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Preface

Why have we written this book? In recent decades the field of financial risk man-
agement has undergone explosive development. This book is devoted specifically to
quantitative modelling issues arising in this field. As a result of our own discussions
and joint projects with industry professionals and regulators over a number of years,
we felt there was a need for a textbook treatment of quantitative risk management
(QRM) at a technical yet accessible level, aimed at both industry participants and
students seeking an entrance to the area.

We have tried to bring together a body of methodology that we consider to be core
material for any course on the subject. This material and its mode of presentation
represent the blending of our own views, which come from the perspectives of
financial mathematics, insurance mathematics and statistics. We feel that a book
combining these viewpoints fills a gap in the existing literature and partly anticipates
the future need for quantitative risk managers in banks, insurance companies and
beyond with broad, interdisciplinary skills.

Who was this book written for? This book is primarily a textbook for courses
on QRM aimed at advanced undergraduate or graduate students and professionals
from the financial industry. A knowledge of probability and statistics at least at the
level of a first university course in a quantitative discipline and familiarity with
undergraduate calculus and linear algebra are fundamental prerequisites. Though
not absolutely necessary, some prior exposure to finance, economics or insurance
will be beneficial for a better understanding of some sections.

The book has a secondary function as a reference text for risk professionals inter-
ested in a clear and concise treatment of concepts and techniques used in practice.
As such, we hope it will facilitate communication between regulators, end-users and
academics.

A third audience for the book is the growing community of researchers working in
the area. Most chapters take the reader to the frontier of current, practically relevant
research and contain extensive, annotated references that guide the reader through
the burgeoning literature.

Ways to use this book. Based on our experience of teaching university courses
on QRM at ETH Zurich, the Universities of Zurich and Leipzig and the London
School of Economics, a two-semester course of 3–4 hours a week can be based on
material in Chapters 2–8 and parts of Chapter 10; Chapter 1 is typically given as
background reading material. Chapter 9 is a more technically demanding chapter
that has been included because of the current interest in quantitative methods for
pricing and hedging credit derivatives; it is primarily intended for more advanced,
specialized courses on credit risk (see below).
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A course on market risk can be based on a fairly complete treatment of
Chapters 2–4, with excursions into material in Chapters 5, 6 and 7 (normal mixture
copulas, coherent risk measures, extreme value methods for threshold exceedances)
as time permits.

A course on credit risk can be based on Chapters 8 and 9 but requires a preliminary
treatment of some topics in earlier chapters. Sections 2.1 and 2.2 give the necessary
grounding in basic concepts; Sections 3.1, 3.2, 3.4, 5.1 and 5.4 are necessary for
an understanding of multivariate models of portfolio credit risk; and Sections 6.1
and 6.3 are required to understand how capital is allocated to credit risks.

A short course or seminar on operational risk could be based on Chapter 10,
but would also benefit from some supplementary material from other chapters;
Sections 2.1 and 2.2 and Chapters 6 and 7 are particularly relevant.

It is also possible to devise more specialized courses, such as a course on risk-
measurement and aggregation concepts based on Chapters 2, 5 and 6, or a course on
risk-management techniques for financial econometricians based on Chapters 2–4
and 7. Material from various chapters could be used as interesting examples to
enliven statistics courses on subjects like multivariate analysis, time series analysis
and generalized linear modelling.

What we have not covered. We have not been able to address all topics that a reader
might expect to find under the heading of QRM. Perhaps the most obvious omission
is the lack of a section on the risk management of derivatives by hedging. We felt here
that the relevant techniques, and the financial mathematics required to understand
them, are already well covered in a number of excellent textbooks. Other omissions
include RAROC (risk-adjusted return on capital) and performance-measurement
issues. Besides these larger areas, many smaller issues have been neglected for
reasons of space, but are mentioned with suggestions for further reading in the
“Notes and Comments” sections, which should be considered as integral parts of
the text.

Acknowledgements. The origins of this book date back to 1996, when A.M. and
R.F. began postdoctoral studies in the group of P.E. at the Federal Institute of Tech-
nology (ETH) in Zurich. All three authors are grateful to ETH for providing the
environment in which the project flourished. A.M. and R.F. thank Swiss Re and
UBS, respectively, for providing the financial support for their postdoctoral posi-
tions. R.F. has subsequently held positions at the Swiss Banking Institute of the
University of Zurich and at the University of Leipzig and is grateful to both institu-
tions for their support.

The Forschungsinstitut für Mathematik (FIM) of the ETH Zurich provided finan-
cial support at various stages of the project. At a crucial juncture in early 2004
the Mathematisches Foschungsinstitut Oberwolfach was the venue for a memorable
week of progress. P.E. recalls fondly his time as Centennial Professor of Finance at
the London School of Economics; numerous discussions with colleagues from the
Department ofAccounting and Finance helped in shaping his view of the importance
of QRM. We also acknowledge the invaluable contribution of RiskLab Zurich to the
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enterprise: the agenda for the book was strongly influenced by joint projects and
discussions with the RiskLab sponsors UBS, Credit Suisse and Swiss Re. We have
also benefited greatly from the NCCR FINRISK research program in Switzerland,
which funded doctoral and postdoctoral research on topics in the book.

We are indebted to numerous proof-readers who have commented on various
parts of the manuscript, and to colleagues in Zurich, Leipzig and beyond who
have helped us in our understanding of QRM and the mathematics underlying it.
These include StefanAltner, PhilippeArtzner, Jochen Backhaus, Guus Balkema, Uta
Beckmann, Reto Baumgartner, Wolfgang Breymann, Reto Bucher, Hans Bühlmann,
Peter Bühlmann, Valérie Chavez-Demoulin, Dominik Colangelo, Freddy Delbaen,
Rosario Dell’Aquila, Stefan Denzler, Alexandra Dias, Stefano Demarta, Damir
Filipovic, Gabriel Frahm, Hansjörg Furrer, Rajna Gibson, Kay Giesecke, Enrico
De Giorgi, Bernhard Hodler, Andrea Höing, Christoph Hummel, Alessandro Juri,
Roger Kaufmann, Philipp Keller, Hans Rudolf Künsch, Filip Lindskog, Hans-Jakob
Lüthi, Natalia Markovich, Benoı̂t Metayer, Johanna Nešlehová, Monika Popp,
Giovanni Puccetti, Hanspeter Schmidli, Sylvia Schmidt, Thorsten Schmidt, Uwe
Schmock, Philipp Schönbucher, Martin Schweizer, Torsten Steiger, Daniel Strau-
mann, Dirk Tasche, Eduardo Vilela, Marcel Visser and Jonathan Wendin. For her
help in preparing the manuscript we thank Gabriele Baltes.

We thank Richard Baggaley and the team at Princeton University Press for all
their help in the production of this book. We are also grateful to our anonymous
referees who provided us with exemplary feedback, which has shaped this book for
the better. Special thanks go to Sam Clark at T&T Productions Ltd, who took our
uneven LATEX code and turned it into a more polished book with remarkable speed
and efficiency.

To our wives, Janine, Catharina and Gerda, and our families our sincerest debt of
gratitude is due. Though driven to distraction no doubt by our long contemplation
of risk, without obvious reward, their support was constant.

Further resources. Readers are encouraged to visit the book’s homepage at

www.pupress.princeton.edu/titles/8056.html

to find supplementary resources for this book. Our intention is to make available the
computer code (mostly S-PLUS) used to generate the examples in this book, and to
list errata.

Special abbreviations. A number of abbreviations for common terms in probability
are used throughout the book; these include “rv” for random variable, “df” for
distribution function, “iid” for independent and identically distributed and “se” for
standard error.





1
Risk in Perspective

In this chapter we provide a non-mathematical discussion of various issues that form
the background to the rest of the book. In Section 1.1 we begin with the nature of risk
itself and how risk relates to randomness; in the financial context (which includes
insurance) we summarize the main kinds of risks encountered and explain what it
means to measure and manage such risks.

A brief history of financial risk management, or at least some of the main ideas
that are used in modern practice, is given in Section 1.2, including a summary of the
process leading to the Basel Accords. Section 1.3 gives an idea of the new regulatory
framework that is emerging in the financial and insurance industries.

In Section 1.4 we take a step back and attempt to address the fundamental question
of why we might want to measure and manage risk at all. Finally, in Section 1.5, we
turn explicitly to quantitative risk management (QRM) and set out our own views
concerning the nature of this discipline and the challenge it poses. This section in
particular should give more insight into why we have chosen to address the particular
methodological topics in this book.

1.1 Risk

The Concise Oxford English Dictionary defines risk as “hazard, a chance of bad
consequences, loss or exposure to mischance”. In a discussion with students tak-
ing a course on financial risk management, ingredients which typically enter are
events, decisions, consequences and uncertainty. Mostly only the downside of risk
is mentioned, rarely a possible upside, i.e. the potential for a gain. For financial
risks, the subject of this book, we might arrive at a definition such as “any event or
action that may adversely affect an organization’s ability to achieve its objectives
and execute its strategies” or, alternatively, “the quantifiable likelihood of loss or
less-than-expected returns”. But while these capture some of the elements of risk,
no single one-sentence definition is entirely satisfactory in all contexts.

1.1.1 Risk and Randomness

Independently of any context, risk relates strongly to uncertainty, and hence to the
notion of randomness. Randomness has eluded a clear, workable definition for many
centuries; it was not until 1933 that the Russian mathematician A. N. Kolmogorov
gave an axiomatic definition of randomness and probability (see Kolmogorov 1933).
This definition and its accompanying theory, though not without their controversial
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aspects, now provide the lingua franca for discourses on risk and uncertainty, such
as this book.

In Kolmogorov’s language a probabilistic model is described by a triplet
(Ω,F , P ). An element ω of Ω represents a realization of an experiment, in eco-
nomics often referred to as a state of nature. The statement “the probability that
an event A occurs” is denoted (and in Kolmogorov’s axiomatic system defined)
as P(A), where A is an element of F , the set of all events. P denotes the prob-
ability measure. For the less mathematically trained reader it suffices to accept
that Kolmogorov’s system translates our intuition about randomness into a concise,
axiomatic language and clear rules.

Consider the following examples: an investor who holds stock in a particular
company; an insurance company that has sold an insurance policy; an individual
who decides to convert a fixed-rate mortgage into a variable one. All of these sit-
uations have something important in common: the investor holds today an asset
with an uncertain future value. This is very clear in the case of the stock. For the
insurance company, the policy sold may or may not be triggered by the underly-
ing event covered. In the case of a mortgage, our decision today to enter into this
refinancing agreement will change (for better or for worse) the future repayments.
So randomness plays a crucial role in the valuation of current products held by the
investor, the insurance company or the home owner.

To model these situations a mathematician would now define a one-period risky
position (or simply risk) X to be a function on the probability space (Ω,F , P );
this function is called a random variable. We leave for the moment the range of X
(i.e. its possible values) unspecified. Most of the modelling of a risky position X

concerns its distribution function FX(x) = P(X � x), the probability that by the
end of the period under consideration, the value of the risk X is less than or equal
to a given number x. Several risky positions would then be denoted by a random
vector (X1, . . . , Xd), also written in bold face as X; time can be introduced, leading
to the notion of random (or so-called stochastic) processes, usually written (Xt ).
Throughout this book we will encounter many such processes, which serve as essen-
tial building blocks in the mathematical description of risk.

We therefore expect the reader to be at ease with basic notation, terminology and
results from elementary probability and statistics, the branch of mathematics dealing
with stochastic models and their application to the real world. The word “stochastic”
is derived from the Greek “Stochazesthai”, the art of guessing, or “Stochastikos”,
meaning skilled at aiming, “stochos” being a target. In discussing stochastic methods
for risk management we hope to emphasize the skill aspect rather than the guesswork.

1.1.2 Financial Risk

In this book we discuss risk in the context of finance and insurance (although many
of the tools introduced are applicable well beyond this context). We start by giving
a brief overview of the main risk types encountered in the financial industry.

In banking, the best known type of risk is probably market risk, the risk of a change
in the value of a financial position due to changes in the value of the underlying
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components on which that position depends, such as stock and bond prices, exchange
rates, commodity prices, etc. The next important category is credit risk, the risk of
not receiving promised repayments on outstanding investments such as loans and
bonds, because of the “default” of the borrower. A further risk category that has
received a lot of recent attention is operational risk, the risk of losses resulting from
inadequate or failed internal processes, people and systems, or from external events.

The boundaries of these three risk categories are not always clearly defined, nor
do they form an exhaustive list of the full range of possible risks affecting a finan-
cial institution. There are notions of risk which surface in nearly all categories
such as liquidity and model risk. The latter is the risk associated with using a mis-
specified (inappropriate) model for measuring risk. Think, for instance, of using the
Black–Scholes model for pricing an exotic option in circumstances where the basic
Black–Scholes model assumptions on the underlying securities (such as the assump-
tion of normally distributed returns) are violated. It may be argued that model risk
is always present to some degree. Liquidity risk could be roughly defined as the risk
stemming from the lack of marketability of an investment that cannot be bought or
sold quickly enough to prevent or minimize a loss. Liquidity can be thought of as
“oxygen for a healthy market”; we need it to survive but most of the time we are
not aware of its presence. Its absence, however, is mostly recognized immediately,
with often disastrous consequences.

The concepts, techniques and tools we will introduce in the following chapters
mainly apply to the three basic categories of market, credit and operational risk. We
should stress that the only viable way forward for a successful handling of financial
risk consists of a holistic approach, i.e. an integrated approach taking all types of
risk and their interactions into account. Whereas this is a clear goal, current models
do not yet allow for a fully satisfactory platform.

As well as banks, the insurance industry has a long-standing relationship with
risk. It is no coincidence that the Institute of Actuaries and the Faculty of Actuaries
use the following definition of the actuarial profession.

Actuaries are respected professionals whose innovative approach to
making business successful is matched by a responsibility to the public
interest. Actuaries identify solutions to financial problems. They man-
age assets and liabilities by analysing past events, assessing the present
risk involved and modelling what could happen in the future.

An additional risk category entering through insurance is underwriting risk, the
risk inherent in insurance policies sold. Examples of risk factors that play a role
here are changing patterns of natural catastrophes, changes in demographic tables
underlying (long-dated) life products, or changing customer behaviour (such as
prepayment patterns).

1.1.3 Measurement and Management

Much of this book is concerned with techniques for the measurement of risk, an
activity which is part of the process of managing risk, as we attempt to clarify in
this section.
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Risk measurement. Suppose we hold a portfolio consisting of d underlying invest-
ments with respective weightsw1, . . . , wd so that the change in value of the portfolio
over a given holding period (the so-called P&L, or profit and loss) can be written as
X = ∑d

i=1 wiXi , where Xi denotes the change in value of the ith investment. Mea-
suring the risk of this portfolio essentially consists of determining its distribution
function FX(x) = P(X � x), or functionals describing this distribution function
such as its mean, variance or 99th percentile.

In order to achieve this, we need a properly calibrated joint model for the under-
lying random vector of investments (X1, . . . , Xd). We will consider this problem in
more detail in Chapter 2.At this point it suffices to understand that risk measurement
is essentially a statistical issue; based on historical observations and given a specific
model, a statistical estimate of the distribution of the change in value of a position,
or one of its functionals, is calculated. As we shall see later, and this is indeed a main
theme throughout the book, this is by no means an easy task with a unique solution.

It should be clear from the outset that good risk measurement is a must. Increas-
ingly, banking clients demand objective and detailed information on products bought
and banks can face legal action when this information is found wanting. For any
product sold, a proper quantification of the underlying risks needs to be explicitly
made, allowing the client to decide whether or not the product on offer corresponds
to his or her risk appetite.

Risk management. In a very general answer to the question of what risk manage-
ment is about, Kloman (1990) writes that:

To many analysts, politicians, and academics it is the management of
environmental and nuclear risks, those technology-generated macro-
risks that appear to threaten our existence. To bankers and financial
officers it is the sophisticated use of such techniques as currency hedging
and interest-rate swaps. To insurance buyers or sellers it is coordination
of insurable risks and the reduction of insurance costs. To hospital
administrators it may mean “quality assurance”. To safety professionals
it is reducing accidents and injuries. In summary, risk management is
a discipline for living with the possibility that future events may cause
adverse effects.

The last phrase in particular (the italics are ours) captures the general essence of
risk management, although for a financial institution one can perhaps go further. A
bank’s attitude to risk is not passive and defensive; a bank actively and willingly
takes on risk, because it seeks a return and this does not come without risk. Indeed
risk management can be seen as the core competence of an insurance company
or a bank. By using its expertise, market position and capital structure, a financial
institution can manage risks by repackaging them and transferring them to markets
in customized ways.

Managing the risk is thus related to preserving the flow of profit and to techniques
like asset liability management (ALM), which might be defined as managing a finan-
cial institution so as to earn an adequate return on funds invested, and to maintain
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a comfortable surplus of assets beyond liabilities. In Section 1.4 we discuss these
corporate finance issues in more depth from a shareholder’s point of view.

1.2 A Brief History of Risk Management

In this section we treat the historical development of risk management by sketching
some of the innovations and some of the events that have shaped modern risk man-
agement for the financial industry. We also describe the more recent development
of regulation in that industry, which has to some extent been prompted by a number
of recent disasters.

1.2.1 From Babylon to Wall Street

Although risk management has been described as “one of the most important inno-
vations of the 20th century” by Steinherr (1998) and most of the story we tell is
relatively modern, some concepts that are used in modern risk management, in par-
ticular derivatives, have been around for longer. In our discussion we stress the
example of financial derivatives, as these brought the need for increased banking
regulation very much to the fore.

The ancient world to the twentieth century. A derivative is a financial instrument
derived from an underlying asset, such as an option, future or swap. For example,
a European call option with strike K and maturity T gives the holder the right, but
not the obligation, to obtain from the seller at maturity the underlying security for
a price of K; a European put option gives the holder the right to dispose of the
underlying at a price K .

Dunbar (2000) interprets a passage in the Code of Hammurabi from Babylon
of 1800 BC as being early evidence of the use of the option concept to provide
financial cover in the event of crop failure. A very explicit mention of options
appears in Amsterdam towards the end of the seventeenth century and is beautifully
narrated by Joseph de la Vega in his 1688 Confusión de Confusiones, a discussion
between a lawyer, a trader and a philosopher observing the activity on the Beurs
of Amsterdam. Their discussion contains what we now recognize as European call
and put options, and a description of their use for investment as well as for risk
management, and even the notion of short selling. In an excellent recent translation
(de la Vega 1966) we read:

If I may explain “opsies” [further, I would say that] through the payment
of the premiums, one hands over values in order to safeguard one’s stock
or to obtain a profit. One uses them as sails for a happy voyage during
a beneficent conjuncture and as an anchor of security in a storm.

After this, de la Vega continues with some explicit examples that would not be out
of place in any modern finance course on the topic.

Financial derivatives in general, and options in particular, are not so new. More-
over, they appear here as instruments to manage risk, “anchors of security in a
storm”, rather than the inventions of the capitalist devil, the “wild beasts of finance”
(Steinherr 1998), that many now believe them to be.
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Academic innovation in the twentieth century. While the use of risk-management
ideas such as derivatives can be traced further back, it was not until the late twentieth
century that a theory of valuation for derivatives was developed. This can be seen
as perhaps the most important milestone in an age of academic developments in the
general area of quantifying and managing financial risk.

Before the 1950s the desirability of an investment was mainly equated to its return.
In his ground-breaking publication of 1952, Harry Markowitz laid the foundation
of the theory of portfolio selection by mapping the desirability of an investment
onto a risk–return diagram, where risk was measured using standard deviation (see
Markowitz 1952, 1959). Through the notion of an efficient frontier the portfolio
manager could optimize the return for a given risk level. The following decades saw
an explosive growth in risk-management methodology, including such ideas as the
Sharpe ratio, the CapitalAsset Pricing Model (CAPM) andArbitrage Pricing Theory
(APT). Numerous extensions and refinements followed, which are now taught in
any MBA course on finance.

The famous Black–Scholes–Merton formula for the price of a European call
option appeared in 1973 (see Black and Scholes 1973). The importance of this
formula was underscored in 1997, when the Bank of Sweden Prize in Economic
Sciences in Memory of Alfred Nobel was awarded to Robert Merton and Myron
Scholes (Fisher Black had died some years earlier) “for a new method to determine
the value of derivatives”.

Growth of markets in the twentieth century. The methodology developed for the
rational pricing and hedging of financial derivatives changed finance. The Wizards
of Wall Street (i.e. the mathematical specialists conversant in the new methodology)
have had a significant impact on the development of financial markets over the last
few decades. Not only did the new option-pricing formula work, it transformed
the market. When the Chicago Options Exchange first opened in 1973, less than
a thousand options were traded on the first day. By 1995, over a million options were
changing hands each day with current nominal values outstanding in the derivatives
markets in the tens of trillions. So great was the role played by the Black–Scholes–
Merton formula in the growth of the new options market that, when the American
stock-market crashed in 1978, the influential business magazine Forbes put the
blame squarely onto that one formula. Scholes himself has said that it was not so
much the formula that was to blame, but rather that market traders had not become
sufficiently sophisticated in using it.

Along with academic innovation, technological developments (mainly on the
information–technology (IT) side) also laid the foundations for an explosive growth
in the volume of new risk-management and investment products. This development
was further aided by worldwide deregulation in the 1980s. Important additional fac-
tors contributing to an increased demand for risk-management skills and products
were the oil crises of the 1970s and the 1970 abolition of the Bretton–Woods sys-
tem of fixed exchange rates. Both energy prices and foreign exchange risk became
highly volatile risk factors and customers required products to hedge them. The
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1933 Glass–Steagall Act—passed in the US in the aftermath of the 1929 Depres-
sion to prohibit commercial banks from underwriting insurance and most kinds of
securities—indirectly paved the way for the emergence of investment banks, hungry
for new business. Glass–Steagall was replaced in 1999 by the Financial ServicesAct,
which repealed many of the former’s key provisions. Today many more companies
are able to trade and use modern risk-management products.

Disasters of the 1990s. In January 1992, the president of the New York Federal
Reserve, E. Gerald Corrigan, speaking at the Annual Mid-Winter Meeting of the
New York State Bankers Association, said:

You had all better take a very, very hard look at off-balance-sheet activ-
ities. The growth and complexity of [these] activities and the nature of
the credit settlement risk they entail should give us cause for concern.
. . . I hope this sounds like a warning, because it is. Off-balance-sheet
activities [i.e. derivatives] have a role, but they must be managed and
controlled carefully and they must be understood by top management
as well as by traders and rocket scientists.

Corrigan was referring to the growing volume of derivatives on banking books and
the way they were accounted for.

Many of us recall the headline “Barings forced to cease trading” in the Financial
Times on 26 February 1995. A loss of £700 million ruined the oldest merchant
banking group in the UK (established in 1761). Besides numerous operational errors
(violating every qualitative guideline in the risk-management handbook), the final
straw leading to the downfall of Barings was a so-called straddle position on the
Nikkei held by the bank’s Singapore-based trader Nick Leeson. A straddle is a short
position in a call and a put with the same strike—such a position allows for a gain
if the underlying (in this case the Nikkei index) does not move too far up or down.
There is, however, considerable loss potential if the index moves down (or up) by
a large amount, and this is precisely what happened when the Kobe earthquake
occurred.

About three years later, on 17 September 1998, The Observer newspaper, referring
to the downfall of Long-Term Capital Management (LTCM), summarized the mood
of the times when it wrote:

last week, free market economy died. Twenty five years of intellectual
bullying by the University of Chicago has come to a close.

The article continued:

the derivatives markets are a rarefied world. They are peopled with
individuals with an extraordinary grasp of mathematics—“a strange
collection of Greeks, misfits and rocket scientists” as one observer put
it last week.

And referring to the Black–Scholes formula, the article asked:

is this really the key to future wealth? Win big, lose bigger.
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There were other important cases which led to a widespread discussion of the need
for increased regulation: the Herstatt Bank case in 1974, Metallgesellschaft in 1993
or Orange County in 1994. See Notes and Comments below for further reading on
the above.

The main reason for the general public’s mistrust of these modern tools of finance
is their perceived triggering effect for crashes and bubbles. Derivatives have without
doubt played a role in some spectacular cases and as a consequence are looked upon
with a much more careful regulatory eye. However, they are by now so much part of
Wall Street (or any financial institution) that serious risk management without these
tools would be unthinkable.

Thus it is imperative that mathematicians take a serious interest in derivatives
and the risks they generate. Who has not yet considered a prepayment option on
a mortgage or a change from a fixed-interest-rate agreement to a variable one, or
vice versa (a so-called swap)? Moreover, many life insurance products now have
options embedded.

1.2.2 The Road to Regulation

There is no doubt that regulation goes back a long way, at least to the time of the
Venetian banks and the early insurance enterprises sprouting in London’s coffee
shops in the eighteenth century. In those days one would rely to a large extent
on self-regulation or local regulation, but rules were there. However, key develop-
ments leading to the present regulatory risk-management framework are very much
a twentieth century story.

Much of the regulatory drive originated from the Basel Committee of Banking
Supervision. This committee was established by the Central-Bank Governors of the
Group of Ten (G-10) at the end of 1974. The Group of Ten is made up (oddly) of
eleven industrial countries which consult and cooperate on economic, monetary and
financial matters. The Basel Committee does not possess any formal supranational
supervising authority, and hence its conclusions do not have legal force. Rather, it
formulates broad supervisory standards and guidelines and recommends statements
of best practice in the expectation that individual authorities will take steps to imple-
ment them through detailed arrangements—statutory or otherwise—which are best
suited to their own national system. The summary below is brief. Interested readers
can consult, for example, Crouhy, Galai and Mark (2001) for further details, and
should also see Notes and Comments below.

The first Basel Accord. The first Basel Accord of 1988 on Banking Supervision
(Basel I) took an important step towards an international minimum capital standard.
Its main emphasis was on credit risk, by then clearly the most important source of
risk in the banking industry. In hindsight, however, the first Basel Accord took an
approach which was fairly coarse and measured risk in an insufficiently differenti-
ated way. Also the treatment of derivatives was considered unsatisfactory.

The birth of VaR. In 1993 the G-30 (an influential international body consisting of
senior representatives of the private and public sectors and academia) published a
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seminal report addressing for the first time so-called off-balance-sheet products, like
derivatives, in a systematic way. Around the same time, the banking industry clearly
saw the need for a proper risk management of these new products. At JPMorgan,
for instance, the famous Weatherstone 4.15 report asked for a one-day, one-page
summary of the bank’s market risk to be delivered to the chief executive officer
(CEO) in the late afternoon (hence the “4.15”). Value-at-Risk (VaR) as a market risk
measure was born and RiskMetrics set an industry-wide standard.

In a highly dynamic world with round-the-clock market activity, the need for
instant market valuation of trading positions (known as marking-to-market) became
a necessity. Moreover, in markets where so many positions (both long and short) were
written on the same underlyings, managing risks based on simple aggregation of
nominal positions became unsatisfactory. Banks pushed to be allowed to consider
netting effects, i.e. the compensation of long versus short positions on the same
underlying.

In 1996 the important Amendment to Basel I prescribed a so-called standardized
model for market risk, but at the same time allowed the bigger (more sophisticated)
banks to opt for an internal, VaR-based model (i.e. a model developed in house).
Legal implementation was to be achieved by the year 2000. The coarseness problem
for credit risk remained unresolved and banks continued to claim that they were not
given enough incentives to diversify credit portfolios and that the regulatory capital
rules currently in place were far too risk insensitive. Because of overcharging on
the regulatory capital side of certain credit positions, banks started shifting business
away from certain market segments that they perceived as offering a less attractive
risk–return profile.

The second Basel Accord. By 2001 a consultative process for a new Basel Accord
(Basel II) had been initiated; this process is being concluded as this book goes to
press. The main theme is credit risk, where the aim is that banks can use a finer, more
risk-sensitive approach to assessing the risk of their credit portfolios. Banks opting
for a more advanced, so-called internal-ratings-based approach are allowed to use
internal and/or external credit-rating systems wherever appropriate. The second
important theme of Basel II is the consideration of operational risk as a new risk
class.

Current discussions imply an implementation date of 2007, but there remains an
ongoing debate on specific details. Industry is participating in several Quantitative
Impact Studies in order to gauge the risk-capital consequences of the new accord.
In Section 1.3.1 we will come back to some issues concerning this accord.

Parallel developments in insurance regulation. It should be stressed that most of
the above regulatory changes concern the banking world. We are also witnessing
increasing regulatory pressure on the insurance side, coupled with a drive to com-
bine the two regulatory frameworks, either institutionally or methodologically. As
an example, the Joint Forum on Financial Conglomerates (Joint Forum) was estab-
lished in early 1996 under the aegis of the Basel Committee on Banking Supervi-
sion, the International Organization of Securities Commissions (IOSCO) and the
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International Association of Insurance Supervisors (IAIS) to take forward the work
of the so-called Tripartite Group, whose report was released in July 1995. The Joint
Forum is comprised of an equal number of senior bank, insurance and securities
supervisors representing each supervisory constituency.

The process is underway in many countries. For instance, in the UK the Financial
Services Authority (FSA) is stepping up its supervision across a wide range of finan-
cial and insurance businesses. The same is happening in the US under the guidance
of the Securities and Exchange Commission (SEC) and the Fed. In Switzerland,
discussions are underway between the Bundesamt für Privatversicherungen (BPV)
and the Eidgenössische Bankenkommission (EBK) concerning a joint supervisory
office. In Section 1.3.2 we will discuss some of the current, insurance-related sol-
vency issues.

1.3 The New Regulatory Framework

This section is intended to describe in more detail the framework that has emerged
from the Basel II discussions and the parallel developments in the insurance world.

1.3.1 Basel II

On 26 June 2004 the G-10 central-bank governors and heads of supervision endorsed
the publication of the revised capital framework. The following statement is taken
from this release.

The Basel II Framework sets out the details for adopting more risk-
sensitive minimum capital requirements [Pillar 1] for banking orga-
nizations. The new framework reinforces these risk-sensitive require-
ments by laying out principles for banks to assess the adequacy of their
capital and for supervisors to review such assessments to ensure banks
have adequate capital to support their risks [Pillar 2]. It also seeks to
strengthen market discipline by enhancing transparency in banks’finan-
cial reporting [Pillar 3]. The text that has been released today reflects the
results of extensive consultations with supervisors and bankers world-
wide. It will serve as the basis for national rule-making and approval
processes to continue and for banking organizations to complete their
preparations for the new Framework’s implementation.

The three-pillar concept. As is apparent from the above quote, a key conceptual
change within the Basel II framework is the introduction of the three-pillar con-
cept. Through this concept, the Basel Committee aims to achieve a more holistic
approach to risk management that focuses on the interaction between the different
risk categories; at the same time the three-pillar concept clearly signals the existing
difference between quantifiable and non-quantifiable risks.

Under Pillar 1 banks are required to calculate a minimum capital charge, referred
to as regulatory capital, with the aim of bringing the quantification of this minimal
capital more in line with the banks’ economic loss potential. Under the Basel II
framework there will be a capital charge for credit risk, market risk and, for the first
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time, operational risk. Whereas the treatment of market risk is unchanged relative
to the 1996 Amendment of the Basel I Capital Accord, the capital charge for credit
risk has been revised substantially. In computing the capital charge for credit risk
and operational risk banks may choose between three approaches of increasing risk
sensitivity and complexity; some details are discussed below.

It is further recognized that any quantitative approach to risk management should
be embedded in a well-functioning corporate governance structure. Thus best-
practice risk management imposes clear constraints on the organization of the insti-
tution, i.e. the board of directors, management, employees, internal and external
audit processes. In particular, the board of directors assumes the ultimate responsi-
bility for oversight of the risk landscape and the formulation of the company’s risk
appetite. This is where Pillar 2 enters. Through this important pillar, also referred
to as the supervisory review process, local regulators review the various checks and
balances put into place. This pillar recognizes the necessity of an effective overview
of the banks’ internal assessments of their overall risk and ensures that management
is exercising sound judgement and has set aside adequate capital for the various
risks.

Finally, in order to fulfil its promise that increased regulation will also diminish
systemic risk, clear reporting guidelines on risks carried by financial institutions
are called for. Pillar 3 seeks to establish market discipline through a better public
disclosure of risk measures and other information relevant to risk management.
In particular, banks will have to offer greater insight into the adequacy of their
capitalization.

The capital charge for market risk. As discussed in Section 1.2.2, in the aftermath
of the Basel I proposals in the early 1990s, there was a general interest in improv-
ing the measurement of market risk, particularly where derivative products were
concerned. This was addressed in detail in the 1996 Amendment to Basel I, which
prescribed standardized market risk models but also allowed more sophisticated
banks to opt for internal VaR models. In Chapter 2 we shall give a detailed discus-
sion of the calculation of VaR. For the moment it suffices to know that, for instance,
a 10-day VaR at 99% of $20 million means that our market portfolio will incur a loss
of $20 million or more with probability 1% by the end of a 10-day holding period,
if the composition remains fixed over this period. The choice of the holding period
(10 days) and the confidence level (99%) lies in the hands of the regulators when
VaR is used for the calculation of regulatory capital. As a consequence of these
regulations, we have witnessed a quantum leap in the prominence of quantitative
risk modelling throughout all echelons of financial institutions.

Credit risk from Basel I to II. In a banking context, by far the oldest risk type to
be regulated is credit risk. As mentioned in Section 1.2.2, Basel I handled this type
of risk in a rather coarse way. Under Basel I and II the credit risk of a portfolio is
assessed as the sum of risk-weighted assets, that is the sum of notional exposures
weighted by a coefficient reflecting the creditworthiness of the counterparty (the risk
weight). In Basel I, creditworthiness is split into three crude categories: governments,
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regulated banks and others. For instance, under Basel I, the risk-capital charge for
a loan to a corporate borrower is five times higher than for a loan to an OECD bank.
Also, the risk weight for all corporate borrowers is identical, independent of their
credit-rating category.

Due to its coarseness, the implementation of Basel I is extremely simple. But
with the establishment of more detailed credit risk databases, the improvement of
analytic models, and the rapid growth in the market for credit derivatives, banks have
pressed regulators to come up with more risk-specific capital-adequacy guidelines.
This is the main content of the new Basel II proposals, where banks will be allowed
to choose between standardized approaches or more advanced internal-ratings-
based (IRB) approaches for handling credit risk. The final choice will, however,
also depend on the size and complexity of the bank, with the larger, international
banks having to go for the more advanced models.

Already the banks opting for the standardized approach can differentiate better
among the various credit risks in their portfolio, since under the Basel II framework
the risk sensitivity of the available risk weights has been increased substantially.
Under the more advanced IRB approach, a bank’s internal assessment of the riski-
ness of a credit exposure is used as an input to the risk-capital calculation. The overall
capital charge is then computed by aggregating the internal inputs using formulas
specified by the Basel Committee. While this allows for increased risk sensitivity
in the IRB capital charge compared with the standardized approach, portfolio and
diversification effects are not taken into account; this would require the use of fully
internal models as in the market risk case. This issue is currently being debated
in the risk community, and it is widely expected that in the longer term a revised
version of the Basel II Capital Accord allowing for the use of fully internal models
will come into effect. In Chapter 8, certain aspects of the regulatory treatment of
credit risk will be discussed in more detail.

Opening the door to operational risk. A basic premise for Basel II was that,
whereas the new regulatory framework would enable banks to reduce their credit
risk capital charge through internal credit risk models, the overall size of regulatory
capital throughout the industry should stay unchanged under the new rules. This
opened the door for the new risk category of operational risk, which we discuss in
more depth in Section 10.1. Recall that Basel II defines operational risk as the risk
of losses resulting from inadequate or failed internal processes, people and systems
or from external events. The introduction of this new risk class has led to heated
discussions among the various stakeholders. Whereas everyone agrees that risks
like human risk (e.g. incompetence, fraud), process risk (e.g. model, transaction
and operational control risk) and technology risk (e.g. system failure, programming
error) are important, much disagreement exists on how far one should (or can) go
towards quantifying such risks. This becomes particularly difficult when the finan-
cially more important risks like fraud and litigation are taken into account. Nobody
doubts the importance of operational risk for the financial and insurance sector, but
much less agreement exists on how to measure this risk.



1.3. The New Regulatory Framework 13

The Cooke ratio. A crude measure of capitalization is the well-known Cooke ratio,
which specifies that capital should be at least 8% of the risk-weighted assets of a
company. The precise definition of risk capital is rather complex, involving various
tiers of differing liquidity and legal character, and is very much related to existing
accounting standards. For more detail see, for example, Crouhy, Galai and Mark
(2001).

Some criticism. The benefits arising from the regulation of financial services
are not generally in doubt. Customer-protection acts, basic corporate governance,
clear guidelines on fair and comparable accounting rules, the ongoing pressure for
transparent customer and shareholder information on solvency, capital- and risk-
management issues are all positive developments. Despite these positive points, the
specific proposals of Basel II have also elicited criticism; issues that have been raised
include the following.

• The cost factor of setting up a well-functioning risk-management system
compliant with the present regulatory framework is significant, especially (in
relative terms) for smaller institutions.

• So-called risk-management herding can take place, whereby institutions fol-
lowing similar (perhaps VaR-based) rules may all be running for the same
exit in times of crises, consequently destabilizing an already precarious situa-
tion even further. This herding phenomenon has been suggested in connection
with the 1987 crash and the events surrounding the 1998 LTCM crisis. On a
related note, the procyclical effects of financial regulation, whereby capital
requirements may rise in times of recession and fall in times of expansion,
may contribute negatively to the availability of liquidity in moments where
the latter is most needed.

• Regulation could lead to overconfidence in the quality of statistical risk mea-
sures and tools.

Several critical discussions have taken place questioning to what extent the
crocodile of regulatory risk management is eating its own tail. In an article of 12 June
1999, the Economist wrote that “attempts to measure and put a price on risk in finan-
cial markets may actually be making them riskier”; on the first page of the article,
entitled “The price of uncertainty”, the proverbial crocodile appeared. The reader
should be aware that there are several aspects to the overall regulatory side of risk
management which warrant further discussion. As so often, “the truth” of what con-
stitutes good and proper supervision will no doubt be somewhere between the more
extreme views. The Basel process has the very laudable aspect that constructive
criticism is taken seriously.

1.3.2 Solvency 2

In this section we take a brief look at regulatory developments regarding risk man-
agement in the insurance sector. We concentrate on the current solvency discussion,
also referred to as Solvency 2. The following statement, made by the EU Insurance



14 1. Risk in Perspective

Solvency Sub-Committee (2001), focuses on the differences between the Basel II
and Solvency 2 frameworks.

The difference between the two prudential regimes goes further in
that their actual objectives differ. The prudential objective of the Basel
Accord is to reinforce the soundness and stability of the international
banking system. To that end, the initial Basel Accord and the draft
New Accord are directed primarily at banks that are internationally
active. The draft New Accord attaches particular importance to the
self-regulating mechanisms of a market where practitioners are depen-
dent on one another. In the insurance sector, the purpose of pruden-
tial supervision is to protect policyholders against the risk of (iso-
lated) bankruptcy facing every insurance company. The systematic risk,
assuming that it exists in the insurance sector, has not been deemed to be
of sufficient concern to warrant minimum harmonisation of prudential
supervisory regimes at international level; nor has it been the driving
force behind European harmonisation in this field.

More so than in the case of banking regulation, the regulatory framework for insur-
ance companies has a strong local flavour where many local statutory rules prevail.
The various solvency committees in EU member countries and beyond are trying to
come up with some global principles which would be binding on a larger geograph-
ical scale. We discuss some of the more recent developments below.

From Solvency 1 to 2. The first EU non-life and life directives on solvency mar-
gins appeared around 1970. The latter was defined as an extra capital buffer against
unforeseen events such as higher than expected claims levels or unfavourable invest-
ment results. In 1997, the Müller report appeared under the heading “Solvency of
insurance undertakings”—this led to a review of the solvency rules and initiated
the Solvency 1 project, which was completed in 2002 and came into force in 2004.
Meanwhile, Solvency 2 was initiated in 2001 with the publication of the influen-
tial Sharma report—the detailed technical rules of Solvency 2 are currently being
worked out.

Solvency 1 was a rather coarse framework calling for a minimum guarantee
fund (minimal capital required) of €3 million, and a solvency margin consisting of
16–18% of non-life premiums together with 4% of the technical provisions for life.
This led to a single, robust system which is easy to understand and inexpensive to
monitor. However, on the negative side, it is mainly volume based and not explic-
itly risk based; issues like guarantees, embedded options and proper matching of
assets and liabilities were largely neglected in many countries. These and further
shortcomings will be addressed in Solvency 2.

At the heart of Solvency 2 lies a risk-oriented assessment of overall solvency,
honouring the three-pillar concept from Basel II (see the previous section). Insurers
are encouraged to measure and manage their risks based on internal models. Con-
sistency between Solvency 2 (Insurance) and Basel II (Banking) is adhered to as
much as possible. The new framework should allow for an efficient supervision of
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insurance groups (holdings) and financial conglomerates (bank-assurance). From
the start, an increased harmonization of supervisory methodology between the dif-
ferent legislative entities was envisaged, based on a wide international cooperation
with actuarial, financial and accounting bodies.

Without entering into the specifics of the framework, the following points related
to Pillar 1 should be mentioned. In principle, all risks are to be analysed including
underwriting, credit, market, operational (corresponding to internal operational risk
under Basel II), liquidity and event risk (corresponding to external operational risk
under Basel II). Strong emphasis is put on the modelling of interdependencies and
a detailed analysis of stress tests. The system should be as much as possible principle
based rather than rules based and should lead to prudent regulation which focuses on
the total balance sheet, handling assets and liabilities in a single common framework.

The final decision on solvency is based on a two-tier procedure. This involves
setting a first safety barrier at the level of the so-called target capital based on risk-
sensitive, market-consistent valuation; breaches of this early-warning level would
trigger regulatory intervention. The second and final tier is the minimal capital level
calculated with the old Solvency 1 rules. It is interesting to note that in the defini-
tion of target capital, the expected shortfall for a holding period is used as a risk
measure rather than Value-at-Risk, reflecting actuaries’ experience with skewed and
heavy-tailed pay-off functions; this alternative risk measure will be defined in Sec-
tion 2.2.4. The reader interested in finding out more about the ongoing developments
in insurance regulation will find relevant references in Notes and Comments.

1.4 Why Manage Financial Risk?

An important issue that we have barely dealt with concerns the reasons why we
should invest in QRM in the first place. This question can be posed from various
perspectives, including those of the customer of a financial institution, its sharehold-
ers, management, board of directors, regulators, politicians, or the public at large.
Each of these stakeholders may have a different answer, and, at the end of the day, an
equilibrium between the various interests will have to be found. In this section, we
will focus on some of the players involved and give a selective account of some of
the issues. It is not our aim, nor do we have the competence, to give a full treatment
of this important subject.

1.4.1 A Societal View

Modern society relies on the smooth functioning of banking and insurance systems
and has a collective interest in the stability of such systems. The regulatory process
culminating in Basel II has been strongly motivated by the fear of systemic risk,
i.e. the danger that problems in a single financial institution may spill over and, in
extreme situations, disrupt the normal functioning of the entire financial system.
Consider the following remarks made by Alan Greenspan before the Council on
Foreign Relations in Washington, DC, on 19 November 2002 (Greenspan 2002).

Today, I would like to share with you some of the evolving international
financial issues that have so engaged us at the Federal Reserve over the
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past year. I, particularly, have been focusing on innovations in the man-
agement of risk and some of the implications of those innovations for
our global economic and financial system. . . . The development of our
paradigms for containing risk has emphasized dispersion of risk to those
willing, and presumably able, to bear it. If risk is properly dispersed,
shocks to the overall economic systems will be better absorbed and less
likely to create cascading failures that could threaten financial stability.

In the face of such spillover scenarios, society views risk management positively
and entrusts regulators with the task of forging the framework that will safeguard
its interests. Consider the debate surrounding the use and misuse of derivatives.
Regulation serves to reduce the risk of the misuse of these products, but at the same
time recognizes their societal value in the global financial system. Perhaps contrary
to the popular view, derivatives should be seen as instruments that serve to enhance
stability of the system rather than undermine it, as argued by Greenspan in the same
address.

Financial derivatives, more generally, have grown at a phenomenal pace
over the past fifteen years. Conceptual advances in pricing options and
other complex financial products, along with improvements in computer
and telecommunications technologies, have significantly lowered the
costs of, and expanded the opportunities for, hedging risks that were
not readily deflected in earlier decades. Moreover, the counterparty
credit risk associated with the use of derivative instruments has been
mitigated by legally enforceable netting and through the growing use
of collateral agreements. These increasingly complex financial instru-
ments have especially contributed, particularly over the past couple of
stressful years, to the development of a far more flexible, efficient, and
resilient financial system than existed just a quarter-century ago.

1.4.2 The Shareholder’s View

It is widely believed that proper financial risk management can increase the value
of a corporation and hence shareholder value. In fact, this is the main reason why
corporations which are not subject to regulation by financial supervisory authori-
ties engage in risk-management activities. Understanding the relationship between
shareholder value and financial risk management also has important implications
for the design of risk-management (RM) systems. Questions to be answered include
the following.

• When does RM increase the value of a firm, and which risks should be man-
aged?

• How should RM concerns factor into investment policy and capital budgeting?

There is a rather extensive corporate finance literature on the issue of “corporate risk
management and shareholder value”.We briefly discuss some of the main arguments.
In this way we hope to alert the reader to the fact that there is more to RM than
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the mainly technical questions related to the implementation of RM strategies dealt
with in the core of this book.

The first thing to note is that from a corporate-finance perspective it is by no means
obvious that in a world with perfect capital markets RM enhances shareholder value:
while individual investors are typically risk averse and should therefore manage the
risk in their portfolios, it is not clear that RM or risk reduction at the corporate
level, such as hedging a foreign-currency exposure or holding a certain amount
of risk capital, increases the value of a corporation. The rationale for this—at first
surprising—observation is simple: if investors have access to perfect capital markets,
they can do the RM transactions they deem necessary via their own trading and
diversification. The following statement from the chief investment officer of an
insurance company exemplifies this line of reasoning: “If our shareholders believe
that our investment portfolio is too risky, they should short futures on major stock
market indices”.

The potential irrelevance of corporate RM for the value of a corporation is an
immediate consequence of the famous Modigliani–Miller Theorem (Modigliani and
Miller 1958). This result, which marks the beginning of modern corporate finance
theory, states that, in an ideal world without taxes, bankruptcy costs and informa-
tional asymmetries, and with frictionless and arbitrage-free capital markets, the
financial structure of a firm—and hence also its RM decisions—are irrelevant for
the firm’s value. Hence, in order to find reasons for corporate RM, one has to “turn
the Modigliani–Miller Theorem upside down” and identify situations where RM
enhances the value of a firm by deviating from the unrealistically strong assump-
tions of the theorem. This leads to the following rationales for RM.

• RM can reduce tax costs. Under a typical tax regime the amount of tax to
be paid by a corporation is a convex function of its profits; by reducing the
variability in a firm’s cash flow, RM can therefore lead to a higher expected
after-tax profit.

• RM can be beneficial, since a company may (and usually will) have better
access to capital markets than individual investors.

• RM can increase the firm value in the presence of bankruptcy costs, as it
makes bankruptcy less likely.

• RM can reduce the impact of costly external financing on the firm value, as it
facilitates the achievement of optimal investment.

The last two points merit a more detailed discussion. Bankruptcy costs consist of
direct bankruptcy costs, such as the cost of lawsuits, and the more important indirect
bankruptcy costs. The latter may include liquidation costs, which can be substantial
in the case of intangibles like research and development (R&D) and know-how.
This is why high R&D spending appears to be positively related to the use of
RM techniques. Moreover, increased likelihood of bankruptcy often has a negative
effect on key employees, management and customer relations, in particular in areas
where a client wants a long-term business relationship. For instance, few customers
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would want to enter into a life insurance contract with an insurance company which
is known to be close to bankruptcy. On a related note, banks which are close to
bankruptcy might be faced with the unpalatable prospect of a bank run, where
depositors try to withdraw their money simultaneously. A further discussion of
these issues is given in Altman (1993).

It is a “stylized fact of corporate finance” that for a corporation external funds are
more costly to obtain than internal funds, an observation which is usually attributed
to problems of asymmetric information between the management of a corporation
and bond and equity investors. For instance, raising external capital from outsiders
by issuing new shares might be costly if the new investors, who have incomplete
information about the economic prospects of a firm, interpret the share issue as
a sign that the firm is overvalued. This can generate a rationale for RM for the
following reason: without RM the increased variability of a company’s cash flow
will be translated either into an increased variability of the funds which need to be
raised externally or to an increased variability in the amount of investment. With
increasing marginal costs of raising external capital and decreasing marginal profits
from new investment, this leads to a decrease in (expected) profits. Hence proper
RM, which amounts to a smoothing of the cash flow generated by a corporation,
can be beneficial. For references to the literature see Notes and Comments.

1.4.3 Economic Capital

As we have just seen, a corporation typically has strong incentives to strictly limit
the probability of bankruptcy in order to avoid the associated bankruptcy costs.
This is directly linked to the notion of economic capital. In a narrow sense, eco-
nomic capital is the capital that shareholders should invest in the company in
order to limit the probability of default to a given confidence level over a given
time horizon. More broadly, economic capital offers a firm-wide language for dis-
cussing and pricing risk that is related directly to the principal concerns of man-
agement and other key stakeholders, namely institutional solvency and profitability
(see Matten 2000). In this broader sense, economic capital represents the emerg-
ing best practice for measuring and reporting all kinds of risk across a financial
organization.

Economic capital is so called because it measures risk in terms of economic reali-
ties rather than potentially misleading regulatory or accounting rules; moreover, part
of the measurement process involves converting a risk distribution into the amount
of capital that is required to support the risk, in line with the institution’s target
financial strength (e.g. credit rating). Hence the calculation of economic capital is
a process that begins with the quantification of the risks that any given company
faces over a given time period. These risks include those that are well defined from
a regulatory point of view, such as credit, market and operational risks, and also
includes other categories like insurance, liquidity, reputational and strategic or busi-
ness risk. When modelled in detail and aggregated one obtains a value distribution
in line with the Merton model for firm valuation as discussed in Chapter 8.



1.5. Quantitative Risk Management 19

Given such a value distribution, the next step involves the determination of the
probability of default (solvency standard) that is acceptable to the institution. The
mapping from risk (solvency standard) to capital often uses standard external bench-
marks for credit risk. For instance, a firm that capitalizes to Moody’s Aa standard
over a one-year horizon determines its economic capital as the “cushion” required
to keep the firm solvent over a one-year period with 99.97% probability; firms rated
Aa by Moody’s have historically defaulted with a 0.03% frequency over a one-year
horizon (see, for example, Duffie and Singleton 2003, Table 4.2). The choice of hori-
zon must relate to natural capital planning or business cycles, which might mean
one year for a bank but typically longer for an insurance company. In the ideal RM
set-up, it is economic capital that is used for setting risk limits. Or, as stated in
(Drzik, Nakada and Schuermann 1998), economic capital can serve as a common
currency for risk limits. That paper also discusses the way in which economic capital
(capital you need) can be compared with physical capital (capital you have) and how
corporate-finance decisions can be based on this comparison.

We hope that our brief discussion of the economic issues surrounding modern
RM has convinced the reader that there is more to RM than the mere statistical
computation of risk measures, important though the latter may be. The Notes and
Comments provide some references for readers who want to learn more about the
economic foundations of RM.

1.5 Quantitative Risk Management

In this first chapter we have tried to place QRM in a larger historical, institutional,
and even societal framework, since a study of QRM without a discussion of its
proper setting and motivation makes little sense. In the remainder of the book we
adopt a somewhat narrower view and treat QRM as a quantitative science using the
language of mathematics in general, and probability and statistics in particular.

In this section we describe the challenge that we have attempted to meet in this
book and discuss where QRM may lead in the future.

1.5.1 The Nature of the Challenge

We set ourselves the task of defining a new discipline of QRM and our approach
to this task has two main strands. On the one hand, we have attempted to put
current practice onto a firmer mathematical footing where, for example, concepts
like profit-and-loss distributions, risk factors, risk measures, capital allocation and
risk aggregation are given formal definitions and a consistent notation. In doing this
we have been guided by the consideration of what topics should form the core of a
course on QRM for a wide audience of students interested in RM issues; nonetheless,
the list is far from complete and will continue to evolve as the discipline matures. On
the other hand, the second strand of our endeavour has been to put together material
on techniques and tools which go beyond current practice and address some of the
deficiencies that have been raised repeatedly by critics. In the following paragraphs
we elaborate on some of these issues.
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Extremes matter. A very important challenge in QRM, and one that makes it par-
ticularly interesting as a field for probability and statistics, is the need to address
unexpected, abnormal or extreme outcomes, rather than the expected, normal or
average outcomes that are the focus of many classical applications. This is in tune
with the regulatory view expressed by Alan Greenspan:

From the point of view of the risk manager, inappropriate use of the
normal distribution can lead to an understatement of risk, which must be
balanced against the significant advantage of simplification. From the
central bank’s corner, the consequences are even more serious because
we often need to concentrate on the left tail of the distribution in for-
mulating lender-of-last-resort policies. Improving the characterization
of the distribution of extreme values is of paramount importance.

Joint Central Bank Research Conference, 1995

The need for a response to this challenge became very clear in the wake of the LTCM
case in 1998. John Meriwether, the founder of the hedge fund, clearly learned from
this experience of extreme financial turbulence; he is quoted as saying:

With globalisation increasing, you’ll see more crises. Our whole focus
is on the extremes now—what’s the worst that can happen to you in
any situation—because we never want to go through that again.

The Wall Street Journal, 21 August 2000

Much space is devoted in our book to models for financial risk factors that go beyond
the normal (or Gaussian) model and attempt to capture the related phenomena of
heavy tails, volatility and extreme values.

The interdependence and concentration of risks. A further important challenge
is presented by the multivariate nature of risk. Whether we look at market risk or
credit risk, or overall enterprise-wide risk, we are generally interested in some form
of aggregate risk that depends on high-dimensional vectors of underlying risk factors
such as individual asset values in market risk, or credit spreads and counterparty
default indicators in credit risk.

A particular concern in our multivariate modelling is the phenomenon of depend-
ence between extreme outcomes, when many risk factors move against us simulta-
neously. Again in connection with the LTCM case we find the following quote in
Business Week, September 1998.

Extreme, synchronized rises and falls in financial markets occur infre-
quently but they do occur. The problem with the models is that they did
not assign a high enough chance of occurrence to the scenario in which
many things go wrong at the same time—the “perfect storm” scenario.

In a perfect storm scenario the risk manager discovers that the diversification he
thought he had is illusory; practitioners describe this also as a concentration of risk.
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Myron Scholes, a prominent figure in the development of RM, alludes to this in
Scholes (2000), where he argues against the regulatory overemphasis of VaR in the
face of the more important issue of co-movements in times of market stress:

Over the last number of years, regulators have encouraged financial
entities to use portfolio theory to produce dynamic measures of risk.
VaR, the product of portfolio theory, is used for short-run, day-to-day
profit-and-loss exposures. Now is the time to encourage the BIS and
other regulatory bodies to support studies on stress test and concen-
tration methodologies. Planning for crises is more important than VaR
analysis.And such new methodologies are the correct response to recent
crises in the financial industry.

The problem of scale. A further challenge in QRM is the typical scale of the
portfolios under consideration; in the most general case a portfolio may represent
the entire position in risky assets of a financial institution. Calibration of detailed
multivariate models for all risk factors is a well-nigh impossible task and hence any
sensible strategy involves dimension reduction, that is to say the identification of
key risk drivers and a concentration on modelling the main features of the overall
risk landscape.

In short we are forced to adopt a fairly “broad-brush” approach. Where we use
econometric tools, such as models for financial return series, we are content with rel-
atively simple descriptions of individual series which capture the main phenomenon
of volatility, and which can be used in a parsimonious multivariate factor model.
Similarly, in the context of portfolio credit risk, we are more concerned with finding
suitable models for the default dependence of counterparties than with accurately
describing the mechanism for the default of an individual, since it is our belief that
the former is at least as important as the latter in determining the risk of a large
diversified portfolio.

Interdisciplinarity. Another aspect of the challenge of QRM is the fact that ideas
and techniques from several existing quantitative disciplines are drawn together.
When one considers the ideal education for a quantitative risk manager of the future,
then no doubt a combined quantitative skillset should include concepts, techniques
and tools from such fields as mathematical finance, statistics, financial econometrics,
financial economics and actuarial mathematics. Our choice of topics is strongly
guided by a firm belief that the inclusion of modern statistical and econometric
techniques and a well-chosen subset of actuarial methodology are essential for the
establishment of best-practice QRM. Certainly QRM is not just about financial
mathematics and derivative pricing, important though these may be.

Of course, the quantitative risk manager operates in an environment where addi-
tional non-quantitative skills are equally important. Communication is certainly the
most important skill of all, as a risk professional by definition of his/her duties will
have to interact with colleagues with diverse training and background at all levels
of the organization. Moreover, a quantitative risk manager has to familiarize him or
herself quickly with all-important market practice and institutional details. Finally, a
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certain degree of humility will also be required to recognize the role of quantitative
risk management in a much larger picture.

1.5.2 QRM for the Future

It cannot be denied that the use of QRM in the insurance and banking industry has
had an overall positive impact on the development of those industries. However, RM
technology is not restricted to the financial-services industry and similar develop-
ments are taking place in other sectors of industry. Some of the earliest applications
of QRM are to be found in the manufacturing industry, where similar concepts and
tools exist under names like reliability or total quality control. Industrial companies
have long recognized the risks associated with bringing faulty products to the mar-
ket. The car manufacturing industry in Japan in particular has been an early driving
force in this respect.

More recently, QRM techniques have been adopted in the transport and energy
industries, to name but two. In the case of energy there are obvious similarities
with financial markets: electrical power is traded on energy exchanges; derivatives
contracts are used to hedge future price uncertainty; companies optimize investment
portfolios combining energy products with financial products; a current debate in
the industry concerns the extent to which existing Basel II methodology can be
transferred to the energy sector. However, there are also important dissimilarities
due to the specific nature of the industry; most importantly there is the issue of
the cost of storage and transport of electricity as an underlying commodity and the
necessity of modelling physical networks including the constraints imposed by the
existence of national boundaries and quasi-monopolies.

A further exciting area concerns the establishment of markets for environmental
emission allowances. For example, the Chicago Climate Futures Exchange (CCFE)
currently offers futures contracts on sulphur dioxide emissions. These are traded
by industrial companies producing the pollutant in their manufacturing process and
force such companies to consider the cost of pollution as a further risk in their risk
landscape.

A natural consequence of the evolution of QRM thinking in different industries is
an interest in the transfer of risks between industries; this process is known as ART
(alternative risk transfer). To date the best examples are of risk transfer between
the insurance and banking industries, as illustrated by the establishment in 1992 of
catastrophe futures by the Chicago Board of Trade. These came about in the wake
of Hurricane Andrew, which caused $20 billion of insured losses on the East Coast
of the US. While this was a considerable event for the insurance industry in relation
to overall reinsurance capacity, it represented only a drop in the ocean compared
with the daily volumes traded worldwide on financial exchanges. This led to the
recognition that losses could be covered in future by the issuance of appropriately
structured bonds with coupon streams and principal repayments dependent on the
occurrence or non-occurrence of well-defined natural catastrophe events, such as
storms and earthquakes.
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A speculative view of where these developments may lead is given by Shiller
(2003), who argues that the proliferation of RM thinking coupled with the tech-
nological sophistication of the twenty-first century will allow any agent in society,
from a company to a country to an individual, to apply QRM methodology to the
risks they face. In the case of an individual this may be the risk of unemployment,
depreciation in the housing market or the investment in the education of children.

Notes and Comments

The language of probability and statistics plays a fundamental role throughout the
book and readers are expected to have a good knowledge of these subjects. At the
elementary level, Rice (1995) gives a good first introduction to both of these. More
advanced texts in probability and stochastic processes are Williams (1991), Resnick
(1992) and Rogers and Williams (1994); the full depth of these texts is certainly not
required for the understanding of this book, though they provide excellent reading
material for the mathematically more sophisticated reader who also has an interest
in mathematical finance. Further recommended texts on statistical inference include
Casella and Berger (2002), Bickel and Doksum (2001), Davison (2003) and Lindsey
(1996).

An excellent text on the history of risk and probability with financial applications
in mind is Bernstein (1998). Additional useful material on the history of the subject
is to be found in Field (2003).

For the mathematical reader looking to acquire more knowledge of relevant
economics we recommend Mas-Colell, Whinston and Green (1995) for microe-
conomics; Campbell, Lo and MacKinlay (1997) or Gourieroux and Jasak (2001)
for econometrics; and Brealey and Myers (2000) for corporate finance. From the
vast literature on options, an entry-level text for the general reader is Hull (1997).
At a more mathematical level we like Bingham and Kiesel (1998) and Musiela and
Rutkowski (1997). One of the most readable texts on the basic notion of options is
Cox and Rubinstein (1985). For a rather extensive list of the kind of animals to be
found in the zoological garden of derivatives, see, for example, Haug (1998).

There are several texts on the spectacular losses due to speculative trading and
careless use of derivatives. The LTCM case is well documented in Dunbar (2000),
Lowenstein (2000) and Jorion (2000), the latter particularly for the technical risk-
measurement issues involved. Boyle and Boyle (2001) give a very readable account
of the Orange County, Barings and LTCM stories. A useful website on RM, con-
taining a growing collection of industry case studies, is www.erisk.com.

An overview of options embedded in life insurance products is given in Dillmann
(2002), guarantees are discussed in detail in Hardy (2003), and Briys and de Varenne
(2001) contains an excellent account of RM issues facing the (life) insurance indus-
try.

The historical development of banking regulation is well described in Crouhy,
Galai and Mark (2001) and Steinherr (1998). For details of the current rules and
regulations coming from the Basel Committee, see its website at www.bis.org/bcbs.
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Besides copies of the various accords, one also finds useful working papers, publi-
cations and comments written by stakeholders on the various consultative packages.
For Solvency 2, many documents are being prepared, and the Web is the best place
to start looking; a forthcoming text is Sandström (2005). The complexity of RM
methodology in the wake of Basel II is critically addressed by Hawke (2003), in his
capacity as US Comptroller of the Currency.

For a very detailed overview of relevant practical issues underlying RM we again
strongly recommend Crouhy, Galai and Mark (2001). A text stressing the use of VaR
as a risk measure and containing several worked examples is Jorion (2001), who also
has a useful teaching manual on the same subject (Jorion 2002a). Insurance-related
issues in RM are well presented in Doherty (2000).

For a comprehensive discussion of the management of bank capital given regula-
tory constraints see Matten (2000). Graham and Rogers (2002) contains a discussion
of RM and tax incentives. A formal account of the Modigliani–Miller Theorem and
its implication can be found in many textbooks on corporate finance: a standard
reference is Brealey and Myers (2000); de Matos (2001) gives a more theoretical
account from the perspective of modern financial economics. Both texts also discuss
the implications of informational asymmetries between the various stakeholders in
a corporation. Formal models looking at RM from a corporate finance angle are to
be found in Froot and Stein (1998), Froot, Scharfstein and Stein (1993) and Stulz
(1996, 2002). For a specific discussion on corporate finance issues in insurance see
Froot (2005) and Hancock, Huber and Koch (2001).

There are several studies on the use of RM techniques for non-financial firms
(see, for example, Bodnar, Hyat and Marston 1999; Geman 2005). Two references
in the area of reliability of industrial processes are Bedford and Cooke (2001) and
Does, Roes and Trip (1999). An interesting edited volume on alternative risk trans-
fer (ARTs) is Shimpi (1999); a detailed study of model risk in the ART context is
Schmock (1999). An area we have not mentioned so far in our discussion of QRM in
the future is that of real options. A real option is the right, but not the obligation, to
take an action (e.g. deferring, expanding, contracting or abandoning) at a predeter-
mined cost called the exercise price for a predetermined period of time—the life of
the option. This definition is taken from Copeland and Antikarov (2001). Examples
of real options discussed in the latter are the valuation of an internet project and of
a pharmaceutical research and development project. A further useful reference is
Brennan and Trigeorgis (2000).



2
Basic Concepts in Risk Management

In this chapter we discuss essential concepts in quantitative risk management. We
begin by introducing a probabilistic framework for modelling financial risk and we
give formal definitions for notions such as risk, profit and loss, risk factors and
mapping. Moreover, we discuss a number of examples from the areas of market and
credit risk, illustrating how typical risk-management problems fit into the general
framework.

A central issue in modern risk management is the measurement of risk. As
explained in Chapter 1, the need to quantify risk arises in many different con-
texts. For instance, a regulator measures the risk exposure of a financial institution
in order to determine the amount of capital that institution has to hold as a buffer
against unexpected losses. Similarly, the clearing house of an exchange needs to set
margin requirements for investors trading on that exchange. In Section 2.2 we give
an overview of the existing approaches to measuring risk and discuss their strengths
and weaknesses. Particular attention will be given to Value-at-Risk and the related
notion of expected shortfall.

In Section 2.3 we present some standard methods used in the financial industry
for measuring market risk over a short horizon, such as the variance–covariance
method, the historical-simulation method and methods based on Monte Carlo simu-
lation. We consider the use of scaling rules for transforming one-period risk-measure
estimates into estimates for longer time horizons and give a short discussion of back-
testing approaches for monitoring the performance of risk-measurement systems.
We conclude with an example of the application of standard methodology.

2.1 Risk Factors and Loss Distributions

2.1.1 General Definitions

We represent the uncertainty about future states of the world by a probability space
(Ω,F , P ), which is the domain of all random variables (rvs) we introduce below.
Consider a given portfolio such as a collection of stocks or bonds, a book of deriva-
tives, a collection of risky loans or even a financial institution’s overall position in
risky assets. We denote the value of this portfolio at time s by V (s) and assume that
the rv V (s) is observable at time s. For a given time horizon �, such as 1 or 10 days,
the loss of the portfolio over the period [s, s + �] is given by

L[s,s+�] := −(V (s + �) − V (s)).
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WhileL[s,s+�] is assumed to be observable at time s+�, it is typically random from
the viewpoint of time s. The distribution of L[s,s+�] is termed the loss distribution.

We distinguish between the conditional loss distribution, i.e. the distribution of
L[s,s+�] given all available information up to and including time s, and the uncon-
ditional loss distribution; this issue is taken up in more detail below.

Remark 2.1. Practitioners in risk management are often concerned with the so-
called profit-and-loss (P&L) distribution. This is the distribution of the change in
value V (s + �) − V (s), i.e. of the rv −L[s,s+�]. However, in risk management
we are mainly concerned with the probability of large losses and hence with the
upper tail of the loss distribution. Hence we often drop the P from P&L, both in
notation and language. It is a standard convention in statistics to present results on
tail estimation for the upper tail of distributions. Moreover, actuarial risk theory is a
theory of positive rvs. Hence our focus on loss distributions facilitates the application
of techniques from these fields.

In most parts of the book we consider a fixed horizon�. In that case it will be con-
venient to measure time in units of � and to introduce a time series notation, where
we move from a generic process Y (s) to the time series (Yt )t∈N with Yt := Y (t�).
Using this notation the loss is written as

Lt+1 := L[t�,(t+1)�] = −(Vt+1 − Vt ). (2.1)

For instance, in market risk management we often work with financial models where
the calendar time s is measured in years and interest rates and volatilities are quoted
on an annualized basis. If we are interested in daily losses we set � = 1/365 or
� ≈ 1/250; the latter convention is mainly used in markets for equity derivatives
since there are approximately 250 trading days per year. The rvs Vt and Vt+1 then
represent the portfolio value on days t and t + 1, respectively, and Lt+1 is the loss
from day t to day t + 1.

Following standard risk-management practice the value Vt is modelled as a func-
tion of time and a d-dimensional random vector Zt = (Zt,1, . . . , Zt,d)

′ of risk fac-
tors, i.e. we have the representation

Vt = f (t,Zt ) (2.2)

for some measurable function f : R+ ×R
d → R. Risk factors are usually assumed

to be observable so that Zt is known at time t . The choice of the risk factors and
of f is of course a modelling issue and depends on the portfolio at hand and on
the desired level of precision. Frequently used risk factors are logarithmic prices
of financial assets, yields and logarithmic exchange rates. A representation of the
portfolio value in the form (2.2) is termed a mapping of risks. Some examples of
the mapping of standard portfolios are provided below.

It will be convenient to define the series of risk-factor changes (Xt )t∈N by Xt :=
Zt −Zt−1; they are the objects of interest in most statistical studies of financial time
series. Using the mapping (2.2) the portfolio loss can be written as

Lt+1 = −(f (t + 1,Zt + Xt+1) − f (t,Zt )). (2.3)
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Since Zt is known at time t , the loss distribution is determined by the distribution
of the risk-factor change Xt+1. We therefore introduce another piece of notation,
namely the loss operator l[t] : R

d → R, which maps risk-factor changes into losses.
It is defined by

l[t](x) := −(f (t + 1,Zt + x) − f (t,Zt )), x ∈ R
d , (2.4)

and we obviously have Lt+1 = l[t](Xt+1).
If f is differentiable, we consider a first-order approximation L�

t+1 of the loss in
(2.3) of the form

L�
t+1 := −

(
ft (t,Zt ) +

d∑
i=1

fzi (t,Zt )Xt+1,i

)
, (2.5)

where the subscripts to f denote partial derivatives. The notationL� stems from the
standard delta terminology in the hedging of derivatives (see Example 2.5 below).
The linearized loss operator corresponding to (2.5) is given by

l�[t](x) := −
(
ft (t,Zt ) +

d∑
i=1

fzi (t,Zt )xi

)
. (2.6)

The first-order approximation is convenient as it allows us to represent the loss as
a linear function of the risk-factor changes. The quality of the approximation (2.5)
is obviously best if the risk-factor changes are likely to be small (i.e. if we are
measuring risk over a short horizon) and if the portfolio value is almost linear in the
risk factors (i.e. if the function f has small second derivatives).

Remark 2.2. In developing formulas (2.2)–(2.6) we have assumed that time is
measured in units of the horizon �. In order to be in line with market convention
in our examples it will sometimes be convenient to consider mappings of the form
g(s,Z), where time s is measured in years; in that case, equations (2.2) and (2.3)
become, respectively, Vt = f (t,Zt ) = g(t�,Zt ) and

Lt+1 = −(g((t + 1)�,Zt + Xt+1) − g(t�,Zt )),

where � gives the length of the risk-management horizon in years. Care must be
taken with the linearized version of the loss in (2.5), which becomes

L�
t+1 := −

(
gs(t�,Zt )� +

d∑
i=1

gzi (t�,Zt )Xt+1,i

)
. (2.7)

Note that, when working with a short time horizon�, the term gs(t�,Zt )� in (2.7)
is very small and is therefore often dropped in practice.

Remark 2.3. Note that our definition of the portfolio loss implicitly assumes that
the composition of the portfolio remains unchanged over the time horizon �. While
unproblematic for daily losses this assumption becomes increasingly unrealistic for
longer time horizons. This is a problem for non-financial corporations like insurance
companies; such companies may prefer to measure the risk of their financial portfolio
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over a one-year horizon, which is the appropriate horizon for dealing with their usual
business risks. We note also that in the context of the Basel Accords, discussed in
Chapter 1, it is formally required that calculations for banks be made under the
assumption that the portfolio composition remains unchanged over a holding period
� (10 days in the case of market risk).

2.1.2 Conditional and Unconditional Loss Distribution

As mentioned earlier, in risk management we often have to decide if we are interested
in the conditional or the unconditional distribution of losses. Both are relevant for
risk-management purposes, but it is important to be aware of the distinction between
the two concepts.

The differences between conditional and unconditional loss distributions are
strongly related to time series properties of the series of risk-factor changes (Xt )t∈N.
Suppose that the risk-factor changes form a stationary time series with stationary
distribution FX on R

d . Essentially, this means that the distribution of (Xt )t∈N is
invariant under shifts of time (see Chapter 4 for details) and most time series models
used in practice for the modelling of risk-factor changes satisfy this property. Now
fix a point in time t (current time), and denote by Ft the sigma field representing
the publicly available information at time t . Typically, Ft = σ({Xs : s � t}), the
sigma field generated by past and present risk-factor changes, often called the his-
tory, up to and including time t . Denote by FXt+1|Ft the conditional distribution of
Xt+1 given current information Ft . In most stationary time series models relevant
for risk management, FXt+1|Ft is not equal to the stationary distribution FX. An
important example is provided by the popular models from the GARCH family (see
Section 4.3). In this class of model the variance of the conditional distribution of
Xt+1 is a function of past risk-factor changes and possibly of its own lagged values.
On the other hand, if (Xt )t∈N is an independent and identically distributed (iid)
series, we obviously have FXt+1|Ft = FX.

Fix the loss operator l[t] corresponding to the portfolio currently under consider-
ation. The conditional loss distribution FLt+1|Ft is defined as the distribution of the
loss operator l[t](·) under FXt+1|Ft . Formally we have, for l ∈ R,

FLt+1|Ft (l) = P(l[t](Xt+1) � l | Ft ) = P(Lt+1 � l | Ft ),

i.e. the conditional loss distribution gives the conditional distribution of the lossLt+1

in the next time period given current information Ft . Conditional distributions are
particularly relevant in market risk management.

The unconditional loss-distribution FLt+1 on the other hand is defined as the
distribution of l[t](·) under the stationary distribution FX of risk-factor changes. It
gives the distribution of the portfolio loss if we consider a generic risk-factor change
X with the same distribution as X1, . . . ,Xt . The unconditional loss distribution is
of particular interest if the time horizon over which we want to measure our losses
is relatively large, as is frequently the case in credit risk management and insurance.

To define conditional and unconditional distributions of linearized losses we sim-
ply replace l[t] by l�[t]. Of course, if the risk-factor changes form an iid sequence,
conditional and unconditional loss distributions coincide.
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Risk-management techniques based on the conditional loss distribution are often
termed conditional or dynamic risk management; techniques based on the uncon-
ditional loss distribution are often referred to as static risk management. In Sec-
tion 2.3.6 we illustrate the difference between the two approaches.

2.1.3 Mapping of Risks: Some Examples

We now consider a number of examples from the area of market and credit risk,
illustrating how typical risk-management problems fit into the framework of the pre-
vious section. Altogether there are five examples in this section. While we strongly
encourage the reader to study at least two or three of them to develop intuition for
the mapping of risks, it is possible to skip some of the examples at first reading.

Example 2.4 (stock portfolio). Consider a fixed portfolio of d stocks and denote
by λi the number of shares of stock i in the portfolio at time t . The price process
of stock i is denoted by (St,i )t∈N. Following standard practice in finance and risk
management we use logarithmic prices as risk factors, i.e. we take Zt,i := ln St,i ,
1 � i � d . The risk-factor changes Xt+1,i = ln St+1,i − ln St,i then correspond
to the log-returns of the stocks in the portfolio. We get Vt = ∑d

i=1 λi exp(Zt,i) and
hence

Lt+1 = −(Vt+1 − Vt ) = −
d∑
i=1

λiSt,i (exp(Xt+1,i ) − 1).

The linearized loss L�
t+1 is then given by

L�
t+1 = −

d∑
i=1

λiSt,iXt+1,i = −Vt

d∑
i=1

wt,iXt+1,i , (2.8)

where the weight wt,i := (λiSt,i )/Vt gives the proportion of the portfolio value
invested in stock i at time t . The corresponding linearized loss operator is given
by l�[t](x) = −Vtw

′
tx := −Vt

∑d
i=1 wt,ixi . Given the mean vector and covariance

matrix of the distribution of the risk-factor changes it is very easy to compute the first
two moments of the distribution of the linearized loss L�. Suppose that the random
vector X follows a distribution with mean vector µ and covariance matrix Σ . Using
general rules for the mean and variance of linear combinations of a random vector
(see also equations (3.7) and (3.8)) we immediately get

E(l�[t](X)) = −Vtw
′µ and var(l�[t](X)) = V 2

t w′Σw. (2.9)

Applied to the mean vector µt and the covariance matrix Σt of the conditional
distribution FXt+1|Ft of the risk-factor changes, (2.9) yields the first two moments
of the conditional loss distribution; applied to the mean vector µ and the covariance
matrixΣ of the unconditional distributionFX of the risk-factor changes, (2.9) yields
the first two moments of the unconditional loss distribution.

Example 2.5 (European call option). We now consider a simple example of a
portfolio of derivative securities, namely a standard European call on a non-dividend-
paying stock S with maturity date T and exercise priceK . We use the Black–Scholes
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option-pricing formula for the valuation of our portfolio. Define the function CBS

by

CBS(s, S; r, σ,K, T ) := SΦ(d1) − Ke−r(T−s)Φ(d2), (2.10)

where Φ denotes the standard normal distribution function (df), r represents the
continuously compounded risk-free interest rate, σ denotes the annualized volatility
of the underlying stock, and where

d1 = ln(S/K) + (r + 1
2σ

2)(T − s)

σ
√
T − s

and d2 = d1 − σ
√
T − s. (2.11)

Following market convention, time in (2.10) is measured in years so that Remark 2.2
applies. We are interested in daily losses and set � = 1/250.

An obvious risk factor to choose for this portfolio is the log-price of the under-
lying stock. While in the Black–Scholes option-pricing model the interest rate and
volatility are assumed to be constant, in real markets interest rates change con-
stantly as do the implied volatilities that practitioners tend to use as inputs for the
volatility parameter. Hence we take Zt = (ln St , rt , σt )′ as the vector of risk factors.
According to the Black–Scholes formula the value of the call option on day t equals
Vt = CBS(t�, St ; rt , σt , K, T ). The risk-factor changes are given by

Xt+1 = (ln St+1 − ln St , rt+1 − rt , σt+1 − σt ),

so that the linearized loss is given by

L�
t+1 = −(CBS

s � + CBS
S StXt+1,1 + CBS

r Xt+1,2 + CBS
σ Xt+1,3),

where the subscripts denote partial derivatives. Note that we have omitted the argu-
ments of CBS to simplify the notation. The derivatives of the Black–Scholes option-
pricing function are often referred to as the Greeks: CBS

S (the partial derivative
with respect to the stock price S) is called the delta of the option; CBS

s (the partial
derivative with respect to calendar time s) is called the theta of the option; CBS

r (the
partial derivative with respect to the interest rate r) is called the rho of the option;
in a slight abuse of the Greek language, CBS

σ (the partial derivative with respect to
volatility σ ) is called the vega of the option. The Greeks play an important role in
the risk management of derivative portfolios.

The reader should keep in mind that for portfolios with derivatives the linearized
loss can be a rather poor approximation of the true loss, since the portfolio value is
often a highly nonlinear function of the risk factors. This has led to the development
of higher-order approximations such as the delta–gamma approximation, where
first- and second-order derivatives are used. (The second derivative CBS

SS is called
the gamma of an option.) In Notes and Comments we provide a number of further
references dealing with this issue.

Example 2.6 (bond portfolio). Next we consider a portfolio of d default-free zero-
coupon bonds with maturityTi and pricep(s, Ti), 1 � i � d (again time is measured
in years, so Remark 2.2 applies). By λi we denote the number of bonds with maturity



2.1. Risk Factors and Loss Distributions 31

Ti in the portfolio. While zero-coupon bonds of longer maturities are relatively rare
in practice, our example is relevant, since many fixed-income instruments such as
coupon bonds or standard swaps can be viewed as portfolios of zero-coupon bonds.

We follow a standard convention in modern interest-rate theory and normalize
the face value p(T , T ) of the bond to one. Recall that the continuously compounded
yield of a zero-coupon bond is defined as y(s, T ) := −(1/(T − s)) lnp(s, T ),
i.e. we have

p(s, T ) = exp(−(T − s)y(s, T )).

The mapping T → y(s, T ) is referred to as the continuously compounded yield
curve at time s. In a detailed analysis of the change in value of a bond portfolio one
takes all yields y(s, Ti), 1 � i � d, as risk factors. The value of the portfolio at
time s is then given by V (s) = ∑d

i=1 λip(s, Ti), and in our mapping notation (2.2)
we have

Vt =
d∑
i=1

λip(t�, Ti) =
d∑
i=1

λi exp(−(Ti − t�)y(t�, Ti)). (2.12)

From this formula the loss Lt+1 is easily computed. Taking derivatives and using
the definition of the linearized loss L�

t+1 in (2.5) we also get

L�
t+1 = −

d∑
i=1

λip(t�, Ti)(y(t�, Ti)� − (Ti − t�)Xt+1,i ), (2.13)

where the risk-factor changes are Xt+1,i = y((t + 1)�, Ti) − y(t�, Ti).
This formula is closely related to the classical concept of duration. Suppose

that the yield curve is flat, i.e. y(s, T ) = y(s) independently of T and that the
only possible changes in interest rates are parallel shifts of the yield curve so that
y(s + �, T ) = y(s) + δ for all T . These assumptions are clearly unrealistic but
frequently made in practice. Then L�

t+1 can be written as

L�
t+1 = −Vt

(
yt� −

d∑
i=1

λip(t�, Ti)

Vt
(Ti − t�)δ

)
= −Vt (yt� − Dδ),

where

D :=
d∑
i=1

λip(t�, Ti)

Vt
(Ti − t�)

is a weighted sum of the times to maturity of the different cash flows in the portfolio,
the weights being proportional to the discounted value of the cash flows.D is usually
called the duration of a bond portfolio. The duration is an important tool in traditional
bond-portfolio or asset-liability management. The standard duration-based strategy
to manage the interest risk of a bond portfolio is called immunization. Under this
strategy an asset manager, who has a certain amount of funds to invest in various
bonds and who needs to make certain known payments in the future, allocates these
funds to various bonds in such a way that the duration of the overall portfolio
consisting of bond investment and liabilities is equal to zero. As we have just seen,
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duration measures the sensitivity of the portfolio value with respect to parallel shifts
of the yield curve. Hence a zero duration means that the position has been immunized
against these type of yield-curve changes. However, the portfolio is still exposed to
other types of yield-curve changes.

If we consider large portfolios of fixed-income instruments, such as the overall
fixed-income position of a major bank, choosing the yield of every bond in the port-
folio as a risk factor becomes impractical: one ends up with too many risk factors,
which renders the estimation of the distribution of the risk-factor changes impossible.
To overcome this problem one therefore picks a few benchmark yields per coun-
try and uses a more-or-less ad hoc procedure to map cash flows at days between
benchmark points to the two nearest benchmark points. We refer to Section 6.2 of
the RiskMetrics technical document (JPMorgan 1996) for details.

Example 2.7 (currency forwards). We now consider the mapping of a long position
in a currency forward. A currency or foreign exchange (FX) forward is an agreement
between two parties to buy/sell a pre-specified amount V̄ of foreign currency at a
future time point T > s at a pre-specified exchange rate ē. The future buyer is said
to hold a long position, the other party is said to hold a short position in the contract.

To map this position we use the fact that a long position in the forward is equivalent
to a long position in a foreign and a short position in a domestic zero-coupon
bond. For illustration think of a euro investor holding a long position of size V̄ in
a currency forward on the USD/euro exchange rate. Denote by pf(s, T ) the USD
price of anAmerican (foreign) zero-coupon bond and bypd(s, T ) the corresponding
euro (domestic) zero-coupon bond; the USD/euro spot exchange rate is denoted by
e(s). Then the value in euro at time T of a portfolio consisting of λ1 := V̄ foreign
and λ2 := −ēV̄ domestic zero-coupon bonds equals VT = V̄ (eT − ē), which is
obviously equal to the pay-off of the long position in the forward.

The short position in the domestic zero-coupon bond can be dealt with as in
Example 2.6. Hence it remains to consider the position in the American zero-coupon
bond. Obvious risk factors to choose are the logarithmic exchange rate and the yield
of the US zero-coupon bond, i.e. Zt = (ln et , yf(t�, T ))′. The value of the position
in the foreign bond then equals

Vt = V̄ exp(Zt,1 − (T − t�)Zt,2),

and we get
L�
t+1 = −Vt (Zt,2� + Xt+1,1 − (T − t�)Xt+1,2),

where as usual Xt+1 represents the risk-factor changes.

Example 2.8 (stylized portfolio of risky loans). In our final example, which comes
from the area of credit risk management, we show how losses from a portfolio
of loans fit into our general framework; a detailed discussion of models for loan
portfolios will be presented in Chapter 8. A loan portfolio is subject to many risks.
The most important ones are default risk, i.e. the risk that some counterparties cannot
repay their loans; interest-rate risk, i.e. the risk that the present value of the future
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cash flows from the portfolio is diminished due to rising interest rates; and, finally,
the risk of losses caused by rising credit spreads.

We consider a portfolio of loans to m different counterparties; the size of the
exposure to counterparty i is denoted by ei . Following standard practice in credit
risk management, our risk-management horizon � is taken to be one year so that
there is no need to distinguish between the two timescales (i.e. t and s). For simplicity
we assume that all loans are repaid at the same date T > t and that there are no
payments prior to T . We introduce an rv Yt,i that represents the default state of
counterparty i at t ; we set Yt,i = 1 if counterparty i defaults in the time period [0, t]
and Yt,i = 0 otherwise. Again for simplicity we assume a recovery rate of zero,
i.e. we assume that upon default of obligor i the whole exposure ei is lost.

In valuing a risky loan we have to take the possibility of default into account.
Typically, this is done by discounting the cash flow ei at a higher rate than the yield
y(t, T ) of a default-free zero-coupon bond. More precisely, we model the value at
time t of such a loan as

exp(−(T − t)(y(t, T ) + ci(t, T )))ei;
ci(t, T ) is then referred to as the credit spread of company i corresponding to the
maturity T . Credit spreads are often determined from the prices of traded corporate
bonds issued by companies with a similar credit quality to the counterparty under
consideration. Alternatively, a formal pricing model using, for instance, the mar-
ket value of the counterparty’s stock as main input can be used (see Chapter 8, in
particular Section 8.2, for more information). Again for simplicity we ignore vari-
ations in credit quality and assume that ci(t, T ) = c(t, T ) for all i. Under all these
simplifying assumptions the value at time t of our loan portfolio equals

Vt =
m∑
i=1

(1 − Yt,i) exp(−(T − t)(y(t, T ) + c(t, T )))ei . (2.14)

This suggests the following (m + 2)-dimensional random vector of risk factors

Zt = (Yt,1, . . . , Yt,m, y(t, T ), c(t, T ))
′. (2.15)

Lt+1 and l[t] are now easy to compute using (2.14). Due to the discrete nature
of the default indicators and the long time horizon, linearized losses are of little
importance in credit risk management. It is apparent from (2.14) and (2.15) that the
main difficulty in modelling the loss distribution of loan portfolios is in finding and
calibrating a good model for the joint distribution of the default indicators Yt+1,i ,
1 � i � m; this issue is taken up in Chapter 8.

Notes and Comments

The framework introduced in this section is a stylized version of the model intro-
duced by the RiskMetrics Group. A summary of the earlier work of the RiskMet-
rics Group is the RiskMetrics Technical Document (JPMorgan 1996); an excellent
updated summary, which also discusses some recent developments on the academic
side, is Mina and Xiao (2001). The mapping of positions is also discussed in Jorion
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(2001) and Dowd (1998). The differences between conditional and unconditional
risk management are highlighted in McNeil and Frey (2000).

While not very satisfactory from a theoretical point of view, duration-based hedg-
ing remains popular with practitioners. For a detailed discussion of duration and its
use in the management of interest-rate risk we refer the reader to standard finance
textbooks such as Jarrow and Turnbull (1999) or Hull (1997).

The mapping of derivative portfolios using first- and second-order approximations
to the portfolio value (the so-called delta–gamma approximation) is discussed in
Duffie and Pan (1997) and Rouvinez (1997) (see also Duffie and Pan 2001).

2.2 Risk Measurement

In this section we give an overview of existing approaches to measuring risk in
financial institutions. In discussing strengths and weaknesses of these approaches
we focus on practical aspects and postpone a proper discussion of the theoretical
properties of the risk measures (issues such as subadditivity and coherence) until
Chapter 6.

In practice risk measures are used for a variety of purposes. Among the most
important are the following.

Determination of risk capital and capital adequacy. As discussed in Chapter 1,
one of the principal functions of risk management in the financial sector is to
determine the amount of capital a financial institution needs to hold as a buffer
against unexpected future losses on its portfolio in order to satisfy a regulator, who
is concerned with the solvency of the institution. A related problem is the deter-
mination of appropriate margin requirements for investors trading at an organized
exchange, which is typically done by the clearing house of the exchange.

Management tool. Risk measures are often used by management as a tool for
limiting the amount of risk a unit within a firm may take. For instance, traders in
a bank are often constrained by the rule that the daily 95% Value-at-Risk of their
position should not exceed a given bound.

Insurance premiums. Insurance premiums compensate an insurance company for
bearing the risk of the insured claims. The size of this compensation can be viewed
as a measure of the risk of these claims.

2.2.1 Approaches to Risk Measurement

Existing approaches to measuring the risk of a financial position can be grouped into
four different categories: the notional-amount approach; factor-sensitivity measures;
risk measures based on the loss distribution; risk measures based on scenarios.

Notional-amount approach. This is the oldest approach to quantifying the risk of
a portfolio of risky assets. In the notional-amount approach the risk of a portfolio is
defined as the sum of the notional values of the individual securities in the portfolio,
where each notional value may be weighted by a factor representing an assessment
of the riskiness of the broad asset class to which the security belongs. Variants of
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this approach are still in use in the standardized approach of the Basel Committee
rules on banking regulation; see, for example, Section 10.1.2 for operational risk,
or Chapter 2 of Crouhy, Galai and Mark (2001).

The advantage of the notional-amount approach is its apparent simplicity. How-
ever, as we recall from Chapter 1, from an economic viewpoint the approach is
flawed for a number of reasons. To begin with, the approach does not differenti-
ate between long and short positions and there is no netting. For instance, the risk
of a long position in foreign currency hedged by an offsetting short position in a
currency forward would be counted as twice the risk of the unhedged currency posi-
tion. Moreover, the approach does not reflect the benefits of diversification on the
overall risk of the portfolio. For example, if we use the notional-amount approach,
it appears that a well-diversified credit portfolio consisting of loans to m companies
that default more or less independently has the same risk as a portfolio where the
whole amount is lent to a single company. Finally, the notional-amount approach
has problems in dealing with portfolios of derivatives, where the notional amount of
the underlying and the economic value of the derivative position can differ widely.

Factor-sensitivity measures. Factor-sensitivity measures give the change in port-
folio value for a given predetermined change in one of the underlying risk factors;
typically they take the form of a derivative (in the calculus sense). Important factor-
sensitivity measures are the duration for bond portfolios and the Greeks for portfolios
of derivatives. While these measures provide useful information about the robust-
ness of the portfolio value with respect to certain well-defined events, they cannot
measure the overall riskiness of a position. Moreover, factor-sensitivity measures
create problems in the aggregation of risks.

• For a given portfolio it is not possible to aggregate the sensitivity with respect
to changes in different risk factors. For instance, it makes no sense to simply
add the delta and the vega of a portfolio of options.

• Factor-sensitivity measures cannot be aggregated across markets to create a
picture of the overall riskiness of the portfolio of a financial institution.

Hence these measures are not very useful for capital-adequacy decisions; used in
conjunction with other measures they can be useful for setting position limits.

Risk measures based on loss distributions. Most modern measures of the risk in
a portfolio are statistical quantities describing the conditional or unconditional loss
distribution of the portfolio over some predetermined horizon �. Examples include
the variance, the Value-at-Risk and the expected shortfall, which we discuss in more
detail in Sections 2.2.2–2.2.4. It is of course problematic to rely on any one particular
statistic to summarize the risk contained in a distribution. However, the view that
the loss distribution as a whole gives an accurate picture of the risk in a portfolio
has much to commend it:

• losses are the central object of interest in risk management and so it is natural
to base a measure of risk on their distribution;
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• the concept of a loss distribution makes sense on all levels of aggregation
from a portfolio consisting of a single instrument to the overall position of a
financial institution;

• if estimated properly, the loss distribution reflects netting and diversification
effects; and, finally,

• loss distributions can be compared across portfolios.

For instance, it makes perfect sense to compare the loss distribution of a book of
fixed-income instruments and of a portfolio of equity derivatives, at least if the time
horizon � is the same in both cases.

There are two major problems when working with loss distributions. First, any
estimate of the loss distribution is based on past data. If the laws governing financial
markets change, these past data are of limited use in predicting future risk. The
second, related problem is practical. Even in a stationary environment it is difficult to
estimate the loss distribution accurately, particularly for large portfolios, and many
seemingly sophisticated risk-management systems are based on relatively crude
statistical models for the loss distribution (incorporating, for example, untenable
assumptions of normality).

However, this is not an argument against using loss distributions. Rather, it calls
for improvements in the way loss distributions are estimated and, of course, for
prudence in the practical application of risk-management models based on esti-
mated loss distributions. In particular, risk measures based on the loss distribution
should be complemented by information from hypothetical scenarios. Moreover,
forward-looking information reflecting the expectations of market participants, such
as implied volatilities, should be used in conjunction with statistical estimates (which
are necessarily based on past information) in calibrating models of the loss distri-
bution.

Scenario-based risk measures. In the scenario-based approach to measuring the
risk of a portfolio one considers a number of possible future risk-factor changes
(scenarios): such as a 10% rise in key exchange rates or a simultaneous 20% drop
in major stock market indices or a simultaneous rise of key interest rates around
the globe. The risk of the portfolio is then measured as the maximum loss of the
portfolio under all scenarios, where certain extreme scenarios can be downweighted
to mitigate their effect on the result.

We now give a formal description. Fix a set X = {x1, . . . , xn} of risk-factor
changes (the scenarios) and a vector w = (w1, . . . , wn)

′ ∈ [0, 1]n of weights.
Consider a portfolio of risky securities and denote by l[t] the corresponding loss
operator. The risk of this portfolio is then measured as

ψ[X,w] := max{w1l[t](x1), . . . , wnl[t](xn)}. (2.16)

Many risk measures used in practice are of the form (2.16). For instance, the Chicago
Mercantile Exchange (CME) uses a scenario-based approach to determine margin
requirements. To compute the initial margin for a simple portfolio consisting of a
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position in a futures contract and call and put options on this contract, the CME
considers sixteen different scenarios. The first fourteen consist of an up move or
a down move of volatility combined with no move, an up move or a down move
of the futures price by 1/3, 2/3 or 3/3 units of a specified range. The weights wi ,
i = 1, . . . , 14, of these scenarios are equal to one. In addition there are two extreme
scenarios with weights w15 = w16 = 0.35. The amount of capital required by the
exchange as margin for a portfolio is then computed according to (2.16).

Remark 2.9. We can give a slightly different mathematical interpretation to for-
mula (2.16), which will be useful in Section 6.1. Assume for the moment that
l[t](0) = 0, i.e. that the value of the position is unchanged if all risk factors stay
the same. This is reasonable, at least for a short risk-management horizon �. In that
case the expression wil[t](xi ) can be viewed as the expected value of l[t] under a
probability measure on the space of risk-factor changes; this measure associates a
mass of wi ∈ [0, 1] to the point xi and a mass of 1 − wi to the point 0. Denote by
δx the probability measure associating a mass of one to the point x ∈ R

d and by
P[X,w] the following set of probability measures on R

d :

P[X,w] = {w1δx1 + (1 − w1)δ0, . . . , wnδxn + (1 − wn)δ0}.
Then ψ[X,w] can be written as

ψ[X,w] = max{EP (l[t](X)) : P ∈ P[X,w]}. (2.17)

A risk measure of the form (2.17), where P[X,w] is replaced by some arbitrary subset
P of the set of all probability measures on the space of risk-factor changes, is termed
a generalized scenario. Generalized scenarios play an important role in the theory
of coherent risk measures (see Section 6.1).

