

3The meaning of the term “arbelos” is not quite clear. One of the possible meanings is “shoemaker’s
knife”. Apparently, ancient shoemakers used a tool with a shape that was similar to the one formed
in the figure.

4Only the first of the inscribed circles touches all three initial semicircles; all others touch two
of the semicircles and their own predecessor and successor. Note the motivic connection to Props.
7-10. Each inscribed circle in the arbelos sequence is a solution to the Apollonian problem. Only
the starting configuration, however, is directly related to the special case treated in Prop. 10; cf.
Jones (19864, p. 539). See also Hofmann (1990) II, pp. 146—164, and the notes in the commentary
on Props. 13-18.
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A E C

<The task is> to show that the perpendicular from the center H onto AC is equal
to the diameter of the circle around H, whereas the perpendicular from T is double
the diameter of the circle around T, and the perpendicular from K three times <the
diameter of its circle>, and the perpendiculars in sequence are multiples of their
respective diameters according to the sequence of numbers exceeding one another by a
unit, when the inscription of circles continues indefinitely. However, the lemmata'
will be proved before.

Prop. 13: Preparatory Lemma: Points of Similarity
and Touching Circles

#15 Let there be <given> two circles ZB and BM with centers A and C, touching each
other in B, and let <the circle> BM be the larger one. In addition, let there be given
some other circle KL with center H, touching them in K and L <respectively>, and join
CH and AH (they will in fact pass through K and L?), and the straight line joining K
and L, when produced, will, on the one hand, intersect the circle ZB, and, on the other hand,
it meets?® the straight line through the centers A and C, when it is produced (on account
of the fact that the side AK of the trapezoid AKDC is larger than the <side> CD).*

'ta AapPaviéueva; a certain preference for this word, as a label for preliminary lemmata that
are presented before the main body of a treatise, is attested for Archimedes, though he is not
completely consistent in his usage of the word. In Prop. 17, the word Afjupo will be used.

2110, 12.

*Note the change of tense. This could be an indication that the statement about KL intersecting
AC was originally not part of the ekthesis, but of the proposition. As indicated by the way I set up
the paragraphs above, I think that the whole text from “and the straight line” to “AB (is) to BC”
is the proposition. Prop. 13’s claim thus has two parts: (i) AKDC is a trapezoid, i.e., KL and AC
meet (in E), (ii) AE:EC = AB:BC. See the commentary for a defense of my decision. It has con-
sequences for the converse of Prop. 13 as well. For the converse can then assume both AK || CD
and AE:EC = AB:BC (even if the former condition is not explicitly mentioned), and derive
K-L-D-E from there. The converse will be used in Props. 15 and 17.

“That AH || CD and that therefore AKDC is a trapezoid will be shown in the first part of the
apodeixis.
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Now, let it meet <AC> in E, intersecting the circle <ZB> in D. <The task is> to show
that AE is to EC as AB <is> to BC.!

However, this is obvious when CD is joined.? For the triangles CDL and LKH
turn out to be equiangular, since they have equal vertex angles at L,* and the sides
adjacent to the angles <at> C and H are proportional,* so that the alternate angles
DCH and CHA are equal, and CD is <thus> parallel to AH,’ and as AE <is> to EC,
so <is> AK to CD, i.e.: AB to BC.°
<Converse:>

However, the counterpart is obvious as well. For whenever AE is to EC, as AB
<is>to BC, KD turns out to be on a straight line with DE.

For AK is parallel to CD,” and also, AK is to CD as AB <is>to BC,%i.e.: as AE
<is> to EC.° Therefore, KD is on a straight line with DE. For if the <straight line>
through K and E does not pass through D, also, but through T,'? it turns out that AK
<is>to CT as AE <is> to EC,!! which is impossible. Similarly, it will not reach and

'This means that E is a point of similarity.

2Hultsch brackets the phrase “when CD is joined” as an interpolation (210, 8 app. Hu). For on his
reading, the line CD is mentioned already in the ekthesis, and should not occur in the proof. See
the above footnote and the commentary for the reconstruction of the overall argument in Prop. 13.

3Here Hultsch (perhaps unnecessarily) brackets the words “at L” (210, 10 + app. Hu), and in
the following line “€yovta”(210, 11 + app. Hu).

4VIL 7.

31, 27. Now we have shown that CD is parallel to AH. Therefore, we indeed have a trapezoid
AKDC, with AH > CD; therefore, AC and KD (=KL) meet, and we call the point of intersection
E. See the commentary.

°VL 4, V, 16.

"Hultsch 211, # 1, claims that AH || CD can be shown exactly as above, from ALHK ~ ADCL.
However, that similarity rested on the assumption that D, K, and L lie on a straight line, and this
is exactly what the converse is about to prove. In my opinion, we rather have to assume that DC
is a parallel to AH in the converse. See the commentary.

8AK = AB and CD = BC, as radii of the respective circles.

By assumption.

YWithD - T - C.

WAE:AK = EC:CT (VL 4); apply V, 16.
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intersect CD produced beyond D, for example, in N.! For again AK will be to CN
as AE <is> to EC,? which is impossible. For it is <so> to CD.

Or <it can be shown> in the following way.

Draw the parallel KN to AE through K, and ACNK becomes a parallelogram,’
and AK is equal to CN.* And since AK, i.e.: CN, is to CD, as AE <is> to EC, sepa-
rando, as AC <is> to CE, <so is> ND to DC.? Alternando,® as AC, i.e.: as KN, <is>
to ND, so <is> EC to CD. And the sides adjacent to the equal angles at N and C
are in proportion. Therefore, the triangle EDC is similar to the triangle DNK.
Therefore, the angle EDC is equal to the angle NDK. And CN is a straight line.
Therefore, KDE is a straight line as well.”
<Addition:>

Moreover, I say that the rectangle KEL is also equal to the square over EB. For
since as AE <is> to EC, so <is> AB to BC, i.e.: to CZ, the remaining BE will be to
the remaining EZ as AE <is> to EC, i.e.: as KE <is> to ED, also.® But as KE <is>
to ED, so is the rectangle KEL to the rectangle LE/ED,” whereas as BE <is> to EZ,
so <is> the square over BE to the rectangle BEZ,'° and the rectangle LE/ED is equal
to the rectangle BE/EZ.!! Therefore, the rectangle KEL is equal to the square over
EB, also.

Prop. 14: Technical Lemma. Perpendiculars and Diameters in
Configurations with Three Touching Circles

#16 <Let there be given> two semicircles BHC and BED, and the circle EZHT
touching them,'? and let the perpendicular AM from its center A onto the base BC
of the semicircles be drawn.

'N-D-C.

2VI, 4 and V, 16, as above.

3 Again, it seems apparent that one must assume that CD || AK (compare the above footnote).

41, 34.

SCN:CD = AE:EC by assumption. CN = CD + DN, and AE = EC + AC; therefore, DN:CD =
AC:EC (V, 17).

0V, 16.

7CDN is a straight line = ZCDK + ZKDN = 7. It was shown above that ZEDC = Z/NDK; therefore,
Z/CDK + ZEDC = 7.

$AE:EC = (AB + BE):(EZ + ZC) = AB:CZ (assumption in the converse) = BE:EZ = AE:EC
(V, 19); AC:EC = DK:DE (VI, 2), and thus AE:EC = KE:ED (VI, 1).

VI, 1, height EL.

VI, 1, height BE.

I, 36.

"2 The diameters BC and BD of the semicircles are assumed to be in line. E and H are the points of
touch with the third circle. There are three possibilities for the relative position of the semicircles
and the circle involved (configurations 1-3, cf. figures a—c). Even though only two of these configu-
rations are needed for the arbelos theorem, the author of the little treatise gives a complete account
of the lemmata involved. See the commentary on the Archimedean features of Props. 13—18.
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<I claim> that as MB <is> to the radius of the circle EZHT, so is, in the first
configuration, the sum of CB and BD to their difference,! CD, whereas in the second
and third configuration the difference between CB and BD <is> so to the sum of
CB and BD, i.e.: to CD.2

a H
Y A7
E<
B K M L D C

Draw the parallel TZ to BC through A. Now, since the two circles BHC and
EZHT touch each other in H, and the diameters BC and ZT in them are parallel, the
lines through H, T, and B and through H, Z, and C will both be straight lines.’
Again, since the two circles BED and EZHT touch each other in E, and the diam-
eters TZ and BD in them are parallel, the lines through Z, E, and B and through T,
E, and D will both be straight lines.*

“Draw the perpendiculars TK and ZL from the points T and Z <onto BD>, also.
Now, on account of the similarity of the triangles BHC and BTK,* BT <is> to
BK as BC <is> to BH, and the area comprised by CB and BK® is equal to the

'The Greek word is “Orepoyf|” (excess); as in Prop. 9, it is translated as “difference”.

>The technical Prop. 14 yields the central result needed for establishing the arbelos theorem.
Specifically, it is the intermediate step labeled as ““”” below that is most important for the follow-
ing theorems. See the commentary on Archimedean features of Props. 13—18, and compare the
footnote on “.”

*Hultsch (p. 215, # 1 Hu) provides a proof involving an auxiliary construction, and reference to
Prop. 13. Instead, one could simply assume implicit appeal to an elementary step of inference,
capturing the same content as the group of theorems in Coll. VII, 102—-106 mentioned in the foot-
notes to Prop. 8: Whenever one has a configuration with parallel chords in tangent circles, the lines
connecting the endpoints “crosswise” also go through the point of touch. Another possibility for
this step in Prop. 14, though valid only for configurations 1 and 2, would have been to appeal to
a theorem as in Lib. ass. 1. See also Co p. 74, A.

4Again, we may have an appeal to a theorem about parallel chords in tangent circles (cf., e.g., Coll.
VII, 102-106; compare the preceding footnote).

Both triangles have a right angle, and they have the angle at B in common.

%Le., the area of the rectangle with sides CB and BK. The Greek text has “td0 Lmd 'B BK
nepleyopevov yopiov.” The fact that we are dealing with areas is explicitly emphasized, and this
seems to be a peculiarity of the text in Props. 13—18. It may very well go back to the style of the
original author of the treatise.
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<area comprised> by HB and BT,! whereas on account of the similarity of the
triangles BZL and BED, BZ <is> to BL as DB <is> to BE, and the <area comprised
by> DB and BL is equal to the <area comprised> by ZB and BE.? The <area com-
prised> by HB and BT is equal to the <area comprised> by ZB and BE as well.?
Therefore, the <area comprised> by CB and BK is equal to the <area comprised>
by DB and BL, also.* When the perpendicular from Z falls onto D, however, <this
area CB/BK is equal> to the square over BD.>

b H E

C B D

Therefore, in the first configuration, as CB <is> to BD, so <is> LB to BK, so
that <as> the sum <of> CB and BD <is> to their difference CD, so <is> the sum
<of> LB and BK to their difference KL as well.” And BM is half of the sum <of>
LB and BK (on account of the fact that KM is equal to ML?), whereas MK is half
of LK. Therefore, BM <is>to MK, i.e.: to the radius of the circle EZTH, as the sum
<of> CB and BD is to CD as well.

'The Greek phrasing is “10 Umd HB B®.” This is also different from the abbreviations “t0d
Lo HBO®” and “t0 bro tédv HB®”, which are taken, in this translation, as technical formulae for
the rectangle HBT. The expression “10 0o HB BO®” is elliptic for “td bnd HB BO mepieydpevov
yopiov.” The translation will keep track of this differentiation by adding the phrase “area comprised”
in brackets throughout Props. 13—18. Compare the preceding footnote. BT:BK = BC:BH (VI, 4) =
BT x BH = BC x BK (VL,16).

>The argument is completely analogous to the one in the preceding step. The triangles are similar
because of the right angles and the common angle at B; similarity implies the stated proportion
(VI, 4), and thus (VI, 16) the equality of the rectangles.

3111, 36 for configurations 1 and 3; III, 35 for configuration 2.

“We have shown: CB x BK =HB x BT, DB x BL =ZB x BE, and HB x BT = ZB x BE. Therefore,
CB x BK =DB x BL.

5In that case, DB = BL. The limit case will be used in Prop. 17 and may have been inserted here
precisely for that purpose (cf. 214, 20-216, 1 app. Hu).The passage framed by “*” is the core of
Prop. 14. Its result will be quoted several times in what follows, independently of Prop. 14 itself.
VI, 16.

"(BC + BD):BD = (BL + BK):BK (V, 18); (BC — BD):BD = (BL — BK):BK (V, 17); therefore:
(BC + BD):(BC — BD) = (BL + BK):(BL — BK) (V, 22).

8In numbers, BM is the arithmetic mean of BK and BL; the author of the arbelos treatise avoids
using terms coined for numbers to label properties of magnitudes.
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In the second and third configuration, on the other hand, since the rectangle
CBK has been shown to be equal to the rectangle DBL,! LB <is> therefore to BK
as CB <is> to BD.? Componendo, KL <is> to KB as CD (is) to DB; so that KL
<is> to the difference of LB and BK as CD <is> to the difference of CB and BD,
also.? And the radius of the circle EZHT is half of KL, whereas BM is half of
the difference of LB and BK (on account of the fact that LM is equal to MK*), so
that as MB <is> to the radius of the circle EZHT, so <is> in the first configuration
the sum <of> CB and BD to their difference CD, whereas in the second and third
configuration the difference of CB and BD <is so> to the sum CBD, i.e.: to CD.

A

<Addition 1:>

At the same time, however, it is established by investigation that the <area com-
prised> by BK and LC is equal to the square over AM as well. For on account of
the similarity of the triangles BTK and ZLC’ ZL <is> to LC as BK <is> to KT, and the
<area comprised> by BK and LC is equal to the <area comprised> by TK and ZL,*
i.e.: to the square over AM.’

' The equality of the rectangles mentioned was shown in " above.

2VI, 16.

3(LB - BK):BK = (CB — BD):BD (V,17); from KL:KB = CD:DB we therefore get KL:(LB — BK)
=CD:(CB - BD) (V, 22).

‘LB =LM + MB; BK = MK — MB = LM — MB. From here, it follows immediately that BM:radius
= CD:(CB - CD). Instead of giving the result for configurations 2 and 3 explicitly, and then restating
it in the summary of what has been shown, the text proceeds directly to the summary.

>The triangles are both similar to the triangle BHC.
°VI, 4 and VI, 16.
"By construction: TK = ZL = AM, because TZ is a diameter parallel to BC.
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<Addition 2:>

However, on account of the fact that as BC <is> to CD, so <is> BL to KL,' the
<area comprised> by BC and by the <straight line> KL, i.e. <by BC and> the diam-
eter of the circle, turns out to be equal to the <area comprised> by BL and DC,? also,
whereas on account of the fact that as BD <is> to CD, so <is> BK to KL,? the <area
comprised> by BD and KL, i.e.: <by BD and> the diameter of the circle <turns out
to be> equal to the <area comprised> by BK and DC.

Prop. 15: Sequence of Inscribed Touching Circles:
Induction Lemma

#17 Under the same conditions, let the circle TRT’, touching the initial semicircles
and the circle EHT in the points T, R, and T” be described, and let the perpendiculars
AM and PN from the centers A and P onto the base BC be drawn.*

I claim that PN is to the diameter of the circle TRT’ as AM, taken together with
the diameter of the circle EH <is> to its diameter.’

"From *, we get: BC x BK = BD x BL = BC:BD = BL:BK (VI, 16); first configuration: BD +
CD = BC, and BK + KL = BL; thus: CD:BD = KL:BK (V, 17); second and third configuration:
BC + BD = DC, and BL + BK = KL; thus: CD:BD = KL:BK (V, 18). From these equations, it
follows in all three cases that BC:CD = BL:KL (V, 16 and V, 22).

2VI, 16.

3The argument is analogous to the preceding one. From *, we get: BC x BK = BD x BL = BC:BD
= BL:BK (VI, 16); first configuration: BC = BD + CD, and BL = BK + KL; thus: CD:BD =
KL:BK (V, 17) second and third configuration: DC = BC + BD, and KL = BL + BK, and DC:BD
= KL:BK (V, 18), also. In both cases, V, 16 yields BD:CD = BK:KL.

‘R, T’, and T are the points of touch with the semicircles over BD and BC and the first added
circle EHT respectively. M and N lie on BC.

> Again we get three possible configurations, on the basis of the configurations in Prop. 14. Each
of them leads to exactly one possibility for the second circle to be inscribed into the respective
configuration. Note that in Hultsch’s edition, configuration 1 from Prop. 14 leads to configuration
1 in Prop. 15, whereas configuration 2 leads to configuration 3, and configuration 3 to configura-
tion 2. I have numbered the figures in concurrence with Prop. 14. In A, the second diagram for
Prop. 15 concerns a limit case that is not treated in the text, but relevant for Prop. 17 and Addition
2 to Prop. 16. For a correct diagram and a reconstruction of the proof for the limit case see appen-
dix Hu p. 1227 f.; cf. also Co p. 78 P. The figure for the limit case given in A is reproduced in an
appendix to this edition. The figure for the configuration that results from building on configuration
3 has been added here; it is modeled on Hu, since it is missing in A. The occurrence of the figure
for the limit case indicates a loss of text that was originally part of the source at some stage in
the transmission.
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Draw BZ at right angles to BD. Then it is tangent to the circle BHC. And produce
AP, after it has been joined, to Z.! Since, according to what has been shown before,
in the first configuration BM <is> to the radius of the circle EHT, as the sum CBD?
<is> to their difference CD, whereas in the second and third configuration MB <is>
to the radius of the circle EHT as their difference <is> to their sum, i.e.: as the dif-
ference of CB and BD <is> to CD,? and <since the same is true for the ratio of> BN
to the radius of the circle TRT’,* therefore — alternando — the radius AT of the circle
EHT will also be to the radius TP of the circle TRT’ as MB <is> to BN.> But AZ
<is> to ZP as MB <is> to BN (for when ZM is joined, MZ will be to ZX as MB
<is> to BN.)® And therefore, the radius AT of the circle EHT <is> to the radius TP
of the circle TRT’ as AZ <is> to ZP.”

17 is taken as the point of intersection between BZ and AP.

’Le.: CB + BD.

*Prop. 14.

*I have taken “koi 1 BM mpog...” (220, 1) and “kai | BN 1pog...” (220, 6) to be syntactically
parallel. We get two corresponding statements about line segments cut off by perpendiculars in
relation to radii of corresponding circles. Prop. 14 can be applied directly for BM:AT and
NB:TP.

SMB:AT = NB:TP, because they are both equal to either (CB + BD):CD (configuration 1) or to
(CB - BD):CD (configuration 2/3). V, 16 yields MB:BN = AT:TP. This proportion will be used
again in the course of Prop. 15.

X is the point of intersection between MZ and PN. For configurations 1 and 2, consider AZBM
with intersecting line PX, parallel to BZ. We get: BN:NM = ZX:XM (VI, 2); this transforms to
NM:BN = XM:ZX (V, 16), and thus: BM:BN = ZM:ZX (V, 18).

For configuration 3, consider AMNX, with intersecting line ZB, parallel to NX. We get: BN:BM
=Z7ZX:MZ (V1, 2), and V, 16 yields BM:BN = MZ:ZX.

PN || AM by construction, and therefore: ZM:ZX = ZA:ZP (VI, 4, with V, 16, for AZMA, AZXP).
This argument is applicable in all three possible configurations, and we get: BM:BN = AZ:ZP.
"Having shown BM:BN = AT:PT and BM:BN = AZ:ZP (cf. preceding footnotes), we get: AT:PT
=AZ:ZP.
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And a certain circle BRED touches the circles EHT and RTT’ at the points R and
E <respectively>. Therefore, on account of the theorem Prop. 13,' shown above, the
straight line joining the points R and E, when produced, will fall on the point Z, and
the rectangle comprised by EZR will be equal to the square over TZ as well.2
However, the rectangle EZR is also equal to the square over ZB.* Therefore, the
square over ZB is equal to the square over ZT, also. Therefore, BZ is equal to ZT.

Furthermore, however, since MA, when it is produced, intersects the circumfer-
ence of the circle EHT in S, whereas PN intersects the circumference of the circle
TRT” in the point O, AT is therefore equal to AS, whereas PO <is equal> to PT, and
the <straight line> joining the points O and S will pass through T.

For the angle TAS is equal to the alternate angle TPO, and the triangle ATS is
equiangular to the triangle PTO, and the <line> AP is a straight line.* Therefore, the
line drawn through the points S, T, and O is a straight line, also. It will, however, pass
through B as well. For the <line> TOB is a straight line, on account of the fact that
OP is to PT as BZ <is> to ZT, given that the angles BZT and OPT, adjacent to the
parallels BZ and OP, are equal.’ This, also, has been shown above in Prop. 13.6

"We use the converse of Prop. 13 to establish that E, R, and Z lie on a line. Hultsch (222, 7/8 app.)
believes the reference to Prop. 13 is due to an interpolator.

*Prop. 13, Addition.

311, 36.

“In AOPT and ASAT, ZA = /P, because PO || AS (I, 29). Since the triangles are isosceles, they are
similar. Therefore, they have equal angles at T. Since PA is a straight line, ZSTA +ZATO = &, and
A — T- O is a straight line.

5 /BZT = ZOPT, because NZ || PO (1, 29); above, it has been shown that BZ = ZT; obviously, PO = PT,
too; therefore, ABZT ~ AOPT, and TO must pass through B. Otherwise, ABZT would not be isosceles.
® An argument analogous to the one showing that TO must pass through B was used in the converse
to Prop. 13. Hultsch suspects the reference to Prop. 13 to be an interpolation (222, 7/8 app. Hu). It
seems also possible that the arbelos treatise as a whole was taken out of a larger treatise, with a more
substantial preliminary part, of which only Prop. 13 survives. See the commentary on Prop. 13.
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However, produce the <line> BP, after it has been joined, and let it meet MA, after
it has been produced, in K. Now, since AZ was to ZP and AT to TP as MB <is> to
BN, i.e.: as KB <is> to BP,! AS will be to PO, and SK <will be> to PO, as KB <is>
to BP. Therefore, AS is equal to SK.> Now, since the whole <line> AK is equal to the
whole diameter of the circle EHT, and <since> NP is to OP as KM <is> to KS, NP
will also be to the diameter of the circle TRT’, as MK <is> to KA, i.e.: as MA,
together with the diameter of the circle EHT <is> to this diameter?® — which is what
was to be proved.*

Prop. 16: Arbelos Theorem

#18 With these things investigated beforehand, assume a semicircle BHC, and on its
base choose a point D arbitrarily, and over BD and DC describe the semicircles BED
and DYC, and in the space between the three circumferences, the so-called arbelos,

'ABMK ~ ABNP by construction = BK:BM = BP:BN (VI, 4), and BK:BP = BM:BN (V, 16).
*We have shown above: AZ:ZP = AT:PT = BM:BN. Now we also have: BM:BN = BK:BP.
Obviously, AT = AS and TP = PO (radii). Therefore, AS:PO = AT:PT = BK:BP. Consider that ABKS
~ ABPO. BP:PO = BK:KS (VI, 4) = KS:PO = BK:BP (V, 16). It follows that AS:PO = KS:PO, and
AS = KS must hold (V, 9).

3SAK = AS + SK =2 AS = 2KS. Consider the pairs of similar triangles BKM, BPN and BKS, BPO;
We get: PN:KM = BK:BP = KS:OP, and thus (V, 16): PN:OP = KM:KS. Therefore, PN:20P =
KM:2KS = KM:KA. 20P is the diameter of the circle TRT’, and KA is MA + AK = MA + the
diameter of the circle EHT.

4Some bit of text has been lost at the end of Prop. 15 (cf. 224, 11 app. Hu). As said above, the manuscript
A has a figure for the limiting case of Prop. 15 (the case used in Prop. 17 and in Addition 2 to Prop. 16),
but no argument. For such an argument, cf. Co p. 78, Lemma in P, and appendix Hu p. 1227 f.
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inscribe any number of circles, touching each other and the semicircles,' like the ones
with centers A, P, and O, and from their centers draw the perpendiculars AM, PN, and
OS onto BC.

I claim that AM is equal to the diameter of the circle around A, whereas PN is
double the diameter of the circle around P, and OS three times the diameter of the
circle around O, and the perpendiculars in sequence the multiples of their respective
diameters according to the numbers exceeding each other in sequence by a unit.

B S N K D M L C

Draw the diameter TZ parallel to BC, and the perpendiculars TK and ZL <onto
BC>. Now, according to what was written down above, the rectangle comprised by
CB and BK is equal to the rectangle comprised by LB and BD, whereas the <rect-
angle comprised> by BC and CL <is equal> to the rectangle KCD.? And for this
reason KL is to LC as BK <is> to KL. For both these ratios are the same as the one
of BD to DC. For since the <area comprised> by CB and BK is equal to the <area
comprised> by LB and BD, DB therefore is to BK as CB <is> to BL.* Alternando:
as CB <is> to BD, so <is> LB to BK; separando: as CD <is> to DB, <so is> LK to
KB. Conversely, as BD <is> to DC, <so is> BK to KL. Again, since the <area
comprised> by BC and CL is equal to the <area comprised> by KC and CD, CD
therefore is to CL as BC <is> to CK. Alternando: KC <is> to CL as BC <is> to CD.
Separando, therefore, KL is to LC as BD <is> to DC.

However, BK was to KL as BD <is> to CD as well. Therefore, KL is to LC as
BK <is> to KL, also. Therefore, the <area comprised> by BK and LC is equal to
the square over KL. However, it has been shown above that the <area comprised>

'In the arbelos proper, each circle in the sequence touches the semicircles over BD and BC, and
its own predecessor in the sequence. For the first circle, this is the semicircle over DC.

2Prop. 14, intermediate step *.
VI, 16.
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by BK and LC is equal to the square over AM as well.! Therefore, AM is equal to
KL, i.e.: to the diameter ZT of the circle with center A.
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However, since the following has been shown above, also: that PN is to the diameter
of the circle around P as AM, taken together with ZT, <is> to ZT,> and <since> AM,
taken together with ZT is double ZT,* PN will be double the diameter of the circle
around P* Therefore, PN, taken together with the diameter of the circle around P <is>
three times the diameter.’ And OS stands in the same ratio to the diameter of the circle
around O.° Therefore, OS is three times the diameter of the circle around O as well.

And similarly <one will see that> the perpendicular belonging to the next circle
in sequence is four times the diameter <of that circle>, and the perpendiculars in
sequence will be found to be the multiples of the diameters in them according to
the sequence of numbers exceeding each other by a unit, and it will be shown that
this occurs indefinitely.”
<Addition 1 (configuration with two straight lines):>

However, when instead of the circumferences BHC and DYC there are <given>
straight lines, at right angles with BD, as in the third configuration, the same will
occur concerning the inscribed circles; for right away the perpendicular from center
A onto BD turns out to be equal to the diameter of the circle around A.%
<Addition 2 (configuration with one straight line):>

"Prop. 14, Addition 1.

2Prop. 15.

31t was shown in the first part of Prop. 16 that ZT = AM.

4(AM + ZT):ZT = 2 ZT:ZT = PN:diameter of circle P.

SPN:diameter ~ 2:1 = PN + diameter:diameter ~ 3:1.

®Prop. 15.

"The argument in Prop. 16 is related to complete induction. See the commentary.

8The first step of the induction is then trivial. The argument can proceed from there, on the basis
of Prop. 15, as in Prop. 16. One has to assume the limit case of Prop. 15, for which only the figure,
but not the actual argument survives (see notes above). Co p. 80 F provides a direct argument
without reference to Prop. 15.
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Finally, when the two circumferences BHC and BED remain, and instead of the
circumference DYC one assumes a straight line DZ at right angles with BC (as is
the case in the fourth configuration), <one gets the following situation:> when BC
has to CD a quadratic ratio in numbers,' the perpendicular from A will be commen-
surable with the diameter of the circle around A, whereas when it does not <have
such a ratio>, <the perpendicular is> incommensurable <with the diameter>.
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For in general DZ has, in square, the same ratio to the diameter of the circle around
A that BC <has> to CD, as is shown <in the next proposition> in sequence.?

'The squares are to have a ratio like two square numbers.

*Le.: Prop. 17 will show hat DZ*:d(circle A)> = BC:CD. Because DZ = AM, one can see (e.g.,
using X, 9) that AM will be commensurable in length with d(A) iff BC has to DC a ratio expressible
in square numbers.
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For example,' when BC is four times CD in length, DZ, i.e.: the perpendicular from
A, turns out to be double the diameter of the circle around A in length,? and the <per-
pendicular> from P <turns out to be> three times <the corresponding diameter>,
whereas the <perpendicular> from O <turns out to be> four times <the corresponding
diameter>, and so on in sequence, according to the sequence of numbers.?

Prop. 17: Lemma Used in Prop. 16, Addition 2

#19 The lemma* that was set aside. <Let there be given> semicircles BHC and
BAD,’ and DE at right angles <to BD>, and a touching circle THZA.

<I claim> that DZ is, in square, to the diameter of the circle THZA as BC is to
CD in length.
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Draw the diameter TZ. Then the <lines> ZAB and TAD are straight lines. Draw
the perpendicular TK. Then, on account of what has been shown above, the area
comprised by CB and BK is equal to the square over BD.” Therefore, as BC <is>to CD,

"Hultsch (230, 4-8 Hu + app.) believes the example is due to interpolation.

2BC = 4CD = DZ? = 4 diameter?; this entails DZ = 2 diameters.

3Prop. 15.

“Here, the author uses the word “Afjupa”; before, in the introduction to the arbelos treatise, the
word “Aappavopeva’” was used.

SDisonBC.B-D-_C.

® Appeal to theorems like Coll. VII, 102-106 (tangent circles, parallel chords and lines through the
point of touch) seems most likely. ZAB and TAD will be straight lines, because TZ is parallel to
BC, and A is the point of touch. As above in Prop. 14, Hultsch ad locum comments that this could
be shown via Prop. 13, and refers to his footnote on Prop. 14 to this effect. Co p. 81 B refers to
his Lemma p. 74 A.

"Prop. 14, passage “. As noted above in the footnotes to the passage, Prop. 17 uses a limiting case
for the result in passage “, which was probably included there with a view to Prop. 17.
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so <is> BD to DK, i.e.: to TZ.! However, as BD <is> to TZ, so <is> DA to TA,? and as
DA <is> to AT, so <is> the square over ZD to the square over TZ. For TZD is a right-
angled triangle, and ZA is a perpendicular onto the hypotenuse ZA.?> And therefore
the square over ZD <is> to the square over the diameter of the circle THZA as BC <is>
to CD.*

Prop. 18: Addition: Progression Theorem, Odd Numbers

#20 Furthermore, the following, too, has been established through investigation by the
lemmata written down above.’ Let there be <given> the semicircles ABC and ADE,S
and let the circles with centers Z, H, and T be described, touching their circumferences,
and <let> the ones continuing them in the direction of A <be described, also>.

A C
E

Now, that the perpendicular from Z onto AC is equal to the radius of the circle
around Z, is clear. However, I say that, also, the perpendicular from H is three times
the radius of the circle around H, whereas the <perpendicular> from T <is> five times
<the radius of the circle around T>, and the perpendiculars in sequence <are> the
multiples of the radii in accordance with the odd numbers in sequence.

'BC:BD = BD:BK (VIL, 17) = (BC — BD):(BD — BK) = BC:BD (V, 19), i.e.: CD:DK = BC:BD
= BC:CD = BD:DK (V, 16). TZ = DK by construction, thus: BC:CD = BD:TZ.

2ABAD ~ ATAZ, because TZ || BD and B — A — Z, D — A — T are straight lines (I, 29). Therefore,
BD:DA = TZ:TA (VL 4), and BD:TZ = AD:TA (V, 16).

*In the right-angled triangle TZD with height AZ, we have: TZ:TA = TD:TZ, and ZD:TD =
AD:ZD (VI, 8); therefore: TZ x TZ = TD x TA, and ZD x ZD = TD x AD (VI, 16). Therefore:
(TZ x TZ):(ZD x ZD) = (TD x TA):(TD x AD) = TA:AD (VI, 1). An explicit use of abstract
duplicate ratios, interpreted as ratios of squares, as suggested by Hultsch here (p. 233 Hu), can be
avoided. Compare also Co p. 81, F.

4We have shown above: BC:CD = BD:TZ = DA:TA, and finally: TA:AD = (TZ x TZ):(ZD x ZD).
Apply V, 16.

>This statement may be an indication that Pappus himself thought that there were at least two layers
present in the source he is using.

*A-E-C.
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For since it has been shown above that as the perpendicular from Z, taken
together with the diameter <is> to the diameter, so <is> the perpendicular from H
to its respective diameter,' and <since> the perpendicular from Z, taken together
with the diameter, is 3/2 of the diameter, it <i.e., the perpendicular from H> will
therefore be three times the radius.

Again, since the perpendicular from T is to the <corresponding> diameter as the
perpendicular from H, taken together with the <corresponding> diameter <is> to
the <corresponding> diameter,> whereas the perpendicular from H, taken together
with the diameter has to the diameter the ratio that 5 has to 2,° the perpendicular
from T will have that same ratio to the diameter as well. It will therefore be five
times the radius. Similarly, it will be shown that the perpendiculars in sequence are
multiples of the radii in accordance with the odd numbers in sequence.*

Props. 19-22: Archimedean Spiral

Prop. 19: Genesis and Symptoma of the Spiral

#21 The Samian geometer Konon put forth the theorem concerning the spiral
described in the plane, whereas Archimedes proved it, employing a certain aston-
ishing plan of attack.® The line, however, has a genesis® of the following sort.

Let there be given a circle with center B and radius BA.” Assume that the straight
line BA has been set in motion® in such a way that, while B remains in its place,

'Prop. 15.

*Prop. 15.

*Perpendicular from T: radius ~ 3:1; therefore, (perpendicular from T + 2 radii): 2 radii ~ 5:2. Note
that in this phrasing, numbers and magnitudes are again kept apart conceptually.

“This is, again, an argument by (complete) induction. Here the odd numbers are viewed as an
infinite sequence, in ratios.

>This statement is misleading. According to the proem of Archimedes’s Spiral Lines, it was
Archimedes himself who proposed the theorem, challenging Konon to prove it. When the latter
died before being able to seriously attempt the task, Archimedes proceeded to publish his own
treatment, referencing Konon as the original addressee and intended discussion partner.

The Greek term yéveolc means coming-to-be, creation, growing. It is used in every generation
of a motion curve in Coll. IV, and I have left it untranslated.

"Note that the circle is given from the start, and the spiral inscribed in it. In Archimedes’ Spiral
Lines (SL), the spiral is created from two given motions, and the circle is described afterward
around it. Only the version in Coll. IV will yield the angle section and the squaring of a circle.
See the commentary on SL versus Coll. IV, and on symptoma-mathematics of motion curves.
8kekiviioBw. Throughout the descriptions of the motion curves, Pappus will use either kiveiv or
d€pechat. Perhaps the two terms have a slightly different meaning. For lack of examples it is
not possible to determine what the difference would amount to. I have chosen to render “kiveiv”
with “move”, and ¢€pecOot with “travel”. In ordinary usage kivelv is the broader term, whereas
d€pechau is restricted to locomotion.
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A travels uniformly along the circumference of the circle,' and together with it
<i.e., together with the rotating BA> a certain point, starting from B, is assumed to
travel uniformly along it, in the direction of A, and assume that within the same
time the point from B passes through BA and A passes through the circumference
of the circle.? Now, the point moving along BA will describe a line such as BEZA
during the rotation, and its starting point will be the point B, while the starting point
of the rotation will be BA.

A

This line,® however, is called spiral. And its principal symptoma* is of the
following sort. Whichever <straight line> is drawn through the interior toward it,
such as BZ, and produced <to C>, the straight line AB is to the <straight line>
BZ as the whole circumference of the circle is to the arc ADC.> This, however, is

'Rotation is in all likelihood clockwise, though counterclockwise rotation is possible, too. The
synchronous linear motion is “inside out.”

The two motions have to be synchronized, using the ratio of radius to circumference of a circle, i.e., 7.
The implicit inclusion of « is the reason why this version of the Archimedean spiral can be used
to divide an angle in any given ratio (cf. Prop. 35), and also to square the circle (invoking SL 18).
It also creates problems for the conceptualization of this version of the spiral. See the commentary.
’Reading A’s “avtn” as “a.9tn”; both Hultsch and Treweek prefer “adty” (234, 18 Hu; 101, 7 Tr).
*apyucév countopo. The word “archikon” implies the idea of “original” as well as “principal.”
In fact, the main, property of the curve, the one on which the mathematical argumentation draws,
stems directly from the curve’s origin. A similar use of &pyuév can be found at 252, 21 Hu for
the quadratrix. The word symptoma originally denoted a chance happening or casualty. Within
Hippocratic medicine, it was used to label the signs (symptoms) of a disease, the observable char-
acterizing property of a subject of study, the one the expert will look for and work with. Drawing on
this scientific usage, it is then used in geometry for characterizing higher curves, and sometimes
even conic sections. It obviously plays the role of a technical term; and I have left it untranslated.
The symptoma of the spiral here, expressible in strictly mathematical terms, derives directly
from the genesis, from the origin of the curve. The subsequent mathematical arguments, however,
use the symptoma as a principle in the mathematical argumentation, as a quasi-definition of the
curve, avoiding any reference to the genesis. For the significance of this move see the commentary
on symptoma-mathematics.

>Compare SL14 (together with SL 2), for a spiral with circumscribed circle.
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rather easy to understand from the genesis <of the spiral>. For in the time in which
the point A passes through the whole circumference of the circle, in that time the
<point starting> from B <passes through> BA, also, whereas in the time in which
A <passes through> the arc ADC, in that time the <point starting> from B <passes
through> the straight line BZ, also. And these motions are of uniform speed,' so that
the <above mentioned> proportion holds, also.

Prop. 20: Progression of Spiral Radii*: Proportional
to Rotation Angles

And the following is also obvious: that all straight lines drawn through in the interior
from B to the line and containing equal angles exceed each other by the same <line
in length.>?

Prop. 21: Spiral Area* in Relation to the Circle

#22 It is shown, however, that the figure contained by the spiral and the straight line
at the starting point of the rotation is the third part of the circle comprising it.?
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'Pappus’ explanation here is not very felicitous. It unduly fuses concepts of motion and speed.
Nevertheless, Knorr (1978a, p. 50 f.) goes too far in concluding that Pappus misunderstood the
whole mathematical context.

*Line segments between the center of the original circle and the spiral will be called “spiral
radii” here.

3Spiral radii corresponding to equal angle increments form an arithmetical sequence. Compare SL
12 (with SL 1). The property follows directly from the genesis. For an elementary argument that
the spiral radii for equal increments of angles form an arithmetical series see Co p. 83 commentary
on Prop. 20.

4 Areas contained by the spiral line and the spiral radius at some point of the rotation will be called
“spiral areas” here. Prop. 21 addresses the spiral area for the first complete rotation.

SCompare SL 24 (for a spiral with circumscribed circle); note the difference in argumentation.
Prop. 21 uses quasi-indivisibles, whereas SL 24 has a classical proof via double reductio, and uses
a progression of spiral radii (SL 12 (with SL 10), cf. Prop. 20). See the commentary.
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For:

Let there be <given> both the circle and the above-mentioned line, and set out a
rectangle KNLP, and cut off, on the one hand, the arc AC as a certain part of the
circumference of the circle, and, on the other hand, the straight line KR as the same
part of KP,! and join both BC and KL,? and <draw> the parallel RT” to KN, and
the parallel WM to KP, and finally, <describe> the arc ZH around center B.

Now, since as the straight line AB is to AH, i.e.: <as> BC <is> to CZ, so is the
whole circumference of the circle to the <arc> CA (for this is the principal symp-
toma of the spiral),’> whereas as the circumference of the circle <is> to <the arc>
CA, <so is> PK to KR, and as PK <is> to KR, <so is> LK to KW, i.e.: RT’ to RW,
therefore T’R <is> to RW as BC is to CZ, also.* And convertendo, therefore, as the
square over BC <is> to the square over BZ, so <is> the square over RT’ to
the square over T'W, also.’ But, on the one hand, as the square over BC <is> to the
square over BZ, so <is> the sector ABC to the sector ZBH.® On the other hand, as
the square over RT’ <is> to the square over T°W, so <is> the cylinder over the
rectangle KT’ around the axis NT’ to the cylinder over the rectangle MT’ around
the same axis.” And therefore, as the sector CBA <is> to the sector ZBH, so <is>
the cylinder over the rectangle KT’ around the axis NT’ to the cylinder over the
rectangle MT” around the same axis.

Similarly, however, when we set down, on the one hand, an <arc> CD equal to the
<arc> AC, and on the other hand, RX equal to KR, and go through the same construc-
tions, the cylinder over the rectangle RF around the axis T’F will be to the cylinder
over the rectangle X’F around the same axis as the sector DBC is to the <sector>
EBT. Proceeding in the same manner, however, we will show that as the whole circle
<is> to all the figures <constituted> out of sectors that are inscribed in the spiral
<taken together>, so <is> the cylinder over the rectangle NP around the axis NL to
all the figures <constituted> out of cylinders that are inscribed in the cone over the
triangle KNL around the axis LN <taken together>.

' The ratio for the division is not specified. Most likely, it is 1:2".
2 Adopting Tr’s emendation KL for A’s KA (Tr 101, 26).

3Symptoma: AB:BZ = AB:BH = circumference:arc AC. Thus, AB:(AB — BH) = circumference:
(circumference-arc AC) (V, 19).

“The path of reasoning in this somewhat lengthy sentence is rather straightforward. Because
(AB:AH =) BC:CZ =circumference:arc CA (due to the spiral), while we also have circumference:arc
CA = PK:KR (by construction) = LK:KW (VI, 2 and V, 18) = T’'R:RW (VI, 4; V, 16; V, 18), we
can infer that T"R:RW = BC:CZ.

SBC:CZ = T’R:RW implies BC:BZ = T'R:T’W (V, 19, addition). Then the stated proportion holds
for the squares (VI, 22).

6X1I, 2 (circles have the ratio of the squares over the diameters). The sectors in Prop. 21 are the
same parts of their respective full circles (use VI, 33 and V, 15).

7XII, 11 (cylinders of equal height have the ratio of the circles at their base), and XII, 2 (circles
have the ratio of the squares over their diameters).
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And again: as the circle <is> to all the figures <constituted> out of sectors circum-
scribed around the spiral <taken together>, so <is> the cylinder to all the figures
constituted out of cylinders circumscribed around the same cone <taken together>.

From this <result> it is obvious that, as the circle <is> to the figure' between the
spiral and the straight line AB, so <is> the cylinder to the cone.? However, the cylinder
is three times the cone. Therefore, the circle is three times the said figure, also.’

Addition: Spiral Areas and Circumscribed Circles

#23 In the same manner we will show that, when a certain straight line is drawn
through in the interior to the spiral, such as BZ, and the circle through Z around
center B is described, the figure contained by both the spiral ZEB and the straight
line ZB is the third part of the figure contained by both the arc ZHT of the circle
and the straight lines ZB, BT, also.*

b

H

Now, the proof® <of Konon’s theorem mentioned in the beginning, before Prop. 19>
is of such a sort. In what follows in sequence, however, I will write down a theorem
that holds for the same line and deserves investigation.®

'The manuscript A has a plural (oyfqparo, 238, 17 app. Hu). Perhaps we do have a scribal error
here, but it is also possible that Archimedes viewed the spiral area in this argument as actually
composed of spiral sectors with quasi-indivisible arcs.

*Archimedes uses an argument that could be called “exhaustion” in the literal sense. It closely
resembles arguments via indivisibles. See the commentary.

3XII, 10; Knorr (1978a) p. 55) notes that the reference to XII, 10 leaves a gap. II does not cover
the implicit convergence argument for the spiral-figures, which is, however, crucial here.

4The addition targets a spiral segment with circumscribed circle. Thus, it is the true parallel to SL
24. The labeling of the spiral is “outside —in”, in contrast to the description in Prop. 19.

5The Greek term for the argument in Prop. 21 is indeed apodeixis (cf. 238, 26 Hu), suggesting that
Pappus may very well have considered it as more than just heuristic exploration.

Siotopiag a&rov; the word ictopia does mean “history,” among other things. Its original meaning
is “investigation”, or “research.”
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Prop. 22: Ratio of Spiral Areas as Ratio of Cubes
over Maximal Spiral Radii

#24 et there be given both the circle mentioned above in the genesis and the spiral
AZEB itself.!

I claim that, whichever <straight line> is drawn through in the interior <to the
spiral>, such as BZ, the cube over AB is to the cube over ZB as the figure contained
by the whole spiral and the straight line AB <is> to the <figure> contained by the
spiral ZEB and the straight line BZ.

A

&

Describe the circle ZHT through Z around center B. Now, since as the figure con-
tained by the line AZEB and the straight line AB <is> to the figure contained by
the line ZEB and the straight line ZB, so is the circle ACD to the figure contained by the
arc ZHT and the straight lines ZB, BT (for both were shown to be the third part of both
<circles>, respectively), whereas the circle ACD has to the area cut off by the straight
lines ZB, BT and the arc ZHT the ratio composite of <the ratio> that the circle ACD
has to the circle ZHT and <the ratio> that the circle ZHT has to the area cut off by the
straight lines ZB, BT and the arc ZHT, but as the circle ACD <is> to the circle ZHT,
so <is> the square over AB to the square over BZ,> whereas as the circle ZHT <is>
to the said area, <so is> its whole circumference to the <arc> ZHT,? i.e., <so is> the

"Prop. 22 does not specify whether the circle is circumscribed or the spiral inscribed in a given circle.
In both cases, we have a contribution to the symptoma-mathematics of the spiral. In the former
case, the theorem would in addition be on a par, conceptually, with the theorems in SL. The fact that
the circle is mentioned but not used in the theorem may be an indication that we still deal with the
inscribed spiral. As in Prop. 22, and in difference from the description in Prop. 19, the spiral is labeled
“outside-in.”

2X11, 2.

3Theon’s addition to VI, 33 (circles to sectors as circumference to arcs).
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circumference of the circle ACD to the <arc> CDA, i.e.: <so is> the straight line AB
to the <straight line> BZ — on account of the symptoma of the line.'

The figure between the spiral and the straight line AB therefore also has to the figure
between the spiral and the straight line BZ the ratio composite of the ratio that the
square over AB has to the square over ZB and the ratio that AB has to BZ. This ratio,
however, is the same as® the one of the cube over AB to the cube over BZ.?

Addition: Measurement of Spiral Quadrants

#25 Now, from this <argument> it is obvious that, when, with the spiral and the circle
around it posited, AB is produced to D and CZEK is drawn through the interior at right
angles to it, the area between the line NME and the straight lines NB, BE amounts
to 7 <area units> of the <area units> of which the area between the line BLE and
the straight line BE amounts to 1, whereas the <area> between the line ZTN and the
straight lines ZB, BN amounts to 19 <of these units>, and finally the <area> between
the line AXZ and the straight lines AB, BZ amounts to 37 (for these claims are clear
from the theorem proved above), and that of <the length units of> which AB is 4, of
these ZB is 3, whereas BN is 2, and BE is 1. For this, also, is clear from the symptoma
of the line and the fact that the arcs AC, CD, DK, and KA are equal.*

b A

Prop. 19.

% Prop. 22 uses Prop. 21 and the symptoma to express the desired ratio of spiral areas as a composite
ratio. It is the composite of a ratio of squares over radii and one of radii, and this is declared to be
equivalent to a ratio of cubes. The interpretation of composite ratios as quasi-products was not
without its difficulties, though Archimedes seems to have used composite ratios that way without
qualms cf. Saito (1986). Co p. 85, A refers to an Archimedean theorem on centers of gravity for
solids.

3Spiral area BA:spiral area BZ = (circle BA:circle BZ) x (BA:BZ) = (BA%BZ?) x (BA:BZ) =
BA*:BZ’.

“Prop. 19 yields AB:BZ:BN:BE = 4:3:2:1. From Prop. 22, we see that corresponding full spiral
areas are as 64:27:8:1. Subtracting the preceding spiral sectors at each stage, we get 37:19:7:1 for
the spiral quadrants.
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Props. 23-25: Conchoid of Nicomedes/Duplication of the Cube

Genesis and Symptoma of the Conchoid

#26 For the duplication of the cube a certain line is introduced by Nicomedes' and
it has a genesis of the following sort.

Set out a straight line AB, and a <straight line> CDZ at right angles to it, and take
a certain point E on CDZ as given.> And assume that, while the point E remains in
the place where it is, the straight line CDEZ travels along the straight line ADB,
dragged via the point E in such a way that D travels on the straight line AB throughout
and does not fall outside* while CDEZ is dragged via E. Now, when such a motion
takes place on both sides, it is obvious that the point C will describe a line such
as LCM is, and its symptoma is of such a sort that, whenever some straight line
<starting> from the point E toward the line meets it, the <straight line> cut off
between the straight line AB and the line LCM is equal to the straight line CD. For,
while AB remains in place, and the point E remains in place, when D comes to be
upon <a point> H, the straight line CD reaches HT, and the point C will fall onto* T.
Therefore, CD is equal to HT.? Similarly, also, whenever some other line <starting>
from the point E toward the line meets <it>, it will make the segment cut off by the
line and the straight line AB equal to CD.

'For information on Nicomedes see the commentary. He is associated with the conchoid and the
quadratrix (i.e., two of the prominent motion curves used for symptoma-mathematics in Coll. IV).

2800 &v this is the same term used in geometrical analysis. See the commentary.

3The distance CD is kept equal throughout the “dragging process” (neusis-property of the curve);
DE (corresponding to the pulling rope for a ship) is variable.

4 Accepting Hu’s addition of necgitat (244, 11 + app. Hu), although Tr may be right in preserving
the manuscript reading (Tr 105, 11).

5The symptoma seems to be read off a curve already drawn, not abstracted from the generating
motion (as was the case for the spiral). See the commentary.
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And, he says, let the straight line AB be called “canon,” and the point <E> “pole,”
and CD “distance,” since the <straight> lines drawn toward the line LCM and meeting it
are equal to this one, and finally the line LCM itself “first conchoid”" — since an exposi-
tion of a second and third and forth, put to use for other theorems, is also given.?

<Further information on the conchoid:>

#27 That, however, the line can be described with an instrument® and that it
proceeds along the canon at an ever-decreasing distance, i.e.: that of all the perpen-
diculars <drawn> from any point of the line LCT to the straight line AB the per-
pendicular CD is the largest, and that a perpendicular drawn closer to CD is always
larger than a <perpendicular drawn> further away, and also that when some straight
line lies in the space between the canon and the conchoid, that line will, when pro-
duced, be intersected by the conchoid, Nicomedes himself has proved, and I myself
have used the line mentioned above in the <treatise> on the analemma of Diodorus*
when I wished to trisect the angle.’

Prop. 23: Neusis Construction®

Now, on account of what has been said it is obvious that it is possible, when an
angle is given,’ like the angle HAB, and a point C outside of it, to draw a <straight
line> CH through the interior and to make the <intercept> KH between the line and
AB equal to a given <straight line>.

'The spelling of the Greek name for the curve appears as koyAogldng in A and in Hu’s text through
the end of Prop. 25. In almost all occurrences in A, however, the A was expunged later, and a y super-
scripted, changing the name to koyyogdne. It will be rendered as “conchoid” here.

2No documents about Nicomedes’ theorems on the other conchoids survive.

3, <

3Greek for “with an instrument”: “0pyovik®¢”. This term should be differentiated from the stan-
dard Greek term for “mechanical”: unyovik®g. Co translates “instrumentaliter” (cf. at Co p. 89).
For the significance of this difference see the commentary. What Pappus gives here is not a com-
ment on the conchoid itself, as “mechanical,” i.e., generated by motions, but a reference to the use
of a concrete instrument, a “conchoid-compass”, to draw the curve. Such a compass can be easily
constructed from the description of the generation of the curve via motions (cf. Eut., Comm. in
Sph. et. Cyl. 11, pp. 98, 1-100, 14 Heiberg).

4We do not have a treatise by Pappus with this title. Information on Diodorus and a work on the
Analemma is also very scarce (cf. Heath Vol. II, p. 286 f.). Hultsch p. 246 ad locum suspects a
corruption of the text, and offers “lemma 1” or “lemma 21" as possible readings.

5This side remark documents that Pappus must have been aware of the connection between the angle
trisection, the duplication of the cube, the neusis construction for which the conchoid operates like a
compass, and typical solid problems in general. See the commentary, and Props. 31-33, 42-44.
®For a discussion of neuses and their role in Greek mathematics see the commentary. In Coll. 1V,
neuses are also put to use in Props. 31-34, and in Props. 42-44 (picking up a reference in the
meta-theoretical passage between Prop. 30 and Prop. 31).

"The Greek text has do0giom, the term used in geometrical analysis. This suggests an analytic-
synthetic background for the neusis and the conchoid (as a locus curve). Prop. 23 corresponds
to Eut. In Arch. Sph. et Cyl. II, pp. 102—104 Heiberg. Compare also the apparatus in Hu ad locum,
for parallels and doublets in Coll. 111, pp. 58-60.
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<For:>

Draw the perpendicular CT from the point C onto AB and produce it, and let DT
be equal to the given <straight line,>' and describe the line “first conchoid” EDH
with pole C, the given <line segment>, i.e.: DT, as distance, and AB as canon. On
account of what has been said above it will then meet AH. Let it meet <AH> in H,
and join CH. Then KH is equal to the given <straight line>.

<Neusis via mechanical manipulation, avoiding the use of the conchoid:>

#28 Some people, however, for the sake of usefulness, place a ruler to C and move
it until, by trial, the <straight line> cut off between the straight line AB and the line
EDH turns out to be equal to the given <straight line>.2 For when this is the case,
the <problem> set forth in the beginning is proved (I mean, however, a cube is found
that is two times a <given> cube). Before that <i.e., before the exposition of the
cube duplication itself>, however, two means in continuous proportion for two given
straight lines are taken. Nicomedes has set out the construction for them only,* whereas
I have also attached the proof to the construction, in the following manner.*

'D on CT, TD = given line.

>Probably Co p. 87 is right in suggesting “(straight) line AH” for “line EDH.” Then the procedure
by trial and error makes sense, and one avoids having to draw out the conchoid. For once the
conchoid is drawn, trial and error is no longer needed, and the sense of Pappus’ remark becomes
unclear. The use of the term given may suggest an analytical context for Nicomedes’ original
considerations. Co p. 87 nevertheless justifies the success of the ruler manipulation construction
with the conchoid.

3The Greek text has “uévnv,” Hu 246, 22 emends to “pévov,” following Co, and Tr emends as
well. The only conceivable sense one might make of the manuscript reading is for Pappus to indi-
cate that Nicomedes furnished a single neusis construction, covering both the angle trisection and
the cube duplication, whereas Pappus quotes the apodeixis of it, adapted to the case of two mean
proportionals. Then Prop. 24 would still be essentially by Nicomedes, and Pappus would not claim
more than his adaptation of it for the cube duplication here. This would diminish an apparent
inconsistency entailed by the emended text: that Eutocius reports much the same neusis construc-
tion as Nicomedean, whereas in the emended text version Pappus seems to claim it for himself.
See also the following footnote, and the commentary. Perhaps the manuscript reading could have
been defended, then. Since this is a question of a single letter only, though, I follow the authority
of the editors. In any case, the mathematical sense is not affected, and the majority of scholars
ascribe the content of Prop. 24 to Nicomedes, even in face of the phrase in the emended text.
4Eutocius reports the very same argument in In Arch. de Sph. et Cyl. 104—-106. Perhaps
Eutocius is quoting from Pappus; cf. Ver Eecke (1933b, p. 188, # 3). Jones (1986a) considers the
possibility that Eutocius draws on a report by Pappus in Coll. VIL.
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Prop. 24: Two Mean Proportionals via Neusis

Assume that two straight lines CL and LA, at right angles to each other, are given,
of which to find two means in continuous proportion is the task, and complete the
rectangle ABCL, and bisect both AB and BC in the points D and E, and, on the one
hand, produce DL after it has been joined, and let it meet CB, after it has been
produced, in H, on the other hand, <draw> EZ at right angles to BC and draw CZ
toward it, equal to AD, and join ZH, and <draw> CT parallel to it, and since KCT
is an angle, draw, from the given <point> Z, the <straight> line ZTK through the
interior making TK equal to AD or CZ (for that this is possible on account of the
conchoid line has been shown), and produce KL, after it has been joined, and let it
meet AB, when it is produced, in M.
I say that as LC <is> to KC, <so is> KC to MA, and <so> is MA to AL.

M
A L
D
B E C
H K

z

Since BC has been bisected in E, and KC has been added to it, the rectangle
BKC, taken together with the square over CE, is therefore equal to the square over
EK.' Add the common square over EZ. Then the rectangle BKC, taken together
with the squares over CE and EZ, i.e.: <with> the square over CZ,? is equal to the
squares over KE and EZ, i.e.: <to> the square over KZ.> And since as MA <is> to
AB, <so0 is> ML to LK, whereas as ML <is> to LK, <so is> BC to CK.,* therefore
as MA <is> to AB, <so is> BC to CK, also. And AD is half of AB, whereas CH is
twice BC.’ Therefore, HC will be to KC as MA <is>to AD.° But as HC <is> to CK,

1, 6.

21, 47.

3T, 47.

4VI, 2 with V, 16 (AMBL ~ AMAL, AMBK ~ ALCK, on parallel lines).
SAADL = ABDH (1, 26), therefore HB = AL (=BC).

®V, 15: MA:AB = BC:CK implies MA:1/2AB = 2BC:CK.
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so <is> ZT to TK, on account of the parallels HZ and CT." And therefore, com-
ponendo: as MD <is> to DA, <so is> ZK to KT.? However, AD has also been
posited as equal to TK.* Therefore, MD is equal to ZK* as well. Therefore, the
square over MD is equal to the square over ZK, also. And the rectangle BMA, taken
together with the square over DA, is equal to the square over MD,’ whereas the
rectangle BKC taken together with the square over ZC has been shown to be equal
to the square over ZK. Of these, the square over AD is equal to the square over CZ
(for AD has been posited as equal to CZ). Therefore, the rectangle BMA is equal
to the rectangle BKC, also. Therefore, as MB <is> to BK, <so is> CK to MA.® But
as BM <is> to BK, <so is> LC to CK.” Therefore, as LC <is> to CK, <so is> CK to
AM. However, MA is to AL as MB <is> to BK, also.® And therefore, as LC <is>
to CK, <so is> CK to AM, and <so is> AM to AL.

Prop. 25: Cube Duplication, Cube Construction in Given Ratio

#29 After this has been shown, it is very clear how one must, when a cube is
given,® find another cube in a given ratio.

For:

Assume that the given ratio is that of the straight line a to the <straight line> b,
and take ¢ and d as two means in continuous proportion for a and b. Then the cube
over a will be to the cube over ¢ as a is to b. For this is clear from the Elements."

'VI, 2 (AHZK ~ ACTK on parallel lines).

2V, 18.

*By construction (neusis).

4V, 9.

ST, 6.

°VI, 16.

VI, 4 (AMBK ~ ALCK).

8VI, 4 (AMAL ~ AMBK).

°Once again, note the occurrence of derivatives of the technical term 00 &v (250, 26, 27, and 28 Hu).

1%a and c stand in the triple ratio of a:b (V, def. 11); cube numbers have two mean proportionals, and
cube:cube = (side:side)? (VIII, 12); the cubes with sides a and ¢ stand in that same ratio (XI, 33).
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Props. 26-29: Quadratrix!

Genesis and Symptoma of the Quadratrix

#30 For the squaring of the circle a certain line has been taken up by Dinostratus
and Nicomedes? and some other more recent (mathematicians). It takes its name
from the symptoma concerning it. For it is called “quadratrix” by them, and it has
a genesis of the following sort.

Set out a square ABCD and describe the arc BED of a circle with center A, and
assume that AB moves in such a way that while the point A remains in place, <the
point> B travels along the arc BED, whereas BC follows along with the traveling
point B* down the <straight line> BA, remaining parallel to AD throughout, and
that in the same time both AB, moving uniformly, completes the angle BAD, i.e.:
the point B <completes> the arc BED, and BC passes through the straight line BA,
i.e.: the point B travels down BA.* Clearly it will come to pass that both AB and

! The Latin word “quadratrix” (i.e., squaring line) translates the Greek name (tetpayoviCovoa) for
the transcendent curve that will be the subject of Props. 26-29. The Latin version is commonly used
as the standard name for this particular curve, though the term can have other meanings, too.
2The common author Nicomedes connects the passages on the conchoid and quadratrix curves.
Dinostratus was a late fourth century BC mathematician, the brother of Menaechmus, who
invented the conics as locus curves. On the authorship concerning the curve quadratrix and its
symptoma-mathematics see the commentary.

3suvaroiovdeitm; the basic verb is, once again “Gkorov0ém” = follow along in order. As in
the other instances in Coll. 1V, it does not have the connotation of strict logical derivation — on the
contrary (see below). On the use of “GcoAovOeiv”’ compare the remarks on analysis-synthesis in
the introduction to Props. 4—12.

