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Preface

In the seventeenth century, it was a common opinion among those interested in 
ancient Greek mathematics that there were four great mathematicians in antiquity: 
Euclid, Archimedes, Apollonius – and Pappus of Alexandria. Especially the fourth 
and seventh book of the Collection were widely read and avidly discussed. They do 
indeed contain a host of interesting material on ancient Greek geometry that is not 
attested elsewhere. The fourth book in particular offers quite a few vignettes on 
“higher” Greek mathematics, treating of the classical problems of squaring the 
circle, doubling the cube, and trisecting the angle. Also reported is an intriguing 
little piece on mapping the sequence of natural numbers into a closed configuration 
of touching circles. Despite his importance as a historical source, Pappus has nowa-
days become something like the ugly stepchild among the ancient mathematicians. 
The present edition is intended to provide a basis for giving the writer Pappus 
another hearing, to rekindle scholarly interest in him. It contains a new edition of 
the Greek text of Collectio IV (based on a fresh transcription from the main manu-
script Vat. gr. 218), an annotated translation, and a commentary. The text offers an 
alternative to Hultsch’s standard edition. The commentary provides access to quite 
a few aspects of the work that have so far been somewhat neglected. Above all, it 
supports the reconstruction of a coherent plan and vision within Collectio IV.

This edition is developed out of a complete revision of my 1997 German dis-
sertation in the Mathematics Department (Section History of Mathematics) at 
Mainz University (published in microfiche form in 1998). In difference from the 
earlier version, a Greek text was included, a new translation into English was made, 
and the commentary was reformulated as well.

Numerous people have supported and helped me over the years with the Pappus 
project. To all of them, my warmest thanks. In particular, David Rowe, my disserta-
tion advisor, has been extremely generous with his time, support, and advice. Henk 
Bos, as second reader for the original dissertation, gave encouraging, yet incisive 
and helpful advice. Bob Berghout discussed Pappus with me, pointed me to Ath 
Treweek’s edition, and let me consult Ath Treweek’s material on Collectio IV. 
Siegmund Probst (Leibniz-Archiv, Hannover) introduced me to the art and trade of 
editing manuscripts. Jeremiah Hackett helped me gain access to the Vat. gr. 218. 
I should also like to thank the Bibliotheca Apostolica Vaticana for the generous 
hospitality and the inspiring atmosphere they provide for scholars consulting their 
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collection, and especially for allowing me to study the text and figures of Vat. gr. 218 
for the present edition. Ms. Regine Becker proofread the entire Greek text. Ms. Lisa 
Weis improved my English in numerous places. My deepest gratitude is owed to the 
members of my family, who have, generously, if not always voluntarily, been living 
with Pappus for a number of years. That is why this book is dedicated to them.

Mainz/Columbia, August 2008 Heike Sefrin-Weis
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Without a doubt, Pappus of Alexandria’s Collectio IV is one of the most important 
source texts for the history of Greek mathematics. Undisputed is specifically the 
importance of its second half (especially Props. 19–34), because it contains our main, 
and in most cases even our only direct, access to otherwise lost contributions of the 
Hellenistic mathematicians to “higher” geometry. Inter alia, Props. 19–22 give us an 
alternative Archimedean treatment of the plane spiral (one that employs a “mechanical” 
approach), Props. 26–29 provide the only extant description of the quadratrix, the 
squaring of the circle with it, and the only two surviving examples for analysis of loci 
on surfaces, and Props. 31–34 contain the extant ancient sources on angle trisection, 
among them the only one that gives a complete construction via conics. The Hellenistic 
solutions for all three classical problems (squaring the circle, doubling the cube, 
and trisecting the angle) are attested in Coll. IV. Likewise undisputed is the fact that 
Coll. IV, together with Coll. VII, played a crucial role in the reception and transfor-
mation of ancient Greek geometry during the early modern era.

Nevertheless, a complete English translation of this important work is at present 
still a desideratum. Whereas A. Jones published an edition, translation and com-
mentary of Coll. VII in 1986, the only complete translation of the Coll. (II–VIII) 
into a modern language is (Ver Eecke 1933b) into French. A German translation of 
Coll. IV is contained in (Sefrin-Weis 1998)1. The main purpose of the present work 
is to provide a Greek text and an English translation of the complete text of Coll. 
IV, and to make Coll. IV accessible as a whole to the modern reader. This purpose 
is indeed a dual one. A complete translation makes the famous passages accessible, 
in their original context. It also provides the basis for making sense of those very 
passages beyond their local mathematical content, as part of a comprehensive 
picture that emerges out of the book as a whole. Currently, no such comprehensive 
view of Coll. IV exists. The present work will help close this gap, and this is its 
second purpose.

Perhaps, partly as a result of the fact that Coll. IV was not available in an acces-
sible edition, it has so far not been understood, even appreciated, as a thoughtfully 
planned, coherent composition by a well-informed author. Another reason for this 
lack of appreciation is the fact that unity and coherence has been sought on the 

General Introduction

1 German translation and commentary, listed under primary sources, Pappus.
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level of mathematical content. While such a perspective is quite understandable, 
given that Coll. IV contains arguments that are of primary interest because of their 
mathematical content, it cannot make sense of the work as a whole. It is not, I would 
contend, the perspective from which the work was composed. Coll. IV contains a 
host of mathematical examples, on various topics and with various degrees of 
difficulty and complexity. They do not form a thematic unity. Topics reach from 
constructing the irrational Minor to trivial theorems on segments in a circle to 
squaring the circle to a quadrature of a curved surface in space (see section “Survey 
of Coll. IV”). The sources on which Pappus draws are equally non-uniform and 
cover a considerable time span. As long as one looks for unity and coherence on 
the level of mathematical content only, one would have to agree with the negative 
judgment on Coll. IV as it is given by many scholars, and summed up in Jones’ 
verdict that Coll. IV lacks an “overall governing plan” (Jones 1986a, p. 6).

The picture changes radically, however, if one takes a different perspective, one 
that focuses on methodology rather than content. Such a perspective emerges quite 
naturally when one takes Pappus’ own meta-theoretical remarks, which appear 
about half-way into the book, into account. In a famous passage, he differentiates 
between three kinds of geometrical research according to the types of curves 
needed for construction and problem solving. Furthermore, a homogeneity require-
ment applies, thereby associating to each problem one of these distinct classes, or 
rather kinds, of geometry: plane (using only circle and straight line), solid (using 
conics in addition), and linear (using “higher” curves), kept apart on method-
ological grounds. Within these three distinct kinds, Pappus looks for further sub-
specifications of methods, strategies, and styles of mathematical argumentation, 
and illustrates them with attractive, famous, or just methodologically well-designed 
(easy) examples, so as to be able to tell a story about the character of Classical and 
Hellenistic geometrical discourse. His examples are thus chosen from the point of 
view of the methods they are exemplifying, and their content, though it is prefera-
bly one that captures the reader’s attention, is subordinated to the overall plan of 
profiling the methods of ancient geometry in a comprehensive way. This is the way 
I propose Coll. IV should be read, and it obviously has consequences also for the 
evaluation of the well-known passages. My thesis is that Coll. IV can be read, and 
was intended to be read, as a unified, coherent and essentially exhaustive survey of 
the classical geometric tradition from the point of view of methods. The meta-
theoretical passage, which was taken seriously in the present work as program-
matic, is not to be understood, necessarily, as the expression of a communis opinio 
among ancient mathematicians. In fact, I rather doubt it was that. It generalizes 
certain features of Apollonius’ analytical work in plane geometry, and probably 
was not shared by the mathematicians as a description of their views on the meth-
ods of mathematical discourse. It was, however, important and useful for Pappus. 
He brought it into play in Coll. III, and repeated it in a shorter version in Coll. VII. 
It served him well as a guiding principle to select, revise, and structure his material 
in Coll. IV, in order to give a coherent profile of the mathematical tradition. It pro-
vides a unifying perspective for the text of Coll. IV. Coll. IV then tells us a reason-
ably coherent, and astonishingly comprehensive, story about how classical Greek 
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mathematics worked. The present translation and commentary traces and docu-
ments this story. It can be useful for a reader coming to Pappus’ Coll. IV for the 
first time, trying to appreciate it as a whole, as a coherent account. And it can be 
useful as a basis for further historical and philosophical investigations that attempt 
to take Pappus seriously as a writer, not just as a mine. Unlike the great Hellenistic 
mathematicians Archimedes and Apollonius, the author Pappus did not endeavor to 
produce new, original, creative work that would develop his field toward the future. 
He was essentially a commentator, who attempted to preserve, transmit, and explain 
the tradition. He does not proceed mindlessly or randomly, though. He is a compe-
tent mathematician trying to make sense – with respectable success – of the tradi-
tion. His goals as a writer simply differ from those of the writers of the “golden age” 
of Greek mathematics. There is no need to view these goals, or the testimony that 
results from them, as inferior or of lesser intrinsic value for historical scholarship, 
as has often been done in the past. Whether or not it makes sense to view the period 
of late antiquity as an era of intellectual and cultural decline, the current trend in 
historical scholarship on ancient Greek mathematics, with a renewed emphasis on 
taking ancient authors (of any period) seriously as writers in their own context and 
on their own terms could be fruitfully applied to Pappus as well.

1 Life and Works of Pappus of Alexandria

The following remarks draw mostly on Ziegler’s article in the RE, with additional 
information from Jones1 1986a, pp. 1–20, to which the reader is referred for further 
information. My assessment of Coll. IV differs from the one given in these sources.

1.1 Pappus’ Life and Times

Detailed biographical information on Pappus is extremely scarce. His lifespan falls 
either into the reign of Theodosius, i.e., the second half of the fourth century AD, 
or perhaps the reigns of Diocletian and Constantine, i.e., the time around 300 AD. 
It was a time in which Christianity had become the dominant religion in the Roman 
Empire. The pagan cultural elite, to which Pappus belonged, was in the defensive, 
and it was fighting an increasingly hopeless battle for the survival of the cultural 
tradition that was its heritage. Mathematics was part of that tradition. Before the 
century was over, Christianity had transformed from a persecuted religion (the last, 
rather brutal wave of persecutions occurred in 302/303) to the only religion allowed 
in the State (395). Under its control, the ancient pagan culture was rigorously, 
sometimes aggressively, suppressed. In some regions, especially in Alexandria, the 
tides of clashing world views ran particularly high, and had done so already at the 
end of the third century. In 415, the pagan mathematician Hypatia was murdered 

1 see also Jones 1986b, Treweek 1957.
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there on account of her commitment to Neoplatonism. In short, it was a period of 
fundamental transitions, with accompanying widespread social and even existential 
insecurity. It is perhaps not insignificant that Pappus lived and was probably born 
at Alexandria, in all likelihood had Neoplatonic leanings (as did most of the edu-
cated pagans during that period), and wrote his survey of the classical mathematical 
tradition under the circumstances just described. For this may help explain why 
Pappus, when dealing with geometry, looks constantly backward, to the classics in 
the field, and attempts to make them accessible, just as the culture of which they 
formed a part was increasingly marginalized, and was soon going to be history. 
It is almost as if he was trying to make sense of the tradition of his field so that he 
could leave to posterity a key to it, since there was not going to be a thriving ongoing 
tradition of instruction. This was perhaps a time to look backward, and save and 
defend what could be saved rather than a time to build for the future. From this 
perspective, the much deplored lack of originality, which has been detected in the 
works of Pappus and others during this time (e.g., Theon of Alexandria, who was 
the father of Hypatia, and the most influential editor of Euclid’s Elements), becomes 
understandable. It should not be equated with a lack of mathematical competence.

1.2 Pappus’ Works

Almost all of Pappus’ work belongs to the field of mathematics. Four areas can be 
identified, and they are all “classics”: geometry, geography, astronomy, and 
mechanics. The latter three are “mixed sciences,” applied geometry, if you will. In 
what follows, I will give a brief list of Pappus’ works, starting with a few remarks 
on the Collectio. I will be a little more detailed with respect to the geometrical 
works, and focus again on Coll. IV specifically at the end.

The Collectio is the only one of Pappus’ works that survives in Greek, and there-
fore our main source for Pappus’ mathematics (his commentary on Elements X 
survives in Arabic, see section “Geometry Proper”). Book I of the Collectio is lost 
(unless identical with the commentary on Elements X), and of Book II only a part 
survives. The rest of the collection is more or less preserved intact in the original 
Greek. There are gaps, e.g., the proem and conclusion of Book IV, or the instrumental 
constructions in Book VIII, as well as its conclusion. The work was not conceived 
by its author as a single, closed, coherent opus, as the different addressees men-
tioned in the proems, the numerous duplicates, the divergent subject matters, and 
finally some explicit cross references to “a preceding book” attest. In fact, I will 
list Book VI as an astronomical work, and Book VIII as a work on mechanics. 
Both are, of course, also works on “applied” geometry.

1.2.1 Geometry Proper

(a) Commentary on Euclid, Elements X. This work, perhaps in two books, is 
preserved in an Arabic translation. An edition with English translation is 
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 available (Junge and Thomson 1930). It replaces an earlier German translation 
by Suter and an even earlier French translation of excerpts by Woepcke. Jones 
suspects that this commentary could be the otherwise lost Book I of the Collectio. 
It deserves scholarly attention, for it could contribute to our understanding of 
the ancients’ theory of irrationals (cf. Coll. IV, Props. 2 and 3).

(b) Geometrical books within the Collectio. Book II contains a kind of game in 
numbers, around a hexameter verse. On the basis of this example, numerical 
operation with large numbers is illustrated. Perhaps the relevant techniques 
were those developed by Apollonius. Jones contradicts the common assump-
tion, put forth originally by Heiberg, that the material stems directly from 
Apollonius’ Ocytokion.
Book III, addressed to the head of the mathematics division at the Platonic 
Academy in Athens, a woman called Pandrosion, treats of construction prob-
lems that were of special interest to Platonists. Pappus starts off by criticizing 
three flawed arguments by students of hers, and adds further, more general 
explanatory remarks on an elementary level. The first problem discussed is cube 
duplication. Pandrosion’s student had attempted a plane solution (circles and 
straight lines, calculation of ratios). It is refuted by extensive critical analysis, 
and Pappus then moves on to formulate his meta-theoretical position on the three 
distinct kinds in geometry and the impossibility to achieve a correct solution 
from the “wrong” kind. An exact geometrical solution for the cube duplication 
requires conic sections. The cube duplication thus is an example for a “solid” 
problem. Pappus is trying to make the case that if one wants to restrict oneself 
to the argumentative scope provided by circle and straight line, one has to 
restrict oneself to corresponding problems, i.e., those that are “by nature” plane. 
The meta-theoretical passage is a duplicate of the meta-theoretical passage in 
Coll. IV. Pappus does not give an exact solution for the cube duplication via 
conics in Coll. III, however. Apparently, he is trying to do justice to the level of 
mathematical education in his particular audience. Instead, he proposes simple 
ruler manipulation as a device to establish the crucial neusis (not claiming that it 
is an exact mathematical construction).1 The next topic is the geometrical rep-
resentation of the three Pythagorean means.2 Here, too, Pappus starts from a 
student argument, which he criticizes, and then proceeds to a discussion and 
construction of ten means. His approach shows affinities to the methods 
employed by the Neopythagorean Nicomachus (who is usually seen as the 
authority in this branch of investigating numbers), but Pappus’ ten means are not 
completely identical with the ones Nicomachus lists. A third part of Coll. III is 
devoted to the construction of a triangle inside a given right-angled triangle 

1 A neusis is a geometrical construction, in which a straight line of given length has to be placed 
between two other given lines in such a way that its continuation verges (Greek verb neuein) 
toward a given point. On neusis constructions see the commentary on Props. 23–25 below.
2 The original Pythagorean means were the arithmetical, geometrical, and the harmonic mean. 
A special kind of number theory, or number speculation, arose around them, and their number was 
increased to 10. This kind of consideration was of special importance in the Neopythagorean 
school. The reader is referred to Nicomachus, Introductio Arithmetica, and the literature on it.
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under the condition that the sum of the two sides is larger than the sum of hypot-
enuse and one kathete. Again, Pappus starts from a discussion of a flawed argu-
ment presented to him, and moves on to generalizing elementary considerations. 
As a source for his exposition on the topic, he mentions an otherwise unknown 
author Erycinus. The book concludes with a constructive inscription of the 
Platonic solids into a sphere. The presentation is in analytic-synthetic form and 
differs decisively from the one given in Elements XIII. An appendix to Coll. III 
revisits the problem of cube duplication, offering an alternative discussion to the 
first group of propositions mentioned above.
Book IV, as I hope the present complete translation and commentary will docu-
ment, is a representative portrait and survey of the methods in the three kinds 
that make up classical geometry, on the basis of illustrious examples for the 
most part, exhausting the classical geometrical tradition down to the time of 
Apollonius. The authors and sources used are Aristaeus, Euclid, Archimedes, 
Nicomedes, and Apollonius. The book has three parts, in correspondence to 
the partition of geometry into three kinds: plane, linear, and solid. For a more 
detailed account of Coll. IV see the following sections.
Book V studies isoperimetric figures. Within the collection, it is the book that 
shows the most signs of careful polishing. It contains two proems, and consists 
of two parts. Part I discusses isoperimetric figures in the plane. It is based on a 
work of Zenodorus. Part II discusses isoperimetric figures in space. It is less 
comprehensive than the first part. Contained are considerations on semiregular 
polyhedra, as well as the Platonic solids and their relation to each other and the 
sphere. Perhaps Pappus is using a work by Archimedes as his source.1 For he 
ascribes a work on semiregular polyhedra to Archimedes, and numerous argu-
ments in Coll. V show a close conceptual connection to arguments in 
Archimedes, De Sphaera et Cylindro.
On Book VI see section “Astronomy/Astrology”.
Book VII is a handbook in catalog form. It is addressed to a certain Hermodorus, 
and was intended for use while going through the works belonging to the ana-
lytical field in mathematics, as a kind of running commentary.2 The main, though 
not the only, author in this field was Apollonius. For each of the works dis-
cussed, Pappus gives a list of content, a synopsis, and elementary auxiliary lem-
mata for intermediate steps, presumably closely following the actual sequence 
in the texts. His lemmata mostly consist in reductions to, or deductions from, 
propositions in Elements I–VI (elementary geometry). They seem to be intended 
to facilitate reading the actual texts themselves, and the reader is expected to 
have them in front of him or her. Unfortunately, most of the texts in the analyti-
cal field are lost (notable exceptions are the Data and the Sectio rationis), so that 
Coll. VII is in fact our main source for a reconstruction of the treasury of analysis 
(not quite its original purpose!). Its value for research in the history of mathe-

1 Jones (1986a, pp. 578–580) argues for a possible connection of a part of these propositions to 
Aristaeus’ lost work on the Platonic solids. Pappus may have used it as an additional source.
2 See Jones (1986a) for a translation and commentary of Coll. VII. The book also contains most 
valuable information on Pappus, the Collectio, and Greek geometrical analysis.
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matics therefore lies not so much in its actual content, but in the fact that this 
content provides an indirect and partial access to the vast field of Greek analyti-
cal geometry, which is now lost to us.
On Book VIII see section “Mechanics.”

1.2.2 Geography

Two works are attested:

(a) Chorography of the known world. It is based on Ptolemy’s Geography and con-
tains, among other things, curiosities in ethnography. Fragments are preserved in 
Armenian, in a text dating from the seventh century. Ziegler mentions a French 
translation, Jones cites a newer one into English by Hewson from 1971.

(b) Rivers in Libya. The book is listed in the Suda. No other traces survive.

1.2.3 Astronomy/Astrology

The sheer number of titles, and their projected volume, indicates that this was an 
area of special interest to Pappus, maybe his main focus. Unfortunately, not much 
of it is preserved.

(a) Commentary on Ptolemy’s Almagest. Some remarks on Books V and VI sur-
vive in the original Greek. They were edited by Rome within a more compre-
hensive work which also contained Theon’s commentary (Rome (1931–1943), 
cited from Jones (1986a) ). Cross-references and a reference in Eutocius con-
fi rm that commentaries on Books I, III, and V existed. According to Jones, it is 
very likely that Pappus commented on all 13 Books. The commentary must 
have been a very extensive work.1

(b) Commentary on Ptolemy’s Planisphaerium. This work is not preserved, but 
Fihrist mentions it in connection with an Arabic translation by Thabit ibn Qurra. 
Ptolemy’s work dealt with stereographical projection, and is preserved, accord-
ing to Jones, in an Arabic translation.

(c) Commentary on the Analemma of Diodorus. This work is mentioned in Coll. 
IV, in connection with the discussion of the conchoid (see Prop. 23). The ana-
lemma was a method for problem solving in spherical geometry, and derived 
from astronomical applications in connection with the sun dial. Neither Diodorus’ 
work nor Pappus’ commentary survive. Perhaps fragments of the commentary 
are contained in one of the Bobbio manuscripts (cf. Jones 1986, p. 12).2

(d) Book VI of the Collectio: Astronomical Field. This work is fully preserved. 
Like Coll. VII (see above), it is a kind of handbook with explanations in catalog 
form, to accompany the study of the so-called minor astronomical works as a 

1 Cf. Neugebauer (1975, p. 966).
2 On Diodorus and the Analemma see also Neugebauer (1975, pp. 840 ff).



xx General Introduction

running commentary. The text presupposes knowledge of Elements I–VI. In a 
fi rst part, Pappus attempts to correct mistakes commonly made, and gaps unduly 
left in the usual teaching (!) of Euclid’s Phaenomena, Theodosius’ Spherics, 
and Theodosius’ Days and Nights. A second part contains excerpts and explanatory 
remarks on theorems associated with Autolycus and Aristarchus (compared to 
Hipparchus and Ptolemy), and with Euclid’s Optics.1

(e) Astrological Almanach. According to Jones, an excerpt from this work ascribed 
to Pappus is preserved in a Florentine compilation book of astrological texts. 
In addition, Jones mentions a reference to an astrological work by Pappus in an 
astrological manuscript from the thirteenth century.

(f) Alchemistic Oath. This is a rather short formulaic text with theological-spiritual 
content. According to Tannery (1912) and Bulmer-Thomas (in his DSB article), 
it has to be accepted as essentially authentic. Its main part is strongly Neoplatonic 
in outlook. The conclusion shows gnostic infl uence, and therefore Jones argues 
that this sentence (loosely connected to the main text) should be viewed as an 
interpolation.

1.2.4 Mechanics

Book VIII of the Collectio. This work was circulated in late antiquity independently 
from the rest of the Collectio under a title like “introduction to mechanics.” It was 
apparently widely distributed, and was received into the Islamic culture at a rela-
tively early date. Extant Arabic translations could be used to close some gaps in the 
Greek text as it has come down to us. Because of its special history, a few remarks 
on its content may be appropriate, even though it is not directly relevant for Coll. 
IV. The introduction characterizes the field of mechanics from a methodological 
point of view, and differentiates two sub-disciplines, or branches: theoretical and 
practical. The division is given by reference to Heron of Alexandria, the major 
authority in the field. The relation of geometry and mechanics is described in terms 
that are strongly reminiscent of Aristotelian concepts of science in general, and of 
the “mixed sciences” in particular. Archimedes is named as the founder of the theo-
retical branch of mechanics; Carpus and Heron are mentioned as important figures 
as well. Finally, the introduction gives a survey of the book. Most of the material 
in Coll. VIII probably rests, directly or indirectly, on Heron’s work in mechanics. 
A first group of propositions deals with classical problems in ancient (theoretical) 
mechanics: centers of gravity, motions of a weight on an inclined plane. For the 
latter, Heron’s Baroulkos is referred to. A second group of theorems targets instru-
mental techniques for dealing with (practical?) problems in mechanics. Concrete 
instruments for construction are discussed. Inter alia, the construction of the neusis 

1 Heath (1921, II, p. 397) and Neugebauer (1975, p. 767) both give a rather negative judgment of 
this work of Pappus. Perhaps a more favorable judgment would result, if the “didactic” scope and 
purpose of the work were taken into account.
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used in cube duplication by simple manipulation with a marked ruler (cf. Coll. IV, 
discussion of the conchoid), and the determination of the base of a chipped-off 
cylinder (broken column?) with the help of an ellipse through five points, are sub-
jects. Constructions with a ruler and a compass with fixed distance can be restored 
from Arabic translations. The book concludes with extensive excerpts from works 
by Heron on cogwheels and screws.

2 Survey of Coll. IV

Coll. IV, the subject of the present translation and commentary, belongs to the 
geometrical works proper (see above). Its beginning, including the proem, is missing. 
We have no explicit statement of Pappus’ intentions and goals in the work and need 
to reconstruct its subject matter from the text itself. This is not a trivial task. For the 
text shows no overall thematic coherence on the level of mathematical content. 
Only weak motivic connections can be detected, and they constitute something like 
a bare red thread, establishing partial and very loose coherence on the literal level. 
As a result of this lack, the judgment on Coll. IV has so far been that it is just a 
random collection of diverse, indeed very diverse, mathematical vignettes. In my 
opinion, this goes too far. An overall governing plan can, after all, be detected in 
Coll. IV. It is to be found not on the level of literal, mathematical content, but on 
the level of methodology. The famous programmatic statement on the three kinds 
of geometry serves as a focal point of reference for the material presented by 
Pappus. In all the vignettes he presents, even where the topic he chooses to exem-
plify a certain methodological approach is very appealing and interesting in itself 
(e.g., squaring the circle), it is the methods that are profiled and emphasized, with 
the content serving as an incentive, to capture the reader’s interest. Just as the copy-
ist indicates at the end of Coll. IV, the book contains “splendid theorems, plane, 
solid and linear ones.” It divides into three parts. Pappus surveys the methods of all 
three branches of classical Greek geometry, using examples that are either clearly 
designed by himself so as to exhibit methodological aspects, or by drawing on 
famous mathematicians and their results (preferably spectacular ones, like the 
squaring of the circle or the duplication of the cube or the trisection of the angle): 
Euclid, Archimedes, Nicomedes, and Apollonius.1 Despite this restriction to just a 
few major authors, and the rigorous restriction to relatively short argumentative 
units as “exemplifiers,” Pappus succeeds in presenting a rich and rather differenti-
ated picture of the different styles and traditions within classical Greek geometry. 
His representation is not exhaustive, and not intended as a complete documentation. 
Rather, it is consciously and planfully selective. His approach is via exemplary 

1 Perhaps Aristaeus’ work on solid loci was also used directly. At present, it cannot be decided to 
what degree Pappus may have drawn directly on pre- Euclidean sources. Compare below, Props. 
31–34.
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arguments that are didactically sound and representative. He makes an effort to 
select arguments that can be made accessible on the basis of a knowledge of 
Elements I–VI (elementary geometry), while nevertheless exhibiting the typical 
features of a particular style in mathematics.

The three parts of Coll. IV are:

I Plane contributions Props. 1–18
II Linear contributions, Props. 19–30
Meta-theoretical passage on the three kinds of geometry, with homogeneity 

requirement
III Solid contributions, transition from solid to linear, demarcating solid from plane 

problems, Props. 31–44

Props. 1–3 illustrate classical synthetic argumentation in direct connection to 
Euclid’s Elements. All three of them follow the standard pattern of apodeixis 
(proof) familiar from the Elements: a proposition is formulated, set down in the 
concrete (ekthesis), with ensuing construction (kataskeue); a deductive proof, drawing 
on the diagram, then leads to the conclusion.1 Prop. 1, a theorem, gives a general-
ization of the Pythagorean theorem and is closely modeled on the argument given 
in Elements I, 47. It illustrates the form of a classical synthetic proof. Props. 2 and 
3 are problems2; they construct irrational lines in close connection to Elements X.3 
Prop. 2 gives a surprisingly simple construction of the Minor; it is closely modeled 
on Elements XIII, 11. Prop. 3 starts from a configuration that is very similar to that 
for Prop. 2 and gives a construction for an irrational that is not contained in 
Elements X, but is one level “higher.” Perhaps it shows how one can work beyond 
Euclid, while remaining firmly within the Euclidean framework.

Props. 4–6 illustrate the structural schema of (plane) analysis-synthesis. The second 
part of this two-partite procedure is essentially a synthetic proof, like the ones given 
in Props. 1–3. The first part, the analysis, is essentially a heuristic strategy with the 
goal of identifying grounds for a deductive proof. One starts from the assumption 
that one has already solved the problem at hand (or that the proposition is in fact 
true), and then transforms and transposes features in this “target situation,” until 
one reaches a situation which is indeed already corroborated. This phase of the 
analysis is called “apagoge” or “epagoge.” One operates via reductions or deduc-
tions, and via suitable extensions of the configuration. In a second phase of the 

1 For the format and ingredients of a classical synthetic argument, specifically a synthetic proof, 
see the introductory remarks and the proof protocol in the commentary on Prop. 1 with references. 
See also Heath (1926, pp. 129–131). A very helpful investigation of classical Greek mathematical 
proof is Netz (1999).
2 In a theorem, one proves a proposition, most often by constructive proof. In a problem, one constructs 
a required entity, and then shows that this construction has the required properties. On theorems versus 
problems in Greek geometry cf. Heath (1926, pp. 124–129).
3 For an explanation of the term “irrational lines,” and for some information on Elements X, including 
the Minor, see the introduction to Props. 2 and 3 in the commentary.



xxiiiGeneral Introduction

analysis, one then shows that the end state, as it were, of the apagoge is independent 
from the initial analysis-assumption (the assumption that the problem is solved, or 
the theorem in fact true). One needs to show that the ingredients of the end state of 
the apagoge are given (roughly speaking: determined and constructible)1 within the 
original configuration or via suitable input from elsewhere, and determine, if need 
be, conditions for solvability as well as sub-cases (diorismos). This second phase 
of the analysis is called (in a modern term) resolutio. After a successful resolutio, the 
synthesis can pick up and provide a deductive proof, drawing on the material and 
steps in the analysis. In many cases, the synthesis will be obvious after a successful 
analysis, echoing the resolutio, and then retracing the steps of the analysis backward.2 
Obviously, the analysis carries the burden, contains the creative mathematical work, 
in an analysis-synthesis. The synthesis nevertheless is the part that carries the proof. 
The mathematical content of Props. 4–6 is not very spectacular. Instead, the method 
itself, the interplay of analysis and synthesis, and their respective roles, are made 
very transparent. Pappus himself is probably the author of these theorems.

Props. 7–10 center on a special case of the so-called Apollonian problem (given 
three circles, find a fourth one that touches them all). Apollonius’ Tactiones, though 
not explicitly quoted, clearly form the background of this group of propositions. The 
arguments target the strategy of geometrical analysis only (i.e., they are not complete 
theorems/problems). No complete solution even to the special case discussed is 
given; the arguments focus specifically on the resolutio phase of analysis, and within 
it, the determination of given features. Prop. 7 is unrelated in content to the problem 
at hand, and illustrates the operation with Euclid’s Data, to show that for a quadri-
lateral with all four sides given in length, and a right angle at one corner point, the 
diagonal that does not subtend this angle is given as well. Obviously, it is not this 
content, but rather the methods that are in view. Prop. 8, for which perhaps an argu-
ment from Apollonius, Tactiones I, 16/17, served as a source (see “Translation and 
Commentary”), is the most intrinsically interesting proposition in the group. 
Unfortunately, it is not fully worked out and edited. It appears that Pappus himself 
has constructed this group of propositions, in the form presented, as well. The group 
yields a sketch of the methods employed in the analytic field (for plane problems), 
with an emphasis on illustrating the crucial resolutio phase. By integrating Prop. 7, 
Pappus makes the point that Euclid’s Data are to be viewed as a basic and central 
reference work in this area (even against a trend in his source text for Prop. 8). What 
is sadly missing in this portrait of the resolutio strategy is an adequate representation 
of the diorismos. It was central for Apollonius, who was the main authority in this 
area of plane analytic Greek geometry.

1 This is a technical term: Latin: data, Greek: doJejnta. See the introduction to Prop. 7 in the 
commentary.
2 For the schema of analysis-synthesis, its ingredients, its significance, and its relation to classical 
synthesis, see the introduction to Props. 4–12 in the commentary. Compare also Pappus’ general 
characterization of the method in the proem of Coll. VII.



xxiv General Introduction

Props. 11 and 12 round off the picture of plane analysis-synthesis, focusing on 
the apagoge phase of the analysis. Again, the content of the propositions is not 
mathematically relevant. Prop. 11 is purely synthetic. An easily reconstructible 
analysis would be limited to the non-algorithmic strategy of suitably extending the 
configuration. In such a situation, the analysis work completely disappears into the 
kataskeue (construction) within the synthesis, and does not leave any traces in the 
apodeixis. Perhaps this was what Pappus wanted to illustrate with Prop. 11.1 Prop. 
12, the last proposition in Pappus’ portrait of plane analysis-synthesis, contains a 
full analysis and synthesis, just like the first proposition in this group did. In the case 
of Prop. 12, the apagoge consists solely in reduction, and it is purely deductive. The 
result is that the resolutio is minimal, and the synthesis exactly retraces the steps of 
the analysis, because all the steps used in the apagoge are also convertible. Prop. 12 
represents the original, and probably also historically original, core of ancient geo-
metrical analysis: the idea of reduction. Unless he drew on otherwise unattested 
examples from early Greek geometry, these two propositions are constructed by 
Pappus – presumably with the intention, at least for Prop. 12, to illustrate the 
analytical strategy in the apagoge phase.

Props. 13–18 form by far the largest coherent bit of text in Coll. IV. In fact, we 
get a kind of monograph in miniature format (in an abridged, and therefore some-
what fragmented form). The subject of this charming, clever group of propositions 
is the arbelos configuration (cf. the figure in Prop. 16). In it, a surprising connection 
manifests itself between the ratios of diameters and perpendiculars in a finite con-
figuration with an infinite series of inscribed tangent circles on the one hand, and the 
natural numbers on the other. The mathematical subject matter connects to consid-
erations on points of similarity, and in this sense, it reaches rather deeply and taps 
into an area that was much later systematically developed in projective geometry. 
The argumentative means are purely synthetic, and astonishingly simple. The author 
succeeds in capitalizing ingenuously on means from elementary plane geometry, 
while presenting his material “locally” in a rather conservative style. The central 
theorem in the group employs a nuclear form of complete induction. The mathematical 
content of Props. 13–18 is thus highly attractive, and beautifully, thought-provokingly 
displayed. The group of theorems has been associated with Archimedes as a poten-
tial original author. Despite its fragmented form, one may very well think it (or 
rather its more extended original) worthy of Archimedes. Even though such an 
ascription cannot be verified, the arbelos treatise exhibits a well-defined mathemati-
cal style, the features of which warrant the label “mathematics, Archimedean style” 
for this type of plane ancient geometry.

Without explicitly stating so, Props. 19 ff. make the transition from plane to 
linear geometry. Even without an explicit remark by Pappus, he may have reason-
ably expected his audience to note that we are dealing now with problems of a 
different character, and with mathematics of a different kind. The author of Props. 

1 But see the commentary on Props. 11 and 12.
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19–22 is Archimedes. These propositions deal with the plane spiral in a way that 
shows some connection to theorems from Spiral Lines, but nevertheless radically 
differs in the investigative and argumentative methods employed. Among other 
things, Prop. 21 (stating that the area of the spiral is one third of the circle in which 
it is inscribed) employs Archimedes” mechanical method,1 and operates with indi-
visibles (or else an implicit argument via transition to infinity). Prop. 22 gives a 
theorem on the size of spiral sectors. The propositions are a valuable source for the 
heuristic background of Archimedes’ study of spiral lines. They belong to the con-
text of squaring the circle, and probably illustrate the seminal contribution made by 
Archimedes toward the mathematical investigation of motion curves (the “linear 
kind” in Pappus’ terminology). Such curves are typically generated by abstract 
idealized motions, a quasi-mechanical ingredient. When dealing with them, one has 
to make a transition to mathematically graspable symptomata, which then are the 
basis for the geometrical investigation as such. Obviously, for the development 
of the mathematics of such curves, one has to mathematize suitably. In antiquity, 
two paths were pursued for this: either one proceeds by fully exploiting the 
mechanical metaphor (Archimedes), or by conducting an analysis of loci (Nicomedes, 
inter alia, see following sections). At least this is the picture that emerges from 
the developmental story Pappus tells.2 Both the concern for an adequate mathemati-
cally acceptable definition of the curves and the concern for establishing a valid 
geometry on them are of major interest.

Props. 23–25 target a second motion curve, the conchoid of Nicomedes.3 The 
propositions are drawn from Nicomedes’ (lost) treatise on the conchoid. The genesis 
of the curve is via motions, but unlike Archimedes’ spiral, where the symptoma is 
derived directly from the motions, Nicomedes’ conchoid is characterized point-
wise, in a quasi-analytical way, as the locus of all points that have a certain neusis 
property: all points on the curve have the property that the straight line from them, 
verging toward the pole, cut out a line of fixed length between the curve and a given 

1 On the ingredients and the significance of Archimedes’s “mechanical method” see the introduction 
to Props. 19–22 in the commentary with bibliographical notes; cf. also Archimedes, Ephodos and 
Quadratura Parabolae.
2 See the introduction to Props. 19–30 in the commentary, on the symptoma-mathematics of 
motion curves, also on the terms “mechanical,” “instrumental,” genesis, symptoma, and on the 
question how, and to what degree, this field of study is viewed as geometry. Descartes obviously 
had this part of Coll. IV in view when he developed his classification of curves, and excluded what 
he defined as “mechanical” curves. He seems to have assumed (erroneously) that the ancients 
dismissed all these curves and all mathematics on them, whereas he dismissed only some. Newton, 
drawing likewise on Coll. IV, came to a different assessment. See the commentary on Props. 
19–30 passim.
3 This curve arises when one moves a ruler that is attached to a fixed point (pole), along a fixed 
straight line (canon), with the stipulation that any intercept between that straight line and the curve 
has to have a fixed length. The main branch of the arising curve has the shape of a shell, hence the 
name for the curve. See the figure in the translation, Prop. 23 with introductory paragraphs.
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straight line (the canon).1 This may very well mark a transition toward a different 
characterization of the higher curves, via analysis (see Props. 28 and 29). With a 
neusis construction that can be won from the conchoid (construct a line that verges 
toward a fixed point and creates an intercept of given length inside a given angle, 
i.e., between two given straight lines, Prop. 23), Props. 24 and 25 establish the cube 
duplication, indeed the production of a cube that has a given ratio to a cube that is 
put forth. The text in Props. 23–25 has a partial duplicate in Coll. III, and another 
one in Coll. VIII. The most extensive source on ancient cube duplications is, in this 
case, not Pappus, but Eutocius In Arch. Sph. et Cyl. II, pp. 54–106 Heiberg. 
Eutocius’ report also contains Nicomedes’ construction (pp. 98–104 Heiberg), and 
a passage very similar to Prop. 24.

The author Nicomedes forms a bridge to the next group of propositions. Props. 
26–29 deal with the quadratrix, its genesis (generation), symptoma (characterizing 
mathematical property), discussion of some fundamental problems with the curve 
(source: Sporus), two symptoma-theorems on it (Prop. 26, rectifying the circle, 
Prop. 27, squaring the circle), and two arguments via analysis of loci on surfaces 
that seek to show, via analysis, that the quadratrix is uniquely determined, relative 
to either an Apollonian helix or an Archimedean spiral. The quadratrix itself is a 
transcendental curve in the plane. It was probably invented in the fifth or fourth 
century BC (i.e., before Euclid) for the division of an acute angle in a given ratio. 
It can, however, also be used to square the circle, and it is this property from which 
the curve takes its name.2 Nicomedes is explicitly associated with the quadratrix 
and the quadrature (Props. 26 and 27). He may be the author of Prop. 29 as well. 
Props. 26–29, along with the minor quadratrix theorems in Props. 35–41, are our 
only source on the ancient quadratrix, and Props. 26–29 are our only sources on 
squaring the circle with it. The analytical characterizations in Props. 28 and 29 are, 
in addition, our only testimonies on analysis of loci on surfaces. Thus, this part of 
Coll. IV is especially interesting in terms of its mathematical content. But even so, 
it is again the investigative and argumentative methods, this time for linear geometry 
and its characteristic symptoma-mathematics, that are the focus of Pappus’ presen-
tation. It remains unclear to what degree the analytical characterization of curves 
like the quadratrix, as in Props. 28 and 29, is representative, and what the Hellenistic 
mathematicians who specialized in this area thought and produced on this issue. 
Among other things, the status of the curves, even after analytical characterization, 
remains somewhat shady. Yet in Pappus’ portrait, results like Props. 28 and 29 

1 On the meaning of the term “neusis,” and for examples for neusis constructions in ancient geometry, 
see the commentary on Props. 23–25.
2 More specifically, the quadratrix directly yields the rectification of the arc of a quadrant. From 
there, quadrature is immediately available, once one has a theorem like Archimedes, Circ. mens. I. 
Whether the discovery of the quadrature property is pre-Euclidean (Dinostratus, fourth century BC) 
or post-Archimedean (Nicomedes, third/second century) BC is a matter of dispute. On this issue, 
and generally on the quadratrix, see the commentary on Props. 26–29.
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represent the culmination of a tradition of justifying the foundations of symptoma-
mathematics of the higher curves via analysis. He explicitly accepts the symptoma 
– theorems on the quadratrix as geometrically valid.

Prop. 30 returns to Archimedes, also the author of the first propositions in 
Pappus’ portrait of the geometry of motion curves. He appears to have been the 
initiator of this branch of mathematics, while working specifically along a path of 
investigation that incorporates quasi-mechanical methods. A spiral is generated on 
the surface of a hemisphere, via two synchronized uniform motions (speeds in the 
ratio 1: 4). From this genesis, the main symptoma of the spiral is directly read off. 
Then an area theorem is proved: The area cut off on the sphere above the spiral is 
eight times the segment cut off from a quadrant of a maximum circle when one 
connects the end points of the arc, and the surface cut off on the hemisphere below 
the spiral is eight times the remaining triangle in the quadrant, i.e., it is equal to the 
square over the diameter of the sphere. This theorem constitutes the first example 
for a successful quadrature of a curved surface in space. Prop. 30 is perhaps some-
what harder to read than the other contributions in Coll. IV, because of the cumber-
some notations it uses. Nevertheless, its result is rather interesting. Connections to 
De Sphaera et Cylindro abound. The argumentative strategy resembles the one used 
in Prop. 21 (limit process, mechanical method). Pappus’ portrait suggests that 
Archimedes was the main representative of this quasi-mechanical branch of math-
ematics of higher curves. His successors seem to have favored the analytical path.

At this point, Pappus concludes his portrait of the mathematics of the linear kind. 
A few further examples on the symptoma-mathematics of the quadratrix will come 
up in part III. Part II focused on the big topics, as it were, especially the foundations, 
and the methodological horizon, of “higher” mathematics. Pappus moves on to a 
general remark on the three kinds of geometry, and the methodological consequences 
to be drawn from this tri-partition. This is the famous meta-theoretical passage. There 
are to be three non-overlapping kinds of mathematics, determined by the methods 
used to solve problems and accomplish constructions. First, there is plane geometry. 
It uses only circles and straight lines. This branch of mathematics and its different 
sub-branches were the subject of Props. 1–18. Next come problems that cannot be 
solved with circle and straight line alone, but need one or more conic sections in 
addition. This kind of mathematics is called solid, because conics “have their gen-
esis” in a cone, i.e., a solid figure (circle and straight line are generated in the 
plane). Pappus’ presentation suggests that the geometry of conics developed out of 
an attempt to solve problems that were unsuccessfully attacked with plane means at 
first. He specifically points to the angle trisection. In the parallel text in Coll. III, the 
cube duplication plays this role. Schematic though it is, Pappus’ account may very 
well be more or less accurate. His picture concurs with the estimate of most modern 
scholars on the development of the theory of conic sections. So far, Pappus has not 
presented any “solid” arguments. They will be the subject of Props. 31–34 and 
42–44. A third kind of mathematics is to be called “linear.” Its basic curves cannot 
be characterized as precisely as the circles, straight lines, and conics of the other two 
kinds. In fact, this kind of mathematics covers all the rest of mathematical curves. 
It is not as easy to see how they form a single “kind.” Instead of a characterization 
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by means of basic curves, Pappus gives a longer description which is not quite 
uniform. He differentiates two “paths” toward the fundamental curves: they are 
either generated by motions, or determined via analysis. Pappus mentions a few 
contributors, but their works, and their curves, are lost, so that we cannot take 
recourse to any text outside of Coll. IV to evaluate Pappus’ description of the third 
kind. Pappus shows some uneasiness with regard to the status of the curves. 
Nevertheless, he unequivocally counts the mathematics on them, i.e., the symptoma-
mathematics of the curves, as fully legitimate geometry. Examples for this kind of 
mathematics were given in Props. 21 and 22, 23, 26 and 27, and 30; further examples 
on the symptoma-mathematics of the quadratrix will be given in Props. 35–41.

Given that geometry is to have these strictly separate kinds (gene), a homogeneity 
criterion applies. It is required that mathematical problems must be solved with the 
means that are appropriate to the specific nature of the particular problem, i.e., they 
must be “akin” to the problem. Obviously, this targets not so much attempts to solve 
problems with means that are insufficient (a solid problem simply cannot be solved 
by plane means, since “solid” means “in need of using at least one conic section”). 
Rather, the requirement targets solutions that use “higher” curves than required, e.g., 
solid solutions where plane methods would have sufficed, and linear solutions where 
solid or plane methods would have sufficed. They are rejected, because they fail 
to capture the object of investigation for what it essentially is. They are not “akin” to 
it, they come from the wrong genos. This homogeneity requirement is different from 
modern ways of thinking about appropriate means, even when the same label is 
used. With Pappus, it is closely connected to an essentialist view on definition and 
scientific argumentation,1 not just to the idea of minimalizing the means required. 
Pappus’ homogeneity criterion was noticed, much discussed, and also appropriated 
in various ways, by the mathematicians in the sixteenth and seventeenth century 
reading Pappus, e.g., by Vieta, Descartes, and Newton, and developed and trans-
formed from thereon. It is doubtful whether it was operative in this generality in 
antiquity. However, a similar criterion was developed by Apollonius for the differ-
entiation of plane versus solid neusis problems and loci. He did in fact require that 
plane neuses must be constructed with plane means. And he developed a toolbox for 
differentiating the level of problems, where the question was whether a problem was 
plane or solid. Apollonius himself may have been more interested in minimizing 
operational tools and procedures than in an essentialist justification such as the 
one Pappus employs. Nevertheless, the resulting restriction requirement was his. 
Apparently, it was used by others after him to scrutinize already existing neusis argu-
ments, and other theorems as well. Perhaps the two examples for arguments that 
fail to meet the homogeneity requirement mentioned by Pappus, a neusis from 
Archimedes’s Spiral Lines, and Apollonius’ construction of a normal to the parabola, 
come from this very context. An analysis of the Archimedean neusis, with the inten-
tion of showing that it is solid, is given in Props. 42–44.

1 Cf. Aristotle’s theory of science, especially Posterior Analytics I, 1–13; see the remarks on the 
meta-theoretical passage in the commentary.
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Props. 31–34 present three different solutions for the problem of angle trisection 
(divide a given angle into three equal parts). In Pappus’ portrait, the angle trisec-
tion appears as an exemplary problem of the solid kind. In Coll. III, the cube 
duplication plays this role. In fact, all problems that are solid in Pappus’ sense 
reduce to either of these two problems. Thus, Pappus is quite correct in his assess-
ment of the importance of the trisection. The material in Props. 31–34 consists of 
four layers. Props. 31–33 give an angle trisection via neusis. Within it, an older 
version in which the neusis was not constructed via conics is still present (Props. 31 
and 32). The neusis in question can be constructed with Nicomedes’ conchoid.1 In 
the original, possibly pre-Euclidean argument, the neusis was probably constructed 
by simple ruler manipulation. This older layer was then worked over, and the result 
is an anlytical-synthetical argument. In Prop. 31, the neusis is reduced, via analy-
sis, to the construction of a hyperbola through a given point with given asymptotes, 
and in Prop. 33, this hyperbola is constructed in an analytical-synthetical argu-
ment. Prop. 33 may be close to Apollonius’ lost analytical-synthetical solution for 
the angle trisection, though Pappus seems to have played a major role in spelling out 
the details of the argument as presented in Coll. IV. It is noteworthy that a much 
simpler, purely synthetical solution for Prop. 33 is possible via Konika II, 4. 
Apparently Pappus wants to make the point that the characteristic working strategy 
in “solid” geometry is analysis-synthesis. All his examples from solid geometry are 
analytical. Prop. 34 contains two further angle trisections, avoiding the neusis. 
The analysis is emphasized, with the synthesis only sketched for 34a, and left to 
the reader for 34b. Both arguments employ the same hyperbola, under different 
representations. Prop. 34b contains an older layer that goes back, in all likelihood, to 
an argument from Aristaeus’ (lost) Loci on Surfaces. The hyperbola is determined 
through its focus-directrix property. Prop. 34a builds on Prop. 34b. It is the simplest 
of the three solutions via conics, and rests on an analysis reducing the problem to 
Konika I, 21. Pappus was probably the author of Prop. 34a. To what degree he 
himself revised Aristaeus, or else an intermediate source drawing on Aristaeus, 
cannot be determined with certainty. Props. 31–34 handle conic sections as loci. 
A tendency toward algorithmization and reduction to standard configurations can 
be detected in Pappus’ portrait of the typical methods, despite the fact that he 
chose examples that come from very different time periods.

General angle division is, as Pappus remarks, not a problem that can be solved 
via conics. In Coll. IV, the problem serves to illustrate how a transition from the 
second to the third kind of geometry takes place when we generalize problems. 
Props. 35–38 are examples for symptoma-mathematics of the quadratrix. They may 
derive from Nicomedes’ work on the curve. Prop. 35 shows how the quadratrix, or, 
alternatively, the Archimedean spiral, can be used to divide a given angle in a given 
ratio. Props. 37 and 38 show how it is possible to construct a regular polygon with 
any given number of sides. These two propositions are visibly analogous to 

1  Vice versa, the neusis construction via conics, in Props. 31/33, which probably goes back to 
Apollonius, can be used for the cube duplication.
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Elements IV, 10/11. No attempt is made to single out angle divisions that would 
become plane, or solid.

Props. 39–41 continue the symptoma-mathematics of the quadratrix. The focus now 
is on the rectification property of the curve (Prop. 26). Some perhaps rather unspec-
tacular consequences are drawn from it: As Prop. 26 rectifies the circle, one can also 
use the quadratrix to find, conversely, a circle the circumference of which is equal to 
a given straight line (Prop. 39), one can construct a circular arc that has a given ratio 
to a given line segment, as a chord under it (Prop. 40), and one can define and construct 
incommensurable and irrational arcs (or angles), drawing on the definition of incom-
mensurable straight lines (Prop. 41). The above-mentioned demarcation problem 
does not arise for these problems. Circle rectification is, as it were, by nature linear.

In the final group of propositions (Props. 42–44), Pappus comes back to the 
demarcation question, and specifically to the criticism he has voiced against the neuses 
in Archimedes’s Spiral Lines: that they are solid, whereas a plane argument would 
have sufficed. Props. 42–44 pursue two goals, to show via analysis that the neusis is 
indeed solid, and to present an analysis that is useful also for working on numerous 
other solid problems. The second goal may explain the particular choice of the neusis. 
For Pappus chooses not SL 7 or SL 8, the ones one might expect, but rather another 
neusis, closely related to SL 9 and to a neusis employed in a now-lost angle trisection. 
It is, however, also related to all of SL 5–9. Given the connection to the angle trisection, 
Pappus was correct in claiming that the analysis could be useful for many other 
solid problems. The analyses in Props. 42–44 show features of typifying and stan-
dardization very much like the arguments in Props. 31–34. They do indeed lead to the 
result that the locus for a solution of the Archimedean neusis is, in general, deter-
mined by the intersection of a hyperbola and a parabola. Apparently, Pappus believed 
this shows that the neusis is solid. His analytical argument does not show this beyond 
doubt, though. Specifically, he does not attempt to apply diorismos to identify plane 
cases or impossible cases, and he cannot guarantee that his analysis has exhausted all 
the information available in the configuration, including information that might make 
a plane solution possible. Nevertheless, Props. 42–44 are again interesting both for 
their mathematical content, and for methodological reasons. They contain three of the 
very few examples for analytical arguments on solid loci that are preserved from 
antiquity, and they illustrate how one might have used analysis for determining 
whether a problem is, in general, solid or plane.

3 Summary: Coll. IV at a Glance

I Plane Geometry

(a) 1–6 Plane geometry, Euclidean style (scope: Elements)
 1 Generalization of the Pythagorean theorem, synthetic
 2/3 Applications of the theory of irrational magnitudes of the first order, synthetic
 4–6 The basic structure of plane geometric analysis; theorems, analytic-synthetic
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1 But see the commentary on Prop. 11. This evaluation of Prop. 11 is highly tentative.

 (b)  7–12 Plane geometry, Apollonian style (scope: Treasury of analysis, plane 
problems)
7 Role and use of Data; analytic

 8–10 Resolutio for a special case of the Apollonian problem; analytic
 11/12 Effects of analysis as mere extension of configuration,1 and as pure 
reduction; synthetic/analytic-synthetic

 (c) 13–18 Plane geometry, Archimedean style (scope: Elements and beyond)
Arbelos theorem (synthetic; monographic)

II Linear Geometry: Symptoma-Mathematics of Motion curves

(a) 19–22 Plane spiral (Archimedes, quasi-mechanical methods)
(b) 23–25 Conchoid (Multiplying the cube, Nicomedes, quasi-analytical methods)
(c) 26–29 Quadratrix (Squaring the circle, Nicomedes, transition from mechanical 

to analytical characterization of the genesis)
(d) 30 Spherical spiral (Archimedes, quasi-mechanical method)

Meta-Theoretical Passage on the Three Kinds of Geometry: 
Homogeneity criterion

III Solid Geometry, Transition “Upward,” Demarcation 
“Downward”

(a) 31–34 Angle trisection (solid loci/conic sections, several stages of methodology, 
pre-Euclidean, Aristaeus, Apollonius, Pappus)

(b) 35–38 Angle division and applications (linear, as a result of generalization; 
symptoma – mathematics of quadratrix and spiral, Nicomedes?)

(c) 39–41 Symptoma-mathematics of the quadratrix, rectifi cation property (linear 
by nature, Nicomedes?)

(d) 42–44 Analysis of an Archimedean neusis (analysis of solid loci, determining 
the level of a proposition or problem; Pappus)

The intermediate status of solid geometry accounts for the position of its examples 
after the presentation of the other two kinds, and also for the occurrence of issues 
of transition “upward” and “downward” in this part of Coll. IV. Solid geometry is 
the bridge between the two extreme kinds, and it was the area with regard to which 
demarcation issues became virulent, propelled the development of techniques, and 
were investigated systematically (above all, by Apollonius).
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Introductory Remarks on Part I 

The following remarks draw on (Treweek 1957), (Jones 1986b) and (Jones 1986a), 
pp. 18–65 for the text and transmission of the Collectio. The reader is referred 
there for further information.

Tradition, Reception, and Editions of the Text of the Collectio

The text of the Collectio, as it has come down to us, was not conceived, or 
published, as a single coherent work by Pappus himself. Probably, it was compiled, 
edited, and published shortly after Pappus’ death by an unknown author. An 
exception is Book VIII, which may have been published by Pappus separately. 
It has an independent tradition, with clearly documented reception in the Islamic 
culture. For all the other books of the Collectio, no traces of a thorough reception 
can be documented, neither in late antiquity, nor in Islamic or in Byzantine culture. 
The extant text goes back to a single Byzantine manuscript (Vat. gr. 218, called 
A here) from the tenth century, in turn at least two, but probably not many more 
steps removed from Pappus’ original autograph. This archetype is found in the 
Vatican Library today. All later copies, dating from the sixteenth century and later, 
stem directly or indirectly from this manuscript. There are about 40 such derived 
complete or partial copies. For a detailed description of the history of A, and 
for a stemma for the manuscript tradition, see Treweek (1957), with additions in 
Jones (1986a).

As said above, all copies of A date from the sixteenth century or later. Thus, the 
Collectio did not have a reception in Western Europe during the Middle Ages that 
has left significant documented traces. There is one possible exception, the isolation 
of which rather proves the general point. The manuscript A was already in Rome in 
the thirteenth century. Unguru (1974) made the case that Witelo (thirteenth century) 
may very well have had indirect access to at least the part of Collectio VI that deals 
with propositions from Euclid ’s Optics. Perhaps William of Moerbeke, who was at 
Rome during that time, perused A and translated such passages from Collectio VI 
for Witelo as seemed useful for his Perspectiva.

The first complete printed edition of the Collectio, by Commandino (pub-
lished posthumously), appeared in 1588. It contains a Latin translation, and 

H. Sefrin-Weis, Pappus of Alexandria: Book 4 of the Collection, 
Sources and Studies in the History of Mathematics and Physical Sciences, 
DOI 10.1007/978-1-84996-005-2, © Springer-Verlag London Limited 2010



4 Introductory Remarks on Part I

critical as well as explanatory notes. Commandino’s work went through several 
reprints, the last one was Bologna 1660 (with revisions). In the decades after 
the first publication, an intensive reception and discussion of Pappus’ work 
took place. Above all, the search for the ancient analytical method and also 
general methodological questions, besides several mathematical vignettes from 
Pappus, notably the part of Coll. IV that deals with “higher curves,” inspired the 
mathematicians of the day to study Pappus and use him toward further mathe-
matical progress. The impact of both Coll. VII and Coll. IV on seventeenth 
century mathematics was enormous. This topic would certainly deserve further 
exploration.1 During the following centuries, several projects for a complete 
edition of the Greek original were launched, but none was brought to comple-
tion. Jones (1986a) lists the most significant partial editions. Among them, 
Halley’s 1706 edition of the (Arabic translation of the) Sectio rationis, with an 
excerpt from Coll. VII (Pappus’ commentary on the work), and Torelli’s edition 
of Coll. IV, # 30–35 (on the quadratrix), are perhaps worth mentioning here, as 
illustrations of the general practice. The first complete critical edition was pub-
lished by Hultsch 1875–1878 (referred to as Hu in part I of the present edition). 
It contains the Greek text with critical apparatus, and a Latin translation and 
notes. To this day, it remains the standard text (excepting Coll. VII, for which 
see also Jones (1986a)). Treweek’s 1950 new critical edition of Coll. II–V (Tr) 
has unfortunately never been published. The only complete translation of the 
Collectio into a modern language is by Ver Eecke (1933b). For Coll. IV, a 
German translation was given by Sefrin-Weis (1998; see bibliography, primary 
sources, Pappus). An English translation is provided here. 

Remarks on the Greek Text Printed Here

The Greek text of Collectio IV that is given here is essentially an edition of Vat. 
gr. 218 (A), f. 33r–55v.2 For the text, a transcription was made from photographs 
of A. It was then collated with the original in the Vatican library, and with 
Hultsch’s and Treweek’s editions of Coll. IV (Hu and Tr). Wherever the text 
printed here diverges from Hu,3 I have put the respective readings in italics, not-
ing Hu’s and Tr’s readings in the apparatus. Additions to the text of A are marked 
by angular brackets (<>), deleted or suspected phrases are put in square brackets 
([]). The lines as written in A were kept, and the beginning of pages in A are 
indicated with headers in English. In the case of a few very infelicitous hyphen-
ations, I have put the full word in either of the lines and noted the hyphenation in 

1 Cf., e.g., Bos (2001).
2 Manuscript sigla adopted from (Treweek 1957), who incorporated Hultsch’s sigla.
3 For the first part of Prop. 44, the emended version in appendix Hu pp. 1232f., with emendations 
by Hultsch and Baltzer, was used as a standard of reference.
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the apparatus. Thus, the text as given here provides an alternative to both Hu and 
Tr, while remaining closely connected to these fully critical editions. It can be 
read in parallel with them, and with A as well.

The apparatus in the present edition is a reduced one. It was constituted as 
follows. Wherever the adopted text diverges from A, A’s reading is reported in the 
apparatus, excepting mere orthographic corrections. If a correction or addition can 
be traced back to the manuscripts B or S, I have noted this fact as well, in addition 
to documenting Hu’s and Tr’s readings (and occasionally, Co’s).1 I have not had the 
opportunity to collate the manuscripts B and S, or any of the recentiores for Coll. 
IV, directly. Instead, I have relied on concurrence between Hu and Tr for readings 
in B and S. Whenever I report an emendation as attested in Hu, Co and/or Tr, I do 
not intend to imply that the emendation originates with them. For a more complete 
documentation of manuscript readings in the recentiores, the reader is referred to 
Tr. Most of the adopted emendations are clearly required by the mathematical 
sense, and probably result from scribal errors such as D for A, or other erroneous 
labels for points. One would have resorted to them in any case. Whenever an emen-
dation was not thus clearly justified by the mathematical content, A’s reading was 
adopted, even in the face of grammatical or stylistic irregularities.

Remarks on the Translation

As said above, the Greek text is based on Vat. gr. 218 (A) and closely connected to 
Hultsch’s critical text of Collectio IV (Hultsch 1876–1878, Hu). Hultsch’s anno-
tated Latin translation in Hu was very helpful for the English translation and com-
mentary presented here as well. Also useful were Commandino’s translation and 
commentary in his 1588 edition and the 1660 revised edition of the same work 
(Co), Ver Eecke’s 1933 French annotated translation, and my own 1998 German 
annotated translation with commentary. The translation tries to be as close to the 
original Greek as possible. I have made an effort to render the peculiar formulaic 
way of expression in the Greek mathematical arguments into English by using 
standardized phrases corresponding to the Greek formulae. Greek mathematical 
prose is, however, extremely elliptical. A literal English translation would be 
incomprehensible. As a compromise, additions were implemented so as to produce 
tolerably complete English sentences. The additions are put in angular brackets 
(<>), so that the reader can get an idea of Pappus’ own way of expressing mathe-
matical thoughts. For the structuring of the text, I have used Hultsch’s separation 
into propositions (right margin and header in Hu, in the Latin translation), because 
separation into units of mathematical content facilitates understanding. The 

1 Among the recentiores, it is mostly the manuscripts B and S that contain helpful alternative readings 
throughout Coll. IV. Compare the apparatus in Hu and Tr. For a list of the extant manuscripts and 
their interconnection see Jones (1986a, pp. 56–62), and Treweek (1957).
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 numbering of propositions is identical with Commandino’s in Co, except for Prop. 
44, which is missing in Co. In addition, the chapter divisions of the Greek text in A 
(Roman numerals in Hu at the beginning of paragraphs in the Latin translation, 
Greek numerals in Hu at the beginning of paragraphs in Hultsch’s Greek text, 
labeled as #1ff. here) are included. Wherever possible, the translation is close to 
Hultsch’s text, even where I disagreed with his choice for particular readings. In a 
few cases, for example in the concluding passage on Sporus’ criticism of the 
quadratrix (Prop. 26), I have translated what I believed to be the correct reading, 
and have documented my deviation in the notes. The result is, I hope, a readable 
English version of the Greek text that is rather close to the original, and can be used 
together with Hultsch’s edition and Latin translation, as well as with Ver Eecke’s 
French translation (Ver Eecke follows Hultsch very closely, both in his translation 
and in his notes). My intention is that Pappus’ mathematical argumentation 
should be accessible from his prose. I have therefore used (very limited) transfor-
mations into modern notation and algebraic language only in the notes, or in the 
commentary.

The notes to the translation do, however, provide references to theorems from 
Euclid’s Elements (and some other standard ancient texts, notably Euclid’s Data, 
Apollonius’ Konika, and Archimedes’ works, in the standard critical editions), or 
quasi-algebraic explanations that justify Pappus’ intermediate argumentative 
steps. While I do by no means intend to imply that this is how an ancient math-
ematician would have proceeded (i.e., justify his steps via explicit reference to 
Euclid), I do believe that Euclid’s Elements had the role of a basis and center for 
geometrical instruction for Pappus. I take it that he wanted his readers to bring 
the relevant content to bear, and, if unable, to consult Euclid as they were working 
their way through Collectio IV. What I am doing in quoting Euclid is just provid-
ing one such possible path of justification. For the references to Euclid’s 
Elements, I have used Heath’s 1926 English edition instead of the standard criti-
cal edition, because (Heath 1926) is widely accessible and very reliable and help-
ful. References to individual propositions in the Elements will be given in Roman 
numerals, followed by Arabic numerals (e.g., I, 47 refers to Elements Book I, 
Proposition 47 in (Heath 1926)), references to books will be given in Roman 
numerals alone. The commentary (see Part II) complements the notes to the trans-
lation. It will give proof protocols so as to facilitate surveying whole arguments 
at a glance and identifying crucial ideas and steps in a proof. In addition, it con-
tains historical background information in outline, bibliographical information, 
and attempts to provide a context for groups of propositions, both with regard to 
Collectio IV, and more generally with regard to the history of Greek mathematics. 
Furthermore, it locates issues where Pappus’ propositions, or groups of proposi-
tions, might be useful for further investigations. Explanatory remarks on central 
keywords, e.g., “analysis-synthesis,” “neusis” “angle trisection,” are provided 
there as well, again in the form of general outlines with bibliographical informa-
tion for further in-depth study, (see below, Part II with introductory remarks). In 
addition to technical mathematical information, the notes to the translation 
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 contain some philological remarks. Salient stylistic peculiarities, hapax legomena, 
and the use of specific Greek words were noted, when I thought their occurrence 
could be especially significant for further interpretation, though this route is not 
pursued in detail in the present translation and commentary. I have restricted 
myself to simple documentation and obvious direct inferences, as a possible basis 
for further study. For example, in the introduction to Prop. 28, Pappus announces 
an analysis of the genesis of the quadratrix, and consequently uses the word 
“analuesthai” (subject to geometrical analysis). This is significant, because inter-
preters starting with Hultsch have read this word, erroneously, as equivalent to 
“luesthai” (solve), and believe that Pappus is trying to provide a mathematically 
exact solution for the quadrature of the circle, which, of course, he cannot 
achieve. Attention to the actual word used can help clarify the meaning of Prop. 
28 (see following sections). In the present study, I have restricted myself to just 
pointing out the use of “analuesthai,” and drawing the obvious inference that 
what we get in Prop. 28 is a geometrical analysis of the genesis, not a (failed) 
solution of the quadrature. My documentation of such “salient Greek terms” is 
not exhaustive.

Remarks on the Diagrams

In A, the figures for individual propositions appear at the end of each argument, 
as inserts in indented spaces – alongside the beginning of the following proposi-
tion. In the present edition, I have relocated the diagrams. They appear as inserts 
in the translation, wherever possible, directly after the statement of propositions. 
The lettering is in Latin, in accordance with the translation. For a concordance of 
Greek diagram letters and their rendering in Latin letters see the final page of this 
introduction. The diagrams were modeled as closely as possible on the figures in 
A. Gross distortions in comparison to the argument in the mathematical text were 
ameliorated. For example, points were shifted so as to make congruent angles and 
lines appear as congruent. For diagrams that contain only circles and straight 
lines, as for example, in Props. 1–18, minimal intrusion of this sort was sufficient. 
In A, all curves are represented by circular arcs, however. The diagrams for 
propositions dealing with higher curves were therefore subject to more vigorous 
revisions (with the exception of propositions on the plane spiral). Thus, the dia-
grams containing the quadratrix (Props. 26, and 35 ff.) are somewhat close to A, 
but reshaped considerably, and the diagrams containing the conchoid and those 
referring to three-dimensional objects were completely redrawn. Specifically, the 
figures for Props. 23–30 are not connected to A. The diagram for Prop. 44 was 
drawn afresh as well, since it is missing in A. Descriptions of the changes made 
in the constitution of the diagrams are given in an appendix. The appendix also 
contains a drawing of the diagram for the limit case in Prop. 15, which is not dealt 
with in Pappus’ text.
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List of Sigla and Abbreviations

Manuscripts
A Vat. gr. 218 Tenth century

Archetype for all existant manuscripts, sole independent witness to 
the text of Pappus, Collectio IV. In the Vatican library. For a 
description, see Jones (1986, pp. 30–35), and Treweek (1957).

A2 Corrector’s hand in A
B Par. gr. 2440 Sixteenth century, before 1554

Earliest of the known copies of the lost Strasbourg manuscript R, 
which in turn was a copy of A.

B2 B3 Corrector’s hands in B
S Leiden Scal. 3 after 1562

Copy of the Paris manuscript C (1562), which was made for 
Ramus from a lost manuscript x, in turn a copy of A.

Editions and Translations
Co Commandino (1588, 1660)

Latin translation with notes.
Eut. Eutocius In Archimedis De sphaera et cylindro II

Contains an alternative version of Prop. 24
Hu (Hultsch 1876–1878)

Critical edition, Latin translation and notes
Hu/Baltzer Hu appendix p. 1232f.

Revised text for first part of Prop. 44
app. Hu Apparatus in Hu
To Torelli (1789)

Contains # 30–35, cited in app. Hu
Tr (Treweek 1950)

Critical edition. Unpublished dissertation.

Mathematical Symbols and Abbreviations Used in the Notes 
and Commentary
= Equality of line segments, angles, areas,

Equivalence of ratios
~ Similarity of triangles
@ Congruent triangles
a:b The ratio of a to b
(a:b) X (c:d) The compounded ratio of a:b and c:d
ΔABC The triangle ABC
AB² The square over AB
AB × CD The rectangle contained by AB and CD
ÐABC The angle ABC
AB½½CD AB is parallel to CD
AB^CD AB is perpendicular to CD
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Concordance of Greek Letters (A) and Latin Equivalents 
(Translation, Commentary, Diagrams)

A A
B B
G C
D D
E E
Z Z
H H
Q T
I I
K K
L L
M M
N N
X X
O O
P P
R R
S S
T T’
U Y
F F
C X’
W W
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Part Ia
Greek Text

Pappus, Collectio IV. Vat. gr. 218 (Codex A, f. 33r° - 55 v°)

f. 33r (Prop. 1)
Prop. 1
#1 eja;n h\/ trivgwnon to; ABG, kai; ajpo; tw`n AB BG ajnagrafh`/ tucovn-
ta parallhlovgramma ta; 

1
 AB DE BG ZH 2, kai; aiJ DE ZH

ejkblhqw`sin ejpi; to; Q, kai; ejpizeucqh`/ hJ QB, givnetai ta; AB
DE BG ZH 3 parallhlovgramma i[sa tw`/ uJpo; tw`n AG QB
periecomevnw/ parallhlogravmmw/ ejn gwniva/ h{ ejstin i[sh sunam-
fotevrw/ th`/ uJpo; BAG DQB. ejkbeblhvsqw4 ga;r hJ QB ejpi; to; K, kai;
dia; tw`n AG 5 th`/ QK paravllhloi h[cqwsan aiJ AL GM, kai; ejpe-
zeuvcqw hJ LM. ejpei;6 parallhlovgrammovn ejstin to; ALQB, aiJ ALQB 7

i[sai tev eijsin kai; paravllhloi: oJmoivw~ kai; aiJ MG QB8 i[sai tev eijsin
kai; paravllhloi, w{ste kai; aiJ LA MG i[sai tev eijsin kai; paravllh-
loi. kai; aiJ LM AG a[ra i[sai te kai; paravllhloiv eijsin: parallh-
lovgrammon a[ra ejsti;n to; AL MG 9 ejn gwniva/ th`/ uJpo; LAG, toutevstin10

f. 33v (Prop. 1 and 2)
sunamfotevrw/ th`/ te uJpo; BAG11 kai; uJpo; DQB: i[sh gavr ejstin
hJ uJpo; DQB th`/ uJpo; LAB. kai; ejpei; to; [ajpo;]12 DABE parallhlovgram-
mon tw`/ LA QB 13 i[son ejstivn, ejpiv te ga;r th`~ aujth`~ bavsewv~ ejstin th`~

1 tucon ta; shmei`a parallhlovgramma A, corr. Hu,Tr
2 ABDE BGZH Co, Hu, Tr
3 ABDE BGZH B, Hu, Tr
4 ejkblhqh` ga;r A
5 distinx. BS, Hu, Tr
6 ejpi parallhlovgrammon A
7 AL QB Hu, Tr
8 OB A corr. Co, Hu, Tr
9 AL MG AB coniunx. S Hu, Tr
10 tou` - t e[stin A toutevstin Hu
11 ABG AB corr. S Hu, Tr
12 ajpo; del. Hu, Tr
13 LABQ Hu, LAQB Tr

H. Sefrin-Weis, Pappus of Alexandria: Book 4 of the Collection, 
Sources and Studies in the History of Mathematics and Physical Sciences, 
DOI 10.1007/978-1-84996-005-2, © Springer-Verlag London Limited 2010
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AB kai; ejn tai`~ aujtai`~ parallhvloi~ tai`~ AB DQ, ajlla; to; LA QB 1

tw`/ LA KN 2 i[son ejstivn, ejpiv te ga;r th`~ aujth`~ bavsewv~ ejstin
th`~ LA3 kai; ejn tai`~ aujtai`~ parallhvloi~ tai`~ LA QK, kai; to;
AD EB 4 a[ra tw`/ LA KN 5 i[son ejstivn. dia; ta; aujta; kai; to; BH ZG 6 tw`/
KN GM 7 i[son ejstivn: ta; a[ra DA BE BH ZG 8 parallhlovgramma
tw`/ LA GM 9 i[sa10 ejstivn, toutevstin tw`/ uJpo; AG QB ejn gwniva/ th`/
uJpo; LAG, h{ ejstin i[sh sunamfotevrai~ tai`~ uJpo; BAG BQD. kai;
e[sti tou`to kaqolikwvteron11 pollw`/ tou` ejn toi`~ ojrqogwnivoi~
ejpi; tw`n tetragwvnwn ejn toi`~ stoiceivoi~ dedeigmevnou12.

A CK

Z

MNL

D

E

B

T

H

Prop. 2
#2 hJmikuvklion ejpi; th`~ AB rJhth;n e[con
th;n diavmetron, kai; th`/ ejk tou`

1 LABQ Hu, Tr
2 coniunx. Hu, Tr
3 AB Tr
4 coniunx. Hu, Tr
5 coniunx. Hu, Tr
6 coniunx. Hu, Tr
7 NKGM Hu, Tr
8 DABE BHZG Hu Tr
9 coniunx. Hu, Tr
10 i[sai A corr. Hu, Tr
11 kai; olikwvteron A corr. Hu, Tr
12 kai; tw`n oJmoivwn kai; oJmoivw~ ajnagegrammevnwn lib. 6 Element. add. V2 (178, 12 app. Hu)
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kevntrou i[sh1 kai; < th`/ AB > 2 ejpΔ eujqeiva~ hJ
BG, kai; ejfaptomevnh hJ GD, kai;
divca hJ BD perifevreia tẁ/ E sh-
meivw/, kai; ejpezeuvcqw hJ GE: ou{tw~ 3

hJ GE a[logov~ ejstin hJ kaloumevnh
ejlavsswn. eijlhvfqw to; Z kevntron
tou` hJmikuklivou, kai; ejpezeuvcqwsan aiJ ZD ZE. ejpei; ojrqhv ejstin
hJ uJpo; ZDG, ejn hJmikuklivw/ ejsti;n tẁ/ ejpi; th̀~ ZG, ou| kevn-
tron ejsti;n to; B. kai; th̀~ BD ejpizeucqeivsh~ ijsovpleuron giv-
netai to; BZD trivgwnon, w{ste dimoivrou mevn ejstin hJ uJpo; DZB gw-
niva, trivtou de; hJ uJpo; EZB. h[cqw kavqeto~ ajpo; tou` E ejpi; th;n
AB diavmetron hJ HE: ijsogwvnion a[ra to; GZD trivgwnon tw`/ EZH
trigwvnw/, kai; e[stin wJ~ hJ ZG pro;~ th;n GD, hJ EZ4 pro;~ ZH. ejpivtri-
ton de; to; ajpo; ZG tou` ajpo; GD: ejpivtriton a[ra kai; to; ajpo; EZ
tou` ajpo; ZH: lovgo~ a[ra tou` ajpo; EZ pro;~ to; ajpo; th̀~ ZH o}n i~í
pro;~ ibí, tou` de; ajpo; ZG pro;~ < to; > 5 ajpo; EZ o}n xdí pro;~ i~í. kai; toù
ajpo; ZG a[ra pro;~ to; ajpo; ZH lovgo~ ejsti;n o}n xdí pro;~ ibí. e[stw d j hJ6

ZB tetraplasiva th̀~ BQ: kai; e[stin th̀~ BZ diplasivwn7

hJ ZG: lovgo~ a[ra th`~ ZG pro;~ th;n ZQ o}n hí pro;~ eí, kai;8 th̀~

f. 34 (Prop. 2 and 3)
ZQ pro;~ QG o}n eí pro;~ gí: kai; tou` ajpo; th̀~ ZG a[ra pro;~ to; ajpo;
th`~ ZQ lovgo~ ejsti;n o}n xdí pro;~ keí. ejdeivcqh de; tou` ajpo; GZ pro;~ to;
ajpo; ZH lovgo~ o}n xdí pro;~ ibí: kai; tou` ajpo; QZ a[ra pro;~ to; ajpo; ZH
lovgo~ ejsti;n wJ~9 keí pro;~ ibí: aiJ QZ ZH a[ra rJhtaiv eijsin dunavmei
movnon suvmmetroi, kai; hJ QZ th`~ ZH meivzon duvnatai tw/` ajpo; aj-
summevtrou eJauth/`. kai; o{lh10 hJ ZQ suvmmetrov~ ejstin rJhth`/ th̀/ AB:
ajpotomh; a[ra tetavrth11 ejsti;n hJ QH. rJhth;12 de; hJ ZG kai; < hJ > 13 diplh`
aujth`~: hJ a[ra dunamevnh to; < di;~ > 14 uJpo; ZG HQ a[logov~ ejstin hJ kalou-

1 i[sh/ AB corr. S Hu, Tr
2 th`/ AB add. Co, Hu
3 o{ti Hu, Tr
4 EH A, corr. Co, Hu, Tr
5 to; add. S, Hu, Tr
6 e[stw dhJ Hu e[stai dh; A
7 diplasivwn S d/////ivwn A
8 hí pro;~ eí, kai; th`~ Hu H pro;~ //// th`~ A
9 o}n Tr wJ~ A Hu
10 o{lh/ A corr. S Hu, Tr
11 tetavrth/ A corr. Hu, Tr
12 rJhth;/ A corr. Hu, Tr
13 hJ add. Hu, Tr
14 di;~ add. Co, Hu, Tr
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mevnh ejlavsswn [ejstin]1. kai; duvnatai to; di;~ uJpo; GZ HQ hJ GE: ejlavs-
swn a[ra ejsti;n hJ GE. o{ti de; hJ GE duvnatai to; di;~ uJpo; GZ HQ,
ou{tw~ e[stai dh`lon: ejpezeuvcqw hJ EQ. ejpei;2 to; ajpo; EG i[son ejsti;n
toi`~ ajpo; tw`n EQ QG kai; tw`/ di;~ uJpo; GQ QH, e[stin de; kai; ta;2

ajpo; EQ QZ i[sa tw`/ ajpo; EZ kai; tw`/ di;~ uJpo; ZQ QH. [ajnavlo-
gon3 a[ra ejsti;n wJ~ to; ajpo; GE pro;~ ta;4 ajpo; EQ QG meta; tou` di;~
uJpo; GQH, ou{tw~ ta;5 ajpo; EQ QZ pro;~ to; ajpo; EZ meta; tou` di;~
uJpo; ZHQ6. kai; wJ~ e}n pro;~ e}n, pavnta < pro;~ pavnta > 7. kai; i[son ejsti;n to; ajpo;
GE toi`~ ajpo; EQG kai; tw`/ di;~ uJpo; GQH8], i[sa a[ra kai; ta;
ajpo; GE EQ QZ toi`~ ajpo; EQ QG EZ kai; tw/` di;~ uJpo; GHQ9

meta; tou` di;~ uJpo; ZQH, toutevstin tw`/ di;~ uJpo; GZ HQ. koino;n
ajfh/rhvsqw10 to; ajpo; EQ: loipa; a[ra ta; ajpo; EG ZQ i[sa ejsti;n
toi`~ ajpo; EZ QG kai; tw`/ di;~ uJpo; GZ HQ. w|n to; ajpo; ZQ i[son
toi`~ ajpo; tw`n EZ QG, to; me;n ga;r ajpo; th`~ ZQ ejsti;n keí, to; de;
ajpo; th`~ QG qí11, kai; to; ajpo; EZ i~í: loipo;n a[ra to; ajpo; GE
i[son ejsti;n tw`/ di;~ uJpo; ZG HQ12.

A Z

D

E

H B T C

Prop. 3

1 ejstin del. Hu, Tr
2 to; A corr BS Hu, Tr
3 ajnavlogon... ajpo; EQG kai; to; di;~ uJpo; GQH del. Hu
4 to; A corr. Co, Hu, Tr
5 to; A corr. S Hu, Tr
6 ZQH Hu, Tr
7 pro;~ pavnta add. Tr
8 GEQH A corr. Hu, Tr
9 GQH Hu, Tr
10 aj-fh/rhvsqw A ajfh/rhvsqai Tr
11 QGE A corr. Co, Hu, Tr
12 ZGNQ A, corr. Hu
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# 3 hJmikuvklion to; ajpo;1 th̀~ AG
rJhvthn e[con th;n diavmetron,
kai; th̀/ ejk toù kevntrou i[sh
e[stw hJ GD, kai; ejfaptomevnh
hJ DB, kai; divca tetmhvsqw hJ
uJpo; GDB gwniva [h]2 uJpo; th̀~ DZ: ou{tw~3 hJ DZ uJperochv ejstin h|/
uJperevcei hJ ejk duvo ojnomavtwn th`~ meta; rJhtou` mevson to; o{lon
poiouvsh~. eijlhvfqw ga;r to; H kevntron tou` hJmikuklivou, kai;
ejpezeuvcqw hJ BH, kai; ejpi; th̀~ HD gegravfqw hJmikuvklion to;

f. 34v (Prop. 3)
HB < D > 4, kai; ejkbeblhvsqw hJ ZD < ejpi; to; > K5: i[sh a[ra ejsti;n hJ BK peri-
fevreia < th`/ KH perifereiva/ > 6. h[cqw
kavqeto~ ejpi; th;n AG hJ KL. kai; ejpei; eJxagwvnou ejsti;n pleura; hJ BH,
hJmivseia de; th`~ tou`7 eJxagwvnou hJ KL, ejkballomevnh ga;r th;n diplh`n
th`~ KH perifereiva~ uJpoteivnei, diplasiva a[ra hJ BH th`~ KL,
toutevstin hJ GK th`~ KL. kai; e[stin ojrqh; hJ uJpo; KLG: ejpivtriton a[ra
ejsti;n8 to; ajpo; KG toù ajpo; GL, toutevstin < to; ajpo; > 9 DG toù ajpo; GL: aiJ DG GL
a[ra rJhtaiv eijsin dunavmei movnon suvmmetroi, kai; hJ DG th`~ GL
mei`zon duvnatai tẁ/ ajpo; summevtrou10 eJauth`/, kai; hJ meivzwn hJ
DG suvmmetrov~ ejstin rJhth`/11 th`/ AG: ejk duvo ojnomavtwn a[ra prwv-
th ejsti;n hJ LD, rJhth; de; hJ HD: hJ a[ra to; uJpo; tw`n HDL cwrivon du-
namevnh a[logov~ ejstin hJ kaloumevnh ejk duvo ojnomavtwn. duvnatai de;
aujto; hJ DK12, dia; ga;r to; ijsogwvnion ei\nai to; HDK trivgwnon tẁ/ DLK13

trigwvnw/ ejsti;n wJ~ hJ HD pro;~ DK, hJ KD pro;~ DL: hJ [de;]14 DK a[ra ejk
duvo ojnomavtwn ejstivn. kai; ejpei;15 dimoivrou ejsti;n hJ uJpo; BHG gwniva kai;
i[sh < hJ > 16 HB th`/ HG, ijsovpleuron a[ra ejsti;n to; BHG trivgwnon. h[cqw

1 ejpi; Co, Hu, Tr
2 h del. Hu
3 o{ti Co, Hu, Tr
4 to; HB* A to; hb S Co to; HBD B Hu, Tr
5 hJ ZDK ABS hJ DZK Co hJ DZ ejjpi; to; K Hu, Tr
6 th`/ KH perifereiva/ add. Tr th`/ KH add. Hu
7 toù om. Hu
8 ejsti;n om. Tr
9 to; ajpo; add. Hu, Tr
10 ajpo; ajsummevtrou AS ajpo; th̀~ ajsummevtrou B corr. Co, Hu, Tr
11 rJhth; AB corr. S Hu, Tr
12 H DK A corr. Hu, Tr
13 HLK A corr. Co, Hu, Tr
14 de; del. Hu, Tr
15 ejpi AB corr. S Hu, Tr
16 i[sh *** th`/ A1 i[sh * HB th`/ A2 i[sh hJ HB th`/ B Hu, Tr
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dh; kavqeto~ hJ BQ1: diplh` a[ra ejsti;n hJ HG, toutevstin hJ DG, th`~
GQ. kai; ejdeivcqh to; ajpo; DG tou` ajpo; GL ejpivtriton: to; a[ra
ajpo; LG triplavsiovn ejstin toù ajpo; GQ: aiJ LG GQ a[ra rJhtaiv
eijsin dunavmei movnon suvmmetroi, kai; hJ LG th`~ GQ meivzon duvnatai
tw`/ ajpo; ajsummevtrou eJauth`/, kai; to; e[lasson o[noma to; GQ suvm-
metrovn ejstin rJhth`/ th̀/ AG: hJ LQ a[ra ajpotomhv ejstin pevmpth.
kai; ejpei; to; me;n uJpo; DHQ2 i[son ejsti;n tw`/ ajpo; BH dia; to; ijsogwvnia3

ei\nai ta; BHQ BHD trivgwna, to; de; uJpo; DHL4 i[son ejsti;n tw`/
ajpo; KH5 dia; to; ijsogwvnia ei\nai ta; KHL KHD trivgwna, e[stin a[ra6

wJ~ to; uJpo; DHQ pro;~ to; ajpo; BH, ou{tw~ to; < uJpo; > 7 DHL pro;~ to; ajpo; KH. ejnal-
la;x de; wJ~ to;8 uJpo; DHQ pro;~ to; uJpo; DHL, < ou{tw~ to; ajpo; BH pro;~ to; ajpo; 
KH. wJ~ de; to; uJpo; DHQ pro;~ to; uJpo; DHL, > 9 ou{tw~ hJ QH pro;~ th;n
HL, koino;n10 ga;r u{yo~ to; DH: kai; wJ~ a[ra hJ QH pro;~ th;n HL, ou{-
tw~ to; ajpo; BH, toutevstin to; ajpo; ZH, pro;~ to; < ajpo; > 11 HK: dielovnti a[ra
e[stai12 wJ~ hJ QL pro;~ LH, ou{tw~13 to; uJpo; tw`n DH LQ pro;~ to; uJpo; DHL.
kai; ejdeivcqh i[son to; uJpo; tw`n DHL tw`/ ajpo; HK: i[son a[ra kai;
to; uJpo; tw`n DH LQ tw`/ ajpo; KZ. kai; e[stin hJ me;n LQ ajpotomh;
pevmpth, hJ de; DH rJhthv: hJ a[ra KZ hJ meta; rJhtou` mevson to; o{lon
poiou`sav ejstin. ejdeivcqh de; kai; hJ DK ejk duvo ojnomavtwn: hJ a[ra14

f. 35 (Prop. 3 and 4)
DZ15 uJperochv ejstin h|/ uJperevcei < hJ > ejk duvo ojnomavtwn16 th`~ meta; rJhtou` 
mevson to;
o{lon poiouvsh~.

1 kaqeto~ HBDQ AB, corr. Hu, Tr
2 uJpo; LHQ AB1S corr. B3 Hu, Tr
3 ijsogwvni-a A
4 uJpo; BHL A corr. Hu, Tr
5 ajpo; KL A corr. Hu, Tr
6 a[ra ejsti;n A corr. Hu, Tr
7 uJpo; add. Hu, Tr
8 KH. kai; ejnallavx. wJ~ de; to; Hu
9 ou{tw~… DHL add. Tr
10 koino;n ga;r u{yo~ to; DH del. Hu
11 to; AHK A corr. Hu, Tr
12 e[stin Hu, Tr
13 ou{tw~ to; ajpo; KZ pro;~ to; ajpo; HK. kai; Hu
14 loiph; a[ra hJ Hu
15 LZ A corr. Hu, Tr
16 hJ uJperevcei ejk duvo ojnomavtwn A corr. Hu, Tr
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CA

B

H T

K

L

Z

D

Prop. 4
#4 e[stw kuvklo~ oJ ABG, ou| kevntron
e[stw to; E, diavmetro~ de; hJ BG, kai;
ejfaptomevnh hJ AD sumpiv-
ptousa th`/ BG kata; to; D, kai;
dihvcqw hJ DZ, kai; ejpizeu-
cqei`sa hJ AE ejkbeblhvsqw ejpi;
to; H, kai; ejpezeuvcqwsan aiJ ZKH HLQ: ou{tw~1 i[sh ejsti;n hJ EK th`/ EL.
gegonevtw, kai; h[cqw th`/ KL paravllhlo~ hJ QXM: i[sh a[ra kai; hJ MX
th`/ XQ. h[cqw ajpo; tou` E ejpi; th;n ZQ kavqeto~ hJ EN: i[sh a[ra ejsti;n
hJ ZN th̀/ NQ. h\n de; kai; hJ MX th̀/ XQ: paravllhlo~2 a[ra ejsti;n hJ NX th̀/ MZ:
ou{tw~ a[ra i[sh ejsti;n hJ uJpo; tw`n QNX th`/ uJpo; tw`n NZM, toutevsti3

th`/ uJpo; tw`n QAX: ou{tw~ a[ra ejn kuvklw/ ejsti;n ta; ANXQ4 shmei`a:
ou{tw~ a[ra i[sh ejsti;n hJ uJpo; tw`n ANQ gwniva th`/ uJpo; tw`n AXQ,
toutevstin th`/ uJpo; tw`n AEL: ou{tw~ a[ra ejn kuvklw/ ejsti;n ta; A D E N 5 sh-
mei`a. e[stin dev: ojrqh; gavr ejstin eJkatevra tw`n uJpo; tw`n EAD END. sunte-
qhvsetai dh; ou{tw~. ejpei; ojrqhv ejstin eJkatevra tw`n uJpo; tw`n EAD END,
ejn kuvklw/ ejsti;n ta; AD EN 6 shmei`a: i[sh a[ra ejsti;n hJ uJpo; AND th`/ uJpo;
AED. ajllí hJ uJpo; AED i[sh ejsti;n th`/ uJpo; AXQ dia;7 ta;~ parallhv-
lou~ ta;~ ED XQ8: ejn kuvklw/ a[ra ta; ANXQ9 shmei`a: i[sh a[ra ejsti;n hJ
uJpo; QAX gwniva th`/ uJpo; QNX. ajllí hJ10 uJpo; QAX i[sh ejsti;n th`/ uJpo;

1 o{ti Hu, Tr
2 i[sh AB corr. S Hu, Tr
3 tou`t í e[st A toutevsti BS toutevstin Hu, Tr
4 A N X Q distinx. B Hu
5 AEN A distinx. B A N E D Hu A D E N Tr
6 AD EN AS A D E N B Hu, Tr
7 dio; ta;~ parallhvlou~ AB corr. S Hu, Tr
8 ta; EXQ A corr. Co Hu, Tr
9 A N E Q Hu, Tr
10 allh A corr. Hu, Tr
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< QZM: i[sh a[ra ejsti;n hJ uJpo; QZM th`/ uJpo; > 1

QNX: paravllhlo~ a[ra ejsti;n hJ ZM2 th`/ NX. kai; e[stin i[sh hJ ZN
th`/ NQ: i[sh a[ra ejsti;n kai; hJ MX th`/ XQ. kai; e[stin wJ~ hJ XH pro;~
HE, ou{tw~ hJ me;n XM pro;~ EK, hJ de;3 QX pro;~ LE: kai; wJ~ a[ra hJ XM
pro;~ EK4, ou{tw~ hJ QX pro;~ LE. kai; ejnallavx. kai; i[sh ejsti;n hJ MX th`/
XQ: i[sh a[ra kai; hJ KE th`/ LE.

B
C

D
L

H

T
X

E

M

N

Z A

K

Prop. 5
# 5 e[stw kuvklo~ oJ ABG, kai; ejfaptov-
menai aiJ AD DG, kai; ejpezeuv-
cqw hJ AG, kai; dihvcqw hJ EZ, e[stw
i[sh hJ EH th`/ HZ5: ou{tw~6 kai;
hJ QH < th`/ H > K7 ejsti;n i[sh. h[cqw

f. 35v (Prop. 5 and 6)
th`/ AG paravllhlo~ hJ EM, kai; eijlhvfqw to; [K]8 kevntron tou` kuvklou
to; L, kai; ejpezeuvcqwsan aiJ LA LZ LG LM < LE > 9 LH. ejpei; i[sh ejsti;n hJ EH
th`/ HZ, i[sh ejsti;n kai; hJ MG th`/ GZ. kai; e[stin pro;~ ojrqa;~10 th`/ GL:
i[sh a[ra ejsti;n hJ LZ th`/ LM. kai; ejpei; i[sh ejsti;n hJ AD th`/ DG, i[sh

1 QZM: i[sh… th`/ uJpo; add. Tr. th`/ uJpo; QZM: paravllhlo~ pro th`/ uJpo; QNX: paravllhlo~ Hu
2 ZHM A corr. Co, Hu, Tr
3 th`/ de; A corr. Hu, Tr
4 QK AB corr. S Co, Hu, Tr
5 e[stw de; hJ EH i[sh th`/ HZ Hu e[stw de; hJ eh i[sh th`/ hz S
6 o{ti Co, Hu, Tr
7 ///h h[cqw A suppl. Hu, Tr
8 del. Hu, Tr
9 LE add. S Hu, Tr.
10 kai; e[stin hJ MG pro;~ ojrqa;~ S Hu
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ejsti;n hJ AE th`/ MG. e[stin de; kai; hJ AL th`/ LG i[sh, kai; ojrqh; hJ uJpo;
tw`n EAL ojrqh`/ th`/ uJpo; tw`n MGL ejsti;n i[sh: i[sh a[ra ejsti;n kai; hJ
EL th`/ LM, toutevstin th`/ LZ. ajlla; kai; hJ EH th`/ HZ ejsti;n i[sh: hJ HL
a[ra kavqetov~ ejstin ejpi; thvn EZ: i[sh a[ra ejsti;n hJ QH th`/ HK.

EM

D

C A

B

L T

Z

H

K

Prop. 6
#6 e[stw kuvklo~ oJ ABG, kai; ejfa-
ptovmenai < aiJ > 1 AD DG, kai; ejpe-
zeuvcqw hJ AG, kai; dihvcqw
hJ EZ, kai; e[stw i[sh hJ HQ th`/
HK: ou{tw~2 kai; hJ EH th`/ HZ
ejsti;n i[sh. eijlhvfqw to; kevn-
tron tou` kuvklou to; L, kai;
ejpezeuvcqwsan aiJ EL LA LG
LH < LZ > 3. ejpei; ojrqhv ejstin eJkatevra tw`n uJpo; tw`n4 EAL EHL,
< ejn kuvklw/ ejsti;n ta; E A H L shmei`a: > 5 i[sh < a[ra > 6 ejsti;n hJ uJpo;
tw`n HAL gwniva th`/ uJpo; tw`n HEL gwniva/. pavlin ejpei; ojrqhv

1 aiJ add. Hu, Tr
2 o{ti Co, Hu, Tr
3 LZ add. Tr EL LA LH LZ LG Hu
4 eJkatevra tw`n aujtw`n AB corr. S Hu, Tr
5 ejn kuvklw/...shmei`a add. Co, Hu, Tr
6 a[ra add. Co, Hu, Tr
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ejstin eJkatevra tw`n uJpo; tw`n LHK1 LGZ, ejn kuvklw/2 ejsti;n ta; LHZG3

shmei`a: i[sh a[ra ejsti;n hJ uJpo; tw`n HGL4 gwniva, toutevstin hJ uJpo;
tw`n HAL5, toutevstin hJ uJpo; tw`n HEL, th`/ uJpo; tw`n HZL: i[sh
a[ra ejsti;n kai; hJ EL th`/ LZ. kai; e[stin kavqeto~ hJ LH: i[sh a[ra ejsti;n
hJ EH th`/ HZ.

Apollonian problem
eja;n w\sin trei`~ kuvkloi, th`/
qevsei kai; tw`/ megevqei dedov-
menoi kai; ejfaptovmenoi ajl-
lhvlwn, kai; oJ perilambav-
nwn aujtou;~ kuvklo~ doqei;~
e[stai tw`/ megevqei. prograv-
fetai de; tavde.

E

D

Z

C

L

H
K

A

T

Prop. 7
# 7 tetravpleu-
ron to; ABGD ojrqh;n e[con th;n uJpo; ABG gwnivan kai; doqei`san
eJkavsthn tw`n AB BG GD DA eujqeiw`n: dei`xai doqei`san th;n ejpizeu-

f. 36 (Prop. 7)

1 LHZ Hu, Tr
2 kuvklwn A ejn kuvklw/ Co, Hu, Tr
3 distinx. BS Hu, Tr
4 HLG A corr. Hu, Tr
5 HAK ABS corr. Hu, Tr
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gnuvousan ta; D B shmei`a th;n BD1. ejzeuvcqw2 hJ AG kai; kavqe-
toi h[cqwsan ejpi; me;n th;n GD hJ AH, ejpi; de; th;n < AG hJ BE. ejpei; ou\n 
eJkatevra > 3 tw`n AB BG
doqei`sav ejstin [h] ejn ajriqmoi`~]4, kai; ojrqhv ejstin hJ uJpo; ABG, kai;
kavqetov~ ejstin hJ BE, doqei`sa a[ra e[stai kai; eJkavsth tw`n AE EG
AG BE, kai; ga;r to; uJpo; AGE i[son o]n tw`/ ajpo; BG givnetai doqevn:
kai; doqei`sav ejstin hJ AG, w{ste eJkavsth tw`n AE EG BE5 e[stai doqei`sa.
pavlin ejpei; doqei`sav ejstin eJkavsth6 tw`n AG GD DA eujqeiw`n, kai;
kavqetov~ ejstin hJ AH7, doqeìsav ejsti kai; eJkavsth tẁn DH HG < AH > 8, kai; ga;r hJ
uJperoch; tou` ajpo; AG pro;~ to; ajpo; DA para; th;n GD parablh-
qei`sa poiei` doqei`san th;n th`~ GD9 pro;~ HD uJperochvn, wJ~ e[sti
lh`mma: w{ste kai; eJkavsthn tw`n DH HGAH dedovsqai. kai; ejpei; ijso-
gwvniovn ejstin to; AHG trivgwnon tw/` GEZ trigwvnw/, e[stin wJ~ hJ HG
pro;~ GE ou{tw~ h{ te AG pro;~ GZ kai; hJ AH pro;~ th;n EZ. kai; e[sti
doqei;~ oJ th̀~ HG pro;~ GE lovgo~: doqeìsa < a[ra > 10 e[stai kai; eJkavsth11 tẁn GZ
ZE. ajlla; kai; eJkavsth12 tw`n EB BG: kai; eJkavsth a[ra tw`n ZB BG GZ13

doqei`sa. h[cqw dh; kavqeto~ ejpi; th;n GZ hJ BQ: doqei`sa a[ra ejsti;n
eJkavsth tw`n ZQ QG BQ: w{ste kai; eJkatevra tw`n DQ QB doqei`sav
ejsti. kai; ojrqhv ejstin hJ uJpo; BQD: doqei`sa a[ra ejsti;n hJ BD.