Scenario-based risk measures are a very useful risk-management tool for port-
folios exposed to a relatively small set of risk factors as in the CME example.
Moreover, they provide useful complementary information to measures based on
statistics of the loss distribution. The main problem is of course to determine an
appropriate set of scenarios and weighting factors. Moreover, comparison across
portfolios which are affected by different risk factors is difficult.

2.2.2 Value-at-Risk

Value-at-Risk (VaR) is probably the most widely used risk measure in financial insti-
tutions and has also made its way into the Basel II capital-adequacy framework—
hence it merits an extensive discussion. In this chapter we introduce VaR and discuss
practical issues surrounding its use; in Section 6.1 we examine VaR from the view-
point of coherent risk measures and highlight certain theoretical deficiencies.

Consider some portfolio of risky assets and a fixed time horizon �, and denote
by FL(l) = P(L � l) the df of the corresponding loss distribution. We do not
distinguish between L and L� or between conditional and unconditional loss distri-
butions; rather we assume that the choice has been made at the outset of the analysis
and that FL represents the distribution of interest. We want to define a statistic
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based on FL which measures the severity of the risk of holding our portfolio over
the time period �. An obvious candidate is the maximum possible loss, given by
inf{l ∈ R : FL(l) = 1}, a risk measure important in reinsurance. However, in most
models of interest the support of FL is unbounded so that the maximum loss is
simply infinity. Moreover, by using the maximum loss we neglect any probability
information in FL. Value-at-Risk is a straightforward extension of maximum loss,
which takes these criticisms into account. The idea is simply to replace “maximum
loss” by “maximum loss which is not exceeded with a given high probability”, the
so-called confidence level.

Definition 2.10 (Value-at-Risk). Given some confidence level α ∈ (0, 1). The VaR
of our portfolio at the confidence level α is given by the smallest number l such that
the probability that the loss L exceeds l is no larger than (1 − α). Formally,

VaRα = inf{l ∈ R : P(L > l) � 1 − α} = inf{l ∈ R : FL(l) � α}. (2.18)

In probabilistic terms, VaR is thus simply a quantile of the loss distribution.
Typical values for α are α = 0.95 or α = 0.99; in market risk management the
time horizon � is usually 1 or 10 days, in credit risk management and operational
risk management � is usually one year. Note that by its very definition the VaR at
confidence level α does not give any information about the severity of losses which
occur with a probability less than 1 − α. This is clearly a drawback of VaR as a risk
measure. For a small case study that illustrates this problem numerically we refer
to Example 2.21 below.

Figure 2.1 illustrates the notion of VaR. The probability density function of a loss
distribution is shown with a vertical line at the value of the 95% VaR. Note that the
mean loss is negative (E(L) = −2.6), indicating that we expect to make a profit,
but the right tail of the loss distribution is quite long in comparison with the left tail.
The 95% VaR value is approximately 2.2, indicating that there is a 5% chance that
we lose at least this amount.

Remark 2.11 (mean-VaR). Denote by µ the mean of the loss distribution. Some-
times the statistic VaRmean

α := VaRα −µ is used for capital-adequacy purposes
instead of ordinary VaR. If the time horizon � equals one day, VaRmean

α is some-
times referred to as daily earnings at risk. The distinction between ordinary VaR and
VaRmean

α is of little relevance in market risk management, where the time horizon is
short andµ is close to zero. It becomes relevant in credit where the risk-management
horizon is longer. In particular, in loan pricing one uses VaRmean to determine the
economic capital needed as a buffer against unexpected losses in a loan portfolio
(see Section 9.3.4 for details). Taking the expectation of the P&L distribution into
account is also important in the growing field of asset-management risk.

Since quantiles play an important role in risk management we recall the precise
definition.
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Figure 2.1. An example of a loss distribution with the 95% VaR marked as a vertical line;
the mean loss is shown with a dotted line and an alternative risk measure known as the 95%
expected shortfall (see Section 2.2.4 and Definition 2.15) is marked with a dashed line.

Definition 2.12 (generalized inverse and quantile function).

(i) Given some increasing function T : R → R, the generalized inverse of T is
defined by T←(y) := inf{x ∈ R : T (x) � y}, where we use the convention
that the infimum of an empty set is ∞.

(ii) Given some df F , the generalized inverse F← is called the quantile function
of F . For α ∈ (0, 1) the α-quantile of F is given by

qα(F ) := F←(α) = inf{x ∈ R : F(x) � α}.

For an rv X with df F we often use the alternative notation qα(X) := qα(F ). If
F is continuous and strictly increasing, we simply have qα(F ) = F−1(α), where
F−1 is the ordinary inverse of F . To compute quantiles in more general cases we
may use the following simple criterion.

Lemma 2.13. A point x0 ∈ R is the α-quantile of some df F if and only if the
following two conditions are satisfied: F(x0) � α; F(x) < α for all x < x0.

The lemma follows immediately from the definition of the generalized inverse
and the right-continuity of F . Examples for the computation of quantiles in certain
tricky cases and further properties of generalized inverses are given in SectionA.1.2.

Example 2.14 (VaR for normal and t loss distributions). Suppose that the loss
distribution FL is normal with mean µ and variance σ 2. Fix α ∈ (0, 1). Then

VaRα = µ + σΦ−1(α) and VaRmean
α = σΦ−1(α), (2.19)

where Φ denotes the standard normal df and Φ−1(α) is the α-quantile of Φ. The
proof is easy: since FL is strictly increasing, by Lemma 2.13 we only have to show
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that FL(VaRα) = α. Now

P(L � VaRα) = P

(
L − µ

σ
� Φ−1(α)

)
= Φ(Φ−1(α)) = α.

This result is routinely used in the variance–covariance approach (also known as
the delta-normal approach) to computing risk measures, which we describe in Sec-
tion 2.3.1 below; if we work with linearized losses, and assume that our risk-factor
changes are multivariate normal, then the resulting loss distribution is normal, and
we can compute VaR using (2.19).

Of course a similar result is obtained for any location-scale family and another
useful example is the Student t loss distribution. Suppose our loss L is such that
(L − µ)/σ has a standard t distribution with ν degrees of freedom; we denote this
loss model by L ∼ t (ν, µ, σ 2) and note that the moments are given by E(L) = µ

and var(L) = νσ 2/(ν − 2) when ν > 2, so that σ is not the standard deviation of
the distribution. We get

VaRα = µ + σ t−1
ν (α), (2.20)

where tν denotes the df of standard t , which is available in most statistical computer
packages along with its inverse.

2.2.3 Further Comments on VaR

Non-subadditivity. VaR has been fundamentally criticized as a risk measure on the
grounds that is has poor aggregation properties. This critique has its origins in the
work of Artzner et al. (1997, 1999), who showed that VaR is not a coherent risk
measure, since it violates the property of subadditivity that they believe reasonable
risk measures should have.

We devote Section 6.1 to an in-depth discussion of this subject. At this point
we merely remark that non-subadditivity means that if we have two loss distribu-
tions FL1 and FL2 for two portfolios and we denote the overall loss distribution
of the merged portfolio L = L1 + L2 by FL, we do not necessarily have that
qα(FL) � qα(FL1) + qα(FL2), so that the VaR of the merged portfolio is not nec-
essarily bounded above by the sum of the VaRs of the individual portfolios. This
contradicts our notion that there should be a diversification benefit associated with
merging the portfolios; it also means that a decentralization of risk management
using VaR is difficult since we cannot be sure that by aggregating VaR numbers for
different portfolios or business units we will obtain a bound for the overall risk of
the enterprise.

Model risk and market liquidity. In practice VaR numbers are often given a very
literal interpretation, which is misleading and even dangerous; the statement that
the daily VaR at confidence level α = 99% of a particular portfolio is equal to l is
understood as “with a probability of 99% the loss on this position will be smaller
than l”.

This interpretation is misleading for two reasons. To begin with, our estimate of
the loss distribution is subject to estimation error and the problem of model risk.
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Model risk can be defined as the risk that a financial institution incurs losses because
its risk-management models are misspecified or because some of the assumptions
underlying these models are not met in practice. For instance, we might work with
a normal distribution to model losses whereas the real distribution is heavy-tailed,
or we might fail to recognize the presence of volatility clustering or tail dependence
(see Section 4.1.1) in modelling the distribution of the risk-factor changes. Since
“any financial model is by definition a simplified and thus imperfect representation
of the economic world and the ways in which economic agents perform investment,
trading or financing decisions” (from the introduction of Gibson (2000)), it is fair
to say that any risk-management model is subject to model risk to some extent.
Of course, these problems are most pronounced if we try to estimate VaR at very
high confidence levels such as α = 99.97%, as we might be required to do in the
determination of economic capital (see Section 1.4.3).

Moreover, the above interpretation ofVaR neglects any problems related to market
liquidity. Loosely speaking, a market for a security is termed liquid if investors can
buy or sell large amounts of the security in a short time without affecting its price
very much. Conversely, a market in which an attempt to trade has a large impact
on price, or where trading is impossible since there is no counterparty willing to
take the other side of the trade, is termed illiquid. The problem this poses for the
interpretation of VaR numbers was brought to the attention of professional risk
managers by Lawrence and Robinson (1995). To quote from their paper:

If we ask the question: “Can we be 98% confident that no more than an
amount l [the VaR estimate at α = 0.98] would be lost in liquidating
the position?” the answer must be “no”. To see why, consider what this
measure of VaR implies about the risk management process and the
nature of financial markets. In the liquidation scenario we are consid-
ering the following sequence of events is implied: at time t it is decided
to liquidate the position; during the next 24 hours nothing is done . . . ;
after 24 hours of inaction the position is liquidated at prices which are
drawn from a [pre-specified] distribution unaffected by the process of
liquidation. This scenario is hardly credible. . . . In particular, the act
of liquidating itself would have the effect of moving the price against
the trader disposing of a long position or closing out a short position.
For large positions and illiquid instruments the costs of liquidation can
be significant, in particular if speed is required.

They conclude that “any useful measures of VaR must take into account the costs
of liquidation on the prospective loss”. The events surrounding the near-bankruptcy
of the hedge fund LTCM in Summer 1998 clearly showed that these concerns are
more than justified. In fact, illiquidity of markets is nowadays regarded by many
risk managers as the most important source of model risk.

Ideally we should try to factor the effects of market illiquidity into formal models,
although this is difficult for a number of reasons. First, the price impact of trading a
particular amount of a security at a given point in time is hard to measure; it depends
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on such elusive factors as market mood or the distribution of economic information
among investors. Moreover, in illiquid markets traders are forced to close their
position gradually over time to minimize the price impact of their transactions.
Obviously, this liquidation has to be done on a different timescale depending on the
size of the position to be liquidated relative to the market. This in turn would lead to
different time horizons � for different positions, rendering the aggregation of risk
measures across portfolios impossible. In many practical situations the risk manager
can therefore do no better than ignore the effect of market liquidity in computing
VaR numbers or related risk measures and be aware of the ensuing problems in
interpreting the results. See Notes and Comments for pointers to further theoretical
and empirical studies of these issues.

Choice of VaR parameters. Whenever we work with risk measures based on the
loss distribution we have to choose an appropriate horizon �; in the case of VaR we
also have to decide on the confidence level α. There is of course no single optimal
value for these parameters, but there are some considerations which might influence
our choice.

The risk-management horizon � should reflect the time period over which a
financial institution is committed to hold its portfolio. This period is affected by
contractual and legal constraints, and by liquidity considerations. It will typically
vary across markets; in choosing a horizon for enterprise-wide risk management, a
financial institution or corporation has little choice but to use the horizon appropri-
ate for the market in which its core business activities lie. For instance, insurance
companies are typically bound to hold their portfolio of claims for one year, say; in
this time they can neither alter the portfolio by a substantial amount nor renegotiate
the premiums they receive. Hence, in firm-wide risk management, one year is also
the appropriate horizon for measuring the market risk of the investment portfolios
of such companies.

As mentioned earlier, even in the absence of contractual constraints, a financial
institution can be forced to hold a loss-making position in a risky asset if the market
for that asset is not very liquid. For such positions a relatively long horizon may be
appropriate. Again, liquidity does vary across markets, and for overall risk manage-
ment an institution has to choose a horizon which best reflects its main exposures.

There are other, more practical considerations which suggest that � should be
relatively small: the use of the linearized loss operator, which simplifies many com-
putations, is justified only if the risk-factor changes are relatively small, which is
more likely for small �. Similarly, the assumption that the composition of the port-
folio remains unchanged is tenable only for a small holding period. Moreover, the
calibration and testing of statistical models for the risk-factor changes (Xt )t∈N are
easier if� is small, since this typically means that we have more data at our disposal.

Concerning the choice of the confidence level α it is again difficult to give a
clear-cut recommendation, since different values of α are appropriate for differ-
ent purposes. Fortunately, once we have an estimate for the loss distribution, it is
easy to compute quantiles at different confidence levels simultaneously. For capital-
adequacy purposes a high confidence level is certainly called for in order to have a
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sufficient safety margin. For instance, the Basel Committee proposes the use of VaR
at the 99% level and � equal to 10 days for market risk. In order to set limits for
traders, a bank would typically take 95% and � equal to one day. The backtesting
of models producing VaR figures should also be carried out at lower confidence
levels in order to have more observations where the realized loss is higher than the
predicted VaR.

Transforming VaR into regulatory capital. For banks using the internal model (IM)
approach for market risk (MR), the following risk-capital formula results:

RCt
IM(MR) = max

{
VaRt,10

0.99,
k

60

60∑
i=1

VaRt−i+1,10
0.99

}
+ CSR, (2.21)

where VaRj,10
0.99 stands for a 10-day VaR at the 99% confidence level, calculated

on day j , and t represents today. The stress factor 3 � k � 4 is determined as
a function of the overall quality of the bank’s internal model. The component CSR

stands for specific risk, i.e. the risk that is due to issuer-specific price movements after
accounting for general market factors. A specific risk component should be added
to all VaR numbers (see, for example, Crouhy, Galai and Mark 2001, Section 2.2).

A comment on VaR terminology. In practice the term “VaR” is used in various
ways. In its most narrow sense the term Value-at-Risk refers to a quantile of the
loss distribution as defined in Definition 2.10. Often risk managers refer to “VaR
procedures” such as “delta-normalVaR” (see Section 2.3.1 below).AVaR procedure
refers to a statistical approach to estimating a model for the loss distribution. Clearly,
a VaR procedure could also be used to estimate some other risk measure based on the
loss distribution. Finally, the term “VaR approach to risk management” is frequently
used and usually refers to the way VaR figures are used in steering a company. In
this book we use the term VaR only in the first sense.

2.2.4 Other Risk Measures Based on Loss Distributions

The purpose of this section is to discuss a few other statistical summaries of the
loss distribution which are frequently used as risk measures in finance, insurance
and risk management. As in the previous two sections we assume that a certain loss
distribution FL has been fixed at the outset of the analysis.

Variance. Historically the variance of the P&L distribution has been the dominat-
ing risk measure in finance. To a large extent this is due to the huge impact that the
portfolio theory of Markowitz, which uses variance as a measure of risk, has had
on theory and practice in finance (see, for example, Markowitz 1952). Variance is a
well-understood concept which is easy to use analytically. However, as a risk mea-
sure it has two drawbacks. On the technical side, if we want to work with variance,
we have to assume that the second moment of the loss distribution exists. While
unproblematic for most return distributions in finance this can cause problems in
certain areas of non-life insurance or for the analysis of operational losses (see Sec-
tion 10.1.4). On the conceptual side, since it makes no distinction between positive
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and negative deviations from the mean, variance is a good measure of risk only for
distributions which are (approximately) symmetric around the mean, such as the
normal distribution or a (finite-variance) Student t distribution. However, in many
areas of risk management, such as in credit and operational risk management, we
deal with loss distributions which are highly skewed.

Lower and upper partial moments. Partial moments are measures of risk based on
the lower or upper part of a distribution. In most of the literature on risk management
the main concern is with the risk inherent in the lower tail of a P&L distribution and
lower partial moments are used to measure this risk. Under our sign convention we
are concerned with the risk inherent in the upper tail of a loss distribution and we
focus on upper partial moments. Given an exponent k � 0 and a reference point q
the upper partial moment UPM(k, q) is defined as

UPM(k, q) =
∫ ∞

q

(l − q)k dFL(l) ∈ [0,∞]. (2.22)

Some combinations of k and q have a special interpretation: for k = 0 we obtain
P(L � q); for k = 1 we obtain E((L − q)I{L�q}); for k = 2 and q = E(L) we
obtain the upper semivariance of L. Of course, the higher the value we choose for
k, the more conservative our risk measure becomes since we give more and more
weight to large deviations from the reference point q.

Expected shortfall. Expected shortfall is closely related to VaR. It is now preferred
toVaR by many risk managers in practice and will be seen in Section 6.1 to overcome
the conceptual deficiencies of the latter (related to subadditivity).

Definition 2.15 (expected shortfall). For a loss L with E(|L|) < ∞ and df FL the
expected shortfall at confidence level α ∈ (0, 1) is defined as

ESα = 1

1 − α

∫ 1

α

qu(FL) du, (2.23)

where qu(FL) = F←
L (u) is the quantile function of FL.

Expected shortfall is thus related to VaR by

ESα = 1

1 − α

∫ 1

α

VaRu(L) du.

Instead of fixing a particular confidence level α we average VaR over all levels
u � α and thus “look further into the tail” of the loss distribution. Obviously ESα
depends only on the distribution of L and obviously ESα � VaRα . See Figure 2.1
for a simple illustration of an expected shortfall value and its relationship to VaR.
The 95% expected shortfall value of 4.9 is at least double the 95% VaR value of 2.2
in this case.

For continuous loss distributions an even more intuitive expression can be derived
which shows that expected shortfall can be interpreted as the expected loss that is
incurred in the event that VaR is exceeded.
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Lemma 2.16. For an integrable loss L with continuous df FL and any α ∈ (0, 1)
we have

ESα = E(L;L � qα(L))

1 − α
= E(L | L � VaRα), (2.24)

where we have used the notation E(X;A) := E(XIA) for a generic integrable rv
X and a generic set A ∈ F .

Proof. Denote by U an rv with uniform distribution on the interval [0, 1]. It is
a well-known fact from elementary probability theory that the rv F←

L (U) has df
FL (see Proposition 5.2 for a proof). We have to show that E(L;L � qα(L)) =∫ 1
α
F←
L (u) du. Now

E(L;L � qα(L)) = E(F←
L (U);F←

L (U) � F←
L (α)) = E(F←

L (U);U � α);
in the last equality we used the fact that F←

L is strictly increasing since FL is contin-
uous (see Proposition A.3(iii)). Thus we get E(F←

L (U);U � α) = ∫ 1
α
F←
L (u) du.

The second representation follows since for a continuous loss distribution FL we
have P(L � qα(L)) = 1 − α.

Remark 2.17. For a discontinuous loss df FL, formula (2.24) does not hold for
all α; instead we have the more complicated expression

ESα = 1

1 − α
(E(L;L � qα) + qα(1 − α − P(L � qα))). (2.25)

For a proof see Proposition 3.2 of Acerbi and Tasche (2002).

We use Lemma 2.16 to calculate the expected shortfall for two common contin-
uous distributions.

Example 2.18 (expected shortfall for Gaussian loss distribution). Suppose that
the loss distribution FL is normal with mean µ and variance σ 2. Fix α ∈ (0, 1).
Then

ESα = µ + σ
φ(Φ−1(α))

1 − α
, (2.26)

where φ is the density of the standard normal distribution. The proof is elementary.
First note that

ESα = µ + σE

(
L − µ

σ

∣∣∣∣ L − µ

σ
� qα

(
L − µ

σ

))
;

hence it suffices to compute the expected shortfall for the standard normal rv
L̃ := (L − µ)/σ . Here we get

ESα(L̃) = 1

1 − α

∫ ∞

Φ−1(α)

lφ(l) dl = 1

1 − α
[−φ(l)]∞

Φ−1(α)
= φ(Φ−1(α))

1 − α
.

Example 2.19 (expected shortfall for Student t loss distribution). Suppose the
loss L is such that L̃ = (L − µ)/σ has a standard t distribution with ν degrees of
freedom, as in Example 2.14. Suppose further that ν > 1. By the reasoning of Exam-
ple 2.18, which applies to any location-scale family, we have ESα = µ + σ ESα(L̃).
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The expected shortfall of the standard t distribution is easily calculated by direct
integration to be

ESα(L̃) = gν(t
−1
ν (α))

1 − α

(
ν + (t−1

ν (α))2

ν − 1

)
, (2.27)

where tν denotes the df and gν the density of standard t .

The following lemma gives a kind of law of large numbers for expected shortfall
in terms of order statistics.

Lemma 2.20. For a sequence (Li)i∈N of iid rvs with df FL we have

lim
n→∞

∑[n(1−α)]
i=1 Li,n

[n(1 − α)] = ESα a.s., (2.28)

whereL1,n � · · · � Ln,n are the order statistics ofL1, . . . , Ln and where [n(1−α)]
denotes the largest integer not exceeding n(1 − α).

In other words, expected shortfall at confidence level α can be thought of as
the limiting average of the [n(1 − α)] upper order statistics from a sample of size n
from the loss distribution. This representation suggests an obvious way of estimating
expected shortfall in the situation when we have large samples and [n(1 − α)] is a
relatively large number. This is generally not the case in practice, except perhaps
when the Monte Carlo approach to risk estimation is used (see Section 2.3.3). A
proof of Lemma 2.20 may be found in Proposition 4.1 of Acerbi and Tasche (2002).

Since ESα can be thought of as an average over all losses that are greater than
or equal to VaRα , it is sensitive to the severity of losses exceeding VaRα . This
advantage of expected shortfall is illustrated in the following example.

Example 2.21 (VaR and ES for stock returns). We consider daily losses on a
position in a particular stock; the current value of the position equals Vt = 10 000.
Recall from Example 2.4 that the loss for this portfolio is given byL�

t+1 = −VtXt+1,
whereXt+1 represents daily log-returns of the stock. We assume thatXt+1 has mean
zero and standard deviation σ = 0.2/

√
250, i.e. we assume that the stock has an

annualized volatility of 20%. We compare two different models for the distribution,
namely (i) a normal distribution and (ii) a t distribution with ν = 4 degrees of
freedom scaled to have standard deviation σ . The t distribution is a symmetric
distribution with heavy tails, so that large absolute values are much more probable
than in the normal model; it is also a distribution that has been shown to fit well in
many empirical studies (see Example 3.15). In Table 2.1 we present VaRα and ESα
for both models and various values of α. In case (i) these values have been computed
using (2.26); the expected shortfall for the t model has been computed using (2.27).

Most risk managers would argue that the t model is riskier than the normal model,
since under the t distribution large losses are more likely. However, if we use VaR at
the 95% or 97.5% confidence level to measure risk, the normal distribution appears
to be at least as risky as the t model; only above a confidence level of 99% does
the higher risk in the tails of the t model become apparent. On the other hand, if
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Table 2.1. VaRα and ESα in normal and t model for different values of α.

α 0.90 0.95 0.975 0.99 0.995

VaRα (normal model) 162.1 208.1 247.9 294.3 325.8
VaRα (t model) 137.1 190.7 248.3 335.1 411.8

ESα (normal model) 222.0 260.9 295.7 337.2 365.8
ESα (t model) 223.4 286.3 356.7 465.8 563.5

we use expected shortfall, the risk in the tails of the t model is reflected in our risk
measurement for lower values of α. Of course, simply going to a 99% confidence
level in quoting VaR numbers does not help to overcome this deficiency of VaR, as
there are other examples where the higher risk becomes apparent only for confidence
levels beyond 99%.

Remark 2.22. It is possible to derive results on the asymptotics of the shortfall-
to-quantile ratio ESα /VaRα for α → 1. For the normal distribution we have
limα→1 ESα /VaRα = 1; for the t distribution with ν > 1 degrees of freedom
we have limα→1 ESα /VaRα = ν/(ν − 1) > 1. This shows that for a heavy-tailed
distribution the difference between ES and VaR is more pronounced than for the
normal distribution. We will take up this issue in more detail in Section 7.2.3.

Notes and Comments

An extensive discussion of different approaches to risk quantification is given in
Crouhy, Galai and Mark (2001). Value-at-Risk was introduced by JPMorgan in the
first version of its RiskMetrics system and was quickly accepted by risk managers
and regulators as industry standard. Expected shortfall was made popular by Artzner
et al. (1997, 1999). In the latter paper an important axiomatic approach to risk mea-
sures was developed; we will discuss their work in Section 6.1. There are a number
of variants on the expected shortfall risk measure with a variety of names, such as
tail conditional expectation (TCE), worst conditional expectation (WCE) and condi-
tional VaR (CVaR); all coincide for continuous loss distributions. Acerbi and Tasche
(2002) discuss the relationships between the various notions. Risk measures based
on loss distributions also appear in the literature under the (somewhat unfortunate)
heading of law-invariant risk measures.

A class of risk measures very much in use throughout the hedge fund industry is
based on the peak-to-bottom loss over a given period of time in the performance curve
of an investment. These measures are typically referred to as (maximal) drawdown
risk measures (see, for example, Chekhlov, Uryasev and Zabarankin 2005; Jaeger
2005).

The measurement of financial risk and the computation of actuarial premiums are
at least conceptually closely related problems, so that the actuarial literature on pre-
mium principles is of relevance in financial risk management. We refer to Chapter 3
of Rolski et al. (1999) for an overview; Goovaerts, De Vylder and Haezendonck
(1984) provide a specialist account.
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Model risk has become a central issue in modern risk management. The essays
collected in Gibson (2000) give a good overview of the academic research on this
issue. The problems faced by the hedge fund LTCM in 1998 provide a prime example
of model risk inVaR-based risk-management systems.While LTCM had a seemingly
sophisticated VaR system in place, errors in parameter estimation, unexpectedly
large market moves (heavy tails) and in particular vanishing market liquidity drove
the hedge fund into near-bankruptcy, causing major financial turbulence around the
globe. Jorion (2000) contains an excellent discussion of the LTCM case, in particular
comparing a Gaussian-based VaR model with a t-based approach. At a more general
level, Jorion (2002b) discusses the various fallacies surrounding VaR-based market
risk management systems.

Most of the academic literature on liquidity focuses on the determinants of bid–
ask spreads and/or transaction cost (see, for example, the survey by Stoll (2000)).
Risk-management and hedging issues in illiquid markets have received relatively
little attention: optimal strategies for unwinding a position in an illiquid market
are discussed in Almgren and Chriss (2001); the hedging of derivatives in illiquid
markets has been studied by Jarrow (1994), Frey (1998, 2000), Schönbucher and
Wilmott (2000) and Bank and Baum (2004), among others.

2.3 Standard Methods for Market Risks

In the following sections we discuss some standard methods used in the financial
industry for measuring market risk over short time intervals, such as a day or a
fortnight. In the formal framework of Section 2.1.1 this amounts to the problem
of estimating risk measures for the loss distribution of a loss Lt+1 = l[t](Xt+1),
where Xt+1 is the vector of risk-factor changes from time t to time t + 1 and l[t]
is the loss operator based on the portfolio at time t ; the risk measures on which we
concentrate are VaR (Definition 2.10) and expected shortfall (Definition 2.15). We
recall from Section 2.1.2 that the issue of whether we base our risk measurement on
the unconditional loss distribution of Lt+1 or the conditional loss distribution based
on information denoted by Ft is relevant. In presenting the standard methods we
clarify which of these approaches is generally adopted.

2.3.1 Variance–Covariance Method

We present a generic version of this method which may be turned into an uncondi-
tional or conditional method by varying the procedure that is used to estimate certain
key inputs. The risk-factor changes Xt+1 are assumed to have a multivariate normal
distribution (either unconditionally or conditionally) denoted by Xt+1 ∼ Nd(µ,Σ),
where µ is the mean vector andΣ the covariance (or variance–covariance) matrix of
the distribution. The properties of the multivariate normal distribution are discussed
in detail in Section 3.1.3.

We assume that the linearized loss in terms of the risk factors is a sufficiently
accurate approximation of the actual loss and simplify the problem by considering
the distribution of L�

t+1 = l�[t](Xt+1) with l�[t] defined in (2.6). The linearized loss
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operator will be a function with general structure

l�[t](x) = −(ct + b′
tx) (2.29)

for some constant ct and constant vector bt , which are known to us at time t . For
a concrete example, consider the stock portfolio of Example 2.4 where the loss
operator takes the form l�[t](x) = −Vtw

′
tx and wt is the vector of portfolio weights

at time t .
An important property of the multivariate normal is that a linear function (2.29)

of Xt+1 must have a univariate normal distribution. From general rules on the mean
and variance of linear combinations of a random vector we obtain that

L�
t+1 = l�[t](Xt+1) ∼ N(−ct − b′

tµ, b
′
tΣbt ). (2.30)

Value-at-Risk may be easily calculated for this loss distribution using (2.19) in
Example 2.14. Expected shortfall may be calculated using (2.26) in Example 2.18.

To turn this into a practical procedure we require estimates of µ and Σ based on
historical risk-factor change data Xt−n+1, . . . ,Xt . If we simply estimate µ andΣ by
calculating the sample mean vector and sample covariance matrix, then this amounts
to an analysis of the unconditional loss distribution under the tacit assumption that
the risk-factor change data come from a stationary process. The standard sample
estimates of mean and covariance are reviewed in Section 3.1.2.

To obtain a conditional version of this method we treat the data as a realization
of a multivariate time series and assume that Xt+1 | Ft ∼ Nd(µt+1,Σt+1), where
µt+1 and Σt+1 now denote the conditional mean and covariance matrix given infor-
mation to time t . We obtain estimates of these moments for substitution in (2.30)
by forecasting. This might involve the formal estimation of a time series model,
such as a multivariate GARCH model, and the use of model-based prediction meth-
ods. Alternatively, a more informal forecasting technique, such as the exponentially
weighted moving-average (EWMA) procedure popularized in JPMorgan’s Risk-
Metrics, might be used. The use of these techniques is discussed in greater detail in
Chapter 4.

Weaknesses of the method. The variance–covariance method offers a simple ana-
lytical solution to the risk-measurement problem but this convenience is achieved at
the cost of two crude simplifying assumptions. First, linearization may not always
offer a good approximation of the relationship between the true loss distribution and
the risk-factor changes, as discussed at the end of Section 2.1.1. Second, the assump-
tion of normality is unlikely to be realistic for the distribution of the risk-factor
changes, certainly for daily data and probably also for weekly and even monthly data.
A stylized fact of empirical finance suggests that the distribution of financial risk
factor returns is leptokurtic and heavier-tailed than the Gaussian distribution. Later,
in Example 3.3, we present evidence for this observation in an analysis of daily,
weekly, monthly and quarterly stock returns. The implication is that an assumption
of Gaussian risk factors will tend to underestimate the tail of the loss distribution
and measures of risk, like VaR and expected shortfall, that are based on this tail.
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This criticism also applies to the conditional version of the variance–covariance
method. Even when we attempt an explicit time series modelling of the return
data, analyses mostly suggest that the conditional distribution of risk-factor changes
for the next time period, given information up to the present, is not multivariate
Gaussian, but rather a distribution whose margins have heavier tails. Another way
of putting this is to say that the innovation distribution of the time series model is
generally heavier-tailed than normal (see Example 4.24).

Extensions of the method. The convenience of the method relies on the fact that a
linear combination of a multivariate Gaussian vector has a univariate Gaussian dis-
tribution. However, there are other multivariate distribution families that are closed
under linear operations, and variance-covariance methods can also be developed
for these. Examples include multivariate t distributions and multivariate generalized
hyperbolic distributions, which we describe in detail in Chapter 3.

For example, suppose we model risk-factor changes (either unconditionally or
conditionally) with a multivariate t distribution denoted Xt+1 ∼ td (ν,µ,Σ), where
this notation is explained in Example 3.7 and Section 3.4. Then the analogous
expression to (2.30) is

L�
t+1 = l�[t](Xt+1) ∼ t (ν,−ct − b′

tµ, b
′
t Σ̃bt ), (2.31)

and risk measures can be calculated using (2.20) and (2.27).

2.3.2 Historical Simulation

Instead of estimating the distribution of L = l[t](Xt+1) under some explicit para-
metric model for Xt+1, the historical-simulation method can be thought of as esti-
mating the distribution of the loss operator under the empirical distribution of data
Xt−n+1, . . . ,Xt . The method can be concisely described using the loss-operator
notation; we construct a univariate dataset by applying the operator to each of our
historical observations of the risk-factor change vector to get a set of historically
simulated losses:

{L̃s = l[t](Xs) : s = t − n + 1, . . . , t}. (2.32)

The values L̃s show what would happen to the current portfolio if the risk-factor
changes on day s were to recur. We make inference about the loss distribution and
risk measures using these historically simulated loss data.

This is an unconditional method. If we assume that the process of risk-factor
changes is stationary with df FX, then (subject to further technical conditions) the
empirical df of the data is a consistent estimator ofFX. Hence the empirical df of the
data L̃t−n+1, . . . , L̃t is a consistent estimator of the df of l[t](X) under FX. More
formally, an appropriate version of the strong law of large numbers for time series
can be used to show that, as n → ∞,

Fn(l) := 1

n

t∑
s=t−n+1

I{L̃s�l} = 1

n

t∑
s=t−n+1

I{l[t](Xs )�l}

→ P(l[t](X) � l) = FL(l),
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where X is a generic vector of risk-factor changes with distribution FX and
L := l[t](X).

In practice there are various ways we can use the historically simulated loss
data. It is common to estimate VaR using the method of empirical quantile estima-
tion, whereby theoretical quantiles of the loss distribution are estimated by sam-
ple quantiles of the data. If we denote the ordered values of the data in (2.32)
by L̃n,n � · · · � L̃1,n, one possible estimator of VaRα(L) is L̃[n(1−α)],n, where
[n(1 − α)] denotes the largest integer not exceeding n(1 − α). For example, if
n = 1000 and α = 0.99, we would estimate the VaR by taking the 10th largest
value. To estimate the associated expected shortfall an obvious empirical estimator
following from the representation (2.28) would be the average of the 10 largest
losses. As an alternative, particularly in situations where n is relatively modest in
size, we could fit a parametric univariate distribution to the data (2.32) and calculate
risk measures analytically from this distribution.

Strengths and weaknesses of the method. The historical-simulation method has
obvious attractions: it is easy to implement and reduces the risk-measure estimation
problem to a one-dimensional problem; no statistical estimation of the multivariate
distribution of X is necessary, and no assumptions about the dependence structure
of risk-factor changes are made.

However, the success of the approach is highly dependent on our ability to collect
sufficient quantities of relevant, synchronized data for all risk factors. Whenever
there are gaps in the risk-factor history, or whenever new risk factors are introduced
into the modelling, there may be problems filling the gaps and completing the
historical record. These problems will tend to reduce the effective value of n and
mean that empirical estimates ofVaR and expected shortfall have very poor accuracy.
Ideally we want n to be fairly large since the method is an unconditional method
and we want a number of extreme scenarios in the historical record to provide more
informative estimates of the tail of the loss distribution. Indeed the method has
been referred to as “driving a car while looking through the rear view mirror”; this
obvious deficiency, which is shared by all purely statistical procedures, could be
compensated for by adding historical extreme events to the available database or by
formulating relevant extreme scenarios.

The fact that the method is an unconditional method could be seen as a further
weakness; we have remarked in Section 2.1.2 that the conditional approach is gen-
erally considered to be the more relevant for day-to-day market risk management.

Extensions of the method. Simple empirical estimates of the VaR and especially
the expected shortfall are likely to be inaccurate, particularly in situations where n
is of modest size (say only a few years of daily data). Moreover, the approach of
fitting parametric univariate distributions to the historically simulated losses may
not result in models that provide a particularly good fit in the tail area where our
risk-measure estimates are calculated. A possible solution to this problem is to use
the techniques of extreme value theory (EVT) to provide estimates of the tail of
the loss distribution that are as faithful as possible to the most extreme data and
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that use parametric forms that are supported by theory. In Chapter 7 we describe a
standard EVT method based on the generalized Pareto distribution that is useful in
this context.

It is possible to develop conditional approaches based on the basic template of
historical simulation. One simple approach might be to model the historically sim-
ulated data in (2.32) with a univariate time series and to use this model to calculate
conditional estimates for the loss Lt+1 = l[t](Xt+1). Formally speaking, this is not
quite the conditional approach as we have previously defined it: we do not consider
the conditional distribution of Lt+1 conditional on Ft , the sigma field generated by
(Xs)s�t , but rather conditional on, say, Gt , the sigma field generated by (l[t](Xs))s�t ,
which is a less rich information set. In practice, however, this simple method may
often work well. See Notes and Comments for references to another conditional
version of historical simulation.

2.3.3 Monte Carlo

The Monte Carlo method is a rather general name for any approach to risk mea-
surement that involves the simulation of an explicit parametric model for risk-factor
changes. As such, the method can be either conditional or unconditional depending
on whether the model adopted is a dynamic time series model for risk-factor changes
or a static distributional model.

The first step of the method is the choice of the model and the calibration of this
model to historical risk-factor change data Xt−n+1, . . . ,Xt . Obviously it should be
a model from which we can readily simulate, since in the second stage we generate
m independent realizations of risk-factor changes for the next time period, which
we denote by X̃

(1)
t+1, . . . , X̃

(m)
t+1.

In a similar fashion to the historical-simulation method, we apply the loss operator
to these simulated vectors to obtain simulated realizations {L̃(i)

t+1 = l[t](X̃(i)
t+1) :

i = 1, . . . , m} from the loss distribution. These simulated loss data are used to
estimate risk measures; very often this is done by simple empirical quantile and
shortfall estimation, as described above, but it would again be possible to base the
inference on fitted univariate distributions or to use an extreme value model to model
the tail of the simulated losses. Note that the use of Monte Carlo means that we are
free to choose the number of replicationsm ourselves, within the obvious constraints
of computation time. Generally m can be chosen to be much larger than n so that
we obtain more accuracy in empirical VaR and expected shortfall estimates than is
possible in the case of historical simulation.

Weaknesses of the method. The method does not solve the problem of finding a
multivariate model for Xt+1 and any results that are obtained will only be as good
as the model that is used. In a market risk context a dynamic model seems desirable
and some kind of GARCH structure with a heavy-tailed multivariate conditional
distribution, such as multivariate t , might be considered. The models we describe
in Section 4.6 provide possible candidates.

For large portfolios the computational cost of the Monte Carlo approach can be
considerable, as every simulation requires the revaluation of the portfolio. This is
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particularly problematic if the portfolio contains many derivatives which cannot be
priced in closed form. Variance-reduction techniques such as importance sampling
can be of help here. We discuss the application of importance sampling in models
for credit risk management in Section 8.5; further references on variance-reduction
techniques are given in Notes and Comments.

2.3.4 Losses over Several Periods and Scaling

So far we have considered one-period loss distributions and associated risk mea-
sures. It is often the case that we would like to infer risk measures for the loss
distribution over several periods from a model for single-period losses. For exam-
ple, suppose that we work with a model for daily risk-factor changes which is set up
to allow calculations of a daily VaR and expected shortfall. We might want to also
obtain estimates of VaR and expected shortfall for the one-week or one-month loss
distribution assuming that the portfolio is held constant throughout that time.

An obvious approach is to aggregate daily risk-factor change data in order to obtain
risk-factor change data at a lower frequency and to make a one-period estimation
using these data. Clearly, this results in a reduction in the number of data and
necessitates a new analysis of the aggregated data. The former problem can be
avoided by the formation of overlapping risk-factor returns (a construction that is
described in Section 4.1) but this is not really recommended as it introduces new
serial dependencies into the data that greatly complicate statistical modelling.

Scaling. It would be far more attractive if we had simple rules for transforming
one-period risk measures into h-period risk measures for h > 1. Suppose we denote
the loss from time t over the next h periods by L

(h)
t+h. Arguing as in (2.1) and (2.3)

we have

L
(h)
t+h = −(Vt+h − Vt ) = −(f (t + h,Zt+h) − f (t,Zt ))

= −(f (t + h,Zt + Xt+1 + · · · + Xt+h) − f (t,Zt ))

=: l(h)[t]
( h∑

i=1

Xt+i

)
,

where l
(h)
[t] represents a loss operator at time t for the h-period loss. The general

question of interest is how risk measures applied to the distribution of L(h)
t+h scale

with h, and this has no simple answer except in special cases.
Note that the h-period loss operator differs from the one-period loss operator in

situations where the mapping depends explicitly on time (such as derivative port-
folios). For simplicity let us consider the case in which the mapping does not depend
on calendar time, so that l(h)[t] (x) = l[t](x). The linearized form of this operator will
be l�[t](x) = b′

tx for some vector bt which is known at time t . We look at the simpler
problem of scaling for risk measures applied to the linearized loss distribution:

L
(h)�
t+h = l�[t]

( h∑
i=1

Xt+i

)
=

h∑
i=1

b′
tXt+i . (2.33)
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The following example shows a special case where we do have a very simple scaling,
known as the square-root-of-time rule.

Example 2.23 (square-root-of-time scaling). Suppose the risk-factor change vec-
tors are iid with distribution Nd(0,Σ). Then

∑h
i=1 Xt+i ∼ Nd(0, hΣ) and the

distribution of L(h)�
t+h in (2.33) satisfies (both conditionally and unconditionally)

L
(h)�
t+h ∼ N(0, hb′

tΣbt ). It then follows easily from (2.19) and (2.26) that both quan-
tiles and expected shortfalls for this distribution scale according to the square root
of time (

√
h). For example, writing ES(h)α for the expected shortfall, we have

ES(h)α = √
hσ

φ(Φ−1(α))

1 − α
,

where σ 2 = b′
tΣbt . Clearly, ES(h)α = √

hES(1)α and, with similar notation, VaR(h)
α =√

hVaR(1)
α .

This scaling rule is quite commonly used in practice and is easily implemented
in the context of the variance–covariance method. However, empirical risk-factor
change data generally support neither a Gaussian distributional assumption nor an
iid assumption. It is a stylized fact of empirical finance that, although financial
risk-factor changes possess low serial correlation, they show patterns of changing
volatility that are not consistent with an iid model (see Section 4.1). To obtain rea-
sonable models for risk-factor change data we require dynamic time series models,
such as models from the GARCH family. However, relatively little is known about
the scaling of risk measures under such models. When considering the distribution of
the h-period lossL(h)

t+h (or its linearized form) we have to be aware that the scaling of
risk measures applied to this distribution will also depend on whether we consider
the unconditional distribution or the conditional distribution given Ft . Very little
theory exists for either question but empirical studies suggest that the true scaling
can be very different from square-root-of-time scaling (see Notes and Comments
for more on this).

Monte Carlo approach. It is possible to use a Monte Carlo approach to the problem
of determining risk measures for the h-period loss distribution. Suppose we have
a model for risk-factor changes, either distributional or dynamic, depending on
whether we are performing an unconditional or conditional analysis.

In the dynamic case we simulate future paths of the process X̃
(j)
t+1, . . . , X̃

(j)
t+h

for j = 1, . . . , m, where m is a predetermined large number of replications. (In
the unconditional case we would simply simulate realizations from a multivariate
distribution.) We then apply the h-period loss operator to these simulated data to
obtain Monte Carlo simulated losses:

{L̃(h)(i)
t+h = l

(h)
[t] (X̃

(i)
t+1 + · · · + X̃

(i)
t+h) : i = 1, . . . , m}.

These are used to make statistical inference about the loss distribution and associated
risk measures, as described in Section 2.3.3.
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2.3.5 Backtesting

In the preceding sections we have considered standard methods for estimating risk
measures at a time t for the distribution of losses in the next period. When this
procedure is continually implemented over time we have the opportunity to monitor
the performance of methods and compare their relative performance. This process
of monitoring is known as backtesting.

Suppose that at time t we make estimates of both VaR and expected shortfall for
one period and h periods. We denote the true one-period risk measures by VaRt

α

and EStα and the true h-period measures by VaRt,h
α and ESt,hα . These may be uncon-

ditional or conditional risk measures, but for the purposes of this section we leave
this unspecified. At time t + 1 we have the opportunity to compare our one-period
estimates with what actually happened; at time t + h we have the opportunity to do
the same for the h-period estimates.

By definition of VaR (and assuming a continuous loss distribution) we have that
P(Lt+h > VaRt,h

α ) = 1 − α so that the probability of a so-called violation of VaR is
1−α. In practice the risk measures have to be estimated from data and we introduce
an indicator notation for violations of the VaR estimates:

Ît+1 := I{Lt+1>V̂aRt
α}, Î

(h)
t+h := I{L(h)

t+h>V̂aRt,h
α }. (2.34)

We expect that if our estimation method is reasonable then these indicators should
behave like Bernoulli random variables with success (i.e. violation) probability close
to (1 − α). If we conduct multiple comparisons of VaR predictions and correspond-
ing realized losses, then we expect the proportion of occasions on which VaR is
violated to be about 1 − α.

In more specific situations we can say more. For example, if we form one-step-
ahead estimates of a conditional one-period VaR using a dynamic approach, then
we expect that the violation indicators Ît in (2.34) should behave like iid Bernoulli
rvs with expectation (1 − α); the number of violations over m time periods should
be binomial with expected value m(1 − α). This will be discussed in more detail in
Section 4.4.3.

We would also like to be able to backtest the success of our expected shortfall
estimation. Considering, for simplicity, the one-period expected shortfall estimate,
it follows from Lemma 2.16 that for a continuous loss distribution the identity

E((Lt+1 − EStα)I{Lt+1>VaRt
α}) = 0

is satisfied. This suggests we look at the discrepancy Lt+1 − ÊS
t
α on days when the

estimated VaR is violated. These should come from a distribution with mean zero.
Under further modelling assumptions we look at this idea in more detail in Sec-
tion 4.4.3.

2.3.6 An Illustrative Example

We conclude the chapter by giving an example that illustrates some of the ideas
we have mentioned and which sets the scene for material presented in Chapters 3
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Figure 2.2. Time series of risk-factor changes. These are log-returns on (a) the FTSE 100,
(b) the S&P 500 and (c) the SMI indexes, as well as log-returns for (d) the GBP/USD and
(e) the GBP/CHF exchange rates for the period 1992–2003.

and 4. We consider the application of methods belonging to the general categories of
variance–covariance and historical-simulation methods to the portfolio of an investor
in international equity indexes. The investor is assumed to have domestic currency
sterling (GBP) and to invest in the Financial Times 100 Shares Index (FTSE 100), the
Standard & Poor’s 500 (S&P 500) and the Swiss Market Index (SMI). The investor
thus has currency exposure to US dollars (USD) and Swiss francs (CHF) and the
value of the portfolio is influenced by five risk factors (three log index values and
two log exchange rates). The corresponding risk-factor return time series for the
period 1992–2003 are shown in Figure 2.2.

On any day t we standardize the total portfolio value Vt in sterling to be one and
consider that the portfolio weights (the proportions of this total value invested in each
of the indexes FTSE 100, S&P 500, SMI) are 30%, 40% and 30%, respectively. Using
similar reasoning to that in Example 2.4, it may be verified that the loss operator is

l[t](x) = 1 − (0.3ex1 + 0.4ex2+x4 + 0.3ex3+x5),

and its linearized version is

l�[t](x) = −(0.3x1 + 0.4(x2 + x4) + 0.3(x3 + x5)),



2.3. Standard Methods for Market Risks 57

where x1, x2 and x3 represent log-returns on the three indexes and x4 and x5 are
log-returns on the GBP/USD and GBP/CHF exchange rates.

Our objective is to calculate VaR estimates at the 95% and 99% levels for all
trading days in the period 1996–2003. Where local public holidays take place in
individual markets (e.g. the Fourth of July in the US) we record artificial zero
returns for the market in question, thus preserving around 260 days of risk-factor
return data in each year. We use the last 1000 days of historical data Xt−999, . . . ,Xt

to make all VaR estimates for day t + 1 with the following methods.

VC. The standard unconditional variance–covariance method assuming multi-
variate Gaussian risk-factor changes as described in Section 2.3.1.

HS. The standard unconditional historical simulation method as described in Sec-
tion 2.3.2.

VC-t . An unconditional variance–covariance method in which a multivariate t dis-
tribution is fitted to the risk-factor change data (see Chapter 3, and Sections 3.2.4
and 3.2.5 in particular).

HS-GARCH. A conditional version of the historical simulation method in which
GARCH(1, 1) models with a constant conditional mean term and Gaussian inno-
vations are fitted to the historically simulated losses to estimate the volatility of
the next day’s loss (see Chapter 4, and Section 4.4.2 in particular).

VC-MGARCH. A conditional version of the variance–covariance method in which
a multivariate GARCH model (a first-order constant conditional correlation
model) with multivariate normal innovations is used to estimate the conditional
covariance matrix of the next day’s risk-factor changes (see Chapter 4, and Sec-
tion 4.6 in particular).

HS-EWMA. A conditional method, similar to HS-GARCH, in which the EWMA
method rather than a GARCH model is used to estimate volatility (see Sec-
tions 4.4.1 and 4.4.2).

VC-EWMA. A similar method to VC-MGARCH but a multivariate version of the
EWMA method is used to estimate the conditional covariance matrix of the next
day’s risk-factor changes (see Section 4.6.6).

HS-GARCH-t . A similar method to HS-GARCH but Student t innovations are
assumed in the GARCH model.

VC-MGARCH-t . A similar method to VC-MGARCH but multivariate t innova-
tions are used in the MGARCH model.

HS-CONDEVT. A conditional method using a combination of GARCH modelling
and EVT (extreme value theory) (see Section 7.2.6).

This collection of methods is of course far from complete and is merely meant
as an indication of the kinds of strategies that are possible. In particular, we have
confined our interest to rather simple GARCH models and not added, for example,
asymmetric innovation distributions or leverage effects (see Section 4.3.3), which
can often further improve the performance of such methods.
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Table 2.2. Numbers of violations of the 95% and 99%VaR estimate calculated using various
methods, as described in Section 2.3.6. The error column shows for each method the average
absolute discrepancy per year between observed and expected numbers of violations.

Year 1996 1997 1998 1999 2000 2001 2002 2003
Trading days 261 260 259 260 259 260 260 260 error

Results for 95% VaR

Expected no. 13 13 13 13 13 13 13 13
of violations

VC 13 30 29 15 13 20 27 6 7.88
HS 14 30 31 16 14 20 26 8 8.12
VC-t 14 32 35 19 16 23 29 8 10.25

HS-GARCH 15 17 15 15 14 21 19 11 3.38
VC-MGARCH 16 19 19 15 15 21 21 12 4.50

HS-EWMA 16 14 15 15 17 23 18 11 3.62
VC-EWMA 15 13 15 14 18 22 17 9 3.38

HS-GARCH-t 16 18 16 15 15 21 19 12 3.75
VC-MGARCH-t 18 19 19 17 16 23 21 11 5.50

HS-CONDEVT 14 16 15 15 14 18 18 10 2.75

Results for 99% VaR

Expected no. 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6
of violations

VC 5 11 20 5 2 6 12 2 5.58
HS 3 10 13 3 2 3 7 1 3.20
VC-t 3 11 15 4 2 4 9 1 4.08

HS-GARCH 10 7 7 6 5 4 5 3 3.27
VC-MGARCH 8 8 7 6 3 5 7 4 3.40

HS-EWMA 9 5 6 6 6 6 3 2 2.92
VC-EWMA 9 5 6 6 5 5 3 3 2.65

HS-GARCH-t 7 5 5 5 4 3 4 2 1.93
VC-MGARCH-t 7 5 6 4 2 1 4 1 2.10

HS-CONDEVT 5 4 5 5 2 2 3 2 1.35

From the results collected in Table 2.2 we conclude that the three unconditional
methods (VC, HS andVC-t) are generally outperformed by the conditional methods.
In particular, the years 1997, 1998 and 2002 are handled poorly by the unconditional
methods and give rise to too many violations of the 95% and 99% VaR estimates.
Historical simulation is preferred to variance–covariance at the 99% level but gives
a poor performance compared with variance–covariance at the 95% level. Basing
the unconditional variance–covariance method on a multivariate t distribution gives
an improvement at the 99% level but actually makes things worse at the 95% level.

The simple univariate GARCH procedures using the historically simulated data
work quite well; t innovations are preferred to Gaussian innovations at the 99%
level. The simpler method of volatility estimation using EWMA competes well with
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Figure 2.3. Daily losses for 2002 together with risk-measure estimates ((a) 95% VaR esti-
mates, (b) 99% VaR estimates) and violations for the HS and HS-GARCH-t methods. The
HS VaR estimates are indicated by a solid line and violations are indicated by circles; the
HS-GARCH-t estimates are given by a dotted line with triangles for violations. For more
information see Section 2.3.6.

the full GARCH estimation. The best method of all is HS-CONDEVT, combining
extreme value theory with GARCH modelling. The multivariate GARCH procedures
do not offer any improvement on the univariate procedures in this particular example.

In Figure 2.3 we have singled out the year 2002 and shown actual losses together
with risk-measure estimates and violations for two of the methods: HS and HS-
GARCH-t . In this volatile year, the standard historical-simulation method did not
perform well: there are 26 violations of the 95% VaR estimate and 7 violations of the
99%VaR estimate, or about twice as many as would be expected. The HS-GARCH-t
method, being a conditional method, is able to respond to the changes in volatility
throughout 2002 and consequently gives 19 and 4 violations; this is still a few more
than expected at the 95% level but is a good performance at the 99% level.

Notes and Comments

Standard methods for market risk are described in detail in Jorion (2001) and Crouhy,
Galai and Mark (2001). For the variance–covariance approach, particularly in a
dynamic form using EWMA, see Mina and Xiao (2001).

Another conditional version of historical simulation is used by Hull and White
(1998) and Barone-Adesi, Bourgoin and Giannopoulos (1998). To describe this
method succinctly we anticipate some of the notation used in Section 4.6. Suppose
that we consider a simple model of risk-factor changes of the form Xt = �tZt ,
where �t is a diagonal matrix containing so-called volatilities and the Zt are iid
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vectors of innovations. We would like to apply historical simulation to the innova-
tions but these are unobserved. Univariate time series models (typically GARCH
models) are applied to each time series of risk-factor changes; this effectively gives
us estimates of the volatility matrices {�̂s : s = t − n + 1, . . . , t} and allows us to
make a prediction �̂t+1 of the volatility matrix in the next time period. We then
construct residuals {Ẑs = �̂−1

s Xs : s = t − n + 1, . . . , t}, which are treated like
observations of the unobserved innovations. To make statistical inference about the
distribution of Lt+1 = l[t](Xt+1) = l[t](�t+1Zt+1) given Ft we use the historical-
simulation data {l[t](�̂t+1Ẑs) : s = t − n + 1, . . . , t}.

The book by Glasserman (2003a) is an excellent general introduction to sim-
ulation techniques in finance. Glasserman, Heidelberger and Shahabuddin (1999)
present efficient numerical techniques (based on delta–gamma approximations and
advanced simulation techniques) for computing VaR for derivative portfolios in the
presence of heavy-tailed risk factors.

A useful summary of scaling results for market risk measures may be found in
Kaufmann (2004) (see also Brummelhuis and Kaufmann 2004; Embrechts, Kauf-
mann and Patie 2005). In these papers the message emerges that, for unconditional
VaR scaling over longer time horizons, the square-root-of-time rule often works well.
On the other hand, for conditional VaR scaling over short time horizons, McNeil and
Frey (2000) present evidence against square-root-of-time scaling. For further com-
ments on these and further scaling issues, see Diebold et al. (1998) and Danı́elsson
and de Vries (1997c). Literature on backtesting is given in the Notes and Comments
section of Section 4.4.



3
Multivariate Models

Financial risk models, whether for market or credit risks, are inherently multivariate.
The value change of a portfolio of traded instruments over a fixed time horizon
depends on a random vector of risk-factor changes or returns. The loss incurred by
a credit portfolio depends on a random vector of losses for the individual counter-
parties in the portfolio. In this chapter we consider some models for random vectors
that are particularly useful for financial data. We do this from a static, distributional
point of view without considering time series aspects, which are introduced later in
Chapter 4.

A stochastic model for a random vector can be thought of as simultaneously pro-
viding probabilistic descriptions of the behaviour of the components of the random
vector and of their dependence or correlation structure. The issue of modelling
dependent risk factors is by no means straightforward, particularly when we move
away from the multivariate normal distribution and simple generalizations thereof.
We provide a more in-depth discussion of some of the subtler issues surrounding
dependence in Chapter 5, where we introduce the subject of copulas.

The first section of this chapter reviews basic ideas in multivariate statistics and
discusses the multivariate normal (or Gaussian) distribution and its deficiencies as
a model for empirical return data.

In Section 3.2 we consider a generalization of the multivariate normal distribution
known as a multivariate normal mixture distribution, which shares much of the
structure of the multivariate normal and retains many of its properties. We treat
both variance mixtures, which belong to the wider class of elliptical distributions,
and mean-variance mixtures, which allow asymmetry. Concrete examples include
t distributions and generalized hyperbolic distributions and we show in empirical
examples that these models provide a better fit than a Gaussian distribution to asset
return data. In some cases multivariate return data are not strongly asymmetric and
models from the class of elliptical distributions are good enough; in Section 3.3 we
review the elegant properties of these distributions.

In the final section we discuss the important issue of dimension reduction tech-
niques for reducing large sets of risk factors to smaller subsets of essential risk
drivers. The key idea here is that of a factor model, and we also review the principal
components method of constructing factors.

3.1 Basics of Multivariate Modelling

This first section reviews important basic material from multivariate statistics, which
will be known to many readers. The main topic of the section is the multivariate



62 3. Multivariate Models

normal distribution and its properties; this distribution is central to much of classical
multivariate analysis and was the starting point for attempts to model market risk
(the variance–covariance method of Section 2.3.1).

3.1.1 Random Vectors and Their Distributions

Joint and marginal distributions. Consider a general d-dimensional random vector
of risk-factor changes (or so-called returns) X = (X1, . . . , Xd)

′. The distribution
of X is completely described by the joint distribution function (df)

FX(x) = FX(x1, . . . , xd) = P(X � x) = P(X1 � x1, . . . , Xd � xd).

Where no ambiguity arises we simply write F , omitting the subscript.
The marginal distribution function of Xi , written FXi

or often simply Fi , is the
df of that risk factor considered individually and is easily calculated from the joint
df. For all i we have

Fi(xi) = P(Xi � xi) = F(∞, . . . ,∞, xi,∞, . . . ,∞). (3.1)

If the marginal dfFi(x) is absolutely continuous, then we refer to its derivative fi(x)
as the marginal density of Xi . It is also possible to define k-dimensional marginal
distributions of X for 2 � k � d−1. Suppose we partition X into (X′

1,X
′
2)

′, where
X1 = (X1, . . . , Xk)

′ and X2 = (Xk+1, . . . , Xd)
′, then the marginal distribution

function of X1 is

FX1(x1) = P(X1 � x1) = F(x1, . . . , xk,∞, . . . ,∞).

For bivariate and other low-dimensional margins it is convenient to have a sim-
pler alternative notation in which, for example, Fij (xi, xj ) stands for the marginal
distribution of the components Xi and Xj .

The df of a random vector X is said to be absolutely continuous if

F(x1, . . . , xd) =
∫ x1

−∞
· · ·
∫ xd

−∞
f (u1, . . . , ud) du1 · · · dud

for some non-negative function f , which is then known as the joint density of X.
Note that the existence of a joint density implies the existence of marginal densities
for all k-dimensional marginals. However, the existence of a joint density is not
necessarily implied by the existence of marginal densities (counterexamples can be
found in Chapter 5 on copulas).

In some situations it is convenient to work with the survival function of X defined
by

F̄X(x) = F̄X(x1, . . . , xd) = P(X > x) = P(X1 > x1, . . . , Xd > xd),

and written simply as F̄ when no ambiguity arises. The marginal survival function
of Xi , written F̄Xi

or often simply F̄i , is given by

F̄i(xi) = P(Xi > xi) = F̄ (−∞, . . . ,−∞, xi,−∞, . . . ,−∞).
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Conditional distributions and independence. If we have a multivariate model for
risks in the form of a joint df, survival function or density, then we have implicitly
described their dependence structure. We can make conditional probability state-
ments about the probability that certain components take certain values given that
other components take other values. For example, consider again our partition of X

into (X′
1,X

′
2)

′ and assume absolute continuity of the df of X. Let fX1 denote the
joint density of the k-dimensional marginal distribution FX1 . Then the conditional
distribution of X2 given X1 = x1 has density

fX2|X1(x2 | x1) = f (x1, x2)

fX1(x1)
, (3.2)

and the corresponding df is

FX2|X1(x2 | x1)

=
∫ xk+1

uk+1=−∞
· · ·
∫ xd

ud=−∞
f (x1, . . . , xk, uk+1, . . . , ud)

fX1(x1)
duk+1 · · · dud.

If the joint density of X factorizes into f (x) = fX1(x1)fX2(x2), then the con-
ditional distribution and density of X2 given X1 = x1 are identical to the marginal
distribution and density of X2: in other words, X1 and X2 are independent. We recall
that X1 and X2 are independent if and only if

F(x) = FX1(x1)FX2(x2), ∀x,

or, in the case where X possesses a joint density, f (x) = fX1(x1)fX2(x2).
The components of X are mutually independent if and only ifF(x) = ∏d

i=1Fi(xi)

for all x ∈ R
d or, in the case where X possesses a density, f (x) = ∏d

i=1fi(xi).

Moments and characteristic function. The mean vector of X, when it exists, is
given by

E(X) := (E(X1), . . . , E(Xd))
′.

The covariance matrix, when it exists, is the matrix cov(X) defined by

cov(X) := E((X − E(X))(X − E(X))′),

where the expectation operator acts componentwise on matrices. If we write Σ for
cov(X), then the (i, j)th element of this matrix is

σij = cov(Xi,Xj ) = E(XiXj ) − E(Xi)E(Xj ),

the ordinary pairwise covariance between Xi and Xj . The diagonal elements
σ11, . . . , σdd are the variances of the components of X.

The correlation matrix of X, denoted by ρ(X), can be defined by introducing a
standardized vector Y such that Yi = Xi/

√
var(Xi) for all i and taking ρ(X) :=

cov(Y ). If we write P for ρ(X), then the (i, j)th element of this matrix is

ρij = ρ(Xi,Xj ) = cov(Xi,Xj )√
var(Xi) var(Xj )

, (3.3)



64 3. Multivariate Models

the ordinary pairwise linear correlation of Xi and Xj . To express the relationship
between correlation and covariance matrices in matrix form it is useful to introduce
operators on a covariance matrix Σ as follows:

�(Σ) := diag(
√
σ11, . . . ,

√
σdd), (3.4)

℘(Σ) := (�(Σ))−1Σ(�(Σ))−1. (3.5)

Thus �(Σ) extracts from Σ a diagonal matrix of standard deviations, and ℘(Σ)

extracts a correlation matrix. The covariance and correlation matrices Σ and P of
X are related by

P = ℘(Σ). (3.6)

Mean vectors and covariance matrices are manipulated extremely easily under
linear operations on the vector X. For any matrix B ∈ R

k×d and vector b ∈ R
k we

have

E(BX + b) = BE(X) + b, (3.7)

cov(BX + b) = B cov(X)B ′. (3.8)

Covariance matrices (and hence correlation matrices) are therefore positive semi-
definite; writing Σ for cov(X) we see that (3.8) implies that var(a′X) = a′Σa � 0
for any a ∈ R

d . If we have that a′Σa > 0 for any a ∈ R
d \ {0}, we say that Σ

is positive definite; in this case the matrix is invertible. We will make use of the
well-known Cholesky factorization of positive-definite covariance matrices at many
points; it is well known that such a matrix can be written as Σ = AA′ for a lower
triangular matrix A with positive diagonal elements. The matrix A is known as the
Cholesky factor. It will be convenient to denote this factor byΣ1/2 and its inverse by
Σ−1/2. Note that there are other ways of defining the “square root” of a symmetric,
positive-definite matrix (such as the symmetric decomposition) but we will always
use Σ1/2 to denote the Cholesky factor.

In this chapter many properties of the multivariate distribution of a vector X are
demonstrated using the characteristic function, which is given by

φX(t) = E(exp(it ′X)) = E(eit ′X), t ∈ R
d .

3.1.2 Standard Estimators of Covariance and Correlation

Suppose we haven observations of a d-dimensional risk-factor return vector denoted
X1, . . . ,Xn. Typically, these would be daily, weekly, monthly or yearly observations
forming a multivariate time series. We will assume throughout this chapter that the
observations are identically distributed in the window of observation and either
independent or at least serially uncorrelated (also known as a multivariate white
noise). As we discuss in Chapter 4, the assumption of independence may be roughly
tenable for longer time intervals such as months or years. For shorter time intervals
independence may be a less appropriate assumption (due to a phenomenon known
as volatility clustering, discussed in Chapter 4) but serial correlation of returns is
often quite weak.
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We assume that the observations X1, . . . ,Xn come from a distribution with mean
vector µ, finite covariance matrixΣ and correlation matrix P . We now briefly review
the standard estimators of these vector and matrix parameters.

Standard method-of-moments estimators of µ and Σ are given by the sample
mean vector X̄ and the sample covariance matrix S. These are defined by

X̄ := 1

n

n∑
i=1

Xi , S := 1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)′, (3.9)

where arithmetic operations on vectors and matrices are performed componentwise.
X̄ is an unbiased estimator but S is biased; an unbiased version may be obtained by
taking Su := nS/(n − 1), as may be seen by calculating

nE(S) = E

( n∑
i=1

(Xi − µ)(Xi − µ)′ − n(X̄ − µ)(X̄ − µ)′
)

=
n∑

i=1

cov(Xi ) − n cov(X̄) = nΣ − Σ,

since cov(X̄) = n−1Σ when the data vectors are iid, or identically distributed and
uncorrelated.

The sample correlation matrixR may be easily calculated from the sample covari-
ance matrix; its (j, k)th element is given by rjk = sjk/

√
sjj skk , where sjk denotes

the (j, k)th element of S. Or, using the notation introduced in (3.5), we have

R = ℘(S),

which is the analogous equation to (3.6) for estimators.
Further properties of the estimators X̄, S andR will depend very much on the true

multivariate distribution of the observations. These quantities are not necessarily
the best estimators of the corresponding theoretical quantities in all situations. This
point is often forgotten in financial risk management, where sample covariance
and correlation matrices are routinely calculated and interpreted with little critical
consideration of underlying models.

If our data X1, . . . ,Xn are iid multivariate normal, then X̄ and S are the maximum
likelihood estimators (MLEs) of the mean vector µ and covariance matrix Σ . Their
behaviour as estimators is well understood and statistical inference for the model
parameters is described in all standard texts on multivariate analysis.

However, the multivariate normal is certainly not a good description of financial
risk factor returns over short time intervals, such as daily data, and is often not good
over longer time intervals either. Under these circumstances the behaviour of the
standard estimators in (3.9) is often less well understood and other estimators of
the true mean vector µ and covariance matrix Σ may perform better in terms of
efficiency and robustness. Roughly speaking, by a more efficient estimator we mean
an estimator with a smaller expected estimation error; by a more robust estimator
we mean an estimator whose performance is not so susceptible to the presence of
outlying data values.
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3.1.3 The Multivariate Normal Distribution

Definition 3.1. X = (X1, . . . , Xd)
′ has a multivariate normal or Gaussian distri-

bution if
X

d= µ + AZ,

where Z = (Z1, . . . , Zk)
′ is a vector of iid univariate standard normal rvs (mean

zero and variance one), and A ∈ R
d×k and µ ∈ R

d are a matrix and a vector of
constants, respectively.

It is easy to verify, using (3.7) and (3.8), that the mean vector of this distribution is
E(X) = µ and the covariance matrix is cov(X) = Σ , where Σ = AA′ is a positive
semidefinite matrix. Moreover, using the fact that the characteristic function of
a standard univariate normal variate Z is φZ(t) = exp(− 1

2 t
2), the characteristic

function of X may be calculated to be

φX(t) = E(exp(it ′X)) = exp(it ′µ − 1
2 t ′Σt), t ∈ R

d . (3.10)

Clearly, the distribution is characterized by its mean vector and covariance matrix,
and hence a standard notation is X ∼ Nd(µ,Σ). Note that the components of X are
mutually independent if and only if Σ is diagonal. For example, X ∼ Nd(0, Id) if
and only if X1, . . . , Xd are iid N(0, 1), the standard univariate normal distribution.

We concentrate on the non-singular case of the multivariate normal when
rank(A) = d � k. In this case the covariance matrix Σ has full rank d and is
therefore invertible (non-singular) and positive definite. Moreover, X has an abso-
lutely continuous distribution function with joint density given by

f (x) = 1

(2π)d/2|Σ |1/2 exp{− 1
2 (x − µ)′Σ−1(x − µ)}, x ∈ R

d , (3.11)

where |Σ | denotes the determinant of Σ .
The form of the density clearly shows that points with equal density lie on ellip-

soids determined by equations of the form (x − µ)′Σ−1(x − µ) = c, for constants
c > 0. In two dimensions the contours of equal density are ellipses, as illustrated
in Figure 3.1. Whenever a multivariate density f (x) depends on x only through
the quadratic form (x − µ)′Σ−1(x − µ), it is the density of a so-called elliptical
distribution, as discussed in more detail in Section 3.3.

Definition 3.1 is essentially a simulation recipe for the multivariate normal dis-
tribution. To be explicit, if we wished to generate a vector X with distribution
Nd(µ,Σ), where Σ is positive definite, we would use the following algorithm.

Algorithm 3.2 (simulation of multivariate normal distribution).

(1) Perform a Cholesky decomposition of Σ (see, for example, Press et al. 1992)
to obtain the Cholesky factor Σ1/2.

(2) Generate a vector Z = (Z1, . . . , Zd)
′ of independent standard normal vari-

ates.

(3) Set X = µ + Σ1/2Z.
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Figure 3.1. (a) Perspective and contour plots for the density of a bivariate normal distri-
bution with standard normal margins and correlation −70%. (b) Corresponding plots for a
bivariate t density with four degrees of freedom (see Example 3.7 for details) and the same
mean vector and covariance matrix as the normal distribution. Contour lines are plotted at
the same heights for both densities.

We now summarize further useful properties of the multivariate normal. These
properties underline the attractiveness of the multivariate normal for computational
work in risk management. Note, however, that many of them are in fact shared by
the broader classes of normal mixture distributions and elliptical distributions (see
Section 3.3.3 for properties of the latter).

Linear combinations. If we take linear combinations of multivariate normal ran-
dom vectors, then these remain multivariate normal. Let X ∼ Nd(µ,Σ) and take
any B ∈ R

k×d and b ∈ R
k . Then it is easily shown, for example using the charac-

teristic function (3.10), that

BX + b ∼ Nk(Bµ + b, BΣB ′). (3.12)

As a special case, if a ∈ R
d , then

a′X ∼ N(a′µ, a′Σa), (3.13)

and this fact is used routinely in the variance–covariance approach to risk manage-
ment, as discussed in Section 2.3.1.

In this context it is interesting to note the following elegant characterization of
multivariate normality. It is easily shown using characteristic functions that X is
multivariate normal if and only if a′X is univariate normal for all vectors a ∈
R
d \ {0}.
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Marginal distributions. It is clear from (3.13) that the univariate marginal distri-
butions of X must be univariate normal. More generally, using the X = (X′

1,X
′
2)

′
notation from Section 3.1.1 and extending this notation naturally to µ and Σ ,

µ =
(

µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

property (3.12) implies that the marginal distributions of X1 and X2 are also multi-
variate normal and are given by X1 ∼ Nk(µ1,Σ11) and X2 ∼ Nd−k(µ2,Σ22).

Conditional distributions. Assuming that Σ is positive definite, the conditional
distributions ofX2 givenX1 and ofX1 givenX2 may also be shown to be multivariate
normal. For example, X2 | X1 = x1 ∼ Nd−k(µ2.1,Σ22.1), where

µ2.1 = µ2 + Σ21Σ
−1
11 (x1 − µ1) and Σ22.1 = Σ22 − Σ21Σ

−1
11 Σ12

are the conditional mean vector and covariance matrix.

Quadratic forms. If X ∼ Nd(µ,Σ) with Σ positive definite, then

(X − µ)′Σ−1(X − µ) ∼ χ2
d , (3.14)

a chi-squared distribution with d degrees of freedom. This is seen by observing that
Z = Σ−1/2(X − µ) ∼ Nd(0, Id) and (X − µ)′Σ−1(X − µ) = Z′Z ∼ χ2

d . This
property (3.14) is useful for checking multivariate normality (see Section 3.1.4).

Convolutions. If X and Y are independent d-dimensional random vectors satisfy-
ing X ∼ Nd(µ,Σ) and Y ∼ Nd(µ̃, Σ̃), then we may take the product of charac-
teristic functions to show that X + Y ∼ Nd(µ + µ̃,Σ + Σ̃).

3.1.4 Testing Normality and Multivariate Normality

We now consider the issue of testing whether the data X1, . . . ,Xn are observations
from a multivariate normal distribution.

Univariate tests. If X1, . . . ,Xn are iid multivariate normal, then for 1 � j � d

the univariate sample X1,j , . . . , Xn,j consisting of the observations of the j th com-
ponent must be iid univariate normal; in fact any univariate sample constructed from
a linear combination of the data of the form a′X1, . . . , a

′Xn must be iid univariate
normal. This can be assessed graphically with a QQplot against a standard normal
reference distribution or tested formally using one of the countless numerical tests
of normality. A QQplot (quantile–quantile plot) is a standard visual tool for showing
the relationship between empirical quantiles of the data and theoretical quantiles of a
reference distribution, with a lack of linearity showing evidence against the hypoth-
esized reference distribution. In Figure 3.2 we show a QQplot of daily returns of
the Disney share price from 1993 to 2000 against a normal reference distribution;
the inverted “S-shaped” curve of the points suggests that the empirical quantiles of
the data tend to be larger than the corresponding quantiles of a normal distribution,
indicating that the normal distribution is a poor model for these returns.
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Figure 3.2. QQplot of daily returns of the Disney share price from 1993 to 2000
against a normal reference distribution (see also Example 3.3).

Particularly useful numerical tests include those of Jarque and Bera, Anderson
and Darling, Shapiro and Wilk, and D’Agostino. The Jarque–Bera test belongs to
the class of omnibus moment tests, i.e. tests which assess simultaneously whether
the skewness and kurtosis of the data are consistent with a Gaussian model. The
sample skewness and kurtosis coefficients of a univariate sample Z1, . . . , Zn are
defined by

√
b = (1/n)

∑n
i=1(Zi − Z̄)3

((1/n)
∑n

i=1(Zi − Z̄)2)3/2
, k = (1/n)

∑n
i=1(Zi − Z̄)4

((1/n)
∑n

i=1(Zi − Z̄)2)2
. (3.15)

These are designed to estimate the theoretical skewness and kurtosis, which are
defined, respectively, by

√
β = E(Z − µ)3/σ 3 and κ = E(Z − µ)4/σ 4, where

µ = E(Z) and σ 2 = var(Z) denote mean and variance;
√
β and κ take the values

zero and three for a normal variate Z. The Jarque–Bera test statistic is

T = 1
6n(b + 1

4 (k − 3)2)

and has an asymptotic chi-squared distribution with two degrees of freedom under
the null hypothesis of normality; sample kurtosis values differing widely from three
and skewness values differing widely from zero may lead to rejection of normality.

Multivariate tests. To test for multivariate normality it is not sufficient to test that
the univariate margins of the distribution are normal. We will see in Chapter 5 that
it is possible to have multivariate distributions with normal margins that are not
themselves multivariate normal distributions. Thus we also need to be able to test
joint normality and a simple way of doing this is to exploit the fact that the quadratic
form in (3.14) has a chi-squared distribution. Suppose we estimate µ and Σ using
the standard estimators in (3.9) and construct the data

{D2
i = (Xi − X̄)′S−1(Xi − X̄) : i = 1, . . . , n}. (3.16)
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Because the estimates of the mean vector and the covariance matrix are used in the
construction of each D2

i , these data are not independent, even if the original Xi data
were. Moreover, the marginal distribution of D2

i under the null hypothesis is not
exactly chi-squared; we have in fact that n(n − 1)−2D2

i ∼ Beta( 1
2d,

1
2 (n − d − 1)),

so that the true distribution is a scaled beta distribution, although it turns out to be very
close to chi-squared for large n. We expect D2

1, . . . , D
2
n to behave roughly like an

iid sample from a χ2
d distribution and for simplicity we construct QQplots against

this distribution. (It is also possible to make QQplots against the beta reference
distribution and these look very similar.)

Numerical tests of multivariate normality based on multivariate measures of skew-
ness and kurtosis are also possible. Suppose we define, in analogy to (3.15),

bd = 1

n2

n∑
i=1

n∑
j=1

D3
ij , kd = 1

n

n∑
i=1

D4
i , (3.17)

where Di is given in (3.16) and is known as the Mahalanobis distance between
Xi and X̄, and Dij = (Xi − X̄)S−1(Xj − X̄) is known as the Mahalanobis angle
between Xi − X̄ and Xj − X̄. These measures in fact reduce to the univariate mea-
sures b and k in the case d = 1. Under the null hypothesis of multivariate normality
the asymptotic distributions of these statistics as n → ∞ are

1
6nbd ∼ χ2

d(d+1)(d+2)/6,
kd − d(d + 2)√

8d(d + 2)/n
∼ N(0, 1). (3.18)

Mardia’s test of multinormality involves comparing the skewness and kurtosis statis-
tics with the above theoretical reference distributions. Since large values of the
statistics cast doubt on the multivariate normal model, one-sided tests are generally
performed. Usually the tests of kurtosis and skewness are performed separately,
although there are also a number of joint (or so-called omnibus) tests (see Notes and
Comments).

Example 3.3 (on the normality of returns on Dow Jones 30 stocks). We applied
tests of normality to an arbitrary subgroup of 10 of the stocks comprising the Dow
Jones index (see Table 3.1 for the stock codes and Table 4.1 for names). We took eight
years of data spanning the period 1993–2000 and formed daily, weekly, monthly
and quarterly logarithmic returns. For each stock we calculated sample skewness
and kurtosis and applied the Jarque–Bera test to the univariate time series. The daily
and weekly return data fail all tests; in particular, it is notable that there are some
large values for the sample kurtosis. For the monthly data, the null hypothesis of
normality is not formally rejected (p-value greater than 0.05) for four of the stocks;
for quarterly data it is not rejected for five of the stocks, although here the sample
size is small.

We applied Mardia’s tests of multinormality based on both multivariate skewness
and kurtosis to the multivariate data for all 10 stocks. The results are shown in
Table 3.2. We also compared theD2

i data (3.16) to a χ2
10-distribution using a QQplot

(see Figure 3.3).
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Table 3.1. Sample skewness (
√
b) and kurtosis (k) coefficients as well as p-values for

Jarque–Bera tests of normality for an arbitrary set of 10 of the Dow Jones 30 stocks (see
Example 3.3 for details).

Stock
√
b k p-value

√
b k p-value

Daily returns, n = 2020 Weekly returns, n = 416︷ ︸︸ ︷ ︷ ︸︸ ︷
AXP 0.05 5.09 0.00 −0.01 3.91 0.00
EK −1.93 31.20 0.00 −1.13 14.40 0.00
BA −0.34 10.89 0.00 −0.26 7.54 0.00
C 0.21 5.93 0.00 0.44 5.42 0.00
KO −0.02 6.36 0.00 −0.21 4.37 0.00
MSFT −0.22 8.04 0.00 −0.14 5.25 0.00
HWP −0.23 6.69 0.00 −0.26 4.66 0.00
INTC −0.56 8.29 0.00 −0.65 5.20 0.00
JPM 0.14 5.25 0.00 −0.20 4.93 0.00
DIS −0.01 9.39 0.00 0.08 4.48 0.00

Monthly returns, n = 96 Quarterly returns, n = 32︷ ︸︸ ︷ ︷ ︸︸ ︷
AXP −1.22 5.99 0.00 −1.04 4.88 0.01
EK −1.52 10.37 0.00 −0.63 4.49 0.08
BA −0.50 4.15 0.01 −0.15 6.23 0.00
C −1.10 7.38 0.00 −1.61 7.13 0.00
KO −0.49 3.68 0.06 −1.45 5.21 0.00
MSFT −0.40 3.90 0.06 −0.56 2.90 0.43
HWP −0.33 3.47 0.27 −0.38 3.64 0.52
INTC −1.04 6.50 0.00 −0.42 3.10 0.62
JPM −0.51 5.40 0.00 −0.78 7.26 0.00
DIS 0.04 3.26 0.87 −0.49 4.32 0.16

Table 3.2. Mardia’s tests of multivariate normality based on the multivariate measures of
skewness and kurtosis in (3.17) and the asymptotic distributions in (3.18) (see Example 3.3
for details).

Daily Weekly Monthly Quarterly
n 2020 416 96 32

b10 9.31 9.91 21.10 50.10
p-value 0.00 0.00 0.00 0.02

k10 242.45 177.04 142.65 120.83
p-value 0.00 0.00 0.00 0.44

The daily, weekly and monthly return data fail the multivariate tests of normal-
ity. For quarterly return data the multivariate kurtosis test does not reject the null
hypothesis, but the skewness test does; the QQplot in Figure 3.3(d) looks slightly
more linear. Thus there is some evidence that returns over a quarter year are close to
being normally distributed, which might indicate a central limit theorem effect taking
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(a) (b)

(c) (d)

Figure 3.3. QQplot of the D2
i

data in (3.16) against a χ2
10 distribution for the datasets of

Example 3.3: (a) daily analysis; (b) weekly analysis; (c) monthly analysis; and (d) quarterly
analysis. Under the null hypothesis of multivariate normality these should be roughly linear.

place, although the sample size is too small to reach any more reliable conclusion.
The evidence against the multivariate normal distribution is certainly overwhelming
for daily, weekly and monthly data.

The results in Example 3.3 are fairly typical for financial return data. This suggests
that in many risk-management applications the multivariate normal distribution is
not a good description of reality. It has three main defects that we will discuss at
various points in this book.

(1) The tails of its univariate marginal distributions are too thin; they do not assign
enough weight to extreme events.

(2) The joint tails of the distribution do not assign enough weight to joint extreme
outcomes.

(3) The distribution has a strong form of symmetry, known as elliptical symmetry.

In the next section we look at models that address some of these defects. We con-
sider normal variance mixture models, which share the elliptical symmetry of the
multivariate normal, but have the flexibility to address (1) and (2) above; we also
look at normal mean-variance mixture models, which introduce some asymmetry
and thus address (3).
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Notes and Comments

Much of the material covered briefly in Section 3.1 can be found in greater detail
in standard texts on multivariate statistical analysis such as Mardia, Kent and Bibby
(1979), Seber (1984), Giri (1996) or Johnson and Wichern (2002).

There are countless possible tests of univariate normality and a good starting point
is the entry on “departures from normality, tests for” in volume 2 of the Encyclopedia
of Statistics (Kotz, Johnson and Read 1985). For an introduction to QQplots see Rice
(1995, pp. 353–357); for the widely applied Jarque–Bera test based on the sample
skewness and kurtosis, see Jarque and Bera (1987).

The true distribution of D2
i = (Xi − X̄)S−1(Xi − X̄) for iid Gaussian data was

shown by Gnanadesikan and Kettenring (1972) to be a scaled beta distribution
(see also Gnanadesikan 1997). The implications of this fact for the construction of
QQplots in small samples are considered by Small (1978). References for multi-
variate measures of skewness and kurtosis and Mardia’s test of multinormality are
Mardia (1970, 1974, 1975). See also Mardia, Kent and Bibby (1979), the entry on
“multivariate normality, testing for” in volume 6 of the Encyclopedia of Statistics
(Kotz, Johnson and Read 1985), and the entry on “Mardia’s test of multinormality”
in volume 5 of the same publication.

3.2 Normal Mixture Distributions

In this section we generalize the multivariate normal to obtain multivariate normal
mixture distributions. The crucial idea is the introduction of randomness into first
the covariance matrix and then the mean vector of a multivariate normal distribution
via a positive mixing variable, which will be known throughout as W .

3.2.1 Normal Variance Mixtures

Definition 3.4. The random vector X is said to have a (multivariate) normal variance
mixture distribution if

X
d= µ + √

WAZ, (3.19)

where

(i) Z ∼ Nk(0, Ik);

(ii) W � 0 is a non-negative, scalar-valued rv which is independent of Z, and

(iii) A ∈ R
d×k and µ ∈ R

d are a matrix and vector of constants, respectively.

Such distributions are known as variance mixtures, since if we condition on the rv
W we observe that X | W = w ∼ Nd(µ, wΣ), where Σ = AA′. The distribution
of X can be thought of as a composite distribution constructed by taking a set of
multivariate normal distributions with the same mean vector and with the same
covariance matrix up to a multiplicative constant w. The mixture distribution is
constructed by drawing randomly from this set of component multivariate normals
according to a set of “weights” determined by the distribution of W ; the resulting
mixture is not itself a multivariate normal distribution. In the context of modelling
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risk-factor returns, the mixing variable W could be interpreted as a shock that arises
from new information and impacts the volatilities of all stocks.

As for the multivariate normal, we are most interested in the case where rank(A) =
d � k and Σ is a full-rank, positive-definite matrix; this will give us a non-singular
normal variance mixture.

Provided that W has a finite expectation, we may easily calculate that

E(X) = E(µ + √
WAZ) = µ + E(

√
W)AE(Z) = µ

and that

cov(X) = E((
√
WAZ)(

√
WAZ)′) = E(W)AE(ZZ′)A′ = E(W)Σ. (3.20)

We refer to µ and Σ in general as the location vector and the dispersion matrix of
the distribution. Note that Σ (the covariance matrix of AZ) is only the covariance
matrix of X if E(W) = 1 and that µ is only the mean vector when E(X) is defined,
which requires E(W 1/2) < ∞. The correlation matrices of X and Z are the same
when E(W) < ∞. Note also that these distributions provide good examples of
models where a lack of correlation does not necessarily imply independence of the
components of X; indeed we have the following simple result.

Lemma 3.5. Let (X1, X2) have a normal mixture distribution with A = I2 and
E(W) < ∞ so that cov(X1, X2) = 0. Then X1 and X2 are independent if and only
if W is almost surely constant, i.e. (X1, X2) are normally distributed.

Proof. We calculate that

E(|X1| |X2|) = E(W |Z1| |Z2|) = E(W)E(|Z1|)E(|Z2|)
� (E(

√
W))2E(|Z1|)E(|Z2|) = E(|X1|)E(|X2|),

with equality throughout only when W is a constant.

Using (3.10), we can calculate that the characteristic function of a normal variance
mixture is given by

φX(t) = E(E(exp(it ′X) | W)) = E(exp(it ′µ − 1
2W t ′Σt))

= exp(it ′µ)Ĥ ( 1
2 t ′Σt). (3.21)

where Ĥ (θ) = ∫∞
0 e−θv dH(v) is the Laplace–Stieltjes transform of the df H of

W . Based on (3.21) we use the notation X ∼ Md(µ,Σ, Ĥ ) for normal variance
mixtures.

Assuming that Σ is positive definite and that the distribution of W has no point
mass at zero, we may derive the joint density of a normal variance mixture distribu-
tion. Writing fX|W for the (Gaussian) conditional density of X given W , the density
of X is given by

f (x) =
∫

fX|W(x | w) dH(w)

=
∫

w−d/2

(2π)d/2|Σ |1/2 exp

{
− (x − µ)′Σ−1(x − µ)

2w

}
dH(w), (3.22)
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in terms of the Lebesgue–Stieltjes integral; when H has density h we simply mean
the Riemann integral

∫∞
0 fX|W(x | w)h(w) dw. All such densities will depend on x

only through the quadratic form (x − µ)′Σ−1(x − µ) and this means they are the
densities of elliptical distributions, as will be discussed in Section 3.3.

Example 3.6 (multivariate two-point normal mixture distribution). Simple
examples of normal mixtures are obtained when W is a discrete rv. For exam-
ple, the two-point normal mixture model is obtained by taking W in (3.19) to be a
discrete rv which assumes the distinct positive values k1 and k2 with probabilities p
and 1 − p, respectively. By setting k2 large relative to k1 and choosing p large, this
distribution might be used to define two regimes: an ordinary regime that holds most
of the time and a stress regime that occurs with small probability 1 − p. Obviously
this idea extends to k-point mixture models.

Example 3.7 (multivariate t distribution). If we take W in (3.19) to be an rv with
an inverse gamma distribution W ∼ Ig( 1

2ν,
1
2ν) (which is equivalent to saying that

ν/W ∼ χ2
ν ), then X has a multivariate t distribution with ν degrees of freedom

(see Section A.2.6 for more details concerning the inverse gamma distribution). Our
notation for the multivariate t is X ∼ td (ν,µ,Σ) and we note that Σ is not the
covariance matrix of X in this definition of the multivariate t . SinceE(W) = ν/(ν−
2) we have cov(X) = (ν/(ν − 2))Σ and the covariance matrix (and correlation
matrix) of this distribution are only defined if ν > 2.

Using (3.22), the density can be calculated to be

f (x) = Γ ( 1
2 (ν + d))

Γ ( 1
2ν)(πν)

d/2|Σ |1/2

(
1 + (x − µ)′Σ−1(x − µ)

ν

)−(ν+d)/2

. (3.23)

Clearly, the locus of points with equal density is again an ellipsoid with equation
(x − µ)′Σ−1(x − µ) = c, for some c > 0. A bivariate example with four degrees
of freedom is given in Figure 3.1. In comparison with the multivariate normal the
contours of equal density rise more quickly in the centre of the distribution and decay
more gradually on the “lower slopes” of the distribution. We will see later that, in
comparison with the multivariate normal, the multivariate t has heavier marginal
tails (Chapter 7) and a more pronounced tendency to generate simultaneous extreme
values (Section 5.3.1).

Example 3.8 (symmetric generalized hyperbolic distribution). A flexible family
of normal variance mixtures is obtained by taking W in (3.19) to have a generalized
inverse Gaussian (GIG) distribution, W ∼ N−(λ, χ,ψ) (see Section A.2.5). Using
(3.22), it can be shown that a normal variance mixture constructed with this mixing
density has the joint density

f (x) = (
√
χψ)−λψd/2

(2π)d/2|Σ |1/2Kλ(
√
χψ)

Kλ−(d/2)(
√
(χ + (x − µ)′Σ−1(x − µ))ψ)

(
√
(χ + (x − µ)′Σ−1(x − µ))ψ)(d/2)−λ

,

(3.24)
where Kλ denotes a modified Bessel function of the third kind (see Section A.2.5
for more details). This distribution is a special case of the more general family of
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multivariate generalized hyperbolic distributions, which we will discuss in greater
detail in Section 3.2.2. The more general family can be obtained as mean-variance
mixtures of normals, which are not necessarily elliptical distributions.

The GIG mixing distribution is very flexible and contains the gamma and inverse
gamma distributions as special boundary cases (corresponding, respectively, to λ >

0, χ = 0 and to λ < 0, ψ = 0). In these cases the density in (3.24) should be
interpreted as a limit as χ → 0 or as ψ → 0. (Information on the limits of Bessel
functions is found in Section A.2.5.) The gamma mixing distribution yields Laplace
distributions or so-called symmetric variance-gamma models and the inverse gamma
yields the t as in Example 3.7; to be precise the t corresponds to the case when λ =
−ν/2 and χ = ν. The special cases λ = −0.5 and λ = 1 have also had attention in
financial modelling. The former gives rise to the symmetric normal inverse Gaussian
(NIG) distribution; the latter gives rise to a symmetric multivariate distribution
whose one-dimensional margins are known simply as hyperbolic distributions.

To calculate the covariance matrix of distributions in the symmetric generalized
hyperbolic family, we require the mean of the GIG distribution, which is given
in (A.9) for the case χ > 0 and ψ > 0. The covariance matrix of the multivariate
distribution in (3.24) follows from (3.20).

Normal variance mixture distributions are easy to work with under linear opera-
tions, as shown in the following simple proposition.

Proposition 3.9. If X ∼ Md(µ,Σ, Ĥ ) and Y = BX + b, where B ∈ R
k×d and

b ∈ R
k , then Y ∼ Mk(Bµ + b, BΣB ′, Ĥ ).

Proof. The characteristic function in (3.21) may be used to show that

φY (t) = E(eit ′(BX+b)) = eit ′bφX(B
′t) = eit ′(Bµ+b)Ĥ ( 1

2 t ′BΣB ′t).

Thus the subclass of mixture distributions specified by Ĥ is closed under linear
transformations. For example, if X has a multivariate t distribution with ν degrees
of freedom, then so does any linear transformation of X; the linear combination a′X
would have a univariate t distribution with ν degrees of freedom (more precisely,
the distribution a′X ∼ t1(ν, a

′µ, a′Σa)).
Normal variance mixture distributions (and the mean-variance mixtures consid-

ered later in Section 3.2.2) are easily simulated, the method being obvious from
Definition 3.4. To generate a variate X ∼ Md(µ,Σ, Ĥ ) with Σ positive definite we
use the following algorithm.

Algorithm 3.10 (simulation of normal variance mixtures).

(1) Generate Z ∼ Nd(0,Σ) using Algorithm 3.2.

(2) Generate independently a positive mixing variable W with df H (correspond-
ing to the Laplace–Stieltjes transform Ĥ ).

(3) Set X = µ + √
WZ.
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To generate X ∼ td (ν,µ,Σ), the mixing variableW should have an Ig( 1
2ν,

1
2ν) dis-

tribution; it is helpful to note that in this case ν/W ∼ χ2
ν , a chi-squared distribution

on ν degrees of freedom. Sampling from a generalized hyperbolic distribution with
density (3.24) requires us to generate W ∼ N−(λ, χ,ψ). Sampling from the GIG
distribution can be accomplished using a rejection algorithm proposed by Atkinson
(1982).

3.2.2 Normal Mean-Variance Mixtures

All of the multivariate distributions we have considered so far have elliptical sym-
metry and this may well be an oversimplified model for real risk-factor return data.
Among other things, elliptical symmetry implies that all one-dimensional marginal
distributions are rigidly symmetric, which contradicts the frequent observation for
stock returns that negative returns (losses) have heavier tails than positive returns
(gains). The models we now introduce attempt to add some asymmetry to the class
of normal mixtures by mixing normal distributions with different means as well
as different variances; this yields the class of multivariate normal mean-variance
mixtures.

Definition 3.11. The random vector X is said to have a (multivariate) normal mean-
variance mixture distribution if

X
d= m(W) + √

WAZ, (3.25)

where

(i) Z ∼ Nk(0, Ik);

(ii) W � 0 is a non-negative, scalar-valued rv which is independent of Z;

(iii) A ∈ R
d×k is a matrix; and

(iv) m : [0,∞) → R
d is a measurable function.

In this case we have that

X | W = w ∼ Nd(m(w),wΣ), (3.26)

where Σ = AA′ and it is clear why such distributions are known as mean-variance
mixtures of normals. In general, such distributions are not elliptical.

A possible concrete specification for the function m(W) in (3.26) is

m(W) = µ + Wγ , (3.27)

where µ and γ are parameter vectors in R
d . Since E(X | W) = µ + Wγ and

cov(X | W) = WΣ , it follows in this case by simple calculations that

E(X) = E(E(X | W)) = µ + E(W)γ , (3.28)

cov(X) = E(cov(X | W)) + cov(E(X | W))

= E(W)Σ + var(W)γ γ ′, (3.29)
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when the mixing variable W has finite variance. We observe from (3.28) and (3.29)
that the parameters µ and Σ are not, in general, the mean vector and covariance
matrix of X (or a multiple thereof). This is only the case when γ = 0, so that the
distribution is a normal variance mixture and the simpler moment formulas given
in (3.20) apply.