4This generation via synchronized motions is reminiscent of the genesis of the spiral in Prop. 19; the
connection between these two curves has been emphasized by Knorr (e.g., Knorr 1978a, 1986).
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BC reach the straight line AD at the same time. Now, while a motion of this kind is
taking place, the straight lines BC and BA will intersect each other during their trav-
eling in some point that is always changing its position together with them. By this
point a certain line such as BZH is described in the space between the straight lines
BA and AD and the arc BED, concave in the same direction <as BED>, which
appears to be useful, among other things, for finding a square equal to a given
circle.!

And its principal symptoma is of the following sort. Whichever arbitrary
<straight line> is drawn through in the interior toward the arc, such as AZE, the
straight line BA will be to the <straight line> ZT as the whole arc <BED is> to the
arc ED. For this is obvious from the genesis of the line.

Criticism of the Quadratrix Under the Description
via Motions (Sporus)

#31 Sporus, however, is with good reason displeased with it, on account of the
following <observations.>?

For, first of all, he?® takes into the assumption the very thing for which it <i.e.,
the quadratrix> seems to be useful. For how is it possible when two points start
from B, that they move, the one along the straight line to A, the other along the arc
to D, and come to a halt <at their respective end points> at the same time, unless
the ratio of the straight line AB to the arc BED is known beforehand? For the
velocities of the motions must be in this ratio, also.* Also, how do they think that
they® come to a halt simultaneously, when they use indeterminate velocities, except
that it might happen sometime by chance; and how is that not absurd?

' The quadratrix can be used also for the division of an angle in any given ratio (probably its origi-
nal use), and for problems related to this construction. Cf. Props. 35-38.

2The passage taken from Sporus differs significantly from the mathematical expositions in
Coll. IV. Note, e.g., the rhetorical questions and the polemical style. Co p. 88 replaces the name
“Sporos” with the Latin word “spero.” His paraphrase means: “I expect, however, that this line
justifiedly and deservedly does not satisfy, for the following reasons.” The replacement changes
the meaning of the introductory sentence, and indeed of the whole passage criticizing the quadra-
trix considerably.

*The Greek text uses the third person singular. It is unclear whom Sporus’ argument targeted.

“The use of the notion “velocity” is not quite precise here. However, it is clear what Sporos means,
and his argument is valid. In order to synchronize the two motions as required, one must know 7
— or else use an approximation to stand in for it. However, 7 is exactly what the curve is supposed
to exhibit in construction. Co p. 88 paraphrases “motuum velocitates.” Hu 254, 7 emends A’s ellipti-
cal “avaryoiov.” For a parallel construction, without emendation, see, however 270, 11/12 Hu.
>The reading nd¢ olovtat (how do they think) as given in A, was kept. Both Hultsch and Treweek
reject it in favor of the reading nd¢ oidv t& (254, 8 Hu + app/ Tr. 109, 11), attested in the minor
manuscripts. Co p. 88 paraphrases “quo pacto arbitrantur.”
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Furthermore, however, its endpoint, which they use for the squaring of the circle,
i.e.: the point in which it intersects the straight line AD, is not found <by the
above generation of the line>. Consider what is being said, however, with reference to
the diagram set forth. For when the <straight lines> CB and BA, traveling, come to
a halt simultaneously, they will <both> reach AD, and they will no longer produce
an intersection in each other. For the intersecting stops when AD is reached,' and
this <last> intersection would have taken place as the endpoint of the line,? the
<point> where it meets the straight line AD. Except if someone were to say that he
considers the line to be produced, as we assume straight lines <to be produced>, up
to AD. This, however, does not follow from the underlying principles, but <one
proceeds> just as if the point H were taken after the ratio of the arc to the straight
line had been taken beforehand.? Without this ratio being given,* however, one must
not,’ trusting in the opinion of the men who invented the line, accept it, since it is
rather mechanical.” Much rather, however, one should accept the problem that is
shown by means of it.®

'Restoring A’s reading mpog (when) instead of Hultsch’s np0 (= before; cf. 254, 16 Hu app).
Restoring, with Tr 109, 20, the reading of A.

3For an extension of the quadratrix to the base line one needs to know the direction. As the quadra-
trix does not have a constant direction, or even curvature, one needs, in the end, to know the
position of H, and it would have to be determined beforehand, using the ratio of radius and cir-
cumference (m). My translation differs from Hultsch’s Latin interpretation. Co has the following
Latin paraphrase, rejected by Hultsch (p. 89 Co): Sed ut cumque sumatur punctum ..., praccedere
debet proportio circumferentiae ad rectam lineam.

4The Greek word (806Mvau) is the technical term from geometrical analysis. It is not certain (in
fact perhaps unlikely) that Sporus, whom Pappus paraphrases here, intended it that way. What is
certain, however, is that Pappus is going to interpret it in this strict technical sense for Props. 28
and 29. See below, and see the commentary on Props. 26-29.

5 Accepting Hultsch’s emendation o0 for the difficult manuscript reading 1, kept in Tr 109, 26. Co
p- 89 keeps the manuscript reading, and paraphrases as a question: Or should we... ? The disad-
vantage is that in that case one would have expected the question particle at the beginning of the
sentence.

®T.e.: accept it as fully geometrical. The quadratrix itself (in the motion description) is not fully
accepted; but note the upcoming remark on the mathematics about it. It is quite possible that
Sporus and Pappus have different opinions on this matter. The issue cannot be pursued here.
"Greek: unyavicatepayv. This word, used for the curve itself here, and not just for the way in
which it is generated, is different from the label “Opyavik@c”, i.e., “describable with an instru-
ment”. The latter was used in connection with Nicomedes’ conchoid (cf. footnotes above).
Hultsch deletes the phrase “and it is put to use by the students of mechanics for many problems”
as an interpolation (254, 24-256, 1+app. Hu). There is indeed no evidence that the quadratrix
played a major role in mathematical treatises on mechanics. A similar phrase occurs at 244,
20 Hu. See the introduction to Props. 19-30 in the commentary on “mechanical.”

8 Hultsch has changed the transmitted text considerably. His Latin paraphrase means: “but before
I must report (assuming mapadotéov) the problem that is solved on account of it.” With Tr 110,
1-2, T keep the transmitted text. Co’s paraphrase on p. 89 is compatible with this reading. See the
commentary.
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Prop. 26: Rectification of the Arc of a Quadrant

When a square ABCD is <given>, and the arc BED with center C,' and when the
quadratrix BHT has come to be? in the above said way, it is shown that as the arc
DEB <is> to the straight line BC, so <is> BC to the straight line CT.?

a
B A
E
H
C T D

For:

If it is not <in that ratio to CT>, it will be <in that ratio> either to a <straight
line> larger than CT or to one smaller.*

Assume first that, if this is possible, it is so to a larger <straight line> CK, and
describe the arc ZHK with center C, intersecting the line in H, and <draw> HL as
a perpendicular <onto CD>, and produce CH, after it has been joined, to E.

b
B A
E
z
H
C L TK D

'Note the change of lettering in the diagram. Perhaps Prop. 26 was taken from a different source
(Nicomedes, as opposed to Dinostratus, or else Sporus, for the curve’s genesis?).

2Note that the quadratrix is posited at the outset. The upcoming argument will keep the problem-
atical genesis of the curve out of sight, and use its symptoma only.

3This proportion will yield the construction of a straight line equal to arc DEB (Prop. 27).

4We get a classical proof via double reductio (so-called method of exhaustion). Apart from the
(short and straightforward) alternative argument for the inverse of Prop. 13, this is the first, and
the only, example for this argumentative technique in Coll. IV. On Prop. 26 see also Heath (1921,
I, pp. 226-229).
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Now, since as the arc DEB <is> to the straight line BC, so is BC, i.e.: CD, to CK,!
whereas as CD <is> to CK, <so is> the arc BED to the arc ZHK (for as the diameter
of a circle <is> to the diameter <of a second circle>, <so is> the circumference of the
circle to the circumference <of the second circle®>), it is obvious that the arc ZHK is
equal to the straight line BC.?> And since, on account of the symptoma of the line, BC
is to HL as the arc BED <is> to the arc ED, therefore, as the arc ZHK <is> to the arc
HK, so <is> the straight line BC to HL,* also. And it has been shown that the arc ZHK
is equal to the straight line BC. Therefore, the arc HK is equal to the straight line HL
as well, which is absurd.’ Therefore, it is not the case that as the arc BED <is> to the
straight line BC, so is BC to a <straight line> larger than CT.

#32 1 say, however, that it <i.e., BC> is not <in that ratio> to a <straight line>
that is smaller, either.

c
B A
Z E
H
M
C K T D

By assumption.

2This theorem is also used in Props. 36, 39, and 40, and a similar one in Prop. 30 (cf. notes ad locum).
An explicit proof is given in Coll. V, 11 and Coll. VIII, 22. A possible justification might proceed
as follows. XII, 2: circles have the ratio of the squares over their diameters; Circ. mens. I: circles have
the ratio of the rectangles with radius and circumference as sides; V, 16 and VI, 1: circumferences
have the ratio of diameters. V, 15: similar arcs have the ratio of diameters. The frequent occurrence of
this motif may indicate that it is part of the special “jargon,” a kind of basic tool within the “analytic
track” of symptoma-mathematics of the third kind. Specifically, it might be a typical tool of Nicomedes.
Nicomedes apparently systematically exploited properties of spiral lines, taking Archimedean argu-
ments as a starting-point. Compare Pappus’ remarks on the study of spiral lines and quadratrices as
a central branch of geometry of the linear kind in the upcoming meta-theoretical passage.
3BC:CK = CD:CK = arc BED:BC (assumption); CD:CK = arc BED:arc ZHK = BC = arc ZHK
(V. 9).

‘arc BED:arc ED = BC:HL (symptoma). arc BED:arc ED = arc ZHK:arc HK (equal parts).

Sarc ZHK:arc HK = BC:HL; arc ZHK = BC = arc HK = HL (V, 9). This is not possible, because
2HL is a chord under two times arc HK.
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For if this is possible, assume that it is <in that ratio> to KC, and describe the
arc ZMK with center C, and <draw> KH at right angles to CD intersecting the
quadratrix in H, and produce CH, after it has been joined, to E. Similarly to what
has been written above, then, we will show both that the arc ZMK is equal to the
straight line BC, and that as the arc BED <is> to the <arc> ED, i.e.: <as> the
<arc> ZMK <is> to the <arc> MK, so <is> the straight line BC to the <straight
line> HK.! From these <observations> it is obvious that the arc MK will be equal
to the straight line KH, which is absurd.? Therefore, it will not be the case that as
the arc BED <is> to the straight line BC, so is BC to a <straight line> smaller
than CT.

It has been shown, however, that it is not <in that ratio> to a larger one, either.
Therefore, it <is in that ratio> to CT itself.

Prop. 27: Squaring the Circle

It is obvious, also, however, that when a straight line is taken as the third propor-
tional to the straight lines TC and CB, it will be equal to the arc BED, and its four-
fold to the circumference of the whole circle.* When, however, a straight line equal
to the circumference of the circle has been found, it is very clear that it is rather easy
indeed to put together a square equal to the circle itself. For the rectangle between
the circumference of the circle and the radius is two times the circle, as Archimedes
has shown.*

!Just as in the first part of the “exhaustion,” one gets: CD:CK = arc BED:BC (assumption); arc
BED:arc ZMK = CD:CK = arc ZMK = BC (V, 9). arc BED:arc ED (= arc ZMK:arc MK) =
BC:HK (symptoma).

2HK must be larger than arc MK. I am not aware of an elementary geometrical argument in
ancient geometry for this (correct) statement. Hultsch and Ver Eecke (1933b) ad locum refer to an
argument that can be reconstructed from (Ps.-) Euclid, Catoptrics 8.

3Construct the third proportional s for TC and CB (VI, 11): TC:BC = BC:s; TC:BC = BC:arc BD
(Prop. 26 with V, 16) = s = arc BD. Then 4 s is equal in length to the circumference of the circle.
4 Circ mens. 1. This rectangle can be transformed into a square via II, 14.
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Prop. 28: Analytical Determination of the Quadratrix
Jfrom an Apollonian Helix

#33 Now, this genesis of the curve is, as has been said, rather mechanical'; it can,
however, be made the subject of a geometrical analysis® by means of loci on surfaces
in the following way.

<Let> the quadrant ABC of a circle <be given> in position, and assume that BD
has been drawn through the interior arbitrarily, and also a perpendicular EZ onto
BC, which has a given ratio to the arc DC.

<I claim> that E lies on a <uniquely determined> line.?

"Here Pappus picks up the discussion before Prop. 26, on the generation of the quadratrix via
motions and the mathematical status of the quadratrix.

2auvaldesBa; since this is a technical term, clearly referring back to the technique of analysis (cf.
Props. 4-12, and 31 ff.), Hultsch’s Latin paraphrase “problema solvitur”” does not capture the meaning
and is in fact misleading. What is “analyzed” here is not the problem of squaring the circle, but the
genesis of the quadratrix. Co paraphrases “lineae ortus ... resolvi potest (p. 90). Both Prop. 28 and
Prop. 29 provide a resolutio in the sense that they show that the quadratrix is given, if an Apollonian
helix or an Archimedean spiral is posited (i.e., taken as given). See the commentary.

3With EZ: arc DC given, E will be shown to lie on a line that is determined relative to a certain
helix, which is assumed as given. This characterization is independent from the genesis of the line
via motions, which has been disqualified as conceptually inconsistent. It is not constructive, how-
ever, but rather a characterization via implicit relations. Note that the analysis is quite general in
the sense that the ratio which is taken as given is not assumed to be the ratio of arc and radius, as
in the quadratrix. Co p. 90, B is, in my view, mistaken when he assumes that. For each given ratio,
the analysis shows that a unique line is determined by it via the intersection of the surface related
to a given cylindrical helix and a given plane. For the special case of a ratio equal to arc ABC:AB,
this line will be the quadratrix. Compare the end of Prop. 28, and Hultsch, " on p. 259 and #2 on
p. 261.
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For:

Consider the surface of a right cylinder over the arc ADC,' and described in it a
helix CHT, given in position,? and <let> TD be the side of the cylinder,® and draw
EI and BL at right angles to the plane of the circle, and finally, draw TL through T
as a parallel to BD.* Since the ratio of the straight line EI to the arc DC is given on
account of the helix,> whereas the ratio of EZ to the <arc> DC is given, also, the
ratio of EZ to EI will be given, also.® And ZE and EI are (given) as parallels in
position.” Therefore, the joining <straight line> ZI is <given> as parallel in position,
also.® And it is a perpendicular onto BC. Therefore, ZI lies in a plane intersecting
<the cylinder,>’ so that I <lies there>, also. It <lies>, however, on a surface belong-
ing to the cylinder as well'® (for TL travels through both the helix THC and the
straight line LB, which is also itself given in position, while it remains parallel
throughout to the underlying plane). Therefore, I lies on a <uniquely determined>
line," so that E does so as well.'?

'Co p. 90 D assumes, mistakenly in my view, that the height of the quarter cylinder constructed
has to be equal to AB, and that the defining ratio of linear upward motion to rotation is that of arc
ADC:BC.

2For a definition of the helix cf. Heron, def. 8, 1 and 8, 2.

3TD is perpendicular to the plane of the circular quadrant; it is now considered as the height of
the cylinder under discussion.

+We create a rectangle BDTL, with E on BD and I on HL, and EI parallel to DT.

>This ratio is implicit in the helix as the relation of rotation and upward motion in its genesis.
®Data 8. The sentence is truncated in A. Above, I have translated the text as emended by Hultsch
(260, 8—10 + app. Hu, see also #3 on p. 261 Hu). Tr 111, 27-112, 3 prints an alternative recon-
struction, closer to the actual manuscript reading, and therefore perhaps preferable (see the appa-
ratus in the Greek text).

"Data, def. 15. When a line is given in position, the parallel to it through a given point is said to
be given as a parallel in position (para thesei).

8 Data 41 and 29.

°The manuscript is severely damaged by water in this place, and the text is not legible (cf. the
apparatus in the Greek text). Hultsch’s emendation “&v t1éuvovti dpo” leaves open the possibility
that the intersecting plane is determined by EZ and ZI or else by BC and ZI, whereas Treweek’s
emendation identifies the plane in question as the one determined by EZ and ZI. The version with
BC/ZI as intersecting plane has the drawback that the endpoint Z of the intersection line is not
uniquely determined. The plane has BC in common with the garland — shaped surface created by
the helix. The version with EZ /ZI has the drawback that one would have to know the exact position
of either EZ or ZI, and it is unclear how that could be accomplished at this stage of the analysis.
I therefore prefer the former version. See the commentary.

10Severe damage to the manuscript text here; cf. apparatus to the Greek text for different emenda-
tions suggested.

""The point I lies on the line of intersection between the abovementioned plane and the surface
created by the ascending line BC in the cylinder.

12E lies on the projection of the line created on the cylindrical surface onto the plane.
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Now, this has been subjected to analysis in a general way.! When, however, the
ratio of the straight line EZ to the arc DC is the same as that of BA to the <arc>
ADC, the above-mentioned line quadratrix comes to be.

Prop. 29: Analytical Determination of the Quadratrix
Jrom the Archimedean Spiral

#34 1t can, however, also be made the subject of analysis*> by means of a spiral
described in the plane, in a similar way.

et

B Z C

N——

For:

Assume that the ratio of EZ to the arc DC is the same as the <ratio> of AB to
the arc ADC,? and that in the time in which the straight line AB, moving around B
passes through the arc ADC, a point on it, starting from A, arrives at B when AB

'&velv0On. Compare the introductory phrase of Prop. 28 with note.
2The Greek text, again, has &vailvesOat. Compare the introductory phrase of Prop. 28.

3We are starting from a configuration with a section of a circle ABC and a part of it DBC. The arc
ADC is not necessarily the arc of a quadrant (Co p. 91 is probably mistaken in assuming so). An
Archimedean spiral will be assumed in it, and the analysis will show that any such configuration
with spiral will determine a unique quadratrix-type line, though not necessarily the quadratrix
itself. When a spiral is chosen with an inbuilt ratio equal to the ratio of the circumference of a
quadrant to the radius, we get the quadratrix.
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takes the position of CB,' and that it creates the spiral BHA. Then the arc ADC is
to the <arc> CD as AB is to BH,? and alternate <this equation.>’

But EZ <is in that ratio> to <arc> DC, also.* Therefore, BH is equal to ZE.}
Draw KH at right angles to the plane, equal to BH. Then K lies in a cylindroid
surface over the spiral.®

It <lies>, however, also on the surface of a <uniquely determined> cone (for BK,
when it is joined, turns out to lie on the surface of a cone inclined at an angle of 45°
toward the underlying <plane>, and drawn through the given <point> B <as
vertex>"). Therefore, K <lies> on a <uniquely determined> line.®

Draw LKI through K as a parallel to EB, and BL and EI at right angles to the
<underlying> plane.” Then LKI (lies) on a plectoid!® surface (for it travels both
through the straight line BL, which is given in position and through the line, given
in position, on which K <lies>). Therefore, I lies on a <uniquely determined> sur-
face, also. But it also lies on a <uniquely determined> plane (for ZE is equal to EI,
since it is also equal to BH, and ZI turns out to be given as a parallel in position,
since it is a perpendicular onto BC). Therefore, I <lies> on a <uniquely determined>
line,!! so that E, also, <lies on a uniquely determined line>.

And it is clear that, when the angle ABC is a right <angle>, the above-mentioned
line “quadratrix” comes to be.

'Compare the description of the genesis of the spiral before Prop. 19. The direction of the travel
through AB and through the circumference is reversed in comparison to the former version. Also,
the spiral is inscribed not in a full circle, but in a sector. The above translation accepts Hultsch’s
emendations in 262, 7-9. Tr 112, 17/18 prints Hultsch’ s version, but notes that one might have
emended ['AA in 262, 7 Hu and kept the manuscript reading for the rest of the sentence. Then the
spiral is generated exactly like the one in Prop. 19. In the Greek text, Tr’s suggestion was imple-
mented (cf. apparatus).

2 Symptoma of the spiral, following directly from the genesis.
3 AB:arc ADC = BH:arc DC.

4By assumption.

SV,9o0rV, 15.

®This surface is built up over the spiral as limiting line of the base. Co p. 91/92 assumes a different
situation, with a full cylinder quadrant and an inscribed Apollonian helix, in addition to the cylin-
droid. For yet another reconstruction cf. Knorr (1986, p. 166 f).

"By construction, HK = BH, and Z/BHK = 7/2. Therefore, /ZHBK = 7/4.

8K lies on the line created by the intersection of the two surfaces mentioned, cylindroid over the
spiral, and surface of the cone with vertex B.

Without loss of generality, L and I can be chosen as the points of intersection between the parallel
to BD through T and the straight lines EI, BL.

"The Greek word nhektogidtic (nAnktoedngin A, Tr 112, 27, and Ver Eecke ad locum) is used
here as a technical term the context for which is now lost. Following Hultsch, I have left it untrans-
lated. What a plectoid surface looks like can be derived from the description given here by Pappus.
There is no other, independent source.

"'T lies on the line created by the intersection of the surfaces mentioned.
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Prop. 30: Symptoma-Theorem on the Archimedean
Spherical Spiral

Prop. 30: Surfaces Cut Off by a Spiral on a Hemisphere

#35 Just as a certain spiral is contemplated in the plane when a point travels along
a straight line that describes a circle, and in solids when a point travels along one
of its sides,' while it describes a certain surface, so it is in fact a natural next step’
to contemplate a spiral described on a sphere, in the following way.?

Let KLM be a maximum circle in a sphere with point T as pole, and assume that
starting from T the quadrant TNK of a maximum circle is described, and that the
arc TNK, traveling around T, which remains in its position, along the surface <of
the sphere>, in the direction of the parts <containing> L. and M, comes to a halt
again in the same position, whereas a certain point traveling on it, starting from T,
arrives at K. Now, it describes a certain spiral, such as TOIK on the surface,* and

!'Severe damage to the manuscript text; see the apparatus for different conjectures.

2The Greek text has dicolouvB6v; once again, we have a context in which the word cannot signify a
logical derivation, and must mean a next step in a somewhat orderly fashion. See the commentary
on analysis-synthesis in the introduction to Props. 4-12.

* Although this introductory paragraph draws an explicit connection to Props. 19, 28, and 29, the
path of reasoning about the spiral line is very different from Props. 28 and 29. It shows affinities
to Prop. 21 (“meta-mechanical” path of reasoning about the motion curves, quasi-infinitesimals,
limit process, no analysis).

4Compare the genesis of the plane spiral in Prop. 19. The ratio of the velocities for the two
synchronized motions involved in Prop. 30 is simply 4:1. Cf. equations in polar coordinates:
spherical spiral p = 1/4 , plane spiral in Prop. 19 p = (1/2n)w, plane spiral in SL p = aw, where
a is a natural number or a ratio of two numbers. The spherical spiral by motions can be constructed
in thought exactly.
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whichever arc of a maximum circle is described starting from T,! it will have to the
arc KL the ratio that the <arc> LT has to the <arc> TO.?

Now, I claim that, when the arc ABC of a quadrant of the maximum circle in the
sphere with center D is set out, and CA is joined, the sector ABCD turns out to be
to the segment ABC as the surface of the hemisphere <is> to the surface cut off
<from it> between the spiral TOIK and the arc KNT.?

For:

Draw CZ as a tangent to the arc <ABC>, and describe the arc AEZ <of the
circle> through A with center C. Then the sector ABCD is equal to the <sector>
AEZC (for the angle at D is two times the angle ACZ, whereas the square over DA
is half the square over AC*). Therefore, <we need to show> that, as the said
surfaces are to each other, so <is> the sector AEZC to the segment ABC, also.’

Let the arc KL be a part of the whole circumference of the circle, and the <arc>
ZE the same part of the <arc> ZA, and join EC. Now, the <arc> BC will be the
same part of the <arc> ABC.® However, whichever part the <arc> KL is of the
whole circumference, the <arc> TO is that same part of the <arc> TOL, also.” And
the <arc> TOL is equal to the <arc> ABC. Therefore, the <arc> TO is equal to the
<arc> BC as well.

Describe the circle ON through O with pole T, and the <arc> BH through B
with center C. Now, since as the surface LKT on the sphere <is> to the <surface>
OTN, so <is> the whole surface of the hemisphere to the surface of the section
the spherical radius of which is TO,® whereas as the surface of the hemisphere

'Cf. the full circle going through LOTI, intersecting the spiral in O. Co p. 93, C is mistaken in
assuming that arc KL is fixed as a quarter circle now. A division 1:2" is likely (cf. Prop. 21).
2The symptoma of the spherical spiral is read off directly from the genesis via motions; cf. the
plane spiral (Prop. 19) and the quadratrix (before Prop. 26), but contrast the conchoid (before
Prop. 23). I have based the translation on Hultsch’s emendations in 264, 16/17 Hu. Tr 113,
20-22 prints an emendation that is closer to the manuscript reading and is perhaps preferable
(cf. apparatus).

3The formulation of the protasis is analogous to Prop. 21. An area theorem is expressed in terms
of numerical ratios. Cf. Prop. 16: a theorem on a sequence of ratios of lines is expressed in
numerical ratios.

*ZADC = £ZCD = /2 (111, 18); ZACZ = ZACD = m/4 (AADC isosceles). AC? = 2AD? (1, 47).
2(sector AZC):sector ACD = AC:AD? = 2AD*AD? (XII, 2) = 2:1.

>The configuration investigated has been transformed to a situation of analogy between surface
with surface “inside” and sector with segment “inside”; cf. Prop. 21’s use of a parallel auxiliary
configuration with rotation cylinders, and investigation via parallel processes of continuous
inscription.

arc ZE:arc ZA = LZCE:ZZCA (V] 33); ZCDA = 2/ZCA; ZCDB = 2£ZCE (111, 32 and III,
20) = arc ZC:arc ZA = LZCE:ZZCA = ZCDB:ZCDA = arc CB:arc CA (VI, 33).

"Symptoma of the spiral.

8V, 15 (surface LKT:surface OTN = surface hemisphere:full surface ONT).
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<is> to the surface of the section, so is the square over the straight line joining T
and L to the square over the <straight line joining> T and O,' or the square over
EC? to the square over BC, therefore as the sector KLT in the surface <is> to the
<sector> OTN, so will the sector EZC be to the <sector> BHC.? Similarly we will
show that, also, as all the sections in the hemisphere that are equal to KLT, taken
together (they are <when put together> the whole of the surface of the hemi-
sphere), <are> to the sections described around the spiral that are of the same
order as OTN, taken together, so <are> all the sectors in AZC that are equal to
EZC, taken together, i.e.: <so is> the whole sector AZC, to the <sectors> circum-
scribed around the segment ABC that are of the same order as <the sector> CBH,
taken together.

In the same way it will also be shown, however, that as the surface of the hemi-
sphere <is> to the sections inscribed in the spiral, so <is> the sector AZC to the
sectors inscribed in the segment ABC, so that as the surface of the hemisphere <is>
to the surface cut off by the spiral, so <is> the sector AZC, i.e.: the sector ABCD,
to the segment ABC.*

Addition:

On account of this result one gathers, however, that the surface cut off between
the spiral and the arc TNK is eight times the segment ABC (since the surface of the
hemisphere <is eight times> the sector ABCD, also®), whereas the surface (cut off)
between the spiral and the base of the hemisphere is eight times the triangle ACD,
i.e.: <it is> equal to the square over the diameter of the sphere.®

!'Surface hemisphere = 2 maximum circle (Sph. et Cyl. 1, 33); circle with radius TL:maximum
circle = TL%(radius hemisphere)® (XII, 2) = 2:1 (I, 47); = surface of hemisphere = circle with
radius TL; Surface of sphere through O, N with pole T = circle with radius TO (Sph. et Cyl. 1, 42:);
= Surface hemisphere:surface ONT = circle TL:circle TO = TL%TO? cf. Co p. 94, K for a
slightly different path of reasoning.

2By construction, TL = AC = ZC, and BC = TO as chords under equal arcs (111, 29).

3XI1L, 2; V, 15 (circles have ratio of squares over radii); the same proportion holds for equal parts.
Ver Eecke (1933b, p. 204, #4) refers to Sph. et Cyl. 1, 42/43 here.

4An implicit limit process is used (cf. Prop. 21). The sought areas are analogously enclosed
between all circumscribed and all inscribed composite circular areas/spherical sections. By choos-
ing the arcs involved in the construction ever smaller, the desired lines and areas are
approximated.

3Sph. et Cyl. 1, 33 (surface of the complete sphere = 4 area of maximum circle). Sph. et Cyl. 1, 35:
surface hemisphere = 8 quadrants of maximum circle. Thus, surface above spiral = 8 segments.
®We compare the remainders after subtraction. Since surface above spiral = 8 segments, we get
that surface hemisphere — surface above spiral = surface below spiral = SAACD. 8AACD = §(1/2 AD?)
=4AD? = (2AD)>.
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Three Kinds of Mathematical Questions, and Their Appropriate
Means of Argumentation’

#36 When the ancient geometers wished to trisect a given rectilinear angle, they got
into difficulties for a reason such as the following. We say” that there are three
kinds?® of problems in geometry, and that some <of the problems> are called
“plane,” others “solid,” and yet others “linear.” Now, those that can be solved* by
means of straight line and circle,” one might fittingly call “plane.” For the lines
by means of which problems of this sort are found have their genesis in the plane
as well. All those problems, however, that are solved when one employs for their
invention either a single one or even several of the conic sections, have been called
“solid.” For it is necessary to use the surfaces of solid figures — I mean, however,
(surfaces) of cones — in their construction.® Finally, as a certain third kind of prob-
lems the so-called “linear” kind is left over.” For different lines, besides the ones
mentioned, are taken for their construction, which have a more varied and forced
genesis, because they are generated out of less structured surfaces, and out of
twisted® motions. Of such a sort, however, are both the lines found on the so-called
loci on surfaces® and also others, more varied than those and many in number,
which were found by Demetrius of Alexandria in the “linear constitutions,”'® and

"Essentially the same statement about the three kinds of geometrical problems is found in Coll.
III. This passage is somewhat of a locus classicus on methodology. In fact, it is only found in
Pappus in this degree of generality. See the commentary.
2popév (270, 3 Hu), usually interpreted as equivalent here to “one says.” It cannot be excluded,
however, that we have another authorial plural here (as in many other places in Coll. IV), equiva-
lent to “I say.”
3yévn (270, 3 Hu); since Aristotle’s theory of scientific argumentation (Analytica Posteriora), the
word had been a standard technical term in Greek theory of science. It has a classificatory con-
notation (kinds versus species), but it is also used to denote the subject matter of a scientific dis-
cipline as a closed field of essential connections. A possible translation for genos is “class”, but
this obscures the connotation of the word with concepts of kinship, and the connections with an
established discourse on scientific methodology.

4QoecBou (270, 6 Hu); unlike “ana-luein” (Props. 28 and 29), this word means “solve.”

Note that the classification of the kinds is derived from the objects needed for a constructive solu-
tion, i.e., mathematical lines, not from tools of construction and performance (e.g., ruler and
compass).

*katackevn (270, 11 Hu), the technical term for the construction in a classical apodeixis.

TvroigineTon (270,13 Hu), a hapax legomenon in Coll. IV. Perhaps it was Pappus himself who
lumped all the rest of mathematical problems into one “kind.” See the commentary.

8 émmenAnyuévov (270, 17 Hu), perhaps related to the term mAnktoeldrig/miektoetdig in
Prop. 29.
°Cf. Props. 28 and 29. The space curves created in the intermediate steps there belong to this group.
Wypappikai émiotdoetg (270, 20/21 Hu); probably a book title. There is no information outside
Coll. III/IV available on Demetrius. Ver Eecke (1933b, p. 207, # 3) dates Demetrius roughly in the
first century BC, because Menelaus (see below) lived in the first century AD; cf. also Tannery
(1912, Vol. 11, pp. 1-47).
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by Philo of Tyana, from the twisting' of both plectoids and all sorts of other surfaces
on solids? and which have many astonishing symptomata about them. And some of
them were deemed, by the more recent geometers, worthy of rather extensive dis-
cussion,’® and a certain one of them is the line that was also called “the paradox” by
Menelaus* And of this same kind <i.e., the linear kind> are also the other spiral
lines, the quadratrices and the conchoids and the cissoids.’

Somehow, however, an error of the following sort seems to be not a small one
for geometers, <namely> when a plane problem is found by means of conics or of
linear devices® by someone, and summarily, whenever it is solved from a non-
kindred kind, such as is the problem on the parabola in the fifth book of Apollonius’
Conics” and the neusis of a solid on a circle,® which was taken by Archimedes in the
<book> about the spiral. For it is possible to find the theorem written down by him
without using a solid, I mean in fact <it is possible> to show that the circumference
of the circle in the first rotation <of the spiral> is equal to the straight line drawn at

'émimhown (270,21 Hu), perhaps related to the participle “éminenieypévoc” used above. Philo of
Tyana is otherwise unknown; Ver Eecke, 1993b p. 207, #4 dates him to the second century BC.
2€k émumAhokrg nhektoeld@v (or: TANKToEWd®V) Te Kol otepe®dv navtoinv; the reference here
is certainly to a another book, though probably not directly to a book title. The surfaces used in
Prop. 29 probably are examples for such “twisted plectoids”.

3 A considerable corpus of contributions to the geometry of such “higher” curves must have existed.

4Menelaus of Alexandria, an astronomer of the first/second century AD, was a predecessor of
Ptolemy. His attested works include three books on spherics (preserved in Arabic), a work contain-
ing tables of chords in circles, a work on hydrostatics, a treatise on the settings of the signs of the
zodiac, Elements of geometry, and a work on higher curves, with connection, inter alia, to the
duplication of the cube, and to positions of the fixed stars. Hultsch refers to Chasles, Apercu
historique for a possible reconstruction of the line called “the paradox” (cf. 271, #4 Hu).

>Note the plurals. Pappus has described general quadratrices in Props. 28 and 29. Examples for
spirals are mentioned in Props. 19 and 28-30. He has mentioned the existence of several con-
choids in Prop. 23. The cissoid was originally invented by Diocles in the third century BC and
apparently generalized later; cf. Knorr (1986, pp. 246-263). In Pappus’ text, the other curves are
indeed labeled as types of spirals, perhaps because all such “higher” curves involve a rotation
along with a linear motion.

¢ Apollonius classified plane and solid neusis problems, and differentiated them into two classes
according to the lines needed for their constructive solution. He may have attempted to develop a
complete operational toolbox to solve problems that would fall under those types, determining
limiting conditions and providing a scale of increasing complexity via analysis. There is no clear
evidence, however, that the demand of “keeping within the kind” ever reached the status of a
fundamental claim with universality for all geometry, and all geometers. See the commentary.
"Hultsch (273, #1 Hu) believes this must be I, 52; Zeuthen (1886, pp. 280-288), Tannery (1912,
vol. I, pp. 302-311) and others show, however, that it could have been the problem of finding the
normal to a parabola (Con. V, 62 in Toomer’s 1990 edition). Apollonius treats it analogously to
the (solid) case of the hyperbola and the ellipse. In the case of the parabola, however, a plane
construction would have sufficed, if one takes the parabola in question as given; cf. Zeuthen (1886,
pp- 286-288).

8 A has a genitive (location) here (and in the parallel phrase in Prop. 44). Hultsch emends to an
accusative (direction). I have translated the transmitted text.
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right angles to the generator <of the spiral> up to <the point of intersection with>
the tangent of the spiral.!

Now, since a difference of such a sort belongs to problems, the earlier geometers
were not able to find the above mentioned problem on the angle, given that it is by
nature solid,? and they sought it by means of plane devices. For the conic sections
were not yet common knowledge for them, and on account of this they got into
difficulties. Later, however, they trisected the angle by means of conic sections,
using for the invention the neusis described in what follows.

Props. 31-34: Angle Trisection

Prop. 31: Neusis for Angle Trisection

When a rectangle ABCD is given, and BC is produced, let it be the task to draw AE
through <the interior> and make the straight line EZ equal to a given <straight line.>*
<Analysis*>

"Pappus’ objection here, and even more so his upcoming arguments about the neusis in question
(cf. Props. 42—44 with notes and commentary) have often been misconstrued in secondary literature.
The remarks refer to SL 18 (subtangent to a spiral of first rotation is equal to the circumference),
which invokes neuses from SL 7/8. These neuses, in fact all neuses in SL 5-9, are indeed solid in
Pappus’ sense (see the commentary on Props. 42—44 on how far he is able to show this). Pappus
also claims that Archimedes could have done with a plane construction for the theorem in SL 18.
Whether he means that Archimedes could have used a plane neusis or that Archimedes could have
used some other plane argument, instead of the neusis, in SL. 18, is unclear. Co p. 95, C, refers to
Witelo, Perspectiva 1, 128 for a plane construction. Since Witelo may very well have had indirect
access to the Collectio in the thirteenth century (cf. Unguru 1974), this may be significant, and
certainly Witelo’s suggestion deserves scholarly attention.

211 ¢voel otepedv Lmdpyov; Pappus ascribes an essential, internal character to mathematical
problems. This is in line with the Aristotelian meta-theoretical framework and vocabulary he has
been using in this passage, as testified inter alia by his use of the term “kind.” See the commentary.

3The neusis can obviously be constructed with the conchoid (cf. Props. 23-25), when one chooses
A as pole, CD as canon, and EZ as distance. Perhaps this was what Nicomedes did. Note the relation to
the neusis that figures in Prop. 24. It seems quite plausible that Nicomedes indeed proposed essentially
a single (u6vnv) construction for both problems. Cf. above, introductory remarks on Prop. 24.

4The analysis was probably added by Pappus to an older argument for the angle trisection that
constructed the neusis without using conics. He may have excerpted the analysis from a source.
In A, the figure for the analysis differs from the one for the synthesis. The manuscript text also
shows signs of confusion and incoherent partial corrections (cf. apparatus to the Greek text).
Treweek 117a documents the differences in a list. The existence of these differences supports
the thesis about the subsistence of an older layer of argument in Pappus’ text. They might be
used for further investigations. An independent Arabic version, purely synthetic, exists. See the
bibliographical references for Props. 31-34 in the commentary. Hultsch has adjusted the lettering
of the diagram and of the items used in the argument for the analysis to the features of the synthe-
sis, thus making Prop. 31 conform to regular practice in analysis-synthesis (272 Hu + app; simi-
larly: Co p. 96/97). I have followed him. Treweek 117, 6-118, 2 opts for a more cautious and
conservative emendation.
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a
B C z
E
H
A D

Assume that it has turned out that way,' and draw DH and HZ parallel to EZ and
ED <respectively.>?> Now, since ZE is given <in length> and it is equal to DH,?
DH is therefore given <in length>, also. And D is given. Therefore, H lies on the
circumference of a circle given in position.* And since the rectangle BCD is given,
and it is equal to the rectangle BZ/ED <in size,> the rectangle BZ/ED is given, also,
i.e.: the rectangle BZH <is given>. Therefore, H lies on a hyperbola. But it also lies
on the circumference of a circle given in position. Therefore, H is given.
<Synthesis>

#37 Now, the problem will be put together® in the following way. Let ABCD be
the given rectangle, and m the straight line given in length, and let DK be equal to
it, and describe, on the one hand, the hyperbola DHT through D with asymptotes
AB/BC (I will provide the proof for this in what follows in order’), and, on the other
hand, the circular arc KH through K with center D, intersecting the hyperbola in H.
And when the parallel HZ to DC is drawn, join ZA.

I claim that EZ is equal to m.

b
B C Z
E
T
L H
A D K/

! Analysis-assumption. For the structure of analysis-synthesis in general see the introduction to the
commentary on Props. 4-12.

This part of the analysis is non-deductive.
3The resolutio begins here.

“Data, def. 6.

>Complete the rectangle ABZ and apply I, 43.
®cuvtednoetat. The synthesis begins here.
"Prop. 33.
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For:

Join HD and draw the parallel HL to KA. Then the rectangle ZHL, i.e.: the
rectangle BZH, is equal to the rectangle CDA, i.e.: to the rectangle BC/CD.!
Therefore, CD is to ZH as ZB <is> to BC, i.e.: as CD <is> to ED.?
Therefore, ED is equal to ZH.? Therefore, DEZH is a parallelogram.* Therefore, EZ
is equal to DH, i.e.: to DK, i.e.: to m.

Prop. 32: Trisection of the Angle via Neusis

#38 Now, when this has been shown, a given rectilinear angle is trisected in the
following way.

Let the <angle> ABC, first, be acute,” and from a certain point A <draw> the
perpendicular AC, and when the rectangle CZ is completed, produce ZA toward E.*
and since CZ is a rectangle, place the straight line ED between the <straight lines>
EA/AC, verging toward B and equal to two times AB (for that this can come about
has been written down above).

I claim in fact that the angle EBC is the third part of the given angle ABC.

a
Z A E
H
D
B C

For:
Bisect ED in H, and join AH. Then the three <straight lines> DH, HA, and HE are
equal.” Therefore, DE is twice AH. But it is twice AB, also.® Therefore, BA is equal

'Con. 11, 12, paraphrased above in the footnotes to the last part of the analysis. BZ x ZH = ZH x
HL = CD x DA = BC x CD.

2ABZA ~ ACZE, because AB || CE; BC:CZ = AE:EZ (VI, 2); ZB:BC = ZA:AE (V, 16/18).
AAED ~ AZEC, because AD || CZ; ZE:EC = AE:ED (VI, 4); ZA:AE = CD:ED (V, 16/18).
= CD:ZH = ZB:BC = CD:ED.

3V, 9.

4ZH || ED by construction, and we have just seen that ZH = ED.

SProp. 32 is the only example in Coll. IV with a diorismos fully carried through, in the sense that
all possible cases for a problem are covered. But see the commentary on plane sub-cases for this
generally solid problem.

®The position of E is yet to be determined.
7 A on the semicircle over DE with center H (II1, 31).
8By construction.
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to AH, and the angle ABD <is equal> to the angle AHD.! However, the angle AHD
is two times the angle AED,?i.e.: <two times> the angle DBC.? Therefore, the angle
ABD is two times the angle DBC, also. And when we bisect the angle ABD,* the
angle ABC will be trisected.

B C

#39 When, however, the given angle happens to be a right angle, we will cut off
a certain <segment> BC and describe over it the equilateral <triangle> BDC.> And
when we bisect the angle DBC,® we will have trisected the angle ABC.’

#40 Finally, let the angle be obtuse, and draw BD at right angles to CB, and, on
the one hand, cut off the angle DBZ as a third part of the angle DBC, and on the
other hand, the angle EBD as the third part of the angle ABD (for I have shown
these <two constructions> above). Then the angle EBZ is the third part of the whole
angle ABC as well. When, however, we erect an <angle> equal to the angle EBZ
along both AB and BC, we will trisect the given angle.

C
E D
A Z
B C

', 5.
2111, 20.
31, 29 (parallels ZE and BC with transversal BE).
41, 9.
T 1.
°T, 9.

For an alternative, using a plane neusis, cf. Heraclius’ construction, which is contained in Coll. VII,
and also reported in Descartes (1637, pp. 387-389) (188—193 Smith/Latham). It is noteworthy that
Pappus did not opt for this route here. See the commentary.
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Prop. 33: Analysis-Synthesis for the Hyperbola-Construction in
the Trisection Neusis

#41 Now I will provide an analysis for the problem that was postponed.! When two
straight lines AB and BC are given in position, and a point D is given, to describe
the hyperbola through D with asymptotes AB/BC.

<Analysis>

Assume that it has turned out that way,” and that the <hyperbola> EDZ has been
described, and from D draw its tangent ADC, and the diameter HBD, and the parallel
DT to BC.? Then HD and DT are <given> in position,* and T is given.’ And since
AB and BC are the asymptotes of the hyperbola, and AC is a tangent, AD is, there-
fore, equal to DC, and the square over each of the two of them is equal to one fourth
of the figure on HD. For that has been shown in the second <book> of the Konika.6

'"This phrase introduces the analysis. Co p. 97 translates “resolvemus.” This is more accurate than
Hu’s “solvemus” (277 Hu). Hultsch comments (277, #1 Hu) that a shorter constructive proof
would have been possible via Con II, 4, though Pappus’ resolutio (!) has its merits, too. Such
a construction would have been purely synthetic. Pappus’ argument here contains analysis
and synthesis and serves as exemplary for the methods of argument in “solid” problem solving.
Prop. 33 shows strong indications for a close connection to Apollonius’ lost analytical-synthetical
solution. It is also very close to Coll. VII, #204 Hu, by Pappus (commentary on an analytical
argument in Apollonius’ original Konika, Book V). See the commentary.

2 Analysis-assumption.

3This part of the analysis contains an extension of the configuration and is non-deductive.

4Data 28 (for DT) and 26 (for HD); this sentence marks the beginning of the resolutio.

3Data 25 (for T).

8Con. 11, 3: AC? is equal to the figure on HD, and AC = 2AD = 2DC holds. The “figure on HD”
is the rectangle constituted of the diameter HD and the latus rectum (parameter) k. Note, however,
that Pappus is in all likelihood not referring to the now extant version of the Konika. Compare the
footnote on the end of the analysis.
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Now, since CD is equal to DA, BT is equal to TA, also.! And BT is given.?
Therefore, TA is given, also.> And T is given. Therefore, A is given as well.*
Therefore, the <straight line> ADC is <given> in position. And AC is given in
length,’ so that the square over AC is given as well.® And it is equal to the figure on
HD.” Therefore, the figure on HD is given <in area>. And HD is given — for it is
twice BD, which is given in length, on account of the fact that B and D are both
given.® Therefore, the latus rectum of the figure is given, also.’

In fact, the problem has turned out to be of the following sort: when two straight
lines, <namely> both HD and the latus rectum, are given in position and length, to
describe the hyperbola with diameter HD, for which the <straight line> to which the
squares are applied is the remaining straight line, and for which the <straight lines>
drawn ordinatim to HD will be parallel to a certain straight line AC, given in position.
This, however, has been subjected to analysis in the first <book> of the Konika.'
<Synthesis>

#42 Now, it will be put together'! in the following way. Let AB and BC, on the one
hand, be the straight lines given in position, and D, on the other hand, the given point,
and draw DT, on the one hand, parallel to BC, and <draw> TA, on the other hand,
equal to BT, and when AD has been joined, produce it to C, and produce BD, after it
has been joined, also, and position BH equal to BD, and let the rectangle between HD
and a certain other <straight line> k be equal to the square over AC,'? and describe
the hyperbola EDZ with diameter HD and latus rectum k, so that the <straight lines>
drawn ordinatim to HD are parallel to AC."* Then AC will touch the conic section.'

'CD = AD has just been shown. ABAC ~ ATAD on parallels CB, DT; BT:TA = CD:DA (VI, 2).
Apply V, 9.

2Data 26.

3Data 2.

‘Data 27.

>Data 26: AD is given in length and position, AC is given in position. Since AC =2 AD, AC is
given in length as well (Data 2).

®Data 52.

7Con. 11, 3, cf. above.

8 Data 26 and Data 2.

*Data 57.

0gvarvetal. The extant Konika, a revision of Apollonius’ work on conics by Eutocius (sixth
century AD), are purely synthetic and do not contain analyses for the constructions provided.
Pappus consistently speaks of Apollonius’ treatise on conics as an analytic work in Coll. VII, and
in Coll. IV he handles all problems that are solved by means of conics via analysis-synthesis.
Probably the Apollonian work Pappus worked with was analytic-synthetic. For a synthetic solution
of the construction problem mentioned here by Pappus c.f. Con. I, 54/55. Note that Pappus does
not mention Apollonius by name. This could mean that in his time, Apollonius’ (analytical)
Konika were the standard reference work, parallel to the Elements.

"ouvtebnoeton. This is the beginning of the synthesis.

2FElem. 1, 45.

B Con. 1, 54/55.

“Con. 1, 32.
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And AD is equal to DC (since BT is equal to TA, also'), and it is obvious that both
the squares over AD and DC are the fourth part of the figure on HD.? Therefore, AB
and BC are the asymptotes of the hyperbola EDZ.? Therefore, the hyperbola through
D with the given straight lines as asymptotes has been described.

Prop. 34: Alternative Constructions of the Angle
Trisection via Solid Loci*

<Alternative a>

#43 The third part of a given arc is cut off in a different way, also, without the
neusis, by means of a solid locus of the following sort.

<Assume that> the <straight line> through A and C is <given> in position, and that
the angle ABC has been bent® over the <points> A and C given on it, making an angle
ACB that is two times the angle CAB.6

<I claim> that B lies on a <uniquely determined> hyperbola’

a

'ABAC ~ ATAD on parallels BC, TD. Since BT = TA, i.e., BA:TA = 2:1, CA:DA = 2:1 (VL 2),
and DC = DA.

2AC? = HD x k by construction. We have just seen that ¥2AC = AD = DC.

3Con. 11, 1/2.

“Prop. 34 gives the essential part of an analysis for the angle trisection via solid loci in two versions.
No detailed constructive apodeixes are offered. Pappus is probably drawing on pre-Apollonian
treatments of solid loci, perhaps by Aristacus, and may have an interest in portraying the
Apollonian solution, which he presented in detail in Prop. 33, as the classic one in terms of meth-
odology, which nevertheless did not render older contributions utterly superfluous. Prop. 34a is a
simplified version of Prop. 34b, using the Apollonian technical apparatus, and may very well be
by Pappus himself (cf. Jones 1986a, p. 584). It is the simplest of the three solutions in Coll. IV
(cf. Heath 1921, I, pp. 241-242; Zeuthen 1886, pp. 210-212). 34b shows clear traces of an older
treatise on solid loci (see below for Prop. 34b, and see the commentary).

SkekAdo0Owm. This word has also been used in Props. 11/12. No construction for the “bending” is
offered. Obviously, it is equivalent to the angle trisection. In Prop. 34, the task of trisecting an
angle AMC is assumed to have been reduced to the task of trisecting the arc over a chord AC.
SProp. 34a only considers the case where ZBCA is acute. For the other two possible configurations,
one can argue analogously, cf. Co p. 100 f. and appendix Hu p. 1230.

7 Any point B that meets the condition about the base angles lies on this hyperbola.
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Draw the perpendicular BD, and cut off DE, equal to CD. Then BE, when it has
been joined, will be equal to AE.! Position EZ as equal to DE, also. Then CZ is
three times CD. Let AC be three times CH, also.?

Now, H will be given,® and the remaining AZ will be three times HD.* And since
the square over BD is the difference between the squares over BE and EZ,’ whereas
the rectangle DA/AZ is the difference of these, also,® the rectangle DAZ, i.e.: three
times the rectangle ADH,” will therefore be equal to the square over BD. Therefore,
B lies on a hyperbola, the latus transversum of which is AH, and the latus rectum
three times AH.® And it is obvious that the point C cuts off half the latus transversum
AH on the <straight line> CH <drawn> to the vertex H of the conic section.” And
the synthesis is obvious. For one will have to divide AC so that AH is two times HC,'
and describe the hyperbola through H with axis AH, the latus transversum of which
is three times AH,!! and to show that it creates the above mentioned twofold ratio of
the angles.'? And that the hyperbola described in this way cuts off the third part of the
given circular arc is rather easy to understand when the points A and C are posited as
the endpoints of the arc.'

'AEBD = ACBD (I, 4) = ZBEC = ZBCA (= 2£BAE by hypothesis).

/BEC = Z/BAE + ZABE (1, 32) = Z/BAE = ZABE, and AABE is isosceles (I, 6).
2Choose H on AC, with HC:AC = 1:3 (VL, 9).

3Data 2, Data 27.

4CZ =3CD and AC = 3CH; 3HD = 3(CH - CD) = 3CH - 3CD = AC - CZ = AZ.

51, 47; ED = EZ by construction.

°TI, 6: DH x AZ + EZ> = AE?, i.e., DH x AZ = AE?> — EZ?; AE = BE was shown above.
7AZ = 3DH was shown above; VI, 1.

8Consider the converse of Con. 1, 21 (not established as a theorem in itself). Con. I, 21 states that
for all points B on the hyperbola through H with latus transversum AH, parameter 3AH and ordi-
nate angle n/2, the above equality holds. In the analysis, we can therefore “conclude” from the
equality that B lies on this hyperbola. Note, however, that this justification via Apollonius’ Konika
may be anachronistic in the sense that the alternatives 34a and 34b may very well draw on a pre-
Apollonian treatment of the angle trisection via “solid loci” perhaps by Aristaeus. See the
commentary.

°By construction of H, AH = 2HC.

VL 9.

' Con. 1, 54/55.

2Retrace the steps of the above analysis. All points B on the hyperbola have the property that
2/BAC = ZBCA. See the commentary for a sketch of the apodeixis suggested here. Co p. 101
gives an extended apodeixis, considering all three possible cases for ZBCA.

3For a reconstruction of an angle trisection on the basis of the considerations given here see the
commentary. Hultsch p. 285 # 3 refers to a discussion of the synthesis by Commandino (cf. Co
pp- 101-102, O). The construction can, of course, be used for a number of “solid” problems, and
that may be the reason why Co integrates a longer exposition of a constructive proof. See also the
comments on Props. 42-44.
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<Alternative b'>

#44 Some have set out the analysis of trisecting an angle or an arc in yet another
way without a neusis. Let the argument? be about an arc, however. For it makes no
difference whether one divides an angle or an arc.

Assume that it has turned out that way in fact, and that BC has been cut off as the
third part of the arc ABC,? and join AB, BC, and CA. Then the angle ACB is two
times the angle BAC.* Bisect the angle ACB by CD, and <draw> the perpendiculars
DE and ZB. Then AD is equal to DC,’ so that AE is equal to EC, also.’ Therefore,
E is given.” Now, since AD is to DB, i.e.: AE to EZ,® as AC <is> to CB, alternando,
BC is therefore to EZ as CA <is> to AE, also. CA is twice AE, however. Therefore,
BC is twice EZ as well. Therefore, the square over BC, i.e.: the <sum of> the squares
over BZ and ZC,’ is four times the square over EZ.

Now, since the two <points> E and C are given, and BZ is at right angles <to
AC>, and the ratio of the square over EZ to the <sum of)> the squares over BZ and

'"This version is closely related to a (lost) argument from Euclid’s Solid loci, ultimately resting on
a prior argument by Aristacus. For it is closely connected to Pappus’ commentary on such an
argument in Coll. VII (#237 Hu, Jones (1986a, # 316318, pp. 365-369, with 583 f); cf. Zeuthen
(1886, p. 215) for the connection to Aristaeus). See the commentary, and cf. Heath (1921, I, pp.
243-244, 11, pp. 119-121), Zeuthen (1886, pp. 212-215), and Knorr (1986, pp. 128-137 and 327).
Knorr expands on Zeuthen’s arguments.

2\6yoc. Hultsch translates “proportio”. i.e., “ratio”, probably the ratio 3:1. “Logos” can, however,
also mean “account”, “argument”. This translation seemed preferable.

3 Analysis-assumption.

4VI, 33.

5 /ACB = 2/BAC by assumption; thus, ZDCA = ZDAC, and AADC is isosceles (I, 6).

®DE is the height in the isosceles triangle ADC (I, 26).

"Data 7, Data 27.

8AABZ ~ AADE, on parallels DE and BZ; AD:DB = AE:EZ (VI, 2/ V, 16).

In AACB, ZACB is bisected by DC, with D on AB; AC:BC = AD:DB (VI, 3).

°1, 47.
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ZC <is given>, B lies therefore on a hyperbola.' But <it also lies> on an arc that is
<given> in position. Therefore, B is given.
And the synthesis is obvious.?

Props. 35-38: Generalization of Solid Problems: Angle Division

Prop. 35: General Angle Division

#45 Now, trisecting a given angle or arc is a solid <problem>, as has been shown
above,* whereas dividing a given angle or arc in a given ratio is a linear <problem>,
and while it has been shown by the more recent <mathematicians>, it will be shown
as well in a twofold way by me.*

a
K
L
A
M

z D

B T
E H C

"In Coll. VII, Prop. 237, (cf. Jones 1986a, pp. 365-369, # 316/317), a hyperbola is established via
analysis-synthesis, the points of which satisfy the conditions derived in the above analysis. It is
the hyperbola with focus C, directrix ED, and eccentricity 2. In the analysis here we can “conclude”:
B lies on this uniquely determined hyperbola. See the commentary. Co pp. 102-103, E provides
an alternative argument.

*Bisect AC in E, draw ED as a perpendicular onto AC, and describe the hyperbola with directrix
ED, focus C, and eccentricity 2, using Coll. VII, 237. The hyperbola intersects the given arc AC
in B, in which the arc is divided in the ratio 2:1. For the proof, retrace the steps of the analysis.
See the commentary for a list of the decisive steps. For an alternative synthesis for the trisection
discussed in Prop. 34b, including a separate treatment of all three possible configurations, see also
Co pp. 103-104, E (starting at “‘et compositio manifesta est”).

3 Apparently, Pappus believes that if an analysis leads to conics, one has shown that the problem in
question is (in general) solid. But see the discussion of analysis as a criterion for the determination
of problem levels in the commentary on Props. 42—44. Pappus is correct in his assertion that the
angle trisection is solid, and his analysis does show that it is not linear (analysis demarcates
sharply “upward”).

4The first of the arguments in Prop. 35 (via the quadratrix) targets acute angles.
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For:

Let LT be the arc of a circle KLT, and let the task be to divide it in a given ratio.

<Draw> the radii LB and BT, and BK at right angles to BT, and describe the line
“quadratrix” KADC through K, and divide the perpendicular AE, after it has been
drawn, in Z in such a way that as AZ <is> to ZE, so is the given ratio into which
one wants to divide the angle up, and <draw> ZD parallel to BC. BD should be
joined, however, and the perpendicular DH <from D onto BT> <be drawn>.

Now, since, on account of the symproma of the line, the angle ABC is to the angle DBC
as AE <is> to DH, i.e.: to ZE,' subtrahendo, the angle ABD is, therefore, to the angle
DBC, i.e.: the arc LM <is> to the arc MT, as AZ <is> to ZE, i.e.: as the given ratio.?

#46 The arc AC of a circle AHC <can be> divided in yet a different way.
b

<Draw> the radii AB and BC similarly, and describe the spiral BZDC through B,?
the generator of which is CB, and let the ratio of DE to EB be the same as the given
ratio,* and through E <draw> the arc EZ of a circle with center B, intersecting the
spiral in Z. And produce BZ, after it has been joined, to H. Then, on account of the
spiral, the arc AHC is to the arc CH as DB <is> to BZ, i.e.: to BE.> And subtra-
hendo, as DE <is> to EB, so <is> the arc AH to the <arc> HC.° The ratio of DE
to EB, however, is the same as the given ratio. Therefore, the ratio of the arc AH to
the arc HC is the same as the given <ratio>, also. Therefore, <the arc AC> has been
divided <in the given ratio>.

'Arc KT:arc LT = KB:AE; arc KT:arc MT = KB:DH (symptoma) = arc LT:arc MT = AE:DH
(V, 16 and V, 22); DH = ZE by construction.

2Apply V, 17 to arc LT:arc MT = AE:ZE; AZ:ZE equals the given ratio by construction.

3The labeling BZDC suggests motion of the generating point from B to C, as in the genesis in
Prop. 19. Rotation could be clockwise or counterclockwise. The labeling CB for the generator
suggests a motion from C to B, in deviance from the description in Prop. 19.

‘Divide DB in E in the given ratio (VI, 9).

SBC:BD = circle:arc AC; BC:BZ = circle:arc HC (symptoma) = BD:BE = arc AC:arc HC (V, 22).
Co p. 105 G refers to SL 14 instead.

oV, 17.
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Prop. 36: Equal Arcs of Different Circles

#47 From this <result> it is in fact obvious that it is possible to cut off equal arcs
from unequal circles.

A H
For:

Assume that it has turned out that way,' and that the equal arcs AHB and CTD
have been cut off. Let the <circle> with center E be the larger one, however.
Then the arc that is similar to <the arc> CTD is larger than the <arc> AHB.? Now,
let the <arc> CT be similar to the <arc> AHB. Then the ratio of the <arc> AHB to
the <arc> CT is given, for it is the same as the <ratio> of the whole circumferences
of the circles, or of the diameters.? The <arc> AHB is, however, equal to the <arc>
CTD. Therefore, the ratio of the <arc> CTD to the <arc> CT is given. And, subtra-
hendo, <the task> has now become to divide a given arc CTD in a given ratio in T.
This, however, has been written down above.*

Prop. 37: Isosceles Triangle with Angles in Given Ratio

#48 <Let the task be> to put together an isosceles triangle with both angles at the
base possessing a given ratio to the remaining one.’

! Analysis-assumption. Prop. 36 gives only an analysis, reducing the problem to the division of an
angle in a given ratio. Then Prop. 35 is invoked.

*In the smaller circle, the arc over the same angle as AEB (arc CT in the figure) will be smaller
than the arc CTD, which was assumed to be equal to arc AHD.

3X1I, 2 with Circ. mens 1 and VI, 1 /V, 15 (similar arcs are in the ratio of the radii (or the circum-
ferences) ). Cf. the proof protocol of Prop. 26, section *. The same argument about similar circular
arcs and radii was also used in Prop. 26 and will be used in Prop. 39 and 40. A similar argument
was used in Prop. 30.

4Prop. 35. Co p. 106/107, F provides a constructive proof. See also the commentary.