D ZH T C

E

B

A

a

1 th;n BD del. Co, Hu
2 ejzeuvcqw ABS ejpezeuvcqw Hu, Tr
3 AG hJ BE: eJkatevra add. Hu, Tr
4 h] ejn ajriqmoi`~ del. Hu, Tr
5 tw`n DE EG e[stai A tw`n AE EG e[stai Co tw`n AE EG BE Hu, Tr
6 eJkavsth/ forsan eJkavsth A corr. Hu, Tr
7 hJ LH A corr. Co, Hu, Tr
8 AH add. Hu, Tr
9 GH A corr. Hu, Tr
10 a[ra add. Hu, Tr
11 eJkavsth A Tr eJkatevra Hu
12 eJkavsth A Tr eJkatevra Hu
13 GD A corr. Hu, Tr
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a[llw~.
# 8 h[cqw kavqeto~ ejpi; th;n AG
hJ DE, kai; ejkbeblhvsqw ejpi;
to; Z. ejpei; doqei`sav ejstin eJkavsth
tw`n AD DG GA, kai; kavqeto~
hJ DE, doqei`sa e[stai eJkatevra1

tw`n AE EG. kai; ejpei; ijsogwvniovn
ejstin to; ABG trivgwnon tw`/ GEZ trigwvnw/, e[stin wJ~ hJ GE pro;~ EZ,
hJ GB pro;~ BA. doqei;~ de; oJ th`~ GB pro;~ BA lovgo~: doqei;~ a[ra kai; oJ
th`~ GE pro;~ EZ lovgo~. kai; doqei`sav ejstin hJ GE: doqei`sa a[ra kai;
hJ EZ. h\n de; kai; hJ DE doqei`sa: kai; o{lh a[ra hJ DZ e[stai doqei`sa.
kata; taujta; doqhvsetai kai; eJkatevra tw`n BZ ZG, wJ~ ga;r hJ AG
pro;~ BG, ou{tw~ hJ ZG pro;~ GE. kai; doqei;~ oJ th`~ AG pro;~ GB lovgo~.
h[cqw dh; pavlin ajpo; tou` D kavqeto~ hJ DH: doqei`sa a[ra eJkatev-
ra tw`n GH HZ2, w{ste kai; eJkatevra tw`n BH HD doqei`sav ejstin3. kai;

f. 36v (Prop. 7 and 8)
ojrqhv ejstin hJ H gwniva: doqei`sa a[ra ejsti;n kai; hJ BD.

D C

A

B
Z

H

E

b

Prop. 8
#9 i[soi kuvkloi th`/ qevsei kai; tw`/ megevqei
doqevnte~, w|n kevntra ta; AB4, kai;
doqe;n shmei`on to; G, kai; dia; tou` G
ejfaptovmeno~ tw`n kuvklwn, w|n 

1 e[stai kai; eJkatevra Co, Hu
2 ZH HG Hu
3 ejsti Hu
4 AB AB distinx. S Hu, Tr
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kevn- tra ta; AB1, gegravfqw oJ GEZ: o{ti
doqei`sav ejstin aujtou` hJ diavmetro~.
ejpezeuvcqwsan aiJ EZH GZQ GMP AB GE PZK QK QH2: givnetai dh;
paravllhlo~ hJ HQ th`/ GE dia; to; ta;~ kata; korufh;n gwniva~ ta;~
uJpo; EZG HZQ i[sa~ ei\nai, kai; oJmoiva~ ta;~ EPZ HKZ3 perifereiv-
a~ kai; to; EGZ trivgwnon ijsogwvnion tw`/ ZHQ trigwvnw/. kai;
dia; ta; aujta; kai; hJ QK th`/ PG4 ejsti;n paravllhlo~. kai; i[soi eijsi;n
oiJ kuvkloi, w|n ta; kevntra ta; AB5: i[sh a[ra hJ ZH th`/ DE. h[cqwsan
kavqetoi aiJ AS BL: i[sh a[ra hJ AS th`/ BL: w{ste kai; hJ me;n BM th`/
MA ejsti;n i[sh, hJ de; LM th`/ MS, duvo ga;r trivgwnav ejstin ta; BLM
ASM ta;~ duvo gwniva~ ta;~ kata; korufh;n i[sa~ evconta kai;
ta;~ pro;~ toi`~ L S shmeivoi~ ojrqav~, e[cei de; kai; mivan pleura;n miva/
pleura`/6 i[shn th;n BL [kai; kavqeton]7 th`/ AS. kai; doqei`sav ejstin
eJkavsth tw`n ML LB MS SA8 [ou{tw~ kai; hJ ZH DE kai; BL LS]9: doqei`-
sa a[ra kai; eJkatevra tw`n BM MA eujqeiw`n. ajlla; kai; eJkatevra
tẁn AG GB doqeìsav ejstin [AG BG doqeìsav ejstin]10, qevsei [eujqeìa]11 ga;r ta; A
B G shmei`a: doqevn a[ra to; AB < G > 12 trivgwnon tw`/ ei[dei: kai; hJ GM
a[ra doqei`sa e[stai kaqevtou ajcqeivsh~ ajpo; tou` G ejpi; th;n AB.
kai; ejpei; doqei`sav ejstin hJ NR diavmetro~ tou` HQK kuvklou, ajlla; kai;
hJ MA doqei`sa, kai; loiph; a[ra hJ MR doqei`sav ejstin. kai; ejpei;13 do-
qevn ejstin to; uJpo; NMR, doqe;n a[ra kai; to; uJpo; HMZ, tou`t í e[stin14

to; uJpo; EMZ, < toutevstin to; > 15 uJpo; tẁn GMP. kai; doqeìsav ejstin hJ GM: doqeìsa
a[ra kai; hJ GP. ejpei; ou\n qevsei kai; megevqei ejsti;n kuvklo~, ou| kevntron
to; A, kai; doqei`sa th`/ qevsei kai; tw`/ megevqei hJ GP, kai; dihgmevnai
aiJ PZK GZQ, w{ste paravllhlon ei\nai th`/ GP th;n16 KQ, do-
qei`sav ejstin hJ diavmetro~ tou` peri; to; GZP trivgwnon kuvklou,
toutevstin tou` GEZ.

1 AB A distinx.BS Hu, Tr
2 aiJ EZH GZQ GMP ABG E P Z K Q K givnetai A corr. Hu, Tr
3 HNQ A corr. Co, Hu, Tr
4 PT A corr. Co, Hu, Tr
5 distinx. Hu, Tr
6 miva pleura; A corr. Hu, Tr
7 kai; kavqeton del. Hu, Tr
8 SL A corr. Hu, Tr
9 ou{tw~∑ BL LS del. Hu
10 bis scripta del. B Hu, Tr
11 qevsei A2 in marg. eujqei`a A1 qevsei eujqei`a S corr. Hu, Tr
12 G add. Co, Hu, Tr
13 ejpi; A corr. Hu, Tr
14 toutevstin Hu, Tr
15 toutevstin to; add. Hu, Tr
16 th`/ KQ A corr. Hu, Tr
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T

K

P

C

E

M

ZR

H
N

B
L

A
S

f. 37 (Prop. 9, 10, and 11)

Prop. 9
#10 trivgwnon to; ABG e[con eJkavsthn tw`n
pleurw`n doqei`san, kai; shmei`on ejnto;~1

to; D, kai; w|/ uJperevcei hJ AD th`~
GD, touvtw/ uJperecevtw kai; hJ GD
th`~ DB, kai; e[stw uJperoch; do-
qei`sa: o{ti eJkavsth tw`n AD DG
DB doqei`sav ejstin. ejpei; hJ tw`n AD
DG uJperoch; doqei`sav ejstin, e[stw
th`/ uJperoch;/ i[sh eJkatevra
tw`n AE BZ: aiJ trei`~ a[ra aiJ ED DG DZ i[sai ajllhvlai~ eijsivn. gegrav-
fqw peri; kevntron to; D kuvklo~ oJ GEZ: dia; dh; to; progegrammevnon
doqei`sav ejstin hJ DZ. h|~ hJ BZ2 ejsti;n doqei`sa [ejstin]3: hJ loiph; a[ra hJ

1 en toi`~ A corr. B Hu, Tr
2 h|~ hJ BZ Hu w|n hJ BZ A Tr
3 bis scriptum del. Hu, Tr
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BD ejsti;n doqei`sa. ajlla; kai; hJ tw`n AD DG < uJperochv ejstin doqei`sa: w{ste 
kai; eJkatevra tw`n AD DG doqeisav ejstin. eJkavsth a[ra tw`n AD > DG DB ejsti;n 
doqei`sa.1

H

T

A

E

C

D

K

L

Z
B

Prop. 10
#11 ta; me;n ou\n lhvmmata tau`ta,
to; de; ajrcikovn2: trei`~ kuvkloi
a[nisoi ejfaptovmenoi ajllhvlwn
doqeivsa~ e[conte~ ta;~ diamev-
trou~, w|n kevntra ta; ABG3, kai;
peri; aujtou;~ kuvklo~ ejfa-
ptovmeno~ aujtw`n oJ DEZ, ou| devon
e[stw euJrei`n th;n diavmetron. e[stw de; aujtou` to; kevntron to; N4, kai;
ejpi; ta; kevntra ta; ABG5 ejpezeuvcqwsan aiJ AB AG GB kai; e[ti
aiJ NAD NBZ NG < E >6. ejpei; ou\n aiJ diavmetroi tw`n kuvklwn, w|n kevntra
ta; ABG 7, doqei`saiv eijsin8, genhvsetai kai; eJkavsth tw`n AB BG GA
doqei`sa. kai; aiJ tw`n AN NG NB 9 diaforai; doqei`sai: dia; a[ra to;

1 ajlla; kai; hJ tẁn AD DG DG DB e[stin doqeìsa A uJperochv...tẁn AD. add. Tr ajlla; kai; eJkatevra 
tw`n AD DG doqei`sav ejstin: eJkavsth a[ra tw`n AD DG DB ejsti;n doqei`sa Hu
2 ajrcai >kovn A, Hu ajrcikovn Hu appendix, Tr
3 distinx. BS Hu, Tr
4 N A Tr H Hu
5 distinx. Hu, Tr
6 NAD NBZ NG A NAD NBZ NGE Tr HAD HBZ HGE Hu
7 distinx. B Hu, Tr
8 ejstin A
9 AN NG NB ABS Tr AH HG HB Hu
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progegrammevnon doqei`sav ejstin hJ AN 1. ajlla; kai; hJ AD doqei`sav
ejstin, w{ste doqei`sav ejstin hJ diavmetro~ tou` DEZ kuvklou. kai; tou`to me;n
ejnqavde moi pevra~ e[cei, ta; de; loipa; uJpogravyw.

E
D

C

A

H

B

Z

Prop. 11
#12 e[stw hJmikuvklion to; ABG, < kai; > 2 keklav-
sqw hJ GBA, kai; dihvcqw hJ GD, kai;
e[stw hJ BG i[sh3 sunamfotevrw/
th`/ AB GD, kai; kavqetoi h[cqwsan
< ejpi; th;n AG > 4 aiJ BE DZ: o{ti hJ AZ diplasivwn

f. 37v (Prop. 11 and 12)
ejsti;n th`~ BE5. [kai;]6 keivsqw ga;r th`/ me;n AE i[sh hJ EH, th`/ de; AB i[sh
hJ BQ7, kai; ejpezeuvcqwsan8 eujqei`ai aiJ AQ QH QZ, kai; kavqeto~ h[cqw
hJ QK, kai; ejpezeuvcqw9 hJ BK. ejpei; hJ GB10 i[sh ejsti;n sunamfotevrw/
th`/ AB DG, w|n hJ BQ th`/ BA ejsti;n i[sh, loiph; a[ra hJ QG loiph`/
th`/ GD ejsti;n i[sh: kai; to; ajpo; th`~ GD a[ra i[son ejsti;n tw`/ ajpo;
th`~ GQ. tw`/ de; ajpo; th`~ DG i[son ejsti;n to; uJpo; tw`n AGZ: kai;

1 AN Tr AH A Hu
2 kai; add. Hu, Tr
3 kai; e[stw hJ BG i[sh Tr kai; i[sh e[stw hJ GB Hu lacunae in A
4 ejpi; th;n AG add. Hu
5 BH A corr. Co, Hu, Tr
6 kai; del. Hu
7 BO A corr. S Hu, Tr
8 ejpizeuvcqwsan A corr. BS Hu, Tr
9 ejpizeuvcqw A corr. BS Hu, Tr
10 GZ A corr. Co, Hu, Tr
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to; uJpo; tw`n AGZ a[ra i[son ejsti;n tw`/ ajpo; th`~ GQ: i[sh a[ra ejsti;n
hJ uJpo; tw`n ZQG gwniva th`/ uJpo; tw`n QAH gwniva/. pavlin ejpei;
to; uJpo; tw`n GAE i[son ejsti;n tw`/ ajpo; th`~ AB, kai; to; di;~ a[ra
uJpo; tw`n GAE, toutevstin to; uJpo; tw`n GAH, i[son ejsti;n tw`/1 di;~ ajpo;
th`~ AB, toutevstin tw`/ ajpo; th`~ AQ: i[sh a[ra ejsti;n hJ uJpo; tw`n
AQH gwniva th`/ uJpo; tw`n QGZ gwniva/2. e[stin de; kai; hJ uJpo; tw`n QAH
i[sh th`/ uJpo; tw`n ZQG: loiph; a[ra hJ uJpo; tw`n AHQ loiph`/
th`/ uJpo; tw`n QZG ejsti;n i[sh: kai; hJ HQ a[ra th`/ QZ ejsti;n i[sh3.
kai; kavqeto~ h\ktai hJ QK: i[sh a[ra ejsti;n hJ ZK th`/ KH. kai; ejpei;
ojrqhv ejstin eJkatevra tw`n uJpo; tw`n ABQ AKQ, kai; < ejn > kuvklw/ 

4
 ejsti;n

to; AB QK5 tetravpleuron: i[sh < a[ra > 6 ejsti;n hJ uJpo; tw`n BQA gwniva th`/
uJpo; tw`n BKA. hJmivsou~ dev ejstin hJ uJpo; tw`n BQA: hJmivsou~ a[ra
ejsti;n kai; hJ uJpo; tw`n BKA. ojrqh; dev ejstin hJ uJpo; tw`n BEK: i[sh a[ra
ejsti;n hJ BE th`/ EK. th`~ de; EK diplh` ejstin hJ AZ, ejpeivper hJ me;n AE
th`/ EH ejsti;n i[sh, hJ de; ZK th`/ KH: kai; th`~ EB a[ra diplh` ejstin
hJ AZ, o{per ì

A E K ZH C

T

D

B

Prop. 12
#13 e[stw hJmikuvklion to; ABG, kai;
keklavsqw hJ ABD, kai; e[stw
i[sh hJ AB th`/ BD, kai; th`/ BD
pro;~ ojrqa;~ h[cqw hJ DE, kai;
ejpezeuvcqw hJ BE, kai; aujth`/ pro;~
ojrqa;~ h[cqw hJ EZ, kai; to; kevntron to; H, kai; e[stw wJ~ hJ AH pro;~
HD ou{tw~ hJ DQ pro;~ QZ, kai; ejpezeuvcqw hJ QE: o{ti hJ uJpo; tw`n
BED gwniva i[sh ejsti;n th`/ uJpo; tw`n DEQ gwniva/. h[cqw ajpo; tou` H
ejpi; th;n BE kavqeto~ hJ HK: i[sh a[ra ejsti;n hJ BK th`/ KE. kai; e[stin

1 i[son ejsti;n tw`n A corr. Hu, Tr
2 th`/...gwniva A corr. Hu, Tr
3 kai; hJ HQ...QZ ejsti;n A, Tr kai; hJ uJpo; QHZ a[ra th`/ uJpo; QZH ejsti;n Hu
4 kai; kuvklw/ A ejn add. Tr ejn kuvklw/ Hu
5 coniunx. Hu, Tr
6 a[ra add. Hu
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ojrqh; hJ uJpo; tw`n BDE: aiJ trei`~ a[ra aiJ BK KD KE i[sai ajllhvlai~
eijsivn. kai; paravllhlov~ ejstin hJ HK th`/ EZ, kai; ejpei; zhtw` th;n1

f. 38 (Prop.12)
uJpo; tẁn KED gwnivan th̀/ uJpo; tẁn DEQ gwniva/2 i[shn. kai; e[stin i[sh
hJ DK th`/ KE, o{ti a[ra i[sh ejsti;n hJ uJpo; KED gwniva th`/ uJpo; KDE,
o{ti a[ra kai; hJ uJpo; KDE th`/ uJpo; DEQ3 i[sh ejstivn, o{ti a[ra paravllh-
lov~ ejstin hJ DK th`/ EQ. h[cqw kai; th`/ DE paravllhlo~ hJ KL kai; ejk-
beblhvsqw hJ GD4 ejpi; to; L, kai; ejpezeuvcqw hJ BL. ejpei; ou\n hJ me;n KL
th`/ DE ejsti;n paravllhlo~, hJ de; KH th`/ EZ, zhtei`tai de; kai; hJ KD
th`/ EQ paravllhlo~, o[ti a[ra dia; to; ijsogwvnion ei\nai to; me;n KLH
trivgwnon tẁ/ EDZ trigwvnw/, to; de; DKH tw`/ EQZ, e[stin wJ~ me;n
hJ LH pro;~ HK, hJ DZ pro;~ ZE, wJ~ [te]5 de; hJ KH pro;~ HD, hJ EZ pro;~
ZQ: o{ti a[ra kai; wJ~ hJ LH pro;~ HD, ou{tw~ hJ DZ pro;~ ZQ, dií i[sou
gavr: o{ti a[ra kai; wJ~ hJ LD pro;~ th;n DH, ou{tw~ hJ DQ pro;~ th;n QZ,
dielovnti gavr. uJpevkeito de; kai; wJ~ hJ DQ pro;~ QZ, ou{tw~ hJ AH
pro;~ HD: o{ti a[ra ejsti;n wJ~ hJ LD pro;~ DH, ou{tw~ hJ DQ pro;~ QZ,
toutevstin hJ AH pro;~ HD: o{ti a[ra i[sh ejsti;n hJ LD th`/ AH6: o{ti a[ra
kai; hJ LA th`/ DH ejsti;n i[sh. ajlla; kai; hJ AB th`/ BD ejsti;n i[sh: o{ti
a[ra kai; hJ LB th`/ BH ejsti;n i[sh. ajlla; hJ BH eJkatevra/ tẁn LD
AH ejsti;n i[sh: o{ti a[ra kai; hJ BL th`/ LD ejsti;n i[sh. e[stin dev: ejpei;
ga;r paravllhlov~ ejstin hJ KL th`/ DE, kai; e[stin i[sh hJ DK th`/ KE, i[-
sh ejsti;n kai; hJ uJpo; tw`n BKL gwniva th`/ uJpo; tw`n LKD. ejpei;
ou\n i[sh ejsti;n hJ BK th`/ KD kai; gwniva hJ uJpo; tw`n BKL gwniva/
th`/ uJpo; tw`n DKL ejsti;n i[sh, kai; hJ BL a[ra th`/ LD ejsti;n i[sh.
kai; hJ suvnqesi~ ajkolouvqw~ th̀/ ajnaluvsei. ejpei; ga;r i[sh ejsti;n
hJ DK th`/ KE, i[sh kai; gwniva hJ uJpo; KDE th`/ uJpo; KED. ajllí hJ me;n
uJpo; KDE th`/ uJpo; DKL7 ejsti;n i[sh, hJ de; uJpo; KED8 th̀/ uJpo; BKL
ejsti;n i[sh dia; ta;~ KL ED parallhvlou~: kai; hJ uJpo; BKL a[ra th̀/
uJpo; DKL9 ejsti;n i[sh. e[stin de; kai; hJ BK eujqei`a th`/ KD i[sh: kai;
bavsi~ a[ra hJ BL bavsei th̀/ LD ejsti;n i[sh, wJste kai; hJ10 gwniva
hJ uJpo; tw`n LBD th`/ uJpo; BDA11, toutevstin th`/ uJpo; DAB,

1 scriptura non satis perspicua in A zhtw` th;n Tr ejzhvtoun th;n Hu
2 gwnivan A corr. Hu, Tr
3 DES AB corr. S Hu, Tr
4 GD A Hu GA Tr
5 te del. A2, Hu, Tr
6 LH AB corr. S Hu, Tr
7 BKL A corr. Hu, Tr
8 KDE AB corr. S Hu, Tr
9 KLD AB corr. S Hu, Tr
10 hJ ABS del. Hu
11 BD DA AB corr. S Hu
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toutevstin th`/ uJpo; ABH. koinh; ajfh/rhvsqw hJ uJpo; ABD: loiph;
a[ra hJ uJpo; LBA loiph`/ th`/ uJpo; DBH ejsti;n i[sh. ajlla; kai; hJ
uJpo; BDH th`/ uJpo; BAL ejsti;n i[sh: duvo dh; trivgwnav ejstin ta; BDH
BAL ta;~ duvo gwniva~ tai`~ duvo gwnivai~ i[sa~ e[conta kai; mivan pleura;n
th;n AB th`/ BD1: i[sh a[ra hJ me;n BH th`/ BL, hJ de; DH th`/ LA, w{ste kai;

f. 38v (Prop. 12, arbelos theorem, and Prop. 13)
hJ LD th`/ AH ejsti;n2 i[sh. ejpei; ou\n uJpovkeitai wJ~ hJ AH pro;~ HD, hJ DQ
pro;~ QZ, i[sh de; hJ AH th`/ LD, e[stin a[ra wJ~ hJ LD pro;~ DH, hJ DQ
pro;~ QZ: sunqevnti < a[ra > 3 wJ~ hJ LH pro;~ HD, hJ DZ pro;~ ZQ. e[stin de; kai;
wJ~ hJ LH pro;~ HK, hJ DZ pro;~ ZE: < dií i[sou a[ra > 4 kai; wJ~ hJ KH pro;~ HD, 
hJ EZ pro;~ ZQ.
kai; e[stin i[sh hJ uJpo; EZQ th`/ uJpo; KHD5 dia; to; parallhvlou~ ei\nai
ta;~ EZ KH: i[sh a[ra kai; hJ uJpo; EQZ th`/ uJpo; KDH6: paravllhlo~ a[ra
ejsti;n kai; hJ KD th̀/ EQ: i[sh a[ra ejsti;n hJ < uJpo; > 7 KDE, toutevstin hJ uJpo; KED,
gwniva th`/ uJpo; DEQ.

L A D H T Z C

K
B

E

Arbelos Theorem
#14 fevretai e[n tisin ajrcaiva
provtasi~ toiauvth8: uJpo-
keivsqw triva hJmikuvklia9

ejfaptovmena ajllhv-
lwn ta; ABG ADE EZG, kai;
eij~ to; metaxu; tw`n perifereiw`n aujtw`n cwrivon, o} dh; kalou`sin a[rbhlon,

1 th;n AB th`~ BD A corr. B Hu, Tr
2 th`/ AB ejsti;n AB corr. S Hu, Tr
3 a[ra add. Hu
4 ejx i[sou a[ra add. Hu corr. p. 1227 appendix Hu
5 KHA ABS corr. Co, Hu, Tr
6 KD h A corr. Hu, Tr
7 uJpo; add. Hu, Tr
8 toiauvth/ A corr. Hu, Tr
9 hJmikuvkli - a A
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ejggegravfqwsan kuvkloi ejfaptovmenoi tw`n te hJmikuklivwn kai; ajl-
lhvlwn oJsoidhpotou`n, wJ~ oiJ peri; kevntra ta; [Z] H QKL1: dei`xai th;n
me;n ajpo; tou` H kevntrou kavqeton ejpi; th;n AG i[shn th`/ diamevtrw/
tou` peri; to; H kuvklou, th;n dí ajpo; tou` Q kavqeton diplasivan th`~
diamevtrou tou` peri; to; Q kuvklou, th;n dí ajpo; tou` K kavqeton tripla-
sivan, kai; ta;~ eJxh`~ kaqevtou~ tw`n oijkeivwn diamevtrwn pollapla-
siva~ kata; tou;~ eJxh`~ monavdi ajllhvlwn uJperevconta~ ajriqmou;~
ejpí a[peiron genomevnh~2 th`~ tw`n kuvklwn ejggrafh`~. deicqhvsetai de;
[ta;]3 provteron ta; lambanovmena.

CE

Z

H

TK
L

A

B

D

Prop. 13
#15 e[stwsan duvo kuvkloi oiJ ZB
BM peri; kevntra ta; AG4

ejfaptovmenoi ajllhvlwn
kata; to; B, kai; meivzwn e[stw oJ
BM, a[llo~ dev ti~ ejfaptovme-
no~ aujtw`n kata; ta; KL5

peri; kevntron to; H oJ KL6,
kai; ejpezeuvcqwsan aiJ GH AH. pesou`ntai dh; dia; tw`n KL7, kai; hJ ejpi; ta;
KL8 ejpizeugnumevnh eujqei`a ejkballomevnh temei` me;n to;n ZB kuvklon9,
sumpivptei de; th`/ dia; tw`n AG10 kevntrwn ejkballomevnh/ eujqeiva/ dia;11

1 ZH QKL A distinx. BS H Q K L Co, Hu, Tr
2 ginomevnh~ Hu
3 ta; del. Hu, Tr
4 distinx. BS Hu, Tr
5 distinx. BS Hu, Tr
6 QKL A corr. Hu, Tr
7 distinx. BS Hu, Tr
8 distinx. BS Hu, Tr
9 to;n /B kuvklon A to;n ZB kuvklon Hu to;n GB kuvklon Tr
10 distinx. BS Hu, Tr
11 eujqei`a /// A dia; add. BS Hu, Tr
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f. 39 (Prop. 13)
to; meivzona ei\nai th;n AK pleura;n th`~ GD tou` AK DG trapezeivou1.
sumpiptevtw ou\n kata; to; E tevmnousa to;n2 kuvklon kata; to; D:
dei`xai o{ti ejsti;n wJ~ hJ AB pro;~ BG, ou{tw~ hJ AE pro;~ EG. e[stin de;
fanero;n ejpizeucqeivsh~ th̀~ GD3: givnetai ga;r ijsogwvnia ta;
GDL LKH trivgwna ta;~ kata; korufh;n gwniva~ pro;~ tẁ/ L4 i[sa~ e[conta
kai; peri; ta;~ GH5 gwniva~ ta;~ pleura;~ ajnavlogon e[conta6, w{ste
i[sa~ ei\nai ta;~ uJpo; DGH7 GHA gwniva~ ejnallavx, kai; paravl-
lhlon th;n GD [kai;]8 th̀/ AH9, kai; wJ~ th;n AE pro;~ th;n EG, th;n AK
pro;~ GD, toutevstin th;n AB pro;~ BG. kai; to; ajnastrovfion de;
fanerovn ejstin. eja;n gar; h\/ wJ~ hJ AB pro;~ BG, ou[tw~ hJ AE pro;~ EG, hJ
KD ejpí eujqeiva~ givnetai th`/ DE. paravllhlov~ te gavr ejstin hJ AK th`/
GD kai; e[stin wJ~ hJ AB pro;~ BG, toutevstin wJ~ hJ AE pro;~ EG, hJ AK
pro;~ GD: ejpí eujqeiva~ a[ra ejsti;n hJ KD10 th̀/ DE. eij ga;r hJ dia; tẁn KE11

oujc h{xei kai; dia; toù D, ajlla; dia; tou` Q, givnetai wJ~ hJ AE pro;~ EG, hJ
AK pro;~ GQ, o{per ajduvnaton. oJmoivw~ oujde; tou` D ejkto;~ h{xei tev-
mnousa th;n GD ejkblhqei`san, oi|on kata; to; N: e[stai ga;r pavlin
wJ~ hJ AE pro;~ EG, hJ AK pro;~ GN, o{per ajduvnaton: e[stin ga;r pro;~
th;n GD. h] ou{tw~. dia; toù K th`/ AE paravllhlo~ hJ KN h[cqw, kai;
givnetai parallhlovgrammon to; AGKN 12, kai; i[sh hJ AK th`/ GN.
kai; ejpeiv ejstin wJ~ hJ AE pro;~ EG, ou{tw~ hJ AK, toutevstin hJ GN, pro;~
GD, dielovnti wJ~ hJ AG pro;~ GE, hJ ND pro;~ DG. ejnalla;x wJ~ hJ AG,
toutevstin wJ~ hJ KN, pro;~ ND, ou{tw~ hJ EG pro;~ GD. kai; peri; ta;~ i[sa~
gwniva~ ta;~ pro;~ toi`~ NG 13 aiJ pleurai; ajnavlogovn eijsin: o{moion a[ra
ejsti;n to; EDG trivgwnon tw`/ DNK trigwvnw/: i[sh a[ra ejsti;n hJ uJpo;
EDG gwniva th̀/ uJpo; NDK. kai; e[stin eujqei`a hJ GN: eujqei`a a[ra kai;
hJ KDE. levgw dh; o{ti kai; to; uJpo; KEL i[son ejsti;n tw`/ ajpo; EB. ejpei; ga;r
wJ~ hJ AE pro;~ EG, ou{tw~ hJ AB pro;~ BG, toutevstin pro;~ GZ, e[stai kai;
hJ loiph; hJ BE pro;~ loiph;n th;n EZ wJ~ hJ AE pro;~ EG, toutevstin
wJ~ hJ KE pro;~ ED. ajllí wJ~ me;n hJ KE pro;~ ED, ou{tw~ to; uJpo; KEL

1 tou` AKDG trapezivou Hu, Tr
2 th;n A corr. BS Hu, Tr
3 ejpizeucqeivsh~ th`~ GD del. Hu
4 pro;~ tẁ/ L del. Hu
5 distinx. BS Hu, Tr
6 e[conta del. Hu
7 DHG A corr. Hu, Tr
8 kai; del. B Hu, Tr
9 AK A corr. Hu, Tr
10 GD A corr. Co, Hu, Tr
11 distinx. Hu, Tr
12 AGKN ABS AGNK Hu, Tr
13 NG AS distinx. B Hu, Tr
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pro;~ to; uJpo; LE ED, wJ~ de; hJ BE pro;~ EZ, ou{tw~ to; ajpo; th`~ BE
pro;~ to; uJpo; BEZ, kai; e[stin i[son to; uJpo; LE ED tw`/ uJpo; BE EZ: i[son a[ra
kai; to; uJpo; KEL tw`/ ajpo; EB.

C ABZ

H

LD

N K

E

T

M

f. 39v (Prop. 14)
Prop. 14
#16 duvo hJmikuvklia ta; BHG1 BED, kai; ejfaptovmeno~ aujtw`n kuvklo~ oJ EZ
HQ2, ajpo; de; tou` kevntrou aujtou` tou` A kavqeto~ h[cqw ejpi; th;n BG bavsin
tẁn hJmikuklivwn hJ AM: o{ti ejsti;n < wJ~ > 3 hJ MB pro;~ th;n ejk4 toù kevntrou toù
EZHQ kuvklou, ou{tw~ ejpi; me;n th̀~ prwvth~ katagrafh̀~ < sun < > amfovtero~5

hJ GB BD pro;~ th;n uJperoch;n aujtw`n th`n GD, ejpi; de; th`~ deutevra~ kai;
trivth~ ou{tw~ hJ tw`n GB BD uJperoch; pro;~ sunamfovteron th;n
GB BD, < toutevstin th;n GD > 6. h[cqw dia; tou` A th`/ BG paravllhlo~ hJ QZ. 
ejpei; ou\n duvo
kuvkloi oiJ BHG EZ HQ7 ejfavptontai ajllhvlwn kata; to; H, kai; diavmetroi
ejn aujtoi`~ paravllhloiv eijsin aiJ BG ZQ8, eujqei`a e[stai h{te dia; tw`n HQB9

kai; < hJ > 10 dia; tẁn HZG11. pavlin ejpei; duvo kuvkloi oiJ BED EZ HQ12 ejfavptontai
ajllhvlwn kata; to; E, kai; ejn aujtoi`~ paravllhloi diavmetroiv eijsin aiJ QZ

1 HBG AB corr. Co, Hu, Tr
2 coniunx. B Hu, Tr
3 wJ~ add. Hu, Tr
4 EK A corr. Hu, Tr
5 sun- add. Tr commendavit Hu appendix p. 1227
6 toutevstin th;n GD add. Hu
7 coniunx. BS Hu, Tr
8 ZE A corr. Hu, Tr
9 distinx. Hu, Tr
10 hJ add. S Hu, Tr
11 distinx. B Hu, Tr
12 coniunx. BS Hu, Tr
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BD, eujqei`a e[stai h{te dia; tẁn ZEB1 kai; hJ dia; tw`n QED2. h[cqwsan kai;
ajpo; tw`n QZ3 shmeivwn kavqetoi aiJ QK ZL: e[stai dh; dia; me;n th;n oJ-
moiovthta tẁn BHG BQK trigwvnwn wJ~ hJ BG pro;~ BH, ou{tw~ hJ BQ
pro;~ th;n BK4, kai; to; uJpo; GB BK periecovmenon cwrivon i[son tw`/5 uJpo;
HB BQ, dia; de; th;n oJmoiovthta tẁn BZL BED trigwvnwn wJ~ hJ DB pro;~
th;n BE, ou{tw~ hJ BZ pro;~ BL, kai; to; uJpo; DB BL i[son tw`/ uJpo; ZB BE,
kai; e[stin i[son to; uJpo; HB BQ tẁ/ uJpo; ZB BE: i[son a[ra kai; to; uJpo; GB
BK tẁ/ uJpo; DB BL, a]n de; hJ ajpo; toù Z kavqeto~ ejpi; to; D pivpth/, tw`/ aj-
po; th̀~ BD. ejpi; me;n a[ra th`~ prwvth~ katagrafh`~ wJ~ hJ GB pro;~ BD,
ou{tw~ hJ LB pro;~ th;n BK, w{ste kai; < wJ~ > 6 sunamfovtero~ hJ GB BD pro;~ th;n
uJperoch;n aujtw`n th;n < GD, ou{tw~ kai; sunamfovtero~ hJ LB BK pro;~ th;n 
uJperoch;n aujtw`n th;n > KL7. kai; e[sti sunamfotevrou me;n th̀~ LB BK hJmiv-

f. 40 (Prop. 14)
seia hJ BM, dia; to; i[shn ei\nai th;n KM th`/ ML, th`~ de; LK hJmivseia hJ
MK8: kai; wJ~ a[ra sunamfovtero~ hJ GB BD pro;~ th;n GD, ou{tw~ hJ BM pro;~ MK,
toutevsti9 pro;~ th;n ejk toù kevntrou toù EZ HQ10 kuvklou. ejpi; de; th̀~ deutevra~ kai;
trivth~ katagrafh̀~, ejpei; to; uJpo; GBK i[son ejdeivcqh [kai; koinw`~]11 tẁ/ uJpo;
DBL, wJ~ a[ra hJ GB pro;~ BD, ou{tw~ hJ LB pro;~ th;n BK. sunqevnti wJ~ hJ GD pro;~
DB, hJ KL pro;~ KB: w{ste kai; wJ~ hJ GD pro;~ th;n tẁn GB BD uJperochvn, ou{tw~
hJ KL pro;~ th;n tẁn LB BK uJperochvn. kai; e[sti th̀~ me;n KL hJmivseia < hJ > 12 ejk
toù kevntrou < toù > 13 EZ HQ14 kuvklou [ajnti; th̀~ LM]15, hJ de; BM hJmivseia th̀~ tẁn LB
BK uJperoch`~ dia; to; i[shn ei\nai th;n LM th`/ MK16, w{ste kai; wJ~ hJ MB pro;~
th;n ejk tou` kevntrou toù EZHQ kuvklou, ou{tw~ ejpi;17 me;n th`~ prwvth~ kata-
grafh`~ sunamfovtero~ hJ GB BD pro;~ th;n uJperoch;n aujtw`n th;n GD,

1 distinx. B Hu, Tr
2 distinx. B Hu, Tr
3 distinx. S Hu, Tr
4 QK AB corr. S Hu, Tr
5 i[son to; AB corr. S Hu, Tr
6 wJ~ add. Tr
7 GD...th;n add. Hu, Tr
8 hJmivseian th;n MK ABS corr. Hu, Tr
9 toutevstin B Hu
10 coniunx. BS Hu, Tr
11 kai; koinw`~ del. Hu
12 hJ add. Hu, Tr
13 toù add. Hu, Tr
14 coniunx. BS Hu, Tr
15 ajnti; th̀~ LM del. Hu
16 AK ABS corr. Hu, Tr AZ Co
17 o{pw~ hJ A corr. Co, Hu, Tr
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ejpi; de; th̀~ deutevra~ kai; th̀~ trivth~ hJ < tẁn > 1 GB BD uJperoch; pro;~ sunamfov-
teron th;n GBD, toutevstin < th;n > 2 GD [ajnavpalin gavr]3. sunqewreìtai tavdí, o{ti4

kai; to; uJpo; tẁn BK LG i[son ejsti;n tẁ/ ajpo; th̀~ AM5. dia; ga;r th;n oJmoiovthta
tẁn BQK ZLG trigwvnwn ejsti;n wJ~ hJ BK pro;~ KQ, ou{tw~ hJ ZL pro;~ th;n LG, kai;
to; uJpo; BK LG6 i[son tẁ/ uJpo; QK ZL, toutevstin tẁ/ ajpo; th̀~ AM. givnetai de;
kai;7 dia; me;n to; ei\nai wJ~ th;n BG pro;~ th;n GD, ou{tw~ th;n BL pro;~ KL, to;
uJpo; BG kai; th`~ KL, toutevstin th`~ tou` kuvklou diamevtrou, i[son tw`/ uJpo;
BL DG8, dia; de; to; ei\nai wJ~ th;n BD pro;~ th;n GD, ou{tw~ th;n BK pro;~ KL, to; uJpo;
th̀~ BD kai; th̀~ KL, toutevstin th̀~ toù kuvklou diamevtrou, i[son tẁ/ uJpo; BK DG.
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1 tw`n add. Hu
2 th;n add. Hu, Tr
3 ajnavpalin gavr del. Hu
4 sunqewrei`tai d’, o{ti Hu
5 to; ajpo; th`~ AM A corr. BS Hu, Tr
6 to; uJpo; BK DG A corr. Co, Hu, Tr
7 kai; om. Tr
8 BG LG ABS corr. Co, Hu, Tr
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f. 40v (Prop. 15)
Prop. 15
#17 tw`n aujtw`n uJpokeimevnwn gegravfqw kuvklo~ oJ QRT ejfaptov-
meno~ tẁn te ejx ajrch`~ hJmikuklivwn kai; tou` EHQ kuvklou kata;
ta; QRT1 shmei`a, kai; ajpo; tw`n AP2 kevntrwn kavqetoi h[cqwsan
ejpi; th;n BG bavsin aiJ AM PN: levgw o{ti ejsti;n wJ~ hJ AM meta; th̀~ dia-
mevtrou toù EH kuvklou pro;~ th;n diavmetron aujtou`, ou{tw~ hJ PN pro;~ th;n
tou` QRT kuvklou diavmetron. h[cqw th`/ BD pro;~ ojrqa;~ hJ BZ: ejfavpte-
tai a[ra tou` BHG hJmikuklivou. kai; ejpizeucqei`sa hJ AP ejkbe-
blhvsqw ejpi; to; Z. ejpei; dia; to; prodeicqe;n wJ~ sunamfovtero~ hJ
GBD pro;~ th;n uJperoch;n aujtw`n th;n GD, ou{tw~ kai; hJ BM ejpi; < me;n > 3 th`~
prwvth~ katagrafh`~ < pro;~ th;n ejk tou` kevntrou tou` EHQ kuvklou > 4, ejpi; 
de; th̀~ deutevra~ < kai; trivth~ > 5 wJ~ hJ uJperoch; aujtw`n
pro;~ sunamfovteron, toutevstin wJ~ hJ tẁn GB BD uJperoch; pro;~
th;n GD, ou{tw~ hJ MB pro;~ th;n ejk toù kevntrou toù EHQ kuvklou, kai;
hJ BN pro;~ th;n ejk tou` kevntrou toù QRT kuvklou, e[stai a[ra kai; ejnal-
la;x wJ~ hJ MB pro;~ th;n BN, hJ AQ ejk toù kevntrou tou` EHQ kuvklou
pro;~ th;n QP ejk tou` kevntrou < tou` > 6 QRT kuvklou. ajllí wJ~ hJ MB7 pro;~
BN, hJ AZ pro;~ ZP. ejpizeucqeivsh~ ga;r th`~ ZM e[stai wJ~ hJ MB
pro;~ th;n BN, ou{tw~ hJ MZ pro;~ th;n ZX. kai; < wJ~ a[ra > 8 hJ AZ pro;~ th;n 
ZP, ou{tw~
hJ AQ ejk tou` kevntrou toù EHQ kuvklou pro;~ < th;n > 9 QP ejk toù kevn-
trou toù QRT kuvklou10. kai; tw`n EHQ RQT kuvklwn ejfavptetaiv
ti~ kuvklo~ oJ BRED kata; ta; RE11 shmei`a: dia;12 a[ra to; prodeicqe;n ieí
 qewvrhma < hJ > 13 ta; RE14 shmei`a ejpizeugnuvousa eujqei`a

1 distinx. BS Hu, Tr
2 distinx. BS Hu, Tr
3 me;n add. Hu
4 pro;~...tou` EHQ kuvklou add. Co, Hu
5 kai; trivth~ add. Co, Hu, Tr
6 toù add. BS Hu, Tr
7 ME A corr. Co, Hu, Tr
8 wJ~ a[ra add. Hu, Tr
9 th;n add. Hu, Tr
10 kuvklw A corr. Hu, Tr
11 distinx. BS Hu, Tr
12 dia; a[ra to; prodeicqe;n ie í qewvrhma ta; RE shmei`a add. A1 in margine ie í qewvrhma inter-
polatori attribuit Hu
13 hJ add. Hu, Tr
14 distinx. Hu, Tr
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ejkballomevnh ejpi; to; Z1 shmei`on pesei`tai, kai; i[son e[stai to;
uJpo; EZR periecovmenon ojrqogwvnion tw`/ ajpo; th̀~ QZ tetra-
gwvnw/. e[stin de; kai; tw`/ ajpo; th̀~ ZB tetragwvnw/ i[son to; uJpo;
EZR: i[son a[ra kai; to; ajpo; ZB tw`/ ajpo; ZQ: i[sh a[ra hJ BZ th`/
ZQ. ejpei;2 de; kai; hJ me;n MA ejkblhqei`sa tevmnei th;n tou` EHQ
kuvklou perifevreian kata; to; S, hJ de; PN tevmnei th;n tou` QRT
kuvklou perifevreian kata; to; O shmei`on, i[sh < hJ > me;n3 AQ th`/ AS, hJ de;
PO th̀/ PQ, kai; < hJ > 4 ta; OS5 shmei`a ejpizeugnuvousa h{xei dia; tou` Q:
i[sh gavr ejstin hJ uJpo; QAS gwniva th`/ uJpo; QPO gwniva/ ejnal-
lavx, kai; ijsogwvniovn ejstin to; AQS trivgwnon tẁ/ PQO trigwv-
nw/, kai; e[stin eujqei`a hJ AP: eujqei`a a[ra ejsti;n kai; hJ dia; tw`n S Q O6

shmeivwn ajpagomevnh. h{xei de; kai; dia; tou` B7: eujqei`a ga;r hJ QOB dia;
to; ei\nai wJ~ th;n BZ pro;~ ZQ, ou{tw~ th;n OP pro;~ th;n PQ, i[swn

f. 41 (Prop. 15)
oujsw`n tw`n uJpo; BZQ OPQ gwniw`n ejn parallhvloi~ taì~ BZ
OP: kai; tou`to ga;r prodevdeiktai ieí. ejpizeucqei`sa de; kai; hJ
BP ejkbeblhvsqw kai; sumpiptevtw th`/ MA ejkblhqeivsh/8

kata; to; K. ejpei; ou\n h\n wJ~ hJ MB pro;~ BN, toutevstin wJ~ hJ KB pro;~
th;n BP, ou{tw~ hJ AZ pro;~ ZP kai; hJ AQ pro;~ QP, [ou{tw~ hJ AZ pro;~ ZP 
kai; hJ AQ pro;~ QP,]9 e[stai kai; wJ~ hJ KB pro;~ BP, hJ AS pro;~
PO, kai; hJ SK < pro;~ PO: i[sh a[ra hJ AS th`/ > 10

SK. ejpei; ou\n o{lh hJ AK o{lh/ th̀/ diamevtrw/ tou` EHQ kuv-
klou ejsti;n i[sh, kai; e[stin wJ~ hJ KM pro;~ KS, ou{tw~ < hJ > 11 NP pro;~ OP, 
e[stai kai;
wJ~ hJ MK pro;~ th;n KA, toutevstin wJ~ hJ MA meta; th`~ diamevtrou tou`
EHQ kuvklou pro;~ th;n diavmetron, ou{tw~ hJ NP pro;~ th;n tou` QRT kuv-
klou diavmetron, o{per ì

(f. 41v: diagrams Prop. 15)

1 to; H shmei`on A corr. Co, Hu, Tr
2 ejstin de; kai; A e[sti de; kai; BS ejpei; de; kai; Hu, Tr e[ti de; kai; coni. Tr
3 i[sh me;n add. A2 in marg. hJ add. Tr i[sh a[ra ejsti;n hJ me;n Hu
4 hJ add. Hu, Tr
5 distinx. BS Hu, Tr
6 sQO super evanidam scripturam A2 S Q O BS Hu, Tr
7 BE A corr. Co, Hu B[E] Tr
8 ejkblhqeivsh~ A corr. Hu, Tr
9 bis scripta del. Co, Hu, Tr
10 pro;~...hJ AS th`/ add. Hu, Tr
11 hJ add. Hu, Tr
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f. 42 (Prop. 16)
Prop. 16
# 18 touvtwn proteqewrhmevnwn uJpokeivsqw hJmikuvklion to; BHG, kai; ejpi;
th`~ bavsew~ aujtou` tuco;n shmei`on eijlhvfqw to; D, kai; ejpi; tw`n BD
DG hJmikuvklia gegravfqw ta; BED DUG, kai; ejggegravfqwsan eij~ to;n
metaxu; tovpon tw`n trivwn perifereiw`n to;n kalouvmenon a[rbh-
lon kuvkloi ejfaptovmenoi tw`n hJmikuklivwn kai; ajllhvlwn o{soi <
dhpotou`n, wJ~ oiJ1 peri; ta; kevntra ta; APO2, kai; ajpo; tw`n kevn-
trwn aujtwn kavqetoi ejpi; th;n BG h[cqwsan aiJ AM PN OS: levgw o{ti

1 wJ~ oJ ABS corr. Hu, Tr
2 distinx. BS Hu, Tr
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hJ me;n AM i[sh ejsti;n th`/ diamevtrw/ tou` peri; to; A kuvklou, hJ de; PN di-
plh` ejsti1 th̀~ diamevtrou toù peri; to; P kuvklou, hJ de; OS triplh`
th`~ diamevtrou tou` peri; to; O2 kuvklou, kai; aiJ eJxh`~ [aiJ]3 kavqetoi
tw`n oijkeivwn diamevtrwn pollaplavsiai kata; tou;~ eJxh`~ monavdi
ajllhvlwn uJperevconta~ ajriqmouv~. h[cqw diavmetro~ hJ QZ paravl-
lhlo~ th`/ BG, kai; kavqetoi aiJ QK ZL: e[stai dh; kata; ta; progegram-
mevna to; me;n uJpo; GB BK periecovmenon ojrqogwvnion i[son tw`/ uJpo;
LB BD, to; de; uJpo; BG GL4 tẁ/ uJpo; KGD. kai; dia; tou`to wJ~ hJ BK pro;~
KL, ou{tw~ hJ KL [pro;~] pro;~5 LG: eJkavtero~ ga;r lovgo~ oJ aujtov~ ejstin
tw`/ th̀~ BD pro;~ DG, ejpei; ga;r to; uJpo; GB BK i[son ejsti;n tw`/ uJpo;
LB BD, e[stin a[ra wJ~ hJ GB pro;~ BL, ou{tw~ hJ DB pro;~ BK: ejnalla;x
wJ~ hJ GB pro;~ BD, ou{tw~ hJ LB pro;~ BK: dielovnti wJ~ hJ GD pro;~
DB, hJ LK pro;~ KB: ajnavpalin wJ~ hJ BD pro;~ DG, hJ BK pro;~ KL.
pavlin ejpei; to; uJpo; BG GL i[son ejsti;n tw`/ uJpo; KG GD, e[stin a[ra wJ~
hJ BG pro;~ GK, ou{tw~ hJ DG 6 pro;~ GL: ejnalla;x wJ~ hJ BG pro;~ th;n
GD, hJ KG pro;~ th;n GL: dielovnti [wJ~]7 a[ra ejsti;n wJ~ hJ BD pro;~ DG, ou{tw~
hJ KL pro;~ th;n LG: h\n de; kai; wJ~ hJ BD pro;~ th;n GD, hJ BK pro;~ th;n
KL: kai; wJ~ a[ra hJ BK pro;~ th;n KL, < hJ KL > 8 pro;~ th;n LG. i[son a[ra to; uJpo;
tw`n BK GL tẁ/ ajpo; th̀~ KL. prodevdeiktai9 de; to; uJpo; BK LG i[son
kai; tw`/ ajpo; AM: i[sh ejsti;n a[ra10 hJ AM th`/ KL, toutevstin th̀/ ZQ
diamevtrw/ toù peri; to; A kuvklou. ejpei; de; kai; tou`to prodevdei-
ktai, o{ti ejsti;n wJ~ hJ AM meta; th̀~ ZQ pro;~ th;n ZQ, ou{tw~ hJ
PN pro;~ th;n toù peri; to; P kuvklou diavmetron, kai; e[stin < hJ > 11 AM meta;
th`~ ZQ diplh` th̀~ ZQ, e[stai kai; hJ PN th`~ diamevtrou toù
peri; to; P kuvklou diplh̀. hJ PN a[ra meta; th̀~ diamevtrou

f. 42v (Prop. 16)
tou` peri; to; P kuvklou triplasiva th̀~ diamevtrou, kai; e[stin ejn tw`/
aujtw`/ lovgw/ hJ OS pro;~ th;n diavmetron tou` peri; to; O kuvklou: kai; hJ OS
a[ra triplasiva th`~ diamevtrou toù peri; to; O kuvklou. kai; oJmoiv-
w~ kai; hJ toù eJxh`~ kuvklou kavqeto~ th`~ diamevtrou tetraplasiva,
kai; < aiJ > 12 eJxh̀~ kavqetoi tẁn kaqí auJta;~ diamevtrwn euJreqhvsontai polla-

1 ejsti del. Hu
2 peri; to Q A corr. Hu, Tr
3 aiJ del. Hu, Tr
4 to; uJpo; LB BD, to; de; uJpo; BG GA A1 tw`/ corr. A2 uJpo; BG GL Hu, Tr
5 bis scriptum (sed alterum pro;~ expunctum) del. Hu, Tr
6 hJ GD Hu
7 wJ~ del. Hu, Tr
8 hJ KL add. Tr ou{tw~ hJ KL Hu
9 prosdevdeiktai A corr. Hu, Tr
10 i[sh a[ra ejsti;n Hu
11 hJ add. Hu, Tr
12 aiJ add. Hu, Tr
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plavsiai kata; tou;~ eJxh`~ monavdi ajllhvlwn uJperevconta~ ajriqmouv~,
kai; tou`to sumbai`non ejpi; to; a[peiron ajpodeicqhvsetai1. a]n < dí > 2 a[n-
ti; tw`n BHG DUG perifereiw`n eujqei`ai w\sin ojrqai; pro;~ th;n BD3,
wJ~ ejpi; th`~ trivth~4 e[cei katagrafh`~, ta; aujta; sumbhvsetai peri;
tou;~ ejggrafomevnou~ kuvklou~: aujtovqen5 ga;r hJ ajpo; tou` A kevn-
trou kavqeto~ ejpi; th;n BD6 i[sh givnetai th`/ tou` peri; to; A kuvklou
diamevtrw/7. a]n de; aiJ me;n8 BHG BED mevnwsin perifevreiai, ajnti; de; th`~
DUG perifereiva~ eujqei`a uJpoteqh`/, wJ~ ejpi; th`~ tetavrth~
e[cei katagrafh`~, hJ DZ9 ojrqh; pro;~ th;n BG, th`~ me;n BG pro;~
th;n GD tetragwniko;n ejn ajriqmoi`~ lovgon ejcouvsh~, suvmmetro~10

e[stai hJ ajpo; tou` A kavqeto~ th`/ diamevtrw/ tou` peri; to; A kuv-
klou, eij de; mhv, ajsuvmmetro~. kaqovlou ga;r o}n e[cei lovgon hJ BG pro;~ th;n
GD, tou`ton e[cei to;n lovgon dunavmei hJ DZ11 pro;~ th;n diavmetron tou`
peri; to; A kuvklou, wJ~ eJxh`~ deivknutai. oi|on eja;n h\/ tetrapla-
siva mhvkei hJ BG th`~ GD, givnetai diplh` mhvkei hJ DZ12, toutevstin
hJ ajpo; tou` A kavqeto~, th`~ diamevtrou tou` peri; to; A kuvklou, kai;
hJ me;n ajpo; tou` P triplh`, hJ dí ajpo; tou` O tetraplh`, kai; eJxh`~
kata; tou;~ eJxh`~ ajriqmouv~.
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1 ajpodeicqhvsontai ABS corr. Hu, Tr
2 dí add. Hu, Tr
3 BG A corr. Hu, Tr
4 G A corr. Hu, Tr
5 aujtov* qen A
6 BG A corr. Hu, Tr
7 diamevtrou ABS corr. Hu, Tr
8 me;n superscriptum A2
9 DX A corr. Co, Hu, Tr
10 summetron A corr. Hu, Tr
11 DX A corr. Hu, Tr
12 DX A corr. Hu, Tr
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f. 43 (Prop. 17)
Prop. 17
#19 to; uJperteqe;n lh`mma. hJmikuvklia ta; BHG BAD, kai; ojrqh; hJ DE, kai;
kuvklo~ ejfaptovmeno~ oJ QH ZA1: o{ti ejsti;n < wJ~ > 2 hJ BG pro;~ th;n GD mhvkei,
ou{tw~ hJ DZ pro;~ th;n diavmetron toù QH ZA3 < kuvklou > 4 dunavmei. h[cqw diavmetro~
hJ QZ: eujqei`ai a[ra aiJ ZAB QAD. kavqeto~ h[cqw hJ QK: e[stai a[ra
dia; < ta; > 5 prodedeigmevna to; uJpo; tw`n GB BK periecovmenon cwrivon i[son
tw`/ ajpo; th`~ BD tetragwvnw/: wJ~ a[ra hJ BG pro;~ GD, ou{tw~ hJ BD pro;~
DK, toutevstin pro;~ QZ. wJ~ de; hJ BD pro;~ QZ, hJ DA pro;~ QA, wJ~ de;
hJ DA pro;~ AQ, ou{tw~ to; ajpo; th`~ ZD pro;~ to; ajpo; th`~ QZ. ojrqo-

f. 43v (Prop. 17, 18, and 19)
gwvnion gavr ejstin to; QZD, kai; kavqeto~ ejpi; th;n uJpoteivnousan hJ
ZA. kai; wJ~ a[ra hJ BG pro;~ GD, ou{tw~ to; ajpo; th`~ ZD pro;~ to; ajpo;
th`~ diamevtrou tou` QH ZA6 kuvklou.

KB D C
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Prop. 18
#20 e[ti kai; tou`to7 dia; tw`n pro-
gegrammevnwn lhmmavtwn
teqewvrhtai. e[stw hJmikuv-
klia ta; ABG ADE, kai;
gegravfqwsan ejfaptov-
menoi tw`n perifereiw`n
aujtw`n kuvkloi oiJ peri; ta; kevntra ta; ZHQ8, kai; oiJ sunecei`~ aujtoi`~

1 coniunx. BS Hu, Tr
2 wJ~ add. Hu, Tr
3 coniunx. Hu, Tr
4 kuvklou add. Hu
5 ta; add. S Hu, Tr
6 coniunx. Hu, Tr
7 touvtw A corr. Hu, Tr
8 distinx. BS Hu, Tr
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wJ~ ejpi; to; A. o{ti me;n ou\n hJ ajpo; tou` Z kavqeto~ ejpi; th;n AG i[sh
ejsti; th`/ ejk tou` kevntrou tou` peri; to; Z kuvklou dh`lon: levgw dí o{ti kai;
hJ me;n ajpo; tou` H kavqeto~ triplasiva th`~ ejk tou` kevntrou tou`
peri; to; H kuvklou, hJ de; ajpo; tou` Q pentaplasiva, kai; < aiJ > 1 eJxh`~ kav-
qetoi tw`n ejk tw`n kevntrwn pollaplavsiai2 kata; tou;~ ejxh`~
perissou;~ ajriqmouv~. ejpei; ga;r prodevdeiktai wJ~ hJ ajpo; tou` Z kav-
qeto~ meta; th`~ diamevtrou pro;~ th;n diavmetron, ou{tw~ hJ ajpo; tou`
H kavqeto~ pro;~ th;n ijdivan diavmetron, kai; e[stin hJ ajpo; tou` Z kav-
qeto~ meta; th`~ diamevtrou hJmioliva th`~ diamevtrou, th`~ a[ra ejk
tou` kevntrou e[stai triplasiva. pavlin ejpeiv ejstin wJ~ hJ ajpo; tou` H
kavqeto~ meta; th`~ diamevtrou pro;~ th;n diavmetron, ou{tw~ hJ ajpo; tou`
Q kavqeto~ pro;~ th;n diavmetron, hJ dí ajpo; tou` H kavqeto~ meta; th`~
diamevtrou pro;~ th;n diavmetron lovgon e[cei o}n e[cei ta; pevnte pro;~ ta;
duvo, e{xei kai; hJ ajpo; tou` Q kavqeto~ pro;~ th;n diavmetron to;n aujto;n
lovgon: th`~ a[ra ejk tou` kevntrou e[stai pentaplasiva. oJmoivw~
deicqhvsontai kai; aiJ eJxh`~ kavqetoi tw`n ejk tw`n kevntrwn polla-
plavsiai kata; tou;~ eJxh`~ perissou;~ ajriqmouv~.
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Prop. 19
#21 to; ejpi; th`~ e{liko~ th`~
ejn ejpipevdw/ grafomev-
nh~ qewvrhma prou[teine
me;n Kovnwn oJ Savmio~3 gew-
mevtrh~, ajpevdeixen de;
jArcimhvdh~4 qaumasth`/

f. 44 (Prop. 19, 20, and 21)
tini crhsavmeno~ ejpibolh`/. e[cei de; gevnesin hJ grammh; toiauvthn. e[stw
kuvklo~ ou| kevntron me;n to; B, hJ de; ejk tou` kevntrou hJ BA. kekinhv-

1 aiJ add. Hu. Tr
2 pollaplasia A corr. Hu, Tr
3 kwvnwn oJ savmio~ A corr. Hu, Tr
4 ajrcimhvdh~ A corr. Hu, Tr
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sqw1 hJ BA eujqei`a ou{tw~ w{ste to; me;n B mevnein, to; de; A oJmalw`~ fevresqai
kata; th`~ tou` kuvklou perifereiva~, a{ma de; aujth`/ ajrxavmenovn ti
shmei`on ajpo; tou` B ferevsqw katí aujth`~ oJmalw`~ wJ~ ejpi; to; A,
kai; ejn i[sw/ crovnw/ tov te B shmei`on2 th;n BA diercevsqw kai; to;
A th;n tou` kuvklou perifevreian: gravyei dh; to; kata; th;n3 BA kinouv-
menon shmei`on ejn th`/ perifora/` grammh;n oi{a ejsti;n hJ BEZA4, kai;
ajrch; me;n aujth`~ e[stai to; B shmei`on, ajrch; de; th`~ perifereiva~5

hJ BA. au{th6 de; hJ grammh; e{lix kalei`tai. kai; to; ajrciko;n aujth`~
ejsti suvmptwma toiou`ton. h{ti~ ga;r a]n diacqh`/ pro;~ aujth;n wJ~ hJ BZ
kai; ejkblhqh`/, e[stin wJ~ hJ o{lh tou` kuvklou perifevreia pro;~ th;n
ADG perifevreian, ou{tw~ hJ AB eujqei`a pro;~ th;n BZ. tou`to de; sunidei`n
rJa`/dion ejk th`~ genevsew~: ejn w|/ me;n ga;r to; A shmei`on th;n o{lhn
kuvklou perifevreian dievrcetai, ejn touvtw/ kai; to; B7 th;n BA, ejn w|/ de;
to; A th;n ADG perifevreian, ejn touvtw/ kai; to; B [th;n B]8 th;n BZ euj-
qei`an. kai; eijsi;n aiJ kinhvsei~ aujtai;9 eJautai`~ ijsotacei`~, w{ste kai;
ajnavlogon ei\nai.

Prop. 20
fanero;n de; kai; tou`to, o{ti ai{tine~ a]n diacqw`sin10

ajpo; tou` B pro;~ th;n grammh;n eujqei`ai i[sa~ perievcousai gwniv-
a~, tw`/ i[sw/ ajllhvlwn < uJperevcousin > 11.

C
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Z
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D

1 kekinhvsqw A Hu kinei`sqw Tr
2 tov te B shmei`on A Tr to; ajpo; tou` B shmei`on Hu
3 th;n A Hu th`~ appendix Hu p. 1229, Tr
4 BZ EL A corr. Co, Hu, Tr
5 th`~ perifereiva~ A Tr th`~ perifora`~ Hu
6 auth sine acc. A aujth; Hu au{th Tr
7 to; B A Tr to; ajpo; tou` B Hu
8 kai; to B th;n B A th;n B del. Hu, Tr kai; to; ajpo; tou ̀B Hu
9 autai sine acc. A au|tai Hu aujtai; Tr
10 deicqw`sin A corr. Hu, Tr
11 uJperevcousi add. S uJperevcousin Hu, Tr
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Prop. 21
#22 deivknutai de; to; periecovmenon sch`ma
uJpov te th`~ e{liko~ kai; th`~ eujqeiva~
[th`~ e{liko~ kai; th`~ eujqeiva~]1

th`~ ejn ajrch`/ th`~ perifora`~
trivton mevro~ tou` perilambavnon-
to~ aujth;n kuvklou. e[stw ga;r o{te
kuvklo~ kai; hJ proeirhmevnh2

grammhv, kai; ejkkeivsqw parallhlovgrammon ojrqogwvnion to; KN LP3,
kai; ajpeilhvfqw hJ me;n AG4 perifevreia mevro~ [ejsti;n]5 ti th`~ tou`
kuvklou perifereiva~, hJ de; KR eujqei`a th`~ KP to; aujto; mevro~, kai;
ejpezeuvcqwsan h{te GB kai; hJ KL6, kai; th`/ me;n KN paravllhlo~
hJ RT, th`/ de; KP 7 hJ WM, kai; peri; to; B kevntron perifevreia hJ ZH.
ejpei; ou\n ejstin wJ~ hJ AB eujqeìa pro;~ AH, toutevstin hJ BG pro;~ GZ, < ou{tw~ hJ > 8 o{lh

f. 44v (Prop. 21)
tou` kuvklou perifevreia pro;~ th;n GA, tou`to gavr ejstin to; ajrciko;n
th`~ e{liko~ suvmptwma, wJ~ de; hJ tou` kuvklou perifevreia pro;~ th;n GA,
hJ PK pro;~ KR, wj~ de; hJ PK pro;~ th;n KR, hJ LK pro;~ th;n KW, toutevstin
hJ RT pro;~ th;n RW, kai; wJ~ a[ra hJ BG pro;~ th;n GZ, hJ TR pro;~ RW. kai;
ajnastrevyanti kai; wJ~ a[ra to; ajpo; th`~ BG pro;~ to; ajpo; th`~ BZ, ou{tw~
to; ajpo; th`~ RT pro;~ to; ajpo; th`~ TW. ajllí wJ~ me;n to; ajpo; th`~ BG
pro;~ to; ajpo; th`~ BZ, ou{tw~ oJ ABG tomeu;~ pro;~ to;n ZBH9 tomeva. wJ~ de;
to; ajpo; RT pro;~ to; ajpo; TW, ou{tw~ oJ ajpo; tou` KT parallhlogravm-
mou kuvlindro~ peri; a[xona to;n NT pro;~ to;n ajpo; tou` MT pa-
rallhlogravmmou kuvlindron peri; to;n aujto;n a[xona: kai; wJ~ a[ra oJ
GBA tomeu;~ pro;~ to;n ZBH10 tomeva, ou{tw~ < oJ > 11 ajpo; toù KT parallhlo-
gravmmou kuvlindro~ peri; a[xona to;n NT pro;~ to;n ajpo; tou` MT
parallhlogravmmou kuvlindron peri; to;n aujto;n a[xona. oJmoivw~ de;
eja;n th`/ me;n AG i[shn qw`men th;n GD, th`/ de; KR i[shn th;n RC,
kai; ta; aujta; kataskeuavswmen, e[stai wJ~ oJ DBG tomeu;~ pro;~ to;n EQB12,

1 bis scripta ABS del. Hu, Tr
2 proeirhmmevnh A corr. Hu, Tr
3 to; KN LP A coniunx. S Hu, Tr
4 ABG A corr. Hu, Tr
5 ejsti;n del. Hu, Tr
6 KA A BA Co, Hu KL Tr
7 KM A corr. Hu, Tr
8 ou{tw~ hJ add. S man. rec. Hu, Tr
9 *ZB.h A corr. Hu, Tr
10 to;n ZBH A2 ex to;n *BH
11 oJ add. S Hu, Tr
12 to;n EQB A Tr to;n EBQ Co, Hu
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ou{tw~ oJ ajpo; tou` RF parallhlogravmmou kuvlindro~ peri; a[xona
to;n TF pro;~ to;n ajpo; tou` XF parallhlogravmmou kuvlindron pe-
ri; to;n aujto;n a[xona. tw`/ dí aujtw`/ trovpw/ ejfodeuvsante~ deivxomen
wJ~ o{lon to;n kuvklon pro;~ pavnta ta; ejggegrammevna th`/ e{liki
ejk tomevwn schvmata, ou{tw~ to;n ajpo; tou` NP parallhlogravmmou
kuvlindron peri; a[xona to;n NL pro;~ pavnta ta; tw`/ ajpo; tou`
KNL trigwvnou1 peri; to;n LN a[xona kwvnw/ ejggrafovmena ejk kulivndrwn
schvmata, kai; pavlin wJ~ to;n kuvklon pro;~ pavnta ta; perigrafovmena th`/
e{liki ejk tomevwn schvmata, ou{tw~ to;n kuvlindron pro;~ pavnta ta; tw`/ aujtw`/
kwvnw/ ejk kulivndrwn perigrafovmena schvmata: ejx ou| fanero;n o{ti wJ~ oJ
kuvklo~ pro;~ to; metaxu; th`~ e{liko~ kai; th`~ AB eujqeiva~ schvma2, ou{tw~ oJ
kuvlindro~ pro;~ to;n kwvnon. triplavsio~ de; oJ kuvlindro~ tou` kwvnou: tri-
plavsio~ a[ra kai; oJ kuvklo~ tou` eijrhmevnou schvmato~.
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f. 45 (Props. 21 and 22)
#23 tw`/ dí aujtw`/ trovpw/ deivxomen o{ti, ka]n diacqh`/ ti~ eij~ th;n e{lika wJ~ hJ
BZ kai; dia; toù Z peri; < to; > 3 kevntron to; B grafh̀/ kuvklo~, to; periecovmenon schv-
ma [grafh]4 uJpov te th`~ ZEB e{liko~ kai; th`~ ZB eujqeiva~ trivton mevro~
ejsti;n tou` periecomevnou schvmato~ uJpo; te th`~ ZHQ perifereiva~ tou`
kuvklou kai; tw`n ZBQ5 eujqeiw`n. hJ me;n ou\n ajpovdeixi~ toiauvth tiv~
ejstin, eJxh`~ de; gravfomen qewvrhma peri; th;n aujth;n grammh;n uJpavr-
con iJstoriva~ a[xion.

1 trigwvnw/ A corr. Hu, Tr
2 schvmata A corr. Hu, Tr forsan ta; schvmata
3 to; add. Hu
4 grafh del. Co, Hu, Tr
5 ZBH ABS corr. Hu, Tr
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b
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Prop. 22
#24 e[stw ga;r o{te kuvklo~ oJ proeirh-
mevno~ ejn th`/ genevsei, kai; hJ e{lix
aujth; hJ AZ EB 1: levgw o{ti2, h{ti~ a]n
diacqh`/ wJ~ hJ BZ, e[stin wJ~ to; uJpo;
th`~ o{lh~ e{liko~ kai; th`~
AB eujqeiva~ periecovmenon sch`-
ma pro;~ to; uJpo; th`~ ZEB e{li-
ko~ kai; th`~ BZ eujqeiva~ periecovmenon, ou{tw~ oJ ajpo; th`~ AB kuvbo~
pro;~ to;n ajpo; th`~ ZB3 kuvbon. gegravfqw ga;r dia; tou` Z kuvklo~
peri; kevntron to; B oJ ZHQ. ejpei; ou\n ejstin wJ~ to; uJpo; th`~ AZEB
grammh`~ kai; th`~ AB eujqeiva~ periecovmenon sch`ma pro;~ to; uJpo;
th`~ ZEB grammh`~ kai; th`~ ZB4 eujqeiva~ periecovmenon sch`ma, ou{-
tw~ oJ AGD kuvklo~ pro;~ to; uJpo; th`~ ZHQ perifereiva~ kai; tw`n
ZBQ eujqeiw`n periecovmenon sch`ma, eJkavteron ga;r eJkatevrou trivton
ejdeivcqh mevro~, oJ de; AGD kuvklo~ pro;~ to; uJpo; tw`n ZBQ eujqeiw`n kai;
th`~ ZHQ perifereiva~ ajpolambanovmenon5 cwrivon to;n sugkeivmenon
e[cei lovgon e[k te toù o}n e[cei oJ AGD kuvklo~ pro;~ to;n ZHQ kuvklon kai; ejx ou|
o}n e[cei oJ ZHQ kuvklo~ < pro;~ > 6 to; uJpo; tẁn ZBQ eujqeiẁn kai; th̀~ ZHQ perife-
reiva~ ajpolambanovmenon7 cwrivon, ajllí wJ~ me;n oJ AGD kuvklo~ pro;~ to;n ZHQ
kuvklon, ou{tw~ to; ajpo; th`~ AB pro;~ to; ajpo; th`~ BZ, wJ~ de; oJ ZHQ kuvklo~
pro;~ to; eijrhmevnon cwrivon, hJ o{lh aujtou` perifevreia pro;~ th;n ZHQ, tou-
tevstin hJ tou` AGD kuvklou perifevreia pro;~ th;n GDA, toutevstin dia; to;
suvmptwma th`~ grammh`~ hJ AB eujqei`a pro;~ th;n BZ, kai; to; metaxu;

1 hJ e{lix aujth; hJ AZ EB AS hJ e{lix aujth; hJ AZEB Tr hJ e{lix hJ aujth; hJ AZEB; coni. Hu
2 levgw o{ti~ A corr. BS Hu, Tr
3 th`~ ZQ A corr. Hu, Tr
4 ZB in rasura A
5 ajpolambavnon ABS corr. Hu, Tr
6 pro;~ add. Hu, Tr
7 ajpolambavnon ABS corr. Hu, Tr
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a[ra th̀~ e{liko~ kai; th̀~ AB eujqeiva~ sch̀ma pro;~ to; metaxu; th̀~ e{liko~ kai;
th̀~ BZ lovgon e[cei to;n sugkeivmenon e[k te toù < ajpo; > 1 th̀~ AB pro;~ to; ajpo; th̀~
ZB kai; e[k te tou`2 th`~ AB pro;~ BZ. ou|to~ de; oJ lovgo~ oJ aujtov~ ejsti tw`/

f. 45v (Prop. 22 and conchoid)
tou` ajpo; th`~ AB kuvbou pro;~ to;n3 ajpo; th`~ BZ kuvbon.
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# 25 ejk dh; touvtou fanero;n o{ti, eja;n th`~
e{liko~ uJpokeimevnh~ kai; tou`
peri; aujth;n kuvklou ejkblhqh`/ hJ
AB ejpi; to; D kai; pro;~ ojrqa;~ auj-
th`/ ajcqh`/ hJ GZ EK4, oi{ou ejsti;n eJno;~
to; metaxu; < th`~ > 5 BLE grammh`~ kai; th`~
BE eujqeiva~ cwrivon, toiouvtwn ejsti;n
to; me;n metaxu; th`~ NME gram-
mh`~ kai; tw`n NBE6 eujqeiw`n cwrivon eJptav7, to; de; metaxu; th`~ ZQN8 gram-
mh`~ kai; tw`n ZBN eujqeiw`n iqí, to; de; metaxu; th`~ AXZ grammh`~ kai; tw`n
ABZ eujqeiw`n lzí, dh`la ga;r tau`ta ejk [te]9 tou` prodedeigmevnou qewrhvma-

1 ajpo; add. Tr, appendix Hu p. 1229
2 ejk ///ou ̀A
3 to; A corr. BS Hu, Tr
4 coniunx. B Hu, Tr
5 th`~ add. Hu, Tr
6 NB A corr. S Hu, Tr
7 cwrivon ejpa A corr. BS Hu, Tr
8 ZQH ABS corr. Co, Hu, Tr
9 te del. S Hu, Tr
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to~, kai; o{ti oi{wn ejsti;n hJ AB dí1, hJ me;n ZB triw`n, hJ de; BN duvo, hJ de; BE
eJnov~: kai; ga;r tou`to dh`lon ejk te tou` th`~ grammh`~ sumptwvmato~ kai;
tou` ta;~ AG GD DK KA perifereiva~ i[sa~ ei\nai.
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Conchoid
#26 eij~ to;n diplasiasmo;n tou` kuvbou
paravgetaiv ti~ uJpo; Nikomhv-
dou~2 grammh; kai; gevnesin e[cei
toiauvthn. ejkkeivsqw eujqei`a hJ
AB, kai; aujth`/3 pro;~ ojrqa;~ hJ
GDZ, kai; eijlhvfqw ti shmei`on
ejpi; th`~ GDZ doqe;n to; E, kai; mev-
nonto~ tou` E shmeivou ejn w|/ ejstin tovpw/ hJ GDEZ eujqei`a ferevsqw
kata; th`~ ADB eujqeiva~ eJlkomevnh dia; tou` E shmeivou ou{tw~ wJste
dia; pavnto~ fevresqai to; D ejpi; th`~ AB eujqeiva~ kai; mh; ejkpivptein
eJlkomevnh~ th`~ GD EZ4 dia; tou` E. toiauvth~ dh; kinhvsew~
genomevnh~ ejfí eJkavtera, fanero;n o{ti to; G shmei`on gravyei
grammh;n oi{a ejsti;n hJ LGM, kai; e[stin aujth`~ to; suvmptwma toiou`ton.
wJ~ a]n eujqei`a prospivpth/ ti~5 ajpo; tou` E shmeivou pro;~ th;n gram-
mhvn, th;n ajpolambanomevnhn metaxu; th`~ te AB eujqeiva~ kai;
th`~ LGM grammh`~ i[shn ei\nai6 th`/ GD eujqeiva/7: menouvsh~ ga;r
th`~ AB kai; mevnonto~ tou` E shmeivou, o{tan gevnhtai to; D ejpi;
to; H, hJ GD eujqei`a th`/ HQ ejfarmovsei kai; to; G shmei`on ejpi; to; Q8:

1 ABD AB AB tessavrwn S AB d í Hu, Tr
2 nikomhvdou~ A corr. Hu, Tr
3 auth; a A corr. S Hu, Tr
4 coniunx. S Hu, Tr
5 th`~ A corr. Hu, Tr
6 poieì coni. Hu
7 th;n GD eujqei`an A corr. S man. rec. Hu, Tr
8 ejpi; to; Q pesei`tai Hu
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f. 46 (Conchoid and Prop. 23)
i[sh a[ra ejsti;n hJ GD th`/ HQ. oJmoivw~ kai; eja;n eJtevra ti~ ajpo; tou` E
shmeivou pro;~ th;n grammh;n prospevsh/, th;n ajpotemnomevnhn
uJpo; th`~ grammh`~ kai; th`~ AB eujqeiva~ i[shn poihvsei th`/ GD
[ejpeidh; tauvth`/ i[sai eijsi;n aiJ prospivptousai]1. kalei`sqw dev, fhsivn, hJ
me;n AB eujqei`a kanwvn, to; de; shmei`on povlo~, diavsthma de; hJ
GD, ejpeidh; tauvth̀/ i[sai eijsi;n < aiJ > 2 prospivptousai pro;~ th;n LGM gram-
mhvn, au{th3 de; hJ LGM grammh; kocloeidh;~4 prwvth5, ejpeidh;
kai; hJ deutevra kai; hJ trivth kai; hJ tetavrth ejktivqetai6 eij~ a[l-
la qewrhvmata crhsimeuvousai.

C

T

HD

E

A B

L
M

#27 o{ti de; ojrganikw`~ duvnatai
gravfesqai hJ grammh; kai; ejpí
e[latton7 ajei; sumporeuvesqai8

tw`/ kanovni, toutevstin o{ti pa-
sw`n tw`n ajpov tinwn shmeiv-
wn th`~ LGQ grammh`~ ejpi;
th;n AB eujqei`an kaqevtwn
megivsth ejsti;n hJ GD kavqeto~, ajei; de; hJ e[ggion9 th`~ GD ajgomevnh kav-
qeto~ th`~ ajpwvteron meivzwn ejstivn, kai; o{ti, eij~ to;n metaxu; tov-

1 ejpeidh;...prospivptousai del. Hu, Tr
2 aiJ add. B2 Hu, Tr
3 auth sine spirit. et acc. A aujth; Hu au{th Tr
4 kogcoeidh;~ A1 corr. A2 BS
5 prwvth/ A corr. Hu, Tr
6 ejktivqetai A Hu ejktivqentai Tr, coniecit Hu
7 ej-p í e[latton A
8 sumporeuvesqai ABS Tr sumporeuvetai Hu
9 h eggeion sine spirit. et acc. A spirit. et acc. add. B corr. S Hu, Tr
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pon tou` kanovno~ kai; th`~ kocloeidou`~1 ejavn ti~ h\/ eujqei`a, ejk-
ballomevnh tmhqhvsetai uJpo; th`~ kocloeidou`~2, aujto;~ ajpev-
deixen oJ Nikomhvdh~3, kai; hJmei`~ ejn tw/` eij~ to; ajnavlhmma Diodwv-
rou4, trivca temei`n th;n gwnivan boulovmenoi, kecrhvmeqa th`/
proeirhmevnh/ grammh`/.

Prop. 23
dia; dh; tw`n eijrhmevnwn fanero;n wJ~
dunatovn ejstin gwniva~ doqeivsh~ wJ~ th`~ uJpo; HAB kai; shmeivou
ejkto;~ aujth`~ tou` G diavgein th;n GH kai; poiei`n th;n KH metaxu;
th`~ grammh`~ kai; th`~ AB i[shn th`/ doqeivsh/. h[cqw kav-
qeto~ ajpo; tou` G shmeivou ejpi; th;n AB hJ GQ kai; ejk-
beblhvsqw, kai; th`/5 doqeivsh/ i[sh e[stw hJ DQ, kai; povlw/ me;n
tw`/ G, diasthvmati de; tw`/ doqevnti, toutevstin th`/ DQ, kanovni
de; tw`/ AB gegravfqw kocloeidh;~6 grammh; prwvth hJ EDH7:
sumbavllei a[ra th`/ AH dia; to; prolecqevn. sumballevtw
kata; to; H, kai; ejpezeuvcqw hJ GH: i[sh a[ra kai; hJ KH th`/
doqeivsh/.

C

D

BA

H

KT

E

f. 46v (Prop. 24)
#28 tine;~ de; th`~ crhvsew~ e{neka para-
tiqevnte~8 kanovna tw`/ G kinou`sin
aujtovn, e{w~ a]n ejk th`~ peivra~ hJ
metaxu; ajpolambanomevnh th`~

1 kocloeidou`~ A1B2S Hu g superscriptum, l expunctum A1
2 kocloeidou`~ A1B2S Hu g superscriptum, l expunctum A1
3 uJpevdeixen oJ nikomhvdh~ A corr. Hu, Tr
4 diodwvrou A corr. Hu, Tr
5 th̀/ om. Tr
6 kocloeidh;~ A1B2S Hu g superscriptum, l expunctum A1
7 prwvth/ hJ EDH A corr. BS Hu, Tr
8 parateqevnte~ ABS corr. Hu, Tr



51Part Ia Greek Text

AB eujqeiva~ kai; th`~ EDH gram-
mh`~ i[sh gevnhtai th`/ doqeivsh/:
touvtou ga;r o[nto~ to; prokeivmenon ejx ajrch`~ deivknutai: levgw de; kuvbo~
kuvbou diplavsio~ euJrivsketai. provteron de; duvo doqeisw`n eujqeiw`n
duvo mevsai kata; to; sunece;~1 ajnavlogon lambavnontai: w|n oJ Niko-
mhvdh~2 th;n kataskeuh;n ejxevqeto movnon3, hJmei`~ de; kai; th;n ajpov-
deixin ejfhrmovsamen th`/ kataskeuh`/ to;n trovpon tou`ton.

Prop. 24
dedov-
sqwsan ga;r duvo eujqei`ai aiJ GL LA pro;~ ojrqa;~ ajllhvlai~, w|n dei` duvo
mevsa~ ajnavlogon kata; < to; > sunece;~4 euJrei`n, kai; sumpeplhrwvsqw to;
ABGL parallhlovgrammon, kai; tetmhvsqw divca eJkatevra tw`n AB
BG toi`~ DE5 shmeivoi~, kai; ejpizeucqei`sa6 me;n hJ DL ejkbeblhvsqw
kai; sumpiptevtw7 th`/ GB ejkblhqeivsh/8 kata; to; H, th`/ de; BG
pro;~ ojrqa;~ hJ EZ, kai; prosbeblhvsqw hJ GZ i[sh ou\sa th`/ AD, kai;
ejpezeuvcqw hJ ZH9 kai; aujth`/ paravllhlo~ hJ GQ, < kai; > 10 gwniva~ ou[sh~
th`~ uJpo; tw`n KGQ ajpo; doqevnto~ tou` Z dihvcqw hJ ZQK poiou`sa
i[shn th;n QK th`/ AD h] th`/ GZ, tou`to ga;r wJ~ dunato;n ejdeivcqh
dia; th`~ kocloeidou`~11 grammh`~, kai; ejpizeucqei`sa hJ KL ejkbe-
blhvsqw kai; sumpiptevtw th`/ AB ejkblhqeivsh/ kata; to; M: levgw o{ti
ejsti;n wJ~ hJ LG pro;~ th;n12 KG, hJ KG pro;~ MA kai; hJ MA pro;~ th;n AL. ejpei;
hJ BG tevtmhtai divca tw`/ E kai; provskeitai aujth`/13 hJ KG, to; a[ra uJpo;
BKG14 meta; toù < ajpo; > 15 GE i[son ejsti;n tẁ/ ajpo; EK. koino;n proskeivsqw to; ajpo;
EZ: to; a[ra uJpo; BKG meta; tw`n ajpo; GEZ16, toutevstin tou` ajpo; GZ, i[son
ejsti;n toi`~ ajpo; KEZ, toutevstin tw`/ ajpo; KZ. kai; ejpei; wJ~ hJ MA pro;~
AB, hJ ML pro;~ LK, wJ~ de; hJ ML pro;~ LK, ou{tw~ hJ BG pro;~ GK, kai;

1 suneceì A corr. Hu, Tr
2 nikomhvdh~ A corr. Hu, Tr
3 movnhn A movnon Hu, Tr
4 kata; sunece;~ AS Tr to; add. B1 Eut. Hu
5 distinx. S Hu, Tr
6 ejpizeucqeisan A corr. BS Hu, Tr
7 sumpiptevtw/ A corr. Hu, Tr
8 ejkblhqeivsh A corr. Hu, Tr
9 hJ ZH om. Tr
10 kai; add. Eut. Hu, Tr
11 kocloeidou`~ A1B2S Hu g superscriptum, l expunctum A1
12 th;n om. Hu
13 auth A corr. Hu, Tr
14 BGK ABS corr. Hu, Tr
15 ajpo; add. Eut. Hu, Tr
16 meta; tw`n ajpo; LEZ ABS corr. Hu, Tr meta; tw`n ajpo; GE EZ Eut.
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wJ~ a[ra hJ MA pro;~ AB, ou{tw~ hJ BG1 pro;~ GK. kai; e[sti th`~ me;n AB
hJmivseia hJ AD, th`~ de; BG diplh` hJ GH: e[stai a[ra kai; wJ~ hJ
MA pro;~ AD, ou{tw~ hJ HG pro;~ KG. ajllí wJ~ hJ HG pro;~ GK, ou{tw~
hJ ZQ pro;~ QK dia; ta;~ parallhvlou~ < ta;~ > HZ GQ2: kai; sunqevnti a[ra
wJ~ hJ MD pro;~ DA, hJ ZK pro;~ KQ. i[sh de; uJpovkeitai kai; hJ AD

f. 47 (Props. 24 and 25, and Quadratrix)
th`/ QK, ejpei; kai; th`/ GZ i[sh ejsti;n hJ AD3: i[sh a[ra kai; hJ MD th`/
ZK: i[son a[ra kai; to; ajpo; MD tw`/ ajpo; ZK. kai; e[sti tw`/ me;n ajpo; MD
i[son to; uJpo; BMA4 meta; tou` ajpo; DA, tw`/ de; ajpo; ZK i[son ejdeivcqh
to; uJpo; BKG meta; tou` ajpo; ZG, w|n to; ajpo; AD i[son tw`/ ajpo; GZ. i[sh
ga;r uJpovkeitai hJ AD th`/ GZ. i[son a[ra kai; to; uJpo; BMA tw`/ uJpo;
BKG: wJ~ a[ra hJ MB pro;~ BK, hJ GK pro;~ MA5. ajllí wJ~ hJ BM pro;~ BK,
hJ LG pro;~ GK: wJ~ a[ra hJ LG pro;~ GK, < hJ GK pro;~ AM. e[sti de; kai; wJ~ hJ 
MB pro;~ BK, > 6 hJ MA pro;~ AL: kai; wJ~ a[ra
hJ LG pro;~ GK, hJ GK pro;~ AM, kai; hJ AM pro;~ AL.

H

A

B C

L

D

K

T

Z

E

M

Prop. 25
#29 touvtou deicqevnto~ provdhlon
o{pw~ dei` kuvbou doqevnto~
kuvbon a[llon euJrei`n kata; to;n
doqevnta lovgon. e[stw ga;r oJ

1 BG A Hu BK Tr
2 hJ ZGQ A corr. Hu, Tr ta;~ HZ GQ Eut.
3 ejpei; kai; th`/ GZ i[sh ejsti;n hJ AD del. Hu
4 to; ajpo; BMA ABS corr. Hu, Tr to; uJpo; BMA Eut.
5 hJ LG pro;~ GK ABS corr. Hu, Tr hJ KG pro;~ AM Eut.
6 hJ GK...pro;~ BK om. ABS restit. Hu, Tr hJ GK pro;~ AM. e[sti de; kai; wJ~ hJ LG pro;~ GK Eut.
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doqei;~ lovgo~ th`~ A eujqeiva~
pro;~ th;n B, kai; tw`n AB1 duvo
mevsai ajnavlogon kata; to; su-
nece;~ eijlhvfqwsan aiJ GD2: e[stai
a[ra wJ~ hJ A pro;~ th;n B, ou{tw~ oJ ajpo; th`~ A kuvbo~ pro;~ to;n
ajpo; th`~ G kuvbon, tou`to ga;r dh`lon ejk tw`n stoiceivwn.

a

c

d

b

Quadratrix
# 30 eij~ to;n tetragwnismo;n tou` kuv-
klou parelhvfqh ti~
uJpo; Deinostravtou kai; Niko-
mhvdou~3 grammh; kaiv tinwn
a[llwn newtevrwn ajpo; tou`
peri; aujth;n sumptwvmato~ labou`sa tou[noma, kalei`tai ga;r
uJpí aujtw`n tetragwnivzousa kai; gevnesin e[cei toiauvthn. ejk-
keivsqw tetravgwnon to; AB GD4, < kai; > 5 peri; kevntron to; A perifevreia
gegravfqw < hJ > 6 BED, kai; kineivsqw hJ me;n AB ou{tw~ w{ste to; me;n A shmeì-
on mevnein, to; de; B fevresqai kata; th;n BED perifevreian, hJ de;
BG paravllhlo~ ajei; diamevnousa th`/ AD tw`/ B shmeivw/ fe-
romevnw/7 kata; th`~ BA sunakolouqeivtw8, < kai; > 9 ejn i[sw/ crovnw/ h{te
AB kinoumevnh10 oJmalw`~ th;n uJpo; BAD gwnivan, toutevstin

1 distinx. B Hu, Tr
2 distinx. BS Hu, Tr
3 uJpo; deinostravtou kai; nikodhvmou AB3 corr. S Hu, Tr uJpo; nikostravtou B nikomhvdou B1 
To
4 coniunx. B Hu, Tr
5 kai; add. To, Hu, Tr
6 hJ add. Hu, Tr
7 tẁ/ B shmei`on feron ejn ẁ/ ABS corr. To, Hu, Tr
8 kata; th`~ B sunakolouqei` tw`/ AS corr. To, Hu, Tr sunakolouqei` to; B
9 kai; add. To, Hu, Tr
10 kinoumevnh~ AB3S kinoumevnh B1 Hu, Tr
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to; B shmeìon th;n BED < perifevreian > 1, dianuevtw, kai; hJ BG th;n BA eujqeìan
parodeuevtw, toutevstin to; B shmei`on kata; th`~ BA ferevsqw. sum-

f. 47v (Quadratrix and Sporos)
bhvsetai dh`lon2 th`/ AD eujqeiva/ a{ma ejfarmovzein eJkatevran3 th;n te
AB kai; th;n BG. toiauvth~ dh; ginomevnh~ kinhvsew~ temou`sin
ajllhvla~ ejn th`/ fora`/ aiJ BG BA eujqei`ai katav ti shmei`on aijei;
summeqistavmenon aujtai`~, uJfí ou| shmeivou gravfetaiv ti~ ejn tw`/ metaxu;
tovpw/ tw`n te BAD eujqeiw`n kai; th`~ BED perifereiva~ gram-
mh; ejpi; ta; aujta; koivlh, oi{a ejsti;n hJ BZH, < h} > 4 kai; creiwvdh~5 ei\nai dokeì
pro;~ to; tw`/ doqevnti kuvklw/ tetravgwnon i[son euJrei`n. to; de; ajrciko;n
aujth`~ suvmptwma toiou`tovn ejstin: h{ti~ ga;r a]n diacqh`/ tucou`sa
< eujqei`a pro;~ th;n perifevreian, wJ~ hJ AZE, e[stai wJ~ hJ o{lh > 6

perifevreia pro;~ th;n ED, hJ BA [perifevreia]7 eujqei`a pro;~ th;n ZQ:
tou`to ga;r ejk th`~ genevsew~ th`~ grammh`~ fanerovn ejstin.

A

B C

D
HT

Z

E

#31 dusarestei`tai de; aujth`/8 oJ
Spovro~9 eujlovgw~ dia; tau`-
ta. prw`ton me;n ga;r

1 perifevreian add. To, Hu
2 dh`lon A Hu dhlonovti vel dh; coni. Hu dh;[lon] Tr [dh`lon] Eberhard
3 eJkatera A eJkatevra B corr. S Hu, Tr
4 h} add. Hu, Tr
5 creiw`de~ ABS corr. To, Hu, Tr
6 eujqei`a pro;~ th;n perifevreian, wJ~ hJ AZE, e[stai wJ~ hJ o{lh add. Tr pro;~ th;n perifevreian, 
wJ~ hJ AZE, e[stai wJ~ o{lh hJ add. Hu eujqei`a pro;~ th;n perifevreian, wJ~ hJ BZE, e[stai o{lh hJ 
BED add. To
7 perifevreia del. S Hu, Tr
8 aujtw`/ coni. Hu
9 spovro~ A corr. Hu, Tr
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pro;~ o} dokei` creiwvdh~
ei\nai pra`gma, tou`tí ejn
uJpoqevsei1 lambavnei. pw`~
ga;r dunatovn, duvo shmeivwn ajrxamevnwn ajpo; tou` B kinei`sqai,
to; me;n katí eujqeiva~ ejpi; to; A, to; de; kata; perifereiva~ ejpi;
to; D ejn2 i[sw/ crovnw/ sunapokatasth`nai3 mh; provteron to;n lovgon4

th`~ AB eujqeiva~ pro;~ th;n BED perifevreian ejpistavmenon; ejn
ga;r touvtw/ tw`/ lovgw/5 kai; ta; tavch tw`n kinhvsewn ajnagkai`on6. ejpei;
pw`~ oi[ontai7 sunapokatasth`nai8 tavcesin ajkrivtoi~ crwvmena9,
plh;n eij mh; a]n10 kata; tuvchn pote;11 sumbh`/12; tou`to de; pw`~ ou\k a[l-
ogon; e[peita de; to; pevra~ aujth`~ w|/ crw`ntai pro;~ to;n tetragwni-
smo;n tou` kuvklou, toutevstin kaqí o} tevmnei shmei`on th;n AD
eujqei`an, oujc euJrivsketai. noeivsqw de; ejpi; th`~ prokeimevnh~ ta;
legovmena katagrafh`~: oJpovtan < ga;r > 13 aiJ GB BA ferovmenai sunapo-
katastaqw`sin, ejfarmovsousin th;n AD14 kai; tomh;n oujkevti
poihvsousin ejn ajllhvlai~: pauvetai ga;r hJ tomh; pro;~ th`~15 ejpi;
th;n AD ejfarmogh`~, h{per tomh; pevra~ a]n16 ejgevneto th`~
grammh`~ kaqí o} th`/ AD eujqeiva/ sunevpipten. plh;n eij mh; levgoi
ti~ ejpinoei`sqai prosekballomevnhn th;n grammh;n wJ~
uJpotiqevmeqa ta;~ eujqeiva~ e{w~ th`~ AD: tou`to dí oujc e{petai

f. 48 (Sporos and Prop. 26)
tai`~ uJpokeimevnai~ ajrcai`~, ajllí wJ~ dí a]n17 lhfqeivh to; H shmei`on
proeilhmmevnou tou` th`~ perifereiva~ pro;~ th;n eujqei`an lovgou. cwri;~

1 uJ - poqevsei A
2 to; DE K A corr. S Hu, Tr to; deh B
3 sunapokatasth`sai Hu
4 tolon A o;n superscriptum prima manu to; o{lon B To to;n lovgon S
5 ejn ga;r tẁ/ aujtw`/ lovgw/ coni. Hu
6 ajnagkai`on ABS Tr ajnagkai`on ei\nai (omisso posthac ejpei;) To ajnavgkh ei\nai Hu
7 ejpei pw~ oiontai (sine acc.) A pw`~ oi[ontai ga;r To ejpei; pw`~ oi|ovn te BS Hu, Tr quo pacto 
arbitrantur Co
8 sunapokatasth`sai coni. Hu
9 crwvmenon coni. Hu
10 a]n del. To, probat et sumbaivh coni. Hu
11 tovte A corr. To, Hu, Tr
12 sumbh sine acc. A
13 ga;r add. Hu
14 th`/ AD Hu, Tr ejpi; th;n AD To
15 pro;~ th̀~ ABS pro; th̀~ To, Hu, Tr
16 au\ Hu
17 ajllí wJ~ dí a]n AB To, Tr a[llw~ dí a]n S ajllí wJ~ a]n Hu
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de; tou` doqh`nai to;n lovgon tou`ton, ouj1 crh; th/`2 tw`n euJrovntwn ajndrw`n
dovxh/3 pisteuvonta~ paradevcesqai th;n grammh;n mhcanikw-
tevran pw`~ ou\san [kai; eij~ polla; problhvmata crhsimeuvousan
toi`~ mhcanikoi`~]4, polu; provteron paradektevon ejsti;5 to; dií auj-
th`~ deiknuvmenon provblhma.

Prop. 26
tetragwvnou ga;r o[nto~ tou` ABGD6 kai;
th`~ me;n peri; to; kevntron to; G perifereiva~ th`~ BED, th`~
de; BHQ7 tetragwnizouvsh~ ginomevnh~, wJ~ proeivrhtai, deivknutai,
wJ~ hJ DEB perifevreia pro;~ th;n BG eujqei`an, ou{tw~ hJ BG pro;~
th;n GQ eujqei`an. eij ga;r mhv ejstin8, h[toi pro;~ meivzona e[stai th`~ GQ h]9

pro;~ ejlavssona. e[stw provteron, eij dunatovn, pro;~ meivzona th;n GK,
kai; peri; kevntron to; G perifevreia hJ ZHK gegravfqw tevmnou-
sa th;n grammh;n kata; to; H, kai; kavqeto~ hJ HL, kai; ejpizeu-
cqei`sa hJ GH ejkbeblhvsqw ejpi; to; E. ejpei; ou\n ejstin wJ~ hJ DEB
perifevreia pro;~ th;n BG eujqei`an, ou{tw~ hJ BG, toutevstin hJ GD, pro;~
th;n GK, wJ~ de; hJ GD pro;~ th;n GK, hJ BED perifevreia pro;~ th;n
ZHK perifevreian, wJ~ ga;r hJ diavmetro~ tou` kuvklou pro;~ th;n diavmetron,
hJ perifevreia tou` kuvklou pro;~ th;n perifevreian, fanero;n o{ti
i[sh ejsti;n hJ ZHK perifevreia th`/ BG euqeiva/. kai; ejpeidh;
dia; to; suvmptwma th`~ grammh`~ ejstin wJ~ hJ BED perifevreia
pro;~ th;n ED, ou{tw~ hJ BG pro;~ th;n HL, kai; wJ~ a[ra hJ ZHK pro;~
th;n HK perifevreian, ou{tw~ hJ BG eujqei`a pro;~ th;n HL. kai; ejdeiv-
cqh i[sh hJJ ZHK perifevreia th`/ BG eujqeiva/: i[sh a[ra kai; hJ HK
perifevreia th`/ HL eujqeiva/, o{per a[topon. oujk a[ra ejsti;n wJ~ hJ
BED perifevreia pro;~ th;n BG eujqei`an, ou{tw~ hJ BG pro;~ meivzona th`~ GQ.

#32 levgw de; o{ti oujde; pro;~ ejlavssona.
eij ga;r dunatovn, e[stw pro;~ th;n KG,
kai; peri; kevntron to; G perifev-
reia gegravfqw hJ ZMK, kai; pro;~
ojrqa;~ th`/ GD hJ KH tevmnou-

1 h A h] BS To, Tr ouj Hu
2 th A corr. Hu, Tr
3 dovxh A corr. Hu, Tr
4 kai; eij~... mhcanikoi`~ del. Hu, Tr
5 polu; provteron paradektevon ejsti; ABS Tr ajlla; provteron paradektevon ejsti; Hu 
paradotevon coni. Hu cf. versio Latina
6 ABG AB1 corr. B2S Co, Hu, Tr
7 BEQ A corr. To, Tr, Hu
8 mh estin sine acc. A mhv ejstin Tr mh; e[stin Hu
9 th`~ GQH AB1corr. B2S Hu, Tr
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sa th;n tetragwnivzousan kata;
to; H, kai; ejpizeucqei`sa hJ GH

f. 48v (Prop. 26, 27, and 28)
ejkbeblhvsqw ejpi; to; E. oJmoivw~ de; toi`~ progegrammevnoi~ deivxomen kai;
th;n ZMK perifevreian th`/ BG eujqeiva/ i[shn, kai; wJ~ th;n BED peri-
fevreian pro;~ th;n ED, toutevstin1 wJ~ th;n ZMK pro;~ th;n MK, ou{tw~
th;n BG eujqei`an [pro;~ th;n MK ou{tw~ th;n BG eujqei`an]2 pro;~ th;n HK.
ejx w|n fanero;n o{ti i[sh e[stai hJ MK perifevreia th`/ KH eujqeiva/, o{per
a[topon. oujk a[ra e[stai wJ~ hJ BED perifevreia pro;~ th;n BG eujqei`an,
ou{tw~ hJ BG pro;~ ejlavssona th`~ GQ. ejdeivcqh de; o{ti oujde; pro;~ meivzo-
na: pro;~ aujth;n a[ra th;n GQ.