3.2.3 Generalized Hyperbolic Distributions

In Example 3.8 we looked at the special subclass of the generalized hyperbolic dis-
tributions consisting of the elliptically symmetric normal variance mixture distribu-
tions. The full generalized hyperbolic family is obtained using the mean-variance
mixture construction (3.25) and the conditional mean specification (3.27). For the
mixing distribution we assume that W ∼ N−(λ, χ,ψ), a GIG distribution with
density (A.8).

Remark 3.12. This class of distributions has received a lot of attention in the
financial-modelling literature, particularly in the univariate case. An important rea-
son for this attention is their link to Lévy processes, i.e. processes with independent
and stationary increments (like Brownian motion) that are used to model price pro-
cesses in continuous time. For every generalized hyperbolic distribution it is possible
to construct a Lévy process so that the value of the increment of the process over
a fixed time interval has that distribution; this is only possible because the general-
ized hyperbolic law is a so-called infinitely divisible distribution, a property that it
inherits from the GIG mixing distribution of W .

The joint density in the non-singular case (Σ has rank d) is

f (x) =
∫ ∞

0

e(x−µ)′Σ−1γ

(2π)d/2|Σ |1/2wd/2

× exp

{
− (x − µ)′Σ−1(x − µ)

2w
− γ ′Σ−1γ

2/w

}
h(w) dw,

where h(w) is the density of W . Evaluation of this integral gives the generalized
hyperbolic density

f (x) = c
Kλ−(d/2)(

√
(χ + (x − µ)′Σ−1(x − µ))(ψ + γ ′Σ−1γ ))e(x−µ)′Σ−1γ

(
√
(χ + (x − µ)′Σ−1(x − µ))(ψ + γ ′Σ−1γ ))(d/2)−λ

,

(3.30)
where the normalizing constant is

c = (
√
χψ)−λψλ(ψ + γ ′Σ−1γ )(d/2)−λ

(2π)d/2|Σ |1/2Kλ(
√
χψ)

.

Clearly, if γ = 0, the distribution reduces to the symmetric generalized hyperbolic
special case of Example 3.8. In general we have a non-elliptical distribution with
asymmetric margins. The mean vector and covariance matrix of the distribution
are easily calculated from (3.28) and (3.29) using the information on the GIG and
its moments given in Section A.2.5. The characteristic function of the generalized
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hyperbolic distribution may be calculated using the same approach as in (3.21) to
yield

φX(t) = E(eit ′X) = eit ′µĤ ( 1
2 t ′Σt − it ′γ ), (3.31)

where Ĥ is the Laplace–Stieltjes transform of the GIG distribution.
We adopt the notation X ∼ GHd(λ, χ,ψ,µ,Σ, γ ). Note that the distribu-

tions GHd(λ, χ/k, kψ,µ, kΣ, kγ ) and GHd(λ, χ,ψ,µ,Σ, γ ) are identical for
any k > 0, which causes an identifiability problem when we attempt to estimate the
parameters in practice. This can be solved by constraining the determinant |Σ | to
be a particular value (such as one) when fitting. Note that, while such a constraint
will have an effect on the values of χ and ψ that we estimate, it will not have an
effect on the value of χψ , so this product is a useful summary parameter for the GH
distribution.

Linear combinations. The generalized hyperbolic class is closed under linear oper-
ations.

Proposition 3.13. If X ∼ GHd(λ, χ,ψ,µ,Σ, γ ) and Y = BX + b, where B ∈
R
k×d and b ∈ R

k , then Y ∼ GHk(λ, χ,ψ,Bµ + b, BΣB ′, Bγ ).

Proof. We calculate, using (3.31) and a similar method to Proposition 3.9, that

φY (t) = eit ′(Bµ+b)Ĥ ( 1
2 t ′BΣB ′t − it ′Bγ ).

Thus the parameters inherited from the GIG mixing distribution remain un-
changed under linear operations. This means, for example, that margins of X are
easy to calculate; we have that Xi ∼ GH1(λ, χ,ψ,µi,Σii, γi). It also means that
it would be relatively easy to base a version of the variance-covariance method on
a generalized hyperbolic model for risk factors.

Parametrizations. There is a bewildering array of alternative parametrizations for
the generalized hyperbolic distribution in the literature and it is more common
to meet this distribution in a reparametrized form. In one common version the
dispersion matrix we callΣ is renamed� and the constraint is imposed that |�| = 1;
this addresses the identifiability problem mentioned above.The skewness parameters
γ are replaced by parameters β and the non-negative parameters χ and ψ are
replaced by the non-negative parameters δ and α according to

β = �−1γ , δ = √
χ, α =

√
ψ + γ ′�−1γ .

These parameters must satisfy the constraints δ � 0, α2 > β ′�β if λ > 0; δ >

0, α2 > β ′�β if λ = 0; and δ > 0, α2 � β ′�β if λ < 0. Blæsild (1981)
uses this parametrization to show that generalized hyperbolic distributions form a
closed class of distributions under linear operations and conditioning. However, the
parametrization does have the problem that the important parameters α and δ are
not generally invariant under either of these operations.
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It is useful to be able to move easily between our χ–ψ–Σ–γ parametrization,
as in (3.30), and the α–δ–�–β parametrization; λ and µ are common to both
parametrizations. If the χ–ψ–Σ–γ parametrization is used, then the formulas for
obtaining the other parametrization are

� = |Σ |−1/dΣ, β = Σ−1γ ,

δ =
√
χ |Σ |1/d , α =

√
|Σ |−1/d(ψ + γ ′Σ−1γ ).

If the α–δ–�–β form is used, then we can obtain our parametrization by setting

Σ = �, γ = �β, χ = δ2, ψ = (α2 − β ′�β).

Special cases. The multivariate generalized hyperbolic family is extremely flexible
and, as we have mentioned, contains many special cases known by alternative names.

• If λ = 1
2 (d + 1) we drop the word “generalized” and refer to the distribution

as a d-dimensional hyperbolic distribution. Note that the univariate margins
of this distribution also have λ = 1

2 (d + 1) and are not one-dimensional
hyperbolic distributions.

• If λ = 1 we get a multivariate distribution whose univariate margins are
one-dimensional hyperbolic distributions. The one-dimensional hyperbolic
distribution has been widely used in univariate analyses of financial return
data (see Notes and Comments).

• If λ = − 1
2 then the distribution is known as an NIG distribution. In the uni-

variate case, this model has also been used in analyses of return data; its
functional form is similar to the hyperbolic with a slightly heavier tail. (Note
that the NIG and the GIG are different distributions!)

• If λ > 0 and χ = 0 we get a limiting case of the distribution known variously
as a generalized Laplace, Bessel function or variance-gamma distribution.

• If λ = − 1
2ν, χ = ν and ψ = 0 we get another limiting case which seems

to have been less well studied, but which could be called an asymmetric or
skewed t distribution. Evaluating the limit of (3.30) as ψ → 0 yields the
multivariate density

f (x) = c
K(ν+d)/2(

√
(ν + Q(x))γ ′Σ−1γ ) exp((x − µ)′Σ−1γ )

(
√
(ν + Q(x))γ ′Σ−1γ )−(ν+d)/2(1 + (Q(x)/ν))(ν+d)/2

, (3.32)

where Q(x) = (x − µ)′Σ−1(x − µ) and the normalizing constant is

c = 21−(ν+d)/2

Γ ( 1
2ν)(πν)

d/2|Σ |1/2
.

This density reduces to the standard multivariate t density in (3.23) as γ → 0.
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3.2.4 Fitting Generalized Hyperbolic Distributions to Data

While univariate generalized hyperbolic models have been fitted to return data in
many empirical studies, there has been relatively little applied work with the multi-
variate distributions. However, normal mixture distributions of the kind we have
described may be fitted with algorithms of the EM (expectation–maximization)
type. In this section we present an algorithm for that purpose and sketch the ideas
behind it. Similar methods have been developed independently by other authors and
references may be found in Notes and Comments. Readers who are not particularly
interested in getting an idea of how the estimation works may skip this section, while
noting the existence of Algorithm 3.14.

Assume we have iid data X1, . . . ,Xn and wish to fit the multivariate gener-
alized hyperbolic, or one of its special cases. Summarizing the parameters by
θ = (λ, χ,ψ,µ,Σ, γ )′, the problem is to maximize

lnL(θ; X1, . . . ,Xn) =
n∑

i=1

ln fX(Xi; θ), (3.33)

where fX(x; θ) denotes the generalized hyperbolic density in (3.30).
This problem is not particularly easy at first sight due to the number of parameters

and the necessity of maximizing over covariance matrices Σ . However, if we were
able to “observe” the latent mixing variables W1, . . . ,Wn coming from the mixture
representation in (3.25), it would be much easier. Since the joint density of any pair
Xi and Wi is given by

fX,W (x, w; θ) = fX|W(x | w; µ,Σ, γ )hW (w; λ, χ,ψ), (3.34)

we could construct the likelihood

ln L̃(θ; X1, . . . ,Xn,W1, . . . ,Wn)

=
n∑

i=1

ln fX|W(Xi | Wi; µ,Σ, γ ) +
n∑

i=1

ln hW(Wi; λ, χ,ψ), (3.35)

where the two terms could be maximized separately with respect to the parameters
they involve. The apparently more problematic parameters of Σ and γ are in the
first term of the likelihood and estimates are relatively easy to derive due to the
Gaussian form of this term.

To overcome the latency of the Wi data the EM algorithm is used. This is an
iterative procedure consisting of an E-step, or expectation step (where essentiallyWi

is replaced by an estimate given the observed data and current parameter estimates),
and an M-step, or maximization step (where the parameter estimates are updated).
Suppose at the beginning of step k we have parameter estimates θ [k]. We proceed
as follows.

E-step. We calculate the conditional expectation of the so-called augmented like-
lihood (3.35) given the data X1, . . . ,Xn using the parameter values θ [k]. This
results in the objective function

Q(θ; θ [k]) = E(ln L̃(θ; X1, . . . ,Xn,W1, . . . ,Wn) | X1, . . . ,Xn; θ [k]).
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M-step. We maximize the objective function with respect to θ to obtain the next
set of estimates θ [k+1].

Alternating between these steps, the EM algorithm produces improved parameter
estimates at each step (in the sense that the value of the original likelihood (3.33) is
continually increased) and we converge to the maximum likelihood (ML) estimates.

In practice, performing the E-step amounts to replacing any functions g(Wi) of the
latent mixing variables which arise in (3.35) by the quantities E(g(Wi) | Xi; θ [k]).
To calculate these quantities we can observe that the conditional density ofWi given
Xi satisfies fW |X(w | x; θ) ∝ fW,X(w, x; θ), up to some constant of proportional-
ity. Thus it may be deduced from (3.34) that

Wi | Xi ∼ N−(λ − 1
2d, (Xi − µ)′Σ̃−1(Xi − µ) + χ,ψ + γ ′Σ−1γ ). (3.36)

If we write out the likelihood (3.35) using (3.26) for the first term and the GIG
density (A.8) for the second term, we find that the functions g(Wi) arising in (3.35)
are g1(w) = w, g2(w) = 1/w and g3(w) = ln(w). The conditional expectation of
these functions in model (3.36) may be evaluated using information about the GIG
distribution in Section A.2.5; note that E(ln(Wi) | Xi; θ [k]) involves derivatives of
a Bessel function with respect to order and must be approximated numerically. We
will introduce the notation

δ
[·]
i = E(W−1

i | Xi; θ [·]), η
[·]
i = E(Wi | Xi; θ [·]), ξ

[·]
i = E(ln(Wi) | Xi; θ [·]),

(3.37)
which allows us to describe the basic EM scheme as well as a variant below.

In the M-step there are two terms to maximize, coming from the two terms
in (3.35); we write these asQ1(µ,Σ, γ ; θ [k]) andQ2(λ, χ,ψ; θ [k]). To address the
identifiability issue mentioned in Section 3.2.3 we constrain the determinant of Σ
to be some fixed value (in practice we take the determinant of the sample covariance
matrix S) in the maximization of Q1. The maximizing values of µ, Σ and γ may
then be derived analytically by calculating partial derivatives and setting these equal
to zero; the resulting formulas are embedded in Algorithm 3.14 below (see steps (3)
and (4)). The maximization of Q2(λ, χ,ψ; θ [k]) with respect to the parameters of
the mixing distribution is performed numerically; the function Q2(λ, χ,ψ; θ [·]) is

(λ − 1)
n∑

i=1

ξ
[·]
i − 1

2χ

n∑
i=1

δ
[·]
i − 1

2ψ

n∑
i=1

η
[·]
i

− 1
2nλ ln(χ) + 1

2nλ ln(ψ) − n ln(2Kλ(
√
χψ)). (3.38)

This would complete one iteration of a standard EM algorithm. However, there are
a couple of variants on the basic scheme; both involve modification of the final step
described above, namely the maximization of Q2.

Assuming the parameters µ, Σ and γ have been updated first in iteration k, we
define

θ [k,2] = (λ[k], χ [k], ψ [k],µ[k+1],Σ [k+1], γ [k+1])′,
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recalculate the weights δ
[k,2]
i , η[k,2]

i and ξ
[k,2]
i in (3.37), and then maximize the

function Q2(λ, η, ξ ; θ [k,2]) in (3.38). This results in a so-called MCECM algorithm
(multi-cycle, expectation, conditional maximization), which is the one we present
below.

Alternatively, instead of maximizing Q2 we may maximize the original likeli-
hood (3.33) with respect to λ, χ and ψ with the other parameters held fixed at the
values µ[k], Σ [k] and γ [k]; this results in an ECME algorithm.

Algorithm 3.14 (EM estimation of generalized hyperbolic distribution).

(1) Set iteration count k = 1 and select starting values for θ [1]. In particular,
reasonable starting values for µ, γ and Σ , respectively, are the sample mean,
the zero vector and the sample covariance matrix S.

(2) Calculate weights δ[k]
i and η

[k]
i using (3.37), (3.36) and (A.9). Average the

weights to get

δ̄[k] = n−1
n∑

i=1

δ
[k]
i and η̄[k] = n−1

n∑
i=1

η
[k]
i .

(3) For a symmetric model set γ [k+1] = 0. Otherwise set

γ [k+1] = n−1∑n
i=1 δ

[k]
i (X̄ − Xi )

δ̄[k]η̄[k] − 1
.

(4) Update estimates of the location vector and dispersion matrix by

µ[k+1] = n−1∑n
i=1 δ

[k]
i Xi − γ [k+1]

δ̄[k] ,

Ψ = 1

n

n∑
i=1

δ
[k]
i (Xi − µ[k+1])(Xi − µ[k+1])′ − η̄[k]γ [k+1]γ [k+1]′,

Σ [k+1] = |S|1/dΨ
|Ψ |1/d .

(5) Set
θ [k,2] = (λ[k], χ [k], ψ [k],µ[k+1],Σ [k+1], γ [k+1])′.

Calculate weights δ[k,2]
i , η[k,2]

i and ξ [k,2]
i using (3.37), (3.36) and information

in Section A.2.5.

(6) MaximizeQ2(λ, χ,ψ; θ [k,2]) in (3.38) with respect to λ,χ andψ to complete
the calculation of θ [k,2]. Increment iteration count k → k+1 and go to step (2).

This algorithm may be easily adapted to fit special cases of the generalized hyper-
bolic distribution. This involves holding certain parameters fixed throughout and
maximizing with respect to the remaining parameters: for the hyperbolic distribu-
tion we set λ = 1; for the NIG distribution λ = − 1

2 ; for the t distributionψ = 0; for
the VG distribution χ = 0. In the case of t and VG in step (6) we have to work with
the function Q2 that results from assuming an inverse gamma or gamma density
for hW .
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3.2.5 Empirical Examples

In this section we fit the multivariate generalized hyperbolic (GH) distribution to real
data and examine which of the subclasses—such as t , hyperbolic or NIG—are most
useful; we also explore whether the general mean-variance mixture models can be
replaced by (elliptically symmetric) variance mixtures. Our first example prepares
the ground for multivariate examples by looking briefly at univariate models.

Example 3.15 (univariate stock returns). In the literature the NIG, hyperbolic
and t models have been particularly popular special cases. We fit symmetric and
asymmetric cases of these distributions to the data used in Example 3.3, restricting
attention to daily and weekly returns, where the data are more plentiful (n = 2020
and n = 468, respectively). Models are fitted using maximum likelihood under
the simplifying assumption that returns form iid samples; a simple quasi-Newton
method provides a viable alternative to the EM algorithm in the univariate case.

In the upper two panels of Table 3.3 we show results for symmetric models. The
t , NIG and hyperbolic models may be compared directly using the log-likelihood
at the maximum, since all have the same number of parameters: for daily data we
find that eight out of 10 stocks prefer the t distribution to the hyperbolic and NIG
distributions; for weekly returns the t distribution is favoured in six out of 10 cases.
Overall, the second best model appears to be the NIG distribution. The mixture
models fit much better than the Gaussian model in all cases, and it may be verified
easily using the Akaike information criterion (AIC) that they are preferred to the
Gaussian model in a formal comparison (see Section A.3.6 for more on the AIC).

For the asymmetric models, we only show cases where at least one of the asym-
metric t , NIG or hyperbolic models offered a significant improvement (p < 0.05)
on the corresponding symmetric model according to a likelihood ratio test. This
occurred for weekly returns on Citigroup (C) and Intel (INTC) but for no daily
returns. For Citigroup the p-values of the tests were, respectively, 0.06, 0.04 and
0.04 for the t , NIG and hyperbolic cases; for Intel the p-values were 0.01 in all
cases, indicating quite strong asymmetry.

In the case of Intel we have superimposed the densities of various fitted asymmet-
ric distributions on a histogram of the data in Figure 3.4. A plot of the log densities
shown alongside reveals the differences between the distributions in the tail area.
The left tail (corresponding to losses) appears to be heavier for these data and the
best-fitting distribution according to the likelihood comparison is the asymmetric
t distribution.

Example 3.16 (multivariate stock returns). We fitted multivariate models to the
full 10-dimensional dataset of log-returns used in the previous example. The result-
ing values of the maximized log-likelihood are shown in Table 3.4 along with p-
values for a likelihood ratio test of all special cases against the (asymmetric) general-
ized hyperbolic (GH) model. The number of parameters in each model is also given;
note that the general d-dimensional GH model has 1

2d(d + 1) dispersion parame-
ters, d location parameters, d skewness parameters and three parameters coming
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Table 3.3. Comparison of univariate models in the generalized hyperbolic family, show-
ing estimates of selected parameters and the value of the log-likelihood at the maximum;
bold numbers indicate the models that give the largest values of the log-likelihood. See
Example 3.15 for commentary.

Gauss t model NIG model Hyperbolic model︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
Stock lnL ν lnL

√
χψ lnL

√
χψ lnL

Daily returns: symmetric models

AXP 4945.7 5.8 5001.8 1.6 5002.4 1.3 5002.1
EK 5112.9 3.8 5396.2 0.8 5382.5 0.6 5366.0
BA 5054.9 3.8 5233.5 0.8 5229.1 0.5 5221.2
C 4746.6 6.3 4809.5 1.9 4806.8 1.7 4805.0
KO 5319.6 5.1 5411.0 1.4 5407.3 1.3 5403.3
MSFT 4724.3 5.8 4814.6 1.6 4809.5 1.5 4806.4
HWP 4480.1 4.5 4588.8 1.1 4587.2 0.9 4583.4
INTC 4392.3 5.4 4492.2 1.5 4486.7 1.4 4482.4
JPM 4898.3 5.1 4967.8 1.3 4969.5 0.9 4969.7
DIS 5047.2 4.4 5188.3 1 5183.8 0.8 5177.6

Weekly returns: symmetric models

AXP 719.9 8.8 724.2 3.0 724.3 2.8 724.3
EK 718.7 3.6 765.6 0.7 764.0 0.5 761.3
BA 732.4 4.4 759.2 1.0 758.3 0.8 757.2
C 656.0 5.7 669.6 1.6 669.3 1.3 669
KO 757.1 6.0 765.7 1.7 766.2 1.3 766.3
MSFT 671.5 6.3 683.9 1.9 683.2 1.8 682.9
HWP 627.1 6.0 637.3 1.8 637.3 1.5 637.1
INTC 595.8 5.2 611.0 1.5 610.6 1.3 610
JPM 681.7 5.9 693.0 1.7 692.9 1.5 692.6
DIS 734.1 6.4 742.7 1.9 742.8 1.7 742.7

Weekly returns: asymmetric models

C NA 6.1 671.4 1.7 671.3 1.3 671.2
INTC NA 6.3 614.2 1.8 613.9 1.7 613.3

from the GIG mixing distribution, but is subject to one identifiability constraint; this
gives 1

2 (d(d + 5) + 4) free parameters.
For the daily data the best of the special cases is the skewed t distribution, which

gives a value for the maximized likelihood that cannot be discernibly improved
by the more general model with its additional parameter. All other non-elliptically
symmetric submodels are rejected in a likelihood ratio test. Note, however, that the
elliptically symmetric t distribution cannot be rejected when compared with the
most general model, so that this seems to offer a simple parsimonious model for
these data (the estimated degree of freedom is 6.0).

For the weekly data the best special case is the NIG distribution, followed closely
by the skewed t ; the hyperbolic and variance gamma are rejected. The best ellipti-
cally symmetric special case seems to be the t distribution (the estimated degree of
freedom being, this time, 6.2).
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Figure 3.4. Models for weekly returns on Intel (INTC).

Example 3.17 (multivariate exchange-rate returns). We fitted the same multi-
variate models to a four-dimensional dataset of exchange-rate log-returns, these
being GB pound, euro, Japanese yen and Swiss franc against the US dollar for
the period January 2000 to the end of March 2004 (1067 daily returns and 222
weekly returns). The resulting values of the maximized log-likelihood are shown in
Table 3.5.

For the daily data the best of the special cases (in general and also if we restrict
ourselves to symmetric models) is the NIG distribution, followed by the hyperbolic,
t and variance-gamma (VG) distributions in that order. In a likelihood ratio test of
the special cases against the general GH distribution only the VG model is rejected
at the 5% level; the skewed t model is rejected at the 10% level. When tested against
the full model, certain elliptical models could not be rejected, the best of these being
the NIG.

For the weekly data the best special case is the t distribution, followed by the
NIG, hyperbolic and variance gamma; none of the special cases can be rejected in a
test at the 5% level although the VG model is rejected at the 10% level. Among the
elliptically symmetric distributions the Gauss distribution is clearly rejected, and
the VG is again rejected at the 10% level, but otherwise the elliptical special cases
are accepted; the best of these seems to be the t distribution, which has an estimated
degrees-of-freedom parameter of 5.99.
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Table 3.4. A comparison of models in the GH family for 10-dimensional stock-return data.
For each model, the table shows the value of the log-likelihood at the maximum (lnL), the
numbers of parameters (# par.) and the p-value for a likelihood ratio test against the general
GH model. The log-likelihood values for the general model, the best special case and the best
elliptically symmetric special case are in bold type. See Example 3.16 for details.

GH NIG Hyperbolic t VG Gauss

Daily returns: asymmetric models

lnL 52 174.62 52 141.45 52 111.65 52 174.62 52 063.44
# par. 77 76 76 76 76
p-value 0.00 0.00 1.00 0.00

Daily returns: symmetric models

lnL 52 170.14 52 136.55 52 106.34 52 170.14 52 057.38 50 805.28
# par. 67 66 66 66 66 65
p-value 0.54 0.00 0.00 0.63 0.00 0.00

Weekly returns: asymmetric models

lnL 7 639.32 7 638.59 7 636.49 7 638.56 7 631.33
p-value 0.23 0.02 0.22 0.00

Weekly returns: symmetric models

lnL 7 633.65 7 632.68 7 630.44 7 633.11 7 625.4 7 433.77
p-value 0.33 0.27 0.09 0.33 0.00 0.00

Table 3.5. A comparison of models in the GH family for four-dimensional exchange-rate
return data. For each model, the table shows the value of the log-likelihood at the maximum
(lnL), the numbers of parameters (# par.) and the p-value for a likelihood ratio test against
the general GH model. The log-likelihood values for the general model, the best special case
and the best elliptically symmetric special case are in bold type. See Example 3.17 for details.

GH NIG Hyperbolic t VG Gauss

Daily returns: asymmetric models

lnL 17 306.44 17 306.43 17 305.61 17 304.97 17 302.5
# par. 20 19 19 19 19
p-value 0.85 0.20 0.09 0.00

Daily returns: symmetric models

lnL 17 303.10 17 303.06 17 302.15 17 301.85 17 299.15 17 144.38
# par. 16 15 15 15 15 14
p-value 0.15 0.24 0.13 0.10 0.01 0.00

Weekly returns: asymmetric models

lnL 2 890.65 2 889.90 2 889.65 2 890.65 2 888.98
p-value 0.22 0.16 1.00 0.07

Weekly returns: symmetric models

lnL 2 887.52 2 886.74 2 886.48 2 887.52 2 885.86 2 872.36
p-value 0.18 0.17 0.14 0.28 0.09 0.00
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Notes and Comments

Important early papers on multivariate normal mixtures are Kelker (1970) and Cam-
banis, Huang and Simons (1981). See also Bingham and Kiesel (2002), which
contains an overview of the connections between normal mixture, elliptical and
hyperbolic models, and discusses their role in financial modelling. Fang, Kotz and
Ng (1987) discuss the symmetric normal mixture models as special cases in their
account of the more general family of spherical and elliptical distributions.

The generalized hyperbolic distributions (univariate and multivariate) were intro-
duced in Barndorff-Nielsen (1978) and further explored in Barndorff-Nielsen and
Blæsild (1981). Useful references on the multivariate distribution are Blæsild (1981)
and Blæsild and Jensen (1981). Generalized hyperbolic distributions (particularly
in the univariate case) have been popularized as models for financial returns in
recent papers by Eberlein and Keller (1995) and Eberlein, Keller and Prause (1998)
(see also Bibby and Sørensen 2003). The PhD thesis of Prause (1999) is also a
compendium of useful information in this context.

The reasons for their popularity in financial applications are both empirical and
theoretical: they appear to provide a good fit to financial return data (again mostly in
univariate investigations); they are consistent with continuous-time models, where
logarithmic asset prices follow univariate or multivariate Lévy processes (thus
generalizing the Black–Scholes model, where logarithmic prices follow Brownian
motion) (see Eberlein and Keller 1995).

For the NIG special case see Barndorff-Nielsen (1997), who discusses both uni-
variate and multivariate cases and argues that the NIG is slightly superior to the
hyperbolic as a univariate model for return data, a claim that our analyses support
for stock-return data. Kotz, Kozubowski and Podgórski (2001) is a useful reference
for the variance-gamma special case; the distribution appears here under the name
generalized Laplace distribution and a (univariate or multivariate) Lévy process with
variance-gamma-distributed increments is called a Laplace motion. The univariate
Laplace motion is essentially the model proposed by Madan and Seneta (1990),
who derived it as a Brownian motion under a stochastic time change and referred
to it as the variance-gamma model (see also Madan, Carr and Chang 1998). The
multivariate t distribution is discussed in Kotz and Nadarajah (2004); the asymmet-
ric or skewed t distribution presented in this chapter is also discussed in Bibby and
Sørensen (2003). For alternative skewed extensions of the multivariate t , see Kotz
and Nadarajah (2004) and Genton (2004).

EM algorithms for the multivariate generalized hyperbolic distribution have been
independently proposed by Protassov (2004) and Barndorff-Nielsen and Shep-
hard (2005). Our approach is based on EM-type algorithms for fitting the multi-
variate t distribution with unknown degrees of freedom. A good starter reference
on this subject is Liu and Rubin (1995), where the use of the MCECM algorithm
of Meng and Rubin (1993) and the ECME algorithm proposed in Liu and Rubin
(1994) is discussed. Further refinements of these algorithms are discussed in Liu
(1997) and Meng and van Dyk (1997).
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3.3 Spherical and Elliptical Distributions

In the previous section we observed that elliptical distributions—in particular the
multivariate t and symmetric multivariate NIG—provided far superior models to
the multivariate normal for daily and weekly US stock-return data. The more gen-
eral asymmetric versions of these distributions did not seem to offer much of an
improvement on the symmetric models. While this was a single example, other
investigations suggest that multivariate return data for groups of returns of a similar
type often look roughly elliptical.

In this section we look more closely at the theory of elliptical distributions. To do
this we begin with the special case of spherical distributions.

3.3.1 Spherical Distributions

The spherical family constitutes a large class of distributions for random vectors
with uncorrelated components and identical, symmetric marginal distributions. It is
important to note that within this class, Nd(0, Id) is the only model for a vector of
mutually independent components. Many of the properties of elliptical distributions
can best be understood by beginning with spherical distributions.

Definition 3.18. A random vector X = (X1, . . . , Xd)
′ has a spherical distribution

if, for every orthogonal map U ∈ R
d×d (i.e. maps satisfying UU ′ = U ′U = Id ),

UX
d= X.

Thus spherical random vectors are distributionally invariant under rotations. There
are a number of different ways of defining distributions with this property, as we
demonstrate below.

Theorem 3.19. The following are equivalent.

(1) X is spherical.

(2) There exists a function ψ of a scalar variable such that, for all t ∈ R
d ,

φX(t) = E(eit ′X) = ψ(t ′t) = ψ(t21 + · · · + t2d ). (3.39)

(3) For every a ∈ R
d ,

a′X d= ‖a‖X1, (3.40)

where ‖a‖2 = a′a = a2
1 + · · · + a2

d .

Proof. (1) ⇒ (2). If X is spherical, then for any orthogonal matrix U we have

φX(t) = φUX(t) = E(eit ′UX) = φX(U
′t).

This can only be true if φX(t) only depends on the length of t , i.e. if φX(t) = ψ(t ′t)
for some function ψ of a non-negative scalar variable.
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(2) ⇒ (3). First observe that φX1(t) = E(eitX1) = φX(te1) = ψ(t2), where e1

denotes the first unit vector in R
d . It follows that for any a ∈ R

d ,

φa′X(t) = φX(ta) = ψ(t2a′a) = ψ(t2‖a‖2) = φX1(t‖a‖) = φ‖a‖X1(t).

(3) ⇒ (1). For any orthogonal matrix U we have

φUX(t) = E(ei(U ′t)′X) = E(ei‖U ′t‖X1) = E(ei‖t‖X1) = E(eit ′X) = φX(t).

Part (2) of Theorem 3.19 shows that the characteristic function of a spherically
distributed random vector is fully described by a function ψ of a scalar variable. For
this reason ψ is known as the characteristic generator of the spherical distribution
and the notation X ∼ Sd(ψ) is used. Part (3) of Theorem 3.19 shows that linear
combinations of spherical random vectors always have a distribution of the same
type, so that they have the same distribution up to changes of location and scale
(see Section A.1.1). This important property will be used in Chapter 6 to prove the
subadditivity of Value-at-Risk for linear portfolios of elliptically distributed risk
factors. We now give examples of spherical distributions.

Example 3.20 (multivariate normal). A random vector X with the standard uncor-
related normal distributionNd(0, Id) is clearly spherical. The characteristic function
is

φX(t) = E(exp(it ′X)) = exp(− 1
2 t ′t),

so that, using part (2) of Theorem 3.19, X ∼ Sd(ψ) with characteristic generator
ψ(t) = exp(− 1

2 t).

Example 3.21 (normal variance mixtures). A random vector X with a standard-
ized, uncorrelated normal variance mixture distribution Md(0, Id , Ĥ ) also has a
spherical distribution. Using (3.21), we see that φX(t) = Ĥ ( 1

2 t ′t), which obvi-
ously satisfies (3.39), and the characteristic generator of the spherical distribution is
related to the Laplace–Stieltjes transform of the mixture distribution function of W
by ψ(t) = Ĥ ( 1

2 t). Thus X ∼ Md(0, Id , Ĥ (·)) and X ∼ Sd(Ĥ ( 1
2 ·)) are two ways

of writing the same mixture distribution.

A further, extremely important way of characterizing spherical distributions is
given by the following result.

Theorem 3.22. X has a spherical distribution if and only if it has the stochastic
representation

X
d= RS, (3.41)

where S is uniformly distributed on the unit sphere Sd−1 = {s ∈ R
d : s′s = 1} and

R � 0 is a radial rv, independent of S.
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Proof. First we prove that if S is uniformly distributed on the unit sphere andR � 0
is an independent scalar variable, then RS has a spherical distribution. This is seen
by considering the characteristic function

φRS(t) = E(eiRt ′S) = E(E(eiRt ′S | R)).
Since S is itself spherically distributed, its characteristic function has a characteristic
generator, which is usually given the special notationΩd . Thus, by Theorem 3.19 (2),
we have that

φRS(t) = E(Ωd(R
2t ′t)) =

∫
Ωd(r

2t ′t) dF(r), (3.42)

where F is the df of R. Since this is a function of t ′t , it follows, again from Theo-
rem 3.19 (2), that RS has a spherical distribution.

We now prove that if the random vector X is spherical, then it has the represen-
tation (3.41). For any arbitrary s ∈ Sd−1 the characteristic generator ψ of X must
satisfyψ(t ′t) = φX(t) = φX(‖t‖s). It follows that, if we introduce a random vector
S that is uniformly distributed on the sphere Sd−1, we can write

ψ(t ′t) =
∫

Sd−1
φX(‖t‖s) dFS(s) =

∫
Sd−1

E(ei‖t‖s′X) dFS(s).

Interchanging the order of integration and using theΩd notation for the characteristic
generator of S we have

ψ(t ′t) = E(Ωd(‖t‖2‖X‖2)) =
∫

Ωd(t
′tr2) dF‖X‖(r), (3.43)

where F‖X‖ is the df of ‖X‖. By comparison with (3.42) we see that (3.43) is the
characteristic function of RS, where R is an rv with df F‖X‖ that is independent
of S.

We often exclude from consideration distributions which place point mass at
the origin; that is we consider spherical rvs X in the subclass S+

d (ψ) for which
P(X = 0) = 0.A particularly useful corollary of Theorem 3.22 is then the following
result, which is used in Section 3.3.5 to devise tests for spherical and elliptical
symmetry.

Corollary 3.23. Suppose X
d= RS ∼ S+

d (ψ). Then(
‖X‖, X

‖X‖
)

d= (R,S). (3.44)

Proof. Let f1(x) = ‖x‖ and f2(x) = x/‖x‖. It follows from (3.41) that(
‖X‖, X

‖X‖
)

= (f1(X), f2(X))
d= (f1(RS), f2(RS)) = (R,S).
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Example 3.24 (working with R and S). Suppose X ∼ Nd(0, Id). Since X′X ∼
χ2
d , a chi-squared distribution with d degrees of freedom, it follows from (3.44) that

R2 ∼ χ2
d .

We can use this fact to calculate E(S) and cov(S), the first two moments of a
uniform distribution on the unit sphere. We have that

0 = E(X) = E(R)E(S) ⇒ E(S) = 0,

Id = cov(X) = E(R2) cov(S) ⇒ cov(S) = Id/d, (3.45)

since E(R2) = d when R2 ∼ χ2
d .

Now suppose that X has a spherical normal variance mixture distribution X ∼
Md(0, Id , Ĥ ) and we wish to calculate the distribution of R2 d= X′X in this case.
Since X

d= √
WY , where Y ∼ Nd(0, Id) and W is independent of Y , it follows that

R2 d= WR̃2, where R̃2 ∼ χ2
d and W and R̃ are independent. If we can calculate the

distribution of the product of W and an independent chi-squared variate, then we
have the distribution of R2.

For a concrete example suppose that X ∼ td (ν, 0, Id). For a multivariate t dis-
tribution we know from Example 3.7 that W ∼ Ig( 1

2ν,
1
2ν), which means that

ν/W ∼ χ2
ν . Using the fact that the ratio of independent chi-squared distribu-

tions divided by their degrees of freedom is F -distributed, it may be calculated
that R2/d ∼ F(d, ν), the F distribution on d and ν degrees of freedom (see Sec-
tion A.2.3). Since an F(d, ν) distribution has mean ν/(ν−2), it follows from (3.45)
that

cov(X) = E(cov(RS | R)) = E(R2Id/d) = (ν/(ν − 2))Id .

The normal mixtures with µ = 0 and Σ = Id represent an easily understood
subgroup of the spherical distributions. There are other spherical distributions which
cannot be represented as normal variance mixtures; an example is the distribution
of the uniform vector S on Sd−1 itself. However, the normal mixtures have a special
role in the spherical world, as summarized by the following theorem.

Theorem 3.25. Denote by Ψ∞ the set of characteristic generators that generate a
d-dimensional spherical distribution for arbitrary d � 1. Then X ∼ Sd(ψ) with
ψ ∈ Ψ∞ if and only if X

d= √
WZ, where Z ∼ Nd(0, Id) is independent of W � 0.

Proof. This is proved in Fang, Kotz and Ng (1987, pp. 48–51).

Thus, the characteristic generators of normal mixtures generate spherical distri-
butions in arbitrary dimensions, while other spherical generators may only be used
in certain dimensions. A concrete example is given by the uniform distribution on
the unit sphere. Let Ωd denote the characteristic generator of the uniform vector
S = (S1, . . . , Sd)

′ on Sd−1. It can be shown that Ωd((t1, . . . , td+1)
′(t1, . . . , td+1))

is not the characteristic function of a spherical distribution in R
d+1 (for more details

see Fang, Kotz and Ng (1987, pp. 70–72)).
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If a spherical distribution has a density f , then, by using the inversion formula

f (x) = 1

(2π)d

∫ ∞

−∞
· · ·
∫ ∞

−∞
e−it ′xφX(t) dt1 · · · dtd ,

it is easily inferred from Theorem 3.19 that f (x) = f (Ux) for any orthogonal
matrix U , so that the density must be of the form

f (x) = g(x′x) = g(x2
1 + · · · + x2

d ) (3.46)

for some function g of a scalar variable, which is referred to as the density generator.
Clearly, the joint density is constant on hyperspheres {x : x2

1 +· · ·+x2
d = c} in R

d .
To give a single example, the density generator of the multivariate t (i.e. the model
X ∼ td (ν, 0, Id) of Example 3.7) is

g(x) = Γ ( 1
2 (ν + d))

Γ ( 1
2ν)(πν)

d/2

(
1 + x

ν

)−(ν+d)/2

.

3.3.2 Elliptical Distributions

Definition 3.26. X has an elliptical distribution if

X
d= µ + AY ,

where Y ∼ Sk(ψ) and A ∈ R
d×k and µ ∈ R

d are a matrix and vector of constants,
respectively.

In other words, elliptical distributions are obtained by multivariate affine trans-
formations of spherical distributions. Since the characteristic function is

φX(t) = E(eit ′X) = E(eit ′(µ+AY )) = eit ′µE(ei(A′t)′Y ) = eit ′µψ(t ′Σt),

where Σ = AA′, we denote the elliptical distributions by

X ∼ Ed(µ,Σ,ψ),

and refer to µ as the location vector, Σ as the dispersion matrix and ψ as the
characteristic generator of the distribution.

Remark 3.27. Knowledge of X does not uniquely determine its elliptical rep-
resentation Ed(µ,Σ,ψ). Although µ is uniquely determined, Σ and ψ are only
determined up to a positive constant. For example, the multivariate normal dis-
tribution Nd(µ,Σ) can be written as Ed(µ,Σ,ψ(·)) or Ed(µ, cΣ,ψ(·/c)) for
ψ(u) = exp(− 1

2u) and any c > 0. Provided that variances are finite, then an ellipti-
cal distribution is fully specified by its mean vector, covariance matrix and charac-
teristic generator and it is possible to find an elliptical representation Ed(µ,Σ,ψ)

such that Σ is the covariance matrix of X, although this is not always the standard
representation of the distribution.

We now give an alternative stochastic representation for the elliptical distributions
that follows directly from Definition 3.26 and Theorem 3.22.
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Proposition 3.28. X ∼ Ed(µ,Σ,ψ) if and only if there exist S,R andA satisfying

X
d= µ + RAS, (3.47)

with

(i) S uniformly distributed on the unit sphere Sk−1 = {s ∈ R
k : s′s = 1};

(ii) R � 0, a radial rv, independent of S, and

(iii) A ∈ R
d×k with AA′ = Σ .

For practical examples we are most interested in the case where Σ is positive
definite. The relation between the elliptical and spherical cases is then clearly

X ∼ Ed(µ,Σ,ψ) ⇐⇒ Σ−1/2(X − µ) ∼ Sd(ψ). (3.48)

In this case, if the spherical vector Y has density generator g, then X = µ+Σ1/2Y

has density

f (x) = 1

|Σ |1/2 g((x − µ)′Σ−1(x − µ)).

The joint density is always constant on sets of the form {x : (x −µ)′Σ−1(x −µ) =
c}, which are ellipsoids in R

d . Clearly, the full family of multivariate normal variance
mixtures with general location and dispersion parameters µ and Σ are elliptical,
since they are obtained by affine transformations of the spherical special cases
considered in the previous section.

It follows from (3.44) and (3.48) that for a non-singular elliptical variate X ∼
Ed(µ,Σ,ψ) with no point mass at µ we have(√

(X − µ)′Σ−1(X − µ),
Σ−1/2(X − µ)√

(X − µ)′Σ−1(X − µ)

)
d= (R,S), (3.49)

where S is uniformly distributed on Sd−1 and R is an independent scalar rv. This
forms the basis of a test of elliptical symmetry described in Section 3.3.5.

The following proposition shows that a particular conditional distribution of an
elliptically distributed random vector X has the same correlation matrix as X and
can also be used to test for elliptical symmetry.

Proposition 3.29. Let X ∼ Ed(µ,Σ,ψ) and assume Σ is positive definite and
cov(X) is finite. For any c � 0 such that P((X − µ)′Σ−1(X − µ) � c) > 0 we
have

ρ(X | (X − µ)′Σ−1(X − µ) � c) = ρ(X). (3.50)

Proof. It follows easily from (3.49) that

X | (X − µ)′Σ−1(X − µ) � c
d= µ + RΣ1/2S | R2 � c,

where R
d= √

(X − µ)′Σ−1(X − µ) and S is independent of R and uniformly dis-
tributed on Sd−1. Thus we have

X | (X − µ)′Σ−1(X − µ) � c
d= µ + R̃Σ1/2S,

where R̃
d= R | R2 � c. It follows from Proposition 3.28 that the conditional distri-

bution remains elliptical with dispersion matrix Σ and (3.50) holds.
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3.3.3 Properties of Elliptical Distributions

We now summarize some of the properties of elliptical distributions in a format that
allows their comparison with the properties of multivariate normal distributions in
Section 3.1.3. Many properties carry over directly and others need only be slightly
modified. These parallels emphasize that it would be fairly easy to base many stan-
dard procedures in risk management on an assumption that risk-factor changes have
an approximately elliptical distribution, rather than the patently false assumption
that they are multivariate normal.

Linear combinations. If we take linear combinations of elliptical random vectors,
then these remain elliptical with the same characteristic generator ψ . Let X ∼
Ed(µ,Σ,ψ) and take any B ∈ R

k×d and b ∈ R
d . Then it is easily shown, using a

similar argument to that in Proposition 3.9, that

BX + b ∼ Ek(Bµ + b, BΣB ′, ψ). (3.51)

As a special case, if a ∈ R
d , then

a′X ∼ E1(a
′µ, a′Σa, ψ). (3.52)

Marginal distributions. It follows from (3.52) that marginal distributions of X

must be elliptical distributions with the same characteristic generator. Using the X =
(X1,X2)

′ notation from Section 3.1.1 and again extending this notation naturally
to µ and Σ :

µ =
(

µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

we have that X1 ∼ Ek(µ1,Σ11, ψ) and X2 ∼ Ed−k(µ2,Σ22, ψ).

Conditional distributions. The conditional distribution of X2 given X1 may also
be shown to be elliptical, although in general with a different characteristic generator
ψ̃ . For details of how the generator changes see Fang, Kotz and Ng (1987, pp. 45, 46).
In the special case of multivariate normality the generator remains the same.

Quadratic forms. If X ∼ Ed(µ,Σ,ψ) with Σ non-singular, then we observed
in (3.49) that

Q := (X − µ)′Σ−1(X − µ)
d= R2, (3.53)

where R is the radial rv in the stochastic representation (3.41). As we have seen
in Example 3.24, for some particular cases the distribution of R2 is well known: if
X ∼ Nd(µ,Σ), then R2 ∼ χ2

d ; if X ∼ td (ν,µ,Σ), then R2/d ∼ F(d, ν). For all
elliptical distributions Q must be independent of Σ−1/2(X − µ)/

√
Q.

Convolutions. The convolution of two independent elliptical vectors with the same
dispersion matrix Σ is also elliptical. If X and Y are independent d-dimensional
random vectors satisfying X ∼ Ed(µ,Σ,ψ) and Y ∼ Ed(µ̃,Σ, ψ̃), then we may
take the product of characteristic functions to show that

X + Y ∼ Ed(µ + µ̃,Σ, ψ̄), (3.54)

where ψ̄(u) = ψ(u)ψ̃(u).
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If the dispersion matrices of X and Y differ by more than a constant factor, then
the convolution will not necessarily remain elliptical, even when the two generators
ψ and ψ̃ are identical.

3.3.4 Estimating Dispersion and Correlation

Suppose we have risk-factor return data X1, . . . ,Xn that we believe come from some
elliptical distribution Ed(µ,Σ,ψ) with heavier tails than the multivariate normal.
We recall from Remark 3.27 that the dispersion matrixΣ is not uniquely determined,
but rather is only fixed up to a constant of proportionality; when covariances are
finite the covariance matrix is proportional to Σ .

In this section we consider briefly the problem of estimating the location param-
eter µ, a dispersion matrix Σ and the correlation matrix P , assuming finiteness of
second moments. We could use the standard estimators of Section 3.1.2. Under an
assumption of iid or uncorrelated vector observations we observed that X̄ and S

in (3.9) are unbiased estimators of the mean vector and covariance matrix, respec-
tively. They will also be consistent under quite weak assumptions. However, this
does not necessarily mean they are the best estimators of location and dispersion
for any given finite sample of elliptical data. There are many alternative estimators
that may be more efficient for heavy-tailed data and may enjoy better robustness
properties for contaminated data.

One strategy would be to fit a number of normal variance mixture models, such
as the t and normal inverse Gaussian, using the approach of Section 3.2.5. From
the best-fitting model we would obtain an estimate of the mean vector and could
easily calculate the implied estimates of the covariance and correlation matrices. In
this section we give simpler, alternative methods that do not require a full fitting of
a multivariate distribution; consult Notes and Comments for further references to
robust dispersion estimation.

M-estimators. Maronna’s M-estimators (Maronna 1976) of location and disper-
sion are a relatively old idea in robust statistics, but they have the virtue of
being particularly simple to implement. Let µ̂ and Σ̂ denote estimates of the
mean vector and dispersion matrix. Suppose for every observation Xi we calcu-
late D2

i = (Xi − µ̂)′Σ̂−1(Xi − µ̂). If we wanted to calculate improved estimates
of location and dispersion, particularly for heavy-tailed data, it might be expected
that this could be achieved by reducing the influence of observations for which Di

is large, since these are the observations that might tend to distort the parameter
estimates most. M-estimation uses decreasing weight functions wj : R

+ → R
+,

j = 1, 2, to downweight observations with large Di values. This can be turned
into an iterative procedure that converges to so-called M-estimates of location and
dispersion; the dispersion matrix estimate is in general a biased estimate of the true
covariance matrix.

Algorithm 3.30 (M-estimators of location and dispersion).

(1) As starting estimates take µ̂[1] = X̄ and Σ̂ [1] = S, the standard estimators
in (3.9). Set iteration count k = 1.
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(2) For i = 1, . . . , n set D2
i = (Xi − µ̂[k])′Σ̂ [k] −1(Xi − µ̂[k]).

(3) Update the location estimate using

µ̂[k+1] =
∑n

i=1 w1(Di)Xi∑n
i=1 w1(Di)

,

where w1 is a weight function, as discussed below.

(4) Update the dispersion matrix estimate using

Σ̂ [k+1] = 1

n

n∑
i=1

w2(D
2
i )(Xi − µ̂[k])(Xi − µ̂[k])′,

where w2 is a weight function.

(5) Set k = k + 1 and repeat steps (2)–(4) until estimates converge.

Popular choices for the weight functions w1 and w2 are the decreasing functions
w1(x) = (d + ν)/(x2 + ν) = w2(x

2), for some positive constant ν. Interestingly,
use of these weight functions in Algorithm 3.30 corresponds exactly to fitting a
multivariate td (ν,µ,Σ) distribution with known degrees of freedom ν using the
EM algorithm (see, for example, Meng and van Dyk 1997).

There are many other possibilities for the weight functions. For example, the
observations in the central part of the distribution could be given full weight and
only the more outlying observations downweighted. This can be achieved by set-
ting w1(x) = 1 for x � a, w1(x) = a/x for x > a, for some value a, and
w2(x

2) = (w1(x))
2.

Correlation estimates via Kendall’s tau. A method for estimating correlation that
is particularly easy to carry out is based on Kendall’s rank correlation coefficient and
will turn out to be related to a method for estimating the parameters of certain copulas
in Chapter 5. The theoretical version of Kendall’s rank correlation (also known as
Kendall’s tau) for two rvs X1 and X2 is denoted ρτ (X1, X2) and is defined formally
in Section 5.2.2; it is shown in Proposition 5.37 that if (X1, X2) ∼ E2(µ,Σ,ψ),
then

ρτ (X1, X2) = 2

π
arcsin(ρ), (3.55)

where ρ = σ12/(σ11σ22)
1/2 is the pseudo-correlation coefficient of the elliptical

distribution, which is always defined (even when correlation coefficients are unde-
fined because variances are infinite). This relationship can be inverted to provide a
method for estimating ρ from data; we simply replace the left-hand side of (3.55)
by the standard textbook estimator of Kendall’s tau, which is given in (5.50), to
get an estimating equation that is solved for ρ̂. This method estimates correlation
by exploiting the geometry of an elliptical distribution and does not require us to
estimate variances and covariances.

The method can be used to estimate a correlation matrix of a higher-dimensional
elliptical distribution, by applying the technique to each bivariate margin. This does,
however, result in a matrix of pairwise correlation estimates that is not necessar-
ily positive definite; this problem does not always arise and if it does, a matrix
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Figure 3.5. For 3000 independent samples of size 90 from a bivariate t distribution with
three degrees of freedom and linear correlation 0.5: (a) the standard (Pearson) estimator of
correlation; (b) the Kendall’s tau transform estimator. See Example 3.31 for commentary.

adjustment method can be used, such as the eigenvalue method of Rousseeuw and
Molenberghs (1993), which is given in Algorithm 5.55.

Note that, to turn an estimate of a bivariate correlation matrix into a robust esti-
mate of a dispersion matrix we could estimate the ratio of standard deviations
λ = (σ22/σ11)

1/2, for example by using a ratio of trimmed sample standard devi-
ations; in other words, we leave out an equal number of outliers from each of the
univariate datasets X1,i , . . . , Xn,i for i = 1, 2 and calculate the sample standard
deviations with the remaining observations. This would give us the estimate

Σ̂ =
(

1 λ̂ρ̂

λ̂ρ̂ λ̂2

)
. (3.56)

Example 3.31 (efficient correlation estimation for heavy-tailed data). Suppose
we calculate correlations of asset or risk-factor returns based on 90 days (somewhat
more than three trading months) of data; it would seem that this ought to be enough
data to allow us to accurately estimate the “true” underlying correlation under an
assumption that we have identically distributed data for that period.

Figure 3.5 displays the results of a simulation experiment where we have generated
3000 bivariate samples of iid data from a t distribution with three degrees of freedom
and correlation ρ = 0.5; this is a heavy-tailed elliptical distribution. The distribution
of the values of the standard correlation coefficient (also known as the Pearson
correlation coefficient) is not particularly closely concentrated around the true value
and produces some very poor estimates for a number of samples. On the other hand
the Kendall’s tau transform method produces estimates that are in general much
closer to the true value, and thus provides a more efficient way of estimating ρ.
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3.3.5 Testing for Elliptical Symmetry

The general problem of this section is to test whether a sample of identically dis-
tributed data vectors X1, . . . ,Xn has an elliptical distributionEd(µ,Σ,ψ) for some
µ, Σ and generator ψ . In all of the methods we require estimates of µ and Σ and
these can be obtained using approaches discussed in Section 3.3.4, such as fitting
t distributions, calculating M-estimates or perhaps using (3.56) in the bivariate case.
We denote the estimates simply by µ̂ and Σ̂ .

Generally in finance we cannot assume that the observations are of iid random
vectors, but we assume that they at least have an identical distribution. Note that,
even if the data were independent, the fact that we generally estimate µ and Σ from
the whole dataset would introduce dependence in the procedures that we describe
below.

Stable correlation estimates: an exploratory method. An easy exploratory graph-
ical method can be based on Proposition 3.29. We could attempt to estimate

ρ(X | h(X) � c), h(x) = (x − µ̂)′Σ̂−1(x − µ̂)

for various values of c � 0. We expect that for elliptically distributed data the
estimates will remain roughly stable over a range of different c values. Of course
the estimates of this correlation should again be calculated using some method that
is more efficient than the standard correlation estimator for heavy-tailed data. The
method is most natural as a bivariate method and in this case the correlation of
X | h(X) � c can be estimated by applying the Kendall’s tau transform method to
those data points Xi which lie outside the ellipse defined by h(x) = c. In Figure 3.6
we give an example with both simulated and real data, neither of which show any
marked departure from the assumption of stable correlations. The method is of
course exploratory and does not allow us to come to any formal conclusion.

QQplots. The remaining methods that we describe rely on the link (3.48) between
non-singular elliptical and spherical distributions. If µ and Σ were known, then we
would test for elliptical symmetry by testing the data {Σ−1/2(Xi−µ) : i = 1, . . . , n}
for spherical symmetry. Replacing these parameters by estimates as above we con-
sider whether the data

{Yi = Σ̂−1/2(Xi − µ̂) : i = 1, . . . , n} (3.57)

are consistent with a spherical distribution, while ignoring the effect of estimation
error.

Some graphical methods based on QQplots have been suggested by Li, Fang and
Zhu (1997) and these are particularly useful for large d. These rely essentially on
the following result.

Lemma 3.32. Suppose that T (Y ) is a statistic such that, almost surely,

T (aY ) = T (Y ) for every a > 0. (3.58)

Then T (Y ) has the same distribution for every spherical vector Y ∼ S+
d (ψ).
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Figure 3.6. Correlations are estimated using the Kendall’s tau method for points lying
outside ellipses of progressively larger size (as shown in (a) and (c)). (a), (b) Two thousand
t-distributed data with four degrees of freedom and ρ = 0.5. (c), (d) Two thousand daily
log-returns on Microsoft and Intel. Dashed lines and points show estimates for an ellipse
that is allowed to grow until there are only 40 points outside; dotted lines show estimates of
correlation for all data.

Proof. From Theorem 3.22 we have T (Y )
d= T (RS) and T (RS)

a.s.= T (S) follows
from (3.58). Since the distribution of T (Y ) only depends on S and not R it must be
the same for all Y ∼ S+

d (ψ).

We exploit this result by looking for statisticsT (Y )with the property (3.58) whose
distribution we know when Y ∼ Nd(0, Id). Two examples are

T1(Y ) = d1/2Ȳ√
(1/(d − 1))

∑d
i=1(Yi − Ȳ )2

, Ȳ = 1

d

d∑
i=1

Yi,

T2(Y ) =
∑k

i=1 Y
2
i∑d

i=1 Y
2
i

.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3.59)

For Y ∼ Nd(0, Id), and hence for Y ∼ S+
d (ψ), we have T1(Y ) ∼ td−1 and

T2(Y ) ∼ Beta( 1
2k,

1
2 (d − k)).

Our experience suggests that the beta-plot is the more revealing of the resulting
QQplots. Li, Fang and Zhu (1997) suggest choosing k such that it is roughly equal to
d − k. In Figure 3.7 we show examples of the QQplots obtained for 2000 simulated
data from a 10-dimensional t distribution with four degrees of freedom and for
the daily, weekly and monthly return data on 10 Dow Jones 30 stocks analysed
in Example 3.3 and Section 3.2.5. The curvature in the plots for daily and weekly
returns seems to be evidence against the elliptical hypothesis.
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Figure 3.7. QQplots of the beta-statistic (3.59) for four datasets with dimension d = 10;
we have set k = 5. (a) Two thousand simulated observations from t distribution with four
degrees of freedom. (b) Daily, (c) weekly and (d) monthly returns on Dow Jones stocks as
analysed in Example 3.3 and Section 3.2.5. Daily and weekly returns show evidence against
elliptical symmetry.

Numerical tests. We restrict ourselves to simple ideas for bivariate tests; references
to more general test ideas are found in Notes and Comments. If we neglect the
error involved in estimating location and dispersion, testing for elliptical symmetry
amounts to testing the Yi data in (3.57) for spherical symmetry. For i = 1, . . . , n,
if we set Ri = ‖Yi‖ and Si = Yi/‖Yi‖, then under the null hypothesis the Si data
should be uniformly distributed on the unit sphere Sd−1, and the paired data (Ri,Si )

should form realizations of independent pairs.
In the bivariate case, testing for uniformity on the unit circle S1 amounts to a

univariate test of uniformity on [0, 2π ] for the angles Θi described by the points
Si = (cosΘi, sinΘi)

′ on the perimeter of the circle; equivalently, we may test the
data {Ui := Θi/(2π) : i = 1, . . . , n} for uniformity on [0, 1]. Neglecting issues
of serial dependence in the data, this may be done, for instance, by a standard chi-
squared goodness-of-fit test (see Rice 1995, p. 241) or a Kolmogorov–Smirnov test
(see Conover 1999).Again neglecting issues of serial dependence, the independence
of the components of the pairs {(Ri, Ui) : i = 1, . . . , n} could be examined by
performing a test of association with Spearman’s rank correlation coefficient (see,
for example, Conover 1999, pp. 312–328).

We have performed these tests for the two datasets used in Figure 3.6, these being
2000 simulated bivariate t data with four degrees of freedom and 2000 daily log-
returns for Intel and Microsoft. In Figure 3.8 the transformed data on the unit circle
Si and the implied angles Ui on the [0, 1] scale are shown; the dispersion matrices
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Figure 3.8. Illustration of the transformation of bivariate data to points on the unit circle
S1 using the transformation Si = Yi/‖Yi‖, where the Yi data are defined in (3.57); the
angles of these points are then transformed on to the [0, 1] scale, where they can be tested for
uniformity. (a) Two thousand simulated t data with four degrees of freedom. (b) Two thousand
Intel and Microsoft log-returns. Neither show strong evidence against elliptical symmetry.

have been estimated using the construction (3.56) based on Kendall’s tau. Neither
of these datasets shows significant evidence against the elliptical hypothesis. For the
bivariate t data the p-values for the chi-squared and Kolmogorov–Smirnov tests of
uniformity and the Spearman’s rank test of association are, respectively, 0.99, 0.90
and 0.10. For the stock-return data they are 0.08, 0.12 and 0.19. Note that simulated
data from lightly skewed members of the generalized hyperbolic family often do
fail these tests.

Notes and Comments

A comprehensive reference for spherical and elliptical distributions is Fang, Kotz and
Ng (1987); we have based our brief presentation of the theory on this account. Other
references for the theory are Kelker (1970), Cambanis, Huang and Simons (1981)
and Bingham and Kiesel (2002), the latter in the context of financial modelling. The
original reference for Theorem 3.22 is Schoenberg (1938). Frahm (2004) suggests
a generalization of the elliptical class to allow asymmetric models while preserving
many of the attractive properties of the elliptical distributions.

There is a vast literature on alternative estimators of dispersion and correlation
matrices, particularly with regard to better robustness properties. Textbooks with rel-
evant sections include Huber (1981), Hampel et al. (1986), Marazzi (1993), Wilcox
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(1997) and Dell’Aquila and Ronchetti (2005); the latter book is recommended in
general for applications of robust statistics in econometrics and finance.

We have concentrated on M-estimation of dispersion matrices, since this is related
to the maximum likelihood estimation of alternative elliptical models. M-estimators
have a relatively long history and are known to have good local robustness prop-
erties (insensitivity to small data perturbations); they do, however, have relatively
low breakdown points in high dimensions, so their performance can be poor under
larger contaminations of the data. A small selection of papers on M-estimation
includes Maronna (1976), Devlin, Gnanadesikan and Kettenring (1975, 1981) and
Tyler (1983, 1987); see also Frahm (2004), in which an interesting alternative deriva-
tion of a Tyler estimator is given. The method based on Kendall’s tau was suggested
in Lindskog, McNeil and Schmock (2003).

The QQplots for testing spherical symmetry were suggested by Li, Fang and Zhu
(1997). There is a large literature on tests of spherical symmetry, including Smith
(1977), Kariya and Eaton (1977), Beran (1979) and Baringhaus (1991). This work
is also related to tests of uniformity for directional data: see Mardia (1972), Giné
(1975) and Prentice (1978).

3.4 Dimension Reduction Techniques

The techniques of dimension reduction, such as factor modelling and principal com-
ponents, are central to multivariate statistical analysis and are widely used in econo-
metric model building. In the high-dimensional world of financial risk management
they are essential tools. For this reason, and also because we will build on the tech-
niques in some of the multivariate time series models described in Chapter 4, we
include a concise summary of the more important information. For further read-
ing and more detail it will be necessary to consult references listed in Notes and
Comments.

3.4.1 Factor Models

By using a factor model we attempt to explain the randomness in the components
of a d-dimensional vector X in terms of a smaller set of common factors. If the
components of X represent, for example, equity returns, it is clear that a large part
of their variation can be explained in terms of the variation of a smaller set of market
index returns. Formally we define a factor model as follows.

Definition 3.33 (linear factor model). The random vector X is said to follow a
p-factor model if it can be decomposed as

X = a + BF + ε, (3.60)

where

(i) F = (F1, . . . , Fp)
′ is a random vector of common factors with p < d and a

covariance matrix that is positive definite;

(ii) ε = (ε1, . . . , εd)
′ is a random vector of idiosyncratic error terms, which are

uncorrelated and have mean zero;
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(iii) B ∈ R
d×p is a matrix of constant factor loadings and a ∈ R

d is a vector of
constants; and

(iv) cov(F , ε) = E((F − E(F ))ε′) = 0.

The assumptions that the errors are uncorrelated with each other (ii) and also
with the common factors (iv) are an important part of this definition. We do not in
general require independence, only uncorrelatedness. However, if the vector X is
multivariate normally distributed and follows the factor model in (3.60), then it is
possible to find a version of the factor model where F and ε are Gaussian and the
errors can be assumed to be mutually independent and independent of the common
factors. We elaborate on this assertion in Example 3.34 below.

It follows from the basic assumptions that factor models imply a special structure
for the covariance matrix Σ of X. If we denote the covariance matrix of F by Ω

and that of ε by the diagonal matrix Υ , it follows that

Σ = cov(X) = BΩB ′ + Υ. (3.61)

If the factor model holds, the common factors can always be transformed so that
they are mean zero and orthogonal. By setting F ∗ = Ω−1/2(F −E(F )) and B∗ =
BΩ1/2, we have a representation of the factor model of the form X = µ+B∗F ∗+ε,
where µ = E(X) as usual and Σ = B∗(B∗)′ + Υ .

Conversely, it can be shown that whenever a random vector X has a covariance
matrix which satisfies

Σ = BB ′ + Υ (3.62)

for some B ∈ R
d×p with rank(B) = p < d and diagonal matrix Υ , then X

has a factor-model representation for some p-dimensional factor vector F and d-
dimensional error vector ε.

Example 3.34 (the equicorrelation model). Suppose X is a random vector with
standardized margins (zero mean and unit variance) and an equicorrelation matrix;
in other words, the correlation between each pair of components is equal to ρ > 0.
This means that the covariance matrix Σ can be written as Σ = ρJd + (1 − ρ)Id ,
where Jd is the d-dimensional square matrix of ones and Id is the identity matrix,
so that Σ is obviously of the form (3.62) for the d-vector B = √

ρ1.
To find a factor decomposition of X take any zero-mean, unit-variance rv Y that

is independent of X and define a single common factor F and errors ε by

F =
√
ρ

1 + ρ(d − 1)

d∑
j=1

Xj +
√

1 − ρ

1 + ρ(d − 1)
Y, εj = Xj − √

ρF,

where we note that in this construction F also has mean zero and unit variance.
Thus we have the factor decomposition X = BF + ε and it may be verified by
calculation that cov(F, εj ) = 0 for all j and cov(εj , εk) = 0 when j �= k, so
that the requirements of Definition 3.33 are satisfied. A random vector with an
equicorrelation matrix can be thought of as following a factor model with a single
common factor.
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Since we can take any Y , the factors and errors in this decomposition are non-
unique. Consider the case where the vector X is Gaussian; it is most convenient
to take Y to also be Gaussian, since in that case the common factor is normally
distributed, the error vector is multivariate normally distributed, Y is independent
of εj , for all j , and εj and εk are independent for j �= k. Since var(εj ) = 1 − ρ, it
is most convenient to write the factor model implied by the equicorrelation model
as

Xj = √
ρF +√

1 − ρZj , j = 1, . . . , d, (3.63)

where F , Z1, . . . , Zd are mutually independent standard Gaussian rvs. This model
will be used in Section 8.3.5 in the context of modelling homogeneous credit port-
folios. For the more general construction on which this example is based see Mardia,
Kent and Bibby (1979, Exercise 9.2.2).

3.4.2 Statistical Calibration Strategies

Now assume that we have data X1, . . . ,Xn ∈ R
d representing risk-factor returns.

Each vector observation Xt recorded at a time t is assumed to be generated by the
factor model (3.60) for some common-factor vector Ft and some error vector εt .

There are a number of different approaches to the practical calibration of a factor
model, depending on the situation and, in particular, on whether or not the factor is
also observable or considered to be unobservable or latent.

In an observable factor model we assume that appropriate factors for the return
series in question have been identified in advance and data on these factors have
been collected. A simple example would be a one-factor model where F1, . . . , Fn

are observations of the return on a market index and X1, . . . ,Xn are individual
equity returns to be explained in terms of the market return (a model known in
econometrics as Sharpe’s single-index model). Fitting of the model (estimation of
B and a) is accomplished by regression techniques, and is described in Section 3.4.3.

In a latent factor model appropriate factors are themselves estimated from the
data X1, . . . ,Xn. Here we envisage a situation where the Xt represent returns for
a set of disparate risk factors and it is not clear a priori what the best set of factors
might be. There are two general strategies for finding factors. The first strategy,
which is quite common in finance, is to use the method of principal components to
construct factors. We note that the factors we obtain, while being explanatory in a
statistical sense, may not have any obvious interpretation.

In the second approach, classical statistical factor analysis, it is assumed that
the data are identically distributed with a distribution whose covariance matrix has
the factor structure (3.62). Various techniques are used to estimate B and Υ and
then these estimates are used in turn to construct factor data. We will not go into
the details of this method further—they are found in standard texts on multivariate
statistical analysis (see Notes and Comments).

In the context of risk management, the goal of all approaches to factor models is
to obtain factor data Ft and loading matrices B (and the constant vector a where
relevant). If this is achieved, we can then concentrate on modelling the distribution
or dynamics of F1, . . . ,Fn, which is a lower-dimensional problem than modelling
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X1, . . . ,Xn. The unobserved errors ε1, . . . , εn are of secondary importance. In
situations where we have many risk factors the risk embodied in the errors is partly
mitigated by a diversification effect, whereas the risk embodied in the common
factors remains. The following simple example gives an idea why this is the case.

Example 3.35. We continue our analysis of the one-factor model in Example 3.34.
Suppose the random vector X in that example represents the return on d different
companies so that the rv Z(d) = (1/d)

∑d
j=1 Xj can be thought of as the portfolio

return for an equal investment in each of the companies. We calculate that

Z(d) = 1

d
1′BF + 1

d
1′ε = √

ρF + 1

d

d∑
j=1

εj .

The risk in the first term is not affected by increasing the size of the portfolio d,
whereas the risk in the second term can be reduced. Suppose we measure risk by
simply calculating variances; we get

var(Z(d)) = ρ + 1 − ρ

d
→ ρ, d → ∞,

so that the systematic factor is the main contributor to the risk in a large-portfolio
situation.

We now discuss in a little more detail the fitting of observable factor models
by regression. The approach to factor models based on principal components is
described in Section 3.4.4. Principal component analysis is covered there in some
detail, since it is an important technique in its own right.

3.4.3 Regression Analysis of Factor Models

Two equivalent approaches may be used to estimate the model parameters. We write
the model as

Xt = a + BFt + εt , t = 1, . . . , n, (3.64)

where Xt and Ft are vectors of individual returns and factors (for example, index
returns) at time t , and a and B are parameters to be estimated. In the first approach
we perform d univariate regression analyses, one for each component of the indi-
vidual return series. In the second approach we estimate all parameters in a single
multivariate regression.

Univariate regression. Writing Xt,j for the observation at time t of instrument j
we consider the univariate regression model

Xt,j = aj + b′
jFt + εt,j , t = 1, . . . , n.

This is known as a time series regression, since the responses X1,j , . . . , Xn,j form a
univariate time series and the factors F1, . . . ,Fn form a possibly multivariate time
series. Without going into technical details or anticipating any of the time series
material in Chapter 4 we simply remark that the parameters aj and bj are estimated
using the standard ordinary least-squares (OLS) method found in all textbooks on
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linear regression. To justify the use of the method and to derive statistical proper-
ties of the method it is usually assumed that, conditional on the factors, the errors
ε1,j , . . . , εn,j are identically distributed and serially uncorrelated. (This means they
form what will be referred to in Chapter 4 as white noise.)

The estimate âj obviously estimates the j th component of a, while b̂j is an
estimate of the j th row of the matrix B. By performing a regression for each of the
univariate time series X1,j , . . . , Xn,j for j = 1, . . . , d, we complete the estimation
of the parameters a and B.

Multivariate regression. To set the problem up as a multivariate linear-regression
problem, we construct a number of large matrices:

X =

⎛⎜⎜⎝
X′

1
...

X′
n

⎞⎟⎟⎠
︸ ︷︷ ︸
n×d

, F =

⎛⎜⎜⎝
1 F ′

1
...

...

1 F ′
n

⎞⎟⎟⎠
︸ ︷︷ ︸
n×(p+1)

, B2 =
(

a′
B ′

)
︸ ︷︷ ︸
(p+1)×d

, E =

⎛⎜⎜⎝
ε′

1
...

ε′
n

⎞⎟⎟⎠
︸ ︷︷ ︸
n×d

.

Each row of the data X corresponds to a vector observation at a fixed time point t ,
and each column corresponds to a univariate time series for one of the individual
returns. The model (3.64) can then be expressed by the matrix equation

X = FB2 + E , (3.65)

where B2 is the matrix of regression parameters to be estimated.
If we assume that the unobserved error vectors ε1, . . . , εn comprising the rows of

E are identically distributed and serially uncorrelated, conditional on F1, . . . ,Fn,
then the equation (3.65) defines a standard multivariate linear regression (see, for
example, Mardia, Kent and Bibby (1979) for the standard assumptions).An estimate
of B2 is obtained by multivariate OLS according to the formula

B̂2 = (F ′F)−1F ′X. (3.66)

The factor model is now essentially calibrated, since we have estimates for a

and B. The model can now be critically examined with respect to the original con-
ditions of Definition 3.33. Do the errors vectors εt come from a distribution with
diagonal covariance matrix, and are they uncorrelated with the factors?

To learn something about the errors, we can form the model residual matrix
Ê = X − FB̂2. Each row of this matrix contains an inferred value of an error vector
ε̂t at a fixed point in time. Examination of the sample correlation matrix of these
inferred error vectors will hopefully show that there is little remaining correlation in
the errors (or at least much less than in the original data vectors Xt ). If this is the case,
then the diagonal elements of the sample covariance matrix of the ε̂t could be taken
as an estimator Υ̂ for Υ . It is sometimes of interest to form the covariance matrix
implied by the factor model and compare this with the original sample covariance
matrix S of the data. The implied covariance matrix is

Σ̂(F) = B̂Ω̂B̂ ′ + Υ̂ , where Ω̂ = 1

n − 1

n∑
t=1

(Ft − F̄ )(Ft − F̄ )′.
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Table 3.6. The first line gives estimates of B for a multivariate regression model fitted to
10 Dow Jones 30 stocks where the observed common factor is the return on the Dow Jones
30 index itself. The second row gives r2 values for a univariate regression model for each
individual time series. The next 10 lines of the table give the sample correlation matrix of the
data R, while the middle 10 lines give the correlation matrix implied by the factor model.
The final 10 lines show the estimated correlation matrix of the residuals from the regression
model, with entries less than 0.1 in absolute value being omitted. See Example 3.36 for full
details.

MO KO EK HWP INTC MSFT IBM MCD WMT DIS

B̂ 0.87 1.01 0.77 1.12 1.12 1.11 1.07 0.86 1.02 1.03
r2 0.17 0.33 0.14 0.18 0.17 0.21 0.22 0.23 0.24 0.26

MO 1.00 0.27 0.14 0.17 0.16 0.25 0.18 0.22 0.16 0.22
KO 0.27 1.00 0.17 0.22 0.21 0.25 0.18 0.36 0.33 0.32
EK 0.14 0.17 1.00 0.17 0.17 0.18 0.15 0.14 0.17 0.16
HWP 0.17 0.22 0.17 1.00 0.42 0.38 0.36 0.20 0.22 0.23
INTC 0.16 0.21 0.17 0.42 1.00 0.53 0.36 0.19 0.22 0.21
MSFT 0.25 0.25 0.18 0.38 0.53 1.00 0.33 0.22 0.28 0.26
IBM 0.18 0.18 0.15 0.36 0.36 0.33 1.00 0.20 0.20 0.20
MCD 0.22 0.36 0.14 0.20 0.19 0.22 0.20 1.00 0.26 0.26
WMT 0.16 0.33 0.17 0.22 0.22 0.28 0.20 0.26 1.00 0.28
DIS 0.22 0.32 0.16 0.23 0.21 0.26 0.20 0.26 0.28 1.00

MO 1.00 0.24 0.16 0.18 0.17 0.19 0.20 0.20 0.20 0.21
KO 0.24 1.00 0.22 0.24 0.23 0.26 0.27 0.28 0.28 0.29
EK 0.16 0.22 1.00 0.16 0.15 0.17 0.18 0.18 0.18 0.19
HWP 0.18 0.24 0.16 1.00 0.17 0.19 0.20 0.20 0.21 0.22
INTC 0.17 0.23 0.15 0.17 1.00 0.19 0.19 0.19 0.20 0.21
MSFT 0.19 0.26 0.17 0.19 0.19 1.00 0.22 0.22 0.22 0.23
IBM 0.20 0.27 0.18 0.20 0.19 0.22 1.00 0.23 0.23 0.24
MCD 0.20 0.28 0.18 0.20 0.19 0.22 0.23 1.00 0.23 0.24
WMT 0.20 0.28 0.18 0.21 0.20 0.22 0.23 0.23 1.00 0.25
DIS 0.21 0.29 0.19 0.22 0.21 0.23 0.24 0.24 0.25 1.00

MO 1.00
KO 1.00 −0.12 0.12
EK 1.00
HWP 1.00 0.30 0.24 0.20
INTC 0.30 1.00 0.43 0.20
MSFT 0.24 0.43 1.00 0.14
IBM −0.12 0.20 0.20 0.14 1.00
MCD 0.12 1.00
WMT
DIS 1.00

We would hope that Σ̂(F) captured much of the structure of S and that the correlation
matrix R(F) := ℘(Σ̂(F)) captured much of the structure of the sample correlation
matrix R = ℘(S).
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Example 3.36 (single-index model for Dow Jones 30 returns). As a simple exam-
ple of the regression approach to fitting factor models we have fitted a single factor
model to a set of 10 Dow Jones 30 daily stock-return series from 1992 to 1998.
Note that these are different returns to those analysed in previous sections of this
chapter. They have been chosen to be of two types: technology-related titles like
Hewlett-Packard, Intel, Microsoft and IBM; and food- and consumer-related titles
like Philip Morris, Coca-Cola, Eastman Kodak, McDonald’s, Wal-Mart and Disney.
The factor chosen is the corresponding return on the Dow Jones 30 index itself.

The estimate ofB implied by formula (3.66) is shown in the first line of Table 3.6.
The highest values of B correspond to so-called high beta stocks; since a one-factor
model implies the relationship E(Xj ) = aj + BjE(F), these stocks potentially
offer high expected returns relative to the market (but are often riskier titles); in
this case the four technology-related stocks have the highest beta values. In the
second row, values of r2, the so-called coefficient of determination, are given for
each of the univariate regression models. This number measures the strength of the
regression relationship between Xj and F and can be interpreted as the proportion
of the variation of the stock return that is explained by variation in the market return;
the highest r2 corresponds to Coca-Cola (33%) and in general it seems that about
20% of individual stock-return variation is explained by market-return variation.

The next 10 lines of the table give the sample correlation matrix of the data R,
while the middle 10 lines give the correlation matrix implied by the factor model
(corresponding to Σ̂(F)). The latter matrix picks up much, but not all, of the structure
of the former matrix. The final 10 lines show the estimated correlation matrix of the
residuals from the regression model, but only those elements which exceed 0.1 in
absolute value. The residuals are indeed much less correlated than the original data,
but a few larger entries indicate imperfections in the factor-model representation
of the data, particularly for the technology stocks. The index return for the broader
market is clearly an important common factor but further systematic effects appear
to be present in these data that are not captured by the index.

3.4.4 Principal Component Analysis

The aim of principal component analysis (PCA) is to reduce the dimensionality of
highly correlated data by finding a small number of uncorrelated linear combinations
that account for most of the variability of the original data, in some appropriately
defined sense. PCA is not itself a model, but rather a data-rotation technique. How-
ever, it can be used as a way of constructing appropriate factors for a factor model,
and this is the main application we consider in this section.

The key mathematical result behind the technique is the spectral decomposition
theorem of linear algebra, which says that any symmetric matrix A ∈ R

d×d can be
written as

A = ΓΛΓ ′, (3.67)

where

(i) Λ = diag(λ1, . . . , λd) is the diagonal matrix of eigenvalues of A which,
without loss of generality, are ordered so that λ1 � λ2 � · · · � λd , and
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(ii) Γ is an orthogonal matrix satisfying Γ Γ ′ = Γ ′Γ = Id whose columns are
standardized eigenvectors of A (i.e. eigenvectors with length 1).

Theoretical principal components. Obviously we can apply this decomposition
to any covariance matrix Σ , and in this case the positive semidefiniteness of Σ
ensures that λj � 0 for all j . Suppose the random vector X has mean vector µ

and covariance matrix Σ and we make the decomposition Σ = ΓΛΓ ′ as in (3.67).
Then the principal components transform of X is defined to be

Y = Γ ′(X − µ), (3.68)

and can be thought of as a rotation and a recentring of X. The j th component of
the rotated vector Y is known as the j th principal component of X and is given by

Yj = γ ′
j (X − µ), (3.69)

where γj is the eigenvector of Σ corresponding to the j th ordered eigenvalue; this
vector is also known as the j th vector of loadings.

Simple calculations reveal that

E(Y ) = 0 and cov(Y ) = Γ ′ΣΓ = Γ ′ΓΛΓ ′Γ = Λ,

so that the principal components of Y are uncorrelated and have variances
var(Yj ) = λj , ∀j . The components are thus ordered by variance, from largest to
smallest. Moreover, the first principal component can be shown to be the stan-
dardized linear combination of X which has maximal variance among all such
combinations; in other words,

var(γ ′
1X) = max{var(a′X) : a′a = 1}.

For j = 2, . . . , d, the j th principal component can be shown to be the standardized
linear combination of X with maximal variance among all such linear combinations
that are orthogonal to (and hence uncorrelated with) the first j − 1 linear combina-
tions. The final dth principal component has minimum variance among standardized
linear combinations of X.

To measure the ability of the first few principal components to explain the vari-
ability in X we observe that

d∑
j=1

var(Yj ) =
d∑

j=1

λj = trace(Σ) =
d∑

j=1

var(Xj ).

If we interpret trace(Σ) = ∑d
j=1 var(Xj ) as a measure of the total variability in

X, then, for k � d , the ratio
∑k

j=1 λj/
∑d

j=1 λj represents the amount of this
variability explained by the first k principal components.

Sample principal components. Assume that we have multivariate data observations
X1, . . . ,Xn with identical distribution and unknown covariance matrix Σ , which
we estimate by the sample covariance matrix

Sx = 1

n

n∑
t=1

(Xt − X̄)(Xt − X̄)′.
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We apply the spectral decomposition (3.67) to the symmetric, positive semidefi-
nite matrix Sx to get

Sx = GLG′,
where G is the eigenvector matrix, L = diag(l1, . . . , ld ) is the diagonal matrix
consisting of ordered eigenvalues, and we switch to roman letters to emphasize that
these are now calculated from an empirical covariance matrix.

The eigenvectors, or loading vectors, gj making up the columns of G define the
empirical principal components transform and, by analogy with (3.69), the value
Yt,j given by

Yt,j = g′
j (Xt − X̄)

can be considered to be an observation of the j th sample principal component at
time t . The vectors Yt = (Yt,1, . . . , Yt,d )

′ = G′(Xt − X̄) constitute rotations of the
original data vectors Xt . The rotated data vectors Y1, . . . ,Yn have the property
that their sample covariance matrix is L = diag(l1, . . . , ld ), the diagonal matrix of
eigenvalues of Sx , as is easily verified:

Sy = 1

n

n∑
t=1

(Yt − Ȳ )(Yt − Ȳ )′ = 1

n

n∑
t=1

YtY
′
t

= 1

n

n∑
t=1

G′(Xt − X̄)(Xt − X̄)′G = G′SxG = L.

Thus the rotated vectors show no correlation between components and the compo-
nents are ordered by their sample variances, from largest to smallest.

Remark 3.37. In a situation where the different components of the data vectors
X1, . . . ,Xn have very different sample variances (particularly if they are measured
on very different scales), it is to be expected that the component (or components)
with largest variance will dominate the first loading vector g1 and dominate the
first principal component. In these situations the data are often transformed to have
identical variances, which effectively means that principal components analysis
is applied to the sample correlation matrix Rx . Note also that we could derive
sample principal components from a robust estimate of the correlation matrix or a
multivariate dispersion matrix.

Principal components as factors. The principal components transform in (3.68) is
invertible, giving us X = µ+Γ Y , where the random vector Y contains the principal
components ordered from top to bottom by their variance. Let us suppose that we
believe that the first k components explain the most important portion of the total
variability of X. We could partition Y according to (Y ′

1,Y
′
2)

′, where Y1 ∈ R
k and

Y2 ∈ R
d−k; similarly, we could partitionΓ according to (Γ1, Γ2), whereΓ1 ∈ R

d×k

and Γ2 ∈ R
d×(d−k). This yields the representation

X = µ + Γ1Y1 + Γ2Y2 = µ + Γ1Y1 + ε, (3.70)

where Γ2Y2 can be regarded as an error since its covariance matrix contains very
small entries in comparison with the covariance matrix of Γ1Y1.
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Figure 3.9. Barplot of the sample variances lj of the first eight principal components; above
each bar the cumulative proportion of the total variance explained by the components is given
(
∑k

j=1 lj /
∑10

j=1 lj , k = 1, . . . , 8).

Equation (3.70) is reminiscent of the factor model (3.60), except that the errors
do not have a diagonal covariance matrix. Nevertheless, the principal components
approach to constructing a factor model is generally to equate the first k principal
components Y1 with the factors F , to equate the matrix Γ1 containing the first k
eigenvectors with the factor loading matrix B, and to ignore the errors entirely. The
factors are thus given by Ft = (γ ′

1X, . . . , γ ′
kX)′.

Example 3.38 (PCA-based factor model for Dow Jones 30 returns). We con-
sider the data in Example 3.36 again. Principal components analysis is applied to
the sample covariance matrix of the return data and the results are summarized in
Figures 3.9 and 3.10. In the former we see a barplot of the sample variances of the
first eight principal components lj ; above each bar the cumulative proportion of
the total variance explained by the components is given; the first two components
explain almost 50% of the variation. In the latter plot the first two loading vectors
g1 and g2 are summarized.

The first vector of loadings is positively weighted for all stocks and can be thought
of as describing a kind of index portfolio; of course the weights in the loading
vector do not sum to one, but they can be scaled to do so and this gives a so-called
principal-component-mimicking portfolio. The second vector has positive weights
for the consumer titles and negative weights for the technology titles; as a portfolio it
can be thought of as prescribing a programme of short-selling of technology to buy
the consumer titles. These first two sample principal components loadings vectors
are used to define factors.
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Figure 3.10. Barplot summarizing the loadings vectors g1 and g2 defining the first two
principal components: (a) factor 1 loadings; and (b) factor 2 loadings.

In Table 3.7 the transpose of the matrix B̂ (containing the loadings estimates in the
factor model) is shown; the rows are merely the first two loadings vectors from the
principal components analysis. In the third row, values of r2, the so-called coefficient
of determination, are given for each of the univariate regression models and these
indicate that more of the variation in the data is explained by the two PCA-based
factors than was explained by the observed factor in Example 3.36; Intel returns
seem to be best explained by the model.

The next 10 lines give the correlation matrix implied by the factor model (corres-
ponding to Σ̂(F)). Compared with the true sample correlation matrix in Example 3.36
this seems to pick up more of the structure than did the correlation matrix implied
by the observed factor model.

The final 10 lines show the estimated correlation matrix of the residuals from the
regression model, but only those elements which exceed 0.1 in absolute value. The
residuals are again less correlated than the original data, but there are quite a number
of larger entries, indicating imperfections in the factor-model representation of the
data. In particular, we have introduced a number of larger negative correlations into
the residuals; in practice, we seldom expect to find a factor model where the residuals
have a covariance matrix that appears perfectly diagonal.

Notes and Comments

We have based our discussion of factor models, multivariate regression, statistical
factor models and principal components on Mardia, Kent and Bibby (1979). Statis-
tical approaches to factor models are also treated in Seber (1984) and Johnson and
Wichern (2002).
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Table 3.7. The first two lines give estimates of the transpose of B for a factor model fitted
to 10 Dow Jones 30 stocks, where the factors are constructed from the first two sample
principal components. The third row gives r2 values for the univariate regression model for
each individual time series. The next 10 lines give the correlation matrix implied by the
factor model. The final 10 lines show the estimated correlation matrix of the residuals from
the regression model, with entries less than 0.1 in absolute value omitted. See Example 3.38
for full details.

MO KO EK HWP INTC MSFT IBM MCD WMT DIS

B̂ ′ 0.20 0.19 0.16 0.45 0.51 0.44 0.32 0.18 0.24 0.22
0.39 0.34 0.23 −0.26 −0.45 −0.10 −0.07 0.31 0.39 0.37

r2 0.35 0.42 0.18 0.55 0.75 0.56 0.35 0.34 0.42 0.41

MO 1.00 0.39 0.25 0.17 0.13 0.25 0.20 0.35 0.38 0.38
KO 0.39 1.00 0.28 0.21 0.17 0.29 0.23 0.38 0.42 0.42
EK 0.25 0.28 1.00 0.18 0.15 0.22 0.18 0.25 0.28 0.27
HWP 0.17 0.21 0.18 1.00 0.64 0.55 0.43 0.20 0.23 0.23
INTC 0.13 0.17 0.15 0.64 1.00 0.61 0.48 0.16 0.19 0.18
MSFT 0.25 0.29 0.22 0.55 0.61 1.00 0.44 0.27 0.31 0.30
IBM 0.20 0.23 0.18 0.43 0.48 0.44 1.00 0.21 0.25 0.24
MCD 0.35 0.38 0.25 0.20 0.16 0.27 0.21 1.00 0.38 0.37
WMT 0.38 0.42 0.28 0.23 0.19 0.31 0.25 0.38 1.00 0.41
DIS 0.38 0.42 0.27 0.23 0.18 0.30 0.24 0.37 0.41 1.00

MO 1.00 −0.19 −0.15 −0.19 −0.37 −0.26
KO −0.19 1.00 −0.15 0.11 −0.16 −0.17
EK −0.15 −0.15 1.00 −0.15 −0.16 −0.16
HWP 1.00 −0.63 −0.37 −0.14
INTC 0.11 −0.63 1.00 −0.24 −0.31
MSFT −0.37 −0.24 1.00 −0.22
IBM −0.14 −0.31 −0.22 1.00
MCD −0.19 −0.15 1.00 −0.19 −0.19
WMT −0.37 −0.16 −0.16 −0.19 1.00 −0.23
DIS −0.26 −0.17 −0.16 −0.19 −0.23 1.00

We have simply spoken of observed and unobserved or latent factor models, but in
the econometrics literature a classification of factor models into three types is more
common; these are macroeconomic factor models, fundamental factor models and
statistical factor models. In this categorization our observable factor model would be
a macroeconomic factor model; index returns, along with other observables such as
interest rates or inflation, are the kind of macroeconomic variables that are typically
used as explanatory factors in such models. On the other hand, both approaches to
calibrating a latent factor model (classical factor analysis and principal components)
would fall under the heading of statistical factor models.

The fundamental factor models, which are not described in this book, relate to
the situation where factors are unobserved, but the loading matrix B is assumed to
be known. More precisely we consider a situation where we have clear ideas of how
to group returns by geographical or industrial sector, firm size or other important
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characteristics. For example, the return of a European technology company might
be expected to be explained by an unobserved factor representing the performance
of such companies, or perhaps by two unobserved factors representing European
and technology companies. Using data for many companies and regression methods
it is then possible to estimate the unobserved factors using the known classification
information.

For a more detailed discussion of factor models see the paper by Connor (1995),
which provides a comparison of the three types of model, and the book of Campbell,
Lo and MacKinlay (1997). An excellent practical introduction to these models with
examples in S-Plus is Zivot and Wang (2003). Other accounts of factor models and
PCA in finance are found in Alexander (2001) and Tsay (2002).



4
Financial Time Series

In this chapter we consider time series models for financial risk-factor change data,
in particular differenced logarithmic price and exchange-rate series. We begin by
looking more systematically at the empirical properties of such data in a discussion
of so-called stylized facts.

In Section 4.2 we review essential concepts in the analysis of time series, such as
stationarity, autocorrelations and their estimation, white noise processes, andARMA
(autoregressive moving-average) processes. We then devote Section 4.3 to univari-
ate ARCH and GARCH (generalized autoregressive conditionally heteroscedastic)
processes for capturing the important phenomenon of volatility, before showing how
such models are used in the context of quantitative risk management in Section 4.4.
A short introduction to concepts in the analysis of multivariate time series, such as
cross-correlation and multivariate white noise, is found in Section 4.5, while the
final section presents multivariate GARCH-type models for multivariate risk-factor
change series.

Our focus on the GARCH paradigm in this chapter requires comment. As this
book goes to press these models have been with us for around two decades, and
modern econometrics and finance have continued to develop other kinds of model
for financial return series.We think here of discrete-time stochastic volatility models,
long-memory GARCH models, continuous-time models fitted to discrete data, and
models based on realized volatility calculated from high-frequency data; none of
these new developments are handled in this book.

Our emphasis on GARCH has two main motivations, the first of these being
practical. We recall that in risk management we are typically dealing with very
large numbers of risk factors and our philosophy, expounded in Section 1.5, is that
broad-brush techniques that capture the main risk features of many time series are
more important than very detailed analyses of single series. The relatively simple
GARCH model lends itself to this approach and proves very easy to fit. There are also
some multivariate extensions which build in fairly simple ways on the univariate
models and may be calibrated to a multivariate series in stages. This ease of use
contrasts with other models where even the fitting of a single series presents a
challenging computational problem (e.g. estimation of a stochastic volatility model
via filtering or Gibbs sampling), and multivariate extensions have not been widely
considered. Related to this is the likelihood that an average financial enterprise will
collect, at best, daily data on its complete set of risk factors for the purposes of risk
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management, and this will rule out some more sophisticated models that require
higher-frequency data.

Our second reason for concentrating on ARCH and GARCH models is didactic.
These models for volatile return series have a status akin to ARMA models in classi-
cal time series; they belong, in our opinion, to the body of standard methodology to
which a student of the subject should be exposed. A quantitative risk manager who
understands GARCH has a good basis for understanding more complex models and
a good framework for talking about volatility in a rational way. He/she may also
appreciate more clearly the role of more ad hoc volatility estimation methods such
as the exponentially weighted moving-average (EWMA) procedure.

4.1 Empirical Analyses of Financial Time Series

4.1.1 Stylized Facts

The stylized facts of financial time series are a collection of empirical observations,
and inferences drawn from these observations, that seem to apply to the majority of
daily series of risk-factor changes, such as log-returns on equities, indexes, exchange
rates and commodity prices; these observations are now so entrenched in economet-
ric experience that they have been elevated to the status of facts. They often continue
to hold when we go to longer time intervals, such as weekly or monthly returns, or
to shorter time intervals, such as intra-daily returns. A version of the stylized facts
is as follows.

(1) Return series are not iid although they show little serial correlation.

(2) Series of absolute or squared returns show profound serial correlation.

(3) Conditional expected returns are close to zero.

(4) Volatility appears to vary over time.

(5) Return series are leptokurtic or heavy-tailed.

(6) Extreme returns appear in clusters.

In the following consider a sample of daily return data X1, . . . , Xn and assume that
these have been formed by logarithmic differencing of a price, index or exchange-
rate series (St )t=0,1,...,n, so that Xt = ln(St/St−1), t = 1, . . . , n.

Volatility clustering. Evidence for the first two stylized facts is collected in Fig-
ures 4.1 and 4.2. Figure 4.1(a) shows 2608 daily log-returns for the DAX index
spanning a decade from 2 January 1985 to 30 December 1994, a period includ-
ing both the stock-market crash of 1987 and the reunification of Germany. Parts (b)
and (c) show series of simulated iid data from a normal and Student t model, respec-
tively; in both cases the model parameters have been set by fitting the model to the
real return data using the method of maximum likelihood under the iid assumption.
In the normal case this means that we simply simulate iid data with distribution
N(µ, σ 2), where µ = X̄ = n−1∑n

i=1 Xi and σ 2 = n−1∑n
i=1(Xi − X̄)2. In the t

case the likelihood has been maximized numerically and the estimated degrees of
freedom parameter is ν = 3.8.
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Figure 4.1. (a) Log-returns for the DAX index from 2 January 1985 to 30 December 1994
compared with simulated iid data from (b) a normal and (c) a t distribution, where the
parameters have been determined by fitting the models to the DAX data.

The simulated normal data are clearly very different from the DAX return data
and do not show the same range of extreme values, which does not surprise us given
our observations on the inadequacy of the Gaussian model in Chapter 3. While the
Student t model can generate comparable extreme values to the real data, more
careful observation reveals that the DAX returns exhibit a phenomenon known as
volatility clustering, which is not present in the simulated series.Volatility clustering
is the tendency for extreme returns to be followed by other extreme returns, although
not necessarily with the same sign. In the DAX data we see periods such as the stock-
market crash of October 1987 or the political uncertainty in the period between late
1989 and German reunification in 1990 which are marked by large positive and
negative moves.