5The problem in Props. 37 and 38 constitutes a generalization of the inscription of a regular pen-
tagon in IV, 10/11 (of the Elements). In analogy to the Euclidean construction, a triangle with the
required ratio of angles is sought first, and then the polygon is put together from isosceles triangles.
See the commentary.
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o

<Analysis>

Assume that it has turned out that way,! and that the <triangle> ABC has been
put together, and describe the circle ADC with center B through A and C, and pro-
duce AB to D, and join DC.?

Now, since the ratio of the angle between CA and AB to the <angle> between AB
and BC is given,® and <since> the angle at D is half the angle ABC,* the ratio of the
angle CAD to the angle ADC is therefore given, also,’ so that the ratio of the arc DC
to the <arc> AC <is given>, also.® Now, since the arc ACD of the semicircle has been
divided in a given ratio, C is given,” and the triangle ABC is given in kind.®

<Synthesis>

<The problem> will, however, be put together® in the following way.
For:

Let the given ratio, the one which both angles at the base had to have to the
remaining one, be the ratio of <a straight line> EZ to <a straight line> ZH, and bisect
ZH in T, and set out the circle ADC with center B and diameter AD, and divide the
arc ACD in C, so that EZ is to ZT as the arc DC <is> to the <arc> CA (for this
<construction> has been written down above,'” and even generally, somehow, a given
arc is divided in a given ratio), and join BC, CA, and CD. Now, since EZ is to ZT as

! Analysis-assumption.
2Extension of the configuration for the analysis, non-deductive.

*In the problem; we are now in the resolutio.

4111, 20.

>Data 9.

°VI, 33.

C is given, because it can be constructed using Prop. 35. From “C is given” one might conclude
that the triangle is given in kind via Data 30 and Data 40. This is how I would prefer to read the reso-
lutio. For an alternative explanation see Hultsch p. 291, * and Co p. 107 E. The phrase “C is given”
appeared suspicious to him, and he suggests “the straight line BC is given in position” in its place.

8Cf. Data, def. 3 for given in kind. A triangle is given in kind when its angles are given.

Ycvviednoetat.

"Prop. 35; the proposition is directly applicable only for angles that are at most right angles.
Otherwise, divide in half, and put together again after completion of the construction.



Props. 39-41: Constructions Based on the Rectification Property of the Quadratrix 159

the arc DC <is> to the <arc> CA, i.e.: as the angle DAC <is> to the angle ADC,' and
<equality holds likewise> with respect to the double of the second terms <in the
proportion>, therefore as the angle CAB <is> to the angle ABC, so <is> EZ to ZH.?
Therefore, an isosceles triangle ABC, both of the angles at the base of which possess
a given ratio to the remaining one, has been constructed.

Prop. 38: Regular Polygon with any Given Number
of Sides Inscribed in the Circle

#49 Indeed, when this has been shown, it is obvious that it is possible to inscribe
an equilateral and equiangular polygon that has as many sides as anyone might
prescribe into a circle.’

Props. 39-41: Constructions Based on the Rectification Property
of the Quadratrix*

Prop. 39: Converse of Circle Rectification

How one finds a circle the circumference of which is equal to a given straight line,
however, is easy to understand.

'VI, 33.
2 /ABC = 2/ADC (111, 20); ZH = 2ZT by construction.

3The polygon sought for is built up from congruent isosceles triangles in which the angles at the
center of the circle stand in a given ratio to the full angle. For a polygon with n sides, we get 27v/n
for the vertex angle, and (7 — 27/n)/2 for the angles at the base. The ratio will be 4:(n — 2) in
modern notation.

“In contrast to Props. 35-38, the propositions of this group do not arise from a generalization of
plane or solid problems. They are in principle beyond the reach of plane and solid geometry,
because they involve the determination of a ratio between a circular arc and a straight line (7).
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For:

Assume that the circumference of circle a, equal to the straight line c¢ has
<already> been found,' and set out an arbitrary circle b, and find, by means of the
quadratrix, the straight line d, equal to its circumference.? Then the radius of circle
a is to the radius of circle b as ¢ <is> to d.* The ratio, however, of d to ¢ <is given.>"
Therefore, the ratio of the radii to each other <is given>, also. And the radius of b is
given. Therefore, the radius of a is given, also,’ so that a itself <is given>, also.

And the synthesis is obvious.”

Prop. 40: Arc over Chord in Given Ratio®

<Problem>
#50 When a straight line AB is given in position and length, to describe through
A and B the arc of a circle that has to the straight line AB a given ratio.

z
C
L
A B D
R T
X
H E
N KM

! Analysis-assumption.

2Prop. 26, Addition.

3Circumferences have the ratio of diameters, or of radii (XII, 2, Circ. mens. 1, VI, 1). A similar
proposition was already used in Props. 26, 30, and 36 and will be used again in Prop. 40. For
details see the section " in the proof protocol of Prop. 26.

4Data 1 with Prop. 26, Addition.

>Data 2 with V, 16.

®Data, def. 5.

"Choose a circle b, with radius r, rectify it by means of the quadratrix into a straight line d.
Determine r’ with rir’ = c:d (VI, 9), and describe the circle a with radius r’. Then circumference
a:circumference b = r:r’ = c:d, and since circumference b = d, we get: circumference a = c¢. Cf. Co
p- 108/109, F.

8Only the situation where the arc is at most a semicircle is envisaged. Thus, the given ratio in
Prop. 40 is not arbitrary. It is also, necessarily, larger than 1:1 (in modern terms).
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<Analysis>

Assume that the <arc> ACB has been described,! and that the quadrant ZHE of
a circle, given in position, has been set out, and the quadratrix ZTK described, and
put together the angle EHL on the arc ZE, equal to the angle that goes through? the
arc AC,? and draw the perpendiculars LM and TN <onto HE>. Now, on account of
the property* of the line <i.e., the quadratrix>, the arc LE will be to the straight line
TN as the arc ELZ <is> to the straight line ZH, i.e.: as LH <is> to HK.> But as TH
<is> to HL, so <is> TN to LM, also. And therefore, as TH <is> to HK, so <is> the
arc EL to the straight line LM.® Now, take X as the center of the <circle with> arc
ACB, and draw the perpendicular XRC onto AB. Then the angle CXA is equal to
the angle EHL. And X and H are the centers <of the circles through C/A and E/L>.
Therefore, as the arc AC <is> to the straight line AR, i.e.: <as> TH <is)> to HK,’
so <is> the arc ACB to the straight line AB.®

And the ratio of the <arc> ACB?’ to <the straight line> AB <is given>. Therefore,
the ratio of TH to HK <is given>, also. And HK is given <in length.>!° Therefore,
HT is given <in length.>!! Therefore, T lies on the circumference <of a given
circle.>'? But it also lies on the line ZTK. Therefore, T is given. HTL is given in
position.® Therefore, the angle EHL is given.'* And it is equal to the angle CXA,

! Analysis-assumption; without loss of generality, C is chosen as the midpoint of arc ACB.
2BePnkoia, a hapax legomenon in Coll.IV.

3 /EHL = ZAXC, where X is the midpoint of the sought circle. LM corresponds to ¥2 AB, i.e.,
to AR.

“1dlopa (where one might have expected copntop).
> Arc ZE:arc LE = ZH:TN (symptoma); arc ZE:ZH = arc LE:TN (V, 16); but arc ZE:ZH = ZH:HK
(Prop. 26) = LH:HK; = arc LE:TN = LH:HK.

*AHTN ~ AHLM on parallels TN and LM; TH:HL = TN:LM (VI, 4); we have just seen: arc
LE:TN = LH:HK; thus: TH:HK = arc LE:LM (V, 23).

"First, we show that arc AC:AR = arc EL:LM. AR and LM are half-chords under equal angles.
Similar arcs are in the ratio of the corresponding radii (this proposition was used in Props. 26, 36,
and 39, and a similar one in Prop. 30; see section * in the proof protocol of Prop. 26). arc AC:arc
EL =rl:r2. Consider AARX ~ ALHM = rl:r2 = AR:LM; thus, arc AC:AR = arc EL:LM (V, 16).
Above, it was shown that arc EL:LM = TH:HK. We now get arc AC:AR = TH:HK.

8arc AB = 2arc AC, AB = 2AR by construction.

Hultsch prints ABT, Tr 125, 16 prints the mathematically correct ATB.

VHK is given in the sense that one can posit a freely chosen, but fixed quadrant ZHE with an
inscribed quadratrix, and in it, K, and therefore HK are uniquely determined. The quadratrix has
to be assumed. The quadrant with quadratrix was assumed to be given in position only, not in size,
at the outset of the analysis; the actual size of the quadrant with quadratrix is irrelevant for the
analysis and synthesis here.

" Data 2.
2Data, def. 6.

13 Data 26.

“HT (= HL) and HE are given in position. Therefore, the angle between them is clearly given.
There is no directly relevant entry in the Data. Hultsch (295, #2/3 Hu) and Ver Eecke (1933b,
p. 229, #2) offer a different interpretation for the conclusion of Prop. 40. See the commentary.
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and CX is <given> in position,' and A is given. Therefore, AX is <given> in position,?
so that the arc ACB is <given>, also.?
<Synthesis>

And the synthesis is obvious. For one must <provide the auxiliary construction of
quadrant ZHE with quadratrix ZTK,> make the ratio of DH to HK the same as the
given ratio,* and describe the <circular> arc through D with center H, and take T, in
which it intersects the quadratrix, and join TH, and <draw> RX, which bisects AB
and is erected at right angles to it,” and <draw> AX, which comprises with XR the
same angle as <the angle> KHT,® and describe the arc ACB of a circle with center
X through A, which has to the base AB the same ratio as the given one.’

Prop. 41: Incommensurable Angles

#51 And it is not even incredible <that it is possible> to find incommensurable
angles.® For with the following <argument> one will even take incommensurable arcs
of the same circle, and when we posit one of the angles or arcs as rational, the
remaining one will turn out to be irrational.

A
M
E
H
L
D
T
B C
K N Z

'CX is the perpendicular bisector of AB, and AB is given; Data 29.
2Data 29 (AR is given in position, and the angle RAX is given in magnitude).

3X is given (Data 25). With X and A given, so is the circle with center X and radius XA (Data 26);
by construction, B lies on it as well.

‘D on HZ so that HD:HK equals the given ratio (VI, 9).

SR is the midpoint of AB. The right angle determines the position of RX, whereas the point X is
as yet not determined in position.

®The easiest way to do this is by constructing a triangle congruent to ANHT, or AMHL with one side
on AB, ZA = ZNTH, and producing (if necessary) the sides around A to meet XC in R, and X.

"The apodeixis is not given by Pappus. It is easily reconstructed from the analysis. See the
commentary.

8 Incommensurable /ines were treated in Props. 2 and 3.
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Set out the quadrant ABC of a circle, and in it the quadratrix AEDZ, and draw
BE through the interior, and EH parallel to BC, and cut off a <straight line> BT
from BH, incommensurable with it in length,! and draw the parallel DT <to BC>,
and join DB. I claim that the angle EBZ is incommensurable with the angle DBZ.

Draw the perpendicular DN <and the perpendicular EK onto BC>. Then, on
account of the line <i.e., the quadratrix>, the angle EBZ is to the angle DBZ as EK
<is>to DN.2 EK, however, is incommensurable with DN (since HB <is incommen-
surable> with BT,? also). Therefore, the angle <EBZ> is incommensurable with the
angle <DBZ> as well, and when we posit the angle EBZ as rational, the angle DBZ
will be irrational.

Props. 42-44: Analysis of an Archimedean Neusis

I have inserted the analysis of the neusis that was taken by Archimedes in the book
on the Spiral Lines for you, so that you will not get into difficulties when you go
through the book.* For it, however, the loci described below are taken. They are
useful for many other solid problems as well.?

Prop. 42: Hyperbola for the Archimedean Neusis

#52 <Let> a straight line AB <be given> in position, and from a given point C let
a certain line CD be drawn forward <so as to fall onto it in D>, and let DE be
<drawn> at right angles to AB, and let the ratio of CD to DE be <given.>°

"For the construction of lines incommensurable in length cf. X, 10 ff., e.g., X, 11.

2Arc AC:arc MC = AB:EK and arc AC:arc LC = AB:DN (symptoma); EK:DN = arc MC:arc LC
(V, 16/22). arc MC:arc LC = ZEBZ:ZDBZ (VI, 33).

*EK:DN = HB:BT by construction, and these lines are incommensurable by construction.

4Cf. the above meta-theoretical passage before Prop. 31, where it is reported that Archimedes was
criticized by some for using a solid neusis when a plane argument would have sufficed for SL 18.
Pappus is going to provide an analysis to show that Archimedes’ neusis can be determined as the
intersection of a parabola and a hyperbola. The neusis in Props. 42-44 is closest to SL 9, but an
analogous argument could be given for SL 7 and 8. The hyperbola (Prop. 42) and the parabola
(Prop. 43) are considered as solid loci. See the commentary on the use, the power, and the limits
of geometrical analysis for the determination of the “degree” of a problem.

SThis is an indication that there may very well have been some move, on the part of ancient geom-
eters, toward a standardization of “solid” problems via reduction to typical neusis with standard
constructions.

®As in the case of Prop. 40, this ratio is not completely arbitrary. For the upcoming analysis to
work, we need CD > DE. In Prop. 44, we will need the equivalent to CD = DE. Note the analogy
to Prop. 34a for the starting point of the argument in Prop. 42.
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<I claim> that E lies on a <uniquely determined> hyperbola.

H E
— T
A B
7 D
4+ K
C

Through C, draw the parallel CZ to the line drawn at right angles <to AB>.
Then Z is given.! <Draw> the parallel EH to AB as well, and let the ratio of CZ to
both ZT and ZK be the same as the ratio of CD to DE.? Then both T and K are
given.? Now, since the square over CZ is to the square over ZT as the square over
CD <is> to the square over DE,* the ratio of the remaining square over ZD, i.e.: of
the square over EH, to the remaining rectangle between KH/HT is therefore
given, also. And K and T are given. Therefore, E lies on the hyperbola passing
through T and E.°

!Z is the point of intersection with AB. It is given (Data 25, Data 28).

2Because C — K — Z is assumed, we must have CD > DE, as noted above.

3CZ is given in position and length (Data 26); CD:DE is given by hypothesis. ZH and ZK are
given in length (Data 2). They are also given in position = T and K are given (Data 27).
4CZ:ZT = CD:DE by construction. CD:DE is given = CZ*ZT? = CD*DE? and this ratio is given
as well (Data 50).

5The above proportion implies (CD? — CZ?):(ED? — ZT?) = CZ*ZT?, so both ratios are given. We
now show that CD? — CZ? = ZD? (I, 47) = EH?, and that (ED?> — ZT?) = KH x HT. Then EH*
KH x HT is given.

ED?=ZH?=ZT? + TH? + 2ZT x TH (II, 4). 2ZT x TH = KT x TH (construction, VI, 1). TH? +
KT x TH = KH x TH (I, 3). So ED? = ZT? + KH x HT, and KH x HT = ED? - ZT%.

®The converse of Con. I, 21 is used in analysis. According to Con. I, 21, all points on the hyperbola
through T with diameter TK, a latus rectum t with ttHK = EH>TH x KH, and ordinates parallel
to AB fulfill the above equation. For the analysis, we can “conclude”: E lies on this hyperbola; cf.
Prop. 34a.
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Prop. 43: Parabola for the Archimedean Neusis

#53 Let AB be given in position and length, and let DC be at right angles <to it>,
and assume that the rectangle between AC/CB is equal to the rectangle between a
given <straight line> and CD.

<I claim> that the point D comes to lie on a parabola that is <given> in
position.

For:

Bisect AB in E, and <draw> EZ at right angles <to AB>, and let the rectangle
between the given <straight line> and EZ be equal to the square over EB.! Then Z
is given.? And <draw> the parallel DH to AB. Then the remaining square over EC,
i.e., the square over DH, is equal to the rectangle between the given <straight line>
and ZH.? And Z is given; therefore, the point D comes to lie on the parabola passing
through A, Z, and B, the axis of which is EZ.*

!'Such a rectangle can be constructed using II, 14.

2EZ is given in length (Data 57). Because E is given (Data 7 and Data 27), EZ is also given in
position (Data 29), and so Z is given (Data 27).

SEC? = DH? by construction. Let t be the given line. EB> = t x EZ by construction. However,
EB? = AC x CB + EC? (I, 5). By hypothesis, AC x CB =t x DC, and so EC* = EB*-* AC x CB
=txEZ-txCD=txZH.

4Converse of Con. 1, 20. Con. 1, 20 shows that all points on a parabola with vertex Z, diameter EZ,
parameter t and ordinates parallel to AB fulfill the equation. The analysis can use the converse,
even if it is not a theorem.
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Prop. 44: Archimedean Neusis (Following Hultsch’s
Partial Restitution')

#54 With these things written down beforehand, the proposed <neusis is now
subjected to analysis*> ... when it has come about beforehand, in the following
way.

When a circle ABC is given in position, and in it a straight line BC <is given in
position>, and when A on the circumference is given, <the task is> to position
between the straight line BC and the circumference BEC a <straight line> that is
equal to a posited one and verges toward A.}

Assume that it has turned out that way, and that it has been positioned and is
equal to ED,* and draw DZ at right angles to BC,> equal to AD.

"Prop. 44 is not included in Co. Commandino even suggests that Coll. IV ends after Prop. 43. The
transmitted manuscripts have no figure for Prop. 44. The figure given by Hultsch p. 303 is badly
misleading and was not used here. Hultsch himself supplied a correction in the appendix of his
edition, pp. 1231-1233. This passage in the appendix also contains a helpful explanation of Props.
42-44 by Baltzer.

>Translating the reading in Tr 127, 21/22 for a lacuna in Hu 300, 21/22.

3Both the main manuscript A and Hu have “C” here. Hultsch corrected his reading in the appendix
to his edition p. 1232/1233. Tr also prints the mathematically correct “A.” See the apparatus to the
Greek text.

4 Analysis-assumption.
3Z does not necessarily lie on the circumference of the circle.
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Now, since AD has been drawn forward from the given <point> A <up> to BC,
which is <given> in position, and since it is equal to the <straight line DZ> erected
at right angles starting from <D, the point Z> lies on a <uniquely determined>
hyperbola! (since the rectangle BDC is equal to the rectangle ADE? i.e.: to the
rectangle ZDE?). And DE is given.* Therefore, the rectangle BDC is equal to the
rectangle between a given <straight line> and DZ. Therefore, Z lies on a <uniquely
determined> parabola.’ Therefore, Z is given®....”

Archimedes used the problem <i.e., the neusis for which Pappus has provided
an analysis in terms of solid loci here> in order to show a straight line equal to the
circumference of a circle.® Some, however, reproach him, alleging that he did make
use of a solid problem in an inappropriate way ...° they show that it is also possible
to find a straight line equal to the circumference of a circle by plane means, when
one makes use of the theorems pronounced on the spiral.'®

<This is the end of> Book IV of the Collection of Pappus, which is <made up>
of splendid theorems, plane, solid, and linear.

'For the lacuna at 302, 8 Hu, Tr 128, 3 prints 1| AA 10 Z onueiov 8pa, the resulting meaning
coincides with the paraphrase given above, and with Hultsch’s conjecture ad locum.

2111, 35.

3AD = ZD by construction. Prop. 42 states that Z lies on a (uniquely determined) hyperbola.
‘DE is given in the problem.

SProp. 43.

67 is the point of intersection of the parabola and the hyperbola.

"For this lacuna at 302, 12 Hu, Tr 128, 7/8 prints: avaivetat Gpa. Tovte (td Tpofrfuartt).
Therefore, it is subjected to analysis. This problem.

8SL 18 uses SL 7/8.

For the lacuna at 302, 15 Hu, Tr 128, 11 prints: Suvatév yop mg amo(delicvovov) (For it is
possible, as they show).This makes Hu’s addition of @ and éotiv in the following line
unnecessary.

0Unfortunately, no such argument survives. For reconstructions and bibliographical references
see the commentary.
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Introductory Remarks on Part I1

The purpose of this commentary is to complement the text, translation, and espe-
cially the notes in Part I. It is meant to be read in conjunction with Part I, although
some of its prose passages can also be read independently. They typically pick up
a topic or keyword as it comes up in the course of Pappus’ text, and provide an
outline of the historical or mathematical context, or of the historical or method-
ological significance, or of the main thrust of scholarly discussion with regard to
it. No detailed analysis and argumentation will be given, since the present edition
is intended primarily as a source text. Instead, I have restricted myself to informa-
tion that will yield a preliminary orientation as necessary to understand Pappus’
text, leading up to the identification of topics that might deserve further investiga-
tion, with bibliographical references for such further study. The format of these
inserted vignettes is non-uniform, as is their content. For example, the commen-
tary on Props. 2 and 3 contains an excursus on Elements X, more or less restricted
to a summary of the book’s content, with a table that visualizes the content of X.
The commentary on Props. 4—12 contains an excursus on the method of analysis-
synthesis, in the form of a series of paragraphs targeting different facets of Greek
geometrical analysis. And the commentary on Props. 26-29 contains a section on
the history of the problem of circle quadrature. The vignettes are primarily
intended as a help to understand a particular passage in Pappus, by providing a
“horizon” for it, but they can, in many cases, be also read independently from Part
I. Apart from the vignettes, the format of the commentary is uniform. Each group
of propositions, and most individual propositions, will receive a section with
introductory remarks, followed by a schema that visualizes the main characteris-
tics of the group or proposition, and each section also contains proof protocols
(or their equivalent in the case of arguments that are not full-fledged proofs) for
each individual proposition. The purpose of the protocols is to aid the reader in
surveying the mathematical arguments in Part I at a glance, identifying their
overall structure and the decisive argumentative moves. The above-mentioned
overview schemata go beyond this local level, and aim toward general character-
izations and a placement of groups or propositions within Collectio IV (Coll. IV).
They lead up to selective bibliographical references for further study, and they
have the following set-up:
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context: e.g., squaring the circle (Props. 26-29).

sources: e.g., Nicomedes’ treatise on the quadratrix (Props. 35-41).

means: e.g., Elements 1, 11, 111, VI, X (Props. 2 and 3).

method: e.g., apodeixis, analysis-synthesis, analysis.

format: theorem or problem.

reception/historical significance: e.g., reception of the angle trisection in Props. 31/32 in
Islamic culture, significance of Props. 31-34 as our only complete surviving sources on the
angle trisection by means of conics.

embedding in Coll. IV: list of motivic or conceptual connections to other propositions in
Coll. TV.

purpose: e.g., illustration of the structure of analysis-synthesis (Prop. 4).

literature: reference to treatments in general standard histories, notably (Heath 1921), and
to specific scholarly articles, e.g., (Knorr 1978) for Props. 19-22.

These schematized profiles summarize the main ideas on the content, style and
purpose of each of the groups or propositions. For a survey of Coll. IV, and the
groups I have identified, see the general introduction. As said there, the reader
should view the way in which I have put propositions together in groups, and my
remarks on the purpose of propositions as directly resulting from my general thesis:
Coll. IV can be read, and was intended to be read, as a unified, coherent survey of
the classical geometric tradition from the point of view of methods. The meta-the-
oretical passage, on the three methodologically defined kinds of geometry, with a
homogeneity criterion in place, is to be understood as Pappus’ guiding motif in
selecting and presenting the material.

As in the translation, Euclid’s Elements are used as reference work for the justi-
fication of intermediate steps. References to individual propositions in the Elements
will be given in Roman numerals, followed by Arabic numerals (e.g., I, 47 refers
to Elements Book I, Proposition 47 in Heath 1926). References to books will be
given in Roman numerals alone. For all other references, standard techniques and
abbreviations will be used.
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1 Props. 1-6: Plane Geometry, Euclidean Style

The first six propositions cover material from Elements 1, (II), III, VI, X. Since IV
contains special construction problems in plane geometry of the circle, V contains
the general Eudoxean theory of proportions, VII-IX number theory, and XI-XIII
stereometry; one can say that Pappus has given an illustration of plane geometry as
given in the Elements by means of exemplary arguments.

We miss the beginning of the text of Coll. IV, certainly the proem. On my thesis
about the purpose of Coll. IV, it is reasonable to assume (as others have done, also),
that we do not miss much of the actual mathematical content at the beginning, for
there could hardly be a more suitable starting point for an overall portrait of the meth-
ods of plane Greek geometry but Elements 1, specifically the Pythagorean theorem.

1.1 Prop. 1: Generalization of the Pythagorean Theorem

The so-called theorem of Pythagoras (I, 47) is perhaps the most famous theorem of
elementary geometry, the culmination of Elements 1. It states that in a right-angled
triangle, the sum of the squares over the kathetes is equal to the square over the hypot-
enuse. Itis often taken, and not without good reason, as a paradigm of what “Euclidean”
argumentation, that is, a classical Greek apodeixis, looks like. And this appears to be
the way Pappus viewed it, too. For he gives us, in Prop. 1, a generalization of I, 47 that
is very close to I, 47 itself, and is a very good example for the method of classical
apodeixis. Within the Elements, the Pythagorean theorem is generalized in VI, 31, for
similar and similarly positioned parallelograms. VI, 31 uses the Eudoxean theory of
proportions (V). But the theorem can easily be generalized further, with or without the
use of proportions. One such example, perhaps due to Heron, builds on the proof strat-
egy in VI, 31. Prop. 1 is another example; it avoids the use of proportions and relies
solely on means from I (congruence geometry, areas of parallelograms).

context: Pythagorean theorem.

sources: /.!

means: [.

method: classical apodeixis (synthesis).
format: theorem.

'Tannery (1912, 1, pp. 157-167) considers the possibility that Prop. 1 may be due to Heron, but
decides instead in favor of VI, 31, together with a possible further extension of the latter, as due to
Heron and his school. Hultsch was probably justified in bracketing a remark, in the conclusion of
Prop. 1, that links Prop. 1 to VI, 31 (see the notes to the translation). It may have been this remark
that led Proclus to associating Pappus’ and Heron’s extensions of I, 47, with each other. For an argu-
ment by Heron, commenting on I, 47, and showing some connection to Prop. 1, see Anaritii com-
mentarii in Euclidis Elementa, ed. Curtze, pp. 78-84; see also Heath (1926, II, pp. 366-368).
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reception/historical significance: transmitted and discussed in connection with the
Pythagorean theorem, e.g., An-Nairizi; Clavius 1574 refers to Pappus explicitly.

embedding in Coll. IV: /.
purpose: illustration of classical apodeixis.

literature: Prop. 1 received some attention in secondary literature, mostly in connection
with I, 47; e.g., see Tropfke IV (1923, pp. 135 ff."), Heath (1926, L, pp. 350-368, 1921, 11,
pp. 369-370).

The content of Prop. 1 is not used anywhere in Coll. IV. As said above, an elemen-
tary generalization of the theorem of Pythagoras would appear to be a very fitting
starting point for a survey of ancient Greek plane geometry from a methodological
perspective, and Pappus’ proof is a classical apodeixis.

1.1.1 Schema of a Classical Apodeixis, According to Proclus:

. Protasis (propositio): proposition

. Ekthesis (enuntiatio): setting-out

. (if necessary) Diorismos (determinatio): specification and determination

. Kataskeue (dispositio): construction

. Epideixis (demonstratio): proof (in reference to the specific configuration)
. Symperasma (conclusio): conclusion

AN N AW =

Sometimes, the term apodeixis (proof) is used more specifically for steps 5 and 6
together, or even for steps 4-6. Nevertheless, the picture of a fairly settled standardized
pattern arises.

The following proof protocol of Prop. 1 shows how this pattern, this method of
argumentation, is realized in mathematical discourse.® It was therefore given in
some detail.

1.1.2  Proof Protocol Prop. 1

1. Protasis
Let there be given a triangle ABC. Over its sides AB and BC describe parallelo-
grams ABED and CZHB. Produce DE and ZH to their point of intersection T, and
join TB.

Then ABED + CZHB is equal to a parallelogram with sides equal to AC and TB,
and an angle at its base equal to /ZBAC + ZDTB.

'This source contains numerous bibliographical references on the Pythagorean theorem and its
history/context.

*Proclus, Commentary on Euclid’s Elements, pp. 203205 Friedlein, cf. Heath (1921, I, p. 370,
1926, pp. 129-131). The technical terms, and the pattern, are standardized in ancient mathematics,
in fact already in the Elements; contrast the situation for analysis-synthesis, described in the intro-
duction to Prop. 4.

*Prop. 1 is atypical in that it does not contain a full generalization/abstraction step in the
symperasma.
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2. Ekthesis/ 4. Kataskeue
Produce TB to its point of intersection with AC, K. Draw the parallels CM and AL
to KN, obtaining the parallelogram ALMC. The task is to show that ALMC fulfills
the requirement.
5. Epideixis
5.1. ABTL is a parallelogram = AL = TB
CMTSB is a parallelogram = CM = TB [I, 34]
= ALMC is a parallelogram with sides equal to AC, TB
5.2 ZLAC = ZLAB + ZBAC
and ZLAB = Z/TBH = ZDTB [L, 29]
5.3 ABED = ABTL = AKNL, and CZHB = CMTB = CMNK [L, 35]
= ACML (= AKNL + CMNK) = ABED + CZHB
6. Symperasma
We have shown that ABED + CZHB is equal to a parallelogram (ACML) with sides
equal to AC and TB, and an angle at the base equal to ZBAC + ZDTB.

Prop. 1 is closely analogous to I, 47.! This is why I would disagree with claims that
Heron could be the source for Prop. 1. His generalization took a different route. Pappus
even makes a point of stating that his theorem is “far more general” than a theorem from
the Elements. 1 take him to be referring to I, 47. Though this cannot be affirmed with
certainty, it seems not unlikely to me that Pappus himself is the author of Prop. 1.

1.2 Props. 2 and 3: Construction of Euclidean Irrationals

context: X (geometrical classification of 13 types of irrationals (all first-order
irrationals) ).

sources: XIII, 11 as model for Prop. 2; both Props. 2 and 3 are by Pappus.

means: I, I, 11, VI, X.

method: synthesis.

format: problem.

historical significance/reception: /.

embedding in Coll. IV: motifs “semicircles, tangents and chords”: Props. 4-6, 11, and 12;
motif “commensurable/incommensurable magnitudes”: Props. 17, 41.

purpose: illustrate operation with the theory of irrationals in X.

literature: The two propositions have so far been neglected by secondary literature.” They
could, however, be very useful for the reconstruction of the ancient understanding of the
theory in X, in addition to Pappus’ commentary on X.* For they show how an ancient author
operates with that theory. The only surviving ancient actual use of the theory outside Pappus
is XIII, 11.* Prop. 2 appears to be modeled on XIII, 11 (see below). Our understanding of X

'No construction of similar figure over hypotenuse in I, 47, since it is already given there. But as in
Prop. 1, one constructs two parallelograms, each of which can be shown, via equal areas of parallelo-
grams with equal heights, to be equal to a corresponding parallelogram over one of the kathetes.
?Brief reference in Heath (1926, III, pp. 9/10).

3With regard to the significance of Pappus’ commentary, I am somewhat more optimistic than
Jones (1986a, p. 11), who judges it to be “of only modest historical value.”

4References to results from X, although no actual work with the concepts, are to be found also in
XIIIL, 5, 6, 16, and 17.
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has for a long time been impeded by a tendency, even in such influential scholars as Heath'
and Knorr,? to view the book as essentially quasi-algebraic. More recent approaches more
appropriately emphasize its geometrical character. The best current interpretations are by
Taisbak (1982) and Fowler (1992). Knorr (1975a) also contains a very helpful discussion.
Taisbak and Fowler are quite compatible with Pappus’ commentary (surviving in Arabic). An
Arabic text of Pappus’ commentary, with English translation and commentary, was published
by Thompson and Junge in 1930. Taisbak and Fowler did not consult Pappus on X, and they
did not mention Props. 2 and 3 of Coll. IV. Therefore, taking these propositions into account
could yield independent additional support for the Taisbak/Fowler reading of X.

1.2.1 Excursus: Remarks on Elements X (Irrational Lines)

The (geometrical) theory of irrationals in X poses problems for the modern reader.
The concepts used overlap with modern notions, but are not synonymous with them.
For example, “rational” and “irrational” do not mean what one would assume them
to mean, and the concept of “square root” does not exist in Greek geometry (see
below: the diagonal of a unit square is rational in the sense of X). X is the longest
book of the Elements; it yields a classification of rationals (1-20), and a complete
classification of all irrationals that can be exhibited by a single operation of the appli-
cation of areas (21-35 and 36 ff.). Irrationals from X, 21 on are introduced as sums
or differences of lines, but characterized geometrically, via application of areas. This
dual procedure with its resulting complexity adds to the modern reader’s difficulty.
And even after one understands the structure, the question remains: what are the
irrationals good for? What is their mathematical use? Except for the Medial, the
Minor and the Major, they seem not to have been used in ancient mathematics outside
of X. Is X sheer art pour I’art, for the sake of showing that the known irrationals can
be embedded in a complete structural theory? At present, it almost looks like that.?
The names for the irrationals in X are, for the most part, obviously made up ad hoc.
The exceptions: Medial, Minor, and Major are attested for pre-Euclidean geometry
(the Medial for Theaetetus, the Minor, anonymous, in the construction of the golden
section; the Major is probably owed to Eudoxus®).

In what follows, I will give a brief informal explanation of rational, irrational, com-
mensurable, incommensurable, and a survey of X in the form of a table. The intention
is to give the reader enough information to follow Pappus’ proofs in Props. 2 and 3. For
more detailed discussions see the above-mentioned secondary literature.

'Cf. Heath (1926) on X and Heath (1921, I, pp. 401-412). The algebraic notation used there is, in
my view, something of a hindrance to the reader’s understanding of X.

2Knorr’s interpretation developed by expanding certain speculative trends in his brilliant reconstruc-
tion of the evolution of the Euclidean Elements (Knorr 1975a, relying for the reconstruction of the
pre-Euclidean theory of irrationals to a significant degree on earlier results by Becker). In my opin-
ion, his later contributions in this area (Knorr 1978c, 1983a, 1985), departed too far from the actual
source material. In this regard, I find Fowler/Taisbak preferable.

3For positions, differing at least partially, from the one endorsed here on the purpose of X
cf. Mueller (1981, chapter XII); Knorr (1975a, 1983a, 1985, 1986).

4Cf. Knorr (1975a).
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Rational: a line is picked as the magnitude of reference; it is called the Rational,
other lines are called “rational” or “irrational” in relation to it.

Commensurable

(a) Commensurable in length: two lines are commensurable in length, if they
have to one another a ratio expressible in numbers (e.g., 2:3); the ratio of the
squares over them is then expressible as a ratio of square numbers (e.g., 4:9)

[X, def. 1; X, 5, 6, and 9].

(b) Commensurable in square: two lines are commensurable in square, if their ratio
is not expressible in numbers, but the ratio of the squares over them is (e.g.,
square on a: square on b is as 2:3) [X, def. 2; X, 5, 6, 9].

X, 9, serves as the crucial criterion in determining if lines and squares occurring
in a geometrical argument are commensurable. Its essence goes back to the pre-
Euclidean mathematician Theaetetus.

Incommensurable

(a) Two lines are incommensurable in length, if they do not meet the criterion for
commensurability in length (they can still be commensurable in square, e.g.,
lines with squares in relation 2:3, but also those with an inexpressible ratio for
the squares).

(b) Two lines are incommensurable in square, or incommensurable simply speak-
ing, if they meet neither of the above criteria for commensurability (the ratio of
their squares is not expressible in numbers) [X, def. 1; X, 7, 8, 9].

Rational

The basic line of reference is rational; also rational are all lines that are commen-
surable with it, either in length or in square (note the difference to the modern
concept: the diagonal of the unit square (in our terminology: \2) is rational)

[X, def. 3 and 4].

Irrational

All lines that are incommensurable with the Rational are irrational
[X, def. 3 and 4].

1.2.1.1 Survey of Elements X

1-20 : Rational lines (Theaetetus)
21-35 : Medial lines (Theaetetus?)
36110 : 12 Further irrationals (see table below)
111-115: Appendix
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1.2.1.2 Contents of X, 36110

name for a + b # name for a —b #
a, b rat.,’ Binomial 36 Apotome 73
comm. squ.
a, b med., First Bimedial 37 First medial Apotome 74
comm. squ.
a X b rat.
a, b med., Second Bimedial 38 Second medial Apotome 75
comm. squ.
a X b med.
a, b incom. Major 39 Minor 76
a’> + b’ rat.,
a X b medial
a, b incom. Side of a rational 40 Line which produces 77
a’ + b? med., plus a medial area with a rational
2(a x b) rat. a medial whole
a, b incom., Side of the sum 41 Line which produces 78
a’ + b*> med., of two medial areas with a medial
2(a x b) med. a medial whole

a’> + b? incom.
with 2(a x b)

Following the two groups of propositions that introduce the 12 irrationals, one has:
#4247 and # 79-84: Uniqueness of the representations as sums/differences
#47a and # 84a: Six types of the Binomial and Apotome

#48-53 and # 85-90: Construction of the types of Binomial and Apotome
#54-59 and # 91-96: Construction of the 12 irrationals, using the types
#60—-65 and # 97-102:  Uniqueness of the geometrical representations

#67-72 and # 105-110:  The irrationals form complete classes

See also the tables in Fowler(1992, pp. 244-245) and Taisbak (1982, p. 50).
Props. 2 and 3 give a surprisingly simple construction for complex irrationals. The
configurations for Props. 2 and 3 are very similar. Prop 2 constructs a Minor>. Prop.
3 uses X to go beyond Euclid. The constructed irrationality is not one of those
covered in X, but a “higher” irrational. It is not named, its status is not defined, and

'T am using the following, rather obvious abbreviations: rat. = rational, comm. = commensurable,
squ. = in square, med. = medial, incomm. = incommensurable.

2The Minor turns up in the golden section; according to Knorr (1975a), it is one of the three central
items that gave rise to the classification theory in X. The Minor also appears as the side of a
regular pentagon inscribed in a circle with rational diameter.
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it is not shown to be uniquely determined: a geometrical characterization via
application of areas is not given. Perhaps no embedding theory for the higher irra-
tionals was available in antiquity.! A geometric characterization for the next stage
of irrationals, analogous to X, would have been much too voluminous to be
covered in a single ancient book.

1.2.2 Prop. 2: Construction of a Minor
1.2.2.1 Proof Protocol Prop. 2

Extension of the configuration: Z center of circle, H base of perpendicular from E
onto ZC, BT = 1/4 BZ, draw connecting lines. AB (= ZC) is the Rational.

1. HT is a fourth Apotome.
1.1 HT is an Apotome:
ZT is rational, ZH is rational,
and ZT is commensurable in square only with ZH.
[ZC*ZT? = 64:25% ZC?* ZH? = 64:12;
ZT%7H? =25:12; X, 9]
= ZT — 7ZH = HT is an Apotome. [X, 73]
1.2 HT is a fourth Apotome.
The square for (ZT? — ZH?) has a side that is incommensurable in length with
ZT, and ZT is commensurable in length with the Rational.
[(ZT? - ZH?):ZT? = 13:25; apply X, 9]

Thus, ZT — ZH = TH is a fourth Apotome [X def. I1I, 4].
2. CE*=2CZ x TH, i.e., CE is a Minor [X, 94)°

2CZ is rational, TH is a fourth Apotome.

= X with X?> =2CZ x TH is a Minor [X, 94]

Show that CE? = 2CZ x TH [II, 12/13 generalized]

Compare the following proof protocol for XIII, 11. The close parallel indicates
that Prop. 2 may very well be modeled on XIII, 11.

! According to Pappus, Apollonius studied higher irrationals (cf. Junge and Thompson 1930, p. 64).
No traces of his treatment, or a theory around it, survive.

2The equation sign is used here for the sake of abbreviation. Pappus himself does not, usually,
equate ratios of magnitudes with ratios of numbers directly. In Greek mathematics, numbers and
magnitudes are not directly comparable, they are different kinds of entities. Expressions like ZC?
are abbreviations for “the square with side ZC”. They are not to be understood as numbers.
3While the auxiliary magnitude TH was established as an irrational via the difference defini-
tion, the target magnitude CE is shown to be a Minor by reference to the geometrical
characterization.
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1.2.2.2  Proof Protocol for XIII, 11

Extension of the configuration: F center of the circle, M base of perpendicular
from A onto BH, FK = 1/4BF, draw connecting lines. AG (=BH) is the Rational.

1. MB is a fourth Apotome
1. 1. MB is an Apotome
BK is rational, MK is rational,
and MK is commensurable with BK in square only.
[BK%FK? = 25:1; MK%FK? = 5:1; BK=ZMK? = 5:1; X, 9]
= BK - MK = MB is an Apotome. [X, 73]
1.2 MB is a fourth Apotome
The square for (BK? — MK?) has a side that is incommensurable in length with
BK, and BK is commensurable in length with the Rational
[BK? - MK?):BK? = 4:5; X, 9]
= BK — MK = MB is a fourth Apotome. [X def. III, 4]
2. AB?=BH x MB, i.e., AB is a Minor
BH is rational, and MB is a fourth Apotome.
= X with X2 = BH x MB is a Minor [X, 94].
Show that AB> = BH x MB [similar triangles ABH, ABM].

1.2.3 Prop. 3: Construction of an Irrational Beyond X, with the Notions
from X

1.2.3.1 Proof Protocol Prop. 3
Extension of the configuration: H center of the circle, semicircle HBD, center C, K

on semicircle and DZ extended, L, T bases of perpendiculars from B, K onto HD.
Draw connecting lines. AC (= HD) is the Rational.
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1. DK is a Binomial [X, 54]
1.1 DL is a first Binomial
1.1.1 DL is a Binomial
DC is rational, CL is rational,
and DC and CL are commensurable in square only
= DC + CL = DL is a Binomial. [X, 36]
[DC?:DH? = 1:4; DC*CL? = 4:3;
DC%:CL? = 1:3; X, 9]
1.1.2 DL is a first Binomial
The square for (DC? — CL?) has a side that is commensurable with DC, and
DC is rational.
[(DC? - CL?):DC? = 1:4; X, 9]
= DL is a first Binomial [X, def. II, 1]
1.2 DK is a Binomial
HD is rational

= X with X?> = DL x HD is a Binomial. [X, 54]
Show that DK = DL x HD.
2. KZ is a Line which produces with a rational a medial whole [X, 95]

2.1 LT is a fifth Apotome

2.1.1 LT is an Apotome

LC and CT are rational, and comm. in square only

[LC: see above, 1.1.1; CT:HD = 1:4;

LC%:CT? = 1:3; X, 9]

= LC - CT = LT is an Apotome [X, 36]

2.1.2 LT is a fifth Apotome

CT, the lesser one of the pair LC, CT, is commensurable with the Rational

HD, and the square for LC? — CT? has a side that is incommensurable with

LC in length. Thus, LT is a fifth Apotome [X, def. III, 5]
2.2 KZ is a Line which produces with a rational a medial whole

Show that KZ? = LT x DH.

Since LT is a fifth Apotome, and HD is rational, KZ is a Line which produces

with a rational a medial whole [X, 95]

3. Since KZ is a Line which produces with a rational a medial whole, and DK is a

Binomial, DZ = KZ — DK meets the claims made in Prop. 3.

1.3  Props. 4-6: Plane Geometrical Analysis in the Context
of Euclidean Geometry

context: Analysis-synthesis in plane geometry.
possible sources: /.
means: I, III, VI.

' Note the general strategy: construct an auxiliary line, identified via addition definition, then show
via geometrical characterization that the target line is an irrational of the type claimed.
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method: analysis—synthesis.

format: theorem.

historical significance/reception: /.

embedding in Coll. IV: motif “circle, chords and tangents”: Props. 2, 3, 5, 6; features of the
method of plane geometrical analysis: Props. 7-10, 12; motif “analysis” outside of plane
geometrical analysis: Props. 28 and 29, 31-34, 3640, 42—44.

purpose: illustration of the structural features of plane analysis-synthesis, with analysis
aspects to be spelled out in Props. 5-12."

literature on analysis-synthesis in Prop. 4: (Hintikka and Remes 1974, especially pp.
22-30); their approach is parallel to my interpretation in that they take Prop. 4, just as I do,
to be an argument that exhibits the structure of analysis-synthesis as a method of argumen-
tation. In my opinion, Prop. 4 was designed by Pappus himself for precisely that purpose.
literature on Greek geometric analysis-synthesis in general: (Hintikka and Remes 1974,
1976); survey of analysis-synthesis as an argumentative technique: (Zeuthen 1886, pp.
98-104; Jones 1986a, pp. 66—70); some influential contributions to the discussion of Greek
analysis-synthesis in secondary literature besides the ones mentioned above include:
Cornford (1932), Robinson (1936), Gulley (1958, 1962), Mahoney (1968), Szabo (1974),
Lakatos (1978, pp. 70-103), Mueller (1981), Jones (1986a) passim (especially the essays
on analytical works), Méenpad (1997), and Netz (2000b).

The result of Prop. 4 is not used in Coll. IV. From a methodological point of view,
Prop. 4 sets the stage for the illustration of various aspects of the method of plane
geometrical analysis in Props. 4-12. It should be, and has been, read as program-
matic. Props. 5-12 then complete Pappus’ portrait of plane analysis (e.g., Prop. 7:
use of Data, Props. 8-10: Apollonian analysis, resolutio, determination of data,
Prop.12: analysis, apagoge/epagoge). For a schema of ancient analysis-synthesis
see below. As said in the introduction, analysis-synthesis is a two-part method. In
the analysis, one assumes what one wants to construct or show as already estab-
lished and applies different strategies for identifying features that are crucial and
constitutive of the target situation (either as actual elements in it, or as conse-
quences from auxiliary constructions that one can apply), until one arrives this way
at a situation that can be verified or constructed from elsewhere. Then one shows
that this end stage is independent from the analysis-assumption, i.e., that it can be
reached from what is given, not just from what one wants to establish. The synthesis,
essentially a classical apodeixis (cf. Prop. 1), follows. It corroborates the result.
There has been much scholarly discussion in secondary literature about Greek geo-
metrical analysis, its nature, its goals, and even its practice and status within Greek
mathematics. A large volume of analytical Greek geometry once existed, but the
sources are for the most part no longer directly accessible to us. Scholarly discus-
sion must focus on the slim evidence we have, in addition to “meta-theoretical”
characterizations, notably the proem of Coll. VII. Coll. IV provides quite a few
examples for different types and usages of analysis in practice (see below), which
have not yet been fully exploited. Perhaps the full documentation of these examples
in their original context can serve as a basis for further investigation. It seems to me

'Cf. Heath (1921, II, p. 371). He states that the content of Props. 4-6, 7, 11/12 is not of any intrinsic
mathematical interest.
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that the fact that Pappus has a methodological perspective on the examples he
presents may be an advantage for any inquiry that looks for the significance of
ancient geometrical analysis as a method of argumentation.

1.3.1 Excursus: Greek Geometrical Analysis as a Method: Sketch
of the Status Quaestionis

Greek geometrical analysis has been the subject of intense, controversial scholarly
discussion in recent decades. In my opinion, we are still rather far from reaching a
communis opinio, even from sifting through all the relevant material." The follow-
ing remarks are therefore rather general and sketchy. No attempt will be made to
convey a settled view on the details of ancient analysis. In fact, the documentation
of various, varying examples of ancient analysis in practice provided here is
intended to help complete our picture, when taken into account for further discussion.
The purpose of my remarks is merely to convey a rough idea about the status quaes-
tionis on ancient analysis: what sources are available, what can be made out in
outline, what issues and problems were raised in recent scholarly discussion, and
from what perspectives. I will take a stand and say a little more about the topic of
Greek analysis as an analysis of configurations. For more details, and for alternative
views, the reader is referred to the literature mentioned above.

1.3.1.1 Sources on Greek Geometrical Analysis

Perhaps the crucial problem in the discussions about ancient geometric analysis is
the scarceness of sources and examples. Of the vast corpus of contributions that
used the analytical method in a programmatic and thoroughgoing way (Apollonius),
only a fraction survives. For the most part, we have to rely on indirect sources (Coll.
VII), schematic characterizations (proem to Coll. VII), and a few isolated examples.
The following lists may illustrate this point.

Ancient descriptions of the method: Coll. VII, proem,? Elem. XIII, 1, Heron on Euclid II
(Al-Nairizi), Proclus, Commentary on Euclid’s Elements.
Indirect sources: Data®; Coll. VIL*

!' A thorough study of Apollonius’ Sectio rationis from the perspective of how analysis operates there
is still a desideratum. Not all of the examples in Coll. IV, illustrating a broad spectrum of types and
usages of analysis, have been accounted for. Scholarly discussion has so far concentrated on the
interpretation of the proem of Coll. VII, and a very narrow selection of actual examples (e.g.,
Hintikka and Remes (1974) use Prop. 4, Mahoney (1968) uses Prop. 12 as exclusive typifiers).

This is the most detailed account. It was the basis for most of the more recent scholarly discussion
of the ancient method of analysis.

3Euclid’s Data are not, in themselves, an analytical work. They are closely linked to the Elements,
and provide a set of (synthetically proved) propositions useful for analytical work in practice.
4cf. Jones (1986a). Coll. VII is a commentary on the lost analytical works, not a direct source for
analytical arguments.



184 II, 1 Plane Geometry, Euclidean Style

Sources on ancient analysis in practice: Aristotle, Meteor. 111, 5, Scholia and diorismoi on/
in Euclid’s Elements (e.g., additions to XIII, 1-5), Archimedes, Sph. et Cyl. 11, 3-7.!
Sectio rationis, fragments and testimonies of other minor analytical works by Apollonius,
Eutocius in Arch. Sph. et Cyl. 11, 78-85 (Menaechmus) and, so far neglected, for the most
part: Coll. IV, Props. 4, 7, 8-10, 12, 28, 29, 31-34, 3640, 42-44.

1.3.1.2  Pappus’ Outline of Analysis-Synthesis in Coll. VII

In this situation, it is perhaps understandable that modern discussions have concen-
trated on Pappus’ longer methodological characterization of analysis-synthesis in
Coll. VII as a starting-point. This passage is the proem to his commentary on the
treasury of analysis. Its goal is not to give a historically accurate description of the
actual practice, but an attempt to explain its structure as a method in a general way.
Therefore, statements made in this proem cannot suffice to reconstruct the details
of the actual practice of the method. Examples of the method at work are needed
for a thorough and comprehensive assessment. Even so, reflecting the general trend
in scholarship, the following brief overview also starts with a sketch of the proem,
highlighting in the initial comments the main points that have given rise to scholarly
discussion.

According to Pappus, analysis is a heuristic technique. There are two general
types of analysis: problem-oriented and theorem-oriented, but they are methodologi-
cally equivalent. This second claim of Pappus’ has met with criticism from several
commentators, as overly schematic and out of touch with the actual mathematical
practice. In fact it looks as though analysis was indeed a heuristic technique, devel-
oped and employed primarily for problem solving, as a research tool. Our sources
on theoretical analysis are all relatively late and seem to point to a didactic context.
With this modification, however, it is perhaps fair to say that the theoretical analyses
are nevertheless analyses in the full sense, methodologically equivalent to the
problem-oriented ones, and helpful to learn and understand the method. Pappus
gives examples for both theoretical and problem-oriented analysis, as well as for
further, yet different usages of analysis in the course of Coll. IV (see below).?

Analysis is the first part of a two-partite method. Its job is essentially to furnish
the grounds for a synthetic proof.? It consists of two parts. In a first part (called
apagoge throughout the present study), one assumes what one wants to prove as
true, or what one wants to construct as already established, and proceeds from there
in what Pappus chose to call with the exasperatingly vague term “orderly fashion”

'These are the only examples for analytical argumentation in Archimedes. Analysis was not
Archimedes’ favored method of investigation.

*For those who place a heavy emphasis on creative research and problem-solving as the essence
of mathematics, a less favorable assessment will arise. Some would go so far as to discard the
didactic examples as not “real analyses™ at all.

*Many scholars disagree vehemently here (e.g., Hankel, Robinson, Mahoney, and Szabo). They
view analysis as an independent technique that furnishes validation on its own. See below.
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until one reaches something that is already known from elsewhere. Then one has to
show that this end stage is independent from the above assumption, and constructible
without it (this part will be called resolutio throughout the present study). In
Pappus’ description, two apparently conflicting visions of the overall direction of
analysis are combined. He portrays it as an upward move toward principles for a
proof, but also uses language that suggests it operates primarily via deductions: a
downward move,! toward conclusions. Specifically, the Greek word used for
“orderly fashion” is ¢koA0VO®S. Many have thought this means that analysis pro-
ceeds by logical deduction.? Even though the word does not in fact have such a
narrow meaning, the impression remains that analysis might be primarily deduc-
tive. This immediately raises the questions of how it can, at the same time, be seen
as an upward move, whether it is a method of proof of sorts, and the question of
convertibility of analysis-steps. For if analysis is to be a validation technique, the
steps have to be reversible. The bulk of scholarship has focused in on the items
deduction, calculus-character, validation character, and convertibility. Perhaps one
can gain a new perspective by taking the nature of Greek analysis as an analysis of
configurations into account. This would shift the focus away from concerns stem-
ming from propositional calculus and its logic (see below).

In Pappus’ account, and in the ancient examples we have, the analysis is fol-
lowed by a synthesis, whenever an argument is presented as complete. The synthesis
has the form of a classical apodeixis and retraces the steps of the analysis.

'Gulley (1958) provides a convincing argument for the thesis that the “upward” global view
derives from philosophical considerations and contexts, while the “downward” items reflect
“local” ingredients of the mathematical practice. He holds that Pappus did not succeed in combin-
ing them in a coherent overall picture. Here I disagree with him. In my opinion, the two views
constitute two complementary perspectives, both relevant and pertinent, not two conflicting and
competing strategies.

2Hankel (1874) argued that analysis is indeed a fully valid proof strategy, rendering the synthesis
superfluous, and ascribed the persistent presence of syntheses in analytic-synthetic arguments to
the “Nationalcharakter” of the Greeks — a kind of genetic meticulousness. Other authors, who do
not go quite this far, but still maintain that analysis is a deductive method, aiming at establishing
conclusions, include Robinson (1936), Gulley (1958), Mahoney (1968), and Szabo (1974). The
word “akolouthos,” interpreted as implying logical derivation, is strongly emphasized by Robinson
(1936) and Gulley (1958). Robinson and Szabo also place special emphasis on indirect (dis-)
proof: an analysis that derives a contradiction from p proves that p is false. A famous example
from pre-Euclidean geometry would be the proof for the incommensurability of side and diagonal
in a unit square. It seems to me, though, that such indirect arguments were not the primary focus
of operation for mathematical analysis. Hintikka and Remes (1974) have argued, in my view
convincingly, that analysis is not a method of proof, nor can it stand alone as a (direct) method of
validation. Perhaps they overemphasize the non-deductive ingredients and features of analysis.
Hintikka (1973), discussing a passage from Aristotle’s De interpretatione, also showed that
“akolouthos” does not necessarily have the force ascribed to it by some scholars. In fact, Collectio
IV contains at least three distinct instances where the word does not have that specific meaning:
Prop. 12: The synthesis is said to follow the analysis in orderly fashion. Genesis of the quadratrix:
The upper side of the square “follows along in orderly fashion,” as the left-hand side describes a
quadrant. Prop. 30: Archimedes claims that since spirals in the plane, and on cylinders (or cones)
have been considered, it “follows in order” that one should envisage spirals on hemispheres as well.
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It seems to me that this quite obviously means that analysis was not viewed as an
independent proof strategy by the Greeks. Nevertheless, if the synthesis simply
retraces the analysis, it would seem as though it is a mere formality, and one virtu-
ally “has it all” after the analysis. The synthesis, furthermore, clearly has to be
deductive. So the issue of the convertibility of analysis-steps arises anew, as does
the question if the burden of proof lies with the analysis (where all the decisive
ideas and moves come from) or with the synthesis. Scholarly opinions differ widely
here, and will probably continue to do so. And it helps very little to realize that the
synthesis can certainly stand alone, while the analysis cannot.

1.3.1.3 Analysis in Outline

The following tentative general considerations focus on analysis: its setting, its ingre-
dients, its nature. I will leave the question of the exact interdependence of analysis
and synthesis aside, while claiming that analysis was not, and could not be, a proof
strategy on its own. And I will avoid as much as possible the technical vocabulary of
the standard discourse, because I am pleading for a fresh look at the issues.

Recent scholarship, notably Netz (1999), has put the spotlight on an aspect of
Greek mathematical discourse that has perhaps not been sufficiently recognized in
the more recent past: the importance of figures, and the essential role of configura-
tions in geometrical argumentation. Picking up on considerations in Hintikka and
Remes (1974), I should like to bring this aspect to bear for a preliminary global
evaluation of Greek geometrical analysis. It is important to note that Greek geo-
metrical analysis is not an analysis of propositions, not a method for manipulating
propositional content, but an analysis of configurations.! It looks for dependencies
and interdependencies of items within geometrical configurations, and in this con-
text it hunts for grounds of argumentation. Perhaps we are better off not to assimi-
late this strategy too closely to our ways of operating in terms of propositional
calculus. If analysis is successful in clarifying crucial interdependencies in a con-
figuration, it may be convincing, even convey certainty. It can be methodical and
carry validation. But it need not be a self-sufficient, closed proof strategy. In fact,
there are good reasons for wanting it to be more open and not restricted to deductive
procedures. Let me explain.

In an analysis-setting, we have a complex configuration, part of which is hypo-
thetical, and we are trying to make sense of it, corroborate it. One strategy that
suggests itself immediately is the idea of breaking down the whole into constitutive
building blocks, on which we hope to have a handle. This strategy amounts to a
downward movement, in the form of reduction and deduction. Obviously, that is a
reasonable path to take. In all likelihood, reduction/deduction was the historical

"When Hintikka and Remes put forth considerations to this effect in 1974, they met with a lot of
resistance among historians of ancient Greek geometry and others. It appears to me, though, that
many of their points are valid and deserve reconsideration today.
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core of the ancient method of analysis (see Prop. 12). The building-blocks (partial
configurations) we are isolating would be already actually present in the configu-
ration, they would turn up as “conclusions” of a derivative chain, but function at the
same time as starting-points for putting together the whole again.! The issue of
convertibility is important for the overall success, but it seems reasonable to assume
that an investigator would ignore it initially.? The attention would be on recognizing
patterns, identifying standard partial configurations, and on learning how to reduce
complex configurations to standard types. This strategy has the additional advantage
that it can be brought into a quasi-algorithmic framework, with predictable standard
moves. It is straightforwardly operational, and very powerful. I agree with those
scholars who insist that deductive moves were the preferred strategy within analysis.

Yet this is not all, and one would not want to be restricted to it. In addition to
making use of patterns that are already present in the target configuration, one will
also try to detect incomplete patterns, complete them, and work from there. One
must resort, inter alia, to extensions of the configuration, auxiliary constructions.
This is a non-programmable, non-deductive (upward) move. It relies on intuition.
Nevertheless, it can be methodical, if one keeps in mind that the context of argu-
mentation is the configuration at hand, and doing it is still hunting for grounds of
argumentation within the configuration, in service of the overall goal to reduce to
something you can handle. In other words: it is a vital part of apagoge. When
Hintikka and Remes pointed to the pervasive presence of auxiliary constructions in
ancient analyses, insisted that they were an important part of the method, and
stressed that this feature implies that analysis is not a deduction method (not essen-
tially downward), and does not establish conclusions (is no valid proof), they were
right, I think. Given the context of the discussion, their contribution was received
as one with philosophical, meta-theoretical focus, and critics insisted that it has
nothing to do with the ancient mathematical practice. This is unfortunate. For in my
opinion, the importance of operating with extensions has everything to do with the
practice of conducting an apagoge in full view of a concrete configuration. Both
ingredients, the deductions and the extensions, are means to provide grounds for
argumentation by reduction to familiar patterns. It is a needless impoverishment of
one’s analytical toolbox to restrict oneself to strategies that can be conceptualized
as propositional deduction moves. This is also why I find the discussion of whether
analysis is primarily “upward” or primarily “downward” helpful only to a certain
degree, and likewise the attempt to capture the fruitfulness of analysis by the degree
to which it is proof-like.

Even after a successful apagoge, when one has reached a configuration over
which one has control, one still has to secure, in the resolutio, that the identified
end stage of the apagoge is indeed fully controllable even without the initial

'Some might argue that this is not, in fact, a downward move to begin with, inasmuch as the elements
are prior to the composite. I will leave this question aside, and just accept that we are dealing with
a deductive move.

2This does not imply that he thinks it is not an issue, or thinks he automatically has convertibility.
Nor does it imply that he sees himself as primarily hunting for conclusions/valid derivations.
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assumption made at the beginning of the apagoge, and that all the items needed can
be determined, or derived, from what was either given or can be provided indepen-
dently. In both cases, one establishes the status of the necessary ingredients as
“given” (for this term, see the introduction to Prop. 7). Also, one must determine
conditions for solvability, and discriminate between different cases. This part of the
resolutio is called diorismos. In general, the resolutio of the analysis will be mostly
deductive as well, but there are instances in Coll. IV (Props. 33 and 34, e.g.), where
the resolutio is not deductive throughout. In general, it appears that the resolutio,
the stage in which analysis culminates and “hands over” to synthesis, most clearly
has the ensuing synthesis in view. Very often, the first part of the synthesis will
more or less repeat the final steps of the resolutio, in the same order (cf. Props. 4
and 12). Even so, it was evidently seen as necessary that the synthesis repeat those
steps, and this means: this part of the proof was not seen as covered by the analysis
itself, either.