AB

C DT

H

E

a
AB

C DT

H

E

L K

Z

b

AB

C D
T

H

E

K

M

Z

c

1 tou`tov ejstin AB toutevstin S Hu, Tr
2 bis scripta del. S Hu, Tr
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Prop. 27
e[sti de; kai; tou`to fanerovn, o{ti hJ
tw`n QG GB eujqeiw`n trivth ajnavlogon lambanomevnh1 eujqei`a i[sh
e[stai th`/ BED perifereiva/, kai; hJ tetraplasivwn aujth`~ th`/ tou`
o{lou kuvklou perifereiva/. euJrhmevnh~ de; th`/ tou` kuvklou peri-
fereiva/ i[sh~ eujqeiva~, provdhlon wJ~ deì2 kai; aujtw`/ tw`/ kuvklw/ rJav/-
dion i[son tetravgwnon susthvsasqai: to; ga;r uJpo; th`~ perimevtrou
tou` kuvklou kai; th`~ ejk tou` kevntrou diplavsiovn ejsti tou` kuvklou,
wJ~ jArcimhvdh~3 ajpevdeixen.

Prop. 28
# 33 au{th me;n ou\n hJ gevnesi~ th`~
grammh`~ ejstin, wJ~ ei[rhtai, mh-
canikwtevra: gewmetrikw`~
de; dia; tw`n pro;~ ejpifaneivai~
tovpwn ajnaluvesqai duvnatai
to;n trovpon tou`ton. qevsei kuv-
klou tetarthmovrion to; ABG, kai; dihvcqw, wJ~ e[tucen4, hJ BD, kai; kav-
qeto~ ejpi; th;n BG hJ EZ lovgon e[cousa doqevnta pro;~ th;n DG peri-
fevreian: o{ti pro;~ grammh;n5 to; E. noeivsqw ga;r ajpo; th`~ ADG
perifereiva~ ojrqou` kulivndrou ejpifavneia, kai; ejn aujth`/ e{lix
gegrammevnh dedomevnh6 th`/ qevsei hJ GHQ, kai; pleura;7 tou` kulivndrou hJ
QD, kai; tw`/ tou` kuvklou ejpipevdw/ ojrqai; h[cqwsan aiJ EIBL8 aj-
nestamevnai ojrqaiv9, dia; de; tou` Q10 th`/ BD paravllhlo~ hJ QL. ejpei;
< doqei;~ mevn ejsti > lovgo~11 th̀~ EZ eujqeiva~12 pro;~ th;n DG perifevreian, th̀~ de; DG 13

dia; th;n e{lika lovgo~ pro;~ th;n DQ14, e[stai kai; th`~ EZ pro;~ EI15 lov-
go~ doqeiv~. kai; eijsi;n aiJ ZE EI para; qevsei: kai; hJ ZI a[ra ejpizeu-

1 trivth/ ajnavlogon lambanomevnh/ ABS corr. To, Hu, Tr
2 deì AB To dh; S Hu, Tr
3 ajrcimhvdh~ A corr. Hu, Tr
4 wJ~ ejtuvchn AB1 corr. B3S Hu, Tr
5 pro;~ grammh;n ABS pro;~ grammh`/ Hu, Tr
6 e{lix gegrammevnh/ dedomevnh/ A corr. B Hu, Tr
7 PL AB corr. S Hu, Tr
8 EI BL A EI LB B Hu, Tr
9 ajnestamevnai orqaiv del. Hu
10 dia; de; toù K ABS corr. Co, Hu, Tr
11 ejpi lovgo~ ABS ejpivlogo~ To ejpei; lovgo~ Hu doqei;~ mevn ejsti add. Tr
12 th`~ EI euqeiva~ Hu
13 perifevreian, th`~ DE DG ABS corr. Tr perifevreiavn ejstin doqei;~ Hu
14 th`~ de; DG dia; th;n e{lika lovgo~ pro;~ th;n DQ (ABS) Tr doqei;~ de; kai; oJ th`~ EZ lovgo~ 
pro;~ th;n DG Hu
15 H ABS corr. Tr
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cqei`sa para; qevsei. kai; e[stin kavqeto~ ejpi; th;n BG: ejn ojrqẁ/1 a[ra
ejpipevdw/ hJ ZI, w{ste kai; to; I. e[stin de; kai; ejn kulindroeideì ejpi-

f. 49 (Props. 28, 29, and 30)
faneiva/2, fevretai ga;r hJ QL diav te3 th̀~ QHG e{liko~ kai; th̀~ LB eujqeiva~ kai; auj-
th`~ th`/ qevsei dedomevnh~ aijei; paravllhlo~ ou\sa tw`/ uJpokeimevnw/ ejpi-
pevdw/: pro;~ grammh;n4 a[ra to; I, w{ste kai; to; E. toùto mevn ou\n ajneluvqh kaqov-
lou, a]n dí oJ th̀~ EZ eujqeiva~ pro;~ th;n DG perifevreian

5
 lovgo~ oJ aujto;~ h\/6 tẁ/ th̀~

BA pro;~ th;n AD G7, hJ proeirhmevnh tetragwnivzousa givnetai grammhv.

A

B C

D

T

H
L

Z

E

I

Prop. 29
# 34 duvnatai de; kai; dia; th`~ ejn ejpipevdw/
grafomevnh~ e{liko~ ajnaluvesqai
to;n o{moion trovpon. e[stw ga;r oJ th`~ EZ
pro;~ th;n DG < perifevreian > 8 lovgo~ oJ aujto;~ tw`/ th`~ AB
pro;~ th;n ADG perifevreian, kai; ejn w|/
hJ AB eujqei`a peri; to; B kinoumevnh9

1 ojrqẁ/ (vix legibile) A Tr temnovnti Hu
2 ejn k////// ///faneiva/ A………ejpifaneiva/ BS ejn kulindroeidei` ejpifaneiva/ To ejn kulindrikh`/ 
ejpifaneiva/ Hu ejn kocloeidei` ejpifaneiva/ Tr ejn plektoeidei` ejpifaneiva/ coniecit Ver Eecke
3 diav de th`~ A corr. To, Hu, Tr
4 pro;~ grammh;n ABS pro;~ grammh̀/ Hu, Tr
5 th;n DQ perifevreian ABS corr. Co, Hu, Tr
6 h (sine spirit. et acc.) A corr. Hu, Tr
7 coniunx. Hu, Tr
8 perifevreian add. Hu
9 kinoumevnh/ A corr. Hu, Tr
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parodeuvei th;n ADG1 perifevreian, sh-
mei`on ejpí aujth`~ ajrxavmenon ajpo; tou` B ejpi; to; G2 paragenevsqw3

qevsin labouvsh~ th;n < GB th`~ > 4 AB, kai; poieivtw th;n BH A5 e{lika. e[stin
a[ra wJ~ hJ AB pro;~ BH, hJ ADG perifevreia pro;~ th;n GD, kai;
ejnallavx. ajlla; kai; hJ EZ pro;~ DG: i[sh a[ra hJ BH th`/ ZE. h[cqw
tw`/ ejpipevdw/ ojrqh; hJ KH i[sh th`/ BH: ejn kulindroeidei` a[ra
ejpifaneiva/ th`/ ajpo; th`~ e{liko~ to; K. ajlla; kai; ejn kwnikh/`,
ejpizeucqei`sa ga;r hJ BK ejn kwnikh/`6 givnetai ejpifaneiva/
hJmivseian ojrqh`~ keklimevnh/7 pro;~ to; uJpokeivmenon kai;
hjgmevnh/ dia; doqevnto~ tou` B: pro;~ grammh`/8 a[ra to; K. h[cqw dia;
tou` K th`/ EB paravllhlo~ hJ LKI, kai; ojrqai; tw`/ ejpipevdw/
aiJ BL EI: ejn plhktoeideì9 a[ra ejpifaneiva/ hJ LKI, fevretai ga;r
diav te th̀~ BL eujqeiva~ qevsei ou[sh~ kai; dia; qevsei grammh`~ pro;~ h|/
to; K: kai; to; I a[ra < ejn > ejpifaneiva/10. ajlla; kai; ejn ejpipevdw/, i[sh ga;r
hJ ZE th`/ EI, ejpei; kai; th`/ BH, kai; givnetai para; qevsei hJ ZI kavqeto~
ou\sa ejpi; th;n BG: pro;~ grammh̀/11 a[ra to; I [s]12, w{ste kai; to; E. kai; dh̀lon o{ti
a]n ojrqh; < h\/ > 13 hJ uJpo; ABG gwniva, hJ proeirhmevnh tetragwnivzousa grammh; givnetai.

B Z C

E
H

I

K
L

D

A

1 th;n AD perifevreian A corr. Co, Hu, Tr
2 ajpo; tou` B ejpi; to; G A ajpo; tou` A ejpi; to; B Hu, Tr
3 pargenevsqw A paragenevsqw To, Tr paraginevsqw Hu
4 GB th`~ add. Hu, Tr
5 coniunx. Hu, Tr
6 gwnikh`/ A corr. S Hu, Tr
7 keklimevnh~ AB corr. S Hu, Tr
8 pro;~ grammh; A Tr pro;~ gegrammevnhn B1 corr. B2 vel B3 To, Hu pro;~ grammh;n S
9 plevktoeidei ̀Hu
10 ejpifaneia (sine acc.) A ejpifavneia BS ejn ejpifaneiva/ To, Hu, Tr
11 pro~grammh A pro;~ grammh; B prosgrammh; S corr. To, Hu, Tr
12 s del. Hu, Tr
13 h\/ add. Hu, Tr
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Prop. 30
#35 w{sper < ejn > 1 ejpipevdw/ noei`tai gi-
nomevnh ti~ e{lix feromev-
nou shmeivou katí eujqeiva~ kuv-
klon perigrafouvsh~, kai;
ejpi; sterew`n feromevnou 2

f. 49v (Prop. 30)
shmeivou kata; mia`~ pleura`~ th;n3 ejpifavneian perigrafouv-
sh~, ou{tw de;4 kai; ejpi; sfaivra~ e{lika noei`n ajkovlouqovn ejsti grafo-
mevnhn to;n trovpon tou`ton. e[stw ejn sfaivra/ mevgisto~ kuvklo~ oJ
KLM peri; povlon to;5 Q shmei`on, kai; ajpo; tou` Q megivstou kuv-
klou tetarthmovrion gegravfqw to; QNK, kai; hJ me;n QNK pe-
rifevreia, peri; to; Q mevnon feromevnh kata; th`~ ejpifaneiva~
wJ~ ejpi; ta; L M6 mevrh, ajpokaqistavsqw pavlin ejpi; to; aujtov,
shmei`on dev ti ferovmenon ejpí aujth`~7 ajpo; tou` Q ejpi; to; K pa-
raginevsqw: gravfei dhv tina ejpi; th`~ ejpifaneiva~ e{lika,
oi{a ejsti;n hJ QOIK, kai; h{ti~ a]n ajpo; toù Q grafh̀/ megivst < ou kuvklou perifevreia, 
e[stin wJ~ > hJ toù8

kuvklou perifevreia, pro;~ th;n KL < perifevreian lovgon e[cei o}n > 9 hJ LQ 
pro;~ th;n QO: levgw dh;
o{ti, a]n ejkteqh`/10 tetarthmovrion tou` megivstou ejn th`/ sfaiv-
ra/ kuvklou t í ou| ABG perifevreia, kevntron to; D11, kai; ejpi-
zeucqh`/ hJ GA, givnetai wJ~ hJ tou` hJmisfairivou ejpifavneia pro;~
th;n metaxu; th`~ QOIK e{liko~ kai; th`~ KNQ perife-
reiva~ ajpolambanomevnhn12 ejpifavneian, ou{tw~ oJ ABGD
tomeu;~ pro;~ to; ABG tmh`ma. h[cqw ga;r ejfaptomevnh th`~
perifereiva~ hJ GZ, kai; peri; kevntron to; G dia; tou` A ge-
gravfqw13 perifevreia hJ AEZ: i[so~ a[ra oJ ABGD tomeu;~

1 ejn add. Hu, Tr
2 e///////// feromevnou A e[peita feromevnou voluit Co ejpi; sterew`n feromevnou Hu ejn ojrqw`/ 
kwvnou feromevnou Tr
3 th;n A Tr tin í Hu
4 ou{tw de; A ou{tw~ dh; Hu, Tr
5 peri; povlon to;n Q shmei`on A corr. Hu, Tr
6 ta; LAM mevrh A corr. Co, Hu, Tr
7 ajpí aujth`~ A corr. Hu, Tr
8 megivsth tou ̀A –ou...wJ~ add. Tr megivstou Hu
9 lovgon e[cei o}n add. Hu
10 ejkteqh A corr. Hu, Tr
11 tou ̀ABG perifevreia kevntron A to; ABG peri; kevntron Hu tíou} ABG Tr
12 ajpolambanomevnh~ ABS corr. Hu, Tr
13 dia; toù AG egravfqw A corr. Hu, Tr
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tw`/ AEZG, diplasiva me;n ga;r hJ pro;~ tw`/ D gwniva th`~
uJpo; AGZ, hJmivsu de; to; ajpo; DA tou` ajpo; AG. o{ti a[ra kai;
wJ~ aiJ eijrhmevnai ejpifavneiai pro;~ ajllhvla~, ou{tw~ oJ
AEZG1 tomeu;~ pro;~ to; ABG tmh`ma. e[stw mevro~2 hJ KL peri-
fevreia th̀~ o{lh~ tou` kuvklou perifereiva~, kai; to; aujto; mevro~
[o{de mevro~]3 hJ ZE th`~ ZA, kai; ejpezeuvcqw hJ EG: e[stai dh; kai; hJ
BG th`~ ABG to; aujto; mevro~. o} de; mevro~ hJ KL th`~ o{lh~
perifereiva~, to; aujto; kai; hJ QO th`~ QOL. kai; e[stin i[sh
hJ QOL4 th̀/ ABG: i[sh a[ra kai; hJ QO th`/ BG. gegravfqw peri;
povlon to;n Q dia; toù O perifevreia hJ ON, kai; dia; toù B
peri; to; G kevntron hJ BH. ejpei; ou\n wJ~ hJ LKQ sfairikh;
ejpifavneia pro;~ th;n O Q N5, hJ o{lh tou` hJmisfairivou ejpifavneia6

pro;~ th;n tou` tmhvmato~7 ejpifavneian ou| hJ ejk8

tou` povlou ejsti;n hJ QO, wJ~ dí hJ9 toù hJmisfairivou ejpifavneia
pro;~ th;n tou` tmhvmato~ ejpifavneian, ou{tw~ ejsti;n to; ajpo;

f. 50 (Prop. 30 and metatheoretical passage)
th`~ ta; QL10 ejpizeugnuouvsh~ eujqeiva~ tetravgwnon pro;~ to; ajpo; th̀~
ejpi; ta; QO11, h] to; ajpo; th̀~ EG tetravgwnon pro;~ to; ajpo; th̀~ BG, e[stai
a[ra kai; wJ~ oJ KLQ tomeu;~ ejn th`/ ejpifaneiva/ < pro;~ > 12 to;n OQN, ou{tw~
oJ EZG tomeu;~ pro;~ to;n BHG. oJmoivw~ deivxomen o{ti kai; < wJ~ > 13 pavnte~ oiJ
ejn tw`/ hJmisfairivw/ tomei`~ oiJ i[soi tẁ/ KLQ, oi{ eijsin hJ o{lh tou`14

hJmisfairivou ejpifavneia pro;~ tou;~ perigrafomevnou~ peri;
th;n e{lika tomeva~ oJmotagei`~ tẁ/ OQN, ou{tw~ < pavnte~ > 15 oiJ ejn tẁ/ AZG
tomei`~ oiJ i[soi tw`/ EZG, toutevstin o{lo~ oJ AZG tomeuv~, pro;~ tou;~
perigrafomevnou~ peri; to; ABG tmh`ma tou;~16 oJmotagei`~ tẁ/

1 AEGZ AS corr. B Hu, Tr
2 o} mevro~ Hu
3 oJ de; mevro hJ A o{de; mevro~ hJ B o{de; merh S oJ de; mevro~ del. Tr perifevreia Hu
4 QOA AB2S corr. B1 Hu, Tr
5 coniunx. Hu, Tr
6 pro;~...ejpifavneia add. A2 in margine
7 th;n tou` hJmisfairivou ABS th;n tou` tmhvmato~ Co, Hu, Tr th;n ejnto;~ tou` hJmisfairivou coni. 
Hu
8 oujk ejk A corr. Co, Hu, Tr
9 dh; A díhJ Hu, Tr
10 distinx. B1S Hu, Tr
11 distinx. B Hu, Tr Q O, toutevstin Co
12 pro;~ add. Hu, Tr
13 wJ~ add. Hu, Tr
14 oieivsin oi olh A corr. S Hu
15 pavnte~ add. Hu, Tr
16 tou;~ A Hu tomeva~ Tr
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GBH. tw`/ dí aujtw`/ trovpw/ deicqhvsetai kai; wJ~ hJ tou` hJmisfairiv-
ou < ejpifavneia > 1 pro;~ tou;~ ejggrafomevnou~ th̀/ e{liki tomeva~, ou{tw~ oJ AZG to-
meu;~ pro;~ tou;~ ejggrafomevnou~ tw`/ ABG tmhvmati tomeva~,
w{ste kai; wJ~ hJ tou` hJmisfairivou ejpifavneia pro;~ th;n uJpo;
th`~ e{liko~ ajpolambanomevnhn ejpifavneian, ou{tw~ oJ AZG
tomeuv~, toutevstin [wJ~]2 to; ABGD tetarthmovrion, pro;~ to; ABG
tmh`ma. sunavgetai de; dia; touvtou hJ me;n ajpo; th`~ e{liko~
ajpolambanomevnh ejpifavneia pro;~ th;n QNK perifev-
reian ojktaplasiva tou` ABG tmhvmato~, ejpei; kai; hJ tou` hJmi-
sfairivou ejpifavneia tou` ABGD tomevw~, hJ de; metaxu; th`~
e{liko~ kai; th`~ bavsew~ tou` hJmisfairivou ejpifavneia ojkta-
plasiva tou` AGD trigwvnou, toutevstin i[sh tw`/ ajpo; th`~ dia-
mevtrou th`~ sfaivra~ tetragwvnw/.

C

A

B

D

HZ

E

T

O

I

K

N

L

M

Metatheoretical passage
#36 th;n doqei`san gwnivan eujquvgrammon eij~ triva i[sa temei`n oiJ palaioi;
gewmevtrai qelhvsante~ hjpovrhsan dií aijtivan toiauvthn. triva
gevnh fame;n ei\nai tw`n ejn gewmetriva/ problhmavtwn, kai; ta; me;n
aujtw`n ejpivpeda kalei`sqai, ta; de; stereav, ta; de; grammikav.

f. 50v (metatheoretical passage)
ta; me;n ou\n dií eujqeiva~ kai; kuvklou perifereiva~ dunavmena luv-
esqai levgoito a]n3 eijkovtw~ ejpivpeda: kai; ga;r aiJ grammai; dií w|n euJriv-
sketai ta; toiau`ta problhvmata th;n gevnesin e[cousin ejn ejpipevdw/.
o{sa de; luvetai problhvmata paralambanomevnh~ eij~ th;n gevnesin4

mià~ tw`n tou` kwvnou tomw`n h] kai; pleiovnwn, sterea; tau`ta kevklh-

1 ejpifavneia add. Hu, Tr
2 wJ~ ABS del. Hu, Tr
3 levgoit ía]n Hu
4 eij~ th;n gevnesin ABS eij~ th;n kataskeuh;n Co eij~ th;n eu{resin Hu
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tai: pro;~ ga;r th;n kataskeuh;n crhvsasqai sterew`n schmavtwn
ejpifaneivai~, levgw de; tai`~ kwnikai`~, ajnagkai`on. trivton dev ti pro-
blhmavtwn uJpoleivpetai gevno~, to; kalouvmenon grammikovn: grammai;
ga;r e{terai para; ta;~ eijrhmevna~ eij~ th;n kataskeuh;n lambavnon-
tai poikilwtevran e[cousai th;n gevnesin kai; bebiasmevnhn ma`l-
lon, ejx ajtaktotevrwn ejpifaneiw`n kai; kinhvsewn ejpipeplegmev-
nwn gennwvmenai. toiau`tai dev eijsin ai{te ejn toi`~ pro;~ ejpifaneivai~
kaloumevnoi~ tovpoi~ euJriskovmenai grammaiv, e{teraiv te touvtwn poi-
kilwvterai kai; pollai; to; plh`qo~ uJpo; Dhmhtrivou1 tou` jAlexan-
drevw~2 ejn tai`~ grammikai`~ ejpistavsesi kai; Fivlwno~ tou` Tuanevw~3

ejx ejpiplokh`~ plhktoeidw`n4 te kai; eJtevrwn pantoivwn ejpifa-
neiw`n euJriskovmenai, polla; kai; qaumasta; sumptwvmata peri;
auJta;~5 e[cousai. kaiv tine~ aujtw`n uJpo; tw`n newtevrwn hjxiwv-
qhsan lovgou pleivono~, miva dev ti~ ejx aujtw`n ejstin hJ kai; paravdoxo~
uJpo; tou` Menelavou6 klhqei`sa grammhv. tou` de; aujtou` gevnou~ e{te-
rai e{likev~ eijsin tetragwnivzousaiv te kai; kocloeidei`~7 kai; kis-
soeidei`~. dokei` dev pw~ aJmavrthma to; toiou`ton ouj mikro;n ei\nai toi`~
gewmevtrai~, o{tan ejpivpedon provblhma dia; tw`n kwnikw`n> h] tw`n
grammikw`n uJpov tino~ euJrivskhtai, kai; to; suvnolon o{tan ejx ajnoi-
keivou luvhtai gevnou~, oi|ovn ejstin to; ejn tw`/ pevmptw/8 tw`n jApollwnivou9

kwnikw`n ejpi; th`~ parabolh`~ provblhma kai; < hJ > 10 ejn tw`/ peri; th`~
e{liko~ uJpo; jArcimhvdou~11 lambanomevnh sterea; neu`si~12 ejpi; kuv-
klou13: mhdeni; ga;r proscrwvmenon sterew`/ dunato;n euJrei`n to; uJpí aujtou`
grafovmenon qewvrhma, levgw dh; to; th;n perifevreian tou` ejn th`/
prwvth/ perifora`/ kuvklou i[shn ajpodei`xai th`/ pro;~ ojrqa;~
ajgomevnh/ eujqeiva/14 th`/ ejk th`~ genevsew~ < e{w~ > 15 th`~ ejfaptomevnh~ th`~
e{liko~. toiauvth~ dh; th`~ diafora`~ tw`n problhmavtwn uJparcouv-
sh~ oiJ provteroi gewmevtrai to; proeirhmevnon ejpi; th`~ gwniva~

1 dhmhtrivou A corr. Hu, Tr
2 ajlexandrevw~ A corr. Hu, Tr
3 fivlwno~ to tu*anew~ A corr. Hu, Tr
4 plektoeidw`n Hu
5 peri; aujta;~ ABS corr. Hu, Tr
6 menelavou A corr. Hu, Tr
7 kocloeidei`~ AB Hu, Tr kogcoeidei`~ S
8 prwvtw/ voluit Hu
9 ajpollwnivou A corr. Hu, Tr
10 hJ add. Hu, Tr
11 ajrcimhvdou~ A corr. Hu, Tr
12 sterea neusei~ A sterea; neu`si~ B Tr stereai; neuvsei~ S stereou` neu`si~ Hu
13 ejpi; kuvklon Hu
14 ajgomevnh eujqei`a A corr. BS Hu, Tr
15 e{w~ add. Hu, Tr
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f. 51 (metatheoretical passage, Prop. 31 and 32)
provblhma th`/ fuvsei stereo;n uJpavrcon dia; tw`n ejpipevdwn zhtou`nte~
oujc oi|oiv < tí > 1 h\san euJrivskein, oujdevpw ga;r aiJ toù kwvnou tomai; sunhvqei~ h\san
aujtoi`~, kai; dia; tou`to hjpovrhsan: u{steron mevntoi dia; tw`n kwnikw`n
ejtricotovmhsan2 th;n gwnivan, eij~ th;n eu{rhsin crhsavmenoi th`/ uJpo-
gegrammevnh/ neuvsei.

Prop. 31
parallhlogravmmou doqevnto~ ojrqogwnivou tou`
ABGD kai; ejkblhqeivsh~ th`~ BG, devon e[stw diagagovnta th;n AE poiei`n
th;n EZ eujqei`an i[shn th`/ doqeivsh/. gegonevtw, kai; tai`~ EZ ED3

paravllhloi h[cqwsan aiJ DH HZ4. ejpei; ou\n doqei`sav ejstin hJ ZE kai; e[stin
i[sh th`/ DH, doqei`sa a[ra kai; hJ DH. kai; doqe;n to; D: to; H a[ra pro;~ qevsei
kuvklou perifereiva/. kai; ejpei; to; uJpo; BGD doqe;n kai; e[stin i[son tw`/
uJpo; BZ ED5, doqe;n a[ra kai; to; uJpo; BZ ED6, toutevstin to; uJpo BZH7:
to; H a[ra pro;~ uJperbolh;n8. ajlla; kai; pro;~ qevsei kuvklou perife-
reiva/9: doqe;n a[ra to; H.

A

CB

D

E

Z

H

a

#37 sunteqhvsetai dh; to; provblhma
ou{tw~. e[stw to; doqe;n paral-
lhlovgrammon to; ABGD, hJ de;
doqei`sa eujqei`a tw`/ megevqei hJ

1 tí add. Hu, Tr
2 etricatomhsan A corr. BS Hu, Tr
3 ZD ABS corr. Co, Hu, Tr
4 HQ ABS corr. Co, Hu, Tr
5 BE ZD A corr. Hu
6 BE ZD A corr. Hu
7 BQH A BZH Hu BEH Tr
8 pro;~ uJperbolh`/ Hu, Tr
9 perifevreia ABS corr. Hu, Tr
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M, kai; i[sh aujth`/ e[stw hJ DK, kai;
gegravfqw dia; me;n tou` D peri; ajsumptwvtou~ ta;~ ABG uJperbolh; hJ
DHQ, tou`to ga;r eJxh`~ ajpodeivxomen, dia; de; tou` K peri; kevntron to; D
kuvklou perifevreia hJ KH tevmnousa th;n uJperbolh;n kata;
to; H, kai; th`/1 DG parallhvlou ajcqeivsh~ th`~ HZ ejpezeuvcqw
hJ ZA: levgw o{ti hJ EZ i[sh ejsti;n th`/ M. ejpezeuvcqw ga;r hJ HD kai; th`/
KA paravllhlo~ h[cqw hJ HL: to; a[ra uJpo; ZHL, toutevstin to; uJpo; BZH,
i[son ejsti;n tw`/2 uJpo; GDA, toutevstin tw`/ uJpo; BG GD. e[stin a[ra wJ~ hJ ZB
pro;~ BG, toutevstin wJ~ hJ GD pro;~ DE, ou{tw~ hJ GD pro;~ ZH: hJ a[ra ED
i[sh th`/ ZH. parallhlovgrammon a[ra to; DE ZH3: i[sh a[ra hJ EZ th`/
DH, toutevstin th`/ DK, toutevstin th`/ M.

A

B C

D

E

Z

K

HL

T

m

b

Prop. 32
#38 dedeigmevnou dh; touvtou trivca
tevmnetai hJ doqei`sa gwniva
eujquvgrammo~ ou{tw~. e[stw ga;r
ojxei`a provteron hJ uJpo; ABG,
kai; ajpov tino~ shmeivou kav-

f. 51v (Prop. 32 and 33)
qeto~ hJ AG, kai; sumplhrwqevnto~ tou` GZ parallhlogravmmou hJ ZA
ejkbeblhvsqw ejpi; to; E, kai; parallhlogravmmou o[nto~ ojrqogwnivou
tou` GZ keivsqw metaxu; tw`n EAG eujqei`a hJ ED neuvousa ejpi; to; B i[sh
th`/ diplasiva/ th`~ AB, tou`to ga;r wJ~ dunato;n genevsqai progev-
graptai: levgw dh; o{ti th̀~ doqeivsh~ gwniva~ th`~ uJpo; ABG triv-
ton mevro~ ejsti;n hJ uJpo; EBG. tetmhvsqw ga;r hJ ED divca tw`/ H, kai; ejpe-
zeuvcqw hJ AH4: aiJ trei`~ a[ra aiJ DH HA HE i[sai eijsivn: diplh` a[ra hJ DE

1 th`~ AB corr. S Hu, Tr
2 to; A corr. BS Hu, Tr
3 coniunx. Hu, Tr
4 AE A corr. Co, Hu, Tr
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th`~ AH. ajlla; kai; th`~ AB diplh`: i[sh a[ra ejsti;n hJ BA th`/ AH, kai;
hJ uJpo; ABD gwniva th`/ uJpo; AHD. hJ de; uJpo; AHD diplasiva th`~
uJpo; AED, toutevstin th`~ uJpo; DBG: kai; hJ uJpo; ABD a[ra [diplh`]
diplh`1 ejstin th`~ uJpo; DBG. kai; eja;n th;n uJpo; ABD divca tevmwmen,
e[stai [hJ uJpo; ABD divca tevmwmen, e[stai]2 hJ uJpo; ABG gwniva trivca
tetmhmevnh.

#39 eja;n de; hJ doqei`sa gwniva ojrqh;
tugcavnh/, ajpolabovnte~ tina;
th;n BG ijsovpleuron ejpí aujth`~
gravyomen to; BDG, kai; th;n uJpo;
DBG3 gwnivan divca temovnte~ e{xomen
trivca tetmhmevnhn th;n uJpo; ABG gwnivan.
#40 e[stw de; ajmblei`a hJ gwniva kai; th`/

GB pro;~ ojrqa;~ hJ BD, kai; th`~ me;n
uJpo; DBG trivton ajpeilhvfqw
mevro~ hJ uJpo; DBZ, th`~ de; uJpo;
ABD ojxeiva~ gwniva~ trivton hJ
uJpo; EBD, tau`ta ga;r hJmi`n pro-
devdeiktai: kai; o{lh~4 a[ra th`~ uJpo; ABG gwniva~ trivton mevro~
ejsti;n hJ uJpo; EBZ. < eja;n de; th`/ uJpo; EBZ > 5 i[shn susthswvmeqa pro;~ eJkat-
evran tw`n ABG,
trivca temou`men th;n doqei`san gwnivan.

A

B C

Z E

H
D

a
A

CB

D

b

A

B C

Z
DE

c

Prop. 33
#41 to; de; uJperteqe;n provblhma
nu`n ajnaluvsomen. qevsei oujsw`n duvo
eujqeiw`n tw`n ABG kai; doqevnto~
shmeivou tou` D, gravyai dia; tou` D
peri; ajsumptwvtou~ ta;~ ABG

1 diplh` bis scriptum sed prius expunctum del. Hu, Tr
2 hJ uJpo; ABD dicatemwmen e[stai (sic) bis scripta corr. et alterum del. Hu, Tr
3 uJpo; DG gwnivan AB corr. S Hu, Tr
4 o{lh A corr. Hu, Tr
5 eja;n. EBZ add. Hu, Tr
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f. 52 (Prop. 33)
uJperbolhvn. gegonevtw, kai; gegravfqw hJ EDZ, kai; h[cqw ajpo; toù D ejfapto-
mevnh aujth`~ hJ ADG, kai; diavmetro~ hJ HBD, kai; th`/ BG paravllhlo~
hJ DQ. qevsei a[ra aiJ HD DQ1, kai; doqe;n to; Q. kai; ejpei; ajsuvmptwtoiv eijsin
aiJ ABG th`~ uJperbolh`~, kai; ejfaptomevnh hJ AG, i[sh a[ra hJ AD
th`/ DG, kai; to; ajf í eJkatevra~ aujtw`n tetravgwnon i[son ejsti;n tw`/ tetavr-
tw/ toù pro;~ th`/ HD ei[dou~: taùta ga;r ejn tẁ/ deutevrw/ tw`n kwnikẁn
ajpodevdeiktai. ejpei; ou\n i[sh hJ GD th`/ DA, i[sh kai; hJ BQ th`/ QA, kai;
doqei`sa hJ BQ: doqei`sa a[ra kai; hJ QA. kai; doqe;n to; Q: doqe;n a[ra kai; to;
A: qevsei a[ra hJ ADG < kai; > 2 doqeìsa tẁ/3 megevqei hJ AG, w{ste kai; to; < ajpo; > 4 
AG5 doqevn ejstin.
kai; e[stin i[son tw`/ pro;~ th/` HD ei[dei: doqe;n a[ra kai; to; pro;~ th`/ HD
ei\do~. kai; doqei`sa hJ HD, diplh` gavr ejstin th̀~ BD tw`/ megevqei dedomev-
nh~6 dia; < to; > 7 doqe;n eJkavteron ei\nai tẁn BD8: doqeìsa a[ra kai; hJ ojrqiva
tou` ei[dou~ pleurav. gevgonen dh; provblhma toiou`ton: qevsei kai; megevqei
duvo doqeisw`n eujqeiw`n th̀~ te HD kai; th̀~ ojrqiva~ gravyai peri;
diavmetron th;n HD uJperbolhvn, h|~ parí h}n duvnantai9 e[stai hJ loiph;
eujqei`a, kai; aiJ katagovmenai tetagmevnw~ ejpi; th;n HD paravllhloi
e[sontai qevsei tini; eujqeiva/10 th̀/ AG. tou`to de; ajnalevlutai ejn tẁ/
prwvtw/ tw`n kwnikw`n.

#42 sunteqhvsetai dh; ou{tw~.
e[stwsan aiJ me;n th`/ qevsei
doqei`sai eujqei`ai aiJ ABG,
to; de; doqe;n shmei`on to;
D, kai; th`/ me;n BG pa-
ravllhlo~ h[cqw hJ DQ,
th`/ de; BQ i[sh hJ QA, kai;
ejpizeucqei`sa hJ AD ejkbeblhvsqw ejpi; to; G, ejpizeucqei`sa de; kai; hJ
BD ejkbeblhvsqw kai; th̀/ BD i[sh keivsqw hJ BH, kai; tw`/ ajpo; th̀~ AG
i[son e[stw to; uJpo; th`~ HD kai; eJtevra~ tino;~ th`~ k, kai; peri; diavmetron th;n 
HD kai; ojrqivan th;n k11 gegravfqw uJperbo-
lh; hJ EDZ, w{ste ta;~ katagomevna~ ejpi; th;n HD parallhvlou~ ei\nai
th`/ AG: hJ a[ra AG ejfavptetai th̀~ tomh`~. kai; e[stin hJ AD th`/ DG i[sh,

1 aiJ HD DO ABS corr. Co, Hu, Tr
2 kai; add. Hu, Tr
3 tw` A corr. Hu, Tr
4 ajpo; add. Co, Hu, Tr
5 to; DG ABS to; ajpo; AG Co, Hu, Tr
6 dedomevnh/ A corr. Hu, Tr
7 to; add. Hu, Tr
8 distinx. B Hu, Tr
9 parhn duvnantai A corr. Hu, Tr par í h}n duvnatai S
10 eujqeia (sine acc.) A corr. Hu, Tr
11 kai; peri; diavmetron .th* K add. A2 in margine corr. Co, Hu, Tr
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ejpei; kai; hJ BQ th̀/ QA, kai; fanero;n o{ti to; ajfí eJkatevra~ tw`n AD DG tevtar-
tovn ejsti
tou` pro;~ th`/ HD ei[dou~: aiJ a[ra ABG ajsuvmptwtoiv eijsi th̀~ EDZ uJperbolh`~. 
gevgraptai
a[ra dia; tou` D peri; ta;~ doqeivsa~ eujqeiva~ ajsumptwvtou~ uJperbolhv1.

D

E

Z

A

C

T

B

H

k

f. 52v (Prop. 33 and 34)
Prop. 34
#43 kai; a[llw~ th`~ doqeivsh~ peri-
fereiva~ to; trivton ajfairei`-
tai mevro~, cwri;~ th`~ neuv-
sew~, dia; stereou` tovpou toi-
ouvtou. qevsei hJ dia; tw`n AG2, kai;
ajpo; doqevntwn tw`n3 ejpí aujth`~4

tw`n AG5 keklavsqw hJ ABG di-
plasivan poiou`sa6 th;n
uJpo; AGB7 gwnivan th`~ uJpo;
GAB: o{ti to; B pro;~ uJperbolh/`8. h[cqw kavqeto~ hJ BD, kai; th`/9 GD i[sh
ajpeilhvfqw hJ DE: ejpizeucqei`sa a[ra hJ BE i[sh e[stai th`/ AE. keiv-

1 uJperbolh̀/ A corr. Hu, Tr
2 AG AB1 distinx. B2S Hu, Tr
3 tw`n om. Hu
4 ajp’ aujth`~ A ejp’ aujth`~ Co, Hu, Tr
5 AG AS distinx. B Hu, Tr
6 poiou`san AS corr. B Hu, Tr
7 ABG A corr. Co, Hu, Tr
8 prosuperbolh A pro;~ uJperbolh;n B pro;~ uJperbolh`/ S Hu, Tr
9 th̀ A corr. Hu, Tr
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sqw kai; th`/ DE i[sh hJ EZ: triplasiva a[ra hJ GZ th`~ GD. e[stw kai; hJ
AG th`~ GH triplasiva: e[stai dh; doqe;n to; H, kai; loiph; hJ AZ th`~
HD triplasiva. kai; ejpei; to; ajpo; < BD tw`n ajpo; > BE EZ uJperochv ejstin1, 
e[stin de; kai;
to; uJpo; DA AZ tw`n aujtw`n uJperochv, e[stai [i[son]2 to; uJpo; DAZ, toutevstin
to; tri;~ uJpo; ADH3, i[son tw`/ ajpo; BD: pro;~ uJperbolh/`4 a[ra to; B, h|~
plagiva me;n tou` pro;~ a[xoni ei[dou~ hJ AH, hJ de; ojrqiva triplasiva
th`~ AH. kai; fanero;n o{ti to; G shmei`on ajpolambavnei pro;~ th`/
H korufh`/ th`~ tomh`~ th;n GH hJmivseian th`~ plagiva~ tou` ei[dou~
pleura`~ th`~ AH. kai; hJ suvnqesi~ fanerav: dehvsei ga;r th;n AG
temei`n w{ste diplasivan ei\nai th;n AH th`~ HG, kai; peri; a[xona
to;n AH gravyai dia; tou` H uJperbolhvn, h|~ ojrqiva tou` ei[dou~ pleura;
triplasiva th`~ AH. kai; deivknutai5 poiou`san aujth;n to;n eijrh-
mevnon diplavsion lovgon tw`n gwniw`n. kai; o{ti th̀~ doqeivsh~ kuv-
klou perifereiva~ to; g’ ajpotevmnei6 mevro~ hJ tou`ton grafomevnh
to;n trovpon uJperbolh; sunidei`n7 rJa`/dion tw`n AG 8 shmeivwn
peravtwn th`~ perifereiva~ uJpokeimevnwn.

a

A

B

CDEZ H

#44 eJtevrw~ de; th;n ajnavlusin tou` triv-
ca temei`n th;n gwnivan h] peri-
fevreian ejxevqentov tine~ a[neu
th`~ neuvsew~. e[stw de; ejpi; peri-

1 ejpei; to; ajpo; BE EZ uJperochv ejstin A BD tw`n ajpo; add. Tr ejpei; tw`n ajpo; BE EZ uJperochv 
ejstin to; ajpo; BD Co, Hu
2 i[son del. Tr a[ra Hu
3 DAH A corr. Co, Hu, Tr
4 prosuperbolh; AB pro;~ uJperbolh̀/ S Hu, Tr
5 deiknuvnai Hu
6 to; G ajpotevmnein ABS to; g’ ajpotevmnei Hu to; trivton ajpotevmnei Tr
7 suneidein A corr. BS Hu, Tr
8 distinx. BS Hu, Tr
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fereiva~ oJ lovgo~, oujde;1 ga;r dia-
fevrei gwnivan h] perifevreian

f. 53 (Props. 34 and 35)
temei`n. gegonevtw dhv, kai; th`~ ABG perifereiva~ trivton ajpeilhvfqw
mevro~ hJ BG, kai; ejpezeuvcqwsan aiJ AB BG [mevro~ hJ BG]2 GA: diplasivwn3

a[ra hJ < uJpo; > 4 AGB5 th̀~ uJpo; BAG. tetmhvsqw divca hJ uJpo; AGB th̀/ GD, kai;
kavqetoi aiJ DEZB6: i[sh a[ra hJ AD th`/ DG7, w{ste kai; hJ AE th`/ EG: doqe;n
a[ra to; E. ejpei; ou\n ejstin wJ~ hJ AG pro;~ GB, ou{tw~ hJ AD pro;~ DB, 
toutevstin
hJ AE pro;~ EZ, kai; ejnalla;x a[ra ejsti;n wJ~ hJ GA pro;~ AE, hJ BG pro;~
EZ. diplh` de; hJ GA th`~ AE8: diplh` a[ra kai; hJ BG9 th`~ EZ. tetraplav-
sion a[ra to; ajpo; BG, toutevstin ta; ajpo; tw`n BZG, tou` ajpo; th`~ EZ.
ejpei; ou\n duvo doqevnta ejsti;n ta; EG10, kai; ojrqh; hJ BZ, kai; lovgo~ ejsti;n
tou` ajpo; EZ pro;~ ta; ajpo; tw`n BZG, to; B a[ra pro;~ uJperbolh`/11. ajlla;
kai; [ta;] pro;~ qevsei perifereiva/12: doqe;n a[ra to; B. kai; hJ suvnqesi~
fanerav.

A

B

CZ

D

E

b

Prop. 35
#45 to; me;n ou\n th;n doqei`san gwnivan
h] perifevreian trivca temei`n

1 oujde;n Hu
2 mevro~ hJ BG del. Co, Hu, Tr
3 diplavsion A corr. Hu, Tr
4 uJpo; add. Hu, Tr
5 AIB A corr. S Hu, Tr
6 DE ZB BS Hu, Tr
7 th`~ DG A corr. Hu, Tr
8 th̀/ AE A Hu th`~ Tr
9 hJ B A BG Co, Hu, Tr
10 EG AB1S distinx. B3 (vel B2) Hu, Tr
11 prosuperbolh A pro;~ uJperbolh̀/ S Hu, Tr
12 kai; ta; prosqevsei perifereivai~ ABS corr. Hu, Tr
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stereovn ejstin, wJ~ prodevdeiktai:
to; de; th;n doqei`san gwnivan h]
perifevreian eij~ to;n doqevnta lov-
gon temeìn grammikovn ejstin, kai;
devdeiktai me;n uJpo; tw`n newtevrwn, grafhvsetai de; kai; uJf’ hJmw`n di-
cw`~. e[stw ga;r kuvklou tou` KLQ perifevreia hJ LQ, kai; devon e[stw temei`n
aujth;n eij~ doqevnta lovgon. ejpi; to; kevntron aiJ LBQ, kai; th̀/ BQ
pro;~ ojrqa;~ hJ BK, kai; dia; tou` K gegravfqw tetragwnivzousa gram-
mh; hJ KA DG 1, kai; kavqeto~ ajcqei`sa hJ AE tetmhvsqw kata; to; Z, w{ste
ei\nai wJ~ th;n AZ pro;~ ZE, ou{tw~ to;n doqevnta lovgon eij~ o}n dielei`n qev-
lomen th;n gwnivan, kai; th`/ me;n BG paravllhlo~ hJ ZD. ejpezeuvcqw de;
hJ BD, kai; kavqeto~ hJ DH. ejpei; ou\n dia; to; suvmptwma th̀~ grammh̀~ ejstin
wJ~ hJ AE pro;~ DH, toutevstin pro;~ ZE, hJ uJpo; ABG gwniva pro;~ th;n uJpo;
DBG, dielovnti a[ra ejsti;n wJ~ hJ AZ pro;~ ZE, toutevstin wJ~ oJ doqei;~ lovgo~,
ou{tw~ hJ uJpo;2 ABD gwniva pro;~ th;n3 uJpo; DBG, toutevstin hJ LM perifevreia 
pro;~ MQ.

#46 eJtevrw~ de; tevmnetai < kuvklou > 4 tou` AHG hJ AG
perifevreia. oJmoivw~ ejpi; to; kevn-
tron aiJ ABG, kai; gegravfqw dia;
tou` B hJ e{lix hJ BZ DG 5 h|~ hJ ejn th`/

f. 53v (Props. 35, 36, and 37)
genevsei eujqei`a hJ GB, kai; tẁ/ doqevnti lovgw/ oJ aujto;~ e[stw6 oJ th̀~ DE pro;~
EB, kai; dia; toù E peri; kevntron to; B kuvklou perifevreia hJ EZ tev-
mnousa th;n e{lika kata; to; Z, kai; ejpizeucqei`sa hJ BZ ejkbeblhv-
sqw ejpi; to; H: e[stin a[ra dia; th;n e{lika wJ~ hJ DB7 pro;~ BZ, toutevstin
pro;~ BE, ou{tw~ hJ AHG8 perifevreia pro;~ GH, kai; dielovnti wJ~ hJ DE pro;~
EB, ou{tw~ hJ AH perifevreia pro;~ HG. oJ de; th̀~ DE pro;~ EB lovgo~
ejsti;n oJ aujto;~ tẁ/ doqevnti: kai; oJ th̀~ AH a[ra perifereiva~ pro;~ th;n
HG lovgo~ oJ aujtov~ ejstin tẁ/ doqevnti. tevtmhtai a[ra. ì

1 coniunx. BS Hu, Tr
2 ajpo; Hu
3 pro;~ th̀/ ABS corr. Hu, Tr
4 kuvklou add. Hu
5 dia; toù B e{lix hJ BZDG Hu
6 e[stai AB corr. S Hu, Tr
7 AB A corr. S Hu, Tr
8 AG A corr. Co, Hu, Tr
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Props. 1–3: Euclidean Plane Geometry: Synthetic Style

Prop. 1: Generalization of the Pythagorean Theorem

#1 When ABC is a triangle, and over AB and BC any parallelograms ABED and 
BCZH1 are described, and DE and ZH are produced to T, and TB is joined, then 
the parallelograms ABED and BCZH <taken together> turn out to be equal to the 
parallelogram comprised by AC/TB, with an angle <at A> that is equal to the sum 
of the angles BAC and DTB.

A CK

Z

MNL

D

E

B

T

H

For:
Produce TB to K, and through A and C draw the parallels AL and CM to TK, 

and join LM.

Part Ib
Annotated Translation of Collectio IV

1 The text of Prop. 1 shows a number of idiosyncrasies in labeling parallelograms. I have followed 
Hu in standardizing.

H. Sefrin-Weis, Pappus of Alexandria: Book 4 of the Collection, 
Sources and Studies in the History of Mathematics and Physical Sciences, 
DOI 10.1007/978-1-84996-005-2, © Springer-Verlag London Limited 2010
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Since ALTB is a parallelogram,1 AL and TB are equal and parallel. Similarly, MC 
and TB are both equal and parallel as well, so that LA and MC, also, are both equal 
and parallel. Therefore, LM and AC are both equal and parallel as well. Therefore, 
ALMC is a parallelogram with angle LAC, i.e.: with an angle that is the sum of angle 
BAC and angle DTB. For the angle DTB is equal to the angle LAB.2

And since the parallelogram DABE is equal to the parallelogram LABT (for 
they are both (erected) over the same base AB, and (lie) within the same parallels 
AB and DT3), but LABT is equal to LAKN (for they are both (erected) over the 
same base LA, and <lie> within the same parallels LA and TK4), ADEB is therefore 
equal to LAKN as well.

For the same reason, BHZC is equal to NKCM as well. Therefore, the parallelo-
grams DABE and BHZC <taken together> are equal to LACM, i.e.: to the <paral-
lelogram spanned by> AC/TB, with the angle LAC, which is equal to the sum of the 
angles BAC and BTD.

And this is much more general than what was proved in the Elements about 
right-angled <triangles> concerning the squares.5

Prop. 2: Construction of a Minor 6

#2 <Let there be given> a semicircle over AB that has a rational 7 diameter, and let 
BC be on AB produced and equal to the radius, and CD a tangent <to the semicircle>, 
and let the arc BD be bisected in [the] point E, and CE joined.

<I claim> that 8 CE is an irrational,9 the so-called Minor.

A Z

D

E

H B T C

1 By construction.
2 I, 29.
3 I, 35.
4 I, 35.
5 Reference to I, 47; Hu 178, 13 + app. Hu notes that a later manuscript has added a phrase that 
establishes a connection to VI, 31, which is not envisaged in Prop. 1; see the apparatus to the 
Greek text and the commentary.
6 For the definition of a “Minor” see X, 76, for its classification see X, 82, and for its construction 
(used here in Prop. 2) see X, 94.
7 For the meaning of “rational” see the commentary.
8 The manuscript A has “o‘ύtw~ V,” Hultsch changes to the standard őti (cf. also Co p. 58 A). 
Treweek follows him. The use of the differing conjunction is an idiosyncrasy of Props. 2–6. In the 
Greek text, I have kept the reading of A in all instances.
9 For the meaning of the term “irrational” in this context see the commentary.
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Take Z as the center of the circle, and join ZD and ZE. Since the angle ZDC is 
a right angle, it lies in the semicircle over ZC,1 the center of which is B. And when 
BD is joined, the triangle BZD turns out to be equilateral, so that the angle DZB is 
two thirds <of a right angle>, and the angle EZB one third <of a right angle>.

Draw the perpendicular HE from E onto the diameter AB. Then the triangle 
CZD is equiangular to the triangle EZH, and EZ is to ZH as ZC is to CD.2 However, 
the square over ZC is 4/3 of the square over CD.3 Therefore, the square over EZ is 
4/3 of the square over ZH, also.4 Therefore, the ratio of the square over EZ to the 
square over ZH is the one that 16 <has> to 12, whereas the ratio of the square over 
ZC to the square over EZ is the one that 64 has to 16,5 and therefore the ratio of the 
square over ZC to the square over ZH is the one that 64 has to 12.

However, let ZB be 4BT.6 ZC is 2BZ, also. Therefore, the ratio of ZC to ZT is the 
one that 8 has to 5, and the ratio of ZT to TC is the one that 5 has to 3. Therefore, the 
ratio of the square over ZC to the square over ZT is the one that 64 has to 25, also.7

It has, however, been shown that the ratio of the square over CZ to the square 
over ZH is the one that 64 has to 12. Therefore, the ratio of the square over TZ to 
the square over ZH is as 25 to 12, also.8 Therefore, TZ and ZH are rationals, com-
mensurable in square only, and TZ in square exceeds ZH in square by a square 
whose side is incommensurable with it.9 And the whole <line> ZT is commensu-
rable with the rational <line> AB10. Therefore, TH is a fourth Apotome.11

However, ZC is rational, and its double is so, also. Therefore, the line the square 
of which is two times the rectangle ZC/HT is an irrational, the so-called Minor.12 
And the square of CE is double the rectangle CZ/HT13; therefore, CE is a Minor.

That, however, the square of CE is two times the rectangle CZ/HT will be clear 
in the following way: Join ET. Since the square over EC is equal to the <sum of 
the> squares over ET and TC, plus two times the rectangle CTH,14 whereas the 
<sum of the> squares over ET and TZ is equal to the square over EZ plus two times 

 1 III, 31.
 2 VI, 4.
 3 I, 47: CD2 = 3ZB2, and ZC2 = 4ZB2.
 4 VI, 23.
 5 ZC = 2ZB, ZE = ZB.
 6 Choose T on ZB, Z − B − T, with TB = 1/4ZB.
 7 ZT = 3BT; ZC = 2ZB = 8BT; TC = 5BT.
 8 V, 23 with V, 16.
 9 ZT2:(ZT2 − ZH2) = 25:13; X, 9 with X, 5/6.
10 ZT = 3BT; AB = 2ZB = 8BT; X, 9.
11 X, 73; X, 84 a 4. The Apotome is introduced in X, 73, divided into subtypes in X, 84, with 
geometrical constructions in X, 85–90.
12 X, 94.
13 This will be shown below.
14 II, 12.
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the rectangle ZTH, also,1 the <sum of the> squares over CE, ET, and TZ is therefore 
equal to the <sum of the> squares over ET, TC, and EZ, plus two times the rectangle 
CTH, together with two times the rectangle ZTH, i.e.: with two times the rectangle 
CZ/HT. Take the common square over ET away. Then the remaining <sum of the> 
squares over EC and ZT is equal to the <sum of the> squares over EZ and TC, 
together with two times the rectangle CZ/HT. Of these, the square over ZT is equal 
to <the sum of> the squares over EZ and TC (for the square over ZT is 25,2 whereas 
the square over TC is 9, and the square over EZ is 16). Therefore, the remaining 
square over CE is equal to two times the rectangle ZC/HT.

Prop. 3: Construction of an Irrational Beyond Euclid

#3 <Let there be given> a semicircle over AC that has a rational diameter, and let 
CD be equal to the radius, and DB tangent <to the semicircle>, and let the angle 3 

CDB be bisected by DZ.
<I claim> that DZ is the excess by which a Binomial 4 exceeds a Line that 

produces with a rational area a medial whole.5
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1 II, 13 generalized. The proof and theorem of II, 13 in the Elements specifies acute-angled triangles, 
but it can easily be extended (cf. Heath 1926 I, pp. 406–409). Within the present translation and 
commentary, I will refer to “II,12/13 generalized,” assuming that Pappus expects familiarity with 
the generalized versions. A theorem much like II, 12/13 generalized seems to be invoked inter alia 
in Prop. 7 and Prop. 8. The following piece of text is bracketed by Hultsch as a later addition: 
Therefore, proportion holds. As the square over CE is to the (sum of the) squares over ET and TC, 
together with two times the rectangle, so is the sum of the squares over ET and TZ to the square 
over EZ, together with two times the rectangle ZTH (in A:ZHQ). And as one to one, so are all (to 
all, add. Hu). And the square over CE is equal to the sum of the squares over ET and TC, plus two 
times the rectangle CTH (in A:GEQH).
2 I.e., 25 BH2. BH2 appears as a unit of measure. The areas of squares are directly identified with 
numbers. This is unusual.
3 Note the connection to Prop. 2. There the arc between point of touch and base was bisected, here 
it is the angle between the tangent and the base.
4 The Binomial is introduced as a sum in X, 36, shown to be uniquely determined this way in X, 42, 
split up into six types in X, 47–53, and geometrically constructed and characterized in X, 54.
5 The Line that produces with a rational area a medial whole is introduced as a difference of lines 
in X, 77, the uniqueness of this determination is proved in X, 83, and the line is constructed and 
characterized geometrically in X, 95.
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For:
Take H as the center of the semicircle, and join BH, and describe over HD the 

semicircle HBD,1 and produce DZ to K. Then the arc BK is equal to the arc KH. 
Draw the perpendicular KL onto AC. And since BH is the side of a hexagon,2 
whereas KL is half of the side of a hexagon (for when it is produced, it subtends 
two times the arc KH), BH is therefore two times KL, i.e.: CK is two times KL. 
And the angle KLC is a right angle. Therefore, the square over KC is 4/3 of the 
square over CL,3 i.e.: the square over DC is 4/3 of the square over CL. Therefore, 
DC and CL are rationals, commensurable in square only,4 and the square of DC 
exceeds the square of CL by the square over a line that is commensurable with it,5 
and the larger <line> DC is commensurable with the Rational AC. Therefore, LD 
is a First Binomial,6 whereas HD is rational. Therefore, the line the square of which 
is equal to the area of the rectangle between HD/DL is an irrational, the so-called 
Binomial.7 However, the square of DK is equal to this <area> (for on account of the 
fact that the triangle HDK is equiangular to the triangle DLK,8 KD is to DL as HD 
is to DK 9). Therefore, DK is a Binomial.

And since the angle BHC is two thirds <of a right angle>, and HB is equal to 
HC, the triangle BHC is therefore equilateral. Now, draw the perpendicular BT; 
then HC, i.e.: DC, is two times CT.10 And it has been shown that the square over 
DC is 4/3 of the square over CL. Therefore, the square over LC is three times the 
square over CT. Therefore, LC and CT are rationals, commensurable in square 
only, and the square of LC exceeds the square of CT by the square over a line that 
is incommensurable with it, and the smaller item CT is commensurable with the 
Rational AC.11 Therefore, LT is a fifth Apotome.12 And since the rectangle DHT is 
equal to the square over BH on account of the fact that the triangles BHT and BHD 
are equiangular,13 whereas the rectangle DHL is equal to the square over KH, on 
account of the fact that the triangles KHL and KHD are equiangular,14 the rectangle 
DHL is, therefore, to the square over KH as the rectangle DHT is to the square over BH. 

 1 B on the semicircle, because ÐHBD = p/2.
 2 I.e., of a regular hexagon inscribed in the circle with diameter HD.
 3 See Prop. 2 for this intermediate step.
 4 X, 9.
 5 X, 9.
 6 X, 47 a 1.
 7 X, 54.
 8 VI, 8.
 9 VI, 4; VI, 17.
10 Equilateral triangle HBC.
11 X, 9.
12 X, 84 a 5.
13 VI, 4; VI, 17.
14 VI, 4; VI, 17.
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And alternate.1 As the rectangle DHT is to the rectangle DHL, however, so is TH 
to HL.2 And therefore, as HT is to HL, so is the square over BH, i.e.: the square 
over ZH, to the square over HK. Separando, therefore, as TL is to LH, so is the 
square over KZ to the square over HK.3 And it has been shown that the rectangle 
between DH/HL is equal to the square over HK. Therefore, the rectangle between 
DH/LT is equal to the square over KZ, also. And LT is a fifth Apotome, whereas DH 
is rational. Therefore, KZ is a Line that produces with a rational area a medial 
whole.4

However, it has been shown also that DK is a Binomial. Therefore, (the remain-
ing) DZ is the excess by which a Binomial exceeds a Line that produces with a 
rational area a medial whole.

Props. 4–6: Plane Analysis Within Euclidean Elementary 
Geometry

Prop. 4: Structure of Analysis-Synthesis

#4 Let ABC be a circle with center E and diameter BC, and AD a tangent intersect-
ing BC in D, and let DZ 5 be drawn, and AE produced, after it has been joined, to 
H, and let ZKH and HLT be joined;

<I claim> that EK is equal to EL.
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1 V, 16; rectangle DHT:rectangle DHL = BH2:KH2.
2 The following phrase was bracketed by Hultsch; it translates to: For the height is equal.
3 V, 17.
4 X, 95.
5 DZ secant to the circle, chosen at liberty between DC and DA.
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Assume that it has turned out to be so,1 and draw the parallel TXM to KL. Then 
MX is equal to XT, also.2 Draw the perpendicular EN from E onto ZT. Then ZN 
is equal to NT.3 However, MX was equal to XT, also. Therefore, NX is parallel to 
MZ. Thus,4 the angle between TN/NX is equal to the angle between NZ/ZM,5 i.e.: 
to the angle between TA/AX.6 Thus, the points A, N, X, and T lie on a circle.7 

Thus, the angle between AN/NT is equal to the angle between AX/XT, i.e.: to the 
angle between AE/EL.8 Thus, the points A, N, E, and D lie on a circle.9

They do, however <lie on a circle>. For the angles between EA/AD and EN/ND 
are both right angles.10

Now, the argument will be put together11 in the following way. Since the angles 
between EA/AD and between EN/ND are both right angles, the points A, D, E, 
and N lie on a circle.12 Therefore, the angle AND is equal to the angle AED. But 
the angle AED is equal to the angle AXT, on account of the parallels ED and XT.13 
Therefore, the points A, N, X, and T lie on a circle.14 Therefore, the angle TAX 
is equal to the angle TNX. But the angle TAX is equal to the angle TZM.15 
Therefore, ZM is parallel to NX. And ZN is equal to NT.16 Therefore, MX is equal 
to XT, also. And as XH to HE, so is, on the one hand, XM to EK, and, on the other 
hand, TX to LE; and therefore: as XM to EK, so <is> TX to LE. And <equation 
holds after> alternation.17 MX is equal to XT as well. Therefore, KE is equal to 
LE, also.

 1 Analysis − assumption: EK = EL.
 2 DHKE ~ DHMX; DHEL ~ DHXT; VI, 4 and V, 16; KE = EL by assumption in the analysis.
 3 III, 3.
 4 o‘ύtwV ’a¢ ra; the occurrence of this phrase is a peculiarity of the analysis in Prop. 4. It will be 
translated as “thus.”
 5 I, 29.
 6 III, 21.
 7 Converse of III, 21; see the commentary.
 8 III, 21; I, 29.
 9 ÐAND = ÐAED. The analysis proper ends here.
10 III, 31. Note that this observation constitutes the resolutio for the analysis in Prop. 4. The position 
of E, N, A, and D on a circle is independent from the analysis-assumption.
11 Technical term: sunqeth¢setai. The synthesis begins here.
12 III, 31; compare the above resolutio. See the commentary.
13 By construction, I, 29.
14 See the commentary. An appeal to the converse of III, 21 is not permissible in the synthesis.
15 III, 21.
16 III, 3.
17 V, 16 yields MX:TX = EK:LE.
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Props. 5/6: Reciprocity in Plane Geometry

Prop. 5

#5 Let ABC be a circle, and AD and DC tangents, and let AC be joined, and EZ drawn 
through the interior <of the angle>. EH, however, should be equal to HZ.

<I claim> that TH is equal to HK, also.
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Draw the parallel EM to AC, and take L as the center of the circle, and join LA, 
LZ, LC, LM, LE, and LH. Since EH is equal to HZ, MC is equal to CZ, also.1 And 
it is perpendicular to CL.2 Therefore, LZ is equal to LM.3 And since AD is equal 
to DC,4 AE is equal to MC.5 However, AL is equal to LC, also, and the right angle 
between EA/AL is equal to the right angle between MC/CL. Therefore, EL is equal to 
LM, also, i.e.: to LZ.6 But EH is equal to HZ, also. Therefore, HL is a perpendicular 
onto EZ.7 Therefore, TH is equal to HK.8

1 DMZE ~ DCZH, VI, 2.
2 III, 18.
3 I, 4.
4 Triangle LAC is isosceles; therefore, ÐLAC = ÐLCA (I, 5); therefore, ÐCAD = ÐACD, and 
triangle ACD is isosceles (I, 6). Co refers to III, 36, with corollaries; cf. 191, * Hu.
5 AC || EM; therefore, DEDM is isosceles (I, 29; I, 6). Co refers to VI, 4; Hu’s Latin paraphrase 
suggests using VI, 4, also.
6 I, 4.
7 DEHL @ DZHL; therefore, the neighboring angles at H are equal.
8 III, 3.
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Prop. 6

#6 Let ABC be a circle, and AD and DC tangents, and let AC be joined, and 
EZ be drawn through <the interior of the angle>; HT, however, should be equal 
to HK.

<I claim> that EH is equal to HZ, also.
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Take L as the center of the circle, and join EL, LA, LH, LZ, and LC. Since the 
angles between EA/AL and between EH/HL are both right angles, the points E, A, 
H, and L lie on a circle.1 Therefore,2 the angle between HA/AL is equal to the 
angle between HE/EL.3 Again, since the angles between LH/HZ and between 
LC/CZ are both right angles, the points L, H, Z, and C lie on a circle.4 Therefore, 
the angle between HC/CL, i.e.: the angle between HA/AL,5 i.e.: the angle between 
HE/EL, is equal to the angle between HZ/ZL.6 Therefore, EL is equal to LZ, also.7 
And LH is a perpendicular <onto EZ8>. Therefore, EH is equal to HZ.

1 III, 18; III, 3.
2 III, 31.
3 III, 21.
4 III, 31; compare above.
5 Isosceles triangle ACL; I, 5.
6 III, 21.
7 Isosceles triangle ELZ; I, 5.
8 III, 3.
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Props. 7–10: Analysis, Apollonian Style (Focus: Resolutio)

Theorem (cf. Prop. 10)

Whenever there are three circles, given1 in position and size, touching each other, 
the circle comprising them2 will be given in size as well.

Before <discussing this theorem>, however, the following is written down.

Prop. 7: Determination of Givens

7a: First Example for Prop. 7

#7 Let ABCD be a quadrilateral that has a right angle ABC, and each of the lines 
AB, BC, CD, and DA are given.

<The task is> to show that the line joining the points D and B is given.

D ZH T C
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a

Join AC and draw the perpendiculars AH onto CD, on the one hand, and BE onto 
AC, on the other hand.3 Now, since AB and BC are both given, and the angle ABC is 
a right angle, and BE is a perpendicular <onto AC>, each of the <lines> AE, EC, AC, 
and BE will therefore be given, also. For the rectangle ACE turns out to be given, 
because it is equal to the square over BC,4 and AC is given,5 so that each of the 

1 For information on the technical term “given” (Latin:datum, Greek:doqÎ¢n) see the introduction to 
Prop. 7 in the commentary. Determining givens (data) is the central task of the resolutio stage of 
Greek geometrical analysis (see introduction to Props. 4–12). The terminology will also be 
employed in Props. 28 and 29, 35–41, 42–44, and 31–34. In the latter cases, Pappus is operating 
outside the scope of plane geometry, and the analysis serves very different functions.
2 I.e., the circumscribed circle, touching each of the three given ones.
3 E is on AC. Its position must be A – E – C because of the right angle at B. H is on DC. Its position 
D – H – C implies a special configuration for Prop. 7. See the commentary. Z is taken to lie on 
DC and BE.
4 I.e.: it is given in size. Elem. VI, 8, Porisma, and VI, 17: BC2 = AC × EC. Data 52: with BC given, 
BC2 is given.
5 I, 47: AC2 = AB2 + BC2, Data 52: AB, BC given Þ AB2, BC2 given; Data 3: AB2 + BC2 given, 
i.e., AC2 given; Data 55: AC given.



93Props. 7–10: Analysis, Apollonian Style (Focus: Resolutio)

<lines> AE, EC, and BE will be given.1 Again, since each of the lines AC, CD, 
and DA is given, and AH is a perpendicular <onto DC>, each of the <lines> DH, 
HC, and AH is given as well. For the excess of the square over AC over the square 
over DA, when it is applied to CD, makes the excess of CD over HD a given one, 
as is stated in a lemma, so that each of the <lines> DH, HC, and AH will have been 
given, also.2 And since the triangle AHC is equiangular to the triangle CEZ, as HC 
<is> to CE, so are both AC to CZ and AH to EZ.3 And the ratio of HC to CE is 
given.4 Therefore, both CZ and ZE will be given.5 But so are both EB and BC. 
Therefore, each of the <lines> ZB, BC, and CZ is given as well.6 Now, draw the 
perpendicular BT onto CZ.7 Then each of the <lines> ZT, TC, and BT is given,8 so 
that both DT and TB are given, also.9 And the angle BTD is a right angle. Therefore, 
BD is given.10

7b: Second Example for Prop. 7

D C

A

B
Z
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b

 1 Data 57: AC × EC given, AC given  Þ EC given. Data 4: AC, EC given  Þ AC − EC, i.e., AE 
given. I, 47: BC2 = BE2 + EC2, i.e.: BC2 − EC2 = BE2; Data 52: BC, EC given  Þ BC2, EC2 given. 
Data 4: BC2 − EC2 given; Data 55: BE given.
 2 According to Hultsch, no such lemma is still extant. He provides a proof for “CD − HD is given” 
at Hu p. 193, # 4. II, 12/13 generalized: AC2 = AD2 + DC2 − 2DC × DH; therefore: AC2 − AD2 = 
DC × (DC − 2DH). Data 52: AC2, AD2 given; Data 4: AC2 − AD2 given, i.e., DC × (DC − 2DH) 
given; Data 57: DC, DC × (DC − 2DH) given Þ DC − 2DH given; Data 4: DC, DC − 2DH given  
Þ 2DH given; Data 2: DH given. Data 4: DC, DH given  Þ HC given. I, 47: AD2 = AH2 + DH2, 
i.e., AH2 = AD2 − DH2; Data 52: AH2, DH2 given; Data 4: AD2 − DH2 given, i.e., AH2 given; Data 
55: AH given.
  3 VI, 4, V, 16.
 4 Data 1 (HC and CE are given).
 5 Data 2 (AC, AH, and HC:CE are given).
 6 Data 3 (ZB = ZE + BE).
 7 H is assumed to lie on DC, with D − Z − T − C. This means that, again, only one of several 
possible sub-cases is discussed here; see the commentary on the purpose of Prop. 7.
 8 DZBT ~ DZEC implies BZ:ZT = CZ:ZE; Data 2: BZ, BZ:ZT given implies ZT given. Data 4: 
CZ − ZT = TC given. I, 47: BT2 = BZ2 − ZT2. Data 52, Data 4: BT2 given; Data 55: BT given.
 9 Data 4: DC, CT given implies DT given. BT was shown to be given already.
10 I, 47: BT2 + DT2 = BD2; Data 52: BT2, DT2 given; Data 3: BD2 given; Data 55: BD given.
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#8 Draw the perpendicular DE onto AC and produce it to Z.1

Since each of the <lines> AD, DC, and CA is given,2 and DE is a perpendicular, 
the <lines> AE and EC will both be given.3 And since the triangle ABC is equian-
gular to the triangle CEZ, CB is to BA as CE <is> to EZ.4 The ratio of CB to BA 
is, however, given. Therefore, the ratio of CE to EZ is given as well. And CE is 
given. Therefore, EZ is given as well.5 However, DE was given, also.6 Therefore, 
the whole DZ will be given as well.7 For the same reason, BZ and ZC will both be 
given, also. For as AC <is> to BC, so <is> ZC to CE; and the ratio of AC to CB is 
given.8 Now again, draw the perpendicular DH from D <onto BC9>. Then ZH and 
HC are both given,10 so that BH and HD are both given as well.11 And the angle at 
H is a right angle. Therefore, BD is given as well.12

Prop. 8: Analysis, Apollonian Style

(Apollonius, Tangencies, cf. Coll. VII, Props. 102–107)
#9 Let there be given <two> equal circles in position and size, with centers A and 
B, and let the point C be given,13 and through C the circle CEZ touching the circles 
with centers A and B should be described.

 1 E is on AC, and Z is on BC. Again, the position A − E − C constitutes one of several possible 
cases. Furthermore, the argument will assume B− Z − H − C for the relative position of the inter-
section points of DE and BC, and the perpendicular. As remarked above, Pappus covers only 
two of a number of possible cases. The proof is completely analogous in all cases (cf. 195, * Hu). 
See the commentary on Prop. 7.
 2 As in Prop. 7a: I, 47: AC2 = AB2 + BC2; with AB, BC given, Data 52, Data 4: AC2 given; Data 
55: AC given.
 3 As in 7a, for DH, HC, AH; II, 12/13, generalized: AC2 = AD2 + DC2 − 2CE × AC, i.e., AC(AC + 
2CE) = AD2 + DC2; with AD, DC given, Data 52, 3: AC (AC + 2CE) given; AC, AC(AC + 2EC) given 
Þ AC + 2EC given (Data 57); Data 4, Data 2: EC given. With Data 4: AE given.
 4 VI, 4.
 5 Data 1: CB:BA given, i.e., CE:EZ given. Data 2: CE, CE:CZ given Þ EZ given.
 6 I, 47: DE2 = DC2 − EC2; Data 52, 4: DE2 given; Data 55: DE given.
 7 Data 3 (DZ = DE + EZ, and DE, EZ are given).
 8 Apply VI, 4, for similar triangles ABC, CEZ:AC: BC = CZ:EZ; Data 1: AC:BC (thus: CZ:EZ) 
given; Data 2: CZ given (EZ, CZ:EZ are), Data 4: BZ given (BZ = BC − ZC).
 9 H on BC; the relative position B − Z − H − C constitutes one of several possible cases. See the 
commentary.
10 II, 12/13, generalized: ZC2 = DZ2 + DC2 − 2DC × ZH; Data 52, 4: DC × (DC − 2ZH) given; 
Data 57: DC − 2ZH given Data 4, 2: ZH given; Data 4: ZC − ZH, i.e., HC given. Compare 7a for 
DABC with lines DH, HC.
11 Data 4: BH given (BC − HC), I, 47: ZH2 + HD2 = DZ2, i.e., HD2 = DZ2 − ZH2. Data 52: DC2, HC2 
given, Data 4, HD2 (= DC2 − HC2) given; Data 55: HD given; compare the argument for AH in 7a.
12 I, 47, BD2 = BH2 + DH2; with BH, HD given: Data 52, Data 3: BD2 given; Data 55: BD given. 
Compare the last step in 7a.
13 Co p. 66, B points out that the argument in Prop. 8 implies that CA, CB are given in position 
and size.
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<I claim> that its diameter is given.1
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Join EZH, CZT, CMP, AB, CE, PZK, TK, and TH.2

Now, HT turns out to be parallel to CE on account of the fact that the vertex angles 
EZC and HZT are equal, and the arcs EPZ and HKZ similar,3 and the triangle ECZ 
is equiangular to the triangle ZHT. For the same reasons TK is parallel to PC, 
also. And the circles with centers A and B are equal. Therefore, ZH is equal to DE.4 

1 Prop. 8 gives the resolutio for a special configuration in one of the cases treated in Apollonius, 
Tangencies. The Tangencies are lost, but Pappus’ commentary on it can be found in Coll. VII. 
Coll. VII, Props. 102–107, are directly relevant for Prop. 8, as can be seen in the footnotes below. 
It is quite possible that Prop. 8 is in fact a (so far overlooked) testimony for a fragment from 
Apollonius’ lost work. The connection of Prop. 8 to Apollonius’ Tangencies, specifically the case 
of three touching circles, is noted also in Heath (1921, II, pp. 182–184).
2 Extension of the configuration. Inconsistencies of labeling occur throughout Prop. 8 (compare 
194/196 + app. Hu). Some of them probably go back to Pappus. For Prop. 8 shows clear signs of 
a not quite complete revision of a source text, after the insertion of additional material. See the 
commentary on this issue.
3 For a proof, compare Coll. VII, Prop. 102, p. 826 Hu. (Jones 1986a, Vol. 1 p. 234, # 164). The 
proposition in Coll. VII is Pappus’ commentary on Apollonius, Tangencies, I, 16. Also, compare 
Hultsch, p. 197, #2; Co p. 66/67, Lemma in E for a different explanation via similar arcs.
4 For a proof, compare Coll. VII, 106, p. 833/834 Hu (Jones 1986a, Vol. 1. p. 238, # 169). The 
proposition in Coll. VII is a lemma by Pappus on Apollonius, Tangencies I, 17. Also, compare 
p. 197, #3 Hu and Co p. 67, G for a different explanation via similar arcs.
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Draw the perpendiculars AS and BL <onto AB>. Then AS is equal to BL,1 so that, 
on the one hand, BM is equal to MA, and, on the other hand, LM <is equal> to MS 
as well. For BLM and ASM are two triangles that have the same vertex angles <at 
M> and right angles at the points L and S, and finally they also have one side, BL, 
equal to one side, AS.2 And each of the <lines> ML, LB, MS, and SA is given.3 
Therefore, the lines BM and MA are both given. But the lines AC and CB are both 
given as well (for the points A, B, and C <are given> in position).4 Therefore, the 
triangle ABC is given in kind.5 Therefore, CM will also be given (when the perpen-
dicular from C onto AB is drawn).6 And since the diameter NR of the circle HTK is 
given,7 but MA is given, also, the remaining MR is therefore given, also.8 And since 
the rectangle NMR is given, the rectangle HMZ, i.e.: the rectangle EMZ, i.e.: the 
rectangle CMP is therefore given as well.9 And CM is given, therefore, CP is given, 
also.10 Now, since the circle with center A is <given> in position and size, and CP is 
given in position and size, and the <lines> PZK and CZT are drawn through the 

 1 III, 14.
 2 The explicit argument for BM = MA, LM = MS is much more elementary than the rest of the 
inferences in Prop. 8. Hultsch (196, 9–16 app.) suspects interpolation. Another possibility is that 
Pappus himself inserted this elementary material and has not fully integrated his resulting overall 
argument. There are further problems with the transmitted text and its line of reasoning (see 196, 
17–198, 18 + app. Hu).
 3 Hultsch deletes the following here: “and in the same way both ZH and DE and BL and LS” (196, 
18/19 + app. Hu). The phrase does not fit the context of the argument as given. Perhaps it is a 
leftover from a version of the text that was replaced by the suspected lines discussing BM, MA, 
LM, LS. Compare the preceding footnote. The implicit argument given for the status of ML, LB, 
MS, SA as givens – which the reader is perhaps meant to supply – shows strong affinities to 
 Prop. 7. Compare p. 197/199, #4 Hu, including a reference to notes #2 and #3 on Prop. 7. A shorter 
route, avoiding the connection with Prop. 7, would have been to infer B, A given ÞAB given 
(Data 26) Þ BM, MA given (Data 7).
 4 Data 26.
 5 Data 39. Indeed, the triangle is then given in position and size as well. The ensuing argu-
ment does not take advantage of these facts, and this may be yet another sign that Pappus has 
introduced material (from the Data, this time) into an argument that perhaps did not use the 
Data.
 6 Appeal to Prop. 7; compare p. 193, #3 Hu. Hultsch brackets the reference to the drawing of a 
perpendicular (thus, the reference to Prop. 7 is eliminated) and offers alternative arguments for 
“CM given” at 199, # 5 Hu. Evidently, Hultsch viewed the reference to Prop. 7 as something that 
is not of one piece with the main body of the argument in Prop. 8. We have yet another indication 
for Pappus’ introduction and incomplete integration of material into Prop. 8.
 7 Data, def. 5: AR given; Then NR (its double) is given, also. The argument will use AR.
 8 Data 4; compare 199, # 6 Hu (covering NR, AR, MR, MN).
 9 III, 35; III, 36.
10 Data 57. Note that CP is in fact given in position and size.
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interior in such a way that KT is parallel to CP, the diameter of the circle <circum-
scribed> around the triangle CZP is given1 i.e.: the <diameter> of the circle CEZ.

Prop. 9: Lemma for Prop. 10

#10 Let ABC be a triangle that has each of its sides <as> given, and let D be an 
internal point, and let the difference of AD and CD be equal to the difference of CD 
and DB.2 and let this difference3 be given4

<I claim> that each of the <lines> AD, DC, and DB is given.

H

T
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E
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D

K

L

Z
B

Since the difference of AD and DC is given, let AE and BZ both be equal to 
this difference.5 Then the three <lines> ED, DC, and DZ, are equal to one 
another.6 Describe the circle CEZ with center D. Now, on account of what has been 

1 That Z (and therefore all sides of the triangle CZP) is given, can be shown by Coll. VII, 105, pp. 
830–831 Hu (Jones 1986a, Vol. 1, p. 236, # 168). That it is the point of touch for the sought circle 
with the circle around A, can be derived via Coll. VII, 104, pp. 828–829 Hu (Jones 1986a, Vol. 1, 
p. 234, # 166). Both lemmata are taken from Pappus’ commentary on Apollonius, Tangencies I, 
16. The latter lemma is the converse of Coll. VII, 102, quoted above.
2 AD > CD > DB. A more literal translation of the sentence is: (let) that by which CD exceeds DB 
be equal to that by which AD exceeds CD.
3 The text has “excess” (u‘ perocή). In Prop. 10, Pappus will use the word “difference” (diafora¢).
4 d = AD − CD = CD – DB, and d is given.
5 E lies on AD, A − E − D; Z lies on DB, D − B − Z.
6 ED = AD − d, DZ = DB + d = DB + (AD − CD) = AD − d. DC = AD − d.
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written down above, DZ is given.1 Of it, BZ is given.2 Therefore, the remaining BD 
is given.3 But AD and DC are both given,4 also. Therefore, each of the lines AD, DC, 
and DB is given.

Prop. 10: Resolutio for a Sub-case of the Apollonian Problem

#11 Now these are the lemmata, whereas the following is the initial <problem>5:
<Given are> three unequal circles with centers A, B, and C, with given diameters, 

touching each other, and the circle DEZ <circumscribed> around them and touching 
them <is sought>; let the task be to find its diameter.

E
D

C

A

H

B

Z

Let its center be H,6 then, and join AB, AC, and CB toward the centers A, B, and 
C, and in addition <join the lines> HAD, HBZ, and HCE.7

Now, since the diameters of the circles with centers A, B, and C, are given, each 
of the <lines> AB, BC, and CA will turn out to be given, also. The differences8 of 

1 Prop. 8: the diameter of the circle CEZ is given. Then its radius is given, also.
2 BZ = d.
3 Data 4.
4 AD = DZ + BZ; Data 3; DC = DZ.
5 Prop. 10 (in a much more general version) was announced before Prop. 7. Prop. 10 is essentially 
the resolutio of an analysis for a single very specific case out of several possible cases for the 
Apollonian problem. Construction and apodeixis are not offered. See the commentary.
6 Whereas A labels the center of the (sought for) comprising circle with “H” here, the accompanying 
diagram, and parts of the text further down take the center to be N.
7 D, E, Z will be the points of touch with the sought circle: III, 11 and 12.
8 Here, the word used in A is diaforav, whereas in Prop. 9, the word ´ was used.
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<the lines> AH, HC, and HB are given as well. Therefore, on account of what has 
been written down above, AH is given.1 But AD is given, also, so that the diameter 
of the circle DEZ is given.

And this (issue) has an end for me here, whereas I will write down the rest 
later on.2

Props. 11 and 12: Analysis: Extension of Configuration3/Apagoge

Prop. 11: Chords, Perpendicular, and Diameter in a Circle

#12 Let ABC be a semicircle; let CBA be bent, and CD be drawn through the interior, 
and let BC be equal to the sum of AB and CD,4 and let the perpendiculars BE and 
DZ <onto AC> be drawn.5

<I claim> that AZ is two times BE.

A E K ZH C

T

D

B

For:
Position EH, on the one hand, equal to AE, and BT, on the other hand, equal to AB,6 

and join AT, TH, and TZ, and draw the perpendicular TK <onto AC>, and join BK.7

1 Pappus appeals to Prop. 9. However, in Prop. 9, the additional assumption was made that d = AD 
− DC = DC − CB, and this is not stated in Prop. 10. Pappus would have had to furnish an extension 
of Prop. 9, or else formulate an appropriate restriction on the configuration for Prop. 10. Hultsch 
p. 201, #3, supplies part of an argument, via Prop. 9, to establish that AH is given. On the issue of 
the gap in Prop. 10 see also appendix Hu p. 1227, and the commentary.
2 The issue is not picked up again in Coll. IV. Perhaps Pappus intended to revise Props. 7–10.
3 But see the commentary on this tentative interpretation of Prop. 11.
4 D is chosen on the circumference so that CD = BC − AD.
5 I have translated the text as read/reconstructed by Treweek, treating the phrase “ejpi; th;n AG” as 
an explanatory addition (cf. 202, 3 + app. Hu).
6 H on AC, A − E − H, AE = EH; T on BC, B − T − C, BT = BA.
7 This passage contains the extension of the configuration (five auxiliary lines and points). From 
here, the symperasma can be directly deduced using the resulting triangles. See the commentary 
for a conjecture on how this might be indicative for the purpose of Prop. 11 within a group of 
propositions on analysis-synthesis.
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Since CB is equal to the sum of AB and DC, of which BT is equal to BA, the remaining 
TC is therefore equal to the remaining CD. Therefore, the square over CD is equal to 
the square over CT, also. However, the rectangle between AC/CZ is equal to the square 
over DC.1 Therefore, the rectangle between AC/CZ is equal to the square over CT, also. 
Therefore, the angle between ZT/TC is equal to the angle between TA/AH.2

Again, since the rectangle between CA/AE is equal to the square over AB,3 two 
times the rectangle between CA/AE, i.e.: the rectangle between CA/AH,4 is there-
fore equal to two times the square over AB, i.e.: to the square over AT,5 also. 
Therefore, the angle between AT/TH is equal to the angle between TC/CZ.6 
However, the angle between TA/AH is equal to the angle between ZT/TC, also. 
Therefore, the remaining angle between AH/HT is equal to the remaining angle 
between TZ/ZC. Therefore, the angle THZ is equal to the angle TZH, also.7 And 
TK has been set forth as a perpendicular.8 Therefore, ZK is equal to KH.9 And since 
the angles between AB/BT and AK/KT are both right angles, the quadrilateral 
ABTK lies on a circle.10 The angle between BT/TA is therefore equal to the angle 
between BK/KA.11 However, the angle between BT/TA is half a right angle.12 
Therefore, the angle between BK/KA is half a right angle as well. However, the angle 
between BE/EK is a right angle. Therefore, BE is equal to EK.13 However, AZ is 
two times EK (since AE is equal to EH, whereas ZK is equal to KH). Therefore, 
AZ is two times EB, also. This is what was required to prove.

Prop. 12: Plane Analysis via Apagoge; Chords, Parallels, 
and Angles in a Circle

#13 Let ABC be a semicircle, and let ABD be bent, and let AB be equal to BD,14 
and DE drawn at a right angle <to BD>, and let BE be joined, and EZ drawn at right 

 1 DADC ~ DDZC; VI, 8, VI, 4, VI, 17.
 2 DATC ~ DTZC; VI, 17, VI, 6.
 3 DABC ~DAEB: VI, 8; VI, 4, VI, 17.
 4 AH = 2AE by construction.
 5 I, 47.
 6 DATC ~ DATH (VI, 17, VI, 6), and DATH ~ DTZC has been shown.
 7 Complementary angles; DHTZ is therefore isosceles (I, 6), and TZ = TH. In the manuscript A, 
TH = TZ is claimed directly (202, 19 f. + app. Hu). Perhaps the manuscript reading would have 
been preferable.
 8 TK is perpendicular to AC by construction.
 9 I, 26 for DTKH, DTKZ.
10 Circle with diameter AT; III, 31.
11 III, 21.
12 DABT is isosceles, and the angle at B is a right angle by construction.
13 DBEK has a right angle at E, half a right angle at K; it is isosceles (I, 6).
14 Note the similarity of the starting configuration to the one in Prop. 11. An implicit assumption 
in Prop. 12 is arc ABC < arc of quadrant.
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angles to it, and let H be the center <of the semicircle>, and let DT be to TZ as AH 
is to HD,1 and let TE be joined;

<I claim> that the angle between BE/ED is equal to the angle between DE/ET.

L A D H T Z C

K
B

E

Draw the perpendicular HK from H onto BE. Then BK is equal to KE.2 And the 
angle between BD/DE is a right angle. Therefore, the three <lines> BK, KD, and KE 
are equal to each other.3 And HK is parallel to EZ.4 And since one sought <to show> 
that the angle between KE/ED is equal to the angle between DE/ET, and <one knows 
that> DK is equal to KE, therefore <one knows> that the angle KED is equal to the 
angle KDE, therefore <one needs to show5> that the angle KDE is equal to the angle 
DET, also. Therefore <one needs to show> that DK is parallel to ET.6

Draw the parallel KL to DE, also, and produce CD to L, and join BL. Now, since 
KL is parallel to DE, whereas KH <is parallel> to EZ, and it is sought, however, 
that KD is parallel to ET,7 therefore (on account of the fact that the triangle KLH is 
equiangular to the triangle EDZ, whereas <the triangle> DKH <is equiangular> to 
<the triangle> ETZ), <it is sought> that DZ is to ZE as LH is to HK, whereas EZ 
is to ZT, as KH <is> to HD.8 Therefore, <one needs to show,> also, that DZ is to 
ZT as LH <is> to HD (namely, ex aequali9). Therefore, <one needs to show,> also, 
that DT is to TZ as LD <is> to DH (namely, separando10).

 1 Choose T on AC, A − D − H − T − Z, with DT:TZ = AH:HD.
 2 III, 3.
 3 III, 31.
 4 I, 29.
 5 Prop. 12 contains several series of phrases starting with “therefore, that X”, all dependent on 
some single “one sought to show that Y”. Within Coll. IV, this stylistic feature is unique. To facilitate 
reading, I have added the implicit phrases in brackets.
 6 I, 29. The analysis in Prop. 12 is predominantly reductive and deductive (with minimal input by 
extension of configuration). All steps are also convertible, and the synthesis will therefore mirror 
the analysis exactly. See the commentary on Prop. 12, and the introduction to Props. 4–12 on 
analysis-synthesis for this feature of the analysis in Prop. 12 in the context of plane geometry.
 7 Above, the claim in Prop. 12 was reduced to this statement.
 8 If KD is parallel to ET, DDKH ~ DETZ (DKLH ~ DEDZ by construction; I, 29); then the above 
mentioned proportions hold. The claim of the statement has been reduced to yet another condition 
that must be fulfilled.
 9 V, 22.
10 V, 17. At this point, the initial claim has been reduced to: LD:HD = DT:ZT.
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It was, however, assumed, also, that as DT <is> to TZ, so <is> AH to HD.1 
Therefore, <one needs to show> that DT is to TZ, i.e.: AH to HD, as LD <is> to 
DH.2 Therefore, <one needs to show> that LD is equal to AH 3; therefore, that LA 
is equal to DH, also.4 But AB is equal to BD as well.5 Therefore, <one needs to 
show> that LB is equal to BH as well.6 But BH is equal to both LD and AH. 
Therefore, <one needs to show> that BL is equal to LD, also.7

However, this is the case <i.e.: BL is in fact equal to LD>.8 For since KL is parallel 
to DE, and DK is equal to KE,9 the angle between BK/KL is equal to the angle 
between LK/KD.10 Now, since BK is equal to KD and the angle between BK/KL is 
equal to the angle between DK/KL, BL is therefore equal to LD, also.11

And the synthesis follows the analysis step by step.12

For since DK is equal to KE,13 the angle KDE is equal to the angle KED, also.14 
But the angle KDE is equal to the angle DKL, whereas the angle KED is equal to 
the angle BKL on account of the parallels KL and ED.15 Therefore, the angle BKL 
is equal to the angle DKL as well. However, the straight line BK is equal to <the 
straight line> KD,16 also. Therefore, the base BL is equal to the base LD as well,17 
so that the angle between LB/BD <is equal> to the angle BDA, also, i.e.: to the 

1 Hypothesis of Prop. 12.
2 Using the result of the first sequence of reductions.
3 V, 9.
4 LA = LD − AD; DH = AH − AD.
5 Hypothesis of Prop. 12.
6 Since AB = BD, the reduced claim LA = DH implies that DLAB ~ DHDB must hold (I, 4).
7 BH = AH: radii of initial semicircle; AH = LD needs to be shown (see above); therefore, the 
claim of Prop. 12 has been reduced to BL (= BH = AH) = LD.
8 Beginning of the resolutio. BL = LD holds independently of the analysis-assumption.
9 By construction.
10 I, 29, I, 5, I, 29.
11 BK = KD by construction; I, 4 for DLBK, DLDK. The resolutio ends here.
12 Greek word: aΔkoloύqwV (translation: following step by step). This term was subject to consid-
erable debate in the discussion about the interpretation of Greek geometrical analysis and its 
logical structure. Some authors hold that it must mean “logically derived”, and maintain that 
analysis is deductive, since it proceeds “akolouthos.” I agree with Hintikka and others that it does 
not have to be interpreted so narrowly, and that it rather means “follows in sequence, in an 
orderly fashion”. Co p. 70 translates “compositio vero resolutioni congruens erit.” See the excur-
sus on analysis-synthesis in the introduction to Props. 4–12 in the commentary. The synthesis is 
not a direct logical deduction from the analysis. Further occurrences of this word and its deriva-
tives in Coll. IV, where regularly it does not carry the force of “logical derivation” will be noted 
ad locum.
13 III, 3; III, 31.
14 I, 5.
15 I, 29.
16 III, 31; III, 3.
17 I, 4.
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angle DAB, i.e.: to the angle ABH.1 Take away the common angle ABD. Then the 
remaining angle LBA is equal to the remaining angle DBH. But the angle BDH is 
equal to the angle BAL, also.2 Now, BDH and BAL are two triangles that have two 
angles equal to two <corresponding> angles and one side, AB, equal to, <one 
side,> BD. Therefore, BH is equal to BL, whereas DH is equal to LA,3 so that LD 
is equal to AH, also.4 Now, since it was assumed that, as AH is to HD, <so is> DT 
to TZ,5 whereas AH is equal to LD, DT is therefore to TZ as LD is to DH. 
Componendo, then: as LH <is> to HD, so <is> DZ to ZT.6 However, as LH <is> to 
HK, so is DZ to ZE, also7; and as KH <is> to HD, so <is> EZ to ZT.8

And the angle EZT is equal to the angle KHD on account of the fact that EZ and 
KH are parallels.9 Therefore, the angle ETZ is equal to the angle KDH, also.10 
Therefore, KD is parallel to ET as well.11 Therefore, the <angle> KDE, i.e.: the 
angle KED, is equal to the angle DET.12

Props. 13–18: Arbelos Treatise: Plane Geometry, 
Archimedean Style

#14 In certain <books> an ancient proposition of the following sort is reported.
Posit three semicircles ABC, ADE, and EZC, touching each other, and into the 

space between their circumferences, which is in fact called “arbelos,”13 describe any 
number of circles, touching both the semicircles and each other, like the ones 
around the centers H, T, K, and L.14

 1 Isosceles triangles, I, 5.
 2 Isosceles triangle ABD, I, 6.
 3 I, 26.
 4 Add AD.
 5 Hypothesis of Prop. 12.
 6 V, 18.
 7 DLKD ~ DDEZ; VI, 4.
 8 V, 22.
 9 I, 29.
10 VI, 6.
11 I, 27; the corresponding step in the analysis (converse) rests on I, 29.
12 I, 29; I, 6.
13 The meaning of the term “arbelos” is not quite clear. One of the possible meanings is “shoemaker’s 
knife”. Apparently, ancient shoemakers used a tool with a shape that was similar to the one formed 
in the figure.
14 Only the first of the inscribed circles touches all three initial semicircles; all others touch two 
of the semicircles and their own predecessor and successor. Note the motivic connection to Props. 
7–10. Each inscribed circle in the arbelos sequence is a solution to the Apollonian problem. Only 
the starting configuration, however, is directly related to the special case treated in Prop. 10; cf. 
Jones (1986a, p. 539). See also Hofmann (1990) II, pp. 146–164, and the notes in the commentary 
on Props. 13–18.



104 Part Ib Annotated Translation of Collectio IV

CE

Z

H

TK
L

A

B

D

<The task is> to show that the perpendicular from the center H onto AC is equal 
to the diameter of the circle around H, whereas the perpendicular from T is double 
the diameter of the circle around T, and the perpendicular from K three times <the 
diameter of its circle>, and the perpendiculars in sequence are multiples of their 
respective diameters according to the sequence of numbers exceeding one another by a 
unit, when the inscription of circles continues indefinitely. However, the lemmata1 
will be proved before.

Prop. 13: Preparatory Lemma: Points of Similarity 
and Touching Circles

#15 Let there be <given> two circles ZB and BM with centers A and C, touching each 
other in B, and let <the circle> BM be the larger one. In addition, let there be given 
some other circle KL with center H, touching them in K and L <respectively>, and join 
CH and AH (they will in fact pass through K and L2), and the straight line joining K 
and L, when produced, will, on the one hand, intersect the circle ZB, and, on the other hand, 
it meets3 the straight line through the centers A and C, when it is produced (on account 
of the fact that the side AK of the trapezoid AKDC is larger than the <side> CD).4 

1 tà lambanómena; a certain preference for this word, as a label for preliminary lemmata that 
are presented before the main body of a treatise, is attested for Archimedes, though he is not 
completely consistent in his usage of the word. In Prop. 17, the word lh~mma will be used.
2 III, 12.
3 Note the change of tense. This could be an indication that the statement about KL intersecting 
AC was originally not part of the ekthesis, but of the proposition. As indicated by the way I set up 
the paragraphs above, I think that the whole text from “and the straight line” to “AB (is) to BC” 
is the proposition. Prop. 13’s claim thus has two parts: (i) AKDC is a trapezoid, i.e., KL and AC 
meet (in E), (ii) AE:EC = AB:BC. See the commentary for a defense of my decision. It has con-
sequences for the converse of Prop. 13 as well. For the converse can then assume both AK || CD 
and AE:EC = AB:BC (even if the former condition is not explicitly mentioned), and derive 
K–L–D–E from there. The converse will be used in Props. 15 and 17.
4 That AH || CD and that therefore AKDC is a trapezoid will be shown in the first part of the 
apodeixis.
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Now, let it meet <AC> in E, intersecting the circle <ZB> in D. <The task is> to show 
that AE is to EC as AB <is> to BC.1

C ABZ

H

LD

N K

E

T

M

However, this is obvious when CD is joined.2 For the triangles CDL and LKH 
turn out to be equiangular, since they have equal vertex angles at L,3 and the sides 
adjacent to the angles <at> C and H are proportional,4 so that the alternate angles 
DCH and CHA are equal, and CD is <thus> parallel to AH,5 and as AE <is> to EC, 
so <is> AK to CD, i.e.: AB to BC.6

<Converse:>
However, the counterpart is obvious as well. For whenever AE is to EC, as AB 

<is> to BC, KD turns out to be on a straight line with DE.
For AK is parallel to CD,7 and also, AK is to CD as AB <is> to BC,8 i.e.: as AE 

<is> to EC.9 Therefore, KD is on a straight line with DE. For if the <straight line> 
through K and E does not pass through D, also, but through T,10 it turns out that AK 
<is> to CT as AE <is> to EC,11 which is impossible. Similarly, it will not reach and 

 1 This means that E is a point of similarity.
 2 Hultsch brackets the phrase “when CD is joined” as an interpolation (210, 8 app. Hu). For on his 
reading, the line CD is mentioned already in the ekthesis, and should not occur in the proof. See 
the above footnote and the commentary for the reconstruction of the overall argument in Prop. 13.
 3 Here Hultsch (perhaps unnecessarily) brackets the words “at L” (210, 10 + app. Hu), and in 
the following line “’¢Îconta”(210, 11 + app. Hu).
 4 VI, 7.
 5 I, 27. Now we have shown that CD is parallel to AH. Therefore, we indeed have a trapezoid 
AKDC, with AH > CD; therefore, AC and KD (=KL) meet, and we call the point of intersection 
E. See the commentary.
 6 VI, 4, V, 16.
 7 Hultsch 211, # 1, claims that AH || CD can be shown exactly as above, from DLHK ~ DDCL. 
However, that similarity rested on the assumption that D, K, and L lie on a straight line, and this 
is exactly what the converse is about to prove. In my opinion, we rather have to assume that DC 
is a parallel to AH in the converse. See the commentary.
 8 AK = AB and CD = BC, as radii of the respective circles.
 9 By assumption.
10 With D − T − C.
11 AE:AK = EC:CT (VI, 4); apply V, 16.
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intersect CD produced beyond D, for example, in N.1 For again AK will be to CN 
as AE <is> to EC,2 which is impossible. For it is <so> to CD.