In Figure 4.2 the correlograms of the raw data and the absolute data for all three
datasets are shown. The correlogram is a graphical display for estimates of serial
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Figure 4.2. Correlograms for (a) the three datasets in Figure 4.1 and (b) the absolute values
of these data. Dashed lines mark the standard 95% confidence intervals for the autocorrelations
of a process of iid finite-variance rvs.

correlation, and its construction and interpretation are discussed in Section 4.2.3.
While there is very little evidence of serial correlation in the raw data for all datasets,
the absolute values of the real financial data appear to show evidence of serial depend-
ence. Clearly, more than 5% of the estimated correlations lie outside the dashed lines,
which are the 95% confidence intervals for a process of iid finite-variance rvs. This
serial dependence in the absolute returns would be equally apparent in squared return
values, and seems to confirm the presence of volatility clustering. We conclude that,
although there is no evidence against the iid hypothesis for the genuinely iid data,
there is strong evidence against the iid hypothesis for the DAX return data.

Table 4.1 contains more evidence against the iid hypothesis for daily stock-return
data. The Ljung–Box test of randomness (described in Section 4.2.3) has been
performed for the stocks comprising the Dow Jones 30 index in the period 1993–
2000. In the two columns for daily returns the test is applied, respectively, to the raw
return data (LBraw) and their absolute values (LBabs), and p-values are tabulated;
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Table 4.1. Tests of randomness for returns of 30 Dow Jones stocks in the eight-year period
1993–2000. The columns LBraw and LBabs show p-values for Ljung–Box tests applied to
the raw and absolute values, respectively.

Daily Monthly︷ ︸︸ ︷ ︷ ︸︸ ︷
Name Symbol LBraw LBabs LBraw LBabs

Alcoa AA 0.00 0.00 0.23 0.02
American Express AXP 0.02 0.00 0.55 0.07
AT&T T 0.11 0.00 0.70 0.02
Boeing BA 0.03 0.00 0.90 0.17
Caterpillar CAT 0.28 0.00 0.73 0.07
Citigroup C 0.09 0.00 0.91 0.48
Coco-Cola KO 0.00 0.00 0.50 0.03
DuPont DD 0.03 0.00 0.75 0.00
Eastman Kodak EK 0.15 0.00 0.61 0.54
Exxon Mobil XOM 0.00 0.00 0.32 0.22
General Electric GE 0.00 0.00 0.25 0.09
General Motors GM 0.65 0.00 0.81 0.27
Hewlett-Packard HWP 0.09 0.00 0.21 0.02
Home Depot HD 0.00 0.00 0.00 0.41
Honeywell HON 0.44 0.00 0.07 0.30
Intel INTC 0.23 0.00 0.79 0.62
IBM IBM 0.18 0.00 0.67 0.28
International Paper IP 0.15 0.00 0.01 0.09
JPMorgan JPM 0.52 0.00 0.43 0.12
Johnson & Johnson JNJ 0.00 0.00 0.11 0.91
McDonald’s MCD 0.28 0.00 0.72 0.68
Merck MRK 0.05 0.00 0.53 0.65
Microsoft MSFT 0.28 0.00 0.19 0.13
3M MMM 0.00 0.00 0.57 0.33
Philip Morris MO 0.01 0.00 0.68 0.82
Proctor & Gamble PG 0.02 0.00 0.99 0.74
SBC SBC 0.05 0.00 0.13 0.00
United Technologies UTX 0.00 0.00 0.12 0.01
Wal-Mart WMT 0.00 0.00 0.41 0.64
Disney DIS 0.44 0.00 0.01 0.51

these show strong evidence (particularly when applied to absolute values) against the
iid hypothesis. If financial log-returns are not iid, then this contradicts the popular
random-walk hypothesis for the discrete-time development of log-prices (or, in this
case, index values). If log-returns are neither iid nor normal, then this contradicts
the geometric Brownian motion hypothesis for the continuous-time development of
prices on which the Black–Scholes–Merton pricing theory is based.

Moreover, if there is serial dependence in financial return data, then the question
arises: to what extent can this dependence be used to make predictions about the
future? This is the subject of the third and fourth stylized facts. It is very difficult to
predict the return in the next time period based on historical data alone. This can be
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explained to some extent by the lack of serial correlation in the raw return series data.
For some series we do see evidence of correlations at the first lag (or first few lags);
for example, a small positive correlation at the first lag might suggest that there is
some discernible tendency for a return with a particular sign (positive or negative)
to be followed in the next period by a return with the same sign. However, this is
not apparent in the DAX data, which suggests that our best guess for tomorrow’s
return based on our observations up to today is zero. This idea is expressed in the
assertion of the third stylized fact, that conditional expected returns are close to
zero.

Volatility is often formally modelled as the conditional standard deviation of
financial returns given historical information and, although the conditional expected
returns are consistently close to zero, the presence of volatility clustering suggests
that conditional standard deviations are continually changing in a partly predictable
manner. If we know that returns have been large in the last few days, due to mar-
ket excitement, then there is reason to believe that the distribution from which
tomorrow’s return is “drawn” should have a large variance. It is this idea that
lies behind the time series models for changing volatility that we will examine
in Section 4.3.

Tails and extremal behaviour. We have already observed in Chapter 3 that the
normal distribution is a poor model for daily and longer-interval returns (whether
univariate or multivariate). The Jarque–Bera test, which is based on empirical skew-
ness and kurtosis measures given in (3.15), clearly rejects the normal hypothesis
(see Example 3.3). In particular, daily financial return data appear to have a much
higher kurtosis than is consistent with the normal distribution; their distribution is
said to be leptokurtic, meaning that it is more narrow in the centre but has longer
and heavier tails than the normal distribution.

Further empirical analysis often suggests that the distribution of daily or other
short-interval financial return data has tails that decay slowly according to a power
law, rather than the faster, exponential-type decay of the tails of a normal distribution.
This means that we tend to see rather more extreme values than might be expected in
such return data; we discuss this phenomenon further in Chapter 7, which is devoted
to extreme value theory (EVT).

A further observation about extremes is, however, pertinent to our discussion
of serial dependence in financial return data. In the discussion of Figure 4.1 we
remarked that there is a tendency for the extreme values in return series to occur in
close succession in volatility clusters; further evidence for this phenomenon is given
in Figure 4.3, where the time series of the 100 largest daily losses for the DAX returns
and the 100 largest values for the simulated t data are plotted. In Section 7.4.1 of
Chapter 7 we summarize theory which suggests that the very largest values in iid data
will occur like events in a Poisson process, separated by waiting times that are iid with
an exponential distribution. Parts (b) and (d) of Figure 4.3 show QQplots of these
waiting times against an exponential reference distribution. While the hypothesis of
the Poisson occurrence of extreme values for the iid data is supported, there are too
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Figure 4.3. Time series plots of the 100 largest negative values for (a) the DAX returns
and (c) the simulated t data as well as (b), (d) QQplots of the waiting times between these
extreme values against an exponential reference distribution.

many short waiting times caused by the clustering of extreme values in the DAX
data to support the exponential hypothesis; this constitutes further evidence against
the iid hypothesis for return data.

Longer-interval return series. As we progressively increase the interval of the
returns by moving from daily to weekly, monthly, quarterly and yearly data, the
phenomena we have identified tend to become less pronounced. Volatility clustering
decreases and returns begin to look both more iid and less heavy-tailed.

Suppose we begin with a sample of n returns measured at some time interval
(say daily or weekly) and aggregate these to form longer-interval log-returns. The
h-period log-return at time t is given by

X
(h)
t = ln

(
St

St−h

)
= ln

(
St

St−1
· · · St−h+1

St−h

)
=

h−1∑
j=0

Xt−j , (4.1)
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and from our original sample we can form a sample of non-overlapping h-period
returns {X(h)

t : t = h, 2h, . . . , [n/h]h}, where [·] denotes the integer part. Due
to the sum structure of the h-period returns, it is to be expected that some central
limit effect takes place, whereby their distribution becomes less leptokurtic and
more normal as h is increased. Note that, although we have cast doubt on the iid
model for daily data, a central limit theorem applies to many stationary time series
processes, including the GARCH models that are a focus of this chapter.

In Table 4.1 the Ljung–Box tests of randomness have also been applied to non-
overlapping monthly return data. For 20 out of 30 stocks the null hypothesis of iid
data is not rejected at the 5% level in Ljung–Box tests applied to both the raw and
absolute returns. Thus it is harder to find evidence of serial dependence in such
monthly returns.

Aggregating data to form non-overlapping h-period returns reduces the sample
size from n to n/h, and for longer-period returns (such as quarterly or yearly returns)
this may be a very serious reduction in the amount of data. An alternative in this
case is to form overlapping returns. For 1 � k � h, a general recipe for forming
aggregated h-period returns (overlapping or non-overlapping) is to form{

X
(h)
t =

h−1∑
j=0

Xt−j : t = h, h + k, h + 2k, . . . , h + [(n − h)/k]k
}
; (4.2)

this would give (1 + [(n − h)/k]) values that overlap by an amount (h − k). In
forming overlapping returns we can preserve a large number of data, but we do
build additional serial dependence into the data. Even if the original data were iid,
overlapping data would be dependent.

4.1.2 Multivariate Stylized Facts

In risk management we are seldom interested in single financial time series, but rather
with multiple series of financial risk-factor changes. The stylized facts identified in
Section 4.1.1 may be augmented by a number of stylized facts of a multivariate
nature.

We now consider multivariate return data X1, . . . ,Xn. Each component series
X1,j , . . . , Xn,j for j = 1, . . . , d is a series formed by logarithmic differencing of a
daily price, index or exchange-rate series as before. We consider the following set
of multivariate stylized facts.

(M1) Multivariate return series show little evidence of cross-correlation, except for
contemporaneous returns.

(M2) Multivariate series of absolute returns show profound evidence of cross-
correlation.

(M3) Correlations between series (i.e. between contemporaneous returns) vary over
time.

(M4) Extreme returns in one series often coincide with extreme returns in several
other series.
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The first two observations are fairly obvious extensions of univariate stylized facts
(1) and (2) from Section 4.1.1. Just as the stock returns for, say, General Motors
on days t and t + h (for h > 0) show very little serial correlation, so we generally
detect very little correlation between the General Motors return on day t and, say,
the Coca-Cola return on day t + h. Of course, stock returns on the same day may
show non-negligible correlation, due to factors that affect the whole market on that
day. When we look at absolute returns we should bear in mind that periods of high
or low volatility are generally common to more than one stock. Thus returns of
large magnitude in one stock may tend to be followed on subsequent days by further
returns of large magnitude for both that stock and other stocks, which would explain
(M2). The issue of cross-correlation and its estimation will be addressed with an
example in Section 4.5.

Stylized fact (M3) is a multivariate counterpart to univariate observation (4):
that volatility appears to vary with time. While the latter appears “obvious” to the
naked eye from illustrations such as Figure 4.1, the multivariate observation is less
straightforward to demonstrate. In fact, although it is widely believed that corre-
lations change, there are various ways of interpreting this stylized fact in terms of
underlying models. We may believe that correlations are constant within regimes but
that there is evidence of relatively frequent regime changes. Or we may believe that
correlation changes continually and dynamically like volatility. Just as volatility is
often formally modelled as the conditional standard deviation of returns given his-
torical information, we can also devise models that feature a conditional correlation
that is allowed to change dynamically. We consider some models of this kind in
Section 4.6.

The only way to collect evidence for (M3) and to decide in what way correlation
changes is to fit different models for changing correlation and then to make formal
statistical comparisons of the models. More ad hoc attempts to demonstrate (M3)
should generally be avoided. For example, it is not sufficient to calculate correlations
between two daily series for monthly samples and to observe that these values may
vary greatly from month to month; there is considerable error in estimating correla-
tions from small samples, particularly when the underlying distribution is something
more like a heavy-tailed multivariate t distribution than a Gaussian distribution (see
also Example 3.31 in this context).

Stylized fact (M4) is encountered in other forms; one often hears the view that
“correlations go to one in times of market stress”. The idea this observation attempts
to express is that in volatile periods the level of dependence between, for example,
various stock returns appears to be higher. Consider, for example, Figure 4.4, which
shows the BMW and Siemens log-return series the same 1985–1994 time period as
in Figure 4.1. In both the time series plots and the scatterplot three days on which
large negative returns occurred for both stocks have been marked with a number; all
of these days occurred during periods of volatility on the German market. They are,
respectively, 19 October 1987, Black Monday onWall Street; 16 October 1989, when
over 100 000 Germans protested against the East German regime in Leipzig during
the chain of events that led to the fall of the BerlinWall and German reunification; and
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Figure 4.4. Three extreme days on which German stock returns (in this case (a) BMW and
(b) Siemens) showed large negative returns. The dates are 19 October 1987, 16 October 1989
and 19 August 1991; see text for historical commentary.

19 August 1991, the day of the coup by communist hardliners during the reforming
era of Gorbachev in the USSR. Clearly, the returns on these extreme days are lined
up on the diagonal of the scatterplot in the lower-left-hand corner and it is easy to
see why one might describe these as occasions on which correlations tend to one.

While it may be partly true that useful multivariate time series models for returns
should have the property that conditional correlations tend to become large when
volatilities are large, the phenomenon of simultaneous extreme values can also be
addressed by choosing distributions in multivariate models that allow so-called tail
or extremal dependence; a mathematical definition of this notion and a discussion
of its importance may be found in Section 5.2.3 of the chapter on copulas.

Notes and Comments

A number of texts contain extensive empirical analyses of financial return series and
discussions of their properties. We mention in particular Taylor (1986), Alexander
(2001), Tsay (2002) and Zivot and Wang (2003). For more discussion of the random-
walk hypothesis for stock returns and its shortcomings see Lo and MacKinlay (1999).

4.2 Fundamentals of Time Series Analysis

This section provides a short summary of the essentials of classical univariate time
series analysis with a focus on that which is relevant for modelling risk-factor return
series. We have based the presentation on Brockwell and Davis (1991, 2002), so
these texts may be used as supplementary reading.

4.2.1 Basic Definitions

A time series model for a single risk factor is a stochastic process (Xt )t∈Z, i.e. a fam-
ily of rvs, indexed by the integers and defined on some probability space (Ω,F , P ).
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Moments of a time series. Assuming they exist, we define the mean function µ(t)
and autocovariance function γ (t, s) of (Xt )t∈Z by

µ(t) = E(Xt), t ∈ Z,

γ (t, s) = E((Xt − µ(t))(Xs − µ(s))), t, s ∈ Z.

It follows that the autocovariance function satisfies γ (t, s) = γ (s, t) for all t , s, and
γ (t, t) = var(Xt ).

Stationarity. Generally, the processes we consider will be stationary in one or both
of the following two senses.

Definition 4.1 (strict stationarity). The time series (Xt )t∈Z is strictly stationary if

(Xt1 , . . . , Xtn)
d= (Xt1+k, . . . , Xtn+k),

for all t1, . . . , tn, k ∈ Z and for all n ∈ N.

Definition 4.2 (covariance stationarity). The time series (Xt )t∈Z is covariance
stationary (or weakly or second-order stationary) if the first two moments exist and
satisfy

µ(t) = µ, t ∈ Z,

γ (t, s) = γ (t + k, s + k), t, s, k ∈ Z.

Both these definitions attempt to formalize the notion that the behaviour of a time
series is similar in any epoch in which we might observe it. Systematic changes in
mean, variance or the covariances between equally spaced observations are incon-
sistent with stationarity.

It may be easily verified that a strictly stationary time series with finite variance
is covariance stationary, but it is important to note that we may define infinite-
variance processes (including certain ARCH and GARCH processes) which are
strictly stationary but not covariance stationary.

Autocorrelation in stationary time series. The definition of covariance stationarity
implies that for all s, t we have γ (t − s, 0) = γ (t, s) = γ (s, t) = γ (s − t, 0), so
that the covariance between Xt and Xs only depends on their temporal separation
|s − t |, which is known as the lag. Thus, for a covariance-stationary process we
write the autocovariance function as a function of one variable:

γ (h) := γ (h, 0), ∀h ∈ Z.

Noting that γ (0) = var(Xt ), ∀t , we can now define the autocorrelation function of
a covariance-stationary process.

Definition 4.3 (autocorrelation function). The autocorrelation function (ACF)
ρ(h) of a covariance-stationary process (Xt )t∈Z is

ρ(h) = ρ(Xh,X0) = γ (h)/γ (0), ∀h ∈ Z.

We speak of the autocorrelation or serial correlationρ(h) at lagh. In classical time
series analysis the set of serial correlations and their empirical analogues estimated
from data are the objects of principal interest. The study of autocorrelations is known
as analysis in the time domain.
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White noise processes. The basic building blocks for creating useful time series
models are stationary processes without serial correlation, known as white noise
processes and defined as follows.

Definition 4.4 (white noise). (Xt )t∈Z is a white noise process if it is covariance
stationary with autocorrelation function

ρ(h) =
{

1, h = 0,

0, h �= 0.

A white noise process centred to have mean zero with variance σ 2 = var(Xt )

will be denoted WN(0, σ 2). A simple example of a white noise process is a series
of iid rvs with finite variance, and this is known as a strict white noise process.

Definition 4.5 (strict white noise). (Xt )t∈Z is a strict white noise process if it is a
series of iid, finite-variance rvs.

A strict white noise (SWN) process centred to have mean zero and variance σ 2

will be denoted SWN(0, σ 2). Although SWN is the easiest kind of noise process to
understand, it is not the only noise that we will use. We will later see that covariance-
stationary ARCH and GARCH processes are in fact white noise processes.

Martingale difference. One further noise concept that we use, particularly when we
come to discuss volatility and GARCH processes, is that of a martingale-difference
sequence. To discuss this concept we further assume that the time series (Xt )t∈Z

is adapted to some filtration (Ft )t∈Z which represents the accrual of information
over time. The sigma algebra Ft represents the available information at time t and
typically this will be the information contained in past and present values of the time
series itself (Xs)s�t , which we refer to as the history up to time t and denote by
Ft = σ({Xs : s � t}); the corresponding filtration is known as the natural filtration.

In a martingale-difference sequence the expectation of the next value, given cur-
rent information, is always zero, and we have observed in Section 4.1.1 that this
property may be appropriate for financial return data. A martingale difference is
often said to model our winnings in consecutive rounds of a fair game.

Definition 4.6 (martingale difference). The time series (Xt )t∈Z is known as a
martingale-difference sequence with respect to the filtration (Ft )t∈Z if E|Xt | < ∞,
Xt is Ft -measurable (adapted) and

E(Xt | Ft−1) = 0, ∀t ∈ Z.

Obviously the unconditional mean of such a process is also zero:

E(Xt) = E(E(Xt | Ft−1)) = 0, ∀t ∈ Z.

Moreover, if E(X2
t ) < ∞ for all t , then autocovariances satisfy

γ (t, s) = E(XtXs)

=
{
E(E(XtXs | Fs−1)) = E(XtE(Xs | Fs−1)) = 0, t < s,

E(E(XtXs | Ft−1)) = E(XsE(Xt | Ft−1)) = 0, t > s.
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Thus a finite-variance martingale-difference sequence has zero mean and zero
covariance. If the variance is constant for all t , it is a white noise process.

4.2.2 ARMA Processes

The family of classical ARMA processes are widely used in many traditional appli-
cations of time series analysis. They are covariance-stationary processes that are
constructed using white noise as a basic building block. As a general notational
convention in this section and the remainder of the chapter we will denote white
noise by (εt )t∈Z and strict white noise by (Zt )t∈Z.

Definition 4.7 (ARMA process). Let (εt )t∈Z be WN(0, σ 2
ε ). The process (Xt )t∈Z is

a zero-mean ARMA(p, q) process if it is a covariance-stationary process satisfying
difference equations of the form

Xt − φ1Xt−1 − · · · − φpXt−p = εt + θ1εt−1 + · · · + θqεt−q, ∀t ∈ Z. (4.3)

(Xt ) is an ARMA process with mean µ if the centred series (Xt − µ)t∈Z is a zero-
mean ARMA(p, q) process.

Note that, according to our definition, there is no such thing as a non-covariance-
stationary ARMA process. Whether the process is strictly stationary or not will
depend on the exact nature of the driving white noise, also known as the process
of innovations. If the innovations are iid, or themselves form a strictly stationary
process, then the ARMA process will also be strictly stationary.

For all practical purposes we can restrict our study of ARMA processes to causal
ARMA processes. By this we mean processes satisfying the equations (4.3) which
have a representation of the form

Xt =
∞∑
i=0

ψiεt−i , (4.4)

where the ψi are coefficients which must satisfy
∞∑
i=0

|ψi | < ∞. (4.5)

Remark 4.8. The so-called absolute summability condition (4.5) is a technical
condition which ensures that E|Xt | < ∞. This guarantees that the infinite sum
in (4.4) converges absolutely, almost surely, meaning that both

∑∞
i=0 |ψi‖εt−i | and∑∞

i=0 ψiεt−i are finite with probability one (see Brockwell and Davis 1991, Propo-
sition 3.1.1).

We now verify by direct calculation that causal ARMA processes are indeed
covariance stationary and calculate the form of their autocorrelation function before
going on to look at some simple standard examples.

Proposition 4.9. Any process satisfying (4.4) and (4.5) is covariance stationary
with an autocorrelation function given by

ρ(h) =
∑∞

i=0 ψiψi+|h|∑∞
i=0 ψ

2
i

, h ∈ Z. (4.6)
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Proof. Obviously, for all t we have E(Xt) = 0 and var(Xt ) = σ 2
ε

∑∞
i=0 ψ

2
i < ∞,

due to (4.5). Moreover, the autocovariances are given by

cov(Xt ,Xt+h) = E(XtXt+h) = E

( ∞∑
i=0

ψiεt−i

∞∑
j=0

ψjεt+h−j

)
.

Since (εt ) is white noise, it follows that E(εt−iεt+h−j ) �= 0 ⇐⇒ j = i + h, and
hence that

γ (h) = cov(Xt ,Xt+h) = σ 2
ε

∞∑
i=0

ψiψi+|h|, h ∈ Z, (4.7)

which depends only on the lag h and not on t . The autocorrelation function follows
easily.

Example 4.10 (MA(q) process). It is clear that a pure moving-average process

Xt =
q∑
i=1

θiεt−i + εt (4.8)

forms a simple example of a causal process of the form (4.4). It is easily inferred
from (4.6) that the autocorrelation function is given by

ρ(h) =
∑q−|h|

i=0 θiθi+|h|∑q
i=0 θ

2
i

, |h| ∈ {0, 1, . . . , q},

where θ0 = 1. For |h| > q we have ρ(h) = 0 and the autocorrelation function is
said to cut off at lag q. If this feature is observed in the estimated autocorrelations
of empirical data, it is often taken as an indicator of moving-average behaviour. A
realization of an MA(4) process together with the theoretical form of its ACF is
shown in Figure 4.5.

Example 4.11 (AR(1) process). The first-order AR process satisfies the set of
difference equations

Xt = φXt−1 + εt , ∀t. (4.9)

This process is causal if and only if |φ| < 1, and this may be understood intuitively
by iterating the equation (4.9) to get

Xt = φ(φXt−2 + εt−1) + εt−2

= φk+1Xt−k−1 +
k∑

i=0

φiεt−i .

Using more careful probabilistic arguments it may be shown that the condition
|φ| < 1 ensures that the first term disappears as k → ∞ and the second term
converges. The process

Xt =
∞∑
i=0

φiεt−i (4.10)
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Figure 4.5. A number of simulated ARMA processes with their autocorrelation func-
tions (dashed) and correlograms. Innovations are Gaussian. (a) AR(1), φ = 0.8. (b) MA(4),
θ = −0.8, 0.4, 0.2,−0.3. (c) ARMA(1, 1), φ = 0.6, θ = 0.5.

turns out to be the unique solution of the defining equations (4.9). It may be easily
verified that this is a process of the form (4.4) and that

∑∞
i=0 |φ|i = (1 − |φ|)−1

so that (4.5) is satisfied. Looking at the form of the solution (4.10), we see that the
AR(1) process can be represented as an MA(∞) process: an infinite-order moving-
average process.

The autocovariance and autocorrelation functions of the process may be calculated
from (4.7) and (4.6) to be

γ (h) = φ|h|σ 2
ε

1 − φ2 , ρ(h) = φ|h|, h ∈ Z.

Thus the ACF is exponentially decaying with possibly alternating sign. A realization
of an AR(1) process together with the theoretical form of its ACF is shown in
Figure 4.5.



4.2. Fundamentals of Time Series Analysis 131

Remarks on general ARMA theory. In the case of the general ARMA process of
Definition 4.7, the issue of whether this process has a causal representation of the
form (4.4) is resolved by the study of two polynomials in the complex plane, which
are given in terms of the ARMA model parameters by

φ̃(z) = 1 − φ1z − · · · − φpz
p,

θ̃(z) = 1 + θ1z + · · · + θqz
q .

Provided that φ̃(z) and θ̃ (z) have no common roots, then the ARMA process is a
causal process satisfying (4.4) and (4.5) if and only if φ̃(z) has no roots in the unit
circle |z| � 1. The coefficients ψi in the representation (4.4) are determined by the
equation

∞∑
i=0

ψiz
i = θ̃ (z)

φ̃(z)
, |z| < 1.

Example 4.12 (ARMA(1, 1) process). For the process given by

Xt − φXt−1 = εt + θεt−1, ∀t ∈ Z,

the complex polynomials are φ̃(z) = 1 − φz and θ̃ (z) = 1 + θz and these have no
common roots provided φ + θ �= 0. The solution of φ̃(z) = 0 is z = 1/φ and this
is outside the unit circle provided |φ| < 1, so that this is the condition for causality
(as in the AR(1) model of Example 4.11).

The representation (4.4) can be obtained by considering

∞∑
i=0

ψiz
i = 1 + θz

1 − φz
= (1 + θz)(1 + φz + φ2z2 + · · · ), |z| < 1,

and is easily calculated to be

Xt = εt + (φ + θ)

∞∑
i=1

φi−1εt−i . (4.11)

Using (4.6) we may calculate that for h �= 0 the ACF is

ρ(h) = φ|h|−1(φ + θ)(1 + φθ)

1 + θ2 + 2φθ
.

A realization of an ARMA(1, 1) process together with the theoretical form of its
ACF is shown in Figure 4.5.

Invertibility. Equation (4.11) shows how the ARMA(1, 1) process may be thought
of as an MA(∞) process. In fact, if we impose the condition |θ | < 1, we can also
express (Xt ) as the AR(∞) process given by

Xt = εt + (φ + θ)

∞∑
i=1

(−θ)i−1Xt−i . (4.12)

If we rearrange this to be an equation for εt , then we see that we can, in a sense,
“reconstruct” the latest innovation εt from the entire history of the process (Xs)s�t .
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The condition |θ | < 1 is known as an invertibility condition, and for the general
ARMA(p, q) process the invertibility condition is that θ̃ (z) should have no roots
in the unit circle |z| � 1. In practice, the models we fit to real data will be both
invertible and causal solutions of the ARMA-defining equations.

Models for the conditional mean. Consider a general invertibleARMA model with
non-zero mean. For what comes later it will be useful to observe that we can write
such models as

Xt = µt + εt , µt = µ +
p∑
i=1

φi(Xt−i − µ) +
q∑

j=1

θj εt−j . (4.13)

Since we have assumed invertibility, the terms εt−j , and hence µt , can be written in
terms of the infinite past of the process up to time t − 1; µt is said to be measurable
with respect to Ft−1 = σ({Xs : s � t − 1}).

If we make the assumption that the white noise (εt )t∈Z is a martingale-difference
sequence (see Definition 4.6) with respect to (Ft )t∈Z, then E(Xt | Ft−1) = µt .
In other words, such an ARMA process can be thought of as putting a particular
structure on the conditional mean µt of the process. ARCH and GARCH processes
will later be seen to put structure on the conditional variance var(Xt | Ft−1).

ARIMA models. In traditional time series analysis we often consider an even larger
class of model known as ARIMA, or autoregressive integrated moving-average
models. Let ∇ denote the difference operator, so that for a time series process
(Yt )t∈Z we have ∇Yt = Yt − Yt−1. Denote repeated differencing by ∇d , where

∇dYt =
{

∇Yt , d = 1,

∇d−1(∇Yt ) = ∇d−1(Yt − Yt−1), d > 1.
(4.14)

The time series (Yt ) is said to be an ARIMA(p, d, q) process if the differenced
series (Xt ) given by Xt = ∇dYt is an ARMA(p, q) process. For d > 1 ARIMA
processes are non-stationary processes. They are popular in practice because the
operation of differencing (once or more than once) can turn a dataset that is obviously
“non-stationary” into a dataset that might plausibly be modelled by a stationary
ARMA process. For example, if we use an ARMA(p, q) process to model daily
log-returns of some price series (St ), then we are really saying that the original
logarithmic price series (ln St ) follows an ARIMA(p, 1, q) model.

When the word integrated is used in the context of time series it generally implies
that we are looking at a non-stationary process that might be made stationary by
differencing; see also the discussion of IGARCH models in Section 4.3.2.

4.2.3 Analysis in the Time Domain

We now assume that we have a random sample X1, . . . , Xn from a covariance-
stationary time series model (Xt )t∈Z. Analysis in the time domain involves calculat-
ing empirical estimates of autocovariances and autocorrelations from this random
sample and using these estimates to make inference about the serial dependence
structure of the underlying process.
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Correlogram. The sample autocovariances are calculated according to

γ̂ (h) = 1

n

n−h∑
t=1

(Xt+h − X̄)(Xt − X̄), 0 � h < n,

where X̄ = ∑n
t=1 Xt/n is the sample mean, which estimates µ, the mean of the

time series. From these we calculate the sample ACF:

ρ̂(h) = γ̂ (h)/γ̂ (0), 0 � h < n.

The correlogram is the plot {(h, ρ̂(h)) : h = 0, 1, 2, . . . }, which is designed to facili-
tate the interpretation of the sampleACF. Correlograms for various simulatedARMA
processes are shown in Figure 4.5; note that the estimated correlations correspond
reasonably closely to the theoretical ACF for these particular realizations.

To interpret such estimators of serial correlation, we need to know something
about their behaviour for particular time series. The following general result is for
causal linear processes, which are processes of the form (4.4) driven by strict white
noise.

Theorem 4.13. Let (Xt )t∈Z be the linear process

Xt − µ =
∞∑
i=0

ψiZt−i , where
∞∑
i=0

|ψi | < ∞, (Zt )t∈Z ∼ SWN(0, σ 2
Z).

Suppose that either E(Z4
t ) < ∞ or

∑∞
i=0 iψ

2
i < ∞. Then, for h ∈ {1, 2, . . . }, we

have √
n(ρ̂(h) − ρ(h))

d−→ Nh(0,W),

where

ρ̂(h) = (ρ̂(1), . . . , ρ̂(h))′,
ρ(h) = (ρ(1), . . . , ρ(h))′,

and W has elements

Wij =
∞∑
k=1

(ρ(k + i)+ ρ(k − i)− 2ρ(i)ρ(k))(ρ(k + j)+ ρ(k − j)− 2ρ(j)ρ(k)).

Proof. This follows as a special case of a result in Brockwell and Davis (1991,
pp. 221–223).

The condition
∑∞

i=0 iψ
2
i < ∞ holds for ARMA processes, so ARMA processes

driven by SWN fall under the scope of this theorem (regardless of whether fourth
moments exist for the innovations or not).

Trivially, the theorem also applies to SWN itself. For SWN we have

√
nρ̂(h)

d−→ Nh(0, Ih),

so for sufficiently large n the sample autocorrelations of data from an SWN
process will behave like iid normal observations with mean zero and variance
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1/n. Ninety-five per cent of the estimated correlations should lie in the interval
(−1.96/

√
n, 1.96/

√
n), and it is for this reason that correlograms are drawn with

confidence bands at these values. If more than 5% of estimated correlations lie out-
side these bounds, then this is considered as evidence against the null hypothesis
that the data are strict white noise.

Remark 4.14. In light of the discussion of the asymptotic behaviour of sample
autocorrelations for SWN it might be asked how these estimators behave for white
noise. However, this is an extremely general question because white noise encom-
passes a variety of possible underlying processes (including the standard ARCH
and GARCH processes we later address) which only share second-order properties
(finiteness of variance and lack of serial correlation). In some cases the standard
Gaussian confidence bands apply; in some cases they do not. For a GARCH process
the critical issue turns out to be the heaviness of the tail of the stationary distribution
(see Mikosch and Stărică 2000, for more details).

Portmanteau tests. It is often useful to combine the visual analysis of the correlo-
gram with a formal numerical test of the strict white noise hypothesis, and a popular
test is that of Ljung and Box, as applied in Section 4.1.1. Under the null hypothesis
of SWN, the statistic

QLB = n(n + 2)
h∑

j=1

ρ̂(j)2

n − j

has an asymptotic chi-squared distribution with h degrees of freedom. This statistic
is generally preferred to the simpler Box–Pierce statistic QBP = n

∑h
j=1ρ̂(j)

2,
which also has an asymptotic χ2

h distribution under the null hypothesis, although
the chi-squared approximation may not be so good in smaller samples. These tests
are the most commonly applied portmanteau tests.

If a series of rvs forms an SWN process, then the series of absolute or squared
variables must also be iid. It is a good idea to also apply the correlogram and Ljung–
Box tests to absolute values as a further test of the SWN hypothesis. We prefer to
perform tests of the SWN hypothesis on the absolute values rather than the squared
values because the squared series is only an SWN (according to the definition we
use) when the underlying series has a finite fourth moment. Daily log-return data
often point to models with an infinite fourth moment

4.2.4 Statistical Analysis of Time Series

In practice, the statistical analysis of time series data X1, . . . , Xn follows a pro-
gramme consisting of the following stages.

Preliminary analysis. The data are plotted and the plausibility of a single station-
ary model is considered. Since we concentrate here on differenced logarithmic value
series, we will assume that at most minor preliminary manipulation of our data is
required. Classical time series analysis has many techniques for removing trends
and seasonalities from “non-stationary” data; these techniques are discussed in all
standard texts including Brockwell and Davis (2002) and Chatfield (1996). While
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certain kinds of financial time series certainly do show seasonal patterns, such as
earnings time series, we will assume that such effects are relatively minor in the
kinds of daily or weekly return series that are the basis of risk-management meth-
ods. If we were to base our risk management on high-frequency data, preliminary
cleaning would be more of an issue, since these show clear diurnal cycles and other
deterministic features (see Dacorogna et al. 2001).

Obviously the assumption of stationarity becomes more questionable if we take
long data windows, or if we choose windows in which well-known economic policy
shifts have taken place. Although the markets change constantly there will always be
a tension between our desire to use the most up-to-date data and our need to include
enough data to have precision in statistical estimation. Whether half a year of data,
one year, five years or 10 years are appropriate will depend on the situation. It is
certainly a good idea to perform a number of analyses with different data windows
and to investigate the sensitivity of statistical inference to the amount of data.

Analysis in the time domain. Having settled on the data, the techniques of Sec-
tion 4.2.3 come into play. By applying correlograms and portmanteau tests such as
Ljung–Box to both the raw data and their absolute values, the SWN hypothesis is
evaluated. If it cannot be rejected for the data in question, then the formal time series
analysis is over and simple distributional fitting could be used instead of dynamic
modelling.

For daily risk-factor return series we expect to quickly reject the SWN hypothesis.
Despite the fact that correlograms of the raw data may show little evidence of serial
correlation, correlograms of the absolute data are likely to show evidence of strong
serial dependence. In other words the data may support a white noise model but not
a strict white noise. In this case ARMA modelling is not required, but the volatility
models of Section 4.3 may be useful.

If the correlogram does provide evidence of the kind of serial correlation patterns
produced by ARMA processes, then we can attempt to fit ARMA processes to data.

Model fitting. A traditional approach to model fitting first attempts to identify the
order of a suitable ARMA process using the correlogram and a further tool known
as the partial correlogram (not described in this book but found in all standard texts).
For example, the presence of a cut-off at lag q in the correlogram (see Example 4.10)
is taken as a diagnostic for pure moving-average behaviour of order q (and simi-
lar behaviour in a partial correlogram indicates pure AR behaviour). With modern
computing power it is now quite easy to simply fit a variety of MA, AR and ARMA
models and to use a model-selection criterion like that of Akaike (described in Sec-
tion A.3.6) to choose the “best” model. There are also automated model choice
procedures such as the method of Tsay and Tiao (1984).

Sometimes there are a priori reasons for expecting certain kinds of model to
be most appropriate. For example, suppose we analyse longer-period returns that
overlap, as in Equation 4.2. Consider the case where the raw data are daily returns
and we build weekly returns. In (4.2) we set h = 5 (to get weekly returns) and k = 1
(to get as much data as possible). Assuming that the underlying data are genuinely
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from a white noise process (Xt )t∈Z ∼ WN(0, σ 2), the weekly aggregated returns
at times t and t + l satisfy

cov(X(5)
t , X

(5)
t+l ) = cov

( 4∑
i=0

Xt−i ,

4∑
j=0

Xt+l−j

)
=
{
(5 − l)σ 2, l = 0, . . . , 4

0, l � 5,

so that the overlapping returns have the correlation structure of an MA(4) process,
and this would be a natural choice of time series model for them.

Having chosen the model to fit, there are a number of possible fitting methods,
including specialized methods for AR processes, such as Yule–Walker, that make
minimal assumptions concerning the distribution of the white noise innovations;
we refer to the standard time series literature for more details. In Section 4.3.4 we
discuss the method of (conditional) maximum likelihood, which may be used to fit
ARMA models with (or without) GARCH errors to data.

Residual analysis and model comparison. Recall the representation of a causal
and invertible ARMA process in (4.13) and suppose we have fitted such a process
and estimated the parameters φi and θj . The residuals are inferred values ε̂t for the
unobserved innovations εt and they are calculated recursively from the data and
fitted model by

ε̂t = Xt − µ̂t , µ̂t = µ̂ +
p∑
i=1

φ̂i (Xt−i − µ̂) +
q∑

j=1

θ̂j ε̂t−j , (4.15)

where the values µ̂t are sometimes known as the fitted values. Obviously, we have a
problem calculating the first few values of ε̂t due to the finiteness of our data sample
and the infinite nature of the recursions (4.15). One of many possible solutions might
be to set ε̂−q+1 = ε̂−q+2 = · · · = ε̂0 = 0 and X−p+1 = X−p+2 = · · · = X0 = X̄

and then to use (4.15) for t = 1, . . . , n. Since the first few values will be influenced
by these starting values, they might be ignored in later analyses.

The residuals (ε̂t ) should behave like a realization of a white noise process,
since this is our model assumption for the innovations, and this can be assessed by
constructing their correlogram. If there is still evidence of serial correlation in the
correlogram, then this suggests that a good ARMA model has not yet been found.
Moreover, we can use portmanteau tests to test formally that the residuals behave
like a realization of a strict white noise process. If the residuals behave like SWN,
then no further time series modelling is required; if they behave like WN but not
SWN, then the volatility models of Section 4.3 may be required.

It is usually possible to find more than one reasonable ARMA model for the
data, and formal model-comparison techniques may be required to decide on an
overall best model or models. The Akaike model-selection criterion described in
Section A.3.6 might be used, or one of a number of variants on this criterion which
are often preferred for time series (see Brockwell and Davis 2002, Section 5.5.2).

4.2.5 Prediction

There are many approaches to the forecasting or prediction of time series and we
summarize two which extend easily to the case of GARCH models. The first strategy
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makes use of fitted ARMA (or ARIMA) models and is sometimes called the Box–
Jenkins approach (Box and Jenkins 1970). The second strategy is a model-free
approach to forecasting known as exponential smoothing, which is related to the
exponentially weighted moving-average technique for predicting volatility.

Prediction using ARMA models. Consider the invertible ARMA model and its
representation in (4.13). Let Ft denote the history of the process up to and includ-
ing time t as before and assume that the innovations (εt )t∈Z have the martingale-
difference property with respect to (Ft )t∈Z.

For the prediction problem it will be convenient to denote our sample of n data
by Xt−n+1, . . . , Xt . We assume these are realizations of rvs following a particular
ARMA model. Our aim is to predict Xt+1 or more generally Xt+h, and we denote
our prediction by PtXt+h. The method we describe assumes that we have access
to the infinite history of the process up to time t and derives a formula that is then
approximated for our finite sample.

As a predictor of Xt+h we use the conditional expectation E(Xt+h | Ft ). Among
all predictions PtXt+h based on the infinite history of the process up to time t , this
predictor minimizes the mean squared prediction error E((Xt+h − PtXt+h)

2).
The basic idea is that, for h � 1, the prediction E(Xt+h | Ft ) is recursively

evaluated in terms of E(Xt+h−1 | Ft ). We use the fact that E(εt+h | Ft ) = 0 (the
martingale-difference property of innovations) and that the rvs (Xs)s�t and (εs)s�t

are “known” at time t . The assumption of invertibility (4.12) ensures that the inno-
vation εt can be written as a function of the infinite history of the process (Xs)s�t .
To illustrate the approach it will suffice to consider an ARMA(1, 1) model, the
generalization to ARMA(p, q) models following easily.

Example 4.15 (prediction for the ARMA(1, 1) model). Suppose an ARMA(1, 1)
model of the form (4.13) has been fitted to the data and its parameters µ, φ and θ

have been determined. Our one-step prediction for Xt+1 is

E(Xt+1 | Ft ) = µt+1 = µ + φ(Xt − µ) + θεt ,

since E(εt+1 | Ft ) = 0. For a two-step prediction we get

E(Xt+2 | Ft ) = E(µt+2 | Ft ) = µ + φ(E(Xt+1 | Ft ) − µ)

= µ + φ2(Xt − µ) + φθεt ,

and in general we have

E(Xt+h | Ft ) = µ + φh(Xt − µ) + φh−1θεt .

Without knowing all historical values of (Xs)s�t this predictor cannot be eval-
uated exactly, but it can be accurately approximated if n is reasonably large. The
easiest way of doing this is to substitute the model residual ε̂t calculated from (4.15)
for εt . Note that limh→∞ E(Xt+h | Ft ) = µ, almost surely, so that the prediction
converges to the estimate of the unconditional mean of the process for longer time
horizons.
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Exponential smoothing. This is a popular technique which is used for both pre-
diction of time series and trend estimation. Here we do not necessarily assume that
the data come from a stationary model, although we do assume that there is no
deterministic seasonal component in the model. In general the method is less well
suited to return series with frequently changing signs and is better suited to undiffer-
enced price or value series. It forms the basis of a very common method of volatility
prediction (see Section 4.4.1).

Suppose our data represent realizations of rvs Yt−n+1, . . . , Yt , considered without
reference to any concrete parametric model.As a forecast forYt+1 we use a prediction
of the form

PtYt+1 =
n−1∑
i=0

α(1 − α)iYt−i , where 0 < α < 1.

Thus we weight the data from most recent to most distant with a sequence of expo-
nentially decreasing weights that sum to almost one. It is easily calculated that

PtYt+1 =
n−1∑
i=0

α(1 − α)iYt−i = αYt + (1 − α)

n−2∑
j=0

α(1 − α)jYt−1−j

= αYt + (1 − α)Pt−1Yt , (4.16)

so that the prediction at time t is obtained from the prediction at time t − 1 by
a simple recursive scheme. The choice of α is subjective; the larger the value the
more weight is put on the most recent observation. Empirical validation studies with
different datasets can be used to determine a value of α that gives good results.

Note that, although the method is commonly seen as a model-free forecasting
technique, it can be shown to be the natural prediction method based on conditional
expectation for a non-stationary ARIMA(0, 1, 1) model.

Notes and Comments

There are many texts covering the subject of classical time series analysis including
Box and Jenkins (1970), Priestley (1981), Abraham and Ledolter (1983), Brockwell
and Davis (1991, 2002), Hamilton (1994) and Chatfield (1996). Our account of basic
concepts, ARMA models and analysis in the time domain closely follows Brockwell
and Davis (1991), which should be consulted for the rigorous background to ideas we
can only summarize. We have not discussed analysis of time series in the frequency
domain, which is less common for financial time series; for this subject see, again,
Brockwell and Davis (1991) or Priestley (1981).

For more on tests of the strict white noise hypothesis (that is tests of randomness),
see Brockwell and Davis (2002). Original references for the Box–Pierce and Ljung–
Box tests are Box and Pierce (1970) and Ljung and Box (1978).

There is a vast literature on forecasting and prediction in linear models. A
good non-mathematical introduction is found in Chatfield (1996). The approach
we describe based on the infinite history of the time series is discussed in greater
detail in Hamilton (1994). Brockwell and Davis (2002) concentrate on exact linear
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prediction methods for finite samples. A general review of exponential smoothing
is found in Gardner (1985).

4.3 GARCH Models for Changing Volatility

The most important models for daily risk-factor return series are addressed in this
section. We give definitions ofARCH (autoregressive conditionally heteroscedastic)
and GARCH (generalized ARCH) models and discuss some of their mathematical
properties before going on to talk about their use in practice.

4.3.1 ARCH Processes

Definition 4.16. Let (Zt )t∈Z be SWN(0, 1). The process (Xt )t∈Z is an ARCH(p)
process if it is strictly stationary and if it satisfies, for all t ∈ Z and some strictly
positive-valued process (σt )t∈Z, the equations

Xt = σtZt , (4.17)

σ 2
t = α0 +

p∑
i=1

αiX
2
t−i , (4.18)

where α0 > 0 and αi � 0, i = 1, . . . , p.

Let Ft = σ({Xs : s � t}) again denote the sigma algebra representing the history
of the process up to time t so that (Ft )t∈Z is the natural filtration. Clearly, the
construction (4.18) ensures that σt is measurable with respect to Ft−1. This allows
us to calculate that, provided E(|Xt |) < ∞,

E(Xt | Ft−1) = E(σtZt | Ft−1) = σtE(Zt | Ft−1) = σtE(Zt ) = 0, (4.19)

so that the ARCH process has the martingale-difference property with respect to
(Ft )t∈Z. If the process is covariance stationary, it is simply a white noise, as discussed
in Section 4.2.1.

Remark 4.17. Note that the independence of Zt and Ft−1 that we have assumed
above follows from the fact that an ARCH process must be causal, i.e. the equa-
tions (4.17) and (4.18) must have a solution of the form Xt = f (Zt , Zt−1, . . . )

for some f so that Zt is independent of previous values of the process. This con-
trasts with ARMA models where the equations can have non-causal solutions (see
Brockwell and Davis 1991, Example 3.1.2).

If we simply assume that the process is a covariance-stationary white noise (for
which we will give a condition in Proposition 4.18), then E(X2

t ) < ∞ and

var(Xt | Ft−1) = E(σ 2
t Z

2
t | Ft−1) = σ 2

t var(Zt ) = σ 2
t .

Thus the model has the interesting property that its conditional standard deviation
σt , or volatility, is a continually changing function of the previous squared values of
the process. If one or more of |Xt−1|, . . . , |Xt−p| are particularly large, then Xt is
effectively drawn from a distribution with large variance, and may itself be large; in
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Figure 4.6. A simulated ARCH(1) process with Gaussian innovations and parameters
α0 = α1 = 0.5: (a) the realization of the process; (b) the realization of the volatility; and
correlograms of (c) the raw and (d) the squared values. The process is covariance stationary
with unit variance and a finite fourth moment (since α1 < 1/

√
3) and the squared values

follow an AR(1) process. The true form of the ACF of the squared values is represented by
the dashed line in the correlogram.

this way the model generates volatility clusters. The nameARCH refers to this struc-
ture: the model is autoregressive, since Xt clearly depends on previous Xt−i , and
conditionally heteroscedastic, since the conditional variance changes continually.

The distribution of the innovations (Zt )t∈Z can in principle be any zero-mean,
unit-variance distribution. For statistical fitting purposes we may or may not choose
to actually specify the distribution, depending on whether we implement a max-
imum likelihood (ML), quasi-maximum likelihood (QML) or non-parametric fit-
ting method (see Section 4.3.4). For ML the most common choices are stan-
dard normal innovations or scaled t innovations. By the latter we mean that
Zt ∼ t1(ν, 0, (ν − 2)/ν) in the notation of Example 3.7, so that the variance of
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the distribution is one. We keep these choices in mind when discussing further
theoretical properties of ARCH and GARCH models.

The ARCH(1) model. In the rest of this section we analyse some of the properties
of the ARCH(1) model. These properties extend to the whole class of ARCH and
GARCH models, but are most easily introduced in the simplest case. A simulated
realization of an ARCH(1) process with Gaussian innovations and the corresponding
realization of the volatility process are shown in Figure 4.6.

Using X2
t = σ 2

t Z
2
t and (4.18) in the case p = 1, we deduce that the squared

ARCH(1) process satisfies

X2
t = α0Z

2
t + α1Z

2
t X

2
t−1. (4.20)

A detailed mathematical analysis of the ARCH(1) model involves the study of
equation (4.20), which is a stochastic recurrence equation (SRE). Much as for the
AR(1) model in Example 4.11, we would like to know when this equation has
stationary solutions expressed in terms of the infinite history of the innovations,
i.e. solutions of the form X2

t = f (Zt , Zt−1, . . . ).
For ARCH models we have to distinguish carefully between solutions that are

covariance stationary and solutions that are only strictly stationary. It is possible to
have ARCH(1)models with infinite variance, which obviously cannot be covariance
stationary.

Stochastic recurrence relations. The detailed theory required to analyse stochastic
recurrence relations of the form (4.20) is outside the scope of this book, and we give
only brief notes to indicate the ideas involved. Our treatment is based on Brandt
(1986) and Mikosch (2003); see Notes and Comments at the end of this section for
further references.

Equation (4.20) is a particular example of a class of recurrence equations of the
form

Yt = AtYt−1 + Bt , (4.21)

where (At )t∈Z and (Bt )t∈Z are sequences of iid rvs. Sufficient conditions for a
solution are that

E(max{0, ln |Bt |}) < ∞ and E(ln |At |) < 0, (4.22)

where ln+ x = max(0, ln x). The unique solution is given by

Yt = Bt +
∞∑
i=1

Bt−i

i−1∏
j=0

At−j , (4.23)

where the sum converges absolutely, almost surely.
We can develop some intuition for the conditions (4.22) and the form of the

solution (4.23) by iterating equation (4.21) k times to obtain

Yt = At(At−1Yt−2 + Bt−1) + Bt

= Bt +
k∑

i=1

Bt−i

i−1∏
j=0

At−j + Yt−k−1

k∏
i=0

At−i .
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The conditions (4.22) ensure that the middle term on the right-hand side converges
absolutely and the final term disappears. In particular, note that

1

k + 1

k∑
i=0

ln |At−i | a.s.−→ E(ln |At |) < 0

by the strong law of large numbers. So

k∏
i=0

|At−i | = exp

( k∑
i=0

ln |At−i |
)

a.s.−→ 0,

which shows the importance of the E(ln |At |) < 0 condition. The solution (4.23) to
the SRE is a strictly stationary process (being a function of iid variables (As, Bs)s�t ),
and the E(ln |At |) < 0 condition turns out to be the key to the strict stationarity of
ARCH and GARCH models.

Stationarity of ARCH(1). The squared ARCH(1) model (4.20) is an SRE of the
form (4.21) withAt = α1Z

2
t andBt = α0Z

2
t . Thus the conditions in (4.22) translate

into the requirements that E(ln+ |α0Z
2
t |) < ∞, which is automatically true for the

ARCH(1) process as we have defined it, andE(ln(α1Z
2
t )) < 0. This is the condition

for a strictly stationary solution of the ARCH(1) equations and it can be shown that
it is in fact a necessary and sufficient condition for strict stationarity (see Bougerol
and Picard 1992). From (4.23), the solution of equation (4.20) takes the form

X2
t = α0

∞∑
i=0

αi1

i∏
j=0

Z2
t−j . (4.24)

If the (Zt ) are standard normal innovations, then the condition for a strictly sta-
tionary solution is approximately α1 < 3.562; perhaps somewhat surprisingly, if
the (Zt ) are scaled t innovations with four degrees of freedom and variance 1, the
condition is α1 < 5.437. Strict stationarity depends on the distribution of the inno-
vations but covariance stationarity does not; the necessary and sufficient condition
for covariance stationarity is always α1 < 1, as we now prove.

Proposition 4.18. The ARCH(1) process is a covariance-stationary white noise
process if and only if α1 < 1. The variance of the covariance-stationary process is
given by α0/(1 − α1).

Proof. Assuming covariance stationarity it follows from (4.20) and E(Z2
t ) = 1 that

σ 2
x = E(X2

t ) = α0 + α1E(X
2
t−1) = α0 + α1σ

2
x .

Clearly, σ 2
x = α0/(1 − α1) and we must have α1 < 1.

Conversely, if α1 < 1, then, by Jensen’s inequality,

E(ln(α1Z
2
t )) � ln(E(α1Z

2
t )) = ln(α1) < 0,

and we can use (4.24) to calculate that

E(X2
t ) = α0

∞∑
i=0

αi1 = α0

1 − α1
.
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Figure 4.7. (a), (b) Strictly stationary ARCH(1) models with Gaussian innovations which
are not covariance stationary (α1 = 1.2 and α1 = 3, respectively). (c) A non-stationary
(explosive) process generated by the ARCH(1) equations with α1 = 4. Note that (b) and (c)
use a special double-logarithmic y-axis where all values less than one in modulus are plotted
at zero.

The process (Xt )t∈Z is a martingale difference with a finite, non-time-dependent
second moment. Hence it is a white noise process.

See Figure 4.7 for examples of non-covariance-stationary ARCH(1) models
as well as an example of a non-stationary (explosive) process generated by the
ARCH(1) equations. The process in Figure 4.6 is covariance stationary.

On the stationary distribution of Xt . It is clear from (4.24) that the distribution of
the (Xt ) in an ARCH(1)model bears a complicated relationship to the distribution of
the innovations (Zt ). Even if the innovations are Gaussian, the stationary distribution
of the time series is not Gaussian, but rather a leptokurtic distribution with more
slowly decaying tails.

Moreover, from (4.17) we see that the distribution of Xt is a normal mixture
distribution of the kind discussed in Section 3.2. Its distribution depends on the
distribution of σt , which has no simple form.

Proposition 4.19. For m � 1, the strictly stationary ARCH(1) process has finite
moments of order 2m if and only if E(Z2m

t ) < ∞ and α1 < (E(Z2m
t ))−1/m.
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Proof. We rewrite (4.24) in the form X2
t = Z2

t

∑∞
i=0Yt,i for positive rvs Yt,i =

α0α
i
1

∏i
j=1Z

2
t−j , i � 1, and Yt,0 = α0. For m � 1 the following inequalities hold

(the latter being Minkowski’s inequality):

E(Ym
t,1) + E(Ym

t,2) � E((Yt,1 + Yt,2)
m) � ((E(Ym

t,1))
1/m + (E(Ym

t,2))
1/m)m.

Since

E(X2m
t ) = E(Z2m

t )E

(( ∞∑
i=0

Yt,i

)m)
,

it follows that

E(Z2m
t )

∞∑
i=0

E(Ym
t,i) � E(X2m

t ) � E(Z2m
t )

( ∞∑
i=0

(E(Ym
t,i))

1/m
)m

.

Since E(Ym
t,i) = αm0 α

im
1 (E(Z2m

t ))i , it may be deduced that all three quantities are
finite if and only if E(Z2m

t ) < ∞ and αm1 E(Z
2m
t ) < 1.

For example, for a finite fourth moment (m = 2) we require α1 < 1/
√

3 in the
case of Gaussian innovations and α1 < 1/

√
6 in the case of t innovations with

six degrees of freedom; for t innovations with four degrees of freedom the fourth
moment is undefined.

Assuming the existence of a finite fourth moment, it is easy to calculate its value,
and also that of the kurtosis of the process. We square both sides of (4.20), take
expectations of both sides and then solve for E(X4

t ) to obtain

E(X4
t ) = α2

0E(Z
4
t )(1 − α2

1)

(1 − α1)2(1 − α2
1E(Z

4
t ))

.

The kurtosis of the stationary distribution κX can then calculated to be

κX = E(X4
t )

E(X2
t )

2
= κZ(1 − α2

1)

(1 − α2
1κZ)

,

where κZ = E(Z4
t ) denotes the kurtosis of the innovations. Clearly, when κZ > 1,

the kurtosis of the stationary distribution is inflated in comparison with that of the
innovation distribution; for Gaussian or t innovations κX > 3, so the stationary
distribution is leptokurtic. The kurtosis of the process in Figure 4.6 is 9.

Parallels with the AR(1) process. We now turn our attention to the serial depend-
ence structure of the squared series in the case of covariance stationarity (α1 < 1).
We write the squared process as

X2
t = σ 2

t Z
2
t = σ 2

t + σ 2
t (Z

2
t − 1). (4.25)

Setting Vt = σ 2
t (Z

2
t − 1) we note that (Vt )t∈Z forms a martingale difference series,

since E|Vt | < ∞ and E(Vt | Ft−1) = σ 2
t E(Z

2
t −1) = 0. Now we rewrite (4.25) as

X2
t = α0 + α1X

2
t−1 + Vt , and observe that this closely resembles an AR(1) process

for X2
t , except that Vt is not necessarily a white noise process. If we restrict our
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attention to processes where E(X4
t ) is finite, then Vt has a finite and constant sec-

ond moment and is a white noise process. Under this assumption, X2
t is an AR(1)

according to Definition 4.7 of the form(
X2
t − α0

1 − α1

)
= α1

(
X2
t−1 − α0

1 − α1

)
+ Vt .

It has mean α0/(1−α1) and we can use Example 4.11 to conclude that the autocorre-
lation function is ρ(h) = α

|h|
1 , h ∈ Z. Figure 4.6 shows an example of an ARCH(1)

process with finite fourth moment whose squared values follow an AR(1) process.

4.3.2 GARCH Processes

Definition 4.20. Let (Zt )t∈Z be SWN(0, 1). The process (Xt )t∈Z is a GARCH(p, q)
process if it is strictly stationary and if it satisfies, for all t ∈ Z and some strictly
positive-valued process (σt )t∈Z, the equations

Xt = σtZt , σ 2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j , (4.26)

where α0 > 0, αi � 0, i = 1, . . . , p, and βj � 0, j = 1, . . . , q.

The GARCH processes are generalized ARCH processes in the sense that the
squared volatility σ 2

t is allowed to depend on previous squared volatilities, as well
as previous squared values of the process.

The GARCH(1, 1) model. In practice, low-order GARCH models are most widely
used and we will concentrate on the GARCH(1, 1) model. In this model periods of
high volatility tend to be persistent, since |Xt | has a chance of being large if either
|Xt−1| is large or σt−1 is large; the same effect can be achieved in ARCH models of
high order, but lower-order GARCH models achieve this effect more parsimoniously.
A simulated realization of a GARCH(1, 1) process with Gaussian innovations and
its volatility are shown in Figure 4.8; in comparison with the ARCH(1) model of
Figure 4.6 it is clear that the volatility persists longer at higher levels before decaying
to lower levels.

Stationarity. It follows from (4.26) that for a GARCH(1, 1) model we have

σ 2
t = α0 + (α1Z

2
t−1 + β)σ 2

t−1, (4.27)

which is again an SRE of the form Yt = AtYt−1 +Bt , as in (4.21). This time it is an
SRE for Yt = σ 2

t rather than X2
t , but its analysis follows easily from the ARCH(1)

case.
The condition E(ln |At |) < 0 for a strictly stationary solution of (4.21) translates

to the condition E(ln(α1Z
2
t + β)) < 0 for (4.27) and the general solution (4.23)

becomes

σ 2
t = α0 + α0

∞∑
i=1

i∏
j=1

(α1Z
2
t−j + β). (4.28)



146 4. Financial Time Series

If (σ 2
t )t∈Z is a strictly stationary process, then so is (Xt )t∈Z, since Xt = σtZt and

(Zt )t∈Z is simply strict white noise. The solution of the GARCH(1, 1) defining
equations is then

Xt = Zt

√√√√α0

(
1 +

∞∑
i=1

i∏
j=1

(α1Z
2
t−j + β)

)
, (4.29)

and we can use this to derive the condition for covariance stationarity.

Proposition 4.21. The GARCH(1, 1) process is a covariance-stationary white noise
process if and only if α1 +β < 1. The variance of the covariance-stationary process
is given by α0/(1 − α1 − β).

Proof. We use a similar argument to Proposition 4.18 and make use of (4.29).

Fourth moments and kurtosis. Using a similar approach to Proposition 4.19 we can
use (4.29) to derive conditions for the existence of higher moments of a covariance-
stationary GARCH(1, 1) process. For the existence of a fourth moment, a necessary
and sufficient condition is that E((α1Z

2
t + β)2) < 1, or alternatively that

(α1 + β)2 < 1 − (κZ − 1)α2
1 .

Assuming this to be true we calculate the fourth moment and kurtosis of Xt . We
square both sides of (4.27) and take expectations to obtain

E(σ 4
t ) = α2

0 + (α2
1κZ + β2 + 2α1β)E(σ

4
t ) + 2α0(α1 + β)E(σ 2

t ).

Solving for E(σ 4
t ), recalling that E(σ 2

t ) = E(X2
t ) = α0/(1 − α1 − β), and setting

E(X4
t ) = κZE(σ

4
t ) we obtain

E(X4
t ) = α2

0κZ(1 − (α1 + β)2)

(1 − α1 − β)2(1 − α2
1κZ − β2 − 2α1β)

,

from which it follows that

κX = κZ(1 − (α1 + β)2)

(1 − (α1 + β)2 − (κZ − 1)α2
1)
.

Again it is clear that the kurtosis of Xt is greater than that of Zt whenever κZ > 1,
such as for Gaussian and scaled t innovations. The kurtosis of the GARCH(1, 1)
model in Figure 4.8 is 3.77.

Parallels with the ARMA(1, 1) process. Using the same representation as in equa-
tion (4.25), the covariance-stationary GARCH(1, 1) process may be written as

X2
t = α0 + α1X

2
t−1 + βσ 2

t−1 + Vt ,

where Vt is a martingale difference, given by Vt = σ 2
t (Z

2
t − 1). Since σ 2

t−1 =
X2
t−1 − Vt−1, we may write

X2
t = α0 + (α1 + β)X2

t−1 − βVt−1 + Vt , (4.30)
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Figure 4.8. A GARCH(1, 1) process with Gaussian innovations and parameters α0 = 0.5,
α1 = 0.1, β = 0.85: (a) the realization of the process; (b) the realization of the volatility; and
correlograms of (c) the raw and (d) the squared values. The process is covariance stationary
with unit variance and a finite fourth moment and the squared values follow an ARMA(1, 1)
process. The true form of the ACF of the squared values is shown by a dashed line in the
correlogram.

which begins to resemble an ARMA(1, 1) process for X2
t . If we further assume that

E(X4
t ) < ∞, then, recalling that α1 + β < 1, we have formally that(
X2
t − α0

1 − α1 − β

)
= (α1 + β)

(
X2
t−1 − α0

1 − α1 − β

)
− βVt−1 + Vt

is an ARMA(1, 1) process. Figure 4.8 shows an example of a GARCH(1, 1) process
with finite fourth moment whose squared values follow an ARMA(1, 1) process.

The GARCH(p, q) model. Higher-order ARCH and GARCH models have the
same general behaviour as ARCH(1) and GARCH(1, 1), but their mathematical
analysis becomes more tedious. The condition for a strictly stationary solution of the
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defining SRE has been derived by Bougerol and Picard (1992), but is complicated.
The necessary and sufficient condition that this solution is covariance stationary is∑p

i=1 αi +∑q
j=1 βj < 1.

A squared GARCH(p, q) process has the structure

X2
t = α0 +

max(p,q)∑
i=1

(αi + βi)X
2
t−i −

q∑
j=1

βjVt−j + Vt ,

where αi = 0 for i = p + 1, . . . , q if q > p, or βj = 0 for j = q + 1, . . . , p if
p > q. This resembles the ARMA(max(p, q), q) process and is formally such a
process provided EX4

t < ∞.

Integrated GARCH. The study of integrated GARCH (or IGARCH) processes
has been motivated by the fact that, in some applications of GARCH modelling
to daily or higher-frequency risk-factor return series, the estimated ARCH and
GARCH coefficients (α1, . . . , αp, β1, . . . , βq ) are observed to sum to a num-
ber very close to one, and sometimes even slightly larger than one. In a model
where

∑p
i=1 αi +∑q

j=1 βj � 1, the process has infinite variance and is thus non-
covariance-stationary. The special case where

∑p
i=1 αi +∑q

j=1 βj = 1 is known
as IGARCH and has received some attention.

For simplicity consider the IGARCH(1, 1) model. We use (4.30) to conclude that
the squared process must satisfy

∇X2
t = X2

t − X2
t−1 = α0 − (1 − α1)Vt−1 + Vt ,

where Vt is a noise sequence defined by Vt = σ 2
t (Z

2
t −1) and σ 2

t = α0 +α1X
2
t−1 +

(1−α1)σ
2
t−1. This equation is reminiscent of an ARIMA(0, 1, 1)model (see (4.14))

forX2
t , although the noiseVt is not white noise, nor is it strictly speaking a martingale

difference according to Definition 4.6. E(Vt | Ft−1) is undefined since E(σ 2
t ) =

E(X2
t ) = ∞, and therefore E|Vt | is undefined.

4.3.3 Simple Extensions of the GARCH Model

Many variants on and extensions of the basic GARCH model have been proposed.
We mention only a few (see Notes and Comments for further reading).

ARMA models with GARCH errors. We have seen thatARMA processes are driven
by a white noise (εt )t∈Z and that a covariance-stationary GARCH process is an
example of a white noise. In this section we put the ARMA and GARCH models
together by setting the ARMA error εt equal to σtZt , where σt follows a GARCH
volatility specification in terms of historical values of εt . This gives us a flexible
family of ARMA models with GARCH errors that combines the features of both
model classes.

Definition 4.22. Let (Zt )t∈Z be SWN(0, 1). The process (Xt )t∈Z is said to be an
ARMA(p1, q1) process with GARCH(p2, q2) errors if it is covariance stationary
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and satisfies difference equations of the form

Xt = µt + σtZt ,

µt = µ +
p1∑
i=1

φi(Xt−i − µ) +
q1∑
j=1

θj (Xt−j − µt−j ),

σ 2
t = α0 +

p2∑
i=1

αi(Xt−i − µt−i )
2 +

q2∑
j=1

βjσ
2
t−j ,

where α0 > 0, αi � 0, i = 1, . . . , p2, βj � 0, j = 1, . . . , q2, and
∑p2

i=1αi +∑q2
j=1βj < 1.

To be consistent with the previous definition of an ARMA process we build the
covariance-stationarity condition for the GARCH errors into the definition. For the
ARMA process to be a causal and invertible linear process, as before, the polynomials
φ̃(z) = 1 − φ1z − · · · − φp1z

p1 and θ̃ (z) = 1 + θ1z + · · · + θq1z
q1 should have no

common roots and no roots inside the unit circle.
Let (Ft )t∈Z denote the natural filtration of (Xt )t∈Z and assume that the ARMA

model is invertible. The invertibility of the ARMA process ensures that µt is
Ft−1-measurable as in (4.13). Moreover, since σt depends on the infinite history
(Xs − µs)s�t−1, the ARMA invertibility also ensures that σt is Ft−1-measurable.
Simple calculations show that µt = E(Xt | Ft−1) and σ 2

t = var(Xt | Ft−1), so
that µt and σ 2

t are the conditional mean and variance of the new process.

GARCH with leverage. One of the main criticisms of the standard ARCH and
GARCH models is the rigidly symmetric way in which the volatility reacts to recent
returns, regardless of their sign. Economic theory suggests that market information
should have an asymmetric effect on volatility, whereby bad news leading to a fall
in the equity value of a company tends to increase the volatility. This phenomenon
has been called a leverage effect, because a fall in equity value causes an increase in
the debt-to-equity ratio or so-called leverage of a company and should consequently
make the stock more volatile. At a less theoretical level it seems reasonable that
falling stock values might lead to a higher level of investor nervousness than rises
in value of the same magnitude.

One method of adding a leverage effect to a GARCH(1, 1)model is by introducing
an additional parameter into the volatility equation (4.26) to get

σ 2
t = α0 + α1(Xt−1 + δ|Xt−1|)2 + βσ 2

t−1. (4.31)

We assume that δ ∈ [−1, 1] and α1 � 0 as in the GARCH(1, 1) model. Observe
that (4.31) may be written as

σ 2
t =

{
α0 + α1(1 + δ)2X2

t−1 + βσ 2
t−1, Xt−1 � 0,

α0 + α1(1 − δ)2X2
t−1 + βσ 2

t−1, Xt−1 < 0,

and hence that
∂σ 2

t

∂X2
t−1

=
{
α1(1 + δ)2σ 2

t−1, Xt−1 � 0,

α1(1 − δ)2σ 2
t−1, Xt−1 < 0.



150 4. Financial Time Series

The response of volatility to the magnitude of the most recent return depends on
the sign of that return, and we generally expect δ < 0, so bad news has the greater
effect.

Threshold GARCH. Observe that (4.31) may easily be rewritten in the form

σ 2
t = α0 + α̃1X

2
t−1 + δ̃1I{Xt−1<0}X2

t−1 + βσ 2
t−1, (4.32)

where α̃1 = α1(1 + δ)2 and δ̃ = −4δα1. Equation (4.32) gives the most common
version of a threshold GARCH (or TGARCH) model. In effect, a threshold has been
set at level zero, and at time t the dynamics depend on whether the previous value of
the process Xt−1 (or innovation Zt−1) was below or above this threshold. However,
it is also possible to set non-zero thresholds in TGARCH models, so this represents
a more general class of model than GARCH with leverage.

In a less common version of threshold GARCH the coefficients of the GARCH
effects depend on the signs of previous values of the process; this gives a first-order
process of the form

σ 2
t = α0 + α1X

2
t−1 + βσ 2

t−1 + δ1{Xt−1<0}σ 2
t−1. (4.33)

Remark 4.23. Note, also, that a further way to introduce asymmetry into a GARCH
model is to explicitly use an asymmetric innovation distribution (albeit normalized
to have mean zero and variance one). Candidate distributions could come from the
generalized hyperbolic family of Section 3.2.3.

4.3.4 Fitting GARCH Models to Data

Building the likelihood. In practice, the most widely used approach to fitting
GARCH models to data is maximum likelihood. We consider in turn the fitting of the
ARCH(1) and GARCH(1, 1) models, from which the fitting of general ARCH(p)
and GARCH(p, q) models easily follows.

For the ARCH(1) and GARCH(1, 1) models suppose we have a total of n + 1
data values X0, X1, . . . , Xn. It is useful to recall that we can write the joint density
of the corresponding rvs as

fX0,...,Xn(x0, . . . , xn) = fX0(x0)

n∏
t=1

fXt |Xt−1,...,X0(xt | xt−1, . . . , x0). (4.34)

For the pure ARCH(1) process, which is first-order Markovian, the conditional
densities fXt |Xt−1,...,X0 in (4.34) depend on the past only through the value of σt or,
equivalently, Xt−1. The conditional density is easily calculated to be

fXt |Xt−1,...,X0(xt | xt−1, . . . , x0) = fXt |Xt−1(xt | xt−1) = 1

σt
g

(
xt

σt

)
, (4.35)

where σt = (α0 + α1x
2
t−1)

1/2 and g(z) denotes the density of the innovations
(Zt )t∈Z. We recall that this must have mean zero and variance one and typical
choices would be the standard normal density or the density of a t distribution
scaled to have unit variance.
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However, the marginal density fX0 in (4.34) is not known in a tractable closed
form forARCH and GARCH models and this poses a problem for basing a likelihood
on (4.34). The solution employed in practice is to construct the conditional likelihood
given X0, which is calculated from

fX1,...,Xn|X0(x1, . . . , xn | x0) =
n∏

t=1

fXt |Xt−1,...,X0(xt | xt−1, . . . , x0). (4.36)

For the ARCH(1) model this follows from (4.35) and is

L(α0, α1; X) = fX1,...,Xn|X0(X1, . . . , Xn | X0) =
n∏

t=1

1

σt
g

(
Xt

σt

)
,

with σt = (α0 + α1X
2
t−1)

1/2. For an ARCH(p) model we would use analogous
arguments to write down a likelihood conditional on the first p values.

In the GARCH(1, 1) model σt is recursively defined in terms of σt−1, and here,
instead of using (4.36), we construct the joint density of X1, . . . , Xn conditional on
realized values of both X0 and σ0, which is

fX1,...,Xn|X0,σ0(x1, . . . , xn | x0, σ0) =
n∏

t=1

fXt |Xt−1,...,X0,σ0(xt | xt−1, . . . , x0, σ0).

The conditional densities fXt |Xt−1,...,X0,σ0 depend on the past only through the value
of σt , which is given recursively from σ0, X0, . . . , Xt−1 using σ 2

t = α0 +α1X
2
t−1 +

βσ 2
t−1. This gives us the conditional likelihood

L(α0, α1, β; X) =
n∏

t=1

1

σt
g

(
Xt

σt

)
, σt =

√
α0 + α1X

2
t−1 + βσ 2

t−1.

The problem remains that the value of σ 2
0 is not actually observed, and this is usually

solved by choosing a starting value, such as the sample variance of X1, . . . , Xn, or
even simply zero.

For a GARCH(p, q) model we would assume that we had n + p data values
labelledX−p+1, . . . , X0, X1, . . . , Xn. We would evaluate the likelihood conditional
on the (observed) values of X−p+1, . . . , X0 as well as the (unobserved) values of
σ−q+1, . . . , σ0, for which starting values would be used as above. For example, if
p = 1 and q = 3, we require starting values for σ0, σ−1 and σ−2.

A similar approach can be used to develop a likelihood for an ARMA model with
GARCH errors. In this case we would end up with a conditional likelihood of the
form

L(θ; X) =
n∏

t=1

1

σt
g

(
Xt − µt

σt

)
,

where σt follows a GARCH specification and µt follows an ARMA specification
as in Definition 4.22, and all unknown parameters (possibly including unknown
parameters of the innovation distribution) have been collected in the vector θ . We
could of course also consider models with leverage or threshold effects.



152 4. Financial Time Series

Deriving parameter estimates. Consider, then, a log-likelihood of the form

lnL(θ; X) =
n∑

t=1

lt (θ), (4.37)

where lt denotes the log-likelihood contribution arising from the t th observation.
The maximum likelihood estimate θ̂ maximizes the (conditional) log-likelihood
in (4.37) and, being in general a local maximum, solves the likelihood equations

∂

∂θ
lnL(θ; X) =

n∑
t=1

∂lt (θ)

∂θ
= 0, (4.38)

where the left-hand side is also known as the score vector of the conditional like-
lihood. The equations (4.38) are usually solved numerically using so-called mod-
ified Newton–Raphson procedures. A particular method which is widely used for
GARCH models is the BHHH method of Berndt, Hall, Hall and Hausmann.

In describing the behaviour of parameter estimates in the following paragraphs,
we distinguish two situations. In the first situation we assume that the model that has
been fitted has been correctly specified, so that the data are truly generated by a time
series model with both the assumed dynamic form and innovation distribution. We
describe the asymptotic behaviour of the maximum likelihood estimates (MLEs)
under this idealization.

In the second situation we assume that the correct dynamic form is fitted but that
the innovations are erroneously assumed to be Gaussian. Under this misspecification
the model fitting procedure is known as quasi-maximum likelihood (QML) and the
estimates obtained are QMLEs. Essentially, the Gaussian likelihood is treated as an
objective function to be maximized rather than a proper likelihood; our intuition
suggests that this may still give reasonable parameter estimates and this turns out to
be the case under appropriate assumptions about the true innovation distribution.

Properties of MLEs. It helps to recall at this point the asymptotic distribution
theory for MLEs in the classical iid case, which is summarized in Section A.3. The
asymptotic results we give for GARCH models have a similar form to the results
in the iid case, but it is important to realize that this is not simply an application
of these results. The asymptotics have been separately and laboriously derived in a
series of papers for which starting references are given in Notes and Comments. We
will give results for pure GARCH models without ARMA components or additional
leverage structure, which have been studied rigorously, but the form of the results
will apply more generally.

For a pure GARCH(p, q) model with Gaussian innovations it can be shown that
(assuming the model has been correctly specified)

√
n(θ̂n − θ)

d−→ Np+q+1(0, I (θ)−1),

where

I (θ) = E

(
∂lt (θ)

∂θ

∂lt (θ)

∂θ ′

)
= −E

(
∂2lt (θ)

∂θ∂θ ′

)
(4.39)
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is the Fisher information matrix arising from any single observation. Thus we have
consistent and asymptotically normal estimates of the GARCH parameters. In prac-
tice, the expected information matrix I (θ) is approximated by an observed informa-
tion matrix, and here we could take the observed information matrix coming from
either of the equivalent forms for the expected information matrix in (4.39). That is,
we could use

Ī (θ) = 1

n

n∑
t=1

(
∂lt (θ)

∂θ

∂lt (θ)

∂θ ′

)
or J̄ (θ) = −1

n

n∑
t=1

∂2lt (θ)

∂θ∂θ ′ , (4.40)

where the first matrix is said to have outer-product form and the second is said to have
Hessian form. These matrices are estimated by evaluating them at the MLEs to get
Ī (θ̂) or J̄ (θ̂). In practice, this is done by numerical first and second differencing of
the log-likelihood at the MLE and the necessary matrices are obtained as byproducts
of the BHHH procedure for deriving the parameter estimates.

If the model is correctly specified, the estimates Ī (θ̂) and J̄ (θ̂) should be broadly
similar, being estimators based on two different expressions for the same Fisher
information matrix. In practice, we could also estimate I (θ)by J̄ (θ̂)Ī (θ̂)−1J̄ (θ̂), and
this anticipates the so-called sandwich estimator that is used in the QML procedure.

Properties of QMLEs. In this approach we assume that the true data-generating
mechanism is a GARCH(p, q) model with non-Gaussian innovations, but we
attempt to estimate the parameters of the process by maximizing the likelihood
for a GARCH(p, q) model with Gaussian innovations. We still obtain consistent
estimators of the model parameters and, if the true innovation distribution has a
finite fourth moment, we again get asymptotic normality; however, the form of the
asymptotic covariance matrix changes.

We now distinguish between matrices I (θ) and J (θ), given by

I (θ) = E

(
∂lt (θ)

∂θ

∂lt (θ)

∂θ ′

)
, J (θ) = −E

(
∂2lt (θ)

∂θ∂θ ′

)
,

where the expectation is now taken with respect to the true model (not the mis-
specified Gaussian model). The matrices I (θ) and J (θ) differ in general (unless the
Gaussian model is correct). It may be shown that

√
n(θ̂n − θ)

d−→ Np+q+1(0, J (θ)−1I (θ)J (θ)−1), (4.41)

and the asymptotic covariance matrix is said to be of sandwich form; it can be
estimated by J̄ (θ̂)−1Ī (θ̂)J̄ (θ̂)−1, where Ī (θ) and J̄ (θ) are defined in (4.40). If
the model-checking procedures described below suggest that the dynamics have
been adequately described by the GARCH model, but the Gaussian assumption
seems doubtful, then standard errors for parameter estimates should be based on
this covariance matrix estimate.

Model checking. As withARMA models it is usual to check fitted GARCH models
using residuals.We consider a generalARMA–GARCH model of the formXt−µt =
εt = σtZt , with µt and σt as in Definition 4.22. In this model we distinguish
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between unstandardized and standardized residuals. The former are the residuals
ε̂1, . . . , ε̂n from the ARMA part of the model; they are calculated using the approach
in (4.15), and under the hypothesized model they should behave like a realization of
a pure GARCH process. The latter are reconstructed realizations of the SWN that
is assumed to drive the GARCH part of the model, and they are calculated from the
former by

Ẑt = ε̂t /σ̂t , σ̂ 2
t = α̂0 +

p2∑
i=1

α̂i ε̂
2
t−i +

q2∑
j=1

β̂j σ̂
2
t−j . (4.42)

To use (4.42) we need some initial values, and one solution is to set required starting
values of ε̂t equal to zero and required starting values of the volatility σ̂t equal to
either the sample variance or zero. Because the first few values will be influenced
by these starting values, as well as the starting values required to calculate the
unstandardized residuals, they may be ignored in later analyses.

The standardized residuals should behave like an SWN and this can be investigated
by constructing correlograms of raw and absolute values and applying portmanteau
tests of strict white noise, as described in Section 4.2.3.

Assuming that the SWN hypothesis is not rejected, so that the dynamics have
been satisfactorily captured, the validity of the distribution used in the ML fitting
can also be investigated using QQplots and goodness-of-fit tests for the normal or
scaled t distributions. If the Gaussian likelihood does a reasonable job of estimating
dynamics, but the residuals do not behave like iid standard normal observations, then
the QML fitting philosophy can be adopted and standard errors can be estimated
using the sandwich estimator implied by (4.41) above.

This opens up the possibility of two-stage analyses where first the dynamics are
estimated by QML methods and then the innovation distribution is modelled using
the residuals from the dynamic model as data. The first stage is sometimes called
pre-whitening of the data. In the second stage we might consider using heavier-tailed
models than the Gaussian that also allow some asymmetry in the innovations.

A disadvantage of the two-stage approach is that the error from the time series
modelling propagates through to the distributional fitting in the second stage and the
overall error is hard to quantify, but the procedure does lead to more transparency in
model building and allows us to separate the tasks of volatility modelling and mod-
elling the shocks that drive the process. In higher-dimensional risk-factor modelling
it may be a useful pragmatic approach.

Example 4.24 (GARCH model for Microsoft log-returns). We consider the
Microsoft daily log-returns for the period 1997–2000 (1009 values), as shown in
Figure 4.9. Although the raw returns show no evidence of serial correlation (see Fig-
ure 4.10), their absolute values do show serial correlation and they fail a Ljung–Box
test (based on the first 10 estimated correlations) at the 5% level.

For these data, models with Student t innovations are clearly preferred to models
with Gaussian innovations, so we adopt an ML approach to fitting models with t inno-
vations. We compare the standard GARCH(1, 1)model (with a constant mean term)
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Figure 4.9. Microsoft log-returns 1997–2000; data and estimate of
volatility from a GARCH(1, 1) model with a leverage term.
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Figure 4.10. Microsoft log-returns 1997–2000; correlograms of data ((a) raw and (b) abso-
lute values) and residuals ((c) raw and (d) absolute values) from a GARCH(1, 1) model.

with models that incorporate ARMA structure (AR(1), MA(1) and ARMA(1, 1))
for the conditional mean; the ARMA structure seems to offer little improvement in
the model and the basic GARCH(1, 1) model is favoured in an Akaike comparison.
However, a model with a leverage term as in (4.31) does seem to offer an improve-
ment. Both the raw and absolute standardized residuals obtained from this model
show no visual evidence of serial correlation (see again Figure 4.10) and they do not
fail Ljung–Box tests. The estimated degrees-of-freedom parameter of the (scaled)
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Figure 4.11. Microsoft log-returns 1997–2000; QQplot of residuals from a GARCH(1, 1)
model with leverage against a Student t distribution with 6.30 degrees of freedom.

Table 4.2. Analysis of Microsoft log-returns for the period 1997–2000; ML estimates of
parameters and standard errors for a GARCH(1, 1) model with a leverage term under the
assumption of t innovations.

Parameter Estimate Standard error Ratio

µ 9.35 × 10−4 7.21 × 10−4 1.30
α0 7.79 × 10−5 3.07 × 10−5 2.54
α1 0.108 0.0369 2.91
β 0.778 0.0673 11.57
δ −0.178 0.123 −1.45

t distribution is 6.30 (the standard error is 1.07) and a QQplot of the residuals against
this reference distribution reveals a satisfactory correspondence (see Figure 4.11).
The estimates of the remaining parameters (with standard errors) in this model are
given in Table 4.2.

Notes and Comments

The ARCH process was originally proposed by Engle (1982), and the GARCH
process by Bollerslev (1986), who gave the condition for covariance stationarity.
Overview texts on GARCH models include the book by Gourieroux (1997) and
a number of useful review articles including Bollerslev, Chou and Kroner (1992),
Bollerslev, Engle and Nelson (1994) and Shephard (1996). There are also substantial
sections on GARCH models in the books by Alexander (2001), Tsay (2002) and
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Zivot and Wang (2003). The IGARCH model was first discussed by Engle and
Bollerslev (1986).

The condition for strict stationarity of GARCH models was derived by Nelson
(1990) in the case of the GARCH(1, 1) model and Bougerol and Picard (1992) for
GARCH(p, q). The necessary theory involves the study of stochastic recurrence
relations and goes back to Kesten (1973); Brandt (1986) is also a useful reference.
Readable accounts of this theory may be found in Embrechts, Klüppelberg and
Mikosch (1997), Mikosch and Stărică (2000) and Mikosch (2003).

For more on the derivation of conditional likelihood functions for ARCH and
GARCH models see Hamilton (1994) and Tsay (2002). The BHHH algorithm
(Berndt et al. 1974) is the most commonly used approach to numerically maximiz-
ing the likelihood. For an informative general discussion of numerical optimization
procedures in the context of maximum likelihood see Hamilton (1994, pp. 133–142).
Standard general references on the QML approach areWhite (1981) and Gourieroux,
Montfort and Trognon (1984).

The essential asymptotic properties of MLEs and QMLEs in GARCH models
are described in many publications, but the detailed mathematical proof has often
lagged behind the assertions. Early papers appealed to regularity conditions for con-
ditionally specified models such as those of Crowder (1976), which are essentially
unverifiable. Lee and Hansen (1994) and Lumsdaine (1996) proved consistency and
asymptotic normality of QMLEs in the GARCH(1, 1)model. More recently, Berkes,
Horváth and Kokoszka (2003) have extended this to the GARCH(p, q)model under
minimal assumptions, and Mikosch and Straumann (2005) and Straumann (2003)
have given similar results for a wide variety of first-order models.

From a more practical point-of-view, it is not easy to estimate GARCH model
parameters to a high degree of accuracy because of the flatness of the typical likeli-
hoods and the non-negligible influence of starting values in finite samples. Readers
who write their own code may wish to compare their estimates with benchmark
studies by McCullough and Renfro (1999) and Brooks, Burke and Persand (2001).

Alternative innovation distributions to the Gaussian and scaled t distributions that
have been considered include the generalized error distribution (GED) in Nelson
(1991) and the normal inverse Gaussian (NIG) in Venter and de Jongh (2001); the
latter authors present extensive evidence that the NIG is a good choice of innovation
distribution for practical work and that GARCH inference based on the NIG is
relatively robust to misspecification of the distribution.

A great many extensions to the GARCH class have been proposed and thor-
ough surveys may be found in Bollerslev, Engle and Nelson (1994) and Shephard
(1996). Leverage effects in the GARCH model and the more general PGARCH
(power GARCH) model are examined in Ding, Granger and Engle (1993). Various
threshold GARCH models have been suggested; the model (4.32) is of the type sug-
gested by Glosten, Jagannathan and Runkle (1993), while (4.33) is the switching-
volatility GARCH (SV-GARCH) model of Fornari and Mele (1997). There have
been proposals for non-parametric ARCH and GARCH modelling, including the
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multiplicative ARCH(p)-model of Yang, Härdle and Nielsen (1999) and the non-
parametric GARCH procedure of Bühlmann and McNeil (2002).

4.4 Volatility Models and Risk Estimation

In this section we elaborate on some issues raised in the discussion of standard
methods for market risks in Section 2.3. At that point the discussion of dynamic
risk estimation procedures was kept relatively vague, but now, armed with more
knowledge of time series models in general and GARCH in particular, we can give
some more detail. The main issues are the estimation of conditional risk measures
like VaR and expected shortfall and the backtesting of such estimates. Estimating
VaR for a future time period requires us to be able to forecast volatility and we start
with this topic.

4.4.1 Volatility Forecasting

As in our earlier discussion of time series prediction in Section 4.2.5, we describe a
model-based strategy using a GARCH-type model, before presenting the more ad
hoc technique of exponentially weighted moving-average (EWMA) prediction.

GARCH-based volatility prediction. Suppose that the return data Xt−n+1, . . . , Xt

follow a particular model in the GARCH family. We want to forecast future volatility,
i.e. to predict the value of σt+h for h � 1. This is closely related to the problem of
predicting X2

t+h and uses an analogous method to that used for prediction in ARMA
models in Section 4.2.5. We again assume that we have access to the infinite history
of the process up to time t , represented by Ft = σ({Xs : s � t}), and then adapt
our prediction formula to take account of the finiteness of the sample.

Assume that the GARCH model has been fitted and its parameters estimated; we
will suppress estimator notation for the parameters in the remainder of the section.
We make calculations for simple models, from which the general procedure for more
complex models should be clear.

Example 4.25 (prediction in the GARCH(1, 1) model). Suppose that we use
a pure GARCH(1, 1) model conforming to Definition 4.20. Assume the model is
covariance stationary so that E(X2

t ) = E(σ 2
t ) < ∞. Since (Xt )t∈Z is a martingale

difference, optimal predictions of Xt+h are zero. A natural prediction of X2
t+1 based

on Ft is its conditional mean σ 2
t+1 given by

E(X2
t+1 | Ft ) = σ 2

t+1 = α0 + α1X
2
t + βσ 2

t ,

and if E(X4
t ) < ∞, then this is the optimal squared error prediction. Note that the

prediction of the random variable X2
t+1 based on the information Ft is the value of

σ 2
t+1, which is known at time t , being a function of the infinite history of the process.

(The process (σt )t∈Z is said to be previsible.)
In practice we have to make an approximation based on this formula because the

infinite series of past values that would allow us to calculate σ 2
t is not available to us.

A natural approach in applications is to approximate σ 2
t by an estimate of squared
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volatility σ̂ 2
t calculated from the residual equations (4.42). Our approximate forecast

of X2
t+1 also functions as an estimate of the squared volatility at time t + 1 and is

given by

σ̂ 2
t+1 = Ê(X2

t+1 | Ft ) = α0 + α1X
2
n + βσ̂ 2

t . (4.43)

Thus equation (4.43) can be thought of as a recursive scheme for estimating volatility
one step ahead.

When we look h > 1 steps ahead given the information at time t , both X2
t+h and

σ 2
t+h are rvs. Their predictions coincide and are

E(X2
t+h | Ft ) = E(σ 2

t+h | Ft )

= α0 + α1E(X
2
t+h−1 | Ft ) + βE(σ 2

t+h−1 | Ft )

= α0 + (α1 + β)E(X2
t+h−1 | Ft ),

so that a general formula is

E(X2
t+h | Ft ) = α0

h−1∑
i=0

(α1 + β)i + (α1 + β)h−1(α1X
2
t + βσ 2

t ),

and we obtain a practical formula by substituting an estimate of squared volatil-
ity σ̂ 2

t as before. As h → ∞ we observe that E(σ 2
t+h | Ft ) → α0/(1 − α1 − β1),

almost surely, so that the prediction of squared volatility converges to the uncon-
ditional variance of the process. A concrete example of volatility prediction in a
GARCH(1, 1) model is given in Figure 4.12 for the Microsoft data analysed in
Example 4.24.

We now consider a second example, which combines what we know about pre-
diction in ARMA and GARCH models.

Example 4.26 (prediction in an ARMA(1, 1)–GARCH(1, 1) model). Consider
a process of the form Xt − µt = εt = σtZt , where µt and σt are Ft−1-measurable
rvs describing, respectively, an ARMA(1, 1)model and a GARCH(1, 1)model as in
Definition 4.22. Prediction formulas for this model follow easily from Examples 4.15
and 4.25. We calculate that

E(Xt+h | Ft ) = µ + φh(Xt − µ) + φh−1θεt , (4.44)

var(Xt+h | Ft ) = α0

h−1∑
i=0

(α1 + β)i + (α1 + β)h−1(α1ε
2
t + βσ 2

t ), (4.45)

and these are approximated by substituting inferred values for εt and σt obtained
from the residual equations (4.42). Equation (4.44) yields predictions of µt+h or
Xt+h, and equation (4.45) yields predictions of ε2

t+h or σ 2
t+h.

Exponential smoothing for volatility. Suppose we believe our return data follow
some kind of underlying time series model in which a volatility (conditional standard
deviation) is defined, but that we do not wish to specify the exact parametric model.
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Figure 4.12. Estimate of volatility for the final days of the year 2000 and predictions of
volatility for the first 10 days of 2001 based on a GARCH(1, 1) model (without leverage)
fitted to the Microsoft return data in Example 4.24.

We can apply exponential smoothing as in (4.16) to the squared observations to get
a procedure that follows the updating scheme

PtX
2
t+1 = αX2

t + (1 − α)Pt−1X
2
t , (4.46)

for some value of α.
Since the expectations of X2

t+1 and σ 2
t+1 coincide, we could alternatively

regard (4.46) as an exponential smoothing scheme for the unobserved squared
volatility. We could define a recursive scheme for one-step-ahead volatility fore-
casting by

σ̂ 2
t+1 = αX2

t + (1 − α)σ̂ 2
t . (4.47)

This is the essential idea of the EWMA approach to volatility forecasting.
If we compare (4.47) with the one-step-ahead volatility estimation scheme defined

by a GARCH(1, 1)model in (4.43), it is tempting to say that EWMA corresponds to
estimating volatility using a conditional-expectation-based technique in an IGARCH
model where the parameter α0 equals zero, although this analogy should be used
with care. GARCH and IGARCH models with α0 = 0 are not well defined and the
solution of the stochastic recurrence relation in (4.29) vanishes. Moreover, IGARCH
is not covariance stationary. It is better to regard EWMA as a sensible model-free
approach to volatility forecasting based on the classical technique of exponential
smoothing.

4.4.2 Conditional Risk Measurement

We now return to the conditional risk-measurement problem discussed in Chapter 2
and consider the situation where we wish to measure risk for an investment in a
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single stock, index or currency. On day t the value of the position is Vt and the
log-return for the next day is Xt+1, so the (linearized) loss over the next day is
Lt+1 = l�[t](Xt+1) = −VtXt+1. We require risk-measure estimates, such as VaR
and ES, for the conditional distribution FLt+1|Ft , where Ft = σ({Xs : s � t}). We
setVt = 1 for all t and writeLt = −Xt , so (Lt ) is the process of negative log-returns.

Remark 4.27. Although we consider a simple univariate situation, the methodology
of this section can be applied to portfolio losses in the context of historical simulation.
Suppose we have constructed historical-simulation data (L̃t ) using the approach
described in Section 2.3.2. Writing Lt+1 = l[t](Xt+1) for our loss over the next day,
where l[t] is the loss operator and Xt+1 the vector of risk-factor changes, we wish
to calculate risk-measure estimates for the conditional distribution FLt+1|Gt , where
Gt = σ({L̃s : s � t}). We simply apply the methodology of this section to the time
series (L̃t ); this strategy was used in Section 2.3.6.

To calculate conditional risk measures we make the following assumption.

Assumption 4.28. The process of losses (Lt )t∈Z is adapted to the filtration (Ft )t∈Z

and follows a stationary model of the form Lt = µt + σtZt , where µt and σt are
Ft−1-measurable and the (Zt ) are SWN(0, 1) innovations.