To sum up this sketch of analysis: Greek geometrical analysis is an analysis of
geometrical configurations. One operates with deductions, and with non-deductive
moves such as extensions of the configuration, with the overall goal to reduce the
target configuration to familiar patterns. After this phase, one has to make sure that
the identified items in the end stage of the analysis are constructible. A synthesis
follows, which repeats the constructions, and proceeds with a regular apodeixis that
retraces the steps of the analysis. The synthesis will often be easy after a successful
analysis, but it is the part that carries the formal proof. One will often find that the
synthesis is left to the reader as obvious. But then exactly this will be stated. An
analysis never ends with “q.e.d.”

1.3.1.4 Examples of Analyses in Coll. IV

Most of the examples for analyses in Coll. IV illustrate the dominant and primary
use of the technique of analysis as a heuristic tool that was described above.
Specifically, Props. 4, 7, 8-10, and 12 illustrate different aspects of plane geometrical
analysis, Props. 31, 33, 34, and 42—44 illustrate the use of the technique for prob-
lem-solving in solid geometry, and in Props. 36—40, analysis is employed to reduce
“linear” problems to basic symptomata (defining properties) of the quadratrix. There
are, however, different examples as well. Analysis was, apparently, not restricted to
furnishing a heuristic toolbox. In Props. 28 and 29, it is employed to characterize
the transcendent motion curve quadratrix, via its symptoma, through an analysis of
loci on surfaces. This use of analysis is directed toward determining the properties
a certain geometric object has in relation to other geometric objects within the same
configuration. In Props. 42—44, analysis is used as a device to determine the “level”
of a problem, independently of an actual solution. Such analyses were probably
followed, in practice, by actual solutions. Pappus may be somewhat idiosyncratic
here in picking out the analysis only, to make a point about procedures to establish
homogeneity for already existing mathematical contributions. Nevertheless, the fact
that analysis can be so used shows that ancient geometrical analysis was not
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seen only as a toolbox for actual problem solving. It had intrinsic merits, beyond
facilitating operations.

Especially because of these other usages of the analysis technique, it is quite
apparent that the standard reading of ancient Greek analysis is too narrow and has
not yet made full use of the source material (limited as it may be). As Mahoney has
suggested, we should look at the usage made of analysis in actual Greek geometry
in the transmitted texts to determine what analysis meant for the Greeks. Coll. IV
provides quite a few examples that can broaden and deepen our understanding of
it. We have the additional advantage that the author of Coll. IV, presenting these
actual examples of ancient geometrical analysis, is also the author of the proem of
Coll. VII, our most extensive testimony for the characterization of the method as
such. We can use the material to substantiate what was left open or vague by Pappus
in his methodological description, filter out what was solely due to the fact that the
text from Coll. VII is a proem to a treatise, and come to a more comprehensive
understanding of what at least this one well-informed ancient mathematician
thought about analysis as a mathematical method.

1.3.1.5 Structural Schema of Analysis-Synthesis!

Protasis (Proposition)

Ekthesis (Setting-out)

1. Analysis
1.1. Assumption: problem solved/proposition true
1.2. Analysis proper: apagoge, or epagoge
(transform the desired proposition/state of affairs into something known to be
constructible/true: use reduction, which can, but need not be, deductive,? and use
suitable extensions of the configuration, amounting to a strategy of transposi-
tion; this second aspect is non-algorithmic, relies on intuition, one needs to bring
additional information to bear?)
1.3. Resolutio: diorismos and determination of data*
(determine conditions for solvability/provability, often resulting in sub-cases for
the desired proposition; show that the endpoint of the analysis is reachable/true,
independently of assumption 1.1.)

'Cf. Prop. 1 for the structural schema of a synthetic proof
2Examples for non-deductive steps in an analysis: in Props. 31-34, see below.
3See Hintikka and Remes (1974, especially pp. 22-30 and 41-48).

4The resolutio, with both its components, was central in Apollonius’ works (cf. Jones 1986a).
Diorismos is not adequately represented in Coll. 1V, cf. the introduction to Prop. 7. Since the analy-
sis proper assumed that the problem is solved (the theorem true), the resolutio has to do two things:
(1) show that the items in the end stage configuration are determined within the configuration, from
the problem, independently of the analysis-assumption (ii) determine conditions for solvability,
including, perhaps, a split-up into cases. This way, it establishes necessary, but not sufficient condi-
tions for the existence of the figure at the end stage of the analysis. The synthesis, with kataskeue
and apodeixis, will establish the latter; cf. Hintikka and Remes (1974, pp. 49-69).
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2. Synthesis (cf. Prop. 1)
2.1. Kataskeue (Construction)
2.2. Apodeixis (Proof)
2.3. Symperasma (Conclusion)

Analysis started out as a heuristic technique; it was never “settled” in the mathe-
matical inventory to the degree that synthesis was. An indication for this is the lack
of proper names for some of the features: diorismos' and data (Greek: 600évta)
were used consistently. There was no name for the crucial first stage, the analysis-
assumption, and for stage 1. 3. Resolutio is a modern term, coined in the nineteenth
century (Hankel 1874). Nevertheless, the stages themselves are detectable as essen-
tial parts of a pattern that is present in the ancient sources. As to the labels
“apagoge” and “epagoge,’ they are both attested, but it is not clear whether they
were interchangeable, or whether there was a conscious differentiation in meaning,
where apagoge replaced epagoge as the name for analysis proper, with epagoge
taking on the meaning of “reduction” strictly speaking, and apagoge covering other
aspects of stage 1.2 as well. The above schema, going back to Zeuthen (1886, pp.
98-104), is a good description of the actual structure of ancient geometrical analysis
as one finds it in the sources. It is not, however, an ancient description.

1.3.2 Prop. 4: The Structure of Plane Analysis-Synthesis
1.3.2.1 Proof Protocol Prop 4

The following protocol, like the protocol for Prop. 1, is somewhat more detailed so
as to illustrate how the steps of the synthesis mirror the steps of the analysis.

1. Analysis
1.1 Assumption: EK = EL
1.2 Analysis proper:
Extension of the configuration: TM, EN?
Then 1.limplies

MX = XT (D) [VL 4;V, 16]
ZN =NT (2) [III, 3]

NX || zM 3) [VL 2]

ZTNX = LZNZM = LTAX @) [1, 29, 111, 21]
T, N, X, and A lie on a circle (5) [I, 21, conv.]
ZANT = LZAXT = ZAEL = ZAED (6) [III, 21, 1, 29]
A, N, E, and D lie on a circle (7) [II, 21, conv.]
1.3 Resolutio

(7) is true independently of assumption 1.1 [1I1, 18, III, 31]

!'For “diorismos,” cf. Procl. in Eucl. 202, 2 ff. Friedlein, and Heath (1921, I, p. 371). It should perhaps
be noted that this technical term was interpreted in slightly different ways by different authors.

2This step is non-deductive, as Hintikka—Remes have pointed out. The success of an analysis can
rest on the insightful choice of such extensions rather than on successful deductions.
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2. Synthesis
[2.1 Kataskeue: construct M, X, N as in the extension in the analysis]

2.2 Apodeixis

A, N, E, and D lie on a circle (7' 11, 18, 11, 31]
ZAND = ZAED = ZAXT (6') [III, 21, 1, 29]
A, N, X, and T lie on a circle (5') [1I1, 21, conv.?]
ZLTAX = LTNX = LTZM (4 [II1, 21]

NX || zM (3" [, 27%]

MX:XT =ZN:NT = 1:1 (2', 1" [II1, 3, VI, 4]
EK = EL [T, 29, VI, 4]

1.3.3 Props. 5/6: Reciprocity in Plane Geometry

In the above excursus on analysis-synthesis, I briefly touched upon the discussion
about the question of the convertibility of steps in plane analysis. Already in
Aristotle’s Posterior Analytics (78 a 7 ff.), the problem of convertibility in analysis-
synthesis was characterized as a non-trivial question, when he said that induction-
deduction would be (!) easy, if analysis were always directly convertible. In plane
geometry, we have, as a rule, a kind of reciprocity: if feature a entails feature b, then
feature b entails feature a. But even in plane geometry, this holds only for the most
part, not always. Even in plane geometry, one may have to use additional devices,
differing intermediate steps, to convert an argument. Props. 5 and 6 can be used to
illustrate this aspect of plane geometry. They are reciprocal. In both cases, we have
a circle, a chord, two tangents in the endpoints, and a line segment E-H-Z, inter-
secting the circle in T and K. If EH = HZ, then TK = HK (Prop. 5), and if TK = HK,
then EH = HZ (Prop. 6). However, not all steps in the proof of Prop. 5 can be used
in Prop. 6. The content of Props. 5 and 6 is rather trivial. The twin propositions
illustrate the following point quite nicely: even in plane geometry, where usually

'Note that the endpoint of the resolutio has to be proved again in the synthesis, as its first step.
For the synthesis has to provide a complete proof. In the case of Prop. 4, the first step of the syn-
thesis turns out to be identical with the last step of the analysis. Nevertheless, it is no mere repeti-
tion, and certainly it is put down by Pappus intentionally. Whenever in an analysis-synthesis this
first step of the synthesis is passed over, this means it is not given explicitly, because trivial, but it
does not mean that the resolutio is taken to be part of the proof. The situation is comparable to the
omission of the kataskeue in Prop. 4.

2Whereas the use of the converse of a proposition is unproblematic in the analysis, it is not permis-
sible in the synthesis. One has two options here. Either the converse was known to be a theorem
(though not attested in the surviving texts), and then that theorem is invoked here. In fact, Pappus
uses what amounts to the converse of III, 21 in several places outside of Prop. 4 as well. So this
would appear to be the preferable option. Or, one has to assume that Pappus passes over an
implicit intermediate step here, showing X to be on the circle through A, N, and T; e.g.: Assume
that X does not lie on the circle. Draw AX. It intersects the circle in V, with either A-V-X or
A-X-V. In both cases, one has AVT = ANT = AXT, in contradiction to I, 16. Therefore, X must
lie on the circle.

*1, 27 is the converse of I, 29 within Euclidean geometry.
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the converse of a proposition or deductive step is valid, if the proposition or deductive
step is so, we cannot always assume that the argument from a to b just has to be
retraced, with the very same steps, from b to a, in order to get a deductive derivation
of a from b. And this point, once it is granted, obviously has consequences for the
nature of plane analysis-synthesis as a technique of argumentation, and specifically
for the relation of analysis to synthesis in general.

context: plane analysis-synthesis, convertibility of argument steps.

sources: /.

means: I, II.

method: synthesis.

format: theorem.

historical significance/ reception: /.

embedding in Coll. IV: motif “circles, chords, tangents and relative measures in length™:

Props. 2, 3,4, 8,9, 10, 39-41, motif “convertibility in geometry of circle”: Prop. 4.

purpose: illustrate reciprocity in plane geometry, specifically: geometry of the circle (III).

The results of Props. 5 and 6 are not used in Coll. IV.

1.3.3.1 Proof Protocol Prop. 5

(Assume EH = HZ, show TH = HK)
1. Ekthesis
With center of the circle L, construct an isosceles triangle ZLM.
2. Apodeixis
21.EL=LM=1Z
2.2. AEHL = AZHL, HL 1 EZ, TH = HK

1.3.3.2  Proof Protocol Prop. 6

(Assume TH = HK, show EH = HZ)
1. Ekthesis
With center of the circle L, construct triangles EAL, EHL, LZC.

2. Apodeixis:
21.AEAL=AZCL,EL=1Z
2.2.HL L EZ,EH=HZ
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2 Props. 7-10: Plane Geometry, Apollonian Style

2.1 Overview Props. 7-10

Announcement of Prop. 10
7: Ilustration of how to work with the Data in a resolutio
8: Auxiliary lemma for Prop. 9, with connection to Apollonius, Tangencies 1, 16/17
9: Auxiliary lemma for Prop. 10
10: Resolutio for a special case of the Apollonian problem, with implicit restrictions
so as to make Prop. 9 applicable

The purpose of Props. 7-10 is to elucidate the resolutio part of the analysis tech-
nique in plane geometry (see above, introduction to Prop. 4, structural schema of
analysis-synthesis). Among the classical authors, Apollonius was the main represen-
tative of analysis-dominated plane geometry. It is therefore no coincidence that
Pappus chooses an example visibly associated with Apollonius in order to illustrate
the technique. As will become clear below, his portrait suffers some limitations.

The resolutio in an analysis fulfills two tasks. First, it determines data, i.e., it
determines that the entities identified in the analysis proper as crucial for construction
and that proofs are given, independent of the initial analysis-assumption. This aspect
is indeed represented in Pappus’ account. He also makes a point of adding in Euclid’s
Data, quite probably because, in his opinion, this work is the basis for the technique
in plane geometry, just as the Elements are for plane mathematical synthesis.

The other aspect of the resolutio, and the one that is clearly dominant in
Apollonius’ work on plane geometry is the diorismos, i.e., the determination of
conditions of solvability, not only on the local, but also the macro-level (in
Apollonius, it determines the pattern of exposition for complete treatises). It
includes the split-up of problems/propositions into cases which then are treated
separately. Pappus’ account does not represent this aspect adequately (there are
two cases only for Prop. 7, and those are not treated exhaustively). The only
explicit diorismos in Coll. IV can be found in Prop. 32 (angle trisection). If
Pappus intended a full portrait of plane analytical geometry, Apollonian style,
from a methodological point of view, one must say he was not quite successful.
Only a fraction of Apollonius’ works in this area survives. Even so, it is quite
apparent that the split-up into cases and sub-cases, their arrangement in order
of complexity, and working them off step by step, and in this way exhausting
the original question, is the strategy that dominates the set-up of the Apollonian
works, and determines their presentation on the local level as well. The feature
is quite idiosyncratic, and quite pronounced. It is not far-fetched to assume that

H. Sefrin-Weis, Pappus of Alexandria: Book 4 of the Collection, 193
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it was programmatic in Apollonius'; it certainly does have drastic consequences
for the presentation of mathematics on the macro-level, and even for the ques-
tion of what plane geometry essentially is. The program, if it existed, seems to
have pointed toward operationalization, focusing on relations as opposed to
objects: mathematics as a toolbox, proto-algebraic in methodological emphasis.
This is a controversial, much debated issue. It cannot be pursued here; however,
since any material on analysis, including Props. 7-10 of Coll. IV would have a
bearing on a further clarification and discussion on the nature and purpose of
Greek geometrical analysis, some brief remarks may be appropriate here, in
addition to naming the general trend. According to Jones (1986a, p. 531, # 40),
a “katholou pragmateia” (general treatise) by Apollonius once existed. It is
attested in Eucl. Op. 6. p. 234, and in Menelaus’ Spherics (pp. 229-240). Jones’
supposition that the several general statements from Apollonius in Proclus’
Commentary,®> among other things on the status of the cylindrical helix as
equivalent to circle and straight line, and also on definitions and postulates,
ultimately derived from this lost treatise, is quite convincing. Further investiga-
tion, perhaps using the clearly methodologically framed material from Coll. IV
here (and below, Props. 28, 29, 31, 33, and 42-44) would seem warranted.
Perhaps one would get closer to what Jones labels as an “interesting, but unan-
swerable question”: “What in the character of Apollonius, a mathematician of
enormous ability and perhaps genius, led him to devote so much effort to
tedious programmatic writings of this kind?” (Jones 1986a, p. 530).

Perhaps Pappus was blind to this important programmatic aspect in Apollonius,
tied to extensive application of diorismos, and to its revolutionary potential.
Perhaps, however, he was quite aware of the potential, and chose to ignore it,
because he did not favor its operationalist outlook on methodology for geometry.
The question can, of course, not be pursued in the present commentary. A detailed
investigation of the remains of Apollonius’ works and their implicit/explicit meth-
odology, including their reception in antiquity, is still a desideratum.? For now, it

'The resolutio becomes central; cf. Jones (1986a, pp. 510-527), specifically, p. 524: “long-winded
approach”, “desirable in mathematical treatises perhaps not only for beginners”. Apollonius achieves
thoroughgoing operationalization, generalization, and schematization (disambiguate a configuration,
then proceed algorithmically). For a similar global assessment cf. Jones (1986a, p. 400). The result can
make for rather tedious reading, even monotony. Compare Jones (1986, p. 524) “taste for exhaustive-
ness”, and p. 530 for the judgment that this kind of set-up was programmatic. See also Hogendijk (1986,
pp- 218-223). It is certainly very different from the synthetic treatment in Euclid or Archimedes.

2cf. Procl. in Eucl. ed. Friedlein passim; compare also Tannery (1912, I, pp. 124-138), concerning
Apollonius’ attempts to revise the set-up of the Elements.

3Jones (1986a) provides an excellent basis for the study of the lost works; on the Tangencies see
pp. 66-88 and 510 ff. In addition, there is the fully preserved Sectio rationis (in Arabic), Latin
translation by Halley from 1706, English translation by Macierowski/Schmidt from 1987, the latter
somewhat flawed. From the Sectio rationis, the other two Sectiones can be reconstructed, cf. Jones
(19864, pp. 510-527). Further remarks can be found in Pappus, and in such authors as Proclus,
who is interested predominantly in the methodological and meta-theoretical aspects.
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must suffice to state that Pappus’ portrait of the methods of plane analysis is selective.
In general, Coll. IV only includes such features as can be represented on a micro-
level (argumentative devices within a proof), or on an intermediate, local level
(set-up of at most a small group of theorems, preferably one). Pappus chose not to
include a set of propositions that would illustrate Apollonian diorismos-strategy in
a miniature format, as he has done for Archimedean monographic mathematics (see
Props. 13-18).

2.1.1 Historical Context for Props. 7-10: Apollonius’ Tangencies
and the Apollonian Problem

As said above, Prop. 10 is the resolutio to a very special case of the so-called
Apollonian problem: given three circles, find a fourth one touching them. Prop. 10
also connects to Props. 13—16, because each of the circles in the arbelos-figure is
a solution to the Apollonian problem (where the three given circles are mutually
tangent in a specific way; on Props. 13 ff. see below), and this may have been one
of the reasons why Pappus chose this particular version of the Apollonian problem
in Prop. 10. Props. 7-10 have so far been neglected. There is some discussion in
secondary literature, however, for the work out of which the problem is taken:
Apollonius, Tangencies. This work addressed the following more general questions:
given three entities, each of which can be either a point (P), or a straight line (L), or
a circle (C), find a circle that touches all of them. Apollonius proceeds case by case,
building up from the easiest one (obviously P-P-P), and reducing more complex
cases to the ones already solved. The cases dealing with C—C—C took up the whole
of Book II. The Tangencies are lost. Our information on them goes back, in essence,
to Pappus’ commentary in Coll. VIL.! My analysis of Props. 7-10 suggests that
Prop. 8 could be a further testimony for Apoll. Tangencies 1, 16/17 (see the transla-
tion, and see below). If so, Prop. 8 may be an important source text, so far over-
looked. The question whether Prop. 8 deserves the status of a testimony, or even
fragment for Apollonius, Tangencies, cannot be decided within the present frame-
work. Around 1600, Commandino’s edition of Pappus’ Collectio played a major
role in the development of a new kind of analytical mathematical techne (art), in the
context of the new algebra/analysis, for example, in Vieta and Fermat. It is certainly
no coincidence that this reception of Pappus/Apollonius is firmly placed in a context
of a programmatic renewal of analytical methods and methodology. Attempts were
made, infer alia, at a reconstruction of the ancient procedures of investigation and
problem solving, in order to develop them further and integrate them within a more

'Coll. VII, 636 Hu and 820-836 Hu; cf. also Heath (1921, II, pp. 181-185), Jones (1986a,
pp- 534-539). In addition, see also Hogendijk (1986), fragments in Arabic translation, especially
pp. 218-223.
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far-reaching scope. Vieta (1600, under the title: Apollonius Gallus") uses his newly
developed tools to solve the Apollonian problem — geometrically, with ruler and
compass only, chiding Adrian Van Roomen, to whom he had put the problem, and
who had not been able to come up with a plane solution; Van Roomen used conic
sections, which meant he presented a solid solution for a plane problem.?

2.2 Prop. 7: Determining Given Features Using the Data

The term given does not have a direct equivalent in modern mathematical terminology.
There is, also, not a complete agreement on what the ancient term signified (cf. Jones
1986a). A final clarification would have to come from an exhaustive (philological)
study of the actual uses made of the term in the ancient sources — at present still a
desideratum. The following rough description should be uncontroversial, however,
and should suffice as a preliminary orientation to facilitate understanding of the
arguments in Coll. IV.3

A given magnitude, area, figure, or ratio is determined by the context of a given
configuration, though it need not be uniquely determined. Usually, this means that
the entity itself, or a congruent/equivalent entity is constructible, even though the
construction could yield other solutions as well. For example: take a line and a
point outside of it. Then the point on the line that has a certain distance to the point
outside is given (Data 31), although the obvious construction (circle around the
point with distance as radius) yields zero, one, or two solutions. What is captured
in the label given is the fact that one of them — the one of them one is interested in
—is fixed on the line, as it were (if it exists at all).

Points can be given in position; then they are constructible from the information
implicit in the given configuration/conditions.

'Vieta (1600, cf. pp. 74-80) in Schooten’s 1646 edition. De Fermat (1679, pp. 74-88) solves the
related problem for four spheres. The original problem was also treated by Newton in the
Arithmetica Universalis Problems XLII-XLVII in Horsley’s 1779 edition (pp. 132-137), in
Whiteside (1972, Vol. V, pp. 252-267) and in Principia 1, Lemma XVI (pp. 70/71 in the 1726
edition, generalization of Prop. 10, leading to conic sections), by Casey (1882, pp. 121-123) (limit
process, coaxial circles, points of similarity), and by Monge (according to (Hilbert and Cohn-
Vossen 1932, pp. 120-121), again in connection with projective geometry. Cf. also Hofmann
(1990, II, pp. 146-151), with additional references to modern solutions by Bieberbach and
Coxeter, Ver Eecke (1933b, I, pp. LXVI-LXXII), Chasles (1875, p. 53) and Notes XXVIII (pp.
372-375). Hofmann (1990, II, pp. 146—-164) contains a discussion of Props. 8, 13, 15, and 16 in
connection with projective geometry and points of similarity. For a reconstruction of a possible
ancient context for something like a theory of points of similarity, connecting Props. 10 and 13,
cf. Zeuthen (1886, pp. 381-383); see also Heath (1921, II, pp. 182—-185). Heath goes beyond
Zeuthen in postulating the nucleus of a projective geometry for the ancients.

2¢f. Van Roomen (1596). For the connection of geometrical analysis for the determination of the
appropriate “level” of a solution see also Props. 42—44.

3See also Taisbak (2003).
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Lines (i.e., line segments) can be given in position or size (or both). In the first
case, the straight line on which they lie is constructible, in the second, one can
construct a congruent line segment.

Figures can be given in size, or kind, or position (or a combination of some of
these). In the first case, one can construct a figure with the same area (usually, a
square or rectangle), in the second, a similar figure (e.g., a triangle with the same
angles), in the third, the whole figure is fixed in the given plane.

Ratios are given if one can construct two lines that stand in that ratio.

Euclid’s work with the title Data closely corresponds to the Elements. It was
transmitted and known throughout the Middle Ages. It gives a catalog of lemmata,
derived from the Elements, useful for analyses in practice, specifically for the
resolutio-stage of actual problem solving. One can refer to lemmata in the Data
instead of showing, in each case again, that an entity is given; though the Data
belong to the “analytical topos” of argumentation, as a kind of encyclopedia, or
toolbox for standardized situations, they are not, in themselves, an analytical work.
In Pappus’ opinion, they clearly represent the base of reference for plane geo-
metrical analysis. He presents them this way in Coll. VII, and that is also how they
are used in Props. 7-10.!

As said above, in Greek analytical arguments of the “plane” type, there is a
noticeable tendency toward maximizing calculatory automatisms in the resolutio-
strategy. The result is a quasi-algorithmical procedure, avoiding the need to con-
stantly refer in detail to specific geometrical configurations and abstract from
them.? This can be observed in the extant Sectio rationis by Apollonius, and it is
reconstructible from Pappus’ commentary on Apollonius’ lost works in the area of
plane geometry.® Pappus illustrates this aspect of plane resolutio in Prop. 7 in the
following way. He creates stereotyped situations, where the same set of proposi-
tions from the Data can be invoked in an analogous manner (compare the transla-
tion). Pappus does not himself explicitly refer to the Data, and he goes through the
steps in detail only once, while hinting at the repetition of the pattern in the other
cases. The reader should be aware that in presentation of Prop. 7 as given here, the
Data have taken on the same role in the footnotes that the Elements play else-
where. I have assumed that Pappus wants his readers to refer to a background
knowledge that is also expounded in the Data, and the references are intended as
a possible path of justification for those who do not have the whole context present
in their mind. The path suggested in the notes and commentary is not the only
possible one. Even so, it might be useful for an initial orientation, and for illustrat-
ing the point made above, about the schematic, quasi-calculatory operation in
Prop. 7. To further stress this point, because it captures the essential feature of

'On the Data and their relevance cf. also Heath (1921, I, pp. 421-425), especially p. 422.
2Contrast the role of diagrams in apodeictic procedure, as characterized in Netz (1999).

*From Pappus’ examples of solid geometry (notably 31, 34, 42—44), a similar picture arises. But the
number of examples is too small to arrive, at the present stage of research, at a sufficiently based
conclusion as to the tendency toward algorithmization in the field of solid geometrical analysis.



198 II, 2 Plane Geometry, Apollonian Style

Prop. 7, a list of tools and devices was compiled, and the proof protocols for 7a
and 7b then boil down to identifying suitable triangles, and appealing to almost
identical sequences of applying the items on this list, in a quasi-automatic way.
The other cases for the configuration targeted in Prop. 7, not treated by Pappus,
could be handled in exactly the same way.

Toolbox for Props. 7a and 7b.

al, 47 (Pythagoras): squares over sides of right-angled triangles.

b II, 12/13, generalization: area theorem for triangles that are not right-angled.
c VL 4.

d VI, 8, Porisma.

e VI, 17: ratio and area theorems for similar triangles.

f 'V, 16: enallax.

g Data 1: a, b, given = a:b given.

h Data 2: a:b given, a or b given = the other entity is given.

i Data 3: a, b given = a + b given.

j Data 4: a, b given = a — b given.

k Data 52:  the figure of a given kind over a given side is given in size.

1 Data 55: area given in kind and size, = sides given (used only for squares in Prop.
7).

m Data 57: area, applied to given line, in given angle given = remaining side given
(used for rectangles with one side given).

The mathematical content of Prop. 7 is rather trivial: in a quadrilateral with all four
sides and one angle (a right angle) given, both diagonals are given in position and size.
Such a quadrilateral is obviously constructible, if it exists at all.! Also, Pappus discusses
only two of quite a few possible sub-cases. Therefore, his point in presenting the
argument cannot have been to establish the truth of the claim as such. It probably was
to show the reader, in a case where the facts are clear, how one operates in order to
establish givens: Prop. 7 is of a purely methodological interest.

context: method of analysis, specifically: resolutio, specifically: given features.

sources: /.

means: Data, and some selected corresponding theorems from the Elements.

method: analysis.

format: proposition and corroboration (not a full-fledged apodeixis (proof)).

historical significance/reception: /.

embedding in Coll. IV: used in Props. 8, 9, though not essential there; motif “aspects of
plane analysis”: Props. 4—12.

purpose: illustration of the operation of Euclid’s Data in the resolutio of an analysis.

As indicated above, Prop. 7 is used in Props. 8 and 9. In both cases, however, one
could have easily avoided a reference to Prop. 7. This is an indication that Prop. 7
and its usage in 8/9 were inserted by Pappus into source material of an independent
provenance (possibly: from Apollonius, Tangencies, cf. commentary on Prop. 8),
where the Data were not instrumentalized in the way illustrated by Pappus.

'Construct a right-angled triangle ABC, with the given AB, BC, and /B; this yields AC. Then
construct the triangle ADC, with the given sides AC, AD, DC. Draw DB.



Prop. 8: Resolutio for an Intermediate Step in the Apollonian Problem
2.2.1 Proof Protocol Prop. 7a

Sub-case of: quadrilateral has an acute angle at D
Create triangles and show, successively, that line segments are given
Resolutio

1. AE, EC, AC, BE are given (AABC with height BE).
Apply a, k, 1,1 (AC); d, e, k, m (EC); j (AE); a, k, j, I (BE).

2. DH, HC, AH are given (AADC with height AH).
Apply b, k, j, m, j, h (DH); j (HC); a, k, j, 1 (AH).

3. ZC,EZ, ZB are given (AAHC ~ ACEZ).
Apply ¢, £, g, h (ZC, EZ); i (ZB).

4. ZT, TC, BT are given (AZBT ~ AZEC).
Apply ¢, g, h (ZT); j (TC); a, k, j, 1 (BT).

5. DB is given; apply a, k, i, 1.

2.2.2 Proof Protocol Prop. 7b

Sub-case of: quadrilateral has an obtuse angle at D
Create triangles and show, successively, that line segments are given
Resolutio

1. AC, AE, EC, DE are given.
(AABC for AC, AADC with height DE)
Apply a, k, j, 1 (AC); b, k, i, m, j, h; j; a, k, j, L

2. EZ,DZ, CZ, BZ are given.
(AABC ~ ACEZ); c, g, h; i; ¢, g, h; j.

3. ZH, HC, BH, HD are given (ADZC with height DH)
b,1,j,m,j h;jjakj L

4. DB is given; a, k, 1, L.

2.3 Prop. 8: Resolutio for an Intermediate Step in the
Apollonian Problem

context: determine givens within a resolutio in plane analysis.
possible source: Apollonius, Tangencies 1, 16/17 (extract).
means: Data (via Prop. 7, in one place only; but see comments).
method: analysis.

format: proposition and corroboration (not an apodeixis).

reception/historical significance: possible evidence for Apollonius, Tangencies, 1, 16/17.

199
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embedding in Coll. IV: auxiliary theorem for Prop. 10; motif “aspects of plane analysis”:
Props. 4-12; motif “touching circles and their diameters”: Props. 13—18; motif “Apollonius’:
Props. 31-33, perhaps Prop. 28.

purpose: illustration of the technique of determination of givens

Prop. 8 is used in Prop. 9.

literature: (Hofmann 1990 II, p. 151).

As noted above, Prop. 8 is an auxiliary lemma. It shows that, when two equal
circles and a point outside are given, the diameter for the circle through the given
point, touching the two circles outside and inside, respectively, is given. The
proposition provides only the resolutio, not the kataskeue and apodeixis.' Prop. 8
is the most complex of the propositions in the group 7-10. Its style of argumenta-
tion differs from the one used in the other plane arguments. As said above, it shows
some features that indicate that Pappus has used an independent source that has
not been “worked up” fully. The source sidestepped the Data, and Pappus re-
introduces references to an argumentation via the Data through Prop. 7. The
resulting argument is not completely smoothed out.? Also, connections to Pappus’
commentary on Apollonius, Tangencies 1, 16/17 can be established in several
places. The argument as given in Prop. 8 leaves out steps that are presented in Coll.
VII as part of Pappus’ commentary on Tangencies 1, 16/17 (Coll. VII, Props.
102-106), and this means that Prop. 8 could very well be taken from the original
argument on which Pappus commented.? The crucial passages are indicated in the
footnotes of the translation. For easier reference, keywords are added in the proof
protocol below, with “two layers” indicating the places where the transmitted text
shows signs that a source text was not fully integrated into the argument as pre-
sented by Pappus. Taken together, these indications corroborate the thesis that the
source which Pappus used for Prop. 8 could have been a fragment from the lost
work of Apollonius. If so, Prop. 8, so far neglected in secondary literature, would
gain considerable significance. It is not mentioned in Jones (1986a), and may
simply have been overlooked so far. The question cannot be pursued in detail here;
it certainly deserves scholarly attention.

"They pose no problem after the resolutio. This means that Pappus intentionally restricts his
presentation to the analysis only, puts the emphasis on the methods, not the actual mathematical
result.

>We encounter insertion of trivial argumentative steps that point to Prop. 7 and do not completely
fit their immediate context; Hultsch suspects interpolation, but the insertions may very well have
been brought in by Pappus himself: 196, 9-16 Hu, 186, 18/19 Hu, 196, 25 Hu. Double script
occurs at 196, 22-23 Hu, the text is uncertain at 196, 27 Hu, and in one place, the text transmitted
includes a truncated phrase that doesn’t fit the context; see translation with footnotes.

3Commandino p. 67 plausibly argues that the original author of Prop. 8 intended an argument via
similar arcs, while Pappus offers a more elementary argument. Heath (1921, II, p. 371) remarks
about Prop. 8: “the proof is in many places rather obscure and assumes lemmas of the same kind
as those given later a propos of Apollonius’ treatise”.
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2.3.1 Proof Protocol Prop. 8

" Analysis assumption (implicit): the desired circle CEZ has already been found.'
Resolutio

1. Diorismos (determine conditions for solvability)
1.1 Extend the configuration on assumption *
1.2 HT || CE and TK || PC must hold (cf. Coll. VII, 102)
1.3 DE = ZH must hold (cf. Coll. VII, 106)
1.4 BM = MA, LM = LS must hold

2. Determination of givens
2.1 AM is given in position and size.
(i.e.: M is given, cf. Data; 2 layers)
2.2 CM is given in position and size (cf. Prop. 7; 2 layers).
2.3 CP is given in position and size (i.e.: P is given, cf. Data).
2.4 CPZ is given (i.e. the circle through C, P, Z is given;
cf. Coll. VI, 104/105).

2.4 Prop. 9: Auxiliary Lemma for Prop. 10

24.1 Proof Protocol Prop. 9

1. Extension of the configuration

With the given d = AD — DC = DC — DB, construct circles around A, B with radii
AE=BZ=d.

2. Resolutio

2.1 The diameter of circle ZCE is given = DZ (radius) is given (Prop. 8).

2.2 AD, DC, DB are given (use 1).

2.5 Prop. 10: Resolutio for a Special Case of the Apollonian
Problem

Prop. 10, as given by Pappus, is not quite complete. At a certain stage in the argu-
ment, an implicit additional condition, namely, HB-HC = HC-HA, is used, so as to
make Prop. 9 applicable (see proof protocol). Without an additional restriction in the
protasis for Prop. 10, a non-trivial gap in the argument results. Hu 201, #3 suggests
a path how the gap might have been filled, but refrains from making any explicit

'Commandino p. 66 A points out that the circles in the starting configuration have to be given both
in position and size, whereas Pappus only mentions position.
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suggestions as to how Pappus would have effected the proof for the missing
intermediate step. Hultsch’ s solution seems to lead to conics.! A proof was also
suggested by Ver Eecke (1933b, pp. 147/148, #8). The center of the sought circle is
needed for it, however. Jones (1986a, p. 537), Heath (1921), and Hofmann (1990, II,
pp- 151/152) point out the connection of Prop. 10 in its present form to Prop. 13.
This may be the reason for Pappus’ transformation of Prop. 10. For it was probably
not one of Apollonius’ cases in this form.? Pappus’ argument as given is flawed, but
not false. Pappus himself, at the end of Prop. 10, adds the following remark: “Let
this have an end for me now right here; I’ll write down the rest later.” This remark,
quite unusual in the context of Coll. IV, suggests that he was somehow aware that
something was missing, either from Prop. 10, or from the whole group Props. 7-10.
It is unclear what that “rest” was, and also what “later” means. Pappus does not
come back to the material treated in Props. 7-10 within Coll. IV. Maybe he intended
to add a lemma that would fill the gap in 10 (assuming he was aware of it); maybe
he intended to revise the whole argument for Props. 8-10, smoothing it out. For the
purposes of the present commentary, I have left the argument as given in Pappus, and
have made the tacit assumption made in the reference to Prop. 9 explicit. It can be
viewed either as an additional condition for Prop. 10, omitted in the protasis, or as a
marker for a gap in the argument which Pappus failed to fill in.

2.5.1 Proof Protocol Prop. 10

1.” Assume task is accomplished.
Circle with center H, touching in Z, E, D.

2. Extension of the configuration

Draw H-B-Z, H-C-E, H-A-D, BA, BC, AC.
3. Resolutio

3.1 BA, BC, AC are given.

3.2 HB-HC and HC-HA are given.

Assume that these differences are also equal
(additional restriction, implicit in Pappus).
3.3 AH is given (Prop. 9).

3.4 DH, and therefore 2 DH, is given.

' As does Newton’s in Principia 1, L. XVI, mentioned above.

>Generalizations of Prop. 10 toward C—-C—C seem to lead to conics, but the Tangencies use only
plane methods.



I1, 3 Plane Geometry, Archaic Style

3 Analysis-Synthesis Pre-Euclidean Style

3.1 Props. 11 and 12: Chords and Angles in a Semicircle

The configurations and the mathematical content of the propositions, as well as the
argumentative means, are reminiscent of pre-Euclidean mathematics, as exempli-
fied in the Hippocrates fragment': circles with inscribed triangles, geometry of the
circle (presented in III/IV of the Elements), and argumentation via congruent angles
in extended configurations. All this gives Props. 11 and 12 an old-fashioned char-
acter. On the other hand, no sources are known for Props. 11 and 12. Language and
style show no signs of archaism. Props. 11 and 12 were probably constructed by
Pappus. What was their purpose? They could be an illustration of what the opera-
tion with the technique of analysis-synthesis originally looked like. For Prop. 12, this
surely is the case,” whereas the situation is less clear for Prop. 11, and only a tenta-
tive thesis can be formulated.

Prop. 11 as given, is purely synthetic, with no trace of the heuristic background.
The proof’s core is a suitable extension of the configuration (the introduction of T).
Therefore, a successful heuristics may reasonably be assumed to consist in the deter-
mination of the crucial role of T, and this observation suggests the following consid-
eration in the context of the overall structural schema of analysis-synthesis.* When
analysis comes down to a determination of a suitable extension of the configuration,
it cannot be coined out as a propositional device, as a step of reasoning that could be
logically inverted in the synthesis. As Hintikka/Remes have pointed out, this aspect
of analysis can in general not be schematized (it is also nondeductive). Such an
analysis, and all parts of an analysis that consist in determining suitable extensions
cannot be instrumentalized as making any explicit contribution to the apodeixis
proper. The crucial analysis information would be tacitly integrated in the kataskeue
of the synthesis. Otherwise, it would leave no visible traces in the resulting proof.
Prop. 11, since it is put within the group of propositions illustrating plane analysis-
synthesis, could be an illustration of the effects of an analysis that consisted solely
in determining a suitable extension of the configuration. It has to be admitted,
however, that such an explanation is somewhat speculative and perhaps not wholly
satisfactory. Among other things: why did Pappus not give the analysis, since putting

'On the Hippocrates fragment see Simpl. in Phys. 61-68 Diels, Heath (1921, Vol. I, p. 183 and
pp-195-196), Knorr (1986, pp. 32-34), and Netz (2004).

2Prop. 12 has been read this way by Mahoney (1968), e.g.
?See the introduction to Props. 4-12.
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it beside the synthesis would have made the point about its not showing up in the
synthesis quite transparent? Another possibility for the purpose of Prop. 11, which
does, however, not explain why it is put into a group of propositions on plane analysis-
synthesis, is that it illustrates the argumentative style of pre-Euclidean synthetic
plane geometry. But in this case, Pappus might have chosen a more attractive example,
as he has done for most of his vignettes in his portrait of plane geometry (Pythagoras,
Apollonian problem, and Arbelos) and, for the later parts of Coll. IV (quadrature
of the circle, spiral lines, conchoid, quadratrix, and angle trisection). Perhaps further
investigation will throw more light onto the question of the purpose of Prop. 11.
The reading assumed here must be understood as tentative.

Prop. 12, like Prop. 4, has a full analysis and synthesis. The analysis essentially
comes down to reduction, and is predominantly deductive (resting on steps, how-
ever, that are convertible). The synthesis simply retraces the steps of the analysis.
Prop. 12 lends support to the thesis that analysis as an identifiable technique was
originally identical with reduction. In my opinion, one should nevertheless refrain
from inferring that Greek geometrical analysis therefore was and remained essen-
tially deductive and reductive. Reduction does not exhaust the conceptual horizon of
Greek geometrical analysis as the technique developed over time.! Within Coll. IV
there are several examples of other, non-reductive usages of analysis.

3.2 Prop. 11: Representation of a Chord as
Segment of the Diameter

context: analysis—synthesis (tentative, see above).

possible sources: /.

means: I, III, VI (V).

method: synthesis (analysis would have consisted in suitable extension alone).

format: theorem.

reception/historical significance: /.

embedding in Coll. IV: motif “overall structural components of analysis—synthesis”: Prop.
4; motif “triangles, chords in semicircles’: Props. 2-6, 12; motif “perpendiculars on diam-
eter compared with diameter in length”: Props. 13-18.

(suggested) purpose: illustration of outcome when analysis consists of finding out how the
configuration must be extended to provide a proof.

The content and result of Prop. 11 are not used in Coll. IV.

3.2.1 Proof Protocol Prop. 11

We want to show: EB = 1/2AZ.

1. Ekthesis/Kataskeue
T, then K, H, auxiliary lines.
Several right-angled triangles and pairs of similar triangles are created.

'For a very different assessment, cf. Mahoney (1968).
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2. Apodeixis
2.1 Show that AATH ~ ACTZ, and HK = KZ
(i.e.: EK = 1/2AZ)
2.2 Show that BE = EK (i.e., EB = 1/2AZ)

3.3 Prop. 12: Angle Over a Segment of the Diameter

context: overall structure of analysis—synthesis in plane geometry.

means: I, III, VI, (V).

method: analysis restricted to epagoge (reduction), with synthesis mirroring analysis.
format: theorem.

history and reception: /.

embedding in Coll. IV: analysis—synthesis as a technique: Prop. 4; components of plane
geometrical analysis: Props. 7-10; motif “chords and angles in semicircles”: Props. 2-6, 11.
purpose: illustration of argumentative technique of reduction in analysis proper.
literature: Mahoney (1968) contains an extensive discussion of the analysis in Prop. 12.

The mathematical content and the result of Prop. 12 are not used in Coll. IV.

3.3.1 Proof Protocol Prop. 12

We want to show: Z/BED = Z/DET

1. Analysis
1.1 Assumption”: problem solved
1.2 Analysis proper
Extension of configuration

Reduce claim to DK || ET (1)
Reduce claim to LD:HD = DT:TZ 2)
Reduce claim to LA = DH, LB = BH 3)
Reduce claim to BL = LD 4
1.3 Resolutio

BL = LD holds in fact! 5)

2. Synthesis
Apodeixis (Kataskeue not given explicitly)

BL =LD (5)) (&)
BL = BH, LA = DH (3
LD:HD = DT:TZ 2)
KD || ET (1)
/BED = /DET

'Note that the resolutio is minimal here.
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A comment on the word “akolouthos,” used in 206, 12 Hu, at the beginning of
the synthesis of Prop. 12 (“and the synthesis follows the analysis step by step
(akolouthos)”) seems appropriate. The meaning of akolouthos cannot be restricted to
“follows logically, deductively.” There are several places in Coll. IV where akolouthos,
or arelated word, need not, even cannot, have that narrow meaning. This is one of them.
The others are “sunakoloutheito” for the second moving point in the generation of
the quadratrix (252,10 Hu) and “akolouthon” for the consideration of the spherical
spiral as a natural next step after plane and conical ones in the introduction of
Prop. 30 (264, 7 Hu). Whereas the synthesis of Prop. 12 is clearly derived from the
analysis, in that it retraces its steps in order, it is not inferred from it by deduction.
The word is not used here in the description of the sequence of the analysis-steps
themselves, although they are deductive. On the role of “akolouthos” in the scholarly
discussion of the nature of analysis see the introduction to Props. 4—12.
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4 Props. 13-18: Arbelos (Plane Geometry,
Archimedean Style)

4.1 Observations on Props. 13-18

context: no traces of ancient sources providing a context of similar problems, but: connection
to non-trivial theorems/methodological devices with “potential” for future mathematical
theories:

(i) Diameters in configuration of tangent circles, theorem of Menelaus
(— points of similarity (projective geometry))
(ii) Arithmetical progression (— complete induction)
(iii) Capture infinity using a quasi-mapping onto natural number progression

possible sources: lost monograph by Archimedes, with intermediate transmission stages
(controversial, see below).

means: beyond Elements, but for the most part strictly “orthodox”; unusual means: nucleus
form of complete induction (Props. 16, 18).

method: synthesis.

format: monograph in miniature form, lemmata, main theorems, corollaries.

history and reception: Liber assumptorum (deteriorated form, see below).

embedding in Coll. IV: tangent circles: Props. 8-10 (Apollonian problem, connection to Prop.
10 especially close); motif “chords and circles”: Props. 2-6, 11 and 12; motif “commensura-
ble versus incommensurable straight lines in circle configuration”: Props. 2 and 3, motif
“progression towards infinity”: Props. 19-21, 30; motif “association with Archimedes”:
Props. 19-22, 30, 35b, 42—44.

purpose: illustration of plane synthetic geometry, monographic style: Archimedean. Through
the connection with Archimedes (in style, if not in person), Props. 13—18 form a bridge to the
second part of Coll. IV, specifically to Props. 19-22, which are indeed by Archimedes.
literature: Heath (1921, II, pp. 371-377); Buchner (1824), (arbelos via classical geometry,
and via analytical geometry), Casey (1882, pp. 95-112) (involutions, limit processes),
Hofmann (projective geometry, Zweiecke in: Hofmann (1990, II, pp. 146-164); see also
Hofmann (1990, I, pp. 273-281)). The alternative treatments are interesting for a compari-
son in terms of methodology.

4.1.1 Archimedean Character of Props. 13-18

The group of theorems on the arbelos has been associated by quite a few scholars
with Archimedes. There are two reasons for this. First of all, a treatise in Arabic
(the Liber assumptorum (Lib. ass.)), transmitted under the name of Archimedes,'
contains some theorems that are closely connected to Props. 14-16. This basic
indicator, however, turns out to be much weaker than one might hope. A second
reason for connecting the little arbelos treatise with Archimedes is that its mathe-

!'Latin translation in: Heiberg, Archimedes, Opera omnia, Vol. 11, 510-525.
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matical content is quite “worthy” of Archimedes once one takes a closer look at the
ideas and devices involved. Heath, for example, thinks the arbelos treatise could
very well be by Archimedes, and says it is “extremely interesting and clever, and
I wish that I had space to reproduce it completely” (Heath 1921, II, pp. 371).
Unfortunately, a direct Archimedean authorship for Props. 13—18 cannot be taken
for certain. For the Lib. ass. cannot, in the form preserved, be by Archimedes.
His name is mentioned in it.! Furthermore, the relative triviality of the content of Lib.
ass. also makes it unlikely that it stems directly from Archimedes. This weakens our
evidence for a connection of Props. 13—18 to Archimedes. It does not rule out the
possibility for an indirect connection, though some authors have concluded that any
connection is unlikely.? It is probably not possible to prove that Props.13—18 are
essentially by Archimedes. Even Pappus did not know the author, and spoke of an
“ancient proposition,” transmitted in “some documents.”® I will therefore not claim
that the arbelos treatise is Archimedean in the sense that Archimedes is the direct
source for Props.13-18, although, not unlike Heath, I am inclined to believe that he
may very well have been the author of some original form of the argument (now
lost, and originally probably more extended?). Even if Props. 13-18 cannot be
shown to be by Archimedes, the arbelos treatise does show a number of features
that allow for an association with geometry in the style of Archimedes. These fea-
tures are quite distinct and differentiate Props. 13—18 from the Euclidean geometry
as portrayed in Props.1-6, 11 and 12, and from the analytical (Apollonian) geom-
etry in Props. 7-10. Together with documented connections to the Lib. ass., they
justify the label “plane geometry, Archimedean style” for Props. 13—18. In what
follows, I give a survey of these characterizing features. They will also be marked
in the commentary on the single propositions.

1. Global characteristics: set-up, structure, and order of exposition.
Props. 13-18 treat a well-defined topic quite exhaustively, in a self-contained quasi-
monographic piece of text, divided into preliminary lemma, technical lemmata,
then theorems, and additions/corollaries. We find no trace of a heuristic background.
The exposition is polished, purely synthetic. Simple, orthodox means are made
brilliant and original use of, by an appropriate and ingenious choice of perspec-
tive, so as to create a venue for unexpected insights. The global set-up is analo-
gous to Archimedes’ monographs, which are also self-contained and structured

'Archimedis Opera Omnia Vol. 11 p. 514 Heiberg.

2Jones (19864, pp. 538-539), for example, denies any connection with Archimedes for the Lib.
ass. One of his reasons is the above-mentioned low level of sophistication in the Lib. ass. In my
opinion, this low level could perhaps be explained as the result of progressive deterioration in
transmission, and need not speak against an ultimate provenance of the material from Archimedes.
Another point he makes is that there is no connection to the content of other works by Archimedes.
In my opinion, this observation, too, can be relativized in its weight by pointing to such treatises
as the Sand reckoner. 1 also think there is more coherence to Props. 13—18 than Jones’ remarks on
p- 539 op. cit. and Hofmann (1990, I, pp. 146ff.) suggest.

3Cf. translation, beginning of Props. 13-18.
*See the list of indications pointing towards a larger extension of the original treatise below.
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similarly (announcement of theorem(s) — preliminary lemmata, set apart and used
as quasi-axioms, — technical lemmata — theorem(s) ). Archimedes, too, has a
very polished, purely synthetic and orthodox style of exposition on the local
level, showing no traces of the heuristics and giving far-reaching results with
relatively, sometimes astonishingly, simple means, by choosing an unexpected
perspective. The style of exposition is different from Apollonius’ treatises (which
are monographic, but have a very different set-up and are analytical), and also
from the Elements (which are not monographic).

2. The main proposition is surprising and simple. It draws an unsuspected connection

between diameters and circles on the one hand, and natural numbers on the other,
formulated in simple ratios.
In the extant longer works of Archimedes, a preference for similar theorems in
terms of numerical ratios can be found. Examples include SL 24 (area in
spiral:area of circle = 1:3), QP 24 (Parabola segment:inscribed triangle = 4:3),
Sph. et Cyl. 1, 34 with corollary (cylinder:inscribed sphere = 3:2, surface
cylinder:surface sphere = 3:2), Sph. et Cyl. 1, 33 (surface of sphere:maximum
circle = 4:1). One might also compare the Archimedean Props. 21 and 30. No
such theorems are to be found in Apollonius (this much can be said, even
though we do no longer possess the complete texts of his original treatises), and
they are very rare in the geometrical books of the Elements.

3. Infinite progression of inscribed figures, and use of a prototype of complete

induction (in main theorem Prop. 16).
For the use of a progression of inscribed figures compare Coll. IV, Props. 21 and
30, by Archimedes. There we also find the use of indivisibles. For an example in
Archimedes’ monographs, compare Circ. mens. I (there are many more examples).
Circ. mens I gives a proof by exhaustion (no indivisibles). The examples from
Archimedes’ attested works using inscription processes imply the filling up of a
given area. This is not the idea in the arbelos treatise. There are no parallels for
either the use of infinite progression, or attempts to deal with infinity in a mathe-
matical way in Apollonius. The parallels in Elements XII are proved by exhaus-
tion (and are probably by Eudoxus). Very few examples for what amounts to
complete induction are attested in ancient geometry. The ones known to me are
by Archimedes: SL 10 and 11 and QP 23.

4. Role of Prop. 13.

This proposition’s role is analogous to the one preliminary lemmata play in
Archimedes’ monographs. The results of 13 are labeled as “lambanomena”
(assumptions). In SL, Archimedes uses and labels SL 1-11, which he sets off from
the main part of the treatise, as if they were assumptions (lambanomena), quasi-
archai, for the following purely geometrical treatise. The separation is empha-
sized by the fact that the definitions for the treatise appear after SL 1-11. In SL,
the preliminary results are called lemmata, but also lambanomena. For a similar
phenomenon, cf. QP 1-5.

5. Doublet in the proof of the converse for Prop. 13.

The converse is proved (i) by exhaustion (ii) directly. The direct proof in (ii) is
sufficient, and, from the point of view of Aristotelian theory of science, it would be
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preferable. Perhaps it is by Pappus.' The indirect proof (i) is, however, also presented.
Proof by exhaustion was a trademark of Archimedes, who used the method with
great virtuosity. There are no examples for proof by exhaustion in Apollonius.

6. Role of Prop. 14.

Prop. 14 is a technical lemma, the most elaborate proposition in the arbelos group.
It provides the means for the argumentation in Props. 15 and 16. The proposition
itself is referred to in Prop. 15. In Prop. 16, and passim, it is nevertheless mostly
an intermediate result within the proof of Prop. 14 (and also an addition to Prop.
14 that uses it) that is actually used later on. The relevant information could have
been proved ad locum within the later propositions just as easily. The author,
however, prefers a presentation within a theoretical, systematic setting before-
hand. After this proposition, Props. 15 and 16 (the main theorem) are transparent
and easy. The reader of Props. 1416 is forced, however, to keep the whole of
each argument in mind, because results that will become important later are not
emphasized. This set-up is analogous to the set-up of Archimedes’ monographs:
most of the detailed technical work occurs in preparatory theorems, main theo-
rems draw on these (and often on intermediate results within), so that the main
theorems become slim and elegant, giving full sight of the core mathematical idea.
For the technical lemmata within the treatises, the emphasis is on systematic rather
than linear development, not result-oriented in its local presentation. The reader
needs to remain aware of intermediate results in relation to the “telos” of the treatise
at all times, even if they are not marked out by the way the material is presented;
compare, again, SL 18 and 24, and their “setting,” as well as the structure of QP,
especially 18-24. Contrast, again, Apollonius’ monographs: there we have a linear
exposition, exhaustion of all possible cases in a list, step by step.

7. Handling of proportion theory (Prop. 14 especially, but also Prop. 15).

The handling of proportions is an “orthodox” application of V. It is analogous to
Archimedes’s extensive use of proportions, e.g., in SL and Sph. et Cyl. passim.
In this respect, the mathematical style in Props. 13—18 is again decidedly different
from Apollonian mathematics. Apollonius does not use abstract proportions,
his arguments involving ratios rely on equalities that correspond directly to
equations between areas (i.e., I, 14, VI, 27-29, cf. Zeuthen 1886 passim).

8. Addition, not from the arbelos in Coll. IV, but from comparison with Lib. ass.
The Lib. ass., transmitted in Arabic, claims to be a work by Archimedes. Lib. ass.
V and VI are simple versions of Coll. IV, Props. 14 and 16. In addition, one might
note that in Prop. 14, a lemma that is equivalent to Lib. ass. I is invoked at one
step. Heiberg (cf. Archimedes, Opera Omnia Vol. 11, pp. 513, #2, 518, #1, 523,
#1) claims that Lib. ass, I, IV=VI, VIII, and XIV are probably by Archimedes.
Perhaps this cannot be asserted. Heath (1921, II, p. 372) observes, however, that
Lib ass. IV and VI are simple versions of Props. 14, and 16. Lib. ass. VIII is
indeed closely associated with Archimedes by most authors.? It yields an angle

'The proof is exactly analogous to a group of proofs by Pappus in Coll. VII (64, 118, 128, and
130 Hu; Jones 1986a, # 118, 184, 195, and 198).

2Cf., e.g., Heath (1921, 1, pp. 240-241) and Knorr (1986, pp. 185-186).
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trisection via neusis and connects to Archimedes, SL 5-9. A similar neusis also
appears in Coll. IV, Props. 42-44, as a discussion of Archimedes’ neusis in SL.
Thus, we have evidence for a connection between the Lib. ass. and the work
attested for Archimedes, and if Props. 14—16 can be associated with Lib. ass.,
we have an additional evidence that they can be connected (indirectly) with
Archimedes, too.

1-8 will be taken as the main elements of a description of the Archimedean style
of Props. 13-18, and mentioned ad locum below. In my view, it is once again this
mathematical style, and through it the mathematical methods that are the center
of gravity for the presentation of the arbelos theorem, despite the fact that it is
also very appealing in terms of its content.

4.1.2 Factors that Point Toward an Original Larger
Extension of the Arbelos Treatise

There are several passages or instances in Props. 13—-18 where the reader gets the
distinct impression that the text as we have it is a truncated version of a treatise
that was once more extended, even though the arguments as given are not in them-
selves incomplete. Specifically, the possibility that Props. 14—18 were preceded by
a more extensive treatment on points of similarity in configurations of tangent
circles has captured the interest of some commentators; cf. Hofmann (1990, II,
153 ff.) for the potential mathematical context. That more extensive investigations
of configurations with points of similarity must have existed was argued for by
Zeuthen and others. In antiquity, the theoretical background was captured by the
theorem of Menelaus (cf. Zeuthen (1886, pp. 381-383), also for the connection to
the arbelos configuration with points of similarity). Although this topic cannot be
pursued here, I will give a list of the most pronounced indicators for the thesis that
the arbelos treatise may have been part of a larger monograph, with a potentially
broader scope.

Prop. 13 is labeled as “ta lambanomena.” This label would make more sense if
there were a larger number of general preliminary lemmas.

The protasis in Prop. 13 appears to have been reformulated so as to assimilate!
an existing proposition with a longer protasis more closely to what is explicitly
claimed in later instances where appeal to Prop. 13 is made.

The first step in Prop. 14 could be verified by reference to a more general version
of Prop. 13.

In Prop. 14 a limit case is inserted. Within Prop. 14, it appears as a side thought, and
looks as if it had been inserted specifically to prepare for the appendix Prop. 17.

For Prop. 15, the main manuscript A includes a figure for a limit case that is not
actually treated in the text, but used in Prop. 17 and in Prop. 16, Addition 2.

!'See below, remarks on Prop. 13.
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Prop. 17 appears as a later insert, probably by a different author, to cover a step
concerning ratios and proportions in Prop. 16, Addition 2.

In several places (notably in Props. 14 and 15), more far-reaching results than
needed further in the treatise are established.

4.1.3 Arbelos Theorem

A configuration with three semicircles is given. They have their base on a common
line segment; one semicircle is described over the full segment; it is then divided
into two parts arbitrarily, and two smaller semicircles are described over those
parts. In the remaining space, which has the shape of a shoemaker’s knife (arbelos!),
a non-finite series of touching circles is inscribed. Each of these touches the outer
semicircle, one of the inner ones, and its predecessor (i.e., each of the circles in the
progression is a solution to a version of the Apollonian problem). One compares
the diameters of these circles with the length of the perpendiculars from their centers
onto the base, and one finds that they stand in the ratio 1:n, with n being the number
of the circle in the progression.

4.1.4 Structure of Props. 13-18

Prop. 13: preliminary lemma (general, no explicit connection to arbelos
configuration).

Prop. 14: technical lemma: proportion involving perpendiculars and radii in compari-
son to diameter of one of the semicircles in the starting configuration; two
additions.

Prop. 15: lemma for induction.

Prop. 16: arbelos theorem; two additions for limit cases.

Prop. 17: auxiliary lemma for one of the limit cases in 16.

Prop. 18: appendix: theorem for a progression of inscribed circles when the starting
configuration has only one inner semicircle.

4.2 Prop. 13: Preliminary Lemma

Prop. 13 plays the role of a preliminary lemma, much like the preliminary lemmata
in Archimedes’ geometrical treatises (cf. #4). Not Prop. 13, but the converse and the
addition will be used in Props. 15 and 17 — perhaps an indication that the arbelos

'As noted in the translation, the connection between the word “arbelos” and the cobbler’s tool is
not securely established.
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treatise as we have it was originally embedded in a more extensive work.! The converse
of Prop. 13 is proved twice. The first proof is an (admittedly rather trivial) exhaustion
proof (double reductio). This type of argument was favored by Archimedes. The
second proof is a direct proof and probably by Pappus himself (cf. #5). The math-
ematical context for Prop. 13 is the theory of points of similarity.>

4.2.1 Proof Protocol Prop. 13
13 a Theorem

1. Protasis
Assume D as the point of intersection between KL and circle(A); then AH || CD,
and: AB:BC = AE:EC (E is an outer point of similarity).
2. Kataskeue
Draw CD.
3. Apodeixis.
3.1. AKDC is a trapezoid: AH || CD.
3.2. AKEA ~ A DEC = AE:EC = AB:BC. [VL, 7; 1, 27; VI, 4]

13 b Converse

Protasis
Assume AB:BC = AE:EC, and take D as the point of intersection between the
parallel to AK through C and circle(C). Then K-D-E is a straight line (D on KE).