Or <it can be shown> in the following way.
Draw the parallel KN to AE through K, and ACNK becomes a parallelogram,3 

and AK is equal to CN.4 And since AK, i.e.: CN, is to CD, as AE <is> to EC, sepa-
rando, as AC <is> to CE, <so is> ND to DC.5 Alternando,6 as AC, i.e.: as KN, <is> 
to ND, so <is> EC to CD. And the sides adjacent to the equal angles at N and C 
are in proportion. Therefore, the triangle EDC is similar to the triangle DNK. 
Therefore, the angle EDC is equal to the angle NDK. And CN is a straight line. 
Therefore, KDE is a straight line as well.7

<Addition:>
Moreover, I say that the rectangle KEL is also equal to the square over EB. For 

since as AE <is> to EC, so <is> AB to BC, i.e.: to CZ, the remaining BE will be to 
the remaining EZ as AE <is> to EC, i.e.: as KE <is> to ED, also.8 But as KE <is> 
to ED, so is the rectangle KEL to the rectangle LE/ED,9 whereas as BE <is> to EZ, 
so <is> the square over BE to the rectangle BEZ,10 and the rectangle LE/ED is equal 
to the rectangle BE/EZ.11 Therefore, the rectangle KEL is equal to the square over 
EB, also.

Prop. 14: Technical Lemma. Perpendiculars and Diameters in 
Configurations with Three Touching Circles

#16 <Let there be given> two semicircles BHC and BED, and the circle EZHT 
touching them,12 and let the perpendicular AM from its center A onto the base BC 
of the semicircles be drawn.

1 N − D − C.
2 VI, 4 and V, 16, as above.
3 Again, it seems apparent that one must assume that CD || AK (compare the above footnote).
4 I, 34.
5 CN:CD = AE:EC by assumption. CN = CD + DN, and AE = EC + AC; therefore, DN:CD = 
AC:EC (V, 17).
6 V, 16.
7 CDN is a straight line ÞÐCDK + ÐKDN = p. It was shown above that ÐEDC = ÐNDK; therefore, 
ÐCDK + ÐEDC = p.
8 AE:EC = (AB + BE):(EZ + ZC) = AB:CZ (assumption in the converse) Þ BE:EZ = AE:EC 
(V, 19); AC:EC = DK:DE (VI, 2), and thus AE:EC = KE:ED (VI, 1).
9 VI, 1, height EL.
10 VI, 1, height BE.
11 III, 36.
12 The diameters BC and BD of the semicircles are assumed to be in line. E and H are the points of 
touch with the third circle. There are three possibilities for the relative position of the semicircles 
and the circle involved (configurations 1–3, cf. figures a–c). Even though only two of these configu-
rations are needed for the arbelos theorem, the author of the little treatise gives a complete account 
of the lemmata involved. See the commentary on the Archimedean features of Props. 13–18.
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<I claim> that as MB <is> to the radius of the circle EZHT, so is, in the first 
configuration, the sum of CB and BD to their difference,1 CD, whereas in the second 
and third configuration the difference between CB and BD <is> so to the sum of 
CB and BD, i.e.: to CD.2
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Draw the parallel TZ to BC through A. Now, since the two circles BHC and 
EZHT touch each other in H, and the diameters BC and ZT in them are parallel, the 
lines through H, T, and B and through H, Z, and C will both be straight lines.3 
Again, since the two circles BED and EZHT touch each other in E, and the diam-
eters TZ and BD in them are parallel, the lines through Z, E, and B and through T, 
E, and D will both be straight lines.4

*Draw the perpendiculars TK and ZL from the points T and Z <onto BD>, also. 
Now, on account of the similarity of the triangles BHC and BTK,5 BT <is> to 
BK as BC <is> to BH, and the area comprised by CB and BK6 is equal to the 

1 The Greek word is “‘uperocή” (excess); as in Prop. 9, it is translated as “difference”.
2 The technical Prop. 14 yields the central result needed for establishing the arbelos theorem. 
Specifically, it is the intermediate step labeled as “*” below that is most important for the follow-
ing theorems. See the commentary on Archimedean features of Props. 13–18, and compare the 
footnote on “*.”
3 Hultsch (p. 215, # 1 Hu) provides a proof involving an auxiliary construction, and reference to 
Prop. 13. Instead, one could simply assume implicit appeal to an elementary step of inference, 
capturing the same content as the group of theorems in Coll. VII, 102–106 mentioned in the foot-
notes to Prop. 8: Whenever one has a configuration with parallel chords in tangent circles, the lines 
connecting the endpoints “crosswise” also go through the point of touch. Another possibility for 
this step in Prop. 14, though valid only for configurations 1 and 2, would have been to appeal to 
a theorem as in Lib. ass. I. See also Co p. 74, A.
4 Again, we may have an appeal to a theorem about parallel chords in tangent circles (cf., e.g., Coll. 
VII, 102–106; compare the preceding footnote).
5  Both triangles have a right angle, and they have the angle at B in common.
6 I.e., the area of the rectangle with sides CB and BK. The Greek text has “tò ‘upò GB BK 
periecómenon cwrίon.” The fact that we are dealing with areas is explicitly emphasized, and this 
seems to be a peculiarity of the text in Props. 13–18. It may very well go back to the style of the 
original author of the treatise.
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<area comprised> by HB and BT,1 whereas on account of the similarity of the 
triangles BZL and BED, BZ <is> to BL as DB <is> to BE, and the <area comprised 
by> DB and BL is equal to the <area comprised> by ZB and BE.2 The <area com-
prised> by HB and BT is equal to the <area comprised> by ZB and BE as well.3 
Therefore, the <area comprised> by CB and BK is equal to the <area comprised> 
by DB and BL, also.4 When the perpendicular from Z falls onto D, however, <this 
area CB/BK is equal> to the square over BD.5*
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Therefore, in the first configuration, as CB <is> to BD, so <is> LB to BK,6 so 
that <as> the sum <of> CB and BD <is> to their difference CD, so <is> the sum 
<of> LB and BK to their difference KL as well.7 And BM is half of the sum <of> 
LB and BK (on account of the fact that KM is equal to ML8), whereas MK is half 
of LK. Therefore, BM <is> to MK, i.e.: to the radius of the circle EZTH, as the sum 
<of> CB and BD is to CD as well.

1 The Greek phrasing is “tò ‘upò HB BQ.” This is also different from the abbreviations “tò 
‘upò HBQ” and “tò ‘upò tw~ n HBQ”, which are taken, in this translation, as technical formulae for 
the rectangle HBT. The expression “tò ‘upò HB BQ” is elliptic for “tò ‘upò HB BQ periecómenon 
cwrίon.” The translation will keep track of this differentiation by adding the phrase “area comprised” 
in brackets throughout Props. 13–18. Compare the preceding footnote. BT:BK = BC:BH (VI, 4) Þ 
BT × BH = BC × BK (VI,16).
2 The argument is completely analogous to the one in the preceding step. The triangles are similar 
because of the right angles and the common angle at B; similarity implies the stated proportion 
(VI, 4), and thus (VI, 16) the equality of the rectangles.
3 III, 36 for configurations 1 and 3; III, 35 for configuration 2.
4 We have shown: CB × BK = HB × BT, DB × BL = ZB × BE, and HB × BT = ZB × BE. Therefore, 
CB × BK = DB × BL.
5 In that case, DB = BL. The limit case will be used in Prop. 17 and may have been inserted here 
precisely for that purpose (cf. 214, 20–216, 1 app. Hu).The passage framed by “*” is the core of 
Prop. 14. Its result will be quoted several times in what follows, independently of Prop. 14 itself.
6 VI, 16.
7 (BC + BD):BD = (BL + BK):BK (V, 18); (BC − BD):BD = (BL − BK):BK (V, 17); therefore: 
(BC + BD):(BC − BD) = (BL + BK):(BL − BK) (V, 22).
8 In numbers, BM is the arithmetic mean of BK and BL; the author of the arbelos treatise avoids 
using terms coined for numbers to label properties of magnitudes.
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In the second and third configuration, on the other hand, since the rectangle 
CBK has been shown to be equal to the rectangle DBL,1 LB <is> therefore to BK 
as CB <is> to BD.2 Componendo, KL <is> to KB as CD (is) to DB; so that KL 
<is> to the difference of LB and BK as CD <is> to the difference of CB and BD, 
also.3 And the radius of the circle EZHT is half of KL, whereas BM is half of 
the difference of LB and BK (on account of the fact that LM is equal to MK4), so 
that as MB <is> to the radius of the circle EZHT, so <is> in the first configuration 
the sum <of> CB and BD to their difference CD, whereas in the second and third 
configuration the difference of CB and BD <is so> to the sum CBD, i.e.: to CD.
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<Addition 1:>
At the same time, however, it is established by investigation that the <area com-

prised> by BK and LC is equal to the square over AM as well. For on account of 
the similarity of the triangles BTK and ZLC5 ZL <is> to LC as BK <is> to KT, and the 
<area comprised> by BK and LC is equal to the <area comprised> by TK and ZL,6 
i.e.: to the square over AM.7

1 The equality of the rectangles mentioned was shown in * above.
2 VI, 16.
3 (LB − BK):BK = (CB − BD):BD (V,17); from KL:KB = CD:DB we therefore get KL:(LB − BK) 
= CD:(CB − BD) (V, 22).
4 LB = LM + MB; BK = MK − MB = LM − MB. From here, it follows immediately that BM:radius 
= CD:(CB − CD). Instead of giving the result for configurations 2 and 3 explicitly, and then restating 
it in the summary of what has been shown, the text proceeds directly to the summary.
5 The triangles are both similar to the triangle BHC.
6 VI, 4 and VI, 16.
7 By construction: TK = ZL = AM, because TZ is a diameter parallel to BC.
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<Addition 2:>
However, on account of the fact that as BC <is> to CD, so <is> BL to KL,1 the 

<area comprised> by BC and by the <straight line> KL, i.e. <by BC and> the diam-
eter of the circle, turns out to be equal to the <area comprised> by BL and DC,2 also, 
whereas on account of the fact that as BD <is> to CD, so <is> BK to KL,3 the <area 
comprised> by BD and KL, i.e.: <by BD and> the diameter of the circle <turns out 
to be> equal to the <area comprised> by BK and DC.

Prop. 15: Sequence of Inscribed Touching Circles: 
Induction Lemma

#17 Under the same conditions, let the circle TRT’, touching the initial semicircles 
and the circle EHT in the points T, R, and T’ be described, and let the perpendiculars 
AM and PN from the centers A and P onto the base BC be drawn.4

I claim that PN is to the diameter of the circle TRT’ as AM, taken together with 
the diameter of the circle EH <is> to its diameter.5

1 From *, we get: BC × BK = BD × BL Þ BC:BD = BL:BK (VI, 16); first configuration: BD + 
CD = BC, and BK + KL = BL; thus: CD:BD = KL:BK (V, 17); second and third configuration: 
BC + BD = DC, and BL + BK = KL; thus: CD:BD = KL:BK (V, 18). From these equations, it 
follows in all three cases that BC:CD = BL:KL (V, 16 and V, 22).
2 VI, 16.
3 The argument is analogous to the preceding one. From *, we get: BC × BK = BD × BL Þ BC:BD 
= BL:BK (VI, 16); first configuration: BC = BD + CD, and BL = BK + KL; thus: CD:BD = 
KL:BK (V, 17) second and third configuration: DC = BC + BD, and KL = BL + BK, and DC:BD 
= KL:BK (V, 18), also. In both cases, V, 16 yields BD:CD = BK:KL.
4 R, T’, and T are the points of touch with the semicircles over BD and BC and the first added 
circle EHT respectively. M and N lie on BC.
5 Again we get three possible configurations, on the basis of the configurations in Prop. 14. Each 
of them leads to exactly one possibility for the second circle to be inscribed into the respective 
configuration. Note that in Hultsch’s edition, configuration 1 from Prop. 14 leads to configuration 
1 in Prop. 15, whereas configuration 2 leads to configuration 3, and configuration 3 to configura-
tion 2. I have numbered the figures in concurrence with Prop. 14. In A, the second diagram for 
Prop. 15 concerns a limit case that is not treated in the text, but relevant for Prop. 17 and Addition 
2 to Prop. 16. For a correct diagram and a reconstruction of the proof for the limit case see appen-
dix Hu p. 1227 f.; cf. also Co p. 78 P. The figure for the limit case given in A is reproduced in an 
appendix to this edition. The figure for the configuration that results from building on configuration 
3 has been added here; it is modeled on Hu, since it is missing in A. The occurrence of the figure 
for the limit case indicates a loss of text that was originally part of the source at some stage in 
the transmission.
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Draw BZ at right angles to BD. Then it is tangent to the circle BHC. And produce 
AP, after it has been joined, to Z.1 Since, according to what has been shown before, 
in the first configuration BM <is> to the radius of the circle EHT, as the sum CBD2 
<is> to their difference CD, whereas in the second and third configuration MB <is> 
to the radius of the circle EHT as their difference <is> to their sum, i.e.: as the dif-
ference of CB and BD <is> to CD,3 and <since the same is true for the ratio of> BN 
to the radius of the circle TRT’,4 therefore – alternando – the radius AT of the circle 
EHT will also be to the radius TP of the circle TRT’ as MB <is> to BN.5 But AZ 
<is> to ZP as MB <is> to BN (for when ZM is joined, MZ will be to ZX as MB 
<is> to BN.)6 And therefore, the radius AT of the circle EHT <is> to the radius TP 
of the circle TRT’ as AZ <is> to ZP.7

1 Z is taken as the point of intersection between BZ and AP.
2 I.e.: CB + BD.
3 Prop. 14.
4 I have taken “ka ὶ ‘h BM pròV…” (220, 1) and “ka ὶ ‘h BN pròV…” (220, 6) to be syntactically 
parallel. We get two corresponding statements about line segments cut off by perpendiculars in 
relation to radii of corresponding circles. Prop. 14 can be applied directly for BM:AT and 
NB:TP.
5 MB:AT = NB:TP, because they are both equal to either (CB + BD):CD (configuration 1) or to 
(CB − BD):CD (configuration 2/3). V, 16 yields MB:BN = AT:TP. This proportion will be used 
again in the course of Prop. 15.
6 X is the point of intersection between MZ and PN. For configurations 1 and 2, consider DZBM 
with intersecting line PX, parallel to BZ. We get: BN:NM = ZX:XM (VI, 2); this transforms to 
NM:BN = XM:ZX (V, 16), and thus: BM:BN = ZM:ZX (V, 18).

For configuration 3, consider DMNX, with intersecting line ZB, parallel to NX. We get: BN:BM 
= ZX:MZ (VI, 2), and V, 16 yields BM:BN = MZ:ZX.

PN || AM by construction, and therefore: ZM:ZX = ZA:ZP (VI, 4, with V, 16, for DZMA, DZXP). 
This argument is applicable in all three possible configurations, and we get: BM:BN = AZ:ZP.
7 Having shown BM:BN = AT:PT and BM:BN = AZ:ZP (cf. preceding footnotes), we get: AT:PT 
= AZ:ZP.
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And a certain circle BRED touches the circles EHT and RTT’ at the points R and 
E <respectively>. Therefore, on account of the theorem Prop. 13,1 shown above, the 
straight line joining the points R and E, when produced, will fall on the point Z, and 
the rectangle comprised by EZR will be equal to the square over TZ as well.2 
However, the rectangle EZR is also equal to the square over ZB.3 Therefore, the 
square over ZB is equal to the square over ZT, also. Therefore, BZ is equal to ZT.
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Furthermore, however, since MA, when it is produced, intersects the circumfer-
ence of the circle EHT in S, whereas PN intersects the circumference of the circle 
TRT’ in the point O, AT is therefore equal to AS, whereas PO <is equal> to PT, and 
the <straight line> joining the points O and S will pass through T.

For the angle TAS is equal to the alternate angle TPO, and the triangle ATS is 
equiangular to the triangle PTO, and the <line> AP is a straight line.4 Therefore, the 
line drawn through the points S, T, and O is a straight line, also. It will, however, pass 
through B as well. For the <line> TOB is a straight line, on account of the fact that 
OP is to PT as BZ <is> to ZT, given that the angles BZT and OPT, adjacent to the 
parallels BZ and OP, are equal.5 This, also, has been shown above in Prop. 13.6

1 We use the converse of Prop. 13 to establish that E, R, and Z lie on a line. Hultsch (222, 7/8 app.) 
believes the reference to Prop. 13 is due to an interpolator.
2 Prop. 13, Addition.
3 III, 36.
4 In DOPT and DSAT, ÐA = ÐP, because PO || AS (I, 29). Since the triangles are isosceles, they are 
similar. Therefore, they have equal angles at T. Since PA is a straight line, ÐSTA +ÐATO = p, and 
A − T− O is a straight line.
5 ÐBZT = ÐOPT, because NZ || PO (I, 29); above, it has been shown that BZ = ZT; obviously, PO = PT, 
too; therefore, DBZT ~ DOPT, and TO must pass through B. Otherwise, DBZT would not be isosceles.
6 An argument analogous to the one showing that TO must pass through B was used in the converse 
to Prop. 13. Hultsch suspects the reference to Prop. 13 to be an interpolation (222, 7/8 app. Hu). It 
seems also possible that the arbelos treatise as a whole was taken out of a larger treatise, with a more 
substantial preliminary part, of which only Prop. 13 survives. See the commentary on Prop. 13.
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However, produce the <line> BP, after it has been joined, and let it meet MA, after 
it has been produced, in K. Now, since AZ was to ZP and AT to TP as MB <is> to 
BN, i.e.: as KB <is> to BP,1 AS will be to PO, and SK <will be> to PO, as KB <is> 
to BP. Therefore, AS is equal to SK.2 Now, since the whole <line> AK is equal to the 
whole diameter of the circle EHT, and <since> NP is to OP as KM <is> to KS, NP 
will also be to the diameter of the circle TRT’, as MK <is> to KA, i.e.: as MA, 
together with the diameter of the circle EHT <is> to this diameter 3 – which is what 
was to be proved.4

Prop. 16: Arbelos Theorem

#18 With these things investigated beforehand, assume a semicircle BHC, and on its 
base choose a point D arbitrarily, and over BD and DC describe the semicircles BED 
and DYC, and in the space between the three circumferences, the so-called arbelos, 

1 DBMK ~ DBNP by construction Þ BK:BM = BP:BN (VI, 4), and BK:BP = BM:BN (V, 16).
2 We have shown above: AZ:ZP = AT:PT = BM:BN. Now we also have: BM:BN = BK:BP. 
Obviously, AT = AS and TP = PO (radii). Therefore, AS:PO = AT:PT = BK:BP. Consider that DBKS 
~ DBPO. BP:PO = BK:KS (VI, 4) Þ KS:PO = BK:BP (V, 16). It follows that AS:PO = KS:PO, and 
AS = KS must hold (V, 9).
3

 AK = AS + SK = 2 AS = 2KS. Consider the pairs of similar triangles BKM, BPN and BKS, BPO; 
We get: PN:KM = BK:BP = KS:OP, and thus (V, 16): PN:OP = KM:KS. Therefore, PN:2OP = 
KM:2KS = KM:KA. 2OP is the diameter of the circle TRT’, and KA is MA + AK = MA + the 
diameter of the circle EHT.
4 Some bit of text has been lost at the end of Prop. 15 (cf. 224, 11 app. Hu). As said above, the manuscript 
A has a figure for the limiting case of Prop. 15 (the case used in Prop. 17 and in Addition 2 to Prop. 16), 
but no argument. For such an argument, cf. Co p. 78, Lemma in P, and appendix Hu p. 1227 f.
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inscribe any number of circles, touching each other and the semicircles,1 like the ones 
with centers A, P, and O, and from their centers draw the perpendiculars AM, PN, and 
OS onto BC.

I claim that AM is equal to the diameter of the circle around A, whereas PN is 
double the diameter of the circle around P, and OS three times the diameter of the 
circle around O, and the perpendiculars in sequence the multiples of their respective 
diameters according to the numbers exceeding each other in sequence by a unit.
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Draw the diameter TZ parallel to BC, and the perpendiculars TK and ZL <onto 
BC>. Now, according to what was written down above, the rectangle comprised by 
CB and BK is equal to the rectangle comprised by LB and BD, whereas the <rect-
angle comprised> by BC and CL <is equal> to the rectangle KCD.2 And for this 
reason KL is to LC as BK <is> to KL. For both these ratios are the same as the one 
of BD to DC. For since the <area comprised> by CB and BK is equal to the <area 
comprised> by LB and BD, DB therefore is to BK as CB <is> to BL.3 Alternando: 
as CB <is> to BD, so <is> LB to BK; separando: as CD <is> to DB, <so is> LK to 
KB. Conversely, as BD <is> to DC, <so is> BK to KL. Again, since the <area 
comprised> by BC and CL is equal to the <area comprised> by KC and CD, CD 
therefore is to CL as BC <is> to CK. Alternando: KC <is> to CL as BC <is> to CD. 
Separando, therefore, KL is to LC as BD <is> to DC.

However, BK was to KL as BD <is> to CD as well. Therefore, KL is to LC as 
BK <is> to KL, also. Therefore, the <area comprised> by BK and LC is equal to 
the square over KL. However, it has been shown above that the <area comprised> 

1 In the arbelos proper, each circle in the sequence touches the semicircles over BD and BC, and 
its own predecessor in the sequence. For the first circle, this is the semicircle over DC.
2 Prop. 14, intermediate step *.
3 VI, 16.
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by BK and LC is equal to the square over AM as well.1 Therefore, AM is equal to 
KL, i.e.: to the diameter ZT of the circle with center A.
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However, since the following has been shown above, also: that PN is to the diameter 
of the circle around P as AM, taken together with ZT, <is> to ZT,2 and <since> AM, 
taken together with ZT is double ZT,3 PN will be double the diameter of the circle 
around P.4 Therefore, PN, taken together with the diameter of the circle around P <is> 
three times the diameter.5 And OS stands in the same ratio to the diameter of the circle 
around O.6 Therefore, OS is three times the diameter of the circle around O as well.

And similarly <one will see that> the perpendicular belonging to the next circle 
in sequence is four times the diameter <of that circle>, and the perpendiculars in 
sequence will be found to be the multiples of the diameters in them according to 
the sequence of numbers exceeding each other by a unit, and it will be shown that 
this occurs indefinitely.7

<Addition 1 (configuration with two straight lines):>
However, when instead of the circumferences BHC and DYC there are <given> 

straight lines, at right angles with BD, as in the third configuration, the same will 
occur concerning the inscribed circles; for right away the perpendicular from center 
A onto BD turns out to be equal to the diameter of the circle around A.8

<Addition 2 (configuration with one straight line):>

1 Prop. 14, Addition 1.
2 Prop. 15.
3 It was shown in the first part of Prop. 16 that ZT = AM.
4 (AM + ZT):ZT = 2 ZT:ZT = PN:diameter of circle P.
5 PN:diameter ~ 2:1 Þ PN + diameter:diameter ~ 3:1.
6 Prop. 15.
7 The argument in Prop. 16 is related to complete induction. See the commentary.
8 The first step of the induction is then trivial. The argument can proceed from there, on the basis 
of Prop. 15, as in Prop. 16. One has to assume the limit case of Prop. 15, for which only the figure, 
but not the actual argument survives (see notes above). Co p. 80 F provides a direct argument 
without reference to Prop. 15.
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Finally, when the two circumferences BHC and BED remain, and instead of the 
circumference DYC one assumes a straight line DZ at right angles with BC (as is 
the case in the fourth configuration), <one gets the following situation:> when BC 
has to CD a quadratic ratio in numbers,1 the perpendicular from A will be commen-
surable with the diameter of the circle around A, whereas when it does not <have 
such a ratio>, <the perpendicular is> incommensurable <with the diameter>.
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For in general DZ has, in square, the same ratio to the diameter of the circle around 
A that BC <has> to CD, as is shown <in the next proposition> in sequence.2 

1 The squares are to have a ratio like two square numbers.
2 I.e.: Prop. 17 will show hat DZ2:d(circle A)2 = BC:CD. Because DZ = AM, one can see (e.g., 
using X, 9) that AM will be commensurable in length with d(A) iff BC has to DC a ratio expressible 
in square numbers.
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For example,1 when BC is four times CD in length, DZ, i.e.: the perpendicular from 
A, turns out to be double the diameter of the circle around A in length,2 and the <per-
pendicular> from P <turns out to be> three times <the corresponding diameter>, 
whereas the <perpendicular> from O <turns out to be> four times <the corresponding 
diameter>, and so on in sequence, according to the sequence of numbers.3

Prop. 17: Lemma Used in Prop. 16, Addition 2

#19 The lemma4 that was set aside. <Let there be given> semicircles BHC and 
BAD,5 and DE at right angles <to BD>, and a touching circle THZA.

<I claim> that DZ is, in square, to the diameter of the circle THZA as BC is to 
CD in length.
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Draw the diameter TZ. Then the <lines> ZAB and TAD are straight lines.6 Draw 
the perpendicular TK. Then, on account of what has been shown above, the area 
comprised by CB and BK is equal to the square over BD.7 Therefore, as BC <is> to CD, 

1 Hultsch (230, 4–8 Hu + app.) believes the example is due to interpolation.
2 BC = 4CD Þ DZ2 = 4 diameter2; this entails DZ = 2 diameters.
3 Prop. 15.
4 Here, the author uses the word “lh~mma”; before, in the introduction to the arbelos treatise, the 
word “lambanómena” was used.
5 D is on BC. B − D − C.
6 Appeal to theorems like Coll. VII, 102–106 (tangent circles, parallel chords and lines through the 
point of touch) seems most likely. ZAB and TAD will be straight lines, because TZ is parallel to 
BC, and A is the point of touch. As above in Prop. 14, Hultsch ad locum comments that this could 
be shown via Prop. 13, and refers to his footnote on Prop. 14 to this effect. Co p. 81 B refers to 
his Lemma p. 74 A.
7 Prop. 14, passage *. As noted above in the footnotes to the passage, Prop. 17 uses a limiting case 
for the result in passage *, which was probably included there with a view to Prop. 17.
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so <is> BD to DK, i.e.: to TZ.1 However, as BD <is> to TZ, so <is> DA to TA,2 and as 
DA <is> to AT, so <is> the square over ZD to the square over TZ. For TZD is a right-
angled triangle, and ZA is a perpendicular onto the hypotenuse ZA.3 And therefore 
the square over ZD <is> to the square over the diameter of the circle THZA as BC <is> 
to CD.4

Prop. 18: Addition: Progression Theorem, Odd Numbers

#20 Furthermore, the following, too, has been established through investigation by the 
lemmata written down above.5 Let there be <given> the semicircles ABC and ADE,6 
and let the circles with centers Z, H, and T be described, touching their circumferences, 
and <let> the ones continuing them in the direction of A <be described, also>.
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Now, that the perpendicular from Z onto AC is equal to the radius of the circle 
around Z, is clear. However, I say that, also, the perpendicular from H is three times 
the radius of the circle around H, whereas the <perpendicular> from T <is> five times 
<the radius of the circle around T>, and the perpendiculars in sequence <are> the 
multiples of the radii in accordance with the odd numbers in sequence.

1 BC:BD = BD:BK (VI, 17) Þ (BC − BD):(BD − BK) = BC:BD (V, 19), i.e.: CD:DK = BC:BD 
Þ BC:CD = BD:DK (V, 16). TZ = DK by construction, thus: BC:CD = BD:TZ.
2 DBAD ~ DTAZ, because TZ || BD and B − A − Z, D − A − T are straight lines (I, 29). Therefore, 
BD:DA = TZ:TA (VI, 4), and BD:TZ = AD:TA (V, 16).
3 In the right-angled triangle TZD with height AZ, we have: TZ:TA = TD:TZ, and ZD:TD = 
AD:ZD (VI, 8); therefore: TZ × TZ = TD × TA, and ZD × ZD = TD × AD (VI, 16). Therefore: 
(TZ × TZ):(ZD × ZD) = (TD × TA):(TD × AD) = TA:AD (VI, 1). An explicit use of abstract 
duplicate ratios, interpreted as ratios of squares, as suggested by Hultsch here (p. 233 Hu), can be 
avoided. Compare also Co p. 81, F.
4 We have shown above: BC:CD = BD:TZ = DA:TA, and finally: TA:AD = (TZ × TZ):(ZD × ZD). 
Apply V, 16.
5 This statement may be an indication that Pappus himself thought that there were at least two layers 
present in the source he is using.
6 A − E − C.
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For since it has been shown above that as the perpendicular from Z, taken 
together with the diameter <is> to the diameter, so <is> the perpendicular from H 
to its respective diameter,1 and <since> the perpendicular from Z, taken together 
with the diameter, is 3/2 of the diameter, it <i.e., the perpendicular from H> will 
therefore be three times the radius.

Again, since the perpendicular from T is to the <corresponding> diameter as the 
perpendicular from H, taken together with the <corresponding> diameter <is> to 
the <corresponding> diameter,2 whereas the perpendicular from H, taken together 
with the diameter has to the diameter the ratio that 5 has to 2,3 the perpendicular 
from T will have that same ratio to the diameter as well. It will therefore be five 
times the radius. Similarly, it will be shown that the perpendiculars in sequence are 
multiples of the radii in accordance with the odd numbers in sequence.4

Props. 19–22: Archimedean Spiral

Prop. 19: Genesis and Symptoma of the Spiral

#21 The Samian geometer Konon put forth the theorem concerning the spiral 
described in the plane, whereas Archimedes proved it, employing a certain aston-
ishing plan of attack.5 The line, however, has a genesis 6 of the following sort.

Let there be given a circle with center B and radius BA.7 Assume that the straight 
line BA has been set in motion8 in such a way that, while B remains in its place, 

1 Prop. 15.
2 Prop. 15.
3 Perpendicular from T: radius ~ 3:1; therefore, (perpendicular from T + 2 radii): 2 radii ~ 5:2. Note 
that in this phrasing, numbers and magnitudes are again kept apart conceptually.
4 This is, again, an argument by (complete) induction. Here the odd numbers are viewed as an 
infinite sequence, in ratios.
5 This statement is misleading. According to the proem of Archimedes’s Spiral Lines, it was 
Archimedes himself who proposed the theorem, challenging Konon to prove it. When the latter 
died before being able to seriously attempt the task, Archimedes proceeded to publish his own 
treatment, referencing Konon as the original addressee and intended discussion partner.
6 The Greek term gÎ¢nesiV means coming-to-be, creation, growing. It is used in every generation 
of a motion curve in Coll. IV, and I have left it untranslated.
7 Note that the circle is given from the start, and the spiral inscribed in it. In Archimedes’ Spiral 
Lines (SL), the spiral is created from two given motions, and the circle is described afterward 
around it. Only the version in Coll. IV will yield the angle section and the squaring of a circle. 
See the commentary on SL versus Coll. IV, and on symptoma-mathematics of motion curves.
8 kekinήsqw. Throughout the descriptions of the motion curves, Pappus will use either kinei~n or 
fÎ¢resqai. Perhaps the two terms have a slightly different meaning. For lack of examples it is 
not possible to determine what the difference would amount to. I have chosen to render “kinei~n” 
with “move”, and fÎ¢resqai with “travel”. In ordinary usage kinei~n is the broader term, whereas 
fÎ¢resqai is restricted to locomotion.



120 Part Ib Annotated Translation of Collectio IV

A travels uniformly along the circumference of the circle,1 and together with it 
<i.e., together with the rotating BA> a certain point, starting from B, is assumed to 
travel uniformly along it, in the direction of A, and assume that within the same 
time the point from B passes through BA and A passes through the circumference 
of the circle.2 Now, the point moving along BA will describe a line such as BEZA 
during the rotation, and its starting point will be the point B, while the starting point 
of the rotation will be BA.
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This line,3 however, is called spiral. And its principal symptoma4 is of the 
following sort. Whichever <straight line> is drawn through the interior toward it, 
such as BZ, and produced <to C>, the straight line AB is to the <straight line> 
BZ as the whole circumference of the circle is to the arc ADC.5 This, however, is 

1 Rotation is in all likelihood clockwise, though counterclockwise rotation is possible, too. The 
synchronous linear motion is “inside out.”
2 The two motions have to be synchronized, using the ratio of radius to circumference of a circle, i.e., p. 
The implicit inclusion of p is the reason why this version of the Archimedean spiral can be used 
to divide an angle in any given ratio (cf. Prop. 35), and also to square the circle (invoking SL 18). 
It also creates problems for the conceptualization of this version of the spiral. See the commentary.
3 Reading A’s “auth” as “a‘ύth”; both Hultsch and Treweek prefer “au’tή” (234, 18 Hu; 101, 7 Tr).
4 ’arcikón sύmptwma. The word “archikon” implies the idea of “original” as well as “principal.” 
In fact, the main, property of the curve, the one on which the mathematical argumentation draws, 
stems directly from the curve’s origin. A similar use of ’arcikón can be found at 252, 21 Hu for 
the quadratrix. The word symptoma originally denoted a chance happening or casualty. Within 
Hippocratic medicine, it was used to label the signs (symptoms) of a disease, the observable char-
acterizing property of a subject of study, the one the expert will look for and work with. Drawing on 
this scientific usage, it is then used in geometry for characterizing higher curves, and sometimes 
even conic sections. It obviously plays the role of a technical term; and I have left it untranslated. 
The symptoma of the spiral here, expressible in strictly mathematical terms, derives directly 
from the genesis, from the origin of the curve. The subsequent mathematical arguments, however, 
use the symptoma as a principle in the mathematical argumentation, as a quasi-definition of the 
curve, avoiding any reference to the genesis. For the significance of this move see the commentary 
on symptoma-mathematics.
5 Compare SL14 (together with SL 2), for a spiral with circumscribed circle.
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rather easy to understand from the genesis <of the spiral>. For in the time in which 
the point A passes through the whole circumference of the circle, in that time the 
<point starting> from B <passes through> BA, also, whereas in the time in which 
A <passes through> the arc ADC, in that time the <point starting> from B <passes 
through> the straight line BZ, also. And these motions are of uniform speed,1 so that 
the <above mentioned> proportion holds, also.

Prop. 20: Progression of Spiral Radii2: Proportional 
to Rotation Angles

And the following is also obvious: that all straight lines drawn through in the interior 
from B to the line and containing equal angles exceed each other by the same <line 
in length.>3

Prop. 21: Spiral Area4 in Relation to the Circle

#22 It is shown, however, that the figure contained by the spiral and the straight line 
at the starting point of the rotation is the third part of the circle comprising it.5
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1 Pappus’ explanation here is not very felicitous. It unduly fuses concepts of motion and speed. 
Nevertheless, Knorr (1978a, p. 50 f.) goes too far in concluding that Pappus misunderstood the 
whole mathematical context.
2 Line segments between the center of the original circle and the spiral will be called “spiral 
radii” here.
3 Spiral radii corresponding to equal angle increments form an arithmetical sequence. Compare SL 
12 (with SL 1). The property follows directly from the genesis. For an elementary argument that 
the spiral radii for equal increments of angles form an arithmetical series see Co p. 83 commentary 
on Prop. 20.
4 Areas contained by the spiral line and the spiral radius at some point of the rotation will be called 
“spiral areas” here. Prop. 21 addresses the spiral area for the first complete rotation.
5 Compare SL 24 (for a spiral with circumscribed circle); note the difference in argumentation. 
Prop. 21 uses quasi-indivisibles, whereas SL 24 has a classical proof via double reductio, and uses 
a progression of spiral radii (SL 12 (with SL 10), cf. Prop. 20). See the commentary.
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For:
Let there be <given> both the circle and the above-mentioned line, and set out a 

rectangle KNLP, and cut off, on the one hand, the arc AC as a certain part of the 
circumference of the circle, and, on the other hand, the straight line KR as the same 
part of KP,1 and join both BC and KL,2 and <draw> the parallel RT’ to KN, and 
the parallel WM to KP, and finally, <describe> the arc ZH around center B.

Now, since as the straight line AB is to AH, i.e.: <as> BC <is> to CZ, so is the 
whole circumference of the circle to the <arc> CA (for this is the principal symp-
toma of the spiral),3 whereas as the circumference of the circle <is> to <the arc> 
CA, <so is> PK to KR, and as PK <is> to KR, <so is> LK to KW, i.e.: RT’ to RW, 
therefore T’R <is> to RW as BC is to CZ, also.4 And convertendo, therefore, as the 
square over BC <is> to the square over BZ, so <is> the square over RT’ to 
the square over T’W, also.5 But, on the one hand, as the square over BC <is> to the 
square over BZ, so <is> the sector ABC to the sector ZBH.6 On the other hand, as 
the square over RT’ <is> to the square over T’W, so <is> the cylinder over the 
rectangle KT’ around the axis NT’ to the cylinder over the rectangle MT’ around 
the same axis.7 And therefore, as the sector CBA <is> to the sector ZBH, so <is> 
the cylinder over the rectangle KT’ around the axis NT’ to the cylinder over the 
rectangle MT’ around the same axis.

Similarly, however, when we set down, on the one hand, an <arc> CD equal to the 
<arc> AC, and on the other hand, RX equal to KR, and go through the same construc-
tions, the cylinder over the rectangle RF around the axis T’F will be to the cylinder 
over the rectangle X’F around the same axis as the sector DBC is to the <sector> 
EBT. Proceeding in the same manner, however, we will show that as the whole circle 
<is> to all the figures <constituted> out of sectors that are inscribed in the spiral 
<taken together>, so <is> the cylinder over the rectangle NP around the axis NL to 
all the figures <constituted> out of cylinders that are inscribed in the cone over the 
triangle KNL around the axis LN <taken together>.

1  The ratio for the division is not specified. Most likely, it is 1:2n.
2 Adopting Tr’s emendation KL for A’s KA (Tr 101, 26).
3 Symptoma: AB:BZ = AB:BH = circumference:arc AC. Thus, AB:(AB − BH) = circumference:
(circumference-arc AC) (V, 19).
4 The path of reasoning in this somewhat lengthy sentence is rather straightforward. Because 
(AB:AH =) BC:CZ = circumference:arc CA (due to the spiral), while we also have circumference:arc 
CA = PK:KR (by construction) = LK:KW (VI, 2 and V, 18) = T’R:RW (VI, 4; V, 16; V, 18), we 
can infer that T’R:RW = BC:CZ.
5 BC:CZ = T’R:RW implies BC:BZ = T’R:T’W (V, 19, addition). Then the stated proportion holds 
for the squares (VI, 22).
6 XII, 2 (circles have the ratio of the squares over the diameters). The sectors in Prop. 21 are the 
same parts of their respective full circles (use VI, 33 and V, 15).
7 XII, 11 (cylinders of equal height have the ratio of the circles at their base), and XII, 2 (circles 
have the ratio of the squares over their diameters).
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And again: as the circle <is> to all the figures <constituted> out of sectors circum-
scribed around the spiral <taken together>, so <is> the cylinder to all the figures 
constituted out of cylinders circumscribed around the same cone <taken together>.

From this <result> it is obvious that, as the circle <is> to the figure1 between the 
spiral and the straight line AB, so <is> the cylinder to the cone.2 However, the cylinder 
is three times the cone. Therefore, the circle is three times the said figure, also.3

Addition: Spiral Areas and Circumscribed Circles

#23 In the same manner we will show that, when a certain straight line is drawn 
through in the interior to the spiral, such as BZ, and the circle through Z around 
center B is described, the figure contained by both the spiral ZEB and the straight 
line ZB is the third part of the figure contained by both the arc ZHT of the circle 
and the straight lines ZB, BT, also.4
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Now, the proof5 <of Konon’s theorem mentioned in the beginning, before Prop. 19> 
is of such a sort. In what follows in sequence, however, I will write down a theorem 
that holds for the same line and deserves investigation.6

1 The manuscript A has a plural (scήmata, 238, 17 app. Hu). Perhaps we do have a scribal error 
here, but it is also possible that Archimedes viewed the spiral area in this argument as actually 
composed of spiral sectors with quasi-indivisible arcs.
2 Archimedes uses an argument that could be called “exhaustion” in the literal sense. It closely 
resembles arguments via indivisibles. See the commentary.
3 XII, 10; Knorr (1978a) p. 55) notes that the reference to XII, 10 leaves a gap. II does not cover 
the implicit convergence argument for the spiral-figures, which is, however, crucial here.
4 The addition targets a spiral segment with circumscribed circle. Thus, it is the true parallel to SL 
24. The labeling of the spiral is “outside –in”, in contrast to the description in Prop. 19.
5 The Greek term for the argument in Prop. 21 is indeed apodeixis (cf. 238, 26 Hu), suggesting that 
Pappus may very well have considered it as more than just heuristic exploration.
6 ‛ιstorίaV a“xion; the word ‛ιstorίa does mean “history,” among other things. Its original meaning 
is “investigation”, or “research.”
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Prop. 22: Ratio of Spiral Areas as Ratio of Cubes 
over Maximal Spiral Radii

#24 Let there be given both the circle mentioned above in the genesis and the spiral 
AZEB itself.1

I claim that, whichever <straight line> is drawn through in the interior <to the 
spiral>, such as BZ, the cube over AB is to the cube over ZB as the figure contained 
by the whole spiral and the straight line AB <is> to the <figure> contained by the 
spiral ZEB and the straight line BZ.
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For:
Describe the circle ZHT through Z around center B. Now, since as the figure con-

tained by the line AZEB and the straight line AB <is> to the figure contained by 
the line ZEB and the straight line ZB, so is the circle ACD to the figure contained by the 
arc ZHT and the straight lines ZB, BT (for both were shown to be the third part of both 
<circles>, respectively), whereas the circle ACD has to the area cut off by the straight 
lines ZB, BT and the arc ZHT the ratio composite of <the ratio> that the circle ACD 
has to the circle ZHT and <the ratio> that the circle ZHT has to the area cut off by the 
straight lines ZB, BT and the arc ZHT, but as the circle ACD <is> to the circle ZHT, 
so <is> the square over AB to the square over BZ,2 whereas as the circle ZHT <is> 
to the said area, <so is> its whole circumference to the <arc> ZHT,3 i.e., <so is> the 

1 Prop. 22 does not specify whether the circle is circumscribed or the spiral inscribed in a given circle. 
In both cases, we have a contribution to the symptoma-mathematics of the spiral. In the former 
case, the theorem would in addition be on a par, conceptually, with the theorems in SL. The fact that 
the circle is mentioned but not used in the theorem may be an indication that we still deal with the 
inscribed spiral. As in Prop. 22, and in difference from the description in Prop. 19, the spiral is labeled 
“outside-in.”
2 XII, 2.
3 Theon’s addition to VI, 33 (circles to sectors as circumference to arcs).
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circumference of the circle ACD to the <arc> CDA, i.e.: <so is> the straight line AB 
to the <straight line> BZ – on account of the symptoma of the line.1

The figure between the spiral and the straight line AB therefore also has to the figure 
between the spiral and the straight line BZ the ratio composite of the ratio that the 
square over AB has to the square over ZB and the ratio that AB has to BZ. This ratio, 
however, is the same as2 the one of the cube over AB to the cube over BZ.3

Addition: Measurement of Spiral Quadrants

#25 Now, from this <argument> it is obvious that, when, with the spiral and the circle 
around it posited, AB is produced to D and CZEK is drawn through the interior at right 
angles to it, the area between the line NME and the straight lines NB, BE amounts 
to 7 <area units> of the <area units> of which the area between the line BLE and 
the straight line BE amounts to 1, whereas the <area> between the line ZTN and the 
straight lines ZB, BN amounts to 19 <of these units>, and finally the <area> between 
the line AXZ and the straight lines AB, BZ amounts to 37 (for these claims are clear 
from the theorem proved above), and that of <the length units of> which AB is 4, of 
these ZB is 3, whereas BN is 2, and BE is 1. For this, also, is clear from the symptoma 
of the line and the fact that the arcs AC, CD, DK, and KA are equal.4
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1 Prop. 19.
2  Prop. 22 uses Prop. 21 and the symptoma to express the desired ratio of spiral areas as a composite 
ratio. It is the composite of a ratio of squares over radii and one of radii, and this is declared to be 
equivalent to a ratio of cubes. The interpretation of composite ratios as quasi-products was not 
without its difficulties, though Archimedes seems to have used composite ratios that way without 
qualms cf. Saito (1986). Co p. 85, A refers to an Archimedean theorem on centers of gravity for 
solids.
3 Spiral area BA:spiral area BZ = (circle BA:circle BZ) × (BA:BZ) = (BA2:BZ2) × (BA:BZ) = 
BA3:BZ3.
4 Prop. 19 yields AB:BZ:BN:BE = 4:3:2:1. From Prop. 22, we see that corresponding full spiral 
areas are as 64:27:8:1. Subtracting the preceding spiral sectors at each stage, we get 37:19:7:1 for 
the spiral quadrants.
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Props. 23–25: Conchoid of Nicomedes/Duplication of the Cube

Genesis and Symptoma of the Conchoid

#26 For the duplication of the cube a certain line is introduced by Nicomedes1 and 
it has a genesis of the following sort.
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Set out a straight line AB, and a <straight line> CDZ at right angles to it, and take 
a certain point E on CDZ as given.2 And assume that, while the point E remains in 
the place where it is, the straight line CDEZ travels along the straight line ADB, 
dragged via the point E in such a way that D travels on the straight line AB throughout 
and does not fall outside3 while CDEZ is dragged via E. Now, when such a motion 
takes place on both sides, it is obvious that the point C will describe a line such 
as LCM is, and its symptoma is of such a sort that, whenever some straight line 
<starting> from the point E toward the line meets it, the <straight line> cut off 
between the straight line AB and the line LCM is equal to the straight line CD. For, 
while AB remains in place, and the point E remains in place, when D comes to be 
upon <a point> H, the straight line CD reaches HT, and the point C will fall onto4 T. 
Therefore, CD is equal to HT.5 Similarly, also, whenever some other line <starting> 
from the point E toward the line meets <it>, it will make the segment cut off by the 
line and the straight line AB equal to CD.

1 For information on Nicomedes see the commentary. He is associated with the conchoid and the 
quadratrix (i.e., two of the prominent motion curves used for symptoma-mathematics in Coll. IV).
2 doqÎ¢n this is the same term used in geometrical analysis. See the commentary.
3 The distance CD is kept equal throughout the “dragging process” (neusis-property of the curve); 
DE (corresponding to the pulling rope for a ship) is variable.
4 Accepting Hu’s addition of pesει̃tai (244, 11 + app. Hu), although Tr may be right in preserving 
the manuscript reading (Tr 105, 11).
5 The symptoma seems to be read off a curve already drawn, not abstracted from the generating 
motion (as was the case for the spiral). See the commentary.
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And, he says, let the straight line AB be called “canon,” and the point <E> “pole,” 
and CD “distance,” since the <straight> lines drawn toward the line LCM and meeting it 
are equal to this one, and finally the line LCM itself “first conchoid”1 – since an exposi-
tion of a second and third and forth, put to use for other theorems, is also given.2

<Further information on the conchoid:>
#27 That, however, the line can be described with an instrument3 and that it 

proceeds along the canon at an ever-decreasing distance, i.e.: that of all the perpen-
diculars <drawn> from any point of the line LCT to the straight line AB the per-
pendicular CD is the largest, and that a perpendicular drawn closer to CD is always 
larger than a <perpendicular drawn> further away, and also that when some straight 
line lies in the space between the canon and the conchoid, that line will, when pro-
duced, be intersected by the conchoid, Nicomedes himself has proved, and I myself 
have used the line mentioned above in the <treatise> on the analemma of Diodorus4 
when I wished to trisect the angle.5

Prop. 23: Neusis Construction6

Now, on account of what has been said it is obvious that it is possible, when an 
angle is given,7 like the angle HAB, and a point C outside of it, to draw a <straight 
line> CH through the interior and to make the <intercept> KH between the line and 
AB equal to a given <straight line>.

1 The spelling of the Greek name for the curve appears as kocloeidhV in A and in Hu’s text through 
the end of Prop. 25. In almost all occurrences in A, however, the l was expunged later, and a g super-
scripted, changing the name to kogcoeidhV. It will be rendered as “conchoid” here.
2 No documents about Nicomedes’ theorems on the other conchoids survive.
3 Greek for “with an instrument”: “organikw~ V”. This term should be differentiated from the stan-
dard Greek term for “mechanical”: mhcanikw~ V. Co translates “instrumentaliter” (cf. at Co p. 89). 
For the significance of this difference see the commentary. What Pappus gives here is not a com-
ment on the conchoid itself, as “mechanical,” i.e., generated by motions, but a reference to the use 
of a concrete instrument, a “conchoid-compass”, to draw the curve. Such a compass can be easily 
constructed from the description of the generation of the curve via motions (cf. Eut., Comm. in 
Sph. et. Cyl. II, pp. 98, 1–100, 14 Heiberg).
4 We do not have a treatise by Pappus with this title. Information on Diodorus and a work on the 
Analemma is also very scarce (cf. Heath Vol. II, p. 286 f.). Hultsch p. 246 ad locum suspects a 
corruption of the text, and offers “lemma 1” or “lemma 21” as possible readings.
5 This side remark documents that Pappus must have been aware of the connection between the angle 
trisection, the duplication of the cube, the neusis construction for which the conchoid operates like a 
compass, and typical solid problems in general. See the commentary, and Props. 31–33, 42–44.
6 For a discussion of neuses and their role in Greek mathematics see the commentary. In Coll. IV, 
neuses are also put to use in Props. 31–34, and in Props. 42–44 (picking up a reference in the 
meta-theoretical passage between Prop. 30 and Prop. 31).
7 The Greek text has doqeίs®, the term used in geometrical analysis. This suggests an analytic-
synthetic background for the neusis and the conchoid (as a locus curve). Prop. 23 corresponds 
to Eut. In Arch. Sph. et Cyl. II, pp. 102–104 Heiberg. Compare also the apparatus in Hu ad locum, 
for parallels and doublets in Coll. III, pp. 58–60.
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<For:>
Draw the perpendicular CT from the point C onto AB and produce it, and let DT 

be equal to the given <straight line,>1 and describe the line “first conchoid” EDH 
with pole C, the given <line segment>, i.e.: DT, as distance, and AB as canon. On 
account of what has been said above it will then meet AH. Let it meet <AH> in H, 
and join CH. Then KH is equal to the given <straight line>.

<Neusis via mechanical manipulation, avoiding the use of the conchoid:>
#28 Some people, however, for the sake of usefulness, place a ruler to C and move 

it until, by trial, the <straight line> cut off between the straight line AB and the line 
EDH turns out to be equal to the given <straight line>.2 For when this is the case, 
the <problem> set forth in the beginning is proved (I mean, however, a cube is found 
that is two times a <given> cube). Before that <i.e., before the exposition of the 
cube duplication itself>, however, two means in continuous proportion for two given 
straight lines are taken. Nicomedes has set out the construction for them only,3 whereas 
I have also attached the proof to the construction, in the following manner.4

1 D on CT, TD = given line.
2 Probably Co p. 87 is right in suggesting “(straight) line AH” for “line EDH.” Then the procedure 
by trial and error makes sense, and one avoids having to draw out the conchoid. For once the 
conchoid is drawn, trial and error is no longer needed, and the sense of Pappus’ remark becomes 
unclear. The use of the term given may suggest an analytical context for Nicomedes’ original 
considerations. Co p. 87 nevertheless justifies the success of the ruler manipulation construction 
with the conchoid.
3 The Greek text has “mónhn,” Hu 246, 22 emends to “mónon,” following Co, and Tr emends as 
well. The only conceivable sense one might make of the manuscript reading is for Pappus to indi-
cate that Nicomedes furnished a single neusis construction, covering both the angle trisection and 
the cube duplication, whereas Pappus quotes the apodeixis of it, adapted to the case of two mean 
proportionals. Then Prop. 24 would still be essentially by Nicomedes, and Pappus would not claim 
more than his adaptation of it for the cube duplication here. This would diminish an apparent 
inconsistency entailed by the emended text: that Eutocius reports much the same neusis construc-
tion as Nicomedean, whereas in the emended text version Pappus seems to claim it for himself. 
See also the following footnote, and the commentary. Perhaps the manuscript reading could have 
been defended, then. Since this is a question of a single letter only, though, I follow the authority 
of the editors. In any case, the mathematical sense is not affected, and the majority of scholars 
ascribe the content of Prop. 24 to Nicomedes, even in face of the phrase in the emended text.
4 Eutocius reports the very same argument in In Arch. de Sph. et Cyl. 104–106. Perhaps 
Eutocius is quoting from Pappus; cf. Ver Eecke (1933b, p. 188, # 3). Jones (1986a) considers the 
possibility that Eutocius draws on a report by Pappus in Coll. VII.
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Prop. 24: Two Mean Proportionals via Neusis

Assume that two straight lines CL and LA, at right angles to each other, are given, 
of which to find two means in continuous proportion is the task, and complete the 
rectangle ABCL, and bisect both AB and BC in the points D and E, and, on the one 
hand, produce DL after it has been joined, and let it meet CB, after it has been 
produced, in H, on the other hand, <draw> EZ at right angles to BC and draw CZ 
toward it, equal to AD, and join ZH, and <draw> CT parallel to it, and since KCT 
is an angle, draw, from the given <point> Z, the <straight> line ZTK through the 
interior making TK equal to AD or CZ (for that this is possible on account of the 
conchoid line has been shown), and produce KL, after it has been joined, and let it 
meet AB, when it is produced, in M.

I say that as LC <is> to KC, <so is> KC to MA, and <so> is MA to AL.

H
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Since BC has been bisected in E, and KC has been added to it, the rectangle 
BKC, taken together with the square over CE, is therefore equal to the square over 
EK.1 Add the common square over EZ. Then the rectangle BKC, taken together 
with the squares over CE and EZ, i.e.: <with> the square over CZ,2 is equal to the 
squares over KE and EZ, i.e.: <to> the square over KZ.3 And since as MA <is> to 
AB, <so is> ML to LK, whereas as ML <is> to LK, <so is> BC to CK,4 therefore 
as MA <is> to AB, <so is> BC to CK, also. And AD is half of AB, whereas CH is 
twice BC.5 Therefore, HC will be to KC as MA <is> to AD.6 But as HC <is> to CK, 

1 II, 6.
2 I, 47.
3 I, 47.
4 VI, 2 with V, 16 (DMBL ∼ DMAL, DMBK ∼ DLCK, on parallel lines).
5 DADL ≅ DBDH (I, 26), therefore HB = AL (=BC).
6 V, 15: MA:AB = BC:CK implies MA:1/2AB = 2BC:CK.
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so <is> ZT to TK, on account of the parallels HZ and CT.1 And therefore, com-
ponendo: as MD <is> to DA, <so is> ZK to KT.2 However, AD has also been 
posited as equal to TK.3 Therefore, MD is equal to ZK4 as well. Therefore, the 
square over MD is equal to the square over ZK, also. And the rectangle BMA, taken 
together with the square over DA, is equal to the square over MD,5 whereas the 
rectangle BKC taken together with the square over ZC has been shown to be equal 
to the square over ZK. Of these, the square over AD is equal to the square over CZ 
(for AD has been posited as equal to CZ). Therefore, the rectangle BMA is equal 
to the rectangle BKC, also. Therefore, as MB <is> to BK, <so is> CK to MA.6 But 
as BM <is> to BK, <so is> LC to CK.7 Therefore, as LC <is> to CK, <so is> CK to 
AM. However, MA is to AL as MB <is> to BK, also.8 And therefore, as LC <is> 
to CK, <so is> CK to AM, and <so is> AM to AL.

Prop. 25: Cube Duplication, Cube Construction in Given Ratio

#29 After this has been shown, it is very clear how one must, when a cube is 
given,9 find another cube in a given ratio.

a

c

d

b

For:
Assume that the given ratio is that of the straight line a to the <straight line> b, 

and take c and d as two means in continuous proportion for a and b. Then the cube 
over a will be to the cube over c as a is to b. For this is clear from the Elements.10

 1 VI, 2 (DHZK ∼ DCTK on parallel lines).
 2 V, 18.
 3 By construction (neusis).
 4 V, 9.
 5 II, 6.
 6 VI, 16.
 7 VI, 4 (DMBK ∼ DLCK).
 8 VI, 4 (DMAL ∼ DMBK).
 9 Once again, note the occurrence of derivatives of the technical term doqÎ¢n (250, 26, 27, and 28 Hu).
10 a and c stand in the triple ratio of a:b (V, def. 11); cube numbers have two mean proportionals, and 
cube:cube = (side:side)3 (VIII, 12); the cubes with sides a and c stand in that same ratio (XI, 33).
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Props. 26–29: Quadratrix1

Genesis and Symptoma of the Quadratrix

#30 For the squaring of the circle a certain line has been taken up by Dinostratus 
and Nicomedes2 and some other more recent (mathematicians). It takes its name 
from the symptoma concerning it. For it is called “quadratrix” by them, and it has 
a genesis of the following sort.

A

B C

D
HT

Z

E

Set out a square ABCD and describe the arc BED of a circle with center A, and 
assume that AB moves in such a way that while the point A remains in place, <the 
point> B travels along the arc BED, whereas BC follows along with the traveling 
point B3 down the <straight line> BA, remaining parallel to AD throughout, and 
that in the same time both AB, moving uniformly, completes the angle BAD, i.e.: 
the point B <completes> the arc BED, and BC passes through the straight line BA,  
i.e.: the point B travels down BA.4 Clearly it will come to pass that both AB and 

1 The Latin word “quadratrix” (i.e., squaring line) translates the Greek name (tetragwnίzousa) for 
the transcendent curve that will be the subject of Props. 26–29. The Latin version is commonly used 
as the standard name for this particular curve, though the term can have other meanings, too.
2 The common author Nicomedes connects the passages on the conchoid and quadratrix curves. 
Dinostratus was a late fourth century BC mathematician, the brother of Menaechmus, who 
invented the conics as locus curves. On the authorship concerning the curve quadratrix and its 
symptoma-mathematics see the commentary.
3 sunakolouqeίtw; the basic verb is, once again “’akolouqÎ¢w” = follow along in order. As in 
the other instances in Coll. IV, it does not have the connotation of strict logical derivation – on the 
contrary (see below). On the use of “’akolouqeι̃n” compare the remarks on analysis-synthesis in 
the introduction to Props. 4–12.
4 This generation via synchronized motions is reminiscent of the genesis of the spiral in Prop. 19; the 
connection between these two curves has been emphasized by Knorr (e.g., Knorr 1978a, 1986).
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BC reach the straight line AD at the same time. Now, while a motion of this kind is 
taking place, the straight lines BC and BA will intersect each other during their trav-
eling in some point that is always changing its position together with them. By this 
point a certain line such as BZH is described in the space between the straight lines 
BA and AD and the arc BED, concave in the same direction <as BED>, which 
appears to be useful, among other things, for finding a square equal to a given 
circle.1

And its principal symptoma is of the following sort. Whichever arbitrary 
<straight line> is drawn through in the interior toward the arc, such as AZE, the 
straight line BA will be to the <straight line> ZT as the whole arc <BED is> to the 
arc ED. For this is obvious from the genesis of the line.

Criticism of the Quadratrix Under the Description 
via Motions (Sporus)

#31 Sporus, however, is with good reason displeased with it, on account of the 
following <observations.>2

For, first of all, he3 takes into the assumption the very thing for which it <i.e., 
the quadratrix> seems to be useful. For how is it possible when two points start 
from B, that they move, the one along the straight line to A, the other along the arc 
to D, and come to a halt <at their respective end points> at the same time, unless 
the ratio of the straight line AB to the arc BED is known beforehand? For the 
velocities of the motions must be in this ratio, also.4 Also, how do they think that 
they5 come to a halt simultaneously, when they use indeterminate velocities, except 
that it might happen sometime by chance; and how is that not absurd?

1 The quadratrix can be used also for the division of an angle in any given ratio (probably its origi-
nal use), and for problems related to this construction. Cf. Props. 35–38.
2 The passage taken from Sporus differs significantly from the mathematical expositions in 
Coll. IV. Note, e.g., the rhetorical questions and the polemical style. Co p. 88 replaces the name 
“Sporos” with the Latin word “spero.” His paraphrase means: “I expect, however, that this line 
justifiedly and deservedly does not satisfy, for the following reasons.” The replacement changes 
the meaning of the introductory sentence, and indeed of the whole passage criticizing the quadra-
trix considerably.
3 The Greek text uses the third person singular. It is unclear whom Sporus’ argument targeted.
4 The use of the notion “velocity” is not quite precise here. However, it is clear what Sporos means, 
and his argument is valid. In order to synchronize the two motions as required, one must know p 
– or else use an approximation to stand in for it. However, p is exactly what the curve is supposed 
to exhibit in construction. Co p. 88 paraphrases “motuum velocitates.” Hu 254, 7 emends A’s ellipti-
cal “’anagkaι̃on.” For a parallel construction, without emendation, see, however 270, 11/12 Hu.
5 The reading pω̃V oÇonta4 (how do they think) as given in A, was kept. Both Hultsch and Treweek 
reject it in favor of the reading päV oÊ˜ón te (254, 8 Hu + app/ Tr. 109, 11), attested in the minor 
manuscripts. Co p. 88 paraphrases “quo pacto arbitrantur.”
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Furthermore, however, its endpoint, which they use for the squaring of the circle,  
i.e.: the point in which it intersects the straight line AD, is not found <by the 
above generation of the line>. Consider what is being said, however, with reference to 
the diagram set forth. For when the <straight lines> CB and BA, traveling, come to 
a halt simultaneously, they will <both> reach AD, and they will no longer produce 
an intersection in each other. For the intersecting stops when AD is reached,1 and 
this <last> intersection would have taken place as the endpoint of the line,2 the 
<point> where it meets the straight line AD. Except if someone were to say that he 
considers the line to be produced, as we assume straight lines <to be produced>, up 
to AD. This, however, does not follow from the underlying principles, but <one 
proceeds> just as if the point H were taken after the ratio of the arc to the straight 
line had been taken beforehand.3 Without this ratio being given,4 however, one must 
not,5 trusting in the opinion of the men who invented the line, accept it,6 since it is 
rather mechanical.7 Much rather, however, one should accept the problem that is 
shown by means of it.8

1 Restoring A’s reading pròV (when) instead of Hultsch’s prò (= before; cf. 254, 16 Hu app).
2 Restoring, with Tr 109, 20, the reading of A.
3 For an extension of the quadratrix to the base line one needs to know the direction. As the quadra-
trix does not have a constant direction, or even curvature, one needs, in the end, to know the 
position of H, and it would have to be determined beforehand, using the ratio of radius and cir-
cumference (p). My translation differs from Hultsch’s Latin interpretation. Co has the following 
Latin paraphrase, rejected by Hultsch (p. 89 Co): Sed ut cumque sumatur punctum …, praecedere 
debet proportio circumferentiae ad rectam lineam.
4 The Greek word (doqη̃nai) is the technical term from geometrical analysis. It is not certain (in 
fact perhaps unlikely) that Sporus, whom Pappus paraphrases here, intended it that way. What is 
certain, however, is that Pappus is going to interpret it in this strict technical sense for Props. 28 
and 29. See below, and see the commentary on Props. 26–29.
5 Accepting Hultsch’s emendation οuj for the difficult manuscript reading ³, kept in Tr 109, 26. Co 
p. 89 keeps the manuscript reading, and paraphrases as a question: Or should we… ? The disad-
vantage is that in that case one would have expected the question particle at the beginning of the 
sentence.
6 I.e.: accept it as fully geometrical. The quadratrix itself (in the motion description) is not fully 
accepted; but note the upcoming remark on the mathematics about it. It is quite possible that 
Sporus and Pappus have different opinions on this matter. The issue cannot be pursued here.
7 Greek: mhcanikwteran. This word, used for the curve itself here, and not just for the way in 
which it is generated, is different from the label “Ïrganikω̃V”, i.e., “describable with an instru-
ment”. The latter was used in connection with Nicomedes’ conchoid (cf. footnotes above). 
Hultsch deletes the phrase “and it is put to use by the students of mechanics for many problems” 
as an interpolation (254, 24–256, 1+app. Hu). There is indeed no evidence that the quadratrix 
played a major role in mathematical treatises on mechanics. A similar phrase occurs at 244, 
20 Hu. See the introduction to Props. 19–30 in the commentary on “mechanical.”
8 Hultsch has changed the transmitted text considerably. His Latin paraphrase means: “but before 
I must report (assuming paradotÎ¢on) the problem that is solved on account of it.” With Tr 110, 
1–2, I keep the transmitted text. Co’s paraphrase on p. 89 is compatible with this reading. See the 
commentary.
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Prop. 26: Rectification of the Arc of a Quadrant

When a square ABCD is <given>, and the arc BED with center C,1 and when the 
quadratrix BHT has come to be2 in the above said way, it is shown that as the arc 
DEB <is> to the straight line BC, so <is> BC to the straight line CT.3

AB

C DT
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a

For:
If it is not <in that ratio to CT>, it will be <in that ratio> either to a <straight 

line> larger than CT or to one smaller.4

Assume first that, if this is possible, it is so to a larger <straight line> CK, and 
describe the arc ZHK with center C, intersecting the line in H, and <draw> HL as 
a perpendicular <onto CD>, and produce CH, after it has been joined, to E.
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1 Note the change of lettering in the diagram. Perhaps Prop. 26 was taken from a different source 
(Nicomedes, as opposed to Dinostratus, or else Sporus, for the curve’s genesis?).
2 Note that the quadratrix is posited at the outset. The upcoming argument will keep the problem-
atical genesis of the curve out of sight, and use its symptoma only.
3 This proportion will yield the construction of a straight line equal to arc DEB (Prop. 27).
4 We get a classical proof via double reductio (so-called method of exhaustion). Apart from the 
(short and straightforward) alternative argument for the inverse of Prop. 13, this is the first, and 
the only, example for this argumentative technique in Coll. IV. On Prop. 26 see also Heath (1921, 
I, pp. 226–229).
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Now, since as the arc DEB <is> to the straight line BC, so is BC, i.e.: CD, to CK,1 
whereas as CD <is> to CK, <so is> the arc BED to the arc ZHK (for as the diameter 
of a circle <is> to the diameter <of a second circle>, <so is> the circumference of the 
circle to the circumference <of the second circle2>), it is obvious that the arc ZHK is 
equal to the straight line BC.3 And since, on account of the symptoma of the line, BC 
is to HL as the arc BED <is> to the arc ED, therefore, as the arc ZHK <is> to the arc 
HK, so <is> the straight line BC to HL,4 also. And it has been shown that the arc ZHK 
is equal to the straight line BC. Therefore, the arc HK is equal to the straight line HL 
as well, which is absurd.5 Therefore, it is not the case that as the arc BED <is> to the 
straight line BC, so is BC to a <straight line> larger than CT.

#32 I say, however, that it <i.e., BC> is not <in that ratio> to a <straight line> 
that is smaller, either.

AB

C D
T

H

E

K

M

Z

c

1 By assumption.
2 This theorem is also used in Props. 36, 39, and 40, and a similar one in Prop. 30 (cf. notes ad locum). 
An explicit proof is given in Coll. V, 11 and Coll. VIII, 22. A possible justification might proceed 
as follows. XII, 2: circles have the ratio of the squares over their diameters; Circ. mens. I: circles have 
the ratio of the rectangles with radius and circumference as sides; V, 16 and VI, 1: circumferences 
have the ratio of diameters. V, 15: similar arcs have the ratio of diameters. The frequent occurrence of 
this motif may indicate that it is part of the special “jargon,” a kind of basic tool within the “analytic 
track” of symptoma-mathematics of the third kind. Specifically, it might be a typical tool of Nicomedes. 
Nicomedes apparently systematically exploited properties of spiral lines, taking Archimedean argu-
ments as a starting-point. Compare Pappus’ remarks on the study of spiral lines and quadratrices as 
a central branch of geometry of the linear kind in the upcoming meta-theoretical passage.
3 BC:CK = CD:CK = arc BED:BC (assumption); CD:CK = arc BED:arc ZHK Þ BC = arc ZHK 
(V, 9).
4 arc BED:arc ED = BC:HL (symptoma). arc BED:arc ED = arc ZHK:arc HK (equal parts).
5 arc ZHK:arc HK = BC:HL; arc ZHK = BC Þ arc HK = HL (V, 9). This is not possible, because 
2HL is a chord under two times arc HK.
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For if this is possible, assume that it is <in that ratio> to KC, and describe the 
arc ZMK with center C, and <draw> KH at right angles to CD intersecting the 
quadratrix in H, and produce CH, after it has been joined, to E. Similarly to what 
has been written above, then, we will show both that the arc ZMK is equal to the 
straight line BC, and that as the arc BED <is> to the <arc> ED, i.e.: <as> the 
<arc> ZMK <is> to the <arc> MK, so <is> the straight line BC to the <straight 
line> HK.1 From these <observations> it is obvious that the arc MK will be equal 
to the straight line KH, which is absurd.2 Therefore, it will not be the case that as 
the arc BED <is> to the straight line BC, so is BC to a <straight line> smaller 
than CT.

It has been shown, however, that it is not <in that ratio> to a larger one, either. 
Therefore, it <is in that ratio> to CT itself.

Prop. 27: Squaring the Circle

It is obvious, also, however, that when a straight line is taken as the third propor-
tional to the straight lines TC and CB, it will be equal to the arc BED, and its four-
fold to the circumference of the whole circle.3 When, however, a straight line equal 
to the circumference of the circle has been found, it is very clear that it is rather easy 
indeed to put together a square equal to the circle itself. For the rectangle between 
the circumference of the circle and the radius is two times the circle, as Archimedes 
has shown.4

1 Just as in the first part of the “exhaustion,” one gets: CD:CK = arc BED:BC (assumption); arc 
BED:arc ZMK = CD:CK Þ arc ZMK = BC (V, 9). arc BED:arc ED (= arc ZMK:arc MK) = 
BC:HK (symptoma).
2 HK must be larger than arc MK. I am not aware of an elementary geometrical argument in 
ancient geometry for this (correct) statement. Hultsch and Ver Eecke (1933b) ad locum refer to an 
argument that can be reconstructed from (Ps.-) Euclid, Catoptrics 8.
3 Construct the third proportional s for TC and CB (VI, 11): TC:BC = BC:s; TC:BC = BC:arc BD 
(Prop. 26 with V, 16) Þ s = arc BD. Then 4 s is equal in length to the circumference of the circle.
4 Circ mens. I. This rectangle can be transformed into a square via II, 14.
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Prop. 28: Analytical Determination of the Quadratrix 
from an Apollonian Helix

#33 Now, this genesis of the curve is, as has been said, rather mechanical1; it can, 
however, be made the subject of a geometrical analysis2 by means of loci on surfaces 
in the following way.

<Let> the quadrant ABC of a circle <be given> in position, and assume that BD 
has been drawn through the interior arbitrarily, and also a perpendicular EZ onto 
BC, which has a given ratio to the arc DC.

<I claim> that E lies on a <uniquely determined> line.3

A

B C

D

T

H
L

Z

E

I

1 Here Pappus picks up the discussion before Prop. 26, on the generation of the quadratrix via 
motions and the mathematical status of the quadratrix.
2 ’analύesqai; since this is a technical term, clearly referring back to the technique of analysis (cf. 
Props. 4–12, and 31 ff.), Hultsch’s Latin paraphrase “problema solvitur” does not capture the meaning 
and is in fact misleading. What is “analyzed” here is not the problem of squaring the circle, but the 
genesis of the quadratrix. Co paraphrases “lineae ortus … resolvi potest (p. 90). Both Prop. 28 and 
Prop. 29 provide a resolutio in the sense that they show that the quadratrix is given, if an Apollonian 
helix or an Archimedean spiral is posited (i.e., taken as given). See the commentary.
3 With EZ: arc DC given, E will be shown to lie on a line that is determined relative to a certain 
helix, which is assumed as given. This characterization is independent from the genesis of the line 
via motions, which has been disqualified as conceptually inconsistent. It is not constructive, how-
ever, but rather a characterization via implicit relations. Note that the analysis is quite general in 
the sense that the ratio which is taken as given is not assumed to be the ratio of arc and radius, as 
in the quadratrix. Co p. 90, B is, in my view, mistaken when he assumes that. For each given ratio, 
the analysis shows that a unique line is determined by it via the intersection of the surface related 
to a given cylindrical helix and a given plane. For the special case of a ratio equal to arc ABC:AB, 
this line will be the quadratrix. Compare the end of Prop. 28, and Hultsch, * on p. 259 and #2 on 
p. 261.
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For:
Consider the surface of a right cylinder over the arc ADC,1 and described in it a 

helix CHT, given in position,2 and <let> TD be the side of the cylinder,3 and draw 
EI and BL at right angles to the plane of the circle, and finally, draw TL through T 
as a parallel to BD.4 Since the ratio of the straight line EI to the arc DC is given on 
account of the helix,5 whereas the ratio of EZ to the <arc> DC is given, also, the 
ratio of EZ to EI will be given, also.6 And ZE and EI are (given) as parallels in 
position.7 Therefore, the joining <straight line> ZI is <given> as parallel in position, 
also.8 And it is a perpendicular onto BC. Therefore, ZI lies in a plane intersecting 
<the cylinder,>9 so that I <lies there>, also. It <lies>, however, on a surface belong-
ing to the cylinder as well10 (for TL travels through both the helix THC and the 
straight line LB, which is also itself given in position, while it remains parallel 
throughout to the underlying plane). Therefore, I lies on a <uniquely determined> 
line,11 so that E does so as well.12

 1 Co p. 90 D assumes, mistakenly in my view, that the height of the quarter cylinder constructed 
has to be equal to AB, and that the defining ratio of linear upward motion to rotation is that of arc 
ADC:BC.
 2 For a definition of the helix cf. Heron, def. 8, 1 and 8, 2.
 3 TD is perpendicular to the plane of the circular quadrant; it is now considered as the height of 
the cylinder under discussion.
 4 We create a rectangle BDTL, with E on BD and I on HL, and EI parallel to DT.
 5 This ratio is implicit in the helix as the relation of rotation and upward motion in its genesis.
 6 Data 8. The sentence is truncated in A. Above, I have translated the text as emended by Hultsch 
(260, 8–10 + app. Hu, see also #3 on p. 261 Hu). Tr 111, 27–112, 3 prints an alternative recon-
struction, closer to the actual manuscript reading, and therefore perhaps preferable (see the appa-
ratus in the Greek text).
 7 Data, def. 15. When a line is given in position, the parallel to it through a given point is said to 
be given as a parallel in position (para thesei).
 8 Data 41 and 29.
 9 The manuscript is severely damaged by water in this place, and the text is not legible (cf. the 
apparatus in the Greek text). Hultsch’s emendation “ejn tÎ¢mnonti a[ra” leaves open the possibility 
that the intersecting plane is determined by EZ and ZI or else by BC and ZI, whereas Treweek’s 
emendation identifies the plane in question as the one determined by EZ and ZI. The version with 
BC/ZI as intersecting plane has the drawback that the endpoint Z of the intersection line is not 
uniquely determined. The plane has BC in common with the garland – shaped surface created by 
the helix. The version with EZ /ZI has the drawback that one would have to know the exact position 
of either EZ or ZI, and it is unclear how that could be accomplished at this stage of the analysis. 
I therefore prefer the former version. See the commentary.
10 Severe damage to the manuscript text here; cf. apparatus to the Greek text for different emenda-
tions suggested.
11 The point I lies on the line of intersection between the abovementioned plane and the surface 
created by the ascending line BC in the cylinder.
12 E lies on the projection of the line created on the cylindrical surface onto the plane.
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Now, this has been subjected to analysis in a general way.1 When, however, the 
ratio of the straight line EZ to the arc DC is the same as that of BA to the <arc> 
ADC, the above-mentioned line quadratrix comes to be.

Prop. 29: Analytical Determination of the Quadratrix
from the Archimedean Spiral

#34 It can, however, also be made the subject of analysis2 by means of a spiral 
described in the plane, in a similar way.

B Z C

E
H

I

K
L

D

A

For:
Assume that the ratio of EZ to the arc DC is the same as the <ratio> of AB to 

the arc ADC,3 and that in the time in which the straight line AB, moving around B 
passes through the arc ADC, a point on it, starting from A, arrives at B when AB 

1 ’anelύqh. Compare the introductory phrase of Prop. 28 with note.
2 The Greek text, again, has ’analύesqai. Compare the introductory phrase of Prop. 28.
3 We are starting from a configuration with a section of a circle ABC and a part of it DBC. The arc 
ADC is not necessarily the arc of a quadrant (Co p. 91 is probably mistaken in assuming so). An 
Archimedean spiral will be assumed in it, and the analysis will show that any such configuration 
with spiral will determine a unique quadratrix-type line, though not necessarily the quadratrix 
itself. When a spiral is chosen with an inbuilt ratio equal to the ratio of the circumference of a 
quadrant to the radius, we get the quadratrix.
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takes the position of CB,1 and that it creates the spiral BHA. Then the arc ADC is 
to the <arc> CD as AB is to BH,2 and alternate <this equation.>3

But EZ <is in that ratio> to <arc> DC, also.4 Therefore, BH is equal to ZE.5 
Draw KH at right angles to the plane, equal to BH. Then K lies in a cylindroid 
surface over the spiral.6

It <lies>, however, also on the surface of a <uniquely determined> cone (for BK, 
when it is joined, turns out to lie on the surface of a cone inclined at an angle of 45° 
toward the underlying <plane>, and drawn through the given <point> B <as 
vertex>7). Therefore, K <lies> on a <uniquely determined> line.8

Draw LKI through K as a parallel to EB, and BL and EI at right angles to the 
<underlying> plane.9 Then LKI (lies) on a plectoid10 surface (for it travels both 
through the straight line BL, which is given in position and through the line, given 
in position, on which K <lies>). Therefore, I lies on a <uniquely determined> sur-
face, also. But it also lies on a <uniquely determined> plane (for ZE is equal to EI, 
since it is also equal to BH, and ZI turns out to be given as a parallel in position, 
since it is a perpendicular onto BC). Therefore, I <lies> on a <uniquely determined> 
line,11 so that E, also, <lies on a uniquely determined line>.

And it is clear that, when the angle ABC is a right <angle>, the above-mentioned 
line “quadratrix” comes to be.

  1 Compare the description of the genesis of the spiral before Prop. 19. The direction of the travel 
through AB and through the circumference is reversed in comparison to the former version. Also, 
the spiral is inscribed not in a full circle, but in a sector. The above translation accepts Hultsch’s 
emendations in 262, 7–9. Tr 112, 17/18 prints Hultsch’ s version, but notes that one might have 
emended GDA in 262, 7 Hu and kept the manuscript reading for the rest of the sentence. Then the 
spiral is generated exactly like the one in Prop. 19. In the Greek text, Tr’s suggestion was imple-
mented (cf. apparatus).
 2 Symptoma of the spiral, following directly from the genesis.
 3 AB:arc ADC = BH:arc DC.
 4 By assumption.
 5 V, 9 or V, 15.
 6 This surface is built up over the spiral as limiting line of the base. Co p. 91/92 assumes a different 
situation, with a full cylinder quadrant and an inscribed Apollonian helix, in addition to the cylin-
droid. For yet another reconstruction cf. Knorr (1986, p. 166 f).
 7 By construction, HK = BH, and ÐBHK = p/2. Therefore, ÐHBK = p/4.
 8 K lies on the line created by the intersection of the two surfaces mentioned, cylindroid over the 
spiral, and surface of the cone with vertex B.
 9 Without loss of generality, L and I can be chosen as the points of intersection between the parallel 
to BD through T and the straight lines EI, BL.
10 The Greek word plektoeidη̃V (plhktoeidη̃V in A, Tr 112, 27, and Ver Eecke ad locum) is used 
here as a technical term the context for which is now lost. Following Hultsch, I have left it untrans-
lated. What a plectoid surface looks like can be derived from the description given here by Pappus. 
There is no other, independent source.
11 I lies on the line created by the intersection of the surfaces mentioned.
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Prop. 30: Symptoma-Theorem on the Archimedean 
Spherical Spiral

Prop. 30: Surfaces Cut Off by a Spiral on a Hemisphere

#35 Just as a certain spiral is contemplated in the plane when a point travels along 
a straight line that describes a circle, and in solids when a point travels along one 
of its sides,1 while it describes a certain surface, so it is in fact a natural next step2 
to contemplate a spiral described on a sphere, in the following way.3

C

A

B

D

HZ

E

T

O

I

K

N

L

M

Let KLM be a maximum circle in a sphere with point T as pole, and assume that 
starting from T the quadrant TNK of a maximum circle is described, and that the 
arc TNK, traveling around T, which remains in its position, along the surface <of 
the sphere>, in the direction of the parts <containing> L and M, comes to a halt 
again in the same position, whereas a certain point traveling on it, starting from T, 
arrives at K. Now, it describes a certain spiral, such as TOIK on the surface,4 and 

1 Severe damage to the manuscript text; see the apparatus for different conjectures.
2 The Greek text has ’akolouqón; once again, we have a context in which the word cannot signify a 
logical derivation, and must mean a next step in a somewhat orderly fashion. See the commentary 
on analysis-synthesis in the introduction to Props. 4–12.
3 Although this introductory paragraph draws an explicit connection to Props. 19, 28, and 29, the 
path of reasoning about the spiral line is very different from Props. 28 and 29. It shows affinities 
to Prop. 21 (“meta-mechanical” path of reasoning about the motion curves, quasi-infinitesimals, 
limit process, no analysis).
4 Compare the genesis of the plane spiral in Prop. 19. The ratio of the velocities for the two 
synchronized motions involved in Prop. 30 is simply 4:1. Cf. equations in polar coordinates: 
spherical spiral r = 1/4 w, plane spiral in Prop. 19 r = (1/2p)w, plane spiral in SL r = aw, where 
a is a natural number or a ratio of two numbers. The spherical spiral by motions can be constructed 
in thought exactly.
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whichever arc of a maximum circle is described starting from T,1 it will have to the 
arc KL the ratio that the <arc> LT has to the <arc> TO.2

Now, I claim that, when the arc ABC of a quadrant of the maximum circle in the 
sphere with center D is set out, and CA is joined, the sector ABCD turns out to be 
to the segment ABC as the surface of the hemisphere <is> to the surface cut off 
<from it> between the spiral TOIK and the arc KNT.3

For:
Draw CZ as a tangent to the arc <ABC>, and describe the arc AEZ <of the 

circle> through A with center C. Then the sector ABCD is equal to the <sector> 
AEZC (for the angle at D is two times the angle ACZ, whereas the square over DA 
is half the square over AC4). Therefore, <we need to show> that, as the said 
surfaces are to each other, so <is> the sector AEZC to the segment ABC, also.5

Let the arc KL be a part of the whole circumference of the circle, and the <arc> 
ZE the same part of the <arc> ZA, and join EC. Now, the <arc> BC will be the 
same part of the <arc> ABC.6 However, whichever part the <arc> KL is of the 
whole circumference, the <arc> TO is that same part of the <arc> TOL, also.7 And 
the <arc> TOL is equal to the <arc> ABC. Therefore, the <arc> TO is equal to the 
<arc> BC as well.

Describe the circle ON through O with pole T, and the <arc> BH through B 
with center C. Now, since as the surface LKT on the sphere <is> to the <surface> 
OTN, so <is> the whole surface of the hemisphere to the surface of the section 
the spherical radius of which is TO,8 whereas as the surface of the hemisphere 

1 Cf. the full circle going through LOTI, intersecting the spiral in O. Co p. 93, C is mistaken in 
assuming that arc KL is fixed as a quarter circle now. A division 1:2n is likely (cf. Prop. 21).
2 The symptoma of the spherical spiral is read off directly from the genesis via motions; cf. the 
plane spiral (Prop. 19) and the quadratrix (before Prop. 26), but contrast the conchoid (before 
Prop. 23). I have based the translation on Hultsch’s emendations in 264, 16/17 Hu. Tr 113, 
20–22 prints an emendation that is closer to the manuscript reading and is perhaps preferable 
(cf. apparatus).
3 The formulation of the protasis is analogous to Prop. 21. An area theorem is expressed in terms 
of numerical ratios. Cf. Prop. 16: a theorem on a sequence of ratios of lines is expressed in 
numerical ratios.
4 ÐADC = ÐZCD = p/2 (III, 18); ÐACZ = ÐACD = p/4 (DADC isosceles). AC2 = 2AD2 (I, 47).

2(sector AZC):sector ACD = AC2:AD2 = 2AD2:AD2 (XII, 2) = 2:1.
5 The configuration investigated has been transformed to a situation of analogy between surface 
with surface “inside” and sector with segment “inside”; cf. Prop. 21’s use of a parallel auxiliary 
configuration with rotation cylinders, and investigation via parallel processes of continuous 
inscription.
6 arc ZE:arc ZA = ÐZCE:ÐZCA (VI, 33); ÐCDA = 2ÐZCA; ÐCDB = 2ÐZCE (III, 32 and III, 
20) Þ arc ZC:arc ZA = ÐZCE:ÐZCA = ÐCDB:ÐCDA = arc CB:arc CA (VI, 33).
7 Symptoma of the spiral.
8 V, 15 (surface LKT:surface OTN = surface hemisphere:full surface ONT).
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<is> to the surface of the section, so is the square over the straight line joining T 
and L to the square over the <straight line joining> T and O,1 or the square over 
EC 2 to the square over BC, therefore as the sector KLT in the surface <is> to the 
<sector> OTN, so will the sector EZC be to the <sector> BHC.3 Similarly we will 
show that, also, as all the sections in the hemisphere that are equal to KLT, taken 
together (they are <when put together> the whole of the surface of the hemi-
sphere), <are> to the sections described around the spiral that are of the same 
order as OTN, taken together, so <are> all the sectors in AZC that are equal to 
EZC, taken together, i.e.: <so is> the whole sector AZC, to the <sectors> circum-
scribed around the segment ABC that are of the same order as <the sector> CBH, 
taken together.

In the same way it will also be shown, however, that as the surface of the hemi-
sphere <is> to the sections inscribed in the spiral, so <is> the sector AZC to the 
sectors inscribed in the segment ABC, so that as the surface of the hemisphere <is> 
to the surface cut off by the spiral, so <is> the sector AZC, i.e.: the sector ABCD, 
to the segment ABC.4

Addition:
On account of this result one gathers, however, that the surface cut off between 

the spiral and the arc TNK is eight times the segment ABC (since the surface of the 
hemisphere <is eight times> the sector ABCD, also5), whereas the surface (cut off) 
between the spiral and the base of the hemisphere is eight times the triangle ACD,  
i.e.: <it is> equal to the square over the diameter of the sphere.6

1 Surface hemisphere = 2 maximum circle (Sph. et Cyl. I, 33); circle with radius TL:maximum 
circle = TL2:(radius hemisphere)2 (XII, 2) = 2:1 (I, 47); Þ surface of hemisphere = circle with 
radius TL; Surface of sphere through O, N with pole T = circle with radius TO (Sph. et Cyl. I, 42:); 
Þ Surface hemisphere:surface ONT = circle TL:circle TO = TL2:TO2; cf. Co p. 94, K for a 
slightly different path of reasoning.
2 By construction, TL = AC = ZC, and BC = TO as chords under equal arcs (III, 29).
3 XII, 2; V, 15 (circles have ratio of squares over radii); the same proportion holds for equal parts. 
Ver Eecke (1933b, p. 204, #4) refers to Sph. et Cyl. I, 42/43 here.
4 An implicit limit process is used (cf. Prop. 21). The sought areas are analogously enclosed 
between all circumscribed and all inscribed composite circular areas/spherical sections. By choos-
ing the arcs involved in the construction ever smaller, the desired lines and areas are 
approximated.
5 Sph. et Cyl. I, 33 (surface of the complete sphere = 4 area of maximum circle). Sph. et Cyl. I, 35: 
surface hemisphere = 8 quadrants of maximum circle. Thus, surface above spiral = 8 segments.
6 We compare the remainders after subtraction. Since surface above spiral = 8 segments, we get 
that surface hemisphere – surface above spiral = surface below spiral = 8DACD. 8DACD = 8(1/2 AD2) 
= 4AD2 = (2AD)2.
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Three Kinds of Mathematical Questions, and Their Appropriate 
Means of Argumentation1

#36 When the ancient geometers wished to trisect a given rectilinear angle, they got 
into difficulties for a reason such as the following. We say2 that there are three 
kinds 3 of problems in geometry, and that some <of the problems> are called 
“plane,” others “solid,” and yet others “linear.” Now, those that can be solved4 by 
means of straight line and circle,5 one might fittingly call “plane.” For the lines 
by means of which problems of this sort are found have their genesis in the plane 
as well. All those problems, however, that are solved when one employs for their 
invention either a single one or even several of the conic sections, have been called 
“solid.” For it is necessary to use the surfaces of solid figures – I mean, however, 
(surfaces) of cones – in their construction.6 Finally, as a certain third kind of prob-
lems the so-called “linear” kind is left over.7 For different lines, besides the ones 
mentioned, are taken for their construction, which have a more varied and forced 
genesis, because they are generated out of less structured surfaces, and out of 
twisted8 motions. Of such a sort, however, are both the lines found on the so-called 
loci on surfaces9 and also others, more varied than those and many in number, 
which were found by Demetrius of Alexandria in the “linear constitutions,”10 and 

 1 Essentially the same statement about the three kinds of geometrical problems is found in Coll. 
III. This passage is somewhat of a locus classicus on methodology. In fact, it is only found in 
Pappus in this degree of generality. See the commentary.
 2 famÎ¢n (270, 3 Hu), usually interpreted as equivalent here to “one says.” It cannot be excluded, 
however, that we have another authorial plural here (as in many other places in Coll. IV), equiva-
lent to “I say.”
 3 gÎ¢nh (270, 3 Hu); since Aristotle’s theory of scientific argumentation (Analytica Posteriora), the 
word had been a standard technical term in Greek theory of science. It has a classificatory con-
notation (kinds versus species), but it is also used to denote the subject matter of a scientific dis-
cipline as a closed field of essential connections. A possible translation for genos is “class”, but 
this obscures the connotation of the word with concepts of kinship, and the connections with an 
established discourse on scientific methodology.
 4 lύesqai (270, 6 Hu); unlike “ana-luein” (Props. 28 and 29), this word means “solve.”
 5 Note that the classification of the kinds is derived from the objects needed for a constructive solu-
tion, i.e., mathematical lines, not from tools of construction and performance (e.g., ruler and 
compass).
 6 kataskeuή (270, 11 Hu), the technical term for the construction in a classical apodeixis.
 7 υ‘poleίpetai (270,13 Hu), a hapax legomenon in Coll. IV. Perhaps it was Pappus himself who 
lumped all the rest of mathematical problems into one “kind.” See the commentary.
 8 Î

,
pipeplhgmÎ¢nwn (270, 17 Hu), perhaps related to the term plhktoeidη̃V/plektoeidη̃V in 

Prop. 29.
 9 Cf. Props. 28 and 29. The space curves created in the intermediate steps there belong to this group.
10 grammika ὶ pistαvseiV (270, 20/21 Hu); probably a book title. There is no information outside 
Coll. III/IV available on Demetrius. Ver Eecke (1933b, p. 207, # 3) dates Demetrius roughly in the 
first century BC, because Menelaus (see below) lived in the first century AD; cf. also Tannery 
(1912, Vol. II, pp. 1–47).
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by Philo of Tyana, from the twisting1 of both plectoids and all sorts of other surfaces 
on solids2 and which have many astonishing symptomata about them. And some of 
them were deemed, by the more recent geometers, worthy of rather extensive dis-
cussion,3 and a certain one of them is the line that was also called “the paradox” by 
Menelaus4 And of this same kind <i.e., the linear kind> are also the other spiral 
lines, the quadratrices and the conchoids and the cissoids.5

Somehow, however, an error of the following sort seems to be not a small one 
for geometers, <namely> when a plane problem is found by means of conics or of 
linear devices6 by someone, and summarily, whenever it is solved from a non-
kindred kind, such as is the problem on the parabola in the fifth book of Apollonius’ 
Conics7 and the neusis of a solid on a circle,8 which was taken by Archimedes in the 
<book> about the spiral. For it is possible to find the theorem written down by him 
without using a solid, I mean in fact <it is possible> to show that the circumference 
of the circle in the first rotation <of the spiral> is equal to the straight line drawn at 

1 piplokή (270,21 Hu), perhaps related to the participle “ pipeplegmÎ¢noV” used above. Philo of 
Tyana is otherwise unknown; Ver Eecke, 1993b p. 207, #4 dates him to the second century BC.
2 k piplok V plektoeidω~n (or: plhktoeidω~n) te ka ὶ stereω~n pantoίwn; the reference here 
is certainly to a another book, though probably not directly to a book title. The surfaces used in 
Prop. 29 probably are examples for such “twisted plectoids”.
3 A considerable corpus of contributions to the geometry of such “higher” curves must have existed.
4 Menelaus of Alexandria, an astronomer of the first/second century AD, was a predecessor of 
Ptolemy. His attested works include three books on spherics (preserved in Arabic), a work contain-
ing tables of chords in circles, a work on hydrostatics, a treatise on the settings of the signs of the 
zodiac, Elements of geometry, and a work on higher curves, with connection, inter alia, to the 
duplication of the cube, and to positions of the fixed stars. Hultsch refers to Chasles, Aperçu 
historique for a possible reconstruction of the line called “the paradox” (cf. 271, #4 Hu).
5 Note the plurals. Pappus has described general quadratrices in Props. 28 and 29. Examples for 
spirals are mentioned in Props. 19 and 28–30. He has mentioned the existence of several con-
choids in Prop. 23. The cissoid was originally invented by Diocles in the third century BC and 
apparently generalized later; cf. Knorr (1986, pp. 246–263). In Pappus’ text, the other curves are 
indeed labeled as types of spirals, perhaps because all such “higher” curves involve a rotation 
along with a linear motion.
6 Apollonius classified plane and solid neusis problems, and differentiated them into two classes 
according to the lines needed for their constructive solution. He may have attempted to develop a 
complete operational toolbox to solve problems that would fall under those types, determining 
limiting conditions and providing a scale of increasing complexity via analysis. There is no clear 
evidence, however, that the demand of “keeping within the kind” ever reached the status of a 
fundamental claim with universality for all geometry, and all geometers. See the commentary.
7 Hultsch (273, #1 Hu) believes this must be I, 52; Zeuthen (1886, pp. 280–288), Tannery (1912, 
vol. I, pp. 302–311) and others show, however, that it could have been the problem of finding the 
normal to a parabola (Con. V, 62 in Toomer’s 1990 edition). Apollonius treats it analogously to 
the (solid) case of the hyperbola and the ellipse. In the case of the parabola, however, a plane 
construction would have sufficed, if one takes the parabola in question as given; cf. Zeuthen (1886, 
pp. 286–288).
8 A has a genitive (location) here (and in the parallel phrase in Prop. 44). Hultsch emends to an 
accusative (direction). I have translated the transmitted text.
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right angles to the generator <of the spiral> up to <the point of intersection with> 
the tangent of the spiral.1

Now, since a difference of such a sort belongs to problems, the earlier geometers 
were not able to find the above mentioned problem on the angle, given that it is by 
nature solid,2 and they sought it by means of plane devices. For the conic sections 
were not yet common knowledge for them, and on account of this they got into 
difficulties. Later, however, they trisected the angle by means of conic sections, 
using for the invention the neusis described in what follows.

Props. 31–34: Angle Trisection

Prop. 31: Neusis for Angle Trisection

When a rectangle ABCD is given, and BC is produced, let it be the task to draw AE 
through <the interior> and make the straight line EZ equal to a given <straight line.>3

<Analysis4>

1 Pappus’ objection here, and even more so his upcoming arguments about the neusis in question 
(cf. Props. 42–44 with notes and commentary) have often been misconstrued in secondary literature. 
The remarks refer to SL 18 (subtangent to a spiral of first rotation is equal to the circumference), 
which invokes neuses from SL 7/8. These neuses, in fact all neuses in SL 5–9, are indeed solid in 
Pappus’ sense (see the commentary on Props. 42–44 on how far he is able to show this). Pappus 
also claims that Archimedes could have done with a plane construction for the theorem in SL 18. 
Whether he means that Archimedes could have used a plane neusis or that Archimedes could have 
used some other plane argument, instead of the neusis, in SL. 18, is unclear. Co p. 95, C, refers to 
Witelo, Perspectiva I, 128 for a plane construction. Since Witelo may very well have had indirect 
access to the Collectio in the thirteenth century (cf. Unguru 1974), this may be significant, and 
certainly Witelo’s suggestion deserves scholarly attention.
2 t®̃ fύsei stereòn ßpVrcon; Pappus ascribes an essential, internal character to mathematical 
problems. This is in line with the Aristotelian meta-theoretical framework and vocabulary he has 
been using in this passage, as testified inter alia by his use of the term “kind.” See the commentary.
3 The neusis can obviously be constructed with the conchoid (cf. Props. 23–25), when one chooses 
A as pole, CD as canon, and EZ as distance. Perhaps this was what Nicomedes did. Note the relation to 
the neusis that figures in Prop. 24. It seems quite plausible that Nicomedes indeed proposed essentially 
a single (mónhn) construction for both problems. Cf. above, introductory remarks on Prop. 24.
4 The analysis was probably added by Pappus to an older argument for the angle trisection that 
constructed the neusis without using conics. He may have excerpted the analysis from a source. 
In A, the figure for the analysis differs from the one for the synthesis. The manuscript text also 
shows signs of confusion and incoherent partial corrections (cf. apparatus to the Greek text). 
Treweek 117a documents the differences in a list. The existence of these differences supports 
the thesis about the subsistence of an older layer of argument in Pappus’ text. They might be 
used for further investigations. An independent Arabic version, purely synthetic, exists. See the 
bibliographical references for Props. 31–34 in the commentary. Hultsch has adjusted the lettering 
of the diagram and of the items used in the argument for the analysis to the features of the synthe-
sis, thus making Prop. 31 conform to regular practice in analysis-synthesis (272 Hu + app; simi-
larly: Co p. 96/97). I have followed him. Treweek 117, 6–118, 2 opts for a more cautious and 
conservative emendation.
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Assume that it has turned out that way,1 and draw DH and HZ parallel to EZ and 
ED <respectively.>2 Now, since ZE is given <in length> and it is equal to DH,3 
DH is therefore given <in length>, also. And D is given. Therefore, H lies on the 
circumference of a circle given in position.4 And since the rectangle BCD is given, 
and it is equal to the rectangle BZ/ED <in size,>5 the rectangle BZ/ED is given, also,  
i.e.: the rectangle BZH <is given>. Therefore, H lies on a hyperbola. But it also lies 
on the circumference of a circle given in position. Therefore, H is given.
<Synthesis>

#37 Now, the problem will be put together 6 in the following way. Let ABCD be 
the given rectangle, and m the straight line given in length, and let DK be equal to 
it, and describe, on the one hand, the hyperbola DHT through D with asymptotes 
AB/BC (I will provide the proof for this in what follows in order7), and, on the other 
hand, the circular arc KH through K with center D, intersecting the hyperbola in H. 
And when the parallel HZ to DC is drawn, join ZA.

I claim that EZ is equal to m.
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1 Analysis-assumption. For the structure of analysis-synthesis in general see the introduction to the 
commentary on Props. 4–12.
2 This part of the analysis is non-deductive.
3 The resolutio begins here.
4 Data, def. 6.
5 Complete the rectangle ABZ and apply I, 43.
6 sunteqήsetai. The synthesis begins here.
7 Prop. 33.
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For: 
Join HD and draw the parallel HL to KA. Then the rectangle ZHL, i.e.: the 

rectangle BZH, is equal to the rectangle CDA, i.e.: to the rectangle BC/CD.1 
Therefore, CD is to ZH as ZB <is> to BC, i.e.: as CD <is> to ED.2

Therefore, ED is equal to ZH.3 Therefore, DEZH is a parallelogram.4 Therefore, EZ 
is equal to DH, i.e.: to DK, i.e.: to m.

Prop. 32: Trisection of the Angle via Neusis

#38 Now, when this has been shown, a given rectilinear angle is trisected in the 
following way.