A concrete example of a model satisfying Assumption 4.28 would be an (invert-
ible) ARMA process with GARCH errors of the kind analysed in this chapter. Under
the assumption, if we write G for the df of (Zt ), we can easily calculate that

FLt+1|Ft (l) = P(µt+1 + σt+1Zt+1 � l | Ft ) = G((l − µt+1)/σt+1). (4.48)

Thus calculation of risk measures for the conditional one-period loss distribution
amounts to calculating risk measures for the innovation distribution G. Using the
approach of Examples 2.14 and 2.18 we easily obtain

VaRt
α = µt+1 + σt+1qα(Z), (4.49)

EStα = µt+1 + σt+1 ESα(Z), (4.50)

where Z is a generic rv with df G. In general, to estimate the risk measures (4.49)
and (4.50), we require estimates ofµt+1 andσt+1, the conditional mean and volatility
of the loss process. We also require the quantile and expected shortfall of the inno-
vation df G. In a model with Gaussian innovations the latter are qα(Z) = Φ−1(α)

and ESα(Z) = φ(Φ−1(α))/(1 − α). In a model with non-Gaussian innovations,
qα(Z) and ESα(Z) depend on any further parameters of the innovation distribution.
For example, we might assume (scaled) t innovations; in this case the quantile and
expected shortfall of a standard univariate t distribution (the latter given in (2.27))
would have to be scaled by the factor

√
(ν − 2)/ν to take account of the fact that

the innovation distribution is scaled to have variance one.
Concrete estimation strategies we might adopt, in order of decreasing sophistica-

tion, include the following.
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(1) Fit an ARMA–GARCH model with an appropriate innovation distribution
to the data Lt−n+1, . . . , Lt by ML and use the prediction methodology dis-
cussed in Section 4.4.1 to estimate σt+1 and µt+1. Any further parameters of
the innovation distribution would be estimated simultaneously in the model
fitting.

(2) Fit an ARMA–GARCH model by QML and use prediction methodology as
in strategy (1) to estimate σt+1 and µt+1. In a separate second step we use the
model residuals to find an appropriate innovation distribution and estimate its
parameters.

(3) Use EWMA to estimate σt+1 and set µt+1 to zero (as it is less important).
In conjunction with an assumption of Gaussian innovations this is essentially
the RiskMetrics method. Instead of making the Gaussian assumption, we
could standardize each of the losses Lt−n+1, . . . , Lt by dividing by volatility
estimates σ̂t−n+1, . . . , σ̂t calculated using EWMA. This would yield a set of
residuals, from which the innovation distribution could be estimated as in
strategy (2).

4.4.3 Backtesting

Backtesting VaR. Using the notation of the previous section, we first observe that
if we define indicator variables It+1 = I{Lt+1>VaRt

α}, indicating violations of the
quantiles of the conditional loss distribution, then the process (It )t∈Z is a pro-
cess of iid Bernoulli variables with success (i.e. violation) probability 1 − α. This
property is certainly true under Assumption 4.28, since it follows from (4.49) that
It+1 = I{Lt+1>VaRt

α} = I{Zt+1>qα(Z)} and the innovations (Zt ) are themselves iid.
However, it is also more generally true, as the following lemma shows.

Lemma 4.29. Let (Yt )t∈Z be a sequence of Bernoulli indicator variables adapted
to a filtration (Ft )t∈Z and satisfying E(Yt | Ft−1) = p > 0 for all t . Then (Yt ) is a
process of iid Bernoulli variables.

Proof. The process (Yt − p)t∈Z has the martingale-difference property (see Defini-
tion 4.6). Moreover, var(Yt − p) = E(E((Yt − p)2 | Ft−1)) = p(1 − p) for all t .
Therefore (Yt − p) and hence (Yt ) are white noise processes of uncorrelated vari-
ables. It is easily shown that identically distributed uncorrelated Bernoulli variables
are iid.

In practice, we make one-step-ahead conditional VaR estimates V̂aR
t
α and con-

sider the violation indicators

Ît+1 := I{Lt+1>V̂aRt
α}. (4.51)

If we are successful in estimating conditional quantiles, we would expect that the
empirical violation indicators would behave like realizations of iid Bernoulli trials
with success probability (1 − α).

Checking for iid Bernoulli violations of the one-step-ahead VaR has two aspects:
checking that the number of violations is correct on average; checking that the
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pattern of violations is consistent with iid behaviour. Certainly, if we calculate VaR
estimates for times t = 1, . . . , m, we expect that

∑m
t=1 Ît ∼ B(m, 1 − α), and this

is easily addressed with a standard two-sided binomial test (see, for example, Casella
and Berger 2002, pp. 493–495). Departures from the null hypothesis would suggest
either systematic underestimation or overestimation of VaR.

To check for independence of the Bernoulli indicators one possibility is to perform
a runs test of the kind described by David (1947), which involves counting runs of
successive zeros or ones in the realizations of the indicator variables and comparing
the realized number of runs with the known sampling distribution of the number of
runs in iid Bernoulli data (see also Notes and Comments).

The backtesting of conditional VaR estimates for the h-period loss distribution
is more complicated. To use the kind of ideas above we would have to base our
backtests on non-overlapping periods. For example, if we calculated two-weekVaRs,
we could make a comparison of the VaR estimate and the realized loss every two
weeks, which would clearly lead to a relatively small amount of violation data with
which to monitor the performance of the model. If we used overlapping periods, for
example by recording the violation indicator value every day for the loss incurred
over the previous two weeks, we would create a series of dependent Bernoulli trials
for which formal inference would be difficult.

Backtesting expected shortfall. We begin by observing that if EStα is the expected
shortfall of the (continuous) conditional loss distribution FLt+1|Ft and we define
St+1 = (Lt+1 − EStα)It+1, then for an arbitrary loss process (Lt )t∈Z the process
(St )t∈Z forms a martingale difference series satisfyingE(St+1 | Ft ) = 0. Moreover,
under Assumption 4.28 and using (4.49) and (4.50), we have

St+1 = σt+1(Zt+1 − ESα(Z))I{Zt+1>qα(Z)},

which takes the form of a volatility times a zero-mean iid sequence of innovation
variables ((Zt+1 − ESα(Z))I{Zt+1>qα(Z)}). This suggests that, in practice, when the
risk measures and volatility are estimated, we could form violation residuals of the
form

R̂t+1 := Ŝt+1/σ̂t+1, Ŝt+1 := (Lt+1 − ÊS
t
α)Ît+1, (4.52)

where Ît+1 is the violation indicator defined in (4.51). We expect these to behave
like realizations of iid variables from a distribution with mean zero and an atom of
probability mass of size α at zero. To test for mean-zero behaviour we could perform
a bootstrap test on the non-zero violation residuals that makes no assumption about
their distribution. See Efron and Tibshirani (1994, p. 224) for a description of such
a test.

Backtesting the predictive distribution. As well as backtesting VaR and expected
shortfall we can also devise tests that assess the overall quality of the estimated
conditional loss distributions from which the risk-measure estimates are derived. Of
course, our primary interest focuses on the measures of tail risk, but it is still useful
to backtest our estimates of the whole predictive distribution to obtain additional
confirmation of the risk-measure estimation procedure.
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Suppose we define the process (Ut )t∈Z by settingUt+1 := FLt+1|Ft (Lt+1). Under
Assumption 4.28 it follows easily from (4.48) that Ut+1 = GZ(Zt+1), so (Ut ) is
a strict white noise process. Moreover, if GZ is continuous, then the stationary
or unconditional distribution of (Ut ) must be standard uniform (see, for example,
Proposition 5.2).

In actual applications we estimate FLt+1|Ft from data up to time t and we back-
test our estimates by forming Ût+1 := F̂Lt+1|Ft (Lt+1) on day t + 1. Suppose we
estimate the predictive distribution on days t = 0, . . . , m− 1 and form backtesting
data Û1, . . . , Ûm; we expect these to behave like a sample of iid uniform data. The
distributional assumption can be assessed by standard goodness-of-fit tests like the
chi-squared test or Kolmogorov–Smirnov test (see Section 3.3.5 for references). It
is also possible to form the data Φ−1(Û1), . . . , Φ

−1(Ûm), where Φ is the standard
normal df; these should behave like iid standard normal data (see again Proposi-
tion 5.2) and this can be tested as in Section 3.1.4. The strict white noise assumption
can be tested using the approach described in Section 4.2.3.

Notes and Comments

The backtesting material is mainly taken from McNeil and Frey (2000), where exam-
ples of the binomial test for violation counts and the test of expected shortfall using
exceedance residuals can be found. Use of the runs test for testing the randomness
of VaR violations is suggested by Christoffersen, Diebold and Schuermann (1998).
This test is shown to be uniformly most powerful against Markovian alternatives by
Lehmann (1986). Christoffersen, Diebold and Schuermann also suggest the use of
a further test for randomness based on the non-trivial eigenvalue of the transition
matrix in a Markov chain model for the violation indicator variables.

The idea of testing the estimate of the predictive distribution may be found in
Berkowitz (2001, 2002). See also Berkowitz and O’Brien (2002) for a more general
article on testing the accuracy of the VaR models of commercial banks.

4.5 Fundamentals of Multivariate Time Series

The presentation of the basic concepts of multivariate time series in this section
closely parallels the presentation of the corresponding ideas for univariate time
series in Section 4.2. Again the approach is similar to that of Brockwell and Davis
(1991, 2002).

4.5.1 Basic Definitions

A multivariate time series model for multiple risk factors is a stochastic process
(Xt )t∈Z, i.e. a family of random vectors, indexed by the integers and defined on
some probability space (Ω,F , P ).

Moments of a multivariate time series. Assuming they exist, we define the mean
function µ(t) and the covariance matrix function Γ (t, s) of (Xt )t∈Z by

µ(t) = E(Xt ), t ∈ Z,

Γ (t, s) = E((Xt − µ(t))(Xs − µ(s))′), t, s ∈ Z.
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Analogously to the univariate case, we have Γ (t, t) = cov(Xt ). By observing that
the elements γij (t, s) of Γ (t, s) satisfy

γij (t, s) = cov(Xt,i , Xs,j ) = cov(Xs,j , Xt,i) = γji(s, t), (4.53)

it is clear that Γ (t, s) = Γ (s, t)′ for all t , s. However, the matrix Γ need not be
symmetric, so in general Γ (t, s) �= Γ (s, t), which is in contrast to the univariate
case. Lagged values of one of the component series can be more strongly correlated
with future values of another component series than vice versa. This property, when
observed in empirical data, is known as a lead-lag effect and is discussed in more
detail in Example 4.36.

Stationarity. Again the concrete multivariate models we consider will be stationary
in one or both of the following senses.

Definition 4.30 (strict stationarity). The multivariate time series (Xt )t∈Z is strictly
stationary if

(X′
t1
, . . . ,X′

tn
)

d= (X′
t1+k, . . . ,X

′
tn+k),

for all t1, . . . , tn, k ∈ Z and for all n ∈ N.

Definition 4.31 (covariance stationarity). The multivariate time series (Xt )t∈Z is
covariance stationary (or weakly or second-order stationary) if the first two moments
exist and satisfy

µ(t) = µ, t ∈ Z,

Γ (t, s) = Γ (t + k, s + k), t, s, k ∈ Z.

A strictly stationary multivariate time series with finite covariance matrix is covari-
ance stationary, but we again note that it is possible to define infinite-variance pro-
cesses (including certain multivariateARCH and GARCH processes) that are strictly
stationary but not covariance stationary.

Serial and cross-correlation in stationary multivariate time series. The definition
of covariance stationarity implies that for all s, t we have Γ (t − s, 0) = Γ (t, s), so
that the covariance between Xt and Xs only depends on their temporal separation
t − s, which is known as the lag. In contrast to the univariate case, the sign of
the lag is important. For a covariance-stationary multivariate process we write the
covariance matrix function as a function of one variable: Γ (h) := Γ (h, 0), ∀h ∈ Z.
Noting that Γ (0) = cov(Xt ), ∀t , we can now define the correlation matrix function
of a covariance-stationary process.

Definition 4.32 (correlation matrix function). Writing � := �(Γ (0)), where
�(·) is the operator defined in (3.4), the correlation matrix function P(h) of a
covariance-stationary multivariate time series (Xt )t∈Z is

P(h) := �−1Γ (h)�−1, ∀h ∈ Z. (4.54)
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The diagonal entries ρii(h) of this matrix-valued function give the autocorrelation
function of the ith component series (Xt,i)t∈Z. The off-diagonal entries give so-
called cross-correlations between different component series at different times. It
follows from (4.53) that P(h) = P(−h)′, but P(h) need not be symmetric, and in
general P(h) �= P(−h).

White noise processes. As in the univariate case, multivariate white noise processes
are building blocks for more interesting classes of time series model.

Definition 4.33 (multivariate white noise). (Xt )t∈Z is multivariate white noise if
it is covariance stationary with correlation matrix function given by

P(h) =
{

P, h = 0,

0, h �= 0,

for some positive-definite correlation matrix P .

A multivariate white noise process with mean zero and covariance matrix
Σ = cov(Xt ) will be denoted WN(0,Σ). Such a process has no cross-correlation
between component series, except for contemporaneous cross-correlation at lag
zero. A simple example is a series of iid random vectors with finite covariance
matrix, and this is known as a multivariate strict white noise.

Definition 4.34 (multivariate strict white noise). (Xt )t∈Z is multivariate strict
white noise if it is a series of iid random vectors with finite covariance matrix.

A strict white noise process with mean zero and covariance matrix Σ will be
denoted SWN(0,Σ).

The martingale-difference noise concept may also be extended to higher dimen-
sions. As before we assume that the time series (Xt )t∈Z is adapted to some filtration
(Ft ), typically the natural filtration (σ ({Xs : s � t})), which represents the infor-
mation available at time t .

Definition 4.35 (multivariate martingale difference). (Xt )t∈Z has the multi-
variate martingale-difference property with respect to the filtration (Ft ) if E|Xt | <
∞ and

E(Xt | Ft−1) = 0, ∀t ∈ Z.

The unconditional mean of such a process is obviously also zero and, if cov(Xt ) <

∞ for all t , the covariance matrix function satisfies Γ (t, s) = 0 for t �= s. If the
covariance matrix is also constant for all t , then a process with the multivariate
martingale-difference property is also a multivariate white noise process.

4.5.2 Analysis in the Time Domain

We now assume that we have a random sample X1, . . . ,Xn from a covariance-
stationary multivariate time series model (Xt )t∈Z. In the time domain we construct
empirical estimators of the covariance matrix function and the correlation matrix
function from this random sample.
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The sample covariance matrix function is calculated according to

Γ̂ (h) = 1

n

n−h∑
t=1

(Xt+h − X̄)(Xt − X̄)′, 0 � h < n,

where X̄ = ∑n
t=1 Xt /n is the sample mean, which estimates µ, the mean of the

time series. Writing �̂ := �(Γ̂ (0)), where �(·) is the operator defined in (3.4), the
sample correlation matrix function is

P̂(h) = �̂−1Γ̂ (h)�̂−1, 0 � h < n.

The information contained in the elements ρ̂ij (h) of the sample correlation matrix
function is generally displayed in the cross-correlogram, which is a d × d matrix
of plots (see Figure 4.13 for an example). The ith diagonal plot in this graphic
display is the correlogram of the ith component series, given by {(h, ρ̂ii (h)) : h =
0, 1, 2, . . . }. For the off-diagonal plots containing the estimates of cross-correlation
there are various possible presentations and we will consider the following con-
vention: for i < j we plot {(h, ρ̂ij (h)) : h = 0, 1, 2, . . . }; for i > j we plot
{(−h, ρ̂ij (h)) : h = 0, 1, 2, . . . }. An interpretation of the meaning of the off-
diagonal pictures is given in Example 4.36.

It can be shown that for causal processes driven by multivariate strict white noise
innovations (see Section 4.5.3) the estimates that comprise the components of the
sample correlation matrix function P̂(h) are consistent estimates of the underlying
theoretical quantities. For example, if the data themselves are from an SWN, then
the cross-correlation estimators ρ̂ij (h) for h �= 0 converge to zero as the sample
size is increased. However, results concerning the asymptotic distribution of cross-
correlation estimates are, in general, more complicated than the univariate result for
autocorrelation estimates given in Theorem 4.13. Some relevant theory is found in
Chapter 11 of Brockwell and Davis (1991) and Chapter 7 of Brockwell and Davis
(2002). It is standard to plot the off-diagonal pictures with Gaussian confidence
bands at (−1.96

√
n, 1.96

√
n), but these bands should be used as rough guidance

for the eye and not relied upon too heavily to draw conclusions.

Example 4.36 (cross-correlogram of trivariate index returns). In Figure 4.13
the cross-correlogram of daily log-returns is shown for the Dow Jones, Nikkei and
Swiss Market indices for 26 July 1996 to 25 July 2001. Although every vector
observation in this trivariate time series relates to the same trading day, the returns
are of course not properly synchronized due to time zones; nonetheless, this picture
shows interpretable lead-lag effects which help us to understand the off-diagonal
pictures in the cross-correlogram.

Part (b) of the figure shows estimated correlations between the Dow Jones index
return on day t + h and the Nikkei index return on day t , forh � 0; clearly these esti-
mates are small and lie mainly within the confidence band, with the obvious excep-
tion of the correlation estimate for returns on the same trading day P̂12(0) ≈ 0.14.
Part (d) shows estimated correlations between the Dow Jones index return on day
t + h and the Nikkei index return on day t , for h � 0; the estimate corresponding to
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Figure 4.13. Cross-correlogram of daily log-returns of Dow Jones, Nikkei and Swiss
Market indices for 26 July 1996 to 25 July 2001 (see Example 4.36 for commentary).

h = −1 is approximately 0.28 and can be interpreted as showing how the American
market leads the Japanese market. Comparing parts (c) and (g) we see, unsurpris-
ingly, that the American market also leads the Swiss market, so that returns on day
t − 1 in the former are quite strongly correlated with returns on day t in the latter.

4.5.3 Multivariate ARMA Processes

We provide a brief excursion into multivariate ARMA models to indicate how
the ideas of Section 4.2.2 generalize to higher dimensions. For daily data, captur-
ing multivariate ARMA effects is much less important than capturing multivariate
volatility effects (and dynamic correlation effects) through multivariate GARCH
modelling, but, for longer-period returns, the more traditional ARMA processes
become increasingly useful. In the econometrics literature they are more commonly
known as vector ARMA (or VARMA) processes.

Definition 4.37 (VARMA process). Let (εt )t∈Z be WN(0,Σε). The process
(Xt )t∈Z is a zero-mean VARMA(p, q) process if it is a covariance-stationary pro-
cess satisfying difference equations of the form

Xt − Φ1Xt−1 − · · · − ΦpXt−p = εt + Θ1εt−1 + · · · + Θqεt−q, ∀t ∈ Z

for parameter matrices Φi and Θj in R
d×d . (Xt ) is a VARMA process with mean

µ if the centred series (Xt − µ)t∈Z is a zero-mean VARMA(p, q) process.
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For practical applications we again consider only causal VARMA processes,
which are processes where the solution of the defining equations has a representation
of the form

Xt =
∞∑
i=0

Ψiεt−i , (4.55)

where (Ψi)i∈N0 is a sequence of matrices in R
d×d with absolutely summable com-

ponents, meaning that, for any j and k,
∞∑
i=0

|ψi,jk| < ∞. (4.56)

As in the univariate case (see Proposition 4.9), it can be verified by direct calculation
that such linear processes are covariance stationary. Obviously, for all t , we have
E(Xt ) = µ. For h � 0 the covariance matrix function is given by

Γ (t + h, t) = cov(Xt + h,Xt ) = E

( ∞∑
i=0

Ψiεt+h−i

∞∑
j=0

ε′
t−jΨ

′
j

)
.

Arguing much as in the univariate case it is easily shown that this depends only on
h and not on t and that it is given by

Γ (h) =
∞∑
i=0

Ψi+hΣεΨ
′
i , h = 0, 1, 2, . . . . (4.57)

The correlation matrix function is easily derived from (4.57) and (4.54).
The requirement that a VARMA process be causal imposes conditions on the

values that the parameter matrices Φi (in particular) and Θj may take. The theory
is remarkably similar to univariate ARMA theory. We will give a single useful
example from the VARMA class; this is the first-order vector autoregressive (or
VAR(1)) model.

Example 4.38 (VAR(1) process). The first-order VAR process satisfies the set of
vector difference equations

Xt = ΦXt−1 + εt , ∀t. (4.58)

It is possible to find a causal process satisfying (4.55) and (4.56) that is a solution
of (4.58) if and only if all eigenvalues of the matrix Φ are less than one in absolute
value. The causal process

Xt =
∞∑
i=0

Φiεt−i (4.59)

is then the unique solution. This solution can be thought of as an infinite-order vec-
tor moving-average process, a so-called VMA(∞) process. The covariance matrix
function of this process follows from (4.55) and (4.57) and is

Γ (h) =
∞∑
i=0

Φi+hΣεΦ
i′ = ΦhΓ (0), h = 0, 1, 2, . . . .
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In practice, full VARMA models are less common than models from the VAR
and VMA subfamilies, one reason being that identifiability problems arise when
estimating parameters. For example, we can have situations where the first-order
VARMA(1, 1)model Xt−ΦXt−1 = εt+Θεt−1 can be rewritten as Xt−Φ∗Xt−1 =
εt+Θ∗εt−1 for completely different parameter matricesΦ∗ andΘ∗ (see Tsay (2002,
p. 323) for an example). Of the two subfamilies, VAR models are easier to estimate.
Fitting options for VAR models range from multivariate least-squares estimation
without strong assumptions concerning the distribution of the driving white noise,
to full maximum likelihood estimation; models combining VAR and multivariate
GARCH features can be estimated using a conditional ML approach in a very similar
manner to that described for univariate models in Section 4.3.4.

Notes and Comments

Many standard texts on time series also handle the multivariate theory (see, for
example, Brockwell and Davis (1991, 2002) or Hamilton (1994)). A key reference
aimed at an econometrics audience is Lütkepohl (1993). For examples, in the area
of finance see Tsay (2002) and Zivot and Wang (2003).

4.6 Multivariate GARCH Processes

4.6.1 General Structure of Models

Definition 4.39. Let (Zt )t∈Z be SWN(0, Id). The process (Xt )t∈Z is said to be a
multivariate GARCH process if it is strictly stationary and satisfies equations of the
form

Xt = Σ
1/2
t Zt , t ∈ Z, (4.60)

where Σ1/2
t ∈ R

d×d is the Cholesky factor of a positive-definite matrix Σt which is
measurable with respect to Ft−1 = σ({Xs : s � t − 1}), the history of the process
up to time t − 1.

Conditional moments. It is easily calculated that a covariance-stationary process
of this type has the multivariate martingale-difference property

E(Xt | Ft−1) = E(Σ
1/2
t Zt | Ft−1) = Σ

1/2
t E(Zt ) = 0,

and must therefore be a multivariate white noise process, as argued in Section 4.5.
Moreover, Σt will be the conditional covariance matrix since

cov(Xt | Ft−1) = E(XtX
′
t | Ft−1) = Σ

1/2
t E(ZtZ

′
t )(Σ

1/2
t )′ = Σ

1/2
t (Σ

1/2
t )′ = Σt .

(4.61)

The conditional covariance matrix Σt in a multivariate GARCH model corresponds
to the squared volatility σ 2

t in a univariate GARCH model. The use of the Cholesky
factor ofΣt to describe the relationship to the driving noise in (4.60) is not important,
and in fact any type of “square root” of Σt could be used (such as the root derived
from a symmetric decomposition). (The only implication is the way we construct
residuals when fitting the model in practice.) We denote the elements of Σt by σt,ij
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and also use the notation σt,i = √
σt,ii to denote the conditional standard deviation

(or volatility) of the ith component series (Xt,i)t∈Z.
We recall that we can write Σt = �tPt�t , where

�t = �(Σt) = diag(σt,1, . . . , σt,d ), Pt = ℘(Σt), (4.62)

using the operator notation defined in (3.5). The diagonal matrix �t will be known
as the volatility matrix and Pt is known as the conditional correlation matrix. The
art of building multivariate GARCH models is to specify the dependence of Σt (or
of �t and Pt ) on the past in such a way that Σt always remains symmetric and
positive definite. A covariance matrix must of course be symmetric and positive
semidefinite, and in practice we restrict our attention to the positive-definite case
(which facilitates fitting, since the conditional distribution of Xt | Ft−1 never has a
singular covariance matrix).

Unconditional moments. The unconditional covariance matrix Σ of a process of
this type is given by

Σ = cov(Xt ) = E(cov(Xt | Ft−1)) + cov(E(Xt | Ft−1)) = E(Σt),

from which it can be calculated that the unconditional correlation matrix P has
elements

ρij = E(σt,ij )√
E(σt,ii )E(σt,jj )

= E(ρt,ij σt,iσt,j )√
E(σ 2

t,i )E(σ
2
t,j )

, (4.63)

which is in general difficult to evaluate and is usually not simply the expectation of
the conditional correlation matrix.

Innovations. In practical work the innovations are generally taken to be from
either a multivariate Gaussian distribution (Zt ∼ Nd(0, Id)) or, more realisti-
cally for daily returns, an appropriately scaled spherical multivariate t distribution
(Zt ∼ td (ν, 0, (ν − 2)Id/ν)). Any distribution with mean zero and covariance
matrix Id is permissible, and appropriate members of the normal mixture family
of Section 3.2 or the spherical family of Section 3.3.1 may be considered.

Presentation of models. In the following sections we present some of the more
important multivariate GARCH specifications. In doing this we concentrate on the
following aspects of the models.

• The form of the dynamic equations, with economic arguments and criticisms
where appropriate.

• The conditions required to guarantee that the conditional covariance matrix
Σt remains positive definite. Other mathematical properties of these mod-
els, such as conditions for covariance stationarity, are difficult to derive with
full mathematical rigour; references in Notes and Comments contain further
information.
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• The parsimoniousness of the parametrization. A major problem with most
multivariate GARCH specifications is that the number of parameters tends to
explode with the dimension of the model, making them unsuitable for analyses
of many risk factors.

• Simple intuitive fitting methods where available. All models can be fitted by a
general global-maximization approach described in Section 4.6.4 but certain
models lend themselves to estimation in stages, particularly the models of
Section 4.6.2.

4.6.2 Models for Conditional Correlation

In this section we present models which focus on specifying the conditional corre-
lation matrix Pt while allowing volatilities to be described by univariate GARCH
models; we begin with a popular and relatively parsimonious model where Pt is
assumed to be constant for all t .

Constant conditional correlation (CCC).

Definition 4.40. The process (Xt )t∈Z is a CCC-GARCH process if it is a pro-
cess with the general structure given in Definition 4.39 such that the conditional
covariance matrix is of the form Σt = �tPc�t , where

(i) Pc is a constant, positive-definite correlation matrix; and

(ii) �t is a diagonal volatility matrix with elements σt,k satisfying

σ 2
t,k = αk0 +

pk∑
i=1

αkiX
2
t−i,k +

qk∑
j=1

βkjσ
2
t−j,k, k = 1, . . . , d, (4.64)

where αk0 > 0, αki � 0, i = 1, . . . , pk , βkj � 0, j = 1, . . . , qk .

The CCC-GARCH specification represents a simple way of combining univariate
GARCH processes. This can be seen by observing that in a CCC-GARCH model
observations and innovations are connected by equations Xt = �tP

1/2
c Zt , which

may be rewritten as Xt = �t Z̃t for an SWN(0,Pc) process (Z̃t )t∈Z. Clearly, the
component processes are univariate GARCH.

Proposition 4.41. The CCC-GARCH model is well defined in the sense that Σt is
almost surely positive definite for all t . Moreover, it is covariance stationary if and
only if

∑pk
i=1 αki +∑qk

j=1 βkj < 1 for k = 1, . . . , d.

Proof. For a vector v �= 0 in R
d we have

v′Σtv = (�tv)
′Pc(�tv) > 0,

since Pc is positive definite and the strict positivity of the individual volatility pro-
cesses ensures that �tv �= 0 for all t .

If (Xt )t∈Z is covariance stationary, then each component series (Xt,k)t∈Z is a
covariance-stationary GARCH process for which a necessary and sufficient condi-
tion is

∑pk
i=1 αki +∑qk

j=1 βkj < 1 by Proposition 4.21. Conversely, if the component
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series are covariance stationary, then for all i and j the Cauchy–Schwarz inequality
implies

σij = E(σt,ij ) = ρijE(σt,iσt,j ) � ρij

√
E(σ 2

t,i )

√
E(σ 2

t,j ) < ∞.

Since (Xt)t∈Z is a multivariate martingale difference with finite, non-time-dependent
second moments σij , it is a covariance-stationary white noise.

The CCC model is often a useful starting point from which to proceed to more
complex models. In some empirical settings it gives an adequate performance, but
it is generally considered that the constancy of conditional correlation in this model
is an unrealistic feature and that the impact of news on financial markets requires
models that allow a dynamic evolution of conditional correlation as well as a dynamic
evolution of volatilities. A further criticism of the model (which applies in fact to
the majority of MGARCH specifications) is the fact that the individual volatility
dynamics (4.64) do not allow for the possibility that large returns in one component
series at a particular point in time can contribute to increased volatility of another
component time series at future points in time.

To describe a simple method of fitting the CCC model we introduce the notion of
a devolatized process. For any multivariate time series process Xt , the devolatized
process is the process Yt = �−1

t Xt , where �t is, as usual, the diagonal matrix of
volatilities. In the case of a CCC model it is easily seen that the devolatized process
(Yt )t∈Z is an SWN(0,Pc) process.

This structure suggests a simple two-stage fitting method in which we first esti-
mate the individual volatility processes for the component series by fitting univariate
GARCH processes; note that, although we have specified in Definition 4.40 that the
individual volatilities should follow standard GARCH models, we could of course
extend the model to allow any of the univariate models in Section 4.3.3, such as
GARCH with leverage or threshold GARCH. In a second stage we construct an
estimate of the devolatized process by taking Ŷt = �̂−1

t Xt , where �̂−1
t is the esti-

mate of�t ; in other words, we collect the standardized residuals from the univariate
GARCH models. If the CCC-GARCH model is adequate, then the Ŷt data should
behave like a realization from an SWN(0,Pc) process and this can be investigated
with the correlogram and cross-correlogram applied to raw and absolute values.
Assuming the adequacy of the model, the conditional correlation matrix Pc can then
be estimated from the standardized residuals using methods from Chapter 3.

A special case of CCC-GARCH which we call a pure diagonal model occurs when
Pc = Id . A covariance-stationary model of this kind is a multivariate white noise
where the contemporaneous components Xt,i and Xt,j are also uncorrelated for
i �= j . Whether they are independent or not depends on further assumptions about
the driving SWN(0, Id) process: if the innovations have independent components, as
would be the case if they were multivariate Gaussian, then the component series are
independent; however, if, for example, Zt ∼ td (ν, 0, ((ν−2)/ν)Id), the component
processes are dependent.
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Dynamic conditional correlation (DCC). This model generalizes the CCC model
to allow conditional correlations to evolve dynamically according to a relatively
parsimonious scheme, but is constructed in a way that still allows estimation in
stages using univariate GARCH models. Its formal analysis as a stochastic process
is difficult due to the use of the correlation matrix extraction operator ℘ in its
definition.

Definition 4.42. The process (Xt )t∈Z is a DCC-GARCH process if it is a process
with the general structure given in Definition 4.39, where the volatilities compris-
ing �t follow univariate GARCH specifications as in (4.64) and the conditional
correlation matrices Pt satisfy, for t ∈ Z, the equations

Pt = ℘

((
1 −

p∑
i=1

αi −
q∑

j=1

βj

)
Pc +

p∑
i=1

αiYt−iY
′
t−i +

q∑
j=1

βjPt−j

)
, (4.65)

where Pc is a positive-definite correlation matrix, ℘ is the operator in (3.5), Yt =
�−1
t Xt denotes the devolatized process, and the coefficients satisfy αi � 0, βj � 0

and
∑p

i=1 αi −∑q
j=1 βj < 1.

Observe first that if all the αi and βj coefficients in (4.65) are zero, then the model
reduces to the CCC model. If one makes an analogy with a covariance-stationary
univariate GARCH model with unconditional variance σ 2, for which the volatility
equation can be written

σ 2
t =

(
1 −

p∑
i=1

αi −
q∑

j=1

βj

)
σ 2 +

p∑
i=1

αiXt−i +
q∑

j=1

βjσ
2
t−j ,

then the correlation matrix Pc in (4.65) can be thought of as representing the long-
run correlation structure. Although this matrix could be estimated by fitting the
DCC model to data by ML estimation in one step, it is quite common to estimate it
using an empirical correlation matrix calculated from the devolatized data, as in the
estimation of the CCC model.

Observe also that the dynamic equation (4.65) preserves the positive definiteness
of Pt . If we define

Qt :=
(

1 −
p∑
i=1

αi −
q∑

j=1

βj

)
Pc +

p∑
i=1

αiYt−iY
′
t−i +

q∑
j=1

βjPt−j ,

and assume that Pt−q, . . . ,Pt−1 are positive definite, then it follows that, for a vector
v �= 0 in R

d , we have

v′Qtv =
(

1 −
p∑
i=1

αi −
q∑

j=1

βj

)
v′Pcv +

p∑
i=1

αiv
′Yt−iY

′
t−iv +

q∑
j=1

βjv
′Pt−jv > 0,

since the first term is strictly positive and the second and third terms are non-negative.
If Qt is positive definite, then so is Pt .
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The usual estimation method for the DCC model is as follows.

(1) Fit univariate GARCH-type models to the component series to estimate the
volatility matrix �t . Form an estimated realization of the devolatized process
by taking Ŷt = �̂tXt .

(2) Estimate Pc by taking the sample correlation matrix of the devolatized data
(or better still some robust estimator of correlation).

(3) Estimate the remaining parameters αi and βj in equation (4.65) by fitting
a model with structure Yt = P1/2

t Zt to the devolatized data. We leave this
step vague for the time being and note that this will be a simple applica-
tion of the methodology for fitting general multivariate GARCH models in
Section 4.6.4; in a first-order model (p = q = 1), there will only be two
remaining parameters to estimate.

4.6.3 Models for Conditional Covariance

The models of this section specify explicitly a dynamic structure for the conditional
covariance matrix Σt . These models are not designed for multiple-stage estimation
based on univariate GARCH estimation procedures.

Vector GARCH Models (VEC and DVEC). The most general vector GARCH
model—the VEC model—has too many parameters for practical purposes and our
task will be to simplify the model by imposing various restrictions on parameter
matrices.

Definition 4.43 (VEC model). The process (Xt )t∈Z is a VEC process if it has
the general structure given in Definition 4.39, and the dynamics of the conditional
covariance matrix Σt are given by the equations

vech(Σt ) = a0 +
p∑
i=1

Āi vech(Xt−iX
′
t−i ) +

q∑
j=1

B̄j vech(Σt−j ), (4.66)

for a vector a0 ∈ R
d(d+1)/2 and matrices Āi and B̄j in R(d(d+1)/2)×(d(d+1)/2).

In this definition “vech” denotes the vector half operator, which stacks the
columns of the lower triangle of a symmetric matrix in a single column vector
of length d(d + 1)/2. Thus (4.66) should be understood as specifying the dynam-
ics for the lower-triangular portion of the conditional covariance matrix, and the
remaining elements of the matrix are determined by symmetry.

In this very general form the model has (1 + (p + q)d(d + 1)/2)d(d + 1)/2
parameters; this number grows rapidly with dimension so that even a trivariate model
has 78 parameters. The most common simplification has been to restrict attention to
cases when Āi and B̄j are diagonal matrices, which gives us the diagonal VEC or
DVEC model. This special case can be written very elegantly in terms of a different
kind of matrix product, namely the Hadamard product, denoted “◦”, which signifies
element-by-element multiplication of two matrices of the same size. We obtain the
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representation

Σt = A0 +
p∑
i=1

Ai ◦ (Xt−iX
′
t−i ) +

q∑
j=1

Bj ◦ Σt−j , (4.67)

whereA0 and theAi andBj must all be symmetric matrices in R
d×d such thatA0 has

positive diagonal elements and all other matrices have non-negative diagonal ele-
ments (standard univariate GARCH assumptions). This representation emphasizes
structural similarities with the univariate GARCH model of Definition 4.20.

To understand better the dynamic implications of (4.67), consider a bivariate
model of order (1, 1) and write a0,ij , a1,ij and bij for the elements of A0, A1 and
B, respectively. The model amounts to the three simple equations

σ 2
t,1 = a0,11 + a1,11X

2
t−1,1 + b11σ

2
t−1,1,

σt,12 = a0,12 + a1,12Xt−1,1Xt−1,2 + b12σt−1,12,

σ 2
t,2 = a0,22 + a1,22X

2
t−1,2 + b22σ

2
t−1,2.

⎫⎪⎬⎪⎭ (4.68)

The volatilities of the two component series (σt,1 andσt,2) follow univariate GARCH
updating patterns, and the conditional covariance σt,12 has a similar structure driven
by the products of the lagged valuesXt−1,1Xt−1,2.As for the CCC and DCC models,
the volatility of a single component series is only driven by large lagged values of
that series and cannot be directly affected by large lagged values in another series;
the more general but overparametrized VEC model would allow this feature.

The requirement that Σt in (4.67) should be a proper positive-definite covariance
matrix does impose conditions on the A0, Ai and Bj matrices that we have not
yet discussed. In practice, in some software implementations of this model, formal
conditions are not imposed, other than that the matrices should be symmetric with
non-negative diagonal elements; the positive definiteness of the resulting estimates
of the conditional covariance matrices can be checked after model fitting.

However, a sufficient condition for Σt to be almost surely positive definite is
that A0 should be positive definite and the matrices A1, . . . , Ap, B1, . . . , Bq should
all be positive semidefinite (see Notes and Comments) and this condition is easy to
impose. We can constrain all parameter matrices to have a form based on a Cholesky
decomposition; that is we can parametrize the model in terms of lower-triangular
Cholesky factor matrices A1/2

0 , A1/2
i and B

1/2
j satisfying

A0 = A
1/2
0 (A

1/2
0 )′, Ai = A

1/2
i (A

1/2
i )′, Bj = B

1/2
j (B

1/2
j )′. (4.69)

Because the sufficient condition only prescribes that A1, . . . , Ap and B1, . . . , Bq

should be positive semidefinite, we can in fact also consider much simpler
parametrizations, such as

A0 = A
1/2
0 (A

1/2
0 )′, Ai = aia

′
i , Bj = bjb

′
j , (4.70)

where ai and bj are vectors in R
d . An even cruder model, satisfying the requirement

of positive definiteness of Σt , would be

A0 = A
1/2
0 (A

1/2
0 )′, Ai = aiId, Bj = bj Id, (4.71)
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where ai and bj are simply positive constants. In fact the specifications of the
multivariate ARCH and GARCH effects in (4.69)–(4.71) can be mixed and matched
in obvious ways.

The BEKK model of Baba, Engle, Kroner and Kraft. The next family of models
have the great advantage that their construction ensures the positive definiteness of
Σt without the need for further conditions.

Definition 4.44. The process (Xt )t∈Z is a BEKK process if it has the general struc-
ture given in Definition 4.39, and if the conditional covariance matrix Σt satisfies,
for all t ∈ Z,

Σt = A0 +
p∑
i=1

A′
iXt−iX

′
t−iAi +

q∑
j=1

B ′
jΣt−jBj , (4.72)

where all coefficient matrices are in R
d×d andA0 is symmetric and positive definite.

Proposition 4.45. In the BEKK model (4.72), the conditional covariance matrix
Σt is almost surely positive definite for all t .

Proof. Consider a first-order model for simplicity. For a vector v �= 0 in R
d we

have
v′Σtv = v′A0v + (v′A′

1Xt−1)
2 + (B1v)

′Σt−1(B1v) > 0,

since the first term is strictly positive and the second and third terms are non-
negative.

To gain an understanding of the BEKK model it is again useful to consider the
bivariate special case of order (1, 1) and to consider the dynamics that are implied
while comparing these with equations (4.68):

σ 2
t,1 = a0,11 + a2

1,11X
2
t−1,1 + 2a1,11a1,12Xt−1,1Xt−1,2 + a2

1,12X
2
t−1,2

+ b2
11σ

2
t−1,1 + 2b11b12σt−1,12 + b2

12σ
2
t−1,2; (4.73)

σt,12 = a0,12 + (a1,11a1,22 + a1,12a1,21)Xt−1,1Xt−1,2

+ a1,11a1,21X
2
t−1,1 + a1,22a1,12X

2
t−1,2

+ (b11b22 + b12b21)σt−1,12 + b11b21σ
2
t−1,1 + b22b12σ

2
t−1,2; (4.74)

σ 2
t,2 = a0,22 + a2

1,22X
2
t−1,2 + 2a1,22a1,21Xt−1,1Xt−1,2 + a2

1,21X
2
t−1,1

+ b2
22σ

2
t−1,2 + 2b22b21σt−1,21 + b2

21σ
2
t−1,1. (4.75)

From (4.73) it follows that we now have a model where a large lagged value of
the second component Xt−1,2 can influence the volatility of the first series σt,1.
The BEKK model has more parameters than the DVEC model and appears to have
much richer dynamics. Note, however, that the DVEC model cannot be obtained as
a special case of the BEKK model as we have defined it. To eliminate all crossover
effects in the conditional variance equations of the BEKK model in (4.73) and (4.75)
we would have to set the diagonal terms a1,12, a1,21, b12 and b21 to be zero and the
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Table 4.3. Summary of numbers of parameters in various multivariate GARCH models: in
CCC it is assumed that the numbers of ARCH and GARCH terms for all volatility equations
are, respectively, p and q; in DCC it is assumed that the conditional correlation equation has
p + q parameters. The second column gives the general formula; the final columns give the
numbers for models of dimensions 2, 5 and 10 when p = q = 1. Additional parameters in
the innovation distribution are not considered.

Model Parameter count 2 5 10

VEC d(d + 1)(1 + (p + q)d(d + 1)/2)/2 21 465 6105
BEKK d(d + 1)/2 + d2(p + q) 11 65 255
DVEC as in (4.69) d(d + 1)(1 + p + q)/2 9 45 165
DCC d(d + 1)/2 + (d + 1)(p + q) 9 27 77
CCC d(d + 1)/2 + d(p + q) 7 25 75
DVEC as in (4.70) d(d + 1)/2 + d(p + q) 7 25 75
DVEC as in (4.71) d(d + 1)/2 + (p + q) 5 17 57

parameters governing the individual volatilities would also govern the conditional
covariance σt,12 in (4.74).

Remark 4.46. A broader definition of the BEKK class, which does subsume all
DVEC models, was originally given by Engle and Kroner (1995). In this definition
we have

Σt = A0A
′
0 +

K∑
k=1

p∑
i=1

A′
k,iXt−iX

′
t−iAk,i +

K∑
k=1

q∑
j=1

B ′
k,jΣt−jBk,j ,

where 1
2d(d+1) > K � 1 and the choice ofK determines the richness of the model.

This model class is of largely theoretical interest and tends to be too complex for
practical applications; even the case K = 1 is difficult to fit in higher dimensions.

In Table 4.3 we have summarized the numbers of parameters in these models.
Broad conclusions concerning the practical implications are as follows: the general
VEC model is of purely theoretical interest; the BEKK and general DVEC models
are for very low-dimensional use; the remaining models are the most practically
useful.

4.6.4 Fitting Multivariate GARCH Models

Model fitting. We have already given notes on fitting some models in stages and
it should be stressed that in the high-dimensional applications of risk management
this may in fact be the only feasible strategy. Where interest centres on a multivariate
risk-factor return series of more modest dimension (perhaps less than 10), we can
attempt to fit multivariate GARCH models by maximizing an appropriate likelihood
with respect to all parameters in a single step. The procedure follows from the method
for univariate time series described in Section 4.3.4.

The method of building a likelihood for a generic multivariate GARCH model
Xt = Σ

1/2
t Zt is completely analogous to the univariate case; consider again a first-

order model (p = q = 1) for simplicity and assume that our data are labelled
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X0,X1, . . . ,Xn. A conditional likelihood is based on the conditional joint density
of X1, . . . ,Xn, given X0 and an initial value Σ0 for the conditional covariance
matrix. This conditional joint density is

fX1,...,Xn|X0,Σ0(x1, . . . , xn | x0,Σ0)

=
n∏

t=1

fXt |Xt−1,...,X0,Σ0(xt | xt−1, . . . , x0,Σ0).

If we denote the multivariate innovation density of Zt by g(z), then we have

fXt |Xt−1,...,X0,Σ0(xt | xt−1, . . . , x0,Σ0) = |Σt |−1/2g(Σ
−1/2
t xt ),

whereΣt is a matrix-valued function of xt−1, . . . , x0 andΣ0. Most common choices
of g(z) are in the spherical family so that by (3.46) we have g(z) = h(z′z) for some
function h of a scalar variable (known as a density generator), yielding a conditional
likelihood of the form

L(θ; X1, . . . ,Xn) =
n∏

t=1

|Σt |−1/2h(X′
tΣ

−1
t Xt ),

where all parameters appearing in the volatility equation and the innovation distri-
bution are collected in θ . It would of course be possible to add a constant mean term
or a conditional mean term with, say, vector autoregressive structure to the model
and to adapt the likelihood accordingly.

Evaluation of the likelihood requires us to input a value for Σ0. Maximization
can again be performed in practice using a modified Newton–Raphson procedure,
such as that of Berndt et al. (1974). References concerning properties of estimators
are given in Notes and Comments, although the literature for multivariate GARCH
is small.

Model checking and comparison. Residuals are calculated according to Ẑt =
Σ̂

−1/2
t Xt and should behave like a realization of an SWN(0, Id) process. The usual

univariate procedures (correlograms, correlograms of absolute values and portman-
teau tests such as Ljung–Box) can be applied to the component series of the residuals.
Also, there should not be any evidence of cross-correlations at any lags for either
the raw or the absolute residuals in the cross-correlogram.

Model selection is usually performed by a standard comparison of Akaike AIC
numbers, although it should be stressed that there is not yet much literature on
theoretical aspects of the use of Akaike in a univariate GARCH context, let alone a
multivariate one.

4.6.5 Dimension Reduction in MGARCH

It is still true that attempting to model all financial risk factors with general multi-
variate GARCH models is not recommended. Rather, these models have to be com-
bined with factor-model strategies to reduce the overall dimension of the time series
modelling problem. This is a large subject with many possible approaches and model
structures and we give brief notes on some general strategies.
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As discussed in Section 3.4.1, a fundamental consideration is whether factors are
identified a priori and treated as observable exogenous variables, or whether they
are treated as latent and are manufactured from the observed data.

Observed factors. Suppose we adopted the former approach and identified a small
number of common factors Ft to explain the variation in many risk factors Xt ; we
might, for example, use stock index returns to explain the variation in individual
equity returns. These common factors could be modelled with relatively detailed
multivariate GARCH models. The dependence of the individual returns on the factor
returns could then be modelled by calibrating a factor model of the type

Xt = a + BFt + εt , t = 1, . . . , n.

In Section 3.4.3 we showed how this may be done in a static way using regression
techniques. We now assume that, conditional on the factors Ft , the errors εt form a
multivariate white noise process with GARCH volatility structure.

In an ideal factor model these errors would have a diagonal covariance matrix,
because they would be attributable to idiosyncratic effects alone. In GARCH terms
they might follow a pure diagonal model, i.e. a CCC model where the constant
conditional correlation matrix is the identity matrix. A pure diagonal model can be
fitted in two ways, which correspond to the two ways of estimating a static regression
model.

(1) Fit univariate models to the component series X1,k, . . . , Xn,k , k = 1, . . . , d.
For each k assume that

Xt,k = µt,k + εt,k, µt,k = ak + b′
kFt , t = 1, . . . , n,

where the errors εt,k follow some univariate GARCH specification.

(2) Fit in one step the multivariate model

Xt = µt + εt , µt = a + BFt , t = 1, . . . , n,

where the errors εt follow a pure diagonal CCC model and the SWN(0, Id)
process driving the GARCH model is some non-Gaussian spherical distribu-
tion, such as an appropriate scaled t distribution. (If the SWN is Gaussian,
approaches (1) and (2) give the same results.)

In practice, it is never possible to find the “right” common factors such that the
idiosyncratic errors have a diagonal covariance structure. The pure diagonal assump-
tion can be examined by looking at the errors from the GARCH modelling, esti-
mating their correlation matrix and assessing its closeness to the identity matrix. In
the case where correlation structure remains, the formal concept of the factor model
can be loosened by allowing errors with a CCC-GARCH structure, which could be
calibrated by two-stage estimation.
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Principal components GARCH. As an alternative approach we could attempt to
extend the idea of principal components to the time series context. A way of doing
this is suggested by the following formally defined model.

Definition 4.47. The process (Xt )t∈Z follows a PC-GARCH (or orthogonal
GARCH) model if there exists some orthogonal matrix Γ ∈ R

d×d satisfying
Γ Γ ′ = Γ ′Γ = Id such that (Γ ′Xt )t∈Z follows a pure diagonal GARCH model.

If (Xt )t∈Z follows a PC-GARCH process for some matrix Γ , then we can intro-
duce the process (Yt )t∈Z defined by Yt = Γ ′Xt , which satisfies Yt = �tZt , where
(Zt )t∈Z is SWN(0, Id) and �t is a (diagonal) volatility matrix with elements that
are updated according to univariate GARCH schemes and past values of the com-
ponents of Yt . Since Xt = Γ�tZt , the conditional and unconditional covariance
matrices have the structure

Σt = Γ�2
t Γ

′, Σ = ΓE(�2
t )Γ

′, (4.76)

and are obviously symmetric and positive definite.
Comparing with (3.67) we see that the PC-GARCH model implies a spectral

decomposition of the conditional and unconditional covariance matrices. The eigen-
values of the conditional covariance matrix, which are the elements of the diago-
nal matrix �2

t , are given a GARCH updating structure. The eigenvectors form the
columns of Γ and are used to construct the time series (Yt )t∈Z, the principal com-
ponent transform of (Xt )t∈Z. It should be noted that despite the simple structure
of (4.76), the conditional correlation matrix of Xt is not constant in this model.

This is again a model whose structure permits estimation in stages; in the first step
we calculate the spectral decomposition of the sample covariance matrix of the data
S as in Section 3.4.4; this gives us an estimator G of Γ . We then rotate the original
data to obtain sample principal components {G′Xt : t = 1, . . . , n}. These should
be consistent with a pure diagonal model if the PC-GARCH is appropriate for the
original data; there should be no cross-correlation between the series at any lag. In
a second stage we fit univariate GARCH models to each time series of principal
components in turn; the residuals from these GARCH models should behave like
SWN(0, Id).

The main motivation for using principal components is to reduce dimensionality.
We expect that a subset of the principal components can explain the majority of vari-
ability in both the conditional and unconditional covariance matrices.We use the idea
embodied in equation (3.70), that the first k loading vectors in the matrix Γ specify
the most important principal components, and we write these columns in the sub-
matrix Γ1 ∈ R

d×k and use them to define factors Ft = (Ft,1, . . . , Ft,k)
′ := Γ ′

1Xt .
These factors satisfy Ft = �̃t Z̃t , where �̃t contains the upper k × k submatrix of
�t and Z̃t ∼ SWN(0, Ik). In other words, the factors follow a pure diagonal model
of dimension k < d.

Following the idea in (3.70), the PC-GARCH model can then be thought of
as a factor model of the form Xt = Γ1Ft + εt , where the error term is usually
ignored in practice. The conditional covariance matrix is effectively approximated by
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Σt ≈ Γ1�̃
2
t Γ

′
1. In practical terms, calibrating the model simply means that we only

need to fit GARCH models to the first k time series of sample principal components.

4.6.6 MGARCH and Conditional Risk Measurement

Suppose we calibrate an MGARCH model (possibly with VARMA conditional
mean structure) having the general structure Xt = µt + Σ

1/2
t Zt to historical

risk-factor return data Xt−n+1, . . . ,Xt . We are interested in the loss distribution
of Lt+1 = l[t](Xt+1) conditional on Ft = σ({Xs : s � t}), as described in Sec-
tions 2.1.1 and 2.1.2. (We may also be interested in longer-period losses as in Sec-
tion 2.3.4.)

A general method that could be applied is the Monte Carlo method of Sec-
tion 2.3.3: we could simulate many times the next value Xt+1 (and subsequent values
if needed) of the stochastic process (Xt )t∈Z using estimates of µt+1 and Σt+1.

Alternatively, a variance–covariance calculation as in Section 2.3.1 could be made.
Considering a linearized loss operator with the general form l�[t](x) = −(ct + b′

tx),
the moments of the conditional loss distribution would be

E(L�
t+1 | Ft ) = −ct − b′

tµt+1, cov(L�
t+1 | Ft ) = b′

tΣt+1bt .

Under an assumption of Gaussian innovations, L�
t+1 | Ft would be univariate Gaus-

sian as in (2.30). Under an assumption of (scaled) t innovations, it would be uni-
variate t . Again we would need estimates of Σt+1 and µt+1 from our time series
model, as in Section 4.4.2, and VaR and ES estimates would then follow easily for
these distributions from calculations in Examples 2.14, 2.18 and 2.19.

Example 4.48. Consider again the simple stock portfolio in Example 2.4 and sup-
pose our time series model is a first-order DVEC model with a constant mean term.
The model takes the form

Xt − µ = Σ
1/2
t Zt , Σt = A0 + A1 ◦ ((Xt−1 − µ)(X′

t−1 − µ′)) + B ◦ Σt−1.

(4.77)
Suppose we assume that the innovations are multivariate Student t . The standard
risk measures applied to the linearized loss distribution would take the form

VaRt
α = −Vtw

′
tµ + Vt

√
w′
tΣt+1wt (ν − 2)

ν
t−1
ν (α),

EStα = −Vtw
′
tµ + Vt

√
w′
tΣt+1wt (ν − 2)

ν

gν(t
−1
ν (α))

1 − α

(
ν + (t−1

ν (α))2

ν − 1

)
,

where the notation is as in Example 2.19. Estimates of the risk measures are obtained
by replacing µ, ν and Σt+1 by estimates. The latter can be calculated iteratively
from (4.77) using estimates of A0, A1 and B and a starting value for Σ0.

Multivariate EWMA. In Section 4.4.1 we saw how the EWMA or exponential
smoothing procedure could be used as a simple alternative to GARCH volatility
prediction. We note that there is a multivariate extension that may be used to make
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one-step forecasts of conditional covariance matrices and that this can be thought
of as a simple alternative to using the updating scheme in (4.77).

We recall the univariate EWMA updating equation (4.47) and note that the multi-
variate analogue is

Σ̂t+1 = αXtX
′
t + (1 − α)Σ̂t , (4.78)

where α is some small positive number (typically of the order α ≈ 0.04). This
method of updating is consistent with the idea of estimating Σt+1 by a weighted
sum of past values of the matrices XtXt , where the weights decay exponentially:

Σ̂t+1 = α

n−1∑
i=0

(1 − α)iXt−iXt−i .

Notes and Comments

The CCC-GARCH model was suggested by Bollerslev (1990), who used it to model
European exchange-rate data before and after the introduction of the European
Monetary System (EMS) and came to the expected conclusion that conditional
correlations after the introduction of the EMS were higher. The idea of the DCC
model is explored by Engle (2002), Engle and Sheppard (2001) and Tse and Tsui
(2002). Fitting in stages is promoted in the formulation of Engle and Sheppard
(2001) and asymptotic statistical theory for this procedure is given. Hafner and
Franses (2003) suggest that the dynamics of CCC are too simple for collections of
many asset returns and give a generalization.

The DVEC model was proposed by Bollerslev, Engle and Wooldridge (1988). The
more general (but overparametrized) VEC model is discussed in Engle and Kroner
(1995) alongside the BEKK model, named after these two authors as well as Baba
and Kraft, who co-authored an earlier unpublished manuscript. The condition for the
positive definiteness of Σt in (4.67), which suggests the parametrizations (4.69)–
(4.71), is described in Attanasio (1991).

There is limited work on statistical properties of QMLEs in multivariate mod-
els: Jeantheau (1998) shows consistency for a general formulation and Comte and
Lieberman (2003) show asymptotic normality for the BEKK formulation.

The principal components GARCH (PC-GARCH) model was first described by
Ding (1994) in a PhD thesis; under the name of orthogonal GARCH it has been
extensively investigated by Alexander (2001). The latter shows how PC-GARCH
can be used as a dimension reduction tool for expressing the conditional covariances
of a number of asset return series in terms of a much smaller number of principal
component return series.

Survey articles by Bollerslev, Engle and Nelson (1994) and Bauwens, Laurent
and Rombouts (2005) are useful sources of additional information and references
for all of these multivariate models.
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Copulas and Dependence

In this chapter we look more closely at the issue of modelling the dependence among
components of a random vector of financial risk factors using the concept of a copula.
All readers are encouraged to read Section 5.1 in order to grasp the basic idea of a
copula and to see examples. Thereafter the choice of material in this chapter may
be based on the applied interests of the reader.

Section 5.2 goes further into the issue of what it means to measure dependence.
The limitations of linear correlation as a dependence measure are highlighted, par-
ticularly when we leave the multivariate normal and elliptical distributions of Chap-
ter 3 behind. Alternative dependence measures derived from copulas, such as rank
correlations and coefficients of tail dependence, are discussed. Rank correlations
are mainly of interest to readers who want to go on to calibrate copulas to data,
while tail dependence is an important concept for all readers, since it addresses the
phenomenon of joint extreme values in several risk factors, which is one of the major
concerns in financial risk management (see also Section 4.1.2).

In Section 5.3 we look in more detail at the copulas of normal mixture distribu-
tions; these are the copulas that are used implicitly when normal mixture distribu-
tions are fitted to multivariate risk-factor change data, as in Chapter 3. In Section 5.4
we consider Archimedean copulas, which are widely used as dependence models
in low-dimensional applications and which have also found an important niche in
portfolio credit risk modelling, as will be seen in Chapters 8 and 9. The chapter ends
with a section on fitting copulas to data.

5.1 Copulas

In a sense, every joint distribution function for a random vector of risk factors
implicitly contains both a description of the marginal behaviour of individual risk
factors and a description of their dependence structure; the copula approach provides
a way of isolating the description of the dependence structure. It is of course only one
way of treating dependence in multivariate risk models and is perhaps most natural
in a static distributional context rather than a dynamic time series one. Nonetheless,
we view copulas as an extremely useful concept and see several advantages in
introducing and studying them.

First, copulas help in the understanding of dependence at a deeper level. They
allow us to see the potential pitfalls of approaches to dependence that focus only
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on correlation and show us how to define a number of useful alternative depend-
ence measures. Copulas express dependence on a quantile scale, which is useful for
describing the dependence of extreme outcomes and is natural in a risk-management
context, where VaR has led us to think of risk in terms of quantiles of loss distribu-
tions.

Moreover, copulas facilitate a bottom-up approach to multivariate model build-
ing. This is particularly useful in risk management, where we very often have a
much better idea about the marginal behaviour of individual risk factors than we do
about their dependence structure. An example is furnished by credit risk, where the
individual default risk of an obligor, while in itself difficult to estimate, is at least
something we can get a better handle on than the dependence among default risks
for several obligors. The copula approach allows us to combine our more developed
marginal models with a variety of possible dependence models and to investigate
the sensitivity of risk to the dependence specification. Since the copulas we present
are easily simulated, they lend themselves in particular to Monte Carlo studies of
risk.

5.1.1 Basic Properties

Definition 5.1 (copula). A d-dimensional copula is a distribution function on [0, 1]d
with standard uniform marginal distributions.

We reserve the notation C(u) = C(u1, . . . , ud) for the multivariate dfs that are
copulas. Hence C is a mapping of the form C : [0, 1]d → [0, 1], i.e. a mapping of
the unit hypercube into the unit interval. The following three properties must hold.

(1) C(u1, . . . , ud) is increasing in each component ui .

(2) C(1, . . . , 1, ui, 1, . . . , 1) = ui for all i ∈ {1, . . . , d}, ui ∈ [0, 1].
(3) For all (a1, . . . , ad), (b1, . . . , bd) ∈ [0, 1]d with ai � bi we have

2∑
i1=1

· · ·
2∑

id=1

(−1)i1+···+id C(u1i1 , . . . , udid ) � 0, (5.1)

where uj1 = aj and uj2 = bj for all j ∈ {1, . . . , d}.
The first property is clearly required of any multivariate df and the second property
is the requirement of uniform marginal distributions. The third property is less
obvious, but the so-called rectangle inequality in (5.1) ensures that if the random
vector (U1, . . . , Ud)

′ has df C, then P(a1 � U1 � b1, . . . , ad � Ud � bd) is
non-negative. These three properties characterize a copula; if a function C fulfills
them, then it is a copula. Note also that, for 2 � k < d, the k-dimensional margins
of a d-dimensional copula are themselves copulas.

Some preliminaries. In working with copulas we must be familiar with the opera-
tions of probability and quantile transformation, as well as the properties of gener-
alized inverses, which are summarized in Section A.1.2. The following elementary
proposition is found in many probability texts.
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Proposition 5.2. LetG be a distribution function and letG← denote its generalized
inverse, i.e. the function G←(y) = inf{x : G(x) � y}.
(1) Quantile transformation. If U ∼ U(0, 1) has a standard uniform distribution,

then P(G←(U) � x) = G(x).

(2) Probability transformation. If Y has df G, where G is a continuous univariate
df, then G(Y) ∼ U(0, 1).

Proof. Let y ∈ R and u ∈ (0, 1). For the first part use the fact that

G(y) � u ⇐⇒ G←(u) � y

(see Proposition A.3(iv) in Section A.1.2), from which it follows that

P(G←(U) � y) = P(U � G(y)) = G(y).

For the second part we infer that

P(G(Y ) � u) = P(G← ◦G(Y) � G←(u)) = P(Y � G←(u)) = G ◦G←(u) = u,

where the first inequality follows from the fact thatG← is strictly increasing (Propo-
sition A.3(ii)), the second follows from Proposition A.4, and the final equality is
Proposition A.3(viii).

Proposition 5.2(1) is the key to stochastic simulation. If we can generate a uniform
variate U and compute the inverse of a df G, then we can sample from that df. Both
parts of the proposition taken together imply that we can transform risks with a
particular continuous df to have any other continuous distribution. For example, if Y
has a standard normal distribution, thenΦ(Y) is uniform by Proposition 5.2(1), and,
since the quantile function of a standard exponential df G is G←(y) = − ln(1 −y),
the transformed variable Z := − ln(1 − Φ(Y)) has a unit exponential distribution
by Proposition 5.2(2).

Sklar’s Theorem. The importance of copulas in the study of multivariate distribu-
tion functions is summarized by the following elegant theorem, which shows, firstly,
that all multivariate dfs contain copulas and, secondly, that copulas may be used in
conjunction with univariate dfs to construct multivariate dfs.

Theorem 5.3 (Sklar 1959). Let F be a joint distribution function with margins
F1, . . . , Fd . Then there exists a copula C : [0, 1]d → [0, 1] such that, for all
x1, . . . , xd in R̄ = [−∞,∞],

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (5.2)

If the margins are continuous, then C is unique; otherwise C is uniquely determined
on RanF1 ×RanF2 ×· · ·×RanFd , where RanFi = Fi(R̄) denotes the range ofFi .
Conversely, if C is a copula and F1, . . . , Fd are univariate distribution functions,
then the function F defined in (5.2) is a joint distribution function with margins
F1, . . . , Fd .
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Proof. We prove the existence and uniqueness of a copula in the case when
F1, . . . , Fd are continuous and the converse statement in its general form. For a
full proof see Schweizer and Sklar (1983) or Nelsen (1999, p. 18).

For any x1, . . . , xd in R̄ = [−∞,∞] we may use similar reasoning to that used
in Lemma A.2(ii) to infer that if X has df F , then

F(x1, . . . , xd) = P(F1(X1) � F1(x1), . . . , Fd(Xd) � Fd(xd)).

Since F1, . . . , Fd are continuous, Proposition 5.2(2) and Definition 5.1 imply that
the df of (F1(X1), . . . , Fd(Xd)) is a copula, which we denote by C, and thus we
obtain the identity (5.2).

If we evaluate (5.2) at the arguments xi = F←
i (ui), 0 � ui � 1, i = 1, . . . , d,

and use Proposition A.3(viii), we obtain

C(u1, . . . , ud) = F(F←
1 (u1), . . . , F

←
d (ud)), (5.3)

which gives an explicit representation of C in terms of F and its margins, and thus
shows uniqueness.

For the converse statement assume that C is a copula and that F1, . . . , Fd are
univariate dfs. We construct a random vector with df (5.2) by taking U to be a
random vector with df C and setting X := (F←

1 (U1), . . . , F
←
d (Ud)). We then

verify, using Proposition A.3(iv), that

P(X1 � x1, . . . , Xd � xd) = P(F←
1 (U1) � x1, . . . , F

←
d (Ud) � xd)

= P(U1 � F1(x1), . . . , Ud � F(xd))

= C(F1(x1), . . . , Fd(xd)).

Formulas (5.2) and (5.3) are fundamental in dealing with copulas. The former
shows how joint distributions F are formed by coupling together marginal distribu-
tions with copulas C; the latter shows how copulas are extracted from multivariate
dfs with continuous margins. Moreover, (5.3) shows how copulas express depend-
ence on a quantile scale, since the value C(u1, . . . , ud) is the joint probability that
X1 lies below its u1-quantile, X2 lies below its u2-quantile, and so on. Sklar’s The-
orem also suggests that, in the case of continuous margins, it is natural to define the
notion of the copula of a distribution.

Definition 5.4 (copula of F ). If the random vector X has joint df F with contin-
uous marginal distributions F1, . . . , Fd , then the copula of F (or X) is the df C of
(F1(X1), . . . , Fd(Xd)).

Discrete distributions. The copula concept is slightly less natural for multivariate
discrete distributions. This is because there is more than one copula that can be used
to join the margins to form the joint df, as the following example shows.
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Example 5.5 (copulas of bivariate Bernoulli). Let (X1, X2) have a bivariate
Bernoulli distribution satisfying

P(X1 = 0, X2 = 0) = 1
8 , P (X1 = 1, X2 = 1) = 3

8

P(X1 = 0, X2 = 1) = 2
8 , P (X1 = 1, X2 = 0) = 2

8 .

Clearly, P(X1 = 0) = P(X2 = 0) = 3
8 and the marginal distributions F1 and F2 of

X1 and X2 are the same. From Sklar’s Theorem we know that

P(X1 � x1, X2 � x2) = C(P (X1 � x1), P (X2 � x2))

for all x1, x2 and some copula C. Since RanF1 = RanF2 = {0, 3
8 , 1}, clearly the

only constraint on C is that C( 3
8 ,

3
8 ) = 1

8 . Any copula fulfilling this constraint is a
copula of (X1, X2), and there are infinitely many such copulas.

Invariance. A useful property of the copula of a distribution is its invariance under
strictly increasing transformations of the marginals. In view of Sklar’s Theorem and
this invariance property, we interpret the copula of a distribution as a very natural
way of representing the dependence structure of that distribution, certainly in the
case of continuous margins.

Proposition 5.6. Let (X1, . . . , Xd) be a random vector with continuous mar-
gins and copula C and let T1, . . . , Td be strictly increasing functions. Then
(T1(X1), . . . , Td(Xd)) also has copula C.

Proof. First we show that the transformed variable Ti(Xi) has continuous df
F̃i(y) := Fi ◦ T←

i (y). To see this, observe that Proposition A.3(vii) implies

F̃i(y) = P(Xi � T←
i (y)) = P(T←

i ◦ Ti(Xi) � T←
i (y)).

Since T←
i is an increasing (but not strictly increasing) transformation, we may use

Lemma A.2(ii) to deduce

F̃i(y) = P(Ti(Xi) � y) + P(Xi = T←
i (y), T (Xi) > y),

but the second probability on the right-hand side is zero, since Fi is continuous.
Since C is the copula of X, we can now calculate that

C(u1, . . . , un) = P(F1(X1) � u1, . . . , Fd(Xd) � ud)

= P(F̃1(T1(X1)) � u1, . . . , F̃d(Td(Xd)) � ud),

because F̃i ◦ Ti(x) = Fi ◦ T←
i ◦ Ti(x) = Fi(x) by Proposition A.3(vii). It follows

from Definition 5.4 that C is also the copula of (T1(X1), . . . , Td(Xd)).

Fréchet bounds. We close this section by establishing the important Fréchet
bounds for copulas, which turn out to have important dependence interpretations
that are discussed further in Sections 5.1.2 and 5.1.6.

Theorem 5.7. For every copula C(u1, . . . , ud) we have the bounds

max

{ d∑
i=1

ui + 1 − d, 0

}
� C(u) � min{u1, . . . , ud}. (5.4)
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Proof. The second inequality follows from the fact that, for all i,⋂
1�j�d

{Uj � uj } ⊂ {Ui � ui}.

For the first inequality observe that

C(u) = P

( ⋂
1�i�d

{Ui � ui}
)

= 1 − P

( ⋃
1�i�d

{Ui > ui}
)

� 1 −
d∑
i=1

P(Ui > ui) = 1 − d +
d∑
i=1

ui.

The lower and upper bounds will be given the notation W(u1, . . . , ud) and
M(u1, . . . , ud), respectively.

Remark 5.8. Although we give Fréchet bounds for a copula, Fréchet bounds may
be given for any multivariate df. For a multivariate df F with margins F1, . . . , Fd

we establish by similar reasoning that

max

{ d∑
i=1

Fi(xi) + 1 − d, 0

}
� F(x) � min{F(x1), . . . , F (xd)}, (5.5)

so we have bounds for F in terms of its own marginal distributions.

5.1.2 Examples of Copulas

We provide a number of examples of copulas in this section and these are subdivided
into three categories: fundamental copulas represent a number of important special
dependence structures; implicit copulas are extracted from well-known multivariate
distributions using Sklar’s Theorem, but do not necessarily possess simple closed-
form expressions; explicit copulas have simple closed-form expressions and follow
general mathematical constructions known to yield copulas.

Fundamental copulas. The independence copula is

Π(u1, . . . , ud) =
d∏
i=1

ui. (5.6)

It is clear from Sklar’s Theorem, and equation (5.2) in particular, that rvs with
continuous distributions are independent if and only if their dependence structure is
given by (5.6).

The comonotonicity copula is the Fréchet upper bound copula from (5.4):

M(u1, . . . , ud) = min{u1, . . . , ud}. (5.7)

Observe that this special copula is the joint df of the random vector (U, . . . , U),
where U ∼ U(0, 1). Suppose that the rvs X1, . . . , Xd have continuous dfs and



190 5. Copulas and Dependence

 

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

C
(u

1,u
2) 1.0

0.8
0.6
0.4
0.2

0
0.8

0.6
0.4

0.2

0.8
0.6

0.4
0.2 u1

u2

1.0
0.8
0.6
0.4
0.2

0
0.8

0.6
0.4

0.2

0.8
0.6

0.4
0.2 u1

u2

1.0
0.8
0.6
0.4
0.2

0
0.8

0.6
0.4

0.2

0.8
0.6

0.4
0.2 u1

u2

u2

u1 u1 u1

(a) (b) (c)

(d) (e) (f )

Figure 5.1. (a)–(c) Perspective plots and (d)–(f) contour plots of the three fundamental
copulas: (a), (d) countermonotonicity, (b), (e) independence and (c), (f) comonotonicity.
Note that these are plots of distribution functions.

are perfectly positively dependent in the sense that they are almost surely strictly
increasing functions of each other so that Xi = Ti(X1) almost surely for i =
2, . . . , d. As we have shown in the proof of Proposition 5.6, the df of Xi , i � 2, is
given by Fi = F1 ◦ T←

i , and by Definition 5.4 the copula of (X1, . . . , Xd) is the df
of

(F1(X1), F1 ◦ T←
2 ◦ T2(X1), . . . , F1 ◦ T←

d ◦ Td(X1)).

Writing U = F1(X1) and using Proposition A.3(vii), we see that this is the df of
(U, . . . , U), i.e. the copula (5.7). The comonotonicity copula thus represents perfect
dependence and we discuss this concept further in Section 5.1.6.

The countermonotonicity copula is the two-dimensional Fréchet lower bound
copula from (5.4) given by

W(u1, u2) = max{u1 + u2 − 1, 0}. (5.8)

This copula is the joint df of the random vector (U, 1 − U), where U ∼ U(0, 1).
If X1 and X2 have continuous dfs and are perfectly negatively dependent in the
sense that X2 is almost surely a strictly decreasing function of X1, then (5.8) is their
copula. We discuss perfect negative dependence in more detail in Section 5.1.6,
where we see that an extension of the countermonotonicity concept to dimensions
higher than two is not possible.

Perspective pictures and contour plots for the three fundamental copulas are given
in Figure 5.1. The Fréchet bounds (5.4) imply that all bivariate copulas lie between
the surfaces in (a) and (c).

Implicit copulas. If Y ∼ Nd(µ,Σ) is a Gaussian random vector, then its copula is
a so-called Gauss copula. Since the operation of standardizing the margins amounts
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to applying a series of strictly increasing transformations, Proposition 5.6 implies
that the copula of Y is exactly the same as the copula of X ∼ Nd(0,P), where
P = ℘(Σ) is the correlation matrix of Y . By Definition 5.4 this copula is given by

CGa
P (u) = P(Φ(X1) � u1, . . . , Φ(Xd) � ud)

= ΦP (Φ
−1(u1), . . . , Φ

−1(ud)), (5.9)

where Φ denotes the standard univariate normal df and ΦP denotes the joint df of
X. The notation CGa

P emphasizes that the copula is parametrized by the 1
2d(d − 1)

parameters of the correlation matrix; in two dimensions we write CGa
ρ , where

ρ = ρ(X1, X2).
The Gauss copula does not have a simple closed form, but can be expressed as an

integral over the density of X; in two dimensions for |ρ| < 1 we have, using (5.9),
that

CGa
ρ (u1, u2)

=
∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞
1

2π(1 − ρ2)1/2 exp

{−(s2
1 − 2ρs1s2 + s2

2 )

2(1 − ρ2)

}
ds1 ds2.

Note that both the independence and comonotonicity copulas are special cases of
the Gauss copula. If P = Id , we obtain the independence copula (5.6); if P = Jd , the
d×d matrix consisting entirely of ones, then we obtain comonotonicity (5.7). Also,
for d = 2 and ρ = −1 the Gauss copula is equal to the countermonotonicity copula
(5.8). Thus in two dimensions the Gauss copula can be thought of as a dependence
structure that interpolates between perfect positive and negative dependence, where
the parameter ρ represents the strength of dependence.

Perspective plots and contour lines of the bivariate Gauss copula with ρ = 0.7
are shown in Figure 5.2(a),(c); these may be compared with the contour lines of the
independence and perfect dependence copulas in Figure 5.1. Note that these pictures
show contour lines of distribution functions and not densities; a picture of the Gauss
copula density is given in Figure 5.5.

In the same way that we can extract a copula from the multivariate normal distri-
bution, we can extract an implicit copula from any other distribution with continuous
marginal dfs. For example, the d-dimensional t copula takes the form

Ct
ν,P (u) = tν,P (t

−1
ν (u1), . . . , t

−1
ν (ud)), (5.10)

where tν is the df of a standard univariate t distribution, tν,P is the joint df of the
vector X ∼ td (ν, 0,P) and P is a correlation matrix. As in the case of the Gauss
copula, if P = Jd then we obtain comonotonicity (5.8). However, in contrast to
the Gauss copula, if P = Id we do not obtain the independence copula (assuming
ν < ∞) since uncorrelated multivariate t-distributed rvs are not independent (see
Lemma 3.5).

Explicit copulas. While the Gaussian and t copulas are copulas implied by well-
known multivariate dfs and do not themselves have simple closed forms, we can
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Figure 5.2. (a), (b) Perspective plots and (c), (d) contour plots of the Gaussian and Gumbel
copulas, with parameters ρ = 0.7 and θ = 2, respectively. Note that these are plots of
distribution functions; a picture of the Gauss copula density is given in Figure 5.5.

write down a number of copulas which do have simple closed forms. An example
is the bivariate Gumbel copula:

CGu
θ (u1, u2) = exp{−((− ln u1)

θ + (− ln u2)
θ )1/θ }, 1 � θ < ∞. (5.11)

If θ = 1 we obtain the independence copula as a special case, and the limit of CGu
θ

as θ → ∞ is the two-dimensional comonotonicity copula. Thus the Gumbel copula
interpolates between independence and perfect dependence and the parameter θ
represents the strength of dependence. Perspective plot and contour lines for the
Gumbel copula with parameter θ = 2 are shown in Figure 5.2(b),(d). They appear
to be very similar to the picture for the Gauss copula, but Example 5.11 will show
that the Gaussian and Gumbel dependence structures are quite different.

A further example is the bivariate Clayton copula:

CCl
θ (u1, u2) = (u−θ

1 + u−θ
2 − 1)−1/θ , 0 < θ < ∞. (5.12)

In the limit as θ → 0 we approach the independence copula, and as θ → ∞ we
approach the two-dimensional comonotonicity copula.

The Gumbel and Clayton copulas belong to the Archimedean copula family and
we provide more discussion of this family, including the issue of higher-dimensional
extensions, in Section 5.4.

5.1.3 Meta Distributions

The converse statement of Sklar’s Theorem provides a very powerful technique
for constructing multivariate distributions with arbitrary margins and copulas; we
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know that if we start with a copula C and margins F1, . . . , Fd , then F(x) :=
C(F1(x1), . . . , Fd(xd)) defines a multivariate df with margins F1, . . . , Fd .

Consider, for example, building a distribution with the Gauss copula CGa
P but

arbitrary margins; such a model is known as a meta-Gaussian distribution. In the
area of credit risk modelling an example is Li’s model (see Example 8.7), where the
Gauss copula is used to join together exponential margins to obtain a model for the
default times of companies when these default times are considered to be dependent.

We extend the meta terminology to other distributions, so, for example, a meta-tν
distribution has the copula Ct

ν,P and arbitrary margins, and a meta-Clayton distri-
bution has the Clayton copula and arbitrary margins.

5.1.4 Simulation of Copulas and Meta Distributions

It should be apparent from the way the implicit copulas in Section 5.1.2 were
extracted from well-known distributions that it is particularly easy to sample from
these copulas, provided we can sample from the distribution from which they are
extracted. If we can generate a vector X with the df F , we can transform each
component with its own marginal df to obtain a vector U = (U1, . . . , Ud)

′ =
(F1(X1), . . . , Fd(Xd))

′ with df C, the copula of F . Particular examples are given
in the following algorithms.

Algorithm 5.9 (simulation of Gauss copula).

(1) Generate Z ∼ Nd(0,P) using Algorithm 3.2.

(2) Return U = (Φ(Z1), . . . , Φ(Zd))
′, where Φ is the standard normal df. The

random vector U has df CGa
P .

Algorithm 5.10 (simulation of t copula).

(1) Generate X ∼ td (ν, 0,P) using Algorithm 3.10.

(2) Return U = (tν(X1), . . . , tν(Xd))
′, where tν denotes the df of a standard

univariate t distribution. The random vector U has df Ct
ν,P .

The Clayton and Gumbel copulas present slightly more challenging simulation
problems and we give algorithms in Section 5.4 after looking at the structure of these
copulas in more detail. These algorithms will, however, be used in Example 5.11
below.

Assume that the problem of generating realizations U from a particular copula has
been solved. The converse of Sklar’s Theorem shows us how we can sample from
interesting meta distributions that combine this copula with an arbitrary choice
of marginal distribution. If U has df C, then we use quantile transformation to
obtain X := (F←

1 (U1), . . . , F
←
d (Ud))

′, which is a random vector with margins
F1, . . . , Fd and multivariate dfC(F1(x1), . . . , Fd(xd)). This technique is extremely
useful in Monte Carlo studies of risk and will be discussed further in the context of
Example 5.56.
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Figure 5.3. Two thousand simulated points from the (a) Gaussian, (b) Gumbel,
(c) Clayton and (d) t copulas. See Example 5.11 for parameter choices and interpretation.

Example 5.11 (various copulas compared). In Figure 5.3 we show 2000 simu-
lated points from four copulas: the Gauss copula (5.9) with parameter ρ = 0.7;
the Gumbel copula (5.11) with parameter θ = 2; the Clayton copula (5.12) with
parameter θ = 2.2; the t copula (5.10) with parameters ν = 4 and ρ = 0.71.

In Figure 5.4 we transform these points componentwise using the quantile func-
tion of the standard normal distribution to get realizations from four different meta
distributions with standard normal margins. The Gaussian picture shows data gen-
erated from a standard bivariate normal distribution with correlation 70%. The
other pictures show data generated from unusual distributions that have been cre-
ated using the converse of Sklar’s Theorem; the parameters of the copulas have
been chosen so that all of these distributions have a linear correlation that is
roughly 70%.

Considering the Gumbel picture, these are bivariate data with a meta-Gumbel
distribution with df CGu

θ (Φ(x1),Φ(x2)), where θ = 2. The Gumbel copula causes
this distribution to have upper tail dependence, a concept defined formally in Sec-
tion 5.2.3. Roughly speaking, there is much more of a tendency forX2 to be extreme
when X1 is extreme, and vice versa, a phenomenon which would obviously be wor-
rying when X1 and X2 are interpreted as potential financial losses. The Clayton
copula turns out to have lower tail dependence, and the t copula to have both lower
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Figure 5.4. Two thousand simulated points from four distributions with standard normal
margins, constructed using the copula data from Figure 5.3 ((a) Gaussian, (b) Gumbel,
(c) Clayton and (d) t). The Gaussian picture shows points from a standard bivariate normal
with correlation 70%; other pictures show distributions with non-Gauss copulas constructed
to have a linear correlation of roughly 70%. See Example 5.11 for parameter choices and
interpretation.

and upper tail dependence; in contrast, the Gauss copula does not have tail depend-
ence and this can also be glimpsed in Figure 5.2. In the upper-right-hand corner
the contours of the Gauss copula are more like those of the independence copula of
Figure 5.1 than the perfect dependence copula.

Note that the qualitative differences between the distributions are explained by
the copula alone; we can construct similar pictures where the marginal distributions
are exponential or Student t , or any other univariate distribution.

5.1.5 Further Properties of Copulas

Survival copulas. A version of Sklar’s identity (5.2) also applies to multivariate sur-
vival functions of distributions. Let X be a random vector with multivariate survival
function F̄ , marginal dfs F1, . . . , Fd and marginal survival functions F̄1, . . . , F̄d ,
i.e. F̄i = 1 − Fi . We have the identity

F̄ (x1, . . . , xd) = Ĉ(F̄1(x1), . . . , F̄d(xd)) (5.13)
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for a copula Ĉ, which is known as a survival copula. In the case when F1, . . . , Fd

are continuous this identity is easily established by noting that

F̄ (x1, . . . , xd) = P(X1 > x1, . . . , Xd > xd)

= P(1 − F1(X1) � F̄1(x1), . . . , 1 − Fd(Xd) � F̄d(xd)),

so (5.13) follows by writing Ĉ for the distribution function of 1 − U , where U :=
(F1(X1), . . . , Fd(Xd)). In general, the term survival copula of a copula C will be
used to denote the df of 1 − U when U has df C.

Example 5.12 (survival copula of a bivariate Pareto distribution). A well-known
generalization of the important univariate Pareto distribution is the bivariate Pareto
distribution with survivor function given by

F̄ (x1, x2) =
(
x1 + κ1

κ1
+ x2 + κ2

κ2
− 1

)−α

, x1, x2 � 0, α, κ1, κ2 > 0.

It is easily confirmed that the marginal survivor functions are given by F̄i(x) =
(κi/(κi + x))α , i = 1, 2, and we then infer from (5.13) that the survival copula is
given by Ĉ(u1, u2) = (u

−1/α
1 +u

−1/α
2 − 1)−α . Comparison with (5.12) reveals that

this is the Clayton copula.

The useful concept of radial symmetry can be expressed in terms of copulas and
survival copulas.

Definition 5.13 (radial symmetry). A random vector X (or its df) is radially sym-
metric about a if X − a

d= a − X.

An elliptical random vector X ∼ Ed(µ,Σ,ψ) is obviously radially symmetric
about µ. If U has df C, where C is a copula, then the only possible centre of
symmetry is (0.5, . . . , 0.5), so C is radially symmetric if

(U1 − 0.5, . . . , Ud − 0.5)
d= (0.5 − U1, . . . , 0.5 − Ud) ⇐⇒ U

d= 1 − U .

Thus if a copulaC is radially symmetric and Ĉ is its survival copula, we have Ĉ = C.
It is easily seen that the copulas of elliptical distributions are radially symmetric but
the Gumbel and Clayton copulas are not.

Survival copulas should not be confused with the survival functions of copulas,
which are not themselves copulas. Since copulas are simply multivariate dfs, they
have survival or tail functions, which we denote by C̄. If U has dfC and the survival
copula of C is Ĉ, then

C̄(u1, . . . , ud) = P(U1 > u1, . . . , Ud > ud)

= P(1 − U1 � 1 − u1, . . . , 1 − Ud � 1 − ud)

= Ĉ(1 − u1, . . . , 1 − ud).

A useful relationship between a copula and its survival copula in the bivariate case
is that

Ĉ(1 − u1, 1 − u2) = 1 − u1 − u2 + C(u1, u2). (5.14)
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Conditional distributions of copulas. It is often of interest to look at condi-
tional distributions of copulas. We concentrate on two dimensions and suppose
that (U1, U2) has df C. Since a copula is an increasing continuous function in each
argument,

CU2|U1(u2 | u1) = P(U2 � u2 | U1 = u1) = lim
δ→0

C(u1 + δ, u2) − C(u1, u2)

δ

= ∂

∂u1
C(u1, u2), (5.15)

where this partial derivative exists almost everywhere (see Nelsen (1999) for precise
details). The conditional distribution is a distribution on the interval [0, 1] which is
only a uniform distribution in the case where C is the independence copula. A risk-
management interpretation of the conditional distribution is the following. Suppose
continuous risks (X1, X2) have the (unique) copula C. Then 1 − CU2|U1(q | p) is
the probability thatX2 exceeds its qth quantile given thatX1 attains its pth quantile.

Copula densities. Copulas do not always have joint densities; the comonotonicity
and countermonotonicity copulas are examples of copulas that are not absolutely
continuous. However, the parametric copulas that we have met so far do have den-
sities given by

c(u1, . . . , ud) = ∂C(u1, . . . , ud)

∂u1 · · · ∂ud , (5.16)

and we are sometimes required to calculate them, for example if we wish to fit
copulas to data by maximum likelihood.

It is useful to note that, for the implicit copula of an absolutely continuous joint df
F with strictly increasing, continuous marginal dfsF1, . . . , Fd , we may differentiate
C(u1, . . . , ud) = F(F←

1 (u1), . . . , F
←
d (ud)) to see that the copula density is given

by

c(u1, . . . , ud) = f (F−1
1 (u1), . . . , F

−1
d (ud))

f1(F
−1
1 (u1)) · · · fd(F−1

d (ud))
, (5.17)

where f is the joint density of F , f1, . . . , fd are the marginal densities, and
F−1

1 , . . . , F−1
d are the ordinary inverses of the marginal dfs.

Using this technique we can calculate the densities of the Gaussian and t copulas
as shown in Figures 5.5 and 5.6, respectively. Observe that the t copula assigns much
more probability mass to the corners of the unit square; this may be explained by
the tail dependence of the t copula, as discussed in Section 5.2.3.

Exchangeability.

Definition 5.14 (exchangeability). A random vector X is exchangeable if

(X1, . . . , Xd)
d= (XΠ(1), . . . , XΠ(d))

for any permutation (Π(1), . . . ,Π(d)) of (1, . . . , d).
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Figure 5.5. Perspective plot of the density of the bivariate
Gauss copula with parameter ρ = 0.3.
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Figure 5.6. Perspective plot of the density of the bivariate
t copula with parameters ν = 4 and ρ = 0.3.

We will refer to a copula as an exchangeable copula if it is the df of an exchangeable
random vector of uniform variates U . Clearly, for such a copula we must have

C(u1, . . . , ud) = C(uΠ(1), . . . , uΠ(d)) (5.18)

for all possible permutations of the arguments of C. Such copulas will prove useful
in modelling the default dependence for homogeneous groups of companies in the
context of credit risk.

Examples of exchangeable copulas include both the Gumbel and Clayton copulas
as well as the Gaussian and t copulas, CGa

P and Ct
ν,P , in the case that P is an

equicorrelation matrix, i.e. a matrix of the form P = ρJd + (1 − ρ)Id , where Jd is
the square matrix consisting entirely of ones and ρ � −1/(d − 1).

It follows from (5.18) and (5.15) that if the df of the vector (U1, U2) is an exchange-
able bivariate copula, then

P(U2 � u2 | U1 = u1) = P(U1 � u2 | U2 = u1), (5.19)

which implies quite strong symmetry. If a random vector (X1, X2) has such a copula,
then the probability that X2 exceeds its u2-quantile given that X1 attains its u1-
quantile is exactly the same as the probability that X1 exceeds its u2-quantile given
that X2 attains its u1-quantile. Not all bivariate copulas must satisfy (5.19). For an
example of a non-exchangeable bivariate copula see Section 5.4.3 and Figure 5.13.
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5.1.6 Perfect Dependence

There are many equivalent ways of defining the concept of comonotonicity. We saw
in Section 5.1.2 that continuously distributed rvs which are almost surely strictly
increasing functions of one another have as copula the Fréchet upper bound. We will
in fact use this copula to give a general definition of comonotonicity for any random
vector (continuous margins or otherwise), and then look at an equivalent condition.

Definition 5.15 (comonotonicity). The rvs X1, . . . , Xd are said to be comonotonic
if they admit as copula the Fréchet upper boundM(u1, . . . , ud) = min{u1, . . . , ud}.

More insight into this definition is afforded by the following result, which essen-
tially shows that comonotonic rvs are really only functions of a single rv.

Proposition 5.16. X1, . . . , Xd are comonotonic if and only if

(X1, . . . , Xd)
d= (v1(Z), . . . , vd(Z)) (5.20)

for some rv Z and increasing functions v1, . . . , vd .

Proof. Assume that X1, . . . , Xd are comonotonic according to Definition 5.15. Let
U be any uniform rv and write F , F1, . . . , Fd for the joint df and marginal dfs of
X1, . . . , Xd , respectively. From (5.2) we have

F(x1, . . . , xd) = min{F1(x1), . . . , Fd(xd)}
= P(U � min{F1(x1), . . . , Fd(xd)})
= P(U � F1(x1), . . . , U � Fd(xd))

= P(F←
1 (U) � x1, . . . , F

←
d (U) � xd)

for anyU ∼ U(0, 1), where we use PropositionA.3(iv) in the last equality. It follows
that

(X1, . . . , Xd)
d= (F←

1 (U), . . . , F←
d (U)), (5.21)

which is of the form (5.20). Conversely, if (5.20) holds, then

F(x1, . . . , xd) = P(v1(Z) � x1, . . . , vd(Z) � xd) = P(Z ∈ A1, . . . , Z ∈ Ad),

where each Ai is an interval of the form (−∞, ki] or (−∞, ki), so one interval Ai

is a subset of all other intervals. Therefore,

F(x1, . . . , xd) = min{P(Z ∈ A1), . . . , P (Z ∈ Ad)} = min{F1(x1), . . . , Fd(xd)},
which proves comonotonicity.

In the case of rvs with continuous marginal distributions we have a simpler and
stronger result.

Corollary 5.17. Let X1, . . . , Xd be rvs with continuous dfs. They are comonotonic
if and only if for every pair (i, j) we have Xj = Tji(Xi) almost surely for some
increasing transformation Tji .
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Proof. The result follows from the proof of Proposition 5.16 by noting that the rv
U may be taken to be Fi(Xi) for any i. Without loss of generality set d = 2 and
i = 1 and use (5.21) and Proposition A.4 to obtain

(X1, X2)
d= (F←

1 ◦ F1(X1), F
←
2 ◦ F1(X1))

d= (X1, F
←
2 ◦ F1(X1)).

An important property of comonotonic risks is that their quantiles are additive
and this is demonstrated in Proposition 6.15.

In an analogous way to comonotonicity, we define countermonotonicity as a
copula concept, albeit restricted to the case d = 2.

Definition 5.18 (countermonotonicity). The rvs X1 and X2 are countermonotonic
if they have as copula the Fréchet lower bound W(u1, u2) = max{u1 + u2 − 1, 0}.
Proposition 5.19. X1 and X2 are countermonotonic if and only if

(X1, X2)
d= (v1(Z), v2(Z))

for some rv Z with v1 increasing and v2 decreasing, or vice versa.

Proof. The proof is similar to that of Proposition 5.16 and is given in Embrechts,
McNeil and Straumann (2002).

Remark 5.20. In the case where X1 and X2 are continuous we have the simpler
result that countermonotonicity is equivalent toX2 = T (X1) almost surely for some
decreasing function T .

The concept of countermonotonicity does not generalize to higher dimensions.
The Fréchet lower bound W(u1, . . . , ud) is not itself a copula for d > 2 since it
is not a proper distribution function and does not satisfy (5.1), as the following
example taken from Nelsen (1999, Exercise 2.35) shows.

Example 5.21 (the Fréchet lower bound is not a copula for d > 2). Consider
the d-cube [1/2, 1]d ⊂ [0, 1]d . If the Fréchet lower bound for copulas were a df
on [0, 1]d , then (5.1) implies that the probability mass P(d) of this cube would be
given by

P(d) = max(1 + · · · + 1 − d + 1, 0) − d max( 1
2 + 1 + · · · + 1 − d + 1, 0)

+
(
d

2

)
max( 1

2 + 1
2 + · · · + 1 − d + 1, 0) − · · ·

+ max( 1
2 + · · · + 1

2 − d + 1, 0)

= 1 − 1
2d.

Hence the Fréchet lower bound cannot be a copula for d > 2.

Some additional insight into the impossibility of countermonotonicity for dimen-
sions higher than two is given by the following simple example.
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Example 5.22. Let X1 be a positive-valued rv and take X2 = 1/X1 and X3 =
exp(−X1). Clearly, (X1, X2) and (X1, X3) are countermonotonic random vectors.
However, (X2, X3) is comonotonic and the copula of the vector (X1, X2, X3) is the
df of the vector (U, 1 − U, 1 − U) which may be calculated to be

C(u1, u2, u3) = max{min{u2, u3} + u1 − 1, 0}.
Notes and Comments

Sklar’s Theorem is first found in Sklar (1959); see also Schweizer and Sklar (1983)
for a proof of the result. A systematic development of the theory of copulas, par-
ticularly bivariate ones, with many examples is found in Nelsen (1999). Pitfalls
related to discontinuity of marginal distributions are presented in Marshall (1996).
For extensive lists of parametric copula families see Hutchinson and Lai (1990),
Joe (1997) and Nelsen (1999). A recent reference on copula methods in finance is
Cherubini, Luciano and Vecchiato (2004).

The concept of comonotonicity or perfect positive dependence is discussed by
many authors, including Schmeidler (1986) and Yaari (1987). See also Wang and
Dhaene (1998), whose proof we use in Proposition 5.16, and the entry in the Encyclo-
pedia of Actuarial Science by Vyncke (2004).

5.2 Dependence Measures

In this section we focus on three kinds of dependence measure: the usual Pearson
linear correlation; rank correlation; and the coefficients of tail dependence. All of
these dependence measures yield a scalar measurement for a pair of rvs (X1, X2),
although the nature and properties of the measure are different in each case.

Correlation plays a central role in financial theory, but it is important to realize
that the concept is only really a natural one in the context of multivariate normal
or, more generally, elliptical models. As we have seen, elliptical distributions are
fully described by a mean vector, a covariance matrix and a characteristic genera-
tor function. Since means and variances are features of marginal distributions, the
copulas of elliptical distributions can be thought of as depending only on the corre-
lation matrix and characteristic generator; the correlation matrix thus has a natural
parametric role in these models, which it does not have in more general multivariate
models. Our discussion of correlation will focus on the shortcomings of correlation
and the subtle pitfalls that the naive user of correlation may encounter when moving
away from elliptical models. The concept of copulas will help us to illustrate these
pitfalls.

The other two kinds of dependence measure—rank correlations and tail-depen-
dence coefficients—are copula-based dependence measures. In contrast to ordinary
correlation, these measures are functions of the copula only and can thus be used in
the parametrization of copulas, as will be seen.