1. Apodeixis by exhaustion
Draw CD.

"Prop. 13 holds also for circles that touch internally, even though it is given only for circles that
touch externally. On Hultsch’s reading of Prop. 14, the proposition uses the version for internally
touching circles. Another explanation for the step in Prop. 14, one that does not imply that Pappus
left a gap in the argument in the arbelos treatise is that the reference in Prop. 14 is rather to ele-
mentary lemmata for which Pappus gives a proof in Coll. VII 102ff. This is the explanation
I preferred in the notes to the translation of Prop. 14. Independently from the question of com-
pleteness of the argument as given by Pappus, I think it is quite possible that the treatise from
which Prop. 13 ultimately stems was more extensive and contained a greater number of preliminary
lemmata, dealing with touching circles and points of similarity.

*In the configuration of Prop. 13, E is a point of similarity for the three circles concerned.
A general theorem for such points was provided by G. Monge, according to Hilbert and Cohn-
Vossen (1932, pp. 120-121). Compare also the contributions by Hofmann and Casey in the litera-
ture list above. As pointed out in the remarks on the mathematical context for Props. 7-10, Props.
13 and 14 are connected to Prop. 10, and this may be one of the reasons why Prop. 10 was formu-
lated by Pappus the way it is.
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If it does not intersect KE in D, then

either C—-T-D, with T as the point of intersection,

or C-D-N, with N as the point of intersection.

Both these assumptions lead to a contradiction.

Therefore, CD intersects KE in D. [VI, 4;V, 16]
2. Apodeixis by direct proof

Complete the parallelogram AKNC.

KN:ND = EC:CD. [V, 17;V, 16]

A EDC ~ ANDK, ZEDC = ZNDK.

= Since C, D, and N lie on a straight line, so do K, D, and E.

13 ¢ Addition

In the configuration of Prop. 13, we have: EB?> = KE x EL.
This follows from AH || CD (i.e., from Prop. 13a, step 1) [VI, 2; 111, 36].

4.2.2 Defense of My Reading of Prop. 13

As indicated in the notes to the translation, my reading of Prop. 13 and its converse
differ from the one suggested by Hultsch (endorsed by Ver Eecke, and based on
the text as transmitted). On my reading, the claim that DC || AH, i.e., that AKDC is
a trapezoid, should be included in the protasis. The text as transmitted, however,
clearly suggests that the protasis (claim) concerns the proportion only (“deixai”
is used before the claim about the proportions'), and that the trapezoid ACDK is
already given. Therefore, I must defend my interpretation, and I shall do so by
showing that the text as given creates severe problems, and that my reading can
eliminate them. The severest problem of the text as given concerns the logic of Prop.
13 and the converse. If one posits, to begin with, that AKDC is a trapezoid, Prop. 13
would not even need a proof. For we would have two similar triangles EAK, ECD,
and VI, 4 yields: EC:CD = AE:AK, thus: AE:EC = AK:CD (V, 16), and obviously
AK = AB, CD = BC. Inclusion of the fact that AKDC is a trapezoid in the ekthesis
renders Prop. 13 superfluous. Also, in the apodeixis of Prop. 13, we are first
prompted to draw CD — which would already be given in the ekthesis. Hultsch
resorts to an elimination of the phrase concerning CD from the text.”? But even then,
the argument is still skewed. For we proceed to prove that DC || AH, i.e., that we
really have a trapezoid AKDC. This would not make any sense, if the trapezoid
is posited to begin with. Finally, the converse uses the fact that DC || AH in both its
proofs. Hultsch and Ver Eecke are wrong in assuming that this could be shown

1210, 6 Hu.
2210, 8 + app. Hu.
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as in the proposition itself!; for the proof there rested on the fact that K, L, and D are
on a straight line, which is the very thing the converse wants to prove. Hultsch’s and
Ver Eecke’s reading implies a petitio principii for Prop. 13’s converse. There must be
a better solution. Apparently, the converse just assumes parallelity. It can certainly
do so, if we assume that DC || AH was part of the protasis in the proposition itself.
Then we can also explain why CD is drawn, and AH || DC is shown in the apodeixis
of the proposition itself. The only drawback of this reading is that it must assume
that the ekthesis of Prop. 13 is “muddled,” specifically that either Pappus or someone
between the original author and Pappus changed the text from a version where the deci-
sive parallelity was part of the protasis into a version where only those features that
will be used in Props. 15 and 17 explicitly are mentioned there. Perhaps the change
of tense within the ekthesis (cf. translation) lends some support to this assumption.
It is for the logical and structural reasons given above, however, that I have decided
to read Prop. 13 the way proposed in the proof protocol. I am not claiming that the
text should be changed.

4.3 Prop. 14: Technical Theorem

As said in the introduction, Prop. 14 is the most complex lemma in the group.
It provides the technical results needed in the arbelos theorem. It is proved as a
complete lemma, in full generality, for all three possible configurations, although
only the first and third configuration will come into play in what follows, and
although Props. 15-17 mostly rely on an intermediate result within the argument of
Prop. 14 rather than the proposition itself. The importance and role of the interme-
diate result is not emphasized within Prop. 14 (it has been marked out by me to
facilitate reference). Within Prop. 14, it is presented in its appropriate place with
respect to the theoretical content of Prop. 14 itself. All these features contrast to the
style of exposition in Apollonius’ works, and are reminiscent of Archimedes’s
monographs (cf. #6). Prop. 14 operates with abstract proportions, in the sense of
V (cf. #7). The first step in Prop. 14 implicitly uses a lemma proved in proposi-
tion I of the Lib. ass., which is associated with Archimedes in the tradition. A
second possibility for this step is reference to a more extended version of Prop. 13,
indicating, perhaps, that the arbelos treatise may originally have contained a more
substantial first part dealing with tangencies and points of similarity. The topic can-
not be pursued here, cf. the bibliographical references in the footnotes to Prop. 13.
A third possible route of justification is appeal to lemmata on tangent circles for
which Pappus provides a proof in Coll. VII, Prop. 102 ff., and this is the route taken
in this translation and commentary. Finally, Lib. ass. IV provides a lemma that is a
simplified version of Prop. 14. This means the historical reception of the arbelos
associates Archimedes, the Lib. ass., and the arbelos theorems in Coll. IV (cf. #8).

1211, #1 Hu, (Ver Eecke 1933b, p. 160, #7).
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4.3.1 Proof Protocol Prop. 14

1. Protasis/ekthesis
Starting point: semicircles over BD, BC, with B, D, C on a straight line, BC > BD.
We get two possible configurations for this first construction stage:

1. B-D-C (D inside BC, cf. configuration 1)
2. C-B-D (D outside BC, cf. configuration 2 and 3)

Then, a circle with center A is constructed. It touches both semicircles. We get
a total of three possible configurations:

Configuration 1: circle(A) must lie inside the semicircle over BC.
Configuration 2: circle(A) comprises both given semicircles.

Configuration 3: circle(A) touches both semicircles from outside.

Draw the perpendicular AM from A onto BC, and the parallel to BC through A,
marking the radius AZ, and the diameter TZ.

Then BM:AZ is uniquely determined. Specifically:

Configuration 1

BM:AZ = (BC + BD):(BC — BD) [= (BC + BD):CD]

Configurations 2, 3

BM:AZ = (BC - BD):(BC + BD) [= (BC — BD):CD]

2. Apodeixis
2.1. TZ || BC by construction
H, T, B, and H, Z, C lie on a straight line,
and Z, E, B, and T, E, D lie on a straight line as well.
[elementary lemmata on parallel chords in tangent circles]'
2.2. " CB x BK = DB x BL
[similar triangles, VI, 4; VI, 16; III, 36]
[if the configuration entails D = L, we get: CB x BK = BD?; this limiting case
is used in Prop. 17, and may have been added in 14 for that reason]

2.3. Prop. 14 now follows via V, 16-18, V, 22
Additions
Add. 1: BK x LC = AM?

This follows from “ in 2.2 for Prop. 14,
considering triangles BTK, ZLC

'E.g. Prop. 104 in Coll. VII, p. 828 Hu, (Jones 1986a, p. 234 # 166). Note the connection to Prop. 8,
and recall that the lemma invoked here was not presented in the source for Prop. 8, but in Pappus’
commentary to Apollonius’ Tangencies. The geometrical situation for the arbelos theorem is
connected to the Apollonian problem and its theoretical framework. Hultsch’s explanation (cf. above,
translation) involves an auxiliary construction, and reference to Prop. 13, converse. Configurations
1, 2 could alternatively appeal to Lib. ass. I, cf. Archimedes, Opera Omnia 11, p. 510-512
Heiberg.
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Add. 2a: BC x KL = BC x diameter of circle (A) = BL x DC
[BC:BD = BL:BK; proportions; CD:BD = KL:BK; VI, 16]

Add. 2b: BD x KL = BD x diameter of circle (A) = BK x DC
[BC:BD = BL:BK; proportions; CD:BD = KL:BK; VI, 16]

4.4 Prop. 15: Lemma for Induction

As said in the introduction, Prop. 15 is a technical lemma that provides the basis for
the (complete) induction in 16. Separating it out and presenting it beforehand has
the effect that the central theorem Prop.16 becomes slim and elegant, free of any
technical ballast.! Prop. 15 uses equation * from Prop. 14, and the converse and
addition for Prop. 13.

Prop. 15 holds also in the case that BC is a straight line, tangent in B. A proof
for this case is not given in the transmitted text. It may very well have been part of
the original source. For the manuscript A has a figure for it, but not the argument.
For a proof cf. Ver Eecke (1933b, pp. 170-171, #4, or pp. 12271228 the appendix
to Hultsch’s edition). This case is used in Prop. 16, Addition 1.

4.4.1 Proof Protocol Prop. 15

1. Protasis/ekthesis
Starting from the three circles in Prop. 14, with their three configurations, we
add a fourth touching circle, with center P.2 With diameter of circle(A): = d(A)
(and analogously for any circle(X) with d(X)), we get, for all three possible
configurations: (AM + d(A)): d(A) = PN:d(P).
2. Apodeixis

2.1. With Z as intersection of AP and perpendicular in B,

AT TP = AZ:ZP [Prop. 14, VI, 2; V, 16]

22.BZ=7T [converse and addition to Prop. 13]

'Compare QP 22and QP 23 in relation to QP 24.

2In Hultsch’s edition, the sequence of the resulting configurations is permutated: configuration 2
in Prop. 14 yields configuration 3 in Prop. 15. This re-numbering is, of course, of no consequence
for the mathematical content of Prop. 15. The manuscript A has three diagrams. The first one
concerns configuration 1, building on configuration 1 from Prop. 14, the second concerns the limit
case when the second semicircle is replaced by a tangent to the first one (see appendix Hu
p. 1227f.), and the third concerns configuration 2. There is no diagram for configuration 3 in A.
See part I, text and translation, with notes.
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2.3. B-O-T-S [ASAT ~ AOPT, ABZT ~ AOPT, Prop. 13]
2.4. Prop. 15 follows [ABKM ~ ABPN, and ABKS ~ ABPO]

4.5 Prop. 16: Arbelos Theorem

Prop. 16 argues via induction. In fact, it gives what would in modern terminology
be called a complete induction. In the context of ancient geometry, this proof strategy
is very rare, and can be linked to Archimedes (cf. #3). It is perhaps worth noting that
Pappus uses the technical term ‘“apodeikhthesetai.” In the arbelos configuration,
the ratios of perpendiculars to diameters turn out to be expressible in numbers. The
geometrical magnitudes are commensurable, and they are so according to a surpris-
ingly simple pattern (sequence of natural numbers in ratio, cf. #2).! In Archimedes’
treatises, we encounter an analogous phenomenon: likewise, all the technical detail
work is done ahead of time, so that the main theorems become slim and straight-
forward (cf. #1, #2, #3, and #6).

An appendix to Prop. 16 explores the consequences when the outer, and when the
smaller inner semicircle of the arbelos configuration degenerate into tangent straight
lines (Additions 1 and 2), and when the starting configuration for the sequence of
inscribed circles contains only one instead of two semicircles. Because of Prop. 15, the
first ratio, AM:d(A) is decisive. In turn, it is directly related to the division of BC by
D, and this fact is the content of Addition 2. The proof of Addition 2 rests on a lemma
that is given afterward, as Prop. 17. In Addition 2, ratios of magnitudes are almost
identified with ratios of numbers (compare the translation). Addition 1 uses the limit-
ing case for Prop. 15, for which our manuscripts still provide the figure, but not the
actual argument. These observations indicate, once again, that the Arbelos treatise
probably comes from a source that was originally more extended, and that several
stages of transmission lie between the original and the version given in Coll. IV.

4.5.1 Proof Protocol Prop. 16

1. Protasis/ekthesis

In the arbelos configuration, one has:
AM = d(A), PN = 2d(P), OS = 3d(0),
and generally: the perpendicular of the nth arbelos circle = n times its
diameter.

! The fact that the configuration and the theorem relate to the theory of points of similarity means
that Prop. 16 encapsulates at least the potential for a very deep insight, even if we do no longer
have direct access to the actual mathematical context for such discussions in antiquity.
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2. Apodeixis
2.1. AM =d(A) [Prop. 14, ", V, 16 and 17 and VI, 16]
2. 2. Induction, fromn=1ton=2and fromn=2ton=3 [Prop. 15]
2.3. The induction step via Prop. 15, used in 2.2, can be repeated indefinitely.
Prop.16 follows.

Additions
Add. 1: When BC is a perpendicular BT to BD in B, the same proposition holds as
in Prop. 16 [Obviously, AM = d(A); Prop. 15 for induction]

Add. 2: When the semicircle over DC is replaced with a tangent DZ, one has: AM
~d(A) < BC:CD is expressible as a ratio of two square numbers.
Apodeixis for Addition 2
1.DZ = AM.
2. BC:CD = DZ*TZ? [Prop. 17]
= BC:CD = AM%d(A)>.
3. X, 9: Iff BC:CD is expressible as a ratio of two square numbers, AM and d (A)
will be commensurable in length.
Example: If D is chosen on BC so that BD = 4CD,
one gets: AM:d(A) = 2:1, and the perpendiculars will follow the sequence
of the natural numbers from 2 on.

4.6 Prop. 17: Supplementary Auxiliary Lemma for Prop. 16, Corollary 2

Prop. 17 is an auxiliary lemma for Prop. 16, Addition 2. Unlike the lemmata for the
main proposition, which were placed before Prop. 16, the lemma for the addition
comes as a kind of afterthought. The reason for this difference in presentation is
probably the different theoretical status of the addition in comparison to the main
theorem. Prop. 17 does not take over the notations from Addition 2. Thus, it appears
as an independent lemma.! Like Hultsch and Ver Eecke, I tend to think that Prop.
17 is not by the same author as 13—16. Perhaps Pappus himself is its author. It may
be a replacement that became necessary when an originally more extended treatise
was “downsized.”

Hultsch’s Latin commentary explains the crucial step (2 in the protocol below)
with a reference to duplicate ratios and uses V, def. 10, together with VIII, 11.
There is no explicit exposition on the handling of duplicate ratios in Euclid.
Archimedes seems to use them freely. Thus, duplicate ratios may very well have

'Tt is perhaps worth noting that even though the proof as transmitted explicitly appeals to Prop.
14,7, Prop. 17 could be independent from 13-16, because the result from within Prop. 14 could
easily be proved ad locum. Also, Prop. 17 uses a special case that appears to have been added in
within Prop. 14 precisely with a view to Prop. 17. For it is not used anywhere else within the
arbelos treatise.
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been what the author of Prop. 17 had in mind. In the translation, I have nevertheless
preferred to take a route that does not appeal to a theorem from the arithmetical
books to explain the intermediate step about geometrical magnitudes.

4.6.1 Proof Protocol Prop. 17

1. BC:CD =BD:TZ = DA:TA [Coll. VII, 104*; Prop. 14, “forD=L; proportions]
2. DA:TA = DA%AZ? [ABAD ~ AZAT and ADAZ ~ ATAZ; V1, 8, VI, 16, VI, 1]
3. DA:AZ =DZ:TZ = DA*AZ?*=DZ*TZ7?> = BC:CD = DZ*TZ?

4.7 Prop. 18: Analogue to the Arbelos Theorem
When the Second Inner Semicircle Is Missing

Prop. 18 is introduced by the following phrase: “the following, too, has been
established through investigation by the lemmas written down above.” The occur-
rence of this phrase lends support to the thesis that the treatise which Pappus had
could not have come directly from Archimedes and showed signs of several
stages of “work-over,” additions for which Pappus did not know the source and
date. Together with his description of the arbelos group as an “ancient theorem”
deriving from “some books,” without mentioning an author, this might induce us
to refrain from ascribing the group as we have it to Archimedes. Still, one can
find a number of “Archimedean” traits in the little treatise, as we have seen.
Therefore, the group of theorems on the arbelos can be described as plane geometry,
Archimedean style.

4.7.1 Proof Protocol Prop. 18

Protasis/ekthesis
When instead of the arbelos configuration, we have a configuration with two
semicircles, one within the other, and a sequence of inscribed touching circles,
the perpendiculars have to the radii a ratio that follows the sequence of the odd
numbers (1:1, 3:1, 5:1 etc.).

'P. 828 Hu, (Jones 1986a, p. 234, # 166); Hultsch and Ver Eecke prefer here, as in Prop. 14, step
1, a reduction to an extended version of the converse for Prop. 13.
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Apodeixis

1.

2.

The proposition is obviously true for the first circle:

perp(Z) = 1(Z)

n =2, n =3: induction steps

perp.(H):2r(H) = (perp.(Z) + 21(Z) ):21(Z) = 3:2 [Prop. 15]
= perp.(H):r(H) = 3:1

perp.(T):2 r(T) = (perp.(H) + 2r(H) ):2r(H) = 5:2 [Prop. 15]
= perp.(T):r(T) = 5:1

. The induction steps as illustrated in step 2 can clearly be continued indefi-

nitely. Therefore, the perpendicular of the nth circle is the (2n — 1)-fold of its
radius.
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S Props. 19-30: Motion Curves and Symptoma-Mathematics

5.1 General Observations on Props. 19-30

Props. 19-30 (as well as 35-41) deal with lines and curves that are different both
from the circles and straight lines of Euclidean geometry, and from the conic sections.
They are generated from moving points, where a rule is given which regulates the
“motions” involved. They will be called motion curves here. An example would be the
plane spiral of Archimedes, where a point moves along the radius of a circle in uniform
speed, and is at the same time carried along on that radius as it rotates the full circle,
also in uniform speed. The point describes a spiral line in the process. Another exam-
ple, though this is not used in ancient geometry, would be the generation of a circle as
the “motion curve” described by the endpoint of a radius as the radius rotates a full
360°. In order to study the mathematical properties of such curves, one has to come to
a quantifiable characterization, as a proportion, or an equality that applies to all the
points on the curve and only to them. All mathematical properties have to be derived
from, or related back to, this original characterizing property. It is called the symptoma
of the curve. It ultimately rests on the motions used to generate the curve, but as they
do not appear in the mathematical discourse, the mathematics develops out of the
symptoma itself as the starting point. I will call this type of mathematics symptoma-
mathematics. The conchoid of Nicomedes,' e.g., has the symptoma that all lines drawn
from a point of the curve to the pole have a definite neusis property: the segment cut
off on it between the canon and the point on the curve has a fixed length. The curve
itself is viewed as the locus for this property, and this is how it is employed in mathe-
matical argumentation. An analogy would be to view the circle as the locus of all
points that have a fixed distance to a given point. Arguably this could even be seen as
the Euclidean symptoma of the circle. The case of the conics is somewhat similar: they
could be viewed (and some scholars think they were) as the symptoma-curves for
certain equalities expressible via application of areas, and whether this is their true
definition or not, they were often employed this way in mathematical investigation.

The motion curves discussed in Coll. IV are: Archimedean plane spiral (Prop.
19), Nicomedean conchoid (Prop. 23, though defined as quasi-symptoma-curve),
quadratrix (Prop. 26, also defined as a symptoma-curve via analysis of loci on
surfaces in Props. 28 and 29), Archimedean spherical spiral (Prop. 30) and
Apollonian helix (used, not defined in Prop. 28)

!'For this curve, and for the technical terms, neusis, pole, canon, see the translation and commentary
on Props. 23-25.

H. Sefrin-Weis, Pappus of Alexandria: Book 4 of the Collection, 223
Sources and Studies in the History of Mathematics and Physical Sciences,
DOI 10.1007/978-1-84996-005-2, © Springer-Verlag London Limited 2010
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The account given by Pappus suggests a certain developmental line, which has, on
the whole, been tacitly accepted by most scholars, even if they do not think highly of
Pappus as a mathematician (e.g., Knorr 1986). For Props. 19-30 are our main source
for this type of “higher” ancient geometry, the basis for its reconstruction.' Generally,
there are two types of motion curves, developing from curves like the Archimedean
spiral and the quadratrix. They can be associated with two strategies for dealing with
the problem of finding a mathematically acceptable “definition” of the curves.

(a) “Archimedean” track: motion approach, meta-mechanics (or: quasi-mechanics),
with symptoma-mathematics on properties derived from synchronized abstract
motions.

The generation (genesis) of the basic curves takes place via abstractly conceived
uniform motions. The description of the genesis needs to be free of conceptual con-
tradictions. This means that for use of synchronized motions, the speeds must be in
a definite ratio (cf. spiral, below; the quadratrix was subject to objections along those
lines). The curve is then characterized via a (resulting) mathematically describable
symptoma (proportion or equality), which is directly read off of the genesis.
Geometry with, or on, the curve considers the curve as the locus corresponding to
the symptoma. One might compare the way geometry operates with circles and
straight lines. Coll. IV, Props. 19-22 discuss a version of the Archimedean spiral and
present it as the starting point of a research trend. The problem with this version of
the Archimedean spiral (inscribed into a circle given beforehand) is that the motions
used have to be synchronized according to the ratio of circumference to radius (,
essentially), and that ratio is unknown. The version in SL avoids this dilemma: it uses
synchronized motions in a given and fixed ratio, and circumscribes a circle after-
ward. SL separates the motion lemmata from the rest of the treatise, as quasi-postu-
lates and emphasizes that separation in addition by positioning the definitions for the
treatise between these lemmata and the main treatise. Both versions, even the one
with the problematical genesis, result in a curve that can be grasped exactly via its
symptoma, and through it can be subjected to mathematical treatment. Pappus does
not reject either the theorems on the spiral (Props. 20-22), or the theorems on the
quadratrix (Props. 26 and 27, 35-41), although the original genesis of the quadratrix
encounters similar conceptual difficulties, because it implicitly involves m. For the
quadratrix, he emphasizes in fact that the theorem on it is much more acceptable
than the genesis of the curve itself. The foundations of this type of motion curves,
treated as “lambanomena,” and resting on the genesis, do remain somewhat hypo-
thetical, however, and perhaps there remains some uneasiness about them: you have
to operate with something for which you must restrict your attention on certain con-
ceptualizable aspects, though the object itself cannot be fully grasped conceptually.
Yet, one could take the view that this is the case for all geometrical objects. Already
in Aristotle’s Analytica Posteriora, where he is abstracting from the mathematical
practice of his day, it is stated that “postulates” (aitemata, not to be confused with
axioms) for a science can be hypothetical, that does not detract from their scientific
character. Prop. 30, which uses uniform motions with velocities in the ratio 1:4 for

! Additional examples: Archimedes, SL and Eutocius in Arch., Sph. et Cyl. 11, pp. 54-110.
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the genesis, and is based on the genetic properties of the curve, is completely uncon-
troversial as a theorem in symptoma-mathematics on a motion curve. No treatise in
which Prop. 30 was incorporated survives.

(b) The second track of mathematics on motion curves operates with analysis of
loci on surfaces, leading to a symptoma that can be captured in an exact math-
ematical relation to other features of the given configuration.!

The mathematics is restricted to such properties as follow for the curve qua
observing the symptoma. This second track appears to have started in the generation
after Archimedes. Nicomedes was one of its founders, and one of the major figures
in this field — at least that is how it appears from Pappus’ portrait. This line of
approach was developed further by other Hellenistic geometers, as is apparent from
Pappus’ list in the meta-theoretical passage (between Props. 30 and 31). A substan-
tial body of mathematical works in this area must once have existed. Unfortunately,
no works of this branch of ancient “higher” geometry survive today, and we owe
the little knowledge we have of them mostly to Pappus. This second, analysis-
dominated way of looking at the motion curves has features that connect it to the
treatment of the conics. According to the view taken by most scholars, the conics
were found and treated, per analysis-synthesis, as locus curves, characterized via
symptomata in a specified configuration: cf. Menaechmus, Aristaeus, and Euclid on
solid loci.? Attested in Coll. IV are the following examples of analytically deter-
mined symptoma-curves. In Props. 28 and 29 (one of which may very well be by
Nicomedes), the quadratrix is reduced via analysis to loci on surfaces created in
dependence from the Archimedean spiral or the Apollonian helix and shown to be
determined by it. The mathematics on it is sympfoma-mathematics, again. The
symptoma is used, the genesis of the assumed curves is left out of the mathematical
consideration.> One might compare this procedure to Nicomedes’ characterization
of the conchoid (between Props. 22 and 23); it appears to be a transitional step in
that he does generate the conchoid via motions, but does not read the symptoma
off of the motions used. Rather, he determines it via pointwise characterization of
a conchoid already drawn: the conchoid is the locus for a neusis property.*

"Here the trait of ancient geometrical analysis as essentially an analysis of configurations is craftily
exploited. See below, on the use of analysis in Props. 28 and 29.

2 A notable exception to this view of the ancients’ understanding of the conic section is S. Unguru.
The reader may wish to consult his contributions for a different account. Since the “dominant” view
(conics treated as locus curves, so to speak, with heavy reliance on a characterization via their symp-
toma) concurs very well with Pappus’ presentation in Coll. IV, I have opted, in the present work, not
to raise and discuss this general question. Perhaps it could be discussed again, with profit, by taking
into account the “solid”” arguments in Pappus (Props. 31-34 and 42—44) in addition to the now extant
Apollonian arguments from the Konika (in Eutocius’ revised, purely synthetic edition).

3Props. 28 and 29: Chasles (1875) explores the connections to the differential geometry of higher
curves.

My assessment, as given here, differs from Knorr’s, c¢f. Knorr (1989, p. 31). Knorr objects to
Pappus’ portrait of the conchoid as a neusis curve and insists that the conchoid was not intended
for the neusis, but as a replacement for it.
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Of these two alternative strategies, the former, Archimedean approach, seems to
have been the original one. Nicomedes, for example, picked up on Archimedes’
suggestions. His description and treatment of the quadratrix shows close connec-
tions to the Archimedean plane spiral. He does, however, develop this branch in a
different direction (analysis of loci, getting rid of the mechanical metaphors). And
it seems that it was the second path, not the Archimedean “quasi-mechanics” that
was pursued by the Hellenistic mathematicians after him. In both strategies, one
avoids having to pronounce on what a curve is in itself, instead defining it as a locus
of points that fulfill a given relation. What remains somewhat unclear and vague is
not the status of the mathematical argumentation, but the status of the curves them-
selves. Philosophers were much interested in an answer to questions like this,
especially the Platonists. Already in Plato’s time, it seems that the mathematicians
chose to remain vague, and silent, about the exact ontological status of their objects.
Aristotle’s reflections on the status of mathematical objects, which, though appar-
ently espousing some kind of abstractionist view, remain uncharacteristically vague
as to the actual status of the mathematical objects, and appear to do justice to
the historical facts: the status of mathematical objects remained undecided among the
mathematicians (and perhaps still is so today). That the ancients did not reject
the symproma-mathematics of motion curves just because motions are involved, and
that Descartes (to whom part of our modern prejudice toward ancient mathematics
in this regard may very well go back) was mistaken, or misleading, in his explicit
assessment of the ancient mathematics of higher curves as portrayed in Pappus
(in the Géométrie), was already argued convincingly by Molland (1976). Descartes
went on to use an elaboration of this constructed dichotomy between mechanics and
geometry for his own program. We cannot follow up Descartes’ considerations,
and their possible connections to his reading of Coll. IV in detail here.! It has to be
noted, however, that his picture of the ancient mathematicians’ views on the curves
of the third kind is somewhat skewed. For Pappus, the symproma-mathematics of
lines of the third kind was a branch of geometry. What was not settled, and here
Descartes may have picked out a tension implicit in Pappus’ account, was the status
of the lines themselves. Part of the efforts of the ancient mathematicians was
directed at an account of the genesis, eliminating conceptual problems for the
motion genesis or reducing the genesis to an analysis of loci on surfaces (which
have to be given). Their ontological status remained undecided. A few summary
remarks on the problem of the ancients’ views on mechanics versus geometry may
be useful. A comprehensive solution is at present not in sight. Perhaps the material
offered in the present edition, complete and within its originally intended context,
could be usefully brought to bear on further discussions.

'Tt is not implausible that Descartes’ reading of Pappus, Coll. IV had an impact on his own view
of the definition of higher curves via controlled synchronized motions and algebraic- analytical
characterization, not fully harmonized in his account. The issue cannot be pursued here in detail,
but might be worthy of further investigation. See also below, footnotes to the passage on mechanics
versus geometry.



General Observations on Props. 19-30 227
5.1.1 Mechanics Versus Geometry and the Problem of Motions

Are motions allowed in ancient geometry, if only for the genesis of curves? Or are
they banned? There seems to be no simple, straightforward answer. On the one hand,
Aristotle and Plato seem to suggest they are excluded from geometry proper. Yet
Plato and later Platonists use and accept abstract motions (viewed as generating into
intelligible matter) for the generation of geometrical lines and objects without
qualms (cf. Proclus). Euclid I, 4 notoriously uses superposition, defines congruence
by appeal to moving geometrical objects so that they fit onto each other. Mechanics
and astronomy, e.g., deal with objects in motion, and abstract from them. What
becomes of the motions? One might wonder what role they play for the objects
treated in theoretical mechanics. Popular definitions of straight lines and circles via
flowing points existed. Euclid avoids that, as does Aristotle. Still we encounter such
definitions as late as Proclus. Tracing a line (as the conchoid, or the spiral, or the
circle) could be seen as a motion, and if so, one might again wonder how such
“motions” figure in mathematics. Mechanics, in antiquity, was a mixed science.
As such, it had a theoretical aspect: geometry, and a physical aspect. The latter did
have to do with practical and technical devices (instruments and their operation).! To
call an argument, or a curve, “mechanical” can mean a number of things; it may
simply mean that idealized motions are involved; e.g., Nicomedes’ genesis of the
conchoid in Prop. 23, and Archimedes’ genesis of the spherical spiral in Prop. 30 are
mechanical in this sense. The use of such motions for the generation of curves is not, as
such, viewed as problematical. The “mechanical” genesis of the conchoid (via tracing)
is not criticized by Pappus, and the curve is fully accepted as a mathematical curve,
because the motions are well-defined and can be grasped in thought. The motions used
for the quadratrix are not objected to as such, but because they involve a logical
inconsistency (see below). That motions are not explicitly objected to for the genesis
of lines does not mean, however, that they are seen as part of the mathematical dis-
course. Whether well-defined or not, the generating motions themselves will never
turn up in the symproma-mathematics of the respective curves. They are used to read
off the symptoma, and only the latter becomes part of the argument.? Where does that

' Cf. also Pappus on mechanics versus geometry in Coll. VIII. The passages there would, in my
view, reward scholarly attention for a clarification of the ancient view on the relation of geometry
and (theoretical) mechanics. See also Ver Eecke (1933a)

21t seems to me at least to be a plausible hypothesis that Descartes, when formulating his view on
permissible geometrical curves in the Géométrie was strongly influenced by the examples in Coll.
IV. For what he presents as his dual view on the characterization of geometrical curves, as an
improvement on the ancients, is, at least in nuce, already to be found here in Coll. IV. Descartes
decided that motions are permissible, and lead to geometrical curves in his sense, if the motions
and their synthesis can be controlled at all times — as they can for his parabolas of higher degrees,
for the conchoid, and for the spherical spiral, but not for the quadratrix (Prop. 26) and the plane
spiral as in Prop. 19. Under Descartes’ conception of permissible modes of generating geometrical
curves, both the Archimedean spiral (in 19-22), and the quadratrix, are non-mathematical.
The mathematics about them is no real geometry. As said repeatedly: for Pappus, Props. 20-22,
and Props. 26-29 do qualify. In this respect, he differs from Descartes.
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leave the motions with respect to the field covered by mathematics? Discussion
existed, at least among philosophers of mathematics.! For lack of sources, it can at
present not be fully reconstructed. What can be given, and what the present edition
attempts to provide by presenting the relevant source material in its actual context,
is a glimpse at the way in which mathematicians handled the motion curves (when
no alternative genesis was available), and how they dealt with problems of defining
them mathematically, so they could do mathematics about/of them. The salient
point, which has so far not been emphasized enough in secondary literature, is the
symptoma. If a curve as such cannot be grasped fully as an object, its defining
properties perhaps can, and that is what mathematics concentrates on in any case.
The ancient mathematicians may have deliberately pushed aside the question of the
ontological and epistemological status of the curves themselves. The assessment in
Molland (1976) — motions as such were not the problem; but the relation of geometry
and mechanics is unclear — still holds today.

5.1.2 “Mechanical” Versus ‘“Instrumental”

There is, however, a related issue, on which I need to comment here. “Mechanical”
can, but does not need to, relate to the use of instruments and devices, physical
objects. It would be a mistake, and has led to a misreading of the mathematics of
higher curves in Pappus, to take the two notions “mechanical” and “instrumental”
as virtually equivalent.

As said above, the label “mechanical” can refer to the use of abstract motions,
and to metaphorical usage of terms taken from mechanics, e.g., weight of a triangle
(cf. Ephodos, but also QP by Archimedes). Such language does not imply actual
physical motions, accomplished by physical objects such as instruments. This is why
Pappus, after describing the conchoid as resulting from a motion (mechanically;
this would be called “mechanikos”) mentions that it can also be generated by means
of an instrument devised by Nicomedes (“instrumentally,” organikos). The use of
specified permissible instruments is not the focus of mathematical construction
for the ancients. Euclid, for example, never uses the terms for ruler and compass.
His mathematical constructions are by means of circles and straight lines, and they

! Aristotle’s position on the status of mathematical objects, their relation to natural objects is much
discussed and notoriously problematic. It may not be completely consistent. Most likely, however,
it is a kind of abstractionism, where the mathematical objects are essentially idealized properties of
physical objects, depending on them ontologically, while having some degree of epistemological
priority insofar as they pick out essential features. Geometry in relation to mechanics could,
with some plausibility, be construed as meta-mechanics, as that theory which gives the “why” —
explanations within mechanics. Pappus’ discussion of the roles of geometry versus mechanics
in Coll. VIII (cf. footnote above) appears to be drawing on Aristotelian conceptions. This issue
cannot be pursued here. It is not inconceivable that a study of Pappus’ views on mechanics versus
geometry in Coll. VIII, in comparison with the Aristotelian theory of science, could help under-
stand Pappus’ stance on the motion curves in Coll. IV.
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are not necessarily viewed as tools, i.e., instruments. The focus is certainly on
construction, but not quite as this is commonly understood. The material aspects of
how one creates the circles and straight lines used in the arguments is irrelevant in
Euclidean geometry.! The use of instruments, precise or otherwise, as such, does
not make an argument mathematical or non-mathematical, in fact, it is irrelevant to
the mathematical content concerned. Therefore, “mechanical” does not mean, in a
mathematical context: “created by a physical device™ or “designed for actual
practical production.” I have decided to avoid the label “mechanical” for the motion
curves, because it may lead to the wrong associations.

5.1.3 Survey of Props. 19-30

(a) Props. 19-22: genesis and symptoma of the Archimedean plane spiral (inscribed
in a circle), two symptoma-theorems on it: spiral area, in relation to the circle
into which it is inscribed; spiral sectors in relation to cubes over maximum radii
(Archimedes)

(b) Props. 23-25: genesis and symptoma of the conchoid, further properties,
symptoma-theorem on the conchoid: two mean proportionals, cube multiplica-
tion (Nicomedes)

(c) Props. 26-29: genesis and symptoma of the quadratrix; criticism of the genesis,
symptoma-theorem on the quadratrix: rectification of the circumference of a
circle and squaring of the circle; analytical reduction of the symptoma-description
of the quadratrix to loci on surfaces (Dinostratus, Nicomedes, Apollonius (?),
Sporus, Pappus)

(d) Prop. 30: genesis and symptoma of the spherical spiral (inscribed), symptoma-
theorem on the spherical spiral: quadrature of a curved surface (Archimedes)

Obviously, there is a common structure to the presentation of mathematics of
“higher” curves in Pappus: genesis — symptoma — mathematics treating curves as
locus for the symptoma (cf. handling of conic sections — which were defined as sec-
tions of cones, but predominantly employed for arguments under the perspective of
symptoma-curves). Also, there appears to be at least the trace of a developmental line
for this branch of Greek geometry, and Pappus’ meta-theoretical remarks, which
follow immediately after Prop. 30, reinforce that impression. The fact that the
examples for symptoma-mathematics fit extraordinarily well with Pappus’ meta-
theoretical passage in this regard need not mean that Pappus is representative of the
way mathematicians viewed their work. We may see a rational reconstruction here,

LCf. Netz (1999) on the use of highly schematized/standardized diagrams, set in stone and
completed already at the outset in geometrical argumentation/instruction.

>While concern with devices was not an emphasis in ancient mathematics, it was of interest to
Descartes, who included in the Géométrie a description of a mesolabum-compass, and an instrument
for generating higher degree parabolas (also: device for creating ellipses etc. in the Optics).
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didactically polished, by a well-informed commentator looking back at history and
trying to make sense of it. Even under that precaution, however, Pappus’ views
are well-grounded and deserve attention and respect in their own right. In order
to arrive at a balanced view on how, and how far, Pappus’ image corresponds to a
general understanding of the mathematical tradition, one should take the whole of
Pappus’ account as a basis and look for discrepancies and similarities in direct and
indirect sources outside Pappus. This has not been done so far, because Pappus’
overall position has not yet been taken seriously as a reflected and meaningful
one. Perhaps the present documentation of Pappus’ account as a whole can serve as
a basis for further research.

As said above, Pappus, Coll. IV, 19-30 (and 35-41), is a valuable source on this
branch of ancient mathematics, the only extensive one in existence now, apart from
Archimedes, SL."' The curves presented by Pappus attracted much attention in the
seventeenth century: conchoid, spiral, and quadratrix were recurring subjects of
discussion. It would be an interesting topic to investigate in more detail the way in
which texts like Pappus’ here were used in the seventeenth century to negotiate a
shift in perspective, a new program in geometry. Examples for such a reception
include: Descartes (1637), Hudde and Heuraet on the conchoid in Descartes (1659),
and de Sluse (1668) on the conchoid; Witt/Schooten in Descartes (1659) on conics,
Newton Arithmetica Universalis in Whiteside (1972) V, pp. 420-490. Perhaps
Prop. 21 played a role for the investigation of quadratures via indivisibles.? Props.
28 and 29, for some reason, did not receive as much attention in this discussion,
even though these two passages do focus on method, and show how analysis, espe-
cially: resolutio, can be used in this area.’ Props. 19-30 are also very interesting in
themselves, and they deserve scholarly attention.

5.2  Props. 19-22: Archimedean Plane Spiral, “Heuristic” Version

5.2.1 Relation of Props. 19-22 to SL

For a discussion of this topic see especially Knorr (1978a). Knorr argues that
Props. 19-22 document the heuristic version of Archimedes’s inquiry into
spiral lines, probably connected to research on the quadrature of the circle.

'Because Archimedes is such a brilliant mathematician, it is perhaps tempting to view his
contributions as exemplary. However, it is also possible, and precisely for the same reason, that
he was extraordinary, non-typical, as far as his research into non-explored terrain in mathematics
is concerned. The issue cannot be investigated here.

*The discussions on spiral lines were, however, based mostly on the version in SL (e.g., in Jacob
Bernoulli’s work), not on the version in Props. 19-22.

3But see Pascal, De la dimension d’une dolide forme par le moyen d’une spirale autour d’une
conique, related to Prop. 29, and Chasles (1875, p. 30) on Prop. 28 (quoted according to Ver Eecke
(1933b) p. XXXII, with #4.
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The curve as defined in Prop. 19 differs from the version in SL. Prop. 19 introduces
a spiral inscribed in a given circle, whereas in SL, one has a spiral and circumscribes
the circle. Only the version in Coll. IV can yield the quadrature of the circle. In the
Coll’s version, the genesis via two synchronized motions implies 7 (not so in SL, and
that is exactly why SL 18 does not yield a constructive rectification of the circle). That
said, and with the appropriate caution, Prop 19 corresponds to SL 14 with SL 2, and
Prop. 20 corresponds to SL12 with SL 1." SL 24 is an area theorem on the spiral with
circumscribed circle. Though closely related to Prop. 21 in Coll. IV, it is really a dif-
ferent theorem. The true parallel to SL 24 comes as an appendix (corollary) of Prop. 21.
Also, the proof strategies differ considerably. Prop. 21 uses a parallel auxiliary figure
with rotation solids inscribed, a process of continuous division, and quasi-indivisibles,
whereas SL 24 (relying on SL 21, SL 12, SL 10) gives a proof via double reductio, no
indivisibles are used, the parallel auxiliary figure involves a single circle, and no
progression of inscribed figures into that circle is envisaged. A proof protocol of SL
24 will be given below for convenient comparison with Prop. 21.

5.2.2 Heuristic Method in Props. 19-22

The full scope and machinery of Archimedes’ heuristic method was described by
himself in the Ephodos, “mechanical theorem method.” The work was lost until
rediscovered by Heiberg in the early twentieth century (Heiberg 1906). Thus, the
mathematical tradition had no direct full access to this aspect of Archimedes’ work.
For his monographs do not show any traces of the method of discovery. Part of what
makes Prop. 21 (and, to a lesser degree, 30) so valuable and interesting is the fact
that it does exhibit some of the characteristic traits of that method, and it was indeed
accessible to the mathematicians in the early modern period studying Archimedean
mathematics. Because Prop. 21 is a vital part of what the early modern mathemati-
cians, in going toward the calculus, knew about Archimedean heuristic procedures
for finding quadratures, it is obviously a very important source for historians of
mathematics. It deserves closer attention and analysis with a view to its reception
in early modern times. Specifically: the method employed in Prop. 21 may very
well have influenced Cavalieri’s treatment of area and volume theorems via indi-
visibles (in addition to the QP), as well as other discussions of similar problems
during that time. Quite possibly, the mathematicians in the sixteenth and seventeenth
centuries consciously made use of this limited glimpse of Archimedes at work.
The issue can, of course, not be pursued in detail here. What will be given is a docu-
mentation of the actual text in Pappus, as a basis for further investigation. For a
comprehensive survey of Archimedes’ mechanical method, cf. Dijksterhuis (1987).2

'SL 12 is used in SL 24; Prop. 20 is used only in the addition to Prop. 22.

*Incidentally: Archimedes does not use the term “methodos,” which would have implied a scientific
character for the procedure, but rather the word “Ephodos,” i.e., “attack, approach,” emphasizing
the strategic aspect of it, and its direction toward success in the form of a concrete result.
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According to Dijksterhuis, the strategy described in the Ephodos relies on the meta-
phorical use of mechanical features and operates with (a) levers and centers of
gravity and (b) indivisibles. Only (b) can be observed in Prop. 21 (more broadly:
in 19-22).! To some degree, (a) can be observed in QP, but Archimedes’ procedure
there differs slightly from the version of the same result as given in the Ephodos.

5.2.3 Survey of Props. 19-22

context: geometrical properties of the Archimedean spiral, quadrature of the circle, motion
curves, and symptoma-mathematics.

source: an otherwise lost, and unattested, work by Archimedes.

means: V, VI, exhaustion (XII), quasi-indivisibles.

method: synthesis, limit process argument via indivisibles.

format: theorems.

historical significance/reception: addition/alternative to Archimedes’ SL, Archimedes’
heuristic method exemplified partially, possible influence on arguments via indivisibles in
the sixteenth and seventeenth centuries.

embedding in Coll. IV: presentation of mathematics on higher curves in the order genesis-
symptoma-theorems: same as in Props. 23-25, 26 and 27, and 30; motif “geometry,
Archimedean style”: 13-18, 30, 42—44; motif “squaring the circle”: 26 and 27; connection
to the curve quadratrix: 29%; spiral used in 35-38; insofar as the quadratrix can be derived
from the spiral, 39—41 may be included here, too. In all these instances, it is the basic
symptoma of the curve, not the theorems on it (i.e., Props. 21 and 22) that will be used.
purpose: exhibit plane spiral as a classic and basic curve for the methods of symptoma-
mathematics of the “linear” kind (the starting point for this kind?). Props. 19-22 show the
conceptual problems inherent in the genesis for some of the motion curves, the heuristic
efficiency of the “mechanical method,” and the resulting style of mathematics on motion
curves.

literature: Dijksterhuis (1987, pp. 268-274), Knorr (1978a, 1978b, 1986, pp. 200-201);
Knorr’s work on Archimedes’ treatment of the spirals is the authoritative one at present.
This portion of the commentary on Coll. IV relies heavily on his results. There are some
limitations, in my view, mostly concerning Props. 42-44. They will be pointed out
ad locum. Hultsch remarks that the treatment of the spiral in Props. 19-22 is not identical
with the treatment in SL, but is still willing to see it as parallel. Ver Eecke (1933b), through-
out his commentary on Props. 19-22, erroneously assumes that the treatment is virtually
identical with the one in SL.> Heath (1921, I, 230-231) is mistaken is assuming that SL
18 yields a constructive rectification of the circle. See also Heath (1921, II, 377-379) on
Props. 19-22.

The proof protocols for 19-22 will differ in format from the protocol of “standard”
mathematical expositions, e.g., Props. 13—18, reflecting the different character and
style of the arguments employed here.

! Dijksterhuis defends the thesis that only (b) is problematical for geometry. Compare the above
discussion of mechanics versus geometry.

2Knorr (1986, pp. 161-168) supports an even closer connection between spiral and quadratrix.
*In addition, Ver Eecke claims at XX VIII that Archimedes’s exhaustion method is equivalent
to the infinitesimal calculus, and that 19-21 are analytical in form. One might disagree with
these judgments.
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5.2.4 Prop. 19: Genesis and Symptoma of the Archimedean Spiral

Genesis: In a given circle, inscribe a spiral; use two uniform synchronized motions,
a clockwise rotation of radius BA, and a linear motion of P from B to A. P is to
arrive at A when BA has completed a full rotation. Obviously, the two motions have
to be coordinated according to 2nr:r.!
Symptoma: For any radius BC, drawn arbitrarily, intersecting the spiral in P, BP:BA =
arc BC:circumference, and an analogous property holds for the angles under the
arcs.’

This symptoma will be used in all places where the spiral is employed for
argumentation. The genesis is kept out of the picture from now on.

5.2.5 Prop. 20: Progression of Spiral Radii

Directly from the symptoma, one can derive the following.
A progression of angles, increased by the same increment at each step, produces
an arithmetical progression of spiral radii.?

5.2.6 Prop. 21: Area Theorem
5.2.6.1 Argument in Prop. 21

1. Protasis/ekthesis

Assume a circle with inscribed spiral.* The spiral area is one third of the circle.
2. Apodeixis’

2.1. extension of configuration, auxiliary construction

circle, sector CBA (S(C)), sector ZBH (S(Z)),°

rectangle KNLP, rectangle KNT’R,

in the same ratio as the circle and S(C),

rectangle MNT W, rotation cylinders over NL, NY’

(C(R), C(W))

!'This constitutes a problem for the genetic definition for the curve, analogous to what will be said
about the quadratrix below. Pappus is, however, silent on this issue here. That the conceptual
inconsistency was brought up, and that it must have bothered Archimedes, can be seen from
the fact that SL avoids this problem, even at the cost of no longer being able to rectify, and square the
circle constructively. Compare, and contrast, Prop. 19 with SL, Def. 1, 2, 3, and 7.

2Compare SL 14.

3Compare SL 12 + SL 1.

4 A counterclockwise motion of the generator for the spiral is understood.

>The argument employs an infinite inscription process and quasi-indivisibles. Still, Pappus calls
this argument a proof (apodeixis); cf. Knorr (1978a), pp. 52 ff. on Prop. 21.

A division in the ratio 2" is likely.
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2.2. S(C):S(Z) = C(R):C(W)

[symptoma, VI, V, XII, 2]

2. 3. Continue analogous parallel inscription processes in circle and rectangle,
create progression of sectors and rotation cylinders,

exhausting circle and rectangle.

In each case, you get a proportion as in 2.2.

2. 4. Summing up after a finite number of inscriptions

circle:sum of all inscribed sectors

= C(R):sum of all inscribed rotation cylinders

2. 5. Approximation from above

The analogous proportion will hold for progressions of circumscribed sectors
and rotation cylinders.

2.6. Limit argument

Imagine the partition made more and more fine-grained.

The inscribed and circumscribed circle sectors approximate the spiral area from
both sides, and the inscribed and circumscribed cylinders approximate the rotation
cone over KN with side KL. By an (implicit) continuity argument (a transition to
infinity, or an appeal to indivisibles), we infer: the above proportion will still hold
in the “limit case,” and thus: circle:spiral area = rotation cylinder:cone = 3:1.

5.2.6.2 Proof Protocol of SL 24

(for comparison with Prop. 21)

1. Protasis/Ekthesis
When a spiral of first rotation with a circumscribed circle is given, the following
proposition holds: The spiral area (S) will be one third of the circle (A).

2. Apodeixis
2.1. Extension of configuration, auxiliary construction
circle Q with Q = 1/3A." We need to show: Q = S.

'"'With r: = radius of circle A, construct a line 1’ so that 1> = 3r’? (e.g., by trisecting r (VI, 9), and
transforming the rectangle with sides r, 1/3 r into a square (I, 14). Then the circle Q with radius 1’
will have the area 1/3 A (XII, 2).
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2.2. Double reductio: If not, then either Q > S or Q < S
2.2.1 Assume Q > S
then Q — S =: fis a definite magnitude.
Construct a sequence of similar sectors circumscribed around the spiral, so
that for their sum F we get
F-S<f(SL12,21). Then F< Q.
On the other hand: F > 1/3A (SL 10, addition),
i.e., F > Q, a contradiction.
2.2.2 Assume, then, that Q < S
then S — Q =: f is a definite magnitude.
Construct a sequence of similar sectors inscribed in the spiral, so that for
their sum F we get
S—-F<f. Then F> Q.
On the other hand, SL 10, addition, yields F < 1/3 A, ie, F < Q, a
contradiction.
2.2.3 Therefore, Q = S must hold.

3. Symperasma: Therefore, S = 1/3 A.

Prop. 21 is a symptoma-theorem on the spiral inscribed in a given circle. The proof
uses the symptoma, V, VI, XII, 2, and XII, 10 and 11. The heart and core of the argu-
ment, however, is the progressive inscription, and the limit process. This is “unortho-
dox,” non-Euclidean, and there is no analogue in SL. It is probably the implicit limit
argument employing rotation solids that Pappus refers to in his introduction to
Props. 19-22 as a “certain astonishing plan of attack.”

Addition to Prop. 21

The analogue to Prop. 21 holds for spiral sectors (of the original inscribed spiral),
and corresponding sectors of circumscribed circles.'

5.2.7 Prop. 22: Ratio of Spiral Areas and Spiral Segments>
5.2.77.1 Argument in Prop. 22
Protasis

The ratio of the spiral area to spiral segment areas is equivalent to the ratio of
the cube over the radius to the cubes over the corresponding spiral radii.

!'Since in this addition, the secondary circles end up being circumscribed, one might (as I have
done in the introduction) read the addition as the true equivalent of SL 24. All one needs is a
continuity argument, interpreting the spiral and circumscribed full circle as a limit case for spiral
and sectors of circumscribed circles.

20n Prop. 22, cf. Knorr (1978a, pp. 57 ff).
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Ekthesis
Start with a configuration containing a circle ACD with radius BA, and a spiral
AZEB. Draw the arc ZT, and produce BZ to C.
Apodeixis
1. Spiral area:spiral sector area = circle ACD:sector ZBT
[Prop. 21, with addition].
2. Circle ACD:sector ZBT =
(circle ACD:circle ZBT) x (circle ZBT:sector ZBT)

Circle ACD:circle ZBT = AB*BZ? [XII, 2]

and circle ZBT:sector ZBT = circumference ZBT:arc ZBT

= circumference ACD:arc CA [VI, 33, with addition]
= AB:BZ [symptoma spiral]

3. Spiral area: spiral sector area = (AB%:BZ?) x (AB:BZ),
and this is equivalent to AB*:ZB?

Compound ratios are written here as quasi-products; this is somewhat problematical.
See the discussion of compound ratios and multiple (double and triple) ratios in Saito
(1986) and Heath (1926) on VI, 23. Knorr (1978a, p. 57) discusses a similar use of
ratios in the alternative proof for Sph. et Cyl. 11, 8. It appears as though Archimedes
handled compound ratios in the way suggested here. Hu and Ver Eecke refer to XI,
33, and V, def. 10 for a justification. The triple ratio here may very well have been
seen as the analogue to VI, 23 for solids. Co p. 85 seemed to have qualms about this
proof in Prop. 22, with its implied identification of ratios of solids with composite
ratios of planes and sides; he offers an alternative via centers of gravity for solids.

5.2.7.2 Addition to Prop. 22: Areas of Spiral Quadrants'

1. Ekthesis
Start with a circle, inscribed spiral, and partition of circle into quadrants using
the end stage of the rotating radius, yielding spiral quadrants Q1-Q4.
Posit Q1 as 1 (unit). Then: Q2 =7, Q3 =19, Q4 = 37.

2. Apodeixis
Progression of spiral radii is 1:2:3:4 (symptoma of the spiral),
progression of spiral area sector is 1:8:27:64 (Prop. 22),
subtract preceding quadrants at each step, progression of quadrants is 1:7:19:37.

5.3 Props. 23-25: Conchoid of Nicomedes

5.3.1 General Observations on Props. 23-25

context: neuses, motion curves, cube duplication/multiplication (two mean proportionals).
source: Nicomedes, treatise on conchoid lines, with additions from Pappus.

"Prop. 22, Addition, is not specific as to the relative priority of circle and spiral.
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means: neusis, 1, II, V, V1.

method: analytical use of the symptoma, synthesis.

format: problem.

reception/historical significance: seventeenth century studies on the properties of algebraic
curves: Vieta, Descartes and the ensuing development/discussion (inter alia: Sluse,
Heuraet, Hudde, Newton).

embedding in Coll. IV: motif “motion curves and symptoma-mathematics’: Props. 19, 26,
30 and meta-theoretical passage; motif “analytical determination of curves via symptoma’:
Props. 28/29; motif “neusis”: Props. 31-33, 4244, meta-theoretical passage; motif “author
Nicomedes™: quadratrix (Props. 26-29, perhaps also 35-41). The conchoid is not used
again in Coll. IV, however, the neusis in 31 can easily be constructed with it.

purpose: illustrate determination of motion curves via analytical determination of symp-
tomata, and illustrate the operation with such a symptoma-curve; the conchoid is transi-
tional between the straightforward motion approach in Archimedes (Props. 19-22, 30), and
the analytical symptoma-characterization in Props. 28 and 29.

literature: On Nicomedes and his mathematical achievements see Knorr (1986, pp. 219-233);
on Arabic sources for cube duplication and angle trisection, see Knorr (1989, pp. 63-70,
77-129, and 247-372), and on their ancient sources, see Heath (1921, I, pp. 238-240 and
260-262, and II, pp. 197-199). The most extensive ancient source on ancient cube duplica-
tions, Eutocius in Arch Sph. et Cyl. 11, pp. 54—106 Heiberg, also contains a treatment of the
conchoid and the cube duplication with it (pp. 98-104 Heiberg). It was probably more
influential for the reception of the conchoid in seventeenth century mathematics than
Pappus’ account here, or the parallel in Coll. I1I (pp. 58-64 Hu) and Coll. VIII. Of special
interest, because demonstrating close acquaintance with Pappus’ account, are Newton’s
considerations in Whiteside (1972, 11, pp. 196-201, V, pp. 460-465) (within a larger con-
text of treating “solid” problems via construction of equations, pp. 420-495)."

5.3.1.1 Nicomedes

This mathematician lived in the third/second century BC — after Archimedes and
before Apollonius. Most of his work is lost. He studied the quadratrix (Props.
26-29, perhaps also Props. 35—41), worked on the analytical justification of higher
curves (Prop. 29), and wrote a treatise on the properties of conchoid lines.
His treatise on the conchoids is lost, but a fragment from it, dealing with the “first
conchoid,” usually simply called conchoid, is preserved (Prop. 23-25, but see also
the references given above). Nicomedes may have known (some version of) the
conchoid of a circle, but this cannot be ascertained. From what we can see in Coll.
IV, Nicomedes appears to have developed the symptoma-mathematics of motion
curves along the second path mentioned in the introduction to Props. 19-30. Unlike
Archimedes, who experimented with the approach using idealized motions as

"Newton explicitly refers to Pappus several times. In the above-mentioned text, he voices his
preference for the conchoid for solid neusis constructions and attempts to portray himself as in
line with the ancient geometrical tradition, as against the Cartesians. Descartes’ discussion of the
conchoid in Descartes (1637) does not rest on Pappus, and neither does his construction for the
cube duplication and the angle trisection (for Descartes’ discussion of the conchoid, and some
examples from the Cartesian tradition in the seventeenth century see the references below, under
the heading Conchoid).
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metaphors, Nicomedes worked toward a justification of such curves via an analytical
reduction of their “defining” symptoma to loci on surfaces.! Prop. 23-25 seem to
move somewhat in that direction; a full-fledged example for such a quasi-definition
via analysis on loci is given in Props. 28 and 29. While the author of Props. 28 and
29 cannot be identified with certainty, Nicomedes is at least a possible candidate
for Prop. 29, and at any rate this is the branch of mathematics on which Nicomedes
and others during that time period centered their research activities (for further
names, see the meta-theoretical passage after Prop. 30). Above all, however,
Nicomedes is known for his treatment of the conchoid line. The conchoid has a
neusis-property as symptoma, and can be used for the duplication of the cube
(indeed: multiplication in any given ratio) and the trisection of the angle. In Props.
23 and 24, Pappus presents the solution for the former. A few remarks on
Nicomedes’ conchoid, on cube duplication in ancient mathematics, and on neusis
constructions may be helpful.

5.3.1.2 Conchoid

In Pappus’ excerpt, the conchoid is generated via motions, but in such a way that
it is really a locus-property throughout that characterizes it (see below, genesis of
the conchoid, and the translation?). Nicomedes’ “definition” lingers between a
genesis via motions as in Prop. 19 (“mechanical”), and a definition as a locus
curve answering to a symptoma. After the description, Pappus mentions that the
curve can also be traced by means of an instrument, a kind of neusis-compass,
which was devised and described by Nicomedes already.* The compass “materializes,”
as it were, the defining locus property of the curve, and the tracing implies, of
course, a motion. Note that, as discussed in the introduction, generation with
instruments (dpyavik®g) is not the same as “mechanical” (unyoavik®c)* genera-
tion. In modern terminology, the conchoid is an algebraic curve of order 4, in polar
coordinates: p = b + a sec 0. It is indeed a “higher” curve in comparison to circles

'The references in Proclus, quoted above, fit nicely with such an interpretation. Again, this issue
cannot be pursued here. Perhaps it can be investigated further on the basis of the material in
Pappus.

*For a different assessment cf. Knorr (1986, p. 31) (mentioned above).

3For a description of Nicomedes’ compass, cf. Eutocius in Arch., Sph. et Cyl., 98, 12-100, 14
Heiberg.

4Note also the close analogy to Descartes’ discussion of generative motions in geometry in
Descartes (1637, pp. 315ff) (40ff Smith/Latham). Descartes may have used the conchoid as
reported in Pappus for his discussion of mechanics vs. geometry, and the use of controlled succes-
sive motions, with special focus on instruments. His evaluation suggests that Pappus rejects the
conchoid and all the mathematics on it, because motions are used for generation, whereas he
should have rejected only the quadratrix and spiral, as using uncontrollable composite motions.
As stated in the introduction to 19-30, Pappus in fact accepts all these curves as representatives
of geometry of the linear kind.
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and conics, i.e., it can solve problems that cannot be solved with either of these.
Pappus’ position on the conchoid and its symptoma-mathematics is as follows.
The line itself is fully accepted as a mathematical curve of the “linear” kind, and
so is its characterizing neusis-property. Pappus even lets the symptoma-theorem on
the two mean proportionals stand uncontradicted in Coll. IV — qua symptoma-
mathematics. So far, his portrait is consistent and convincing. The curve really
belongs to the “linear” kind in Pappus’ classification. A problem arises, however,
in connection with the use of the conchoid for the construction of the cube multi-
plication. The neusis for it is solid, it can be constructed via conics; therefore,
using the conchoid for it violates Pappus’ homogeneity criterion (cf. below,
meta-theoretical passage). It is subject to the same kind of criticism Pappus voices
against Archimedes and Apollonius in the meta-theoretical passage. They used a
solid argument where a plane one would have sufficed. Yet Pappus did not object
to Nicomedes’ cube multiplication via the conchoid, even though he explicitly
rejects the use of the conchoid for cube duplication in Coll. III as a violation of the
homogeneity principle. Pappus may have thought the cube multiplication was a
“linear” problem, because it was more general than the cube duplication, which he
knew to be “solid.” In Prop. 35, he will make a transition from angle trisection,
characterized as “solid,” to general angle division, which he labels as “linear”
(correctly so). If he thought the cube multiplication was “linear,” that would explain
why he does not criticize the use of the conchoid for it.! Perhaps one should not
assume an author’s ignorance lightheartedly. But in this case here, the assumption
of a slip, or error, on Pappus’ part would yield a straightforward explanation for
the omission of the conchoid’s failure to meet the homogeneity requirement, in the
very passage leading up to his formulation of that criterion. And even if Pappus’
portrait of the symptoma-mathematics of the conchoid were marred by this error of
putting it to use for a problem that is not appropriate, it should be pointed out that
cube duplication/multiplication is used in Coll. IV mostly as a kind of anchor,
or motivator. The focus of Props. 23-25 in fact is to give an illustration of the
symptoma-mathematics of motion curves in the generation after Archimedes,
shifting toward their characterization via analysis of loci. This move proved
fruitful in the future, and the conchoid as presented in Props. 23-25 is a classic in
this regard, an important step in a developmental line.