Let the <angle> ABC, first, be acute,5 and from a certain point A <draw> the 
perpendicular AC, and when the rectangle CZ is completed, produce ZA toward E,6 
and since CZ is a rectangle, place the straight line ED between the <straight lines> 
EA/AC, verging toward B and equal to two times AB (for that this can come about 
has been written down above).

I claim in fact that the angle EBC is the third part of the given angle ABC.

A

B C

Z E

H
D
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For: 
Bisect ED in H, and join AH. Then the three <straight lines> DH, HA, and HE are 
equal.7 Therefore, DE is twice AH. But it is twice AB, also.8 Therefore, BA is equal 

1 Con. II, 12, paraphrased above in the footnotes to the last part of the analysis. BZ × ZH = ZH × 
HL = CD × DA = BC × CD.
2 DBZA ∼ DCZE, because AB ║ CE; BC:CZ = AE:EZ (VI, 2); ZB:BC = ZA:AE (V, 16/18).

DAED ∼ DZEC, because AD ║ CZ; ZE:EC = AE:ED (VI, 4); ZA:AE = CD:ED (V, 16/18).

Þ CD:ZH = ZB:BC = CD:ED.
3 V, 9.
4 ZH ║ ED by construction, and we have just seen that ZH = ED.
5 Prop. 32 is the only example in Coll. IV with a diorismos fully carried through, in the sense that 
all possible cases for a problem are covered. But see the commentary on plane sub-cases for this 
generally solid problem.
6 The position of E is yet to be determined.
7 A on the semicircle over DE with center H (III, 31).
8 By construction.
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to AH, and the angle ABD <is equal> to the angle AHD.1 However, the angle AHD 
is two times the angle AED,2 i.e.: <two times> the angle DBC.3 Therefore, the angle 
ABD is two times the angle DBC, also. And when we bisect the angle ABD,4 the 
angle ABC will be trisected.

A

CB

D

b

#39 When, however, the given angle happens to be a right angle, we will cut off 
a certain <segment> BC and describe over it the equilateral <triangle> BDC.5 And 
when we bisect the angle DBC,6 we will have trisected the angle ABC.7

#40 Finally, let the angle be obtuse, and draw BD at right angles to CB, and, on 
the one hand, cut off the angle DBZ as a third part of the angle DBC, and on the 
other hand, the angle EBD as the third part of the angle ABD (for I have shown 
these <two constructions> above). Then the angle EBZ is the third part of the whole 
angle ABC as well. When, however, we erect an <angle> equal to the angle EBZ 
along both AB and BC, we will trisect the given angle.

A

B C

Z
DE

c

1 I, 5.
2 III, 20.
3 I, 29 (parallels ZE and BC with transversal BE).
4 I, 9.
5 I, 1.
6 I, 9.
7 For an alternative, using a plane neusis, cf. Heraclius’ construction, which is contained in Coll. VII, 
and also reported in Descartes (1637, pp. 387–389) (188–193 Smith/Latham). It is noteworthy that 
Pappus did not opt for this route here. See the commentary.
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Prop. 33: Analysis-Synthesis for the Hyperbola-Construction in 
the Trisection Neusis

#41 Now I will provide an analysis for the problem that was postponed.1 When two 
straight lines AB and BC are given in position, and a point D is given, to describe 
the hyperbola through D with asymptotes AB/BC.
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k

<Analysis>
Assume that it has turned out that way,2 and that the <hyperbola> EDZ has been 

described, and from D draw its tangent ADC, and the diameter HBD, and the parallel 
DT to BC.3 Then HD and DT are <given> in position,4 and T is given.5 And since 
AB and BC are the asymptotes of the hyperbola, and AC is a tangent, AD is, there-
fore, equal to DC, and the square over each of the two of them is equal to one fourth 
of the figure on HD. For that has been shown in the second <book> of the Konika.6 

1 This phrase introduces the analysis. Co p. 97 translates “resolvemus.” This is more accurate than 
Hu’s “solvemus” (277 Hu). Hultsch comments (277, #1 Hu) that a shorter constructive proof 
would have been possible via Con II, 4, though Pappus’ resolutio (!) has its merits, too. Such 
a construction would have been purely synthetic. Pappus’ argument here contains analysis 
and synthesis and serves as exemplary for the methods of argument in “solid” problem solving. 
Prop. 33 shows strong indications for a close connection to Apollonius’ lost analytical-synthetical 
solution. It is also very close to Coll. VII, #204 Hu, by Pappus (commentary on an analytical 
 argument in Apollonius’ original Konika, Book V). See the commentary.
2 Analysis-assumption.
3 This part of the analysis contains an extension of the configuration and is non-deductive.
4 Data 28 (for DT) and 26 (for HD); this sentence marks the beginning of the resolutio.
5 Data 25 (for T).
6 Con. II, 3: AC2 is equal to the figure on HD, and AC = 2AD = 2DC holds. The “figure on HD” 
is the rectangle constituted of the diameter HD and the latus rectum (parameter) k. Note, however, 
that Pappus is in all likelihood not referring to the now extant version of the Konika. Compare the 
footnote on the end of the analysis.
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Now, since CD is equal to DA, BT is equal to TA, also.1 And BT is given.2 
Therefore, TA is given, also.3 And T is given. Therefore, A is given as well.4 
Therefore, the <straight line> ADC is <given> in position. And AC is given in 
length,5 so that the square over AC is given as well.6 And it is equal to the figure on 
HD.7 Therefore, the figure on HD is given <in area>. And HD is given – for it is 
twice BD, which is given in length, on account of the fact that B and D are both 
given.8 Therefore, the latus rectum of the figure is given, also.9

In fact, the problem has turned out to be of the following sort: when two straight 
lines, <namely> both HD and the latus rectum, are given in position and length, to 
describe the hyperbola with diameter HD, for which the <straight line> to which the 
squares are applied is the remaining straight line, and for which the <straight lines> 
drawn ordinatim to HD will be parallel to a certain straight line AC, given in position. 
This, however, has been subjected to analysis in the first <book> of the Konika.10

<Synthesis>
#42 Now, it will be put together11 in the following way. Let AB and BC, on the one 

hand, be the straight lines given in position, and D, on the other hand, the given point, 
and draw DT, on the one hand, parallel to BC, and <draw> TA, on the other hand, 
equal to BT, and when AD has been joined, produce it to C, and produce BD, after it 
has been joined, also, and position BH equal to BD, and let the rectangle between HD 
and a certain other <straight line> k be equal to the square over AC,12 and describe 
the hyperbola EDZ with diameter HD and latus rectum k, so that the <straight lines> 
drawn ordinatim to HD are parallel to AC.13 Then AC will touch the conic section.14 

1 CD = AD has just been shown. DBAC ∼ DTAD on parallels CB, DT; BT:TA = CD:DA (VI, 2). 
Apply V, 9.
2 Data 26.
3 Data 2.
4 Data 27.
5 Data 26: AD is given in length and position, AC is given in position. Since AC = 2 AD, AC is 
given in length as well (Data 2).
6 Data 52.
7 Con. II, 3, cf. above.
8 Data 26 and Data 2.
9 Data 57.
10 ’analύetai. The extant Konika, a revision of Apollonius’ work on conics by Eutocius (sixth 
century AD), are purely synthetic and do not contain analyses for the constructions provided. 
Pappus consistently speaks of Apollonius’ treatise on conics as an analytic work in Coll. VII, and 
in Coll. IV he handles all problems that are solved by means of conics via analysis-synthesis. 
Probably the Apollonian work Pappus worked with was analytic-synthetic. For a synthetic solution 
of the construction problem mentioned here by Pappus c.f. Con. I, 54/55. Note that Pappus does 
not mention Apollonius by name. This could mean that in his time, Apollonius’ (analytical) 
Konika were the standard reference work, parallel to the Elements.
11 sunteqήsetai. This is the beginning of the synthesis.
12 Elem. I, 45.
13 Con. I, 54/55.
14 Con. I, 32.
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And AD is equal to DC (since BT is equal to TA, also1), and it is obvious that both 
the squares over AD and DC are the fourth part of the figure on HD.2 Therefore, AB 
and BC are the asymptotes of the hyperbola EDZ.3 Therefore, the hyperbola through 
D with the given straight lines as asymptotes has been described.

Prop. 34: Alternative Constructions of the Angle 
Trisection via Solid Loci 4

<Alternative a>
#43 The third part of a given arc is cut off in a different way, also, without the 

neusis, by means of a solid locus of the following sort.
<Assume that> the <straight line> through A and C is <given> in position, and that 

the angle ABC has been bent5 over the <points> A and C given on it, making an angle 
ACB that is two times the angle CAB.6 

<I claim> that B lies on a <uniquely determined> hyperbola7

a

A

B

CDEZ H

1 DBAC ∼ DTAD on parallels BC, TD. Since BT = TA, i.e., BA:TA = 2:1, CA:DA = 2:1 (VI, 2), 
and DC = DA.
2 AC2 = HD × k by construction. We have just seen that ½AC = AD = DC.
3 Con. II, 1/2.
4 Prop. 34 gives the essential part of an analysis for the angle trisection via solid loci in two versions. 
No detailed constructive apodeixes are offered. Pappus is probably drawing on pre-Apollonian 
treatments of solid loci, perhaps by Aristaeus, and may have an interest in portraying the 
Apollonian solution, which he presented in detail in Prop. 33, as the classic one in terms of meth-
odology, which nevertheless did not render older contributions utterly superfluous. Prop. 34a is a 
simplified version of Prop. 34b, using the Apollonian technical apparatus, and may very well be 
by Pappus himself (cf. Jones 1986a, p. 584). It is the simplest of the three solutions in Coll. IV 
(cf. Heath 1921, I, pp. 241–242; Zeuthen 1886, pp. 210–212). 34b shows clear traces of an older 
treatise on solid loci (see below for Prop. 34b, and see the commentary).
5 keklαvsqw. This word has also been used in Props. 11/12. No construction for the “bending” is 
offered. Obviously, it is equivalent to the angle trisection. In Prop. 34, the task of trisecting an 
angle AMC is assumed to have been reduced to the task of trisecting the arc over a chord AC.
6 Prop. 34a only considers the case where ÐBCA is acute. For the other two possible configurations, 
one can argue analogously, cf. Co p. 100 f. and appendix Hu p. 1230.
7 Any point B that meets the condition about the base angles lies on this hyperbola.
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Draw the perpendicular BD, and cut off DE, equal to CD. Then BE, when it has 
been joined, will be equal to AE.1 Position EZ as equal to DE, also. Then CZ is 
three times CD. Let AC be three times CH, also.2

Now, H will be given,3 and the remaining AZ will be three times HD.4 And since 
the square over BD is the difference between the squares over BE and EZ,5 whereas 
the rectangle DA/AZ is the difference of these, also,6 the rectangle DAZ, i.e.: three 
times the rectangle ADH,7 will therefore be equal to the square over BD. Therefore, 
B lies on a hyperbola, the latus transversum of which is AH, and the latus rectum 
three times AH.8 And it is obvious that the point C cuts off half the latus transversum 
AH on the <straight line> CH <drawn> to the vertex H of the conic section.9 And 
the synthesis is obvious. For one will have to divide AC so that AH is two times HC,10 
and describe the hyperbola through H with axis AH, the latus transversum of which 
is three times AH,11 and to show that it creates the above mentioned twofold ratio of 
the angles.12 And that the hyperbola described in this way cuts off the third part of the 
given circular arc is rather easy to understand when the points A and C are posited as 
the endpoints of the arc.13

1 DEBD ≅ DCBD (I, 4) Þ ÐBEC = ÐBCA (= 2ÐBAE by hypothesis).

ÐBEC = ÐBAE + ÐABE (I, 32) Þ ÐBAE = ÐABE, and DABE is isosceles (I, 6).
2 Choose H on AC, with HC:AC = 1:3 (VI, 9).
3 Data 2, Data 27.
4 CZ = 3CD and AC = 3CH; 3HD = 3(CH – CD) = 3CH – 3CD = AC – CZ = AZ.
5 I, 47; ED = EZ by construction.
6 II, 6: DH × AZ + EZ2 = AE2, i.e., DH × AZ = AE2 – EZ2; AE = BE was shown above.
7 AZ = 3DH was shown above; VI, 1.
8 Consider the converse of Con. I, 21 (not established as a theorem in itself). Con. I, 21 states that 
for all points B on the hyperbola through H with latus transversum AH, parameter 3AH and ordi-
nate angle p/2, the above equality holds. In the analysis, we can therefore “conclude” from the 
equality that B lies on this hyperbola. Note, however, that this justification via Apollonius’ Konika 
may be anachronistic in the sense that the alternatives 34a and 34b may very well draw on a pre-
Apollonian treatment of the angle trisection via “solid loci” perhaps by Aristaeus. See the 
commentary.
9 By construction of H, AH = 2HC.
10 VI, 9.
11 Con. I, 54/55.
12 Retrace the steps of the above analysis. All points B on the hyperbola have the property that 
2ÐBAC = ÐBCA. See the commentary for a sketch of the apodeixis suggested here. Co p. 101 
gives an extended apodeixis, considering all three possible cases for ÐBCA.
13 For a reconstruction of an angle trisection on the basis of the considerations given here see the 
commentary. Hultsch p. 285 # 3 refers to a discussion of the synthesis by Commandino (cf. Co 
pp. 101–102, O). The construction can, of course, be used for a number of “solid” problems, and 
that may be the reason why Co integrates a longer exposition of a constructive proof. See also the 
comments on Props. 42–44.
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B
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<Alternative b1>
#44 Some have set out the analysis of trisecting an angle or an arc in yet another 

way without a neusis. Let the argument2 be about an arc, however. For it makes no 
difference whether one divides an angle or an arc.

Assume that it has turned out that way in fact, and that BC has been cut off as the 
third part of the arc ABC,3 and join AB, BC, and CA. Then the angle ACB is two 
times the angle BAC.4 Bisect the angle ACB by CD, and <draw> the perpendiculars 
DE and ZB. Then AD is equal to DC,5 so that AE is equal to EC, also.6 Therefore, 
E is given.7 Now, since AD is to DB, i.e.: AE to EZ,8 as AC <is> to CB, alternando, 
BC is therefore to EZ as CA <is> to AE, also. CA is twice AE, however. Therefore, 
BC is twice EZ as well. Therefore, the square over BC, i.e.: the <sum of> the squares 
over BZ and ZC,9 is four times the square over EZ.

Now, since the two <points> E and C are given, and BZ is at right angles <to 
AC>, and the ratio of the square over EZ to the <sum of)> the squares over BZ and 

1 This version is closely related to a (lost) argument from Euclid’s Solid loci, ultimately resting on 
a prior argument by Aristaeus. For it is closely connected to Pappus’ commentary on such an 
argument in Coll. VII (#237 Hu, Jones (1986a, # 316–318, pp. 365–369, with 583 f); cf. Zeuthen 
(1886, p. 215) for the connection to Aristaeus). See the commentary, and cf. Heath (1921, I, pp. 
243–244, II, pp. 119–121), Zeuthen (1886, pp. 212–215), and Knorr (1986, pp. 128–137 and 327). 
Knorr expands on Zeuthen’s arguments.
2 lógoV. Hultsch translates “proportio”. i.e., “ratio”, probably the ratio 3:1. “Logos” can, however, 
also mean “account”, “argument”. This translation seemed preferable.
3 Analysis-assumption.
4 VI, 33.
5 ÐACB = 2ÐBAC by assumption; thus, ÐDCA = ÐDAC, and DADC is isosceles (I, 6).
6 DE is the height in the isosceles triangle ADC (I, 26).
7 Data 7, Data 27.
8 DABZ ∼ DADE, on parallels DE and BZ; AD:DB = AE:EZ (VI, 2/ V, 16).

In DACB, ÐACB is bisected by DC, with D on AB; AC:BC = AD:DB (VI, 3).
9 I, 47.
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ZC <is given>, B lies therefore on a hyperbola.1 But <it also lies> on an arc that is 
<given> in position. Therefore, B is given.

And the synthesis is obvious.2

Props. 35–38: Generalization of Solid Problems: Angle Division

Prop. 35: General Angle Division

#45 Now, trisecting a given angle or arc is a solid <problem>, as has been shown 
above,3 whereas dividing a given angle or arc in a given ratio is a linear <problem>, 
and while it has been shown by the more recent <mathematicians>, it will be shown 
as well in a twofold way by me.4

B

A

C

D
Z

HE

K
L

M

T

a

1 In Coll. VII, Prop. 237, (cf. Jones 1986a, pp. 365–369, # 316/317), a hyperbola is established via 
analysis-synthesis, the points of which satisfy the conditions derived in the above analysis. It is 
the hyperbola with focus C, directrix ED, and eccentricity 2. In the analysis here we can “conclude”: 
B lies on this uniquely determined hyperbola. See the commentary. Co pp. 102–103, E provides 
an alternative argument.
2 Bisect AC in E, draw ED as a perpendicular onto AC, and describe the hyperbola with directrix 
ED, focus C, and eccentricity 2, using Coll. VII, 237. The hyperbola intersects the given arc AC 
in B, in which the arc is divided in the ratio 2:1. For the proof, retrace the steps of the analysis. 
See the commentary for a list of the decisive steps. For an alternative synthesis for the trisection 
discussed in Prop. 34b, including a separate treatment of all three possible configurations, see also 
Co pp. 103–104, E (starting at “et compositio manifesta est”).
3 Apparently, Pappus believes that if an analysis leads to conics, one has shown that the problem in 
question is (in general) solid. But see the discussion of analysis as a criterion for the determination 
of problem levels in the commentary on Props. 42–44. Pappus is correct in his assertion that the 
angle trisection is solid, and his analysis does show that it is not linear (analysis demarcates 
sharply “upward”).
4 The first of the arguments in Prop. 35 (via the quadratrix) targets acute angles.
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1 Arc KT:arc LT = KB:AE; arc KT:arc MT = KB:DH (symptoma) Þ arc LT:arc MT = AE:DH 
(V, 16 and V, 22); DH = ZE by construction.
2 Apply V, 17 to arc LT:arc MT = AE:ZE; AZ:ZE equals the given ratio by construction.
3 The labeling BZDC suggests motion of the generating point from B to C, as in the genesis in 
Prop. 19. Rotation could be clockwise or counterclockwise. The labeling CB for the generator 
suggests a motion from C to B, in deviance from the description in Prop. 19.
4 Divide DB in E in the given ratio (VI, 9).
5 BC:BD = circle:arc AC; BC:BZ = circle:arc HC (symptoma) Þ BD:BE = arc AC:arc HC (V, 22). 
Co p. 105 G refers to SL 14 instead.
6 V, 17.

For:
Let LT be the arc of a circle KLT, and let the task be to divide it in a given ratio.
<Draw> the radii LB and BT, and BK at right angles to BT, and describe the line 

“quadratrix” KADC through K, and divide the perpendicular AE, after it has been 
drawn, in Z in such a way that as AZ <is> to ZE, so is the given ratio into which 
one wants to divide the angle up, and <draw> ZD parallel to BC. BD should be 
joined, however, and the perpendicular DH <from D onto BT> <be drawn>.

Now, since, on account of the symptoma of the line, the angle ABC is to the angle DBC 
as AE <is> to DH, i.e.: to ZE,1 subtrahendo, the angle ABD is, therefore, to the angle 
DBC, i.e.: the arc LM <is> to the arc MT, as AZ <is> to ZE, i.e.: as the given ratio.2

#46 The arc AC of a circle AHC <can be> divided in yet a different way.

B

C

E
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H
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D

b

<Draw> the radii AB and BC similarly, and describe the spiral BZDC through B,3 
the generator of which is CB, and let the ratio of DE to EB be the same as the given 
ratio,4 and through E <draw> the arc EZ of a circle with center B, intersecting the 
spiral in Z. And produce BZ, after it has been joined, to H. Then, on account of the 
spiral, the arc AHC is to the arc CH as DB <is> to BZ, i.e.: to BE.5 And subtra-
hendo, as DE <is> to EB, so <is> the arc AH to the <arc> HC.6 The ratio of DE 
to EB, however, is the same as the given ratio. Therefore, the ratio of the arc AH to 
the arc HC is the same as the given <ratio>, also. Therefore, <the arc AC> has been 
divided <in the given ratio>.



157Props. 35–38: Generalization of Solid Problems: Angle Division

1 Analysis-assumption. Prop. 36 gives only an analysis, reducing the problem to the division of an 
angle in a given ratio. Then Prop. 35 is invoked.
2 In the smaller circle, the arc over the same angle as AEB (arc CT in the figure) will be smaller 
than the arc CTD, which was assumed to be equal to arc AHD.
3 XII, 2 with Circ. mens 1 and VI, 1 /V, 15 (similar arcs are in the ratio of the radii (or the circum-
ferences) ). Cf. the proof protocol of Prop. 26, section *. The same argument about similar circular 
arcs and radii was also used in Prop. 26 and will be used in Prop. 39 and 40. A similar argument 
was used in Prop. 30.
4 Prop. 35. Co p. 106/107, F provides a constructive proof. See also the commentary.
5 The problem in Props. 37 and 38 constitutes a generalization of the inscription of a regular pen-
tagon in IV, 10/11 (of the Elements). In analogy to the Euclidean construction, a triangle with the 
required ratio of angles is sought first, and then the polygon is put together from isosceles triangles. 
See the commentary.

Prop. 36: Equal Arcs of Different Circles

#47 From this <result> it is in fact obvious that it is possible to cut off equal arcs 
from unequal circles.

B
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For:
Assume that it has turned out that way,1 and that the equal arcs AHB and CTD 

have been cut off. Let the <circle> with center E be the larger one, however. 
Then the arc that is similar to <the arc> CTD is larger than the <arc> AHB.2 Now, 
let the <arc> CT be similar to the <arc> AHB. Then the ratio of the <arc> AHB to 
the <arc> CT is given, for it is the same as the <ratio> of the whole circumferences 
of the circles, or of the diameters.3 The <arc> AHB is, however, equal to the <arc> 
CTD. Therefore, the ratio of the <arc> CTD to the <arc> CT is given. And, subtra-
hendo, <the task> has now become to divide a given arc CTD in a given ratio in T. 
This, however, has been written down above.4

Prop. 37: Isosceles Triangle with Angles in Given Ratio

#48 <Let the task be> to put together an isosceles triangle with both angles at the 
base possessing a given ratio to the remaining one.5
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A

C

B

D

E Z T H

<Analysis>
Assume that it has turned out that way,1 and that the <triangle> ABC has been 

put together, and describe the circle ADC with center B through A and C, and pro-
duce AB to D, and join DC.2

Now, since the ratio of the angle between CA and AB to the <angle> between AB 
and BC is given,3 and <since> the angle at D is half the angle ABC,4 the ratio of the 
angle CAD to the angle ADC is therefore given, also,5 so that the ratio of the arc DC 
to the <arc> AC <is given>, also.6 Now, since the arc ACD of the semicircle has been 
divided in a given ratio, C is given,7 and the triangle ABC is given in kind.8

<Synthesis>
<The problem> will, however, be put together9 in the following way.

For:
Let the given ratio, the one which both angles at the base had to have to the 

remaining one, be the ratio of <a straight line> EZ to <a straight line> ZH, and bisect 
ZH in T, and set out the circle ADC with center B and diameter AD, and divide the 
arc ACD in C, so that EZ is to ZT as the arc DC <is> to the <arc> CA (for this 
<construction> has been written down above,10 and even generally, somehow, a given 
arc is divided in a given ratio), and join BC, CA, and CD. Now, since EZ is to ZT as 

 1 Analysis-assumption.
 2 Extension of the configuration for the analysis, non-deductive.
 3 In the problem; we are now in the resolutio.
 4 III, 20.
 5 Data 9.
 6 VI, 33.
 7 C is given, because it can be constructed using Prop. 35. From “C is given” one might conclude 
that the triangle is given in kind via Data 30 and Data 40. This is how I would prefer to read the reso-
lutio. For an alternative explanation see Hultsch p. 291, * and Co p. 107 E. The phrase “C is given” 
appeared suspicious to him, and he suggests “the straight line BC is given in position” in its place.
 8 Cf. Data, def. 3 for given in kind. A triangle is given in kind when its angles are given.
 9 sunteqήsetai.
10 Prop. 35; the proposition is directly applicable only for angles that are at most right angles. 
Otherwise, divide in half, and put together again after completion of the construction.
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the arc DC <is> to the <arc> CA, i.e.: as the angle DAC <is> to the angle ADC,1 and 
<equality holds likewise> with respect to the double of the second terms <in the 
proportion>, therefore as the angle CAB <is> to the angle ABC, so <is> EZ to ZH.2 
Therefore, an isosceles triangle ABC, both of the angles at the base of which possess 
a given ratio to the remaining one, has been constructed.

Prop. 38: Regular Polygon with any Given Number 
of Sides Inscribed in the Circle

#49 Indeed, when this has been shown, it is obvious that it is possible to inscribe 
an equilateral and equiangular polygon that has as many sides as anyone might 
prescribe into a circle.3

Props. 39–41: Constructions Based on the Rectification Property 
of the Quadratrix4

Prop. 39: Converse of Circle Rectification

How one finds a circle the circumference of which is equal to a given straight line, 
however, is easy to understand.

b

c

d

a

1 VI, 33.
2 ÐABC = 2ÐADC (III, 20); ZH = 2ZT by construction.
3 The polygon sought for is built up from congruent isosceles triangles in which the angles at the 
center of the circle stand in a given ratio to the full angle. For a polygon with n sides, we get 2p/n 
for the vertex angle, and (p – 2p/n)/2 for the angles at the base. The ratio will be 4:(n – 2) in 
modern notation.
4 In contrast to Props. 35–38, the propositions of this group do not arise from a generalization of 
plane or solid problems. They are in principle beyond the reach of plane and solid geometry, 
because they involve the determination of a ratio between a circular arc and a straight line (p).
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1 Analysis-assumption.
2 Prop. 26, Addition.
3 Circumferences have the ratio of diameters, or of radii (XII, 2, Circ. mens. 1, VI, 1). A similar 
proposition was already used in Props. 26, 30, and 36 and will be used again in Prop. 40. For 
details see the section * in the proof protocol of Prop. 26.
4 Data 1 with Prop. 26, Addition.
5 Data 2 with V, 16.
6 Data, def. 5.
7 Choose a circle b, with radius r, rectify it by means of the quadratrix into a straight line d. 
Determine r’ with r:r’ = c:d (VI, 9), and describe the circle a with radius r’. Then circumference 
a:circumference b = r:r’ = c:d, and since circumference b = d, we get: circumference a = c. Cf. Co 
p. 108/109, F.
8 Only the situation where the arc is at most a semicircle is envisaged. Thus, the given ratio in 
Prop. 40 is not arbitrary. It is also, necessarily, larger than 1:1 (in modern terms).

For:
Assume that the circumference of circle a, equal to the straight line c has 

<already> been found,1 and set out an arbitrary circle b, and find, by means of the 
quadratrix, the straight line d, equal to its circumference.2 Then the radius of circle 
a is to the radius of circle b as c <is> to d.3 The ratio, however, of d to c <is given.>4 
Therefore, the ratio of the radii to each other <is given>, also. And the radius of b is 
given. Therefore, the radius of a is given, also,5 so that a itself <is given>, also.6

And the synthesis is obvious.7

Prop. 40: Arc over Chord in Given Ratio8

<Problem>
#50 When a straight line AB is given in position and length, to describe through 
A and B the arc of a circle that has to the straight line AB a given ratio.
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 1 Analysis-assumption; without loss of generality, C is chosen as the midpoint of arc ACB.
 2 bebhkui~a, a hapax legomenon in Coll.IV.
 3 ÐEHL = ÐAXC, where X is the midpoint of the sought circle. LM corresponds to ½ AB, i.e., 
to AR.
 4 dίwma (where one might have expected sύmptwma).
 5 Arc ZE:arc LE = ZH:TN (symptoma); arc ZE:ZH = arc LE:TN (V, 16); but arc ZE:ZH = ZH:HK 
(Prop. 26) = LH:HK; Þ arc LE:TN = LH:HK.
 6 DHTN ∼ DHLM on parallels TN and LM; TH:HL = TN:LM (VI, 4); we have just seen: arc 
LE:TN = LH:HK; thus: TH:HK = arc LE:LM (V, 23).
 7 First, we show that arc AC:AR = arc EL:LM. AR and LM are half-chords under equal angles. 
Similar arcs are in the ratio of the corresponding radii (this proposition was used in Props. 26, 36, 
and 39, and a similar one in Prop. 30; see section * in the proof protocol of Prop. 26). arc AC:arc 
EL = r1:r2. Consider DARX ∼ DLHM Þ r1:r2 = AR:LM; thus, arc AC:AR = arc EL:LM (V, 16). 
Above, it was shown that arc EL:LM = TH:HK. We now get arc AC:AR = TH:HK.
 8 arc AB = 2arc AC, AB = 2AR by construction.
 9 Hultsch prints ABG, Tr 125, 16 prints the mathematically correct AGB.
10 HK is given in the sense that one can posit a freely chosen, but fixed quadrant ZHE with an 
inscribed quadratrix, and in it, K, and therefore HK are uniquely determined. The quadratrix has 
to be assumed. The quadrant with quadratrix was assumed to be given in position only, not in size, 
at the outset of the analysis; the actual size of the quadrant with quadratrix is irrelevant for the 
analysis and synthesis here.
11 Data 2.
12 Data, def. 6.
13 Data 26.
14 HT (= HL) and HE are given in position. Therefore, the angle between them is clearly given. 
There is no directly relevant entry in the Data. Hultsch (295, #2/3 Hu) and Ver Eecke (1933b, 
p. 229, #2) offer a different interpretation for the conclusion of Prop. 40. See the commentary.

<Analysis>
Assume that the <arc> ACB has been described,1 and that the quadrant ZHE of 

a circle, given in position, has been set out, and the quadratrix ZTK described, and 
put together the angle EHL on the arc ZE, equal to the angle that goes through2 the 
arc AC,3 and draw the perpendiculars LM and TN <onto HE>. Now, on account of 
the property4 of the line <i.e., the quadratrix>, the arc LE will be to the straight line 
TN as the arc ELZ <is> to the straight line ZH, i.e.: as LH <is> to HK.5 But as TH 
<is> to HL, so <is> TN to LM, also. And therefore, as TH <is> to HK, so <is> the 
arc EL to the straight line LM.6 Now, take X as the center of the <circle with> arc 
ACB, and draw the perpendicular XRC onto AB. Then the angle CXA is equal to 
the angle EHL. And X and H are the centers <of the circles through C/A and E/L>. 
Therefore, as the arc AC <is> to the straight line AR, i.e.: <as> TH <is)> to HK,7 
so <is> the arc ACB to the straight line AB.8

And the ratio of the <arc> ACB9 to <the straight line> AB <is given>. Therefore, 
the ratio of TH to HK <is given>, also. And HK is given <in length.>10 Therefore, 
HT is given <in length.>11 Therefore, T lies on the circumference <of a given 
circle.>12 But it also lies on the line ZTK. Therefore, T is given. HTL is given in 
position.13 Therefore, the angle EHL is given.14 And it is equal to the angle CXA, 
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and CX is <given> in position,1 and A is given. Therefore, AX is <given> in position,2 
so that the arc ACB is <given>, also.3

<Synthesis>
And the synthesis is obvious. For one must <provide the auxiliary construction of 

quadrant ZHE with quadratrix ZTK,> make the ratio of DH to HK the same as the 
given ratio,4 and describe the <circular> arc through D with center H, and take T, in 
which it intersects the quadratrix, and join TH, and <draw> RX, which bisects AB 
and is erected at right angles to it,5 and <draw> AX, which comprises with XR the 
same angle as <the angle> KHT,6 and describe the arc ACB of a circle with center 
X through A, which has to the base AB the same ratio as the given one.7

Prop. 41: Incommensurable Angles

#51 And it is not even incredible <that it is possible> to find incommensurable 
angles.8 For with the following <argument> one will even take incommensurable arcs 
of the same circle, and when we posit one of the angles or arcs as rational, the 
remaining one will turn out to be irrational.
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1 CX is the perpendicular bisector of AB, and AB is given; Data 29.
2 Data 29 (AR is given in position, and the angle RAX is given in magnitude).
3 X is given (Data 25). With X and A given, so is the circle with center X and radius XA (Data 26); 
by construction, B lies on it as well.
4 D on HZ so that HD:HK equals the given ratio (VI, 9).
5 R is the midpoint of AB. The right angle determines the position of RX, whereas the point X is 
as yet not determined in position.
6 The easiest way to do this is by constructing a triangle congruent to DNHT, or DMHL with one side 
on AB, ÐA = ÐNTH, and producing (if necessary) the sides around A to meet XC in R, and X.
7 The apodeixis is not given by Pappus. It is easily reconstructed from the analysis. See the 
commentary.
8 Incommensurable lines were treated in Props. 2 and 3.
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Set out the quadrant ABC of a circle, and in it the quadratrix AEDZ, and draw 
BE through the interior, and EH parallel to BC, and cut off a <straight line> BT 
from BH, incommensurable with it in length,1 and draw the parallel DT <to BC>, 
and join DB. I claim that the angle EBZ is incommensurable with the angle DBZ.

Draw the perpendicular DN <and the perpendicular EK onto BC>. Then, on 
account of the line <i.e., the quadratrix>, the angle EBZ is to the angle DBZ as EK 
<is> to DN.2 EK, however, is incommensurable with DN (since HB <is incommen-
surable> with BT,3 also). Therefore, the angle <EBZ> is incommensurable with the 
angle <DBZ> as well, and when we posit the angle EBZ as rational, the angle DBZ 
will be irrational.

Props. 42–44: Analysis of an Archimedean Neusis

I have inserted the analysis of the neusis that was taken by Archimedes in the book 
on the Spiral Lines for you, so that you will not get into difficulties when you go 
through the book.4 For it, however, the loci described below are taken. They are 
useful for many other solid problems as well.5

Prop. 42: Hyperbola for the Archimedean Neusis

#52 <Let> a straight line AB <be given> in position, and from a given point C let 
a certain line CD be drawn forward <so as to fall onto it in D>, and let DE be 
<drawn> at right angles to AB, and let the ratio of CD to DE be <given.>6

1 For the construction of lines incommensurable in length cf. X, 10 ff., e.g., X, 11.
2 Arc AC:arc MC = AB:EK and arc AC:arc LC = AB:DN (symptoma); EK:DN = arc MC:arc LC 
(V, 16/22). arc MC:arc LC = ÐEBZ:ÐDBZ (VI, 33).
3 EK:DN = HB:BT by construction, and these lines are incommensurable by construction.
4 Cf. the above meta-theoretical passage before Prop. 31, where it is reported that Archimedes was 
criticized by some for using a solid neusis when a plane argument would have sufficed for SL 18. 
Pappus is going to provide an analysis to show that Archimedes’ neusis can be determined as the 
intersection of a parabola and a hyperbola. The neusis in Props. 42–44 is closest to SL 9, but an 
analogous argument could be given for SL 7 and 8. The hyperbola (Prop. 42) and the parabola 
(Prop. 43) are considered as solid loci. See the commentary on the use, the power, and the limits 
of geometrical analysis for the determination of the “degree” of a problem.
5 This is an indication that there may very well have been some move, on the part of ancient geom-
eters, toward a standardization of “solid” problems via reduction to typical neusis with standard 
constructions.
6 As in the case of Prop. 40, this ratio is not completely arbitrary. For the upcoming analysis to 
work, we need CD ≥ DE. In Prop. 44, we will need the equivalent to CD = DE. Note the analogy 
to Prop. 34a for the starting point of the argument in Prop. 42.
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<I claim> that E lies on a <uniquely determined> hyperbola.

BA
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K

Through C, draw the parallel CZ to the line drawn at right angles <to AB>. 
Then Z is given.1 <Draw> the parallel EH to AB as well, and let the ratio of CZ to 
both ZT and ZK be the same as the ratio of CD to DE.2 Then both T and K are 
given.3 Now, since the square over CZ is to the square over ZT as the square over 
CD <is> to the square over DE,4 the ratio of the remaining square over ZD, i.e.: of 
the square over EH, to the remaining rectangle between KH/HT is therefore 
given,5 also. And K and T are given. Therefore, E lies on the hyperbola passing 
through T and E.6

1 Z is the point of intersection with AB. It is given (Data 25, Data 28).
2 Because C – K – Z is assumed, we must have CD ≥ DE, as noted above.
3 CZ is given in position and length (Data 26); CD:DE is given by hypothesis. ZH and ZK are 
given in length (Data 2). They are also given in position Þ T and K are given (Data 27).
4 CZ:ZT = CD:DE by construction. CD:DE is given Þ CZ2:ZT2 = CD2:DE2, and this ratio is given 
as well (Data 50).
5 The above proportion implies (CD2 – CZ2):(ED2 – ZT2) = CZ2:ZT2, so both ratios are given. We 
now show that CD2 – CZ2 = ZD2 (I, 47) = EH2, and that (ED2 – ZT2) = KH × HT. Then EH2:
KH × HT is given.

ED2 = ZH2 = ZT2 + TH2 + 2ZT × TH (II, 4). 2ZT × TH = KT × TH (construction, VI, 1). TH2 + 
KT × TH = KH × TH (II, 3). So ED2 = ZT2 + KH × HT, and KH × HT = ED2 – ZT2.
6 The converse of Con. I, 21 is used in analysis. According to Con. I, 21, all points on the hyperbola 
through T with diameter TK, a latus rectum t with t:HK = EH2:TH × KH, and ordinates parallel 
to AB fulfill the above equation. For the analysis, we can “conclude”: E lies on this hyperbola; cf. 
Prop. 34a.
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Prop. 43: Parabola for the Archimedean Neusis

#53 Let AB be given in position and length, and let DC be at right angles <to it>, 
and assume that the rectangle between AC/CB is equal to the rectangle between a 
given <straight line> and CD.

<I claim> that the point D comes to lie on a parabola that is <given> in 
position.

Z
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For:
Bisect AB in E, and <draw> EZ at right angles <to AB>, and let the rectangle 

between the given <straight line> and EZ be equal to the square over EB.1 Then Z 
is given.2 And <draw> the parallel DH to AB. Then the remaining square over EC, 
i.e., the square over DH, is equal to the rectangle between the given <straight line> 
and ZH.3 And Z is given; therefore, the point D comes to lie on the parabola passing 
through A, Z, and B, the axis of which is EZ.4

1 Such a rectangle can be constructed using II, 14.
2 EZ is given in length (Data 57). Because E is given (Data 7 and Data 27), EZ is also given in 
position (Data 29), and so Z is given (Data 27).
3 EC2 = DH2 by construction. Let t be the given line. EB2 = t × EZ by construction. However, 
EB2 = AC × CB + EC2 (II, 5). By hypothesis, AC × CB = t × DC, and so EC2 = EB2 – 2 AC × CB 
= t × EZ – t × CD = t × ZH.
4 Converse of Con. I, 20. Con. I, 20 shows that all points on a parabola with vertex Z, diameter EZ, 
parameter t and ordinates parallel to AB fulfill the equation. The analysis can use the converse, 
even if it is not a theorem.
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Prop. 44: Archimedean Neusis (Following Hultsch’s 
Partial Restitution1)

#54 With these things written down beforehand, the proposed <neusis is now 
subjected to analysis2> … when it has come about beforehand, in the following 
way.

When a circle ABC is given in position, and in it a straight line BC <is given in 
position>, and when A on the circumference is given, <the task is> to position 
between the straight line BC and the circumference BEC a <straight line> that is 
equal to a posited one and verges toward A.3

H
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B C
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D
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Z

Assume that it has turned out that way, and that it has been positioned and is 
equal to ED,4 and draw DZ at right angles to BC,5 equal to AD.

1 Prop. 44 is not included in Co. Commandino even suggests that Coll. IV ends after Prop. 43. The 
transmitted manuscripts have no figure for Prop. 44. The figure given by Hultsch p. 303 is badly 
misleading and was not used here. Hultsch himself supplied a correction in the appendix of his 
edition, pp. 1231–1233. This passage in the appendix also contains a helpful explanation of Props. 
42–44 by Baltzer.
2 Translating the reading in Tr 127, 21/22 for a lacuna in Hu 300, 21/22.
3 Both the main manuscript A and Hu have “C” here. Hultsch corrected his reading in the appendix 
to his edition p. 1232/1233. Tr also prints the mathematically correct “A.” See the apparatus to the 
Greek text.
4 Analysis-assumption.
5 Z does not necessarily lie on the circumference of the circle.
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Now, since AD has been drawn forward from the given <point> A <up> to BC, 
which is <given> in position, and since it is equal to the <straight line DZ> erected 
at right angles starting from <D, the point Z> lies on a <uniquely determined> 
hyperbola1 (since the rectangle BDC is equal to the rectangle ADE,2 i.e.: to the 
rectangle ZDE3). And DE is given.4 Therefore, the rectangle BDC is equal to the 
rectangle between a given <straight line> and DZ. Therefore, Z lies on a <uniquely 
determined> parabola.5 Therefore, Z is given6….7

Archimedes used the problem <i.e., the neusis for which Pappus has provided 
an analysis in terms of solid loci here> in order to show a straight line equal to the 
circumference of a circle.8 Some, however, reproach him, alleging that he did make 
use of a solid problem in an inappropriate way …9 they show that it is also possible 
to find a straight line equal to the circumference of a circle by plane means, when 
one makes use of the theorems pronounced on the spiral.10

<This is the end of> Book IV of the Collection of Pappus, which is <made up> 
of splendid theorems, plane, solid, and linear.

1 For the lacuna at 302, 8 Hu, Tr 128, 3 prints ‘h AD τò Z shmeι̃on α[ra, the resulting meaning 
coincides with the paraphrase given above, and with Hultsch’s conjecture ad locum.
2 III, 35.
3 AD = ZD by construction. Prop. 42 states that Z lies on a (uniquely determined) hyperbola.
4 DE is given in the problem.
5 Prop. 43.
6 Z is the point of intersection of the parabola and the hyperbola.
7 For this lacuna at 302, 12 Hu, Tr 128, 7/8 prints: ’analύetai α[ra. Toύtw̨ (t ~w̨ problήmati). 
Therefore, it is subjected to analysis. This problem.
8 SL 18 uses SL 7/8.
9 For the lacuna at 302, 15 Hu, Tr 128, 11 prints: dunatón gàr ωJV ’apo(deι′knousin) (For it is 
possible, as they show).This makes Hu’s addition of ωJV and e[stin in the following line 
unnecessary.
10 Unfortunately, no such argument survives. For reconstructions and bibliographical references 
see the commentary.
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Introductory Remarks on Part II

The purpose of this commentary is to complement the text, translation, and espe-
cially the notes in Part I. It is meant to be read in conjunction with Part I, although 
some of its prose passages can also be read independently. They typically pick up 
a topic or keyword as it comes up in the course of Pappus’ text, and provide an 
outline of the historical or mathematical context, or of the historical or method-
ological significance, or of the main thrust of scholarly discussion with regard to 
it. No detailed analysis and argumentation will be given, since the present edition 
is intended primarily as a source text. Instead, I have restricted myself to informa-
tion that will yield a preliminary orientation as necessary to understand Pappus’ 
text, leading up to the identification of topics that might deserve further investiga-
tion, with bibliographical references for such further study. The format of these 
inserted vignettes is non-uniform, as is their content. For example, the commen-
tary on Props. 2 and 3 contains an excursus on Elements X, more or less restricted 
to a summary of the book’s content, with a table that visualizes the content of X. 
The commentary on Props. 4–12 contains an excursus on the method of analysis-
synthesis, in the form of a series of paragraphs targeting different facets of Greek 
geometrical analysis. And the commentary on Props. 26–29 contains a section on 
the history of the problem of circle quadrature. The vignettes are primarily 
intended as a help to understand a particular passage in Pappus, by providing a 
“horizon” for it, but they can, in many cases, be also read independently from Part 
I. Apart from the vignettes, the format of the commentary is uniform. Each group 
of propositions, and most individual propositions, will receive a section with 
introductory remarks, followed by a schema that visualizes the main characteris-
tics of the group or proposition, and each section also contains proof protocols 
(or their equivalent in the case of arguments that are not full-fledged proofs) for 
each individual proposition. The purpose of the protocols is to aid the reader in 
surveying the mathematical arguments in Part I at a glance, identifying their 
overall structure and the decisive argumentative moves. The above-mentioned 
overview schemata go beyond this local level, and aim toward general character-
izations and a placement of groups or propositions within Collectio IV (Coll. IV). 
They lead up to selective bibliographical references for further study, and they 
have the following set-up:

H. Sefrin-Weis, Pappus of Alexandria: Book 4 of the Collection, 
Sources and Studies in the History of Mathematics and Physical Sciences, 
DOI 10.1007/978-1-84996-005-2, © Springer-Verlag London Limited 2010
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context: e.g., squaring the circle (Props. 26–29).
sources: e.g., Nicomedes’ treatise on the quadratrix (Props. 35–41).
means: e.g., Elements I, II, III, VI, X (Props. 2 and 3).
method: e.g., apodeixis, analysis-synthesis, analysis.
format: theorem or problem.
reception/historical significance: e.g., reception of the angle trisection in Props. 31/32 in 
Islamic culture, significance of Props. 31–34 as our only complete surviving sources on the 
angle trisection by means of conics.
embedding in Coll. IV: list of motivic or conceptual connections to other propositions in 
Coll. IV.
purpose: e.g., illustration of the structure of analysis-synthesis (Prop. 4).
literature: reference to treatments in general standard histories, notably (Heath 1921), and 
to specific scholarly articles, e.g., (Knorr 1978) for Props. 19–22.

These schematized profiles summarize the main ideas on the content, style and 
purpose of each of the groups or propositions. For a survey of Coll. IV, and the 
groups I have identified, see the general introduction. As said there, the reader 
should view the way in which I have put propositions together in groups, and my 
remarks on the purpose of propositions as directly resulting from my general thesis: 
Coll. IV can be read, and was intended to be read, as a unified, coherent survey of 
the classical geometric tradition from the point of view of methods. The meta-the-
oretical passage, on the three methodologically defined kinds of geometry, with a 
homogeneity criterion in place, is to be understood as Pappus’ guiding motif in 
selecting and presenting the material.

As in the translation, Euclid’s Elements are used as reference work for the justi-
fication of intermediate steps. References to individual propositions in the Elements 
will be given in Roman numerals, followed by Arabic numerals (e.g., I, 47 refers 
to Elements Book I, Proposition 47 in Heath 1926). References to books will be 
given in Roman numerals alone. For all other references, standard techniques and 
abbreviations will be used.
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1 Props. 1–6: Plane Geometry, Euclidean Style

The first six propositions cover material from Elements I, (II), III, VI, X. Since IV 
contains special construction problems in plane geometry of the circle, V contains 
the general Eudoxean theory of proportions, VII–IX number theory, and XI–XIII 
stereometry; one can say that Pappus has given an illustration of plane geometry as 
given in the Elements by means of exemplary arguments.

We miss the beginning of the text of Coll. IV, certainly the proem. On my thesis 
about the purpose of Coll. IV, it is reasonable to assume (as others have done, also), 
that we do not miss much of the actual mathematical content at the beginning, for 
there could hardly be a more suitable starting point for an overall portrait of the meth-
ods of plane Greek geometry but Elements I, specifically the Pythagorean theorem.

1.1 Prop. 1: Generalization of the Pythagorean Theorem

The so-called theorem of Pythagoras (I, 47) is perhaps the most famous theorem of 
elementary geometry, the culmination of Elements I. It states that in a right-angled 
triangle, the sum of the squares over the kathetes is equal to the square over the hypot-
enuse. It is often taken, and not without good reason, as a paradigm of what “Euclidean” 
argumentation, that is, a classical Greek apodeixis, looks like. And this appears to be 
the way Pappus viewed it, too. For he gives us, in Prop. 1, a generalization of I, 47 that 
is very close to I, 47 itself, and is a very good example for the method of classical 
apodeixis. Within the Elements, the Pythagorean theorem is generalized in VI, 31, for 
similar and similarly positioned parallelograms. VI, 31 uses the Eudoxean theory of 
proportions (V). But the theorem can easily be generalized further, with or without the 
use of proportions. One such example, perhaps due to Heron, builds on the proof strat-
egy in VI, 31. Prop. 1 is another example; it avoids the use of proportions and relies 
solely on means from I (congruence geometry, areas of parallelograms).

context: Pythagorean theorem.
sources: /.1

means: I.
method: classical apodeixis (synthesis).
format: theorem.

1 Tannery (1912, I, pp. 157–167) considers the possibility that Prop. 1 may be due to Heron, but 
decides instead in favor of VI, 31, together with a possible further extension of the latter, as due to 
Heron and his school. Hultsch was probably justified in bracketing a remark, in the conclusion of 
Prop. 1, that links Prop. 1 to VI, 31 (see the notes to the translation). It may have been this remark 
that led Proclus to associating Pappus’ and Heron’s extensions of I, 47, with each other. For an argu-
ment by Heron, commenting on I, 47, and showing some connection to Prop. 1, see Anaritii com-
mentarii in Euclidis Elementa, ed. Curtze, pp. 78–84; see also Heath (1926, II, pp. 366–368).
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reception/historical significance: transmitted and discussed in connection with the 
Pythagorean theorem, e.g., An-Nairizi; Clavius 1574 refers to Pappus explicitly.
embedding in Coll. IV: /.
purpose: illustration of classical apodeixis.
literature: Prop. 1 received some attention in secondary literature, mostly in connection 
with I, 47; e.g., see Tropfke IV (1923, pp. 135 ff.1), Heath (1926, I, pp. 350–368, 1921, II, 
pp. 369–370).

The content of Prop. 1 is not used anywhere in Coll. IV. As said above, an elemen-
tary generalization of the theorem of Pythagoras would appear to be a very fitting 
starting point for a survey of ancient Greek plane geometry from a methodological 
perspective, and Pappus’ proof is a classical apodeixis.

1.1.1 Schema of a Classical Apodeixis, According to Proclus2:

1. Protasis (propositio): proposition
2. Ekthesis (enuntiatio): setting-out
3. (if necessary) Diorismos (determinatio): specifi cation and determination
4. Kataskeue (dispositio): construction
5. Epideixis (demonstratio): proof (in reference to the specifi c confi guration)
6. Symperasma (conclusio): conclusion

Sometimes, the term apodeixis (proof) is used more specifically for steps 5 and 6 
together, or even for steps 4–6. Nevertheless, the picture of a fairly settled standardized 
pattern arises.

The following proof protocol of Prop. 1 shows how this pattern, this method of 
argumentation, is realized in mathematical discourse.3 It was therefore given in 
some detail.

1.1.2 Proof Protocol Prop. 1

1. Protasis
Let there be given a triangle ABC. Over its sides AB and BC describe parallelo-
grams ABED and CZHB. Produce DE and ZH to their point of intersection T, and 
join TB.

Then ABED + CZHB is equal to a parallelogram with sides equal to AC and TB, 
and an angle at its base equal to ÐBAC + ÐDTB.

1 This source contains numerous bibliographical references on the Pythagorean theorem and its 
history/context.
2 Proclus, Commentary on Euclid’s Elements, pp. 203–205 Friedlein, cf. Heath (1921, I, p. 370, 
1926, pp. 129–131). The technical terms, and the pattern, are standardized in ancient mathematics, 
in fact already in the Elements; contrast the situation for analysis-synthesis, described in the intro-
duction to Prop. 4.
3 Prop. 1 is atypical in that it does not contain a full generalization/abstraction step in the 
symperasma.
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2. Ekthesis/ 4. Kataskeue
Produce TB to its point of intersection with AC, K. Draw the parallels CM and AL 
to KN, obtaining the parallelogram ALMC. The task is to show that ALMC fulfills 
the requirement.

5. Epideixis
5.1. ABTL is a parallelogram Þ AL = TB

CMTB is a parallelogram Þ CM = TB [I, 34]
Þ ALMC is a parallelogram with sides equal to AC, TB

5.2 ÐLAC = ÐLAB + ÐBAC
and ÐLAB = ÐTBH = ÐDTB [I, 29]

5.3 ABED = ABTL = AKNL, and CZHB = CMTB = CMNK [I, 35]
Þ ACML (= AKNL + CMNK) = ABED + CZHB

6. Symperasma
We have shown that ABED + CZHB is equal to a parallelogram (ACML) with sides 
equal to AC and TB, and an angle at the base equal to ÐBAC + ÐDTB.

Prop. 1 is closely analogous to I, 47.1 This is why I would disagree with claims that 
Heron could be the source for Prop. 1. His generalization took a different route. Pappus 
even makes a point of stating that his theorem is “far more general” than a theorem from 
the Elements. I take him to be referring to I, 47. Though this cannot be affirmed with 
certainty, it seems not unlikely to me that Pappus himself is the author of Prop. 1.

1.2 Props. 2 and 3: Construction of Euclidean Irrationals

context: X (geometrical classification of 13 types of irrationals (all first-order 
irrationals) ).
sources: XIII, 11 as model for Prop. 2; both Props. 2 and 3 are by Pappus.
means: I, II, III, VI, X.
method: synthesis.
format: problem.
historical significance/reception: /.
embedding in Coll. IV: motifs “semicircles, tangents and chords”: Props. 4–6, 11, and 12; 
motif “commensurable/incommensurable magnitudes”: Props. 17, 41.
purpose: illustrate operation with the theory of irrationals in X.
literature: The two propositions have so far been neglected by secondary literature.2 They 
could, however, be very useful for the reconstruction of the ancient understanding of the 
theory in X, in addition to Pappus’ commentary on X.3 For they show how an ancient author 
operates with that theory. The only surviving ancient actual use of the theory outside Pappus 
is XIII, 11.4 Prop. 2 appears to be modeled on XIII, 11 (see below). Our understanding of X 

1 No construction of similar figure over hypotenuse in I, 47, since it is already given there. But as in 
Prop. 1, one constructs two parallelograms, each of which can be shown, via equal areas of parallelo-
grams with equal heights, to be equal to a corresponding parallelogram over one of the kathetes.
2 Brief reference in Heath (1926, III, pp. 9/10).
3 With regard to the significance of Pappus’ commentary, I am somewhat more optimistic than 
Jones (1986a, p. 11), who judges it to be “of only modest historical value.”
4 References to results from X, although no actual work with the concepts, are to be found also in 
XIII, 5, 6, 16, and 17.



176 II, 1 Plane Geometry, Euclidean Style

has for a long time been impeded by a tendency, even in such influential scholars as Heath1 
and Knorr,2 to view the book as essentially quasi-algebraic. More recent approaches more 
appropriately emphasize its geometrical character. The best current interpretations are by 
Taisbak (1982) and Fowler (1992). Knorr (1975a) also contains a very helpful discussion. 
Taisbak and Fowler are quite compatible with Pappus’ commentary (surviving in Arabic). An 
Arabic text of Pappus’ commentary, with English translation and commentary, was published 
by Thompson and Junge in 1930. Taisbak and Fowler did not consult Pappus on X, and they 
did not mention Props. 2 and 3 of Coll. IV. Therefore, taking these propositions into account 
could yield independent additional support for the Taisbak/Fowler reading of X.

1.2.1 Excursus: Remarks on Elements X (Irrational Lines)

The (geometrical) theory of irrationals in X poses problems for the modern reader. 
The concepts used overlap with modern notions, but are not synonymous with them. 
For example, “rational” and “irrational” do not mean what one would assume them 
to mean, and the concept of “square root” does not exist in Greek geometry (see 
below: the diagonal of a unit square is rational in the sense of X). X is the longest 
book of the Elements; it yields a classification of rationals (1–20), and a complete 
classification of all irrationals that can be exhibited by a single operation of the appli-
cation of areas (21–35 and 36 ff.). Irrationals from X, 21 on are introduced as sums 
or differences of lines, but characterized geometrically, via application of areas. This 
dual procedure with its resulting complexity adds to the modern reader’s difficulty. 
And even after one understands the structure, the question remains: what are the 
irrationals good for? What is their mathematical use? Except for the Medial, the 
Minor and the Major, they seem not to have been used in ancient mathematics outside 
of X. Is X sheer art pour l’art, for the sake of showing that the known irrationals can 
be embedded in a complete structural theory? At present, it almost looks like that.3 
The names for the irrationals in X are, for the most part, obviously made up ad hoc. 
The exceptions: Medial, Minor, and Major are attested for pre-Euclidean geometry 
(the Medial for Theaetetus, the Minor, anonymous, in the construction of the golden 
section; the Major is probably owed to Eudoxus4).

In what follows, I will give a brief informal explanation of rational, irrational, com-
mensurable, incommensurable, and a survey of X in the form of a table. The intention 
is to give the reader enough information to follow Pappus’ proofs in Props. 2 and 3. For 
more detailed discussions see the above-mentioned secondary literature.

1 Cf. Heath (1926) on X and Heath (1921, I, pp. 401–412). The algebraic notation used there is, in 
my view, something of a hindrance to the reader’s understanding of X.
2 Knorr’s interpretation developed by expanding certain speculative trends in his brilliant reconstruc-
tion of the evolution of the Euclidean Elements (Knorr 1975a, relying for the reconstruction of the 
pre-Euclidean theory of irrationals to a significant degree on earlier results by Becker). In my opin-
ion, his later contributions in this area (Knorr 1978c, 1983a, 1985), departed too far from the actual 
source material. In this regard, I find Fowler/Taisbak preferable.
3 For positions, differing at least partially, from the one endorsed here on the purpose of X 
cf. Mueller (1981, chapter XII); Knorr (1975a, 1983a, 1985, 1986).
4 Cf. Knorr (1975a).
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Rational: a line is picked as the magnitude of reference; it is called the Rational; 
other lines are called “rational” or “irrational” in relation to it.

Commensurable

(a) Commensurable in length: two lines are commensurable in length, if they 
have to one another a ratio expressible in numbers (e.g., 2:3); the ratio of the 
squares over them is then expressible as a ratio of square numbers (e.g., 4:9)   
  [X, def. 1; X, 5, 6, and 9].

(b) Commensurable in square: two lines are commensurable in square, if their ratio 
is not expressible in numbers, but the ratio of the squares over them is (e.g., 
square on a: square on b is as 2:3) [X, def. 2; X, 5, 6, 9].

X, 9, serves as the crucial criterion in determining if lines and squares occurring 
in a geometrical argument are commensurable. Its essence goes back to the pre-
Euclidean mathematician Theaetetus.

Incommensurable

(a) Two lines are incommensurable in length, if they do not meet the criterion for 
commensurability in length (they can still be commensurable in square, e.g., 
lines with squares in relation 2:3, but also those with an inexpressible ratio for 
the squares).

(b) Two lines are incommensurable in square, or incommensurable simply speak-
ing, if they meet neither of the above criteria for commensurability (the ratio of 
their squares is not expressible in numbers) [X, def. 1; X, 7, 8, 9].

Rational

The basic line of reference is rational; also rational are all lines that are commen-
surable with it, either in length or in square (note the difference to the modern 
concept: the diagonal of the unit square (in our terminology: Ö2) is rational)  
 [X, def. 3 and 4].

Irrational

All lines that are incommensurable with the Rational are irrational
 [X, def. 3 and 4].

1.2.1.1 Survey of Elements X

  1–20 : Rational lines (Theaetetus)
 21–35 : Medial lines (Theaetetus?)
 36–110 : 12 Further irrationals (see table below)
111–115 : Appendix
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1.2.1.2 Contents of X, 36–110

name for a + b # name for a − b #

a, b rat.,1 Binomial 36 Apotome 73
comm. squ.
a, b med., First Bimedial 37 First medial Apotome 74
comm. squ.
a × b rat.
a, b med., Second Bimedial 38 Second medial Apotome 75
comm. squ.
a × b med.
a, b incom. Major 39 Minor 76
a2 + b2 rat.,
a × b medial
a, b incom. Side of a rational 40 Line which produces 77
a2 + b2 med., plus a medial area with a rational
2(a × b) rat. a medial whole
a, b incom., Side of the sum 41 Line which produces 78
a2 + b2 med., of two medial areas with a medial
2(a × b) med. a medial whole
a2 + b2 incom.
with 2(a × b)

Following the two groups of propositions that introduce the 12 irrationals, one has:
#42–47 and # 79–84: Uniqueness of the representations as sums/differences
#47a and # 84a: Six types of the Binomial and Apotome
#48–53 and # 85–90: Construction of the types of Binomial and Apotome
#54–59 and # 91–96: Construction of the 12 irrationals, using the types
#60–65 and # 97–102: Uniqueness of the geometrical representations
#67–72 and # 105–110: The irrationals form complete classes

See also the tables in Fowler(1992, pp. 244–245) and Taisbak (1982, p. 50).
Props. 2 and 3 give a surprisingly simple construction for complex irrationals. The 
configurations for Props. 2 and 3 are very similar. Prop 2 constructs a Minor 2. Prop. 
3 uses X to go beyond Euclid. The constructed irrationality is not one of those 
covered in X, but a “higher” irrational. It is not named, its status is not defined, and 

1 I am using the following, rather obvious abbreviations: rat. = rational, comm. = commensurable, 
squ. = in square, med. = medial, incomm. = incommensurable.
2 The Minor turns up in the golden section; according to Knorr (1975a), it is one of the three central 
items that gave rise to the classification theory in X. The Minor also appears as the side of a 
regular pentagon inscribed in a circle with rational diameter.
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it is not shown to be uniquely determined: a geometrical characterization via 
application of areas is not given. Perhaps no embedding theory for the higher irra-
tionals was available in antiquity.1 A geometric characterization for the next stage 
of irrationals, analogous to X, would have been much too voluminous to be 
covered in a single ancient book.

1.2.2 Prop. 2: Construction of a Minor

1.2.2.1 Proof Protocol Prop. 2

Extension of the configuration: Z center of circle, H base of perpendicular from E 
onto ZC, BT = 1/4 BZ, draw connecting lines. AB (= ZC) is the Rational.

1. HT is a fourth Apotome.
1.1 HT is an Apotome:
ZT is rational, ZH is rational,
and ZT is commensurable in square only with ZH.
[ZC2:ZT2 = 64:252; ZC2: ZH2 = 64:12;
ZT2:ZH2 = 25:12; X, 9]
Þ ZT − ZH = HT is an Apotome. [X, 73]
1.2 HT is a fourth Apotome.
The square for (ZT 2 − ZH2) has a side that is incommensurable in length with 
ZT, and ZT is commensurable in length with the Rational.
[(ZT2 − ZH2):ZT2 = 13:25; apply X, 9]
Thus, ZT − ZH = TH is a fourth Apotome [X def. III, 4].

2. CE2 = 2CZ × TH, i.e., CE is a Minor [X, 94]3

2CZ is rational, TH is a fourth Apotome.
Þ X with X2 = 2CZ × TH is a Minor [X, 94]
Show that CE2 = 2CZ × TH [II, 12/13 generalized]

Compare the following proof protocol for XIII, 11. The close parallel indicates 
that Prop. 2 may very well be modeled on XIII, 11.

1 According to Pappus, Apollonius studied higher irrationals (cf. Junge and Thompson 1930, p. 64). 
No traces of his treatment, or a theory around it, survive.
2 The equation sign is used here for the sake of abbreviation. Pappus himself does not, usually, 
equate ratios of magnitudes with ratios of numbers directly. In Greek mathematics, numbers and 
magnitudes are not directly comparable, they are different kinds of entities. Expressions like ZC2 
are abbreviations for “the square with side ZC”. They are not to be understood as numbers.
3 While the auxiliary magnitude TH was established as an irrational via the difference defini-
tion, the target magnitude CE is shown to be a Minor by reference to the geometrical 
characterization.
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1.2.2.2 Proof Protocol for XIII, 11

N
F

M

A

B

C D

E

G

H
K

Extension of the configuration: F center of the circle, M base of perpendicular 
from A onto BH, FK = 1/4BF, draw connecting lines. AG (=BH) is the Rational.

1. MB is a fourth Apotome
1. 1. MB is an Apotome
BK is rational, MK is rational,
and MK is commensurable with BK in square only.
[BK2:FK2 = 25:1; MK2:FK2 = 5:1; BK2:MK2 = 5:1; X, 9]
Þ BK – MK = MB is an Apotome. [X, 73]
1.2 MB is a fourth Apotome
The square for (BK2 − MK2) has a side that is incommensurable in length with 
BK, and BK is commensurable in length with the Rational
[BK2 − MK2):BK2 = 4:5; X, 9]
Þ BK – MK = MB is a fourth Apotome. [X def. III, 4]

2. AB2 = BH × MB, i.e., AB is a Minor
BH is rational, and MB is a fourth Apotome.
Þ X with X2 = BH × MB is a Minor [X, 94].
Show that AB2 = BH × MB [similar triangles ABH, ABM].

1.2.3  Prop. 3: Construction of an Irrational Beyond X, with the Notions 
from X

1.2.3.1 Proof Protocol Prop. 3

Extension of the configuration: H center of the circle, semicircle HBD, center C, K 
on semicircle and DZ extended, L, T bases of perpendiculars from B, K onto HD. 
Draw connecting lines. AC (= HD) is the Rational.
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1. DK is a Binomial [X, 54]1

1.1 DL is a first Binomial
1.1.1 DL is a Binomial
DC is rational, CL is rational,
and DC and CL are commensurable in square only
Þ DC + CL = DL is a Binomial.  [X, 36]
[DC2:DH2 = 1:4; DC2:CL2 = 4:3;
DC2:CL2 = 1:3; X, 9]
1.1.2 DL is a first Binomial
The square for (DC2 − CL2) has a side that is commensurable with DC, and 
DC is rational.
[(DC2 − CL2):DC2 = 1:4; X, 9]
Þ DL is a first Binomial  [X, def. II, 1]

1.2 DK is a Binomial
HD is rational
Þ X with X2 = DL × HD is a Binomial.  [X, 54]
Show that DK = DL × HD.

2. KZ is a Line which produces with a rational a medial whole  [X, 95]
2.1 LT is a fifth Apotome

2.1.1 LT is an Apotome
LC and CT are rational, and comm. in square only
[LC: see above, 1.1.1; CT:HD = 1:4;
LC2:CT2 = 1:3; X, 9]
Þ LC − CT = LT is an Apotome  [X, 36]
2.1.2 LT is a fifth Apotome
CT, the lesser one of the pair LC, CT, is commensurable with the Rational 
HD, and the square for LC2 − CT2 has a side that is incommensurable with 
LC in length. Thus, LT is a fifth Apotome   [X, def. III, 5]

2.2 KZ is a Line which produces with a rational a medial whole
Show that KZ2 = LT × DH.
Since LT is a fifth Apotome, and HD is rational, KZ is a Line which produces 
with a rational a medial whole   [X, 95]

3. Since KZ is a Line which produces with a rational a medial whole, and DK is a 
Binomial, DZ = KZ − DK meets the claims made in Prop. 3.

1.3  Props. 4–6: Plane Geometrical Analysis in the Context 
of Euclidean Geometry

context: Analysis-synthesis in plane geometry.
possible sources: /.
means: I, III, VI.

1 Note the general strategy: construct an auxiliary line, identified via addition definition, then show 
via geometrical characterization that the target line is an irrational of the type claimed.
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method: analysis–synthesis.
format: theorem.
historical significance/reception: /.
embedding in Coll. IV: motif “circle, chords and tangents”: Props. 2, 3, 5, 6; features of the 
method of plane geometrical analysis: Props. 7–10, 12; motif “analysis” outside of plane 
geometrical analysis: Props. 28 and 29, 31–34, 36–40, 42–44.
purpose: illustration of the structural features of plane analysis-synthesis, with analysis 
aspects to be spelled out in Props. 5–12.1

literature on analysis-synthesis in Prop. 4: (Hintikka and Remes 1974, especially pp. 
22–30); their approach is parallel to my interpretation in that they take Prop. 4, just as I do, 
to be an argument that exhibits the structure of analysis-synthesis as a method of argumen-
tation. In my opinion, Prop. 4 was designed by Pappus himself for precisely that purpose.
literature on Greek geometric analysis-synthesis in general: (Hintikka and Remes 1974, 
1976); survey of analysis-synthesis as an argumentative technique: (Zeuthen 1886, pp. 
98–104; Jones 1986a, pp. 66–70); some influential contributions to the discussion of Greek 
analysis-synthesis in secondary literature besides the ones mentioned above include: 
Cornford (1932), Robinson (1936), Gulley (1958, 1962), Mahoney (1968), Szabo (1974), 
Lakatos (1978, pp. 70–103), Mueller (1981), Jones (1986a) passim (especially the essays 
on analytical works), Mäenpää (1997), and Netz (2000b).

The result of Prop. 4 is not used in Coll. IV. From a methodological point of view, 
Prop. 4 sets the stage for the illustration of various aspects of the method of plane 
geometrical analysis in Props. 4–12. It should be, and has been, read as program-
matic. Props. 5–12 then complete Pappus’ portrait of plane analysis (e.g., Prop. 7: 
use of Data, Props. 8–10: Apollonian analysis, resolutio, determination of data, 
Prop.12: analysis, apagoge/epagoge). For a schema of ancient analysis-synthesis 
see below. As said in the introduction, analysis-synthesis is a two-part method. In 
the analysis, one assumes what one wants to construct or show as already estab-
lished and applies different strategies for identifying features that are crucial and 
constitutive of the target situation (either as actual elements in it, or as conse-
quences from auxiliary constructions that one can apply), until one arrives this way 
at a situation that can be verified or constructed from elsewhere. Then one shows 
that this end stage is independent from the analysis-assumption, i.e., that it can be 
reached from what is given, not just from what one wants to establish. The synthesis, 
essentially a classical apodeixis (cf. Prop. 1), follows. It corroborates the result. 
There has been much scholarly discussion in secondary literature about Greek geo-
metrical analysis, its nature, its goals, and even its practice and status within Greek 
mathematics. A large volume of analytical Greek geometry once existed, but the 
sources are for the most part no longer directly accessible to us. Scholarly discus-
sion must focus on the slim evidence we have, in addition to “meta-theoretical” 
characterizations, notably the proem of Coll. VII. Coll. IV provides quite a few 
examples for different types and usages of analysis in practice (see below), which 
have not yet been fully exploited. Perhaps the full documentation of these examples 
in their original context can serve as a basis for further investigation. It seems to me 

1 Cf. Heath (1921, II, p. 371). He states that the content of Props. 4–6, 7, 11/12 is not of any intrinsic 
mathematical interest.
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that the fact that Pappus has a methodological perspective on the examples he 
presents may be an advantage for any inquiry that looks for the significance of 
ancient geometrical analysis as a method of argumentation.

1.3.1  Excursus: Greek Geometrical Analysis as a Method: Sketch 
of the Status Quaestionis

Greek geometrical analysis has been the subject of intense, controversial scholarly 
discussion in recent decades. In my opinion, we are still rather far from reaching a 
communis opinio, even from sifting through all the relevant material.1 The follow-
ing remarks are therefore rather general and sketchy. No attempt will be made to 
convey a settled view on the details of ancient analysis. In fact, the documentation 
of various, varying examples of ancient analysis in practice provided here is 
intended to help complete our picture, when taken into account for further discussion. 
The purpose of my remarks is merely to convey a rough idea about the status quaes-
tionis on ancient analysis: what sources are available, what can be made out in 
outline, what issues and problems were raised in recent scholarly discussion, and 
from what perspectives. I will take a stand and say a little more about the topic of 
Greek analysis as an analysis of configurations. For more details, and for alternative 
views, the reader is referred to the literature mentioned above.

1.3.1.1 Sources on Greek Geometrical Analysis

Perhaps the crucial problem in the discussions about ancient geometric analysis is 
the scarceness of sources and examples. Of the vast corpus of contributions that 
used the analytical method in a programmatic and thoroughgoing way (Apollonius), 
only a fraction survives. For the most part, we have to rely on indirect sources (Coll. 
VII), schematic characterizations (proem to Coll. VII), and a few isolated examples. 
The following lists may illustrate this point.

Ancient descriptions of the method: Coll. VII, proem,2 Elem. XIII, 1, Heron on Euclid II 
(Al-Nairizi), Proclus, Commentary on Euclid’s Elements.
Indirect sources: Data3; Coll. VII.4

1 A thorough study of Apollonius’ Sectio rationis from the perspective of how analysis operates there 
is still a desideratum. Not all of the examples in Coll. IV, illustrating a broad spectrum of types and 
usages of analysis, have been accounted for. Scholarly discussion has so far concentrated on the 
interpretation of the proem of Coll. VII, and a very narrow selection of actual examples (e.g., 
Hintikka and Remes (1974) use Prop. 4, Mahoney (1968) uses Prop. 12 as exclusive typifiers).
2 This is the most detailed account. It was the basis for most of the more recent scholarly discussion 
of the ancient method of analysis.
3 Euclid’s Data are not, in themselves, an analytical work. They are closely linked to the Elements, 
and provide a set of (synthetically proved) propositions useful for analytical work in practice.
4 cf. Jones (1986a). Coll. VII is a commentary on the lost analytical works, not a direct source for 
analytical arguments.
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Sources on ancient analysis in practice: Aristotle, Meteor. III, 5, Scholia and diorismoi on/
in Euclid’s Elements (e.g., additions to XIII, 1–5), Archimedes, Sph. et Cyl. II, 3–7.1

Sectio rationis, fragments and testimonies of other minor analytical works by Apollonius, 
Eutocius in Arch. Sph. et Cyl. II, 78–85 (Menaechmus) and, so far neglected, for the most 
part: Coll. IV, Props. 4, 7, 8–10, 12, 28, 29, 31–34, 36–40, 42–44.

1.3.1.2 Pappus’ Outline of Analysis-Synthesis in Coll. VII

In this situation, it is perhaps understandable that modern discussions have concen-
trated on Pappus’ longer methodological characterization of analysis-synthesis in 
Coll. VII as a starting-point. This passage is the proem to his commentary on the 
treasury of analysis. Its goal is not to give a historically accurate description of the 
actual practice, but an attempt to explain its structure as a method in a general way. 
Therefore, statements made in this proem cannot suffice to reconstruct the details 
of the actual practice of the method. Examples of the method at work are needed 
for a thorough and comprehensive assessment. Even so, reflecting the general trend 
in scholarship, the following brief overview also starts with a sketch of the proem, 
highlighting in the initial comments the main points that have given rise to scholarly 
discussion.

According to Pappus, analysis is a heuristic technique. There are two general 
types of analysis: problem-oriented and theorem-oriented, but they are methodologi-
cally equivalent. This second claim of Pappus’ has met with criticism from several 
commentators, as overly schematic and out of touch with the actual mathematical 
practice. In fact it looks as though analysis was indeed a heuristic technique, devel-
oped and employed primarily for problem solving, as a research tool. Our sources 
on theoretical analysis are all relatively late and seem to point to a didactic context. 
With this modification, however, it is perhaps fair to say that the theoretical analyses 
are nevertheless analyses in the full sense, methodologically equivalent to the 
problem-oriented ones, and helpful to learn and understand the method. Pappus 
gives examples for both theoretical and problem-oriented analysis, as well as for 
further, yet different usages of analysis in the course of Coll. IV (see below).2

Analysis is the first part of a two-partite method. Its job is essentially to furnish 
the grounds for a synthetic proof.3 It consists of two parts. In a first part (called 
apagoge throughout the present study), one assumes what one wants to prove as 
true, or what one wants to construct as already established, and proceeds from there 
in what Pappus chose to call with the exasperatingly vague term “orderly fashion” 

1 These are the only examples for analytical argumentation in Archimedes. Analysis was not 
Archimedes’ favored method of investigation.
2 For those who place a heavy emphasis on creative research and problem-solving as the essence 
of mathematics, a less favorable assessment will arise. Some would go so far as to discard the 
didactic examples as not “real analyses” at all.
3 Many scholars disagree vehemently here (e.g., Hankel, Robinson, Mahoney, and Szabo). They 
view analysis as an independent technique that furnishes validation on its own. See below.
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until one reaches something that is already known from elsewhere. Then one has to 
show that this end stage is independent from the above assumption, and constructible 
without it (this part will be called resolutio throughout the present study). In 
Pappus’ description, two apparently conflicting visions of the overall direction of 
analysis are combined. He portrays it as an upward move toward principles for a 
proof, but also uses language that suggests it operates primarily via deductions: a 
downward move,1 toward conclusions. Specifically, the Greek word used for 
“orderly fashion” is •κολουvϑως. Many have thought this means that analysis pro-
ceeds by logical deduction.2 Even though the word does not in fact have such a 
narrow meaning, the impression remains that analysis might be primarily deduc-
tive. This immediately raises the questions of how it can, at the same time, be seen 
as an upward move, whether it is a method of proof of sorts, and the question of 
convertibility of analysis-steps. For if analysis is to be a validation technique, the 
steps have to be reversible. The bulk of scholarship has focused in on the items 
deduction, calculus-character, validation character, and convertibility. Perhaps one 
can gain a new perspective by taking the nature of Greek analysis as an analysis of 
configurations into account. This would shift the focus away from concerns stem-
ming from propositional calculus and its logic (see below).

In Pappus’ account, and in the ancient examples we have, the analysis is fol-
lowed by a synthesis, whenever an argument is presented as complete. The synthesis 
has the form of a classical apodeixis and retraces the steps of the analysis. 

1 Gulley (1958) provides a convincing argument for the thesis that the “upward” global view 
derives from philosophical considerations and contexts, while the “downward” items reflect 
“local” ingredients of the mathematical practice. He holds that Pappus did not succeed in combin-
ing them in a coherent overall picture. Here I disagree with him. In my opinion, the two views 
constitute two complementary perspectives, both relevant and pertinent, not two conflicting and 
competing strategies.
2 Hankel (1874) argued that analysis is indeed a fully valid proof strategy, rendering the synthesis 
superfluous, and ascribed the persistent presence of syntheses in analytic-synthetic arguments to 
the “Nationalcharakter” of the Greeks – a kind of genetic meticulousness. Other authors, who do 
not go quite this far, but still maintain that analysis is a deductive method, aiming at establishing 
conclusions, include Robinson (1936), Gulley (1958), Mahoney (1968), and Szabo (1974). The 
word “akolouthos,” interpreted as implying logical derivation, is strongly emphasized by Robinson 
(1936) and Gulley (1958). Robinson and Szabo also place special emphasis on indirect (dis-) 
proof: an analysis that derives a contradiction from p proves that p is false. A famous example 
from pre-Euclidean geometry would be the proof for the incommensurability of side and diagonal 
in a unit square. It seems to me, though, that such indirect arguments were not the primary focus 
of operation for mathematical analysis. Hintikka and Remes (1974) have argued, in my view 
convincingly, that analysis is not a method of proof, nor can it stand alone as a (direct) method of 
validation. Perhaps they overemphasize the non-deductive ingredients and features of analysis. 
Hintikka (1973), discussing a passage from Aristotle’s De interpretatione, also showed that 
“akolouthos” does not necessarily have the force ascribed to it by some scholars. In fact, Collectio 
IV contains at least three distinct instances where the word does not have that specific meaning: 
Prop. 12: The synthesis is said to follow the analysis in orderly fashion. Genesis of the quadratrix: 
The upper side of the square “follows along in orderly fashion,” as the left-hand side describes a 
quadrant. Prop. 30: Archimedes claims that since spirals in the plane, and on cylinders (or cones) 
have been considered, it “follows in order” that one should envisage spirals on hemispheres as well.
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It seems to me that this quite obviously means that analysis was not viewed as an 
independent proof strategy by the Greeks. Nevertheless, if the synthesis simply 
retraces the analysis, it would seem as though it is a mere formality, and one virtu-
ally “has it all” after the analysis. The synthesis, furthermore, clearly has to be 
deductive. So the issue of the convertibility of analysis-steps arises anew, as does 
the question if the burden of proof lies with the analysis (where all the decisive 
ideas and moves come from) or with the synthesis. Scholarly opinions differ widely 
here, and will probably continue to do so. And it helps very little to realize that the 
synthesis can certainly stand alone, while the analysis cannot.

1.3.1.3 Analysis in Outline

The following tentative general considerations focus on analysis: its setting, its ingre-
dients, its nature. I will leave the question of the exact interdependence of analysis 
and synthesis aside, while claiming that analysis was not, and could not be, a proof 
strategy on its own. And I will avoid as much as possible the technical vocabulary of 
the standard discourse, because I am pleading for a fresh look at the issues.

Recent scholarship, notably Netz (1999), has put the spotlight on an aspect of 
Greek mathematical discourse that has perhaps not been sufficiently recognized in 
the more recent past: the importance of figures, and the essential role of configura-
tions in geometrical argumentation. Picking up on considerations in Hintikka and 
Remes (1974), I should like to bring this aspect to bear for a preliminary global 
evaluation of Greek geometrical analysis. It is important to note that Greek geo-
metrical analysis is not an analysis of propositions, not a method for manipulating 
propositional content, but an analysis of configurations.1 It looks for dependencies 
and interdependencies of items within geometrical configurations, and in this con-
text it hunts for grounds of argumentation. Perhaps we are better off not to assimi-
late this strategy too closely to our ways of operating in terms of propositional 
calculus. If analysis is successful in clarifying crucial interdependencies in a con-
figuration, it may be convincing, even convey certainty. It can be methodical and 
carry validation. But it need not be a self-sufficient, closed proof strategy. In fact, 
there are good reasons for wanting it to be more open and not restricted to deductive 
procedures. Let me explain.

In an analysis-setting, we have a complex configuration, part of which is hypo-
thetical, and we are trying to make sense of it, corroborate it. One strategy that 
suggests itself immediately is the idea of breaking down the whole into constitutive 
building blocks, on which we hope to have a handle. This strategy amounts to a 
downward movement, in the form of reduction and deduction. Obviously, that is a 
reasonable path to take. In all likelihood, reduction/deduction was the historical 

1 When Hintikka and Remes put forth considerations to this effect in 1974, they met with a lot of 
resistance among historians of ancient Greek geometry and others. It appears to me, though, that 
many of their points are valid and deserve reconsideration today.
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core of the ancient method of analysis (see Prop. 12). The building-blocks (partial 
configurations) we are isolating would be already actually present in the configu-
ration, they would turn up as “conclusions” of a derivative chain, but function at the 
same time as starting-points for putting together the whole again.1 The issue of 
convertibility is important for the overall success, but it seems reasonable to assume 
that an investigator would ignore it initially.2 The attention would be on recognizing 
patterns, identifying standard partial configurations, and on learning how to reduce 
complex configurations to standard types. This strategy has the additional advantage 
that it can be brought into a quasi-algorithmic framework, with predictable standard 
moves. It is straightforwardly operational, and very powerful. I agree with those 
scholars who insist that deductive moves were the preferred strategy within analysis.

Yet this is not all, and one would not want to be restricted to it. In addition to 
making use of patterns that are already present in the target configuration, one will 
also try to detect incomplete patterns, complete them, and work from there. One 
must resort, inter alia, to extensions of the configuration, auxiliary constructions. 
This is a non-programmable, non-deductive (upward) move. It relies on intuition. 
Nevertheless, it can be methodical, if one keeps in mind that the context of argu-
mentation is the configuration at hand, and doing it is still hunting for grounds of 
argumentation within the configuration, in service of the overall goal to reduce to 
something you can handle. In other words: it is a vital part of apagoge. When 
Hintikka and Remes pointed to the pervasive presence of auxiliary constructions in 
ancient analyses, insisted that they were an important part of the method, and 
stressed that this feature implies that analysis is not a deduction method (not essen-
tially downward), and does not establish conclusions (is no valid proof), they were 
right, I think. Given the context of the discussion, their contribution was received 
as one with philosophical, meta-theoretical focus, and critics insisted that it has 
nothing to do with the ancient mathematical practice. This is unfortunate. For in my 
opinion, the importance of operating with extensions has everything to do with the 
practice of conducting an apagoge in full view of a concrete configuration. Both 
ingredients, the deductions and the extensions, are means to provide grounds for 
argumentation by reduction to familiar patterns. It is a needless impoverishment of 
one’s analytical toolbox to restrict oneself to strategies that can be conceptualized 
as propositional deduction moves. This is also why I find the discussion of whether 
analysis is primarily “upward” or primarily “downward” helpful only to a certain 
degree, and likewise the attempt to capture the fruitfulness of analysis by the degree 
to which it is proof-like.

Even after a successful apagoge, when one has reached a configuration over 
which one has control, one still has to secure, in the resolutio, that the identified 
end stage of the apagoge is indeed fully controllable even without the initial 

1 Some might argue that this is not, in fact, a downward move to begin with, inasmuch as the elements 
are prior to the composite. I will leave this question aside, and just accept that we are dealing with 
a deductive move.
2 This does not imply that he thinks it is not an issue, or thinks he automatically has convertibility. 
Nor does it imply that he sees himself as primarily hunting for conclusions/valid derivations.
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assumption made at the beginning of the apagoge, and that all the items needed can 
be determined, or derived, from what was either given or can be provided indepen-
dently. In both cases, one establishes the status of the necessary ingredients as 
“given” (for this term, see the introduction to Prop. 7). Also, one must determine 
conditions for solvability, and discriminate between different cases. This part of the 
resolutio is called diorismos. In general, the resolutio of the analysis will be mostly 
deductive as well, but there are instances in Coll. IV (Props. 33 and 34, e.g.), where 
the resolutio is not deductive throughout. In general, it appears that the resolutio, 
the stage in which analysis culminates and “hands over” to synthesis, most clearly 
has the ensuing synthesis in view. Very often, the first part of the synthesis will 
more or less repeat the final steps of the resolutio, in the same order (cf. Props. 4 
and 12). Even so, it was evidently seen as necessary that the synthesis repeat those 
steps, and this means: this part of the proof was not seen as covered by the analysis 
itself, either.

To sum up this sketch of analysis: Greek geometrical analysis is an analysis of 
geometrical configurations. One operates with deductions, and with non-deductive 
moves such as extensions of the configuration, with the overall goal to reduce the 
target configuration to familiar patterns. After this phase, one has to make sure that 
the identified items in the end stage of the analysis are constructible. A synthesis 
follows, which repeats the constructions, and proceeds with a regular apodeixis that 
retraces the steps of the analysis. The synthesis will often be easy after a successful 
analysis, but it is the part that carries the formal proof. One will often find that the 
synthesis is left to the reader as obvious. But then exactly this will be stated. An 
analysis never ends with “q.e.d.”

1.3.1.4 Examples of Analyses in Coll. IV

Most of the examples for analyses in Coll. IV illustrate the dominant and primary 
use of the technique of analysis as a heuristic tool that was described above. 
Specifically, Props. 4, 7, 8–10, and 12 illustrate different aspects of plane geometrical 
analysis, Props. 31, 33, 34, and 42–44 illustrate the use of the technique for prob-
lem-solving in solid geometry, and in Props. 36–40, analysis is employed to reduce 
“linear” problems to basic symptomata (defining properties) of the quadratrix. There 
are, however, different examples as well. Analysis was, apparently, not restricted to 
furnishing a heuristic toolbox. In Props. 28 and 29, it is employed to characterize 
the transcendent motion curve quadratrix, via its symptoma, through an analysis of 
loci on surfaces. This use of analysis is directed toward determining the properties 
a certain geometric object has in relation to other geometric objects within the same 
configuration. In Props. 42–44, analysis is used as a device to determine the “level” 
of a problem, independently of an actual solution. Such analyses were probably 
followed, in practice, by actual solutions. Pappus may be somewhat idiosyncratic 
here in picking out the analysis only, to make a point about procedures to establish 
homogeneity for already existing mathematical contributions. Nevertheless, the fact 
that analysis can be so used shows that ancient geometrical analysis was not 
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seen only as a toolbox for actual problem solving. It had intrinsic merits, beyond 
facilitating operations.

Especially because of these other usages of the analysis technique, it is quite 
apparent that the standard reading of ancient Greek analysis is too narrow and has 
not yet made full use of the source material (limited as it may be). As Mahoney has 
suggested, we should look at the usage made of analysis in actual Greek geometry 
in the transmitted texts to determine what analysis meant for the Greeks. Coll. IV 
provides quite a few examples that can broaden and deepen our understanding of 
it. We have the additional advantage that the author of Coll. IV, presenting these 
actual examples of ancient geometrical analysis, is also the author of the proem of 
Coll. VII, our most extensive testimony for the characterization of the method as 
such. We can use the material to substantiate what was left open or vague by Pappus 
in his methodological description, filter out what was solely due to the fact that the 
text from Coll. VII is a proem to a treatise, and come to a more comprehensive 
understanding of what at least this one well-informed ancient mathematician 
thought about analysis as a mathematical method.

1.3.1.5 Structural Schema of Analysis-Synthesis1

Protasis (Proposition)
Ekthesis (Setting-out)
1. Analysis

1.1. Assumption: problem solved/proposition true
1.2. Analysis proper: apagoge, or epagoge
(transform the desired proposition/state of affairs into something known to be 
constructible/true: use reduction, which can, but need not be, deductive,2 and use 
suitable extensions of the configuration, amounting to a strategy of transposi-
tion; this second aspect is non-algorithmic, relies on intuition, one needs to bring 
additional information to bear3)
1.3. Resolutio: diorismos and determination of data4

(determine conditions for solvability/provability, often resulting in sub-cases for 
the desired proposition; show that the endpoint of the analysis is reachable/true, 
independently of assumption 1.1.)

1 Cf. Prop. 1 for the structural schema of a synthetic proof
2 Examples for non-deductive steps in an analysis: in Props. 31–34, see below.
3 See Hintikka and Remes (1974, especially pp. 22–30 and 41–48).
4 The resolutio, with both its components, was central in Apollonius’ works (cf. Jones 1986a). 
Diorismos is not adequately represented in Coll. IV, cf. the introduction to Prop. 7. Since the analy-
sis proper assumed that the problem is solved (the theorem true), the resolutio has to do two things: 
(i) show that the items in the end stage configuration are determined within the configuration, from 
the problem, independently of the analysis-assumption (ii) determine conditions for solvability, 
including, perhaps, a split-up into cases. This way, it establishes necessary, but not sufficient condi-
tions for the existence of the figure at the end stage of the analysis. The synthesis, with kataskeue 
and apodeixis, will establish the latter; cf. Hintikka and Remes (1974, pp. 49–69).
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2. Synthesis (cf. Prop. 1)
2.1. Kataskeue (Construction)
2.2. Apodeixis (Proof)
2.3. Symperasma (Conclusion)

Analysis started out as a heuristic technique; it was never “settled” in the mathe-
matical inventory to the degree that synthesis was. An indication for this is the lack 
of proper names for some of the features: diorismos1 and data (Greek: doqέnta) 
were used consistently. There was no name for the crucial first stage, the analysis-
assumption, and for stage 1. 3. Resolutio is a modern term, coined in the nineteenth 
century (Hankel 1874). Nevertheless, the stages themselves are detectable as essen-
tial parts of a pattern that is present in the ancient sources. As to the labels 
“apagoge” and “epagoge,” they are both attested, but it is not clear whether they 
were interchangeable, or whether there was a conscious differentiation in meaning, 
where apagoge replaced epagoge as the name for analysis proper, with epagoge 
taking on the meaning of “reduction” strictly speaking, and apagoge covering other 
aspects of stage 1.2 as well. The above schema, going back to Zeuthen (1886, pp. 
98–104), is a good description of the actual structure of ancient geometrical analysis 
as one finds it in the sources. It is not, however, an ancient description.

1.3.2 Prop. 4: The Structure of Plane Analysis-Synthesis

1.3.2.1 Proof Protocol Prop 4

The following protocol, like the protocol for Prop. 1, is somewhat more detailed so 
as to illustrate how the steps of the synthesis mirror the steps of the analysis.

1. Analysis
1.1 Assumption: EK = EL
1.2 Analysis proper:
Extension of the configuration: TM, EN2

Then 1.1implies
MX = XT  (1) [VI, 4; V, 16]
ZN = NT  (2) [III, 3]
NX || ZM  (3) [VI, 2]
ÐTNX = ÐNZM = ÐTAX  (4) [I, 29, III, 21]
T, N, X, and A lie on a circle  (5) [III, 21, conv.]
ÐANT = ÐAXT = ÐAEL = ÐAED  (6) [III, 21, I, 29]
A, N, E, and D lie on a circle  (7) [III, 21, conv.]
1.3 Resolutio
(7) is true independently of assumption 1.1 [III, 18, III, 31]

1 For “diorismos,” cf. Procl. in Eucl. 202, 2 ff. Friedlein, and Heath (1921, I, p. 371). It should perhaps 
be noted that this technical term was interpreted in slightly different ways by different authors.
2 This step is non-deductive, as Hintikka–Remes have pointed out. The success of an analysis can 
rest on the insightful choice of such extensions rather than on successful deductions.
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2. Synthesis
[2.1 Kataskeue: construct M, X, N as in the extension in the analysis]
2.2 Apodeixis
A, N, E, and D lie on a circle  (7′)1 [III, 18, III, 31]
ÐAND = ÐAED = ÐAXT (6′) [III, 21, I, 29]
A, N, X, and T lie on a circle (5′) [III, 21, conv.2]
ÐTAX = ÐTNX = ÐTZM (4′) [III, 21]
NX ║ ZM (3′)    [I, 273]
MX:XT = ZN:NT = 1:1 (2′, 1′) [III, 3, VI, 4]
EK = EL     [I, 29, VI, 4]

1.3.3 Props. 5/6: Reciprocity in Plane Geometry

In the above excursus on analysis-synthesis, I briefly touched upon the discussion 
about the question of the convertibility of steps in plane analysis. Already in 
Aristotle’s Posterior Analytics (78 a 7 ff.), the problem of convertibility in analysis-
synthesis was characterized as a non-trivial question, when he said that induction-
deduction would be (!) easy, if analysis were always directly convertible. In plane 
geometry, we have, as a rule, a kind of reciprocity: if feature a entails feature b, then 
feature b entails feature a. But even in plane geometry, this holds only for the most 
part, not always. Even in plane geometry, one may have to use additional devices, 
differing intermediate steps, to convert an argument. Props. 5 and 6 can be used to 
illustrate this aspect of plane geometry. They are reciprocal. In both cases, we have 
a circle, a chord, two tangents in the endpoints, and a line segment E–H–Z, inter-
secting the circle in T and K. If EH = HZ, then TK = HK (Prop. 5), and if TK = HK, 
then EH = HZ (Prop. 6). However, not all steps in the proof of Prop. 5 can be used 
in Prop. 6. The content of Props. 5 and 6 is rather trivial. The twin propositions 
illustrate the following point quite nicely: even in plane geometry, where usually 

1 Note that the endpoint of the resolutio has to be proved again in the synthesis, as its first step. 
For the synthesis has to provide a complete proof. In the case of Prop. 4, the first step of the syn-
thesis turns out to be identical with the last step of the analysis. Nevertheless, it is no mere repeti-
tion, and certainly it is put down by Pappus intentionally. Whenever in an analysis-synthesis this 
first step of the synthesis is passed over, this means it is not given explicitly, because trivial, but it 
does not mean that the resolutio is taken to be part of the proof. The situation is comparable to the 
omission of the kataskeue in Prop. 4.
2 Whereas the use of the converse of a proposition is unproblematic in the analysis, it is not permis-
sible in the synthesis. One has two options here. Either the converse was known to be a theorem 
(though not attested in the surviving texts), and then that theorem is invoked here. In fact, Pappus 
uses what amounts to the converse of III, 21 in several places outside of Prop. 4 as well. So this 
would appear to be the preferable option. Or, one has to assume that Pappus passes over an 
implicit intermediate step here, showing X to be on the circle through A, N, and T; e.g.: Assume 
that X does not lie on the circle. Draw AX. It intersects the circle in V, with either A–V–X or 
A–X–V. In both cases, one has AVT = ANT = AXT, in contradiction to I, 16. Therefore, X must 
lie on the circle.
3 I, 27 is the converse of I, 29 within Euclidean geometry.
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the converse of a proposition or deductive step is valid, if the proposition or deductive 
step is so, we cannot always assume that the argument from a to b just has to be 
retraced, with the very same steps, from b to a, in order to get a deductive derivation 
of a from b. And this point, once it is granted, obviously has consequences for the 
nature of plane analysis-synthesis as a technique of argumentation, and specifically 
for the relation of analysis to synthesis in general.

context: plane analysis-synthesis, convertibility of argument steps.
sources: /.
means: I, III.
method: synthesis.
format: theorem.
historical significance/ reception: /.
embedding in Coll. IV: motif “circles, chords, tangents and relative measures in length”: 
Props. 2, 3, 4, 8, 9, 10, 39–41, motif “convertibility in geometry of circle”: Prop. 4.
purpose: illustrate reciprocity in plane geometry, specifically: geometry of the circle (III).

The results of Props. 5 and 6 are not used in Coll. IV.

1.3.3.1 Proof Protocol Prop. 5

(Assume EH = HZ, show TH = HK)
1. Ekthesis
With center of the circle L, construct an isosceles triangle ZLM.

2. Apodeixis
2.1. EL = LM = LZ
2.2. DEHL ≅ DZHL, HL ^ EZ, TH = HK

1.3.3.2 Proof Protocol Prop. 6

(Assume TH = HK, show EH = HZ)
1. Ekthesis
With center of the circle L, construct triangles EAL, EHL, LZC.

2. Apodeixis:
2.1. D EAL ≅ D ZCL, EL = LZ
2. 2. HL ^ EZ, EH = HZ
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2 Props. 7–10: Plane Geometry, Apollonian Style

2.1 Overview Props. 7–10

Announcement of Prop. 10
 7: Illustration of how to work with the Data in a resolutio
 8: Auxiliary lemma for Prop. 9, with connection to Apollonius, Tangencies I, 16/17
 9: Auxiliary lemma for Prop. 10
10:  Resolutio for a special case of the Apollonian problem, with implicit restrictions 

so as to make Prop. 9 applicable

The purpose of Props. 7–10 is to elucidate the resolutio part of the analysis tech-
nique in plane geometry (see above, introduction to Prop. 4, structural schema of 
analysis-synthesis). Among the classical authors, Apollonius was the main represen-
tative of analysis-dominated plane geometry. It is therefore no coincidence that 
Pappus chooses an example visibly associated with Apollonius in order to illustrate 
the technique. As will become clear below, his portrait suffers some limitations.

The resolutio in an analysis fulfills two tasks. First, it determines data, i.e., it 
determines that the entities identified in the analysis proper as crucial for construction 
and that proofs are given, independent of the initial analysis-assumption. This aspect 
is indeed represented in Pappus’ account. He also makes a point of adding in Euclid’s 
Data, quite probably because, in his opinion, this work is the basis for the technique 
in plane geometry, just as the Elements are for plane mathematical synthesis.

The other aspect of the resolutio, and the one that is clearly dominant in 
Apollonius’ work on plane geometry is the diorismos, i.e., the determination of 
conditions of solvability, not only on the local, but also the macro-level (in 
Apollonius, it determines the pattern of exposition for complete treatises). It 
includes the split-up of problems/propositions into cases which then are treated 
separately. Pappus’ account does not represent this aspect adequately (there are 
two cases only for Prop. 7, and those are not treated exhaustively). The only 
explicit diorismos in Coll. IV can be found in Prop. 32 (angle trisection). If 
Pappus intended a full portrait of plane analytical geometry, Apollonian style, 
from a methodological point of view, one must say he was not quite successful. 
Only a fraction of Apollonius’ works in this area survives. Even so, it is quite 
apparent that the split-up into cases and sub-cases, their arrangement in order 
of complexity, and working them off step by step, and in this way exhausting 
the original question, is the strategy that dominates the set-up of the Apollonian 
works, and determines their presentation on the local level as well. The feature 
is quite idiosyncratic, and quite pronounced. It is not far-fetched to assume that 
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it was programmatic in Apollonius1; it certainly does have drastic consequences 
for the presentation of mathematics on the macro-level, and even for the ques-
tion of what plane geometry essentially is. The program, if it existed, seems to 
have pointed toward operationalization, focusing on relations as opposed to 
objects: mathematics as a toolbox, proto-algebraic in methodological emphasis. 
This is a controversial, much debated issue. It cannot be pursued here; however, 
since any material on analysis, including Props. 7–10 of Coll. IV would have a 
bearing on a further clarification and discussion on the nature and purpose of 
Greek geometrical analysis, some brief remarks may be appropriate here, in 
addition to naming the general trend. According to Jones (1986a, p. 531, # 40), 
a “katholou pragmateia” (general treatise) by Apollonius once existed. It is 
attested in Eucl. Op. 6. p. 234, and in Menelaus’ Spherics (pp. 229–240). Jones’ 
supposition that the several general statements from Apollonius in Proclus’ 
Commentary,2 among other things on the status of the cylindrical helix as 
equivalent to circle and straight line, and also on definitions and postulates, 
ultimately derived from this lost treatise, is quite convincing. Further investiga-
tion, perhaps using the clearly methodologically framed material from Coll. IV 
here (and below, Props. 28, 29, 31, 33, and 42–44) would seem warranted. 
Perhaps one would get closer to what Jones labels as an “interesting, but unan-
swerable question”: “What in the character of Apollonius, a mathematician of 
enormous ability and perhaps genius, led him to devote so much effort to 
tedious programmatic writings of this kind?” (Jones 1986a, p. 530).