5.2.1 Linear Correlation

The correlation ρ(X1, X2) between rvs X1 and X2 was defined in (3.3). It is a mea-
sure of linear dependence and takes values in [−1, 1]. IfX1 andX2 are independent,



202 5. Copulas and Dependence

then ρ(X1, X2) = 0, but it should be well known to all users of correlation that the
converse is false: the uncorrelatedness of X1 and X2 does not in general imply their
independence. Examples are provided by the class of uncorrelated normal mixture
distributions (see Lemma 3.5) and the class of spherical distributions (with the single
exception of the multivariate normal).

If |ρ(X1, X2)| = 1, then this is equivalent to saying that X2 and X1 are perfectly
linearly dependent, meaning that X2 = α+βX1 almost surely for some α ∈ R and
β �= 0, with β > 0 for positive linear dependence and β < 0 for negative linear
dependence. Moreover, for β1, β2 > 0,

ρ(α1 + β1X1, α2 + β2X2) = ρ(X1, X2),

so correlation is invariant under strictly increasing linear transformations. How-
ever, correlation is not invariant under nonlinear strictly increasing transformations
T : R → R. For two real-valued rvs we have, in general, ρ(T (X1), T (X2)) �=
ρ(X1, X2).

Another obvious, but important, remark is that correlation is only defined when
the variances ofX1 andX2 are finite. This restriction to finite-variance models is not
ideal for a dependence measure and can cause problems when we work with heavy-
tailed distributions. For example, actuaries who model losses in different business
lines with infinite-variance distributions may not describe the dependence of their
risks using correlation. We will encounter similar examples in Section 10.1.4 on
operational risk.

Correlation fallacies. We now discuss two further pitfalls in the use of correlation,
which we present in the form of fallacies. We believe these fallacies are worth high-
lighting because they illustrate the dangers of attempting to construct multivariate
risk models starting from marginal distributions, and ideas about the correlation
between risks. Both of the statements we make are true if we restrict our attention
to elliptically distributed risk factors, but are false in general. A third fallacy con-
cerning correlation and VaR is presented later, in Section 6.2.2. For background to
these fallacies, alternative examples and a discussion of the relevance to multivariate
Monte Carlo simulation, see Embrechts, McNeil and Straumann (2002).

Fallacy 1. The marginal distributions and pairwise correlations of a random vector
determine its joint distribution.

It should already be clear to readers of this chapter that this is not true. Figure 5.4
shows the key to constructing counterexamples. Suppose the rvs X1 and X2 have
continuous marginal distributions F1 and F2 and joint df C(F1(x1), F2(x2)) for
some copula C and suppose their linear correlation is ρ(X1, X2) = ρ. It will gen-
erally be possible to find an alternative copula C2 �= C and to construct a random
vector (Y1, Y2) with df C2(F1(x1), F2(x2)) such that ρ(Y1, Y2) = ρ. The following
example illustrates this idea in a case where ρ = 0.
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Example 5.23. Consider two rvs representing profits and losses on two portfolios.
Suppose we are given the information that both risks have standard normal distri-
butions and that their correlation is zero. We construct two random vectors that are
consistent with this information.

Model 1 is the standard bivariate normal X ∼ N2(0, I2). Model 2 is constructed by
taking V to be an independent discrete rv such thatP(V = 1) = P(V = −1) = 0.5
and setting (Y1, Y2) = (X1, VX1) with X1 as in model 1. This model obviously
also has normal margins and correlation zero; its copula is given by

C(u1, u2) = 0.5 max{u1 + u2 − 1, 0} + 0.5 min{u1, u2},
which is a mixture of the two-dimensional Fréchet-bound copulas. This could be
roughly interpreted as representing two equiprobable states of the world: in one state
financial outcomes in the two portfolios are comonotonic and we are certain to make
money in both or lose money in both; in the other state they are countermonotonic
and we will make money in one and lose money in the other.

We can calculate analytically the distribution of the total losses X1 + X1 and
Y1 + Y2; the latter sum does not itself have a univariate normal distribution. For
k � 0 we get that

P(X1 + X2 > k) = Φ̄(k/
√

2), P (Y1 + Y2 > k) = 1
2 Φ̄( 1

2k),

from which it follows that, for α > 0.75,

F←
X1+X2

(α) = √
2Φ−1(α), F←

Y1+Y2
(α) = 2Φ−1(2α − 1).

In Figure 5.7 we see that the quantile of Y1 + Y2 dominates that of X1 + X2 for
probability levels above 93%. This example also illustrates that the VaR of a sum of
risks is clearly not determined by marginal distributions and pairwise correlations.
In Section 6.2 we will look at the problem of discovering how “bad” the quantile of
the sum of two risks can be when the marginal distributions are known.

The correlation of two risks does not only depend on their copula—if it did, then
correlation would be invariant under strictly increasing transformations. Correlation
is also inextricably linked to the marginal distributions of the risks and this imposes
certain constraints on the values that correlation can take. This is the subject of the
second fallacy.

Fallacy 2. For given univariate distributions F1 and F2 and any correlation value ρ
in [−1, 1] it is always possible to construct a joint distribution F with margins F1

and F2 and correlation ρ.

Again, this statement is true if F1 and F2 are the margins of an elliptical distribu-
tion, but is in general false. The so-called attainable correlations can form a strict
subset of the interval [−1, 1], as is shown in the next theorem. In the proof of the
theorem we require the formula of Höffding, which is given in the next lemma.

Lemma 5.24. If (X1, X2) has joint df F and marginal dfs F1 and F2, then the
covariance of X1 and X2, when finite, is given by

cov(X1, X2) =
∫ ∞

−∞

∫ ∞

−∞
(F (x1, x2) − F1(x1)F2(x2)) dx1 dx2. (5.22)
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Figure 5.7. VaR for the risksX1 +X2 and Y1 +Y2 as described in Example 5.23. Both these
pairs have standard normal margins and a correlation of zero; X1 and X2 are independent,
whereas Y1 and Y2 are dependent.

Proof. Let (X1, X2) have df F and let (X̃1, X̃2) be an independent copy (i.e. a
second pair with df F independent of (X1, X2)). We have

2 cov(X1, X2) = E((X1 − X̃1)(X2 − X̃2)).

We now use a useful identity which says that, for any a ∈ R and b ∈ R, we can
always write (a − b) = ∫∞

−∞(I{b�x} − I{a�x}) dx and apply this to the random pairs
(X1 − X̃1) and (X2 − X̃2). We obtain

2 cov(X1, X2)

= E

(∫ ∞

−∞

∫ ∞

−∞
(I{X̃1�x1} − I{X1�x1})(I{X̃2�x2} − I{X2�x2}) dx1 dx2

)
= 2

∫ ∞

−∞

∫ ∞

−∞
(P (X1 � x1, X2 � x2) − P(X1 � x1)P (X2 � x2)) dx1 dx2.

Theorem 5.25 (attainable correlations). Let (X1, X2) be a random vector with
finite-variance marginal dfs F1 and F2 and an unspecified joint df; assume also that
var(X1) > 0 and var(X2) > 0. The following statements hold.

(1) The attainable correlations form a closed interval [ρmin, ρmax] with ρmin <

0 < ρmax.

(2) The minimum correlation ρ = ρmin is attained if and only if X1 and X2 are
countermonotonic. The maximum correlation ρ = ρmax is attained if and
only if X1 and X2 are comonotonic.
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(3) ρmin = −1 if and only ifX1 and −X2 are of the same type (see Section A.1.1),
and ρmax = 1 if and only if X1 and X2 are of the same type.

Proof. We begin with (2) and use the identity (5.22). We also recall the two-
dimensional Fréchet bounds for a general df in (5.5):

max{F1(x1) + F2(x2) − 1, 0} � F(x1, x2) � min{F1(x1), F2(x2)}.
Clearly, when F1 and F2 are fixed, the integrand in (5.22) is maximized pointwise
when X1 and X2 have the Fréchet upper bound copula C(u1, u2) = min{u1, u2},
i.e. when they are comonotonic. Similarly, the integrand is minimized when X1 and
X2 are countermonotonic.

To complete the proof of (1), note that clearly ρmax � 0. However, ρmax = 0 can
be ruled out since this would imply that min{F1(x1), F2(x2)} = F1(x1)F2(x2) for
all x1, x2. This can only occur if F1 or F2 is a degenerate distribution consisting of
point mass at a single point, but this is excluded by the assumption that variances
are non-zero. By a similar argument we have that ρmin < 0. If W(F1, F2) and
M(F1, F2)denote the Fréchet lower and upper bounds, respectively, then the mixture
λW(F1, F2)+ (1 − λ)M(F1, F2), 0 � λ � 1, has correlation λρmin + (1 − λ)ρmax.
Thus for any ρ ∈ [ρmin, ρmax] we can set λ = (ρmax −ρ)/(ρmax −ρmin) to construct
a joint df that attains the correlation value ρ.

Part (3) is clear since ρmin = −1 or ρmax = 1 if and only if there is an almost
sure linear relationship between X1 and X2.

Example 5.26 (attainable correlations for lognormal rvs). An example where the
maximal and minimal correlations can be easily calculated occurs when lnX1 ∼
N(0, 1) and lnX2 ∼ N(0, σ 2). For σ �= 1 the lognormally distributed rvs X1 and
X2 are not of the same type (although lnX1 and lnX2 are) so that, by part (3) of
Theorem 5.25, we have ρmax < 1. The rvs X1 and −X2 are also not of the same
type, so ρmin > −1.

To calculate the actual boundaries of the attainable interval let Z ∼ N(0, 1) and
observe that if X1 and X2 are comonotonic, then (X1, X2)

d= (eZ, eσZ). Clearly,
ρmax = ρ(eZ, eσZ) and, by a similar argument, ρmin = ρ(eZ, e−σZ). The analytical
calculation now follows easily and yields

ρmin = e−σ − 1√
(e − 1)(eσ 2 − 1)

, ρmax = eσ − 1√
(e − 1)(eσ 2 − 1)

.

See Figure 5.8 for an illustration of the attainable correlation interval for different
values of σ and note how the boundaries of the interval both tend rapidly to zero as
σ is increased. This shows, for example, that we can have situations where comono-
tonic rvs have very small correlation values. Since comonotonicity is the strongest
form of positive dependence, this provides a correction to the widely held view that
small correlations imply weak dependence.

A common message can be extracted from both the fallacies of this section:
namely that the concept of correlation is meaningless unless applied in the context
of a well-defined joint model. Any interpretation of correlation values in the absence
of such a model should be avoided.
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Figure 5.8. Maximum and minimum attainable correlations for lognormal rvs X1 and X2,
where ln(X1) is standard normal and ln(X2) is normal with mean zero and variance σ 2.

5.2.2 Rank Correlation

Rank correlations are simple scalar measures of dependence that depend only on
the copula of a bivariate distribution and not on the marginal distributions, unlike
linear correlation, which depends on both. The standard empirical estimators of rank
correlation may be calculated by looking at the ranks of the data alone, hence the
name. In other words, we only need to know the ordering of the sample for each
variable of interest and not the actual numerical values.

The main practical reason for looking at rank correlations is that they can be used to
calibrate copulas to empirical data. At a theoretical level, being direct functionals of
the copula, rank correlations have more appealing properties than linear correlations,
as is discussed below. There are two main varieties of rank correlation, Kendall’s
and Spearman’s, which we discuss in turn.

Kendall’s tau. Kendall’s rank correlations can be understood as a measure of con-
cordance for bivariate random vectors. Two points in R

2, denoted by (x1, x2) and
(x̃1, x̃2), are said to be concordant if (x1 − x̃1)(x2 − x̃2) > 0 and to be discordant if
(x1 − x̃1)(x2 − x̃2) < 0. Now consider a random vector (X1, X2) and an indepen-
dent copy (X̃1, X̃2) (i.e. a second vector with the same distribution, but independent
of the first). If X2 tends to increase with X1, then we expect the probability of con-
cordance to be high relative to the probability of discordance; ifX2 tends to decrease
with increasing X1, then we expect the opposite. This motivates Kendall’s rank cor-
relation, which is simply the probability of concordance minus the probability of
discordance for these pairs:

ρτ (X1, X2) = P((X1−X̃1)(X2−X̃2) > 0)−P((X1−X̃1)(X2−X̃2) < 0). (5.23)

It is easily seen that there is a more compact way of writing this as an expectation,
which also leads to an obvious estimator in Section 5.5.1.
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Definition 5.27. For rvs X1 and X2 Kendall’s tau is given by

ρτ (X1, X2) = E(sign((X1 − X̃1)(X2 − X̃2))),

where (X̃1, X̃2) is an independent copy of (X1, X2).

In higher dimensions the Kendall’s tau matrix of a random vector may be written
as ρτ (X) = cov(sign(X − X̃)), where X̃ is an independent copy of X; since it can
be expressed as a covariance matrix, ρτ (X) is obviously positive semidefinite.

Spearman’s rho. This measure can also be defined in terms of concordance and
discordance for random pairs (see Kruskal 1958, p. 824) but the most intuitive
definition for our purposes involves copulas.

Definition 5.28. For rvs X1 and X2 with marginal dfs F1 and F2 Spearman’s rho
is given by ρS(X1, X2) = ρ(F1(X1), F2(X2)).

In other words, Spearman’s rho is simply the linear correlation of the probability-
transformed rvs, which for continuous rvs is the linear correlation of their unique
copula. The Spearman’s rho matrix for the general multivariate random vector X is
given by ρS(X) = ρ(F1(X1), . . . , Fd(Xd)) and must again be positive semidefinite.

Properties of rank correlation. Kendall’s tau and Spearman’s rho have many prop-
erties in common. They are both symmetric dependence measures taking values in
the interval [−1, 1]. They give the value zero for independent rvs, although a rank
correlation of 0 does not necessarily imply independence. It can be shown that they
take the value 1 when X1 and X2 are comonotonic (see Embrechts, McNeil and
Straumann 2002) and the value −1 when they are countermonotonic (which con-
trasts with the behaviour of linear correlation observed in Theorem 5.25). Now we
will show that, for continuous marginal distributions, both rank correlations depend
only on the unique copula of the risks and thus inherit its property of invariance
under strictly increasing transformations.

Proposition 5.29. Suppose X1 and X2 have continuous marginal distributions and
unique copula C. Then the rank correlations are given by

ρτ (X1, X2) = 4
∫ 1

0

∫ 1

0
C(u1, u2) dC(u1, u2) − 1, (5.24)

ρS(X1, X2) = 12
∫ 1

0

∫ 1

0
(C(u1, u2) − u1u2) du1 du2. (5.25)

Proof. It follows easily from (5.23) that we can also write

ρτ (X1, X2) = 2P((X1 − X̃1)(X2 − X̃2) > 0) − 1,

and from the interchangeability of the pairs (X1, X2) and (X̃1, X̃2) we have

ρτ (X1, X2) = 4P(X1 < X̃1, X2 < X̃2) − 1

= 4E(P (X1 < X̃1, X2 < X̃2 | X̃1, X̃2)) − 1

= 4
∫ ∞

−∞

∫ ∞

−∞
P(X1 < x1, X2 < x2) dF(x1, x2) − 1. (5.26)
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Since X1 and X2 have continuous margins, we infer that

ρτ (X1, X2) =
∫ ∞

−∞

∫ ∞

−∞
C(F1(x1), F2(x2)) dC(F1(x1), F2(x2)) − 1,

from which (5.24) follows upon substituting u1 := F1(x1) and u2 := F2(x2). For
Spearman’s rho observe that ρS(X1, X2) = 12 cov(F1(X1), F2(X2)), since Fi(Xi)

has a uniform distribution with variance 1
12 . Formula (5.25) follows upon applying

Höffding’s formula (5.22).

To what extent do the two fallacies of linear correlation identified in Section 5.2.1
carry over to rank correlation? Clearly, Fallacy 1 remains relevant: marginal distri-
butions and pairwise rank correlations do not fully determine the joint distribution
of a vector of risks. However, Fallacy 2 is essentially taken out of play when we
consider rank correlations: for any choice of continuous marginal distributions it
is possible to specify a bivariate distribution that has any desired rank correlation
value in [−1, 1]. One way of doing this is to take a convex combination of the form

F(x1, x2) = λW(F1(x1), F2(x2)) + (1 − λ)M(F1(x1), F2(x2)),

where W and M are the countermonotonicity and comonotonicity copulas, respec-
tively. A random pair (X1, X2) with this df has rank correlation

ρτ (X1, X2) = ρS(X1, X2) = (1 − 2λ),

which yields any desired value in [−1, 1] for an appropriate choice of λ in [0, 1]. But
this is only one of many possible constructions; a model with the Gauss copula of the
form F(x1, x2) = CGa

ρ (F1(x1), F2(x2)) can also be parametrized by an appropriate
choice of ρ ∈ [−1, 1] to have any rank correlation in [−1, 1]. In Section 5.3.2
we will explicitly calculate Spearman’s rank correlation coefficients for the Gauss
copula, and Kendall’s tau values for the Gauss copula and other copulas of normal
variance mixture distributions.

5.2.3 Coefficients of Tail Dependence

Like the rank correlations, the coefficients of tail dependence are measures of pair-
wise dependence that depend only on the copula of a pair of rvs X1 and X2 with
continuous marginal dfs. The motivation for looking at these coefficients is that they
provide measures of extremal dependence or, in other words, measures of the strength
of dependence in the tails of a bivariate distribution. The coefficients we describe
are defined in terms of limiting conditional probabilities of quantile exceedances.
We note that there are a number of other definitions of tail-dependence measures in
the literature (see Notes and Comments).

In the case of upper tail dependence we look at the probability that X2 exceeds
its q-quantile, given that X1 exceeds its q-quantile, and then consider the limit as
q goes to infinity. Obviously the roles of X1 and X2 are interchangeable. Formally
we have the following.
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Definition 5.30. Let X1 and X2 be rvs with dfs F1 and F2. The coefficient of upper
tail dependence of X1 and X2 is

λu := λu(X1, X2) = lim
q→1− P(X2 > F←

2 (q) | X1 > F←
1 (q)),

provided a limit λu ∈ [0, 1] exists. If λu ∈ (0, 1], then X1 and X2 are said to show
upper tail dependence or extremal dependence in the upper tail; if λu = 0, they are
asymptotically independent in the upper tail. Analogously, the coefficient of lower
tail dependence is

λl := λl(X1, X2) = lim
q→0+ P(X2 � F←

2 (q) | X1 � F←
1 (q)),

provided a limit λl ∈ [0, 1] exists.

If F1 and F2 are continuous dfs, then we get simple expressions for λl and λu

in terms of the unique copula C of the bivariate distribution. Using elementary
conditional probability and (5.3) we have

λl = lim
q→0+

P(X2 � F←
2 (q),X1 � F←

1 (q))

P (X1 � F←
1 (q))

= lim
q→0+

C(q, q)

q
. (5.27)

For upper tail dependence we use (5.13) to obtain

λu = lim
q→1−

Ĉ(1 − q, 1 − q)

1 − q
= lim

q→0+
Ĉ(q, q)

q
, (5.28)

where Ĉ is the survival copula of C (see (5.14)). For radially symmetric copulas we
must have λl = λu, since C = Ĉ for such copulas.

Calculation of these coefficients is straightforward if the copula in question has a
simple closed form, as is the case for the Gumbel copula in (5.11) and the Clayton
copula in (5.12). In Section 5.3.1 we will use a slightly more involved method
to calculate tail-dependence coefficients for copulas of normal variance mixture
distributions, such as the Gaussian and t copulas.

Example 5.31 (Gumbel and Clayton copulas). Writing ĈGu
θ for the Gumbel sur-

vival copula we first use (5.14) to infer that

λu = lim
q→1−

ĈGu
θ (1 − q, 1 − q)

1 − q
= 2 − lim

q→1−
CGu
θ (q, q) − 1

q − 1
.

We now use L’Hôpital’s rule and the fact that CGu
θ (u, u) = u21/θ

to infer that

λu = 2 − lim
q→1−

dCGu
θ (q, q)

dq
= 2 − 21/θ .

Provided that θ > 1, the Gumbel copula has upper tail dependence. The strength of
this tail dependence tends to 1 as θ → ∞, which is to be expected since the Gumbel
copula tends to the comonotonicity copula as θ → ∞. Using a similar technique
the coefficient of lower tail dependence for the Clayton copula may be shown to be
λl = 2−1/θ for θ > 0.
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The consequences of the lower tail dependence of the Clayton copula and the
upper tail dependence of the Gumbel copula can be seen in Figures 5.3 and 5.4,
where there is obviously an increased tendency for these copulas to generate joint
extreme values in the respective corners. In Section 5.3.1 we will see that the Gauss
copula is asymptotically independent in both tails, while the t copula has both upper
and lower tail dependence of the same magnitude (due to its radial symmetry).

Notes and Comments

The discussion of correlation fallacies is based on Embrechts, McNeil and Strau-
mann (2002), which contains a number of other examples illustrating these pitfalls.
For Höffding’s formula and its use in proving the bounds on attainable correlations
see Höffding (1940), Fréchet (1951) and Shea (1983).

Useful references for rank correlations are Kruskal (1958) and Joag-Dev (1984).
The relationship between rank correlation and copulas is discussed in Schweizer
and Wolff (1981) and Nelsen (1999). The definition of tail dependence that we use
stems from Joe (1993, 1997). There are a number of alternative definitions of tail-
dependence measures, as discussed, for example, in Coles, Heffernan and Tawn
(1999).

5.3 Normal Mixture Copulas

A unique copula is contained in every multivariate distribution with continuous
marginal distributions, and a useful class of parametric copulas are those contained
in the multivariate normal mixture distributions of Section 3.2. We view these cop-
ulas as particularly important in market risk applications; indeed, in most cases,
these copulas are used implicitly, without the user necessarily recognizing the fact.
Whenever normal mixture distributions are fitted to multivariate return data or used
as innovation distributions in multivariate time series models, normal mixture cop-
ulas are used. They are also found in a number of credit risk models, both implicitly
and explicitly; an example is Li’s model in Example 8.7.

In this section we first focus on normal variance mixture copulas; in Section 5.3.1
we examine their tail-dependence properties; and in Section 5.3.2 we calculate rank
correlation coefficients, which are useful for calibrating these copulas to data. Then,
in Sections 5.3.3 and 5.3.4, we look at more exotic examples of copulas arising from
multivariate normal mixture constructions.

5.3.1 Tail Dependence

Coefficients of tail dependence. Consider a pair of uniform rvs (U1, U2) whose
distribution C(u1, u2) is a normal variance mixture copula. Due to the radial sym-
metry of C (see Section 5.1.5), it suffices to consider the formula for the lower
tail-dependence coefficient in (5.27) to calculate the coefficient of tail dependence
λ of C. By applying L’Hôpital’s rule and using (5.15) we obtain

λ = lim
q→0+

dC(q, q)

dq
= lim

q→0+ P(U2 � q | U1 = q) + lim
q→0+ P(U1 � q | U2 = q).
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Since C is exchangeable we have from (5.19) that

λ = 2 lim
q→0+ P(U2 � q | U1 = q). (5.29)

We now show the interesting contrast between the Gaussian and t copulas that we
alluded to in Example 5.11, namely that the t copula has tail dependence, whereas
the Gauss copula is asymptotically independent in the tail.

Example 5.32 (asymptotic independence of the Gauss copula). To evalu-
ate the tail-dependence coefficient for the Gauss copula CGa

ρ , let (X1, X2) :=
(Φ−1(U1),Φ

−1(U2)), so that (X1, X2) has a bivariate normal distribution with
standard margins and correlation ρ. It follows from (5.29) that

λ = 2 lim
q→0+ P(Φ

−1(U2) � Φ−1(q) | Φ−1(U1) = Φ−1(q))

= 2 lim
x→−∞P(X2 � x | X1 = x).

Using the fact that X2 | X1 = x ∼ N(ρx, 1 − ρ2), it can be calculated that

λ = 2 lim
x→−∞Φ(x

√
1 − ρ/

√
1 + ρ) = 0,

provided ρ < 1. Hence, the Gauss copula is asymptotically independent in both
tails. Regardless of how high a correlation we choose, if we go far enough into the
tail, extreme events appear to occur independently in each margin.

Example 5.33 (asymptotic dependence of the t copula). To evaluate the tail-
dependence coefficient for the t copula Ct

ν,ρ , let (X1, X2) := (t−1
ν (U1), t

−1
ν (U2)),

where tν denotes the df of a univariate t distribution with ν degrees of freedom. Thus
(X1, X2) ∼ t2(ν, 0,P), where P is a correlation matrix with off-diagonal element ρ.
By calculating the conditional density from the joint and marginal densities of a
bivariate t distribution, it may be verified that, conditional on X1 = x,(

ν + 1

ν + x2

)1/2
X2 − ρx√

1 − ρ2
∼ tν+1. (5.30)

Using an argument similar to Example 5.32 we find that

λ = 2tν+1

(
−
√
(ν + 1)(1 − ρ)

1 + ρ

)
. (5.31)

Provided that ρ > −1, the copula of the bivariate t distribution is asymptotically
dependent in both the upper and lower tail.

In Table 5.1 we tabulate the coefficient of tail dependence for various values of
ν and ρ. For fixed ρ the strength of the tail dependence increases as ν decreases
and for fixed ν tail dependence increases as ρ increases. Even for zero or negative
correlation values there is some tail dependence. This is not too surprising and can
be grasped intuitively by recalling from Section 3.2.1 that the t distribution is a
normal mixture distribution with a mixing variable W whose distribution is inverse
gamma (which is a heavy-tailed distribution): if |X1| is large, there is a good chance
that this is because W is large, increasing the probability of |X2| being large.
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Table 5.1. Values of λ, the coefficient of upper and lower tail dependence, for the t copula
Ct
ν,ρ for various values of ν, the degrees of freedom, and ρ, the correlation. The last row

represents the Gauss copula.

ρ︷ ︸︸ ︷
ν −0.5 0 0.5 0.9 1

2 0.06 0.18 0.39 0.72 1
4 0.01 0.08 0.25 0.63 1

10 0.00 0.01 0.08 0.46 1
∞ 0 0 0 0 1

We could use the same method used in the previous examples to calculate tail-
dependence coefficients for other copulas of normal variance mixtures. In doing so
we would find that most examples, such as copulas of symmetric hyperbolic or NIG
distributions, fell into the same category as the Gauss copula and were asymptotically
independent in the tails. The essential determinant of whether the copula of a normal
variance mixture has tail dependence or not is the tail of the distribution of the mixing
variable W in Definition 3.4. If W has a distribution with a power tail, then we get
tail dependence, otherwise we get asymptotic independence. This is a consequence
of a general result for elliptical distributions given in Section 7.3.3.

Joint quantile exceedance probabilities. Coefficients of tail dependence are of
course asymptotic quantities, and in the remainder of this section we look at joint
exceedances of finite high quantiles for the Gauss and t copulas in order to learn more
about the practical consequences of the differences between the extremal behaviours
of these two models.

As motivation we consider Figure 5.9, where 5000 simulated points from four dif-
ferent distributions are displayed. The distributions in (a) and (b) are meta-Gaussian
distributions (see Section 5.1.3); they share the same copula CGa

ρ . The distribu-
tions in (c) and (d) are meta-t distributions; they share the same copula Ct

ν,ρ . The
values of ν and ρ in all parts are 4 and 0.5, respectively. The distributions in (a)
and (c) share the same margins, namely standard normal margins. The distribu-
tions in (b) and (d) both have Student t margins with four degrees of freedom.
The distributions in (a) and (d) are, of course, elliptical, being a standard bivari-
ate normal and a bivariate t distribution with four degrees of freedom; they both
have linear correlation ρ = 0.5. The other distributions are not elliptical and do
not necessarily have linear correlation 50%, since altering the margins alters the
linear correlation. All four distributions have identical Kendall’s tau values (see
Proposition 5.37). The meta-Gaussian distributions have the same Spearman’s rho
value, as do the meta-t distributions, although the two values are not identical (see
Section 5.3.2).

The vertical and horizontal lines mark the true theoretical 0.005 and 0.995 quan-
tiles for all distributions. Note that for the meta-t distributions the number of points
that lie below both 0.005 quantiles or exceed both 0.995 quantiles is clearly greater
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Figure 5.9. Five thousand simulated points from four distributions. (a) Standard bivariate
normal with correlation parameter ρ = 0.5. (b) Meta-Gaussian distribution with copula CGa

ρ
and Student t margins with four degrees of freedom. (c) Meta-t distribution with copula
Ct

4,ρ and standard normal margins. (d) Standard bivariate t distribution with four degrees of
freedom and correlation parameter ρ = 0.5. Horizontal and vertical lines mark the 0.005 and
0.995 quantiles. See Section 5.3.1 for a commentary.

than for the meta-Gaussian distributions, and this can be explained by the tail depend-
ence of the t copula. The true theoretical ratio by which the number of these joint
exceedances in the meta-t models should exceed the number in the meta-Gaussian
models is 2.79, as may be read from Table 5.2, whose interpretation we now discuss.

In Table 5.2 we have calculated values of CGa
ρ (u, u)/Ct

ν,ρ(u, u) for various ρ
and ν and u = 0.05, 0.01, 0.005, 0.001. The rows marked Gauss contain values of
CGa
ρ (u, u), which is the probability that two rvs with this copula are below their

u-quantiles; we term this event a joint quantile exceedance (thinking of exceedance
in the downwards direction). Obviously it is identical to the probability that both rvs
are larger than their (1 − u)-quantiles. The remaining rows give the values of the ratio
and thus express the amount by which the joint quantile exceedance probabilities
must be inflated when we move from models with a Gauss copula to models with a
t copula.

In Table 5.3 we extend Table 5.2 to higher dimensions. We now focus only on
joint exceedances of the 1% (or 99%) quantile(s). We tabulate values of the ratio
CGa

P (u, . . . , u)/Ct
ν,P (u, . . . , u), where P is an equicorrelation matrix with all cor-

relations equal to ρ. It is noticeable that not only do these values grow as the corre-
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Table 5.2. Joint quantile exceedance probabilities for bivariate Gauss and t copulas with
correlation parameter values of 0.5 and 0.7. For Gauss copulas the probability of joint quantile
exceedance is given; for the t copulas the factors by which the Gaussian probability must be
multiplied are given.

Quantile︷ ︸︸ ︷
ρ Copula ν 0.05 0.01 0.005 0.001

0.5 Gauss 1.21 × 10−2 1.29 × 10−3 4.96 × 10−4 5.42 × 10−5

0.5 t 8 1.20 1.65 1.94 3.01
0.5 t 4 1.39 2.22 2.79 4.86
0.5 t 3 1.50 2.55 3.26 5.83

0.7 Gauss 1.95 × 10−2 2.67 × 10−3 1.14 × 10−3 1.60 × 10−4

0.7 t 8 1.11 1.33 1.46 1.86
0.7 t 4 1.21 1.60 1.82 2.52
0.7 t 3 1.27 1.74 2.01 2.83

Table 5.3. Joint 1% quantile exceedance probabilities for multivariate Gaussian and t

equicorrelation copulas with correlation parameter values of 0.5 and 0.7. For Gauss cop-
ulas the probability of joint quantile exceedance is given; for the t copulas the factors by
which the Gaussian probability must be multiplied are given.

Dimension d︷ ︸︸ ︷
ρ Copula ν 2 3 4 5

0.5 Gauss 1.29 × 10−3 3.66 × 10−4 1.49 × 10−4 7.48 × 10−5

0.5 t 8 1.65 2.36 3.09 3.82
0.5 t 4 2.22 3.82 5.66 7.68
0.5 t 3 2.55 4.72 7.35 10.34

0.7 Gauss 2.67 × 10−3 1.28 × 10−3 7.77 × 10−4 5.35 × 10−4

0.7 t 8 1.33 1.58 1.78 1.95
0.7 t 4 1.60 2.10 2.53 2.91
0.7 t 3 1.74 2.39 2.97 3.45

lation parameter or number of degrees of freedom falls, but they also grow with the
dimension of the copula. The next example gives an interpretation of one of these
numbers.

Example 5.34 (joint quantile exceedances: an interpretation). Consider daily
returns on five stocks. Suppose we are unsure about the best multivariate elliptical
model for these data returns, but we believe that the correlation between any two
returns on the same day is 50%. If returns follow a multivariate Gaussian distribu-
tion, then the probability that on any day all returns are below the 1% quantiles of
their respective distributions is 7.48 × 10−5. In the long run such an event will hap-
pen once every 13 369 trading days on average, that is roughly once every 51.4 years
(assuming 260 trading days in a year). On the other hand, if returns follow a multi-
variate t distribution with four degrees of freedom, then such an event will happen
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7.68 times more often, that is roughly once every 6.7 years. In the life of a risk
manager, 50-year events and 7-year events have a very different significance.

5.3.2 Rank Correlations

To calculate rank correlations for normal variance mixture copulas we use the fol-
lowing preliminary result for elliptical distributions.

Proposition 5.35. Let X ∼ E2(0,Σ,ψ) and ρ = ℘(Σ)12, where ℘ denotes the
correlation operator in (3.5). Assume P(X = 0) = 0. Then

P(X1 > 0, X2 > 0) = 1
4 + arcsin ρ

2π
.

Proof. First we make a standardization of the variables and observe that if Y ∼
E2(0,P, ψ) and P = ℘(Σ), then P(X1 > 0, X2 > 0) = P(Y1 > 0, Y2 > 0).
Now introduce a pair of spherical variates Z ∼ S2(ψ); it follows that

(Y1, Y2)
d= (Z1, ρZ1 +

√
1 − ρ2Z2)

d= R(cosΘ, ρ cosΘ +
√

1 − ρ2 sinΘ),

where R is a positive radial rv and Θ is an independent, uniformly distributed angle
on [−π, π) (see Section 3.3.1 and Theorem 3.22). Let φ = arcsin ρ and observe that
sin φ = ρ and cosφ = √

1 − ρ2. Since P(R = 0) = P(X = 0) = 0 we conclude
that

P(X1 > 0, X2 > 0) = P(cosΘ > 0, sin φ cosΘ + cosφ sinΘ > 0)

= P(cosΘ > 0, sin(Θ + φ) > 0).

The angle Θ must jointly satisfy Θ ∈ (− 1
2π,

1
2π) and Θ + φ ∈ (0, π) and it is

easily seen that for any value of φ this has probability ( 1
2π + φ)/(2π), which gives

the result.

Theorem 5.36 (rank correlations for Gauss copula). Let X have a bivariate meta-
Gaussian distribution with copula CGa

ρ and continuous margins. Then the rank cor-
relations are

ρτ (X1, X2) = 2

π
arcsin ρ, (5.32)

ρS(X1, X2) = 6

π
arcsin 1

2ρ. (5.33)

Proof. Since rank correlation is a copula property we can of course simply assume
that X ∼ N2(0,P), where P is a correlation matrix with off-diagonal element ρ;
the calculations are then easy. For Kendall’s tau, formula (5.26) implies

ρτ (X1, X2) = 4P(Y1 > 0, Y2 > 0) − 1,

where Y = X̃ − X and X̃ is an independent copy of X. Since Y ∼ N2(0, 2P),
by the convolution property of multivariate normal in Section 3.1.3, we have that
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Figure 5.10. The solid line shows the relationship between Spearman’s rho and the corre-
lation parameter ρ of the Gauss copula CGa

ρ for meta-Gaussian rvs with continuous dfs; this
is very close to the line y = x, which is just visible as a dotted line. The dashed line shows
the relationship between Kendall’s tau and ρ; this relationship holds for the copulas of other
normal variance mixture distributions with correlation parameter ρ, such as the t copulaCt

ν,ρ .

ρ(Y1, Y2) = ρ and formula (5.32) follows from Proposition 5.35. For Spearman’s
rho we observe that (5.25) implies

ρS(X1, X2) = 12
∫ 1

0

∫ 1

0
P(Φ(X1) � u1, Φ(X2) � u2) du1 du2 − 3

= 3

(
4
∫ 1

0

∫ 1

0
P(X1 � Φ−1(u1),X2 � Φ−1(u2)) du1 du2 − 1

)
= 3

(
4
∫ ∞

−∞

∫ ∞

−∞
P(X1 � x1, X2 � x1)φ(x1)φ(x2) dx1 dx2 − 1

)
,

where xi := Φ−1(ui) and φ is the standard normal density. Now let Z1 and Z2

denote two standard normal variates, independent of X and of each other. We see
that

ρS(X1, X2) = 3(4E(P (X1 < Z1, X2 < Z2 | Z1, Z2)) − 1)

= 3(4P(X1 < Z1, X2 < Z2) − 1)

= 3(4P(Y1 > 0, Y2 > 0) − 1),

where Y = Z − X. Since Y ∼ N2(0, (P + I2)), the formula (5.33) follows from
Proposition 5.35.

These relationships between the rank correlations and ρ are illustrated in Fig-
ure 5.10. Note that the right-hand side of (5.33) may be approximated by the value
ρ itself. This approximation turns out to be very accurate, as shown in the figure;
the error bounds are |6 arcsin(ρ/2)/π − ρ| � (π − 3)|ρ|/π � 0.0181.
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The relationship between Kendall’s tau and the correlation parameter of the Gauss
copula CGa

ρ expressed by (5.32) holds more generally for the copulas of essentially
all normal variance mixture distributions, such as the t copula Ct

ν,ρ . This is implied
by the following general result for elliptical distributions, which was used to derive
an alternative correlation estimator for bivariate distributions in Section 3.3.4.

Proposition 5.37. LetX ∼ E2(0,P, ψ) for a correlation matrixP with off-diagonal
element ρ, and assume that P(X = 0) = 0. Then the relationship ρτ (X1, X2) =
(2/π) arcsin ρ holds.

Proof. The result relies on the convolution property of elliptical distributions
in (3.54). Setting Y = X̃ − X, where X̃ is an independent copy of X, we note
that Y ∼ E2(0,P, ψ̃) for some characteristic generator ψ̃ . We need to evaluate
ρτ (X1, X2) = 4P(Y1 > 0, Y2 > 0) − 1 as in the proof of Theorem 5.36, but
Proposition 5.35 shows that P(Y1 > 0, Y2 > 0) takes the same value whenever Y

is elliptical.

Remark 5.38. The relationship (5.33) between Spearman’s rho and linear corre-
lation does not hold for all elliptical distributions. A counterexample is found in
Hult and Lindskog (2002). Simple formulas for elliptical distributions other than
the Gaussian, such as the multivariate t , are not known to us.

5.3.3 Skewed Normal Mixture Copulas

A skewed normal mixture copula is the copula of any normal mixture distribution
that is not elliptically symmetric. An example is provided by the skewed t copula,
which is the copula of the distribution whose density is given in (3.32).

A random vector X with a skewed t distribution and ν degrees of freedom is
denoted X ∼ GHd(− 1

2ν, ν, 0,µ,Σ, γ ) in the notation of Section 3.2.3. Its marginal
distributions satisfy Xi ∼ GH1(− 1

2ν, ν, 0, µi,Σii, γi) (from Proposition 3.13) and
its copula depends on ν, P = ℘(Σ) and γ and will be denoted by Ct

ν,P,γ
or, in the

bivariate case, Ct
ν,ρ,γ1,γ2

. Random sampling from the skewed t copula follows the
same approach as for the t copula in Algorithm 5.10.

Algorithm 5.39 (simulation of skewed t copula).

(1) Generate X ∼ GHd(− 1
2ν, ν, 0, 0,P, γ ) using Algorithm 3.10.

(2) Return U = (F1(X1), . . . , Fd(Xd))
′, where Fi is the distribution function of

a GH1(− 1
2ν, ν, 0, 0, 1, γi) distribution. The random vector U has df Ct

ν,P,γ .

Note that the evaluation of Fi requires the numerical integration of the density of a
skewed univariate t density.

To appreciate the flexibility of the skewed t copula it suffices to consider the
bivariate case for different values of the skewness parameters γ1 and γ2. In Fig-
ure 5.11 we have plotted simulated points from nine different examples of this
copula. Part (e) corresponds to the case when γ1 = γ2 = 0 and is thus the ordinary
t copula. All other pictures show copulas which are non-radially symmetric (see
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Figure 5.11. Ten thousand simulated points from bivariate skewed t copula Ct
ν,ρ,γ1,γ2

for ν = 5, ρ = 0.8 and various values of the parameters (γ1, γ2): (a) γ = (0.8,−0.8);
(b) γ = (0.8, 0); (c) γ = (0.8, 0.8); (d) γ = (0,−0.8); (e) γ = (0, 0); (f) γ = (0, 0.8);
(g) γ = (−0.8,−0.8); (h) γ = (−0.8, 0); and (i) γ = (−0.8, 0.8).

Section 5.1.5), as is obvious by rotating each picture 180◦ about the point ( 1
2 ,

1
2 );

(c), (e) and (g) show exchangeable copulas satisfying (5.18), while the remaining
six are non-exchangeable.

Obviously the main advantage of the skewed t copula over the ordinary t copula is
that its asymmetry allows us to have different levels of tail dependence in “opposite
corners” of the distribution. In the context of market risk it is often claimed that joint
negative returns on stocks show more tail dependence than joint positive returns.

5.3.4 Grouped Normal Mixture Copulas

Technically speaking, a grouped normal mixture copula is not itself the copula of a
normal mixture distribution, but rather a way of attaching together a set of normal
mixture copulas. We will illustrate the idea by considering the grouped t copula.
Here, the basic idea is to construct a copula for a random vector X such that certain
subvectors of X have t copulas but quite different levels of tail dependence.
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We create a distribution using a generalization of the variance-mixing construc-
tion X = √

WZ in (3.19). Rather than multiplying all components of a correlated
Gaussian vector Z with the root of a single inverse-gamma-distributed variate W ,
as in Example 3.7, we instead multiply different subgroups with different variates
Wj , where Wj ∼ Ig( 1

2νj ,
1
2νj ) and the Wj are themselves comonotonic (see Sec-

tion 5.1.6). Thus we create subgroups whose dependence properties are described
by t copulas with different νj parameters.

Like the t copula, the skewed t copula and anything based on a mixture of multi-
variate normals, a grouped t copula is easy to simulate and thus to use in Monte
Carlo risk studies—this has been a major motivation for its development. We for-
mally define the grouped t copula by explaining in more detail how to generate a
random vector U with that distribution.

Algorithm 5.40 (simulation of grouped t copula).

(1) Generate independently Z ∼ Nd(0,P) and U ∼ U(0, 1).

(2) Partition {1, . . . , d} into m subsets of sizes s1, . . . , sm, and for k = 1, . . . , m
let νk be the degrees-of-freedom parameter associated with group k.

(3) Set Wk = G−1
νk
(U), where Gν is the df of the univariate Ig( 1

2ν,
1
2ν) distri-

bution, so that W1, . . . ,Wm are comonotonic and inverse-gamma-distributed
variates.

(4) Construct vectors X and U by

X = (
√
W1Z1, . . . ,

√
W1Zs1 ,

√
W2Zs1+1, . . . ,

√
W2Zs1+s2 , . . . ,

√
WmZd)

′,
U = (tν1(X1), . . . , tν1(Xs1), tν2(Xs1+1), . . . , tν2(Xs1+s2), . . . , tνm(Xd))

′.

The former has a grouped t distribution and the latter is distributed according
to a grouped t copula.

If we have an a priori idea of the desired group structure, we can calibrate the
grouped t copula to data using a method based on Kendall’s tau rank correlations.
The use of this method for the ordinary t copula is described later in Section 5.5.1
and Example 5.54.

Notes and Comments

The coefficient of tail dependence for the t copula was first derived in Embrechts,
McNeil and Straumann (2002). A more general result for the copulas of elliptical
distributions is given in Hult and Lindskog (2002) and will be discussed in Sec-
tion 7.3.3. The formula for Kendall’s tau for elliptical distributions can be found in
Lindskog, McNeil and Schmock (2003) and Fang and Fang (2002).

The skewed t copula was introduced in Demarta and McNeil (2005), which also
describes the grouped t copula. The grouped t copula and a method for its calibration
was first proposed in Daul et al. (2003).
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Table 5.4. Table summarizing the generators, permissible parameter values and limiting
special cases for four selected Archimedean copulas. The case θ = 0 should be taken to mean
the limit limθ→0 φθ (t). For the Clayton and Frank copulas this limit is − ln t , which is the
generator of the independence copula.

Copula Generator φ(t) Parameter range Strict Lower Upper

CGu
θ (− ln t)θ θ � 1 Yes Π M

CCl
θ

1

θ
(t−θ − 1) θ � −1 θ � 0 W M

CFr
θ − ln

(
e−θt − 1

e−θ − 1

)
θ ∈ R Yes W M

CGC
θ,δ θ−δ(t−θ − 1)δ θ � 0, δ � 1 Yes N/A N/A

5.4 Archimedean Copulas

The Gumbel copula (5.11) and the Clayton copula (5.12) belong to the family of so-
called Archimedean copulas, which has been very extensively studied. This family
has proved useful for modelling portfolio credit risk, as will be seen in Example 8.9.
In this section we look at the simple structure of these copulas and establish some
of the properties that we will need.

5.4.1 Bivariate Archimedean Copulas

As well as the Gumbel and Clayton copulas, two further examples we consider are
the Frank copula

CFr
θ (u1, u2) = −1

θ
ln

(
1 + (exp(−θu1) − 1)(exp(−θu2) − 1)

exp(−θ) − 1

)
, θ ∈ R,

and a two-parameter copula that we refer to as a generalized Clayton copula:

CGC
θ,δ (u1, u2) = {((u−θ

1 − 1)δ + (u−θ
2 − 1)δ)1/δ + 1}−1/θ , θ � 0, δ � 1.

It may be verified that, provided the parameter θ lies in the ranges we have specified
in the copula definitions, all four examples that we have met have the form

C(u1, u2) = φ−1(φ(u1) + φ(u2)), (5.34)

where φ is a decreasing function from [0, 1] to [0,∞], satisfying φ(0) = ∞,
φ(1) = 0, known as the generator of the copula, and φ−1 is its inverse. For example,
for the Gumbel copula φ(t) = (− ln t)θ for θ � 1, and for the other copulas the
generators φ(t) are given in Table 5.4.

When we introduced the Clayton copula in (5.12) we insisted that its param-
eter should be positive. Note that it is in fact possible to have a Clayton copula
with −1 � θ < 0, although in this case the construction (5.34) must be gener-
alized slightly. Suppose, for example, that θ = − 1

2 ; the Clayton copula generator
φ(t) = θ−1(t−θ − 1) is then a strictly decreasing function mapping [0, 1] into [0, 2].
If we attempt to evaluate (5.34) in, say, the point u1 = u2 = 0.16, we have a problem
since φ(u1) + φ(u2) = 2.4 and φ−1(2.4) is undefined.
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To obtain a copula in a case when φ(0) < ∞ we introduce a so-called pseudo-
inverse of the generator and give a theorem that explains exactly when a construction
resembling (5.34) yields a copula.

Definition 5.41 (pseudo-inverse). Suppose φ : [0, 1] → [0,∞] is continuous and
strictly decreasing with φ(1) = 0 and φ(0) � ∞. We define a pseudo-inverse of φ
with domain [0,∞] by

φ[−1](t) =
{
φ−1(t), 0 � t � φ(0),

0, φ(0) < t � ∞.
(5.35)

Theorem 5.42 (bivariate Archimedean copula). Let φ : [0, 1] → [0,∞] be
continuous and strictly decreasing with φ(1) = 0 and φ[−1](t) as in (5.35). Then

C(u1, u2) = φ[−1](φ(u1) + φ(u2)) (5.36)

is a copula if and only if φ is convex.

Proof. See Nelsen (1999, pp. 91, 92).

All copulas constructed according to (5.36) are called bivariate Archimedean
copulas. If φ(0) = ∞ the generator is said to be strict and we may replace the
pseudo-inverseφ[−1] by the ordinary functional inverseφ−1 as in (5.34). In summary
we have the following.

Definition 5.43 (Archimedean copula generator). A continuous, strictly decreas-
ing, convex function φ : [0, 1] → [0,∞] satisfying φ(1) = 0 is known as an
Archimedean copula generator. It is known as a strict generator if φ(0) = ∞.

In Table 5.4 we indicate when the generators of the four Archimedean copulas
are strict and give the lower and upper limits of the families as the parameter θ goes
to the boundaries of the parameter space. Both the Frank and Clayton copulas are
known as comprehensive copulas, since they interpolate between a lower limit of
countermonotonicity and an upper limit of comonotonicity. For a more extensive
table of Archimedean copulas see Nelsen (1999).

Remark 5.44. Consider again the Clayton copula with θ = − 1
2 and non-strict

generator φ(t) = −2(
√
t − 1). The copula may be written as C(u1, u2) =

max{(u0.5
1 + u0.5

2 − 1)2, 0} and this “maximum-with-zero” notation is the common
way of writing Archimedean copulas with non-strict generators. The countermono-
tonicity copula is a further example; it is an Archimedean copula with non-strict
generator φ(t) = 1 − t .

Kendall’s rank correlations can be calculated for Archimedean copulas directly
from the generator using Proposition 5.45 below. The formula obtained can be used
to calibrate Archimedean copulas to empirical data using the sample version of
Kendall’s tau, as we discuss in Section 5.5.
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Table 5.5. Kendall’s rank correlations and coefficients of tail dependence for the copulas
of Table 5.4. D1(θ) is the Debye function D1(θ) = θ−1 ∫ θ

0 t/(exp(t) − 1) dt .

Copula ρτ λu λl

CGu
θ 1 − 1/θ 2 − 21/θ 0

CCl
θ θ/(θ + 2) 0

{
2−1/θ , θ > 0,

0, θ � 0,

CFr
θ 1 − 4θ−1(1 − D1(θ)) 0 0

CGC
θ,δ

(2 + θ)δ − 2

(2 + θ)δ
2 − 21/δ 2−1/(θδ)

Proposition 5.45. Let X1 and X2 be continuous rvs with unique Archimedean
copula C generated by φ. Then

ρτ (X1, X2) = 1 + 4
∫ 1

0

φ(t)

φ′(t)
dt. (5.37)

Proof. See Nelsen (1999, p. 130).

For the closed-form copulas of the Archimedean class, coefficients of tail depend-
ence are easily calculated using methods of the kind used in Example 5.31. Values
for Kendall’s tau and the coefficients of tail dependence for the copulas of Table 5.4
are given in Table 5.5. It is interesting to note that the generalized Clayton copula
CGC
θ,δ subsumes, in a sense, both Gumbel’s family and the strict part of Clayton’s

family, and thus succeeds in having tail dependence in both tails.

5.4.2 Multivariate Archimedean Copulas

It seems natural to attempt to construct a higher-dimensional Archimedean cop-
ula according to C(u1, . . . , ud) = φ[−1](φ(u1) + · · · + φ(ud)). However, this con-
struction may fail to define a proper distribution function for arbitrary dimension d.
An example where this occurs is obtained if we take the generator φ(t) = 1 − t ,
which is not strict. In this case we obtain the Fréchet lower bound for copulas, which
is not itself a copula for d > 2.

A necessary condition for the d-dimensional construction to succeed in all dimen-
sions is that φ should be a strict Archimedean copula generator, although this is not
sufficient. It was shown by Kimberling (1974) that if φ : [0, 1] → [0,∞] is a strict
Archimedean copula generator, then

C(u1, . . . , ud) = φ−1(φ(u1) + · · · + φ(ud)) (5.38)

gives a copula in any dimensiond if and only if the generator inverseφ−1 : [0,∞] →
[0, 1] is completely monotonic. A decreasing function f (t) is completely monotonic
on an interval [a, b] if it satisfies

(−1)k
dk

dtk
f (t) � 0, k ∈ N, t ∈ (a, b). (5.39)
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All of the generators in Table 5.4 have inverses which are completely monotonic
on [0,∞] (if we restrict to θ � 0 for the Clayton copula) and all extend to arbitrary
dimensions using the construction (5.38). For example, a d-dimensional Clayton
copula is

CCl
θ,δ(u) = (u−θ

1 + · · · + u−θ
d − d + 1)−1/θ , θ � 0, (5.40)

where the limiting case θ = 0 should be interpreted as the d-dimensional indepen-
dence copula.

Another way of describing these Archimedean copulas which extend to arbitrary
dimensions is in terms of Laplace–Stieltjes transforms of dfs on R

+, since every
completely monotonic function mapping from [0,∞] to [0, 1] can be expressed in
terms of such transforms. Let G be a df on R

+ satisfying G(0) = 0 with Laplace–
Stieltjes transform

Ĝ(t) =
∫ ∞

0
e−tx dG(x), t � 0. (5.41)

If we define Ĝ(∞) := 0, it is not difficult to verify that Ĝ : [0,∞] → [0, 1] is a
continuous, strictly decreasing, function with the property of complete monotonic-
ity (5.39). It therefore provides a candidate for an Archimedean generator inverse.

In the following result we show how Laplace–Stieltjes transforms are used to
construct random vectors whose distributions are multivariateArchimedean copulas.
In so doing, we also reveal how such copulas may be simulated.

Proposition 5.46. Let G be a df on R
+ satisfying G(0) = 0 with Laplace–Stieltjes

transform Ĝ as in (5.41) and set Ĝ(∞) := 0. Let V be an rv with df G and let
U1, . . . , Ud be a sequence of rvs that are conditionally independent given V with
conditional distribution function given by FUi |V (u | v) = exp(−vĜ−1(u)) for u ∈
[0, 1]. Then

P(U1 � u1, . . . , Ud � ud) = Ĝ(Ĝ−1(u1) + · · · + Ĝ−1(ud)), (5.42)

so that the df of U = (U1, . . . , Ud)
′ is an Archimedean copula with generator

φ = Ĝ−1.

Proof. We have

P(U1 � u1, . . . , Ud � ud) =
∫ ∞

0
P(U1 � u1, . . . , Ud � ud | V = v) dG(v)

=
∫ ∞

0

d∏
i=1

FUi |V (ui | v) dG(v)

=
∫ ∞

0
exp(−x(Ĝ−1(u1) + · · · + Ĝ−1(ud))) dG(v)

= Ĝ(Ĝ−1(u1) + · · · + Ĝ−1(ud)).

Because of the importance of such copulas, particularly in the field of credit risk,
we will call these copulas LT-Archimedean (LT stands for “Laplace transform”) and
make the following definition.
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Definition 5.47 (LT-Archimedean copula). An LT-Archimedean copula is a copula
of the form (5.38), where φ is the inverse of the Laplace–Stieltjes transform of a df
G on R

+ satisfying G(0) = 0.

In the following algorithm we explain how to sample from such copulas using
Proposition 5.46 and give explicit instructions for the Clayton, Gumbel and Frank
copulas.

Algorithm 5.48 (simulation of LT-Archimedean copulas).

(1) Generate a variate V with df G such that Ĝ, the Laplace–Stieltjes transform
of G, is the inverse of the generator φ of the required copula.

(2) Generate independent uniform variates X1, . . . , Xd .

(3) Return U = (Ĝ(− ln(X1)/V ), . . . , Ĝ(− ln(Xd)/V ))
′.

(a) For the special case of the Clayton copula we generate a gamma variate V ∼
Ga(1/θ, 1)with θ > 0 (see Section A.2.4). The df ofV has Laplace transform
Ĝ(t) = (1 + t)−1/θ . Note that the inverse Ĝ−1(t) = t−θ − 1 differs from the
generator in Table 5.4 by a constant factor that is unimportant.

(b) For the special case of the Gumbel copula we generate a positive stable vari-
ate V ∼ St(1/θ, 1, γ, 0), where γ = (cos(π/(2θ)))θ and θ > 1 (see Sec-
tion A.2.9 for more details and a reference to a simulation algorithm). This df
has Laplace transform Ĝ(t) = exp(−t1/θ ) as desired.

(c) For the special case of the Frank copula we generate a discrete rv V with
probability mass function p(k) = P(V = k) = (1 − exp(−θ))k/(kθ) for
k = 1, 2, . . . and θ > 0. This can be achieved by standard simulation methods
for discrete distributions (see Ripley 1987, p. 71).

See Figure 5.12 for an example of data simulated from a four-dimensional Gumbel
copula using this algorithm. Note the upper tail dependence in each bivariate margin
of this copula.

5.4.3 Non-exchangeable Archimedean Copulas

A copula obtained from construction (5.38) is obviously an exchangeable copula
conforming to (5.18).While exchangeable bivariateArchimedean copulas are widely
used in modelling applications, their exchangeable multivariate extensions represent
a very specialized form of dependence structure and have more limited applications.
An exception to this is in the area of credit risk, as will be seen in Chapter 8, although
even here more general models with group structures are also needed. It is certainly
natural to enquire whether there are extensions to the Archimedean class that are
not rigidly exchangeable, and we devote this section to a short discussion of some
possible extensions.
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Figure 5.12. Pairwise scatterplots of 1000 simulated points from a four-dimensional
exchangeable Gumbel copula with θ = 2. Data are simulated using Algorithm 5.48.

Asymmetric bivariate copulas. LetCθ be any exchangeable bivariate copula. Then
a parametric family of asymmetric copulas Cθ,α,β is obtained by setting

Cθ,α,β(u1, u2) = u1−α
1 u

1−β
2 Cθ(u

α
1 , u

β
2 ), 0 � u1, u2 � 1, (5.43)

where 0 � α, β � 1. Only in the special case α = β is the copula (5.43) exchange-
able. Note also that when both parameters are zero, Cθ,0,0 is the independence
copula, and when both parameters are one, Cθ,1,1 is simply Cθ . When Cθ is an
Archimedean copula, we refer to copulas constructed by (5.43) as asymmetric bivari-
ate Archimedean copulas.

We check that (5.43) defines a copula by constructing a random vector with this
df and observing that its margins are standard uniform. Since the construction of a
random vector amounts to a simulation recipe, we present it as such.

Algorithm 5.49 (asymmetric bivariate Archimedean copula).

(1) Generate a random pair (V1, V2) with df Cθ .

(2) Generate, independently ofV1,V2, two independent standard uniform variates
Ũ1 and Ũ2.

(3) Return U1 = max{V 1/α
1 , Ũ

1/(1−α)
1 } and U2 = max{V 1/β

2 , Ũ
1/(1−β)
2 }.
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Figure 5.13. Pairwise scatterplots of 10 000 simulated points from an extension of the
Gumbel copula CGu

4 given by C4,0.95,0.7 in (5.43). This is simulated using Algorithm 5.49.

It may be easily verified that (U1, U2) have the df (5.43). See Figure 5.13 for an
example of simulated data from an asymmetric copula based on Gumbel’s copula.
Note that an alternative copula may be constructed by taking (V1, V2) in Algo-
rithm 5.49 to be distributed according to some copula other than the independence
copula.

Non-exchangeable, higher-dimensional Archimedean copulas. Non-exchange-
able, higher-dimensional Archimedean copulas with exchangeable bivariate mar-
gins can be constructed by recursive application of Archimedean generators and
their inverses, and we will give examples in this section. The biggest problem with
these constructions lies in checking that they lead to valid multivariate distributions
satisfying (5.1). The necessary theory is complicated and we will simply indicate the
nature of the conditions that are necessary without providing justification; a com-
prehensive reference is Joe (1997). It turns out that with some care we can construct
situations of partial exchangeability. We give three- and four-dimensional examples
which indicate the pattern of construction.

Example 5.50 (three-dimensional non-exchangeable Archimedean copulas).
Suppose that φ1 and φ2 are two strict Archimedean generators and consider

C(u1, u2, u3) = φ−1
2 (φ2 ◦ φ−1

1 (φ1(u1) + φ1(u2)) + φ2(u3)). (5.44)

Conditions that ensure that this is a copula are that the generator inverses φ−1
1 and

φ−1
2 are completely monotonic decreasing functions, as in (5.39), and the compo-

sition φ2 ◦ φ−1
1 : [0,∞] → [0,∞] is a completely monotonic increasing function,

i.e. a function g satisfying

(−1)k−1 dk

dtk
g(t) � 0, k ∈ N.

Observe that when φ2 = φ1 = φ we are back in the situation of full exchangeability,
as in (5.38). Otherwise, ifφ1 �= φ2 and (U1, U2, U3) is a random vector with df given
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by (5.44), then only U1 and U2 are exchangeable, i.e. (U1, U2, U3)
d= (U2, U1, U3),

but no other swapping of subscripts is possible. All bivariate margins of (5.44) are
themselves Archimedean copulas. The margins C13 and C23 have generator φ2 and
C12 has generator φ1.

Example 5.51 (four-dimensional non-exchangeable Archimedean copulas). A
possible four-dimensional construction is

C(u1, u2, u3, u4) = φ−1
3 (φ3 ◦φ−1

1 (φ1(u1)+φ1(u2))+φ3 ◦φ−1
2 (φ2(u3)+φ2(u4))),

(5.45)
where φ1, φ2 and φ3 are three distinct, strict Archimedean generators and we assume
that their inverses and the composite functions φ3 ◦φ−1

1 and φ3 ◦φ−1
2 are completely

monotonic to obtain a proper distribution function. This is not the only possible four-
dimensional construction (Joe 1997), but it is a useful construction because it gives
two exchangeable groups. If (U1, U2, U3, U4) has the df (5.45), then U1 and U2 are
exchangeable, as are U3 and U4.

The same kinds of construction can be extended to higher dimensions, subject
again to complete monotonicity conditions on the compositions of generators and
generator inverses.

LT-Archimedean copulas with p-factor structure. Recall from Definition 5.47 the
family of LT-Archimedean copulas. It follows easily from (5.42) that these have the
form

C(u1, . . . , ud) = E

(
exp

(
− V

d∑
i=1

Ĝ−1(ui)

))
(5.46)

for strictly positive rvs V with Laplace–Stieltjes transform Ĝ. It is possible to gener-
alize the construction (5.46) to obtain a larger family of non-exchangeable copulas,
which will be useful in the context of dynamic credit risk models (see Section 9.7).An
LT-Archimedean copula withp-factor structure is constructed from ap-dimensional
random vector V = (V1, . . . , Vp)

′ with independent, strictly positive components
and a matrix A ∈ R

d×p with elements aij > 0 as follows:

C(u1, . . . , ud) = E

(
exp

(
−

d∑
i=1

a′
iV Ĝ−1

i (ui)

))
, (5.47)

where ai is the ith row ofA and Ĝ−1
i is the Laplace–Stieltjes transform of the strictly

positive rv a′
iV .

We can write (5.47) in a different way, which facilitates the computation of
C(u1, . . . , ud). Note that

d∑
i=1

a′
iV Ĝ−1

i (ui) =
p∑

j=1

Vj

d∑
i=1

aij Ĝ
−1
i (ui).
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It follows from the independence of the Vj that

C(u1, . . . , ud) =
p∏

j=1

E

(
exp

(
− Vj

d∑
i=1

aij Ĝ
−1
i (ui)

))

=
p∏

j=1

ĜVj

( d∑
i=1

aij Ĝ
−1
i (ui)

)
. (5.48)

Note that (5.48) is easy to evaluate when ĜVj , the Laplace–Stieltjes transform of
the Vj , is available in closed form, because Ĝi(t) = ∏p

j=1 ĜVj (aij t) by the inde-
pendence of the Vj .

Notes and Comments

The name Archimedean relates to an algebraic property of the copulas which resem-
bles the Archimedean axiom for real numbers (see Nelsen 1999, p. 98). Clayton’s
copula was introduced in Clayton (1978), although it has also been called the Cook
and Johnson copula (see Genest and MacKay 1986) and the Pareto copula (see
Hutchinson and Lai 1990). For Frank’s copula see Frank (1979); this copula has
radial symmetry and is the only such Archimedean copula.

Theorem 5.42 is a result of Alsina, Frank and Schweizer (2005). The for-
mula for Kendall’s tau in the Archimedean family is due to Genest and MacKay
(1986). The link between completely monotonic functions and generators which
give Archimedean copulas of the form (5.38) is found in Kimberling (1974). See
also Feller (1971) for more on the concept of complete monotonicity. For more
on the important connection between Archimedean generators and Laplace trans-
forms, see Joe (1997). For a single reference containing most of the main theory
for bivariate Archimedean copulas and some of the results on higher-dimensional
exchangeable Archimedean copulas consult Nelsen (1999).

Proposition 5.46 and Algorithm 5.48 are due to Marshall and Olkin (1988). See
Frees and Valdez (1997), Schönbucher (2002), Frey and McNeil (2003) and Chap-
ters 8 and 9 of this book for further discussion of this technique.

For more details on the asymmetric bivariate copulas obtained from construc-
tion (5.43) and ideas for more general asymmetric copulas see Genest, Ghoudi and
Rivest (1998). These copula classes were introduced in the PhD thesis of Khoudraji
(1995). For additional theory concerning partially exchangeable higher-dimensional
Archimedean copulas with exchangeable bivariate margins, see Joe (1997). LT-
Archimedean copulas with p-factor structure have been proposed by Rogge and
Schönbucher (2003) with applications in credit risk in mind.

Other copula families we have not considered include the Marshall–Olkin copulas
(Marshall and Olkin 1967a,b) and the extremal copulas in Tiit (1996).

5.5 Fitting Copulas to Data

We assume that we have data vectors X1, . . . ,Xn with identical distribution
function F , describing financial losses or financial risk factor returns; we write
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Xt = (Xt,1, . . . , Xt,d)
′ for an individual data vector and X = (X1, . . . , Xd)

′ for
a generic random vector with df F . We assume further that this df F has contin-
uous margins F1, . . . , Fd and thus, by Sklar’s Theorem, a unique representation
F(x) = C(F1(x1), . . . , Fd(xd)).

It is often very difficult, particularly in higher dimensions and in situations where
we are dealing with skewed loss distributions or heterogeneous risk factors, to find
a good multivariate model that describes both marginal behaviour and dependence
structure effectively. For multivariate risk-factor return data of a similar kind, such as
stock returns or exchange-rate returns, we have discussed useful overall models such
as the generalized hyperbolic family of Section 3.2.3, but even in these situations
there can be value in separating the marginal-modelling and dependence-modelling
issues and looking at each in more detail. The copula approach to multivariate models
facilitates this approach and allows us to consider, for example, the issue of whether
tail dependence appears to be present in our data.

This section is thus devoted to the problem of estimating the parameters θ of
a parametric copula Cθ . The main method we consider is maximum likelihood
in Section 5.5.3. First we outline a simpler method-of-moments procedure using
sample rank correlation estimates. This method has the advantage that marginal
distributions do not need to be estimated, and consequently inference about the
copula is in a sense “margin-free”.

5.5.1 Method-of-Moments using Rank Correlation

Depending on which particular copula we want to fit, it may be easier to use empirical
estimates of either Spearman’s or Kendall’s rank correlation to infer an estimate for
the copula parameter. We begin by discussing the standard estimators of both of
these rank correlations.

Definition 5.28 suggests that we could estimate ρS(Xi,Xj ) by calculating the
usual correlation coefficient for the pseudo-observations: {(Fi,n(Xt,i), Fj,n(Xt,j )) :
t = 1, . . . , n}, where Fi,n denotes the standard empirical df for the ith margin.
Equivalently, if we use rank(Xt,i) to denote the rank ofXt,i inX1,i , . . . , Xn,i (i.e. its
position in the ordered sample), we can calculate the correlation coefficient for the
rank data {(rank(Xt,i), rank(Xt,j ))}, and this gives us the Spearman’s rank correla-
tion coefficient:

12

n(n2 − 1)

n∑
t=1

(rank(Xt,i) − 1
2 (n + 1))(rank(Xt,j ) − 1

2 (n + 1)). (5.49)

We will denote by RS the matrix of pairwise Spearman’s rank correlation coeffi-
cients; since this is the sample correlation matrix of the vectors of ranks it is clearly
a positive semidefinite matrix.

The standard estimator of Kendall’s tau ρτ (Xi,Xj ) is Kendall’s rank correlation
coefficient: (

n

2

)−1 ∑
1�t<s�n

sign((Xt,i − Xs,i)(Xt,j − Xs,j )). (5.50)
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This is clearly the empirical analogue of the theoretical Kendall’s tau in Defini-
tion 5.27. Note that the actual evaluation of this estimator for large n is time-
consuming (in comparison with Spearman’s rank) because every pair of observa-
tions must be considered. Again we can collect pairwise Kendall’s rank correlation
coefficients in a matrix Rτ ; by observing that this matrix may be written as

Rτ =
(
n

2

)−1 ∑
1�t<s�n

sign(Xt − Xs) sign(Xt − Xs)
′,

it is again apparent that this gives a positive semidefinite matrix.
In a series of examples we show how these sample rank correlations can be used

to calibrate (or partially calibrate) various copulas. Obviously we assume that there
are a priori grounds for considering the chosen copula to be an appropriate model,
such as symmetry or the lack of it and the presence or absence of tail dependence.
The general method will always be similar: we look for a theoretical relationship
between one of the rank correlations and the parameters of the copula and substitute
empirical values of the rank correlation into this relationship to get estimates of
some or all of the copula parameters.

Example 5.52 (bivariate Archimedean copulas with a single parameter). Sup-
pose our assumed model is of the form F(x1, x2) = Cθ(F1(x1), F2(x2)), where θ
is a single parameter to be estimated. For many such copulas a simple functional
relationship exists between either Kendall’s tau and θ or Spearman’s rho and θ . For
specific examples consider the Gumbel, Clayton and Frank copulas of Section 5.4;
in these cases we have simple relationships of the form ρτ (X1, X2) = f (θ), as
shown in Table 5.5. This suggests we can calibrate these copulas by first calculat-
ing a sample value rτ for Kendall’s tau and then solving the equation rτ = f (θ̂)

for θ̂ , assuming that θ̂ is a valid value in the parameter space of the copula. For
example, Gumbel’s copula is calibrated by taking θ̂ = (1 − rτ )−1, provided that
rτ � 0. Clayton’s copula interpolates between perfect negative and perfect positive
dependence and can be calibrated to any sample Kendall’s tau value in (−1, 1).

Example 5.53 (calibrating Gauss copulas using Spearman’s rho). Suppose we
assume a meta-Gaussian model for X with copula CGa

P and we wish to estimate the
correlation matrix P . It follows from Theorem 5.36 that

ρS(Xi,Xj ) = (6/π) arcsin 1
2ρij ≈ ρij ,

where the final approximation is very accurate (see Figure 5.10). This suggests we
estimate P by the matrix of pairwise Spearman’s rank correlation coefficients RS.

The method of Example 5.53 could be used to estimate P in a t copula model
Ct
ν,P (F1(x1), . . . , Fd(xd)), although the calibration would not be as accurate as in

the Gaussian case. The value of ρS(Xi,Xj ) in terms of ρij is not known in closed
form but simulation studies suggest that the error |ρS(Xi,Xj ) − ρij |, while still
modest, is larger than in the Gaussian case. Instead we propose a method based on
Kendall’s tau in the next example, which is based on Proposition 5.37 and could be
applied to all elliptical copulas.
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Example 5.54 (calibrating t copulas using Kendall’s tau). Suppose we assume
a meta-t model for X with copula Ct

ν,P and we wish to estimate the correlation
matrix P . It follows from Proposition 5.37 that

ρτ (Xi,Xj ) = (2/π) arcsin ρij ,

so that a possible estimator of P is the matrix R∗ with components given by
r∗
ij = sin( 1

2πr
τ
ij ). However, there is no guarantee that this componentwise trans-

formation of the matrix of Kendall’s rank correlation coefficients will remain posi-
tive definite (although in our experience it very often does). In this case R∗ can be
transformed by the eigenvalue method given in Algorithm 5.55 to obtain a positive-
definite matrix that is close to R∗. The remaining parameter ν of the copula could
then be estimated by maximum likelihood, as discussed in Section 5.5.3.

Algorithm 5.55 (eigenvalue method). Let R∗ be a so-called pseudo-correlation
matrix, i.e. a symmetric matrix of pairwise correlation estimates with unit diagonal
entries and off-diagonal entries in [−1, 1] that is not positive semidefinite.

(1) Calculate the spectral decomposition R∗ = GLG′ as in (3.67), where L is
the matrix of eigenvalues and G is an orthogonal matrix whose columns are
eigenvectors of R∗.

(2) Replace all negative eigenvalues in L by small values δ > 0 to obtain L̃.

(3) Calculate Q = GL̃G′, which will be symmetric and positive definite but not
a correlation matrix, since its diagonal elements will not necessarily equal
one.

(4) Return the correlation matrix R = ℘(Q), where ℘ denotes the correlation
matrix operator defined in (3.5).

In Examples 5.53 and 5.54 we saw that it is relatively easy to calibrate the Gauss
copula and the correlation parameter matrix P of the t copula to sample rank cor-
relations. This technique is particularly useful when we have limited multivariate
data and formal estimation of a full multivariate model is unrealistic. Consider the
following hypothetical example.

Example 5.56 (fictitious risk integration situation). Suppose a company is
divided into a number of business units that function semiautonomously. The com-
pany management would like to calculate an enterprise-wide P&L distribution for
a one-month period. They have historical data on monthly results for each of the
business units for the last two years only, i.e. 24 observations. However, each busi-
ness unit believes that through detailed knowledge of their own business going back
over a longer period they can specify their own P&L fairly accurately. Rather than
attempting to fit a multivariate distribution to 24 observations, the risk-management
team decides to combine the individual marginal models provided by each of the
business units using a matrix of rank correlations estimated from the 24 data points.

In this situation we can build multivariate models by combining the known
marginal distributions using any copula that can be calibrated to the estimated rank
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correlations. The Gaussian and t copulas lend themselves to this purpose and can be
used to build meta-Gaussian and meta-t models that are consistent with the available
information.

Typically, these models could then be used in a Monte Carlo risk analysis; we have
seen in Section 5.1.4 that meta-Gaussian and meta-t models are particularly easy to
simulate. Because the approach is obviously prone to model risk (24 observations
provide very meagre multivariate data) it should be seen as a form of sensitivity
analysis performed using detailed marginal information and only vague depend-
ence information; we might choose to compare a meta-Gaussian model with no tail
dependence and a meta-t model with, say, three degrees of freedom and very strong
tail dependence.

5.5.2 Forming a Pseudo-Sample from the Copula

We now turn to the estimation of parametric copulas by maximum likelihood (ML).
In practical situations we are seldom interested in the copula alone, but also require
estimates of the margins to form a full multivariate model; even when the copula is
of central interest, as it is for us in this chapter, we are forced to estimate margins in
order to estimate the copula, since copula data are almost never observed directly.

While we may attempt to estimate margins and copula in one single optimiza-
tion, splitting the modelling into two steps can yield more insight and allow a more
detailed analysis of the different model components. In this section we describe
briefly some general approaches to the first step of estimating margins and construct-
ing a pseudo-sample of observations from the copula. In the following section we
describe how the copula parameters are estimated by ML from the pseudo-sample.

Let F̂1, . . . , F̂d denote estimates of the marginal dfs (possible methods are
discussed below). The pseudo-sample from the copula consists of the vectors
Û1, . . . , Ûn, where

Ût = (Ut,1, . . . , Ut,d)
′ = (F̂1(Xt,1), . . . , F̂d(Xt,d))

′. (5.51)

Observe that, even if the original data vectors X1, . . . ,Xn are iid, the pseudo-sample
data are generally dependent, because the marginal estimates F̂i will in most cases
be constructed from all of the original data vectors through the univariate samples
X1,i , . . . , Xn,i . Possible methods for obtaining the marginal estimate F̂i include the
following.

(1) Parametric estimation. We choose an appropriate parametric model for the
data in question and fit it by ML: for financial risk factor return data we might
consider the generalized hyperbolic distribution, or one of its special cases such
as Student t or normal inverse Gaussian (NIG); for insurance or operational loss
data we might consider a standard actuarial loss distribution such as Pareto or
lognormal.

(2) Non-parametric estimation with variant of empirical df. We could estimate
Fj using

F ∗
i,n(x) = 1

n + 1

n∑
t=1

I{Xt,i�x}, (5.52)
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Figure 5.14. Pairwise scatterplots of pseudo-sample from copula for trivariate Intel,
Microsoft and General Electric log-returns (see Example 5.57).

which differs from the usual empirical df by the use of the denominator n + 1
rather than n. This guarantees that the pseudo-copula data in (5.51) lie strictly
in the interior of the unit cube; to implement ML we must be able to evaluate
the copula density at each Ûi , and in many cases this density is infinite on the
boundary of the cube.

(3) Extreme value theory for the tails. Empirical distribution functions are known
to be poor estimators of the underlying distribution in the tails. An alternative is to
use a technique from extreme value theory, described in Section 7.2.6, whereby
the tails are modelled semiparametrically using a generalized Pareto distribution
(GPD); the body of the distribution may be modelled empirically.

Example 5.57. We analyse five years of daily log-return data (1996–2000)
for Intel, Microsoft and General Electric stocks. The marginal distributions are
estimated empirically (method (2)) and the pseudo-sample from the copula is
shown in Figure 5.14. Essentially, the points are plotted at the coordinates
(rank(Xt,i)/(n + 1), rank(Xt,j )/(n + 1)), where rank(Xt,i) denotes the rank of
Xt,i in the sample X1,i , . . . , Xn,i .
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5.5.3 Maximum Likelihood Estimation

Let Cθ denote a parametric copula, where θ is the vector of parameters to be esti-
mated. The MLE is obtained by maximizing

lnL(θ; Û1, . . . , Ûn) =
n∑

t=1

ln cθ (Ût ) (5.53)

with respect to θ , where cθ denotes the copula density as in (5.16) and Ût denotes
a pseudo-observation from the copula.

Obviously the statistical quality of the estimates of the copula parameters depends
very much on the quality of the estimates of the marginal distributions used in
the formation of the pseudo-sample from the copula. The properties of estimates
derived using the marginal estimation methods (1) and (2) in Section 5.5.2 have both
been studied in more theoretical detail. When margins are estimated parametrically
(method (1)), inference about the copula using (5.53) amounts to what has been
termed the inference-functions for margins (IFM) approach by Joe (1997). When
margins are estimated non-parametrically (method (2)), the estimates of the copula
parameters may be regarded as semiparametric and the approach has been labelled
pseudo-maximum likelihood by Genest and Rivest (1993) (see Notes and Comments
for more references). One could envisage using the two-stage method to decide on
the most appropriate copula family and then estimating all parameters (marginal
and copula) in a final fully parametric round of estimation.

In practice, to implement the ML method we need to derive the copula density.
This is straightforward, if tedious, for the exchangeable Archimedean copulas of
Section 5.4, and these have been popular models in bivariate and trivariate applica-
tions to insurance loss data. For implicit copulas like the Gaussian and t copulas we
use (5.17). The MLE is generally found by numerical maximization of the resulting
log-likelihood (5.53).

Example 5.58 (fitting the Gauss copula). In the case of a Gauss copula we
use (5.17) to see that the log-likelihood (5.53) becomes

lnL(P; Û1, . . . , Ûn)

=
n∑

t=1

ln fP (Φ
−1(Ût,1), . . . , Φ

−1(Ût,d )) −
n∑

t=1

d∑
j=1

ln φ(Φ−1(Ût,j )),

where fΣ will be used to denote the joint density of a random vector with Nd(0,Σ)

distribution. It is clear that the second term is not relevant in the maximization with
respect to P , and the MLE is given by

P̂ = arg max
Σ∈P

n∑
t=1

ln fΣ(Yt ), (5.54)

where Yt,j = Φ−1(Ût,j ) for j = 1, . . . , d and P denotes the set of all possible
linear correlation matrices. To perform this maximization in practice, note that the
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set P can be constructed as

P = {P = ℘(Q) : Q = AA′, A lower triangular with ones on the diagonal},
where ℘ is defined in (3.5). In other words, we can search over the set of unre-
stricted lower-triangular matrices with ones on the diagonal. This search is feasible
in low dimensions but very slow in high dimensions, since the number of parameters
is O(d2).

An approximate solution to the maximization may be obtained easily as follows.
Suppose that instead of maximizing over P as in (5.54) we maximize over the set
of all covariance matrices. This maximization problem has the analytical solution
Σ̂ = (1/n)

∑n
t=1 YtY

′
t , which is the MLE of the covariance matrixΣ for iid normal

data with Nd(0,Σ) distribution. In practice, Σ̂ is likely to be close to being a
correlation matrix. As an approximate solution to the original problem we could
take the correlation matrix P̃ = ℘(Σ̂).

When a Gauss copula is fitted to the trivariate data in Example 5.57 by full ML,
the estimated correlation matrix has entries 0.58 (INTC-MSFT), 0.34 (INTC-GE)
and 0.40 (MSFT-GE); the value of the log-likelihood at the maximum is 376.65.
Using the alternative method gives estimates that are identical to two significant
figures and that yield a log-likelihood value of 376.62.

A further alternative would be to use the estimation procedure in Example 5.53,
based on Spearman’s rank correlations. Using the Spearman method we get, respec-
tively, 0.57, 0.34 and 0.40 for the parameter estimates; the value of the log-likelihood
at this value of P is 376.50, which is also not so far from the maximum.

Example 5.59 (fitting the t copula). In the case of the t copula, (5.17) implies that
the log-likelihood (5.53) is

lnL(ν,P; Û1, . . . , Ûn)

=
n∑

t=1

ln gν,P (t
−1
ν (Ût,1), . . . , t

−1
ν (Ût,d )) −

n∑
t=1

d∑
j=1

ln gν(t
−1
ν (Ût,j )),

where gν,P denotes the joint density of a random vector with td (ν, 0,P) distribu-
tion, P is a linear correlation matrix, gν is the density of a univariate t1(ν, 0, 1)
distribution, and t−1

ν is the corresponding quantile function.
Again, in relatively low dimensions, we could search over the set of correlation

matrices P and degrees of freedom parameter ν for a global maximum. For higher-
dimensional work it would be easier to estimate P using Kendall’s tau estimates, as
in Example 5.54, and to estimate the single parameter ν by maximum likelihood.

When a t copula is fitted to the trivariate data in Example 5.57 by full ML
the estimated matrix P has entries 0.59 (INTC-MSFT), 0.36 (INTC-GE) and 0.42
(MSFT-GE); the estimate of ν is 6.5 and the value of the log-likelihood at the max-
imum is 420.39. Using the simpler method based on Kendall’s tau gives identical
parameter estimates to two significant figures and a log-likelihood value of 420.32.
Clearly, the t model fits much better than a Gauss copula model; the log-likelihood
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is increased by over 40. This would be massively significant in a likelihood ratio
test (although, strictly speaking, such a test introduces a technical difficulty, since
the Gauss copula represents a boundary case of the t copula model (ν = ∞), which
violates standard regularity conditions (see Notes and Comments)).

Notes and Comments

The copula estimation procedure based on empirical values of Kendall’s tau is dis-
cussed in detail for bivariate Archimedean copulas by Genest and Rivest (1993);
they explain why the procedure may be considered to be a method-of-moments
technique and show how confidence intervals for the copula parameter (in the case
of single-parameter copulas) may be derived.

The method of calibrating the Gauss copula with Spearman’s rank correlation
in Example 5.53 is essentially due to Iman and Conover (1982). The use of this
calibration method to build meta-Gaussian models with prescribed margins and the
Monte Carlo simulation of data from these models is implemented in the @RISK
software (Palisade 1997), which is widely used in insurance. Our Example 5.54 is
intended to show that this approach can be extended to meta-t models, which may
well be more interesting due to their tail dependence.

The eigenvalue method for correcting the positive definiteness of correlation
matrices given in Algorithm 5.55 is described by Rousseeuw and Molenberghs
(1993).An empirical comparison of the eigenvalue method with different approaches
to this problem, including so-called shrinkage methods, is found in Lindskog (2000).

The inference-functions for margins (IFM) approach to the estimation of copulas
(method (1) of Section 5.5.2 followed by maximization of (5.53)) is described by
Joe (1997), who gives asymptotic theory; the name of the approach (IFM) follows
terminology of McLeish and Small (1988).

The pseudo-likelihood approach to copula estimation (method (2) of Section 5.5.2
followed by maximization of (5.53)) is described in Genest and Rivest (1993), and
the consistency and asymptotic normality of the resulting parameter estimates are
demonstrated. In Monte Carlo simulations it is found that this method outperforms
the Kendall’s tau method for a bivariate Clayton copula (see also Genest, Ghoudi
and Rivest 1995).

Frees and Valdez (1997) discuss the relevance of copulas in actuarial applications
and give an example where copulas are fitted to data using the Kendall’s tau method
and the IFM method. Also in an insurance context, Klugman and Parsa (1999)
discuss ML inference for copulas and bivariate goodness-of-fit tests while Chen and
Fan (2005) describe a likelihood-ratio test for semiparametric copula selection.

The fitting of the t copula to data and statistical aspects of testing this cop-
ula against the Gauss copula are discussed at length in Mashal and Zeevi (2002);
the technical problem that the Gauss copula is a boundary case of the t copula is
addressed in this paper and a correction is suggested. The authors provide a number
of financial examples suggesting that extremal dependence is a feature of finan-
cial data. Breymann, Dias and Embrechts (2003) fit various bivariate copulas to
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high-frequency financial return data at different timescales and provide extensive
comparisons with respect to goodness-of-fit.

Papers developing dynamic time series models for financial return data using
copulas include Chen and Fan (2005), Patton (2004, 2005) and Fortin and Kuzmics
(2002).



6
Aggregate Risk

This chapter is devoted to a number of theoretical concepts in quantitative risk
management that fall under the broad heading of aggregate risk. We understand
aggregate risk as the risk of a portfolio, which could even be the entire position in
risky assets of a financial enterprise. The material builds on general ideas in risk
measurement discussed in Section 2.2 and also uses in certain places the copula
theory of Chapter 5 and some facts about elliptical distributions from Section 3.3.

In Section 6.1 we treat the issue of measuring aggregate risk. We discuss proper-
ties that a good measure of risk should have with particular emphasis on aggregation
properties. This leads us to study the class of coherent risk measures. In Section 6.2
we consider the problem of bounding an aggregate risk if we know something about
the individual risks that contribute to the whole but have only limited information
about their dependence. We discuss specific difficulties that arise when risk is mea-
sured with a non-subadditive risk measure like VaR. Finally, in Section 6.3, we treat
the subject of allocating risk capital, i.e. of distributing the risk capital for a port-
folio to the individual risks in the portfolio. This issue is relevant for purposes of
performance measurement, loan pricing and capital budgeting.

6.1 Coherent Measures of Risk

The premise of this section is the idea of approaching risk measurement by first
writing down a list of properties that a good risk measure should have. Such a list
was proposed for applications in financial risk management in the seminal paper by
Artzner et al. (1999). Using economic reasoning, they specified a number of axioms
that any so-called coherent risk measure should satisfy. Moreover, they studied the
coherence properties of widely used risk measures such as VaR or expected shortfall
and gave a characterization of all coherent risk measures in terms of generalized
scenarios. Our development of the subject will follow their approach. It should
be mentioned that the idea of axiomatic systems for risk measures bears some
relationship to similar systems for premium principles in the actuarial literature,
which have a long and independent history (see, for example, Goovaerts et al. (2003)
and further references in Notes and Comments).

6.1.1 The Axioms of Coherence

In order to introduce the axioms of coherence we have to give a formal definition
of risk measures. Fix some probability space (Ω,F , P ) and a time horizon �.
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Denote by L0(Ω,F , P ) the set of all rvs on (Ω,F ), which are almost surely finite.
Financial risks are represented by a set M ⊂ L0(Ω,F , P ) of rvs, which we interpret
as portfolio losses over some time horizon �. The time horizon is left unspecified
and will only enter when specific problems are considered. We often assume that
M is a convex cone, i.e. that L1 ∈ M and L2 ∈ M implies that L1 + L2 ∈ M and
λL1 ∈ M for every λ > 0. Risk measures are real-valued functions  : M → R

defined on such cones of rvs, satisfying certain properties.
We interpret  (L) as the amount of capital that should be added to a position with

loss given by L, so that the position becomes acceptable to an external or internal
risk controller. Positions with  (L) � 0 are acceptable without injection of capital;
if  (L) < 0, capital may even be withdrawn. Note that our interpretation of L
differs from that in Artzner et al. (1999), where an rv L ∈ M is interpreted as the
future value (instead of the loss) of a position currently held. This leads to some
sign changes in the discussion of the axioms of coherence compared with other
presentations in the literature. Also note that in order to simplify the presentation
we set interest rates equal to zero so that there is no discounting.

Now we can introduce the axioms that a risk measure  : M → R on a convex
cone M should satisfy in order to be called coherent.

Axiom 6.1 (translation invariance). For all L ∈ M and every l ∈ R we have
 (L + l) =  (L) + l.

Axiom 6.1 states that by adding or subtracting a deterministic quantity l to a
position leading to the loss L we alter our capital requirements by exactly that
amount. The axiom is in fact necessary for the risk-capital interpretation of  to
make sense. Consider a position with loss L and  (L) > 0. Adding the amount
of capital  (L) to the position leads to the adjusted loss L̃ = L −  (L), with
 (L̃) =  (L) −  (L) = 0, so that the position L̃ is acceptable without further injec-
tion of capital.

Axiom 6.2 (subadditivity). For all L1, L2 ∈ M we have  (L1 + L2) �  (L1) +
 (L2).

The rationale behind Axiom 6.2 is summarized by Arztner et al. in the state-
ment that “a merger does not create extra risk” (ignoring of course any problematic
practical aspects of a merger!). Axiom 6.2 is the most debated of the four axioms
characterizing coherent risk measures, probably because it rules out VaR as a risk
measure in certain situations. We provide some arguments explaining why subad-
ditivity is indeed a reasonable requirement.

• Subadditivity reflects the idea that risk can be reduced by diversification, a
time-honoured principle in finance and economics. In particular, we will see
in Section 6.1.5 that the use of non-subadditive risk measures in a Markowitz-
type portfolio optimization problem may lead to optimal portfolios that are
very concentrated and that would be deemed quite risky by normal economic
standards.
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• If a regulator uses a non-subadditive risk measure in determining the regula-
tory capital for a financial institution, that institution has an incentive to legally
break up into various subsidiaries in order to reduce its regulatory capital
requirements. Similarly, if the risk measure used by an organized exchange
in determining the margin requirements of investors is non-subadditive, an
investor could reduce the margin he has to pay by opening a different account
for every position in his portfolio.

• Subadditivity makes decentralization of risk-management systems possible.
Consider as an example two trading desks with positions leading to losses
L1 and L2. Imagine that a risk manager wants to ensure that  (L), the risk
of the overall loss L = L1 + L2, is smaller than some number M . If he
uses a risk measure  , which is subadditive, he may simply choose bounds
M1 and M2 such that M1 + M2 � M and impose on each of the desks the
constraint that  (Li) � Mi ; subadditivity of  then ensures automatically
that  (L) � M1 + M2 � M .

Axiom 6.3 (positive homogeneity). For all L ∈ M and every λ > 0 we have
 (λL) = λ (L).

Axiom 6.3 is easily justified if we assume that Axiom 6.2 holds. Subadditivity
implies that, for n ∈ N,

 (nL) =  (L + · · · + L) � n (L). (6.1)

Since there is no netting or diversification between the losses in this portfolio,
it is natural to require that equality should hold in (6.1), which leads to positive
homogeneity. Note that subadditivity and positive homogeneity imply that the risk
measure  is convex on M.

Axiom 6.4 (monotonicity). For L1, L2 ∈ M such that L1 � L2 almost surely we
have  (L1) �  (L2).

From an economic viewpoint this axiom is obvious: positions that lead to higher
losses in every state of the world require more risk capital.

For a risk measure satisfying Axioms 6.2 and 6.3, the monotonicity axiom is
equivalent to the requirement that  (L) � 0 for all L � 0. To see this, observe
that Axiom 6.4 implies that if L � 0, then  (L) �  (0) = 0; the latter equality
follows from Axiom 6.3 since  (0) =  (λ0) = λ (0) for all λ > 0. Conversely, if
L1 � L2 and we assume that  (L1 − L2) � 0, then  (L1) =  (L1 − L2 + L2) �
 (L1 − L2) +  (L2) by Axiom 6.2, which implies that  (L1) �  (L2).

Definition 6.5 (coherent risk measure). A risk measure  whose domain includes
the convex cone M is called coherent (on M) if it satisfies Axioms 6.1–6.4.

Note that the domain is an integral part of the definition of a coherent risk measure.
We will often encounter functionals on L0(Ω,F , P ), which are coherent only if
restricted to a sufficiently small convex cone M.
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Remark 6.6 (convex measures of risk). Axiom 6.3 (positive homogeneity) has
been criticized and, in particular, it has been suggested that for large values of the
multiplier λ we should have  (λL) > λ (L) to penalize a concentration of risk and
the ensuing liquidity problems.As shown in (6.1), this is impossible for a subadditive
risk measure. This problem has led to the study of the larger class of convex risk
measures. In this class the conditions of subadditivity and positive homogeneity have
been relaxed; instead one requires only the weaker property of convexity, i.e. for all
L1, L2 ∈ M:

 (λL1 + (1 − λ)L2) � λ (L1) + (1 − λ) (L2), λ ∈ [0, 1]. (6.2)

The economic justification of (6.2) is again the idea that diversification reduces
risk. Within the class of convex risk measures it is possible to find risk measures
penalizing concentration of risk in the sense that  (λL) �  (L) for λ > 1. Convex
risk measures have recently attracted a lot of attention: some references are provided
in Notes and Comments.

In the following sections we study the coherence properties of several popular
risk measures.

6.1.2 Value-at-Risk

It is immediately seen from the representation of VaR as a quantile of the loss
distribution in Section 2.2.2 that VaR is translation invariant, positive homogeneous
and monotone on L0(Ω,F , P ). However, as the following example shows, the
subadditivity property (Axiom 6.2) fails to hold for VaR in general, so VaR is not a
coherent risk measure.

Example 6.7 (VaR for a portfolio of defaultable bonds). Consider a portfolio of
d = 100 defaultable corporate bonds. We assume that defaults of different bonds are
independent; the default probability is identical for all bonds and is equal to 2%. The
current price of the bonds is 100. If there is no default, a bond pays in t + 1 (one year
from now, say) an amount of 105; otherwise there is no repayment. Hence Li , the
loss of bond i, is equal to 100 when the bond defaults and to −5 otherwise. Denote by
Yi the default indicator of firm i, i.e. Yi is equal to one if bond i defaults in [t, t + 1]
and equal to zero otherwise. We getLi = 100Yi −5(1−Yi) = 105Yi −5. Hence the
Li form a sequence of iid rvs with P(Li = −5) = 0.98 and P(Li = 100) = 0.02.

We compare two portfolios, both with current value equal to 10 000. Portfolio A
is fully concentrated and consists of 100 units of bond one. Portfolio B is completely
diversified: it consists of one unit of each of the bonds. Economic intuition suggests
that portfolio B is less risky than portfolio A and hence should have a lower VaR.
Let us compute VaR at a confidence level of 95% for both portfolios.

For portfolio A the portfolio loss is given by LA = 100L1, so VaR0.95(LA) =
100 VaR0.95(L1). Now P(L1 � −5) = 0.98 � 0.95 and P(L1 � l) = 0 < 0.95
for l < −5. Hence VaR0.95(L1) = −5, and therefore VaR0.95(LA) = −500. This
means that even after a withdrawal of a risk capital of 500 the portfolio is still
acceptable to a risk controller working with VaR at the 95% level.
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For portfolio B we have

LB =
100∑
i=1

Li = 105
100∑
i=1

Yi − 500,

and hence VaRα(LB) = 105qα(
∑100

i=1 Yi) − 500. The sum M := ∑100
i=1 Yi has a

binomial distribution M ∼ B(100, 0.02). We get by inspection that P(M � 5) ≈
0.984 � 0.95 and P(M � 4) ≈ 0.949 < 0.95, so q0.95(M) = 5. Hence
VaR0.95(LB) = 525 − 500 = 25. In this case a bank would need an additional
risk capital of 25 to satisfy a regulator working with VaR at the 95% level. Clearly,
the risk capital required for portfolio B is higher than for portfolio A.