! Another possibility would be that Pappus did after all think that the mathematics of motion
curves is not real mathematics, therefore its “unmathematical” use for solid problems does not
make any difference any more. One might perhaps think so, because he also mentions that instead
of the conchoid one could, for practical purposes, just as well use a marked ruler and proceed by
trial and error until it fits (similar remarks can be found in Coll. III for “unmathematical” neuses,
and in Coll. VIII). This might be taken to indicate that Pappus accepts neither as mathematically
exact. In view of the general tone in Props. 19-30, with regard to the symptoma-mathematics of
the motion curves, I would nevertheless refrain from that inference and resort to the hypothesis
mentioned above.
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Pappus mentions four types of Nicomedean conchoids, without giving any further
descriptions. The most likely candidates are the other branches of the ordinary
conchoid.! Nicomedes” work was known perhaps as late as Eutocius, although it is
also possible that Eutocius did not have direct access to Nicomedes’ treatise. No
other reception in antiquity is documented. Proclus’ portrait in Procl. in Eucl. passim
(deriving from Geminus) suggests that Nicomedes must have been of considerable
importance for the branch of mathematics dealing with symptoma-curves.?

The conchoid attracted much attention in the seventeenth century. A few exam-
ples include:

Conchoid in Vieta (1593), Supplementum geometriae®

Generation of curves via idealized motions and instruments, Descartes®

Properties of the conchoid: asymptotic behavior, tangents, points of inflection, local
maximum: de Sluse (1668), appendix; also Descartes and the commentators in
Descartes (1659): Hudde, Heuraet, Huygens®

Newton, Arithmetica universalis: operational advantage of the conchoid over conics
for neusis — constructions®

LaHire and Réaumur also studied this algebraic curve.” In the eighteenth century,
compasses for general conchoids were designed by Suardi (1752) and Gaetani, taking
their queue from Nicomedes’ conchoid compass.® An example for the discussion of
the properties of the conchoid with the means of the calculus is Witte (1813). Let us
now return to the problem to which the conchoid is applied in Props. 23 and 24.

'Cf. Ver Eecke (1933b, pp. 186-187), Heath (1921, II, p. 240). Other suggestions for the other
conchoids include the conchoid of the circle (Cantor 1896; Knorr 1986, p. 220) and the hastaria
specifically in Curtze (1874).

?References to Nicomedes and the conchoid are found, infer alia on pp. 110-113, 177, 272, and
356 Friedlein.

3Cf. Vieta 1970, reprint of Schooten’s 1646 edition). Especially close to Coll. IV are propositions
19-28 and 31-38 there; see also Hofmann (1990, 1, pp. 343-366) on Vieta and neuses.

‘Descartes (1637, pp. 315-327); (40-58 Smith/Latham inter alia generalized mesolabum, shifting
parabola); Descartes ed. Schooten (1659, pp. 19-25) (shifting parabola, conchoid). According to
Whiteside (1972, V, p. 474, #700), Descartes’ s construction is modeled on Menaechmnus’, and
an earlier draft from 1636 exists.

SDescartes (1637, pp. 351/352 (113-115 Smith/Latham), normal to the conchoid), Descartes ed.
Schooten (1659, pp. 246-265) on the conchoid, contributions by Hudde et al.

®Within Whiteside (1972, V, pp. 420-495), see especially pp. 454/456, 426/428, 432, and 454/456,
including the following remark: “constructionem per Conchoidem praefero ut multo simpliciorem
et non minus geometricam & quae resolutioni aequationum a nobis propositae optime conducit.”
(p. 432) Newton’s cube duplication p. 456 is essentially the same as Nicomedes’. Whiteside
(1972, 11, pp. 460—465) contains several constructions for two mean proportionals and angle tri-
section, one of which is closely parallel to Props. 23 and 24.

’See Chasles (1875). These authors investigated generalized Conchoids with the methods of ana-
lytical geometry along the lines proposed by Descartes.

8See von Braunmiihl (1892); Suardi developed ingenious drawing devices, including one for the
conchoid of a circle.
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5.3.1.3 Cube Duplication: Two Mean Proportionals

To find a cube the volume of which is double the volume of a given cube was
one of the three classical problems in ancient geometry (doubling the cube, trisecting
the angle, and squaring the circle). Around these three problems a good deal of the
development of ancient geometry can be aligned. As motivations, they guided
the development of mathematical methods and theories.! Specifically, the cube
duplication and the angle trisection were among the factors promoting the develop-
ment of the theory of conic sections. Pappus, who means to give, in Coll. IV, a
survey of classical Greek geometry from a methodological point of view (my thesis),
includes these three problems, also. Angle trisection will come up in Props. 31-34
(solid problem, with generalization into the linear problem of angle division in a
given ratio in Props. 35-38), and the quadrature of the circle will come up in Props.
26-29 (linear problem by nature). Cube duplication, or rather: finding two mean
proportionals and constructing a cube in a given ratio, is the subject of Props.
23-25. The ancient mathematicians were able to provide a mathematically exact
constructive solution for the angle trisection and the cube duplication, with a neusis
that later turned out to be reducible to a construction via conic sections. Through
Apollonius’ work in analysis-dominated geometry, the nature of the problem was
finally settled. Apollonius’ solution via conics has not survived, but a very closely
related construction is presented for the angle trisection in Coll. IV, Props. 31-33.
In fact the same neusis constructed in Props. 31-33 can be used for Prop. 24, and
it then yields two mean proportionals. The Apollonian “solid” construction for the cube
duplication and the angle trisection was, as it were, the endpoint of a discussion
that had lasted from 450 BC to ca. 150 BC. Perhaps a few names and highlights
in this development are worth recalling here.? Hippocrates of Chios reduced the
cube duplication to finding two mean proportionals.’ Archytas made use of three-
dimensional rotation figures and a torus.* Eudoxus developed a special (symptoma-?)
curve in the plane, probably identical with the Hippopede, and derived from
Archytas’ curves in space for the solution.> A mechanical solution that also relies

"Knorr (1986) even tells his story of the history of ancient mathematics as a story evolving around
solving these problems, and they were singled out in Heath (1921, I) as a separate chapter in his
otherwise chronological account centering on authors; for the cube duplication see pp. 244-270
there.

2For a survey in secondary literature see Heath (1921, I, pp. 244-270) and Knorr (1986) passim.
The most important ancient source is, as said above, Eutocius in Arch. Sph. et Cyl. pp. 54—106
Heiberg.

3Heath (1921, T, pp. 200/201). This description is to be taken with caution. See Netz (2004).

4Heath (1921, 1, pp. 246-249), Knorr (1986, pp. 50-51); Eutocius pp. 84-88 Heiberg. Note the
motivic connection to the attempt, in Props. 28 and 29, to determine the curve “quadratrix” from
loci on surfaces that are created as intersections of rather similar surfaces in space (see below).
SThe solution does not survive. If the curve resulted from orthogonal projection of Archytas’
curves (as Tannery suggested), it would be a prototype for the curves determined analytically in
Props. 28 and 29 (see below).
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heavily on the manipulation of a physical instrument is ascribed to Plato. It is
not genuine, but it is in all likelihood pre-Euclidean.! Menaechmus used conic sec-
tions, viewed as locus curves with symproma.> Archimedes (no solution by him
survives) seems to have used a neusis very much like the neusis in Lib. ass. VIII
for angle trisection and cube duplication. This connection is drawn in an Arabic
source. The neusis used for angle trisection in another Arabic source is in fact
closely associated with Lib. ass. VIII, and with the neuses in SL 5-9.3 Eratosthenes
devised a quasi-compass, the mesolabum.* Nicomedes, in an attempt to improve
on Eratosthenes, solved the problem with the conchoid. Diocles’ solution with
the cissoid is in some respects methodologically similar to Nicomedes’ conchoid
solution.’ Finally, Apollonius gave a systematic analytical treatment of plane versus
solid neuses, differentiated into kinds (gene): neuses for plane problems use only
circle and straight line, neuses for solid problems use at least one conic section in
addition.® The neusis for angle trisection and cube duplication is solid. Apollonius
also gave a construction of this solid neusis. Apollonius’ contribution is lost.
Since Coll. IV, Props. 31-33 draw on Apollonius’ treatment of conics, and proceed
via analysis-synthesis, Knorr has argued for a close connection between Prop. 33
and Apollonius’ solution.” At any rate, a solution along the lines of Props. 31-33
(or one of the alternatives in Prop. 34) settled the question as far as ancient geometry
was concerned.

The ancient geometers’ sustained interest in the two problems on the cube
and on the angle was not just a fancy idea. Although the ancients may not have
known this explicitly, these two problems are really fundamental in the following
sense. All problems that can be solved via circles, lines, and conics (that is: all
solid problems) reduce to either the angle trisection or the cube duplication.

'Cf. Eutocius pp. 56-58 Heiberg.

2Cf. Eutocius pp. 78-84 Heiberg; note the possible connection between Menaechmus’ handling
of his locus curves (they turned out to be conic sections) and the attempt to utilize more general
curves, described and describable solely through their symptoma. See also Jones (1986a,
pp. 573-577), Knorr (1986, pp. 61-66, 1989, pp. 77-129), and Zeuthen (1886, pp. 455-469).
3Cf. Knorr (1986, p. 221 f.); compare also Hogendijk (1986), and the discussion of angle trisection
below.

4Cf. Eutocius pp. 88-96 Heiberg; see Heath (1921, I, pp. 258-260), Zeuthen (1886, pp. 455-469),
and Knorr (1986, pp. 61-66). A discussion can also be found in Coll. 111, 56-58 Hu. The mesol-
abum construction quite obviously influenced Descartes’ invention of a compass for the construc-
tion of proportions in the Géométrie (Descartes 1637, pp. 317-319 (44—49 Smith/Latham) ), and
it may very well have inspired Sluse book of the same title.

3Cf. Eutocius, pp. 66-70 Heiberg.
°Cf. Jones (1986a, pp. 527-534) on Apollonius’ neuses.

7Cf. Knorr (1982, 1986, pp. 302, 305-308). In these contributions Knorr argued for Apollonius as
the direct author of Prop. 33. In Knorr (1989), he favors a somewhat less immediate connection,
which is perhaps preferable.
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This was shown by Vieta (Supplementum Geometriae, pp. 240-257 of the 1646
Schooten edition'). It is quite possible that the ancients had an inkling that the two
classical problems already exhausted all solid construction problems. But even if
they did not come to formulate such a suspicion or hypothesis, they could not have
but noticed that in point of fact solid problems regularly did reduce to these two.?

5.3.1.4 Neusis

As said above, cube duplication reduces to the finding of two mean proportionals,
which in turn reduces to a neusis. What, then, is a neusis, and what is its general
significance in Greek geometry®? A neusis is a construction in which one has to
insert a line (usually of a given length), between two given lines (usually a straight
line and a circular circumference), so that it meets, when produced, a certain point:
it verges toward that point (Greek verb: neuein). Ancient examples for neuses
include:

(i) Neusis in Hippocrates’ third lunula-quadrature*

(i) Archimedes, SL 5-9, the neusis for angle triscection in Lib. ass. VIII, and the
one used for his construction of the regular heptagon®

(iii) Apollonius: work on plane neuses, lost; a commentary by Pappus survives®

(iv) Examples for neuses in Pappus, Coll. IV: Props. 23 and 24 (Nicomedes), Props.
31 and 32 (probably pre-Apollonian, see below, with post-Apollonian justifica-
tion via conics: Prop. 33), Prop. 34, and Props. 42—44 (Archimedes, and perhaps
Aristaeus)

The ancient neuses that are still extant can all be constructed either with circle and
straight line, or with conics. This is due to the fact that the two lines chosen for

"For his proof, Vieta made use of his new algebraic techniques. Even so, his procedure is aston-
ishingly close to Coll. IV in its general set-up. The same result was shown also by Fermat, and
again by Descartes (1637, pp. 389—402) (193-219 Smith/Latham). Compare also Newton’s treat-
ment in Whiteside (1972, V, pp. 420-491), mentioned above. Similar results had been found
earlier by Omar Kayyam, who may have had an impact on European mathematics in the Middle
Ages, and by Raffael Bombelli in the geometrical part of his Algebra. The latter remained unpub-
lished, however, until it was rediscovered by Bortolotti in the 1920s (cf. Bortolotti 1923,1929,
pp. 265-267), and cannot have had much impact on geometry and algebra in the sixteenth/seven-
teenth century.

2Compare Pappus’ remarks on the analysis of the solid neusis in Props. 42-44; cf. also Jones
(1986a, pp. 527-530) for attempts towards classification made possible through Apollonius’
work.

3Cf. Zeuthen (1886), Heath (1921), Knorr (1986), RE Suppl. IX (1962), col. 415-461 on this
topic; cf. also Jones (1986a, pp. 527-534) (on Apollonius’ work with that title).

4On the Hippocrates fragment see Simpl. in Phys. 61-68 Diels, Heath (1921, I, pp. 183, 195-196);
Knorr (19864, pp. 32-34), Netz (2004).

SKnorr (1978b, 1986, pp. 178-187).
®Coll. VII, pp. 770-820 Hu (Jones 1986a, pp. 196-229, # 120157, with comments pp. 527 ff.).
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insertion are either two straight lines, or a straight line and a circle. Zeuthen’s
account of the role of neuses in Greek geometry has largely been accepted. What
follows, is a brief summary of it.! According to Zeuthen, the neusis-operation
historically started out as a legitimate standard argumentative device in mathematics:
no construction of it was needed for justification, just like there is not one needed
for circles. In actual practice, neuses were probably accomplished by means of a
marked ruler; this procedure was in all likelihood still a valid device at the time of
Archimedes, and that is why SL 5-9 give no argument for the construction of the
neuses. It was Apollonius’ analytical work which enabled geometers to differenti-
ate between plane and solid neuses, and to construct them, as separate entities, via
analysis-synthesis. Apollonius obviously did address the neusis-operation as some-
thing that can, and should, be constructed from simpler entities, and through his
contributions, the neuses lost their status as simple devices. From then on, they had
to be constructed explicitly, and there were distinct different types. Specifically:
there were plane neuses, which had to be constructed by plane means, and solid
neuses, which required at least one conic.? As said above, Zeuthen’s account was
mostly accepted, and it is indeed quite plausible, although no explicit ancient testi-
mony exists on the status of the neuses before Apollonius. Assuming this rough
outline of the history of neusis as a construction device in ancient geometry,
Nicomedes’ conchoid appears to hold a kind of middle ground. Nicomedes lived
after Archimedes, and before Apollonius; his curve is really a neusis-curve, and his
attempt to define the curve pointwise, analytically, could perhaps be seen as a step
toward “mathematizing” the neusis-operation.’

5.3.2 Prop. 23: Genesis and Symptoma of the Conchoid

Genesis: a straight line AB with perpendicular CDE is given; C and E are given in
position*; CE moves along AB, while E remains fixed; D is always the point of
intersection with AB, and the segment DC remains fixed in length; C describes a
conchoid

Symptoma: every straight line drawn between E and the curve cuts off a segment
of the same length between AB and the curve (neusis-property).

' Cf. Zeuthen (1886, especially pp. 261-265/ 269-272).

2Cf. Heath (1921, I, pp. 235-241, 11, pp. 65-68) (Archimedes, SL 5-9), 189-192 (Apollonius’ work
on plane neuses), Heath (1926, I, pp. 150/151), Dijksterhuis (1987, pp. 138/139) (Archimedes),
Knorr (1986, pp. 365 ff.) and passim (essentially repeating Zeuthen’s arguments). A classic contri-
bution, addressing also a differing opinion on ruler and compass in neuses as early as Hippocrates,
is Steele (1936). According to Jones (1986a, p. 530), the identification and exhaustive construction
of all plane neuses may have been the very purpose of Apollonius’ Neuses.

3For a comparable assessment cf. Knorr (1986, p. 303); for a different assessment, see Knorr
(1989, p. 31), however.

4Nicomedes/Pappus is indeed using technical terminology from geometrical analysis.
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The curve’s genesis is via motions (as in Prop. 19). The symptoma is, however,
not directly derived from the motions used (as in Prop. 20). Rather, Nicomedes’
derivation is quasi-analytical, and presupposes the curve as drawn, considering it
pointwise. As said above, this is a step toward “defining” higher curves analytically
as symptoma-curves.

Further information, from Nicomedes’ treatise, is only listed in Pappus. The
curve created in the above genesis is called “first conchoid”; the line AB “ruler,”
the point E pole, and the line segment DC “distance.” The perpendicular from the
curve onto AB has a maximum in CD, perpendiculars closer to CD are larger than
those further away; the curve is asymptotic with respect to AB. Nicomedes dis-
cussed a total of four types of conchoids. After listing some of Nicomedes’ results,
Pappus also adds: the curve can be described by means of an instrument, which
Nicomedes also devised. It can be used to double the cube, and to trisect the
angle, as Pappus says he himself has done. The conchoid also yields the cube mul-
tiplication (a generalization of the duplication). For practical purposes, says Pappus,
one might just as well use a marked ruler to find the neusis.

5.3.3 Prop. 24: Two Mean Proportionals via Neusis

There is a slight problem with the authorship for Prop 24. If we emend the text as
Hultsch did, Pappus claims that Nicomedes gave only the construction, and that he
himself supplied the proof. Since Nicomedes” work was still around at the time, this
could not really have been an outright falsehood. Yet Eutocius (independently from
Pappus?) reports the very same proof almost verbatim, and strongly suggests, though
he does not say, that it is Nicomedes’ own.> Does our proof stem, essentially, from
the second century BC, or rather from Pappus, i.e., from the fourth century AD? Like
most scholars, I think the essence of Prop. 24 belongs to Nicomedes and does illus-
trate “Nicomedean” mathematics. In what follows, I offer a brief summary of
attempts to explain Pappus’ introductory sentence. Perhaps Nicomedes gave only the
analysis and kataskeue explicitly, leaving the synthesis to the reader, and Pappus
merely spelled it out. Ver Eecke (1933b, p. 188) assumes that Eutocius was quoting
from Coll. IV, but this leaves the authorial claim on Pappus’ part unaccounted for.
Jones (1986a) considers the possibility that Eutocius may be drawing not on Coll. IV,
but on a report in Coll. VII. Perhaps (as suggested by Knorr 1989, pp. 65 ft.) Pappus
wishes to claim authorship for certain minor intermediate steps only, those that make
the connection to the Elements explicit. In fact, the close connection to Euclid I-VI
does suggest some editorial input on Pappus’ part. Another explanation results from
restituting the transmitted text “monen” for “monon.” Then the problematic sentence
in Pappus could be understood as stating that Nicomedes provided a single construc-
tion (for both angle trisection and cube duplication), whereas he himself is going to

'Cf. Jones (1986a, p. 529), Knorr (1986, pp. 219-222).
2Eutocius in Arch. Sph. et Cyl. 104-106 Heiberg.
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excerpt and present that part of it that concerns two mean proportionals for cube
duplication. Then the apparent contradiction is diminished, and Nicomedes is
acknowledged as the source for Prop. 24. The degree to which Pappus edited his
source cannot be determined with certainty, unless one can find evidence for Eutocius’
independence from Pappus. I will treat Prop. 24 as essentially Nicomedean.

The proof protocol for Prop. 24 will be given in some detail, to illustrate the fact
that Nicomedes’ methods, within symptoma-mathematics, were quite “standard,”
unlike, e.g., Archimedes’ procedure in Prop. 21, and correspond in scope to the
means employed in Apollonius’ analytical works.

5.3.3.1 Proof Protocol Prop. 24

1. Protasis
Find two mean proportionals for CL, LA

2. Ekthesis/Kataskeue

Rectangle ABCL, construct, M, Z, K, TK

CK, MA solve the problem, i.e.: CL:CK = CK:MA = MA:AL
3. Apodeixis:

Show that BM:BK can be expressed in three ways
3.1 MB:BK = CK:MA

BK x KC + CE? = EK? [11, 6]
BK x KC + CZ? = KZ? [1, 47]
MA:AB = ML:LK [VI, 2 with V, 16]
ML:LK = BC:CK [VI, 2]
MA:AB = BC:CK;

MA:AD = HC:CK; HC:KC = ZT:TK [VI, 2]
MA:AD =ZT TK;

MD:DA = ZK:TK [V, 18]
DA =TK = MD =ZK [V, 9]
MD? = BM x MA + DA? [1I, 6]
BM x MA + DA? = ZK? = BK x KC + CZ?

DA? = CZ?

= BM x MA = BK x KC

= BM:BK = KC:MA [VI, 16].
3.2 MB:BK = LC:CK [VI, 4]
3.3 MB:BK = MA:AL [VI, 4]

4. The equations 3.1-3.3 establish
CL:CK = CK:MA = MA:AL.
5.3.4 Prop. 25: Cube Multiplication in a Given Ratio

Set the ratio out as a:b. Via Prop. 24, construct c, d so that a:c = c¢:d = d:b. Then
a:b = (a:c)’ = a’:.c’.
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Note that triple ratios are here identified with ratios of cubes. V, def. 11: (a:c)* = a:b.
According to XI, 33, the cubes stand to each other in the same triplicate ratio.

5.4 Props. 26-29: Quadratrix/Squaring the Circle

5.4.1 General Observations on Props. 26-29
5.4.1.1 Structure of Props. 26-29

Genesis and symptoma of the quadratrix as a motion curve

Sporus’ criticism of the quadratrix (specifically of the genesis)

Props. 26 and 27: symptoma-mathematics of the quadratrix: rectify and square the
circle.

Props. 28 and 29: geometricize the genesis of the quadratrix via analysis on
surfaces.

context: motion curves and symptoma-mathematics, squaring the circle.

sources: Nicomedes or Dinostratus on quadratrix, Sporus’ Aristotelian Wax Tablets for
criticism of the genesis, Nicomedes (?) for exhaustion proof in Prop. 26'; unknown sources
for Props. 28 and 29 (Apollonius? Nicomedes?).

means: I, ILV,VL, Circ. mens. 1 for Props. 26 and 27;

no recourse to the Elements in Props. 28 and 29.

method: exhaustion proof, synthetic (Prop. 26), analysis (Props. 28 and 29).

format: non-uniform: genesis and symptoma is descriptive; Sporus’ criticism is an excerpt
from a philosophical refutation argument, rhetorically styled; Prop. 26 is a theorem, Prop.
27 a problem; Props. 28 and 29 give an analytical determination of a curve.
reception/historical significance: the quadratrix was much discussed in the seventeenth
century, as an example for a non-geometrical, or a transcendent, curve.

embedding in Coll. IV: connection to the plane spiral (Prop. 19): Props. 25, 26 and 29,
motif “author Nicomedes”: Props. 23-25; motif “genesis via synchronized motions”:
Props. 19, 30; motif “linear problems and symptoma-mathematics of the quadratrix’:
Props. 35-41; motif “analytical interpretation of the symptoma”: Prop. 23.

purpose: exemplary illustration of the problems, and the mathematical potential of curves
of the third (linear) kind.

literature: Heath (1921, I, pp. 225-230), Knorr (1986, pp. 80-88; 226-233; 166—-167) for
Props. 26 and 27; on Props. 28 and 29 and its context of analysis on surface loci see Heath
(1921, 1, 439-440; 11, pp. 380-382), Knorr (1978a, pp. 62-66, 1986, pp. 129 and 166-167),
Jones (19864, pp. 595-598), Ver Eecke (1933b, pp. 197-201), Chasles (1875, pp. 30-37)
and Notes VIII. Coll. VII, pp. 1004—-1014 Hu (Jones 1986a, pp. 362-371) contain Pappus’
commentary on Euclid’s work in loci on surfaces (probably conics). The work he com-
ments on probably rested on prior contributions by Aristaeus.

5.4.1.2 Authorship for Props. 26-29

Pappus mentions both Dinostratus and Nicomedes as authors that used the quadratrix
in connection with the squaring of the circle. For biographical information on

"Pappus himself can be excluded as the author of Prop. 26, because he explicitly says he is
reporting.
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Nicomedes see above, introduction to Props. 23-25. Dinostratus was the brother of
Menaechmus (inventor of conic sections). He lived ca. 350 BC and may very well have
been a pupil of Eudoxus. We know almost nothing about his mathematical work outside
of our passage in Coll. IV, so what will be said here is to some degree speculative.

Pappus clearly associates both him and Nicomedes with the use of the quadratrix
for squaring the circle. Since the fifth century BC sophist Hippias is mentioned
elsewhere as the inventor of the curve itself, perhaps Hippias used the curve for the
angle trisection (indeed: arbitrary division), while Dinostratus discovered its recti-
fication property, and possibly proved it with the Eudoxean method of exhaustion
(not Prop. 26, however). After Archimedes, due to Circ. mens. 1, the quadratrix
could then have been employed by Nicomedes to square the circle (Prop. 27).
Perhaps it was Nicomedes, also, who is responsible for the proof of the rectification
property in its present form. The proof of Prop. 26 as given in Pappus is almost
certainly post-Archimedean, because it relies implicitly on a theorem that is equiva-
lent to Arch., Circ. mens. 1 (see proof protocol below). Furthermore, Nicomedes
could have pursued the analytical symptoma-approach to the properties of the
curve, and be at least partially responsible for the analytical reduction of the
quadratrix, viewed as symptoma-curve, to Archimedes’ spiral (Prop. 29). In anal-
ogy to the conchoid, which is determined pointwise as a kind of neusis-curve, the
quadratrix can be seen as a curve corresponding, at each point, to the correlation of
the very same rotation + linear motion used in the plane spiral (when it is inscribed
in a circle), and such a perspective leads to the way the quadratrix is characterized
in Prop. 29. On this view, the contribution of Dinostratus is substantial, but
Nicomedes would be the one who developed the symptroma-mathematics of the
curve theoretically, as a member of the class of higher curves.

This is, as it were, the maximum option for Dinostratus’ and Nicomedes’
achievements in relation to the quadratrix. I am putting it forth tentatively. It has
the advantage of fitting well with a sympathetic reading of Pappus’ text, and it can
account for the fact that in most later sources, it is only Nicomedes that is associ-
ated with the study of the properties of the quadratrix as a higher curve.! In what
follows, I will briefly sketch two alternative views.

Heath (1921) would like to ascribe much of the mathematics on the quadratrix
to Hippias already, including the discovery of the rectification property and its
proof via exhaustion. Perhaps this is a little too optimistic for Hippias.? It would
place a considerable amount of mathematical theory and expertise already in the
fifth century BC, and is therefore somewhat unconvincing. Knorr (1986) has argued
a different view. He denies that Hippias could have had anything to do with the

!'Cf. Tamblichus apud Simpl. in Cat. 192 Kalbfleisch, 645 b Brandis. Procl. in Eucl. 272 Friedlein
mentions only Nicomedes as well, but not Dinostratus, although Proclus must have known about
him. His name had been mentioned earlier, in the catalog of mathematicians derived from Eudemus.
*Hippias would be credited with an expertise in handling the exhaustion method that is in this
form usually associated with Eudoxus, who lived considerably later than Hippias, and this reading
also would leave no room, as it were, for Dinostratus.
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curve, because it involves a considerable degree of mathematical sophistication and
expertise. Rather, according to Knorr, Dinostratus may have invented the curve and
discovered its rather obvious angle division property (i.e., he ascribes to Dinostratus
what others had ascribed to Hippias). Because the genesis of the curve via motions
has strong affinities with the Archimedean plane spiral (inscribed version). Knorr
believes that in the generation after Archimedes this connection was made use of,
by Nicomedes probably, to formulate, and to prove the rectification property of the
curve (Prop. 26 entirely), whence the quadrature of the circle follows as a corollary
thanks to Circ. mens. 1. The rectification property is implicit in the curve, but unlike
the angle section property, it cannot be read off directly. It seems plausible to
assume that the latter was discovered after the former. As for Props. 28 and 29,
Knorr envisages Apollonius as a possible source for Prop. 28 (because of the central
role of the Apollonian helix therein), and associates Prop. 29 with Archimedes.

Perhaps this is a bit too pessimistic with regard to Hippias and Nicomedes. There
seems to be no compelling reason to discard the unequivocal testimony that Hippias
invented the curve itself. How much he knew about it may be uncertain, but the angle
section property is indeed easily deduced. Archimedes seems unlikely as a source
for a predominantly analytical investigation of motion curves as in Prop. 29. In his
other works, and in his heuristic method, Archimedes shows no preference for the
analytic approach. His interests point rather in the direction of quasi-mechanical
methods, and perhaps infinitesimals. Prop. 29 appears not to be Archimedean in
style. More plausible is the connection between Prop. 28 and Apollonius, because
Apollonius did in fact favor, and develop, the analytical approach in geometry, and
is said in Iamblichus to have called the quadratrix “sister of the cochlias.” This some-
what enigmatic statement could be read as a description of Prop. 28, and then
Apollonius could be its author.! Finally, Apollonius may have written a treatise on
the helix. The evidence on such a treatise is slim, however. I prefer to refrain from
ascribing the substance of Prop. 28 to him directly, while supporting the claim that
Prop. 28 is well in line with higher mathematics, Apollonian style, i.e., in a tradition
developing an approach to mathematics that is exemplified in Apollonius. As said
above, I am inclined to assign to Nicomedes the leading role in the shaping of Props.
26 and 27, and to consider a substantial contribution to Prop. 29 on his part as a
distinct possibility. Furthermore, I am of the opinion that the upcoming minor results on
the symptoma-mathematics of the quadratrix in Props. 35—41 may derive from his
treatise on the quadratrix as well.

5.4.1.3 Quadratrix

As outlined above, the quadratrix is usually associated with Hippias of Elis (fifth
century BC) as its inventor. It was at first used to trisect the angle; in fact it can

'Tambl. apud Simpl. in Cat. 192, 19-24 Kalbfleisch. Heath (1921, I. p. 225) supports a different
view.
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divide an angle in any ratio. Later on, it was discovered that it can also be used to
rectify the circle, and thus to solve the problem of squaring the circle. This solution
via the quadratrix was not accepted as a constructive solution, because in setting out
the quadratrix one already has to assume access to the ratio of diameter and circum-
ference of the circle (see below). Nevertheless, Pappus was willing to fully accept
the mathematics on, or about, the quadratrix as an example of geometry of what
he called the “linear” kind. This applies to Props. 26-29, and to Props. 35—41. The
status of the curve itself was left somewhat in limbo by him, and his ambivalent
portrait probably contributed to the fact that, in the seventeenth century, the quadra-
trix was used as one of the primary examples of curves that did not fit the bill of
Descartes’ definition of a proper geometrical curve,! and might therefore be used
as either a vantage point to enlarge, or a counter-example in the attempt to delimit
the horizon of geometry and analysis.>

Props. 26 and 27, with their prefatory detailed description of the quadratrix as a
motion curve are our only surviving evidence on this curve (and the squaring of the
circle with it) from antiquity. Props. 35-41 show us the use of the quadratrix for the
general angle division, and results derived from it, as well as further properties fol-
lowing from the rectification property. Again, those are the only such sources extant
from antiquity. Finally, Props. 28 and 29 are our only extant detailed examples for an
analysis of loci on surfaces (used here for the geometrical justification/description
of the genesis of the quadratrix). Obviously, this makes Props. 26-29 (to a lesser
extent: Props. 35-41) a document of the highest importance for the history of
ancient mathematics. However, the fact that no other ancient source gives such a
detailed insight into the discussion of this curve and its geometrical properties, and
that there are no traces of parallel accounts on other higher curves, also entails,
unfortunately, that we have no context in which to set, and from which to evaluate,
Pappus’ portrait of the curve and its mathematics. There seems to have been a
mathematical community (or just a small group of mathematicians?) who pursued
this kind of mathematics for some time (how long? just one generation, or 100
years?). Pappus and others list names. What did these mathematicians think they
were doing? What was their view on the status of curves like the quadratrix, and on
the symptoma-mathematics on them? What was the mainstream view (if such a
view existed) on this collection of mathematical treatises? Is Pappus’ rational
reconstruction of the quadratrix and the degree to which it can be “geometricized”
representative, and if so: representative of what? Wherever his pronouncements

'In Descartes ed. Schooten (1659, pp. 18 and 38), for example, the quadratrix and the spiral appear
as the primary examples for non-geometrical curves.

2] am not aware of any systematic study of the evidence. Such a project would seem to me to be
rather promising, because the amount of available source texts is rather extensive and widespread.
The quadratrix does turn up, e.g., in Jacob Bernoulli’s papers (he was also interested in spiral
lines), and also in Leibniz’s mathematical manuscripts. Leibniz borrowed the name and applied it
to a more general type of curve with “quadrature” properties. For the Cartesians, the quadratrix
was a classic example for a non-permissible curve.
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remain vague, should we conclude that he is uncertain or does not understand, or
that the discussion had not reached a consensus, or that there was no discussion and
the project just died out? Perhaps a detailed comprehensive comparative study of
Props. 19-30 and 35-41 in connection with SL, taking into account also the
scattered summary remarks in other authors (especially Proclus and the commenta-
tors on Aristotle) could shed some new light on this issue. It cannot be pursued
here. What is given is a documentation of the ancient evidence on the mathematics
of the quadratrix and on Pappus’ evaluation of it, as far as the full text in Coll. IV
attests it. Perhaps this material could be the basis for further investigations on a
broader scope.

5.4.1.4 Squaring the Circle

The squaring of the circle, i.e., the problem of finding a geometrical construction
to transform a given circle into a square, caught the attention of the Greeks very
early on. Already in the fifth century BC, they appear to have found a (very elemen-
tary) way of transforming any given polygon into a square — II, 14 in the Elements,
resting on I, 44 and I, 45. It seemed that an analogous procedure to do the same
with the circle should be possible. The question captured the imagination of math-
ematicians and non-mathematicians alike, and it sparked the development of new
methods and new theories in geometry, with the goal to become able, among other
things, to solve this problem with the new mathematics. Already in Aristotle’s time
doubts arose as to whether the problem was solvable at all. But the discussion, and
the search, continued nevertheless, and it continued beyond antiquity. In a sense,
the matter was finally settled only with Lindemann’s proof of the transcendence of
n in 1882. No construction with means that are equivalent to the solution of an
algebraic equation with rational coefficients is possible. One needs infinitesimal
methods, or else a curve like the quadratrix. In what follows, a survey of the attested
ancient attempts at solving the problem, and a selective list of later attempts and
judgments is given.!

Hippocrates of Chios, in the fifth century BC succeeded in constructing three out
of the five quadratures of lunulae that are possible within plane geometry. One of
them is located over a semicircle, one over a segment that is larger than the semi-
circle, and one over a segment that is smaller. He also squared a figure composed

!'For further information on the ancient quadratures cf. Heath (1921, I, pp. 183-201, 220-235) and
Knorr (1986) passim. Knorr is perhaps not always careful in demarcating textual/historical evi-
dence from his own reconstructions. Troptke (1923, pp. 195-238) provides a survey of attempts
to square the circle, focusing on contributions known in Western Europe. It is still valuable for
its numerous bibliographical references. Also worth reading, though in some respects outdated, is
Rudio (1892), a monograph on the measurement of the circle that prints the major contributions
by Archimedes, Huygens, Lambert, and Legendre in full, and also contains a survey on the history
of the quadrature.
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of a circle and a lunula. His constructions probably were intended as steps toward
squaring the circle. As Aristotle points out, they were fully valid mathematical
arguments, but they do not square the circle.' Still in the fifth century, the sophists
Antiphon and Bryson presented arguments that they held to be solutions to the
problem of squaring the circle.? Both started with an inscribed square and con-
structed a sequence of polygons approximating the circle more closely at each step.
Bryson used, in addition, a corresponding sequence of circumscribed polygons.
Both assumed that in the process, the circle is exhausted.* Antiphon in effect
assumed that the process would be finite, and that the circle coincides with a poly-
gon having very small sides. This polygon can then be squared, via the equivalent
of II, 14. His argument was considered as invalid mathematically, because it rests
on a non-geometrical concept of a circle.* Bryson did not identify the circle with a
polygon. He argued that since all the “inside” polygons are smaller than the circle,
and all the “outside” ones are larger, there must exist a polygon that has the same
area as the circle. Such a polygon could, again, be squared via the equivalent of II,
14. Bryson claimed thus to have squared the circle. His argument rests on the idea
that “area,” taken abstractly, is a continuous quantity. Though not invalid in itself,
it was taken by Aristotle not to be a geometrical argument at all, because it violates
his homogeneity criterion.’ Whether or not the mathematicians would have shared
Aristotle’s opinion here, it is clear that the argument does not amount to a geometri-
cal solution to the (construction!) problem of squaring the circle. The required
square — though Bryson’s argument may reassure us that it exists — cannot actually
be produced from this argument. Bryson did not square the circle. The problem thus
was still unsolved in Aristotle’s times, and he uses it frequently as an illustration
for failed or as yet unsuccessful attempts in scientific inquiry. In his writings, one

"Heath (1921, I, pp. 183-201); cf. Simpl. in Phys. 56-68 Diels, Rudio (1907). See also Aristotle
on Hippocrates’ quadratures in Heath (1970, originally: 1949). The above judgment is taken from
Aristotle, but there is no reason to assume that the mathematicians would not have shared his
opinion.

2Cf. Heath (1921, I, pp. 221-225).

3Note that this does not mean that they used the Eudoxean method, the so-called “method of
exhaustion.” That method is, in its essence, a double reductio argument. Even though it was often
used in connection with area and volume theorems, and in a context where a process of approxi-
mation is assumed, such a process is not essential to the method as such. That is: although it was
used for arguments that we translate into limit arguments — and for others, too — it was in itself not
a concealed limit argument. Heath is mistaken in assuming that Antiphon’s and Bryson’s “quadra-
tures” contain the nucleus of the famous Eudoxean method, even though they may have antici-

pated infinitesimal procedures to some degree.

4This argument, found in Aristotle, again, would in all likelihood have been shared by the
mathematicians.

SAnal. Post. 1, 9. Aristotle differentiates between Antiphon’s and Bryson’s attempts. It is perhaps
interesting that he does not reject Bryson’s argument in itself as invalid (as he does in Antiphon’s
case), but rejects it as involving a “katabasis eis allo genos,” as being ungeometrical, because of its
failure to differentiate between geometrical and other continuous quantities. For Aristotle, arguments
in geometry have to address geometrical entities qua geometrical, and not qua something else that
they may also be.
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also finds the suggestion that the squaring of the circle may be impossible in principle,
because straight line and circle are generically different — even though it’s clear, on
the basis of continuity assumptions, that a straight line with a square equal to the
circle must exist.!

Alongside the squaring, rectification became an issue soon. Is the ratio of
circumference to diameter expressible as a ratio of numbers? With Archimedes’s
work (Circ. mens. 1), it became apparent that and how the rectification and the
quadrature entail each other.? Archimedes’ investigation of the plane spiral in the
heuristic version could, taken together with a theorem like SL 18 and Circ. mens. 1,
be used for the squaring of the circle. Archimedes never presented such an argument,
and in effect replaced the genesis of the spiral with one that avoids the problems the
quadratrix and the original (inscribed) spiral have. With the spiral in this description,
one can indeed no longer square the circle. Archimedes also provided, by means of
logistics, two different approximations for mn* (Circ. mens. II, III). Apollonius,
Sporus, and Ptolemy gave further approximations for m, closer in numerical value
than Archimedes’.® Dinostratus/Nicomedes used the quadratrix for circle rectification,
and Nicomedes applied Circ. mens. I to obtain a “quadrature” (Props. 26 and 27).
As noted above, this is not a constructive quadrature in the sense required, either,
because the setting out of the quadratrix involves the ratio of circumference and
diameter (essentially ), and that was the equivalent to what was sought in rectification.
The squaring of the circle with the quadratrix, insofar as it is geometrical, is purely
symptomatic.

5.4.1.5 Circle Quadrature Through the Ages

The following selective list of examples is intended to give an impression of the
different results, perspectives, and methods developed within the horizon of

'Descartes would later repeat that same general statement in Descartes (1637, pp. 340/341) (90/91
Smith/Latham). He took it for granted that the circle cannot be squared, because circle and straight
line belong to different, incomparable kinds.

2Circ. mens. I implies that the problem of squaring the circle can be reduced to the problem of
rectifying the circumference; cf. Knorr (1986, p. 159).

3SL 18 is a symptoma-theorem on the spiral with circumscribed circle. It shows that in such a situ-
ation, the circumference is equal to the subtangent of the spiral at the endpoint of the first rotation.
It does not yield a constructive rectification of the circle. It also does not provide a constructive
solution for finding the tangent to a spiral of first rotation (cf. Vieta, Varia responsa, including an
approximate construction for such a tangent).

‘The name nm was not used by the ancients. It was coined in the early seventeenth century by
Ludolph van Ceulen (Fundamenta geometrica ed. W. Snel, Wiirzburg 1615). According to
Tropfke (1923, p. 232), its first occurrence is even later: 1706, in Jones’ Synopsis palmariorum
matheseos. The label refers to a number, in modern terms. The ancients had a very different view
on numbers and ratios. I am using © merely as an abbreviation here.

SCf. Heath (1921, II, pp. 232-235) and Knorr (1986, pp. 155-159) for Archimedes’ and other
approximations; see also Heath (1921, I, pp. 180-189).
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Western European culture over the centuries in connection with the squaring of the
circle. It is based on the above-mentioned Tropfke (1923, pp. 198-238). The Indian
mathematician Aryabhata, fifth century AD gave an astonishingly close approxi-
mate value for m.! His methods are interesting because of their combination of
geometry, algebra, and what would in Greek terminology be called logistics. There
must have been substantial contributions in Islamic culture, but they are not acces-
sible to me. They did have an influence on Fibonacci’s contribution.? During the
Middle Ages, Archimedes’ approximations were widely used, and they came to be
regarded as exact by many (especially the simpler one: 22/7). Exact geometry, as a
demonstrative science, did not receive much attention during the Middle Ages in
Europe. An interesting use of mathematical motifs for philosophical purposes (in
connection with infinity) including a treatment of the circle and © can be found in
Cusanus.? In the Renaissance, Leonardo squared the circle by rolling up a cylinder
with a base equal to the circle that is to be squared, and appealing to Arch., Circ.
mens. 1.* Stifel devised a mechanism using levers and scales to “weigh” 1.° In the
modern era, when algebraic and improved calculation methods became available,
we find approximations of m by Vieta and Huygens, still operating within the
framework of classical geometry and logistics. They developed Archimedes’ basic
approach via inscribed polygons, and refined the limits for the approximations.
Gregory, Newton, and Leibniz employed infinite series,” and Wallis used his arith-
metic of infinites to characterize m. Leibniz called his result an “arithmetical
quadrature of the circle.”® In the eighteenth century (1766), Lambert used continu-
ous fractions, and showed that © was an irrational number. Euler studied both =«
and e in connection with trigonometric functions.’ Toward the end of the nineteenth

I'Cf. Elfering (1975). The work has been translated into English.

2Cf. Tropfke (1923, pp. 211/212) for references; Fibonacci’s value for m is 864/275, ca. 3.141818.
3Cf. Tropfke (1923, pp. 213/214). On Cusanus’ studies in connection with the quadrature of the
circle see also Hofmann (1990, I, pp. 47-77, 11, pp. 179-192, 351-395).

*Cf. Tropfke (1923, p. 214), Cantor I, pp. 301-302.

5Cf. Tropfke (1923, p. 215); on Stifel see also Hofmann (1990, II, pp. 78-109).

¢Cf. Tropfke (1923, pp. 215-216, 218-219); e.g., Vieta, in Variorum de rebus mathematicis liber
VIIL, p. 392 in the 1646 Schooten edition gives a value for 7 that is exact in the first nine digits,
and uses the “Archimedean” approach via inscribed polygons. For Huygens’s contribution, see the
appendix to his Theorenata de quadratura hyperboles, ellipseos et circuli ex Data portionum
gravitatis centro, Leiden 1651, and his De circuli magnitudine inventa, Leiden (1654), both in Ch.
Huygens, Varia Opera, Leiden (1724, pp. 328-340, 351-387); see also Rudio (1892). The latter
work also contains a full German translation of Archimedes’s, Lambert’s, and Legendre’s
treatment.

"Gregory’s double series is equivalent to an approximation via arctanx, Leibniz’s series for n/4
converges very slowly, so that it only has theoretical value. Newton used the series for arcsinx,
Brouncker developed Wallis’ solution into an infinite fraction.

8Cf. Tropfke (1923, pp. 223-230).

°Cf. Tropfke (1923, p. 229).
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century, Lindemann proved the transcendence of n.! As said above, Lindemann’s
result means that a constructive quadrature is impossible with circle and straight
line, with conics, with any curve expressible as a polynom with rational coeffi-
cients. One needs a curve like the quadratrix. In the end, Pappus’ Prop. 26 and
Prop. 27 are as good as it gets.

5.4.2 Genesis and Symptoma of the Quadratrix

Genesis: Start with a quadrant BAD in a square ABCD (clockwise) over the radius;
use two motions: of BC along BA, parallel to AD, and of AB along the arc BD,
synchronized so that they both reach the position of AD at the same time; during
the process they create an intersection line BH, the quadratrix.?

Symptoma: As can be seen from the genesis, for any line AZE drawn to the curve
and extended to the circumference, we get:
arc BD:arc ED = BA:ZT.

5.4.3 Criticism of the Genesis by Sporus

Sporus of Nicaea, ca. 200 AD was not a mathematician. Rather, he seems to have
been a philosopher interested in epistemology and theory of science. Of his work
Aristotelian Wax Tablets only fragments remain. They contain reflections on math-
ematical arguments from the standpoint of an Aristotelian theory of science.’ His
criticism of the genesis of the quadratrix is as follows.*

'Cf. (Tropfke 1923, pp. 231-232). Lindemann’s proof for the transcendence of 7 (Lindemann
1882) is modeled on Hermite’s proof for the transcendence of e. For ensuing improvements and
simplifications of this proof cf. Tropfke loc. cit.

*Note the close connection to the genesis of the spiral as given in Prop. 19.

3On Sporus cf. Tannery (1912, 1, pp. 178-184); the main source for our information on Sporus
outside this passage in Pappus and the one mentioned below, in Eutocius, are the scholia on
Aratus’ Phaenomena. A further example for a criticism by Sporus, also in connection with the
squaring of the circle, is found in Eutoc. in Arch. Circ. mens. 111, 258-259 Heiberg. Sporus insists
that Archimedes’ approximate values are not exact, discusses the decisive difference between an
exact and an approximate value, and produces a closer approximation than Archimedes’ to show
that it was not the exact value. Apparently around 200 AD already the nature of an approximation
was not properly understood by some, who believed that a value — a ratio in numbers — must be
true, i.e., correct.

4 As mentioned in the survey table of Props. 26-29, the style of this passage is decidedly different
from the rest of Coll. IV. We are clearly dealing with an argument from a philosophical work, in
polemical style, one in which objections were raised against another position on epistemological
grounds. Note, e.g., the rhetorical questions and the device of a ficticious dialogue; cf.
translation.
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(i) The definition via synchronized motions contains a petitio principii: to
coordinate the rotation and the linear motion, you need the ratio of arc BD to
AB — essentially « — the very thing the quadratrix was supposed to provide.'

(i) Even objection (i) aside, the genetic definition does not capture the endpoint of
the curve, because the intersection stops right when the moving lines coincide
with AD. This endpoint, however, was needed for the rectification of the quadrant
(Prop. 26, see below). Infinitely many other points on the curve are in fact
constructible, e.g., all points that one would get by successive division of angle
and radius in half. But the endpoint is not among them.

(iii) The endpoint of the curve cannot be interpolated by extending the line in the
manner of producing a straight line, because the curve does not have a fixed
direction (as the straight line does). In fact, the quadratrix does not even have
a constant curvature.

Sporus concludes: as long as the ratio of circle and radius is unknown, or not given,
the curve cannot be accepted. Pappus will in effect pick up right here in Props. 28
and 29, and show that it is given in the specific sense of geometrical analysis, if a
helix, or the spiral, is granted. Whereas Hultsch (and others around 1900) dismissed
Sporus’ objections, most modern interpreters accept them as valid.? The curve is not
well-defined. Note that the reason for Sporus’ objections is not the use of motions
as such, but the conceptual inconsistencies involved in this particular motion
description. These inconsistencies will have to be circumvented, or abolished, if
Sporus’ objections to the mathematical use of the curve are to be met. And Pappus
explicitly agrees with Sporus’ reasons for rejecting the curve under the motion
description (under the description as “mechanical”’). He uses the word ‘“‘eulogos”
(with good reason). On the other hand, he insists that the argument about the quadratrix
— Props. 26 and 27, the symptoma-quadrature — is “much more acceptable” mathe-
matically. In Props. 28 and 29, Pappus will provide a geometrical analysis for the
generation of the curve, via analysis of loci on surfaces. It is intended to meet, or rather
perhaps to circumvent, the objections raised by Sporus, so as to “geometricize” the
curve as a basis for valid symptoma-mathematics (see below).

5.4.4 Prop. 26: Rectification Property of the Quadratrix
5.4.4.1 Proof Protocol Prop. 26
This proof protocol is given in detail, because its content is a “classic,” and also

because it is the only example of a full-fledged argument via double reductio in
Coll. IV (the other example in Prop. 13 is much less complex).

! As in the case of the spiral in the version given in Prop. 19, you need 7 to determine the speeds
involved.

2Cf. Heath (1921, 1, 229/230), Knorr (1978a, 1986, p. 230), Jones (1986a, pp. 596-598).
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1. Protasis/Ekthesis
Start with a square ABCD,! circular arc BD (K1 in what follows), and quadratrix
BT. arc BD:BC = BC:CT. (CT is the third proportional to arc BD and BC).

2. Apodeixis (by double reductio: “exhaustion”?)
If not, then either arc BD:BC = BC:CK, CK > CT
or arc BD:BC = BC:CK, CK < CT
2.1 Assume arc BD:BC = BC:CK, CK > CT
2.1.1. Auxiliary construction
circle THKZ, center C (K2),
perpendicular HL., draw CHE
2.1.2 arc BD:BC = BC:CK = CD:CK [assumption]
CD:CK = arc BD:arc ZK [see argument *]
* argument for this (not in Coll. IV): similar arcs in the ratio of the radii
(or diameters)?
K1:K2 = CB%CK? = CD*CK? [XII, 2]
K1:K2 = (Ul x CD):(U2 x CK) [Circ. mens. 1]
CD?CK? = (Ul x CD):(U2 x CK)

=> CD*(Ul x CD) = CK*(U2 x CK) [V, 16]
=> CD:Ul = CK:U2 [VI, 1]
=>CD:CK = U1:U2 [V, 16]
=> CD:CK = arc BD:arc ZK [V, 15]*
Thus, BC = arc ZK [V, 9]
2.1.3 arc BD:arc ED = BC:HL [symptomal

= arc ZK:arc HK
[equal parts of quadrants]
=> HL = arc HK [V, 9]
This is impossible.
2.2 Assume, then, that arc BD:BC = BC:CK, CK < CT
2.2.1 Auxiliary construction:
circle ZMK, center C;
perpendicular KH, draw CHE
2.2.2 Asin 2.1.1, we see: arc BD:BC = CD:CK,

'The labeling of corner points for the square in the starting configuration is now counterclockwise,
as opposed to the original genesis. Perhaps this is an indication that the author of Prop. 26 is
different from the source for the genesis and symptoma.

2On Prop. 26 see also Heath (1921, I, pp. 226-229) and Knorr (1986, pp. 226-230). Knorr’s
account contains some interesting speculative remarks on the study of tangents, subtangents etc.

3The theorem that circumferences have to one another the ratio of the respective diameters is used
repeatedly in Coll. 1V, cf. Props. 26, 30, 36, 39, and 40. A proof is given by Pappus in Coll. V, 11
and VIII, 22.
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and CD:CK = arc BD:arc ZK,
= BC=arc ZK
[use an argument analogous to argument “].
2.2.3 As in 2.1.3, we see that
arc BD:arc ED = BC:HL [symptoma)
arc BD:arc ED = arc ZK:arc MK
[equal parts of quadrants]
= HL = arc MK [V, 9].
This is impossible.
3. Symperasma: Therefore, arc BD:BC = BC:CT must hold.

Corollary

By constructing a line a with CT:BC = BC:a, and finding 4a, one has rectified the
circle. For a = arc BD.

This means that the quadratrix has a rectification property, which can be derived
from its symptoma. Further results, directly from the symproma, or from the recti-
fication property, can be found in Props. 35—41. They are much less spectacular
than this one here.

5.4.5 Prop. 27: Squaring the Circle

After rectifying the circle, one can apply Archimedes, Circ. mens. 1, and con-
struct a triangle that has the same area as the given circle: base 4a, with a as in
Prop. 26, appendix, height BC. This triangle can then be transformed into a
square via II, 14.

5.4.6 Prop. 28: Geometrical Analysis, Linking the Quadratrix
to Loci on Surfaces Through a Cylindrical Helix

5.4.6.1 Outline of the Analysis in Prop. 28
Start with a quadrant ABC, radius BD, E on BD, perpendicular EZ, assume that

EZ:arc DC is given.'
Then E lies on a uniquely determined curve.

'Note that this is a response to Sporus’s demand after criticizing the definition of the quadratrix
via motions. He had demanded that a crucial ratio be given. In Prop. 28, it is taken as given in the
sense of geometrical analysis.
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Analysis

1. Extension of the configuration
Cylinder-segment over ABC; in it, take an Apollonian helix as given in position L,
T, I as in the figure create a garland-shaped surface, determined by the helix

2. Resolutio
2.1 I lies on a uniquely determined plane
(a plane given in position'), through BC and ZI
(or perhaps EZ and ZI); here the given ratio is used;
2.2 It also lies on the plectoid surface created by the helix
[use the symptoma of the helix?].
Since the helix is also given in position, I lies on an intersection curve of sur-
faces, which is also given in position.
2.3 Project this line onto the plane of the original quadrant.
By construction, E will lie on this uniquely determined line.

3. Specification
When the given ratio EZ:arc DC = AB:arc AC, this line will be the quadratrix.

5.4.6.2 Intersection Plane in Step 2.1: Through EZ or BC?

Pappus’ description is not sufficiently precise. In addition, there are several illegible
spots in the main manuscripts for this part of the text, and they were already there
when the minor manuscripts were copied. With Knorr, I favor the reading according
to which the intersection plane is the one through BC and ZI, for it is obviously
given, i.e., constructible, at this stage of the analysis (assuming that one has the
helix). BC is given in the starting configuration, and the inclination of the sought
plane toward the underlying plane is determined by the given ratio EZ:EI. The
drawback is that with this intersection plane, the endpoint Z for the intersection
curve in space is not uniquely determined. Neither will the endpoint of the resulting
special case quadratrix be. If one opts for the plane through EZ and ZI, as Hultsch,
and apparently Treweek did, one has to assume that EI and EZ are given in position.
It is not clear, at this stage of the analysis, that they are.

Ver Eecke assumed that the segments ZE and EI are given, because they go
through given points. One might object that if Z and E were given, there would be no
need for further argumentation at this point. It is unclear how the points can be seen
to be given at this stage. Ver Eecke also assumed that the intersection plane on which
I lies goes through LT. One might find this objectionable, too.

Even if we cannot decide with certainty which plane is used in the analysis in
Prop. 28, the main thrust of the argument is clear: it provides a conceptual connection

"My reading of Prop. 28 differs considerably from the one given in Ver Eecke (1933b, p. 199, #2);
it is compatible, however, with the discussion in Knorr (1986); compare also the following notes
on the crucial intermediate step 2.1.

20n the helix and its symptoma cf. Procl in Eucl. 105, 271 Friedlein, Knorr (1986, p. 295/296).
The ratio of height and rotation angle is a constant, i.e. given with the curve.



260 II, 5 Motion Curves and Symptoma-Mathematics

between the quadratrix of Dinostratus and a locus created on a curved surface in
space, in dependence from the Apollonian helix, and that is its purpose.!

5.4.7 Prop. 29: Geometrical Analysis, Linking the Quadratrix to Loci
on Surfaces with Spiral

Start with a circular sector (not necessarily a quadrant) ABC, given in position, a
radius BD, point E on it, and a perpendicular EZ, where EZ:arc DC is given, and
EZ:arc DC = AB:arcAC (spiral-creating ratio). Assume that a spiral BHC is
inscribed in the sector ABC.

Then E lies on a uniquely determined line.

5.4.7.1 Outline of the Analysis in Prop. 29

1. Extension of configuration

Cylindroid over spiral, height BH;

BH =EZ [construction],
EZ:arc DC = AB:arc AC = BH:arc DC [symptomal

right cone, vertex B, generating line at an angle of n/4 with respect to the underlying
plane

2. Resolutio
2.1 Analytical determination of a locus for K
K on HK, perpendicular to the plane, KH = BH
HK is given in position
K lies on the cylindroid surface,
and on the surface of the cone
= K on the intersection line created by those two surfaces:
a conic spiral that is given in position.?

'T agree with Ver Eecke’s summarizing statement: “En exposant ce premier mode de construction
géométrique de la quadratrice au moyen des Lieux a la Surface, la proposition démontre donc, sans
I’énoncer explicitement, une propriété remarkable de la surface de la vis a filet carré a axe vertical,
a savoir que, si I’on coupe une surface hélicoide rampante (y = x tang (27 z/h) ) par un plan passant
par une de ses génératrices rectilignes (z =my) [I opted for BC, Ver Eecke for LT], et si I’on projette
orthogonalement, sur un plan perpendiculaire a I’axe de cette surface la courbe détérmineée comme
section, on obtient une quadratrice de Dinostrate” (Ver Eecke 1933a, p. 199, #4).

*Note that the conic spiral used in Prop. 29 is not automatically accepted, as the helix in Prop. 28,
and the spiral in Prop. 29 were. It must be reduced to the spiral in order to be revealed as given in
position. This could be an indication that the Archimedean spiral and the Apollonian helix were
viewed as privileged basic curves for the analytical determination of other motion curves by
Pappus (cf. Molland 1976). If so: was this the case just for Pappus, or: more generally? Were these
curves perhaps seen as basic for the symproma-definition of higher curves, as Prop. 29, but also
Prop. 28 seem to suggest? In the meta-theoretical passage, Pappus significantly speaks of quadra-
trices and spirals as exemplary curves for the third kind. Recall also Apollonius’ claim on his helix
as a basic curve, on a par with circle and straight line, reported in Proclus on authority of Geminus
(Procl. in Eucl. 251 Friedlein). The issue cannot be pursued here.
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2.2. Analytical determination of a locus for I and E
2.2.1 Extension of configuration, second part:
analogous to the “garland” in Prop. 28, create a plectoid surface, derivable
from the original spiral; use BL, and the conic spiral; both are given in
position: LI moves along the spiral and BL, parallel to the underlying
plane, creating a twisted surface in space that is given in position.
2.2.2 1 lies on that surface.
2.2.3 T also lies on a uniquely determined plane [through BC and ZI;
use the symptoma of the spiral].
= I lies on the intersection curve created by those surfaces.
2.2.4 Project this curve onto the underlying plane.
By construction, E lies on this projection, on a uniquely determined
line.

3. Specification:
When the sector ABC posited in this analysis is a quadrant, this line is the
quadratrix.

5.4.7.2 Lines, Planes, and Surfaces in Prop. 29

Whereas Prop. 28 used a cylindrical helix from the start, Prop. 29 starts with a plane
curve, the spiral, and constructs a curve in space from it as a first step: a conical
spiral. Most commentator agree that the conical spiral is created by erecting a cylin-
droid over the given spiral and intersecting it with a right cone with axis BL,
inclined at 45° toward the underlying plane. The point K lies on it. This much
seems uncontroversial, and for this reason I have used a diagram for Prop. 29 that
shows the cylindroid surface and the point K.