Perhaps Pappus was blind to this important programmatic aspect in Apollonius, 
tied to extensive application of diorismos, and to its revolutionary potential. 
Perhaps, however, he was quite aware of the potential, and chose to ignore it, 
because he did not favor its operationalist outlook on methodology for geometry. 
The question can, of course, not be pursued in the present commentary. A detailed 
investigation of the remains of Apollonius’ works and their implicit/explicit meth-
odology, including their reception in antiquity, is still a desideratum.3 For now, it 

1 The resolutio becomes central; cf. Jones (1986a, pp. 510–527), specifically, p. 524: “long-winded 
approach”, “desirable in mathematical treatises perhaps not only for beginners”. Apollonius achieves 
thoroughgoing operationalization, generalization, and schematization (disambiguate a configuration, 
then proceed algorithmically). For a similar global assessment cf. Jones (1986a, p. 400). The result can 
make for rather tedious reading, even monotony. Compare Jones (1986, p. 524) “taste for exhaustive-
ness”, and p. 530 for the judgment that this kind of set-up was programmatic. See also Hogendijk (1986, 
pp. 218–223). It is certainly very different from the synthetic treatment in Euclid or Archimedes.
2 cf. Procl. in Eucl. ed. Friedlein passim; compare also Tannery (1912, I, pp. 124–138), concerning 
Apollonius’ attempts to revise the set-up of the Elements.
3 Jones (1986a) provides an excellent basis for the study of the lost works; on the Tangencies see 
pp. 66–88 and 510 ff. In addition, there is the fully preserved Sectio rationis (in Arabic), Latin 
translation by Halley from 1706, English translation by Macierowski/Schmidt from 1987, the latter 
somewhat flawed. From the Sectio rationis, the other two Sectiones can be reconstructed, cf. Jones 
(1986a, pp. 510–527). Further remarks can be found in Pappus, and in such authors as Proclus, 
who is interested predominantly in the methodological and meta-theoretical aspects.
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must suffice to state that Pappus’ portrait of the methods of plane analysis is selective. 
In general, Coll. IV only includes such features as can be represented on a micro-
level (argumentative devices within a proof), or on an intermediate, local level 
(set-up of at most a small group of theorems, preferably one). Pappus chose not to 
include a set of propositions that would illustrate Apollonian diorismos-strategy in 
a miniature format, as he has done for Archimedean monographic mathematics (see 
Props. 13–18).

2.1.1  Historical Context for Props. 7–10: Apollonius’ Tangencies 
and the Apollonian Problem

As said above, Prop. 10 is the resolutio to a very special case of the so-called 
Apollonian problem: given three circles, find a fourth one touching them. Prop. 10 
also connects to Props. 13–16, because each of the circles in the arbelos-figure is 
a solution to the Apollonian problem (where the three given circles are mutually 
tangent in a specific way; on Props. 13 ff. see below), and this may have been one 
of the reasons why Pappus chose this particular version of the Apollonian problem 
in Prop. 10. Props. 7–10 have so far been neglected. There is some discussion in 
secondary literature, however, for the work out of which the problem is taken: 
Apollonius, Tangencies. This work addressed the following more general questions: 
given three entities, each of which can be either a point (P), or a straight line (L), or 
a circle (C), find a circle that touches all of them. Apollonius proceeds case by case, 
building up from the easiest one (obviously P–P–P), and reducing more complex 
cases to the ones already solved. The cases dealing with C–C–C took up the whole 
of Book II. The Tangencies are lost. Our information on them goes back, in essence, 
to Pappus’ commentary in Coll. VII.1 My analysis of Props. 7–10 suggests that 
Prop. 8 could be a further testimony for Apoll. Tangencies I, 16/17 (see the transla-
tion, and see below). If so, Prop. 8 may be an important source text, so far over-
looked. The question whether Prop. 8 deserves the status of a testimony, or even 
fragment for Apollonius, Tangencies, cannot be decided within the present frame-
work. Around 1600, Commandino’s edition of Pappus’ Collectio played a major 
role in the development of a new kind of analytical mathematical techne (art), in the 
context of the new algebra/analysis, for example, in Vieta and Fermat. It is certainly 
no coincidence that this reception of Pappus/Apollonius is firmly placed in a context 
of a programmatic renewal of analytical methods and methodology. Attempts were 
made, inter alia, at a reconstruction of the ancient procedures of investigation and 
problem solving, in order to develop them further and integrate them within a more 

1 Coll. VII, 636 Hu and 820–836 Hu; cf. also Heath (1921, II, pp. 181–185), Jones (1986a, 
pp. 534–539). In addition, see also Hogendijk (1986), fragments in Arabic translation, especially 
pp. 218–223.
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far-reaching scope. Vieta (1600, under the title: Apollonius Gallus1) uses his newly 
developed tools to solve the Apollonian problem – geometrically, with ruler and 
compass only, chiding Adrian Van Roomen, to whom he had put the problem, and 
who had not been able to come up with a plane solution; Van Roomen used conic 
sections, which meant he presented a solid solution for a plane problem.2

2.2 Prop. 7: Determining Given Features Using the Data

The term given does not have a direct equivalent in modern mathematical terminology. 
There is, also, not a complete agreement on what the ancient term signified (cf. Jones 
1986a). A final clarification would have to come from an exhaustive (philological) 
study of the actual uses made of the term in the ancient sources – at present still a 
desideratum. The following rough description should be uncontroversial, however, 
and should suffice as a preliminary orientation to facilitate understanding of the 
arguments in Coll. IV.3

A given magnitude, area, figure, or ratio is determined by the context of a given 
configuration, though it need not be uniquely determined. Usually, this means that 
the entity itself, or a congruent/equivalent entity is constructible, even though the 
construction could yield other solutions as well. For example: take a line and a 
point outside of it. Then the point on the line that has a certain distance to the point 
outside is given (Data 31), although the obvious construction (circle around the 
point with distance as radius) yields zero, one, or two solutions. What is captured 
in the label given is the fact that one of them – the one of them one is interested in 
– is fixed on the line, as it were (if it exists at all).

Points can be given in position; then they are constructible from the information 
implicit in the given configuration/conditions.

1 Vieta (1600, cf. pp. 74–80) in Schooten’s 1646 edition. De Fermat (1679, pp. 74–88) solves the 
related problem for four spheres. The original problem was also treated by Newton in the 
Arithmetica Universalis Problems XLII–XLVII in Horsley’s 1779 edition (pp. 132–137), in 
Whiteside (1972, Vol. V, pp. 252–267) and in Principia I, Lemma XVI (pp. 70/71 in the 1726 
edition, generalization of Prop. 10, leading to conic sections), by Casey (1882, pp. 121–123) (limit 
process, coaxial circles, points of similarity), and by Monge (according to (Hilbert and Cohn-
Vossen 1932, pp. 120–121), again in connection with projective geometry. Cf. also Hofmann 
(1990, II, pp. 146–151), with additional references to modern solutions by Bieberbach and 
Coxeter, Ver Eecke (1933b, I, pp. LXVI–LXXII), Chasles (1875, p. 53) and Notes XXVIII (pp. 
372–375). Hofmann (1990, II, pp. 146–164) contains a discussion of Props. 8, 13, 15, and 16 in 
connection with projective geometry and points of similarity. For a reconstruction of a possible 
ancient context for something like a theory of points of similarity, connecting Props. 10 and 13, 
cf. Zeuthen (1886, pp. 381–383); see also Heath (1921, II, pp. 182–185). Heath goes beyond 
Zeuthen in postulating the nucleus of a projective geometry for the ancients.
2 cf. Van Roomen (1596). For the connection of geometrical analysis for the determination of the 
appropriate “level” of a solution see also Props. 42–44.
3 See also Taisbak (2003).
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Lines (i.e., line segments) can be given in position or size (or both). In the first 
case, the straight line on which they lie is constructible, in the second, one can 
construct a congruent line segment.

Figures can be given in size, or kind, or position (or a combination of some of 
these). In the first case, one can construct a figure with the same area (usually, a 
square or rectangle), in the second, a similar figure (e.g., a triangle with the same 
angles), in the third, the whole figure is fixed in the given plane.

Ratios are given if one can construct two lines that stand in that ratio.
Euclid’s work with the title Data closely corresponds to the Elements. It was 

transmitted and known throughout the Middle Ages. It gives a catalog of lemmata, 
derived from the Elements, useful for analyses in practice, specifically for the 
resolutio-stage of actual problem solving. One can refer to lemmata in the Data 
instead of showing, in each case again, that an entity is given; though the Data 
belong to the “analytical topos” of argumentation, as a kind of encyclopedia, or 
toolbox for standardized situations, they are not, in themselves, an analytical work. 
In Pappus’ opinion, they clearly represent the base of reference for plane geo-
metrical analysis. He presents them this way in Coll. VII, and that is also how they 
are used in Props. 7–10.1

As said above, in Greek analytical arguments of the “plane” type, there is a 
noticeable tendency toward maximizing calculatory automatisms in the resolutio-
strategy. The result is a quasi-algorithmical procedure, avoiding the need to con-
stantly refer in detail to specific geometrical configurations and abstract from 
them.2 This can be observed in the extant Sectio rationis by Apollonius, and it is 
reconstructible from Pappus’ commentary on Apollonius’ lost works in the area of 
plane geometry.3 Pappus illustrates this aspect of plane resolutio in Prop. 7 in the 
following way. He creates stereotyped situations, where the same set of proposi-
tions from the Data can be invoked in an analogous manner (compare the transla-
tion). Pappus does not himself explicitly refer to the Data, and he goes through the 
steps in detail only once, while hinting at the repetition of the pattern in the other 
cases. The reader should be aware that in presentation of Prop. 7 as given here, the 
Data have taken on the same role in the footnotes that the Elements play else-
where. I have assumed that Pappus wants his readers to refer to a background 
knowledge that is also expounded in the Data, and the references are intended as 
a possible path of justification for those who do not have the whole context present 
in their mind. The path suggested in the notes and commentary is not the only 
possible one. Even so, it might be useful for an initial orientation, and for illustrat-
ing the point made above, about the schematic, quasi-calculatory operation in 
Prop. 7. To further stress this point, because it captures the essential feature of 

1 On the Data and their relevance cf. also Heath (1921, I, pp. 421–425), especially p. 422.
2 Contrast the role of diagrams in apodeictic procedure, as characterized in Netz (1999).
3 From Pappus’ examples of solid geometry (notably 31, 34, 42–44), a similar picture arises. But the 
number of examples is too small to arrive, at the present stage of research, at a sufficiently based 
conclusion as to the tendency toward algorithmization in the field of solid geometrical analysis.
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Prop. 7, a list of tools and devices was compiled, and the proof protocols for 7a 
and 7b then boil down to identifying suitable triangles, and appealing to almost 
identical sequences of applying the items on this list, in a quasi-automatic way. 
The other cases for the configuration targeted in Prop. 7, not treated by Pappus, 
could be handled in exactly the same way.

Toolbox for Props. 7a and 7b.
a I, 47 (Pythagoras): squares over sides of right-angled triangles.
b II, 12/13, generalization: area theorem for triangles that are not right-angled.
c VI, 4.
d VI, 8, Porisma.
e VI, 17: ratio and area theorems for similar triangles.
f V, 16: enallax.
g Data 1:  a, b, given Þ a:b given.
h Data 2: a:b given, a or b given Þ the other entity is given.
i Data 3: a, b given Þ a + b given.
j Data 4: a, b given Þ a − b given.
k Data 52: the figure of a given kind over a given side is given in size.
l Data 55: area given in kind and size, Þ sides given (used only for squares in Prop. 

7).
m  Data 57: area, applied to given line, in given angle given Þ remaining side given 

(used for rectangles with one side given).

The mathematical content of Prop. 7 is rather trivial: in a quadrilateral with all four 
sides and one angle (a right angle) given, both diagonals are given in position and size. 
Such a quadrilateral is obviously constructible, if it exists at all.1 Also, Pappus discusses 
only two of quite a few possible sub-cases. Therefore, his point in presenting the 
argument cannot have been to establish the truth of the claim as such. It probably was 
to show the reader, in a case where the facts are clear, how one operates in order to 
establish givens: Prop. 7 is of a purely methodological interest.

context: method of analysis, specifically: resolutio, specifically: given features.
sources: /.
means: Data, and some selected corresponding theorems from the Elements.
method: analysis.
format: proposition and corroboration (not a full-fledged apodeixis (proof) ).
historical significance/reception: /.
embedding in Coll. IV: used in Props. 8, 9, though not essential there; motif “aspects of 
plane analysis”: Props. 4–12.
purpose: illustration of the operation of Euclid’s Data in the resolutio of an analysis.

As indicated above, Prop. 7 is used in Props. 8 and 9. In both cases, however, one 
could have easily avoided a reference to Prop. 7. This is an indication that Prop. 7 
and its usage in 8/9 were inserted by Pappus into source material of an independent 
provenance (possibly: from Apollonius, Tangencies, cf. commentary on Prop. 8), 
where the Data were not instrumentalized in the way illustrated by Pappus.

1 Construct a right-angled triangle ABC, with the given AB, BC, and ÐB; this yields AC. Then 
construct the triangle ADC, with the given sides AC, AD, DC. Draw DB.
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2.2.1 Proof Protocol Prop. 7a

Sub-case of: quadrilateral has an acute angle at D
Create triangles and show, successively, that line segments are given

Resolutio

1. AE, EC, AC, BE are given (DABC with height BE).
Apply a, k, i, l (AC); d, e, k, m (EC); j (AE); a, k, j, l (BE).

2. DH, HC, AH are given (DADC with height AH).
Apply b, k, j, m, j, h (DH); j (HC); a, k, j, l (AH).

3. ZC, EZ, ZB are given (DAHC ~ DCEZ).
Apply c, f, g, h (ZC, EZ); i (ZB).

4. ZT, TC, BT are given (DZBT ~ DZEC).
Apply c, g, h (ZT); j (TC); a, k, j, l (BT).

5. DB is given; apply a, k, i, l.

2.2.2 Proof Protocol Prop. 7b

Sub-case of: quadrilateral has an obtuse angle at D
Create triangles and show, successively, that line segments are given

Resolutio

1. AC, AE, EC, DE are given.
(DABC for AC, DADC with height DE)
Apply a, k, j, l (AC); b, k, i, m, j, h; j; a, k, j, l.

2. EZ, DZ, CZ, BZ are given.
(DABC ~ DCEZ); c, g, h; i; c, g, h; j.

3. ZH, HC, BH, HD are given (DDZC with height DH)
b, l, j, m, j, h; j; j; a, k, j, l.

4. DB is given; a, k, i, l.

2.3  Prop. 8: Resolutio for an Intermediate Step in the 
Apollonian Problem

context: determine givens within a resolutio in plane analysis.
possible source: Apollonius, Tangencies I, 16/17 (extract).
means: Data (via Prop. 7, in one place only; but see comments).
method: analysis.
format: proposition and corroboration (not an apodeixis).
reception/historical significance: possible evidence for Apollonius, Tangencies, I, 16/17.
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embedding in Coll. IV: auxiliary theorem for Prop. 10; motif “aspects of plane analysis”: 
Props. 4–12; motif “touching circles and their diameters”: Props. 13–18; motif “Apollonius”: 
Props. 31–33, perhaps Prop. 28.
purpose: illustration of the technique of determination of givens
Prop. 8 is used in Prop. 9.
literature: (Hofmann 1990 II, p. 151).

As noted above, Prop. 8 is an auxiliary lemma. It shows that, when two equal 
circles and a point outside are given, the diameter for the circle through the given 
point, touching the two circles outside and inside, respectively, is given. The 
proposition provides only the resolutio, not the kataskeue and apodeixis.1 Prop. 8 
is the most complex of the propositions in the group 7–10. Its style of argumenta-
tion differs from the one used in the other plane arguments. As said above, it shows 
some features that indicate that Pappus has used an independent source that has 
not been “worked up” fully. The source sidestepped the Data, and Pappus re-
introduces references to an argumentation via the Data through Prop. 7. The 
resulting argument is not completely smoothed out.2 Also, connections to Pappus’ 
commentary on Apollonius, Tangencies I, 16/17 can be established in several 
places. The argument as given in Prop. 8 leaves out steps that are presented in Coll. 
VII as part of Pappus’ commentary on Tangencies I, 16/17 (Coll. VII, Props. 
102–106), and this means that Prop. 8 could very well be taken from the original 
argument on which Pappus commented.3 The crucial passages are indicated in the 
footnotes of the translation. For easier reference, keywords are added in the proof 
protocol below, with “two layers” indicating the places where the transmitted text 
shows signs that a source text was not fully integrated into the argument as pre-
sented by Pappus. Taken together, these indications corroborate the thesis that the 
source which Pappus used for Prop. 8 could have been a fragment from the lost 
work of Apollonius. If so, Prop. 8, so far neglected in secondary literature, would 
gain considerable significance. It is not mentioned in Jones (1986a), and may 
simply have been overlooked so far. The question cannot be pursued in detail here; 
it certainly deserves scholarly attention.

1 They pose no problem after the resolutio. This means that Pappus intentionally restricts his 
presentation to the analysis only, puts the emphasis on the methods, not the actual mathematical 
result.
2 We encounter insertion of trivial argumentative steps that point to Prop. 7 and do not completely 
fit their immediate context; Hultsch suspects interpolation, but the insertions may very well have 
been brought in by Pappus himself: 196, 9–16 Hu, 186, 18/19 Hu, 196, 25 Hu. Double script 
occurs at 196, 22–23 Hu, the text is uncertain at 196, 27 Hu, and in one place, the text transmitted 
includes a truncated phrase that doesn’t fit the context; see translation with footnotes.
3 Commandino p. 67 plausibly argues that the original author of Prop. 8 intended an argument via 
similar arcs, while Pappus offers a more elementary argument. Heath (1921, II, p. 371) remarks 
about Prop. 8: “the proof is in many places rather obscure and assumes lemmas of the same kind 
as those given later a propos of Apollonius’ treatise”.
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2.3.1 Proof Protocol Prop. 8

* Analysis assumption (implicit): the desired circle CEZ has already been found.1

Resolutio

1. Diorismos (determine conditions for solvability)
1.1 Extend the configuration on assumption *

1.2 HT || CE and TK || PC must hold (cf. Coll. VII, 102)
1.3 DE = ZH must hold (cf. Coll. VII, 106)
1.4 BM = MA, LM = LS must hold

2. Determination of givens
2.1 AM is given in position and size.
(i.e.: M is given, cf. Data; 2 layers)
2.2 CM is given in position and size (cf. Prop. 7; 2 layers).
2.3 CP is given in position and size (i.e.: P is given, cf. Data).
2.4 CPZ is given (i.e. the circle through C, P, Z is given;
cf. Coll. VII, 104/105).

2.4 Prop. 9: Auxiliary Lemma for Prop. 10

2.4.1 Proof Protocol Prop. 9

1. Extension of the confi guration
With the given d = AD − DC = DC − DB, construct circles around A, B with radii 
AE = BZ = d.

2. Resolutio
2.1 The diameter of circle ZCE is given ⇒ DZ (radius) is given (Prop. 8).
2.2 AD, DC, DB are given (use 1).

2.5  Prop. 10: Resolutio for a Special Case of the Apollonian 
Problem

Prop. 10, as given by Pappus, is not quite complete. At a certain stage in the argu-
ment, an implicit additional condition, namely, HB–HC = HC–HA, is used, so as to 
make Prop. 9 applicable (see proof protocol). Without an additional restriction in the 
protasis for Prop. 10, a non-trivial gap in the argument results. Hu 201, #3 suggests 
a path how the gap might have been filled, but refrains from making any explicit 

1 Commandino p. 66 A points out that the circles in the starting configuration have to be given both 
in position and size, whereas Pappus only mentions position.
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suggestions as to how Pappus would have effected the proof for the missing 
intermediate step. Hultsch’ s solution seems to lead to conics.1 A proof was also 
suggested by Ver Eecke (1933b, pp. 147/148, #8). The center of the sought circle is 
needed for it, however. Jones (1986a, p. 537), Heath (1921), and Hofmann (1990, II, 
pp. 151/152) point out the connection of Prop. 10 in its present form to Prop. 13. 
This may be the reason for Pappus’ transformation of Prop. 10. For it was probably 
not one of Apollonius’ cases in this form.2 Pappus’ argument as given is flawed, but 
not false. Pappus himself, at the end of Prop. 10, adds the following remark: “Let 
this have an end for me now right here; I’ll write down the rest later.” This remark, 
quite unusual in the context of Coll. IV, suggests that he was somehow aware that 
something was missing, either from Prop. 10, or from the whole group Props. 7–10. 
It is unclear what that “rest” was, and also what “later” means. Pappus does not 
come back to the material treated in Props. 7–10 within Coll. IV. Maybe he intended 
to add a lemma that would fill the gap in 10 (assuming he was aware of it); maybe 
he intended to revise the whole argument for Props. 8–10, smoothing it out. For the 
purposes of the present commentary, I have left the argument as given in Pappus, and 
have made the tacit assumption made in the reference to Prop. 9 explicit. It can be 
viewed either as an additional condition for Prop. 10, omitted in the protasis, or as a 
marker for a gap in the argument which Pappus failed to fill in.

2.5.1 Proof Protocol Prop. 10

1.* Assume task is accomplished.
Circle with center H, touching in Z, E, D.

2. Extension of the confi guration
Draw H-B-Z, H-C-E, H-A-D, BA, BC, AC.

3. Resolutio
3.1 BA, BC, AC are given.
3.2 HB–HC and HC–HA are given.
Assume that these differences are also equal
(additional restriction, implicit in Pappus).
3.3 AH is given (Prop. 9).
3.4 DH, and therefore 2 DH, is given.

1 As does Newton’s in Principia I, L. XVI, mentioned above.
2 Generalizations of Prop. 10 toward C–C–C seem to lead to conics, but the Tangencies use only 
plane methods.
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3 Analysis-Synthesis Pre-Euclidean Style

3.1 Props. 11 and 12: Chords and Angles in a Semicircle

The configurations and the mathematical content of the propositions, as well as the 
argumentative means, are reminiscent of pre-Euclidean mathematics, as exempli-
fied in the Hippocrates fragment1: circles with inscribed triangles, geometry of the 
circle (presented in III/IV of the Elements), and argumentation via congruent angles 
in extended configurations. All this gives Props. 11 and 12 an old-fashioned char-
acter. On the other hand, no sources are known for Props. 11 and 12. Language and 
style show no signs of archaism. Props. 11 and 12 were probably constructed by 
Pappus. What was their purpose? They could be an illustration of what the opera-
tion with the technique of analysis-synthesis originally looked like. For Prop. 12, this 
surely is the case,2 whereas the situation is less clear for Prop. 11, and only a tenta-
tive thesis can be formulated.

Prop. 11 as given, is purely synthetic, with no trace of the heuristic background. 
The proof’s core is a suitable extension of the configuration (the introduction of T). 
Therefore, a successful heuristics may reasonably be assumed to consist in the deter-
mination of the crucial role of T, and this observation suggests the following consid-
eration in the context of the overall structural schema of analysis-synthesis.3 When 
analysis comes down to a determination of a suitable extension of the configuration, 
it cannot be coined out as a propositional device, as a step of reasoning that could be 
logically inverted in the synthesis. As Hintikka/Remes have pointed out, this aspect 
of analysis can in general not be schematized (it is also nondeductive). Such an 
analysis, and all parts of an analysis that consist in determining suitable extensions 
cannot be instrumentalized as making any explicit contribution to the apodeixis 
proper. The crucial analysis information would be tacitly integrated in the kataskeue 
of the synthesis. Otherwise, it would leave no visible traces in the resulting proof. 
Prop. 11, since it is put within the group of propositions illustrating plane analysis-
synthesis, could be an illustration of the effects of an analysis that consisted solely 
in determining a suitable extension of the configuration. It has to be admitted, 
however, that such an explanation is somewhat speculative and perhaps not wholly 
satisfactory. Among other things: why did Pappus not give the analysis, since putting 

1 On the Hippocrates fragment see Simpl. in Phys. 61–68 Diels, Heath (1921, Vol. I, p. 183 and 
pp.195–196), Knorr (1986, pp. 32–34), and Netz (2004).
2 Prop. 12 has been read this way by Mahoney (1968), e.g.
3 See the introduction to Props. 4–12.

H. Sefrin-Weis, Pappus of Alexandria: Book 4 of the Collection, 
Sources and Studies in the History of Mathematics and Physical Sciences, 
DOI 10.1007/978-1-84996-005-2, © Springer-Verlag London Limited 2010
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it beside the synthesis would have made the point about its not showing up in the 
synthesis quite transparent? Another possibility for the purpose of Prop. 11, which 
does, however, not explain why it is put into a group of propositions on plane analysis-
synthesis, is that it illustrates the argumentative style of pre-Euclidean synthetic 
plane geometry. But in this case, Pappus might have chosen a more attractive example, 
as he has done for most of his vignettes in his portrait of plane geometry (Pythagoras, 
Apollonian problem, and Arbelos) and, for the later parts of Coll. IV (quadrature 
of the circle, spiral lines, conchoid, quadratrix, and angle trisection). Perhaps further 
investigation will throw more light onto the question of the purpose of Prop. 11. 
The reading assumed here must be understood as tentative.

Prop. 12, like Prop. 4, has a full analysis and synthesis. The analysis essentially 
comes down to reduction, and is predominantly deductive (resting on steps, how-
ever, that are convertible). The synthesis simply retraces the steps of the analysis. 
Prop. 12 lends support to the thesis that analysis as an identifiable technique was 
originally identical with reduction. In my opinion, one should nevertheless refrain 
from inferring that Greek geometrical analysis therefore was and remained essen-
tially deductive and reductive. Reduction does not exhaust the conceptual horizon of 
Greek geometrical analysis as the technique developed over time.1 Within Coll. IV 
there are several examples of other, non-reductive usages of analysis.

3.2  Prop. 11: Representation of a Chord as 
Segment of the Diameter

context: analysis–synthesis (tentative, see above).
possible sources: /.
means: I, III, VI (V).
method: synthesis (analysis would have consisted in suitable extension alone).
format: theorem.
reception/historical significance: /.
embedding in Coll. IV: motif “overall structural components of analysis–synthesis”: Prop. 
4; motif “triangles, chords in semicircles”: Props. 2–6, 12; motif “perpendiculars on diam-
eter compared with diameter in length”: Props. 13–18.
(suggested) purpose: illustration of outcome when analysis consists of finding out how the 
configuration must be extended to provide a proof.

The content and result of Prop. 11 are not used in Coll. IV.

3.2.1 Proof Protocol Prop. 11

We want to show: EB = 1/2AZ.

1. Ekthesis/Kataskeue
T, then K, H, auxiliary lines.
Several right-angled triangles and pairs of similar triangles are created.

1 For a very different assessment, cf. Mahoney (1968).
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2. Apodeixis
2.1 Show that DATH ~ DCTZ, and HK = KZ
(i.e.: EK = 1/2AZ)
2.2 Show that BE = EK (i.e., EB = 1/2AZ)

3.3 Prop. 12: Angle Over a Segment of the Diameter

context: overall structure of analysis–synthesis in plane geometry.
means: I, III, VI, (V).
method: analysis restricted to epagoge (reduction), with synthesis mirroring analysis.
format: theorem.
history and reception: /.
embedding in Coll. IV: analysis–synthesis as a technique: Prop. 4; components of plane 
geometrical analysis: Props. 7–10; motif “chords and angles in semicircles”: Props. 2–6, 11.
purpose: illustration of argumentative technique of reduction in analysis proper.
literature: Mahoney (1968) contains an extensive discussion of the analysis in Prop. 12.

The mathematical content and the result of Prop. 12 are not used in Coll. IV.

3.3.1 Proof Protocol Prop. 12

We want to show: ÐBED = ÐDET

1. Analysis
1.1 Assumption*: problem solved
1.2 Analysis proper
Extension of configuration
Reduce claim to DK || ET (1)
Reduce claim to LD:HD = DT:TZ (2)
Reduce claim to LA = DH, LB = BH (3)
Reduce claim to BL = LD (4)
1.3 Resolutio
BL = LD holds in fact1 (5)

2. Synthesis
Apodeixis (Kataskeue not given explicitly)
BL = LD (5’) (4’)
BL = BH, LA = DH (3’)
LD:HD = DT:TZ (2’)
KD || ET (1’)
ÐBED = ÐDET

1 Note that the resolutio is minimal here.
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A comment on the word “akolouthos,” used in 206, 12 Hu, at the beginning of 
the synthesis of Prop. 12 (“and the synthesis follows the analysis step by step 
(akolouthos)”) seems appropriate. The meaning of akolouthos cannot be restricted to 
“follows logically, deductively.” There are several places in Coll. IV where akolouthos, 
or a related word, need not, even cannot, have that narrow meaning. This is one of them. 
The others are “sunakoloutheito” for the second moving point in the generation of 
the quadratrix (252,10 Hu) and “akolouthon” for the consideration of the spherical 
spiral as a natural next step after plane and conical ones in the introduction of 
Prop. 30 (264, 7 Hu). Whereas the synthesis of Prop. 12 is clearly derived from the 
analysis, in that it retraces its steps in order, it is not inferred from it by deduction. 
The word is not used here in the description of the sequence of the analysis-steps 
themselves, although they are deductive. On the role of “akolouthos” in the scholarly 
discussion of the nature of analysis see the introduction to Props. 4–12.
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4  Props. 13–18: Arbelos (Plane Geometry, 
Archimedean Style)

4.1 Observations on Props. 13–18

context: no traces of ancient sources providing a context of similar problems, but: connection 
to non-trivial theorems/methodological devices with “potential” for future mathematical 
theories:

 (i)  Diameters in configuration of tangent circles, theorem of Menelaus
(® points of similarity (projective geometry) )

  (ii) Arithmetical progression (® complete induction)
(iii) Capture infinity using a quasi-mapping onto natural number progression

possible sources: lost monograph by Archimedes, with intermediate transmission stages 
(controversial, see below).
means: beyond Elements, but for the most part strictly “orthodox”; unusual means: nucleus 
form of complete induction (Props. 16, 18).
method: synthesis.
format: monograph in miniature form, lemmata, main theorems, corollaries.
history and reception: Liber assumptorum (deteriorated form, see below).
embedding in Coll. IV: tangent circles: Props. 8–10 (Apollonian problem, connection to Prop. 
10 especially close); motif “chords and circles”: Props. 2–6, 11 and 12; motif “commensura-
ble versus incommensurable straight lines in circle configuration”: Props. 2 and 3, motif 
“progression towards infinity”: Props. 19–21, 30; motif “association with Archimedes”: 
Props. 19–22, 30, 35b, 42–44.
purpose: illustration of plane synthetic geometry, monographic style: Archimedean. Through 
the connection with Archimedes (in style, if not in person), Props. 13–18 form a bridge to the 
second part of Coll. IV, specifically to Props. 19–22, which are indeed by Archimedes.
literature: Heath (1921, II, pp. 371–377); Buchner (1824), (arbelos via classical geometry, 
and via analytical geometry), Casey (1882, pp. 95–112) (involutions, limit processes), 
Hofmann (projective geometry, Zweiecke in: Hofmann (1990, II, pp. 146–164); see also 
Hofmann (1990, I, pp. 273–281)). The alternative treatments are interesting for a compari-
son in terms of methodology.

4.1.1 Archimedean Character of Props. 13–18

The group of theorems on the arbelos has been associated by quite a few scholars 
with Archimedes. There are two reasons for this. First of all, a treatise in Arabic 
(the Liber assumptorum (Lib. ass.) ), transmitted under the name of Archimedes,1 
contains some theorems that are closely connected to Props. 14–16. This basic 
indicator, however, turns out to be much weaker than one might hope. A second 
reason for connecting the little arbelos treatise with Archimedes is that its mathe-

1 Latin translation in: Heiberg, Archimedes, Opera omnia, Vol. II, 510–525.

H. Sefrin-Weis, Pappus of Alexandria: Book 4 of the Collection, 
Sources and Studies in the History of Mathematics and Physical Sciences, 
DOI 10.1007/978-1-84996-005-2, © Springer-Verlag London Limited 2010
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matical content is quite “worthy” of Archimedes once one takes a closer look at the 
ideas and devices involved. Heath, for example, thinks the arbelos treatise could 
very well be by Archimedes, and says it is “extremely interesting and clever, and 
I wish that I had space to reproduce it completely” (Heath 1921, II, pp. 371). 
Unfortunately, a direct Archimedean authorship for Props. 13–18 cannot be taken 
for certain. For the Lib. ass. cannot, in the form preserved, be by Archimedes. 
His name is mentioned in it.1 Furthermore, the relative triviality of the content of Lib. 
ass. also makes it unlikely that it stems directly from Archimedes. This weakens our 
evidence for a connection of Props. 13–18 to Archimedes. It does not rule out the 
possibility for an indirect connection, though some authors have concluded that any 
connection is unlikely.2 It is probably not possible to prove that Props.13–18 are 
essentially by Archimedes. Even Pappus did not know the author, and spoke of an 
“ancient proposition,” transmitted in “some documents.”3 I will therefore not claim 
that the arbelos treatise is Archimedean in the sense that Archimedes is the direct 
source for Props.13–18, although, not unlike Heath, I am inclined to believe that he 
may very well have been the author of some original form of the argument (now 
lost, and originally probably more extended4). Even if Props. 13–18 cannot be 
shown to be by Archimedes, the arbelos treatise does show a number of features 
that allow for an association with geometry in the style of Archimedes. These fea-
tures are quite distinct and differentiate Props. 13–18 from the Euclidean geometry 
as portrayed in Props.1–6, 11 and 12, and from the analytical (Apollonian) geom-
etry in Props. 7–10. Together with documented connections to the Lib. ass., they 
justify the label “plane geometry, Archimedean style” for Props. 13–18. In what 
follows, I give a survey of these characterizing features. They will also be marked 
in the commentary on the single propositions.

1. Global characteristics: set-up, structure, and order of exposition.
 Props. 13–18 treat a well-defi ned topic quite exhaustively, in a self-contained quasi-

monographic piece of text, divided into preliminary lemma, technical lemmata, 
then theorems, and additions/corollaries. We fi nd no trace of a heuristic background. 
The exposition is polished, purely synthetic. Simple, orthodox means are made 
brilliant and original use of, by an appropriate and ingenious choice of perspec-
tive, so as to create a venue for unexpected insights. The global set-up is analo-
gous to Archimedes’ monographs, which are also self-contained and structured 

1 Archimedis Opera Omnia Vol. II p. 514 Heiberg.
2 Jones (1986a, pp. 538–539), for example, denies any connection with Archimedes for the Lib.
ass. One of his reasons is the above-mentioned low level of sophistication in the Lib. ass. In my 
opinion, this low level could perhaps be explained as the result of progressive deterioration in 
transmission, and need not speak against an ultimate provenance of the material from Archimedes. 
Another point he makes is that there is no connection to the content of other works by Archimedes. 
In my opinion, this observation, too, can be relativized in its weight by pointing to such treatises 
as the Sand reckoner. I also think there is more coherence to Props. 13–18 than Jones’ remarks on 
p. 539 op. cit. and Hofmann (1990, I, pp. 146ff.) suggest.
3 Cf. translation, beginning of Props. 13–18.
4 See the list of indications pointing towards a larger extension of the original treatise below.
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similarly (announcement of theorem(s) – preliminary lemmata, set apart and used 
as quasi-axioms, – technical lemmata – theorem(s) ). Archimedes, too, has a 
very polished, purely synthetic and orthodox style of exposition on the local 
level, showing no traces of the heuristics and giving far-reaching results with 
relatively, sometimes astonishingly, simple means, by choosing an unexpected 
perspective. The style of exposition is different from Apollonius’ treatises (which 
are monographic, but have a very different set-up and are analytical), and also 
from the Elements (which are not monographic).

2. The main proposition is surprising and simple. It draws an unsuspected connection 
between diameters and circles on the one hand, and natural numbers on the other, 
formulated in simple ratios.

 In the extant longer works of Archimedes, a preference for similar theorems in 
terms of numerical ratios can be found. Examples include SL 24 (area in 
spiral:area of circle = 1:3), QP 24 (Parabola segment:inscribed triangle = 4:3), 
Sph. et Cyl. I, 34 with corollary (cylinder:inscribed sphere = 3:2, surface 
cylinder:surface sphere = 3:2), Sph. et Cyl. I, 33 (surface of sphere:maximum 
circle = 4:1). One might also compare the Archimedean Props. 21 and 30. No 
such theorems are to be found in Apollonius (this much can be said, even 
though we do no longer possess the complete texts of his original treatises), and 
they are very rare in the geometrical books of the Elements.

3. Infi nite progression of inscribed fi gures, and use of a prototype of complete 
induction (in main theorem Prop. 16).

 For the use of a progression of inscribed fi gures compare Coll. IV, Props. 21 and 
30, by Archimedes. There we also fi nd the use of indivisibles. For an example in 
Archimedes’ monographs, compare Circ. mens. I (there are many more examples). 
Circ. mens I gives a proof by exhaustion (no indivisibles). The examples from 
Archimedes’ attested works using inscription processes imply the fi lling up of a 
given area. This is not the idea in the arbelos treatise. There are no parallels for 
either the use of infi nite progression, or attempts to deal with infi nity in a mathe-
matical way in Apollonius. The parallels in Elements XII are proved by exhaus-
tion (and are probably by Eudoxus). Very few examples for what amounts to 
complete induction are attested in ancient geometry. The ones known to me are 
by Archimedes: SL 10 and 11 and QP 23.

4. Role of Prop. 13.
 This proposition’s role is analogous to the one preliminary lemmata play in 

Archimedes’ monographs. The results of 13 are labeled as “lambanomena” 
(assumptions). In SL, Archimedes uses and labels SL 1–11, which he sets off from 
the main part of the treatise, as if they were assumptions (lambanomena), quasi-
archai, for the following purely geometrical treatise. The separation is empha-
sized by the fact that the defi nitions for the treatise appear after SL 1–11. In SL, 
the preliminary results are called lemmata, but also lambanomena. For a similar 
phenomenon, cf. QP 1–5.

5. Doublet in the proof of the converse for Prop. 13.
 The converse is proved (i) by exhaustion (ii) directly. The direct proof in (ii) is 

suffi cient, and, from the point of view of Aristotelian theory of science, it would be 
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preferable. Perhaps it is by Pappus.1 The indirect proof (i) is, however, also presented. 
Proof by exhaustion was a trademark of Archimedes, who used the method with 
great virtuosity. There are no examples for proof by exhaustion in Apollonius.

6. Role of Prop. 14.
 Prop. 14 is a technical lemma, the most elaborate proposition in the arbelos group. 

It provides the means for the argumentation in Props. 15 and 16. The proposition 
itself is referred to in Prop. 15. In Prop. 16, and passim, it is nevertheless mostly 
an intermediate result within the proof of Prop. 14 (and also an addition to Prop. 
14 that uses it) that is actually used later on. The relevant information could have 
been proved ad locum within the later propositions just as easily. The author, 
however, prefers a presentation within a theoretical, systematic setting before-
hand. After this proposition, Props. 15 and 16 (the main theorem) are transparent 
and easy. The reader of Props. 14–16 is forced, however, to keep the whole of 
each argument in mind, because results that will become important later are not 
emphasized. This set-up is analogous to the set-up of Archimedes’ monographs: 
most of the detailed technical work occurs in preparatory theorems, main theo-
rems draw on these (and often on intermediate results within), so that the main 
theorems become slim and elegant, giving full sight of the core mathematical idea. 
For the technical lemmata within the treatises, the emphasis is on systematic rather 
than linear development, not result-oriented in its local presentation. The reader 
needs to remain aware of intermediate results in relation to the “telos” of the treatise 
at all times, even if they are not marked out by the way the material is presented; 
compare, again, SL 18 and 24, and their “setting,” as well as the structure of QP, 
especially 18–24. Contrast, again, Apollonius’ monographs: there we have a linear 
exposition, exhaustion of all possible cases in a list, step by step.

7. Handling of proportion theory (Prop. 14 especially, but also Prop. 15).
 The handling of proportions is an “orthodox” application of V. It is analogous to 

Archimedes’s extensive use of proportions, e.g., in SL and Sph. et Cyl. passim. 
In this respect, the mathematical style in Props. 13–18 is again decidedly different 
from Apollonian mathematics. Apollonius does not use abstract proportions, 
his arguments involving ratios rely on equalities that correspond directly to 
equations between areas (i.e., II, 14, VI, 27–29, cf. Zeuthen 1886 passim).

8. Addition, not from the arbelos in Coll. IV, but from comparison with Lib. ass.
 The Lib. ass., transmitted in Arabic, claims to be a work by Archimedes. Lib. ass. 

V and VI are simple versions of Coll. IV, Props. 14 and 16. In addition, one might 
note that in Prop. 14, a lemma that is equivalent to Lib. ass. I is invoked at one 
step. Heiberg (cf. Archimedes, Opera Omnia Vol. II, pp. 513, #2, 518, #1, 523, 
#1) claims that Lib. ass, I, IV–VI, VIII, and XIV are probably by Archimedes. 
Perhaps this cannot be asserted. Heath (1921, II, p. 372) observes, however, that 
Lib ass. IV and VI are simple versions of Props. 14, and 16. Lib. ass. VIII is 
indeed closely associated with Archimedes by most authors.2 It yields an angle 

1 The proof is exactly analogous to a group of proofs by Pappus in Coll. VII (64, 118, 128, and 
130 Hu; Jones 1986a, # 118, 184, 195, and 198).
2 Cf., e.g., Heath (1921, I, pp. 240–241) and Knorr (1986, pp. 185–186).
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trisection via neusis and connects to Archimedes, SL 5–9. A similar neusis also 
appears in Coll. IV, Props. 42–44, as a discussion of Archimedes’ neusis in SL. 
Thus, we have evidence for a connection between the Lib. ass. and the work 
attested for Archimedes, and if Props. 14–16 can be associated with Lib. ass., 
we have an additional evidence that they can be connected (indirectly) with 
Archimedes, too.

 1–8 will be taken as the main elements of a description of the Archimedean style 
of Props. 13–18, and mentioned ad locum below. In my view, it is once again this 
mathematical style, and through it the mathematical methods that are the center 
of gravity for the presentation of the arbelos theorem, despite the fact that it is 
also very appealing in terms of its content.

4.1.2  Factors that Point Toward an Original Larger 
Extension of the Arbelos Treatise

There are several passages or instances in Props. 13–18 where the reader gets the 
distinct impression that the text as we have it is a truncated version of a treatise 
that was once more extended, even though the arguments as given are not in them-
selves incomplete. Specifically, the possibility that Props. 14–18 were preceded by 
a more extensive treatment on points of similarity in configurations of tangent 
circles has captured the interest of some commentators; cf. Hofmann (1990, II, 
153 ff.) for the potential mathematical context. That more extensive investigations 
of configurations with points of similarity must have existed was argued for by 
Zeuthen and others. In antiquity, the theoretical background was captured by the 
theorem of Menelaus (cf. Zeuthen (1886, pp. 381–383), also for the connection to 
the arbelos configuration with points of similarity). Although this topic cannot be 
pursued here, I will give a list of the most pronounced indicators for the thesis that 
the arbelos treatise may have been part of a larger monograph, with a potentially 
broader scope.

Prop. 13 is labeled as “ta lambanomena.” This label would make more sense if 
there were a larger number of general preliminary lemmas.

The protasis in Prop. 13 appears to have been reformulated so as to assimilate1 
an existing proposition with a longer protasis more closely to what is explicitly 
claimed in later instances where appeal to Prop. 13 is made.

The first step in Prop. 14 could be verified by reference to a more general version 
of Prop. 13.

In Prop. 14 a limit case is inserted. Within Prop. 14, it appears as a side thought, and 
looks as if it had been inserted specifically to prepare for the appendix Prop. 17.

For Prop. 15, the main manuscript A includes a figure for a limit case that is not 
actually treated in the text, but used in Prop. 17 and in Prop. 16, Addition 2.

1 See below, remarks on Prop. 13.
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Prop. 17 appears as a later insert, probably by a different author, to cover a step 
concerning ratios and proportions in Prop. 16, Addition 2.

In several places (notably in Props. 14 and 15), more far-reaching results than 
needed further in the treatise are established.

4.1.3 Arbelos Theorem

A configuration with three semicircles is given. They have their base on a common 
line segment; one semicircle is described over the full segment; it is then divided 
into two parts arbitrarily, and two smaller semicircles are described over those 
parts. In the remaining space, which has the shape of a shoemaker’s knife (arbelos1), 
a non-finite series of touching circles is inscribed. Each of these touches the outer 
semicircle, one of the inner ones, and its predecessor (i.e., each of the circles in the 
progression is a solution to a version of the Apollonian problem). One compares 
the diameters of these circles with the length of the perpendiculars from their centers 
onto the base, and one finds that they stand in the ratio 1:n, with n being the number 
of the circle in the progression.

4.1.4 Structure of Props. 13–18

Prop. 13:  preliminary lemma (general, no explicit connection to arbelos 

configuration).
Prop. 14:  technical lemma: proportion involving perpendiculars and radii in compari-

son to diameter of one of the semicircles in the starting configuration; two 
additions.

Prop. 15: lemma for induction.
Prop. 16: arbelos theorem; two additions for limit cases.
Prop. 17: auxiliary lemma for one of the limit cases in 16.
Prop. 18:  appendix: theorem for a progression of inscribed circles when the starting 

configuration has only one inner semicircle.

4.2 Prop. 13: Preliminary Lemma

Prop. 13 plays the role of a preliminary lemma, much like the preliminary lemmata 
in Archimedes’ geometrical treatises (cf. #4). Not Prop. 13, but the converse and the 
addition will be used in Props. 15 and 17 – perhaps an indication that the arbelos 

1 As noted in the translation, the connection between the word “arbelos” and the cobbler’s tool is 
not securely established.
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treatise as we have it was originally embedded in a more extensive work.1 The converse 
of Prop. 13 is proved twice. The first proof is an (admittedly rather trivial) exhaustion 
proof (double reductio). This type of argument was favored by Archimedes. The 
second proof is a direct proof and probably by Pappus himself (cf. #5). The math-
ematical context for Prop. 13 is the theory of points of similarity.2

4.2.1 Proof Protocol Prop. 13

13 a Theorem

1. Protasis
Assume D as the point of intersection between KL and circle(A); then AH || CD, 
and: AB:BC = AE:EC (E is an outer point of similarity).
2. Kataskeue
Draw CD.
3. Apodeixis.

3.1. AKDC is a trapezoid: AH || CD.
3.2. D KEA ~ D DEC Þ AE:EC = AB:BC.  [VI, 7; I, 27; VI, 4]

13 b Converse

Protasis
Assume AB:BC = AE:EC, and take D as the point of intersection between the 
parallel to AK through C and circle(C). Then K–D–E is a straight line (D on KE).

1. Apodeixis by exhaustion
Draw CD.

1 Prop. 13 holds also for circles that touch internally, even though it is given only for circles that 
touch externally. On Hultsch’s reading of Prop. 14, the proposition uses the version for internally 
touching circles. Another explanation for the step in Prop. 14, one that does not imply that Pappus 
left a gap in the argument in the arbelos treatise is that the reference in Prop. 14 is rather to ele-
mentary lemmata for which Pappus gives a proof in Coll. VII 102ff. This is the explanation 
I preferred in the notes to the translation of Prop. 14. Independently from the question of com-
pleteness of the argument as given by Pappus, I think it is quite possible that the treatise from 
which Prop. 13 ultimately stems was more extensive and contained a greater number of preliminary 
lemmata, dealing with touching circles and points of similarity.
2 In the configuration of Prop. 13, E is a point of similarity for the three circles concerned. 
A general theorem for such points was provided by G. Monge, according to Hilbert and Cohn-
Vossen (1932, pp. 120–121). Compare also the contributions by Hofmann and Casey in the litera-
ture list above. As pointed out in the remarks on the mathematical context for Props. 7–10, Props. 
13 and 14 are connected to Prop. 10, and this may be one of the reasons why Prop. 10 was formu-
lated by Pappus the way it is.
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If it does not intersect KE in D, then
either C–T–D, with T as the point of intersection,
or C–D–N, with N as the point of intersection.
Both these assumptions lead to a contradiction.
Therefore, CD intersects KE in D. [VI, 4; V, 16]

2. Apodeixis by direct proof
Complete the parallelogram AKNC.
KN:ND = EC:CD. [V, 17; V, 16]
D EDC ~ D NDK, ÐEDC = ÐNDK.
Þ Since C, D, and N lie on a straight line, so do K, D, and E.

13 c Addition

In the configuration of Prop. 13, we have: EB2 = KE × EL.
This follows from AH || CD (i.e., from Prop. 13a, step 1) [VI, 2; III, 36].

4.2.2 Defense of My Reading of Prop. 13

As indicated in the notes to the translation, my reading of Prop. 13 and its converse 
differ from the one suggested by Hultsch (endorsed by Ver Eecke, and based on 
the text as transmitted). On my reading, the claim that DC || AH, i.e., that AKDC is 
a trapezoid, should be included in the protasis. The text as transmitted, however, 
clearly suggests that the protasis (claim) concerns the proportion only (“deixai” 
is used before the claim about the proportions1), and that the trapezoid ACDK is 
already given. Therefore, I must defend my interpretation, and I shall do so by 
showing that the text as given creates severe problems, and that my reading can 
eliminate them. The severest problem of the text as given concerns the logic of Prop. 
13 and the converse. If one posits, to begin with, that AKDC is a trapezoid, Prop. 13 
would not even need a proof. For we would have two similar triangles EAK, ECD, 
and VI, 4 yields: EC:CD = AE:AK, thus: AE:EC = AK:CD (V, 16), and obviously 
AK = AB, CD = BC. Inclusion of the fact that AKDC is a trapezoid in the ekthesis 
renders Prop. 13 superfluous. Also, in the apodeixis of Prop. 13, we are first 
prompted to draw CD – which would already be given in the ekthesis. Hultsch 
resorts to an elimination of the phrase concerning CD from the text.2 But even then, 
the argument is still skewed. For we proceed to prove that DC || AH, i.e., that we 
really have a trapezoid AKDC. This would not make any sense, if the trapezoid 
is posited to begin with. Finally, the converse uses the fact that DC || AH in both its 
proofs. Hultsch and Ver Eecke are wrong in assuming that this could be shown 

1 210, 6 Hu.
2 210, 8 + app. Hu.
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as in the proposition itself 1; for the proof there rested on the fact that K, L, and D are 
on a straight line, which is the very thing the converse wants to prove. Hultsch’s and 
Ver Eecke’s reading implies a petitio principii for Prop. 13’s converse. There must be 
a better solution. Apparently, the converse just assumes parallelity. It can certainly 
do so, if we assume that DC || AH was part of the protasis in the proposition itself. 
Then we can also explain why CD is drawn, and AH || DC is shown in the apodeixis 
of the proposition itself. The only drawback of this reading is that it must assume 
that the ekthesis of Prop. 13 is “muddled,” specifically that either Pappus or someone 
between the original author and Pappus changed the text from a version where the deci-
sive parallelity was part of the protasis into a version where only those features that 
will be used in Props. 15 and 17 explicitly are mentioned there. Perhaps the change 
of tense within the ekthesis (cf. translation) lends some support to this assumption. 
It is for the logical and structural reasons given above, however, that I have decided 
to read Prop. 13 the way proposed in the proof protocol. I am not claiming that the 
text should be changed.

4.3 Prop. 14: Technical Theorem

As said in the introduction, Prop. 14 is the most complex lemma in the group. 
It provides the technical results needed in the arbelos theorem. It is proved as a 
complete lemma, in full generality, for all three possible configurations, although 
only the first and third configuration will come into play in what follows, and 
although Props. 15–17 mostly rely on an intermediate result within the argument of 
Prop. 14 rather than the proposition itself. The importance and role of the interme-
diate result is not emphasized within Prop. 14 (it has been marked out by me to 
facilitate reference). Within Prop. 14, it is presented in its appropriate place with 
respect to the theoretical content of Prop. 14 itself. All these features contrast to the 
style of exposition in Apollonius’ works, and are reminiscent of Archimedes’s 
monographs (cf. #6). Prop. 14 operates with abstract proportions, in the sense of 
V (cf. #7). The first step in Prop. 14 implicitly uses a lemma proved in proposi-
tion I of the Lib. ass., which is associated with Archimedes in the tradition. A 
second possibility for this step is reference to a more extended version of Prop. 13, 
indicating, perhaps, that the arbelos treatise may originally have contained a more 
substantial first part dealing with tangencies and points of similarity. The topic can-
not be pursued here, cf. the bibliographical references in the footnotes to Prop. 13. 
A third possible route of justification is appeal to lemmata on tangent circles for 
which Pappus provides a proof in Coll. VII, Prop. 102 ff., and this is the route taken 
in this translation and commentary. Finally, Lib. ass. IV provides a lemma that is a 
simplified version of Prop. 14. This means the historical reception of the arbelos 
associates Archimedes, the Lib. ass., and the arbelos theorems in Coll. IV (cf. #8).

1 211, #1 Hu, (Ver Eecke 1933b, p. 160, #7).
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4.3.1 Proof Protocol Prop. 14

1. Protasis/ekthesis
Starting point: semicircles over BD, BC, with B, D, C on a straight line, BC > BD.
We get two possible configurations for this first construction stage:

1. B–D–C (D inside BC, cf. confi guration 1)
2. C–B–D (D outside BC, cf. confi guration 2 and 3)

Then, a circle with center A is constructed. It touches both semicircles. We get 
a total of three possible configurations:
Configuration 1: circle(A) must lie inside the semicircle over BC.
Configuration 2: circle(A) comprises both given semicircles.
Configuration 3: circle(A) touches both semicircles from outside.

Draw the perpendicular AM from A onto BC, and the parallel to BC through A, 
marking the radius AZ, and the diameter TZ.
Then BM:AZ is uniquely determined. Specifically:
Configuration 1
BM:AZ = (BC + BD):(BC − BD) [= (BC + BD):CD]
Configurations 2, 3
BM:AZ = (BC − BD):(BC + BD) [= (BC − BD):CD]

2. Apodeixis
2.1. TZ || BC by construction
H, T, B, and H, Z, C lie on a straight line,
and Z, E, B, and T, E, D lie on a straight line as well.
[elementary lemmata on parallel chords in tangent circles]1

2.2. * CB × BK = DB × BL
[similar triangles, VI, 4; VI, 16; III, 36]
[if the configuration entails D = L, we get: CB × BK = BD2; this limiting case 
is used in Prop. 17, and may have been added in 14 for that reason]

2.3. Prop. 14 now follows via V, 16–18, V, 22

Additions

Add. 1: BK × LC = AM2

This follows from * in 2.2 for Prop. 14,
considering triangles BTK, ZLC

1 E.g. Prop. 104 in Coll. VII, p. 828 Hu, (Jones 1986a, p. 234 # 166). Note the connection to Prop. 8, 
and recall that the lemma invoked here was not presented in the source for Prop. 8, but in Pappus’ 
commentary to Apollonius’ Tangencies. The geometrical situation for the arbelos theorem is 
connected to the Apollonian problem and its theoretical framework. Hultsch’s explanation (cf. above, 
translation) involves an auxiliary construction, and reference to Prop. 13, converse. Configurations 
1, 2 could alternatively appeal to Lib. ass. I, cf. Archimedes, Opera Omnia II, p. 510–512 
Heiberg.
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Add. 2a: BC × KL = BC × diameter of circle (A) = BL × DC
[BC:BD = BL:BK; proportions; CD:BD = KL:BK; VI, 16]

Add. 2b: BD × KL = BD × diameter of circle (A) = BK × DC
[BC:BD = BL:BK; proportions; CD:BD = KL:BK; VI, 16]

4.4 Prop. 15: Lemma for Induction

As said in the introduction, Prop. 15 is a technical lemma that provides the basis for 
the (complete) induction in 16. Separating it out and presenting it beforehand has 
the effect that the central theorem Prop.16 becomes slim and elegant, free of any 
technical ballast.1 Prop. 15 uses equation * from Prop. 14, and the converse and 
addition for Prop. 13.

Prop. 15 holds also in the case that BC is a straight line, tangent in B. A proof 
for this case is not given in the transmitted text. It may very well have been part of 
the original source. For the manuscript A has a figure for it, but not the argument. 
For a proof cf. Ver Eecke (1933b, pp. 170–171, #4, or pp. 1227–1228 the appendix 
to Hultsch’s edition). This case is used in Prop. 16, Addition 1.

4.4.1 Proof Protocol Prop. 15

1. Protasis/ekthesis
Starting from the three circles in Prop. 14, with their three configurations, we 
add a fourth touching circle, with center P.2 With diameter of circle(A): = d(A) 
(and analogously for any circle(X) with d(X) ), we get, for all three possible 
configurations: (AM + d(A) ): d(A) = PN:d(P).
2. Apodeixis

2.1. With Z as intersection of AP and perpendicular in B,
AT:TP = AZ:ZP [Prop. 14, VI, 2; V, 16]

2.2. BZ = ZT [converse and addition to Prop. 13]

1 Compare QP 22and QP 23 in relation to QP 24.
2 In Hultsch’s edition, the sequence of the resulting configurations is permutated: configuration 2 
in Prop. 14 yields configuration 3 in Prop. 15. This re-numbering is, of course, of no consequence 
for the mathematical content of Prop. 15. The manuscript A has three diagrams. The first one 
concerns configuration 1, building on configuration 1 from Prop. 14, the second concerns the limit 
case when the second semicircle is replaced by a tangent to the first one (see appendix Hu 
p. 1227f.), and the third concerns configuration 2. There is no diagram for configuration 3 in A. 
See part I, text and translation, with notes.
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2.3. B–O–T–S [DSAT ~ DOPT, DBZT ~ DOPT, Prop. 13]

2.4. Prop. 15 follows [DBKM ~ DBPN, and DBKS ~ DBPO]

4.5 Prop. 16: Arbelos Theorem

Prop. 16 argues via induction. In fact, it gives what would in modern terminology 
be called a complete induction. In the context of ancient geometry, this proof strategy 
is very rare, and can be linked to Archimedes (cf. #3). It is perhaps worth noting that 
Pappus uses the technical term “apodeikhthesetai.” In the arbelos configuration, 
the ratios of perpendiculars to diameters turn out to be expressible in numbers. The 
geometrical magnitudes are commensurable, and they are so according to a surpris-
ingly simple pattern (sequence of natural numbers in ratio, cf. #2).1 In Archimedes’ 
treatises, we encounter an analogous phenomenon: likewise, all the technical detail 
work is done ahead of time, so that the main theorems become slim and straight-
forward (cf. #1, #2, #3, and #6).

An appendix to Prop. 16 explores the consequences when the outer, and when the 
smaller inner semicircle of the arbelos configuration degenerate into tangent straight 
lines (Additions 1 and 2), and when the starting configuration for the sequence of 
inscribed circles contains only one instead of two semicircles. Because of Prop. 15, the 
first ratio, AM:d(A) is decisive. In turn, it is directly related to the division of BC by 
D, and this fact is the content of Addition 2. The proof of Addition 2 rests on a lemma 
that is given afterward, as Prop. 17. In Addition 2, ratios of magnitudes are almost 
identified with ratios of numbers (compare the translation). Addition 1 uses the limit-
ing case for Prop. 15, for which our manuscripts still provide the figure, but not the 
actual argument. These observations indicate, once again, that the Arbelos treatise 
probably comes from a source that was originally more extended, and that several 
stages of transmission lie between the original and the version given in Coll. IV.

4.5.1 Proof Protocol Prop. 16

1. Protasis/ekthesis
In the arbelos configuration, one has:

AM = d(A), PN = 2d(P), OS = 3d(O),
 and generally: the perpendicular of the nth arbelos circle = n times its 
diameter.

1 The fact that the configuration and the theorem relate to the theory of points of similarity means 
that Prop. 16 encapsulates at least the potential for a very deep insight, even if we do no longer 
have direct access to the actual mathematical context for such discussions in antiquity.
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2. Apodeixis
2.1. AM = d(A) [Prop. 14, *; V, 16 and 17 and VI, 16]
2. 2.   Induction, from n = 1 to n = 2 and from n = 2 to n = 3 [Prop. 15]
2.3.  The induction step via Prop. 15, used in 2.2, can be repeated indefinitely. 

Prop.16 follows.

Additions
Add. 1:  When BC is a perpendicular BT to BD in B, the same proposition holds as 

in Prop. 16 [Obviously, AM = d(A); Prop. 15 for induction]

Add. 2:  When the semicircle over DC is replaced with a tangent DZ, one has: AM 
~ d(A) Û BC:CD is expressible as a ratio of two square numbers.

Apodeixis for Addition 2
1. DZ = AM.
2.  BC:CD = DZ2:TZ2 [Prop. 17]

Þ BC:CD = AM2:d(A)2.
3.  X, 9: Iff BC:CD is expressible as a ratio of two square numbers, AM and d (A) 

will be commensurable in length.
 Example: If D is chosen on BC so that BD = 4CD,
  one gets: AM:d(A) = 2:1, and the perpendiculars will follow the sequence 

of the natural numbers from 2 on.

4.6 Prop. 17: Supplementary Auxiliary Lemma for Prop. 16, Corollary 2

Prop. 17 is an auxiliary lemma for Prop. 16, Addition 2. Unlike the lemmata for the 
main proposition, which were placed before Prop. 16, the lemma for the addition 
comes as a kind of afterthought. The reason for this difference in presentation is 
probably the different theoretical status of the addition in comparison to the main 
theorem. Prop. 17 does not take over the notations from Addition 2. Thus, it appears 
as an independent lemma.1 Like Hultsch and Ver Eecke, I tend to think that Prop. 
17 is not by the same author as 13–16. Perhaps Pappus himself is its author. It may 
be a replacement that became necessary when an originally more extended treatise 
was “downsized.”

Hultsch’s Latin commentary explains the crucial step (2 in the protocol below) 
with a reference to duplicate ratios and uses V, def. 10, together with VIII, 11. 
There is no explicit exposition on the handling of duplicate ratios in Euclid. 
Archimedes seems to use them freely. Thus, duplicate ratios may very well have 

1 It is perhaps worth noting that even though the proof as transmitted explicitly appeals to Prop. 
14, *, Prop. 17 could be independent from 13–16, because the result from within Prop. 14 could 
easily be proved ad locum. Also, Prop. 17 uses a special case that appears to have been added in 
within Prop. 14 precisely with a view to Prop. 17. For it is not used anywhere else within the 
arbelos treatise.
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been what the author of Prop. 17 had in mind. In the translation, I have nevertheless 
preferred to take a route that does not appeal to a theorem from the arithmetical 
books to explain the intermediate step about geometrical magnitudes.

4.6.1 Proof Protocol Prop. 17

1. BC:CD = BD:TZ = DA:TA [Coll. VII, 1041; Prop. 14, * for D = L; proportions]

2. DA:TA = DA2:AZ2 [DBAD ~ DZAT and DDAZ ~ DTAZ; VI, 8, VI, 16, VI, 1]

3. DA:AZ = DZ:TZ Þ DA2:AZ 2 = DZ2:TZ2  Þ BC:CD = DZ2:TZ2

4.7  Prop. 18: Analogue to the Arbelos Theorem 
When the Second Inner Semicircle Is Missing

Prop. 18 is introduced by the following phrase: “the following, too, has been 
established through investigation by the lemmas written down above.” The occur-
rence of this phrase lends support to the thesis that the treatise which Pappus had 
could not have come directly from Archimedes and showed signs of several 
stages of “work-over,” additions for which Pappus did not know the source and 
date. Together with his description of the arbelos group as an “ancient theorem” 
deriving from “some books,” without mentioning an author, this might induce us 
to refrain from ascribing the group as we have it to Archimedes. Still, one can 
find a number of “Archimedean” traits in the little treatise, as we have seen. 
Therefore, the group of theorems on the arbelos can be described as plane geometry, 
Archimedean style.

4.7.1 Proof Protocol Prop. 18

Protasis/ekthesis
When instead of the arbelos configuration, we have a configuration with two 

semicircles, one within the other, and a sequence of inscribed touching circles, 
the perpendiculars have to the radii a ratio that follows the sequence of the odd 
numbers (1:1, 3:1, 5:1 etc.).

1 P. 828 Hu, (Jones 1986a, p. 234, # 166); Hultsch and Ver Eecke prefer here, as in Prop. 14, step 
1, a reduction to an extended version of the converse for Prop. 13.
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Apodeixis
1. The proposition is obviously true for the fi rst circle:

perp(Z) = r(Z)
2. n = 2, n = 3: induction steps

perp.(H):2r(H) = (perp.(Z) + 2r(Z) ):2r(Z) = 3:2  [Prop. 15]
Þ perp.(H):r(H) = 3:1
perp.(T):2 r(T) = (perp.(H) + 2r(H) ):2r(H) = 5:2 [Prop. 15]
Þ perp.(T):r(T) = 5:1

3.  The induction steps as illustrated in step 2 can clearly be continued indefi -
nitely. Therefore, the perpendicular of the nth circle is the (2n − 1)-fold of its 
radius.
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5 Props. 19–30: Motion Curves and Symptoma-Mathematics

5.1 General Observations on Props. 19–30

Props. 19–30 (as well as 35–41) deal with lines and curves that are different both 
from the circles and straight lines of Euclidean geometry, and from the conic sections. 
They are generated from moving points, where a rule is given which regulates the 
“motions” involved. They will be called motion curves here. An example would be the 
plane spiral of Archimedes, where a point moves along the radius of a circle in uniform 
speed, and is at the same time carried along on that radius as it rotates the full circle, 
also in uniform speed. The point describes a spiral line in the process. Another exam-
ple, though this is not used in ancient geometry, would be the generation of a circle as 
the “motion curve” described by the endpoint of a radius as the radius rotates a full 
360°. In order to study the mathematical properties of such curves, one has to come to 
a quantifiable characterization, as a proportion, or an equality that applies to all the 
points on the curve and only to them. All mathematical properties have to be derived 
from, or related back to, this original characterizing property. It is called the symptoma 
of the curve. It ultimately rests on the motions used to generate the curve, but as they 
do not appear in the mathematical discourse, the mathematics develops out of the 
symptoma itself as the starting point. I will call this type of mathematics symptoma-
mathematics. The conchoid of Nicomedes,1 e.g., has the symptoma that all lines drawn 
from a point of the curve to the pole have a definite neusis property: the segment cut 
off on it between the canon and the point on the curve has a fixed length. The curve 
itself is viewed as the locus for this property, and this is how it is employed in mathe-
matical argumentation. An analogy would be to view the circle as the locus of all 
points that have a fixed distance to a given point. Arguably this could even be seen as 
the Euclidean symptoma of the circle. The case of the conics is somewhat similar: they 
could be viewed (and some scholars think they were) as the symptoma-curves for 
certain equalities expressible via application of areas, and whether this is their true 
definition or not, they were often employed this way in mathematical investigation.

The motion curves discussed in Coll. IV are: Archimedean plane spiral (Prop. 
19), Nicomedean conchoid (Prop. 23, though defined as quasi-symptoma-curve), 
quadratrix (Prop. 26, also defined as a symptoma-curve via analysis of loci on 
surfaces in Props. 28 and 29), Archimedean spherical spiral (Prop. 30) and 
Apollonian helix (used, not defined in Prop. 28)

1 For this curve, and for the technical terms, neusis, pole, canon, see the translation and commentary 
on Props. 23–25.
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The account given by Pappus suggests a certain developmental line, which has, on 
the whole, been tacitly accepted by most scholars, even if they do not think highly of 
Pappus as a mathematician (e.g., Knorr 1986). For Props. 19–30 are our main source 
for this type of “higher” ancient geometry, the basis for its reconstruction.1 Generally, 
there are two types of motion curves, developing from curves like the Archimedean 
spiral and the quadratrix. They can be associated with two strategies for dealing with 
the problem of finding a mathematically acceptable “definition” of the curves.

(a) “Archimedean” track: motion approach, meta-mechanics (or: quasi-mechanics), 
with symptoma-mathematics on properties derived from synchronized abstract 
motions.

The generation (genesis) of the basic curves takes place via abstractly conceived 
uniform motions. The description of the genesis needs to be free of conceptual con-
tradictions. This means that for use of synchronized motions, the speeds must be in 
a definite ratio (cf. spiral, below; the quadratrix was subject to objections along those 
lines). The curve is then characterized via a (resulting) mathematically describable 
symptoma (proportion or equality), which is directly read off of the genesis. 
Geometry with, or on, the curve considers the curve as the locus corresponding to 
the symptoma. One might compare the way geometry operates with circles and 
straight lines. Coll. IV, Props. 19–22 discuss a version of the Archimedean spiral and 
present it as the starting point of a research trend. The problem with this version of 
the Archimedean spiral (inscribed into a circle given beforehand) is that the motions 
used have to be synchronized according to the ratio of circumference to radius (p, 
essentially), and that ratio is unknown. The version in SL avoids this dilemma: it uses 
synchronized motions in a given and fixed ratio, and circumscribes a circle after-
ward. SL separates the motion lemmata from the rest of the treatise, as quasi-postu-
lates and emphasizes that separation in addition by positioning the definitions for the 
treatise between these lemmata and the main treatise. Both versions, even the one 
with the problematical genesis, result in a curve that can be grasped exactly via its 
symptoma, and through it can be subjected to mathematical treatment. Pappus does 
not reject either the theorems on the spiral (Props. 20–22), or the theorems on the 
quadratrix (Props. 26 and 27, 35–41), although the original genesis of the quadratrix 
encounters similar conceptual difficulties, because it implicitly involves p. For the 
quadratrix, he emphasizes in fact that the theorem on it is much more acceptable 
than the genesis of the curve itself. The foundations of this type of motion curves, 
treated as “lambanomena,” and resting on the genesis, do remain somewhat hypo-
thetical, however, and perhaps there remains some uneasiness about them: you have 
to operate with something for which you must restrict your attention on certain con-
ceptualizable aspects, though the object itself cannot be fully grasped conceptually. 
Yet, one could take the view that this is the case for all geometrical objects. Already 
in Aristotle’s Analytica Posteriora, where he is abstracting from the mathematical 
practice of his day, it is stated that “postulates” (aitemata, not to be confused with 
axioms) for a science can be hypothetical, that does not detract from their scientific 
character. Prop. 30, which uses uniform motions with velocities in the ratio 1:4 for 

1 Additional examples: Archimedes, SL and Eutocius in Arch., Sph. et Cyl. II, pp. 54–110.
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the genesis, and is based on the genetic properties of the curve, is completely uncon-
troversial as a theorem in symptoma-mathematics on a motion curve. No treatise in 
which Prop. 30 was incorporated survives.

(b) The second track of mathematics on motion curves operates with analysis of 
loci on surfaces, leading to a symptoma that can be captured in an exact math-
ematical relation to other features of the given confi guration.1 

The mathematics is restricted to such properties as follow for the curve qua 
observing the symptoma. This second track appears to have started in the generation 
after Archimedes. Nicomedes was one of its founders, and one of the major figures 
in this field – at least that is how it appears from Pappus’ portrait. This line of 
approach was developed further by other Hellenistic geometers, as is apparent from 
Pappus’ list in the meta-theoretical passage (between Props. 30 and 31). A substan-
tial body of mathematical works in this area must once have existed. Unfortunately, 
no works of this branch of ancient “higher” geometry survive today, and we owe 
the little knowledge we have of them mostly to Pappus. This second, analysis-
dominated way of looking at the motion curves has features that connect it to the 
treatment of the conics. According to the view taken by most scholars, the conics 
were found and treated, per analysis-synthesis, as locus curves, characterized via 
symptomata in a specified configuration: cf. Menaechmus, Aristaeus, and Euclid on 
solid loci.2 Attested in Coll. IV are the following examples of analytically deter-
mined symptoma-curves. In Props. 28 and 29 (one of which may very well be by 
Nicomedes), the quadratrix is reduced via analysis to loci on surfaces created in 
dependence from the Archimedean spiral or the Apollonian helix and shown to be 
determined by it. The mathematics on it is symptoma-mathematics, again. The 
symptoma is used, the genesis of the assumed curves is left out of the mathematical 
consideration.3 One might compare this procedure to Nicomedes’ characterization 
of the conchoid (between Props. 22 and 23); it appears to be a transitional step in 
that he does generate the conchoid via motions, but does not read the symptoma 
off of the motions used. Rather, he determines it via pointwise characterization of 
a conchoid already drawn: the conchoid is the locus for a neusis property.4

1 Here the trait of ancient geometrical analysis as essentially an analysis of configurations is craftily 
exploited. See below, on the use of analysis in Props. 28 and 29.
2 A notable exception to this view of the ancients’ understanding of the conic section is S. Unguru. 
The reader may wish to consult his contributions for a different account. Since the “dominant” view 
(conics treated as locus curves, so to speak, with heavy reliance on a characterization via their symp-
toma) concurs very well with Pappus’ presentation in Coll. IV, I have opted, in the present work, not 
to raise and discuss this general question. Perhaps it could be discussed again, with profit, by taking 
into account the “solid” arguments in Pappus (Props. 31–34 and 42–44) in addition to the now extant 
Apollonian arguments from the Konika (in Eutocius’ revised, purely synthetic edition).
3 Props. 28 and 29: Chasles (1875) explores the connections to the differential geometry of higher 
curves.
4 My assessment, as given here, differs from Knorr’s, cf. Knorr (1989, p. 31). Knorr objects to 
Pappus’ portrait of the conchoid as a neusis curve and insists that the conchoid was not intended 
for the neusis, but as a replacement for it.
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Of these two alternative strategies, the former, Archimedean approach, seems to 
have been the original one. Nicomedes, for example, picked up on Archimedes’ 
suggestions. His description and treatment of the quadratrix shows close connec-
tions to the Archimedean plane spiral. He does, however, develop this branch in a 
different direction (analysis of loci, getting rid of the mechanical metaphors). And 
it seems that it was the second path, not the Archimedean “quasi-mechanics” that 
was pursued by the Hellenistic mathematicians after him. In both strategies, one 
avoids having to pronounce on what a curve is in itself, instead defining it as a locus 
of points that fulfill a given relation. What remains somewhat unclear and vague is 
not the status of the mathematical argumentation, but the status of the curves them-
selves. Philosophers were much interested in an answer to questions like this, 
especially the Platonists. Already in Plato’s time, it seems that the mathematicians 
chose to remain vague, and silent, about the exact ontological status of their objects. 
Aristotle’s reflections on the status of mathematical objects, which, though appar-
ently espousing some kind of abstractionist view, remain uncharacteristically vague 
as to the actual status of the mathematical objects, and appear to do justice to 
the historical facts: the status of mathematical objects remained undecided among the 
mathematicians (and perhaps still is so today). That the ancients did not reject 
the symptoma-mathematics of motion curves just because motions are involved, and 
that Descartes (to whom part of our modern prejudice toward ancient mathematics 
in this regard may very well go back) was mistaken, or misleading, in his explicit 
assessment of the ancient mathematics of higher curves as portrayed in Pappus 
(in the Géométrie), was already argued convincingly by Molland (1976). Descartes 
went on to use an elaboration of this constructed dichotomy between mechanics and 
geometry for his own program. We cannot follow up Descartes’ considerations, 
and their possible connections to his reading of Coll. IV in detail here.1 It has to be 
noted, however, that his picture of the ancient mathematicians’ views on the curves 
of the third kind is somewhat skewed. For Pappus, the symptoma-mathematics of 
lines of the third kind was a branch of geometry. What was not settled, and here 
Descartes may have picked out a tension implicit in Pappus’ account, was the status 
of the lines themselves. Part of the efforts of the ancient mathematicians was 
directed at an account of the genesis, eliminating conceptual problems for the 
motion genesis or reducing the genesis to an analysis of loci on surfaces (which 
have to be given). Their ontological status remained undecided. A few summary 
remarks on the problem of the ancients’ views on mechanics versus geometry may 
be useful. A comprehensive solution is at present not in sight. Perhaps the material 
offered in the present edition, complete and within its originally intended context, 
could be usefully brought to bear on further discussions.

1 It is not implausible that Descartes’ reading of Pappus, Coll. IV had an impact on his own view 
of the definition of higher curves via controlled synchronized motions and algebraic- analytical 
characterization, not fully harmonized in his account. The issue cannot be pursued here in detail, 
but might be worthy of further investigation. See also below, footnotes to the passage on mechanics 
versus geometry.
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5.1.1 Mechanics Versus Geometry and the Problem of Motions

Are motions allowed in ancient geometry, if only for the genesis of curves? Or are 
they banned? There seems to be no simple, straightforward answer. On the one hand, 
Aristotle and Plato seem to suggest they are excluded from geometry proper. Yet 
Plato and later Platonists use and accept abstract motions (viewed as generating into 
intelligible matter) for the generation of geometrical lines and objects without 
qualms (cf. Proclus). Euclid I, 4 notoriously uses superposition, defines congruence 
by appeal to moving geometrical objects so that they fit onto each other. Mechanics 
and astronomy, e.g., deal with objects in motion, and abstract from them. What 
becomes of the motions? One might wonder what role they play for the objects 
treated in theoretical mechanics. Popular definitions of straight lines and circles via 
flowing points existed. Euclid avoids that, as does Aristotle. Still we encounter such 
definitions as late as Proclus. Tracing a line (as the conchoid, or the spiral, or the 
circle) could be seen as a motion, and if so, one might again wonder how such 
“motions” figure in mathematics. Mechanics, in antiquity, was a mixed science. 
As such, it had a theoretical aspect: geometry, and a physical aspect. The latter did 
have to do with practical and technical devices (instruments and their operation).1 To 
call an argument, or a curve, “mechanical” can mean a number of things; it may 
simply mean that idealized motions are involved; e.g., Nicomedes’ genesis of the 
conchoid in Prop. 23, and Archimedes’ genesis of the spherical spiral in Prop. 30 are 
mechanical in this sense. The use of such motions for the generation of curves is not, as 
such, viewed as problematical. The “mechanical” genesis of the conchoid (via tracing) 
is not criticized by Pappus, and the curve is fully accepted as a mathematical curve, 
because the motions are well-defined and can be grasped in thought. The motions used 
for the quadratrix are not objected to as such, but because they involve a logical 
inconsistency (see below). That motions are not explicitly objected to for the genesis 
of lines does not mean, however, that they are seen as part of the mathematical dis-
course. Whether well-defined or not, the generating motions themselves will never 
turn up in the symptoma-mathematics of the respective curves. They are used to read 
off the symptoma, and only the latter becomes part of the argument.2 Where does that 

1 Cf. also Pappus on mechanics versus geometry in Coll. VIII. The passages there would, in my 
view, reward scholarly attention for a clarification of the ancient view on the relation of geometry 
and (theoretical) mechanics. See also Ver Eecke (1933a)
2 It seems to me at least to be a plausible hypothesis that Descartes, when formulating his view on 
permissible geometrical curves in the Géométrie was strongly influenced by the examples in Coll. 
IV. For what he presents as his dual view on the characterization of geometrical curves, as an 
improvement on the ancients, is, at least in nuce, already to be found here in Coll. IV. Descartes 
decided that motions are permissible, and lead to geometrical curves in his sense, if the motions 
and their synthesis can be controlled at all times – as they can for his parabolas of higher degrees, 
for the conchoid, and for the spherical spiral, but not for the quadratrix (Prop. 26) and the plane 
spiral as in Prop. 19. Under Descartes’ conception of permissible modes of generating geometrical 
curves, both the Archimedean spiral (in 19–22), and the quadratrix, are non-mathematical. 
The mathematics about them is no real geometry. As said repeatedly: for Pappus, Props. 20–22, 
and Props. 26–29 do qualify. In this respect, he differs from Descartes.
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leave the motions with respect to the field covered by mathematics? Discussion 
existed, at least among philosophers of mathematics.1 For lack of sources, it can at 
present not be fully reconstructed. What can be given, and what the present edition 
attempts to provide by presenting the relevant source material in its actual context, 
is a glimpse at the way in which mathematicians handled the motion curves (when 
no alternative genesis was available), and how they dealt with problems of defining 
them mathematically, so they could do mathematics about/of them. The salient 
point, which has so far not been emphasized enough in secondary literature, is the 
symptoma. If a curve as such cannot be grasped fully as an object, its defining 
properties perhaps can, and that is what mathematics concentrates on in any case. 
The ancient mathematicians may have deliberately pushed aside the question of the 
ontological and epistemological status of the curves themselves. The assessment in 
Molland (1976) – motions as such were not the problem; but the relation of geometry 
and mechanics is unclear – still holds today.

5.1.2 “Mechanical” Versus “Instrumental”

There is, however, a related issue, on which I need to comment here. “Mechanical” 
can, but does not need to, relate to the use of instruments and devices, physical 
objects. It would be a mistake, and has led to a misreading of the mathematics of 
higher curves in Pappus, to take the two notions “mechanical” and “instrumental” 
as virtually equivalent.

As said above, the label “mechanical” can refer to the use of abstract motions, 
and to metaphorical usage of terms taken from mechanics, e.g., weight of a triangle 
(cf. Ephodos, but also QP by Archimedes). Such language does not imply actual 
physical motions, accomplished by physical objects such as instruments. This is why 
Pappus, after describing the conchoid as resulting from a motion (mechanically; 
this would be called “mechanikos”) mentions that it can also be generated by means 
of an instrument devised by Nicomedes (“instrumentally,” organikos). The use of 
specified permissible instruments is not the focus of mathematical construction 
for the ancients. Euclid, for example, never uses the terms for ruler and compass. 
His mathematical constructions are by means of circles and straight lines, and they 

1 Aristotle’s position on the status of mathematical objects, their relation to natural objects is much 
discussed and notoriously problematic. It may not be completely consistent. Most likely, however, 
it is a kind of abstractionism, where the mathematical objects are essentially idealized properties of 
physical objects, depending on them ontologically, while having some degree of epistemological 
priority insofar as they pick out essential features. Geometry in relation to mechanics could, 
with some plausibility, be construed as meta-mechanics, as that theory which gives the “why” – 
explanations within mechanics. Pappus’ discussion of the roles of geometry versus mechanics 
in Coll. VIII (cf. footnote above) appears to be drawing on Aristotelian conceptions. This issue 
cannot be pursued here. It is not inconceivable that a study of Pappus’ views on mechanics versus 
geometry in Coll. VIII, in comparison with the Aristotelian theory of science, could help under-
stand Pappus’ stance on the motion curves in Coll. IV.
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are not necessarily viewed as tools, i.e., instruments. The focus is certainly on 
construction, but not quite as this is commonly understood. The material aspects of 
how one creates the circles and straight lines used in the arguments is irrelevant in 
Euclidean geometry.1 The use of instruments, precise or otherwise, as such, does 
not make an argument mathematical or non-mathematical, in fact, it is irrelevant to 
the mathematical content concerned. Therefore, “mechanical” does not mean, in a 
mathematical context: “created by a physical device”2 or “designed for actual 
practical production.” I have decided to avoid the label “mechanical” for the motion 
curves, because it may lead to the wrong associations.

5.1.3 Survey of Props. 19–30

(a) Props. 19–22: genesis and symptoma of the Archimedean plane spiral (inscribed 
in a circle), two symptoma-theorems on it: spiral area, in relation to the circle 
into which it is inscribed; spiral sectors in relation to cubes over maximum radii 
(Archimedes)

(b) Props. 23–25: genesis and symptoma of the conchoid, further properties, 
symptoma-theorem on the conchoid: two mean proportionals, cube multiplica-
tion (Nicomedes)

(c) Props. 26–29: genesis and symptoma of the quadratrix; criticism of the genesis, 
symptoma-theorem on the quadratrix: rectifi cation of the circumference of a 
circle and squaring of the circle; analytical reduction of the symptoma-description 
of the quadratrix to loci on surfaces (Dinostratus, Nicomedes, Apollonius (?), 
Sporus, Pappus)

(d) Prop. 30: genesis and symptoma of the spherical spiral (inscribed), symptoma-
theorem on the spherical spiral: quadrature of a curved surface (Archimedes)

Obviously, there is a common structure to the presentation of mathematics of 
“higher” curves in Pappus: genesis – symptoma – mathematics treating curves as 
locus for the symptoma (cf. handling of conic sections – which were defined as sec-
tions of cones, but predominantly employed for arguments under the perspective of 
symptoma-curves). Also, there appears to be at least the trace of a developmental line 
for this branch of Greek geometry, and Pappus’ meta-theoretical remarks, which 
follow immediately after Prop. 30, reinforce that impression. The fact that the 
examples for symptoma-mathematics fit extraordinarily well with Pappus’ meta-
theoretical passage in this regard need not mean that Pappus is representative of the 
way mathematicians viewed their work. We may see a rational reconstruction here, 

1 Cf. Netz (1999) on the use of highly schematized/standardized diagrams, set in stone and 
completed already at the outset in geometrical argumentation/instruction.
2 While concern with devices was not an emphasis in ancient mathematics, it was of interest to 
Descartes, who included in the Géométrie a description of a mesolabum-compass, and an instrument 
for generating higher degree parabolas (also: device for creating ellipses etc. in the Optics).
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didactically polished, by a well-informed commentator looking back at history and 
trying to make sense of it. Even under that precaution, however, Pappus’ views 
are well-grounded and deserve attention and respect in their own right. In order 
to arrive at a balanced view on how, and how far, Pappus’ image corresponds to a 
general understanding of the mathematical tradition, one should take the whole of 
Pappus’ account as a basis and look for discrepancies and similarities in direct and 
indirect sources outside Pappus. This has not been done so far, because Pappus’ 
overall position has not yet been taken seriously as a reflected and meaningful 
one. Perhaps the present documentation of Pappus’ account as a whole can serve as 
a basis for further research.

As said above, Pappus, Coll. IV, 19–30 (and 35–41), is a valuable source on this 
branch of ancient mathematics, the only extensive one in existence now, apart from 
Archimedes, SL.1 The curves presented by Pappus attracted much attention in the 
seventeenth century: conchoid, spiral, and quadratrix were recurring subjects of 
discussion. It would be an interesting topic to investigate in more detail the way in 
which texts like Pappus’ here were used in the seventeenth century to negotiate a 
shift in perspective, a new program in geometry. Examples for such a reception 
include: Descartes (1637), Hudde and Heuraet on the conchoid in Descartes (1659), 
and de Sluse (1668) on the conchoid; Witt/Schooten in Descartes (1659) on conics, 
Newton Arithmetica Universalis in Whiteside (1972) V, pp. 420–490. Perhaps 
Prop. 21 played a role for the investigation of quadratures via indivisibles.2 Props. 
28 and 29, for some reason, did not receive as much attention in this discussion, 
even though these two passages do focus on method, and show how analysis, espe-
cially: resolutio, can be used in this area.3 Props. 19–30 are also very interesting in 
themselves, and they deserve scholarly attention.

5.2 Props. 19–22: Archimedean Plane Spiral, “Heuristic” Version

5.2.1 Relation of Props. 19–22 to SL

For a discussion of this topic see especially Knorr (1978a). Knorr argues that 
Props. 19–22 document the heuristic version of Archimedes’s inquiry into 
spiral lines, probably connected to research on the quadrature of the circle. 

1 Because Archimedes is such a brilliant mathematician, it is perhaps tempting to view his 
contributions as exemplary. However, it is also possible, and precisely for the same reason, that 
he was extraordinary, non-typical, as far as his research into non-explored terrain in mathematics 
is concerned. The issue cannot be investigated here.
2 The discussions on spiral lines were, however, based mostly on the version in SL (e.g., in Jacob 
Bernoulli’s work), not on the version in Props. 19–22.
3 But see Pascal, De la dimension d’une dolide forme par le moyen d’une spirale autour d’une 
conique, related to Prop. 29, and Chasles (1875, p. 30) on Prop. 28 (quoted according to Ver Eecke 
(1933b) p. XXXII, with #4.
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The curve as defined in Prop. 19 differs from the version in SL. Prop. 19 introduces 
a spiral inscribed in a given circle, whereas in SL, one has a spiral and circumscribes 
the circle. Only the version in Coll. IV can yield the quadrature of the circle. In the 
Coll.’s version, the genesis via two synchronized motions implies p (not so in SL, and 
that is exactly why SL 18 does not yield a constructive rectification of the circle). That 
said, and with the appropriate caution, Prop 19 corresponds to SL 14 with SL 2, and 
Prop. 20 corresponds to SL12 with SL 1.1 SL 24 is an area theorem on the spiral with 
circumscribed circle. Though closely related to Prop. 21 in Coll. IV, it is really a dif-
ferent theorem. The true parallel to SL 24 comes as an appendix (corollary) of Prop. 21. 
Also, the proof strategies differ considerably. Prop. 21 uses a parallel auxiliary figure 
with rotation solids inscribed, a process of continuous division, and quasi-indivisibles, 
whereas SL 24 (relying on SL 21, SL 12, SL 10) gives a proof via double reductio, no 
indivisibles are used, the parallel auxiliary figure involves a single circle, and no 
progression of inscribed figures into that circle is envisaged. A proof protocol of SL 
24 will be given below for convenient comparison with Prop. 21.

5.2.2 Heuristic Method in Props. 19–22

The full scope and machinery of Archimedes’ heuristic method was described by 
himself in the Ephodos, “mechanical theorem method.” The work was lost until 
rediscovered by Heiberg in the early twentieth century (Heiberg 1906). Thus, the 
mathematical tradition had no direct full access to this aspect of Archimedes’ work. 
For his monographs do not show any traces of the method of discovery. Part of what 
makes Prop. 21 (and, to a lesser degree, 30) so valuable and interesting is the fact 
that it does exhibit some of the characteristic traits of that method, and it was indeed 
accessible to the mathematicians in the early modern period studying Archimedean 
mathematics. Because Prop. 21 is a vital part of what the early modern mathemati-
cians, in going toward the calculus, knew about Archimedean heuristic procedures 
for finding quadratures, it is obviously a very important source for historians of 
mathematics. It deserves closer attention and analysis with a view to its reception 
in early modern times. Specifically: the method employed in Prop. 21 may very 
well have influenced Cavalieri’s treatment of area and volume theorems via indi-
visibles (in addition to the QP), as well as other discussions of similar problems 
during that time. Quite possibly, the mathematicians in the sixteenth and seventeenth 
centuries consciously made use of this limited glimpse of Archimedes at work. 
The issue can, of course, not be pursued in detail here. What will be given is a docu-
mentation of the actual text in Pappus, as a basis for further investigation. For a 
comprehensive survey of Archimedes’ mechanical method, cf. Dijksterhuis (1987).2 

1 SL 12 is used in SL 24; Prop. 20 is used only in the addition to Prop. 22.
2 Incidentally: Archimedes does not use the term “methodos,” which would have implied a scientific 
character for the procedure, but rather the word “Ephodos,” i.e., “attack, approach,” emphasizing 
the strategic aspect of it, and its direction toward success in the form of a concrete result.
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According to Dijksterhuis, the strategy described in the Ephodos relies on the meta-
phorical use of mechanical features and operates with (a) levers and centers of 
gravity and (b) indivisibles. Only (b) can be observed in Prop. 21 (more broadly: 
in 19–22).1 To some degree, (a) can be observed in QP, but Archimedes’ procedure 
there differs slightly from the version of the same result as given in the Ephodos.

5.2.3 Survey of Props. 19–22

context: geometrical properties of the Archimedean spiral, quadrature of the circle, motion 
curves, and symptoma-mathematics.
source: an otherwise lost, and unattested, work by Archimedes.
means: V, VI, exhaustion (XII), quasi-indivisibles.
method: synthesis, limit process argument via indivisibles.
format: theorems.
historical significance/reception: addition/alternative to Archimedes’ SL, Archimedes’ 
heuristic method exemplified partially, possible influence on arguments via indivisibles in 
the sixteenth and seventeenth centuries.
embedding in Coll. IV: presentation of mathematics on higher curves in the order genesis-
symptoma-theorems: same as in Props. 23–25, 26 and 27, and 30; motif “geometry, 
Archimedean style”: 13–18, 30, 42–44; motif “squaring the circle”: 26 and 27; connection 
to the curve quadratrix: 292; spiral used in 35–38; insofar as the quadratrix can be derived 
from the spiral, 39–41 may be included here, too. In all these instances, it is the basic 
symptoma of the curve, not the theorems on it (i.e., Props. 21 and 22) that will be used.
purpose: exhibit plane spiral as a classic and basic curve for the methods of symptoma-
mathematics of the “linear” kind (the starting point for this kind?). Props. 19–22 show the 
conceptual problems inherent in the genesis for some of the motion curves, the heuristic 
efficiency of the “mechanical method,” and the resulting style of mathematics on motion 
curves.
literature: Dijksterhuis (1987, pp. 268–274), Knorr (1978a, 1978b, 1986, pp. 200–201); 
Knorr’s work on Archimedes’ treatment of the spirals is the authoritative one at present. 
This portion of the commentary on Coll. IV relies heavily on his results. There are some 
limitations, in my view, mostly concerning Props. 42–44. They will be pointed out 
ad locum. Hultsch remarks that the treatment of the spiral in Props. 19–22 is not identical 
with the treatment in SL, but is still willing to see it as parallel. Ver Eecke (1933b), through-
out his commentary on Props. 19–22, erroneously assumes that the treatment is virtually 
identical with the one in SL.3 Heath (1921, I, 230–231) is mistaken is assuming that SL 
18 yields a constructive rectification of the circle. See also Heath (1921, II, 377–379) on 
Props. 19–22.

The proof protocols for 19–22 will differ in format from the protocol of “standard” 
mathematical expositions, e.g., Props. 13–18, reflecting the different character and 
style of the arguments employed here.

1 Dijksterhuis defends the thesis that only (b) is problematical for geometry. Compare the above 
discussion of mechanics versus geometry.
2 Knorr (1986, pp. 161–168) supports an even closer connection between spiral and quadratrix.
3 In addition, Ver Eecke claims at XXVIII that Archimedes’s exhaustion method is equivalent 
to the infinitesimal calculus, and that 19–21 are analytical in form. One might disagree with 
these judgments.
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5.2.4 Prop. 19: Genesis and Symptoma of the Archimedean Spiral

Genesis: In a given circle, inscribe a spiral; use two uniform synchronized motions, 
a clockwise rotation of radius BA, and a linear motion of P from B to A. P is to 
arrive at A when BA has completed a full rotation. Obviously, the two motions have 
to be coordinated according to 2pr:r.1

Symptoma: For any radius BC, drawn arbitrarily, intersecting the spiral in P, BP:BA = 
arc BC:circumference, and an analogous property holds for the angles under the 
arcs.2

This symptoma will be used in all places where the spiral is employed for 
argumentation. The genesis is kept out of the picture from now on.

5.2.5 Prop. 20: Progression of Spiral Radii

Directly from the symptoma, one can derive the following.
A progression of angles, increased by the same increment at each step, produces 

an arithmetical progression of spiral radii.3

5.2.6 Prop. 21: Area Theorem

5.2.6.1 Argument in Prop. 21

1. Protasis/ekthesis
  Assume a circle with inscribed spiral.4 The spiral area is one third of the circle.

2. Apodeixis5

2.1. extension of configuration, auxiliary construction
circle, sector CBA (S(C) ), sector ZBH (S(Z) ),6

rectangle KNLP, rectangle KNT’R,
in the same ratio as the circle and S(C),
rectangle MNT’W, rotation cylinders over NL, NY’
(C(R), C(W) )

1 This constitutes a problem for the genetic definition for the curve, analogous to what will be said 
about the quadratrix below. Pappus is, however, silent on this issue here. That the conceptual 
inconsistency was brought up, and that it must have bothered Archimedes, can be seen from 
the fact that SL avoids this problem, even at the cost of no longer being able to rectify, and square the 
circle constructively. Compare, and contrast, Prop. 19 with SL, Def. 1, 2, 3, and 7.
2 Compare SL 14.
3 Compare SL 12 + SL 1.
4 A counterclockwise motion of the generator for the spiral is understood.
5 The argument employs an infinite inscription process and quasi-indivisibles. Still, Pappus calls 
this argument a proof (apodeixis); cf. Knorr (1978a), pp. 52 ff. on Prop. 21.
6 A division in the ratio 2n is likely.
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2.2. S(C):S(Z) = C(R):C(W)
[symptoma, VI, V, XII, 2]
2. 3. Continue analogous parallel inscription processes in circle and rectangle, 
create progression of sectors and rotation cylinders,
exhausting circle and rectangle.
In each case, you get a proportion as in 2.2.
2. 4. Summing up after a finite number of inscriptions
circle:sum of all inscribed sectors
= C(R):sum of all inscribed rotation cylinders
2. 5. Approximation from above
The analogous proportion will hold for progressions of circumscribed sectors 
and rotation cylinders.
2.6. Limit argument
Imagine the partition made more and more fine-grained.
The inscribed and circumscribed circle sectors approximate the spiral area from 
both sides, and the inscribed and circumscribed cylinders approximate the rotation 
cone over KN with side KL. By an (implicit) continuity argument (a transition to 
infinity, or an appeal to indivisibles), we infer: the above proportion will still hold 
in the “limit case,” and thus: circle:spiral area = rotation cylinder:cone = 3:1.

5.2.6.2 Proof Protocol of SL 24

(for comparison with Prop. 21)
  

Q

  

1. Protasis/Ekthesis
When a spiral of first rotation with a circumscribed circle is given, the following 
proposition holds: The spiral area (S) will be one third of the circle (A).

2. Apodeixis
2.1. Extension of configuration, auxiliary construction
circle Q with Q = 1/3A.1 We need to show: Q = S.

1 With r: = radius of circle A, construct a line r’ so that r2 = 3r’2 (e.g., by trisecting r (VI, 9), and 
transforming the rectangle with sides r, 1/3 r into a square (II, 14). Then the circle Q with radius r’ 
will have the area 1/3 A (XII, 2).
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2.2. Double reductio: If not, then either Q > S or Q < S
 2.2.1 Assume Q > S
 then Q – S = : f is a definite magnitude.
 Construct a sequence of similar sectors circumscribed around the spiral, so 

that for their sum F we get
 F – S < f (SL 12, 21). Then F < Q.
 On the other hand: F > 1/3A (SL 10, addition),
 i.e., F > Q, a contradiction.
 2.2.2 Assume, then, that Q < S
 then S – Q = : f is a definite magnitude.
 Construct a sequence of similar sectors inscribed in the spiral, so that for 

their sum F we get
 S – F < f. Then F > Q.
 On the other hand, SL 10, addition, yields F < 1/3 A, i.e., F < Q, a 

contradiction.
 2.2.3 Therefore, Q = S must hold.