This illustrates that measuring risk with VaR can lead to nonsensical results.
Moreover, our example shows that VaR is not subadditive in general. In fact, for any
coherent risk measure  , which depends only on the distribution of L, we get

 

( 100∑
i=1

Li

)
�

100∑
i=1

 (Li) = 100 (L1) =  (100L1).

Hence any coherent risk measure, which depends only on the loss distribution, will
lead to a higher risk-capital requirement for portfolio A than for portfolio B.

In Example 6.7 the non-subbaditivity of VaR is caused by the fact that the assets
making up the portfolio have very skewed loss distributions; such a situation can
clearly occur if we have defaultable bonds or options in our portfolio. Note, however,
that the assets in this example have an innocuous dependence structure because they
are independent. We will see in Example 6.22 in Section 6.2 that non-subadditivity
can also occur when the loss distributions of the individual assets are smooth and
symmetric, but their dependence structure or copula is of a special, highly asym-
metric form. Finally, non-subadditivity of VaR also occurs when the underlying rvs
are independent but very heavy-tailed; see Example 7 in Embrechts, McNeil and
Straumann (2002) and Example 5.2.7 in Denuit and Charpentier (2004), which both
use infinite-mean Pareto risks.

VaR is, however, subadditive in the idealized situation where all portfolios can
be represented as linear combinations of the same set of underlying elliptically
distributed risk factors. In this case both the marginal loss distributions of the risk
factors and the copula possess strong symmetry. We have seen in Chapter 3 that
an elliptical model may be a reasonable approximate model for various kinds of
risk-factor data, such as stock or exchange-rate returns.

Theorem 6.8 (subadditivity of VaR for elliptical risk factors). Suppose that X ∼
Ed(µ,Σ,ψ) and define the set M of linearized portfolio losses of the form

M =
{
L : L = λ0 +

d∑
i=1

λiXi, λi ∈ R

}
.

Then for any two losses L1, L2 ∈ M and 0.5 � α < 1,

VaRα(L1 + L2) � VaRα(L1) + VaRα(L2).
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Proof. Without any loss of generality we assume that λ0 = 0. For any L ∈ M it
follows from Definition 3.26 that we can writeL = λ′X d= λ′AY + λ′µ for a spher-
ical random vector Y ∼ Sk(ψ), a matrix A ∈ R

d×k and a constant vector µ ∈ R
d .

By part (3) of Theorem 3.19 we have

L
d= ‖λ′A‖Y1 + λ′µ, (6.3)

showing that every L ∈ M is an rv of the same type. Moreover, the translation
invariance and homogeneity of VaR imply that, for L = λ′X,

VaRα(L) = ‖λ′A‖ VaRα(Y1) + λ′µ. (6.4)

Now set L1 = λ′
1X and L2 = λ′

2X. Since ‖(λ1 + λ2)
′A‖ � ‖λ′

1A‖ + ‖λ′
2A‖ and

since VaRα(Y1) � 0 for α � 0.5, the result follows.

6.1.3 Coherent Risk Measures Based on Loss Distributions

We give two examples of coherent risk measures that are based on loss distributions.

Expected shortfall. A proof of the coherence of expected shortfall, defined in
Definition 2.15, can be based on Lemma 2.20, which gives a representation of
expected shortfall as the limit of the averages of upper order statistics.

Proposition 6.9. Expected shortfall is a coherent risk measure.

Proof. The translation invariance, positive homogeneity and monotonicity proper-
ties follow easily from the representation ESα = (1/(1 − α))

∫ 1
α

VaRu(L) du and
the corresponding properties for quantiles. It remains to show subadditivity.

Consider a generic sequence of rvs L1, . . . , Ln with associated order statistics
L1,n � · · · � Ln,n and note that for arbitrary m satisfying 1 � m � n we have

m∑
i=1

Li,n = sup{Li1 + · · ·Lim : 1 � i1 < · · · < im � m}.

Now consider two rvsL and L̃with joint dfF and a sequence of iid bivariate random
vectors (L1, L̃1), . . . , (Ln, L̃n) with the same df F . Writing (L + L̃)i := Li + L̃i

and (L + L̃)i,n for an order statistic of (L + L̃)1, . . . , (L + L̃)n, we observe that
we must have

m∑
i=1

(L + L̃)i,n = sup{(L + L̃)i1 + · · · + (L + L̃)im : 1 � i1 < · · · < im � m}

� sup{Li1 + · · · + Lim : 1 � i1 < · · · < im � m}
+ sup{L̃i1 + · · · + L̃im : 1 � i1 < · · · < im � m}

=
m∑
i=1

Li,n +
m∑
i=1

L̃i,n.

By setting m = [n(1 − α)] and letting n → ∞, we infer from Lemma 2.20 that
ESα(L + L̃) � ESα(L) + ESα(L̃).
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A coherent premium principle. In Fischer (2003), a class of coherent risk measures
closely resembling certain actuarial premium principles is proposed. These risk
measures could be useful for an insurance company that wants to compute premiums
on a coherent basis without deviating too far from standard actuarial practice.

Given constants p > 1 and α ∈ [0, 1), this coherent premium principle  [α,p]
is defined as follows. Let M := Lp(Ω,F , P ), the space of all L with ‖L‖p :=
E(|L|p)1/p < ∞, and define, for L ∈ M,

 [α,p](L) = E(L) + α‖(L − E(L))+‖p. (6.5)

Under (6.5) the risk of a loss L is measured by the sum of E(L), the actuarial value
of a loss, and a risk loading given by a fraction α of the Lp-norm of the positive
part of the centred loss L − E(L). This loading can be written more explicitly as
(
∫∞
E(L)

(l − E(L))p dFL(l))1/p. The higher the values of α and p, the more conser-
vative the risk measure  [α,p] becomes.

The coherence of  [α,p] is easy to check. Translation invariance and positive
homogeneity are immediate. To prove subadditivity observe that for any two rvs X
and Y we have (X+ Y )+ � X+ + Y+. Hence we get from Minkowski’s inequality
(the triangle inequality for the Lp-norm) for any two L1, L2 ∈ M:

‖(L1 − E(L1) + L2 − E(L2))
+‖p � ‖(L1 − E(L1))

+ + (L2 − E(L2))
+‖p

� ‖(L1 − E(L1))
+‖p + ‖(L2 − E(L2))

+‖p,
which shows that  [α,p] is subadditive. To verify monotonicity assume that L � 0
almost surely; in that case we have (L−E(L))+ � −E(L) almost surely, and hence
‖(L − E(L))+‖p � −E(L), so  [α,p] � 0 since α < 1.

6.1.4 Coherent Risk Measures as Generalized Scenarios

In this section we present a general class of coherent risk measures based on the idea
of generalized scenarios; recall from Remark 2.9 that scenario-based risk measures
are used in practice at the Chicago Mercantile Exchange. We show that if we restrict
our attention to discrete probability spaces, then in fact all coherent risk measures
belong to this class. It is possible to extend the idea to general (infinite) probability
spaces but the results become somewhat more technical (see Notes and Comments
for further references).

Definition 6.10. Denote by P a set of probability measures on our underlying
measurable space (Ω,F ), and set MP := {L : EQ(|L|) < ∞ for all Q ∈ P }.
Then the risk measure induced by the set of generalized scenarios P is the mapping
 P : MP → R such that  P (L) := sup{EQ(L) : Q ∈ P }.
Proposition 6.11.

(i) For any set P of probability measures on (Ω,F ) the risk measure  P is
coherent on MP .

(ii) Suppose that Ω is a finite set {ω1, . . . , ωd} and let M = {L : Ω → R}.
Then, for any coherent risk measure  on M, there is a set P of probability
measures on Ω such that  =  P .
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Proof. The proof of (i) is straightforward. The properties of translation invariance,
positive homogeneity and monotonicity follow easily from Definition 6.10. For
subadditivity observe that

sup{EQ(L1 + L1) : Q ∈ P } = sup{EQ(L1) + EQ(L2) : Q ∈ P }
� sup{EQ(L1) : Q ∈ P } + sup{EQ(L2) : Q ∈ P }.

The proof of (ii) is more technical and can be skipped by a reader interested mainly in
applications. Essentially, the argument is an application of the separating hyperplane
theorem for convex sets.

We start with some notation. For l ∈ R
d we write l � 0 if li � 0 for all 1 � i � d;

by 1 ∈ R
d we denote the vector (1, . . . , 1)′. Since Ω is finite, we may identify M

with R
d by associating an rv L with the vector l ∈ R

d with li = L(ωi), 1 � i � d.
Similarly, a linear functional λ on R

d with λ(l) � 0 for all l � 0 and λ(1) = 1 can
be identified with a probability measure Pλ on Ω via Pλ(ωi) = λ(ei ), ei the ith unit
vector. Below we will use these identifications freely.

We have proved claim (ii) if we can show that for every rv L0 ∈ M there is a
probability measure Q = Q(L0) such that

EQ(L) �  (L) for all L ∈ M and EQ(L0) =  (L0). (6.6)

In fact, in that case we may take P = {Q(L0) : L0 ∈ M}.
Now we turn to the proof of (6.6). If this relation holds for some L0 and some

Q, it holds simultaneously for Q and all rvs of the form aL0 + b, a ∈ R
+, b ∈ R

(by translation invariance and positive homogeneity). We may therefore assume that
 (L0) = 1. Define Ũ := {L ∈ M :  (L) < 1}. As explained above we can identify
Ũ with a subset U ⊂ R

d . The set U is open (as  is continuous) and convex
(as  is coherent and hence a convex functional on M); moreover, l0 (the vector
corresponding to the rv L0) does not belong to U. Using the separating hyperplane
theorem (see, for example, Rockafellar (1970) or Appendix B of Duffie (2001)) we
conclude that there is a linear functional λ on R

d such that

λ(l) < λ(l0) for all l ∈ U. (6.7)

Since 0 ∈ U, it follows that 0 = λ(0) < λ(l0), and we may normalize λ(l0) to one.
We now check that λ induces a probability measure, i.e. that (a) λ(l) � 0 for all
l � 0 and (b) λ(1) = 1. Note that we may write (6.7) as

λ(l) < 1 for all L such that  (L) < 1. (6.8)

To prove (a) we use that for L < 0 we have  (L) < 0 and hence λ(l) < 1.
This implies that for L � 0 and a > 0 we get, using the linearity of λ, aλ(l) =
−λ(−al) > −1, and hence λ(l) > −1/a. Letting a tend to ∞ yields (a).

To prove (b) we first note that for any constant a < 1 we have  (a) = a < 1, and
hence by (6.8) we have λ(a1) < 1, so λ(1) � 1. On the other hand, we get for a > 1
that  (2L0 − a) = 2 (L0) − a = 2 − a < 1, hence 1 > λ(2l0 − a) = 2 − aλ(1),
and therefore aλ(1) > 1; this implies that λ(1) � 1, and hence (b).
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We now show that Q := Pλ is the desired probability measure. For this we need
to verify (6.6), i.e. we have to show that Eλ(L) �  (L) for all L ∈ M. This is
equivalent to the implication  (L) < b ⇒ λ(l) < b for all L ∈ M, b ∈ R. Now,
by translation invariance,  (L) < b ⇐⇒  (L − (b − 1)) =  (L) + 1 − b < 1.
Hence we get from (6.8) that 1 > Eλ(L− (b− 1)) = Eλ(L)− b+ 1, and therefore
Eλ(L) < b, as required.

6.1.5 Mean-VaR Portfolio Optimization

In this section we show what can happen if investors optimize the expected return
on their portfolios under some constraint on VaR in a situation where VaR is not
coherent—the portfolios resulting from such an optimization procedure exploit the
conceptual weaknesses of VaR and lead to highly risky, non-diversified allocations.
This is illustrated in the simplistic Example 6.12 below but we stress that the same
phenomenon can be observed in more realistic situations (see Notes and Comments).
At the end of this section we discuss again the idealized situation of linear portfolios
of elliptical risk factors, where VaR is coherent and where mean variance portfolio
optimization turns out to be equivalent to the standard Markowitz approach.

Example 6.12. Consider in the context of Example 6.7 a portfolio manager who
has an amount of capital V which can be invested in the d = 100 defaultable bonds
with current price 100. For simplicity we assume that it is not possible to borrow
additional money or to take short positions in the defaultable bonds. Denote by
ΛV := {λ ∈ R

d : λ � 0,
∑d

i=1100λi = V } the set of all admissible portfolios
with value V at time t . The loss of some portfolio λ ∈ ΛV will be denoted by L(λ);
the expected profit of a portfolio is thus given by E(−L(λ)). We assume that the
portfolio manager determines the portfolio using a mean-VaR optimality criterion,
as follows. Given some risk-aversion coefficient β > 0, a portfolio λ∗ is chosen in
order to maximize

E(−L(λ)) − β VaRα(L(λ)) (6.9)

over all λ ∈ ΛV . Portfolio optimization problems of the form (6.9) are frequently
considered in practice. Moreover, optimization problems closely related to (6.9) do
arise implicitly in the context of risk-adjusted performance measurement; often the
performance of trading desks within a financial institution is measured by the ratio
of profits earned by the desk and risk capital needed as a backup against losses
from its operations. If this risk capital is determined using VaR, traders have similar
incentives in choosing their portfolios as if operating directly under the simple
criterion (6.9).

Next we determine the optimal portfolio λ∗. Since the Li are identically dis-
tributed, every admissible portfolio λ ∈ ΛV has the same expected loss. Hence,
maximizing (6.9) over all admissible portfolios amounts to minimizing VaRα(L)

over ΛV . Consider the case where α = 0.95. In order to minimize VaRα(L) we
should invest all funds into one bond (for example the first), as was shown in Exam-
ple 6.7.

In our symmetric situation economic intuition suggests that the optimal portfolio
should be given by a mixture of an investment in the riskless asset and a portfolio
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consisting of an equal amount of each of the risky bonds. It can be shown that this is
indeed the case, if we replace VaR by a coherent risk measure which depends only
on the distribution of losses such as generalized expected shortfall (see Frey and
McNeil (2002) for details).

Portfolio optimization for elliptical risk factors. In the elliptical world, the use of
any positive-homogeneous, translation-invariant measure of risk to rank risks or to
determine the optimal risk-minimizing portfolio under the condition that a certain
return is attained is equivalent to the Markowitz approach, where the variance is used
as the risk measure. Alternative risk measures, such as VaR or expected shortfall,
give different numerical values, but have no effect on the management of risk. We
make these assertions more precise in the next proposition.

Proposition 6.13. Suppose that X ∼ Ed(µ,Σ,ψ), with var(Xi) < ∞ for all i.
Denote by W = {w ∈ R

d : ∑d
i=1 wi = 1} the set of portfolio weights. Assume that

the current value of the portfolio is V and let L(w) = V
∑d

i=1 wiXi be the (lin-
earized) portfolio loss. Let  be a real-valued risk measure depending only on the
distribution of a risk. Suppose  is positive homogeneous and translation invariant.
Let E = {w ∈ W : −w′µ = m} be the subset of portfolios giving expected returnm.
Then argminw∈E (L(w)) = argminw∈E var(L(w)).

Proof. Recall from the proof of Theorem 6.8 that for every w ∈ E the loss
L = L(w) is an rv of the same type, so  ((L + mV )/

√
var(L)) = k for some

constant k. From positive homogeneity and translation invariance it follows that
 (L) = k

√
var(L) − mV , from which it is clear that the Markowitz portfolio also

minimizes  .

Notes and Comments

The basic paper on coherent risk measures is Artzner et al. (1999); a non-technical
introduction by the same authors is Artzner et al. (1997). Technical extensions such
as the characterization of coherent risk measures on infinite probability spaces are
given in Delbaen (2000, 2002). Example 6.7 is due to Albanese (1997) and Artzner
et al. (1999). Different existing notions of expected shortfall are discussed in the very
readable paper by Acerbi and Tasche (2002). Expected shortfall has been indepen-
dently studied by Rockafellar and Uryasev (2000, 2002) under the name conditional
Value-at-Risk; in particular, these papers show that expected shortfall can be obtained
as the value of a convex optimization problem.

The study of convex risk measures in the context of risk management and mathe-
matical finance began with Föllmer and Schied (2002) (see also Frittelli and Rosazza
2002). A good treatment at advanced textbook level is given in Chapter 4 of Föllmer
and Schied (2004). Cont (2005) provides an interesting link between convex risk
measures and model risk in the pricing of derivatives.

Our exposition in Section 6.1.5 follows Frey and McNeil (2002) closely. Related
portfolio optimization problems have been studied in Basak and Shapiro (2001),
Krokhmal, Palmquist and Uryasev (2002) and Emmer, Klüppelberg and Korn



248 6. Aggregate Risk

(2001). Risk-adjusted performance measures are widely used in industry in the con-
text of capital budgeting and performance measurement.A good overview of current
practice is given in Chapter 14 of Crouhy, Galai and Mark (2001); an analysis of
risk management and capital budgeting for financial institutions from an economic
viewpoint is Froot and Stein (1998).

There is an extensive body of economic theory related to the use of elliptical
distributions in finance. The papers by Owen and Rabinovitch (1983), Chamberlain
(1983) and Berk (1997) provide an entry to the area. Landsman and Valdez (2003)
discuss the explicit calculation of the quantity E(L | L > qα(L)) for portfolios of
elliptically distributed risks. This coincides with expected shortfall for continuous
loss distributions (see Proposition 2.16).

There has been recent interest in the subject of multiperiod risk measures, which
take into account the evolution of the final value of a position over several time
periods and consider the effect of intermediate information and actions. Important
papers in this area include Artzner et al. (2005), Riedel (2004) and Weber (2004).

6.2 Bounds for Aggregate Risks

In this section we consider the general problem of finding bounds for functionals of
aggregate risks when marginal information about the individual risks is available.
From a mathematical viewpoint this turns out to be a so-called Fréchet problem.
We begin by presenting the general problem before concentrating on the problem
of bounding the VaR of an aggregate risk.

6.2.1 The General Fréchet Problem

Consider a random vector L = (L1, . . . , Ld)
′, representing losses associated with

various individual investments or risks, and a measurable function Ψ : R
d → R,

representing the operation of aggregation. The rvΨ (L) is interpreted as an aggregate
financial position and typical examples are

• the total loss Sd = ∑d
k=1 Lk;

• the maximum loss Md = max(L1, . . . , Ld);

• the excess-of-loss treaty
∑d

k=1(Li − ki)
+ for thresholds ki ∈ R

+;

• the stop-loss treaty (
∑d

i=1 Li − k)+ for a threshold k ∈ R
+; and

• a combined position MdI{Sd>qα}.

All of these examples have an immediate interpretation in insurance and finance.
For instance, in the context of credit risk, the last example might correspond to a
basket position paying out the largest loss Md , but only if the total loss Sd exceeds
its α-quantile qα(Sd) for α close to one.

Consider also a real-valued functional  depending on the distribution of Ψ (L);
 can be interpreted as a risk measure, premium principle or pricing function. Ideally
we would like to calculate  (Ψ (L)), but, in order to do so, we need the df of Ψ (L)

and hence the joint distribution of the random vector L. Often we are required to
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work with much less information. Throughout Section 6.2 we assume that we know
the marginal dfs of the risks L1, . . . , Ld ; we formalize this as Assumption (A1).

(A1) The marginal dfs Fi of Li , i = 1, . . . , d, are given.

Of course, in practice, this really means that we have sufficient information con-
cerning the marginal loss distributions that we can treat them as known. In the
absence of additional information concerning the dependence of L1, . . . , Ld we
cannot calculate  (Ψ (L)), but we can look for numerical bounds on the risk subject
to (A1).

For a particular Ψ and  the problem thus consists of finding lower and upper
bounds  min and  max such that, under (A1),

 min �  (Ψ (L)) �  max. (6.10)

We would like these bounds to be sharp, meaning that narrower bounds would be
violated by some random vector L whose distribution is consistent with (A1). When
Ψ (L) represents the aggregate loss of a financial position and  represents a risk
measure, the analysis of this problem can be thought of as a stress-testing exercise
for risk measures with respect to the dependence structure of the individual risks
involved. The value  max represents the worst possible “riskiness” of the position.

The problem has a very rich history in the field of probability, where it typically
appears under the name Fréchet problem. Indeed, its mathematics is intimately
related to the Fréchet bounds given in Theorem 5.7 and Remark 5.8. We shall sketch
a solution to the problem, give some examples and, in Notes and Comments, guide
the interested reader to the existing literature for more details.

The problem of finding the bounds in (6.10) assuming (A1) only can be reformu-
lated as a pair of optimization problems. We are required to calculate

inf{ (Ψ (L)) : Li ∼ Fi, i = 1, . . . , d}
sup{ (Ψ (L)) : Li ∼ Fi, i = 1, . . . , d}

}
(6.11)

where F1, . . . , Fd are given dfs and Li ∼ Fi means that Li has df Fi . The solutions
can be found analytically in some cases, but there also exist various numerical
techniques to solve the problems in general.

We have already encountered problems of the form (6.11) in our analysis of
attainable correlations (see Höffding’s Theorem (Theorem 5.25)), and we revisit
this problem briefly.

Example 6.14 (attainable correlations). Assume without loss of generality that
we have two risks which are standardized to have mean zero and variance one. The
problem of finding maximum and minimum correlations for fixed margins can be
formulated as a Fréchet problem in two dimensions, where Ψ (L1, L2) = L1L2

and  (Ψ (L1, L2)) = E(Ψ (L1, L2)) = ρ(L1, L2), the linear correlation coefficient
between L1 and L2.

Theorem 5.25 shows that the possible range of the correlations between L1 and
L2 over all possible bivariate models for the vector (L1, L2) is a closed interval
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[ρmin, ρmax] ⊂ [−1, 1], where possibly ρmin > −1 and/or ρmax < 1. An example
where the margins were taken to be lognormal and for which ρmin > −1 and
ρmax < 1 was given in Example 5.26. Furthermore, we showed that the bound-
ary cases ρmin and ρmax are attained for countermonotonic and comonotonic risks,
respectively; this result is crucial for our discussion below. The case ρmax = 1 can
only occur when L1 and L2 are rvs of the same type, and the case ρmin = −1 can
only occur when L1 and −L2 are rvs of the same type (see Definition A.1).

Because of Sklar’s Theorem (Theorem 5.3), the inf and sup in (6.11) can be
interpreted as being taken over all copulas C on [0, 1]d . In some situations we may
have some information concerning the dependence structure of L, and it is natural to
translate this dependence information into constraints on C; for instance, we might
take inf and sup over all copulas C � C0, for some fixed copula C0. We discuss
specific examples below.

6.2.2 The Case of VaR

In this section we show the type of results that are obtained in the case when
 = VaRα . We want to find (sharp) bounds for VaRα(Ψ (L)) given the marginal
dfs Fi of Li , i = 1, . . . , d, and partial information on the dependence of the Li

variables, in particular when Ψ is the sum operator. For the interpretation of the
results it will be useful to first consider the behaviour of the VaR risk measure for
comonotonic risks as defined in Section 5.1.6.

Additivity of VaR for comonotonic risks. The following result summarizes addi-
tivity of VaR.

Proposition 6.15. Let 0 < α < 1 and L1, . . . , Ld be comonotonic rvs with dfs
F1, . . . , Fd which are continuous and strictly increasing. Then

VaRα(L1 + · · · + Ld) = VaRα(L1) + · · · + VaRα(Ld). (6.12)

Proof. For ease of notation take d = 2. From Proposition 5.16 we have that
(L1, L2)

d= (F←
1 (U), F←

2 (U)) for some U ∼ U(0, 1). It follows that

VaRα(L1 + L2) = VaRα(F
←
1 (U) + F←

2 (U)) = F←
T (U)(α),

where T is the strictly increasing continuous function given by T (x) = F←
1 (x) +

F←
2 (x). Now P(T (U) � T (α)) = P(U � α) = α, so the result follows by

observing that

F←
T (U)(α) = T (α) = F←

1 (α) + F←
2 (α) = VaRα(L1) + VaRα(L2).

Remark 6.16 (extensions). A more general form of the above result can be found
in Embrechts, Höing and Juri (2003) and is as follows. Let Ψ : R

d → R be
increasing and left-continuous in each argument, 0 < α < 1, and let L1, . . . , Ld be
comonotonic rvs (not necessarily with continuous, strictly increasing dfs). Then

VaRα(Ψ (L1, . . . , Ld)) = Ψ (VaRα(L1), . . . ,VaRα(Ld)).
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A third correlation fallacy. Based on the above result we can highlight a third
important fallacy concerning correlation to add to the two in Section 5.2.1.

Fallacy 3. VaR for the sum of two risks is at its worst when these two risks have
maximal correlation, i.e. are comonotonic.

Any superadditive VaR example yields a correction to this statement; one such
case was shown in Example 6.7 and a further one is given below in Example 6.22. In
a superadditive VaR situation we have VaRα(L1 + L2) > VaRα(L1) + VaRα(L2)

for two risks L1 and L2 and some confidence level α. By Proposition 6.15 and
Remark 6.16 the right-hand side VaRα(L1) + VaRα(L2) corresponds to the VaR of
L1 + L2 when L1 and L2 are comonotonic. Moreover, Theorem 5.25 and Exam-
ple 6.14 imply that the correlation ofL1 andL2 is maximal in the comonotonic case.
Hence the superadditive portfolio case must correspond to a smaller correlation. The
remainder of Section 6.2 is devoted to the issue of finding the worst case.

Remark 6.17. For expected shortfall the expression  (L1 + L2) is maximized for
comonotonic losses. To see this, note that Proposition 6.15 together with (2.23)
imply that expected shortfall also has the comonotonic additivity property. Since
expected shortfall is coherent, we have  (L1 + L2) �  (L1) +  (L2), so that
comonotonicity is in fact the worst possible case. There exists a whole class of
coherent risk measures, known as spectral risk measures, which share this property
(see Notes and Comments). Note, also, that if we work with VaR but restrict our
attention to elliptical distributions for the vector L, then VaR is a coherent risk
measure (Theorem 6.8). Fallacy 3 is taken out of play and comonotonicity does
correspond to the worst case.

Restrictions on dependence using copulas. Before discussing bounds on VaR we
need to formalize the restrictions we make on the dependence structure of the df
F of L. Recall that in the case of continuous marginal dfs Fi , there is a unique
copulaC such thatF = C(F1, . . . , Fd), and one possibility is to impose dependence
restrictions on L1, . . . , Ld through conditions on C. Recall from Theorem 5.7 that
W � C � M , where W and M denote the Fréchet lower and upper bounds,
respectively.

We introduce dependence restrictions of the following type.

(A2) C � C0 for a copula C0.

When d = 2 the case of unconstrained optimization can be treated as a special case of
restriction (A2) by settingC0 = W , sinceW is a proper copula in this case; however,
for d > 2 unconstrained optimization is not a special case of restriction (A2).
The case where C0 = Π , the independence copula in (5.6), corresponds to so-
called positive lower orthant dependence (PLOD) (see Müller and Stoyan 2002,
Definition 3.10.1). In Theorem 3.10.4 of Müller and Stoyan (2002), it is shown that,
if cov(f (L), g(L)) � 0 for all increasing functions f, g : R

d → R, then L is
PLOD.

Note that the relation “�” in (A2) is not a complete ordering on the space of all
copulas, meaning that for any two copulas C1 and C2 it is not necessarily true that
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either C1 � C2 or C2 � C1. As a consequence, a constraint of the type (A2) may
only give a restrictive view on dependence alternatives.

Notation for the optimization problem. In order to formulate some of the key results
for the optimization problem (6.11), we need some extra notation. Given a vector
x = (x1, . . . , xd)

′ ∈ R
d , we write x−i = (x1, . . . , xi−1, xi+1, . . . , xd)

′. Also, for
x−d ∈ R

d−1 fixed, we define Ψ ∧
x−d

(s) := sup{xd ∈ R : Ψ (x−d , xd) < s} for s ∈ R.
In our set-up, it is convenient to identify the df F of L given fixed margins with the
copula C that combines the margins to give the df C(F1, . . . , Fd). Denote by µC

the corresponding probability measure on R
d and define, for s ∈ R,

σC,Ψ (F1, . . . , Fd)(s) := µC(Ψ (L) < s),

τC,Ψ (F1, . . . , Fd)(s) := sup
x1,...,xd−1∈R

C(F1(x1), . . . , Fd−1(xd−1), F
−
d (Ψ

∧
x−d

(s))),

where F−
d (x) stands for the left limit of Fd in x. It follows that

mΨ (s) := inf{P(Ψ (L) < s) : Li ∼ Fi, i = 1, . . . , d}
= inf{σC,Ψ (F1, . . . , Fd)(s) : C ∈ Cd},

where Cd denotes the set of all d-dimensional copulas.

Remark 6.18. The strict inequality “<” in the definition of mΨ (s) is essential (see
Embrechts and Puccetti 2005, Remark 3.1(ii)).

Optimization subject to proper copula constraints. It turns out that a proper lower
copula constraint as in (A2) allows for an easier analysis. Recall that the uncon-
strained case C � W is a special case of (A2) only if d = 2.

Theorem 6.19 (lower bound with partial information). Let L be a random vector
in R

d (d � 2) having margins F1, . . . , Fd and copula C. Assume that there exists
a copula C0 such that C � C0 (i.e. Assumption (A2) holds). If Ψ : R

d → R is
increasing, then, for s ∈ R,

σC,Ψ (F1, . . . , Fd)(s) � τC0,Ψ (F1, . . . , Fd)(s). (6.13)

If, moreover, Ψ is right-continuous in its last argument, then the copula

Ct(u) :=
{

max(t, C0(u)), u ∈ [t, 1]d ,
min{u1, . . . , ud}, otherwise,

where t = τC0,Ψ (F1, . . . , Fd)(s) attains the bound in (6.13).

Proof. See Theorems 3.1 and 3.2 in Embrechts and Puccetti (2005).

Translated into the language of VaR and using the notation VaRα,max :=
τC0,Ψ (F1, . . . , Fd)

←(α) for the inverse of the τ function in (6.13), Theorem 6.19
becomes

VaRα(Ψ (L)) � VaRα,max, (6.14)
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for 0 < α < 1, which gives an upper bound of the kind in (6.10). If Ψ is given by
the sum operator, abbreviated to Ψ = +, this bound is

VaRα,max = inf
u∈[0,1]d ,C0(u)=α

(F←
1 (u1) + · · · + F←

d (ud)). (6.15)

The unconstrained case. The unconstrained case for d > 2 is more difficult. First
of all, the standard bound (6.13) evaluated at C0 = W still holds but may fail to
be sharp. For Ψ = + and F1 = · · · = Fd = F with F a continuous df on R

+, it
reduces to

τW,+(F, . . . , F )(s) = (dF (s/d) − d + 1)+ (6.16)

for large enough s (see Embrechts and Puccetti (2005) for details). The next result
yields a better bound.

Theorem 6.20 (a better bound in the unconstrained case). Let F be a continuous
df on R

+ and let F1 = · · · = Fd = F . Then, for all s � 0 and F̄ = 1 − F ,

m+(s) � 1 − d inf
r∈[0,s/d]

∫ s−(d−1)r
r

F̄ (x) dx

s − dr
. (6.17)

Proof. See Theorem 4.2 in Embrechts and Puccetti (2005).

Remark 6.21. The value of m+(s) can be closely approximated by solving two
linear programmes (see Embrechts and Puccetti 2005; Embrechts, Höing and Juri
2003).

Examples. In a first example we consider the special, though important, case when
F1 = F2 = Φ, the standard normal df. The second example considers higher-
dimensional portfolios with Pareto margins.

Example 6.22 (worst VaR for a portfolio with normal margins). For i = 1, 2
let Fi = Φ. In Figure 6.1 we have plotted the worst VaRα(L1 + L2) calcu-
lated using (6.16) as a function of α together with the curve corresponding to
the comonotonic case calculated using Proposition 6.15. The fact that the for-
mer lies above the latter implies the existence of portfolios with normal mar-
gins for which VaR is not subadditive. For example, for α = 0.95, the upper
bound is 3.92, whereas VaRα(Li) = 1.645, so, for the worst VaR portfolio,
VaR0.95(L1 + L2) = 3.92 > 3.29 = VaR0.95(L1) + VaR0.95(L2). The worst-
case copula is shown in Figure 6.2 (see Embrechts, Höing and Puccetti (2005) for
further details).

As explained in Theorem 6.20, the case d � 3 is more subtle, as the standard
bound (6.15) fails to be sharp. The strictly lower bound (6.17) in the case of identical
distributions can be computed easily. In Section 10.1.4 we will show that operational
risk losses can be modelled reasonably well by heavy-tailed Pareto distributions with
infinite variance. In the case of operational risk one faces the calculation of VaRs
at the 99% (or even higher) level across numerous (up to 56) classes of risk. The
dependence between the loss rvs for these classes is mostly unknown, so we face
the above unconstrained optimization problem for VaRα(L1 + · · · +Ld). The next
example contains some calculations for Pareto portfolios.
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Figure 6.1. The worst-case VaRα (solid line) plotted against α for two standard normal
risks; the case of comonotonic risks (dotted line) is shown as a comparison.
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Figure 6.2. Contour and perspective plots of the density function of the distribution of
(L1, L2) leading to the worst-case VaR for L1 + L2 at the α = 0.95 level when the Li are
standard normal.

Example 6.23 (VaR bounds for Pareto portfolios). Suppose that Li ∼ Pa(1.5, 1)
for i = 1, . . . , d so that E(Li) = 2 and VaR(Li) = ∞. In the unconstrained case,
Table 6.1 contains the bounds obtained from Theorem 6.20 (which, for reasons we
will not discuss, are known as dual bounds). The portfolio sizes 8 and 56 have been
chosen with the operational risk problem in mind, as explained above, whereas 100
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Table 6.1. Bounds for VaRα(
∑d

i=1 Li) for portfolios of Pa(1.5, 1)-distributed risks are
given in columns marked “dual”; columns marked “com” give values in the comonotonic
case. Numbers are expressed in thousands.

VaRα(
∑8

i=1 Li) VaRα(
∑56

i=1 Li) VaRα(
∑100

i=1 Li) VaRα(
∑1000

i=1 Li)︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
α com dual com dual com dual com dual

0.90 0.03 0.08 0.20 0.67 0.36 1.23 3.64 12.73
0.95 0.05 0.14 0.36 1.10 0.64 2.00 6.37 20.77
0.99 0.16 0.41 1.15 3.32 2.05 6.05 20.54 62.66
0.999 0.79 1.93 5.54 15.63 9.90 28.43 99.00 294.47

and 1000 could represent the sizes of typical credit portfolios. The assumption of a
single common Pareto distribution for all individual losses is of course a simplifi-
cation for computational purposes.

Notes and Comments

There is a large literature on Fréchet problems. Our discussion is mainly based
on Embrechts, Höing and Juri (2003), Embrechts, Höing and Puccetti (2005)
and Embrechts and Puccetti (2005). These papers also contain the most important
references to the existing literature. Historically, the question of bounding the df of
a sum of rvs with given marginals goes back to Kolmogorov and was answered by
Makarov (1981) for d = 2. Frank, Nelsen and Schweizer (1987) restated Makarov’s
result using the notion of a copula. Independently, Rüschendorf (1982) gave a very
elegant proof of the same result using duality. Williamson and Downs (1990) intro-
duced the use of dependence information.

Fallacy 3 originally appeared in Embrechts, McNeil and Straumann (2002); it
ceases to be a fallacy if we replace VaR by expected shortfall or a spectral risk
measure. For spectral risk measures see Kusuoka (2001), Acerbi (2002) and Tasche
(2002).A closely related class of risk measures mainly used in insurance applications
is referred to as distortion or Wang measures (see Wang 1996). A nice discussion is
to be found in Denuit and Charpentier (2004).

Embrechts, Höing and Juri (2003) gave the most general theorem for general d
andΨ ; their main result on the sharpness of the bounds for d � 3 and no constraints,
however, contains an error: this was corrected in Embrechts and Puccetti (2005). For
the construction of the copula(s) leading to the worst VaR, see Embrechts, Höing
and Puccetti (2005). Numerous other authors (especially in analysis and actuarial
mathematics) have contributed to this area and we refer to the above papers for
references. Besides the comprehensive book by Müller and Stoyan (2002), several
other texts in actuarial mathematics contain interesting contributions on dependence
modelling (see, for example, Chapter 10 in Kaas et al. (2001) for a start). A rich set
of optimization problems within an actuarial context are to be found in De Vylder
(1996): see especially “Part II: Optimization Theory”, where the author “shows how
to obtain best upper and lower bounds on functionals T (F ) of the df F of a risk,
under moment or other integral constraints”. An excellent account is to be found
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in Denuit and Charpentier (2004). The definitive account from an actuarial point of
view is Denuit et al. (2005).

Rosenberg and Schuermann (2004) give some idea of the applicability of aggrega-
tion ideas used in this chapter. They construct the joint risk distribution for a typical,
large, internationally active bank using the method of copulas and aggregate risk
measures across the categories of market, credit and operational risk.

6.3 Capital Allocation

6.3.1 The Allocation Problem

Consider an investor who can invest in a fixed set of d different investment possibili-
ties with losses represented by the rvs L1, . . . , Ld . We have the following economic
interpretations depending on the area of application.

Performance measurement. Here the investor is a financial institution and the Li

represent the (negative of the) P&L of d different lines of business.

Loan pricing. Here the investor is a loan book manager responsible for a portfolio
of d loans.

General investment. Here we consider either an individual or institutional investor
and the standard interpretation that the Li are (negative) P&Ls corresponding to
a set of investments in various assets.

The performance of the different business units or investments is usually mea-
sured using some sort of RORAC (return on risk-adjusted capital) approach, i.e. by
considering a ratio of the form

expected profit/risk capital, (6.18)

where we leave the precise definition of the terms vague. In many applications risk
capital might correspond to economic capital: the capital derived by considering the
fluctuation of the loss around the expected loss (the unexpected loss), rather than
the absolute loss. Similarly, in a modern approach to loan pricing, the spread of a
loan contains a risk premium component, which is computed by applying a target
interest rate to the risk capital needed to sustain an individual loan (see Section 9.3.4
for details).

Obviously the general approach embodied in (6.18) raises the question of what the
appropriate risk capital for an individual investment opportunity might be. Thus the
question of performance of the investment is intimately connected with the subject
of risk measurement as addressed in Sections 2.2 and 6.1. A two-step procedure is
used in practice.

(1) Compute the overall risk capital  (L), where L = ∑d
i=1 Li and  is a par-

ticular risk measure such as VaR or ES; note that at this stage we are not
stipulating that  must be coherent.
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(2) Allocate the capital  (L) to the individual investment possibilities according
to some mathematical capital allocation principle such that, if ACi denotes
the capital allocated to the investment with potential loss Li , the sum of the
allocated amounts corresponds to the overall risk capital  (L).

In this section we are interested in step (2) of the procedure; loosely speaking we
require a mapping that takes as input the individual losses L1, . . . , Ld and the risk
measure  and yields as output the vector (AC1, . . . ,ACd) such that

 (L) =
d∑
i=1

ACi , (6.19)

and such a mapping will be called a capital allocation principle. The relation (6.19)
is sometimes called the full allocation property since all of the overall risk capital
 (L) (not more, not less) is allocated to the investment possibilities; we consider this
property to be an integral part of the definition of an allocation principle. Of course,
there are other properties of a capital allocation principle that are desirable from an
economic viewpoint; we first make some formal definitions and give examples of
allocation properties before discussing further properties.

The formal set-up. Let L1, . . . , Ld be rvs on a common probability space
(Ω,F , P ) representing losses (or profits) for d investment possibilities. For our
discussion it will be useful to consider portfolios where the weights of the individual
investment opportunities are varied with respect to our basic portfolio (L1, . . . , Ld),
which is regarded as a fixed random vector. That is, we consider an open set
Λ ⊂ R

d \{0} of portfolio weights and define for λ ∈ Λ the lossL(λ) = ∑d
i=1 λiLi ;

the loss of our actual portfolio is of courseL(1). Let  be some risk measure defined
on a set M which contains the rvs {L(λ) : λ ∈ Λ}. We then define the associated
risk-measure function r : Λ → R by r (λ) =  (L(λ)). Thus r (λ) is the required
risk capital for a position λ in the set of investment possibilities.

Definition 6.24. Let r be a risk-measure function on some set Λ ⊂ R
d \ {0}

such that 1 ∈ Λ. A mapping πr : Λ → R
d is called a per-unit capital allocation

principle associated with r if, for all λ ∈ Λ, we have

d∑
i=1

λiπ
r 
i (λ) = r (λ). (6.20)

The interpretation of this definition is thatπ
r 
i gives the amount of capital allocated

to one unit of Li , when the overall position has loss L(λ). The amount of capital
allocated to the position λiLi is thus λiπ

r 
i and the equality (6.20) simply means that

the overall risk capital r (λ) is fully allocated to the individual portfolio positions.

6.3.2 The Euler Principle and Examples

From now on we restrict our attention to risk measures that are positive homogeneous
(satisfying Axiom 6.3 in Section 6.1.1), such as a coherent risk measure, but also
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the standard deviation risk measure or VaR. Obviously the associated risk-measure
function must satisfy r (tλ) = tr (λ) for all t > 0, λ ∈ Λ, so r : Λ → R is
a positive-homogeneous function of a vector argument. Recall Euler’s well-known
rule that states that if r is positive homogeneous and differentiable at λ ∈ Λ, we
have

r (λ) =
d∑
i=1

λi
∂r 

∂λi
(λ). (6.21)

Comparison of (6.21) with (6.20) suggests the following definition.

Definition 6.25 (Euler capital allocation principle). If r is a positive-homo-
geneous risk-measure function, which is differentiable on the setΛ, then the per-unit
Euler capital allocation principle associated with r is the mapping

πr : Λ → R
d , π

r 
i (λ) = ∂r 

∂λi
(λ). (6.22)

The Euler principle is sometimes called allocation by the gradient, since
πr (λ) = ∇r (λ). Obviously the Euler principle gives a full allocation of the risk
capital. We now look at a number of concrete examples of Euler allocations corres-
ponding to different choices of risk measure  .

Standard deviation and the covariance principle. Consider the risk measure func-
tion rSD(λ) = √

var(L(λ)) and write Σ for the covariance matrix of (L1, . . . , Ld).
Then we have rSD(λ) = (λ′Σλ)1/2, from which it follows that

π
rSD
i (λ) = ∂rSD

∂λi
(λ) = (Σλ)i

rSD(λ)
=
∑d

j=1 cov(Li, Lj )λj

rSD(λ)
= cov(Li, L(λ))√

var(L(λ))
.

In particular, for the original portfolio of investment possibilities corresponding to
λ = 1, the capital allocated to the ith investment possibility is

ACi = π
rSD
i (1) = cov(Li, L)√

var(L)
, L := L(1). (6.23)

This formula is known as the covariance principle.

VaR and VaR contributions. Suppose that rαVaR(λ) = qα(L(λ)). In this case it can
be shown that, subject to technical conditions,

π
rαVaR
i (λ) = ∂rαVaR

∂λi
(λ) = E(Li | L(λ) = qα(L(λ))), 1 � i � d. (6.24)

The derivation of (6.24) is more involved than that of the covariance principle and
we give a justification following Tasche (2000) under the simplifying assumption
that the loss distribution of (L1, . . . , Ld) has a joint density. In the following lemma
we denote by φ(u, l2, . . . , ld ) = fL1|L2,...,Ld

(u | l2, . . . , ld ) the conditional density
of L1.

Lemma 6.26. Assume that d � 2 and that (L1, . . . , Ld) has a joint density. Then,
for any vector (λ1, . . . , λd) of portfolio weights such that λ1 �= 0, we find that



6.3. Capital Allocation 259

(i) L(λ) has density

fL(λ)(t) = |λ1|−1E

(
φ

(
λ−1

1

(
t −

d∑
j=2

λjLj

)
, L2, . . . , Ld

))
;

and

(ii) for i = 2, . . . , d,

E(Li | L(λ) = t) = E(Liφ(λ
−1
1 (t −∑d

j=2 λjLj ), L2, . . . , Ld))

E(φ(λ−1
1 (t −∑d

j=2 λjLj ), L2, . . . , Ld))
, a.s.

Proof. For (i) consider the case λ1 > 0 and observe that we can write

P(L(λ) � t) = E(P (L(λ) � t | L2, . . . , Ld))

= E

(
P

(
L1 � λ−1

1

(
t −

d∑
j=2

λjLj

) ∣∣∣∣ L2, . . . , Ld

))

= E

(∫ λ−1
1 (t−∑d

j=2 λjLj )

−∞
φ(u,L2, . . . , Ld) du

)
.

The assertion follows on differentiating under the expectation.
For (ii) observe that we can write

E(Li | L(λ) = t) = lim
δ→0

δ−1E(LiI{t<L(λ)�t+δ})
δ−1P(t < L(λ) � t + δ)

= (∂/∂t)E(LiI{L(λ)�t})
fL(λ)(t)

,

provided fL(λ)(t) �= 0. The result follows on applying a similar conditioning tech-
nique to the ones used in the proof of (i) to the numerator.

We now explain why (6.24) follows from Lemma 6.26. Since the rv L(λ) has a
density, we have P(L(λ) � qα(L(λ))) = α. Writing k(t) = λ−1

1 (t −∑d
j=2λjLj )

we have

α = P(L(λ) � rαVaR(λ)) = E

(∫ k(rαVaR(λ))

−∞
φ(u,L2, . . . , Ld) du

)
. (6.25)

We take derivatives of (6.25) with respect to λi for i = 2, . . . , d to get

0 = λ−1
1 E

((
∂rαVaR(λ)

∂λi
− Li

)
φ(k(rαVaR(λ)), L2, . . . , Ld)

)
.

Solving this expression for ∂rαVaR(λ)/∂λi and using part (ii) of Lemma 6.26
yields (6.24), as desired. Analogous calculations can be done for i = 1 and λ1 < 0.
Tasche (2000) makes the derivations mathematically rigorous by using the implicit
function theorem and giving all necessary conditions. In summary, the capital allo-
cation takes the form ACi = E(Li | L = VaRα(L)), L := L(1).
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Expected shortfall and shortfall contributions. Now consider using the risk-
measure function rαES(λ) = E(L | L � qα(L(λ))) corresponding to expected
shortfall. It follows from Definition 2.15 that we can write

rαES(λ) = 1

1 − α

∫ 1

α

ruVaR(λ) du,

where we make use of the notation rαVaR(λ) = qα(L(λ)) as above. We apply the
Euler principle by again computing the derivative with respect to λi . Assuming the
differentiability of ruVaR(λ), we have

∂rαES

∂λi
(λ) = 1

1 − α

∫ 1

α

∂ruVaR

∂λi
(λ) du = 1

1 − α

∫ 1

α

E(Li | L(λ) = qu(L(λ))) du.

Now we assume thatfL(λ) is strictly positive so that the df ofL(λ)has a differentiable
inverse and we can make the change of variables v = qu(L(λ)) = F←

L(λ)(u). Since
dv/du = (fL(λ)(v))

−1, we get

∂rαES

∂λi
(λ) = 1

1 − α

∫ ∞

qα(L(λ))

E(Li | L(λ) = v)fL(λ)(v) dv

= 1

1 − α
E(Li;L(λ) � qα(L(λ))).

This gives a capital allocation of the form

ACi = E(Li | L � VaRα(L)), L := L(1), (6.26)

where ACi is known as the expected shortfall contribution of investment possibility
(or line of business) i. This is a popular allocation principle in practice, and is
generally considered to be preferable to the covariance principle and the principle
based on VaR contributions. See Notes and Comments for literature on its use in
practice in the context of credit portfolios.

Euler allocation for elliptical loss distributions. In the following corollary to The-
orem 6.8 we consider the special case of an elliptical loss distribution for the vector
of investment opportunities (L1, . . . , Ld). We consider this distribution to be cen-
tred at zero so that it really represents fluctuations of the loss around the expected
loss. We find that the relative amounts of capital allocated to each investment oppor-
tunity are always the same, regardless of whether we base an Euler allocation on the
standard deviation, VaR or expected shortfall risk measures, or indeed any positive-
homogeneous risk measure. Thus allocation is very simple in this case: depending
on our choice of risk measure we calculate the total risk capital to be allocated and
then use a simple partitioning formula given in (6.27) below.

Corollary 6.27. Assume that r : Λ → R is the risk-measure function of a positive-
homogeneous risk measure  depending only on the distribution of the loss. Let
L ∼ Ed(0,Σ,ψ). Then, under an Euler allocation, the relative capital allocation is
given by

ACi

ACj

= π
r 
i (1)

π
r 
j (1)

=
∑d

k=1 Σik∑d
k=1 Σjk

, 1 � i, j � d. (6.27)
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Proof. From the proof of Theorem 6.8 we deduce that, by the positive homogeneity
of the risk measure, we have

r (λ) =  (L(λ)) =  

( d∑
i=1

λiLi

)
= √

λ′Σλ (Y1),

where Y1 is the first component of a spherical random vector with characteristic
generator ψ . For the allocation we get

πr (λ) = ∇r (λ) = Σλ√
λ′Σλ

 (Y1),

from which the result follows.

6.3.3 Economic Justification of the Euler Principle

Signals for performance measurement. A first economic justification for capital
allocation based on the Euler principle was given by Tasche (1999), who addressed
the issue of whether it gave “the right signals for investment decisions”. He formal-
ized the idea as follows.

Definition 6.28. Let r be a risk-measure function which is differentiable on Λ

and πr an associated per-unit capital allocation principle. Then πr is suitable for
performance measurement if, for all λ ∈ Λ, we have

∂

∂λi

(−E(L(λ))

r (λ)

)⎧⎪⎪⎪⎨⎪⎪⎪⎩
> 0, if

−E(Li)

π
r 
i (λ)

>
−E(L(λ))

r (λ)
,

< 0, if
−E(Li)

π
r 
i (λ)

<
−E(L(λ))

r (λ)
.

In words, this says that if the performance of investment opportunity i as measured
by its per-unit return divided by per-unit risk capital π

r 
i is better (respectively,

worse) than the performance of the overall portfolio, then increasing (respectively,
decreasing) the weightλi of that investment opportunity by a small amount improves
the overall performance of the portfolio. Tasche then proves the following result,
for the proof of which we refer to the original paper.

Proposition 6.29. Under the assumptions of Definition 6.28, the only per-unit capi-
tal allocation principle suitable for performance measurement is the Euler principle.

Fairness considerations. Another justification for the Euler principle was given
by Denault (2001). His approach uses cooperative game theory and is based on
the notion of “fairness”. Assume that the risk-measure function r derives from a
coherent risk measure  . In that case, since  (L) �

∑d
i=1  (Li), the overall risk

capital required for the portfolio is smaller than the sum of the risk capital required
for the business units on a stand-alone basis. Fairness now means that each business
unit profits from this diversification benefit, in the sense that ACi �  (Li). In the
next definition we slightly extend this intuitive notion of fairness.
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Definition 6.30. Given a coherent risk measure  with associated risk-measure
function r , a per-unit capital allocation principle πr is said to be fair if, for all
λ ∈ Λ and all γ ∈ [0, 1]d , the following inequality holds:

d∑
i=1

γiλiπ
r 
i (λ) � r (γ1λ1, . . . , γdλd). (6.28)

Note that, by the definition of a per-unit capital allocation principle in (6.20), we
have equality in (6.28) if we take γ = 1. The economic interpretation of (6.28)
is straightforward for a vector γ ∈ {0, 1}d satisfying γi = I{i∈N}, where N ⊂
{1, . . . , d} is a subset of the investment opportunities. In that case the left-hand side
of (6.28) gives the combined capital that is allocated to the investment opportunities
in the set N given that the overall portfolio is represented by the vector λ with
loss L(λ) = ∑d

i=1 λiLi . The right-hand side is the combined capital allocated to
the opportunities in the set N on a stand-alone basis, i.e. in a portfolio with no
investments in the opportunitiesNc := {1, . . . , d}\N and loss given by

∑
i∈N λiLi .

Since  is coherent and, in particular, subadditive, we have

 

( d∑
i=1

λiLi

)
�  

(∑
i∈N

λiLi

)
+  

( ∑
i∈Nc

λiLi

)
,

which essentially says that the investments in N enjoy a diversification benefit by
being part of the overall portfolio represented by λ. Fairness suggests that they
should profit from this benefit by being allocated a smaller amount of capital than
they would have on a stand-alone basis; this is exactly the content of (6.28).

The interpretation of (6.28) for general γ ∈ (0, 1]d is more involved, but per-
haps easiest if we use the interpretation that the Li represent losses for different
lines of business. We introduce the portfolio λ̃ = (γ1λ1, . . . , γdλd)

′ and note that
it represents a scaling back of activity across the firm with respect to the original
portfolio λ. We can rewrite (6.28) as

d∑
i=1

λ̃iπ
r 
i (λ) �

d∑
i=1

λ̃iπ
r 
i (λ̃).

The left-hand side represents the overall capital allocated to the scaled-back portfolio
considered as part of the original portfolio. The right-hand side represents the overall
capital allocated to the scaled-back portfolio considered as a stand-alone entity. If
the inequality were the other way round, there would be a systematic incentive for
business units to scale back their activities.

Translating a game-theoretical result of Aubin (1979) into the context of capital
allocation with a coherent risk measure, Denault (2001) shows that for a differen-
tiable risk-measure function r that is derived from a coherent risk measure  , the
only fair allocation principle is the Euler principle. Obviously, this gives additional
support for using the Euler principle if one works in the realm of coherent risk
measures.
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From a practical point of view, the use of expected shortfall and expected shortfall
contributions might be a reasonable choice in many application areas, particularly
for credit risk management and loan pricing (see Notes and Comments, where this
issue is discussed further).

Notes and Comments

A broad, non-technical discussion of capital allocation and performance measure-
ment is to be found in Matten (2000). The term “Euler principle” seems to have
been first used in Patrik, Bernegger and Rüegg (1999). The result (6.24) is found in
Gourieroux and Scaillet (2000) and Tasche (2000); the former paper assumes that the
losses have a joint density and the latter gives a slightly more general result as well
as technical details concerning the differentiability of the VaR and ES risk measures
with respect to the portfolio composition. Differentiability of the coherent premium
principle of Section 6.1.3 is discussed in Fischer (2003). The derivation of allocation
principles from properties of risk measures is also to be found in Goovaerts, Dhaene
and Kaas (2003) and Goovaerts, van den Boor and Laeven (2005).

For the arguments concerning suitability of risk measures for performance mea-
surement, see Tasche (1999). The game-theoretic approach to allocation is found
in Denault (2001); see also Kalkbrener (2005) for similar arguments. For an early
contribution on game theory applied to cost allocation in an insurance context, see
Lemaire (1984).

Applications to credit risk are found in Kalkbrener, Lotter and Overbeck (2004)
and Merino and Nyfeler (2003); these make strong arguments in favour of the use of
expected shortfall contributions. However, Pfeifer (2004) contains some compelling
examples to show that expected shortfall as a risk measure and expected shortfall
contributions as an allocation method may have some serious deficiencies when
used in non-life insurance. The existence of rare, extreme events may lead to absurd
capital allocations when based on expected shortfall. The reader is therefore urged
to reflect carefully before settling on a specific risk measure and allocation principle.
It may also be questionable to base a “coherent” risk-sensitive capital allocation on
formal criteria only; for further details on this see Koryciorz (2004).
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Extreme Value Theory

Much of this chapter is based on the presentation of extreme value theory (EVT)
in Embrechts, Klüppelberg and Mikosch (1997) (henceforth EKM) and whenever
theoretical detail is missing the reader should consult that text. Our intention here
is to provide more information about the statistical methods of EVT than is given
in EKM, while briefly summarizing the theoretical ideas on which the statistical
methods are based.

Broadly speaking, there are two main kinds of model for extreme values. The
most traditional models are the block maxima models described in Section 7.1: these
are models for the largest observations collected from large samples of identically
distributed observations.

A more modern and powerful group of models are those for threshold exceed-
ances, described in Section 7.2. These are models for all large observations that
exceed some high level, and are generally considered to be the most useful for
practical applications, due to their more efficient use of the (often limited) data on
extreme outcomes.

Section 7.3 is a shorter, theoretical section providing more information about
the tails of some of the distributions and models that are prominent in this book,
including the tails of normal variance mixture models and strictly stationary GARCH
models.

Sections 7.5 and 7.6 provide a concise summary of the more important ideas in
multivariate extreme value theory; they deal, respectively, with multivariate maxima
and multivariate threshold exceedances. The novelty of these sections is that the
ideas are presented as far as possible using the copula methodology of Chapter 5.
The style is similar to Sections 7.1 and 7.2, with the main results being mostly stated
without proof and an emphasis being given to examples relevant for applications.

7.1 Maxima

To begin with we consider a sequence of iid rvs (Xi)i∈N representing financial losses.
These may have a variety of interpretations, such as operational losses, insurance
losses and losses on a credit portfolio over fixed time intervals. Later we relax the
assumption of independence and consider that the rvs form a strictly stationary time
series of dependent losses; they might be (negative) returns on an investment in a
single stock, an index, or a portfolio of investments.
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7.1.1 Generalized Extreme Value Distribution

Convergence of sums. The role of the generalized extreme value (GEV) distri-
bution in the theory of extremes is analogous to that of the normal distribution
(and more generally the stable laws) in the central limit theory for sums of rvs.
Assuming that the underlying rvs X1, X2, . . . are iid with a finite variance and writ-
ing Sn = X1 + · · · + Xn for the sum of the first n rvs, the standard version of the
central limit theorem (CLT) says that appropriately normalized sums (Sn − an)/bn

converge in distribution to the standard normal distribution as n goes to infinity. The
appropriate normalization uses sequences of normalizing constants (an) and (bn)

defined by an = nE(X1) and bn = √
var(X1). In mathematical notation we have

lim
n→∞P

(
Sn − an

bn
� x

)
= Φ(x), x ∈ R.

Convergence of maxima. Classical EVT is concerned with limiting distributions
for normalized maximaMn = max(X1, . . . , Xn) of iid rvs; we refer to these as block
maxima. The only possible non-degenerate limiting distributions for normalized
block maxima are in the GEV family.

Definition 7.1 (the generalized extreme value (GEV) distribution). The df of the
(standard) GEV distribution is given by

Hξ(x) =
{

exp(−(1 + ξx)−1/ξ ), ξ �= 0,

exp(−e−x), ξ = 0,

where 1 + ξx > 0. A three-parameter family is obtained by defining Hξ,µ,σ (x) :=
Hξ((x − µ)/σ) for a location parameter µ ∈ R and a scale parameter σ > 0.

The parameter ξ is known as the shape parameter of the GEV distribution and
Hξ defines a type of distribution, meaning a family of distributions specified up to
location and scaling (see Section A.1.1 for a formal definition). The extreme value
distribution in Definition 7.1 is generalized in the sense that the parametric form
subsumes three types of distribution which are known by other names according to
the value of ξ : when ξ > 0 the distribution is a Fréchet distribution; when ξ = 0
it is a Gumbel distribution; when ξ < 0 it is a Weibull distribution. We also note
that for fixed x we have limξ→0 Hξ(x) = H0(x) (from either side) so that the
parametrization in Definition 7.1 is continuous in ξ , which facilitates the use of this
distribution in statistical modelling.

The df and density of the GEV distribution are shown in Figure 7.1 for the three
cases ξ = 0.5, ξ = 0 and ξ = −0.5, corresponding to Fréchet, Gumbel and Weibull
types, respectively. Observe that the Weibull distribution is a short-tailed distribution
with a so-called finite right endpoint. The right endpoint of a distribution will be
denoted by xF = sup{x ∈ R : F(x) < 1}. The Gumbel and Fréchet distributions
have infinite right endpoints, but the decay of the tail of the Fréchet distribution is
much slower than that of the Gumbel distribution.

Suppose that block maximaMn of iid rvs converge in distribution under an appro-
priate normalization. Recalling that P(Mn � x) = Fn(x), we observe that this
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Figure 7.1. (a) The df of a standard GEV distribution in three cases: the solid line cor-
responds to ξ = 0 (Gumbel); the dotted line is ξ = 0.5 (Fréchet); and the dashed line is
ξ = −0.5 (Weibull). (b) Corresponding densities. In all cases µ = 0 and σ = 1.

convergence means that there exist sequences of real constants (dn) and (cn), where
cn > 0 for all n, such that

lim
n→∞P((Mn − dn)/cn � x) = lim

n→∞Fn(cnx + dn) = H(x) (7.1)

for some non-degenerate df H(x). The role of the GEV distribution in the study of
maxima is formalized by the following definition and theorem.

Definition 7.2 (maximum domain of attraction). If (7.1) holds for some non-
degenerate df H , then F is said to be in the maximum domain of attraction of H ,
written F ∈ MDA(H).

Theorem 7.3 (Fisher–Tippett, Gnedenko). If F ∈ MDA(H) for some non-
degenerate df H then H must be a distribution of type Hξ , i.e. a GEV distribution.

Remarks 7.4.

(1) If convergence of normalized maxima takes place, the type of the limiting dis-
tribution (as specified by ξ ) is uniquely determined, although the location and
scaling of the limit law (µ and σ ) depend on the exact normalizing sequences
chosen; this is guaranteed by the so-called “convergence to types theorem”
(EKM, p. 554). It is always possible to choose these sequences such that the
limit appears in the standard form Hξ .

(2) By non-degenerate df we mean a limiting distribution which is not concen-
trated on a single point.

Examples. We calculate two examples to show how the GEV limit emerges for
two well-known underlying distributions and appropriately chosen normalizing
sequences. To discover how normalizing sequences may be constructed in general
we refer to Section 3.3 of EKM.
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Example 7.5 (exponential distribution). If the underlying distribution is an expo-
nential distribution with df F(x) = 1 − exp(−βx) for β > 0 and x � 0, then
by choosing normalizing sequences cn = 1/β and dn = ln n/β we can directly
calculate the limiting distribution of maxima using (7.1). We get

Fn(cnx + dn) =
(

1 − 1

n
exp(−x)

)n
, x � − ln n,

lim
n→∞Fn(cnx + dn) = exp(−e−x), x ∈ R,

from which we conclude that F ∈ MDA(H0).

Example 7.6 (Pareto distribution). If the underlying distribution is a Pareto dis-
tribution (Pa(α, κ)) with df F(x) = 1 − (κ/(κ + x))α for α > 0, κ > 0 and x � 0,
we can take normalizing sequences cn = κn1/α/α and dn = κn1/α −κ . Using (7.1)
we get

Fn(cnx + dn) =
(

1 − 1

n

(
1 + x

α

)−α)n
, 1 + x

α
� n−1/α,

lim
n→∞Fn(cnx + dn) = exp

(
−
(

1 + x

α

)−α)
, 1 + x

α
> 0,

from which we conclude that F ∈ MDA(H1/α).

Convergence of minima. The limiting theory for convergence of maxima encom-
passes the limiting behaviour of minima using the identity

min(X1, . . . , Xn) = − max(−X1, . . . ,−Xn). (7.2)

It is not difficult to see that normalized minima of iid samples with df F will con-
vergence in distribution if the df F̃ (x) = 1 − F(−x), which is the df of the rvs
−X1, . . . ,−Xn, is in the maximum domain of attraction of an extreme value dis-
tribution. Writing M∗

n = max(−X1, . . . ,−Xn) and assuming that F̃ ∈ MDA(Hξ )

we have

lim
n→∞P

(
M∗

n − dn

cn
� x

)
= Hξ(x),

from which it follows easily, using (7.2), that

lim
n→∞P

(
min(X1, . . . , Xn) + dn

cn
� x

)
= 1 − Hξ(−x).

Thus appropriate limits for minima are distributions of type 1 − Hξ(−x). For a
symmetric distribution F we have F̃ (x) = F(x), so that if Hξ is the limiting type of
distribution for maxima for a particular value of ξ , then 1 −Hξ(−x) is the limiting
type of distribution for minima.

7.1.2 Maximum Domains of Attraction

For most applications it is sufficient to note that essentially all the common contin-
uous distributions of statistics or actuarial science are in MDA(Hξ ) for some value
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of ξ . In this section we consider the issue of which underlying distributions lead to
which limits for maxima.

The Fréchet case. The distributions that lead to the Fréchet limit Hξ(x) for ξ > 0
have a particularly elegant characterization involving slowly varying or regularly
varying functions.

Definition 7.7 (slowly varying and regularly varying functions).

(i) A positive, Lebesgue-measurable functionL on (0,∞) is slowly varying at ∞
if

lim
x→∞

L(tx)

L(x)
= 1, t > 0.

(ii) A positive, Lebesgue-measurable function h on (0,∞) is regularly varying
at ∞ with index ρ ∈ R if

lim
x→∞

h(tx)

h(x)
= tρ, t > 0.

Slowly varying functions are functions which, in comparison with power functions,
change relatively slowly for large x, an example being the logarithm L(x) = ln(x).
Regularly varying functions are functions which can be represented by power func-
tions multiplied by slowly varying functions, i.e. h(x) = xρL(x).

Theorem 7.8 (Fréchet MDA, Gnedenko). For ξ > 0,

F ∈ MDA(Hξ ) ⇐⇒ F̄ (x) = x−1/ξL(x) (7.3)

for some function L slowly varying at ∞.

This means that distributions giving rise to the Fréchet case are distributions with
tails that are regularly varying functions with a negative index of variation. Their
tails decay essentially like a power function and the rate of decay α = 1/ξ is often
referred to as the tail index of the distribution.

These distributions are the most studied distributions in EVT and they are of par-
ticular interest in financial applications because they are heavy-tailed distributions
with infinite higher moments. If X is a non-negative rv whose df F is an element
of MDA(Hξ ) for ξ > 0, then it may be shown that E(Xk) = ∞ for k > 1/ξ
(EKM, p. 568). If, for some small ε > 0, the distribution is in MDA(H(1/2)+ε), it is
an infinite-variance distribution, and if the distribution is in MDA(H(1/4)+ε), it is a
distribution with infinite fourth moment.

Example 7.9 (Pareto distribution). In Example 7.6 we verified by direct calcula-
tion that normalized maxima of iid Pareto variates converge to a Fréchet distribution.
Observe that the tail of the Pareto df in (A.13) may be written F̄ (x) = x−αL(x),
where it may be easily checked that L(x) = (κ−1 + x−1)−α is a slowly varying
function; indeed, as x → ∞, L(x) converges to the constant κα . Thus we verify
that the Pareto df has the form (7.3).
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Further examples of distributions giving rise to the Fréchet limit for maxima
include the Fréchet distribution itself, inverse gamma, Student t , loggamma, F
and Burr distributions. We will provide further demonstrations for some of these
distributions in Section 7.3.1.

The Gumbel case. The characterization of distributions in this class is more com-
plicated than in the Fréchet class. We have seen in Example 7.5 that the exponential
distribution is in the Gumbel class and, more generally, it could be said that the
distributions in this class have tails that have an essentially exponential decay. A
positive-valued rv with a df in MDA(H0) has finite moments of any positive order,
i.e. E(Xk) < ∞ for every k > 0 (EKM, p. 148).

However, there is a great deal of variety in the tails of distributions in this class, so,
for example, both the normal and the lognormal distributions belong to the Gumbel
class (EKM, pp. 145–147). The normal distribution, as discussed in Section 3.1.4, is
thin tailed, but the lognormal distribution has much heavier tails and we would need
to collect a lot of data from the lognormal distribution before we could distinguish
its tail behaviour from that of a distribution in the Fréchet class.

In financial modelling it is often erroneously assumed that the only interesting
models for financial returns are the power-tailed distributions of the Fréchet class.
The Gumbel class is also interesting because it contains many distributions with
much heavier tails than the normal, even if these are not regularly varying power
tails. Examples are hyperbolic and generalized hyperbolic distributions (with the
exception of the special boundary case that is Student t).

Other distributions in MDA(H0) include the gamma, chi-squared, standard
Weibull (to be distinguished from the Weibull special case of the GEV distribu-
tion) and Benktander type I and II distributions (which are popular actuarial loss
distributions) and the Gumbel itself. We provide demonstrations for some of these
examples in Section 7.3.2.

The Weibull case. This is perhaps the least important case for financial modelling,
at least in the area of market risk, since the distributions in this class all have finite
right endpoints.Although all potential financial and insurance losses are, in practice,
bounded, we will still tend to favour models that have infinite support for loss
modelling. An exception may be in the area of credit risk modelling, where we will
see in Chapter 8 that probability distributions on the unit interval [0, 1] are very
useful. A characterization of the Weibull class is as follows.

Theorem 7.10 (Weibull MDA, Gnedenko). For ξ < 0,

F ∈ MDA(H1/ξ ) ⇐⇒ xF < ∞ and F̄ (xF − x−1) = x1/ξL(x)

for some function L slowly varying at ∞.

It can be shown (EKM, p. 137) that a beta distribution with density fα,β as given
in (A.4) is in MDA(H−1/β). This includes the special case of the uniform distribution
for β = α = 1.
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7.1.3 Maxima of Strictly Stationary Time Series

The standard theory of the previous sections concerns maxima of iid sequences.
With financial time series in mind, we now look briefly at the theory for maxima
of strictly stationary time series and find that the same types of limiting distribution
apply.

In this section let (Xi)i∈Z denote a strictly stationary time series with sta-
tionary distribution F and let (X̃i)i∈N denote the associated iid process, i.e. a
strict white noise process with the same df F . Let Mn = max(X1, . . . , Xn) and
M̃n = max(X̃1, . . . , X̃n) denote block maxima of the original series and the iid
series, respectively.

For many processes (Xi)i∈N, it may be shown that there exists a real number θ
in (0, 1] such that

lim
n→∞P {(M̃n − dn)/cn � x} = H(x) (7.4)

for a non-degenerate limit H(x) if and only if

lim
n→∞P {(Mn − dn)/cn � x} = Hθ(x). (7.5)

For such processes this value θ is known as the extremal index of the process (not to be
confused with the tail index of distributions in the Fréchet class). A formal definition
is more technical (see Notes and Comments) but the basic ideas behind (7.4) and (7.5)
are easily explained.

For processes with an extremal index, normalized block maxima converge in
distribution provided that maxima of the associated iid process converge in distri-
bution: that is, provided the underlying distribution F is in MDA(Hξ ) for some ξ .
Moreover, since Hθ

ξ (x) can be easily verified to be a distribution of the same type as
Hξ(x), the limiting distribution of the normalized block maxima of the dependent
series is a GEV distribution with exactly the same ξ parameter as the limit for the
associated iid data; only the location and scaling of the distribution may change.

Writing u = cnx + dn we observe that, for large enough n, (7.4) and (7.5) imply
that

P(Mn � u) ≈ P θ(M̃n � u) = Fnθ (u), (7.6)

so that for u large the probability distribution of the maximum of n observations
from the time series with extremal index θ can be approximated by the distribution
of the maximum of nθ < n observations from the associated iid series. In a sense,
nθ can be thought of as counting the number of roughly independent clusters of
observations in n observations, and θ is often interpreted as the reciprocal of the
mean cluster size.

Not every strictly stationary process has an extremal index (see EKM, p. 418,
for a counterexample) but, for the kinds of time series processes that interest us in
financial modelling, an extremal index generally exists. Essentially, we only have
to distinguish between the cases when θ = 1 and the cases when θ < 1: for the
former there is no tendency to cluster at high levels and large sample maxima from
the time series behave exactly like maxima from similarly sized iid samples; for the
latter we must be aware of a tendency for extreme values to cluster.
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Table 7.1. Approximate values of the extremal index as a function of
the parameter α1 for the ARCH(1) process in (4.24).

α1 0.1 0.3 0.5 0.7 0.9
θ 0.999 0.939 0.835 0.721 0.612

• Strict white noise processes (iid rvs) have extremal index θ = 1.

• ARMA processes with Gaussian strict white noise innovations have θ = 1
(EKM, pp. 216–218). However, if the innovation distribution is in MDA(Hξ )

for ξ > 0, then θ < 1 (EKM, pp. 415, 416).

• ARCH and GARCH processes have θ < 1 (EKM, pp. 476–480).

The final fact is particularly relevant to our financial applications, since we saw
in Chapter 4 that ARCH and GARCH processes provide good models for many
financial return series.

Example 7.11 (the extremal index of the ARCH(1) process). In Table 7.1 we
reproduce some results from de Haan et al. (1989), who calculate approximate
values for the extremal index of the ARCH(1) process (see Definition 4.16) using a
Monte Carlo simulation approach. Clearly, the stronger the ARCH effect (that is, the
magnitude of the parameter α1), the greater the tendency of the process to cluster.
For a process with parameter 0.9 the extremal index value θ = 0.612 is interpreted
as suggesting that the average cluster size is 1/θ = 1.64.

7.1.4 The Block Maxima Method

Fitting the GEV distribution. Suppose we have data from an unknown underlying
distributionF , which we suppose lies in the domain of attraction of an extreme value
distribution Hξ for some ξ . If the data are realizations of iid variables, or variables
from a process with an extremal index such as GARCH, the implication of the theory
is that the true distribution of the n-block maximum Mn can be approximated for
large enough n by a three-parameter GEV distribution Hξ,µ,σ .

We make use of this idea by fitting the GEV distribution Hξ,µ,σ to data on the n-
block maximum. Obviously we need repeated observations of an n-block maximum
and we assume that the data can be divided intom blocks of size n. This makes most
sense when there are natural ways of blocking the data. The method has its origins in
hydrology, where, for example, daily measurements of water levels might be divided
into yearly blocks and the yearly maxima collected. Analogously, we will consider
financial applications where daily return data (recorded on trading days) are divided
into yearly (or semesterly or quarterly) blocks and the maximum daily falls within
these blocks are analysed.

We denote the block maximum of the j th block by Mnj , so our data are
Mn1, . . . ,Mnm. The GEV distribution can be fitted using various methods, including
maximum likelihood.An alternative is the method of probability-weighted moments
(see Notes and Comments). In implementing maximum likelihood it will be assumed
that the block size n is quite large so that, regardless of whether the underlying data
are dependent or not, the block maxima observations can be taken to be independent.



272 7. Extreme Value Theory

In this case, writing hξ,µ,σ for the density of the GEV distribution, the log-likelihood
is easily calculated to be

l(ξ, µ, σ ;Mn1, . . . ,Mnm)

=
m∑
i=1

ln hξ,µ,σ (Mni)

= −m ln σ −
(

1 + 1

ξ

) m∑
i=1

ln

(
1 + ξ

Mni − µ

σ

)
−

m∑
i=1

(
1 + ξ

Mni − µ

σ

)−1/ξ

,

which must be maximized subject to the parameter constraints that σ > 0 and
1 + ξ(Mni − µ)/σ > 0 for all i. While this represents an irregular likelihood
problem, due to the dependence of the parameter space on the values of the data,
the consistency and asymptotic efficiency of the resulting MLEs can be established
for the case when ξ > − 1

2 using results in Smith (1985).
In determining the number and size of the blocks (m and n, respectively), a trade-

off necessarily takes place: roughly speaking, a large value of n leads to a more
accurate approximation of the block maxima distribution by a GEV distribution and
a low bias in the parameter estimates; a large value of m gives more block maxima
data for the ML estimation and leads to a low variance in the parameter estimates.
Note also that, in the case of dependent data, somewhat larger block sizes than
are used in the iid case may be advisable; dependence generally has the effect that
convergence to the GEV distribution is slower, since the effective sample size is nθ ,
which is smaller than n.

Example 7.12 (block maxima analysis of S&P return data). Suppose we turn
the clock back and imagine it is the early evening of Friday 16 October 1987. An
unusually turbulent week in the equity markets has seen the S&P 500 index fall
by 9.21%. On that Friday alone the index is down 5.25% on the previous day, the
largest one-day fall since 1962.

We fit the GEV distribution to annual maximum daily percentage falls in value
for the S&P index. Using data going back to 1960, shown in Figure 7.2, gives us
28 observations of the annual maximum fall (including the latest observation from
the incomplete year 1987). The estimated parameter values are ξ̂ = 0.27, µ̂ = 2.04
and σ̂ = 0.72 with standard errors 0.21, 0.16 and 0.14, respectively. Thus the fitted
distribution is a heavy-tailed Fréchet distribution with an infinite fourth moment,
suggesting that the underlying distribution is heavy-tailed. Note that the standard
errors imply considerable uncertainty in our analysis, as might be expected with only
28 observations of maxima. In fact, in a likelihood ratio test of the null hypothesis
that a Gumbel model fits the data (H0 : ξ = 0), the null hypothesis cannot be
rejected.

To increase the number of blocks we also fit a GEV model to 56 semesterly
maxima and obtain the parameter estimates ξ̂ = 0.36, µ̂ = 1.65 and σ̂ = 0.54 with
standard errors 0.15, 0.09 and 0.08. This model has an even heavier tail, and the null
hypothesis that a Gumbel model is adequate is now rejected.
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Figure 7.2. (a) S&P percentage returns for the period 1960 to 16 October 1987. (b) Annual
maxima of daily falls in the index; superimposed is an estimate of the 10-year return level
with associated 95% confidence interval (dotted lines). (c) Semesterly maxima of daily falls
in the index; superimposed is an estimate of the 20-semester return level with associated 95%
confidence interval. See Examples 7.12 and 7.15 for full details.

Return levels and stress losses. The fitted GEV model can be used to analyse stress
losses and we focus here on two possibilities: in the first approach we define the
frequency of occurrence of the stress event and estimate its magnitude, this being
known as the return-level estimation problem; in the second approach we define the
size of the stress event and estimate the frequency of its occurrence, this being the
return-period problem.

Definition 7.13 (return level). Let H denote the df of the true distribution of
the n-block maximum. The k n-block return level is rn,k = q1−1/k(H), i.e. the
(1 − 1/k)-quantile of H .

The k n-block return level can be roughly interpreted as that level which is
exceeded in one out of every k n-blocks on average. For example, the 10-trading-
year return level r260,10 is that level which is exceeded in one out of every 10 years on
average. (In the notation we assume that every year has 260 trading days, although
this is only an average and there will be slight differences from year to year.) Using
our fitted model we would estimate a return level by

r̂n,k = H−1
ξ̂ ,µ̂,σ̂

(
1 − 1

k

)
= µ̂ + σ̂

ξ̂

((
− ln

(
1 − 1

k

))−ξ̂

− 1

)
. (7.7)

Definition 7.14 (return period). Let H denote the df of the true distribution of
the n-block maximum. The return period of the event {Mn > u} is given by
kn,u = 1/H̄ (u).

Observe that the return period kn,u is defined in such a way that the kn,u n-block
return level is u. In other words, in kn,u n-blocks we would expect to observe a
single block in which the level u was exceeded. If there was a strong tendency for
the extreme values to cluster, we might expect to see multiple exceedances of the
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level within that block. Assuming that H is the df of a GEV distribution and using
our fitted model, we would estimate the return period by k̂n,u = 1/H̄

ξ̂ ,µ̂,σ̂
(u).

Note that both r̂n,k and k̂n,u are simple functionals of the estimated parameters
of the GEV distribution. As well as calculating point estimates for these quantities
we should give confidence intervals that reflect the error in the parameter estimates
of the GEV distribution. A good method is to base such confidence intervals on the
likelihood ratio statistic, as described in Section A.3.5. To do this we reparametrize
the GEV distribution in terms of the quantity of interest. For example, in the case
of return level, let φ = H−1

ξ,µ,σ (1 − (1/k)) and parametrize the GEV distribution by
θ = (φ, ξ, σ )′ rather than θ = (ξ, µ, σ )′. The maximum likelihood estimate of φ
is the estimate (7.7) and a confidence interval can be constructed according to the
method in Section A.3.5 (see (A.22) in particular).

Example 7.15 (stress losses for S&P return data). We continue Example 7.12 by
estimating the 10-year return level and the 20-semester return level based on data up
to 16 October 1987, using (7.7) for the point estimate and the likelihood ratio method
as described above to get confidence intervals. The point estimator of the 10-year
return level is 4.3% with a 95% confidence interval of (3.4, 7.1); the point estimator
of the 20-semester return level is 4.5% with a 95% confidence interval of (3.5, 7.4).
Clearly, there is some uncertainty about the size of events of this frequency even
with 28 years or 56 semesters of data.

The day after the end of our dataset, 19 October 1987, was Black Monday. The
index fell by the unprecedented amount of 20.5% in one day. This event is well
outside our confidence interval for a 10-year loss. If we were to estimate a 50-year
return level (an event beyond our experience if we have 28 years of data), then our
point estimate would be 7.0 with a confidence interval of (4.7, 22.2), so the 1987
crash lies close to the upper boundary of our confidence interval for a much rarer
event. But the 28 maxima are really too few to get a reliable estimate for an event
as rare as the 50-year event.

If we turn the problem around and attempt to estimate the return period of a
20.5% loss, the point estimate is 2100 years (i.e. a 2 millennium event) but the 95%
confidence interval encompasses everything from 45 years to essentially never! The
analysis of semesterly maxima gives only moderately more informative results: the
point estimate is 1400 semesters; the confidence interval runs from 100 semesters
to 1.6 × 106 semesters. In summary, on 16 October 1987 we simply did not have
the data to say anything meaningful about an event of this magnitude. This illus-
trates the inherent difficulties of attempting to quantify events beyond our empirical
experience.

Notes and Comments

The main source for this chapter is Embrechts, Klüppelberg and Mikosch (1997)
(EKM). Further important texts on EVT include Gumbel (1958), Leadbetter, Lind-
gren and Rootzén (1983), Galambos (1987), Resnick (1987), Falk, Hüsler and Reiss
(1994), Reiss and Thomas (1997), Coles (2001) and Beirlant et al. (2004).
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The forms of the limit law for maxima were first studied by Fisher and Tippett
(1928). The subject was brought to full mathematical fruition in the fundamental
papers of Gnedenko (1941, 1943). The concept of the extremal index, which appears
in the theory of maxima of stationary series, has a long history. The first mathemat-
ically precise definition seems to have been given by Leadbetter (1983). See also
Leadbetter, Lindgren and Rootzén (1983) and Smith and Weissman (1994) for more
details. The theory required to calculate the extremal index of an ARCH(1) process
(as in Table 7.1) is found in de Haan et al. (1989) and also in EKM, pp. 473–480.
For the GARCH(1, 1) process consult Mikosch and Stărică (2000).

A further difficult task is the statistical estimation of the extremal index from time
series data under the assumption that these data do indeed come from a process with
an extremal index. Two general methods known as the blocks and runs methods are
described in EKM, Section 8.1.3; these methods go back to work of Hsing (1991)
and Smith and Weissman (1994). Although the estimators have been used in real-
world data analyses (see, for example, Davison and Smith 1990)), it remains true
that the extremal index is a very difficult parameter to estimate accurately.

The maximum likelihood fitting of the GEV distribution is described by Hosking
(1985) and Hosking, Wallis and Wood (1985). Consistency and asymptotic nor-
mality can be demonstrated for the case ξ > −0.5 using results in Smith (1985).
An alternative method known as probability-weighted moments (PWM) has been
proposed by Hosking, Wallis and Wood (1985) (see also EKM, pp. 321–323). The
analysis of block maxima in Examples 7.12 and 7.15 is based on McNeil (1998).
Analyses of financial data using the block maxima method may also be found in
Longin (1996), one of the earliest papers to apply EVT methodology to financial
data.

7.2 Threshold Exceedances

The block maxima method discussed in Section 7.1.4 has the major defect that it is
very wasteful of data; to perform our analyses we retain only the maximum losses in
large blocks. For this reason it has been largely superseded in practice by methods
based on threshold exceedances, where we use all data that are extreme in the sense
that they exceed a particular designated high level.

7.2.1 Generalized Pareto Distribution

The main distributional model for exceedances over thresholds is the generalized
Pareto distribution (GPD).

Definition 7.16 (GPD). The df of the GPD is given by

Gξ,β(x) =
{

1 − (1 + ξx/β)−1/ξ , ξ �= 0,

1 − exp(−x/β), ξ = 0,
(7.8)

where β > 0, and x � 0 when ξ � 0 and 0 � x � −β/ξ when ξ < 0. The
parameters ξ and β are referred to, respectively, as the shape and scale parameters.
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Figure 7.3. (a) Distribution function of GPD in three cases: the solid line corresponds to
ξ = 0 (exponential); the dotted line to ξ = 0.5 (a Pareto distribution); and the dashed line to
ξ = −0.5 (Pareto type II). The scale parameter β is equal to 1 in all cases. (b) Corresponding
densities.

Like the GEV distribution in Definition 7.1, the GPD is generalized in the sense
that it contains a number of special cases: when ξ > 0 the df Gξ,β is that of an
ordinary Pareto distribution with α = 1/ξ and κ = β/ξ (see Section A.2.8); when
ξ = 0 we have an exponential distribution; when ξ < 0 we have a short-tailed,
Pareto type II distribution. Moreover, as in the case of the GEV distribution, for
fixed x the parametric form is continuous in ξ , so limξ→0 Gξ,β(x) = G0,β(x). The
df and density of the GPD for various values of ξ and β = 1 are shown in Figure 7.3.

In terms of domains of attraction we have that Gξ,β ∈ MDA(Hξ ) for all ξ ∈ R.
Note that, for ξ > 0 and ξ < 0, this assertion follows easily from the characteriza-
tions in Theorems 7.8 and 7.10. In the heavy-tailed case, ξ > 0, it may be easily
verified that E(Xk) = ∞ for k � 1/ξ . The mean of the GPD is defined provided
ξ < 1 and is

E(X) = β/(1 − ξ). (7.9)

The role of the GPD in EVT is as a natural model for the excess distribution over
a high threshold. We define this concept along with the mean excess function, which
will also play an important role in the theory.

Definition 7.17 (excess distribution over threshold u). Let X be an rv with df F .
The excess distribution over the threshold u has df

Fu(x) = P(X − u � x | X > u) = F(x + u) − F(u)

1 − F(u)
(7.10)

for 0 � x < xF − u, where xF � ∞ is the right endpoint of F .

Definition 7.18 (mean excess function). The mean excess function of an rvX with
finite mean is given by

e(u) = E(X − u | X > u). (7.11)
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The excess df Fu describes the distribution of the excess loss over the threshold
u, given that u is exceeded. The mean excess function e(u) expresses the mean of
Fu as a function of u. In survival analysis the excess df is more commonly known as
the residual life df—it expresses the probability that, say, an electrical component
which has functioned for u units of time fails in the time period (u, u + x]. The
mean excess function is known as the mean residual life function and gives the
expected residual lifetime for components with different ages. For the special case
of the GPD, the excess df and mean excess function are easily calculated.

Example 7.19 (excess distribution of exponential and GPD). If F is the df of
an exponential rv, then it is easily verified that Fu(x) = F(x) for all x, which is
the famous lack-of-memory property of the exponential distribution—the residual
lifetime of the aforementioned electrical component would be independent of the
amount of time that component has already survived. More generally, if X has df
F = Gξ,β , then, using (7.10), the excess df is easily calculated to be

Fu(x) = Gξ,β(u)(x), β(u) = β + ξu, (7.12)

where 0 � x < ∞ if ξ � 0 and 0 � x � −(β/ξ) − u if ξ < 0. The excess
distribution remains a GPD with the same shape parameter ξ but with a scaling that
grows linearly with the threshold u. The mean excess function of the GPD is easily
calculated from (7.12) and (7.9) to be

e(u) = β(u)

1 − ξ
= β + ξu

1 − ξ
, (7.13)

where 0 � u < ∞ if 0 � ξ < 1 and 0 � u � −β/ξ if ξ < 0. It may be observed
that the mean excess function is linear in the threshold u, which is a characterizing
property of the GPD.

Example 7.19 shows that the GPD has a kind of stability property under the
operation of calculating excess distributions. We now give a mathematical result
that shows that the GPD is, in fact, a natural limiting excess distribution for many
underlying loss distributions. The result can also be viewed as a characterization
theorem for the domain of attraction of the GEV distribution. In Section 7.1.2 we
looked separately at characterizations for each of the three cases ξ > 0, ξ = 0 and
ξ < 0; the following result offers a global characterization of MDA(Hξ ) for all ξ
in terms of the limiting behaviour of excess distributions over thresholds.

Theorem 7.20 (Pickands–Balkema–de Haan). We can find a (positive-measurable
function) β(u) such that

lim
u→xF

sup
0�x<xF−u

|Fu(x) − Gξ,β(u)(x)| = 0,

if and only if F ∈ MDA(Hξ ), ξ ∈ R.

Thus the distributions for which normalized maxima converge to a GEV distri-
bution constitute a set of distributions for which the excess distribution converges
to the GPD as the threshold is raised; moreover, the shape parameter of the limiting
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GPD for the excesses is the same as the shape parameter of the limiting GEV dis-
tribution for the maxima. We have already stated in Section 7.1.2 that essentially all
the commonly used continuous distributions of statistics are in MDA(Hξ ) for some
ξ , so Theorem 7.20 proves to be a very widely applicable result that essentially says
that the GPD is the canonical distribution for modelling excess losses over high
thresholds.

7.2.2 Modelling Excess Losses

We exploit Theorem 7.20 by assuming that we are dealing with a loss distribu-
tion F ∈ MDA(Hξ ) so that, for some suitably chosen high threshold u, we can
model Fu by a generalized Pareto distribution. We formalize this with the following
assumption.

Assumption 7.21. Let F be a loss distribution with right endpoint xF and assume
that for some high threshold u we have Fu(x) = Gξ,β(x) for 0 � x < xF − u and
some ξ ∈ R and β > 0.

This is clearly an idealization, since in practice the excess distribution will gen-
erally not be exactly GPD, but we use Assumption 7.21 to make a number of calcu-
lations in the following sections.

The method. Given loss dataX1, . . . , Xn fromF , a random numberNu will exceed
our threshold u; it will be convenient to relabel these data X̃1, . . . , X̃Nu . For each
of these exceedances we calculate the amount Yj = X̃j − u of the excess loss. We
wish to estimate the parameters of a GPD model by fitting this distribution to the
Nu excess losses. There are various ways of fitting the GPD including maximum
likelihood (ML) and probability-weighted moments (PWM). The former method is
more commonly used and is easy to implement if the excess data can be assumed
to be realizations of independent rvs, since the joint density will then be a product
of marginal GPD densities.

Writing gξ,β for the density of the GPD, the log-likelihood may be easily calcu-
lated to be

lnL(ξ, β;Y1, . . . , YNu) =
Nu∑
j=1

ln gξ,β(Yj )

= −Nu ln β −
(

1 + 1

ξ

) Nu∑
j=1

ln

(
1 + ξ

Yj

β

)
, (7.14)

which must be maximized subject to the parameter constraints that β > 0 and
1 + ξYj /β > 0 for all j . Solving the maximization problem yields a GPD model
G
ξ̂,β̂

for the excess distribution Fu.

Non-iid data. For insurance or operational risk data the iid assumption is often
unproblematic, but this is clearly not true for time series of financial returns. If the
data are serially dependent but show no tendency to give clusters of extreme values,
then this might suggest that the underlying process has extremal index θ = 1. In this
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case, asymptotic theory that we summarize in Section 7.4 suggests a limiting model
for high-level threshold exceedances, in which exceedances occur according to a
Poisson process and the excess loss amounts are iid generalized Pareto distributed.
If extremal clustering is present, suggesting an extremal index θ < 1 (as would
be consistent with an underlying GARCH process), the assumption of independent
excess losses is less satisfactory. The easiest approach is to neglect this problem
and to consider the ML method to be a quasi-maximum likelihood (QML) method,
where the likelihood is misspecified with respect to the serial dependence structure
of the data; we follow this course in this section. The point estimates should still be
reasonable, although standard errors may be too small. In Section 7.4 we discuss
threshold exceedances in non-iid data in more detail.

Excesses over higher thresholds. From the model we have fitted to the excess
distribution over u we can easily infer a model for the excess distribution over any
higher threshold. We have the following lemma.

Lemma 7.22. Under Assumption 7.21 it follows that Fv(x) = Gξ,β+ξ(v−u)(x) for
any higher threshold v � u.

Proof. We use (7.10) and the df of the GPD in (7.8) to infer that

F̄v(x) = F̄ (v + x)

F̄ (v)
= F̄ (u + (x + v − u))

F̄ (u)

F̄ (u)

F̄ (u + (v − u))

= F̄u(x + v − u)

F̄u(v − u)
= Ḡξ,β(x + v − u)

Ḡξ,β(v − u)

= Ḡξ,β+ξ(v−u)(x).

Thus the excess distribution over higher thresholds remains a GPD with the same
ξ parameter but a scaling that grows linearly with the threshold v. Provided that
ξ < 1, the mean excess function is given by

e(v) = β + ξ(v − u)

1 − ξ
= ξv

1 − ξ
+ β − ξu

1 − ξ
, (7.15)

where u � v < ∞ if 0 � ξ < 1 and u � v � u − β/ξ if ξ < 0.
The linearity of the mean excess function (7.15) in v is commonly used as a

diagnostic for data admitting a GPD model for the excess distribution. It forms
the basis for the following simple graphical method for choosing an appropriate
threshold.

Sample mean excess plot. For positive-valued loss data X1, . . . , Xn we define
the sample mean excess function to be an empirical estimator of the mean excess
function in Definition 7.18. The estimator is given by

en(v) =
∑n

i=1(Xi − v)I{Xi>v}∑n
i=1 I{Xi>v}

. (7.16)
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To study this function we generally construct the mean excess plot {(Xi,n, en(Xi,n)) :
2 � i � n}, where Xi,n denotes the ith order statistic. If the data support a GPD
model over a high threshold, then (7.15) suggests that this plot should become
increasingly “linear” for higher values of v. A linear upward trend indicates a GPD
model with positive shape parameter ξ ; a plot tending towards the horizontal indi-
cates a GPD with approximately zero shape parameter, or, in other words, an expo-
nential excess distribution; a linear downward trend indicates a GPD with negative
shape parameter.

These are the ideal situations but in practice some experience is required to read
mean excess plots. Even for data that are genuinely generalized Pareto distributed,
the sample mean excess plot is seldom perfectly linear, particularly towards the
right-hand end, where we are averaging a small number of large excesses. In fact
we often omit the final few points from consideration, as they can severely distort
the picture. If we do see visual evidence that the mean excess plot becomes linear,
then we might select as our threshold u a value towards the beginning of the linear
section of the plot (see, in particular, Example 7.24).

Example 7.23 (Danish fire loss data). The Danish fire insurance data are a well-
studied set of financial losses that neatly illustrate the basic ideas behind modelling
observations that seem consistent with an iid model. The dataset consists of 2156
fire insurance losses over 1 000 000 Danish kroner from 1980 to 1990 inclusive. The
loss figure represents a combined loss for a building and its contents, as well as in
some cases a loss of business earnings; the losses are inflation adjusted to reflect
1985 values and are shown in Figure 7.4(a).

The mean excess plot in Figure 7.4(b) is in fact fairly “linear” over the entire range
of the losses and its upward slope leads us to expect that a GPD with positive shape
parameter ξ could be fitted to the entire dataset. However, there is some evidence
of a “kink” in the plot below the value 10 and a “straightening out” of the plot
above this value, so we have chosen to set our threshold at u = 10 and fit a GPD
to excess losses above this threshold, in the hope of obtaining a model that is a
good fit to the largest of the losses. The ML parameter estimates are ξ̂ = 0.50 and
β̂ = 7.0 with standard errors 0.14 and 1.1, respectively. Thus the model we have
fitted is essentially a very heavy-tailed, infinite-variance model. A picture of the
fitted GPD model for the excess distribution F̂u(x − u) is also given in Figure 7.4(c),
superimposed on points plotted at empirical estimates of the excess probabilities for
each loss; note the good correspondence between the empirical estimates and the
GPD curve.