Different interpretations have been offered for the second part of the construction
in Prop. 29. The reading offered here is minimalist, and modeled on Prop. 28. One
draws the parallel LKI to BE, leaving the exact location of I open, i.e., reserving the
possibility to extend KI if needed. The generator BZ with flexible endpoint,
adjusted between BL and the conical spiral, creates a “plectoid,” garland-shaped
surface. It is intersected with the plane through BC and ZI, analogous to Prop. 28,
and projected orthogonally onto the plane. This reading is only tentative. Its advan-
tage over some other ones is that they all assume that LKI is extended to the cir-
cumference, and that the same cylindrical helix, and the same garland as in Prop.
28 is created. The text of Prop. 29 does, however, not mention the helix and seems
to propose the analysis in terms of the plane spiral as an alternative to the one using
a helix. It is not to be excluded that the original author of the argument in Prop. 29
did intend to show, with his analysis, how the plane spiral, the conical spiral, the
cylindrical helix, and the quadratrix are all connected. The text as reported by
Pappus does not explicitly say as much, though. Therefore, I opted for the minimal-
ist reading (and accordingly, a very reduced diagram). If one accepts the presence
of the helix, perhaps a reading along the lines of Commandino is the most straight-
forward one. Commandino does assume a cylinder in addition to the spiral-induced,
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cylindroid, extension of LKI to H on the cylinder surface, creation of a helix in
dependence from the conical helix, with a garland-shaped surface for I. His diagram
(Co p. 91) shows all these features. Commandino then assumes the creation of an
intersection curve in space, and orthogonal projection onto the underlying plane as
in Prop. 28. There are some problems with his reading in detail, for which see the
translation. Hultsch ad locum refers to Chasles and Bretschneider, and does not
offer an interpretation. His diagram is also minimal. For Ver Eecke’s reading see
Ver Eecke (1933a, p. 200f). Knorr (1989, p. 166f) offers an explorative interpretation
of the material in Prop. 29, drawing a connection to Archimedes’s study of tangent
problems on the plane spiral. It is very interesting in itself; I am somewhat diffident,
however, that it works well as an explanation of Prop. 29 as given in Pappus’ text.
Therefore, I have restricted my presentation of the content of Prop. 29 to the informa-
tion as given in the text for the most part. For further clarifications and alternatives,
the reader is referred to the literature mentioned above.

5.4.8 Additional Comments on Props. 28 and 29
5.4.8.1 Loci on Surfaces

As noted before,! Props. 28 and 29 are our only explicit sources on analysis of loci
on surfaces. This means that observations drawn from them provide only limited
knowledge of the discipline for which they are an example. There is a danger of
over-interpretation, because we lack a context to check our reading against. The
following observations on Props. 28 and 29 may nevertheless capture some repre-
sentative features for this kind of mathematical approach.

1. The dominant method of investigation, and the method for determining the basic
objects of study, is geometrical analysis in the technical sense.

2. Certain spiral-type curves have a privileged role, others are determined relative
to them.

3. We operate with surfaces in space, created by rotation, by a motion that com-
bines a linear progression and a rotational motion in synchrony (twisted sur-
faces, controlled “motions”), or by establishing cylindroid surfaces over a plane
figure, and intersecting them with each other, and with planes.

4. The created curves in space are in the end projected onto the plane.

5. Because we are using analysis, the result is not a constructive solution, or a con-
structive genesis of the curve. This is also not intended. The content really is a
mathematical analysis of the genesis, establishing unique determinateness for
the “target curve” inside a configuration.

!'For bibliographical references, see the literature given at the beginning of the chapter on Props.
26-29.
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A Potential Context for the Analysis of Surface Loci: Analysis of loci
and Conic Sections

Consider the parallel between items 3 and 4 above and Archytas’ solution for the
cube duplication with Eudoxus’ procedure for his curve devised for cube duplica-
tion." According to Zeuthen (1886, pp. 460—461), this procedure was taken over by
Menaechmus as a model for the conic sections, viewed as analytically determined
loci (cf. item 1.), as plane symptoma-curves.? Even after the conics were discovered
to be sections of cones, and their definition was in terms of this genesis, the actual
handling continued to be focused on the symproma-characterization. Consideration
of those aspects of the Apollonian treatment of conics that might be viewed as
analogous to symptoma-mathematics — and there are quite a few examples (see
again also Zeuthen 1886 passim) — might help to reconstruct a context for the
symptoma-mathematics of the third kind, by studying the analogue in symptoma-
mathematics of the second kind. Perhaps even the reduction of the conic sections
as plane curves to the intersection of a plane and a surface in space (i.e., the surface
of a cone) could be seen as somewhat of a model for the reductions we see in Props.
28 and 29. In addition, the analytical Euclidean work on loci on surfaces, on which
Pappus comments in Coll. VII, and which is based on related work by Aristaeus,
might be considered.? Perhaps the outlines of a context for symptoma-mathematics
become visible here. The issue is worth exploring. A decisive difference, even if parallels
can be found and brought to bear, would be the fact that conics can be viewed as
essentially defined, although symptomatically handled; the higher curves cannot.*

Use of Analysis for the “Definition,” or Determination of Curves

Without drawing far-reaching conclusions from our scarce evidence in Props. 28
and 29, one thing can nevertheless be said, and it has been somewhat overlooked in
secondary literature on the propositions. The propositions have a clearly analytical
character, with analysis taken in the full technical sense of the word. And it seems
plausible to assume that this feature would have been typical of the geometry of the
third kind. Specifically, geometrical analysis (resolutio) is used here, not to (only)

'Compare the remarks on cube duplication and conics in the commentary on Props. 23-25. For a
hypothetical reconstruction of Eudoxus’ curve cf. Tannery (1912, I, pp. 53-61). It seems plausible
to assume that Eudoxus projected the space curves, created in Archytas’ solution, onto the plane,
creating a curve with which he could solve the cube duplication. It would have to be defined by
deriving the characterizing properties from the properties inherent in the space curves. For the
symptoma of the helix in Proclus cf. pp. 105 and 271 Friedlein; cf. also Knorr (1986, pp.
295-296).

2Cf. Knorr (1986, pp. 50-66, 112).

3Coll. VII, pp. 1004-1014 Hu (Jones 1986a, pp. 363-371, see also pp. 503-507, 591-599).

4Cf. Zeuthen (1886, pp. 459 ff.), Knorr (1986, pp. 61-66, 112) on the combination of essential,
genetic definition, and operation with the symptoma in the theory of conic sections.
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solve problems but to “mathematize” motion curves as symptoma-curves, by reducing
them to properties of other curves that are taken as given.

Given in 28:

Per hypothesis: sector ABC, quadrant (as in quadratrix), radius BD with perpen-
dicular; EZ, and ratio EZ:arc DC (this ratio is not necessarily the one used in the
quadratrix). An Apollonian helix with a given progression ratio for angle:height (con-
nected to EZ:arc DC).

Entailed: each such configuration determines, i.e., turns into a given, a certain
unique projection curve, in direct dependence from the ratio that is embodied in the
helix: a quadratrix-like curve. We get a family of curves. The quadratrix is the one
where the given ratio is the same as AB:arc BC.

Given in 29:

Per hypothesis: sector ABC (not necessarily a quadrant, unlike quadratrix), radius

BD, perpendicular EZ with ratio EZ:arc DC = BA:arc AC (ratio as in quadratrix)

an inscribed spiral (embodies the ratio BA:arc AC)

Entailed:

(i) A conical spiral, as an intersection curve in space.

(i) An intersection curve between two curved surfaces in space.

(iii) A certain unique projection curve, in direct dependence from the ratio embodied
in the spiral: a quadratrix-like curve. We get, again, a (different) family of
curves; the quadratrix is the one where the given sector is a quadrant.

The analysis in Props. 28 and 29 is restricted to the resolutio-phase: the phase
where that which we need or want to establish is shown to be given, if certain other
features (theorems, prior results, etc.) are posited. The arguments show that the
curves in question are uniquely determined in a hypothetical sense: We cannot
derive them from essential properties rooted in the archai and the principle objects
of our discipline, but the properties we focus on in mathematical argumentation can
be put in an exact, conceptualizable relation to properties of other entities in a spe-
cific spatial configuration (ultimately the symproma of a privileged curve). The
latter we just assume and posit — much like we posit the straight line and circle. This
much one can assert. We will have to leave it undecided, because that is what
Pappus does as well, whether this determination “saves” the curves completely, so
that symptoma-curves were taken to be just as solidly defined as the archai of the
plane and solid kind, even though the symproma-approach operationalizes, lets the
curve itself disappear and replaces it by a kind of relation/equation. We will not try
to determine, at this point, what it means that Pappus asserts and supports the fully
mathematical character of arguments about the curves, but is hesitant about the
status of the curves themselves (cf. also meta-theoretical passage, where a similar
ambivalence shows).!

!'See the excursus below for some speculative remarks in this regard.
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What does Pappus achieve with Props. 28 and 29? The reading suggested here
is a sympathetic one. Pappus does not achieve, and does not believe he has achieved,
the quadrature of the circle. He has not “saved” the genesis of the quadratrix in the
sense that the curve can now be constructed geometrically, and he does not claim
to have “solved” the problem. He succeeds in partially circumventing Sporus’
objections, i.e., he interprets the demand that the crucial ratio be given before the
curve can be accepted by showing in what sense, and to what degree, the ratio can
be seen, via geometrical analysis, to be given in the technical sense of the word. He
gets an analytical characterization, not a constructive definition. And he is explicit
about that. Even so, the analytical determination has achieved something. Its effect
is that the quadratrix, although not constructible, can be investigated geometrically,
without conceptual inconsistencies, qua locus curve for a certain symptoma. It is
well-defined, uniquely determined. The geometry on it is true geometry, geometry
of the third kind. Its results are geometrically demonstrable properties of the curve
as symptoma-locus. As long as we only had the genetic definition, which was con-
ceptually inconsistent, such geometry did not have a satisfactory basis.

Even so, the issue of the quadratrix’s foundation is not completely settled. As
noted above, we cannot be sure just how solid the analytical basis is. In the meta-
theoretical passage, where Pappus will, once again, classify this kind of mathematics
as legitimate mathematics, alongside plane and solid mathematics, he also does say
that the curves have a somewhat forced genesis, and he shows a certain hesitancy
with respect to the third kind of mathematics. Also, the analytical approach leaves
a gap: symptoma — analysis cannot guarantee that a more elementary construction
is impossible for a curve thus characterized (e.g., that in certain specific cases, it
might reduce to a locus of the second kind).

Most interpreters so far have not given Pappus a sympathetic hearing. One basic
error, which is rather pervasive, is that they read Pappus’ statement that he will
provide a geometrical analysis (analuesthai) as actually saying that he claims to
“solve” the problem (the quadrature) geometrically (equivalent to luesthai). As has
been pointed out in the notes to the translation, this is a serious misunderstanding,
for Pappus does indeed provide an analysis for the genesis of the curve, and he does
not provide a solution of the problem. Jones (1986a, p. 598), e.g., seems to believe
that Pappus is trying to give a construction of the quadratrix and remarks that, as
constructions, they do not meet Sporus’ objections. Similar attributions of confusion
to Pappus can be found in Knorr (1978a, 1986). Knorr also offers, however, the
consideration that Pappus may, after all, have tried not to meet Sporus’ objections,
but to circumvent them. In this respect, his reading concurs with mine.

5.4.9 Excursus: Speculative Remarks on the Potential of Analysis-Based
Symptoma-Characterization of Higher Curves

The decisive difference between using the circle mathematically by focusing on its
symptoma, and using the helix and other curves solely accessible through their
symptoma is somewhat like this: We think (perhaps) we know what the circle is,
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essentially, and the properties we use in mathematics are seen as properties of that
object, for which we can posit some kind of epistemological or ontological priority.
Of the Apollonian helix we do not have such a direct grasp. It has to be constructed
in thought as the thing which has the decisive property. The helix itself disappears,
as it were, behind its symptoma in a way the circle does not. So what is the
epistemological, or ontological, grounding of such curves, when they are viewed
exclusively as loci for a symptoma?

In view of the complete absence of statements from ancient mathematicians on
this question, and the deplorable lack of evidence on their actual practice in this area,
it is perhaps fruitless to try and establish what the commonplace opinion among them
would have been on that question. The following, speculative remarks should be
taken as an elucidation of the potential impact of this question, its horizon of potential
for future developments in the intellectual history of mathematics. Specifically, I have
the sixteenth and seventeenth century readers in mind, and “anchor points” for the
routes they took to transform mathematical investigations toward algebraization on
the one hand, and infinitesimal calculus on the other. Could the ancient mathemati-
cians, in defiance of the essentialist view on science and explanation — whether
Aristotelian or Platonist — have taken the view that circle, helix, and spiral are really
equivalent, because all mathematics is symptoma-mathematics and does not really
care about the ontological status of the objects the symptomata of which it studies?
That the circle, e.g., is treated as a locus curve just as the helix is? That what is math-
ematically interesting about it, its property, can equally well be seen as stemming
directly from the motion generating it? Apollonius for one argued that the helix
should be placed alongside circle and straight line as a basic, unanalyzed principle in
geometrical argumentation. Does this imply an anti-essentialist thrust, a turn toward
making locus-properties, i.e., relations, the final objects of mathematics? Are the
basic items all loci, as it were, characterized as such via “defining” relations? That
would make Apollonius a forerunner of the paradigm shift toward algebra that
occurred in the seventeenth century. It cannot be ruled out.!

If such was the case, and there was an Apollonian programme to implement a
new paradigm for mathematics, one in which operationalism, and the manipulation
of relations are key ideas, we would have to say that the programme did not carry
the day in antiquity, and the ancient research project of symptoma-mathematics
might have died out precisely for that reason: re-channeling into the mainstream
essentialist approach. What we see in Coll. IV, and what the seventeenth century
readers saw as well, would then be like the remnants of a large-scale re-orientation
project for mathematics which was abandoned, with the remnants still bearing the
traces of the revolutionary ideas behind them, of this push toward operationalizing
geometry into a proto-algebraic discipline. Such an ideological clash, an unsuccessful

'"The fact that Apollonius apparently wrote a work called “katholou pragmateia” (universal trea-
tise, attested in Marinus (Eucl. Op. 6, p. 234 according to Jones (1986a, p. 530/531), and the fact
that the remarks attested in Proclus seem to point towards an attempt at radically reorganizing the
foundations of Euclid’s Elements, do invite speculations in this direction.
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frontal attack against the ruling paradigm, which in turn was backed by non-negotiable
essentialist convictions and preconceptions, and which in the end prevailed, would
explain why Apollonius’ minor analytical works were lost, why his Konika were
stripped of their analysis-parts, which in the original must have been dominant
(Pappus groups the Konika with the analytical works), and recast by Eutocius in
purely synthetic form, and also why no works of the authors who worked on the
analysis of loci on surfaces are preserved. The essentialists in the field of epistemol-
ogy/theory of science would have won the day, and forced the continuation of the
old paradigm.

Such a speculation is tempting. But it is equally possible that the mathematicians,
including Apollonius, went along with the essentialist views on the nature of science
and explanation, or — and that is perhaps the most likely option — that they did not
reflect on such questions at all and just went ahead doing their mathematics of
symptoma-curves. After all, even in the orthodox Aristotelian paradigm, any science
is entitled to positing its principles and does not have to go beyond, justifying them,
so that in the end, any science can do its job while focusing in on the rigorous devel-
opment of arguments about symptomata. On the whole, we cannot get beyond the
observation that geometrical analysis in the technical sense was applied to derive a
hypothetical definition, or characterization, of motion curves through their symp-
toma. This was not just a side thought, since a considerable amount of sophistication
and argumentation is needed to perform this task. It must have been of some impor-
tance, and served a serious purpose. Whether the result was that these curves were
then seen as on a par, epistemologically, with objects like circles, straight lines, or
conics, must be left undecided. Also, the details of this kind of mathematical argu-
mentation are at present opaque to us, and certainly were so for the sixteenth and
seventeenth century readers as well. This may be part of the reason why so much
effort was spent on reconstructing the analytical works, and the analytical strategies
of the ancients. Still, the material presented in Pappus is suggestive toward a new
perspective on what mathematics essentially is, one in which analysis and operation
with relations are central. One could pick up here; in a way that needs to be explored
and spelled out in more detail, Vieta, Descartes, Fermat and others did.

5.5 Prop. 30: Area Theorem on the Spherical Spiral

context: Archimedes on spiral lines, motion curves, quadratures.

source: lost text of Archimedes.

means: I, II1, V, XII, Sph. et Cyl. 1, 33, 1, 35, 1, 42.

method: synthesis; infinite inscription process, quasi-infinitesimals, limit argument.
format: genesis-description, symptoma-theorem and corollary.

reception/significance: no reception, the only related extant treatise is Sph. et Cyl.; the
addition to Prop. 30 is the first example for a quadrature of a curved surface in space.
embedding in Coll. IV: motif “Archimedes” Props. 13-18, 19-22, 35-38, 42-44;
Archimedes, with his “mechanical” approach “frames” the treatment of motion curves;
motif “spiral lines”: Props. 19, 20, 26, 29, 35-38; motif “area theorem”: Prop. 21; the
content of Prop. 30 is not picked up again in Coll. IV.
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purpose: illustrate the “mechanical” path for the treatment of motion curves: symptoma-
mathematics as meta-mechanics.

literature: Heath (1921, II, 382-385), Knorr (1978a, 59-62, 1986, 162—-163), Ver Eecke
(1933b, 206, #2).

Prop. 30 is the first known example for the quadrature of a curved surface in space.
Methodologically, it picks up the first, “Archimedean” path for dealing with motion
curves. Although no author is named for Prop. 30, the theorem is usually ascribed
to Archimedes. The parallels to the argumentative style and the structure of Prop.
21, especially the use of indivisibles, and the infinite inscription process, as well as
the parallel argument using two figures with parallel division processes, are very
compelling indeed. The spherical spiral is created by motions in the ratio 1:4.
Unlike the plane spiral inscribed in a circle, the spherical spiral described here is
conceptually well-defined in its genesis via motions.! The symptoma is directly
read off from the coordinated idealized motions.? The theorem on the spiral uses
aspects of Archimedes’ “mechanical method,” namely indivisibles. Mathematics
appears as meta-mechanics, where mechanics itself is already highly abstract. We
do not have a context for Prop. 30. It may have been part of a larger work.> No
applications outside Coll. IV are attested. The only surviving Archimedean com-
plete monograph on the symptomata of a motion curve is SL, and its argumentative
method and style differ significantly from the quasi-mechanical approach attested
in Props. 21 and 30. As in the case of the analytical branch of symproma-mathematics,
the lack of a context makes it impossible to draw far-reaching conclusions on the
status of the mathematics of the third kind “Archimedean style,” which, I think, is
represented in Prop. 30 (see Knorr (1986) for an interesting, if perhaps sometimes
speculative, evaluation of the possible development of motion curves in the genera-
tion after Archimedes). Certainly plausible is Knorr’s assumption that the “mechan-
ical” approach was picked up and put to use for analytical (symptoma-) mathematics,
and this assumption also agrees with Pappus’ statements on the geometry of the
third kind in the meta-theoretical passage, as well as with his developmental story
in Props. 19-30. Knorr also points out that the approach via infinitesimals and
indivisibles was not pursued further. Pappus voices no objection to the result in
Prop. 30, and obviously treats it as valid.

"Polar coordinate description for the spherical spiral: p = 1/4®; compare the analogous equations
for the plane spiral in Prop. 19: p = 1/(2n)@, and for the spiral as used in SL: p = a ¢, where a is
arbitrary, but fixed. Both Prop. 30 and SL avoid having to take recourse to 7.

2No instruments are involved, the verb used for the genesis via motions is noein. We deal with
abstract motions. The verb kinein, used in 19, is absent; no application context for Prop. 30 can
be envisaged. Its “mechanical” character is purely theoretical.

A comparison of the argumentative means in Props. 30 and 21 shows: Prop. 30 adds Sph. et Cyl.
to V, XII, which were already used in Prop. 21. Knorr (1978a, pp. 59-62) argues that the material
in Prop. 30 belonged to the heuristic version of Sph. et Cyl. The connections are clearly there.
I doubt, however, that they are sufficient for postulating an immediate and precise relation such as
the one postulated by Knorr.
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Genesis of the spherical spiral: In a hemisphere, rotate the arc TNK of a quarter-circle
through the pole along the base circle (arc KLM). At the same time, let a point N travel
from the pole toward the base, and assume that it completes the quarter-arc at the same
time in which the rotating quarter- arc completes the full circle. The traveling point
describes a spherical spiral.

Symptoma: If one draws an arbitrary quarter-arc TOL, with O on the spiral, arc
TL:arc TO = circumference: arc KL.

5.5.1 Proof Protocol Prop. 30

1. Protasis/ekthesis
Assume a hemisphere with pole T, surface A, and spherical spiral TOIK (area
above: ASp), a quadrant ABCD of a maximum circle (area Q), and a segment ABC
(area ASg).
Then A:ASp = Q:ASg.
2. Apodeixis
2.1 Extension of the configuration and transformation of the protasis
Construct sector AEZC (area S); show that S = Q!
The protasis has now become A:ASp = S:ASg
2.2 Auxiliary construction
(set-up for the “exhaustion process”)
On the hemisphere, cut off a sector LTK (area: AL),
describe a circle on the surface through O, center T,
cutting off the surface OTN (area A(O)),
with a sector cut off in it by KT, KL (area A’(O));
cut off from arc ZA the arc ZE,
as the same part as KL is of a maximum circle,
cutting off from S the sector EZC (area: A(E));
in it, cut off sector BHC (area: A(B))
2.3 Lemma for the “exhaustion process™
2.3.1 arc ZE:arc ZA = arc BC:arc AC
2.3.2 arc TO = arc BC
2.3.3 AL:A’0 = A:AO
A = area of circle with radius TL
[Sph. et Cyl. 1, 337

'S is 1/8 of the circle with radius CA, Q is 1/4 of the circle with radius AD, CA? =2 AD>.

>Compare Prop. 21: inscribe a sector into the spiral; then compare sector and spiral sector on the
one hand, and rotation cylinder and cone-related rotation cylinder on the other.

3The reference to Sph. et Cyl. is, of course, anachronistic. The material in Prop. 30 probably
predates the treatise. Archimedes must have been aware and convinced of these theorems inde-
pendently of his theoretical work. It seems plausible to assume that he found the results in the
context of his pre-formal research activity, using his heuristic method.
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A(O) = area of circle with radius TO
[Sph. et Cyl. 1, 42]

A:A(O) = TLATO? [XII, 2]
— AL:A’(0) = TLATO?
2.3.4.TO =BC (111, 29]

TL = AC = EC by construction

= AL:A’(0) = EC:BC?

2.3.5. EC%:BC?* = A(E):A(B) [XIL, 2; V, 15]

= AL:A’(O) = A(E):A(B)
2.4 “exhaustion from above™!:
Iterate the process described in 2.3, and sum up;
A: sum of all circumscribed (spherical) spiral sectors =
S: sum of all circumscribed partition-induced plane sectors
2.5 “exhaustion from below”
The analogous proposition will hold for inscription instead of circumscription.
2.6 limit process
Imagine the partitions more and more fine-grained.
The inscribed and circumscribed spherical sectors approximate the spiral surface
from both sides, and the inscribed and circumscribed plane sectors approximate
the segment. The same propositions will always hold. By an implicit continuity
argument (a transition to infinity, or an appeal to indivisibles?), we infer: they
still hold in the limit case, and thus: A:ASp = S:ASg = Q:ASg

Addition: Quadrature of a Spiral-Induced Surfaces on the Hemisphere

Since A = 8Q by [Sph. et Cyl. 1, 33], we can derive

(a) For the area above the spiral: ASp = 8 ASg

(b) For the area below the spiral

A — ASp =8Q — 8 ASg = 8(Q — ASg) = 8 triangles ABC,
and triangle ABC = 1/2(1/2d)* = 1/84>

'Compare Prop. 21. There the exhaustion from “within,” i.e., “below” was discussed at length, and
the other case glossed.

2 An analogous limit argument was used in Prop. 21.
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6 Meta-theoretical Passage

This passage is a locus classicus for methodology in ancient mathematics. It is perhaps
the best-known passage in Coll. IV. A doublet can be found in Coll. 111, and a shorter
version in Coll. VII. There are to be three kinds of mathematics: plane, solid, linear,
corresponding to three kinds of basic curves. In addition, a homogeneity requirement
holds: only arguments that use means from the mathematical kind to which the problem
belongs are fully valid mathematically. The passage is referred to in Descartes’
Géométrie (Descartes 1637, p. 315, pp. 40/41 Smith/Latham). Newton also quotes it
with approval, and employs it against the Cartesian program in geometry. Up until rela-
tively recently, it was taken to be the communis opinio for mathematics throughout
antiquity, and quoted or referred to in secondary literature in this way. In fact, it is, at
least in this generality, only to be found in Pappus. For him, it is obviously important.
He is committed to this view in the following sense: he uses it to structure his material
to give a representative survey of ancient mathematics, to give a coherent methodologi-
cally oriented picture of the geometrical tradition. It is not certain, and in fact not all
that relevant for the understanding of Coll. IV itself, whether this meta-theoretical posi-
tion was shared, in this full generality, by the mathematicians. Pappus may very well be
generalizing a feature to be found in Apollonius’ analytical works on locus problems:
separate plane problems from solid ones.! Still, he is well-informed, competent, and
manages to tell a reasonably coherent story. It should be appreciated as a whole. An
extensive discussion will not be given here (for the full text, see the translation in Part
I). In the present edition, I have taken this passage quite literally, and propose a reading
of the whole of Coll. IV in light of it. In what follows, I will comment on the two main
items in the passage: the mathematical kinds, and the homogeneity criterion, and briefly
indicate how the different parts of Coll. IV relate to remarks in the passage.

6.1 The Three Kinds of Geometry According to Pappus

There are three kinds of mathematical problems, generalized to three kinds of geom-
etry, according to the means needed to solve the problem or demonstrate features.

LCf. Jones (19864, p. 530, 540/541), Knorr (1989, p. 34) for a similar assessment (Pappus general-
izing a trend to be found in Apollonius’ plane analytical works); e.g.,: “Pappus is our only explicit
authority on this mathematical pigeon-holing, and he says nothing about how it developed and when.
However, it is difficult not to see Apollonius’ two books on Neuses as inspired by the constraints of
method imposed on the geometer.... The only conceivable use for such a work would be as a refer-
ence useful for identifying ‘plane’ problems.” (Jones 1986a, p. 530). On p. 530f., Jones also voices
the opinion that Apollonius may have had a similar purpose in the Plane Loci and the Tangencies.

H. Sefrin-Weis, Pappus of Alexandria: Book 4 of the Collection, 271
Sources and Studies in the History of Mathematics and Physical Sciences,
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1. Circle and straight line only!: genesis of these two is in the plane
2. In addition, one or several conics: genesis from solid figures (cones or cylinders)
3. Even more complex lines

“Plane” geometry operates with circles and straight lines only. Euclid’s Elements
and Data, and anything that can be proved or constructed with these means, would
fall into this kind. Within Coll. IV, plane geometry is illustrated in Props. 1-18.
It becomes apparent that geometry of this kind is not uniform. It allows for a spectrum
of styles and approaches. Prop. 1, for example, is directly modeled on the
Pythagorean theorem and uses classical synthesis, Props. 4—12 illustrate different
facets of the method of analysis within analysis-synthesis, and Props. 13—18 illus-
trate a monographic style of exposition within synthetic plane geometry. Note that
not all problems or curves in the plane are “plane” in Pappus’ sense. For example,
the conic sections, the conchoid, the quadratrix, and the Archimedean spiral, are
drawn in the plane, but they do not belong to the first kind. Neither do the problems
that can be addressed with them. The quadrature of the circle and the trisection of
the angle are problems set out in the plane, but they are not “plane.” Neusis con-
structions, even those formulated for configurations with circles and straight lines,
can be either “plane” or “solid.” Perhaps a modern reader might think that the sepa-
ration of circles and conics into different kinds is somewhat artificial. Both these
lines can be defined by a mathematical equation specifying defining distance rela-
tions in the plane. Pappus, however, thinks the conics are essentially connected, for
what they are as objects, to the cone, a three-dimensional figure, whereas the circle
is not. In this respect, Pappus may represent a communis opinio among the ancients.
For even Apollonius, who favored an operationalist approach to geometry and works
with the symptomata mostly, does define the conics as sections of cones, and derives
their symptomata from this essential definition.

The second kind of geometry, encompassing everything that can be successfully
treated by employing circles, straight lines, and conic sections, is represented in
Coll. IV by Props. 31-34 and 42—44. Apparently, Pappus was of the opinion that the
geometry of this kind is predominantly analytic-synthetic and that it aims at creating
typified configurations. Even the edition of the Konika to which he refers (in Prop. 33)
was analytic-synthetic. The purely synthetic edition that survives today is due to a
revision by Eutocius (sixth century AD). Pappus’ portrait suggests that “solid”
geometry arose in the context of unsuccessful attempts to solve certain problems,
notably the cube duplication and the angle trisection, with “plane” means. The meta-
theoretical passage in Coll. IV singles out the angle trisection in this regard.

Apparently, Pappus is drawing on criteria from Aristotle’s theory of science for the
conceptual definition of his kinds. In the Posterior Analytics, sciences are defined
and determined by the kinds of objects they treat. The methods of the corresponding
science must be “akin” to these objects. Pappus’ first two “kinds” of geometry are

!'The following slight misreading, already to be found in Descartes, is rather common: restrictions are
viewed as pertaining to instruments: third class only mechanical, first class only compass and ruler;
Pappus says nothing about instruments, and he certainly counts the third class as full mathematics.
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compatible with Aristotle’s description of kinds as subject matters. The third one is
not. It does not have a positive description, a clear characterization via predicative
content. It looks very much like “all the rest.” In fact, one might call it unconvincing
and unsatisfactory from an Aristotelian perspective. Nevertheless, Pappus will for-
mulate a global homogeneity requirement in the spirit of Aristotle’s homogeneity
requirement in the Posterior Analytics (see the following sections).

For the basic curves of the third kind, Pappus offers a description that is not quite
uniform. Two types/approaches can be made out: generation by “varied”, “forced”
motions and “twisting” of surfaces (quasi-mechanical), and “finding” via the intersec-
tion of surfaces in space that are “less structured” than the cones and cylinders used
for conics (analytical). Loci on surfaces play a major role for the second type, and for
all of these curves it is the “astonishing sympromata” that are in focus. Quadratrix-
type lines and spiral lines are singled out as basic curves. Pappus lists works and
authors, and it does appear that there once was a substantial corpus of treatises in this
area, by authors that came after Archimedes, extending into late Hellenistic times and
even beyond. Unfortunately, those works are lost. The only complete extant full trea-
tise with geometry of the third kind is Archimedes’s Spiral Lines. In Props. 19-30,
Pappus has discussed exemplary contributions to the geometry of the third kind,
depicting a developmental line, as well as typical and crucial problems in exposition
and foundation (plane spiral in Props. 19-22, conchoid in 23-25, quadratrix in 26-29,
and spherical spiral in 30). He strongly suggests that there were two types, a quasi-
mechanical one (cf. Props. 21 and 30, with their informal limit processes) and one
that relied heavily on analysis (cf. Props. 28 and 29 in particular). His portrait agrees
well with what he says here in the meta-theoretical passage.

Mathematical problems of the third kind can arise out of plane or solid problems
by generalization. Props. 35-38 are examples. The symproma of quadratrix and
spiral is used for general angle division, and problems that reduce to it can thus be
solved. Solid problems form a bridge between the first and the third kind. Other
problems of the third kind cannot be related thus directly to problems in the “lower”
kinds, because they target properties that cannot be captured by algebraic curves (in
modern notation). Circle rectification is a case in point. Props. 39—41 draw out
some consequences of the quadratrix’s rectification property. Such theorems belong
to the third kind “by nature,” as it were. As stated repeatedly, the lack of compa-
rable sources creates problems for the evaluation of Pappus’ classification. It
clearly serves a purpose in Coll. IV. To this extent, it is valid and meaningful.
Whether it is representative cannot be decided, and should not be inferred (nor
denied) from Pappus’ relative success at telling a coherent story.

6.2 The Homogeneity Requirement

In analogy to Apollonius’ separation of plane and solid locus problems, where
problems were differentiated into “classes” according to the minimal means needed
to solve them (e.g., identification of plane neuses), and where it was required that
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you use those minimal means only in order to have a geometrically valid argument,’
Pappus puts forth a generalized homogeneity requirement: All geometrical argu-
mentation must use argumentative devices from the appropriate kind. His formula-
tion of the criterion borrows from Aristotle’s theory of science again.

The question immediately arises, of course, as to how one is to decide whether the
criterion has been met, i.e., as to how one can, with mathematical means, decide
whether a given argument belongs to the plane, the solid, or the linear kind. Also,
one might wonder whether this strong meta-theoretical claim represents the mathe-
maticians’ perspective on the arguments in their discipline. Pappus is, in all likeli-
hood, drawing, at least to the following degree, on an inner-mathematical discussion
that took its starting point from Apollonius’ work.? Not merely locus problems, but
also already existing theorems were scrutinized, via analysis, in order to determine
whether they met the requirement. An attempt was made to instrumentalize geometrical
analysis to demarcate plane from solid arguments quite generally. This is another
systematic technical use of Greek geometrical analysis that has been underestimated
in secondary literature thus far. With the help of analysis of loci, Archimedes’ neuses in
SL 5-9, e.g., were identified as “solid,” and it was argued by some, apparently, that
he should have done with a plane argument for SL 18 (see below, Props. 42—44).
Another example for a proposition criticized in this vein is a construction by
Apollonius in Konika V. Pappus probably refers to the construction of a normal to the
parabola in V, 62. This solution proceeds via conics, in analogy to the case for the
hyperbola and ellipse; but since the problem is solvable (once we take the parabola
itself as given) by plane means only, Apollonius was criticized for failing to meet the
homogeneity requirement.?

While the scarce evidence we have suggests that a widening of the discussion on
systematic discrimination between plane and solid arguments took place within
mathematics, the same cannot be said with regard to linear versus solid problems.
Demarcation upward is obviously possible here as well: if you can show, via analysis
of loci, that your problem/theorem can be solved via conics, you are done. There are
no traces of a systematic attempt to use analysis/diorismos to identify conditions
under which a “linear” problem or theorem becomes solid. To that degree, Pappus’
general homogeneity requirement was not fully developed, or integrated, into

'In Apollonius this may have been simply a pragmatic device, in line with his operationalist
approach, casewise, from simplest to most complex, always with the minimum amount of machinery
added.

*Before Apollonius’ analytical works, such a differentiation, and the corresponding homogeneity
requirement, would not have been possible. For Archimedes, or for the pre-Euclidean geometers,
it was probably not valid, not even a consideration.

*Unfortunately, Pappus does not discuss the Apollonian argument within the preserved text of
Coll. IV. We may perhaps assume that his argument that Apollonius missed the mark could have
taken the form either of explicitly providing a plane argument (as he does in the plane case of the
angle trisection), or by showing that the locus used in Apollonius reduces to a plane locus under
the specifying conditions in Con. V, 62 (an argument like this, not cited by Pappus in Coll. IV, was
provided for the plane case of the angle trisection by one Heraclius cf. Coll. VII, # 72 Hu).
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ancient geometry, it seems. Pappus’ meta-theory claims more than the practice, or
the theory, could do. It should perhaps also be noted, however, that although the
criteria for determining homogeneity were not watertight (cf. Props. 42—44), all of
Pappus’ classificatory judgments in the upcoming third part of Coll. IV are correct:

31-34: angle trisection is solid.

35-38: general angle division is linear.

39-41: arc rectification is linear by nature.

42-44: the analyses are correct, and the Archimedean neusis is solid.

In Pappus’ overall scheme, the geometry of the second kind has the position of
a bridge between plane and higher geometry. This may be one of the reasons why
Pappus presents his portrait of solid geometry after his discussion of higher curves,
and the meta-theoretical passage here (Props. 31 ff.). In addition, it was in connec-
tion with the establishment of solid geometry, in differentiation from plane geom-
etry, that the idea of compartmentalizing mathematics along the lines pursued and
generalized by Pappus arose. And so, the last part of Coll. IV contains solid argu-
ments, a transition to linear problems, and an example of how analysis of solid loci
was used to determine the accurate “level” of a problem.
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7 Props. 31-34: Trisecting the Angle

Props. 31-34 are our only sources for the trisection of the angle via conics/solid loci
in antiquity. Following up on the introduction of the problem in the meta-theoretical
passage, Pappus uses the trisection as an exemplary argument to illustrate mathemat-
ics of the second, the solid kind.' In his methodological portrait, it looks as though
the dominant mode of argumentation in this field was analysis-synthesis, focusing
on loci, and that Apollonius was the culminating figure for this discipline, although
his work rested on earlier achievements (Aristaeus, inter alia) and did not com-
pletely supersede them. The arguments in Props. 31-34 are, together with Props.
4244, Menelaus’ cube duplication as reported by Eutocius,? and selected arguments
from Konika V also our only surviving examples for a treatment of solid locus prob-
lems, and Props. 31-34 and 42-44 are the only analysis-based ones. As in the case
of the symptoma-mathematics of motion curves, this uniqueness obviously makes
Props. 31-34, presented here in their original context, most valuable sources for
historians of mathematics, while also creating the problem that we cannot decide to
what degree Pappus’ portrait, drawn up with a visible program in mind, is represen-
tative of the actual mathematical practice. His portrait should be carefully evaluated
on its own terms and as a whole. As in the case of the symproma-mathematics of
motion curves, Pappus implicitly traces a developmental line, from the pre-Euclid-
ean treatment of “solid” problems down to Apollonius and his reception. For the
portrait of “solid” geometry, the majority of modern commentators agree with
Pappus’ reconstruction, i.e., their assessment of the development of the ancient ana-
Iytic treatment of conic sections is congruent with Pappus’ account. In addition,
there is general agreement on the character of the historical layers detectable in
Pappus’ report. What has not received enough scholarly attention thus far, and this
is, again, parallel to the case of Props. 28 and 29, is the methodological emphasis.
The portrait in Pappus stresses the practice of the technique of Greek geometrical
analysis for solid loci, as a method of argumentation, in Props. 31, 33, and 34.
context: trisecting the angle, doubling the cube, arguments of the “solid” kind.

sources: anonymous pre-Apollonian source with neusis in Props. 31 and 32, reshaped with
Apollonian theory (Apollonius? Pappus?) in Prop. 33, Prop. 34b draws on an argument

'The angle trisection, though it may look like a very special isolated question, is indeed rather
typical, even exemplary, for problems that can be solved via conics. As pointed out in the introduc-
tion to Props. 23-25, the two problems of trisecting the angle and doubling the cube already
exhaust solid geometry, in the sense that any problem that can be solved by means of conics
reduces to one of these two basic construction problems. The angle trisection is thus a fitting topic
for an exemplary illustration of geometry of the solid kind.

2Cf. Eutocius In Arch. Sph. et cyl. 78-84 Heiberg.
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ultimately based on Aristaeus, via Euclid’s Solid loci, with at least one intermediate layer;
Prop. 34a is based on Prop. 34b, perhaps by Pappus.

means: II, III, V, VI, Con, I, II: an analytic-synthetic version of these books (now lost).
method: analysis-synthesis (Prop. 32 in isolation: synthesis only).

format: problem.

reception/historical significance: no reception in antiquity is attested; reception in Islamic
culture; significance for historical scholarship as (the main) source for ancient angle trisec-
tion via conics, and as a source for the analytical treatment of solid loci.

embedding in Coll. 1V: classification of problems: meta-theoretical passage; motif
“Apollonius”: Props. 8-10, motif “(solid) neusis”: Props. 23-25, 42 - 44; motif “analysis
as primary investigation method”: Props. 4-12, 35-41, 42-44; motif “angle division™:
Props. 35-38.

purpose: illustrate mathematics of the second kind (solid).

literature: Heath (1921, 1, pp. 235-244, 11, 119-121), Jones (19864, pp. 363-371, 573-577,
582-584), Knorr (1986, pp. 128-137, 302-308, 324-327,' 1989, pp. 213-224, 316-324),”
Zeuthen (1886, pp. 210-215, 267-268). Hogendijk’s (1981) study of Arabic sources on the
angle trisection which contains the same argument as Props. 31 and 32, via neusis, but
without the reduction to the Apollonian theory of conics, independently corroborates the
communis opinio on Props. 31-33. For Prop. 34a and Prop. 34b there is a consensus for
the factual content: older layer (older concept of conics, going back to Aristaeus, reshaped
partially by using Apollonian theory), but some disagreement remains on the authorship
of those re-arrangements and overlays (see below).

7.1 Angle Trisection Through the Ages

With one exception (Lib. ass. VIII), all direct testimonies on ancient trisections
actually derive from Coll. IV (details see below). The problem of trisecting the
angle consists in the task of constructing an angle that divides a given angle into
three equal parts. This problem, generally, the problem of dividing an angle in a
given ratio, arose in the context of constructing regular polygons and inscribing
them in a circle. Prop. 38 will point out that one consequence of dividing the angle
in a given ratio is that we can now inscribe a regular polygon with any prescribed
number of sides into the circle.> While bisection of an angle is an easy plane
construction (I, 9), trisection resists attempts to solve it with elementary means, as
Pappus has pointed out in the meta-theoretical passage.

!'Specifically: Knorr (1986, pp. 128/129) on Prop. 34b; Knorr (1986, pp. 272-276) on Props.
31-33; Knorr (1986, pp. 282-284) on Prop. 34a; Knorr (1986, pp. 303/312) on neusis,
Apollonius, and Nicomedes; Knorr (1986, pp. 321-328) on Apollonius and Aristaeus as con-
tributors to 34a/34b.

2This passage addresses the testimony of Al-Sijzi and Al-Quhi. See Knorr (1989, pp. 247-372)
for a comprehensive presentation of Arabic sources with connection to ancient angle trisections.

*Cf. Heath (1921, I, p. 235).
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7.1.1 Attested Ancient Solutions

Hippias of Elis is usually credited with the invention of the quadratrix, ca. 430
BC.! This curve can divide any acute or right angle in any given ratio (cf. Props.
35-38).2 At some point, the problem of the angle trisection was reduced to a neu-
sis, and solved from there, apparently without the use of conics at first (see Props.
31 and 32 and remarks®). Archimedes has been suggested as a possible author by
Knorr, but a pre-Euclidean origin cannot be excluded. Nicomedes (second century
BC) used his conchoid to solve the problem via neusis. His argument is not pre-
served, but the conchoid as described in Prop. 23 can construct the neusis in Prop.
31 (see remarks on Props. 31, 23-25).* Further indirect evidence for a pre-Apollo-
nian neusis — construction which is now lost can be gathered from Lib. ass. VIII,?
together with an Arabic source in the Banu Musa. Lib. ass. VIII leads to a neusis
that can be used for the trisection. This neusis is closely related to the Archimedean
neuses in SL 5-9.° Tt is not at all unlikely that this lost ancient solution was by
Archimedes. Another possible connection for this particular neusis is to the con-
choid of a circle, which may have been known to Nicomedes.” But the actual
ancient constructions do not survive. Apollonian theory made it possible to con-
struct the neusis via conics (as in Props. 31 with Prop. 33). Prop. 33 could be by
Apollonius, or else by Pappus, on the basis of an argument using the analytical-
synthetical version of the Konika.® Aristacus, a predecessor of Euclid, probably
was the author of a neusis-free trisection underlying Prop. 34b. The argument uses
the focus-directrix property of the hyperbola and operates with the pre-Apollonian
names of the conic sections. In its present form, it is partly reshaped with the help

'Cf. introduction to Props. 26-29.

*Heath (1921, I, pp. 226-227).

3Cf. Heath (1921, 1, pp. 235-237).

4Cf. Heath (1921, I, pp. 239-240); Procl. in Eucl. 272, 3-7 Friedlein; Cantor (1900, I, pp.
335-337).

SCf. Heath (1921, 1, pp. 240-241); see also Hogendijk (1981), and the remarks on Props. 31/32.
®A neusis of this type is subjected to analysis in Props. 42-44, to show that it is “solid.” Knorr

(1986, pp. 186-187) draws the connection between the trisection via Lib. ass. VIII and
Archimedes; so does Heath (1921, I, pp. 240, 241).

7Cantor (1900) draws the connection to the conchoid of the circle; Knorr (1986, 221ff.) argues
that it is plausible that Nicomedes worked with conchoids, including the one on a circle, for his
angle trisection. If Nicomedes indeed investigated the conchoid of the circle, it is a tempting pos-
sibility to speculate that Archimedes may have experimented with this curve and its properties as
well. For Nicomedes seems, in general, to have taken Archimedean contributions as a basis for his
own, analytically based contributions. But at present, we do not have enough “hard evidence” for
such a thesis.

8This argument is not reported in Heath (1921), cf. Prop. 33.
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of Apollonian theory.! Prop. 34a is the simplest, and the latest of the solutions in
Coll. 1V, it uses the same hyperbola as 34b, Apollonian description and techniques,
and is based on Prop. 34b.? Its author may very well be Pappus (see below, remarks
before the proof protocols for Props. 34a and 34b).

7.1.2 Islamic Middle Ages (Selective®)

Hogendijk (1981) analyzed an angle trisection that is closely parallel to Coll. 1V,
Props. 31 and 32, and avoids the use of conic sections and solid loci. He was able to
show that the Islamic author worked from the original Greek argument, which in
Pappus is overlaid with Apollonian theory, thus corroborating the thesis about the
existence of a now lost ancient Greek source, with a neusis, but without conics.*
Thabit ibn Qurra’s angle trisection was derived from a Greek source as well. Knorr
(1989, pp. 218f.) argues that this source is not Pappus, Coll. IV’ Lib. ass. VIII,
according to Knorr,® goes back to the Banu Musa. For their Arabic sources, Knorr
refers to Al-Sijzi and Al-Quhi.” Al-Sijzi lists all the trisections known to him, and one
of them is similar to Lib. ass. VIII. The same neusis is used, according to Knorr, by
Al-Biruni. Omar Kayyam (cf. Katz 1993) made an attempt at systematizing cubic
equations into types, and solving them by geometrical construction. The angle trisec-
tion was included. Omar Kayyam’s contribution could be interpreted as a precursor
of the seventeenth and eighteenth century project of constructing equations.®

7.1.3 Occidental Middle Ages (Selective)

Jordanus Nemorarius and Campanus treated the angle trisection and were probably
influenced by Arabic sources.’ According to Cantor, Jordanus’ argument is parallel

'Cf. Heath (1921, I, pp. 243-244).

2Cf. Heath (1921, I, pp. 242-243); see also Jones (1986a, pp. 582-584).

3Cf. Sezgin (1974), and Knorr (1989, pp. 247-372) for information on Islamic mathematics,
specifically on cube duplication and angle trisection, as well as Knorr (1983a, 1989, pp. 216-224)
on the transmission of ancient angle trisections into Islamic culture.

4Cf. (Knorr 1989, pp. 267-275) (angle trisection according to Ahmed ibn Musa).

SCf. Knorr (1989, pp. 277-291) for Ibn Qurra’s angle trisection.

®Cf. Knorr (1986, 197, #107).

7Cf. Knorr (1986, 185, #106); on Al-Sijzi’s and Al-Quhi’s trisections cf. also Knorr (1989,
pp- 293-309).

8Cf. Bos (1984, 2001) for a history of this project.

°It is doubtful whether Coll. IV could have been known in the Middle Ages to any significant
degree. Unguru (1974) argues that a passage from Witelo’s Optics betrays knowledge of a sub-
stantial passage from Coll. VI. Commandino p. 95 C provides a plane argument, drawn from
Witelo, in connection with the neuses discussed in Props. 42—44. Perhaps this is an indication that
Witelo looked at Coll. IV as well, though other explanations are possible, also.
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to Al-Sijzi’s,! connected in terms of mathematical content to a neusis with conchoid
of a circle. Cantor’s reconstruction of Jordanus’ source is essentially the same as
the one Knorr ascribes to Nicomedes. Also according to Cantor,” Campanus’ argu-
ment is analogous to the earlier one by Jordanus.

7.1.4 Some Examples from Renaissance and Early Modern Times

Bombelli, in the sixteenth century, discovered the connection between the irreducible
case of the equation of third degree and the angle trisection.* He made similar obser-
vations for the cube duplication. Bombelli’s investigations on the geometrical
interpretation of algebraic results were not published until the 1920s. Therefore,
their impact on the development of analytical geometry and the construction of
equations was probably minimal. As stated above, in the discussion of the problem
of cube duplication (Props. 23-25), Vieta and Descartes, working on an algebra-
ically based approach to geometrical analysis, both proved that all “solid” problems
in Pappus’ sense reduce to either the angle trisection or the cube duplication.* They
studied algebraic equations of the third and fourth degree, derived from geometrical
configurations. If such an equation is reducible, a geometrical construction with
circle and straight line (with ruler and compass) is possible. In the irreducible case,
the construction can be accomplished either with the trisection or with two mean
proportionals. Newton, also, discusses the angle trisection, cube duplication, and
the use of the conchoid for the neusis required in several places in the Arithmetica
Universalis, obviously in close connection to Pappus’ text in Coll. IV. He uses the
new algebraic techniques as well, and contrasts solutions via conics with solutions
via neusis, polemicizing against the Cartesians.’

7.1.5 Nineteenth Century

Azemar/Garnier (in 1809) constructed a trisection curve, generating and discussing
it with the means of the theory of functions.® A trisection compass is described in
Dyck (1892, pp. 225-226).

'Cf. Cantor (1900, II, pp. 81-82).

2Cf. Cantor (1900, II, p. 104/105).

3Bombelli ed. Bortolotti (1923, 1929, pp. 265-267).

4Vieta’s argument can be found in Vieta ed. Schooten (1646, pp. 240-257); it was first formulated
in Vieta’s Supplementum Geometriae from 1593. Descartes (1637, pp. 396/397) (206209
Latham/Smith) uses parabola and circle for the angle trisection. He also developed an instrument,
a kind of compass, for the trisection. See also Descartes (1659, pp. 178 ff).

SCf. Whiteside (1972, V, 426/428) (conchoid for angle trisection); 428-432 (neusis reduced to
construction via conics, close connection to Prop. 31-33 and Props. 23/24); 458-464 (angle trisec-
tion, with explicit reference to Pappus (Prop. 32)); cf. also the solution of cubic equations via
neusis in 432 ff. (closely connected to the Archimedean neusis from lib. ass, VIII), and the summary
remarks on solid neusis constructions pp. 454/456 and 474.

® According to Ver Eecke (1933b, XXXVIII, #1).
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Finally, we return to the question that originally motivated the quest for the angle
trisection, and the general angle division: the problem of constructing a regular
polygon in a given circle. Book IV of the Elements shows that quite a few cases can
be constructed with circle and straight line (e.g., square, and therefore all polygons
with 2", n > 1 sides, similar constructions from triangle, hexagon, pentagon). With
the angle trisection via conics (Coll. IV), one will get, in addition, any polygon that
entails an angle division that can be composed of divisions by three, and constructions
possible with IV. Archimedes gave a construction of the regular heptagon via circle,
straight line, and conics. In the ancient sources, no attempt is attested at trying to
determine which cases would be plane, which solid, and which linear. The available
analytical techniques apparently were not strong enough to determine under which
conditions the generally linear problem will become solid, or even plane. Still, the
ancients managed to capture almost all of the constructively interesting plane cases,
in the following sense. Many centuries later, in the Disquisitiones Arithmeticae
(Gauss 1801, p. 449 in the 1889 edition), Gauss showed that a regular polygon with
n sides is constructible with circle and straight lines (ruler and compass), when 7 is
a Fermatian prime number (in addition to the cases noted above). Gauss only gave
this as a sufficient condition. According to Knorr (1986, p. 373), Wentzel, in 1837,
was then able to show that the condition is also necessary: no other prime number
will do.! Fermatian prime numbers tend to become very large soon, so that an actual
construction via circle and straight lines becomes uninteresting. Feasible construc-
tions reduce to the cases that are contained in Elements 1V, or can be gotten from
there by simple additional bisection or angle trisection, plus Gauss’ construction of
the regular Heptadecagon.

7.2 Analysis in Props. 31-34

Analysis is the dominant method for problem solving in “solid” mathematic,
according to Pappus’ portrait here. This analysis has certain specific features, some
of which have so far not received the attention they deserve.

1. Analysis in Prop. 31 and Prop. 34 (also in Props. 42—44) is not deductive through-
out. The decisive step is engineered so that the reverse step, used for synthesis, is
deductive. Reversibility, not deduction, is clearly the focus. This is relevant in
light of a long-standing debate about the nature of Greek analysis. Many scholars
claimed that Greek geometrical analysis, because it is essentially reductive, is a
purely deductive strategy, and that the mathematicians just counted on convert-
ibility at each step. This would mean that the synthesis and proof would be out
of focus for the analysis. Analysis would be a largely independent corroboration
strategy on its own. Others have argued that the analysis, even if largely deduc-
tive, nevertheless is to be viewed as an “upward” procedure, one that in essence

"Ver Eecke (1933b, XXXIX, #1), presents the matter somewhat differently.
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looks for grounds to start from for a synthesis as its completion. The examples in
Props. 31-34 can help decide this issue. They provide evidence that analysis was
viewed as not necessarily deductive, and not as independent, but vying, as it
were, for a successful “way back.” The crucial non-deductive steps in the analy-
ses in Prop. 31, and in Prop. 34 (also in Props. 42-43), make it clear that such
steps were fully valid in analysis, and viewed as sufficient, if the converse, used
in the synthesis, could be deduced from a valid theorem. This is another aspect
in which the mathematical material in Coll. IV can add to our information about
Greek geometrical analysis in practice, and therefore also to our understanding of
the nature of the method. Since the arguments in Props. 31, 34, and 42—44 may very
well be severely edited by Pappus, perhaps even originally by him, I should add
that they only provide the strong evidence I have suggested if we assume that he
was a competent practitioner of the method. The concurrence, or at least compati-
bility, between Pappus’ solid loci arguments and the few examples from Apollonius
that we have might contribute to an optimistic estimate.

2. Analysis in Props. 31 and 34 (and Props. 42-44) moves toward stereotyped, typi-
cal situations. A single crucial point is focused on, and the analysis shows that it
can be constructed as the intersection of solid loci. This strategy has a parallel
already in Menaechmus’ construction of the cube duplication via solid loci, and
is also to be found in Apollonius’ analytical work on plane loci. There, too, a
single point is identified as crucial, and constructed as the intersection of two
plane loci.! If this was indeed a typical feature, it seems to make sense. For since
all solid problems de facto reduce to either the angle trisection or the cube dupli-
cation, it must have been noticed that standard “catalog” examples could regu-
larly be found for solving a given solid problem. And singling out a single point
on which the successful analysis, and ensuing construction, hinges is really as
“primitive” as it can get. The use and the availability of such standard examples
would facilitate the use of analysis for the determination of a problem level, and
help make analysis-synthesis arguments in this field partially algorithmic (once
you have reduced a problem to a standard locus, you can go through the motions
by analogy).

3. In the analysis-arguments of the solid type, conics are seen as loci, characterized
by their symptoma. This provides a connection to the symproma-mathematics of
higher curves in the analytical vein.

4. InProp. 33, Pappus refers explicitly to an analysis in the first book of Apollonius’
Konika, and very likely to another analytical argument in the second book. This
means that the edition of the Konika he worked with was an analytic-synthetic
one, not the one we have today (edited by Eutocius considerably later). The
original work by Apollonius was in all likelihood dominated by analysis. Prop. 33
is “Apollonian” in character; on the connection between Apollonius and Prop. 33 see
the remarks after the proof protocol for Prop. 33.

LCf. Jones (1986a, pp. 540-541) for the Apollonian construction of plane loci, and pp. 573-577
as well as Knorr (1989, pp. 94-100) on Menaechmus’ cube duplication via solid loci.
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The proof protocols for Props. 31-34 will be given in some more detail, including the
syntheses, which are only sketched, or even left out in Pappus. Solid locus-arguments
are non-elementary and less common, and it may help to have a summary of the steps,
even if this means repetition of items covered in the translation already.

7.3 Props. 31-33: Angle Trisection via Neusis

7.3.1 Proof Protocol Prop. 31

1. Protasis/Ekthesis
Start with a rectangle ABCD (clockwise), BC produced.
Task: to draw AZ with EZ = m, m given.

2. Analysis

2.1 Assumption: problem solved

2.2 Apagoge

Problem reduces to finding H (parallelogram DHZE).

2.3 Resolutio

H is given.

[diorismos, not explicitly stated: DHZE is to become a parallelogram]
2.3.1. H lies on a given circle (center D, radius EZ).
2.3.2. H lies on a given hyperbola.
Rectangle BCD given; it is equal to BZ x ED [I, 43],
and BZ x ED is equal to rectangle BZH.
Appeal to Con. 11,12, “converse,” yields here, in the analysis': H lies on the
hyperbola through D with asymptotes AB, BC.
2.3.3. His given.

3. Synthesis
3.1 Kataskeue and Ekthesis
Through D, draw the hyperbola DHT with asymptotes AB, BC [cf. Prop. 33].
Draw the circle HK with center D and radius m.
It intersects the hyperbola in H.
From H, draw HL || BC, and HZ 1 BC; join AZ.
Then EZ = m.
3.2. Apodeixis
Rectangle ZHL, i.e., rectangle BZH, is equal to CD x DA [Con. 11, 12]

!'This is the decisive, non-deductive step in the analysis. Con. II, 12 actually states the reverse: all
points H on the hyperbola through D with asymptotes AB, BC will fulfill the above conditions for
rectangles/parallelograms. Because we know this, thanks to Con. 11, 12, we can conclude, for the
purpose of the analysis, that H must lie on this hyperbola. This is not a logical derivation, but a
prospective argument, if you will. We can conclude this way, because we know that the reverse,
in the upcoming synthesis, will give us a valid deduction.
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= ZH =DE [VI, 2/4; V, 16/18]
ZH || DE = DEZH is a parallelogram, and EZ = DH = m.

The neusis in Prop. 31 could easily be constructed with Nicomedes’ first conchoid,
if we choose A as the pole, CD as the canon, and m as the distance. Perhaps this
was what Nicomedes did.! The Greek text for Prop. 31 shows a separate figure for
the analysis, and some inconsistencies in lettering. This observation is quite
compatible with the following hypothesis (also in accordance with Hogendjik’s
findings on the existence of a trisection similar to Props. 31 and 32, but without
conics): The oldest layer of Prop. 31 contained just the neusis, to be used in Prop.
32, without construction via hyperbola (probably via ruler manipulation). Later on,
the neusis was constructed by means of a hyperbola, with the analysis either added
in later (three layers), or the synthesis of a complete analysis-synthesis adapted to
Prop. 32, while the analysis was left as it was. We do not know for certain when
and by whom revisions of the older argument were put in place. The older argument
may very well be pre-Euclidean. The revisions in the form presented here presup-
pose Apollonius’ version of the theory of conic sections. Apollonius could have
been the author of the argument or a similar one. It is also possible, however, that
a post-Apollonian author, maybe Pappus himself, added the analysis-synthesis via
Prop. 33, or that a post-Apollonian author gave a synthetic argument for Prop. 31,
based on Apollonius’ analytical-synthetical solution, which was then re-edited by
Pappus in such a way that an added analysis made the methodological bias in favor
of analysis, and the connection to Apollonius’ solution explicit. Further research
would be needed to decide upon this question. What can be said safely is that Prop.
31, as presented by Pappus, clearly draws attention to the analytical emphasis in the
successful solution of the angle trisection as a problem of the second kind.

7.3.2 Proof Protocol Prop. 32

Task: trisect ZABC.
Diorismos:
We have three cases’.
First case: ZABC is acute.
Extend the configuration:
Create a rectangle BCAZ, produce ZA
The neusis from Prop. 31, with m = 2AB = EB solves the problem; the resulting
line EB forms with BC an angle that is one third of ZABC.
[proof via consideration of A BAH, where H is midpoint of DE; use III, 20/31].

'Other, more complex and sophisticated constructions, using reconstructions of other possible
Nicomedean conchoids have been suggested inter alia by Knorr (1986, 220ff).

2This is the only explicit diorismos in Coll. IV.
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Second case ZABC is a right angle.
In this case, we do not need the neusis.
We simply construct an equilateral ABCD, and bisect ZDBC.

Third case: ZABC is obtuse.
Draw a perpendicular, dividing ZABC into a right angle and an acute angle.
Apply cases 1 and 2, and combine the results.

Cases 1 and 3 are in general solid; case 2 is plane, as the constructions indicate.
Pappus’ homogeneity criterion is essentially met (except for angles that are the
2"-th part of the right angle). It is worth noting, however, that Pappus did not choose
to show, by means of analysis, that in the second case the neusis from Prop. 31
becomes itself plane, i.e., constructible with circles and straight lines. He misses
out, as it were, on a chance to illustrate the power of analysis as an instrument to
demarcate “downward” via diorismos. From Coll. VII, Prop. 72 Hu we know that
this option was open to him in principle. For there Pappus reports a plane analytic-
synthetic construction by a certain Heraclitus (or: Heraclius, otherwise unknown)
for the neusis in this case.! Perhaps he thought that to show that a case is plane it
suffices to give a plane construction, and the one he gives in Prop. 32 is certainly
the simplest one possible. But that leaves open the question of other possible plane
cases, still hiding, as it were, under case 1 (e.g., angle of 45° could be trisected via
plane means, etc.). Pappus might have opened himself up for further questioning,
had he admitted that the neusis itself allows for cases which he cannot fully capture
with analysis. Even in his standard example, the demarcation between plane and
solid cases is not clear-cut and complete “downward” and would not have been
even if he had invoked Heraclius’ plane construction for the neusis. And this has
consequences for the evaluation of Pappus’ use of analysis as a criterion for deter-
mining the level of an argument, a topic that will be taken up in Props. 42—44.