3. Symperasma: Therefore, S = 1/3 A.

Prop. 21 is a symptoma-theorem on the spiral inscribed in a given circle. The proof 
uses the symptoma, V, VI, XII, 2, and XII, 10 and 11. The heart and core of the argu-
ment, however, is the progressive inscription, and the limit process. This is “unortho-
dox,” non-Euclidean, and there is no analogue in SL. It is probably the implicit limit 
argument employing rotation solids that Pappus refers to in his introduction to 
Props. 19–22 as a “certain astonishing plan of attack.”

Addition to Prop. 21

The analogue to Prop. 21 holds for spiral sectors (of the original inscribed spiral), 
and corresponding sectors of circumscribed circles.1

5.2.7 Prop. 22: Ratio of Spiral Areas and Spiral Segments2

5.2.7.1 Argument in Prop. 22

Protasis
The ratio of the spiral area to spiral segment areas is equivalent to the ratio of 
the cube over the radius to the cubes over the corresponding spiral radii.

1 Since in this addition, the secondary circles end up being circumscribed, one might (as I have 
done in the introduction) read the addition as the true equivalent of SL 24. All one needs is a 
continuity argument, interpreting the spiral and circumscribed full circle as a limit case for spiral 
and sectors of circumscribed circles.
2 On Prop. 22, cf. Knorr (1978a, pp. 57 ff).
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Ekthesis
Start with a configuration containing a circle ACD with radius BA, and a spiral 
AZEB. Draw the arc ZT, and produce BZ to C.

Apodeixis
1. Spiral area:spiral sector area = circle ACD:sector ZBT

[Prop. 21, with addition].

2. Circle ACD:sector ZBT =
(circle ACD:circle ZBT) × (circle ZBT:sector ZBT)
Circle ACD:circle ZBT = AB2:BZ2 [XII, 2]
and circle ZBT:sector ZBT = circumference ZBT:arc ZBT
= circumference ACD:arc CA [VI, 33, with addition]
= AB:BZ [symptoma spiral]

3. Spiral area: spiral sector area = (AB2:BZ2) × (AB:BZ),
and this is equivalent to AB3:ZB3

Compound ratios are written here as quasi-products; this is somewhat problematical. 
See the discussion of compound ratios and multiple (double and triple) ratios in Saito 
(1986) and Heath (1926) on VI, 23. Knorr (1978a, p. 57) discusses a similar use of 
ratios in the alternative proof for Sph. et Cyl. II, 8. It appears as though Archimedes 
handled compound ratios in the way suggested here. Hu and Ver Eecke refer to XI, 
33, and V, def. 10 for a justification. The triple ratio here may very well have been 
seen as the analogue to VI, 23 for solids. Co p. 85 seemed to have qualms about this 
proof in Prop. 22, with its implied identification of ratios of solids with composite 
ratios of planes and sides; he offers an alternative via centers of gravity for solids.

5.2.7.2 Addition to Prop. 22: Areas of Spiral Quadrants1

1. Ekthesis
Start with a circle, inscribed spiral, and partition of circle into quadrants using 
the end stage of the rotating radius, yielding spiral quadrants Q1–Q4.
Posit Q1 as 1 (unit). Then: Q2 = 7, Q3 = 19, Q4 = 37.

2. Apodeixis
Progression of spiral radii is 1:2:3:4 (symptoma of the spiral),
progression of spiral area sector is 1:8:27:64 (Prop. 22),
subtract preceding quadrants at each step, progression of quadrants is 1:7:19:37.

5.3 Props. 23–25: Conchoid of Nicomedes

5.3.1 General Observations on Props. 23–25

context: neuses, motion curves, cube duplication/multiplication (two mean proportionals).
source: Nicomedes, treatise on conchoid lines, with additions from Pappus.

1 Prop. 22, Addition, is not specific as to the relative priority of circle and spiral.
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means: neusis, I, II, V, VI.
method: analytical use of the symptoma, synthesis.
format: problem.
reception/historical significance: seventeenth century studies on the properties of algebraic 
curves: Vieta, Descartes and the ensuing development/discussion (inter alia: Sluse, 
Heuraet, Hudde, Newton).
embedding in Coll. IV: motif “motion curves and symptoma-mathematics”: Props. 19, 26, 
30 and meta-theoretical passage; motif “analytical determination of curves via symptoma”: 
Props. 28/29; motif “neusis”: Props. 31–33, 42–44, meta-theoretical passage; motif “author 
Nicomedes”: quadratrix (Props. 26–29, perhaps also 35–41). The conchoid is not used 
again in Coll. IV; however, the neusis in 31 can easily be constructed with it.
purpose: illustrate determination of motion curves via analytical determination of symp-
tomata, and illustrate the operation with such a symptoma-curve; the conchoid is transi-
tional between the straightforward motion approach in Archimedes (Props. 19–22, 30), and 
the analytical symptoma-characterization in Props. 28 and 29.
literature: On Nicomedes and his mathematical achievements see Knorr (1986, pp. 219–233); 
on Arabic sources for cube duplication and angle trisection, see Knorr (1989, pp. 63–70, 
77–129, and 247–372), and on their ancient sources, see Heath (1921, I, pp. 238–240 and 
260–262, and II, pp. 197–199). The most extensive ancient source on ancient cube duplica-
tions, Eutocius in Arch Sph. et Cyl. II, pp. 54–106 Heiberg, also contains a treatment of the 
conchoid and the cube duplication with it (pp. 98–104 Heiberg). It was probably more 
influential for the reception of the conchoid in seventeenth century mathematics than 
Pappus’ account here, or the parallel in Coll. III (pp. 58–64 Hu) and Coll. VIII. Of special 
interest, because demonstrating close acquaintance with Pappus’ account, are Newton’s 
considerations in Whiteside (1972, II, pp. 196–201, V, pp. 460–465) (within a larger con-
text of treating “solid” problems via construction of equations, pp. 420–495).1

5.3.1.1 Nicomedes

This mathematician lived in the third/second century BC – after Archimedes and 
before Apollonius. Most of his work is lost. He studied the quadratrix (Props. 
26–29, perhaps also Props. 35–41), worked on the analytical justification of higher 
curves (Prop. 29), and wrote a treatise on the properties of conchoid lines. 
His treatise on the conchoids is lost, but a fragment from it, dealing with the “first 
conchoid,” usually simply called conchoid, is preserved (Prop. 23–25, but see also 
the references given above). Nicomedes may have known (some version of) the 
conchoid of a circle, but this cannot be ascertained. From what we can see in Coll. 
IV, Nicomedes appears to have developed the symptoma-mathematics of motion 
curves along the second path mentioned in the introduction to Props. 19–30. Unlike 
Archimedes, who experimented with the approach using idealized motions as 

1 Newton explicitly refers to Pappus several times. In the above-mentioned text, he voices his 
preference for the conchoid for solid neusis constructions and attempts to portray himself as in 
line with the ancient geometrical tradition, as against the Cartesians. Descartes’ discussion of the 
conchoid in Descartes (1637) does not rest on Pappus, and neither does his construction for the 
cube duplication and the angle trisection (for Descartes’ discussion of the conchoid, and some 
examples from the Cartesian tradition in the seventeenth century see the references below, under 
the heading Conchoid).
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metaphors, Nicomedes worked toward a justification of such curves via an analytical 
reduction of their “defining” symptoma to loci on surfaces.1 Prop. 23–25 seem to 
move somewhat in that direction; a full-fledged example for such a quasi-definition 
via analysis on loci is given in Props. 28 and 29. While the author of Props. 28 and 
29 cannot be identified with certainty, Nicomedes is at least a possible candidate 
for Prop. 29, and at any rate this is the branch of mathematics on which Nicomedes 
and others during that time period centered their research activities (for further 
names, see the meta-theoretical passage after Prop. 30). Above all, however, 
Nicomedes is known for his treatment of the conchoid line. The conchoid has a 
neusis-property as symptoma, and can be used for the duplication of the cube 
(indeed: multiplication in any given ratio) and the trisection of the angle. In Props. 
23 and 24, Pappus presents the solution for the former. A few remarks on 
Nicomedes’ conchoid, on cube duplication in ancient mathematics, and on neusis 
constructions may be helpful.

5.3.1.2 Conchoid

In Pappus’ excerpt, the conchoid is generated via motions, but in such a way that 
it is really a locus-property throughout that characterizes it (see below, genesis of 
the conchoid, and the translation2). Nicomedes’ “definition” lingers between a 
genesis via motions as in Prop. 19 (“mechanical”), and a definition as a locus 
curve answering to a symptoma. After the description, Pappus mentions that the 
curve can also be traced by means of an instrument, a kind of neusis-compass, 
which was devised and described by Nicomedes already.3 The compass “materializes,” 
as it were, the defining locus property of the curve, and the tracing implies, of 
course, a motion. Note that, as discussed in the introduction, generation with 
instruments (o’rganikw `V) is not the same as “mechanical” (mhcanikw `V)4 genera-
tion. In modern terminology, the conchoid is an algebraic curve of order 4, in polar 
coordinates: r = b + a sec q. It is indeed a “higher” curve in comparison to circles 

1 The references in Proclus, quoted above, fit nicely with such an interpretation. Again, this issue 
cannot be pursued here. Perhaps it can be investigated further on the basis of the material in 
Pappus.
2 For a different assessment cf. Knorr (1986, p. 31) (mentioned above).
3 For a description of Nicomedes’ compass, cf. Eutocius in Arch., Sph. et Cyl., 98, 12–100, 14 
Heiberg.
4 Note also the close analogy to Descartes’ discussion of generative motions in geometry in 
Descartes (1637, pp. 315ff) (40ff Smith/Latham). Descartes may have used the conchoid as 
reported in Pappus for his discussion of mechanics vs. geometry, and the use of controlled succes-
sive motions, with special focus on instruments. His evaluation suggests that Pappus rejects the 
conchoid and all the mathematics on it, because motions are used for generation, whereas he 
should have rejected only the quadratrix and spiral, as using uncontrollable composite motions. 
As stated in the introduction to 19–30, Pappus in fact accepts all these curves as representatives 
of geometry of the linear kind.
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and conics, i.e., it can solve problems that cannot be solved with either of these. 
Pappus’ position on the conchoid and its symptoma-mathematics is as follows. 
The line itself is fully accepted as a mathematical curve of the “linear” kind, and 
so is its characterizing neusis-property. Pappus even lets the symptoma-theorem on 
the two mean proportionals stand uncontradicted in Coll. IV – qua symptoma-
mathematics. So far, his portrait is consistent and convincing. The curve really 
belongs to the “linear” kind in Pappus’ classification. A problem arises, however, 
in connection with the use of the conchoid for the construction of the cube multi-
plication. The neusis for it is solid, it can be constructed via conics; therefore, 
using the conchoid for it violates Pappus’ homogeneity criterion (cf. below, 
meta-theoretical passage). It is subject to the same kind of criticism Pappus voices 
against Archimedes and Apollonius in the meta-theoretical passage. They used a 
solid argument where a plane one would have sufficed. Yet Pappus did not object 
to Nicomedes’ cube multiplication via the conchoid, even though he explicitly 
rejects the use of the conchoid for cube duplication in Coll. III as a violation of the 
homogeneity principle. Pappus may have thought the cube multiplication was a 
“linear” problem, because it was more general than the cube duplication, which he 
knew to be “solid.” In Prop. 35, he will make a transition from angle trisection, 
characterized as “solid,” to general angle division, which he labels as “linear” 
(correctly so). If he thought the cube multiplication was “linear,” that would explain 
why he does not criticize the use of the conchoid for it.1 Perhaps one should not 
assume an author’s ignorance lightheartedly. But in this case here, the assumption 
of a slip, or error, on Pappus’ part would yield a straightforward explanation for 
the omission of the conchoid’s failure to meet the homogeneity requirement, in the 
very passage leading up to his formulation of that criterion. And even if Pappus’ 
portrait of the symptoma-mathematics of the conchoid were marred by this error of 
putting it to use for a problem that is not appropriate, it should be pointed out that 
cube duplication/multiplication is used in Coll. IV mostly as a kind of anchor, 
or motivator. The focus of Props. 23–25 in fact is to give an illustration of the 
symptoma-mathematics of motion curves in the generation after Archimedes, 
shifting toward their characterization via analysis of loci. This move proved 
fruitful in the future, and the conchoid as presented in Props. 23–25 is a classic in 
this regard, an important step in a developmental line.

1 Another possibility would be that Pappus did after all think that the mathematics of motion 
curves is not real mathematics, therefore its “unmathematical” use for solid problems does not 
make any difference any more. One might perhaps think so, because he also mentions that instead 
of the conchoid one could, for practical purposes, just as well use a marked ruler and proceed by 
trial and error until it fits (similar remarks can be found in Coll. III for “unmathematical” neuses, 
and in Coll. VIII). This might be taken to indicate that Pappus accepts neither as mathematically 
exact. In view of the general tone in Props. 19–30, with regard to the symptoma-mathematics of 
the motion curves, I would nevertheless refrain from that inference and resort to the hypothesis 
mentioned above.
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Pappus mentions four types of Nicomedean conchoids, without giving any further 
descriptions. The most likely candidates are the other branches of the ordinary 
conchoid.1 Nicomedes’ work was known perhaps as late as Eutocius, although it is 
also possible that Eutocius did not have direct access to Nicomedes’ treatise. No 
other reception in antiquity is documented. Proclus’ portrait in Procl. in Eucl. passim 
(deriving from Geminus) suggests that Nicomedes must have been of considerable 
importance for the branch of mathematics dealing with symptoma-curves.2

The conchoid attracted much attention in the seventeenth century. A few exam-
ples include:

Conchoid in Vieta (1593), Supplementum geometriae3

Generation of curves via idealized motions and instruments, Descartes4

Properties of the conchoid: asymptotic behavior, tangents, points of inflection, local 
maximum: de Sluse (1668), appendix; also Descartes and the commentators in 
Descartes (1659): Hudde, Heuraet, Huygens5

Newton, Arithmetica universalis: operational advantage of the conchoid over conics 
for neusis – constructions6

LaHire and Réaumur also studied this algebraic curve.7 In the eighteenth century, 
compasses for general conchoids were designed by Suardi (1752) and Gaetani, taking 
their queue from Nicomedes’ conchoid compass.8 An example for the discussion of 
the properties of the conchoid with the means of the calculus is Witte (1813). Let us 
now return to the problem to which the conchoid is applied in Props. 23 and 24.

1 Cf. Ver Eecke (1933b, pp. 186–187), Heath (1921, II, p. 240). Other suggestions for the other 
conchoids include the conchoid of the circle (Cantor 1896; Knorr 1986, p. 220) and the hastaria 
specifically in Curtze (1874).
2 References to Nicomedes and the conchoid are found, inter alia on pp. 110–113, 177, 272, and 
356 Friedlein.
3 Cf. Vieta 1970, reprint of Schooten’s 1646 edition). Especially close to Coll. IV are propositions 
19–28 and 31–38 there; see also Hofmann (1990, I, pp. 343–366) on Vieta and neuses.
4 Descartes (1637, pp. 315–327); (40–58 Smith/Latham inter alia generalized mesolabum, shifting 
parabola); Descartes ed. Schooten (1659, pp. 19–25) (shifting parabola, conchoid). According to 
Whiteside (1972, V, p. 474, #700), Descartes’ s construction is modeled on Menaechmnus’, and 
an earlier draft from 1636 exists.
5 Descartes (1637, pp. 351/352 (113–115 Smith/Latham), normal to the conchoid), Descartes ed. 
Schooten (1659, pp. 246–265) on the conchoid, contributions by Hudde et al.
6 Within Whiteside (1972, V, pp. 420–495), see especially pp. 454/456, 426/428, 432, and 454/456, 
including the following remark: “constructionem per Conchoidem praefero ut multo simpliciorem 
et non minus geometricam & quae resolutioni aequationum a nobis propositae optime conducit.” 
(p. 432) Newton’s cube duplication p. 456 is essentially the same as Nicomedes’. Whiteside 
(1972, II, pp. 460–465) contains several constructions for two mean proportionals and angle tri-
section, one of which is closely parallel to Props. 23 and 24.
7 See Chasles (1875). These authors investigated generalized Conchoids with the methods of ana-
lytical geometry along the lines proposed by Descartes.
8 See von Braunmühl (1892); Suardi developed ingenious drawing devices, including one for the 
conchoid of a circle.
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5.3.1.3 Cube Duplication: Two Mean Proportionals

To find a cube the volume of which is double the volume of a given cube was 
one of the three classical problems in ancient geometry (doubling the cube, trisecting 
the angle, and squaring the circle). Around these three problems a good deal of the 
development of ancient geometry can be aligned. As motivations, they guided 
the development of mathematical methods and theories.1 Specifically, the cube 
duplication and the angle trisection were among the factors promoting the develop-
ment of the theory of conic sections. Pappus, who means to give, in Coll. IV, a 
survey of classical Greek geometry from a methodological point of view (my thesis), 
includes these three problems, also. Angle trisection will come up in Props. 31–34 
(solid problem, with generalization into the linear problem of angle division in a 
given ratio in Props. 35–38), and the quadrature of the circle will come up in Props. 
26–29 (linear problem by nature). Cube duplication, or rather: finding two mean 
proportionals and constructing a cube in a given ratio, is the subject of Props. 
23–25. The ancient mathematicians were able to provide a mathematically exact 
constructive solution for the angle trisection and the cube duplication, with a neusis 
that later turned out to be reducible to a construction via conic sections. Through 
Apollonius’ work in analysis-dominated geometry, the nature of the problem was 
finally settled. Apollonius’ solution via conics has not survived, but a very closely 
related construction is presented for the angle trisection in Coll. IV, Props. 31–33. 
In fact the same neusis constructed in Props. 31–33 can be used for Prop. 24, and 
it then yields two mean proportionals. The Apollonian “solid” construction for the cube 
duplication and the angle trisection was, as it were, the endpoint of a discussion 
that had lasted from 450 BC to ca. 150 BC. Perhaps a few names and highlights 
in this development are worth recalling here.2 Hippocrates of Chios reduced the 
cube duplication to finding two mean proportionals.3 Archytas made use of three-
dimensional rotation figures and a torus.4 Eudoxus developed a special (symptoma-?) 
curve in the plane, probably identical with the Hippopede, and derived from 
Archytas’ curves in space for the solution.5 A mechanical solution that also relies 

1 Knorr (1986) even tells his story of the history of ancient mathematics as a story evolving around 
solving these problems, and they were singled out in Heath (1921, I) as a separate chapter in his 
otherwise chronological account centering on authors; for the cube duplication see pp. 244–270 
there.
2 For a survey in secondary literature see Heath (1921, I, pp. 244–270) and Knorr (1986) passim. 
The most important ancient source is, as said above, Eutocius in Arch. Sph. et Cyl. pp. 54–106 
Heiberg.
3 Heath (1921, I, pp. 200/201). This description is to be taken with caution. See Netz (2004).
4 Heath (1921, I, pp. 246–249), Knorr (1986, pp. 50–51); Eutocius pp. 84–88 Heiberg. Note the 
motivic connection to the attempt, in Props. 28 and 29, to determine the curve “quadratrix” from 
loci on surfaces that are created as intersections of rather similar surfaces in space (see below).
5 The solution does not survive. If the curve resulted from orthogonal projection of Archytas’ 
curves (as Tannery suggested), it would be a prototype for the curves determined analytically in 
Props. 28 and 29 (see below).
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heavily on the manipulation of a physical instrument is ascribed to Plato. It is 
not genuine, but it is in all likelihood pre-Euclidean.1 Menaechmus used conic sec-
tions, viewed as locus curves with symptoma.2 Archimedes (no solution by him 
survives) seems to have used a neusis very much like the neusis in Lib. ass. VIII 
for angle trisection and cube duplication. This connection is drawn in an Arabic 
source. The neusis used for angle trisection in another Arabic source is in fact 
closely associated with Lib. ass. VIII, and with the neuses in SL 5–9.3 Eratosthenes 
devised a quasi-compass, the mesolabum.4 Nicomedes, in an attempt to improve 
on Eratosthenes, solved the problem with the conchoid. Diocles’ solution with 
the cissoid is in some respects methodologically similar to Nicomedes’ conchoid 
solution.5 Finally, Apollonius gave a systematic analytical treatment of plane versus 
solid neuses, differentiated into kinds (gene): neuses for plane problems use only 
circle and straight line, neuses for solid problems use at least one conic section in 
addition.6 The neusis for angle trisection and cube duplication is solid. Apollonius 
also gave a construction of this solid neusis. Apollonius’ contribution is lost. 
Since Coll. IV, Props. 31–33 draw on Apollonius’ treatment of conics, and proceed 
via analysis-synthesis, Knorr has argued for a close connection between Prop. 33 
and Apollonius’ solution.7 At any rate, a solution along the lines of Props. 31–33 
(or one of the alternatives in Prop. 34) settled the question as far as ancient geometry 
was concerned.

The ancient geometers’ sustained interest in the two problems on the cube 
and on the angle was not just a fancy idea. Although the ancients may not have 
known this explicitly, these two problems are really fundamental in the following 
sense. All problems that can be solved via circles, lines, and conics (that is: all 
solid problems) reduce to either the angle trisection or the cube duplication. 

1 Cf. Eutocius pp. 56–58 Heiberg.
2 Cf. Eutocius pp. 78–84 Heiberg; note the possible connection between Menaechmus’ handling 
of his locus curves (they turned out to be conic sections) and the attempt to utilize more general 
curves, described and describable solely through their symptoma. See also Jones (1986a, 
pp. 573–577), Knorr (1986, pp. 61–66, 1989, pp. 77–129), and Zeuthen (1886, pp. 455–469).
3 Cf. Knorr (1986, p. 221 f.); compare also Hogendijk (1986), and the discussion of angle trisection 
below.
4 Cf. Eutocius pp. 88–96 Heiberg; see Heath (1921, I, pp. 258–260), Zeuthen (1886, pp. 455–469), 
and Knorr (1986, pp. 61–66). A discussion can also be found in Coll. III, 56–58 Hu. The mesol-
abum construction quite obviously influenced Descartes’ invention of a compass for the construc-
tion of proportions in the Géométrie (Descartes 1637, pp. 317–319 (44–49 Smith/Latham) ), and 
it may very well have inspired Sluse book of the same title.
5 Cf. Eutocius, pp. 66–70 Heiberg.
6 Cf. Jones (1986a, pp. 527–534) on Apollonius’ neuses.
7 Cf. Knorr (1982, 1986, pp. 302, 305–308). In these contributions Knorr argued for Apollonius as 
the direct author of Prop. 33. In Knorr (1989), he favors a somewhat less immediate connection, 
which is perhaps preferable.
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This was shown by Vieta (Supplementum Geometriae, pp. 240–257 of the 1646 
Schooten edition1). It is quite possible that the ancients had an inkling that the two 
classical problems already exhausted all solid construction problems. But even if 
they did not come to formulate such a suspicion or hypothesis, they could not have 
but noticed that in point of fact solid problems regularly did reduce to these two.2

5.3.1.4 Neusis

As said above, cube duplication reduces to the finding of two mean proportionals, 
which in turn reduces to a neusis. What, then, is a neusis, and what is its general 
significance in Greek geometry3? A neusis is a construction in which one has to 
insert a line (usually of a given length), between two given lines (usually a straight 
line and a circular circumference), so that it meets, when produced, a certain point: 
it verges toward that point (Greek verb: neuein). Ancient examples for neuses 
include:

(i) Neusis in Hippocrates’ third lunula-quadrature4

(ii) Archimedes, SL 5–9, the neusis for angle triscection in Lib. ass. VIII, and the 
one used for his construction of the regular heptagon5

(iii) Apollonius: work on plane neuses, lost; a commentary by Pappus survives6

(iv) Examples for neuses in Pappus, Coll. IV: Props. 23 and 24 (Nicomedes), Props. 
31 and 32 (probably pre-Apollonian, see below, with post-Apollonian justifi ca-
tion via conics: Prop. 33), Prop. 34, and Props. 42–44 (Archimedes, and perhaps 
Aristaeus)

The ancient neuses that are still extant can all be constructed either with circle and 
straight line, or with conics. This is due to the fact that the two lines chosen for 

1 For his proof, Vieta made use of his new algebraic techniques. Even so, his procedure is aston-
ishingly close to Coll. IV in its general set-up. The same result was shown also by Fermat, and 
again by Descartes (1637, pp. 389–402) (193–219 Smith/Latham). Compare also Newton’s treat-
ment in Whiteside (1972, V, pp. 420–491), mentioned above. Similar results had been found 
earlier by Omar Kayyam, who may have had an impact on European mathematics in the Middle 
Ages, and by Raffael Bombelli in the geometrical part of his Algebra. The latter remained unpub-
lished, however, until it was rediscovered by Bortolotti in the 1920s (cf. Bortolotti 1923,1929, 
pp. 265–267), and cannot have had much impact on geometry and algebra in the sixteenth/seven-
teenth century.
2 Compare Pappus’ remarks on the analysis of the solid neusis in Props. 42–44; cf. also Jones 
(1986a, pp. 527–530) for attempts towards classification made possible through Apollonius’ 
work.
3 Cf. Zeuthen (1886), Heath (1921), Knorr (1986), RE Suppl. IX (1962), col. 415–461 on this 
topic; cf. also Jones (1986a, pp. 527–534) (on Apollonius’ work with that title).
4 On the Hippocrates fragment see Simpl. in Phys. 61–68 Diels, Heath (1921, I, pp. 183, 195–196); 
Knorr (1986a, pp. 32–34), Netz (2004).
5 Knorr (1978b, 1986, pp. 178–187).
6 Coll. VII, pp. 770–820 Hu (Jones 1986a, pp. 196–229, # 120–157, with comments pp. 527 ff.).
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insertion are either two straight lines, or a straight line and a circle. Zeuthen’s 
account of the role of neuses in Greek geometry has largely been accepted. What 
follows, is a brief summary of it.1 According to Zeuthen, the neusis-operation 
historically started out as a legitimate standard argumentative device in mathematics: 
no construction of it was needed for justification, just like there is not one needed 
for circles. In actual practice, neuses were probably accomplished by means of a 
marked ruler; this procedure was in all likelihood still a valid device at the time of 
Archimedes, and that is why SL 5–9 give no argument for the construction of the 
neuses. It was Apollonius’ analytical work which enabled geometers to differenti-
ate between plane and solid neuses, and to construct them, as separate entities, via 
analysis-synthesis. Apollonius obviously did address the neusis-operation as some-
thing that can, and should, be constructed from simpler entities, and through his 
contributions, the neuses lost their status as simple devices. From then on, they had 
to be constructed explicitly, and there were distinct different types. Specifically: 
there were plane neuses, which had to be constructed by plane means, and solid 
neuses, which required at least one conic.2 As said above, Zeuthen’s account was 
mostly accepted, and it is indeed quite plausible, although no explicit ancient testi-
mony exists on the status of the neuses before Apollonius. Assuming this rough 
outline of the history of neusis as a construction device in ancient geometry, 
Nicomedes’ conchoid appears to hold a kind of middle ground. Nicomedes lived 
after Archimedes, and before Apollonius; his curve is really a neusis-curve, and his 
attempt to define the curve pointwise, analytically, could perhaps be seen as a step 
toward “mathematizing” the neusis-operation.3

5.3.2 Prop. 23: Genesis and Symptoma of the Conchoid

Genesis: a straight line AB with perpendicular CDE is given; C and E are given in 
position4; CE moves along AB, while E remains fixed; D is always the point of 
intersection with AB, and the segment DC remains fixed in length; C describes a 
conchoid

Symptoma: every straight line drawn between E and the curve cuts off a segment 
of the same length between AB and the curve (neusis-property).

1 Cf. Zeuthen (1886, especially pp. 261–265/ 269–272).
2 Cf. Heath (1921, I, pp. 235–241, II, pp. 65–68) (Archimedes, SL 5–9), 189–192 (Apollonius’ work 
on plane neuses), Heath (1926, I, pp. 150/151), Dijksterhuis (1987, pp. 138/139) (Archimedes), 
Knorr (1986, pp. 365 ff.) and passim (essentially repeating Zeuthen’s arguments). A classic contri-
bution, addressing also a differing opinion on ruler and compass in neuses as early as Hippocrates, 
is Steele (1936). According to Jones (1986a, p. 530), the identification and exhaustive construction 
of all plane neuses may have been the very purpose of Apollonius’ Neuses.
3 For a comparable assessment cf. Knorr (1986, p. 303); for a different assessment, see Knorr 
(1989, p. 31), however.
4 Nicomedes/Pappus is indeed using technical terminology from geometrical analysis.
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The curve’s genesis is via motions (as in Prop. 19). The symptoma is, however, 
not directly derived from the motions used (as in Prop. 20). Rather, Nicomedes’ 
derivation is quasi-analytical, and presupposes the curve as drawn, considering it 
pointwise. As said above, this is a step toward “defining” higher curves analytically 
as symptoma-curves.1

Further information, from Nicomedes’ treatise, is only listed in Pappus. The 
curve created in the above genesis is called “first conchoid”; the line AB “ruler,” 
the point E pole, and the line segment DC “distance.” The perpendicular from the 
curve onto AB has a maximum in CD, perpendiculars closer to CD are larger than 
those further away; the curve is asymptotic with respect to AB. Nicomedes dis-
cussed a total of four types of conchoids. After listing some of Nicomedes’ results, 
Pappus also adds: the curve can be described by means of an instrument, which 
Nicomedes also devised. It can be used to double the cube, and to trisect the 
angle, as Pappus says he himself has done. The conchoid also yields the cube mul-
tiplication (a generalization of the duplication). For practical purposes, says Pappus, 
one might just as well use a marked ruler to find the neusis.

5.3.3 Prop. 24: Two Mean Proportionals via Neusis

There is a slight problem with the authorship for Prop 24. If we emend the text as 
Hultsch did, Pappus claims that Nicomedes gave only the construction, and that he 
himself supplied the proof. Since Nicomedes’ work was still around at the time, this 
could not really have been an outright falsehood. Yet Eutocius (independently from 
Pappus?) reports the very same proof almost verbatim, and strongly suggests, though 
he does not say, that it is Nicomedes’ own.2 Does our proof stem, essentially, from 
the second century BC, or rather from Pappus, i.e., from the fourth century AD? Like 
most scholars, I think the essence of Prop. 24 belongs to Nicomedes and does illus-
trate “Nicomedean” mathematics. In what follows, I offer a brief summary of 
attempts to explain Pappus’ introductory sentence. Perhaps Nicomedes gave only the 
analysis and kataskeue explicitly, leaving the synthesis to the reader, and Pappus 
merely spelled it out. Ver Eecke (1933b, p. 188) assumes that Eutocius was quoting 
from Coll. IV, but this leaves the authorial claim on Pappus’ part unaccounted for. 
Jones (1986a) considers the possibility that Eutocius may be drawing not on Coll. IV, 
but on a report in Coll. VII. Perhaps (as suggested by Knorr 1989, pp. 65 ff.) Pappus 
wishes to claim authorship for certain minor intermediate steps only, those that make 
the connection to the Elements explicit. In fact, the close connection to Euclid I–VI 
does suggest some editorial input on Pappus’ part. Another explanation results from 
restituting the transmitted text “monen” for “monon.” Then the problematic sentence 
in Pappus could be understood as stating that Nicomedes provided a single construc-
tion (for both angle trisection and cube duplication), whereas he himself is going to 

1 Cf. Jones (1986a, p. 529), Knorr (1986, pp. 219–222).
2 Eutocius in Arch. Sph. et Cyl. 104–106 Heiberg.



246 II, 5 Motion Curves and Symptoma-Mathematics

excerpt and present that part of it that concerns two mean proportionals for cube 
duplication. Then the apparent contradiction is diminished, and Nicomedes is 
acknowledged as the source for Prop. 24. The degree to which Pappus edited his 
source cannot be determined with certainty, unless one can find evidence for Eutocius’ 
independence from Pappus. I will treat Prop. 24 as essentially Nicomedean.

The proof protocol for Prop. 24 will be given in some detail, to illustrate the fact 
that Nicomedes’ methods, within symptoma-mathematics, were quite “standard,” 
unlike, e.g., Archimedes’ procedure in Prop. 21, and correspond in scope to the 
means employed in Apollonius’ analytical works.

5.3.3.1 Proof Protocol Prop. 24

1. Protasis
Find two mean proportionals for CL, LA

2. Ekthesis/Kataskeue
Rectangle ABCL, construct, M, Z, K, TK
CK, MA solve the problem, i.e.: CL:CK = CK:MA = MA:AL

3. Apodeixis:
Show that BM:BK can be expressed in three ways
3.1 MB:BK = CK:MA
BK × KC + CE2 = EK2 [II, 6]
BK × KC + CZ2 = KZ2 [I, 47]
MA:AB = ML:LK [VI, 2 with V, 16]
ML:LK = BC:CK [VI, 2]
MA:AB = BC:CK;
MA:AD = HC:CK; HC:KC = ZT:TK [VI, 2]
MA:AD = ZT TK;
MD:DA = ZK:TK [V, 18]
DA = TK Þ MD = ZK [V, 9]
MD2 = BM × MA + DA2 [II, 6]
BM × MA + DA2 = ZK2 = BK × KC + CZ2;
DA2 = CZ2

Þ BM × MA = BK × KC
Þ BM:BK = KC:MA [VI, 16].
3.2 MB:BK = LC:CK [VI, 4]
3.3 MB:BK = MA:AL [VI, 4]

4. The equations 3.1–3.3 establish
CL:CK = CK:MA = MA:AL.

5.3.4 Prop. 25: Cube Multiplication in a Given Ratio

Set the ratio out as a:b. Via Prop. 24, construct c, d so that a:c = c:d = d:b. Then 
a:b = (a:c)3 = a3:c3.
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Note that triple ratios are here identified with ratios of cubes. V, def. 11: (a:c)3 = a:b. 
According to XI, 33, the cubes stand to each other in the same triplicate ratio.

5.4 Props. 26–29: Quadratrix/Squaring the Circle

5.4.1 General Observations on Props. 26–29

5.4.1.1 Structure of Props. 26–29

Genesis and symptoma of the quadratrix as a motion curve
Sporus’ criticism of the quadratrix (specifically of the genesis)
Props. 26 and 27: symptoma-mathematics of the quadratrix: rectify and square the 
circle.
Props. 28 and 29: geometricize the genesis of the quadratrix via analysis on 
surfaces.

context: motion curves and symptoma-mathematics, squaring the circle.
sources: Nicomedes or Dinostratus on quadratrix, Sporus’ Aristotelian Wax Tablets for 
criticism of the genesis, Nicomedes (?) for exhaustion proof in Prop. 261; unknown sources 
for Props. 28 and 29 (Apollonius? Nicomedes?).
means: I, II,V,VI, Circ. mens. 1 for Props. 26 and 27;
no recourse to the Elements in Props. 28 and 29.
method: exhaustion proof, synthetic (Prop. 26), analysis (Props. 28 and 29).
format: non-uniform: genesis and symptoma is descriptive; Sporus’ criticism is an excerpt 
from a philosophical refutation argument, rhetorically styled; Prop. 26 is a theorem, Prop. 
27 a problem; Props. 28 and 29 give an analytical determination of a curve.
reception/historical significance: the quadratrix was much discussed in the seventeenth 
century, as an example for a non-geometrical, or a transcendent, curve.
embedding in Coll. IV: connection to the plane spiral (Prop. 19): Props. 25, 26 and 29, 
motif “author Nicomedes”: Props. 23–25; motif “genesis via synchronized motions”: 
Props. 19, 30; motif “linear problems and symptoma-mathematics of the quadratrix”: 
Props. 35–41; motif “analytical interpretation of the symptoma”: Prop. 23.
purpose: exemplary illustration of the problems, and the mathematical potential of curves 
of the third (linear) kind.
literature: Heath (1921, I, pp. 225–230), Knorr (1986, pp. 80–88; 226–233; 166–167) for 
Props. 26 and 27; on Props. 28 and 29 and its context of analysis on surface loci see Heath 
(1921, I, 439–440; II, pp. 380–382), Knorr (1978a, pp. 62–66, 1986, pp. 129 and 166–167), 
Jones (1986a, pp. 595–598), Ver Eecke (1933b, pp. 197–201), Chasles (1875, pp. 30–37) 
and Notes VIII. Coll. VII, pp. 1004–1014 Hu (Jones 1986a, pp. 362–371) contain Pappus’ 
commentary on Euclid’s work in loci on surfaces (probably conics). The work he com-
ments on probably rested on prior contributions by Aristaeus.

5.4.1.2 Authorship for Props. 26–29

Pappus mentions both Dinostratus and Nicomedes as authors that used the quadratrix 
in connection with the squaring of the circle. For biographical information on 

1 Pappus himself can be excluded as the author of Prop. 26, because he explicitly says he is 
reporting.
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Nicomedes see above, introduction to Props. 23–25. Dinostratus was the brother of 
Menaechmus (inventor of conic sections). He lived ca. 350 BC and may very well have 
been a pupil of Eudoxus. We know almost nothing about his mathematical work outside 
of our passage in Coll. IV, so what will be said here is to some degree speculative.

Pappus clearly associates both him and Nicomedes with the use of the quadratrix 
for squaring the circle. Since the fifth century BC sophist Hippias is mentioned 
elsewhere as the inventor of the curve itself, perhaps Hippias used the curve for the 
angle trisection (indeed: arbitrary division), while Dinostratus discovered its recti-
fication property, and possibly proved it with the Eudoxean method of exhaustion 
(not Prop. 26, however). After Archimedes, due to Circ. mens. I, the quadratrix 
could then have been employed by Nicomedes to square the circle (Prop. 27). 
Perhaps it was Nicomedes, also, who is responsible for the proof of the rectification 
property in its present form. The proof of Prop. 26 as given in Pappus is almost 
certainly post-Archimedean, because it relies implicitly on a theorem that is equiva-
lent to Arch., Circ. mens. 1 (see proof protocol below). Furthermore, Nicomedes 
could have pursued the analytical symptoma-approach to the properties of the 
curve, and be at least partially responsible for the analytical reduction of the 
quadratrix, viewed as symptoma-curve, to Archimedes’ spiral (Prop. 29). In anal-
ogy to the conchoid, which is determined pointwise as a kind of neusis-curve, the 
quadratrix can be seen as a curve corresponding, at each point, to the correlation of 
the very same rotation + linear motion used in the plane spiral (when it is inscribed 
in a circle), and such a perspective leads to the way the quadratrix is characterized 
in Prop. 29. On this view, the contribution of Dinostratus is substantial, but 
Nicomedes would be the one who developed the symptoma-mathematics of the 
curve theoretically, as a member of the class of higher curves.

This is, as it were, the maximum option for Dinostratus’ and Nicomedes’ 
achievements in relation to the quadratrix. I am putting it forth tentatively. It has 
the advantage of fitting well with a sympathetic reading of Pappus’ text, and it can 
account for the fact that in most later sources, it is only Nicomedes that is associ-
ated with the study of the properties of the quadratrix as a higher curve.1 In what 
follows, I will briefly sketch two alternative views.

Heath (1921) would like to ascribe much of the mathematics on the quadratrix 
to Hippias already, including the discovery of the rectification property and its 
proof via exhaustion. Perhaps this is a little too optimistic for Hippias.2 It would 
place a considerable amount of mathematical theory and expertise already in the 
fifth century BC, and is therefore somewhat unconvincing. Knorr (1986) has argued 
a different view. He denies that Hippias could have had anything to do with the 

1 Cf. Iamblichus apud Simpl. in Cat. 192 Kalbfleisch, 645 b Brandis. Procl. in Eucl. 272 Friedlein 
mentions only Nicomedes as well, but not Dinostratus, although Proclus must have known about 
him. His name had been mentioned earlier, in the catalog of mathematicians derived from Eudemus.
2 Hippias would be credited with an expertise in handling the exhaustion method that is in this 
form usually associated with Eudoxus, who lived considerably later than Hippias, and this reading 
also would leave no room, as it were, for Dinostratus.
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curve, because it involves a considerable degree of mathematical sophistication and 
expertise. Rather, according to Knorr, Dinostratus may have invented the curve and 
discovered its rather obvious angle division property (i.e., he ascribes to Dinostratus 
what others had ascribed to Hippias). Because the genesis of the curve via motions 
has strong affinities with the Archimedean plane spiral (inscribed version). Knorr 
believes that in the generation after Archimedes this connection was made use of, 
by Nicomedes probably, to formulate, and to prove the rectification property of the 
curve (Prop. 26 entirely), whence the quadrature of the circle follows as a corollary 
thanks to Circ. mens. I. The rectification property is implicit in the curve, but unlike 
the angle section property, it cannot be read off directly. It seems plausible to 
assume that the latter was discovered after the former. As for Props. 28 and 29, 
Knorr envisages Apollonius as a possible source for Prop. 28 (because of the central 
role of the Apollonian helix therein), and associates Prop. 29 with Archimedes.

Perhaps this is a bit too pessimistic with regard to Hippias and Nicomedes. There 
seems to be no compelling reason to discard the unequivocal testimony that Hippias 
invented the curve itself. How much he knew about it may be uncertain, but the angle 
section property is indeed easily deduced. Archimedes seems unlikely as a source 
for a predominantly analytical investigation of motion curves as in Prop. 29. In his 
other works, and in his heuristic method, Archimedes shows no preference for the 
analytic approach. His interests point rather in the direction of quasi-mechanical 
methods, and perhaps infinitesimals. Prop. 29 appears not to be Archimedean in 
style. More plausible is the connection between Prop. 28 and Apollonius, because 
Apollonius did in fact favor, and develop, the analytical approach in geometry, and 
is said in Iamblichus to have called the quadratrix “sister of the cochlias.” This some-
what enigmatic statement could be read as a description of Prop. 28, and then 
Apollonius could be its author.1 Finally, Apollonius may have written a treatise on 
the helix. The evidence on such a treatise is slim, however. I prefer to refrain from 
ascribing the substance of Prop. 28 to him directly, while supporting the claim that 
Prop. 28 is well in line with higher mathematics, Apollonian style, i.e., in a tradition 
developing an approach to mathematics that is exemplified in Apollonius. As said 
above, I am inclined to assign to Nicomedes the leading role in the shaping of Props. 
26 and 27, and to consider a substantial contribution to Prop. 29 on his part as a 
distinct possibility. Furthermore, I am of the opinion that the upcoming minor results on 
the symptoma-mathematics of the quadratrix in Props. 35–41 may derive from his 
treatise on the quadratrix as well.

5.4.1.3 Quadratrix

As outlined above, the quadratrix is usually associated with Hippias of Elis (fifth 
century BC) as its inventor. It was at first used to trisect the angle; in fact it can 

1 Iambl. apud Simpl. in Cat. 192, 19–24 Kalbfleisch. Heath (1921, I. p. 225) supports a different 
view.
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divide an angle in any ratio. Later on, it was discovered that it can also be used to 
rectify the circle, and thus to solve the problem of squaring the circle. This solution 
via the quadratrix was not accepted as a constructive solution, because in setting out 
the quadratrix one already has to assume access to the ratio of diameter and circum-
ference of the circle (see below). Nevertheless, Pappus was willing to fully accept 
the mathematics on, or about, the quadratrix as an example of geometry of what 
he called the “linear” kind. This applies to Props. 26–29, and to Props. 35–41. The 
status of the curve itself was left somewhat in limbo by him, and his ambivalent 
portrait probably contributed to the fact that, in the seventeenth century, the quadra-
trix was used as one of the primary examples of curves that did not fit the bill of 
Descartes’ definition of a proper geometrical curve,1 and might therefore be used 
as either a vantage point to enlarge, or a counter-example in the attempt to delimit 
the horizon of geometry and analysis.2

Props. 26 and 27, with their prefatory detailed description of the quadratrix as a 
motion curve are our only surviving evidence on this curve (and the squaring of the 
circle with it) from antiquity. Props. 35–41 show us the use of the quadratrix for the 
general angle division, and results derived from it, as well as further properties fol-
lowing from the rectification property. Again, those are the only such sources extant 
from antiquity. Finally, Props. 28 and 29 are our only extant detailed examples for an 
analysis of loci on surfaces (used here for the geometrical justification/description 
of the genesis of the quadratrix). Obviously, this makes Props. 26–29 (to a lesser 
extent: Props. 35–41) a document of the highest importance for the history of 
ancient mathematics. However, the fact that no other ancient source gives such a 
detailed insight into the discussion of this curve and its geometrical properties, and 
that there are no traces of parallel accounts on other higher curves, also entails, 
unfortunately, that we have no context in which to set, and from which to evaluate, 
Pappus’ portrait of the curve and its mathematics. There seems to have been a 
mathematical community (or just a small group of mathematicians?) who pursued 
this kind of mathematics for some time (how long? just one generation, or 100 
years?). Pappus and others list names. What did these mathematicians think they 
were doing? What was their view on the status of curves like the quadratrix, and on 
the symptoma-mathematics on them? What was the mainstream view (if such a 
view existed) on this collection of mathematical treatises? Is Pappus’ rational 
reconstruction of the quadratrix and the degree to which it can be “geometricized” 
representative, and if so: representative of what? Wherever his pronouncements 

1 In Descartes ed. Schooten (1659, pp. 18 and 38), for example, the quadratrix and the spiral appear 
as the primary examples for non-geometrical curves.
2 I am not aware of any systematic study of the evidence. Such a project would seem to me to be 
rather promising, because the amount of available source texts is rather extensive and widespread. 
The quadratrix does turn up, e.g., in Jacob Bernoulli’s papers (he was also interested in spiral 
lines), and also in Leibniz’s mathematical manuscripts. Leibniz borrowed the name and applied it 
to a more general type of curve with “quadrature” properties. For the Cartesians, the quadratrix 
was a classic example for a non-permissible curve.
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remain vague, should we conclude that he is uncertain or does not understand, or 
that the discussion had not reached a consensus, or that there was no discussion and 
the project just died out? Perhaps a detailed comprehensive comparative study of 
Props. 19–30 and 35–41 in connection with SL, taking into account also the 
scattered summary remarks in other authors (especially Proclus and the commenta-
tors on Aristotle) could shed some new light on this issue. It cannot be pursued 
here. What is given is a documentation of the ancient evidence on the mathematics 
of the quadratrix and on Pappus’ evaluation of it, as far as the full text in Coll. IV 
attests it. Perhaps this material could be the basis for further investigations on a 
broader scope.

5.4.1.4 Squaring the Circle

The squaring of the circle, i.e., the problem of finding a geometrical construction 
to transform a given circle into a square, caught the attention of the Greeks very 
early on. Already in the fifth century BC, they appear to have found a (very elemen-
tary) way of transforming any given polygon into a square – II, 14 in the Elements, 
resting on I, 44 and I, 45. It seemed that an analogous procedure to do the same 
with the circle should be possible. The question captured the imagination of math-
ematicians and non-mathematicians alike, and it sparked the development of new 
methods and new theories in geometry, with the goal to become able, among other 
things, to solve this problem with the new mathematics. Already in Aristotle’s time 
doubts arose as to whether the problem was solvable at all. But the discussion, and 
the search, continued nevertheless, and it continued beyond antiquity. In a sense, 
the matter was finally settled only with Lindemann’s proof of the transcendence of 
p in 1882. No construction with means that are equivalent to the solution of an 
algebraic equation with rational coefficients is possible. One needs infinitesimal 
methods, or else a curve like the quadratrix. In what follows, a survey of the attested 
ancient attempts at solving the problem, and a selective list of later attempts and 
judgments is given.1

Hippocrates of Chios, in the fifth century BC succeeded in constructing three out 
of the five quadratures of lunulae that are possible within plane geometry. One of 
them is located over a semicircle, one over a segment that is larger than the semi-
circle, and one over a segment that is smaller. He also squared a figure composed 

1 For further information on the ancient quadratures cf. Heath (1921, I, pp. 183–201, 220–235) and 
Knorr (1986) passim. Knorr is perhaps not always careful in demarcating textual/historical evi-
dence from his own reconstructions. Tropfke (1923, pp. 195–238) provides a survey of attempts 
to square the circle, focusing on contributions known in Western Europe. It is still valuable for 
its numerous bibliographical references. Also worth reading, though in some respects outdated, is 
Rudio (1892), a monograph on the measurement of the circle that prints the major contributions 
by Archimedes, Huygens, Lambert, and Legendre in full, and also contains a survey on the history 
of the quadrature.
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of a circle and a lunula. His constructions probably were intended as steps toward 
squaring the circle. As Aristotle points out, they were fully valid mathematical 
arguments, but they do not square the circle.1 Still in the fifth century, the sophists 
Antiphon and Bryson presented arguments that they held to be solutions to the 
problem of squaring the circle.2 Both started with an inscribed square and con-
structed a sequence of polygons approximating the circle more closely at each step. 
Bryson used, in addition, a corresponding sequence of circumscribed polygons. 
Both assumed that in the process, the circle is exhausted.3 Antiphon in effect 
assumed that the process would be finite, and that the circle coincides with a poly-
gon having very small sides. This polygon can then be squared, via the equivalent 
of II, 14. His argument was considered as invalid mathematically, because it rests 
on a non-geometrical concept of a circle.4 Bryson did not identify the circle with a 
polygon. He argued that since all the “inside” polygons are smaller than the circle, 
and all the “outside” ones are larger, there must exist a polygon that has the same 
area as the circle. Such a polygon could, again, be squared via the equivalent of II, 
14. Bryson claimed thus to have squared the circle. His argument rests on the idea 
that “area,” taken abstractly, is a continuous quantity. Though not invalid in itself, 
it was taken by Aristotle not to be a geometrical argument at all, because it violates 
his homogeneity criterion.5 Whether or not the mathematicians would have shared 
Aristotle’s opinion here, it is clear that the argument does not amount to a geometri-
cal solution to the (construction!) problem of squaring the circle. The required 
square – though Bryson’s argument may reassure us that it exists – cannot actually 
be produced from this argument. Bryson did not square the circle. The problem thus 
was still unsolved in Aristotle’s times, and he uses it frequently as an illustration 
for failed or as yet unsuccessful attempts in scientific inquiry. In his writings, one 

1 Heath (1921, I, pp. 183–201); cf. Simpl. in Phys. 56–68 Diels, Rudio (1907). See also Aristotle 
on Hippocrates’ quadratures in Heath (1970, originally: 1949). The above judgment is taken from 
Aristotle, but there is no reason to assume that the mathematicians would not have shared his 
opinion.
2 Cf. Heath (1921, I, pp. 221–225).
3 Note that this does not mean that they used the Eudoxean method, the so-called “method of 
exhaustion.” That method is, in its essence, a double reductio argument. Even though it was often 
used in connection with area and volume theorems, and in a context where a process of approxi-
mation is assumed, such a process is not essential to the method as such. That is: although it was 
used for arguments that we translate into limit arguments – and for others, too – it was in itself not 
a concealed limit argument. Heath is mistaken in assuming that Antiphon’s and Bryson’s “quadra-
tures” contain the nucleus of the famous Eudoxean method, even though they may have antici-
pated infinitesimal procedures to some degree.
4 This argument, found in Aristotle, again, would in all likelihood have been shared by the 
mathematicians.
5 Anal. Post. I, 9. Aristotle differentiates between Antiphon’s and Bryson’s attempts. It is perhaps 
interesting that he does not reject Bryson’s argument in itself as invalid (as he does in Antiphon’s 
case), but rejects it as involving a “katabasis eis allo genos,” as being ungeometrical, because of its 
failure to differentiate between geometrical and other continuous quantities. For Aristotle, arguments 
in geometry have to address geometrical entities qua geometrical, and not qua something else that 
they may also be.
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also finds the suggestion that the squaring of the circle may be impossible in principle, 
because straight line and circle are generically different – even though it’s clear, on 
the basis of continuity assumptions, that a straight line with a square equal to the 
circle must exist.1

Alongside the squaring, rectification became an issue soon. Is the ratio of 
circumference to diameter expressible as a ratio of numbers? With Archimedes’s 
work (Circ. mens. I), it became apparent that and how the rectification and the 
quadrature entail each other.2 Archimedes’ investigation of the plane spiral in the 
heuristic version could, taken together with a theorem like SL 183 and Circ. mens. I, 
be used for the squaring of the circle. Archimedes never presented such an argument, 
and in effect replaced the genesis of the spiral with one that avoids the problems the 
quadratrix and the original (inscribed) spiral have. With the spiral in this description, 
one can indeed no longer square the circle. Archimedes also provided, by means of 
logistics, two different approximations for p4 (Circ. mens. II, III). Apollonius, 
Sporus, and Ptolemy gave further approximations for p, closer in numerical value 
than Archimedes’.5 Dinostratus/Nicomedes used the quadratrix for circle rectification, 
and Nicomedes applied Circ. mens. I to obtain a “quadrature” (Props. 26 and 27). 
As noted above, this is not a constructive quadrature in the sense required, either, 
because the setting out of the quadratrix involves the ratio of circumference and 
diameter (essentially p), and that was the equivalent to what was sought in rectification. 
The squaring of the circle with the quadratrix, insofar as it is geometrical, is purely 
symptomatic.

5.4.1.5 Circle Quadrature Through the Ages

The following selective list of examples is intended to give an impression of the 
different results, perspectives, and methods developed within the horizon of 

1 Descartes would later repeat that same general statement in Descartes (1637, pp. 340/341) (90/91 
Smith/Latham). He took it for granted that the circle cannot be squared, because circle and straight 
line belong to different, incomparable kinds.
2 Circ. mens. I implies that the problem of squaring the circle can be reduced to the problem of 
rectifying the circumference; cf. Knorr (1986, p. 159).
3 SL 18 is a symptoma-theorem on the spiral with circumscribed circle. It shows that in such a situ-
ation, the circumference is equal to the subtangent of the spiral at the endpoint of the first rotation. 
It does not yield a constructive rectification of the circle. It also does not provide a constructive 
solution for finding the tangent to a spiral of first rotation (cf. Vieta, Varia responsa, including an 
approximate construction for such a tangent).
4 The name p was not used by the ancients. It was coined in the early seventeenth century by 
Ludolph van Ceulen (Fundamenta geometrica ed. W. Snel, Würzburg 1615). According to 
Tropfke (1923, p. 232), its first occurrence is even later: 1706, in Jones’ Synopsis palmariorum 
matheseos. The label refers to a number, in modern terms. The ancients had a very different view 
on numbers and ratios. I am using p merely as an abbreviation here.
5 Cf. Heath (1921, II, pp. 232–235) and Knorr (1986, pp. 155–159) for Archimedes’ and other 
approximations; see also Heath (1921, I, pp. 180–189).
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Western European culture over the centuries in connection with the squaring of the 
circle. It is based on the above-mentioned Tropfke (1923, pp. 198–238). The Indian 
mathematician Aryabhata, fifth century AD gave an astonishingly close approxi-
mate value for p.1 His methods are interesting because of their combination of 
geometry, algebra, and what would in Greek terminology be called logistics. There 
must have been substantial contributions in Islamic culture, but they are not acces-
sible to me. They did have an influence on Fibonacci’s contribution.2 During the 
Middle Ages, Archimedes’ approximations were widely used, and they came to be 
regarded as exact by many (especially the simpler one: 22/7). Exact geometry, as a 
demonstrative science, did not receive much attention during the Middle Ages in 
Europe. An interesting use of mathematical motifs for philosophical purposes (in 
connection with infinity) including a treatment of the circle and p can be found in 
Cusanus.3 In the Renaissance, Leonardo squared the circle by rolling up a cylinder 
with a base equal to the circle that is to be squared, and appealing to Arch., Circ. 
mens. I.4 Stifel devised a mechanism using levers and scales to “weigh” p.5 In the 
modern era, when algebraic and improved calculation methods became available, 
we find approximations of p by Vieta and Huygens, still operating within the 
framework of classical geometry and logistics. They developed Archimedes’ basic 
approach via inscribed polygons, and refined the limits for the approximations.6 
Gregory, Newton, and Leibniz employed infinite series,7 and Wallis used his arith-
metic of infinites to characterize p. Leibniz called his result an “arithmetical 
quadrature of the circle.”8 In the eighteenth century (1766), Lambert used continu-
ous fractions, and showed that p was an irrational number. Euler studied both p 
and e in connection with trigonometric functions.9 Toward the end of the nineteenth 

1 Cf. Elfering (1975). The work has been translated into English.
2 Cf. Tropfke (1923, pp. 211/212) for references; Fibonacci’s value for p is 864/275, ca. 3.141818.
3 Cf. Tropfke (1923, pp. 213/214). On Cusanus’ studies in connection with the quadrature of the 
circle see also Hofmann (1990, I, pp. 47–77, II, pp. 179–192, 351–395).
4 Cf. Tropfke (1923, p. 214), Cantor II2, pp. 301–302.
5 Cf. Tropfke (1923, p. 215); on Stifel see also Hofmann (1990, II, pp. 78–109).
6 Cf. Tropfke (1923, pp. 215–216, 218–219); e.g., Vieta, in Variorum de rebus mathematicis liber 
VIII, p. 392 in the 1646 Schooten edition gives a value for p that is exact in the first nine digits, 
and uses the “Archimedean” approach via inscribed polygons. For Huygens’s contribution, see the 
appendix to his Theorenata de quadratura hyperboles, ellipseos et circuli ex Data portionum 
gravitatis centro, Leiden 1651, and his De circuli magnitudine inventa, Leiden (1654), both in Ch. 
Huygens, Varia Opera, Leiden (1724, pp. 328–340, 351–387); see also Rudio (1892). The latter 
work also contains a full German translation of Archimedes’s, Lambert’s, and Legendre’s 
treatment.
7 Gregory’s double series is equivalent to an approximation via arctanx, Leibniz’s series for p/4 
converges very slowly, so that it only has theoretical value. Newton used the series for arcsinx, 
Brouncker developed Wallis’ solution into an infinite fraction.
8 Cf. Tropfke (1923, pp. 223–230).
9 Cf. Tropfke (1923, p. 229).
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century, Lindemann proved the transcendence of p.1 As said above, Lindemann’s 
result means that a constructive quadrature is impossible with circle and straight 
line, with conics, with any curve expressible as a polynom with rational coeffi-
cients. One needs a curve like the quadratrix. In the end, Pappus’ Prop. 26 and 
Prop. 27 are as good as it gets.

5.4.2 Genesis and Symptoma of the Quadratrix

Genesis: Start with a quadrant BAD in a square ABCD (clockwise) over the radius; 
use two motions: of BC along BA, parallel to AD, and of AB along the arc BD, 
synchronized so that they both reach the position of AD at the same time; during 
the process they create an intersection line BH, the quadratrix.2

Symptoma: As can be seen from the genesis, for any line AZE drawn to the curve 
and extended to the circumference, we get:

arc BD:arc ED = BA:ZT.

5.4.3 Criticism of the Genesis by Sporus

Sporus of Nicaea, ca. 200 AD was not a mathematician. Rather, he seems to have 
been a philosopher interested in epistemology and theory of science. Of his work 
Aristotelian Wax Tablets only fragments remain. They contain reflections on math-
ematical arguments from the standpoint of an Aristotelian theory of science.3 His 
criticism of the genesis of the quadratrix is as follows.4

1 Cf. (Tropfke 1923, pp. 231–232). Lindemann’s proof for the transcendence of p (Lindemann 
1882) is modeled on Hermite’s proof for the transcendence of e. For ensuing improvements and 
simplifications of this proof cf. Tropfke loc. cit.
2 Note the close connection to the genesis of the spiral as given in Prop. 19.
3 On Sporus cf. Tannery (1912, I, pp. 178–184); the main source for our information on Sporus 
outside this passage in Pappus and the one mentioned below, in Eutocius, are the scholia on 
Aratus’ Phaenomena. A further example for a criticism by Sporus, also in connection with the 
squaring of the circle, is found in Eutoc. in Arch. Circ. mens. III, 258–259 Heiberg. Sporus insists 
that Archimedes’ approximate values are not exact, discusses the decisive difference between an 
exact and an approximate value, and produces a closer approximation than Archimedes’ to show 
that it was not the exact value. Apparently around 200 AD already the nature of an approximation 
was not properly understood by some, who believed that a value – a ratio in numbers – must be 
true, i.e., correct.
4 As mentioned in the survey table of Props. 26–29, the style of this passage is decidedly different 
from the rest of Coll. IV. We are clearly dealing with an argument from a philosophical work, in 
polemical style, one in which objections were raised against another position on epistemological 
grounds. Note, e.g., the rhetorical questions and the device of a ficticious dialogue; cf. 
translation.
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(i) The defi nition via synchronized motions contains a petitio principii: to 
coordinate the rotation and the linear motion, you need the ratio of arc BD to 
AB – essentially p – the very thing the quadratrix was supposed to provide.1

(ii) Even objection (i) aside, the genetic defi nition does not capture the endpoint of 
the curve, because the intersection stops right when the moving lines coincide 
with AD. This endpoint, however, was needed for the rectifi cation of the quadrant 
(Prop. 26, see below). Infi nitely many other points on the curve are in fact 
constructible, e.g., all points that one would get by successive division of angle 
and radius in half. But the endpoint is not among them.

(iii) The endpoint of the curve cannot be interpolated by extending the line in the 
manner of producing a straight line, because the curve does not have a fi xed 
direction (as the straight line does). In fact, the quadratrix does not even have 
a constant curvature.

Sporus concludes: as long as the ratio of circle and radius is unknown, or not given, 
the curve cannot be accepted. Pappus will in effect pick up right here in Props. 28 
and 29, and show that it is given in the specific sense of geometrical analysis, if a 
helix, or the spiral, is granted. Whereas Hultsch (and others around 1900) dismissed 
Sporus’ objections, most modern interpreters accept them as valid.2 The curve is not 
well-defined. Note that the reason for Sporus’ objections is not the use of motions 
as such, but the conceptual inconsistencies involved in this particular motion 
description. These inconsistencies will have to be circumvented, or abolished, if 
Sporus’ objections to the mathematical use of the curve are to be met. And Pappus 
explicitly agrees with Sporus’ reasons for rejecting the curve under the motion 
description (under the description as “mechanical”). He uses the word “eulogos” 
(with good reason). On the other hand, he insists that the argument about the quadratrix 
– Props. 26 and 27, the symptoma-quadrature – is “much more acceptable” mathe-
matically. In Props. 28 and 29, Pappus will provide a geometrical analysis for the 
generation of the curve, via analysis of loci on surfaces. It is intended to meet, or rather 
perhaps to circumvent, the objections raised by Sporus, so as to “geometricize” the 
curve as a basis for valid symptoma-mathematics (see below).

5.4.4 Prop. 26: Rectification Property of the Quadratrix

5.4.4.1 Proof Protocol Prop. 26

This proof protocol is given in detail, because its content is a “classic,” and also 
because it is the only example of a full-fledged argument via double reductio in 
Coll. IV (the other example in Prop. 13 is much less complex).

1 As in the case of the spiral in the version given in Prop. 19, you need π to determine the speeds 
involved.
2 Cf. Heath (1921, I, 229/230), Knorr (1978a, 1986, p. 230), Jones (1986a, pp. 596–598).
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1. Protasis/Ekthesis
Start with a square ABCD,1 circular arc BD (K1 in what follows), and quadratrix 
BT. arc BD:BC = BC:CT. (CT is the third proportional to arc BD and BC).

2. Apodeixis (by double reductio: “exhaustion”2)
If not, then either arc BD:BC = BC:CK, CK > CT
or arc BD:BC = BC:CK, CK < CT

2.1 Assume arc BD:BC = BC:CK, CK > CT
2.1.1. Auxiliary construction
circle THKZ, center C (K2),
perpendicular HL, draw CHE
2.1.2 arc BD:BC = BC:CK = CD:CK [assumption]
CD:CK = arc BD:arc ZK [see argument *]

* argument for this (not in Coll. IV): similar arcs in the ratio of the radii 
(or diameters)3

K1:K2 = CB2:CK2 = CD2:CK2 [XII, 2]
K1:K2 = (U1 × CD):(U2 × CK) [Circ. mens. I]
CD2:CK2 = (U1 × CD):(U2 × CK)
= > CD2:(U1 × CD) = CK2:(U2 × CK) [V, 16]
= > CD:U1 = CK:U2 [VI, 1]
= > CD:CK = U1:U2 [V, 16]
= > CD:CK = arc BD:arc ZK [V, 15]*

Thus, BC = arc ZK [V, 9]
2.1.3 arc BD:arc ED = BC:HL [symptoma]
= arc ZK:arc HK
 [equal parts of quadrants]
= > HL = arc HK [V, 9]
This is impossible.

2.2 Assume, then, that arc BD:BC = BC:CK, CK < CT
2.2.1 Auxiliary construction: 
circle ZMK, center C;
perpendicular KH, draw CHE
2.2.2 As in 2.1.1, we see: arc BD:BC = CD:CK,

1 The labeling of corner points for the square in the starting configuration is now counterclockwise, 
as opposed to the original genesis. Perhaps this is an indication that the author of Prop. 26 is 
different from the source for the genesis and symptoma.
2 On Prop. 26 see also Heath (1921, I, pp. 226–229) and Knorr (1986, pp. 226–230). Knorr’s 
account contains some interesting speculative remarks on the study of tangents, subtangents etc.
3 The theorem that circumferences have to one another the ratio of the respective diameters is used 
repeatedly in Coll. IV, cf. Props. 26, 30, 36, 39, and 40. A proof is given by Pappus in Coll. V, 11 
and VIII, 22.
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and CD:CK = arc BD:arc ZK,
Þ BC = arc ZK
[use an argument analogous to argument *].
2.2.3 As in 2.1.3, we see that
arc BD:arc ED = BC:HL [symptoma]
arc BD:arc ED = arc ZK:arc MK
 [equal parts of quadrants]
Þ HL = arc MK [V, 9].
This is impossible.

3. Symperasma: Therefore, arc BD:BC = BC:CT must hold.

Corollary

By constructing a line a with CT:BC = BC:a, and finding 4a, one has rectified the 
circle. For a = arc BD.

This means that the quadratrix has a rectification property, which can be derived 
from its symptoma. Further results, directly from the symptoma, or from the recti-
fication property, can be found in Props. 35–41. They are much less spectacular 
than this one here.

5.4.5 Prop. 27: Squaring the Circle

After rectifying the circle, one can apply Archimedes, Circ. mens. I, and con-
struct a triangle that has the same area as the given circle: base 4a, with a as in 
Prop. 26, appendix, height BC. This triangle can then be transformed into a 
square via II, 14.

5.4.6  Prop. 28: Geometrical Analysis, Linking the Quadratrix 
to Loci on Surfaces Through a Cylindrical Helix

5.4.6.1 Outline of the Analysis in Prop. 28

Start with a quadrant ABC, radius BD, E on BD, perpendicular EZ, assume that 
EZ:arc DC is given.1

Then E lies on a uniquely determined curve.

1 Note that this is a response to Sporus’s demand after criticizing the definition of the quadratrix 
via motions. He had demanded that a crucial ratio be given. In Prop. 28, it is taken as given in the 
sense of geometrical analysis.
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Analysis

1. Extension of the confi guration
Cylinder-segment over ABC; in it, take an Apollonian helix as given in position L, 
T, I as in the figure create a garland-shaped surface, determined by the helix

2. Resolutio
2.1 I lies on a uniquely determined plane
(a plane given in position1), through BC and ZI
(or perhaps EZ and ZI); here the given ratio is used;
2.2 It also lies on the plectoid surface created by the helix
[use the symptoma of the helix2].
Since the helix is also given in position, I lies on an intersection curve of sur-
faces, which is also given in position.
2.3 Project this line onto the plane of the original quadrant.
By construction, E will lie on this uniquely determined line.

3. Specifi cation
When the given ratio EZ:arc DC = AB:arc AC, this line will be the quadratrix.

5.4.6.2 Intersection Plane in Step 2.1: Through EZ or BC?

Pappus’ description is not sufficiently precise. In addition, there are several illegible 
spots in the main manuscripts for this part of the text, and they were already there 
when the minor manuscripts were copied. With Knorr, I favor the reading according 
to which the intersection plane is the one through BC and ZI, for it is obviously 
given, i.e., constructible, at this stage of the analysis (assuming that one has the 
helix). BC is given in the starting configuration, and the inclination of the sought 
plane toward the underlying plane is determined by the given ratio EZ:EI. The 
drawback is that with this intersection plane, the endpoint Z for the intersection 
curve in space is not uniquely determined. Neither will the endpoint of the resulting 
special case quadratrix be. If one opts for the plane through EZ and ZI, as Hultsch, 
and apparently Treweek did, one has to assume that EI and EZ are given in position. 
It is not clear, at this stage of the analysis, that they are.

Ver Eecke assumed that the segments ZE and EI are given, because they go 
through given points. One might object that if Z and E were given, there would be no 
need for further argumentation at this point. It is unclear how the points can be seen 
to be given at this stage. Ver Eecke also assumed that the intersection plane on which 
I lies goes through LT. One might find this objectionable, too.

Even if we cannot decide with certainty which plane is used in the analysis in 
Prop. 28, the main thrust of the argument is clear: it provides a conceptual connection 

1 My reading of Prop. 28 differs considerably from the one given in Ver Eecke (1933b, p. 199, #2); 
it is compatible, however, with the discussion in Knorr (1986); compare also the following notes 
on the crucial intermediate step 2.1.
2 On the helix and its symptoma cf. Procl in Eucl. 105, 271 Friedlein, Knorr (1986, p. 295/296). 
The ratio of height and rotation angle is a constant, i.e. given with the curve.
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between the quadratrix of Dinostratus and a locus created on a curved surface in 
space, in dependence from the Apollonian helix, and that is its purpose.1

5.4.7  Prop. 29: Geometrical Analysis, Linking the Quadratrix to Loci 
on Surfaces with Spiral

Start with a circular sector (not necessarily a quadrant) ABC, given in position, a 
radius BD, point E on it, and a perpendicular EZ, where EZ:arc DC is given, and 
EZ:arc DC = AB:arcAC (spiral-creating ratio). Assume that a spiral BHC is 
inscribed in the sector ABC.

Then E lies on a uniquely determined line.

5.4.7.1 Outline of the Analysis in Prop. 29

1. Extension of confi guration
Cylindroid over spiral, height BH;
BH = EZ [construction],
EZ:arc DC = AB:arc AC = BH:arc DC [symptoma]
right cone, vertex B, generating line at an angle of p/4 with respect to the underlying 
plane

2. Resolutio
2.1 Analytical determination of a locus for K
K on HK, perpendicular to the plane, KH = BH
HK is given in position
K lies on the cylindroid surface,
and on the surface of the cone
Þ K on the intersection line created by those two surfaces:
a conic spiral that is given in position.2

1 I agree with Ver Eecke’s summarizing statement: “En exposant ce premier mode de construction 
géométrique de la quadratrice au moyen des Lieux à la Surface, la proposition démontre donc, sans 
l’énoncer explicitement, une propriété remarkable de la surface de la vis a filet carré à axe vertical, 
a savoir que, si l’on coupe une surface hélicoide rampante (y = x tang (2p z/h) ) par un plan passant 
par une de ses génératrices rectilignes (z = my) [I opted for BC, Ver Eecke for LT], et si l’on projette 
orthogonalement, sur un plan perpendiculaire à l’axe de cette surface la courbe détérmineée comme 
section, on obtient une quadratrice de Dinostrate” (Ver Eecke 1933a, p. 199, #4).
2 Note that the conic spiral used in Prop. 29 is not automatically accepted, as the helix in Prop. 28, 
and the spiral in Prop. 29 were. It must be reduced to the spiral in order to be revealed as given in 
position. This could be an indication that the Archimedean spiral and the Apollonian helix were 
viewed as privileged basic curves for the analytical determination of other motion curves by 
Pappus (cf. Molland 1976). If so: was this the case just for Pappus, or: more generally? Were these 
curves perhaps seen as basic for the symptoma-definition of higher curves, as Prop. 29, but also 
Prop. 28 seem to suggest? In the meta-theoretical passage, Pappus significantly speaks of quadra-
trices and spirals as exemplary curves for the third kind. Recall also Apollonius’ claim on his helix 
as a basic curve, on a par with circle and straight line, reported in Proclus on authority of Geminus 
(Procl. in Eucl. 251 Friedlein). The issue cannot be pursued here.
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2.2. Analytical determination of a locus for I and E
2.2.1 Extension of configuration, second part:
analogous to the “garland” in Prop. 28, create a plectoid surface, derivable 
from the original spiral; use BL, and the conic spiral; both are given in 
position: LI moves along the spiral and BL, parallel to the underlying 
plane, creating a twisted surface in space that is given in position.

2.2.2 I lies on that surface.
2.2.3 I also lies on a uniquely determined plane [through BC and ZI; 
use the symptoma of the spiral].
Þ I lies on the intersection curve created by those surfaces.
2.2.4 Project this curve onto the underlying plane.
By construction, E lies on this projection, on a uniquely determined 
line.

3. Specifi cation:
When the sector ABC posited in this analysis is a quadrant, this line is the 
quadratrix.

5.4.7.2 Lines, Planes, and Surfaces in Prop. 29

Whereas Prop. 28 used a cylindrical helix from the start, Prop. 29 starts with a plane 
curve, the spiral, and constructs a curve in space from it as a first step: a conical 
spiral. Most commentator agree that the conical spiral is created by erecting a cylin-
droid over the given spiral and intersecting it with a right cone with axis BL, 
inclined at 45° toward the underlying plane. The point K lies on it. This much 
seems uncontroversial, and for this reason I have used a diagram for Prop. 29 that 
shows the cylindroid surface and the point K.

Different interpretations have been offered for the second part of the construction 
in Prop. 29. The reading offered here is minimalist, and modeled on Prop. 28. One 
draws the parallel LKI to BE, leaving the exact location of I open, i.e., reserving the 
possibility to extend KI if needed. The generator BZ with flexible endpoint, 
adjusted between BL and the conical spiral, creates a “plectoid,” garland-shaped 
surface. It is intersected with the plane through BC and ZI, analogous to Prop. 28, 
and projected orthogonally onto the plane. This reading is only tentative. Its advan-
tage over some other ones is that they all assume that LKI is extended to the cir-
cumference, and that the same cylindrical helix, and the same garland as in Prop. 
28 is created. The text of Prop. 29 does, however, not mention the helix and seems 
to propose the analysis in terms of the plane spiral as an alternative to the one using 
a helix. It is not to be excluded that the original author of the argument in Prop. 29 
did intend to show, with his analysis, how the plane spiral, the conical spiral, the 
cylindrical helix, and the quadratrix are all connected. The text as reported by 
Pappus does not explicitly say as much, though. Therefore, I opted for the minimal-
ist reading (and accordingly, a very reduced diagram). If one accepts the presence 
of the helix, perhaps a reading along the lines of Commandino is the most straight-
forward one. Commandino does assume a cylinder in addition to the spiral-induced, 
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cylindroid, extension of LKI to H on the cylinder surface, creation of a helix in 
dependence from the conical helix, with a garland-shaped surface for I. His diagram 
(Co p. 91) shows all these features. Commandino then assumes the creation of an 
intersection curve in space, and orthogonal projection onto the underlying plane as 
in Prop. 28. There are some problems with his reading in detail, for which see the 
translation. Hultsch ad locum refers to Chasles and Bretschneider, and does not 
offer an interpretation. His diagram is also minimal. For Ver Eecke’s reading see 
Ver Eecke (1933a, p. 200f). Knorr (1989, p. 166f) offers an explorative interpretation 
of the material in Prop. 29, drawing a connection to Archimedes’s study of tangent 
problems on the plane spiral. It is very interesting in itself; I am somewhat diffident, 
however, that it works well as an explanation of Prop. 29 as given in Pappus’ text. 
Therefore, I have restricted my presentation of the content of Prop. 29 to the informa-
tion as given in the text for the most part. For further clarifications and alternatives, 
the reader is referred to the literature mentioned above.

5.4.8 Additional Comments on Props. 28 and 29

5.4.8.1 Loci on Surfaces

As noted before,1 Props. 28 and 29 are our only explicit sources on analysis of loci 
on surfaces. This means that observations drawn from them provide only limited 
knowledge of the discipline for which they are an example. There is a danger of 
over-interpretation, because we lack a context to check our reading against. The 
following observations on Props. 28 and 29 may nevertheless capture some repre-
sentative features for this kind of mathematical approach.

1. The dominant method of investigation, and the method for determining the basic 
objects of study, is geometrical analysis in the technical sense.

2. Certain spiral-type curves have a privileged role, others are determined relative 
to them.

3. We operate with surfaces in space, created by rotation, by a motion that com-
bines a linear progression and a rotational motion in synchrony (twisted sur-
faces, controlled “motions”), or by establishing cylindroid surfaces over a plane 
fi gure, and intersecting them with each other, and with planes.

4. The created curves in space are in the end projected onto the plane.
5. Because we are using analysis, the result is not a constructive solution, or a con-

structive genesis of the curve. This is also not intended. The content really is a 
mathematical analysis of the genesis, establishing unique determinateness for 
the “target curve” inside a confi guration.

1 For bibliographical references, see the literature given at the beginning of the chapter on Props. 
26–29.
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A Potential Context for the Analysis of Surface Loci: Analysis of loci 
and Conic Sections

Consider the parallel between items 3 and 4 above and Archytas’ solution for the 
cube duplication with Eudoxus’ procedure for his curve devised for cube duplica-
tion.1 According to Zeuthen (1886, pp. 460–461), this procedure was taken over by 
Menaechmus as a model for the conic sections, viewed as analytically determined 
loci (cf. item 1.), as plane symptoma-curves.2 Even after the conics were discovered 
to be sections of cones, and their definition was in terms of this genesis, the actual 
handling continued to be focused on the symptoma-characterization. Consideration 
of those aspects of the Apollonian treatment of conics that might be viewed as 
analogous to symptoma-mathematics – and there are quite a few examples (see 
again also Zeuthen 1886 passim) – might help to reconstruct a context for the 
symptoma-mathematics of the third kind, by studying the analogue in symptoma-
mathematics of the second kind. Perhaps even the reduction of the conic sections 
as plane curves to the intersection of a plane and a surface in space (i.e., the surface 
of a cone) could be seen as somewhat of a model for the reductions we see in Props. 
28 and 29. In addition, the analytical Euclidean work on loci on surfaces, on which 
Pappus comments in Coll. VII, and which is based on related work by Aristaeus, 
might be considered.3 Perhaps the outlines of a context for symptoma-mathematics 
become visible here. The issue is worth exploring. A decisive difference, even if parallels 
can be found and brought to bear, would be the fact that conics can be viewed as 
essentially defined, although symptomatically handled; the higher curves cannot.4

Use of Analysis for the “Definition,” or Determination of Curves

Without drawing far-reaching conclusions from our scarce evidence in Props. 28 
and 29, one thing can nevertheless be said, and it has been somewhat overlooked in 
secondary literature on the propositions. The propositions have a clearly analytical 
character, with analysis taken in the full technical sense of the word. And it seems 
plausible to assume that this feature would have been typical of the geometry of the 
third kind. Specifically, geometrical analysis (resolutio) is used here, not to (only) 

1 Compare the remarks on cube duplication and conics in the commentary on Props. 23–25. For a 
hypothetical reconstruction of Eudoxus’ curve cf. Tannery (1912, I, pp. 53–61). It seems plausible 
to assume that Eudoxus projected the space curves, created in Archytas’ solution, onto the plane, 
creating a curve with which he could solve the cube duplication. It would have to be defined by 
deriving the characterizing properties from the properties inherent in the space curves. For the 
symptoma of the helix in Proclus cf. pp. 105 and 271 Friedlein; cf. also Knorr (1986, pp. 
295–296).
2 Cf. Knorr (1986, pp. 50–66, 112).
3 Coll. VII, pp. 1004–1014 Hu (Jones 1986a, pp. 363–371, see also pp. 503–507, 591–599).
4 Cf. Zeuthen (1886, pp. 459 ff.), Knorr (1986, pp. 61–66, 112) on the combination of essential, 
genetic definition, and operation with the symptoma in the theory of conic sections.
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solve problems but to “mathematize” motion curves as symptoma-curves, by reducing 
them to properties of other curves that are taken as given.

Given in 28:
Per hypothesis: sector ABC, quadrant (as in quadratrix), radius BD with perpen-
dicular; EZ, and ratio EZ:arc DC (this ratio is not necessarily the one used in the 
quadratrix). An Apollonian helix with a given progression ratio for angle:height (con-
nected to EZ:arc DC). 

Entailed: each such configuration determines, i.e., turns into a given, a certain 
unique projection curve, in direct dependence from the ratio that is embodied in the 
helix: a quadratrix-like curve. We get a family of curves. The quadratrix is the one 
where the given ratio is the same as AB:arc BC.

Given in 29:
Per hypothesis: sector ABC (not necessarily a quadrant, unlike quadratrix), radius 
BD, perpendicular EZ with ratio EZ:arc DC = BA:arc AC (ratio as in quadratrix)
an inscribed spiral (embodies the ratio BA:arc AC)
Entailed:
(i) A conical spiral, as an intersection curve in space.
(ii) An intersection curve between two curved surfaces in space.
(iii) A certain unique projection curve, in direct dependence from the ratio embodied 

in the spiral: a quadratrix-like curve. We get, again, a (different) family of 
curves; the quadratrix is the one where the given sector is a quadrant.

The analysis in Props. 28 and 29 is restricted to the resolutio-phase: the phase 
where that which we need or want to establish is shown to be given, if certain other 
features (theorems, prior results, etc.) are posited. The arguments show that the 
curves in question are uniquely determined in a hypothetical sense: We cannot 
derive them from essential properties rooted in the archai and the principle objects 
of our discipline, but the properties we focus on in mathematical argumentation can 
be put in an exact, conceptualizable relation to properties of other entities in a spe-
cific spatial configuration (ultimately the symptoma of a privileged curve). The 
latter we just assume and posit – much like we posit the straight line and circle. This 
much one can assert. We will have to leave it undecided, because that is what 
Pappus does as well, whether this determination “saves” the curves completely, so 
that symptoma-curves were taken to be just as solidly defined as the archai of the 
plane and solid kind, even though the symptoma-approach operationalizes, lets the 
curve itself disappear and replaces it by a kind of relation/equation. We will not try 
to determine, at this point, what it means that Pappus asserts and supports the fully 
mathematical character of arguments about the curves, but is hesitant about the 
status of the curves themselves (cf. also meta-theoretical passage, where a similar 
ambivalence shows).1

1 See the excursus below for some speculative remarks in this regard.
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What does Pappus achieve with Props. 28 and 29? The reading suggested here 
is a sympathetic one. Pappus does not achieve, and does not believe he has achieved, 
the quadrature of the circle. He has not “saved” the genesis of the quadratrix in the 
sense that the curve can now be constructed geometrically, and he does not claim 
to have “solved” the problem. He succeeds in partially circumventing Sporus’ 
objections, i.e., he interprets the demand that the crucial ratio be given before the 
curve can be accepted by showing in what sense, and to what degree, the ratio can 
be seen, via geometrical analysis, to be given in the technical sense of the word. He 
gets an analytical characterization, not a constructive definition. And he is explicit 
about that. Even so, the analytical determination has achieved something. Its effect 
is that the quadratrix, although not constructible, can be investigated geometrically, 
without conceptual inconsistencies, qua locus curve for a certain symptoma. It is 
well-defined, uniquely determined. The geometry on it is true geometry, geometry 
of the third kind. Its results are geometrically demonstrable properties of the curve 
as symptoma-locus. As long as we only had the genetic definition, which was con-
ceptually inconsistent, such geometry did not have a satisfactory basis.

Even so, the issue of the quadratrix’s foundation is not completely settled. As 
noted above, we cannot be sure just how solid the analytical basis is. In the meta-
theoretical passage, where Pappus will, once again, classify this kind of mathematics 
as legitimate mathematics, alongside plane and solid mathematics, he also does say 
that the curves have a somewhat forced genesis, and he shows a certain hesitancy 
with respect to the third kind of mathematics. Also, the analytical approach leaves 
a gap: symptoma – analysis cannot guarantee that a more elementary construction 
is impossible for a curve thus characterized (e.g., that in certain specific cases, it 
might reduce to a locus of the second kind).

Most interpreters so far have not given Pappus a sympathetic hearing. One basic 
error, which is rather pervasive, is that they read Pappus’ statement that he will 
provide a geometrical analysis (analuesthai) as actually saying that he claims to 
“solve” the problem (the quadrature) geometrically (equivalent to luesthai). As has 
been pointed out in the notes to the translation, this is a serious misunderstanding, 
for Pappus does indeed provide an analysis for the genesis of the curve, and he does 
not provide a solution of the problem. Jones (1986a, p. 598), e.g., seems to believe 
that Pappus is trying to give a construction of the quadratrix and remarks that, as 
constructions, they do not meet Sporus’ objections. Similar attributions of confusion 
to Pappus can be found in Knorr (1978a, 1986). Knorr also offers, however, the 
consideration that Pappus may, after all, have tried not to meet Sporus’ objections, 
but to circumvent them. In this respect, his reading concurs with mine.

5.4.9  Excursus: Speculative Remarks on the Potential of Analysis-Based 
Symptoma-Characterization of Higher Curves

The decisive difference between using the circle mathematically by focusing on its 
symptoma, and using the helix and other curves solely accessible through their 
symptoma is somewhat like this: We think (perhaps) we know what the circle is, 
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essentially, and the properties we use in mathematics are seen as properties of that 
object, for which we can posit some kind of epistemological or ontological priority. 
Of the Apollonian helix we do not have such a direct grasp. It has to be constructed 
in thought as the thing which has the decisive property. The helix itself disappears, 
as it were, behind its symptoma in a way the circle does not. So what is the 
epistemological, or ontological, grounding of such curves, when they are viewed 
exclusively as loci for a symptoma?

In view of the complete absence of statements from ancient mathematicians on 
this question, and the deplorable lack of evidence on their actual practice in this area, 
it is perhaps fruitless to try and establish what the commonplace opinion among them 
would have been on that question. The following, speculative remarks should be 
taken as an elucidation of the potential impact of this question, its horizon of potential 
for future developments in the intellectual history of mathematics. Specifically, I have 
the sixteenth and seventeenth century readers in mind, and “anchor points” for the 
routes they took to transform mathematical investigations toward algebraization on 
the one hand, and infinitesimal calculus on the other. Could the ancient mathemati-
cians, in defiance of the essentialist view on science and explanation – whether 
Aristotelian or Platonist – have taken the view that circle, helix, and spiral are really 
equivalent, because all mathematics is symptoma-mathematics and does not really 
care about the ontological status of the objects the symptomata of which it studies? 
That the circle, e.g., is treated as a locus curve just as the helix is? That what is math-
ematically interesting about it, its property, can equally well be seen as stemming 
directly from the motion generating it? Apollonius for one argued that the helix 
should be placed alongside circle and straight line as a basic, unanalyzed principle in 
geometrical argumentation. Does this imply an anti-essentialist thrust, a turn toward 
making locus-properties, i.e., relations, the final objects of mathematics? Are the 
basic items all loci, as it were, characterized as such via “defining” relations? That 
would make Apollonius a forerunner of the paradigm shift toward algebra that 
occurred in the seventeenth century. It cannot be ruled out.1

If such was the case, and there was an Apollonian programme to implement a 
new paradigm for mathematics, one in which operationalism, and the manipulation 
of relations are key ideas, we would have to say that the programme did not carry 
the day in antiquity, and the ancient research project of symptoma-mathematics 
might have died out precisely for that reason: re-channeling into the mainstream 
essentialist approach. What we see in Coll. IV, and what the seventeenth century 
readers saw as well, would then be like the remnants of a large-scale re-orientation 
project for mathematics which was abandoned, with the remnants still bearing the 
traces of the revolutionary ideas behind them, of this push toward operationalizing 
geometry into a proto-algebraic discipline. Such an ideological clash, an unsuccessful 

1 The fact that Apollonius apparently wrote a work called “katholou pragmateia” (universal trea-
tise, attested in Marinus (Eucl. Op. 6, p. 234 according to Jones (1986a, p. 530/531), and the fact 
that the remarks attested in Proclus seem to point towards an attempt at radically reorganizing the 
foundations of Euclid’s Elements, do invite speculations in this direction.
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frontal attack against the ruling paradigm, which in turn was backed by non-negotiable 
essentialist convictions and preconceptions, and which in the end prevailed, would 
explain why Apollonius’ minor analytical works were lost, why his Konika were 
stripped of their analysis-parts, which in the original must have been dominant 
(Pappus groups the Konika with the analytical works), and recast by Eutocius in 
purely synthetic form, and also why no works of the authors who worked on the 
analysis of loci on surfaces are preserved. The essentialists in the field of epistemol-
ogy/theory of science would have won the day, and forced the continuation of the 
old paradigm.

Such a speculation is tempting. But it is equally possible that the mathematicians, 
including Apollonius, went along with the essentialist views on the nature of science 
and explanation, or – and that is perhaps the most likely option – that they did not 
reflect on such questions at all and just went ahead doing their mathematics of 
symptoma-curves. After all, even in the orthodox Aristotelian paradigm, any science 
is entitled to positing its principles and does not have to go beyond, justifying them, 
so that in the end, any science can do its job while focusing in on the rigorous devel-
opment of arguments about symptomata. On the whole, we cannot get beyond the 
observation that geometrical analysis in the technical sense was applied to derive a 
hypothetical definition, or characterization, of motion curves through their symp-
toma. This was not just a side thought, since a considerable amount of sophistication 
and argumentation is needed to perform this task. It must have been of some impor-
tance, and served a serious purpose. Whether the result was that these curves were 
then seen as on a par, epistemologically, with objects like circles, straight lines, or 
conics, must be left undecided. Also, the details of this kind of mathematical argu-
mentation are at present opaque to us, and certainly were so for the sixteenth and 
seventeenth century readers as well. This may be part of the reason why so much 
effort was spent on reconstructing the analytical works, and the analytical strategies 
of the ancients. Still, the material presented in Pappus is suggestive toward a new 
perspective on what mathematics essentially is, one in which analysis and operation 
with relations are central. One could pick up here; in a way that needs to be explored 
and spelled out in more detail, Vieta, Descartes, Fermat and others did.

5.5 Prop. 30: Area Theorem on the Spherical Spiral

context: Archimedes on spiral lines, motion curves, quadratures.
source: lost text of Archimedes.
means: I, III, V, XII, Sph. et Cyl. I, 33, I, 35, I, 42.
method: synthesis; infinite inscription process, quasi-infinitesimals, limit argument.
format: genesis-description, symptoma-theorem and corollary.
reception/significance: no reception, the only related extant treatise is Sph. et Cyl.; the 
addition to Prop. 30 is the first example for a quadrature of a curved surface in space.
embedding in Coll. IV: motif “Archimedes”: Props. 13–18, 19–22, 35–38, 42–44; 
Archimedes, with his “mechanical” approach “frames” the treatment of motion curves; 
motif “spiral lines”: Props. 19, 20, 26, 29, 35–38; motif “area theorem”: Prop. 21; the 
content of Prop. 30 is not picked up again in Coll. IV.
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purpose: illustrate the “mechanical” path for the treatment of motion curves: symptoma- 
mathematics as meta-mechanics.
literature: Heath (1921, II, 382–385), Knorr (1978a, 59–62, 1986, 162–163), Ver Eecke 
(1933b, 206, #2).

Prop. 30 is the first known example for the quadrature of a curved surface in space. 
Methodologically, it picks up the first, “Archimedean” path for dealing with motion 
curves. Although no author is named for Prop. 30, the theorem is usually ascribed 
to Archimedes. The parallels to the argumentative style and the structure of Prop. 
21, especially the use of indivisibles, and the infinite inscription process, as well as 
the parallel argument using two figures with parallel division processes, are very 
compelling indeed. The spherical spiral is created by motions in the ratio 1:4. 
Unlike the plane spiral inscribed in a circle, the spherical spiral described here is 
conceptually well-defined in its genesis via motions.1 The symptoma is directly 
read off from the coordinated idealized motions.2 The theorem on the spiral uses 
aspects of Archimedes’ “mechanical method,” namely indivisibles. Mathematics 
appears as meta-mechanics, where mechanics itself is already highly abstract. We 
do not have a context for Prop. 30. It may have been part of a larger work.3 No 
applications outside Coll. IV are attested. The only surviving Archimedean com-
plete monograph on the symptomata of a motion curve is SL, and its argumentative 
method and style differ significantly from the quasi-mechanical approach attested 
in Props. 21 and 30. As in the case of the analytical branch of symptoma-mathematics, 
the lack of a context makes it impossible to draw far-reaching conclusions on the 
status of the mathematics of the third kind “Archimedean style,” which, I think, is 
represented in Prop. 30 (see Knorr (1986) for an interesting, if perhaps sometimes 
speculative, evaluation of the possible development of motion curves in the genera-
tion after Archimedes). Certainly plausible is Knorr’s assumption that the “mechan-
ical” approach was picked up and put to use for analytical (symptoma-) mathematics, 
and this assumption also agrees with Pappus’ statements on the geometry of the 
third kind in the meta-theoretical passage, as well as with his developmental story 
in Props. 19–30. Knorr also points out that the approach via infinitesimals and 
indivisibles was not pursued further. Pappus voices no objection to the result in 
Prop. 30, and obviously treats it as valid.

1 Polar coordinate description for the spherical spiral: r = 1/4w; compare the analogous equations 
for the plane spiral in Prop. 19: r = 1/(2p)j, and for the spiral as used in SL: r = a j, where a is 
arbitrary, but fixed. Both Prop. 30 and SL avoid having to take recourse to p.
2 No instruments are involved, the verb used for the genesis via motions is noein. We deal with 
abstract motions. The verb kinein, used in 19, is absent; no application context for Prop. 30 can 
be envisaged. Its “mechanical” character is purely theoretical.
3 A comparison of the argumentative means in Props. 30 and 21 shows: Prop. 30 adds Sph. et Cyl. 
to V, XII, which were already used in Prop. 21. Knorr (1978a, pp. 59–62) argues that the material 
in Prop. 30 belonged to the heuristic version of Sph. et Cyl. The connections are clearly there. 
I doubt, however, that they are sufficient for postulating an immediate and precise relation such as 
the one postulated by Knorr.
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Genesis of the spherical spiral: In a hemisphere, rotate the arc TNK of a quarter-circle 
through the pole along the base circle (arc KLM). At the same time, let a point N travel 
from the pole toward the base, and assume that it completes the quarter-arc at the same 
time in which the rotating quarter- arc completes the full circle. The traveling point 
describes a spherical spiral.

Symptoma: If one draws an arbitrary quarter-arc TOL, with O on the spiral, arc 
TL:arc TO = circumference: arc KL.

5.5.1 Proof Protocol Prop. 30

1. Protasis/ekthesis
Assume a hemisphere with pole T, surface A, and spherical spiral TOIK (area 
above: ASp), a quadrant ABCD of a maximum circle (area Q), and a segment ABC 
(area ASg).
Then A:ASp = Q:ASg.
2. Apodeixis

2.1 Extension of the configuration and transformation of the protasis
Construct sector AEZC (area S); show that S = Q1

The protasis has now become A:ASp = S:ASg
2.2 Auxiliary construction
(set-up for the “exhaustion process”)
On the hemisphere, cut off a sector LTK (area: AL),
describe a circle on the surface through O, center T,
cutting off the surface OTN (area A(O) ),
with a sector cut off in it by KT, KL (area A’(O) );
cut off from arc ZA the arc ZE,
as the same part as KL is of a maximum circle,
cutting off from S the sector EZC (area: A(E) );
in it, cut off sector BHC (area: A(B) )
2.3 Lemma for the “exhaustion process”2

2.3.1 arc ZE:arc ZA = arc BC:arc AC
2.3.2 arc TO = arc BC
2.3.3 AL:A’O = A:AO
A = area of circle with radius TL
[Sph. et Cyl. I, 333]

1 S is 1/8 of the circle with radius CA, Q is 1/4 of the circle with radius AD, CA2 = 2 AD2.
2 Compare Prop. 21: inscribe a sector into the spiral; then compare sector and spiral sector on the 
one hand, and rotation cylinder and cone-related rotation cylinder on the other.
3 The reference to Sph. et Cyl. is, of course, anachronistic. The material in Prop. 30 probably 
predates the treatise. Archimedes must have been aware and convinced of these theorems inde-
pendently of his theoretical work. It seems plausible to assume that he found the results in the 
context of his pre-formal research activity, using his heuristic method.
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A(O) = area of circle with radius TO
[Sph. et Cyl. I, 42]

A:A(O) = TL2:TO2 [XII, 2]
Þ AL:A’(O) = TL2:TO2

2.3. 4. TO = BC [III, 29]
TL = AC = EC by construction
Þ AL:A’(O) = EC2:BC2

2.3.5. EC2:BC2 = A(E):A(B) [XII, 2; V, 15]
Þ AL:A’(O) = A(E):A(B)

2.4 “exhaustion from above”1:
Iterate the process described in 2.3, and sum up;
A: sum of all circumscribed (spherical) spiral sectors =
S: sum of all circumscribed partition-induced plane sectors
2.5 “exhaustion from below”
The analogous proposition will hold for inscription instead of circumscription.
2.6 limit process
Imagine the partitions more and more fine-grained.
The inscribed and circumscribed spherical sectors approximate the spiral surface 
from both sides, and the inscribed and circumscribed plane sectors approximate 
the segment. The same propositions will always hold. By an implicit continuity 
argument (a transition to infinity, or an appeal to indivisibles2 ), we infer: they 
still hold in the limit case, and thus: A:ASp = S:ASg = Q:ASg

Addition: Quadrature of a Spiral-Induced Surfaces on the Hemisphere

Since A = 8Q by [Sph. et Cyl. I, 33], we can derive
(a) For the area above the spiral: ASp = 8 ASg
(b) For the area below the spiral
A – ASp = 8Q – 8 ASg = 8(Q – ASg) = 8 triangles ABC,
and triangle ABC = 1/2(1/2d)2 = 1/8d2

1 Compare Prop. 21. There the exhaustion from “within,” i.e., “below” was discussed at length, and 
the other case glossed.
2 An analogous limit argument was used in Prop. 21.
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6 Meta-theoretical Passage

This passage is a locus classicus for methodology in ancient mathematics. It is perhaps 
the best-known passage in Coll. IV. A doublet can be found in Coll. III, and a shorter 
version in Coll. VII. There are to be three kinds of mathematics: plane, solid, linear, 
corresponding to three kinds of basic curves. In addition, a homogeneity requirement 
holds: only arguments that use means from the mathematical kind to which the problem 
belongs are fully valid mathematically. The passage is referred to in Descartes’ 
Géométrie (Descartes 1637, p. 315, pp. 40/41 Smith/Latham). Newton also quotes it 
with approval, and employs it against the Cartesian program in geometry. Up until rela-
tively recently, it was taken to be the communis opinio for mathematics throughout 
antiquity, and quoted or referred to in secondary literature in this way. In fact, it is, at 
least in this generality, only to be found in Pappus. For him, it is obviously important. 
He is committed to this view in the following sense: he uses it to structure his material 
to give a representative survey of ancient mathematics, to give a coherent methodologi-
cally oriented picture of the geometrical tradition. It is not certain, and in fact not all 
that relevant for the understanding of Coll. IV itself, whether this meta-theoretical posi-
tion was shared, in this full generality, by the mathematicians. Pappus may very well be 
generalizing a feature to be found in Apollonius’ analytical works on locus problems: 
separate plane problems from solid ones.1 Still, he is well-informed, competent, and 
manages to tell a reasonably coherent story. It should be appreciated as a whole. An 
extensive discussion will not be given here (for the full text, see the translation in Part 
I). In the present edition, I have taken this passage quite literally, and propose a reading 
of the whole of Coll. IV in light of it. In what follows, I will comment on the two main 
items in the passage: the mathematical kinds, and the homogeneity criterion, and briefly 
indicate how the different parts of Coll. IV relate to remarks in the passage.

6.1 The Three Kinds of Geometry According to Pappus

There are three kinds of mathematical problems, generalized to three kinds of geom-
etry, according to the means needed to solve the problem or demonstrate features.