7.3.3 Proof Protocol Prop. 33

1. Protasis/Ekthesis
Start with ZABC, point D in interior.
Task: describe the hyperbola through D with asymptotes AB, BC.
2. Analysis
2.1. Assumption: assume the hyperbola has been described.
2.2 Apagoge
Draw the tangent A-D-C, diameter HD, DT || BC.
2.3 Resolutio

'Cf. Zeuthen (1886, pp. 280—282) for a reconstruction of a possible diorismos in terms of analysis
of loci, Coll. VII, Prop. 72 (pp. 780-782 Hu, Jones (1986a, pp. 202-208), Heath (1921, II, pp. 412
and 413), and Knorr (1986, pp. 298-300) on Heraclius’ argument itself; Descartes (1637, pp.
387-389) (188—193 Smith/Latham) discusses the same problem, as a case where a problem with
a cubic equation (“solid-looking”) can be reduced, with explicit reference to Pappus.
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HD, DT given in position, T given.

AD = DC, because AC is tangent, AB and BC asymptotes.

AD? = DC? = 1/4HD x k, where k = latus rectum [Con. I, 3].

CD =DA = BT =TA.

BT given = TA given; A given = A-D-C given in position.

AC given in length => AC? given.

AC? = HD x k => HD X k given.

HD given => k given.
The problem has been reduced to the following situation: with HD, k given in
position and length, describe the hyperbola with diameter HD, latus rectum k, and
ordinates parallel to AC, which is given in position. Pappus refers to an analysis in
the first book of the Konika. The extant Konika do not contain analyses, but cf. Con.
I, 54 and 55 for a synthetic argument.

3. Synthesis
3.1. Kataskeue
Draw DT || BC; construct TA = BT.
Join AD, produce to C; produce DB, BH = BD.
Construct k with HD x k = AC? [, 45].
Describe hyperbola EDZ with diameter HD, latus rectum k,
and ordinates parallel to AC [Con. I, 54/55].
This hyperbola solves the problem.
3.2 Apodeixis
AC is tangent to the hyperbola EDZ [Con. 1, 32]
AD = DC, because BT = TA
AD?=AC?>= 1/4HD x k
= AB, BC are asymptotes to the hyperbola EDZ
[Con. 11, 1, 2].

The authorship for this very interesting theorem has been the subject of some discussion.
Knorr defended the thesis that Prop. 33 is essentially by Apollonius in Knorr (1982).
He even argued that the material now found in Con. II in this regard is by Eutocius,
while Apollonius’ own argument is Prop. 33. I would rather agree with his later
judgment (Knorr 1989, p. 215) and refrain from a specific ascription, while acknowl-
edging the general Apollonian character of Prop. 33. The fact that many intermediate
steps seem to appeal to the Data (cf. translation) points to Pappus as the one mainly
responsible for Prop. 33 in its present form. So does the explicit appeal to the Konika
by title. As said in the introduction, Prop. 33 attests that an analytical version of the
Konika must have existed. This material was used both for Prop.33, and for the
analysis-synthesis overlay in Prop. 31 over an older neusis. As Hultsch points out in
his notes to the Latin translation, a shorter, purely synthetic solution to Prop. 33
could have been given by means of Con. II, 4 (as presented in Eutocius’ edition of
the Konika). It would certainly have been accessible to Pappus as well. Apparently,
Pappus goes out of his way to illustrate that the methods for geometry of the second
kind are essentially connected to the method of analysis (even if, afterward, one
might be able to give a shorter, synthetic solution).
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7.4 Prop. 34: Angle Trisection Without Neusis

Props. 34a and 34b discuss the trisection of an arc over AC, corresponding to the
crucial case “acute angle” in Prop. 32. Only the analysis is given in full; a synthesis
is sketched for Prop. 34a, left to the reader for Prop. 34b. The effect of this on
Pappus’ readers is, of course, that analysis is emphasized as the decisive method of
problem solving. In the proof protocols below, I have added a reconstruction of the
synthesis so as to illustrate that the analysis indeed carries the burden, as Pappus
suggests.! As pointed out in the introduction, Prop. 34a is the simplest of all the
trisections discussed in Coll. IV, and it rests on Prop. 34b. Its style is very close to
Props. 42—44. Perhaps Pappus is the author of all four of them. For he claims
authorship for Props. 42-44 as presented in Coll. IV.

Prop. 34b uses a hyperbola characterized via focus and directrix. The same condi-
tions as the ones discussed in the analysis in Prop. 34b appear in Pappus’ commentary
on an analytical work by Euclid in Coll. VII (# 237 Hu, Jones (1986a, pp. 365-369, #
316/317, with commentary pp. 503-507%). There they appear as symptomata of a hyper-
bola in connection with Euclid’s loci on surfaces, an argument that in turn seems to be
targeting an argument on solid loci by Aristaeus. We encounter in Prop. 34 b an older
version of angle trisection via conics as locus curves, one that has been “worked over”
in several stages, while the core of the oldest layer, i.e., Aristaecus’ consideration of solid
loci, was preserved. The final “work-over” is by means of the Apollonian theory of
conics. This state of affairs is somewhat similar to Props. 31-33. Apparently, in Pappus’
view, the mathematics of the solid kind developed around solid problems, handled
analytically, and Apollonius was the culmination of a working tradition, without com-
pletely superseding the older contributions.> Unfortunately, we cannot identify the
Aristaean, Euclidean, Apollonian, and Pappian contributions to Prop. 34b in detail. We
lack sources for comparison (e.g., Aristaeus’ solid loci; in fact Pappus, in Coll. VII, and
perhaps this proposition here in Coll. IV, is our main source), and too many layers are
involved, as it were. Even so, a sufficiently clear and coherent global portrait of the
methods of “solid” geometry emerges in outline. In my opinion, Pappus’ reconstruc-
tion, in Props. 31-34, and Props. 4244, deserves closer investigation in itself.

'Commandino (Co 102-103 E and 103-104 E) also provides a synthesis. It covers all possible
cases.

2 According to Jones, there are quite a few problems with the argument as presented by Pappus in
Coll. VII; the lemma seems to contain several errors. This makes the task of reconstructing the
original “Aristaeus” from here all the more difficult. For literature on Prop. 34a/b see the list given
at the beginning of the exposition on Props. 31-34, and the footnotes to the section on attested
ancient solutions.

3The image created in Coll. IV by the way Pappus presents the geometry of the solid kind agrees
to a large degree with the portrait given by Zeuthen (1886).
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7.4.1 Proof Protocol Prop. 34a
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Task: trisect the arc AC over chord AC (arc AC smaller than semicircle).

1. Analysis

1.1 Assumption: problem solved, B divides arc AC in ratio 2:1
in triangle ACB over fixed AC, ZACB = 2ZCAB. We need to show that B lies

on a uniquely determined hyperbola.

1.2 Apagoge: extension of configuration: points D, E, Z, H

1.3 Resolutio
BE = AE
BD?=3AD x DH
Appeal to Con. 1, 21 (converse):
B lies on a uniquely determined hyperbola.!
2. Synthesis (only sketched in Pappus’ text)
2.1 Kataskeue/Ekthesis
Divide AC in H in ratio 2:1; AH = 2HC, AC = 3CH
Describe, through H, the hyperbola with axis AH,
latus transversum 3AH
It intersects the given arc AC in a point B.
The resulting triangle ACB has the property
Z/ACB =2/BAC, and B divides arc AC in the ratio 2:1.
2.2 Apodeixis
2.2.1 Auxiliary constructions
Draw perpendicular BD onto AC, D on AC.
Construct E, Z on AC with DE = DC = EZ
Draw BZ, BE.
2.2.2 Apodeixis proper
2.2.2.1. BD* = DA x 3DH
by construction: 3DH = AZ
BD?*=DA x AZ
2.2.2.2. DA x AZ = AE? - EZ?
= BD? + EZ? = AE?
BD? + ED? = BE?
and ED = EZ by construction
= BE’= AFE’ i.e,, BE= AE
2.2.2.3. Consider A AEB; it is isosceles
ie., ZBAE = ZABE
/BEC exterior angle

[VL 9].

[Con. 1, 54/55].

[VL 9].

[Con. 1, 21]

[1I, 6]

[L, 47]

'"Non-deductive analysis step as in Prop. 31; because the reverse step, used in the synthesis, is a
valid theorem, we can conclude, in the analysis, that B lies on that hyperbola. For if it does, the

preceding steps of the analysis can be deduced.
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= /BEC =2/BAE = 2/BAC

on the other hand: ABED = ABCD [1, 4]

= /BEC = ZECB = ZACB
3. Symperasma
We have shown that in AABC, ZACB =2/BAC, and arc AC is divided by B in the
ratio 2:1 [VI, 33].

Corollary (Not in Pappus’ Text)

With Prop. 34a, one can trisect an acute angle ZAMC.

Choose A on AM; draw circular arc with radius AM; it intersects MC in C (with-
out loss of generality, C can be so chosen); draw chord AC. With Prop. 34a, construct
B, dividing arc AC so that arc AB = 2 arc BC. Obviously, ZBMC = 1/3ZAMC.

7.4.2 Proof Protocol Prop. 34b

Task: On a given arc AC over chord AC, find B so that arc AB =2 arc BC

1. Analysis
1.1 Assumption: B has been found (ZACB = 2/BAC).
1.2 Apagoge
Extension of configuration: draw AB, BC; bisect ZACB, intersecting AB in D;
draw perpendiculars DE, ZB.
1.3 Resolutio
B is given
[We will need AD = DC, therefore we must have AE = EC!']
E is given [midpoint of AC]
AC: CB = AD: DB [V, 3]
AD: DB = AE: EZ [ VI, 2/V, 16]
—=AC: CB = AE: EZ, i.e.,, AC: AE =CB: EZ [V, 16]
since we must have AC = 2AE, CB must be 2EZ
and BC? = 4E7?
BC?=BZ? + ZC?
= (BZ*+ZC?: EZ*=1:4
This ratio is given.
Because E and C are given as well,
and BZ is to be a perpendicular onto AC,
B lies on a uniquely determined hyperbola®:

! Diorismos, not given explicitly in Pappus’ text.
2As in the case of Props. 31 and 34a, this last step of the analysis is non-deductive; its validity
rests on the fact that the converse is a valid theorem.
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on the hyperbola with focus C, directrix ED,
and eccentricity factor 2.!
2. Synthesis (reconstruction, not in Pappus’ text)
2.1 Kataskeue/ekthesis
Bisect AC in E, draw perpendicular ED.
Construct hyperbola with focus C, directrix ED,
eccentricity factor 2, as described in Coll. VII, #237 Hu.
Let B be the point of intersection between arc AC and the hyperbola. Then B
divides arc AC in ratio 2:1.
2.2 Apodeixis
2 EZ =BC
[hyperbola: 4EZ? = BZ? + ZC?
but BZ?> + ZC? = BC?, (1, 47)]
AABZ ~ AADE; DB: AD = EZ: AE [VI, 2]
= DB: AD = BC: AC [construction of E]
DC bisects ZACB in AABC [VI, 3]
= Z/ACB =2/ACD
By construction, ZCAB = ZACD
[L, 4 for triangles AED, CED]
This means that arc AB = 2arc BC [VI, 33].

'Coll. VII, #237 Hu, Jones (19864, I, pp. 365-369, # 316-317) constructs such a hyperbola. Its
points B fulfill the conditions and proportions analyzed above. Therefore, we can conclude in the
analysis that B lies on this hyperbola.
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8 Props. 35-38: General Angle Division and Applications

The transition to the general angle division implies a transition from solid to linear
geometry. This is explicitly mentioned by Pappus. Some linear problems will arise
from generalizing a plane or solid problem, and this is the case for the angle division.!
The connection to problems of the second, and even the first kind remains
transparent; in fact, Props. 37/38 is an analogue to IV, 10/11. Pappus makes no
attempt to single out, via diorismos, which of the general cases would become solid
or plane. The introductory sentence to Props. 35-38 even suggests that Pappus
thought the character of a problem is sufficiently established when an analysis leads
to conic sections: the problem is then taken to be solid in general. Again, this has
consequences for the evaluation of analysis as a technique to determine the appro-
priate level of a problem/theorem in 42-44.> Apparently, it is limited in power
and application, and regularly only used “after the fact,” i.e., to subject existing
arguments to critical evaluation.

context: angle division, regular polygon construction, generalization of lower level problems.
source: Nicomedes (?).3

means: I, IL, III, IV, VI, XII, 2, symptoma of quadratrix and spiral.

method: synthesis for 35; reduction to 35 (analysis only) for 36-38.

format: problems.

historical significance/reception: /.

embedding in Coll. IV: motif “’symptoma-mathematics of quadratrix and spiral”: Props. 19-22 and
26-29, motif “angle section”: Props. 31-34, motif “relation of arc to straight line’’: Prop. 26.
purpose: illustrate how linear problems arise from lower-level ones by generalization, in
the context of mathematics of the third kind.

'Recall cube multiplication, Prop. 24: if Pappus thought it is analogous to general angle division,
i.e., linear as a result of generalization, he was mistaken. He is, however, correct in his assessment
that the general angle division is “linear.”

*For singling out the plane and solid cases of general angle division, one would need an instrument
comparable in power to Galois theory. As mentioned in the introduction to 31-34, Gauss was able
to single out the plane cases. I know of no attempt for solid cases.

*Procl in Eucl. 272 Friedlein associates Nicomedes with a systematic study of the properties of
the quadratrix. So Nicomedes is a possible source for Props. 35-41; cf. also Iambl. apud Simpl. in
Cat. 192 Kalbfleisch, 65b Brandis. Within the present commentary, we cannot explore the hypoth-
esis that Props. 35-41 are in fact taken from Nicomedes’ book on the quadratrix. But that is at
least a plausible possibility. Quite a number of connections between 25-27 and 3541 can be
detected, beyond the use of the symptoma of the quadratrix.
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8.1 Prop. 35: Angle Division

The close connection between the motion-generated quadratrix and (inscribed)
spiral manifests itself nicely in the close analogy of the angle divisions that the
curves entail. Compare the following parallel proof protocols.

8.1.1 Proof Protocol Prop. 35
35a Quadratrix

Start with an arc LT, to be divided in a given ratio a:b
[implicit diorismos, not mentioned: to use the quadratrix, arc LT has to be at most
a quadrant; otherwise, bisect, and compose after construction is complete]
1. Kataskeue

Complete the quadrant BKLT, inscribe the quadratrix KAC.

Draw the perpendicular AE onto BC.

Divide AE in Z, so that AZ:ZE = a:b [VIL, 9].

Draw the parallel ZD to BC.

Draw the perpendicular DH onto BC.

BD intersects the arc BKLT in M.

M solves the problem.

2. Apodeixis
Arc KT:arc LT = KB:AE, arc KT:arc MT = KB:DH
[symptoma of the quadratrix]
= arc LT:arc MT = AE:DH = AE:ZE [V, 22]
= arc ML:arc MT = ZABD:ZDBC = AZ:ZE = a:b
[VI, 33, V, 17, constr. of AZ:ZE]

35b Spiral

Start with an arc AC, center B, to be divided in H in a given ratio a:b

1. Kataskeue
Complete the circle through A, C with center B.
Inscribe in it the spiral with generator CB.
It intersects AB in D.
Divide BD in E so that DE:EB = a:b [VI, 9].
Draw the circle through E, center B.
It intersects the spiral in Z.
BZ intersects arc AC in H.
H solves the problem.
2. Apodeixis
Circumference:arc AC = BC:BD.
Circumference:arc HC = BC:BZ



Props. 35-38: General Angle Division and Application 295

[symptoma of the spiral]

= arc AC:arc HC = BD:BZ = BD:BE [V, 16,V, 22]

= arc AH:arc HC (= ZHBA:ZCBH) = DE:BE = a:b
[VI, 33, V, 17, construction of
ED:BE].

8.2 Prop. 36: Equal Arcs on Different Circles

8.2.1 Proof Protocol Prop. 36

Start with two circles, centers E and Z, the one with center E is assumed to be the
larger one. The task is to cut off arcs of equal length.
Reduction to Prop. 35 (analysis)
1.1 Assumption: problem solved, arc AHB = arc CD (in length)
1.2 Apagoge: extension of configuration;
in the circle with center Z, construct arc CT,
similar to arc AHB; then arc CT < arc CD.
1.3 Resolutio
Arc AHB:arc CT =dl1:d2
[equal parts of circumferences, cf. * in the proof of Prop. 26]
= arc AHB:arc CT is given
= arc CD: arc CT is given [arc CD = arc AHB].
The problem has now been reduced to Prop. 35.

Sketch for a construction (not in Pappus): In the smaller circle, choose a sector
CZD arbitrarily. With Prop. 35, divide it in the ratio of the diameters (d1:d2) of the
given circles in T, and construct, in the larger circle, a sector AEB, similar to sector
CZT (same angle). Then arc AB:arc CT =d1:d2 = arc CD:arc CT, therefore, arc AB
=arc CD [V, 9].

8.3 Props. 37 and 38: Regular Polygon with Any Given
Number of Sides

Prop. 37 constructs an isosceles triangle with angles at the base in a given ratio to
the angle at the vertex (cf. IV, 10). In Prop. 38, the inference is drawn that we can
inscribe in a circle a regular polygon with any prescribed number 7 of sides. For this
task reduces to the construction of an isosceles triangle with a fixed vertex angle
(2m/n), thus a given ratio of vertex angle to base angles (cf. IV, 11). As one can see,
these two propositions are very closely related to the construction of a regular
pentagon in book IV of the Elements, and also, more loosely, to the other constructions
in IV. It is not at all unlikely that the question about general angle division originally
arose in the context of attempts to inscribe regular polygons into a circle (cf. above,
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remarks on angle trisection in the introduction to Props. 31-34). If so, Pappus’
choice of examples for mathematics of the second, and the third kind, as expanding
beyond the generic limits of plane geometry was well-taken, and yields a well-
rounded portrait. With the final pair of propositions, on general angle division, we
return to a question that goes back to the beginning of a developmental line.

8.3.1 Proof Protocol Props. 37 and 38

1. Protasis
Task: construct an isosceles triangle with the angles at the base in a fixed ratio to
the angle at the vertex.
2. Analysis
2.1 Assumption: AABC solves the problem.
2.2 Apagoge: extension of the configuration.
Extend AB, complete semicircle ACD, radius BC = BA; join CD.
2.3 Resolutio

ZCAB:ZABC is given [by hypothesis, /B is vertex angle].
ZABC =2ZADC (111, 20].
= arc CD:arc AC is given [VI, 33].

The situation has been reduced to the construction of a semicircle ACD, to be
divided in a given ratio in C. By appeal to Prop. 35, C is given, and the sought
triangle is given in kind.

3. Synthesis
3.1 Kataskeue/Ekthesis
Draw EH, divided in Z in the given ratio; bisect ZH in T.
Construct a semicircle over AD, center B.
Divide the arc AD in C so that arc CD:arc AC = EZ:ZT.  [Prop. 35];
A ABC solves the problem.
3.2 Apodeixis
/DAC:ZADC = EZ:ZT [by construction]
= /DAC:ZABC = EZ:ZH [I11, 20]

Since any regular polygon in a circle can be divided into isosceles triangles where
the angles at the base have a given ratio to the vertex angle, we can, with Prop. 37,
inscribe a regular polygon with any prescribed number of sides into the circle.
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9 Props. 39-41: Further Results on Symptoma-Mathematics
of the Quadratrix (Rectification Property')

This second set of problems of the third kind exemplifies mathematics when the
problem is “linear” by nature. Props. 39—41, like Props. 35-38, belong to the second
path of development for the mathematics of motion curves, the analytical track.
The analysis focuses on reduction to the symptoma of the quadratrix, and to the
rectification property in Prop. 26. A certain tendency for setting out the quadratrix
in a separate auxiliary figure and arguing “parallel” can be detected, but with the slim
observation basis we have, we cannot be certain that this is typical.

context: ratio of arcs to straight lines; rectification of circle; commensurability for arcs.
source: Nicomedes on quadratrix (?).

means: VI, X (the latter for Prop. 41), Prop. 26.

method: analysis-synthesis for 39 and 40, synthesis for 41.

format: problems.

historical significance/reception: /.

embedding in Coll. IV: motif “quadratrix and properties”: Props. 26-29; motif “symptoma-
mathematics of motion curves”: Props. 19-30; motif “incommensurable magnitudes”:
Props. 2/3.

purpose: illustrate symptoma-mathematics of the third kind, where the problem is “by
nature” linear (does not allow for plane/solid sub-cases).

9.1 Prop. 39: Converse of Circle Rectification

9.1.1 Proof Protocol Prop. 39

Task: find a circle, the circumference of which is equal to a given straight line c.
1. Analysis

1.1 Assumption: circle a has been found,

with circumference c laid out as a straight line.

1.2 Apagoge: extension of the configuration

Construct a circle b and rectify it with the quadratrix [Props. 26/27].

Result: straight line d, equal to the circumference of b.

1.3 Resolutio

radius (a): radius (b) = c:d

[XIL, 2, Circ mens 1, V, 15, cf. ™ in proof protocol for Prop. 26]

c:d given; radius (b) given [by construction]

"My assessment differs slightly from Knorr’s, who mentions these propositions in passing and
connects them to the angle division property of the quadratrix (Knorr 1989, p. 214).
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= radius (a) given [Data 2].
2. Synthesis (not in Pappus')

2.1 Kataskeue

Construct a circle b with radius r

Rectify the circle with quadratrix, resulting in straight line d [Prop. 26]

Construct r” with rir’ = d:c [VIL, 9].

Draw the circle a with radius r’.

It solves the problem.

2.2 Apodeixis

Circumference(b):circumference(a) = r:r’

[XII, 2, Circ. mens. 1, V, 15, cf. * in proof protocol Prop. 26]

r =r1’= d:c [by construction].

d = circumference (b) = circumference (a) = ¢ [V, 9].

9.2 Prop. 40: Construct a Circular Arc over a Line Segment,
in a Given Ratio

Prop. 40 obviously has a connection to the following longstanding question in
Greek geometry (cf. above, excursus on squaring the circle): are circle and straight
line comparable, i.e., can they be brought into a ratio? Note that the ratio for Prop.
40 underlies certain restrictions. In modern notation, it is obviously >1:1, because
the arc is always longer than the chord. Because of the set-up of the argument used
in Prop. 40, the ratio is also at most m:1 (no angles larger than 180° are considered in
Greek geometry).

9.2.1 Proof Protocol Prop. 40

1. Analysis

1.1 Assumption: problem solved

arc AB:AB equal to the given ratio

1.2 Analysis proper
1.2.1 Extension of configuration
C midpoint of arc AB, X center of the circle, draw XC,
R on AB;
Aucxiliary figure: quadrant ZHE of an arbitrary circle,
quadratrix ZK, ZEHL, equal to ZCXA; points L, M, T, N.

'cf. Co p. 108/109 F
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1.2.2 Apagoge

Arc AB:AB = arc AC:AR = arc LE:LM

[by construction']

arc LE:TN = LH:HK

[symptoma of the quadratrix, Prop. 26]

A HLM with TN || LM

TN:LM = TH:LH [VL, 4]

arc LE:LM = TH:HK [V, 16, V, 23]
1.3 Resolutio

arc AB:AB given = TH:HK given

HK given in length [quadratrix]

= TH given in length [Data 2]

T on a uniquely determined circle, as well as on the quadratrix

= T given = HL given = ZEHL given = ZCXA given

CX given in position [perpendicular bisector of AB]

A given, AX given in position [Data 29]

= X given = arc AB given

My reading of the final steps as presented here differs from Hultsch’s (235, #3 Hu).

He argues as follows: A is given; ZAXB is given, therefore B is given (Data 90).
Therefore, AB is given in position and length (Data 26); therefore, arc AB is given
in length. In my opinion, this reading has two weak points. First of all, it tries to
establish that AB is given, but AB is already postulated in the formulation of the
problem. Furthermore, I would argue, it is not enough to show that arc AB is given
in length. For that is already clear when TH is shown to be given. One has to show
that arc AB is given in position as well in order to construct it.

2.

Synthesis (reconstructed, only sketched in Pappus)

2.1 Kataskeue

Quadrant ZHE with quadratrix ZK.

Choose D on HZ so that DH:HK equals the given ratio [VL 9].
Draw the circle with radius DH, center H.

It intersects the quadratrix in T.

Draw the perpendicular TN, join TH (intersecting quadrant in L), and the
perpendicular LM.

Construct the perpendicular bisector RX of AB (R on AB).

Transfer ZHTN to A, onto AB (vertex A).

It intersects RX in X (i.e., X can be so chosen).

Draw the arc AB, through A, with center X.

By construction, it passes through B.

Arc AB solves the problem.

'One has to appeal to the proposition used already in Props. 26, 36, and 39: XII,2, Circ. mens I,
V, 15: arcs in the same ratio as radii. Then consider similar triangles, half-chords, perpendicular
on chord; the ratio of radii can be replaced with the ratio of half-chords. Cf. " in the proof protocol
of Prop. 26.
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2.2 Apodeixis
AARX ~AHTN ~AHLM
= ZAXR = ZLHM

= arc AC:AR = arc LE:.LM [VI, 33]
arc LE:LM = TH:HK [quadratrix]
TH = DH

= arc AB:AB = arc AC:AR = DH:HK (the given ratio)

9.3 Prop. 41: Incommensurable Angles

The incommensurability motif connects this proposition to Props. 2/3: construction
of two irrational lines. Properly speaking, incommensurability was defined for
straight lines, and it involves consideration of ratios. Since the symptoma of the
quadratrix, together with its rectification property, establishes an equivalence
between the ratio of two arcs and that of two straight lines, it can be used, in quite
an obvious way, to define “incommensurable” and “irrational” angles (or arcs).

Set out a quadrant and a quadratrix in it. To construct two incommensurable
angles, simply set out two incommensurable lines BH and BT on the side of the
quadrant, and corresponding perpendiculars ND, KE, as well as angles ZEBZ,
/DBZ, via the quadratrix. Then the ratio of the arcs (or angles) will be equivalent
to KE:ND, i.e., to BH:BT, by the symptoma of the quadratrix. And since BH, BT
are incommensurable, so are the angles.
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10 Props. 42-44: Analysis for an Archimedean Neusis/Example
for Work on Solid Loci

10.1 General Observations on Props. 42—44

An Archimedean neusis from SL was mentioned in the meta-theoretical passage in
connection with a violation of the homogeneity criterion. It was claimed that the
neusis is solid, where a plane argument might have sufficed. In Props. 42-44, Pappus
employs geometrical analysis in order to show that the Archimedean neusis is really
solid, and also to present a solid argument that is, in his view, useful for many solid
locus problems. That is, Props. 42—44 are once again designed from a methodological
point of view, in a twofold way. First of all, they illustrate what was meant by the
homogeneity criterion for methods of argumentation, and how one would proceed
when demarcating plane from solid geometry via analysis. The neusis discussed in
Props. 42-44 is related to the ones used in SL 5 -9, closest to SL 9. It is indeed solid,
although Pappus’ argument is not quite able to prove this, because geometrical
analysis is limited in this regard; see discussion below. It seems as though Descartes
was quite familiar with Pappus’ attempts. His criteria for determining the appropriate
level of a problem, though not as far-reaching as he himself hoped, connect to
Pappus’ attempts here and are vastly superior.'

Besides being an illustration, or implementation, of the method to test an argu-
ment for concurrence with the homogeneity criterion, Props. 42—44 are also meant
to be exemplary, a model, or prototype for how one might deal with a whole class
of solid problems. A certain tendency toward algorithmization can be detected. It is
in line with similar observations on Props. 31-34 (cf. introduction to Props. 31-34,
analysis in 31-34). Both groups together spell out in a rather concrete way, with a
methodological emphasis, what Pappus stated about the solid kind of geometry, and
its differentiation from plane geometry in the meta-theoretical passage.

context: homogeneity criterion, analysis used to determine level of an argument; solid
locus problems/theorems.

source: Pappus, based partially on work by Aristaeus.

means: Data, II,V,VI, Con. 1.

method: analysis.

format: problem.

reception/historical significance: no reception is attested, but Props. 42-44, together with
31-34 and a few examples from Con. V are our only examples for ancient mathematical

'Cf. Descartes (1637, pp. 383-402) (180-219 Smith/Latham). In the expanded Latin edition of
1659 (Schooten), Prop. 43 is discussed on pp. 174 ff., whereas pp. 34-35 report some Cartesian
remarks on the division of problems of the second from those of the third degree.
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arguments with solid loci; the arguments in the extant Konika have the synthesis only.
Thus, 42-44 are important as historical source texts. Also, Props. 42—44 are testimonies for
a use of Greek geometrical analysis which has so far been underestimated: it could be
employed, systematically, to determine the inherent level of an already existing mathematical
argument, i.e., it could be employed for methodological evaluation.

embedding in Coll. IV: connection to the remark on an Archimedean neuses in SL, in the
meta-theoretical passage; motif “Archimedes™: 13-18, 19-22, 30, 35; motif “analysis of
solid loci”: 31-34; motif “analysis as a method in connection with sympfoma-mathematics”:
28/29; motif “analysis”: 4—12; 31-34; motif “neusis”: 23-25, 31-33.

purpose: illustrate how analysis can be used to determine the level of a theorem or problem,
when that level is not obvious from the means employed explicitly; illustrate an exemplary
path of reasoning when working with solid loci.

literature: Baltzer apud Hu II, pp. 1231-1233, Heath (1921, II, pp. 386-388), Jones (19864,
pp. 573-577), Knorr (1978b, 1978a, 1986, 1989, p. 228 with #25 '), Tannery (1912, 1,
pp- 300-316), Zeuthen (1886, pp. 263-265).

In what follows, some general remarks will be given on the following topics:

—

. Background of 42-44: Archimedean neusis, criticized for being solid.

2. Purpose of 42—44: show, via analysis, that the neusis is solid; also, the analyses
are said to be useful for many other solid locus problems (i.e., they are examples
for how to work in the second kind of geometry).

. Analysis as a criterion for determining the level of a problem: its ingredients.

. Limits and gaps for the analysis-criterion.

. Typification as a feature of analysis of solid loci.

. Aristaeus as a possible source for 42-44.

. Possible alternatives, avoiding the neusis, for SL 18.

~N N B W

10.1.1 Criticism of Archimedes’ Use of a Neusis in SL

Archimedes’ SL contains, as 1-11, preliminary lemmata on the spiral as motion curve.
They are separated off from the treatise proper, as “lambanomena,” and used in SL
12ff. as quasi-archai, with the definitions placed between these lambanomena and the
actual treatise. SL12 ff. become symptoma-mathematics, meeting in themselves the
most rigorous standards for geometrical argumentation, and avoiding any reference to
motions. SL 5-9 use neuses, without giving an explicit construction.? These neuses are
indeed solid, i.e., they require for their construction conic sections or solid loci, unless
additional limiting conditions apply. SL 18 appeals to the neuses in SL 7 and SL 8
within an exhaustion proof.? The criticism voiced by mathematicians after Archimedes

'The last-mentioned reference concerns a solid neusis by Al —Jurjani, which, according to Knorr,
is very close to Props. 42-44 and to the Archimedean neuses in SL 5-9. Al-Jurjani’s complete
solution is purely synthetic, whereas Pappus only provides an analysis, given that his purpose is
not an actual solution of the neusis per se.

2Heath argues that since Archimedes uses only existence, not construction, his argument is not solid; I
doubt that this line of reasoning would have impressed an ancient mathematician, since existence argu-
ments by way of appeal to the continuity principle were not used in geometrical argumentation.

3SL 18: The circumference of a circle circumscribed around a spiral of first rotation is equal in
length to the subtangent for a tangent in the endpoint of the first rotation.
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is anachronistic in the following sense: it could only be formulated after Apollonius’
work on conic sections and on plane versus solid analysis which made a systematic
discrimination between plane and solid locus problems (including plane and solid
neuses) possible. The criticism is therefore certainly post-Archimedean. Archimedes
himself could not have used the standards it rests upon, and probably considered
neuses themselves as a legitimate argumentative tool.! But the objection is, in prin-
ciple, not without base, or beside the point: the neuses in SL 5-9 are solid, in retro-
spect, if you will. Another question is whether it is possible to prove SL 18 with
plane means only. See below.

10.1.2 Pappus’ Purpose in Props. 42—44, and the Content of 42—44

As Pappus declares, he intends to give an analysis for (one of) the Archimedean
neuses, so that the reader will not be puzzled when going through Archimedes’ book
on spiral lines. In light of the meta-theoretical passage, this obviously means that
Pappus intends to show that the neuses are solid, and to do so via analysis. And this
is indeed what happens in Props. 42-44. Furthermore, Pappus claims that the argu-
ments he is going to give are useful for many other solid problems, too. On this, see
below, #5. Pappus’ intentions in 42—44 have often been misunderstood. Hultsch and
Eberhard were of the opinion that 42—44 either do not target Archimedes, or do not
qualify as critical evaluations (cf. Hu ad locum). It is true that 42-44 do not specifi-
cally address SL 7, but the argument, though most closely related to SL 9, is appli-
cable in an analogous way to SL 7 and 8. It is exemplary for an analysis of
Archimedes’ neuses. Perhaps Pappus chose, out of several possible analyses, the one
that best serves for “many other solid problems”. He chose one that is most closely
connected to the neusis for the angle trisection (which is, in fact, one of the two
problems to which all solid problems reduce). Knorr (1978) is correct in pointing out
that the neusis in 42—44 is most closely connected to the neusis for angle trisection.
However, he furthermore claims that the argument is therefore not directed at
Archimedes’ neuses in SL, but at the neusis in Lib. ass.VIII. This almost amounts to
assuming that Pappus was not aware which book by Archimedes he was looking at.
Against Hultsch, Eberhard, and Knorr, and with Zeuthen, Tannery, Heath, and
others, I regard it as certain that Props. 42—44 target Archimedes, SL (which is not
to say anything yet as to their validity). Furthermore, Knorr (1978, 1978b, 1986)
reads Props. 42—44 as a misguided attempt on Pappus’ part to provide a plane con-
structive solution for the neusis. The fact that the analyses in 42—44 do not provide
such a solution, but would lead straightforwardly to a solid one, is taken by Knorr as
a sign of utter confusion on Pappus’ part. It must be stated that, at least in this respect,
Knorr’s reading has no basis in the text. Pappus simply does not announce, and does

' Cf. above, remarks on neusis in the introduction to Props. 23-25.
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not attempt, a plane solution in Props. 42-44.! He announces, and gives, an analysis.
The analysis leads to conics/solid loci, which is in complete accordance with what
Pappus has said about the neuses in the meta-theoretical passage. The majority of
scholars have acknowledged the solid, and intentionally solid character of Pappus’
arguments in Props. 4244, and the fact that they target SL 5-9.

10.1.3 Analysis in 42— 44 as a Criterion for Establishing
the “Solid”’ Nature of the Neusis

Props. 42 and 43 give an apagoge only of an analysis. Under certain general conditions,
a certain point must lie on a hyperbola (Prop. 42) and on a parabola (Prop. 43).
No diorismos to specify plane, and filter out impossible cases is given, and no resolutio,
either. Prop. 44 then proceeds to the analysis of a neusis. This analysis leads to the
conditions investigated in Props. 42 and 43. The crucial point lies on a parabola and
on a hyperbola. It is constructible via solid loci, in general. Note, once again: an
analysis, and an analysis only is presented; not a solution, and that is also not the
point. No synthesis, no construction, no diorismos, and no proof are forwarded.
A diorismos, as reconstructed, e.g., in Tannery (1912) and in Baltzer apud Hu,?
reveals that a complete analysis, with the intent of ultimately constructing the neusis,
leads to several cases, some solid, some plane, some unsolvable. Pappus is content
to have shown that the neusis is, by nature, and unless specifying conditions are
brought to bear, solid, because geometrical analysis leads to solid loci.? Has he shown
that, however, and if so, in what sense?

10.1.4 Limits and Gaps in the Pappus’ Account

In fact, Pappus’ criterion is not sufficient to prove that the neusis is solid. His ana-
lytical method does, in principle, not work infallibly in a general way. For Greek
geometrical analysis works on specific configurations only, and one can never guar-
antee, a priori, that one has used all the information that might lead to a specifying
condition, pushing the level of the problem down. And this means that analysis can
successfully prove demarcation of the level of a problem “upward” only, in this case
show that the problem, if solvable at all, is at most solid. It cannot prove that all
information has been exhausted, and therefore it cannot demarcate “downward,” i.e.,
show rigorously that no plane method would suffice. That, however, was the goal.

'Cf. a similar misunderstanding of the analyses in Props. 28/29 as attempted solutions.

2Cf. Tannery (1912, p. 307/308), Baltzer apud Hu (Hu appendix, pp. 1231-1233). A complete
analysis, with the intent of ultimately constructing the neusis, leads to several cases, some solid,
some plane, some unsolvable; Zeuthen (1886, pp. 263-265) gives a complete analysis-synthesis,
with ancient means; cf. also Heath (1921, II, pp. 386-388).

3Compare the introductory phrase to Props. 35-38. Pappus seems to believe that an analysis leading
to conics actually shows that a theorem is solid.
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So what has Pappus achieved with his analysis? He has achieved a high degree of
plausibility. He has clarified the situation at hand, provided grounds for an argument
to either proceed to a constructive proof of the neusis, or to specify further. And this
is essentially what geometrical analysis can do, even within mathematics (cf. above,
excursus on analysis-synthesis in the introduction to Props. 4—12). It does not provide
a proof, it provides grounds for argumentation.

For the meta-theoretical question here, Pappus (or whoever produced such
analyses of existing neusis arguments) would have to count on it that if additional
information is available in the configuration, someone else will detect it, and show
that one can push the level of the problem one down in this specific case. If over a
longer period of time (and the time between Apollonius and Pappus is quite long)
no one has come up with an argument that shows that additional restrictive conditions
are implied, the thesis gains plausibility. The method expects, it seems, an argu-
mentative context of continued investigation and discussion. It does not give a final
answer in the sense of a proof; such an answer would be reached only if we get to the
plane level. Still, it is not useless. It may very well reflect what actually did go on
in Hellenistic mathematics, in the field of the investigation of solid locus problems
and in meta-theory via analysis (investigation in the framework of a well-defined
discourse, with standard tools and topoi, but both open-ended and oriented toward
concrete problems, with proof character assigned only to synthetic arguments,
where the truth and generality of a conclusion can be asserted, but remains relative
to the principles set down as starting points). Such a view on the nature of analysis
for meta-theoretical questions is perfectly in line with an understanding of inner-
mathematical analysis as a structured and systematic investigative tool that does not
have proof character, but yields material insight into the constitutive ingredients of
a question at hand (as a heuristic method, essentially). It is not necessary that analysis
have proof character in order for it to be a successful and valid mathematical tech-
nique. Neither is that required on the meta-level. Geometrical analysis as a means
to determine the level of a problem is not watertight. It is, however, practicable and
provides argumentative grounds both for the claimed level of a proposition and for
further investigation.

One way of determining “downward” in a concrete case would be to actively
search for conditions under which the problem would become plane. Then one
would be able to “capture” some of the plane cases. But again, as long as one can-
not be sure one has exhausted all possible additional specifications, one would not
be sure about a particular case, unless one knows it is plane. Plane cases of the
above neusis exist, as Tannery has shown, and they are accessible to the means
available to the ancients. According to Jones (1986, p. 530) attempts at separating
out plane cases from higher general problems were made (though they could not be
made in a completely exhaustive systematic way, and were only satisfactory if lead-
ing to a plane locus for a particular case). Above, in the discussion of Prop. 32, an
example for a plane case differentiated out was mentioned. It is discussed in
Zeuthen (1886), and in Descartes, as a case where a solid locus itself reduces to a
plane locus (188-191 Smith/Latham, cf. above, comments on Prop. 32, plane case).
It is not at all implausible that Apollonius devoted much of his energies and attention
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to a project of systematically exhausting all construction problems that are plane,
and that would mean that one has “proved,” for any other problem, that it is (at
least) solid. This way, one might proceed, on the basis of an exhaustive classifica-
tion of all possible concrete plane cases, toward a rigid demarcation between plane
and solid problems. Perhaps this is what motivated Apollonius in his minor works.
The question cannot be pursued here.

Another limitation of Pappus’ method of determining the appropriate level of an
argument is that it was apparently only applied to the question of plane versus solid
arguments. There are no traces, and Pappus also makes no attempt in this direction,
of an operationalization of analysis for the demarcation downward for problems of
the third kind (cf. above, Props. 35-38). Apparently, there were only techniques
available that moved generally in the area where Apollonius had also worked: plane
and solid loci, and their investigation via analysis, with a view to finding the
simplest construction means possible. While analysis was used for working on loci
on surfaces (extension of the field of application for Apollonian techniques), this
project did not get far enough to explore systematically the connections to the solid
loci, or the plane loci.

Finally, the following gap in Pappus’ account (though not in his method of analysis
as a criterion for the level of an existing problem solution) has to be acknowledged.
Perhaps it is due to the fact that the manuscript is damaged and incomplete at the
end of Coll. IV. There is no discussion of the plane problem in Apollonius, where
Apollonius uses a solid construction: normal to a parabola in Con. V, 58/62. This
problem was mentioned alongside with Archimedes’ neusis in the meta-theoretical
passage.'

10.1.5 Solid Loci in Props. 42-44, in Comparison to Props. 31-34

Pappus claims that the analyses in Props. 42—44 are useful for many solid problems.
This is not an implausible claim. According to Zeuthen (1886, p. 272) and Knorr
(1986, pp. 300 ff.), investigation of neuses was an important part of ancient work
with conics. Furthermore, the neusis is closely related to the neusis for angle trisec-
tion in Lib. ass VIII. Generally speaking, since all solid problems reduce to either
angle trisection or two mean proportionals, reduction to standard configurations — of
which the neusis in Props. 42—44 could very well have been one — related to one of these
problems would have been an effective strategy in working on solid problems.?
On the treatment of solid loci compare also the remarks on analysis in Props. 31-34 in

'Zeuthen (1886, pp. 284-288) and Tannery (1912, pp. 302-305) give a construction, and an argument
why the problem would be classified by Pappus as plane. For an argument, with ancient means,
showing that the locus in question becomes plane see the above-mentioned passage from Zeuthen,
and Knorr (1986, pp. 319-321).

2Zeuthen (1886, pp. 272-278) gives a survey of problems for which a complete analysis-synthesis
for 42—44 might have, or could have, been used. No ancient sources survive.
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the introduction to Props. 31-34. Perhaps Pappus’ “standard” analysis, claimed to
be useful for a number of solid problems, is even representative of how the ancient
mathematicians worked in this field.

Props. 31-34, and 42-44 are our only remaining sources on ancient analytical
treatment of solid loci. Of course, Pappus may have given a very idiosyncratic
picture, but it may have been one that could make sense of the actual practice. Thus,
it would seem to be a reasonable task to look for common features in these docu-
ments from Pappus, as parts of his overall portrait of solid geometry. Such features
may have been typical for ancient work on solid loci in general. A detailed discus-
sion cannot be given here. In my opinion, it is not implausible that it would result
in a picture that fits with Zeuthen’s 1886 book on the ancient treatment of conics in
many essential respects. The following general observation must suffice for the
purposes of the present commentary. It looks as though reduction to standard catalog
configurations was a typical strategy. This reduction works with the symptomata of
conics (not the definitions). There is a certain preference for reduction to Con. I:
basic symptomata of conics. One decisive point is singled out, and is shown to be
constructible as the intersection of a conic section and either a circle or another
conic section. This strategy would obviously contribute to a procedural standardiza-
tion, and facilitate the reduction to standard examples or configurations. A problem
can be brought to the point, as it were, and there is a good chance that the resulting
reduced configuration was captured in one of a set of standard examples (specific
parallels between Props. 31-34, and 42-44).!

The last step of the analysis is non-deductive, but valid because the reverse in
synthesis would be an appeal to a theorem. The same characteristics were observed
in the analysis of Props. 31 and 34.

In detail, the parallels are closest to 34a; the same phase of analysis is used in 34a
and 42/43, and the reduction is to the same set of basic symptromata: Con. 1, 20/21.

10.1.6 Aristaeus as a Possible Source

Pappus himself claims responsibility for 42—44 in the form in which he presents it.
Howeyver, this does nor exclude that he selected and edited another source. For there
are, as in the case of Prop. 34, traces of a pre-Apollonian treatment of conics/solid
loci in Props. 42—44. Tannery (1912, p. 308), Knorr (1986, p. 323 ff.), and Jones
(1986, pp. 572-584) have argued that Pappus used an argument by Aristacus as
source for his analyses in Props. 42—44. In what follows, I summarize Jones’
arguments. Pappus had no access to any other major comprehensive pre-Apollonian
work on solid loci besides Aristacus. Props. 42—44 contain only the analyses, in
contrast to synthetic constructions already available before Apollonius (this argument
is perhaps not entirely compelling, given that Pappus would have given only the
analysis, even if his source had the synthesis, also). The definitions used for the loci

'Cf. also Knorr (1989, pp. 94-100) on Menaechmus’s cube duplications.
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coincide with the pre-Apollonian symptomata for the curves. However, this layer of
technical vocabulary is combined with later, Apollonian terminology: (e.g., parab-
ola, hyperbola). Jones believes that Pappus himself is responsible for this fusion of
Aristacan analyses with Apollonian techniques and labels. The situation is analo-
gous to 34a versus 34b, and this observation makes it plausible that 34a is also by
Pappus. The degree to which Pappus (or an anonymous post-Apollonian author)
revised the material from Aristaeus cannot be determined. It is possible that we
have, in Props. 42-44 (much as we do in Prop. 34b) an indirect testimony on
Aristaeus’ solid loci.

A similar picture as in Props. 31-33 and 34a/34b emerges in Props. 42-44.
The mathematics of the second kind was analytically dominated. Apollonius’
contribution was the last word, the completion of the theory in this field. But his
contributions did not completely replace the earlier work in this area. The earlier
works, such as Aristaeus’s solid loci, remained valid and useful. In this respect,
Apollonius’ role was unlike Euclid’s, whose Elements replaced all predecessors in
plane geometry.

10.1.7 Alternatives for the Neusis

Though Props. 42-44 do not in fact establish this beyond doubt, Pappus and the
Hellenistic mathematicians who evaluated Archimedes’s argument were right: the
neuses, as employed by Archimedes in SL 18, are solid. According to Pappus, the crit-
ics also gave a proof for SL 18 using only plane means. Unfortunately, that solution,
or purported solution, does not survive. The Hellenistic mathematicians may have tried
to implement further limiting conditions in the neusis problems SL 7 and SL 8, as
applied in SLI18, so that they become plane, or — and that is more likely — they may
have tried to provide a plane argument to replace the neuses altogether within the
proof of SL 18. In what follows, I will briefly discuss two suggestions by historians of
mathematics as to what alternatives might have been put forth.

(a) Tannery and Heath: SL 18 with plane means, avoiding the neusis

Tannery (1912) and Heath (1921) propose a reformulation of SL 18': assume that
the circumference is already rectified, and that it has been laid out as a segment
perpendicular to the generator of the spiral at the endpoint of the first rotation.
Then the line connecting its endpoint with the endpoint of the generator is a tan-
gent to the spiral. As Knorr has pointed out,” this is no longer the same theorem
as SL 18. Among other things, it no longer answers to Pappus’ description of the
theorem to be “saved”: find a straight line equal to the circumference of a circle.
It is hard to see what one would gain from replacing SL 18 with this alternative.
For further objections cf. Knorr (1978).

'Tannery (1912, pp. 309-316), Heath (1921, II, pp. 556-561), cf. Zeuthen (1886, pp. 278-279, #2).
2Knorr (1978, p. 81).
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(b) Knorr (1978) and Heath: change neusis argument in SL 7 and SL 8

Heath had already argued that Archimedes should not have been criticized,

because he only assumes the existence of the neusis, not an actual construc-

tion. This amounts to saying that instead of a neusis construction, we should
see him as operating with an implicit appeal to the principle of continuity.

Knorr takes this suggestion a step further and argues that we could save

Archimedes’ argument, in Archimedes’ own style, if we replace the implicit

appeal to the continuity principle by an explicit convergence argument.! While

it is true that such an argument would be in line with typically Archimedean
procedures for heuristics, and that Archimedes appears to have been experi-
menting with mathematical formulations for limiting processes, I doubt that

Knorr’s suggestion would have satisfied the Hellenistic critics, or even

Archimedes himself.

(i) There is no evidence that Archimedes’ steps toward convergence arguments
were picked up, developed, and integrated into geometry beyond heuristics
in antiquity. We saw that this aspect of his work on motion curves was not
taken up. In fact, Archimedes himself eliminated all traces of quasi-mechan-
ical heuristics from the geometrical parts of his published works, giving
orthodox exhaustion proofs, with no recourse to convergence processes,
instead. It is very likely that Archimedes thought that the assumption that
the neuses must exist is sufficiently supported by the principle of continuity.
But everyone would have granted that the neusis must exist, just as a line the
length of the circumference must exist. That does not render a construction
argument superfluous. If it did for Archimedes, it would have made SL 7 and
SL 8 themselves superfluous. Rather than trying to “save” them this way, he
might have eliminated them altogether, and used a convergence/existence
argument in SL 18 directly. Thus, even if such an argument was put forth by
a Hellenistic mathematician, in order to “save” the neuses, it is doubtful that
such an argument would have been deemed superior to a constructive solu-
tion (even if by conics). Finally, such an argument would not have been
judged as plane, or equivalent to a plane argument (solvable by means of
circle and straight line) — which is what the Hellenistic mathematicians were
looking for.

It seems as though we can, at present, not say what the Hellenistic plane argument
for SL 18, which Pappus claimed was put forth by Archimedes’ critics, would have
looked like. Pappus may have been wrong, it may have been invalid, or not really
plane. In all likelihood it did not look like the suggestions put forth in secondary
literature so far.

Let us now turn to Pappus’ analysis of the neusis, Props. 42-44.

"Knorr (1978, pp. 93f.); cf. also Dijksterhuis (1987, pp. 139-140) on the background of SL 5-9,
and Dijksterhuis (1987, pp. 268-274) for a reconstruction similar to Knorr’s.



310 II, 10  Analysis for an Archimedean Neusis

10.2 Props. 42-44: Analysis of an Archimedean Neusis

10.2.1 Proof Protocol Prop. 42

AB, CD, DE L AB, CD:DE = a:b given (assume CD > DE).
Claim: E lies on a uniquely determined hyperbola.

1. Apagoge

Extension of configuration:

Draw CZ L AB, rectangle ZDEH.

Construct ZK, ZT so that CZ: ZK = a: b, ZK = ZT [ V], 9].
2. Resolutio

T, K given; CZ: ZK given.

(CD? — CZ?):(ED? — ZT?) given.

EH?: (KH x HT) given.

Appeal to Con. 21 [converse, non-deductive'], yields:

E must lie on the hyperbola through T with diameter TK,

latus rectum 7 (HK = EH%(TH x KH)), and ordinates parallel to AB.

10.2.2 Proof Protocol Prop. 43

AB given in length and position, DC L AB, AC x CB =t x CD (¢ given). Claim:
Then D lies on a uniquely determined parabola.
1. Apagoge
Extension of configuration:
Bisect AB in E.
Construct EZ, Z so that t x EZ = EB? [II, 14].
Rectangle DHEC.
2. Resolutio
Z given, EZ given; by construction: EB? = t x EZ given.
EC? =1t x ZH = DH2.
Appeal to Con. 1, 20 [converse, non-deductive?], yields:
D must lie on the parabola with vertex Z, diameter EZ,
parameter ¢, and ordinates parallel to AB.

10.2.3 Proof Protocol Prop. 44

The text of Prop. 44 is badly damaged. As in the translation, I follow the recon-
struction by Hultsch, drawing on his corrected diagram in the appendix to Hu
(pp. 1231-1233). Baltzer’s corrections are implemented there.

'Cf. Props. 31 and 34a; there, too, the last step of the analysis appealed to the converse of a theorem.
2Cf., again, Props. 31 and 34a for an analysis with a non-deductive last step.
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Start with a circle ABC, chord BC, A given.
Task: draw AE, D on BC and AE, E on circle, ED given in length (neusis).

1. Analysis
1.1. Assume AE has been so placed, ED has the given length.
1.2. Apagoge: extension of the configuration
Draw DZ 1 BC, DZ = AD (Z will, in general, not lie on the circle).
1.3. Resolutio
1.3.1 AD:DZ=1:1

Z lies on a uniquely determined hyperbola [Prop. 42].
1.3.2.BD x DC = AD x DE [111, 35]
BD x DC = DZ x DE, and DE is given

= Z lies on a uniquely determined parabola [Prop. 43]

= 7 is given

The text breaks off here; presumably, one would now say that D is given, as foot
of the perpendicular from Z onto BC, and thus AE is given. Pappus has in fact only
presented the analysis, not a solution, to the neusis, to show that the problem is
solid, because, in general, the construction of the auxiliary point Z will involve a
parabola and a hyperbola. For a synthesis, leading to a neusis related to SL 5-9 cf.
Knorr (1978b), Heath (1921, II, pp. 386-388), Tannery (1912, pp. 307-308),
Baltzer apud Hultsch 1231-1233. We get several solutions/cases. The resolutio in
Prop. 44 only shows the constructibility of one of the solutions. This was enough
for Pappus’ purposes. For the limitations of his argument, see the introduction.

Coll. IV ends rather abruptly, if with a concluding phrase (probably by the copyist).
The text of Coll. IV shows signs of deterioration (in addition to manuscript damage)
at the end of the book. It seems that we are missing at least the allegedly plane
argument for SL 18, and perhaps also the plane argument for the Apollonian prob-
lem of finding the normal to the parabola, as well as the conclusion.
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Appendix: The Diagrams in the Present Edition, and Vat. gr. 218

As stated in the introduction to Part I, I have modeled the diagrams in the present
edition, wherever possible, on the figures in Vat. gr. 218 (A). For diagrams that refer
to circles and straight lines only, moderate adjustments were sufficient. For the ones
referring to higher curves, more drastic revisions became necessary, and in a few
cases I was compelled to deviate completely from A, and draw the diagrams afresh.

For the “plane” diagrams, I worked from a scan of the original figure in A, redrew
it, and afterwards adjusted the location of individual points. A’s figures are extremely
schematic. As a result, the relative position of points is most often rendered accu-
rately, but congruent lines and angles do not appear as congruent, parallels not as
parallel, and right angles not as right angles. This can cause severe difficulties when
one attempts to use the diagrams as they are intended: as argumentative devices in
the proofs. The degree of abstraction one has to continually perform when going
through the arguments is simply too high. I therefore resorted to shifting individual
points within the sketch diagrams, so as to produce configurations that cause less
disturbances. In other words, I made congruent lines look congruent (with some
amount of tolerance), parallels like parallels, etc. This procedure, of course, entailed
shifting all the points on connecting lines as well. With these modifications, the
plane diagrams are still modeled on the figures in A.

For the figures containing the Archimedean spiral (Props. 19-22, and 35b),
I proceeded similarly, preserving the overall frame and adjusting the spiral line as
well as angles created in the figure. For the figures referring to the conchoid,
the quadratrix, conic sections, and curves in space, I was unable to work from A.
All these curves are represented in A as circular arcs in the plane. I therefore drew
new figures, using both A and Hultsch’s edition as reference points. For Prop. 44,
the “prototype” used was the diagram in the appendix to Hultsch’s edition.

In what follows, I will briefly describe in what way my diagrams differ
from the ones given in A. I will also reproduce A’s diagram for the limit case
in Prop. 15.

Prop. 1: diagram taken over from A.

Prop. 2: diagram taken over from A, C, T, and E moved.

Prop. 3: diagram taken over from A, L moved.

Prop. 4: diagram taken over from A, E, H, and N moved, EK = EL.
Prop. 5: diagram taken over from A, M, E, L, and H moved.

Prop. 6: diagram taken over from A, A, E, H, and Z moved, T, B added.

Prop. 7a: diagram taken over from A, all points except A and Z moved.

Prop. 7b: diagram taken over from A, all points except D and C moved.

Prop. 8: the circles with centers A and B were made equal; this resulted in a repo-
sitioning of all other points; R added.

Prop. 9: diagram taken over from A, D moved.

Prop. 10: diagram taken over from A, B, and Z moved, center of encompassing

circle renamed H (for N); H and O eliminated.

Prop. 11: diagram taken over from A, B, D, E, H, K, and Z moved.
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12: diagram taken over from A, E, L, Z, and T moved.

Arbelos: diagram taken over from A, semicircle over AC instead of BC.

Prop.
Prop.
Prop.
Prop.

Prop.
Prop.

Prop.
Prop.

Prop.
Prop.

Prop.

Prop.
Prop.
Prop.
Prop.

13: diagram taken over from A, N, C, A, and L moved, K added.
14a: diagram taken over from A, A, M moved.

14b: diagram taken over from A, D added.
14c: diagram taken over from A.
C
H A
T
T P
Z
D
B N M

15a: circles taken over from A, all other lines moved, C added.

15b: the diagram in A is missing a number of necessary points; outer circle
and semicircle over CB taken over from A, all other lines and points
adjusted or corrected.
15c: figure missing in A, reconstructed.
15: limit case: The following is a reproduction of the (flawed) diagram in A for
the case that instead of a semicircle over BC, we have a tangent in B; cf.
appendix Hu p. 1227 for a correct diagram and a proof.
16a: diagram taken over from A, TZ || BC.
16b: diagram taken over from A, TZ || BC, A center of circle TZ, N foot of
perpendicular from P, E and O with perpendicular ending in S added.

16c: diagram taken over from A, circle with center P moved, semicircle with
center A, diameter equal to BD, points renamed: T, Z, N for H, Y, Z
respective, S added.

16d: diagram taken over from A, circle with center A moved slightly, D for S.

17: diagram taken over from A.

18: diagram taken over from A, perpendiculars onto AC added.

19/20: diagram taken over from A, spiral adjusted.
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Prop.

Prop.
Prop.
Prop.

21a: diagram taken over from A, arc CD = arc CA, spiral, arcs ET, ZH
adjusted.

21b: diagram taken over from A, spiral adjusted, H and T switched.

22a: diagram taken over from A, spiral adjusted, BZ accordingly.

22b: diagram taken over from A, spiral adjusted.

Conchoid: redrawn, in A the line is represented by a circular arc.

Prop.
Prop.

Prop.

23: redrawn, in A the conchoid is represented by a circular arc.

24: redrawn, adjustments too numerous; in A, incomplete corrections were
added by the second hand.

25: redrawn, horizontal unequal lines instead of vertical equal ones, order
A-C-D-B instead of A-B-C-D.

Quadratrix: redrawn, square ABCD, quadrant DAB, quadratrix adjusted.

Prop.
Prop.
Prop.
Prop.
Prop.
Prop.

Prop.
Prop.

Prop.
Prop.
Prop.
Prop.
Prop.
Prop.

Prop.

Prop.
Prop.

Prop.
Prop.
Prop.

Prop.
Prop.

Prop.
Prop.

26a: redrawn, square CBAD, quadrant DCB, quadratrix adjusted.
26b: redrawn, square CBAD, quadrants DCB and KCZ, quadratrix adjusted.
26c: redrawn, square CBAD, quadrants DCB and KCZ, quadratrix adjusted.
28: redrawn, quadrant CBA, three-dimensional figure.
29: redrawn, sector CBA, spiral BA, three-dimensional figure.
30: redrawn, spherical spiral for right-hand side diagram; quadrant CDA, arc
AZ with center C for left-hand side.
31a diagram taken over from A, Q renamed as Z.
31b: diagram taken over from A, LH moved, circle with radius DK, hyper-
bola DH adjusted, m added.
32a: diagram in A not used; DE = 2BA.
32b: diagram taken over from A.
32c: diagram taken over from A, BD 1 BC, E and A adjusted accordingly.
33: A has two identical figures, one each for analysis and synthesis, repre-
senting the hyperbola by two circular arcs with cusp in D; redrawn, k
added, second E eliminated.
34a: A’s diagram is an isosceles triangle ABC, with E and D distributed almost
equally on AC, and BZ as well as the hyperbola BH missing; redrawn.
34b: diagram taken over from A, the segment was made smaller than a semi-
circle, B, D, and Z moved.
35a: A’s diagram had a full circle, Z is mislabelled; redrawn: quadrant TBK
with quadratrix KC.
35b: diagram from A, T eliminated, H and A moved, arc ZE adjusted, D added.
36: circle with center E taken over from A, point A moved, K added, circle
with center Z, arc CTD redrawn, T instead of B.

37: diagram taken over from A, EH added.

39: A’s diagram has two equal circles a, b and two vertical lines c, d; redrawn.

40: redrawn; quadrant EHZ, quadratrix ZTK, arc ACB with center X, o and
p added.

41: redrawn, quadrant CBA with quadratrix AEDZ, point names N and K
corrected.

42: the figure in A is missing the hyperbola; redrawn.

43: redrawn.

44: drawn afresh; no diagram for Prop. 44 in A.
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