1 Cf. Jones (1986a, p. 530, 540/541), Knorr (1989, p. 34) for a similar assessment (Pappus general-
izing a trend to be found in Apollonius’ plane analytical works); e.g.,: “Pappus is our only explicit 
authority on this mathematical pigeon-holing, and he says nothing about how it developed and when. 
However, it is difficult not to see Apollonius’ two books on Neuses as inspired by the constraints of 
method imposed on the geometer…. The only conceivable use for such a work would be as a refer-
ence useful for identifying ‘plane’ problems.” (Jones 1986a, p. 530). On p. 530f., Jones also voices 
the opinion that Apollonius may have had a similar purpose in the Plane Loci and the Tangencies.

H. Sefrin-Weis, Pappus of Alexandria: Book 4 of the Collection, 
Sources and Studies in the History of Mathematics and Physical Sciences, 
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1. Circle and straight line only1: genesis of these two is in the plane
2. In addition, one or several conics: genesis from solid fi gures (cones or cylinders)
3. Even more complex lines

“Plane” geometry operates with circles and straight lines only. Euclid’s Elements 
and Data, and anything that can be proved or constructed with these means, would 
fall into this kind. Within Coll. IV, plane geometry is illustrated in Props. 1–18. 
It becomes apparent that geometry of this kind is not uniform. It allows for a spectrum 
of styles and approaches. Prop. 1, for example, is directly modeled on the 
Pythagorean theorem and uses classical synthesis, Props. 4–12 illustrate different 
facets of the method of analysis within analysis-synthesis, and Props. 13–18 illus-
trate a monographic style of exposition within synthetic plane geometry. Note that 
not all problems or curves in the plane are “plane” in Pappus’ sense. For example, 
the conic sections, the conchoid, the quadratrix, and the Archimedean spiral, are 
drawn in the plane, but they do not belong to the first kind. Neither do the problems 
that can be addressed with them. The quadrature of the circle and the trisection of 
the angle are problems set out in the plane, but they are not “plane.” Neusis con-
structions, even those formulated for configurations with circles and straight lines, 
can be either “plane” or “solid.” Perhaps a modern reader might think that the sepa-
ration of circles and conics into different kinds is somewhat artificial. Both these 
lines can be defined by a mathematical equation specifying defining distance rela-
tions in the plane. Pappus, however, thinks the conics are essentially connected, for 
what they are as objects, to the cone, a three-dimensional figure, whereas the circle 
is not. In this respect, Pappus may represent a communis opinio among the ancients. 
For even Apollonius, who favored an operationalist approach to geometry and works 
with the symptomata mostly, does define the conics as sections of cones, and derives 
their symptomata from this essential definition.

The second kind of geometry, encompassing everything that can be successfully 
treated by employing circles, straight lines, and conic sections, is represented in 
Coll. IV by Props. 31–34 and 42–44. Apparently, Pappus was of the opinion that the 
geometry of this kind is predominantly analytic-synthetic and that it aims at creating 
typified configurations. Even the edition of the Konika to which he refers (in Prop. 33) 
was analytic-synthetic. The purely synthetic edition that survives today is due to a 
revision by Eutocius (sixth century AD). Pappus’ portrait suggests that “solid” 
geometry arose in the context of unsuccessful attempts to solve certain problems, 
notably the cube duplication and the angle trisection, with “plane” means. The meta-
theoretical passage in Coll. IV singles out the angle trisection in this regard.

Apparently, Pappus is drawing on criteria from Aristotle’s theory of science for the 
conceptual definition of his kinds. In the Posterior Analytics, sciences are defined 
and determined by the kinds of objects they treat. The methods of the corresponding 
science must be “akin” to these objects. Pappus’ first two “kinds” of geometry are 

1 The following slight misreading, already to be found in Descartes, is rather common: restrictions are 
viewed as pertaining to instruments: third class only mechanical, first class only compass and ruler; 
Pappus says nothing about instruments, and he certainly counts the third class as full mathematics.
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compatible with Aristotle’s description of kinds as subject matters. The third one is 
not. It does not have a positive description, a clear characterization via predicative 
content. It looks very much like “all the rest.” In fact, one might call it unconvincing 
and unsatisfactory from an Aristotelian perspective. Nevertheless, Pappus will for-
mulate a global homogeneity requirement in the spirit of Aristotle’s homogeneity 
requirement in the Posterior Analytics (see the following sections).

For the basic curves of the third kind, Pappus offers a description that is not quite 
uniform. Two types/approaches can be made out: generation by “varied”, “forced” 
motions and “twisting” of surfaces (quasi-mechanical), and “finding” via the intersec-
tion of surfaces in space that are “less structured” than the cones and cylinders used 
for conics (analytical). Loci on surfaces play a major role for the second type, and for 
all of these curves it is the “astonishing symptomata” that are in focus. Quadratrix-
type lines and spiral lines are singled out as basic curves. Pappus lists works and 
authors, and it does appear that there once was a substantial corpus of treatises in this 
area, by authors that came after Archimedes, extending into late Hellenistic times and 
even beyond. Unfortunately, those works are lost. The only complete extant full trea-
tise with geometry of the third kind is Archimedes’s Spiral Lines. In Props. 19–30, 
Pappus has discussed exemplary contributions to the geometry of the third kind, 
depicting a developmental line, as well as typical and crucial problems in exposition 
and foundation (plane spiral in Props. 19–22, conchoid in 23–25, quadratrix in 26–29, 
and spherical spiral in 30). He strongly suggests that there were two types, a quasi-
mechanical one (cf. Props. 21 and 30, with their informal limit processes) and one 
that relied heavily on analysis (cf. Props. 28 and 29 in particular). His portrait agrees 
well with what he says here in the meta-theoretical passage.

Mathematical problems of the third kind can arise out of plane or solid problems 
by generalization. Props. 35–38 are examples. The symptoma of quadratrix and 
spiral is used for general angle division, and problems that reduce to it can thus be 
solved. Solid problems form a bridge between the first and the third kind. Other 
problems of the third kind cannot be related thus directly to problems in the “lower” 
kinds, because they target properties that cannot be captured by algebraic curves (in 
modern notation). Circle rectification is a case in point. Props. 39–41 draw out 
some consequences of the quadratrix’s rectification property. Such theorems belong 
to the third kind “by nature,” as it were. As stated repeatedly, the lack of compa-
rable sources creates problems for the evaluation of Pappus’ classification. It 
clearly serves a purpose in Coll. IV. To this extent, it is valid and meaningful. 
Whether it is representative cannot be decided, and should not be inferred (nor 
denied) from Pappus’ relative success at telling a coherent story.

6.2 The Homogeneity Requirement

In analogy to Apollonius’ separation of plane and solid locus problems, where 
problems were differentiated into “classes” according to the minimal means needed 
to solve them (e.g., identification of plane neuses), and where it was required that 
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you use those minimal means only in order to have a geometrically valid argument,1 
Pappus puts forth a generalized homogeneity requirement: All geometrical argu-
mentation must use argumentative devices from the appropriate kind. His formula-
tion of the criterion borrows from Aristotle’s theory of science again.

The question immediately arises, of course, as to how one is to decide whether the 
criterion has been met, i.e., as to how one can, with mathematical means, decide 
whether a given argument belongs to the plane, the solid, or the linear kind. Also, 
one might wonder whether this strong meta-theoretical claim represents the mathe-
maticians’ perspective on the arguments in their discipline. Pappus is, in all likeli-
hood, drawing, at least to the following degree, on an inner-mathematical discussion 
that took its starting point from Apollonius’ work.2 Not merely locus problems, but 
also already existing theorems were scrutinized, via analysis, in order to determine 
whether they met the requirement. An attempt was made to instrumentalize geometrical 
analysis to demarcate plane from solid arguments quite generally. This is another 
systematic technical use of Greek geometrical analysis that has been underestimated 
in secondary literature thus far. With the help of analysis of loci, Archimedes’ neuses in 
SL 5–9, e.g., were identified as “solid,” and it was argued by some, apparently, that 
he should have done with a plane argument for SL 18 (see below, Props. 42–44). 
Another example for a proposition criticized in this vein is a construction by 
Apollonius in Konika V. Pappus probably refers to the construction of a normal to the 
parabola in V, 62. This solution proceeds via conics, in analogy to the case for the 
hyperbola and ellipse; but since the problem is solvable (once we take the parabola 
itself as given) by plane means only, Apollonius was criticized for failing to meet the 
homogeneity requirement.3

While the scarce evidence we have suggests that a widening of the discussion on 
systematic discrimination between plane and solid arguments took place within 
mathematics, the same cannot be said with regard to linear versus solid problems. 
Demarcation upward is obviously possible here as well: if you can show, via analysis 
of loci, that your problem/theorem can be solved via conics, you are done. There are 
no traces of a systematic attempt to use analysis/diorismos to identify conditions 
under which a “linear” problem or theorem becomes solid. To that degree, Pappus’ 
general homogeneity requirement was not fully developed, or integrated, into 

1 In Apollonius this may have been simply a pragmatic device, in line with his operationalist 
approach, casewise, from simplest to most complex, always with the minimum amount of machinery 
added.
2 Before Apollonius’ analytical works, such a differentiation, and the corresponding homogeneity 
requirement, would not have been possible. For Archimedes, or for the pre-Euclidean geometers, 
it was probably not valid, not even a consideration.
3 Unfortunately, Pappus does not discuss the Apollonian argument within the preserved text of 
Coll. IV. We may perhaps assume that his argument that Apollonius missed the mark could have 
taken the form either of explicitly providing a plane argument (as he does in the plane case of the 
angle trisection), or by showing that the locus used in Apollonius reduces to a plane locus under 
the specifying conditions in Con. V, 62 (an argument like this, not cited by Pappus in Coll. IV, was 
provided for the plane case of the angle trisection by one Heraclius cf. Coll. VII, # 72 Hu).
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ancient geometry, it seems. Pappus’ meta-theory claims more than the practice, or 
the theory, could do. It should perhaps also be noted, however, that although the 
criteria for determining homogeneity were not watertight (cf. Props. 42–44), all of 
Pappus’ classificatory judgments in the upcoming third part of Coll. IV are correct:

31–34: angle trisection is solid.
35–38: general angle division is linear.
39–41: arc rectification is linear by nature.
42–44: the analyses are correct, and the Archimedean neusis is solid.

In Pappus’ overall scheme, the geometry of the second kind has the position of 
a bridge between plane and higher geometry. This may be one of the reasons why 
Pappus presents his portrait of solid geometry after his discussion of higher curves, 
and the meta-theoretical passage here (Props. 31 ff.). In addition, it was in connec-
tion with the establishment of solid geometry, in differentiation from plane geom-
etry, that the idea of compartmentalizing mathematics along the lines pursued and 
generalized by Pappus arose. And so, the last part of Coll. IV contains solid argu-
ments, a transition to linear problems, and an example of how analysis of solid loci 
was used to determine the accurate “level” of a problem.
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7 Props. 31–34: Trisecting the Angle

Props. 31–34 are our only sources for the trisection of the angle via conics/solid loci 
in antiquity. Following up on the introduction of the problem in the meta-theoretical 
passage, Pappus uses the trisection as an exemplary argument to illustrate mathemat-
ics of the second, the solid kind.1 In his methodological portrait, it looks as though 
the dominant mode of argumentation in this field was analysis-synthesis, focusing 
on loci, and that Apollonius was the culminating figure for this discipline, although 
his work rested on earlier achievements (Aristaeus, inter alia) and did not com-
pletely supersede them. The arguments in Props. 31–34 are, together with Props. 
42–44, Menelaus’ cube duplication as reported by Eutocius,2 and selected arguments 
from Konika V also our only surviving examples for a treatment of solid locus prob-
lems, and Props. 31–34 and 42–44 are the only analysis-based ones. As in the case 
of the symptoma-mathematics of motion curves, this uniqueness obviously makes 
Props. 31–34, presented here in their original context, most valuable sources for 
historians of mathematics, while also creating the problem that we cannot decide to 
what degree Pappus’ portrait, drawn up with a visible program in mind, is represen-
tative of the actual mathematical practice. His portrait should be carefully evaluated 
on its own terms and as a whole. As in the case of the symptoma-mathematics of 
motion curves, Pappus implicitly traces a developmental line, from the pre-Euclid-
ean treatment of “solid” problems down to Apollonius and his reception. For the 
portrait of “solid” geometry, the majority of modern commentators agree with 
Pappus’ reconstruction, i.e., their assessment of the development of the ancient ana-
lytic treatment of conic sections is congruent with Pappus’ account. In addition, 
there is general agreement on the character of the historical layers detectable in 
Pappus’ report. What has not received enough scholarly attention thus far, and this 
is, again, parallel to the case of Props. 28 and 29, is the methodological emphasis. 
The portrait in Pappus stresses the practice of the technique of Greek geometrical 
analysis for solid loci, as a method of argumentation, in Props. 31, 33, and 34.

context: trisecting the angle, doubling the cube, arguments of the “solid” kind.
sources: anonymous pre-Apollonian source with neusis in Props. 31 and 32, reshaped with 
Apollonian theory (Apollonius? Pappus?) in Prop. 33, Prop. 34b draws on an argument 

1 The angle trisection, though it may look like a very special isolated question, is indeed rather 
typical, even exemplary, for problems that can be solved via conics. As pointed out in the introduc-
tion to Props. 23–25, the two problems of trisecting the angle and doubling the cube already 
exhaust solid geometry, in the sense that any problem that can be solved by means of conics 
reduces to one of these two basic construction problems. The angle trisection is thus a fitting topic 
for an exemplary illustration of geometry of the solid kind.
2 Cf. Eutocius In Arch. Sph. et cyl. 78–84 Heiberg.
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ultimately based on Aristaeus, via Euclid’s Solid loci, with at least one intermediate layer; 
Prop. 34a is based on Prop. 34b, perhaps by Pappus.
means: II, III, V, VI, Con, I, II: an analytic-synthetic version of these books (now lost).
method: analysis-synthesis (Prop. 32 in isolation: synthesis only).
format: problem.
reception/historical significance: no reception in antiquity is attested; reception in Islamic 
culture; significance for historical scholarship as (the main) source for ancient angle trisec-
tion via conics, and as a source for the analytical treatment of solid loci.
embedding in Coll. IV: classification of problems: meta-theoretical passage; motif 
“Apollonius”: Props. 8–10, motif “(solid) neusis”: Props. 23–25, 42 - 44; motif “analysis 
as primary investigation method”: Props. 4–12, 35–41, 42–44; motif “angle division”: 
Props. 35–38.
purpose: illustrate mathematics of the second kind (solid).
literature: Heath (1921, I, pp. 235–244, II, 119–121), Jones (1986a, pp. 363–371, 573–577, 
582–584), Knorr (1986, pp. 128–137, 302–308, 324–327,1 1989, pp. 213–224, 316–324),2 
Zeuthen (1886, pp. 210–215, 267–268). Hogendijk’s (1981) study of Arabic sources on the 
angle trisection which contains the same argument as Props. 31 and 32, via neusis, but 
without the reduction to the Apollonian theory of conics, independently corroborates the 
communis opinio on Props. 31–33. For Prop. 34a and Prop. 34b there is a consensus for 
the factual content: older layer (older concept of conics, going back to Aristaeus, reshaped 
partially by using Apollonian theory), but some disagreement remains on the authorship 
of those re-arrangements and overlays (see below).

7.1 Angle Trisection Through the Ages

With one exception (Lib. ass. VIII), all direct testimonies on ancient trisections 
actually derive from Coll. IV (details see below). The problem of trisecting the 
angle consists in the task of constructing an angle that divides a given angle into 
three equal parts. This problem, generally, the problem of dividing an angle in a 
given ratio, arose in the context of constructing regular polygons and inscribing 
them in a circle. Prop. 38 will point out that one consequence of dividing the angle 
in a given ratio is that we can now inscribe a regular polygon with any prescribed 
number of sides into the circle.3 While bisection of an angle is an easy plane 
construction (I, 9), trisection resists attempts to solve it with elementary means, as 
Pappus has pointed out in the meta-theoretical passage.

1 Specifically: Knorr (1986, pp. 128/129) on Prop. 34b; Knorr (1986, pp. 272–276) on Props. 
31–33; Knorr (1986, pp. 282–284) on Prop. 34a; Knorr (1986, pp. 303/312) on neusis, 
Apollonius, and Nicomedes; Knorr (1986, pp. 321–328) on Apollonius and Aristaeus as con-
tributors to 34a/34b.
2 This passage addresses the testimony of Al-Sijzi and Al-Quhi. See Knorr (1989, pp. 247–372) 
for a comprehensive presentation of Arabic sources with connection to ancient angle trisections.
3 Cf. Heath (1921, I, p. 235).
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7.1.1 Attested Ancient Solutions

Hippias of Elis is usually credited with the invention of the quadratrix, ca. 430 
BC.1 This curve can divide any acute or right angle in any given ratio (cf. Props. 
35–38).2 At some point, the problem of the angle trisection was reduced to a neu-
sis, and solved from there, apparently without the use of conics at first (see Props. 
31 and 32 and remarks3). Archimedes has been suggested as a possible author by 
Knorr, but a pre-Euclidean origin cannot be excluded. Nicomedes (second century 
BC) used his conchoid to solve the problem via neusis. His argument is not pre-
served, but the conchoid as described in Prop. 23 can construct the neusis in Prop. 
31 (see remarks on Props. 31, 23–25).4 Further indirect evidence for a pre-Apollo-
nian neusis – construction which is now lost can be gathered from Lib. ass. VIII,5 
together with an Arabic source in the Banu Musa. Lib. ass. VIII leads to a neusis 
that can be used for the trisection. This neusis is closely related to the Archimedean 
neuses in SL 5–9.6 It is not at all unlikely that this lost ancient solution was by 
Archimedes. Another possible connection for this particular neusis is to the con-
choid of a circle, which may have been known to Nicomedes.7 But the actual 
ancient constructions do not survive. Apollonian theory made it possible to con-
struct the neusis via conics (as in Props. 31 with Prop. 33). Prop. 33 could be by 
Apollonius, or else by Pappus, on the basis of an argument using the analytical-
synthetical version of the Konika.8 Aristaeus, a predecessor of Euclid, probably 
was the author of a neusis-free trisection underlying Prop. 34b. The argument uses 
the focus-directrix property of the hyperbola and operates with the pre-Apollonian 
names of the conic sections. In its present form, it is partly reshaped with the help 

1 Cf. introduction to Props. 26–29.
2 Heath (1921, I, pp. 226–227).
3 Cf. Heath (1921, I, pp. 235–237).
4 Cf. Heath (1921, I, pp. 239–240); Procl. in Eucl. 272, 3–7 Friedlein; Cantor (1900, I, pp. 
335–337).
5 Cf. Heath (1921, I, pp. 240–241); see also Hogendijk (1981), and the remarks on Props. 31/32.
6 A neusis of this type is subjected to analysis in Props. 42–44, to show that it is “solid.” Knorr 
(1986, pp. 186–187) draws the connection between the trisection via Lib. ass. VIII and 
Archimedes; so does Heath (1921, I, pp. 240, 241).
7 Cantor (1900) draws the connection to the conchoid of the circle; Knorr (1986, 221ff.) argues 
that it is plausible that Nicomedes worked with conchoids, including the one on a circle, for his 
angle trisection. If Nicomedes indeed investigated the conchoid of the circle, it is a tempting pos-
sibility to speculate that Archimedes may have experimented with this curve and its properties as 
well. For Nicomedes seems, in general, to have taken Archimedean contributions as a basis for his 
own, analytically based contributions. But at present, we do not have enough “hard evidence” for 
such a thesis.
8 This argument is not reported in Heath (1921), cf. Prop. 33.
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of Apollonian theory.1 Prop. 34a is the simplest, and the latest of the solutions in 
Coll. IV, it uses the same hyperbola as 34b, Apollonian description and techniques, 
and is based on Prop. 34b.2 Its author may very well be Pappus (see below, remarks 
before the proof protocols for Props. 34a and 34b).

7.1.2 Islamic Middle Ages (Selective3)

Hogendijk (1981) analyzed an angle trisection that is closely parallel to Coll. IV, 
Props. 31 and 32, and avoids the use of conic sections and solid loci. He was able to 
show that the Islamic author worked from the original Greek argument, which in 
Pappus is overlaid with Apollonian theory, thus corroborating the thesis about the 
existence of a now lost ancient Greek source, with a neusis, but without conics.4 
Thabit ibn Qurra’s angle trisection was derived from a Greek source as well. Knorr 
(1989, pp. 218f.) argues that this source is not Pappus, Coll. IV.5 Lib. ass. VIII, 
according to Knorr,6 goes back to the Banu Musa. For their Arabic sources, Knorr 
refers to Al-Sijzi and Al-Quhi.7 Al-Sijzi lists all the trisections known to him, and one 
of them is similar to Lib. ass. VIII. The same neusis is used, according to Knorr, by 
Al-Biruni. Omar Kayyam (cf. Katz 1993) made an attempt at systematizing cubic 
equations into types, and solving them by geometrical construction. The angle trisec-
tion was included. Omar Kayyam’s contribution could be interpreted as a precursor 
of the seventeenth and eighteenth century project of constructing equations.8

7.1.3 Occidental Middle Ages (Selective)

Jordanus Nemorarius and Campanus treated the angle trisection and were probably 
influenced by Arabic sources.9 According to Cantor, Jordanus’ argument is parallel 

1 Cf. Heath (1921, I, pp. 243–244).
2 Cf. Heath (1921, I, pp. 242–243); see also Jones (1986a, pp. 582–584).
3 Cf. Sezgin (1974), and Knorr (1989, pp. 247–372) for information on Islamic mathematics, 
specifically on cube duplication and angle trisection, as well as Knorr (1983a, 1989, pp. 216–224) 
on the transmission of ancient angle trisections into Islamic culture.
4 Cf. (Knorr 1989, pp. 267–275) (angle trisection according to Ahmed ibn Musa).
5 Cf. Knorr (1989, pp. 277–291) for Ibn Qurra’s angle trisection.
6 Cf. Knorr (1986, 197, #107).
7 Cf. Knorr (1986, 185, #106); on Al-Sijzi’s and Al-Quhi’s trisections cf. also Knorr (1989, 
pp. 293–309).
8 Cf. Bos (1984, 2001) for a history of this project.
9 It is doubtful whether Coll. IV could have been known in the Middle Ages to any significant 
degree. Unguru (1974) argues that a passage from Witelo’s Optics betrays knowledge of a sub-
stantial passage from Coll. VI. Commandino p. 95 C provides a plane argument, drawn from 
Witelo, in connection with the neuses discussed in Props. 42–44. Perhaps this is an indication that 
Witelo looked at Coll. IV as well, though other explanations are possible, also.
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to Al-Sijzi’s,1 connected in terms of mathematical content to a neusis with conchoid 
of a circle. Cantor’s reconstruction of Jordanus’ source is essentially the same as 
the one Knorr ascribes to Nicomedes. Also according to Cantor,2 Campanus’ argu-
ment is analogous to the earlier one by Jordanus.

7.1.4 Some Examples from Renaissance and Early Modern Times

Bombelli, in the sixteenth century, discovered the connection between the irreducible 
case of the equation of third degree and the angle trisection.3 He made similar obser-
vations for the cube duplication. Bombelli’s investigations on the geometrical 
interpretation of algebraic results were not published until the 1920s. Therefore, 
their impact on the development of analytical geometry and the construction of 
equations was probably minimal. As stated above, in the discussion of the problem 
of cube duplication (Props. 23–25), Vieta and Descartes, working on an algebra-
ically based approach to geometrical analysis, both proved that all “solid” problems 
in Pappus’ sense reduce to either the angle trisection or the cube duplication.4 They 
studied algebraic equations of the third and fourth degree, derived from geometrical 
configurations. If such an equation is reducible, a geometrical construction with 
circle and straight line (with ruler and compass) is possible. In the irreducible case, 
the construction can be accomplished either with the trisection or with two mean 
proportionals. Newton, also, discusses the angle trisection, cube duplication, and 
the use of the conchoid for the neusis required in several places in the Arithmetica 
Universalis, obviously in close connection to Pappus’ text in Coll. IV. He uses the 
new algebraic techniques as well, and contrasts solutions via conics with solutions 
via neusis, polemicizing against the Cartesians.5

7.1.5 Nineteenth Century

Azemar/Garnier (in 1809) constructed a trisection curve, generating and discussing 
it with the means of the theory of functions.6 A trisection compass is described in 
Dyck (1892, pp. 225–226).

1 Cf. Cantor (1900, II, pp. 81–82).
2 Cf. Cantor (1900, II, p. 104/105).
3 Bombelli ed. Bortolotti (1923, 1929, pp. 265–267).
4 Vieta’s argument can be found in Vieta ed. Schooten (1646, pp. 240–257); it was first formulated 
in Vieta’s Supplementum Geometriae from 1593. Descartes (1637, pp. 396/397) (206–209 
Latham/Smith) uses parabola and circle for the angle trisection. He also developed an instrument, 
a kind of compass, for the trisection. See also Descartes (1659, pp. 178 ff).
5 Cf. Whiteside (1972, V, 426/428) (conchoid for angle trisection); 428–432 (neusis reduced to 
construction via conics, close connection to Prop. 31–33 and Props. 23/24); 458–464 (angle trisec-
tion, with explicit reference to Pappus (Prop. 32) ); cf. also the solution of cubic equations via 
neusis in 432 ff. (closely connected to the Archimedean neusis from lib. ass, VIII), and the summary 
remarks on solid neusis constructions pp. 454/456 and 474.
6 According to Ver Eecke (1933b, XXXVIII, #1).
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Finally, we return to the question that originally motivated the quest for the angle 
trisection, and the general angle division: the problem of constructing a regular 
polygon in a given circle. Book IV of the Elements shows that quite a few cases can 
be constructed with circle and straight line (e.g., square, and therefore all polygons 
with 2n, n > 1 sides, similar constructions from triangle, hexagon, pentagon). With 
the angle trisection via conics (Coll. IV), one will get, in addition, any polygon that 
entails an angle division that can be composed of divisions by three, and constructions 
possible with IV. Archimedes gave a construction of the regular heptagon via circle, 
straight line, and conics. In the ancient sources, no attempt is attested at trying to 
determine which cases would be plane, which solid, and which linear. The available 
analytical techniques apparently were not strong enough to determine under which 
conditions the generally linear problem will become solid, or even plane. Still, the 
ancients managed to capture almost all of the constructively interesting plane cases, 
in the following sense. Many centuries later, in the Disquisitiones Arithmeticae 
(Gauss 1801, p. 449 in the 1889 edition), Gauss showed that a regular polygon with 
n sides is constructible with circle and straight lines (ruler and compass), when n is 
a Fermatian prime number (in addition to the cases noted above). Gauss only gave 
this as a sufficient condition. According to Knorr (1986, p. 373), Wentzel, in 1837, 
was then able to show that the condition is also necessary: no other prime number 
will do.1 Fermatian prime numbers tend to become very large soon, so that an actual 
construction via circle and straight lines becomes uninteresting. Feasible construc-
tions reduce to the cases that are contained in Elements IV, or can be gotten from 
there by simple additional bisection or angle trisection, plus Gauss’ construction of 
the regular Heptadecagon.

7.2 Analysis in Props. 31–34

Analysis is the dominant method for problem solving in “solid” mathematic, 
according to Pappus’ portrait here. This analysis has certain specific features, some 
of which have so far not received the attention they deserve.

1. Analysis in Prop. 31 and Prop. 34 (also in Props. 42–44) is not deductive through-
out. The decisive step is engineered so that the reverse step, used for synthesis, is 
deductive. Reversibility, not deduction, is clearly the focus. This is relevant in 
light of a long-standing debate about the nature of Greek analysis. Many scholars 
claimed that Greek geometrical analysis, because it is essentially reductive, is a 
purely deductive strategy, and that the mathematicians just counted on convert-
ibility at each step. This would mean that the synthesis and proof would be out 
of focus for the analysis. Analysis would be a largely independent corroboration 
strategy on its own. Others have argued that the analysis, even if largely deduc-
tive, nevertheless is to be viewed as an “upward” procedure, one that in essence 

1 Ver Eecke (1933b, XXXIX, #1), presents the matter somewhat differently.
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looks for grounds to start from for a synthesis as its completion. The examples in 
Props. 31–34 can help decide this issue. They provide evidence that analysis was 
viewed as not necessarily deductive, and not as independent, but vying, as it 
were, for a successful “way back.” The crucial non-deductive steps in the analy-
ses in Prop. 31, and in Prop. 34 (also in Props. 42–43), make it clear that such 
steps were fully valid in analysis, and viewed as suffi cient, if the converse, used 
in the synthesis, could be deduced from a valid theorem. This is another aspect 
in which the mathematical material in Coll. IV can add to our information about 
Greek geometrical analysis in practice, and therefore also to our understanding of 
the nature of the method. Since the arguments in Props. 31, 34, and 42–44 may very 
well be severely edited by Pappus, perhaps even originally by him, I should add 
that they only provide the strong evidence I have suggested if we assume that he 
was a competent practitioner of the method. The concurrence, or at least compati-
bility, between Pappus’ solid loci arguments and the few examples from Apollonius 
that we have might contribute to an optimistic estimate.

2. Analysis in Props. 31 and 34 (and Props. 42–44) moves toward stereotyped, typi-
cal situations. A single crucial point is focused on, and the analysis shows that it 
can be constructed as the intersection of solid loci. This strategy has a parallel 
already in Menaechmus’ construction of the cube duplication via solid loci, and 
is also to be found in Apollonius’ analytical work on plane loci. There, too, a 
single point is identifi ed as crucial, and constructed as the intersection of two 
plane loci.1 If this was indeed a typical feature, it seems to make sense. For since 
all solid problems de facto reduce to either the angle trisection or the cube dupli-
cation, it must have been noticed that standard “catalog” examples could regu-
larly be found for solving a given solid problem. And singling out a single point 
on which the successful analysis, and ensuing construction, hinges is really as 
“primitive” as it can get. The use and the availability of such standard examples 
would facilitate the use of analysis for the determination of a problem level, and 
help make analysis-synthesis arguments in this fi eld partially algorithmic (once 
you have reduced a problem to a standard locus, you can go through the motions 
by analogy).

3. In the analysis-arguments of the solid type, conics are seen as loci, characterized 
by their symptoma. This provides a connection to the symptoma-mathematics of 
higher curves in the analytical vein.

4. In Prop. 33, Pappus refers explicitly to an analysis in the fi rst book of Apollonius’ 
Konika, and very likely to another analytical argument in the second book. This 
means that the edition of the Konika he worked with was an analytic-synthetic 
one, not the one we have today (edited by Eutocius considerably later). The 
original work by Apollonius was in all likelihood dominated by analysis. Prop. 33 
is “Apollonian” in character; on the connection between Apollonius and Prop. 33 see 
the remarks after the proof protocol for Prop. 33.

1 Cf. Jones (1986a, pp. 540–541) for the Apollonian construction of plane loci, and pp. 573–577 
as well as Knorr (1989, pp. 94–100) on Menaechmus’ cube duplication via solid loci.
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The proof protocols for Props. 31–34 will be given in some more detail, including the 
syntheses, which are only sketched, or even left out in Pappus. Solid locus-arguments 
are non-elementary and less common, and it may help to have a summary of the steps, 
even if this means repetition of items covered in the translation already.

7.3 Props. 31–33: Angle Trisection via Neusis

7.3.1 Proof Protocol Prop. 31

1. Protasis/Ekthesis
Start with a rectangle ABCD (clockwise), BC produced.
Task: to draw AZ with EZ = m, m given.

2. Analysis
2.1 Assumption: problem solved
2.2 Apagoge
Problem reduces to finding H (parallelogram DHZE).
2.3 Resolutio
H is given.
[diorismos, not explicitly stated: DHZE is to become a parallelogram]

2.3.1. H lies on a given circle (center D, radius EZ).
2.3.2. H lies on a given hyperbola.
Rectangle BCD given; it is equal to BZ × ED [I, 43],
and BZ × ED is equal to rectangle BZH.
Appeal to Con. II,12, “converse,” yields here, in the analysis1: H lies on the 
hyperbola through D with asymptotes AB, BC.
2.3.3. H is given.

3. Synthesis
3.1 Kataskeue and Ekthesis
Through D, draw the hyperbola DHT with asymptotes AB, BC [cf. Prop. 33].
Draw the circle HK with center D and radius m.
It intersects the hyperbola in H.
From H, draw HL ║ BC, and HZ ^ BC; join AZ.
Then EZ = m.
3.2. Apodeixis
Rectangle ZHL, i.e., rectangle BZH, is equal to CD × DA [Con. II, 12]

1 This is the decisive, non-deductive step in the analysis. Con. II, 12 actually states the reverse: all 
points H on the hyperbola through D with asymptotes AB, BC will fulfill the above conditions for 
rectangles/parallelograms. Because we know this, thanks to Con. II, 12, we can conclude, for the 
purpose of the analysis, that H must lie on this hyperbola. This is not a logical derivation, but a 
prospective argument, if you will. We can conclude this way, because we know that the reverse, 
in the upcoming synthesis, will give us a valid deduction.
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Þ ZH = DE [VI, 2/4; V, 16/18]
ZH ║ DE Þ DEZH is a parallelogram, and EZ = DH = m.

The neusis in Prop. 31 could easily be constructed with Nicomedes’ first conchoid, 
if we choose A as the pole, CD as the canon, and m as the distance. Perhaps this 
was what Nicomedes did.1 The Greek text for Prop. 31 shows a separate figure for 
the analysis, and some inconsistencies in lettering. This observation is quite 
compatible with the following hypothesis (also in accordance with Hogendjik’s 
findings on the existence of a trisection similar to Props. 31 and 32, but without 
conics): The oldest layer of Prop. 31 contained just the neusis, to be used in Prop. 
32, without construction via hyperbola (probably via ruler manipulation). Later on, 
the neusis was constructed by means of a hyperbola, with the analysis either added 
in later (three layers), or the synthesis of a complete analysis-synthesis adapted to 
Prop. 32, while the analysis was left as it was. We do not know for certain when 
and by whom revisions of the older argument were put in place. The older argument 
may very well be pre-Euclidean. The revisions in the form presented here presup-
pose Apollonius’ version of the theory of conic sections. Apollonius could have 
been the author of the argument or a similar one. It is also possible, however, that 
a post-Apollonian author, maybe Pappus himself, added the analysis-synthesis via 
Prop. 33, or that a post-Apollonian author gave a synthetic argument for Prop. 31, 
based on Apollonius’ analytical-synthetical solution, which was then re-edited by 
Pappus in such a way that an added analysis made the methodological bias in favor 
of analysis, and the connection to Apollonius’ solution explicit. Further research 
would be needed to decide upon this question. What can be said safely is that Prop. 
31, as presented by Pappus, clearly draws attention to the analytical emphasis in the 
successful solution of the angle trisection as a problem of the second kind.

7.3.2 Proof Protocol Prop. 32

Task: trisect ÐABC.
Diorismos:
We have three cases2.

First case: ÐABC is acute.
Extend the configuration:
Create a rectangle BCAZ, produce ZA
The neusis from Prop. 31, with m = 2AB = EB solves the problem; the resulting 
line EB forms with BC an angle that is one third of ÐABC.
[proof via consideration of D BAH, where H is midpoint of DE; use III, 20/31].

1 Other, more complex and sophisticated constructions, using reconstructions of other possible 
Nicomedean conchoids have been suggested inter alia by Knorr (1986, 220ff).
2 This is the only explicit diorismos in Coll. IV.
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Second case ÐABC is a right angle.
In this case, we do not need the neusis.
We simply construct an equilateral DBCD, and bisect ÐDBC.

Third case: ÐABC is obtuse.
Draw a perpendicular, dividing ÐABC into a right angle and an acute angle. 
Apply cases 1 and 2, and combine the results.

Cases 1 and 3 are in general solid; case 2 is plane, as the constructions indicate. 
Pappus’ homogeneity criterion is essentially met (except for angles that are the 
2n-th part of the right angle). It is worth noting, however, that Pappus did not choose 
to show, by means of analysis, that in the second case the neusis from Prop. 31 
becomes itself plane, i.e., constructible with circles and straight lines. He misses 
out, as it were, on a chance to illustrate the power of analysis as an instrument to 
demarcate “downward” via diorismos. From Coll. VII, Prop. 72 Hu we know that 
this option was open to him in principle. For there Pappus reports a plane analytic-
synthetic construction by a certain Heraclitus (or: Heraclius, otherwise unknown) 
for the neusis in this case.1 Perhaps he thought that to show that a case is plane it 
suffices to give a plane construction, and the one he gives in Prop. 32 is certainly 
the simplest one possible. But that leaves open the question of other possible plane 
cases, still hiding, as it were, under case 1 (e.g., angle of 45° could be trisected via 
plane means, etc.). Pappus might have opened himself up for further questioning, 
had he admitted that the neusis itself allows for cases which he cannot fully capture 
with analysis. Even in his standard example, the demarcation between plane and 
solid cases is not clear-cut and complete “downward” and would not have been 
even if he had invoked Heraclius’ plane construction for the neusis. And this has 
consequences for the evaluation of Pappus’ use of analysis as a criterion for deter-
mining the level of an argument, a topic that will be taken up in Props. 42–44.

7.3.3 Proof Protocol Prop. 33

1. Protasis/Ekthesis
Start with ÐABC, point D in interior.
Task: describe the hyperbola through D with asymptotes AB, BC.
2. Analysis

2.1. Assumption: assume the hyperbola has been described.
2.2 Apagoge
Draw the tangent A–D–C, diameter HD, DT ║ BC.
2.3 Resolutio

1 Cf. Zeuthen (1886, pp. 280–282) for a reconstruction of a possible diorismos in terms of analysis 
of loci, Coll. VII, Prop. 72 (pp. 780–782 Hu, Jones (1986a, pp. 202–208), Heath (1921, II, pp. 412 
and 413), and Knorr (1986, pp. 298–300) on Heraclius’ argument itself; Descartes (1637, pp. 
387–389) (188–193 Smith/Latham) discusses the same problem, as a case where a problem with 
a cubic equation (“solid-looking”) can be reduced, with explicit reference to Pappus.
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HD, DT given in position, T given.
AD = DC, because AC is tangent, AB and BC asymptotes.
AD2 = DC2 = 1/4HD × k, where k = latus rectum [Con. II, 3].
CD = DA Þ BT = TA.
BT given Þ TA given; A given Þ A–D–C given in position.
AC given in length => AC2 given.
AC2 = HD × k => HD × k given.
HD given => k given.

The problem has been reduced to the following situation: with HD, k given in 
position and length, describe the hyperbola with diameter HD, latus rectum k, and 
ordinates parallel to AC, which is given in position. Pappus refers to an analysis in 
the first book of the Konika. The extant Konika do not contain analyses, but cf. Con. 
I, 54 and 55 for a synthetic argument.

3. Synthesis
3.1. Kataskeue
Draw DT ║ BC; construct TA = BT.
Join AD, produce to C; produce DB, BH = BD.
Construct k with HD × k = AC2 [I, 45].
Describe hyperbola EDZ with diameter HD, latus rectum k,
and ordinates parallel to AC [Con. I, 54/55].
This hyperbola solves the problem.
3.2 Apodeixis
AC is tangent to the hyperbola EDZ [Con. I, 32]
AD = DC, because BT = TA
AD2 = AC2 = 1/4HD × k
Þ AB, BC are asymptotes to the hyperbola EDZ
[Con. II, 1, 2].

The authorship for this very interesting theorem has been the subject of some discussion. 
Knorr defended the thesis that Prop. 33 is essentially by Apollonius in Knorr (1982). 
He even argued that the material now found in Con. II in this regard is by Eutocius, 
while Apollonius’ own argument is Prop. 33. I would rather agree with his later 
judgment (Knorr 1989, p. 215) and refrain from a specific ascription, while acknowl-
edging the general Apollonian character of Prop. 33. The fact that many intermediate 
steps seem to appeal to the Data (cf. translation) points to Pappus as the one mainly 
responsible for Prop. 33 in its present form. So does the explicit appeal to the Konika 
by title. As said in the introduction, Prop. 33 attests that an analytical version of the 
Konika must have existed. This material was used both for Prop.33, and for the 
analysis-synthesis overlay in Prop. 31 over an older neusis. As Hultsch points out in 
his notes to the Latin translation, a shorter, purely synthetic solution to Prop. 33 
could have been given by means of Con. II, 4 (as presented in Eutocius’ edition of 
the Konika). It would certainly have been accessible to Pappus as well. Apparently, 
Pappus goes out of his way to illustrate that the methods for geometry of the second 
kind are essentially connected to the method of analysis (even if, afterward, one 
might be able to give a shorter, synthetic solution).
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7.4 Prop. 34: Angle Trisection Without Neusis

Props. 34a and 34b discuss the trisection of an arc over AC, corresponding to the 
crucial case “acute angle” in Prop. 32. Only the analysis is given in full; a synthesis 
is sketched for Prop. 34a, left to the reader for Prop. 34b. The effect of this on 
Pappus’ readers is, of course, that analysis is emphasized as the decisive method of 
problem solving. In the proof protocols below, I have added a reconstruction of the 
synthesis so as to illustrate that the analysis indeed carries the burden, as Pappus 
suggests.1 As pointed out in the introduction, Prop. 34a is the simplest of all the 
trisections discussed in Coll. IV, and it rests on Prop. 34b. Its style is very close to 
Props. 42–44. Perhaps Pappus is the author of all four of them. For he claims 
authorship for Props. 42–44 as presented in Coll. IV.

Prop. 34b uses a hyperbola characterized via focus and directrix. The same condi-
tions as the ones discussed in the analysis in Prop. 34b appear in Pappus’ commentary 
on an analytical work by Euclid in Coll. VII (# 237 Hu, Jones (1986a, pp. 365–369, # 
316/317, with commentary pp. 503–5072). There they appear as symptomata of a hyper-
bola in connection with Euclid’s loci on surfaces, an argument that in turn seems to be 
targeting an argument on solid loci by Aristaeus. We encounter in Prop. 34 b an older 
version of angle trisection via conics as locus curves, one that has been “worked over” 
in several stages, while the core of the oldest layer, i.e., Aristaeus’ consideration of solid 
loci, was preserved. The final “work-over” is by means of the Apollonian theory of 
conics. This state of affairs is somewhat similar to Props. 31–33. Apparently, in Pappus’ 
view, the mathematics of the solid kind developed around solid problems, handled 
analytically, and Apollonius was the culmination of a working tradition, without com-
pletely superseding the older contributions.3 Unfortunately, we cannot identify the 
Aristaean, Euclidean, Apollonian, and Pappian contributions to Prop. 34b in detail. We 
lack sources for comparison (e.g., Aristaeus’ solid loci; in fact Pappus, in Coll. VII, and 
perhaps this proposition here in Coll. IV, is our main source), and too many layers are 
involved, as it were. Even so, a sufficiently clear and coherent global portrait of the 
methods of “solid” geometry emerges in outline. In my opinion, Pappus’ reconstruc-
tion, in Props. 31–34, and Props. 42–44, deserves closer investigation in itself.

1 Commandino (Co 102–103 E and 103–104 E) also provides a synthesis. It covers all possible 
cases.
2 According to Jones, there are quite a few problems with the argument as presented by Pappus in 
Coll. VII; the lemma seems to contain several errors. This makes the task of reconstructing the 
original “Aristaeus” from here all the more difficult. For literature on Prop. 34a/b see the list given 
at the beginning of the exposition on Props. 31–34, and the footnotes to the section on attested 
ancient solutions.
3 The image created in Coll. IV by the way Pappus presents the geometry of the solid kind agrees 
to a large degree with the portrait given by Zeuthen (1886).
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7.4.1 Proof Protocol Prop. 34a

Task: trisect the arc AC over chord AC (arc AC smaller than semicircle).

1. Analysis
1.1 Assumption: problem solved, B divides arc AC in ratio 2:1
in triangle ACB over fixed AC, ÐACB = 2ÐCAB. We need to show that B lies 
on a uniquely determined hyperbola.
1.2 Apagoge: extension of configuration: points D, E, Z, H
1.3 Resolutio
BE = AE
BD2 = 3AD × DH
Appeal to Con. I, 21 (converse):
B lies on a uniquely determined hyperbola.1

2. Synthesis (only sketched in Pappus’ text)
2.1 Kataskeue/Ekthesis
Divide AC in H in ratio 2:1; AH = 2HC, AC = 3CH [VI, 9].
Describe, through H, the hyperbola with axis AH, 
latus transversum 3AH [Con. I, 54/55].
It intersects the given arc AC in a point B.
The resulting triangle ACB has the property
ÐACB = 2ÐBAC, and B divides arc AC in the ratio 2:1.
2.2 Apodeixis

2.2.1 Auxiliary constructions
Draw perpendicular BD onto AC, D on AC.
Construct E, Z on AC with DE = DC = EZ [VI, 9].
Draw BZ, BE.
2.2.2 Apodeixis proper

2.2.2.1. BD2 = DA × 3DH [Con. I, 21]
by construction: 3DH = AZ
BD2 = DA × AZ
2.2.2.2. DA × AZ = AE2 − EZ2 [II, 6]
Þ BD2 + EZ2 = AE2

BD2 + ED2 = BE2 [I, 47]
and ED = EZ by construction
Þ BE2 = AE2, i.e., BE = AE
2.2.2.3. Consider D AEB; it is isosceles
i.e., ÐBAE = ÐABE
ÐBEC exterior angle

1 Non-deductive analysis step as in Prop. 31; because the reverse step, used in the synthesis, is a 
valid theorem, we can conclude, in the analysis, that B lies on that hyperbola. For if it does, the 
preceding steps of the analysis can be deduced.
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Þ ÐBEC = 2ÐBAE = 2ÐBAC
on the other hand: DBED ≅ DBCD [I, 4]
Þ ÐBEC = ÐECB = ÐACB

3. Symperasma
We have shown that in DABC, ÐACB = 2ÐBAC, and arc AC is divided by B in the 
ratio 2:1 [VI, 33].

Corollary (Not in Pappus’ Text)

With Prop. 34a, one can trisect an acute angle ÐAMC.
Choose A on AM; draw circular arc with radius AM; it intersects MC in C (with-

out loss of generality, C can be so chosen); draw chord AC. With Prop. 34a, construct 
B, dividing arc AC so that arc AB = 2 arc BC. Obviously, ÐBMC = 1/3ÐAMC.

7.4.2 Proof Protocol Prop. 34b

Task: On a given arc AC over chord AC, find B so that arc AB = 2 arc BC

1. Analysis
1.1 Assumption: B has been found (ÐACB = 2ÐBAC).
1.2 Apagoge
Extension of configuration: draw AB, BC; bisect ÐACB, intersecting AB in D; 
draw perpendiculars DE, ZB.
1.3 Resolutio
B is given
[We will need AD = DC, therefore we must have AE = EC1]
E is given [midpoint of AC]
AC: CB = AD: DB [VI, 3]
AD: DB = AE: EZ [VI, 2/V, 16]
ÞAC: CB = AE: EZ, i.e., AC: AE = CB: EZ [V, 16]
since we must have AC = 2AE, CB must be 2EZ
and BC2 = 4EZ2

BC2 = BZ2 + ZC2

Þ (BZ2 + ZC2): EZ2 = 1: 4
This ratio is given.
Because E and C are given as well,
and BZ is to be a perpendicular onto AC,
B lies on a uniquely determined hyperbola2:

1 Diorismos, not given explicitly in Pappus’ text.
2 As in the case of Props. 31 and 34a, this last step of the analysis is non-deductive; its validity 
rests on the fact that the converse is a valid theorem.
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on the hyperbola with focus C, directrix ED,
and eccentricity factor 2.1

2. Synthesis (reconstruction, not in Pappus’ text)
2.1 Kataskeue/ekthesis
Bisect AC in E, draw perpendicular ED.
Construct hyperbola with focus C, directrix ED,
eccentricity factor 2, as described in Coll. VII, #237 Hu.
Let B be the point of intersection between arc AC and the hyperbola. Then B 
divides arc AC in ratio 2:1.
2.2 Apodeixis
2 EZ = BC
[hyperbola: 4EZ2 = BZ2 + ZC2

but BZ2 + ZC2 = BC2, (I, 47)]
DABZ ∼ DADE; DB: AD = EZ: AE [VI, 2]
Þ DB: AD = BC: AC [construction of E]
DC bisects ÐACB in DABC [VI, 3]
Þ ÐACB = 2ÐACD
By construction, ÐCAB = ÐACD
[I, 4 for triangles AED, CED]
This means that arc AB = 2arc BC [VI, 33].

1 Coll. VII, #237 Hu, Jones (1986a, I, pp. 365–369, # 316–317) constructs such a hyperbola. Its 
points B fulfill the conditions and proportions analyzed above. Therefore, we can conclude in the 
analysis that B lies on this hyperbola.
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8  Props. 35–38: General Angle Division and Applications

The transition to the general angle division implies a transition from solid to linear 
geometry. This is explicitly mentioned by Pappus. Some linear problems will arise 
from generalizing a plane or solid problem, and this is the case for the angle division.1 
The connection to problems of the second, and even the first kind remains 
transparent; in fact, Props. 37/38 is an analogue to IV, 10/11. Pappus makes no 
attempt to single out, via diorismos, which of the general cases would become solid 
or plane. The introductory sentence to Props. 35–38 even suggests that Pappus 
thought the character of a problem is sufficiently established when an analysis leads 
to conic sections: the problem is then taken to be solid in general. Again, this has 
consequences for the evaluation of analysis as a technique to determine the appro-
priate level of a problem/theorem in 42–44.2 Apparently, it is limited in power 
and application, and regularly only used “after the fact,” i.e., to subject existing 
arguments to critical evaluation.

context: angle division, regular polygon construction, generalization of lower level problems.
source: Nicomedes (?).3

means: I, II, III, IV, VI, XII, 2, symptoma of quadratrix and spiral.
method: synthesis for 35; reduction to 35 (analysis only) for 36–38.
format: problems.
historical significance/reception: /.
embedding in Coll. IV: motif “symptoma-mathematics of quadratrix and spiral”: Props. 19–22 and 
26–29, motif “angle section”: Props. 31–34, motif “relation of arc to straight line”: Prop. 26.
purpose: illustrate how linear problems arise from lower-level ones by generalization, in 
the context of mathematics of the third kind.

1 Recall cube multiplication, Prop. 24: if Pappus thought it is analogous to general angle division, 
i.e., linear as a result of generalization, he was mistaken. He is, however, correct in his assessment 
that the general angle division is “linear.”
2 For singling out the plane and solid cases of general angle division, one would need an instrument 
comparable in power to Galois theory. As mentioned in the introduction to 31–34, Gauss was able 
to single out the plane cases. I know of no attempt for solid cases.
3 Procl in Eucl. 272 Friedlein associates Nicomedes with a systematic study of the properties of 
the quadratrix. So Nicomedes is a possible source for Props. 35–41; cf. also Iambl. apud Simpl. in 
Cat. 192 Kalbfleisch, 65b Brandis. Within the present commentary, we cannot explore the hypoth-
esis that Props. 35–41 are in fact taken from Nicomedes’ book on the quadratrix. But that is at 
least a plausible possibility. Quite a number of connections between 25–27 and 35–41 can be 
detected, beyond the use of the symptoma of the quadratrix.

H. Sefrin-Weis, Pappus of Alexandria: Book 4 of the Collection, 
Sources and Studies in the History of Mathematics and Physical Sciences, 
DOI 10.1007/978-1-84996-005-2, © Springer-Verlag London Limited 2010
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8.1 Prop. 35: Angle Division

The close connection between the motion-generated quadratrix and (inscribed) 
spiral manifests itself nicely in the close analogy of the angle divisions that the 
curves entail. Compare the following parallel proof protocols.

8.1.1 Proof Protocol Prop. 35

35a Quadratrix

Start with an arc LT, to be divided in a given ratio a:b
[implicit diorismos, not mentioned: to use the quadratrix, arc LT has to be at most 
a quadrant; otherwise, bisect, and compose after construction is complete]
1. Kataskeue

Complete the quadrant BKLT, inscribe the quadratrix KAC.
Draw the perpendicular AE onto BC.
Divide AE in Z, so that AZ:ZE = a:b [VI, 9].
Draw the parallel ZD to BC.
Draw the perpendicular DH onto BC.
BD intersects the arc BKLT in M.
M solves the problem.

2. Apodeixis
Arc KT:arc LT = KB:AE, arc KT:arc MT = KB:DH
  [symptoma of the quadratrix]
Þ arc LT:arc MT = AE:DH = AE:ZE [V, 22]
Þ arc ML:arc MT = ÐABD:ÐDBC = AZ:ZE = a:b
  [VI, 33, V, 17, constr. of AZ:ZE]

35b Spiral

Start with an arc AC, center B, to be divided in H in a given ratio a:b

1. Kataskeue
Complete the circle through A, C with center B.
Inscribe in it the spiral with generator CB.
It intersects AB in D.
Divide BD in E so that DE:EB = a:b [VI, 9].
Draw the circle through E, center B.
It intersects the spiral in Z.
BZ intersects arc AC in H.
H solves the problem.

2. Apodeixis
Circumference:arc AC = BC:BD.
Circumference:arc HC = BC:BZ
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[symptoma of the spiral]
Þ arc AC:arc HC = BD:BZ = BD:BE [V, 16, V, 22]
Þ arc AH:arc HC (= ÐHBA:ÐCBH) = DE:BE = a:b
   [VI, 33, V, 17, construction of 

ED:BE].

8.2 Prop. 36: Equal Arcs on Different Circles

8.2.1 Proof Protocol Prop. 36

Start with two circles, centers E and Z, the one with center E is assumed to be the 
larger one. The task is to cut off arcs of equal length.
Reduction to Prop. 35 (analysis)

1.1 Assumption: problem solved, arc AHB = arc CD (in length)
1.2 Apagoge: extension of configuration;
in the circle with center Z, construct arc CT,
similar to arc AHB; then arc CT < arc CD.
1.3 Resolutio
Arc AHB:arc CT = d1:d2
[equal parts of circumferences, cf. * in the proof of Prop. 26]
Þ arc AHB:arc CT is given
Þ arc CD: arc CT is given [arc CD = arc AHB].
The problem has now been reduced to Prop. 35.

Sketch for a construction (not in Pappus): In the smaller circle, choose a sector 
CZD arbitrarily. With Prop. 35, divide it in the ratio of the diameters (d1:d2) of the 
given circles in T, and construct, in the larger circle, a sector AEB, similar to sector 
CZT (same angle). Then arc AB:arc CT = d1:d2 = arc CD:arc CT, therefore, arc AB 
= arc CD [V, 9].

8.3  Props. 37 and 38: Regular Polygon with Any Given 
Number of Sides

Prop. 37 constructs an isosceles triangle with angles at the base in a given ratio to 
the angle at the vertex (cf. IV, 10). In Prop. 38, the inference is drawn that we can 
inscribe in a circle a regular polygon with any prescribed number n of sides. For this 
task reduces to the construction of an isosceles triangle with a fixed vertex angle 
(2p/n), thus a given ratio of vertex angle to base angles (cf. IV, 11). As one can see, 
these two propositions are very closely related to the construction of a regular 
pentagon in book IV of the Elements, and also, more loosely, to the other constructions 
in IV. It is not at all unlikely that the question about general angle division originally 
arose in the context of attempts to inscribe regular polygons into a circle (cf. above, 
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remarks on angle trisection in the introduction to Props. 31–34). If so, Pappus’ 
choice of examples for mathematics of the second, and the third kind, as expanding 
beyond the generic limits of plane geometry was well-taken, and yields a well-
rounded portrait. With the final pair of propositions, on general angle division, we 
return to a question that goes back to the beginning of a developmental line.

8.3.1 Proof Protocol Props. 37 and 38

1. Protasis
Task: construct an isosceles triangle with the angles at the base in a fixed ratio to 
the angle at the vertex.
2. Analysis

2.1 Assumption: DABC solves the problem.
2.2 Apagoge: extension of the configuration.
Extend AB, complete semicircle ACD, radius BC = BA; join CD.
2.3 Resolutio
ÐCAB:ÐABC is given [by hypothesis, ÐB is vertex angle].
ÐABC = 2ÐADC [III, 20].
Þ arc CD:arc AC is given [VI, 33].

The situation has been reduced to the construction of a semicircle ACD, to be 
divided in a given ratio in C. By appeal to Prop. 35, C is given, and the sought 
triangle is given in kind.

3. Synthesis
3.1 Kataskeue/Ekthesis
Draw EH, divided in Z in the given ratio; bisect ZH in T.
Construct a semicircle over AD, center B.
Divide the arc AD in C so that arc CD:arc AC = EZ:ZT. [Prop. 35];
D ABC solves the problem.
3.2 Apodeixis
ÐDAC:ÐADC = EZ:ZT [by construction]
Þ ÐDAC:ÐABC = EZ:ZH [III, 20]

Since any regular polygon in a circle can be divided into isosceles triangles where 
the angles at the base have a given ratio to the vertex angle, we can, with Prop. 37, 
inscribe a regular polygon with any prescribed number of sides into the circle.
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9  Props. 39–41: Further Results on Symptoma-Mathematics 
of the Quadratrix (Rectification Property1)

This second set of problems of the third kind exemplifies mathematics when the 
problem is “linear” by nature. Props. 39–41, like Props. 35–38, belong to the second 
path of development for the mathematics of motion curves, the analytical track. 
The analysis focuses on reduction to the symptoma of the quadratrix, and to the 
rectification property in Prop. 26. A certain tendency for setting out the quadratrix 
in a separate auxiliary figure and arguing “parallel” can be detected, but with the slim 
observation basis we have, we cannot be certain that this is typical.

context: ratio of arcs to straight lines; rectification of circle; commensurability for arcs.
source: Nicomedes on quadratrix (?).
means: VI, X (the latter for Prop. 41), Prop. 26.
method: analysis-synthesis for 39 and 40, synthesis for 41.
format: problems.
historical significance/reception: /.
embedding in Coll. IV: motif “quadratrix and properties”: Props. 26–29; motif “symptoma-
mathematics of motion curves”: Props. 19–30; motif “incommensurable magnitudes”: 
Props. 2/3.
purpose: illustrate symptoma-mathematics of the third kind, where the problem is “by 
nature” linear (does not allow for plane/solid sub-cases).

9.1 Prop. 39: Converse of Circle Rectification

9.1.1 Proof Protocol Prop. 39

Task: find a circle, the circumference of which is equal to a given straight line c.
1. Analysis

1.1 Assumption: circle a has been found,
with circumference c laid out as a straight line.
1.2 Apagoge: extension of the configuration
Construct a circle b and rectify it with the quadratrix [Props. 26/27].
Result: straight line d, equal to the circumference of b.
1.3 Resolutio
radius (a): radius (b) = c:d
[XII, 2, Circ mens I, V, 15, cf. * in proof protocol for Prop. 26]
c:d given; radius (b) given [by construction]

1 My assessment differs slightly from Knorr’s, who mentions these propositions in passing and 
connects them to the angle division property of the quadratrix (Knorr 1989, p. 214).

H. Sefrin-Weis, Pappus of Alexandria: Book 4 of the Collection, 
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Þ radius (a) given [Data 2].
2. Synthesis (not in Pappus1)

2.1 Kataskeue
Construct a circle b with radius r
Rectify the circle with quadratrix, resulting in straight line d [Prop. 26]
Construct r’ with r:r’ = d:c [VI, 9].
Draw the circle a with radius r’.
It solves the problem.
2.2 Apodeixis
Circumference(b):circumference(a) = r:r’
[XII, 2, Circ. mens. I, V, 15, cf. * in proof protocol Prop. 26]
r = r’= d:c [by construction].
d = circumference (b) Þ circumference (a) = c [V, 9].

9.2  Prop. 40: Construct a Circular Arc over a Line Segment, 
in a Given Ratio

Prop. 40 obviously has a connection to the following longstanding question in 
Greek geometry (cf. above, excursus on squaring the circle): are circle and straight 
line comparable, i.e., can they be brought into a ratio? Note that the ratio for Prop. 
40 underlies certain restrictions. In modern notation, it is obviously >1:1, because 
the arc is always longer than the chord. Because of the set-up of the argument used 
in Prop. 40, the ratio is also at most p:1 (no angles larger than 180° are considered in 
Greek geometry).

9.2.1 Proof Protocol Prop. 40

1. Analysis
1.1 Assumption: problem solved
arc AB:AB equal to the given ratio
1.2 Analysis proper

1.2.1 Extension of configuration
C midpoint of arc AB, X center of the circle, draw XC,
R on AB;
Auxiliary figure: quadrant ZHE of an arbitrary circle,
quadratrix ZK, ÐEHL, equal to ÐCXA; points L, M,T, N.

1 cf. Co p. 108/109 F
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1.2.2 Apagoge
Arc AB:AB = arc AC:AR = arc LE:LM
[by construction1]
arc LE:TN = LH:HK
[symptoma of the quadratrix, Prop. 26]
D HLM with TN || LM
TN:LM = TH:LH  [VI, 4]
arc LE:LM = TH:HK  [V, 16, V, 23]

1.3 Resolutio
arc AB:AB given Þ TH:HK given
HK given in length  [quadratrix]
Þ TH given in length  [Data 2]
T on a uniquely determined circle, as well as on the quadratrix
Þ T given Þ HL given Þ ÐEHL given Þ ÐCXA given
CX given in position [perpendicular bisector of AB]
A given, AX given in position  [Data 29]
Þ X given Þ arc AB given

My reading of the final steps as presented here differs from Hultsch’s (235, #3 Hu). 
He argues as follows: A is given; ÐAXB is given, therefore B is given (Data 90). 
Therefore, AB is given in position and length (Data 26); therefore, arc AB is given 
in length. In my opinion, this reading has two weak points. First of all, it tries to 
establish that AB is given, but AB is already postulated in the formulation of the 
problem. Furthermore, I would argue, it is not enough to show that arc AB is given 
in length. For that is already clear when TH is shown to be given. One has to show 
that arc AB is given in position as well in order to construct it.

2. Synthesis (reconstructed, only sketched in Pappus)
2.1 Kataskeue
Quadrant ZHE with quadratrix ZK.
Choose D on HZ so that DH:HK equals the given ratio [VI, 9].
Draw the circle with radius DH, center H.
It intersects the quadratrix in T.
Draw the perpendicular TN, join TH (intersecting quadrant in L), and the 
perpendicular LM.
Construct the perpendicular bisector RX of AB (R on AB).
Transfer ÐHTN to A, onto AB (vertex A).
It intersects RX in X (i.e., X can be so chosen).
Draw the arc AB, through A, with center X.
By construction, it passes through B.
Arc AB solves the problem.

1 One has to appeal to the proposition used already in Props. 26, 36, and 39: XII,2, Circ. mens I, 
V, 15: arcs in the same ratio as radii. Then consider similar triangles, half-chords, perpendicular 
on chord; the ratio of radii can be replaced with the ratio of half-chords. Cf. * in the proof protocol 
of Prop. 26.
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2.2 Apodeixis
DARX ~DHTN ~DHLM
Þ ÐAXR = ÐLHM
Þ arc AC:AR = arc LE:LM  [VI, 33]
arc LE:LM = TH:HK  [quadratrix]
TH = DH
Þ arc AB:AB = arc AC:AR = DH:HK (the given ratio)

9.3 Prop. 41: Incommensurable Angles

The incommensurability motif connects this proposition to Props. 2/3: construction 
of two irrational lines. Properly speaking, incommensurability was defined for 
straight lines, and it involves consideration of ratios. Since the symptoma of the 
quadratrix, together with its rectification property, establishes an equivalence 
between the ratio of two arcs and that of two straight lines, it can be used, in quite 
an obvious way, to define “incommensurable” and “irrational” angles (or arcs).

Set out a quadrant and a quadratrix in it. To construct two incommensurable 
angles, simply set out two incommensurable lines BH and BT on the side of the 
quadrant, and corresponding perpendiculars ND, KE, as well as angles ÐEBZ, 
ÐDBZ, via the quadratrix. Then the ratio of the arcs (or angles) will be equivalent 
to KE:ND, i.e., to BH:BT, by the symptoma of the quadratrix. And since BH, BT 
are incommensurable, so are the angles.
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10  Props. 42–44: Analysis for an Archimedean Neusis/Example 
for Work on Solid Loci

10.1 General Observations on Props. 42–44

An Archimedean neusis from SL was mentioned in the meta-theoretical passage in 
connection with a violation of the homogeneity criterion. It was claimed that the 
neusis is solid, where a plane argument might have sufficed. In Props. 42–44, Pappus 
employs geometrical analysis in order to show that the Archimedean neusis is really 
solid, and also to present a solid argument that is, in his view, useful for many solid 
locus problems. That is, Props. 42–44 are once again designed from a methodological 
point of view, in a twofold way. First of all, they illustrate what was meant by the 
homogeneity criterion for methods of argumentation, and how one would proceed 
when demarcating plane from solid geometry via analysis. The neusis discussed in 
Props. 42–44 is related to the ones used in SL 5 –9, closest to SL 9. It is indeed solid, 
although Pappus’ argument is not quite able to prove this, because geometrical 
analysis is limited in this regard; see discussion below. It seems as though Descartes 
was quite familiar with Pappus’ attempts. His criteria for determining the appropriate 
level of a problem, though not as far-reaching as he himself hoped, connect to 
Pappus’ attempts here and are vastly superior.1

Besides being an illustration, or implementation, of the method to test an argu-
ment for concurrence with the homogeneity criterion, Props. 42–44 are also meant 
to be exemplary, a model, or prototype for how one might deal with a whole class 
of solid problems. A certain tendency toward algorithmization can be detected. It is 
in line with similar observations on Props. 31–34 (cf. introduction to Props. 31–34, 
analysis in 31–34). Both groups together spell out in a rather concrete way, with a 
methodological emphasis, what Pappus stated about the solid kind of geometry, and 
its differentiation from plane geometry in the meta-theoretical passage.

context: homogeneity criterion, analysis used to determine level of an argument; solid 
locus problems/theorems.
source: Pappus, based partially on work by Aristaeus.
means: Data, II,V,VI, Con. I.
method: analysis.
format: problem.
reception/historical significance: no reception is attested, but Props. 42–44, together with 
31–34 and a few examples from Con. V are our only examples for ancient mathematical 

1 Cf. Descartes (1637, pp. 383–402) (180–219 Smith/Latham). In the expanded Latin edition of 
1659 (Schooten), Prop. 43 is discussed on pp. 174 ff., whereas pp. 34–35 report some Cartesian 
remarks on the division of problems of the second from those of the third degree.
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arguments with solid loci; the arguments in the extant Konika have the synthesis only. 
Thus, 42–44 are important as historical source texts. Also, Props. 42–44 are testimonies for 
a use of Greek geometrical analysis which has so far been underestimated: it could be 
employed, systematically, to determine the inherent level of an already existing mathematical 
argument, i.e., it could be employed for methodological evaluation.
embedding in Coll. IV: connection to the remark on an Archimedean neuses in SL, in the 
meta-theoretical passage; motif “Archimedes”: 13–18, 19–22, 30, 35; motif “analysis of 
solid loci”: 31–34; motif “analysis as a method in connection with symptoma-mathematics”: 
28/29; motif “analysis”: 4–12; 31–34; motif “neusis”: 23–25, 31–33.
purpose: illustrate how analysis can be used to determine the level of a theorem or problem, 
when that level is not obvious from the means employed explicitly; illustrate an exemplary 
path of reasoning when working with solid loci.
literature: Baltzer apud Hu II, pp. 1231–1233, Heath (1921, II, pp. 386–388), Jones (1986a, 
pp. 573–577), Knorr (1978b, 1978a, 1986, 1989, p. 228 with #25 1), Tannery (1912, I, 
pp. 300–316), Zeuthen (1886, pp. 263–265).

In what follows, some general remarks will be given on the following topics:

1. Background of 42–44: Archimedean neusis, criticized for being solid.
2. Purpose of 42–44: show, via analysis, that the neusis is solid; also, the analyses 

are said to be useful for many other solid locus problems (i.e., they are examples 
for how to work in the second kind of geometry).

3. Analysis as a criterion for determining the level of a problem: its ingredients.
4. Limits and gaps for the analysis-criterion.
5. Typifi cation as a feature of analysis of solid loci.
6. Aristaeus as a possible source for 42–44.
7. Possible alternatives, avoiding the neusis, for SL 18.

10.1.1 Criticism of Archimedes’ Use of a Neusis in SL

Archimedes’ SL contains, as 1–11, preliminary lemmata on the spiral as motion curve. 
They are separated off from the treatise proper, as “lambanomena,” and used in SL 
12ff. as quasi-archai, with the definitions placed between these lambanomena and the 
actual treatise. SL12 ff. become symptoma-mathematics, meeting in themselves the 
most rigorous standards for geometrical argumentation, and avoiding any reference to 
motions. SL 5–9 use neuses, without giving an explicit construction.2 These neuses are 
indeed solid, i.e., they require for their construction conic sections or solid loci, unless 
additional limiting conditions apply. SL 18 appeals to the neuses in SL 7 and SL 8 
within an exhaustion proof.3 The criticism voiced by mathematicians after Archimedes 

1 The last-mentioned reference concerns a solid neusis by Al –Jurjani, which, according to Knorr, 
is very close to Props. 42–44 and to the Archimedean neuses in SL 5–9. Al-Jurjani’s complete 
solution is purely synthetic, whereas Pappus only provides an analysis, given that his purpose is 
not an actual solution of the neusis per se.
2 Heath argues that since Archimedes uses only existence, not construction, his argument is not solid; I 
doubt that this line of reasoning would have impressed an ancient mathematician, since existence argu-
ments by way of appeal to the continuity principle were not used in geometrical argumentation.
3SL 18: The circumference of a circle circumscribed around a spiral of first rotation is equal in 
length to the subtangent for a tangent in the endpoint of the first rotation.
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is anachronistic in the following sense: it could only be formulated after Apollonius’ 
work on conic sections and on plane versus solid analysis which made a systematic 
discrimination between plane and solid locus problems (including plane and solid 
neuses) possible. The criticism is therefore certainly post-Archimedean. Archimedes 
himself could not have used the standards it rests upon, and probably considered 
neuses themselves as a legitimate argumentative tool.1 But the objection is, in prin-
ciple, not without base, or beside the point: the neuses in SL 5–9 are solid, in retro-
spect, if you will. Another question is whether it is possible to prove SL 18 with 
plane means only. See below.

10.1.2 Pappus’ Purpose in Props. 42–44, and the Content of 42–44

As Pappus declares, he intends to give an analysis for (one of) the Archimedean 
neuses, so that the reader will not be puzzled when going through Archimedes’ book 
on spiral lines. In light of the meta-theoretical passage, this obviously means that 
Pappus intends to show that the neuses are solid, and to do so via analysis. And this 
is indeed what happens in Props. 42–44. Furthermore, Pappus claims that the argu-
ments he is going to give are useful for many other solid problems, too. On this, see 
below, #5. Pappus’ intentions in 42–44 have often been misunderstood. Hultsch and 
Eberhard were of the opinion that 42–44 either do not target Archimedes, or do not 
qualify as critical evaluations (cf. Hu ad locum). It is true that 42–44 do not specifi-
cally address SL 7, but the argument, though most closely related to SL 9, is appli-
cable in an analogous way to SL 7 and 8. It is exemplary for an analysis of 
Archimedes’ neuses. Perhaps Pappus chose, out of several possible analyses, the one 
that best serves for “many other solid problems”. He chose one that is most closely 
connected to the neusis for the angle trisection (which is, in fact, one of the two 
problems to which all solid problems reduce). Knorr (1978) is correct in pointing out 
that the neusis in 42–44 is most closely connected to the neusis for angle trisection. 
However, he furthermore claims that the argument is therefore not directed at 
Archimedes’ neuses in SL, but at the neusis in Lib. ass.VIII. This almost amounts to 
assuming that Pappus was not aware which book by Archimedes he was looking at. 
Against Hultsch, Eberhard, and Knorr, and with Zeuthen, Tannery, Heath, and 
others, I regard it as certain that Props. 42–44 target Archimedes, SL (which is not 
to say anything yet as to their validity). Furthermore, Knorr (1978, 1978b, 1986) 
reads Props. 42–44 as a misguided attempt on Pappus’ part to provide a plane con-
structive solution for the neusis. The fact that the analyses in 42–44 do not provide 
such a solution, but would lead straightforwardly to a solid one, is taken by Knorr as 
a sign of utter confusion on Pappus’ part. It must be stated that, at least in this respect, 
Knorr’s reading has no basis in the text. Pappus simply does not announce, and does 

1 Cf. above, remarks on neusis in the introduction to Props. 23–25.
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not attempt, a plane solution in Props. 42–44.1 He announces, and gives, an analysis. 
The analysis leads to conics/solid loci, which is in complete accordance with what 
Pappus has said about the neuses in the meta-theoretical passage. The majority of 
scholars have acknowledged the solid, and intentionally solid character of Pappus’ 
arguments in Props. 42–44, and the fact that they target SL 5–9.

10.1.3  Analysis in 42– 44 as a Criterion for Establishing 
the “Solid” Nature of the Neusis

Props. 42 and 43 give an apagoge only of an analysis. Under certain general conditions, 
a certain point must lie on a hyperbola (Prop. 42) and on a parabola (Prop. 43). 
No diorismos to specify plane, and filter out impossible cases is given, and no resolutio, 
either. Prop. 44 then proceeds to the analysis of a neusis. This analysis leads to the 
conditions investigated in Props. 42 and 43. The crucial point lies on a parabola and 
on a hyperbola. It is constructible via solid loci, in general. Note, once again: an 
analysis, and an analysis only is presented; not a solution, and that is also not the 
point. No synthesis, no construction, no diorismos, and no proof are forwarded. 
A diorismos, as reconstructed, e.g., in Tannery (1912) and in Baltzer apud Hu,2 
reveals that a complete analysis, with the intent of ultimately constructing the neusis, 
leads to several cases, some solid, some plane, some unsolvable. Pappus is content 
to have shown that the neusis is, by nature, and unless specifying conditions are 
brought to bear, solid, because geometrical analysis leads to solid loci.3 Has he shown 
that, however, and if so, in what sense?

10.1.4 Limits and Gaps in the Pappus’ Account

In fact, Pappus’ criterion is not sufficient to prove that the neusis is solid. His ana-
lytical method does, in principle, not work infallibly in a general way. For Greek 
geometrical analysis works on specific configurations only, and one can never guar-
antee, a priori, that one has used all the information that might lead to a specifying 
condition, pushing the level of the problem down. And this means that analysis can 
successfully prove demarcation of the level of a problem “upward” only, in this case 
show that the problem, if solvable at all, is at most solid. It cannot prove that all 
information has been exhausted, and therefore it cannot demarcate “downward,” i.e., 
show rigorously that no plane method would suffice. That, however, was the goal. 

1 Cf. a similar misunderstanding of the analyses in Props. 28/29 as attempted solutions.
2 Cf. Tannery (1912, p. 307/308), Baltzer apud Hu (Hu appendix, pp. 1231–1233). A complete 
analysis, with the intent of ultimately constructing the neusis, leads to several cases, some solid, 
some plane, some unsolvable; Zeuthen (1886, pp. 263–265) gives a complete analysis-synthesis, 
with ancient means; cf. also Heath (1921, II, pp. 386–388).
3 Compare the introductory phrase to Props. 35–38. Pappus seems to believe that an analysis leading 
to conics actually shows that a theorem is solid.
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So what has Pappus achieved with his analysis? He has achieved a high degree of 
plausibility. He has clarified the situation at hand, provided grounds for an argument 
to either proceed to a constructive proof of the neusis, or to specify further. And this 
is essentially what geometrical analysis can do, even within mathematics (cf. above, 
excursus on analysis-synthesis in the introduction to Props. 4–12). It does not provide 
a proof, it provides grounds for argumentation.

For the meta-theoretical question here, Pappus (or whoever produced such 
analyses of existing neusis arguments) would have to count on it that if additional 
information is available in the configuration, someone else will detect it, and show 
that one can push the level of the problem one down in this specific case. If over a 
longer period of time (and the time between Apollonius and Pappus is quite long) 
no one has come up with an argument that shows that additional restrictive conditions 
are implied, the thesis gains plausibility. The method expects, it seems, an argu-
mentative context of continued investigation and discussion. It does not give a final 
answer in the sense of a proof; such an answer would be reached only if we get to the 
plane level. Still, it is not useless. It may very well reflect what actually did go on 
in Hellenistic mathematics, in the field of the investigation of solid locus problems 
and in meta-theory via analysis (investigation in the framework of a well-defined 
discourse, with standard tools and topoi, but both open-ended and oriented toward 
concrete problems, with proof character assigned only to synthetic arguments, 
where the truth and generality of a conclusion can be asserted, but remains relative 
to the principles set down as starting points). Such a view on the nature of analysis 
for meta-theoretical questions is perfectly in line with an understanding of inner-
mathematical analysis as a structured and systematic investigative tool that does not 
have proof character, but yields material insight into the constitutive ingredients of 
a question at hand (as a heuristic method, essentially). It is not necessary that analysis 
have proof character in order for it to be a successful and valid mathematical tech-
nique. Neither is that required on the meta-level. Geometrical analysis as a means 
to determine the level of a problem is not watertight. It is, however, practicable and 
provides argumentative grounds both for the claimed level of a proposition and for 
further investigation.

One way of determining “downward” in a concrete case would be to actively 
search for conditions under which the problem would become plane. Then one 
would be able to “capture” some of the plane cases. But again, as long as one can-
not be sure one has exhausted all possible additional specifications, one would not 
be sure about a particular case, unless one knows it is plane. Plane cases of the 
above neusis exist, as Tannery has shown, and they are accessible to the means 
available to the ancients. According to Jones (1986, p. 530) attempts at separating 
out plane cases from higher general problems were made (though they could not be 
made in a completely exhaustive systematic way, and were only satisfactory if lead-
ing to a plane locus for a particular case). Above, in the discussion of Prop. 32, an 
example for a plane case differentiated out was mentioned. It is discussed in 
Zeuthen (1886), and in Descartes, as a case where a solid locus itself reduces to a 
plane locus (188–191 Smith/Latham, cf. above, comments on Prop. 32, plane case). 
It is not at all implausible that Apollonius devoted much of his energies and attention 



306 II, 10 Analysis for an Archimedean Neusis

to a project of systematically exhausting all construction problems that are plane, 
and that would mean that one has “proved,” for any other problem, that it is (at 
least) solid. This way, one might proceed, on the basis of an exhaustive classifica-
tion of all possible concrete plane cases, toward a rigid demarcation between plane 
and solid problems. Perhaps this is what motivated Apollonius in his minor works. 
The question cannot be pursued here.

Another limitation of Pappus’ method of determining the appropriate level of an 
argument is that it was apparently only applied to the question of plane versus solid 
arguments. There are no traces, and Pappus also makes no attempt in this direction, 
of an operationalization of analysis for the demarcation downward for problems of 
the third kind (cf. above, Props. 35–38). Apparently, there were only techniques 
available that moved generally in the area where Apollonius had also worked: plane 
and solid loci, and their investigation via analysis, with a view to finding the 
simplest construction means possible. While analysis was used for working on loci 
on surfaces (extension of the field of application for Apollonian techniques), this 
project did not get far enough to explore systematically the connections to the solid 
loci, or the plane loci.

Finally, the following gap in Pappus’ account (though not in his method of analysis 
as a criterion for the level of an existing problem solution) has to be acknowledged. 
Perhaps it is due to the fact that the manuscript is damaged and incomplete at the 
end of Coll. IV. There is no discussion of the plane problem in Apollonius, where 
Apollonius uses a solid construction: normal to a parabola in Con. V, 58/62. This 
problem was mentioned alongside with Archimedes’ neusis in the meta-theoretical 
passage.1

10.1.5 Solid Loci in Props. 42–44, in Comparison to Props. 31–34

Pappus claims that the analyses in Props. 42–44 are useful for many solid problems. 
This is not an implausible claim. According to Zeuthen (1886, p. 272) and Knorr 
(1986, pp. 300 ff.), investigation of neuses was an important part of ancient work 
with conics. Furthermore, the neusis is closely related to the neusis for angle trisec-
tion in Lib. ass VIII. Generally speaking, since all solid problems reduce to either 
angle trisection or two mean proportionals, reduction to standard configurations – of 
which the neusis in Props. 42–44 could very well have been one – related to one of these 
problems would have been an effective strategy in working on solid problems.2 
On the treatment of solid loci compare also the remarks on analysis in Props. 31–34 in 

1 Zeuthen (1886, pp. 284–288) and Tannery (1912, pp. 302–305) give a construction, and an argument 
why the problem would be classified by Pappus as plane. For an argument, with ancient means, 
showing that the locus in question becomes plane see the above-mentioned passage from Zeuthen, 
and Knorr (1986, pp. 319–321).
2 Zeuthen (1886, pp. 272–278) gives a survey of problems for which a complete analysis-synthesis 
for 42–44 might have, or could have, been used. No ancient sources survive.
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the introduction to Props. 31–34. Perhaps Pappus’ “standard” analysis, claimed to 
be useful for a number of solid problems, is even representative of how the ancient 
mathematicians worked in this field.

Props. 31–34, and 42–44 are our only remaining sources on ancient analytical 
treatment of solid loci. Of course, Pappus may have given a very idiosyncratic 
picture, but it may have been one that could make sense of the actual practice. Thus, 
it would seem to be a reasonable task to look for common features in these docu-
ments from Pappus, as parts of his overall portrait of solid geometry. Such features 
may have been typical for ancient work on solid loci in general. A detailed discus-
sion cannot be given here. In my opinion, it is not implausible that it would result 
in a picture that fits with Zeuthen’s 1886 book on the ancient treatment of conics in 
many essential respects. The following general observation must suffice for the 
purposes of the present commentary. It looks as though reduction to standard catalog 
configurations was a typical strategy. This reduction works with the symptomata of 
conics (not the definitions). There is a certain preference for reduction to Con. I: 
basic symptomata of conics. One decisive point is singled out, and is shown to be 
constructible as the intersection of a conic section and either a circle or another 
conic section. This strategy would obviously contribute to a procedural standardiza-
tion, and facilitate the reduction to standard examples or configurations. A problem 
can be brought to the point, as it were, and there is a good chance that the resulting 
reduced configuration was captured in one of a set of standard examples (specific 
parallels between Props. 31–34, and 42–44).1

The last step of the analysis is non-deductive, but valid because the reverse in 
synthesis would be an appeal to a theorem. The same characteristics were observed 
in the analysis of Props. 31 and 34.

In detail, the parallels are closest to 34a; the same phase of analysis is used in 34a 
and 42/43, and the reduction is to the same set of basic symptomata: Con. I, 20/21.

10.1.6 Aristaeus as a Possible Source

Pappus himself claims responsibility for 42–44 in the form in which he presents it. 
However, this does nor exclude that he selected and edited another source. For there 
are, as in the case of Prop. 34, traces of a pre-Apollonian treatment of conics/solid 
loci in Props. 42–44. Tannery (1912, p. 308), Knorr (1986, p. 323 ff.), and Jones 
(1986, pp. 572–584) have argued that Pappus used an argument by Aristaeus as 
source for his analyses in Props. 42–44. In what follows, I summarize Jones’ 
arguments. Pappus had no access to any other major comprehensive pre-Apollonian 
work on solid loci besides Aristaeus. Props. 42–44 contain only the analyses, in 
contrast to synthetic constructions already available before Apollonius (this argument 
is perhaps not entirely compelling, given that Pappus would have given only the 
analysis, even if his source had the synthesis, also). The definitions used for the loci 

1 Cf. also Knorr (1989, pp. 94–100) on Menaechmus’s cube duplications.
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coincide with the pre-Apollonian symptomata for the curves. However, this layer of 
technical vocabulary is combined with later, Apollonian terminology: (e.g., parab-
ola, hyperbola). Jones believes that Pappus himself is responsible for this fusion of 
Aristaean analyses with Apollonian techniques and labels. The situation is analo-
gous to 34a versus 34b, and this observation makes it plausible that 34a is also by 
Pappus. The degree to which Pappus (or an anonymous post-Apollonian author) 
revised the material from Aristaeus cannot be determined. It is possible that we 
have, in Props. 42–44 (much as we do in Prop. 34b) an indirect testimony on 
Aristaeus’ solid loci.

A similar picture as in Props. 31–33 and 34a/34b emerges in Props. 42–44. 
The mathematics of the second kind was analytically dominated. Apollonius’ 
contribution was the last word, the completion of the theory in this field. But his 
contributions did not completely replace the earlier work in this area. The earlier 
works, such as Aristaeus’s solid loci, remained valid and useful. In this respect, 
Apollonius’ role was unlike Euclid’s, whose Elements replaced all predecessors in 
plane geometry.

10.1.7 Alternatives for the Neusis

Though Props. 42–44 do not in fact establish this beyond doubt, Pappus and the 
Hellenistic mathematicians who evaluated Archimedes’s argument were right: the 
neuses, as employed by Archimedes in SL 18, are solid. According to Pappus, the crit-
ics also gave a proof for SL 18 using only plane means. Unfortunately, that solution, 
or purported solution, does not survive. The Hellenistic mathematicians may have tried 
to implement further limiting conditions in the neusis problems SL 7 and SL 8, as 
applied in SL18, so that they become plane, or – and that is more likely – they may 
have tried to provide a plane argument to replace the neuses altogether within the 
proof of SL 18. In what follows, I will briefly discuss two suggestions by historians of 
mathematics as to what alternatives might have been put forth.

(a) Tannery and Heath: SL 18 with plane means, avoiding the neusis
Tannery (1912) and Heath (1921) propose a reformulation of SL 181: assume that 
the circumference is already rectified, and that it has been laid out as a segment 
perpendicular to the generator of the spiral at the endpoint of the first rotation. 
Then the line connecting its endpoint with the endpoint of the generator is a tan-
gent to the spiral. As Knorr has pointed out,2 this is no longer the same theorem 
as SL 18. Among other things, it no longer answers to Pappus’ description of the 
theorem to be “saved”: find a straight line equal to the circumference of a circle. 
It is hard to see what one would gain from replacing SL 18 with this alternative. 
For further objections cf. Knorr (1978).

1 Tannery (1912, pp. 309–316), Heath (1921, II, pp. 556–561), cf. Zeuthen (1886, pp. 278–279, #2).
2 Knorr (1978, p. 81).
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(b) Knorr (1978) and Heath: change neusis argument in SL 7 and SL 8
Heath had already argued that Archimedes should not have been criticized, 
because he only assumes the existence of the neusis, not an actual construc-
tion. This amounts to saying that instead of a neusis construction, we should 
see him as operating with an implicit appeal to the principle of continuity. 
Knorr takes this suggestion a step further and argues that we could save 
Archimedes’ argument, in Archimedes’ own style, if we replace the implicit 
appeal to the continuity principle by an explicit convergence argument.1 While 
it is true that such an argument would be in line with typically Archimedean 
procedures for heuristics, and that Archimedes appears to have been experi-
menting with mathematical formulations for limiting processes, I doubt that 
Knorr’s suggestion would have satisfied the Hellenistic critics, or even 
Archimedes himself.

 (i)  There is no evidence that Archimedes’ steps toward convergence arguments 
were picked up, developed, and integrated into geometry beyond heuristics 
in antiquity. We saw that this aspect of his work on motion curves was not 
taken up. In fact, Archimedes himself eliminated all traces of quasi-mechan-
ical heuristics from the geometrical parts of his published works, giving 
orthodox exhaustion proofs, with no recourse to convergence processes, 
instead. It is very likely that Archimedes thought that the assumption that 
the neuses must exist is suffi ciently supported by the principle of continuity. 
But everyone would have granted that the neusis must exist, just as a line the 
length of the circumference must exist. That does not render a construction 
argument superfl uous. If it did for Archimedes, it would have made SL 7 and 
SL 8 themselves superfl uous. Rather than trying to “save” them this way, he 
might have eliminated them altogether, and used a convergence/existence 
argument in SL 18 directly. Thus, even if such an argument was put forth by 
a Hellenistic mathematician, in order to “save” the neuses, it is doubtful that 
such an argument would have been deemed superior to a constructive solu-
tion (even if by conics). Finally, such an argument would not have been 
judged as plane, or equivalent to a plane argument (solvable by means of 
circle and straight line) – which is what the Hellenistic mathematicians were 
looking for.

It seems as though we can, at present, not say what the Hellenistic plane argument 
for SL 18, which Pappus claimed was put forth by Archimedes’ critics, would have 
looked like. Pappus may have been wrong, it may have been invalid, or not really 
plane. In all likelihood it did not look like the suggestions put forth in secondary 
literature so far.

Let us now turn to Pappus’ analysis of the neusis, Props. 42–44.

1 Knorr (1978, pp. 93f.); cf. also Dijksterhuis (1987, pp. 139–140) on the background of SL 5–9, 
and Dijksterhuis (1987, pp. 268–274) for a reconstruction similar to Knorr’s.
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10.2 Props. 42–44: Analysis of an Archimedean Neusis

10.2.1 Proof Protocol Prop. 42

AB, CD, DE ⊥ AB, CD:DE = a:b given (assume CD ³ DE).
Claim: E lies on a uniquely determined hyperbola.

1. Apagoge
Extension of configuration:
Draw CZ ^ AB, rectangle ZDEH.
Construct ZK, ZT so that CZ: ZK = a: b, ZK = ZT [VI, 9].

2. Resolutio
T, K given; CZ: ZK given.
(CD2 − CZ2):(ED2 − ZT2) given.
EH2: (KH × HT) given.
Appeal to Con. 21 [converse, non-deductive1], yields:
E must lie on the hyperbola through T with diameter TK,
latus rectum t (t:HK = EH2:(TH × KH) ), and ordinates parallel to AB.

10.2.2 Proof Protocol Prop. 43

AB given in length and position, DC ⊥ AB, AC × CB = t × CD (t given). Claim: 
Then D lies on a uniquely determined parabola.
1. Apagoge

Extension of configuration:
Bisect AB in E.
Construct EZ, Z so that t × EZ = EB2 [II, 14].
Rectangle DHEC.

2. Resolutio
Z given, EZ given; by construction: EB2 = t × EZ given.
EC2 = t × ZH = DH2.
Appeal to Con. I, 20 [converse, non-deductive2], yields:
D must lie on the parabola with vertex Z, diameter EZ,
parameter t, and ordinates parallel to AB.

10.2.3 Proof Protocol Prop. 44

The text of Prop. 44 is badly damaged. As in the translation, I follow the recon-
struction by Hultsch, drawing on his corrected diagram in the appendix to Hu 
(pp. 1231–1233). Baltzer’s corrections are implemented there.

1 Cf. Props. 31 and 34a; there, too, the last step of the analysis appealed to the converse of a theorem.
2 Cf., again, Props. 31 and 34a for an analysis with a non-deductive last step.
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Start with a circle ABC, chord BC, A given.
Task: draw AE, D on BC and AE, E on circle, ED given in length (neusis).

1. Analysis
1.1. Assume AE has been so placed, ED has the given length.
1.2. Apagoge: extension of the configuration
Draw DZ ^ BC, DZ = AD (Z will, in general, not lie on the circle).
1.3. Resolutio

1.3.1 AD:DZ = 1: 1
Z lies on a uniquely determined hyperbola [Prop. 42].
1.3.2.BD × DC = AD × DE [III, 35]
BD × DC = DZ × DE, and DE is given
Þ Z lies on a uniquely determined parabola [Prop. 43]
Þ Z is given

The text breaks off here; presumably, one would now say that D is given, as foot 
of the perpendicular from Z onto BC, and thus AE is given. Pappus has in fact only 
presented the analysis, not a solution, to the neusis, to show that the problem is 
solid, because, in general, the construction of the auxiliary point Z will involve a 
parabola and a hyperbola. For a synthesis, leading to a neusis related to SL 5–9 cf. 
Knorr (1978b), Heath (1921, II, pp. 386–388), Tannery (1912, pp. 307–308), 
Baltzer apud Hultsch 1231–1233. We get several solutions/cases. The resolutio in 
Prop. 44 only shows the constructibility of one of the solutions. This was enough 
for Pappus’ purposes. For the limitations of his argument, see the introduction.

Coll. IV ends rather abruptly, if with a concluding phrase (probably by the copyist). 
The text of Coll. IV shows signs of deterioration (in addition to manuscript damage) 
at the end of the book. It seems that we are missing at least the allegedly plane 
argument for SL 18, and perhaps also the plane argument for the Apollonian prob-
lem of finding the normal to the parabola, as well as the conclusion.
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Appendix: The Diagrams in the Present Edition, and Vat. gr. 218

As stated in the introduction to Part I, I have modeled the diagrams in the present 
edition, wherever possible, on the figures in Vat. gr. 218 (A). For diagrams that refer 
to circles and straight lines only, moderate adjustments were sufficient. For the ones 
referring to higher curves, more drastic revisions became necessary, and in a few 
cases I was compelled to deviate completely from A, and draw the diagrams afresh.

For the “plane” diagrams, I worked from a scan of the original figure in A, redrew 
it, and afterwards adjusted the location of individual points. A’s figures are extremely 
schematic. As a result, the relative position of points is most often rendered accu-
rately, but congruent lines and angles do not appear as congruent, parallels not as 
parallel, and right angles not as right angles. This can cause severe difficulties when 
one attempts to use the diagrams as they are intended: as argumentative devices in 
the proofs. The degree of abstraction one has to continually perform when going 
through the arguments is simply too high. I therefore resorted to shifting individual 
points within the sketch diagrams, so as to produce configurations that cause less 
disturbances. In other words, I made congruent lines look congruent (with some 
amount of tolerance), parallels like parallels, etc. This procedure, of course, entailed 
shifting all the points on connecting lines as well. With these modifications, the 
plane diagrams are still modeled on the figures in A.

For the figures containing the Archimedean spiral (Props. 19–22, and 35b), 
I proceeded similarly, preserving the overall frame and adjusting the spiral line as 
well as angles created in the figure. For the figures referring to the conchoid, 
the quadratrix, conic sections, and curves in space, I was unable to work from A. 
All these curves are represented in A as circular arcs in the plane. I therefore drew 
new figures, using both A and Hultsch’s edition as reference points. For Prop. 44, 
the “prototype” used was the diagram in the appendix to Hultsch’s edition.

In what follows, I will briefly describe in what way my diagrams differ 
from the ones given in A. I will also reproduce A’s diagram for the limit case 
in Prop. 15.
Prop. 1: diagram taken over from A.
Prop. 2: diagram taken over from A, C, T, and E moved.
Prop. 3: diagram taken over from A, L moved.
Prop. 4: diagram taken over from A, E, H, and N moved, EK = EL.
Prop. 5: diagram taken over from A, M, E, L, and H moved.
Prop. 6: diagram taken over from A, A, E, H, and Z moved, T, B added.
Prop. 7a: diagram taken over from A, all points except A and Z moved.
Prop. 7b: diagram taken over from A, all points except D and C moved.
Prop. 8:  the circles with centers A and B were made equal; this resulted in a repo-

sitioning of all other points; R added.
Prop. 9: diagram taken over from A, D moved.
Prop. 10: diagram taken over from A, B, and Z moved, center of encompassing 
circle renamed H (for N); H and O eliminated.
Prop. 11: diagram taken over from A, B, D, E, H, K, and Z moved.
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Prop. 12: diagram taken over from A, E, L, Z, and T moved.
Arbelos: diagram taken over from A, semicircle over AC instead of BC.
Prop. 13: diagram taken over from A, N, C, A, and L moved, K added.
Prop. 14a: diagram taken over from A, A, M moved.
Prop. 14b: diagram taken over from A, D added.
Prop. 14c: diagram taken over from A.

H

C

Z

B

T’ P

T

A

D
N M

Prop. 15a: circles taken over from A, all other lines moved, C added.
Prop. 15b:  the diagram in A is missing a number of necessary points; outer circle 

and semicircle over CB taken over from A, all other lines and points 
adjusted or corrected.

Prop. 15c: figure missing in A, reconstructed.
Prop. 15:  limit case: The following is a reproduction of the (flawed) diagram in A for 

the case that instead of a semicircle over BC, we have a tangent in B; cf. 
appendix Hu p. 1227 for a correct diagram and a proof.

Prop. 16a: diagram taken over from A, TZ || BC.
Prop. 16b:  diagram taken over from A, TZ || BC, A center of circle TZ, N foot of 

perpendicular from P, E and O with perpendicular ending in S added.
Prop. 16c:  diagram taken over from A, circle with center P moved, semicircle with 

center A, diameter equal to BD, points renamed: T, Z, N for H, Y, Z 
respective, S added.

Prop. 16d: diagram taken over from A, circle with center A moved slightly, D for S.
Prop. 17: diagram taken over from A.
Prop. 18: diagram taken over from A, perpendiculars onto AC added.
Prop. 19/20: diagram taken over from A, spiral adjusted.
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Prop. 21a:  diagram taken over from A, arc CD = arc CA, spiral, arcs ET, ZH 
adjusted.

Prop. 21b: diagram taken over from A, spiral adjusted, H and T switched.
Prop. 22a: diagram taken over from A, spiral adjusted, BZ accordingly.
Prop. 22b: diagram taken over from A, spiral adjusted.
Conchoid: redrawn, in A the line is represented by a circular arc.
Prop. 23: redrawn, in A the conchoid is represented by a circular arc.
Prop. 24:  redrawn, adjustments too numerous; in A, incomplete corrections were 

added by the second hand.
Prop. 25:  redrawn, horizontal unequal lines instead of vertical equal ones, order 

A–C–D–B instead of A–B–C–D.
Quadratrix: redrawn, square ABCD, quadrant DAB, quadratrix adjusted.
Prop. 26a: redrawn, square CBAD, quadrant DCB, quadratrix adjusted.
Prop. 26b: redrawn, square CBAD, quadrants DCB and KCZ, quadratrix adjusted.
Prop. 26c: redrawn, square CBAD, quadrants DCB and KCZ, quadratrix adjusted.
Prop. 28: redrawn, quadrant CBA, three-dimensional figure.
Prop. 29: redrawn, sector CBA, spiral BA, three-dimensional figure.
Prop. 30:  redrawn, spherical spiral for right-hand side diagram; quadrant CDA, arc 

AZ with center C for left-hand side.
Prop. 31a diagram taken over from A, Q renamed as Z.
Prop. 31b:  diagram taken over from A, LH moved, circle with radius DK, hyper-

bola DH adjusted, m added.
Prop. 32a: diagram in A not used; DE = 2BA.
Prop. 32b: diagram taken over from A.
Prop. 32c:  diagram taken over from A, BD ^ BC, E and A adjusted accordingly.
Prop. 33:  A has two identical figures, one each for analysis and synthesis, repre-

senting the hyperbola by two circular arcs with cusp in D; redrawn, k 
added, second E eliminated.

Prop. 34a:  A’s diagram is an isosceles triangle ABC, with E and D distributed almost 
equally on AC, and BZ as well as the hyperbola BH missing; redrawn.

Prop. 34b:  diagram taken over from A, the segment was made smaller than a semi-
circle, B, D, and Z moved.

Prop. 35a:  A’s diagram had a full circle, Z is mislabelled; redrawn: quadrant TBK 
with quadratrix KC.

Prop. 35b:  diagram from A, T eliminated, H and A moved, arc ZE adjusted, D added.
Prop. 36:  circle with center E taken over from A, point A moved, K added, circle 

with center Z, arc CTD redrawn, T instead of B.
Prop. 37: diagram taken over from A, EH added.
Prop. 39:  A’s diagram has two equal circles a, b and two vertical lines c, d; redrawn.
Prop. 40:  redrawn; quadrant EHZ, quadratrix ZTK, arc ACB with center X, o and 

p added.
Prop. 41:  redrawn, quadrant CBA with quadratrix AEDZ, point names N and K 

corrected.
Prop. 42: the figure in A is missing the hyperbola; redrawn.
Prop. 43: redrawn.
Prop. 44: drawn afresh; no diagram for Prop. 44 in A.
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