In insurance we might use the model to estimate the expected size of the insur-
ance loss, given that it enters a given insurance layer. Thus we can estimate
the expected loss size given exceedance of the threshold of 10 000 000 kroner
or of any other higher threshold by using (7.15) with the appropriate parameter
estimates.

Example 7.24 (AT&T weekly loss data). Suppose we have an investment inAT&T
stock and want to model weekly losses in value using an unconditional approach. If
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Figure 7.4. (a) Time series plot of the Danish data. (b) Sample mean excess plot.
(c) Empirical distribution of excesses and fitted GPD. See Example 7.23 for full details.

Xt denotes the weekly log-return, then the percentage loss in value of our position
over a week is given by Lt = 100(1 − exp(Xt )) and data on this loss for the 521
complete weeks in the period 1991–2000 are shown in Figure 7.5(a).

A sample mean excess plot of the positive loss values is shown in Figure 7.5(b)
and this suggests that a threshold can be found above which a GPD approximation to
the excess distribution should be possible. We have chosen to position the threshold
at a loss value of 2.75%, which is marked by a vertical line on the plot and gives
102 exceedances.

We observed in Section 4.1 that monthly AT&T return data over the period 1993–
2000 do not appear consistent with a strict white noise hypothesis, so the issue of
whether excess losses can be modelled as independent is relevant. This issue is taken
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Figure 7.5. (a) Time series plot of AT&T weekly percentage loss data. (b) Sample mean
excess plot. (c) Empirical distribution of excesses and fitted GPD. See Example 7.24 for full
details.

up in Section 7.4 but for the time being we ignore it and implement a standard ML
approach to estimating the parameters of a GPD model for the excess distribution;
we obtain the estimates ξ̂ = 0.22 and β̂ = 2.1 with standard errors 0.13 and 0.34,
respectively. Thus the model we have fitted is a model that is close to having an
infinite fourth moment. A picture of the fitted GPD model for the excess distribution
F̂u(x − u) is also given in Figure 7.5(c), superimposed on points plotted at empirical
estimates of the excess probabilities for each loss.

7.2.3 Modelling Tails and Measures of Tail Risk

In this section we describe how the GPD model for the excess losses is used to
estimate the tail of the underlying loss distribution F and associated risk measures.
To make the necessary theoretical calculations we again make Assumption 7.21.
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Tail probabilities and risk measures. We observe firstly that underAssumption 7.21
we have, for x � u,

F̄ (x) = P(X > u)P (X > x | X > u)

= F̄ (u)P (X − u > x − u | X > u)

= F̄ (u)F̄u(x − u)

= F̄ (u)

(
1 + ξ

x − u

β

)−1/ξ

, (7.17)

which, if we know F(u), gives us a formula for tail probabilities. This formula
may be inverted to obtain a high quantile of the underlying distribution, which we
interpret as a VaR. For α � F(u) we have that VaR is equal to

VaRα = qα(F ) = u + β

ξ

((
1 − α

F̄ (u)

)−ξ

− 1

)
. (7.18)

Assuming that ξ < 1 the associated expected shortfall can be calculated easily
from (2.23) and (7.18). We obtain

ESα = 1

1 − α

∫ 1

α

qx(F ) dx = VaRα

1 − ξ
+ β − ξu

1 − ξ
. (7.19)

Note that Assumption 7.21 and Lemma 7.22 imply that excess losses above VaRα

have a GPD distribution satisfyingFVaRα = Gξ,β+ξ(VaRα −u). The expected shortfall
estimator in (7.19) can also be obtained by adding the mean of this distribution to
VaRα , i.e. ESα = VaRα +e(VaRα), where e(VaRα) is given in (7.15). It is interesting
to look at how the ratio of the two risk measures behaves for large values of the
quantile probability α. It is easily calculated from (7.18) and (7.19) that

lim
α→1

ESα
VaRα

=
{
(1 − ξ)−1, ξ � 0,

1, ξ < 0,
(7.20)

so the shape parameter ξ of the GPD effectively determines the ratio when we go
far enough out into the tail.

Estimation in practice. We note that, under Assumption 7.21, tail probabilities,
VaRs and expected shortfalls are all given by formulas of the form g(ξ, β, F̄ (u)).
Assuming that we have fitted a GPD to excess losses over a threshold u, as described
in Section 7.2.2, we estimate these quantities by first replacing ξ and β in formu-
las (7.17)–(7.19) by their estimates. Of course, we also require an estimate of F̄ (u)
and here we take the simple empirical estimatorNu/n. In doing this, we are implicitly
assuming that there is a sufficient proportion of sample values above the threshold
u to estimate F̄ (u) reliably. However, we hope to gain over the empirical method by
using a kind of extrapolation based on the GPD for more extreme tail probabilities
and risk measures. For tail probabilities we obtain an estimator, first proposed by
Smith (1987), of the form

ˆ̄F(x) = Nu

n

(
1 + ξ̂

x − u

β̂

)−1/ξ̂

, (7.21)
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which we stress is only valid for x � u. For α � 1 − Nu/n we obtain analogous
point estimators of VaRα and ESα from (7.18) and (7.19).

Of course we would also like to obtain confidence intervals. If we have taken the
likelihood approach to estimating ξ and β, then it is quite easy to give confidence
intervals for g(ξ̂ , β̂, Nu/n) that take into account the uncertainty in ξ̂ and β̂, but
neglect the uncertainty in Nu/n as an estimator of F̄ (u). We use the approach
described at the end of Section 7.1.4 for return levels, whereby the GPD model is
reparametrized in terms of φ = g(ξ, β,Nu/n) and a confidence interval for φ̂ is
constructed based on the likelihood ratio test as in Section A.3.5.

Example 7.25 (risk measures forAT&T loss data). Suppose we have fitted a GPD
model to excess weekly losses above the threshold u = 2.75% as in Example 7.24.
We use this model to obtain estimates of the 99% VaR and expected shortfall of the
underlying weekly loss distribution. The essence of the method is displayed in Fig-
ure 7.6; this is a plot of estimated tail probabilities on logarithmic axes, with various
dotted lines superimposed to indicate the estimation of risk measures and associated
confidence intervals. The points on the graph are the 102 threshold exceedances and
are plotted at y-values corresponding to the tail of the empirical distribution function;
the smooth curve running through the points is the tail estimator (7.21).

Estimation of the 99% quantile amounts to determining the point of intersection of
the tail estimation curve and the horizontal line F̄ (x) = 0.01 (not marked on graph);
the first vertical dotted line shows the quantile estimate. The horizontal dotted line
aids in the visualization of a 95% confidence interval for the VaR estimate; the
degree of confidence is shown on the alternative y-axis to the right of the plot.
The boundaries of a 95% confidence interval are obtained by determining the two
points of intersection of this horizontal line with the dotted curve, which is a profile
likelihood curve for the VaR as a parameter of the GPD model and is constructed
using likelihood ratio test arguments as in Section A.3.5. Dropping the horizontal
line to the 99% mark would correspond to constructing a 99% confidence interval
for the estimate of the 99% VaR. The point estimate and 95% confidence interval
for the 99% quantile are estimated to be 11.7% and (9.6, 16.1).

The second vertical line on the plot shows the point estimate of the 99% expected
shortfall. A 95% confidence interval is determined from the dotted horizontal line
and its points of intersection with the second dotted curve. The point estimate and
95% confidence interval are 17.0% and (12.7, 33.6). Note that if we divide the point
estimates of the shortfall and the VaR we get 17/11.7 ≈ 1.45, which is larger than
the asymptotic ratio (1 − ξ̂ )−1 = 1.29 suggested by (7.20); this is generally the case
at finite levels and is explained by the second term in (7.19) being a non-negligible
positive quantity.

Before leaving the topic of GPD tail modelling it is clearly important to see how
sensitive our risk-measure estimates are to the choice of the threshold. Hitherto we
have considered single choices of threshold u and looked at a series of incremental
calculations that always build on the same GPD model for excesses over that thresh-
old. We would hope that there is some robustness to our inference for different
choices of threshold.
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Figure 7.6. The smooth curve through the points shows the estimated tail of the AT&T
weekly percentage loss data using the estimator (7.21). Points are plotted at empirical tail
probabilities calculated from empirical df. The vertical dotted lines show estimates of 99%
VaR and expected shortfall. The other curves are used in the construction of confidence
intervals. See Example 7.25 for full details.

Example 7.26 (varying the threshold). In the case of the AT&T weekly loss data
the influence of different thresholds is investigated in Figure 7.7. Given the impor-
tance of the ξ parameter in determining the weight of the tail and the relationship
between quantiles and expected shortfalls, we first show how estimates of ξ vary
as we consider a series of thresholds that give us between 20 and 150 exceedances.
In fact, the estimates remain fairly constant around a value of approximately 0.2; a
symmetric 95% confidence interval constructed from the standard error estimate is
also shown, and indicates how the uncertainty about the parameter value decreases
as the threshold is lowered or the number of threshold exceedances is increased.

Point estimates of the 99% VaR and expected shortfall estimates are also shown.
The former remain remarkably constant around 12%, while the latter show modest
variability that essentially tracks the variability of the ξ estimate. These pictures
provide some reassurance that different thresholds do not lead to drastically different
conclusions. We return to the issue of threshold choice again in Section 7.2.5.
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Figure 7.7. (a) Estimate of ξ for different thresholds u and numbers of exceedances Nu,
together with a 95% confidence interval based on the standard error. (b) Associated point
estimates of the 99% VaR (solid line) and expected shortfall (dotted line). See Example 7.26
for commentary.

7.2.4 The Hill Method

The GPD method is not the only way to estimate the tail of a distribution and, as an
alternative, we describe in this section the well-known Hill approach to modelling
the tails of heavy-tailed distributions.

Estimating the tail index. For this method we assume that the underlying loss
distribution is in the maximum domain of attraction of the Fréchet distribution so
that, by Theorem 7.8, it has a tail of the form

F̄ (x) = L(x)x−α, (7.22)

for a slowly varying function L (see Definition 7.7) and a positive parameter α.
Traditionally, in the Hill approach, interest centres on the tail index α, rather than
its reciprocal ξ , which appears in (7.3). The goal is to find an estimator of α based
on identically distributed data X1, . . . , Xn.



7.2. Threshold Exceedances 287

The Hill estimator can be derived in various ways (see EKM, pp. 330–336).
Perhaps the most elegant is to consider the mean excess function of the generic
logarithmic loss lnX, where X is an rv with df (7.22). Writing e∗ for the mean
excess function of lnX and using integration by parts we find that

e∗(ln u) = E(lnX − ln u | lnX > ln u)

= 1

F̄ (u)

∫ ∞

u

(ln x − ln u) dF(x)

= 1

F̄ (u)

∫ ∞

u

F̄ (x)

x
dx

= 1

F̄ (u)

∫ ∞

u

L(x)x−(α+1) dx.

Foru sufficiently large, the slowly varying functionL(x) for x � u can essentially be
treated as a constant and taken outside the integral. More formally, using Karamata’s
Theorem (see Section A.1.3), we get, for u → ∞,

e∗(ln u) ∼ L(u)u−αα−1

F̄ (u)
= α−1,

so limu→∞ αe∗(ln u) = 1. We expect to see similar tail behaviour in the sample
mean excess function e∗

n (see (7.16)) constructed from the log observations. That
is, we expect that e∗

n(lnXk,n) ≈ α−1 for n large and k sufficiently small, where
Xn,n � · · · � X1,n are the order statistics as usual. Evaluating e∗

n(lnXk,n) gives us
the estimator α̂−1 = ((k − 1)−1∑k−1

j=1 lnXj,n − lnXk,n). The standard form of the
Hill estimator is obtained by a minor modification:

α̂
(H)
k,n =

(
1

k

k∑
j=1

lnXj,n − lnXk,n

)−1

, 2 � k � n. (7.23)

The Hill estimator is one of the best-studied estimators in the EVT literature. The
asymptotic properties (consistency, asymptotic normality) of this estimator (as sam-
ple size n → ∞, number of extremes k → ∞ and the so-called tail-fraction
k/n → 0) have been extensively investigated under various assumed models for the
data, including ARCH and GARCH (see Notes and Comments). We concentrate on
the use of the estimator in practice and, in particular, on its performance relative to
the GPD estimation approach.

When the data are from a distribution with a tail that is close to a perfect power
function, the Hill estimator is often a good estimator of α, or its reciprocal ξ . In
practice, the general strategy is to plot Hill estimates for various values of k. This
gives the Hill plot {(k, α̂(H)k,n ) : k = 2, . . . , n}. We hope to find a stable region in the
Hill plot where estimates constructed from different numbers of order statistics are
quite similar.

Example 7.27 (Hill plots). We construct Hill plots for the Danish fire data of Exam-
ple 7.23 and the weekly percentage loss data (positive values only) of Example 7.24
(shown in Figure 7.8).
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Figure 7.8. Hill plots showing estimates of the tail index α = 1/ξ for (a), (b) the AT&T
weekly percentages losses and (c), (d) the Danish fire loss data. Parts (b) and (d) are expanded
versions of sections of (a) and (c) showing Hill estimates based on up to 60 order statistics.

It is very easy to construct the Hill plot for all possible values of k, but it can be
misleading to do so; practical experience (see Example 7.28) suggests that the best
choices of k are relatively small—say 10–50 order statistics in a sample of size 1000.
For this reason we have enlarged sections of the Hill plots showing the estimates
obtained for values of k less than 60.

For the Danish data the estimates ofα obtained are between 1.5 and 2, suggesting ξ
estimates between 0.5 and 0.67, all of which correspond to infinite-variance models
for these data. Recall that the estimate derived from our GPD model in Example 7.23
was ξ̂ = 0.50. For the AT&T data there is no particularly stable region in the plot.
The α estimates based on k = 2, . . . , 60 order statistics mostly range from 2 to 4,
suggesting a ξ value in the range 0.25–0.5, which is larger than the values estimated
in Example 7.26 with a GPD model.
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Example 7.27 shows that the interpretation of Hill plots can be difficult. In prac-
tice, various deviations from the ideal situation can occur. If the data do not come
from a distribution with a regularly varying tail, the Hill method is really not appro-
priate and Hill plots can be very misleading. Serial dependence in the data can
also spoil the performance of the estimator, although this is also true for the GPD
estimator. EKM contains a number of Hill “horror plots” based on simulated data
illustrating the issues that arise (see Notes and Comments).

Hill-based tail estimates. For the risk-management applications of this book we
are less concerned with estimating the tail index of heavy-tailed data and more
concerned with tail and risk-measure estimates. We give a heuristic argument for a
standard tail estimator based on the Hill approach. We assume a tail model of the
form F̄ (x) = Cx−α , x � u > 0, for some high threshold u; in other words, we
replace the slowly varying function by a constant for sufficiently large x. For an
appropriate value of k the tail index α is estimated by α̂

(H)
k,n and the threshold u is

replaced by Xk,n (or X(k+1),n in some versions); it remains to estimate C. Since
C can be written as C = uαF̄ (u), this is equivalent to estimating F̄ (u), and the
obvious empirical estimator is k/n (or (k − 1)/n in some versions). Putting these
ideas together gives us the Hill tail estimator in its standard form:

ˆ̄F(x) = k

n

(
x

Xk,n

)−α̂
(H)
k,n

. (7.24)

Writing the estimator in this way emphasizes the way it is treated mathematically. For
any pair k and n, both the Hill estimator and the associated tail estimator are treated
as functions of the k upper order statistics from the sample of size n. Obviously it is
possible to invert this estimator to get a quantile estimator and it is also possible to
devise an estimator of expected shortfall using arguments about regularly varying
tails.

The GPD-based tail estimator (7.21) is usually treated as a function of a random
numberNu of upper order statistics for a fixed thresholdu. The different presentation
of these estimators in the literature is a matter of convention and we can easily recast
both estimators in a similar form. Suppose we rewrite (7.24) in the notation of (7.21)
by substituting ξ̂ (H), u and Nu for 1/α̂(H)k,n , Xk,n and k, respectively. We get

ˆ̄F(x) = Nu

n

(
1 + ξ̂ (H)

x − u

ξ̂ (H)u

)−1/ξ̂ (H)

.

This estimator lacks the additional scaling parameter β in (7.21) and tends not to
perform as well, as is shown in simulated examples in the next section.

7.2.5 Simulation Study of EVT Quantile Estimators

First we consider estimation of ξ and then estimation of the high quantile VaRα . In
both cases estimators are compared using mean squared errors (MSEs); we recall
that the MSE of an estimator θ̂ of a parameter θ is given by MSE(θ̂) = E(θ̂−θ)2 =
(E(θ̂ − θ))2 + var(θ̂), and thus has the well-known decomposition into squared
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Figure 7.9. Comparison of (a) estimated MSE, (b) bias and (c) variance for the Hill (dotted
line) and GPD (solid line) estimators of ξ , the reciprocal of the tail index, as a function of k
(or Nu), the number of upper order statistics from a sample of 1000 t-distributed data with
four degrees of freedom. See Example 7.28 for details.

bias plus variance. A good estimator should keep both the bias term E(θ̂ − θ) and
the variance term var(θ̂) small.

Since analytical evaluation of bias and variance is not possible, we calculate Monte
Carlo estimates by simulating 1000 datasets in each experiment. The parameters of
the GPD are determined in all cases by ML; PWM, the main alternative, gives
slightly different results, but the conclusions are similar.

We calculate estimates using the Hill method and the GPD method based on dif-
ferent numbers of upper order statistics (or differing thresholds) and try to determine
the choice of k (or Nu) that is most appropriate for a sample of size n. In the case
of estimating VaR we also compare the EVT estimators with the simple empirical
quantile estimator.

Example 7.28 (Monte Carlo experiment). We assume that we have a sample of
1000 iid data from a t distribution with four degrees of freedom and want to esti-
mate ξ , the reciprocal of the tail index, which in this case has the true value 0.25.
(This is demonstrated in Example 7.29 at the end of this chapter.) The Hill esti-
mate is constructed for k values in the range {2, . . . , 200} and the GPD estimate is
constructed for k (or Nu) values in {30, 40, 50, . . . , 400}. The results are shown in
Figure 7.9.

The t distribution has a well-behaved regularly varying tail and the Hill estima-
tor gives better estimates of ξ than the GPD method, with an optimal value of k
around 20–30. The variance plot shows where the Hill method gains over the GPD
method; the variance of the GPD-based estimator is much higher than that of the
Hill estimator for small numbers of order statistics. The magnitudes of the biases
are closer together, with the Hill method tending to overestimate ξ and the GPD
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Figure 7.10. Comparison of (a) estimated MSE, (b) bias and (c) variance for the Hill (dotted
line) and GPD (solid line) estimators of VaR0.99, as a function of k (or Nu), the number of
upper order statistics from a sample of 1000 t-distributed data with four degrees of freedom.
Dashed line also shows results for the (threshold-independent) empirical quantile estimator.
See Example 7.28 for details.

method tending to underestimate it. If we were to use the GPD method, the optimal
choice of threshold would be one giving 100–150 exceedances.

The conclusions change when we attempt to estimate the 99% VaR; the results are
shown in Figure 7.10. The Hill method has a negative bias for low values of k but a
rapidly growing positive bias for larger values of k; the GPD estimator has a positive
bias that grows much more slowly; the empirical method has a negative bias. The
GPD attains its lowest MSE value for a value of k around 100, but, more importantly,
the MSE is very robust to the choice of k because of the slow growth of the bias.
The Hill method performs well for 20 � k � 75 (we only use k values that lead to a
quantile estimate beyond the effective threshold Xk,n) but then deteriorates rapidly.
Both EVT methods obviously outperform the empirical quantile estimator. Given
the relative robustness of the GPD-based tail estimator to changes in k, the issue of
threshold choice for this estimator seems less critical than for the Hill method.

7.2.6 Conditional EVT for Financial Time Series

The GPD method when applied to threshold exceedances in a financial return series
(as in Examples 7.24 and 7.25) is essentially an unconditional method for estimating
the tail of the P&L distribution and associated risk measures. In Chapter 2 we argued
that a conditional risk-measurement approach may be more appropriate for short
time horizons, and in Section 2.3.6 we observed that this generally led to better
backtesting results. We now consider a simple adaptation of the GPD method to
obtain conditional risk-measure estimates in a time series context. This adaptation
uses the GARCH model and related ideas in Chapter 4.

We assume in particular that we are in the framework of Section 4.4.2 so that
Lt−n+1, . . . , Lt are negative log-returns generated by a strictly stationary time series
process (Lt ). This process is assumed to be of the form Lt = µt + σtZt , where µt
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and σt are Ft−1-measurable and (Zt ) are iid innovations with some unknown df G;
an example would be an ARMA model with GARCH errors. To obtain estimates of
the risk measures

VaRt
α = µt+1 + σt+1qα(Z), EStα = µt+1 + σt+1 ESα(Z),

we first fit a GARCH model by the QML procedure of Section 4.3.4 (since we do not
assume a particular innovation distribution) and use this to estimate µt+1 and σt+1.
As an alternative we could use EWMA volatility forecasting instead. To estimate
qα(Z) and ESα(Z) we essentially apply the GPD tail estimation procedure to the
innovation distribution G. To get round the problem that we do not observe data
directly from the innovation distribution, we treat the residuals from the GARCH
analysis as our data and apply the GPD tail estimation method of Section 7.2.3 to the
residuals. In particular, we estimate qα(Z) and ESα(Z) using the VaR and expected
shortfall formulas in (7.18) and (7.19).

In Section 2.3.6 it was shown that this method gives good VaR estimates; in that
example the sample size was taken to be n = 1000 and the threshold was always
set so that there were 100 exceedances. In fact, the method also gives very good
conditional expected shortfall estimates, as is shown in the original paper of McNeil
and Frey (2000).

Notes and Comments

The ideas behind the important Theorem 7.20, which underlies GPD modelling, may
be found in Pickands (1975) and Balkema and de Haan (1974). Important papers
developing the technique in the statistical literature are Davison (1984) and Davison
and Smith (1990). The estimation of the parameters of the GPD, both by ML and by
the method of probability-weighted moments, is discussed in Hosking and Wallis
(1987). The tail estimation formula (7.21) was suggested by Smith (1987) and the
theoretical properties of this estimator for iid data in the domain of attraction of an
extreme value distribution are extensively investigated in this paper. The Danish fire
loss example is taken from McNeil (1997).

The Hill estimator goes back to Hill (1975) (see also Hall 1982). The theoretical
properties for dependent data, including linear processes with heavy-tailed innova-
tions and ARCH and GARCH processes, were investigated by Resnick and Stărică
(1995, 1996). The idea of smoothing the estimator is examined in Resnick and Stărică
(1997) and Resnick (1997). For Hill “horror plots”, showing situations when the Hill
estimator delivers particularly poor estimates of the tail index, see EKM, pp. 194,
270 and 343.

Alternative estimators based on order statistics include the estimator of Pickands
(1975), which is also discussed in Dekkers and de Haan (1989), and the DEdH
estimator of Dekkers, Einmahl and de Haan (1989). This latter estimator is used as
the basis of a quantile estimator in de Haan and Rootzén (1993). Both the Pickands
and DEdH estimators are designed to estimate general ξ in the extreme value limit (in
contrast to the Hill estimator, which is designed for positive ξ ); in empirical studies
the DEdH estimator seems to work better than the Pickands estimator. The issue of
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the optimal number of order statistics in such estimators is taken up in a series of
papers by Dekkers and de Haan (1993) and Danı́elsson et al. (2001). A method is
proposed which is essentially based on the bootstrap approach to estimating mean
squared error discussed in Hall (1990). A review paper relevant for applications to
insurance and finance is Matthys and Beirlant (2000).

Analyses of the tails of financial data using methods based on the Hill estimator
can be found in Koedijk, Schafgans and de Vries (1990), Lux (1996) and various
papers by Danı́elsson and de Vries (1997a,b,c). The conditional EVT method was
developed in McNeil and Frey (2000); a Monte Carlo method using the GPD model
to estimate risk measures for the h-day loss distribution is also described. See also
Gençay, Selçuk and Ulugülyaǧci (2003) and Gençay and Selçuk (2004) for inter-
esting applications of EVT methodology to VaR estimation.

7.3 Tails of Specific Models

In this short section we survey the tails of some of the more important distributions
and models that we have encountered in this book.

7.3.1 Domain of Attraction of Fréchet Distribution

As stated in Section 7.1.2, the domain of attraction of the Fréchet distribution consists
of distributions with regularly varying tails of the form F̄ (x) = x−αL(x) for α > 0,
where α is known as the tail index. These are heavy-tailed models where higher-
order moments cease to exist. Normalized maxima of random samples from such
distributions converge to a Fréchet distribution with shape parameter ξ = 1/α,
and excesses over sufficiently high thresholds converge to a generalized Pareto
distribution with shape parameter ξ = 1/α.

We now show that the Student t distribution and the inverse gamma distribution
are in this class; we analyse the former because of its general importance in financial
modelling and the latter because it appears as the mixing distribution that yields the
Student t in the class of normal variance mixture models (see Example 3.7). In
Section 7.3.3 we will see that the mixing distribution in a normal variance mixture
model essentially determines the tail of that model.

Both the t and inverse gamma distributions are presented in terms of their density,
and the analysis of their tails proves to be a simple application of a useful result
known as Karamata’s Theorem, which is given in Section A.1.3.

Example 7.29 (Student t distribution). It is easily verified that the standard uni-
variate t distribution with ν � 1 has a density of the form fν(x) = x−(ν+1)L(x).
Hence Karamata’s Theorem (see Theorem A.5) allows us to calculate the form of
the tail F̄ν(x) = ∫∞

x
fν(y) dy by essentially treating the slowly varying function as

a constant and taking it out of the integral. We get

F̄ν(x) =
∫ ∞

x

y−(ν+1)L(y) dy ∼ ν−1x−νL(x), x → ∞,

from which we conclude that the df Fν of a t distribution has tail index ν and
Fν ∈ MDA(H1/ν) by Theorem 7.8.
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Example 7.30 (inverse gamma distribution). The density of the inverse gamma
distribution is given in (A.11). It is of the form fα,β(x) = x−(α+1)L(x), since
exp(−β/x) → 1 as x → ∞. Using the same technique as in Example 7.29, we
deduce that this distribution has tail index α, so Fα,β ∈ MDA(H1/α).

7.3.2 Domain of Attraction of Gumbel Distribution

A mathematical characterization of the Gumbel class is that it consists of the
so-called von Mises distribution functions and any other distributions which
are tail equivalent to von Mises distributions (see EKM, pp. 138–150). We
give the definitions of both of these concepts below. Note that distributions
in this class can have both infinite and finite right endpoints; again we write
xF = sup{x ∈ R : F(x) < 1} � ∞ for the right endpoint of F .

Definition 7.31 (von Mises distribution function). Suppose there exists some
z < xF such that F has the representation

F̄ (x) = c exp

{
−
∫ x

z

1

a(t)
dt

}
, z < x < xF ,

where c is some positive constant, a(t) is a positive and absolutely continuous
function with density a′, and limx→xF a

′(x) = 0. Then F is called a von Mises
distribution function.

Definition 7.32 (tail equivalence). Two dfs F and G are called tail equivalent if
they have the same right endpoints (i.e. xF = xG) and limx→xF F̄ (x)/Ḡ(x) = c for
some constant 0 < c < ∞.

To decide whether a particular df F is a von Mises df, the following condition is
extremely useful. Assume there exists some z < xF such that F is twice differen-
tiable on (z, xF ) with density f = F ′ and F ′′ < 0 in (z, xF ). Then F is a von Mises
df if and only if

lim
x→xF

F̄ (x)F ′′(x)
f 2(x)

= −1. (7.25)

We now use this condition to show that the gamma df is a von Mises df.

Example 7.33 (gamma distribution). The density f = fα,β of the gamma
distribution is given in (A.7), and a straightforward calculation yields F ′′(x) =
f ′(x) = −f (x)(β + (1 − α)/x) < 0, provided x > max((α − 1)/β, 0).
Clearly, limx→∞ F ′′(x)/f (x) = −β. Moreover, using L’Hôpital’s rule we get
limx→∞ F̄ (x)/f (x) = limx→∞ −f (x)/f ′(x) = β−1. Combining these two limits
establishes (7.25).

Example 7.34 (GIG distribution). The density of an rv X ∼ N−(λ, χ,ψ) with
the GIG distribution is given in (A.8). Let Fλ,χ,ψ(x) denote the df and consider the
case where ψ > 0. If ψ = 0, then the GIG is an inverse gamma distribution, which
was shown in Example 7.30 to be in the Fréchet class. If ψ > 0, then λ � 0, and
a similar technique to Example 7.33 could be used to establish that the GIG is a
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von Mises df. In the case where λ > 0 it is easier to demonstrate tail equivalence
with a gamma distribution, which is the special case when χ = 0. We observe that

lim
x→∞

F̄λ,χ,ψ(x)

F̄λ,0,ψ (x)
= lim

x→∞
fλ,χ,ψ(x)

fλ,0,ψ (x)
= cλ,χ,ψ

for some constant cλ,χ,ψ . It follows that Fλ,χ,ψ ∈ MDA(H0).

7.3.3 Mixture Models

In this book we have considered a number of models for financial risk-factor changes
that arise as mixtures of rvs. In Chapter 3 we introduced multivariate normal variance
mixture models including the Student t , and (symmetric) generalized hyperbolic
distributions, which have the general structure given in (3.19). A one-dimensional
normal variance mixture (or the marginal distribution of a d-dimensional normal
variance mixture) is of the same type (see Section A.1.1) as an rv X satisfying

X
d= √

WZ, (7.26)

where Z ∼ N(0, 1) and W is an independent, positive-valued scalar rv. We would
like to know more about the tails of distributions satisfying (7.26).

More generally, to understand the tails of the marginal distributions of elliptical
distributions it suffices to consider spherical distributions, which have the stochastic
representation

X
d= RS (7.27)

for a random vector S that is uniformly distributed on the unit sphere Sd−1 =
{s ∈ R

d : s′s = 1}, and an independent radial variate R (see Section 3.3.1 and
Theorem 3.22 in particular). Again we would like to know more about the tails of
the marginal distributions of the vector X in (7.27).

In Section 4.3 of Chapter 4 we considered strictly stationary stochastic pro-
cesses (Xt ), such as GARCH processes satisfying equations of the form

Xt = σtZt , (7.28)

where (Zt ) are strict white noise innovations, typically with a Gaussian or (more
realistically) a scaled Student t distribution, and σt is a Ft−1-measurable rv repre-
senting volatility. These models can also be seen as mixture models and we would
like to know something about the tail of the stationary distribution of (Xt ).

A useful result for analysing the tails of mixtures is the following theorem due to
Breiman (1965), which we immediately apply to spherical distributions.

Theorem 7.35 (tails of mixture distributions). Let X be given by X = YZ for
independent, non-negative rvs Y and Z such that

(1) Y has a regularly varying tail with tail index α;

(2) E(Zα+ε) < ∞ for some ε > 0.

Then X has a regularly varying tail with tail index α and

P(X > x) ∼ E(Zα)P (Y > x), x → ∞.
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Proposition 7.36 (tails of spherical distributions). Let X
d= RS ∼ Sd(ψ) have

a spherical distribution. If R has a regularly varying tail with tail index α, then so
does |Xi | for i = 1, . . . , d. If E(Rk) < ∞ for all k > 0, then |Xi | does not have a
regularly varying tail.

Proof. Suppose that R has a regularly varying tail with tail index α and consider
RSi . Since |Si | is a non-negative rv with finite support [0, 1] and finite moments, it
follows from Theorem 7.35 that R|Si |, and hence |Xi |, are regularly varying with
tail index α. If E(Rk) < ∞ for all k > 0, then E|Xi |k < ∞ for all k > 0, so that
|Xi | cannot have a regularly varying tail.

Example 7.37 (tails of normal variance mixtures). Suppose that X
d= √

WZ with
Z ∼ Nd(0, Id) and W an independent scalar rv, so that both Z and X have spherical
distributions and X has a normal variance mixture distribution. The vector Z has the
spherical representation Z

d= R̃S, where R̃2 ∼ χ2
d (see Example 3.24). The vector

X has the spherical representation X
d= RS, where R

d= √
WR̃.

Now, the chi-squared distribution (being a gamma distribution) is in the domain of
attraction of the Gumbel distribution, so E(R̃k) = E((R̃2)k/2) < ∞ for all k > 0.
We first consider the case whenW has a regularly varying tail with tail indexα so that
F̄W (w) = L(w)w−α . It follows that P(

√
W > x) = P(W > x2) = L2(x)x

−2α ,
where L2(x) := L(x2) is also slowly varying, so that

√
W has a regularly varying

tail with tail index 2α. By Theorem 7.35, R
d= √

WR̃ also has a regularly varying
tail with tail index 2α and, by Proposition 7.36, so do the components of |X|.

To consider a particular case, suppose that W ∼ Ig( 1
2ν,

1
2ν), so that, by Exam-

ple 7.30, W is regularly varying with tail index 1
2ν. Then

√
W has a regularly

varying tail with tail index ν and so does |Xi |; this is hardly surprising because
X ∼ td (ν, 0, Id), implying that Xi has a univariate Student t distribution with ν

degrees of freedom, and we already know from Example 7.29 that this has tail
index ν.

On the other hand, if FW ∈ MDA(H0), then E(Rk) < ∞ for all k > 0 and |Xi |
cannot have a regularly varying tail by Proposition 7.36. This means, for example,
that univariate generalized hyperbolic distributions do not have power tails (except
for the special boundary case corresponding to Student t) because the GIG is in
the maximum domain of attraction of the Gumbel distribution, as was shown in
Example 7.34.

Analysis of the tails of the stationary distribution of GARCH-type models is more
challenging. In view of Theorem 7.35 and the foregoing examples, it is clear that
when the innovations (Zt ) are Gaussian, then the law of the process (Xt ) in (7.28)
will have a regularly varying tail if the volatility σt has a regularly varying tail.
Mikosch and Stărică (2000) analyse the GARCH(1, 1) model (see Definition 4.20),
where the squared volatility satisfies σ 2

t = α0 + α1X
2
t−1 + βσ 2

t−1. They show
that under relatively weak conditions on the innovation distribution of (Zt ), the
volatility σt has a regularly varying tail with tail index κ given by the solution of
the equation

E((α1Z
2
t + β)κ/2) = 1. (7.29)
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Table 7.2. Approximate theoretical values of the tail index κ solving (7.29) for various
GARCH(1, 1) processes with Gaussian and Student t innovation distributions.

t distribution︷ ︸︸ ︷
Parameters Gauss ν = 8 ν = 4

α1 = 0.2, β = 0.75 4.4 3.5 2.7
α1 = 0.1, β = 0.85 9.1 5.8 3.4
α1 = 0.05, β = 0.95 21.1 7.9 3.9

In Table 7.2 we have calculated approximate values of κ for various innovation dis-
tributions and parameter values using numerical integration and root-finding pro-
cedures. By Theorem 7.35 these are the values of the tail index for the stationary
distribution of the GARCH(1, 1) model itself.

Two main findings are obvious: for any fixed set of parameter values, the tail
index gets smaller and the tail of the GARCH model gets heavier as we move to
heavier-tailed innovation distributions; for any fixed innovation distribution, the tail
of the GARCH model gets lighter as we decrease the ARCH effect (α1) and increase
the GARCH effect (β).

Tail dependence in elliptical distributions. We close this section by giving a result
that reveals an interesting connection between tail dependence in elliptical distribu-
tions and regular variation of the radial rv R in the representation X

d= µ + RAS

of an elliptically symmetric distribution given in Proposition 3.28.

Theorem 7.38. Let X
d= µ + RAS ∼ Ed(µ,Σ,ψ), where µ, R, A and S are as

in Proposition 3.28 and we assume that σii > 0 for all i = 1, . . . , d. If R has a
regularly varying tail with tail index α > 0, then the coefficient of upper and lower
tail dependence between Xi and Xj is given by

λ(Xi,Xj ) =
∫ π/2
(π/2−arcsin ρij )

cosα(t) dt∫ π/2
0 cosα(t) dt

, (7.30)

where ρij is the (i, j)th element of P = ℘(Σ) and ℘ is the correlation operator
defined in (3.5).

An example where R has a regularly varying tail occurs in the case of the multi-
variate t distribution X ∼ td (ν,µ,Σ). It is obvious from the arguments used in
Example 7.37 that the tail of the df of R is regularly varying with tail index α = ν.
Thus (7.30) with α replaced by ν gives an alternative expression to (5.31) for cal-
culating tail-dependence coefficients for the t copula Ct

ν,P .
Arguably, the original expression (5.31) is easier to work with, since the df of

a univariate t distribution is available in statistical software packages. Moreover,
the equivalence of the two formulas allows us to conclude that we can use (5.31)
to evaluate tail-dependence coefficients for any bivariate elliptical distribution with
correlation parameter ρ when the distribution of the radial rv R has a regularly
varying tail with tail index ν.
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Notes and Comments

Section 7.3 has been a highly selective account tailored to the study of a number
of very specific models, and all of the theoretical subjects touched upon—regular
variation, von Mises distributions, tails of products, tails of stochastic recurrence
equations—can be studied in much greater detail.

For more about regular variation, slow variation and Karamata’s Theorem see
Bingham, Goldie and Teugels (1987) and Seneta (1976). A summary of the more
important ideas with regard to the study of extremes is found in Resnick (1987).
Section 7.3.2, with the exception of the examples, is taken from EKM, and detailed
references to results on von Mises distributions and the maximum domain of attrac-
tion of the Gumbel distribution are found therein.

Theorem 7.35 follows from results of Breiman (1965). Related results on distri-
butions of products are found in Embrechts and Goldie (1980). The discussion of
tails of GARCH models is based on Mikosch and Stărică (2000); the theory involves
the study of stochastic recurrence relations and is essentially due to Kesten (1973).
See also Mikosch (2003) for an excellent introduction to these ideas.

The formula for tail-dependence coefficients in elliptical distributions when the
radial rv has a regularly varying tail is taken from Hult and Lindskog (2002). Similar
results were derived independently by Schmidt (2002); see also Frahm, Junker and
Szimayer (2003) for a discussion of the applicability of such results to financial
returns.

7.4 Point Process Models

In our discussion of threshold models in Section 7.2 we considered only the magni-
tude of excess losses over high thresholds. In this section we consider exceedances
of thresholds as events in time and use a point process approach to model the occur-
rence of these events. We begin by looking at the case of regularly spaced iid data
and discuss the well-known peaks-over-threshold (POT) model for the occurrence
of extremes in such data; this model elegantly subsumes the models for maxima and
the GPD models for excess losses that we have so far described.

However, the assumptions of the standard POT model are typically violated
by financial return series, because of the kind of serial dependence that volatil-
ity clustering generates in such data. Our ultimate aim is to find more general
point process models to describe the occurrence of extreme values in financial time
series, and we find suitable candidates in the class of self-exciting point processes.
These models are of a dynamic nature and can be used to estimate conditional
VaRs; they offer an interesting alternative to the conditional EVT approach of Sec-
tion 7.2.6 with the advantage that no prewhitening of data with GARCH processes
is required.

The following section gives an idea of the theory behind the POT model, but may
be skipped by readers who are content to go directly to a description of the standard
POT model in Section 7.4.2.
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7.4.1 Threshold Exceedances for Strict White Noise

Consider a strict white noise process (Xi)i∈N representing financial losses. While we
discuss the theory for iid variables for simplicity, the results we describe also hold for
dependent processes with extremal index θ = 1, i.e. processes where extreme values
show no tendency to cluster (see Section 7.1.3 for examples of such processes).

Throughout this section we assume that the common loss distribution is in the
maximum domain of attraction of an extreme value distribution (MDA(Hξ )) so
that (7.1) holds for the non-degenerate limiting distribution Hξ and normaliz-
ing sequences cn and dn. From (7.1) it follows, by taking logarithms and using
ln(1 − y) ∼ −y as y → 0, that for any fixed x we have

lim
n→∞ n ln(1 − F̄ (cnx + dn)) = lnHξ(x),

lim
n→∞ nF̄ (cnx + dn) = − lnHξ(x).

⎫⎬⎭ (7.31)

Throughout this section we also consider a sequence of thresholds (un(x)) defined
by un(x) := cnx + dn for some fixed value of x. Clearly, (7.31) implies that we
have nF̄ (un(x)) → − lnHξ(x) as n → ∞ for this sequence of thresholds.

The number of losses in the sample X1, . . . , Xn exceeding the threshold un(x) is
a binomial rv, Nun(x) ∼ B(n, F̄ (un(x))), with expectation nF̄ (un(x)). Since (7.31)
holds, the standard Poisson limit result implies that, as n → ∞, the number
of exceedances Nun(x) converges to a Poisson rv with mean λ(x) = − lnHξ(x),
depending on the particular x chosen.

The theory goes further. Not only is the number of exceedances asymptotically
Poisson, these exceedances occur according to a Poisson point process. To state the
result it is useful to give a brief summary of some ideas concerning point processes.

On point processes. Suppose we have a sequence of rvs or vectors Y1, . . . , Yn

taking values in some state space X (for example, R or R
2) and we define, for any

set A ⊂ X, the rv

N(A) =
n∑

i=1

I{Yi∈A}, (7.32)

which counts the random number of Yi in the setA. Under some technical conditions
(see EKM, pp. 220–223), (7.32) is said to define a point process N(·). An example
of a point process is the Poisson point process.

Definition 7.39 (Poisson point process). The point processN(·) is called a Poisson
point process (or Poisson random measure) on X with intensity measure Λ if the
following two conditions are satisfied.

(a) For A ⊂ X and k � 0,

P(N(A) = k) =
⎧⎨⎩e−Λ(A)Λ(A)

k

k! , Λ(A) < ∞,

0, Λ(A) = ∞.
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(b) For any m � 1, if A1, . . . , Am are mutually disjoint subsets of X, then the
rvs N(A1), . . . , N(Am) are independent.

The intensity measure Λ(·) of N(·) is also known as the mean measure because
E(N(A)) = Λ(A). We also speak of the intensity function (or simply inten-
sity) of the process, which is the derivative λ(x) of the measure satisfying
Λ(A) = ∫

A
λ(x) dx.

Asymptotic behaviour of the point process of exceedances. Consider again the
strict white noise (Xi)i∈N and sequence of thresholds un(x) = cnx + dn for some
fixed x. For n ∈ N and 1 � i � n let Yi,n = (i/n)I{Xi>un(x)} and observe that Yi,n
can be thought of as returning either the normalized “time” i/n of an exceedance,
or zero. The point process of exceedances of the threshold un is the process Nn(·)
with state space X = (0, 1] given by

Nn(A) =
n∑

i=1

I{Yi,n∈A} (7.33)

for A ⊂ X. As the notation indicates, we consider this process to be an element
in a sequence of point processes indexed by n. The point process (7.33) counts
the exceedances with time of occurrence in the set A and we are interested in the
behaviour of this process as n → ∞.

It may be shown (see Theorem 5.3.2 in EKM) thatNn(·) converges in distribution
on X to a Poisson process N(·) with intensity measure Λ(·) satisfying Λ(A) =
(t2−t1)λ(x) forA = (t1, t2) ⊂ X, whereλ(x) = − lnHξ(x) as before.This implies,
in particular, that E(Nn(A)) → E(N(A)) = Λ(A) = (t2 − t1)λ(x). Clearly, the
intensity does not depend on time and takes the constant value λ := λ(x); we refer
to the limiting process as a homogeneous Poisson process with intensity or rate λ.

Application of the result in practice. We give a heuristic argument explaining how
this limiting result is used in practice. We consider a fixed large sample size n and a
fixed high threshold u, which we assume satisfies u = cny + dn for some value y.
We expect that the number of threshold exceedances can be approximated by a
Poisson rv and that the point process of exceedances of u can be approximated by a
homogeneous Poisson process with rate λ = − lnHξ(y) = − lnHξ((u−dn)/cn). If
we replace the normalizing constants cn and dn by σ > 0 and µ, we have a Poisson
process with rate − lnHξ,µ,σ (u). Clearly, we could repeat the same argument with
any high threshold so that, for example, we would expect it to be approximately true
that exceedances of the level x � u occur according to a Poisson process with rate
− lnHξ,µ,σ (x).

We thus have an intimate relationship between the GEV model for block maxima
and a Poisson model for the occurrence in time of exceedances of a high threshold.
The arguments of this section thus provide theoretical support for the observation in
Figure 4.3: that exceedances for simulated iid t data are separated by waiting times
that behave like iid exponential observations.
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7.4.2 The POT Model

The theory of the previous section combined with the theory of Section 7.2 suggests
an asymptotic model for threshold exceedances in regularly spaced iid data (or data
from a process with extremal index θ = 1). The so-called POT model makes the
following assumptions.

• Exceedances occur according to a homogeneous Poisson process in time.

• Excess amounts above the threshold are iid and independent of exceedance
times.

• The distribution of excess amounts is generalized Pareto.

There are various alternative ways of describing this model. It might also be called a
marked Poisson point process, where the exceedance times constitute the points
and the GPD-distributed excesses are the marks. It can also be described as a
(non-homogeneous) two-dimensional Poisson point process, where points (t, x)

in two-dimensional space record times and magnitudes of exceedances. The latter
representation is particularly powerful, as we now discuss.

Two-dimensional Poisson formulation of POT model. Assume that we have reg-
ularly spaced random losses X1, . . . , Xn and that we set a high threshold u. We
assume that, on the state space X = (0, 1] × (u,∞), the point process defined by
N(A) = ∑n

i=1 I{(i/n,Xi)∈A} is a Poisson process with intensity at a point (t, x) given
by

λ(t, x) = 1

σ

(
1 + ξ

x − µ

σ

)−1/ξ−1

, (7.34)

provided (1+ξ(x−µ)/σ) > 0, and byλ(t, x) = 0 otherwise. Note that this intensity
does not depend on t but does depend on x, and hence the two-dimensional Poisson
process is non-homogeneous; we simplify the notation to λ(x) := λ(t, x). For a set
of the form A = (t1, t2) × (x,∞) ⊂ X, the intensity measure is

Λ(A) =
∫ t2

t1

∫ ∞

x

λ(y) dy dt = −(t2 − t1) lnHξ,µ,σ (x). (7.35)

It follows from (7.35) that for any x � u the implied one-dimensional process of
exceedances of the level x is a homogeneous Poisson process with rate τ(x) :=
− lnHξ,µ,σ (x). Now consider the excess amounts over the threshold u. The tail of
the excess df over the threshold u, denoted F̄u(x) before, can be calculated as the
ratio of the rates of exceeding the levels u + x and u. We obtain

F̄u(x) = τ(u + x)

τ(u)
=
(

1 + ξx

σ + ξ(u − µ)

)−1/ξ

= Ḡξ,β(x)

for a positive scaling parameter β = σ + ξ(u − µ). This is precisely the tail of
the GPD model for excesses over the threshold u used in Section 7.2.2. Thus this
seemingly complicated model is indeed the POT model described informally at the
beginning of this section.
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Note also that the model implies the GEV distributional model for maxima. To
see this, consider the event that {Mn � x} for some value x � u. This may be
expressed in point process language as the event that there are no points in the set
A = (0, 1]× (x,∞). The probability of this event is calculated to be P(Mn � x) =
P(N(A) = 0) = exp(−Λ(A)) = Hξ,µ,σ (x), x � u, which is precisely the GEV
model for maxima of n-blocks used in Section 7.1.4.

Statistical estimation of the POT model. The most elegant way of fitting the POT
model to data is to fit the point process with intensity (7.34) to the exceedance data
in one step. Given the exceedance data {X̃j : j = 1, . . . , Nu}, the likelihood can be
written as

L(ξ, σ, µ; X̃1, . . . , X̃Nu) = exp(−τ(u))

Nu∏
j=1

λ(X̃j ). (7.36)

Parameter estimates of ξ , σ and µ are obtained by maximizing this expression,
which is easily accomplished by numerical means. For literature on the derivation
of this likelihood, see Notes and Comments.

There are, however, simpler ways of getting the same parameter estimates. Sup-
pose we reparametrize the POT model in terms of τ := τ(u) = − lnHξ,µ,σ (u), the
rate of the one-dimensional Poisson process of exceedances of the level u, and
β = σ + ξ(u− µ), the scaling parameter of the implied GPD for the excess losses
over u. Then the intensity in (7.34) can be rewritten as

λ(x) = λ(t, x) = τ

β

(
1 + ξ

x − u

β

)−1/ξ−1

, (7.37)

where ξ ∈ R and τ, β > 0. Using this parametrization it is easily verified that the
log of the likelihood in (7.36) becomes

lnL(ξ, σ, µ; X̃1, . . . , X̃Nu) = lnL1(ξ, β; X̃1 − u, . . . , X̃Nu − u) + lnL2(τ ;Nu),

whereL1 is precisely the likelihood for fitting a GPD to excess losses given in (7.14)
and lnL2(τ ;Nu) = −τ+Nu ln τ , which is the log-likelihood for a one-dimensional
homogeneous Poisson process with rate τ . Such a partition of a log-likelihood into a
sum of two terms involving two different sets of parameters means that we can make
separate inferences about the two sets of parameters; we can estimate ξ and β in a
GPD analysis and then estimate τ by its MLE Nu and use these to infer estimates
of µ and σ .

Advantages of the POT model formulation. One might ask what the advantages of
approaching the modelling of extremes through the two-dimensional Poisson point
process model described by the intensity (7.34) could be? One advantage is the fact
that the parameters ξ , µ and σ in the Poisson point process model do not have any
theoretical dependence on the threshold chosen, unlike the parameter β in the GPD
model, which appears in the theory as a function of the threshold u. In practice, we
would expect the estimated parameters of the Poisson model to be roughly stable
over a range of high thresholds, whereas the estimated β parameter varies with
threshold choice.
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For this reason the intensity (7.34) is a framework that is often used to introduce
covariate effects into extreme value modelling. One method of doing this is to replace
the parameters µ and σ in (7.34) by parameters that vary over time as a function
of deterministic covariates. For example, we might have µ(t) = α + γ ′y(t), where
y(t) represents a vector of covariate values at time t . This would give us Poisson
processes that are also non-homogeneous in time.

Applicability of the POT model to return series data. We now turn to the use of
the POT model with financial return data. An initial comment is that returns do
not really form genuine point events in time, in contrast to recorded water levels
or wind speeds, for example. Returns are discrete-time measurements that describe
changes in value taking place over the course of, say, a day or a week. Nonetheless,
we assume that if we take a longer-term perspective, such data can be approximated
by point events in time.

In Section 4.1.1 and in Figure 4.3 in particular, we saw evidence that, in contrast
to iid data, exceedances of a high threshold for daily financial return series do not
necessarily occur according to a homogeneous Poisson process. They tend instead
to form clusters corresponding to episodes of high volatility. Thus the standard POT
model is not directly applicable to financial return data.

Theory suggests that for stochastic processes with extremal index θ < 1, such
as GARCH processes, the extremal clusters themselves should occur according to
a homogeneous Poisson process in time, so that the individual exceedances occur
according to a Poisson cluster process (see, for example, Leadbetter 1991). Thus
a suitable model for the occurrence and magnitude of exceedances in a financial
return series might be some form of marked Poisson cluster process.

Rather than attempting to specify the mechanics of cluster formation, it is quite
common to try to circumvent the problem by declustering financial return data: we
attempt to formally identify clusters of exceedances and then we apply the POT
model to cluster maxima only. This method is obviously somewhat ad hoc, as there
is usually no clear way of deciding where one cluster ends and another begins. A
possible declustering algorithm is given by the runs method. In this method a run
size r is fixed and two successive exceedances are said to belong to two different
clusters if they are separated by a run of at least r values below the threshold (see
EKM, pp. 422–424). In Figure 7.11 the DAX daily negative returns of Figure 4.3
have been declustered with a run length of 10 trading days; this reduces the 100
exceedances to 42 cluster maxima.

However, it is not clear that applying the POT model to declustered data gives us
a particularly useful model. We can estimate the rate of occurrence of clusters of
extremes and say something about average cluster size; we can also derive a GPD
model for excess losses over thresholds for cluster maxima (where standard errors
for parameters may be more realistic than if we fitted the GPD to the dependent
sample of all threshold exceedances). However, by neglecting the modelling of
cluster formation, we cannot make more dynamic statements about the intensity of
occurrence of threshold exceedances at any point in time. In the next section we will
describe point process models that attempt to do just that.
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Figure 7.11. (a) DAX daily negative returns and a QQplot of their spacings as in Figure 4.3.
(b) Data have been declustered with the runs method using a run length of 10 trading days.
The spacings of the 42 cluster maxima are more consistent with a Poisson model.

Example 7.40 (POT analysis of AT&T weekly losses). We close this section with
an example of a standard POT model applied to extremes in financial return data. To
mitigate the clustering phenomenon discussed above we use weekly return data, as
previously analysed in Examples 7.24 and 7.25. Recall that these yield 102 weekly
percentage losses for the AT&T stock price exceeding a threshold of 2.75%. The
data are shown in Figure 7.12, where we observe that the inter-exceedance times
seem to have a roughly exponential distribution, although the discrete nature of the
times and the relatively low value of n means that there are some tied values for the
spacings, which makes the plot look a little granular. Another noticeable feature is
that the exceedances of the threshold appear to become more frequent over time,
which might be taken as evidence against the homogeneous Poisson assumption for
threshold exceedances and against the implicit assumption that the underlying data
form a realization from a stationary time series. It would be possible to consider a



7.4. Point Process Models 305

•••••••••••• ••••••••••••••••••• •••••••••• •••••••••••• ••••••• •••• ••• ••••• •••• • •• •• •• •• • • •
•

13.01.92

24.02.92 24.02.94 24.02.96 24.02.98 24.02.00

13.01.94 13.01.96 13.01.98 13.01.00
Time

Time

50 100 150
Ordered data

−20

20

20

0

10

2
4

0E
xp

on
en

tia
l

qu
an

til
es

(a)

(b)

(c)

Figure 7.12. (a) Time series ofAT&T weekly percentage losses from 1991 to 2000. (b) Cor-
responding realization of the marked point process of exceedances of the threshold 2.75%.
(c) QQplot of inter-exceedance times against an exponential reference distribution. See Exam-
ple 7.40 for details.

POT model incorporating a trend of increasingly frequent exceedances, but we will
not go this far.

We fit the standard two-dimensional Poisson model to the 102 exceedances of
the threshold 2.75% using the likelihood in (7.36) and obtain parameter estimates
ξ̂ = 0.22, µ̂ = 19.9 and σ̂ = 5.95. The implied GPD shape parameter for the dis-
tribution of excess losses over the threshold u is β̂ = σ̂ + ξ̂ (u − µ̂) = 2.1, so we
have exactly the same estimates of ξ and β as in Example 7.24.

The estimated exceedance rate for the threshold u = 2.75 is given by τ̂ (u) =
− lnH

ξ̂,µ̂,σ̂
(u) = 102, which is precisely the number of exceedances of that thresh-

old, as theory suggests. It is of more interest to look at estimated exceedance rates
for higher thresholds. For example, we get τ̂ (15) = 2.50, which implies that losses
exceeding 15% occur as a Poisson process with rate 2.5 losses per 10-year period,
so that such a loss is, roughly speaking, a four-year event. Thus the Poisson model
gives us an alternative method of defining the return period of a stress event and
a more powerful way of calculating such a risk measure. Similarly we can invert
the problem to estimate return levels: suppose we define the 10-year return level as
that level which is exceeded according to a Poisson process with rate one loss per
10 years, then we can easily estimate the level in our model by calculating

H−1
ξ̂ ,µ̂,σ̂

(exp(−1)) = 19.9,

so the 10-year event is a weekly loss of roughly 20%. Using the profile likelihood
method in Section A.3.5 we could also give confidence intervals for such estimates.
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7.4.3 Self-Exciting Processes

In this section we move away from homogeneous Poisson models for the occurrence
times of exceedance of high thresholds and consider self-exciting point processes, or
so-called Hawkes processes. In these models a series of recent threshold exceedances
causes the instantaneous risk of a threshold exceedance at the present point in time
to be higher. The main area of application of these models has traditionally been
in the modelling of earthquakes and their aftershocks; however, their structure also
seems appropriate for modelling market shocks and the tremors that follow these.

Given data X1, . . . , Xn and a threshold u, we will assume as usual that there are
Nu exceedances, comprising the data {(i, Xi) : 1 � i � n, Xi > u}. Note that
from now on we will express the time of an exceedance on the natural timescale
of the time series, so if, for example, the data are daily observations, then our
times are expressed in days. It will also be useful to have the alternative notation
{(Tj , X̃j ) : j = 1, . . . , Nu}, which enumerates exceedances consecutively.

We first consider a model for exceedance times only. In point process notation we
let Yi = iI{Xi>u}, so Yi returns an exceedance time, in the event that one takes place
at time i, and returns zero otherwise. The point process of exceedances is the process
N(·) with state space X = (0, n] given by N(A) = ∑n

i=1 I{Yi∈A} for A ⊂ X.
We assume that the point process N(·) is a self-exciting process with conditional

intensity
λ∗(t) = τ + ψ

∑
j :0<Tj<t

h(t − Tj , X̃j − u), (7.38)

where τ > 0, ψ � 0 and h is some positive-valued function. Each previous
exceedance (Tj , X̃j ) contributes to the conditional intensity and the amount that it
contributes can depend on both the elapsed time (t − Tj ) since that exceedance and
the amount of the excess loss (X̃j − u) over the threshold. Informally, we understand
the conditional intensity as expressing the instantaneous chance of a new exceedance
of the threshold at time t , like the rate or intensity of an ordinary Poisson process.
However, in the self-exciting model, the conditional intensity is itself a stochastic
process which depends on ω, the state of nature, through the history of threshold
exceedances up to (but not including) time t .

Possible parametric specifications of the h function are

• h(s, x) = exp(δx − γ s), where δ, γ > 0; or

• h(s, x) = exp(δx)(s + γ )−(ρ+1), where δ, γ, ρ > 0.

Collecting all parameters in θ , the likelihood takes the form

L(θ; data) = exp

(
−
∫ n

0
λ∗(s) ds

) Nu∏
i=1

λ∗(Ti),

and may be maximized numerically to obtain parameter estimates.

Example 7.41 (S&P daily percentage losses 1996–2003). We apply the self-
exciting process methodology to all daily percentage losses incurred by the Standard
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Figure 7.13. (a) S&P daily percentage loss data. (b) Two hundred largest losses. (c) A
QQplot of inter-exceedance times against an exponential reference distribution. (d) The esti-
mated intensity of exceeding the threshold in a self-exciting model. See Example 7.41 for
details.

& Poor’s index in the eight-year period 1996–2003 (2078 values). In Figure 7.13 the
loss data are shown as well as the point process of the 200 largest daily losses exceed-
ing a threshold of 1.50%. Clearly, there is clustering in the pattern of exceedance
data and the QQplot shows that the inter-exceedance times are not exponential.

We fit the simpler self-exciting model with h(s, x) = exp(δx − γ s). The param-
eter estimates (and standard errors) are τ̂ = 0.032(0.011), ψ̂ = 0.016(0.0069),
γ̂ = 0.026(0.011), δ̂ = 0.13(0.27), suggesting that all parameters except δ are
significant. The log-likelihood for the fitted model is −648.2, whereas the log-
likelihood for a homogeneous Poisson model is −668.2; thus the Poisson special
case can clearly be rejected. The final picture shows the estimated intensity λ∗(t)
of crossing the threshold throughout the data observation period, which seems to
reflect the pattern of exceedances observed.

Note that a simple refinement of this model (and those of the following section)
would be to consider a self-exciting structure where both extreme negative and
extreme positive returns contributed to the conditional intensity; this would involve
setting upper and lower thresholds and considering exceedances of both.

7.4.4 A Self-Exciting POT Model

We now consider how the POT model of Section 7.4.2 might be generalized to
incorporate a self-exciting component.We first develop a marked self-exciting model
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where marks have a generalized Pareto distribution, but are unpredictable, meaning
that the excess losses are iid GPD. In the second model we consider the case of
predictable marks. In this model the excess losses are conditionally generalized
Pareto, given the exceedance history up to the time of the mark, with a scaling
parameter that depends on that history. In this way we get a model where, in a
period of excitement, both the temporal intensity of occurrence and the magnitude
of the exceedances increase.

In point process language our models are processes N(·) on a state space of the
form X = (0, n] × (u,∞) such that N(A) = ∑n

i=1 I{(i,Xi)∈A} for sets A ⊂ X. To
build these models we start with the intensity of the reparametrized version of the
standard POT model given in (7.37). We recall that this model simply says that
exceedances of the threshold u occur as a homogeneous Poisson process with rate τ
and that excesses have a generalized Pareto distribution with df Gξ,β .

Model with unpredictable marks. We first introduce the notation v∗(t) =∑
j :0<Tj<th(t − Tj , X̃j − u) for the self-excitement function, where the function h

is as in Section 7.4.3. We generalize (7.37) and consider a self-exciting model with
conditional intensity

λ∗(t, x) = τ + ψv∗(t)
β

(
1 + ξ

x − u

β

)−1/ξ−1

(7.39)

on a state space X = (0, n] × (u,∞), where τ > 0 and ψ � 0. Effectively, we
have combined the one-dimensional intensity in (7.38) with a GPD density. When
ψ = 0 we have an ordinary POT model with no self-exciting structure.

It is easy to calculate that the conditional rate of crossing the threshold x � u at
time t , given information up to that time, is

τ ∗(t, x) =
∫ ∞

x

λ∗(t, y) dy = (τ + ψv∗(t))
(

1 + ξ
x − u

β

)−1/ξ

, (7.40)

which, for fixed x, is simply a one-dimensional self-exciting process of the form
(7.38). The implied distribution of the excess losses when an exceedance takes place
is generalized Pareto, because

τ ∗(t, u + x)

τ ∗(t, u)
=
(

1 + ξx

β

)−1/ξ

= Ḡξ,β(x), (7.41)

independently of t . Statistical fitting of this model is performed by maximizing a
likelihood of the form

L(θ; data) = exp

(
− nτ − ψ

∫ n

0
v∗(s) ds

) Nu∏
j=1

λ∗(Tj , X̃j ). (7.42)

A model with predictable marks. A model with predictable marks can be obtained
by generalizing (7.39) to get

λ∗(t, x) = τ + ψv∗(t)
β + αv∗(t)

(
1 + ξ

x − u

β + αv∗(t)

)−1/ξ−1

, (7.43)
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where β > 0 and α � 0. For simplicity we have assumed that the GPD scaling is
also linear in the self-excitement function v∗(t). The properties of this model follow
immediately from the model with unpredictable marks. The conditional crossing
rate of the threshold x � u at time t is as in (7.40) with the parameter β replaced by
the time-dependent self-exciting function β + αv∗(t). By repeating the calculation
in (7.41) we find that the distribution of the excess loss over the threshold, given
that an exceedance takes place at time t and given the history of exceedances up
to time t , is generalized Pareto with df Gξ,β+αv∗(t). The likelihood for fitting the
model is again (7.42), where the function λ∗(t, x) is now given by (7.43). Note that
by comparing a model with α = 0 and a model with α > 0 we can formally test the
hypothesis that the marks are unpredictable using a likelihood ratio test

Example 7.42 (self-exciting POT model for S&P daily loss data). We continue
the analysis of the data of Example 7.41 by fitting self-exciting POT models with
both unpredictable and predictable marks to the 200 exceedances of the threshold
u = 1.5%. The former is equivalent to fitting a self-exciting model to the exceedance
times as in Example 7.41 and then fitting a GPD to the excess losses over the
threshold; thus the estimated intensity of crossing the threshold is identical to the
one shown in Figure 7.13. The log-likelihood for this model is −783.4, whereas a
model with predictable marks gives a value of −779.3 for one extra parameter α;
in a likelihood ratio test the p-value is 0.004, showing a significant improvement.

In Figure 7.14 we show the exceedance data as well as the estimated intensity
τ ∗(t, u) of exceeding the threshold in the model with predictable marks. We also
show the estimated mean of the GPD for the conditional distribution of the excess
loss above the threshold, given that an exceedance takes place at time t . The GPD
mean (β + αv∗(t))/(1 − ξ) and the intensity τ ∗(t, u) are both affine functions of
the self-excitement function v∗(t) and obviously follow its path.

Calculating conditional risk measures. Finally, we note that self-exciting POT
models can be used to estimate a kind of analogue of a conditional VaR and also
a conditional expected shortfall. If we have analysed n daily data ending on day t

and want to calculate, say, a 99% VaR, then we treat the problem as a (conditional)
return-level problem; we look for the level at which the conditional exceedance
intensity at a time point just after t (denoted by t+) is 0.01. In general, to calculate
a conditional estimate of VaRt

α (for α sufficiently large) we would attempt to solve
the equation τ ∗(t+, x) = (1 − α) for some value of x satisfying x � u. In the
model with predictable marks this is possible if τ + ψv∗(t+) > 1 − α and gives
the formula

VaRt
α = u + β + αv∗(t+)

ξ

((
1 − α

τ + ψv∗(t+)

)−ξ

− 1

)
.

The associated conditional expected shortfall could then be calculated by observing
that the conditional distribution of excess losses above VaRt

α given information up to
time t is GPD with shape parameter ξ and scaling parameter given by β+αv∗(t+)+
ξ(VaRt

α −u).
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Figure 7.14. (a) Exceedance pattern for 200 largest daily losses in S&P data. (b) Estimated
intensity of exceeding the threshold in a self-exciting POT model with predictable marks.
(c) Mean of the conditional generalized Pareto distribution of the excess loss above the
threshold. See Example 7.42 for details.

Notes and Comments

For more information about point processes consult EKM, Cox and Isham (1980),
Kallenberg (1983) and Resnick (1987). The point process approach to extremes
dates back to Pickands (1971) and is also discussed in Leadbetter, Lindgren and
Rootzén (1983), Leadbetter (1991) and Falk, Hüsler and Reiss (1994).

The two-dimensional Poisson point process model was first used in practice by
Smith (1989) and may also be found in Smith and Shively (1995); both these papers
discuss the adaptation of the point process model to incorporate covariates or time
trends in the context of environmental data. An insurance application is treated
in Smith and Goodman (2000), which also treats the point process model from a
Bayesian perspective. An interesting application to wind storm losses is Rootzén
and Tajvidi (1997). A further application of the bivariate point process framework to
model insurance loss data showing trends in both intensity and severity of occurrence
is found in McNeil and Saladin (2000). For further applications to insurance and
finance, see Chavez-Demoulin and Embrechts (2004). An excellent overview of
statistical approaches to the GPD and point process models is found in Coles (2001).

The derivation of likelihoods for point process is beyond the scope of this book
and we have simply recorded the likelihoods to be maximized without further justifi-
cation. See Daley and Vere-Jones (2003, Chapter 7) for more details on this subject;
see also Coles (2001, p. 127) for a good intuitive account in the Poisson case.

The original reference to the Hawkes self-exciting process is Hawkes (1971).
There is a large literature on the application of such processes to earthquake mod-
elling; a starter reference is Ogata (1988). The application to financial data was
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suggested in Chavez-Demoulin, Davison and McNeil (2005). The idea of a POT
model with self-exciting structure explored in Section 7.4.4 is new.

7.5 Multivariate Maxima

In this section we give a brief overview of the theory of multivariate maxima, stating
the main results in terms of copulas. A class of copulas known as extreme value cop-
ulas emerges as the class of natural limiting dependence structures for multivariate
maxima. These provide useful dependence structures for modelling the joint tail
behaviour of risk factors that appear to show tail dependence. The main reference
is Galambos (1987), which is one of the few texts to treat the theory of multivariate
maxima as a copula theory (although Galambos does not use the word, referring to
copulas simply as dependence functions).

7.5.1 Multivariate Extreme Value Copulas

Let X1, . . . ,Xn be iid random vectors in R
d with joint df F and marginal dfs

F1, . . . , Fd . We label the components of these vectors Xi = (Xi,1, . . . , Xi,d)
′ and

interpret them as losses of d different types. We define the maximum of the j th
component to be Mn,j = max(X1,j , . . . , Xn,j ), j = 1, . . . , d. In classical multi-
variate EVT the object of interest is the vector of componentwise block maxima:
Mn = (Mn,1, . . . ,Mn,d)

′. In particular, we are interested in the possible multivariate
limiting distributions for Mn under appropriate normalizations, much as in the uni-
variate case. It should, however, be observed that the vector Mn will in general not
correspond to any of the vector observations Xi .

We seek limit laws for

Mn − dn

cn
=
(
Mn,1 − dn,1

cn,1
, . . . ,

Mn,d − dn,d

cn,d

)′
,

as n → ∞, where cn = (cn,1, . . . , cn,d)
′ and dn = (dn,1, . . . , dn,d)

′ are vec-
tors of normalizing constants, the former satisfying cn > 0. Note that in this and
other statements in this section, arithmetic operations on vectors of equal length are
understood as componentwise operations. Supposing that (Mn − dn)/cn converges
in distribution to a random vector with joint df H , we have

lim
n→∞P

(
Mn − dn

cn
� x

)
= lim

n→∞Fn(cnx + dn) = H(x). (7.44)

Definition 7.43 (MEV distribution and domain of attraction). If (7.44) holds
for some F and some H , we say that F is in the maximum domain of attraction
of H , written F ∈ MDA(H), and we refer to H as a multivariate extreme value
distribution (MEV distribution).

The convergence issue for multivariate maxima is already partly solved by the
univariate theory. If H has non-degenerate margins, then these must be univariate
extreme value distributions of Fréchet, Gumbel or Weibull type. Since these are con-
tinuous, Sklar’s Theorem tells us that H must have a unique copula. The following
theorem asserts that this copula C must have a particular kind of scaling behaviour.
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Theorem 7.44 (EV copula). If (7.44) holds for some F and some H with GEV
margins, then the unique copula C of H satisfies

C(ut ) = Ct(u), ∀t > 0. (7.45)

Any copula with the property (7.45) is known as an extreme value copula (EV cop-
ula) and can be the copula of an MEV distribution. The independence and comono-
tonicity copulas are EV copulas and the Gumbel copula provides an example of a
parametric EV copula family. The bivariate version in (5.11) obviously has prop-
erty (7.45), as does the exchangeable higher-dimensional Gumbel copula based
on (5.38) as well as the non-exchangeable versions based on (5.43)–(5.45).

There are a number of mathematical results characterizing MEV distributions and
EV copulas. One such result is the following.

Theorem 7.45 (Pickands representation). The copula C is an EV copula if and
only if it has the representation

C(u) = exp

{
B

(
ln u1∑d
k=1 ln uk

, . . . ,
ln ud∑d
k=1 ln uk

) d∑
i=1

ln ui

}
, (7.46)

where B(w) = ∫
Sd

max(x1w1, . . . , xdwd) dH(x) and H is a finite measure on the
d-dimensional simplex, i.e. the set Sd = {x : xi � 0, i = 1, . . . , d,

∑d
i=1 xi = 1}.

The functionB(w) is sometimes referred to as the dependence function of the EV
copula. In the general case, such functions are difficult to visualize and work with,
but in the bivariate case they have a simple form which we discuss in more detail.

In the bivariate case we redefine B(w) as a function of a scalar argument by
setting A(w) := B((w, 1−w)′) with w ∈ [0, 1]. It follows from Theorem 7.45 that
a bivariate copula is an EV copula if and only if it takes the form

C(u1, u2) = exp

{
(ln u1 + ln u2)A

(
ln u1

ln u1 + ln u2

)}
, (7.47)

where A(w) = ∫ 1
0 max((1 − x)w, x(1 − w)) dH(x) for a measure H on [0, 1]. It

can be inferred that such bivariate dependence functions must satisfy

max(w, 1 − w) � A(w) � 1, 0 � w � 1, (7.48)

and must moreover be convex. Conversely, a differentiable, convex function A(w)

satisfying (7.48) can be used to construct an EV copula using (7.47).
The upper and lower bounds in (7.48) have intuitive interpretations. If A(w) = 1

for all w, then the copula (7.47) is clearly the independence copula, and if A(w) =
max(w, 1−w), then it is the comonotonicity copula. It is also useful to note, and easy
to show, that we can extract the dependence function from the EV copula in (7.47)
by setting

A(w) = − lnC(e−w, e−(1−w)), w ∈ [0, 1]. (7.49)

Example 7.46 (Gumbel copula). We consider the asymmetric version of the bivari-
ate Gumbel copula defined by (5.11) and construction (5.43), i.e. the copula

CGu
θ,α,β(u1, u2) = u1−α

1 u
1−β
2 exp{−((−α ln u1)

θ + (−β ln u2)
θ )1/θ }.
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Figure 7.15. Plot of dependence functions for (a) the symmetric Gumbel, (b) the asymmetric
Gumbel, (c) the symmetric Galambos and (d) the asymmetric Galambos copulas (asymmetric
cases have α = 0.9 and β = 0.8) as described in Examples 7.46 and 7.47. Dashed lines show
boundaries of the triangle in which the dependence function must reside; solid lines show
dependence functions for a range of parameter values.

As already remarked, this copula has the scaling property (7.45) and is an EV copula.
Using (7.49) we calculate that the dependence function is given by

A(w) = (1 − α)w + (1 − β)(1 − w) + ((αw)θ + (β(1 − w))θ )1/θ .

We have plotted this function in Figure 7.15 for a range of θ values running from 1.1
to 10 in steps of size 0.1. Part (a) shows the standard symmetric Gumbel copula with
α = β = 1; the dependence function essentially spans the whole range from inde-
pendence, represented by the upper edge of the dashed triangle, to comonotonicity,
represented by the two lower edges of the dashed triangle which comprise the func-
tion A(w) = max(w, 1 −w). Part (b) shows an asymmetric example with α = 0.9
and β = 0.8; in this case we still have independence when θ = 1, but the limit as
θ → ∞ is no longer the comonotonicity model. The Gumbel copula model is also
sometimes known as the logistic model.

Example 7.47 (Galambos copula). This time we begin with the dependence func-
tion given by

A(w) = 1 − ((αw)−θ + (β(1 − w))−θ )−1/θ , (7.50)

where 0 � α, β � 1 and 0 < θ < ∞. It can be verified that this is a convex function
satisfying max(w, 1 − w) � A(w) � 1 for 0 � w � 1, so it can be used to create
an EV copula in (7.47). We obtain the copula

CGal
θ,α,β(u1, u2) = u1u2 exp{((−α ln u1)

−θ + (−β ln u2)
−θ )−1/θ },



314 7. Extreme Value Theory

which has also been called the negative logistic model. We have plotted this function
in Figure 7.15 for a range of θ values running from 0.2 to 5 in steps of size 0.1.
Part (c) shows the standard symmetric case with α = β = 1 spanning the whole
range from independence to comonotonicity. Part (d) shows an asymmetric example
with α = 0.9 and β = 0.8; in this case we still approach independence as θ → 0,
but the limit as θ → ∞ is no longer the comonotonicity model.

A number of other bivariate EV copulas have been described in the literature (see
Notes and Comments).

7.5.2 Copulas for Multivariate Minima

The structure of limiting copulas for multivariate minima can be easily inferred from
the structure of limiting copulas for multivariate maxima; moving from maxima to
minima essentially involves the same considerations that we made at the end of
Section 7.1.1 and uses identity (7.2) in particular.

Normalized componentwise minima of iid random vectors X1, . . . ,Xn with df
F will converge in distribution to a non-degenerate limit if the df F̃ of the ran-
dom vectors −X1, . . . ,−Xn is in the maximum domain of attraction of an MEV
distribution (see Definition 7.43), written F̃ ∈ MDA(H). Of course, for a radially
symmetric distribution, F̃ coincides with F .

Let M∗
n be the vector of componentwise maxima of −X1, . . . ,−Xn so that

M∗
n,j = max(−X1,j , . . . ,−Xn,j ). If F̃ ∈ MDA(H) for some non-degenerate H ,

we have

lim
n→∞P

(
M∗

n − dn

cn
� x

)
= lim

n→∞ F̃ n(cnx + dn) = H(x) (7.51)

for appropriate sequences of normalizing vectors cn and dn, and an MEV distribu-
tion H of the form H(x) = C(Hξ1(x1), . . . , Hξd (xd)), where Hξj denotes a GEV
distribution with shape parameter ξj and C is an EV copula satisfying (7.45).

Defining the vector of componentwise minima by mn and using (7.2), it follows
from (7.51) that

lim
n→∞P

(
mn + dn

cn
� x

)
= H(−x),

so that normalized minima converge in distribution to a limit with survival function
H(−x) = C(Hξ1(−x1), . . . , Hξd (−xd)). It follows that the copula of the limiting
distribution of the minima is the survival copula ofC (see Section 5.1.5 for discussion
of survival copulas). In general, the limiting copulas for minima are survival copulas
of EV copulas and concrete examples of such copulas are the Gumbel and Galambos
survival copulas.

In the special case of a radially symmetric underlying distribution, the limiting
copula of the minima is precisely the survival copula of the limiting EV copula of
the maxima.

7.5.3 Copula Domains of Attraction

As in the case of univariate maxima we would like to know which underlying
multivariate dfs F are attracted to which MEV distributions H . We now give a
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useful result in terms of copulas which is essentially due to Galambos (see Notes
and Comments).

Theorem 7.48. Let F(x) = C(F1(x1), . . . , Fd(xd)) for continuous marginal dfs
F1, . . . , Fd and some copula C. Let H(x) = C0(H1(x1), . . . , Hd(xd)) be an MEV
distribution with EV copula C0. Then F ∈ MDA(H) if and only if Fi ∈ MDA(Hi)

for 1 � i � d and

lim
t→∞Ct(u

1/t
1 , . . . , u

1/t
d ) = C0(u1, . . . , ud), u ∈ [0, 1]d . (7.52)

This result shows that the copula C0 of the limiting MEV distribution is deter-
mined solely by the copula C of the underlying distribution according to (7.52); the
marginal distributions of F determine the margins of the MEV limit but are irrele-
vant to the determination of its dependence structure. This motivates us to introduce
the concept of a copula domain of attraction.

Definition 7.49. If (7.52) holds for some C and some EV copula C0, we say that
C is in the copula domain of attraction of C0, written C ∈ CDA(C0).

There are a number of equivalent ways of writing (7.52). First, by taking log-
arithms and using the asymptotic identity ln(x) ∼ x − 1 as x → 1, we get, for
u ∈ (0, 1]d ,

lim
t→∞ t (1 − C(u

1/t
1 , . . . , u

1/t
d )) = − lnC0(u1, . . . , ud),

lim
s→0+

1 − C(us1, . . . , u
s
d)

s
= − lnC0(u1, . . . , ud).

⎫⎪⎬⎪⎭ (7.53)

By inserting ui = exp(−xi) in the latter identity and using exp(−sx) ∼ 1 − sx as
s → 0, we get, for x ∈ [0,∞)d ,

lim
s→0+

1 − C(1 − sx1, . . . , 1 − sxd)

s
= − lnC0(e

−x1 , . . . , e−xd ). (7.54)

Example 7.50 (limiting copula for bivariate Pareto distribution). In Exam-
ple 5.12 we saw that the bivariate Pareto distribution has univariate Pareto margins
Fi(x) = 1 − (κi/(κi + x))α and Clayton survival copula. It follows from Exam-
ple 7.6 that Fi ∈ MDA(H1/α), i = 1, 2. Using (5.14) the Clayton survival copula is
calculated to be C(u1, u2) = u1 + u2 − 1 + ((1 − u1)

−1/α + (1 − u2)
−1/α − 1)−α .

Using (7.54) it is easily calculated that C0(u1, u2) = u1u2 exp(((− ln u1)
−1/α +

(− ln u2)
−1/α)−α), which is the standard exchangeable Galambos copula of Exam-

ple 7.47. Thus the limiting distribution of maxima consists of two Fréchet dfs con-
nected by the Galambos copula.

The coefficients of upper tail dependence play an interesting role in the copula
domain of attraction theory. In particular, they can help us to recognize copulas that
lie in the copula domain of attraction of the independence copula.

Proposition 7.51. LetC be a bivariate copula with upper tail-dependence coefficient
λu and assume that C satisfies C ∈ MDA(C0) for some EV copula C0. Then λu

is also the upper tail-dependence coefficient of C0 and is related to its dependence
function by λu = 2(1 − A( 1

2 )).
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Proof. We use (5.28) and (5.14) to see that

λu = lim
q→1−

Ĉ(1 − q, 1 − q)

1 − q
= 2 − lim

q→1−
1 − C(q, q)

1 − q
.

By using the asymptotic identity ln x ∼ x−1 asx → 1 and the CDA condition (7.53)
we can calculate

lim
q→1−

1 − C0(q, q)

1 − q
= lim

q→1−
lnC0(q, q)

ln q
= lim

q→1− lim
s→0+

1 − C(qs, qs)

−s ln q

= lim
q→1− lim

s→0+
1 − C(qs, qs)

− ln(qs)

= lim
v→1−

1 − C(v, v)

1 − v
,

which shows that C and C0 share the same coefficient of upper tail dependence.
Using the formula λu = 2− limq→1− lnC0(q, q)/ ln q and the representation (7.47)
we easily obtain that λu = 2(1 − A( 1

2 )).

In the case whenλu = 0 we must haveA( 1
2 ) = 1, and the convexity of dependence

functions dictates that A(w) is identically one, so C0 must be the independence
copula. In the higher-dimensional case this is also true: if C is a d-dimensional
copula with all upper tail-dependence coefficients equal to zero, then the bivariate
margins of the limiting copula C0 must all be independence copulas, and, in fact,
it can be shown that C0 must therefore be the d-dimensional independence copula
(see Notes and Comments).

As an example consider the limiting distribution of multivariate maxima of Gaus-
sian random vectors. Since the pairwise coefficients of tail dependence of Gaussian
vectors are zero (see Example 5.32), the limiting distribution is a product of marginal
Gumbel distributions. The convergence is extremely slow, but ultimately normalized
componentwise maxima are independent in the limit.

Now consider the multivariate t distribution, which has been an important model
throughout this book. If X1, . . . ,Xn are iid random vectors with a td (ν,µ,Σ)

distribution, we know from Example 7.29 that univariate maxima of the individual
components are attracted to univariate Fréchet distributions with parameter 1/ν.
Moreover, we know from Example 5.33 that tail dependence coefficients for the
t copula are strictly positive; the limiting EV copula cannot be the independence
copula.

In fact, the limiting EV copula for t-distributed random vectors can be calculated
using (7.54), although the calculations are tedious. In the bivariate case it is found
that the limiting copula, which we call the t-EV copula, has dependence function

A(w) = wtν+1

(
(w/(1 − w))1/ν − ρ√
(1 − ρ2)/(ν + 1)

)
+ (1 − w)tν+1

(
((1 − w)/w)1/ν − ρ√
(1 − ρ2)/(ν + 1)

)
,

(7.55)
where ρ is the off-diagonal component of P = ℘(Σ). This dependence function
is shown in Figure 7.16 for four different values of ν and ρ values ranging from
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Figure 7.16. Plots of dependence function for the t-EV copula for (a) ν = 2,
(b) ν = 4, (c) ν = 10 and (d) ν = 20, and with various values of ρ.

−0.5 to 0.9 with increments of 0.1. As ρ → 1 the t-EV copula converges to the
comonotonicity copula; as ρ → −1 or as ν → ∞ it converges to the independence
copula.

7.5.4 Modelling Multivariate Block Maxima

A multivariate block maxima method analogous to the univariate method of Sec-
tion 7.1.4 could be developed, although similar criticisms apply, namely that the
block maxima method is not the most efficient way of making use of extreme data.
Also, the kind of inference that this method allows may not be exactly what is desired
in the multivariate case, as will be seen.

Suppose we divide our underlying data into blocks as before and we denote
the realizations of the block maxima vectors by Mn,1, . . . ,Mn,m, where m is the
total number of blocks. The distributional model suggested by the univariate and
multivariate maxima theory consists of GEV margins connected by an extreme value
copula.

In the multivariate theory there is, in a sense, a “correct” EV copula to use, which
is the copula C0 to which the copula C of the underlying distribution of the raw data
is attracted. However, the underlying copula C is unknown and so the approach is
generally to work with any tractable EV copula that appears appropriate for the task
in hand. In a bivariate application, if we restrict to exchangeable copulas, then we
have at our disposal the Gumbel, Galambos and t-EV copulas, and a number of other
possibilities for which references in Notes and Comments should be consulted. As
will be apparent from Figures 7.15 and 7.16, the essential functional form of all
these families is really very similar; it makes sense to work with either Gumbel
or Galambos as these have simple forms that permit a relatively easy calculation
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of the copula density (which is needed for likelihood inference). Even if the “true”
underlying copula were t , it would not really make sense to use the more complicated
t-EV copula, since the dependence function in (7.55) for any ν and ρ can be very
accurately approximated by the dependence function of a Gumbel copula.

The Gumbel copula also allows us to explore the possibility of asymmetry by using
the general non-exchangeable family described in Example 7.46. For applications in
dimensions higher than two, the higher-dimensional extensions of Gumbel discussed
in Sections 5.4.2 and 5.4.3 may be useful, although we should stress again that
multivariate extreme value models are best suited to low-dimensional applications.

Putting these considerations together, data on multivariate maxima could be mod-
elled using the df Hξ ,µ,σ ,θ (x) = Cθ (Hξ1,µ1,σ1(x1), . . . , Hξd ,µd ,σd (xd)) for some
tractable parametric EV copula Cθ . The usual method involves maximum likeli-
hood inference and the maximization can either be performed in one step for all
parameters of the margins and copula or broken into two steps, whereby marginal
models are estimated first and then a parametric copula is fitted using the ideas in
Sections 5.5.2 and 5.5.3. The following bivariate example gives an idea of the kind
of inference that can be made with such a model.

Example 7.52. LetM65,1 represent the quarterly maximum of daily percentage falls
of the US dollar against the euro and let M65,2 represent the quarterly maximum of
daily percentage falls of the US dollar against the yen. We define a stress event for
each of these daily return series: for the dollar against the euro we might be concerned
about a 4% fall in any one day; for the dollar against the yen we might be concerned
about a 5% fall in any one day. We want to estimate the unconditional probability
that one or both of these stress events occurs over any quarter. The probability p of
interest is given by p = 1 − P(M65,1 � 4%,M65,2 � 5%) and approximated by
1−Hξ ,µ,σ ,θ (0.04, 0.05), where the parameters are estimated from the block maxima
data. Of course, a more worrying scenario might be that both of these stress events
should occur on the same day. To calculate the probability of simultaneous extreme
events we require a different methodology, which is developed in Section 7.6.

Notes and Comments

Early works on distributions for bivariate extremes include Geffroy (1958),
Tiago de Oliveira (1958) and Sibuya (1960). A selection of further important papers
in the development of the subject include Galambos (1975), de Haan and Resnick
(1977), Balkema and Resnick (1977), Deheuvels (1980) and Pickands (1981). The
texts by Galambos (1987) and Resnick (1987) have both been influential; our pre-
sentation more closely resembles the former.

Theorem 7.44 is proved in Galambos (1987) (see Theorem 5.2.1 and Lemma 5.4.1
therein (see also Joe 1997, p. 173)). Theorem 7.45 is essentially a result of Pickands
(1981). A complete version of the proof is given in Theorem 5.4.5 of Galambos
(1987), although it is given in the form of a characterization of MEV distributions
with Gumbel margins. This is easily reformulated as a characterization of the EV
copulas. In the bivariate case necessary and sufficient conditions for A(w) in (7.47)
to define a bivariate EV copula are given in Joe (1997, Theorem 6.4).
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The copula of Example 7.47 appears in Galambos (1975). A good summary
of other bivariate and multivariate extreme value copulas is found in Kotz and
Nadarajah (2000); they are presented as MEV distributions with unit Fréchet margins
but the EV copulas are easily inferred from this presentation. See also Joe (1997,
Chapters 5 and 6), in which EV copulas and their higher-dimensional extensions
are discussed. Many parametric models for extremes have been suggested by Tawn
(1988, 1990).

Theorem 7.48 is found in Galambos (1987), where the necessary and sufficient
copula convergence criterion is given as limn→∞ Cn(u1/n) = C0(u) for positive
integers n; by noting that for any t > 0 we have the inequalities

C[t]+1(u1/[t]) � Ct(u1/t ) � C[t](u1/([t]+1)),

it can be inferred that this is equivalent to limt→∞ Ct(u1/t ) = C0(u). Further
equivalent CDA conditions are found in Takahashi (1994). The idea of a domain of
attraction of an EV copula also appears in Abdous, Ghoudi and Khoudraji (1999).
Not every copula is in a copula domain of attraction; a counterexample may be
found in Schlather and Tawn (2002).

We have shown that pairwise asymptotic independence for the components of
random vectors implies pairwise independence of the corresponding components
in the limiting MEV distribution of the maxima. Pairwise independence for an
MEV distribution in fact implies mutual independence, as recognized and described
by a number of authors: see Galambos (1987, Corollary 5.3.1), Resnick (1987,
Theorem 5.27), and the earlier work of Geffroy (1958) and Sibuya (1960).

7.6 Multivariate Threshold Exceedances

In this section we describe practically useful models for multivariate extremes
(again in low-dimensional applications) that build on the basic idea of modelling
excesses over high thresholds with the generalized Pareto distribution (GPD) as
in Section 7.2. The idea is to use GPD-based tail models of the kind discussed in
Section 7.2.3 together with appropriate copulas to obtain models for multivariate
threshold exceedances.

7.6.1 Threshold Models Using EV Copulas

Assume that the vectors X1, . . . ,Xn have unknown joint distribution F(x) =
C(F1(x1), . . . , Fd(xd)) for some unknown copula C and margins F1, . . . , Fd , and
that F is in the domain of attraction of an MEV distribution. Much as in the univari-
ate case we would like to approximate the upper tail of F(x) above some vector of
high thresholds u = (u1, . . . , ud)

′. The univariate theory of Sections 7.2.2 and 7.2.3
tells us that, for xj � uj and uj high enough, the tail of the marginal distribution
Fj may be approximated by a GPD-based functional form

F̃j (xj ) = 1 − λj

(
1 + ξj

xj − uj

βj

)−1/ξj
, (7.56)
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where λj = F̄j (uj ). This suggests that for x � u we use the approximation
F(x) ≈ C(F̃1(x1), . . . , F̃d(xd)). But C is also unknown and must itself be approx-
imated in the tail. The following heuristic argument suggests that we should be able
to replace C by its limiting copula C0.

The CDA condition (7.52) suggests that for any value v ∈ (0, 1)d and t sufficiently
large we may make the approximation C(v1/t ) ≈ C

1/t
0 (v). If we now write w =

v1/t , we have
C(w) ≈ C

1/t
0 (wt ) = C0(w), (7.57)

by the scaling property of EV copulas. The approximation (7.57) will be best for
large values of w, since v1/t → 1 as t → ∞.

We assume then that we can substitute the copula C with its EV limit C0 in the
tail, and this gives us the overall model

F̃ (x) = C0(F̃1(x1), . . . , F̃d(xd)), x � u. (7.58)

We complete the model specification by choosing a flexible and tractable parametric
EV copula for C0. As before, the Gumbel copula family is particularly convenient.

7.6.2 Fitting a Multivariate Tail Model

Assume we have observations X1, . . . ,Xn from a df F with a tail that permits the
approximation (7.58). Of these observations, only a minority are likely to be in the
joint tail (x � u); other observations may exceed some of the individual thresholds
but lie below others. The usual way of making inferences about all the parameters of
such a model (the marginal parameters ξj , βj , λj , for j = 1, . . . , d, and the copula
parameter (or parameter vector) θ ) is to maximize a likelihood for censored data.

Let us suppose that mi components of the data vector Xi exceed their respective
thresholds in the vector u. The only relevant information that the remaining compo-
nents convey is that they lie below their thresholds; such a component Xi,j is said
to be censored at the value uj . The contribution to the likelihood of Xi is given by

Li = Li(ξ ,β,λ, θ; Xi ) = ∂mi F̃ (x1, . . . , xd)

∂xj1 · · · ∂xjmi

∣∣∣∣
max(Xi ,u)

,

where the indices j1, . . . , jmi
are those of the components of Xi exceeding their

thresholds.
For example, in a bivariate model with Gumbel copula (5.11) the likelihood

contribution would be

Li =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
CGu
θ (1 − λ1, 1 − λ2), Xi,1 � u1, Xi,2 � u2,

CGu
θ,1(F̃1(Xi,1), 1 − λ2)f̃1(Xi,1), Xi,1 > u1, Xi,2 � u2,

CGu
θ,2(1 − λ1, F̃2(Xi,2))f̃2(Xi,2), Xi,1 � u1, Xi,2 > u2,

cGu
θ (F̃1(Xi,1), F̃2(Xi,2))f̃1(Xi,1)f̃2(Xi,2), Xi,1 > u1, Xi,2 > u2,

(7.59)
where f̃j denotes the density of the univariate tail model F̃j in (7.56), cGu

θ (u1, u2)

denotes the Gumbel copula density and CGu
θ,j (u1, u2) := (∂/∂uj )C

Gu
θ (u1, u2)
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Table 7.3. Parameter estimates and standard errors (in brackets) for a bivariate
tail model fitted to exchange-rate return data; see Example 7.53 for details.

$/€ $/�

u 0.75 1.00
Nu 189 126
λ 0.094 (0.0065) 0.063 (0.0054)
ξ −0.049 (0.066) 0.095 (0.11)
β 0.33 (0.032) 0.38 (0.053)
θ 1.10 (0.030)

denotes a conditional distribution of the copula, as in (5.15). The overall likelihood
is a product of such contributions and is maximized with respect to all parameters
of the marginal models and copula.

In a simpler approach, parameters of the marginal GPD models could be estimated
as in Section 7.2.3 and only the parameters of the copula obtained from the above
likelihood. In fact this is also a sensible way of getting starting values before going
on to the global maximization over all parameters.

The model described by the likelihood (7.59) has been studied in some detail
by Ledford and Tawn (1996) and a number of related models have been studied in
the statistical literature on multivariate EVT (see Notes and Comments for more
details).

Example 7.53 (bivariate tail model for exchange-rate return data). We analyse
daily percentage falls in the value of the US dollar against the euro and the Japanese
yen, taking data for the eight-year period 1996–2003. We have 2008 daily returns
and choose to set thresholds at 0.75% and 1.00%, giving 189 and 126 exceedances,
respectively. In a full maximization of the likelihood over all parameters, we obtained
the estimates and standard errors shown in Table 7.3. The value of the maximized
log-likelihood is −1064.7, compared with −1076.4 in a model where independence
in the tail is assumed (i.e. a Gumbel copula with θ = 1), showing strong evidence
against an independence assumption.

We can now use the fitted model (7.58) to make various calculations about stress
events. For example, an estimate of the probability that on any given day the dollar
falls by more than 2% against both currencies is given by

p12 := 1 − F̃1(2.00) − F̃2(2.00) + CGu
θ (F̃1(2.00), F̃2(2.00)) = 0.000 315,

with F̃j as in (7.56), making this approximately a 13-year event (assuming 250 trad-
ing days per year). The marginal probabilities of falls in value of this magnitude are
p1 := 1 − F̃1(2.00) = 0.0014 and p2 := 1 − F̃2(2.00) = 0.0061. We can use this
information to calculate so-called spillover probabilities for the conditional occur-
rence of stress events; for example, the probability that the dollar falls 2% against
the yen given that it falls 2% against the euro is estimated to be p12/p1 = 0.23.
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7.6.3 Threshold Copulas and Their Limits

Another, more recent, approach to multivariate extremes looks explicitly at the kind
of copulas we get when we condition observations to lie above or below extreme
thresholds. Just as the GPD is a natural limiting model for univariate threshold
exceedances, so we can find classes of copula that are natural limiting models for
the dependence structure of multivariate exceedances.

The theory has been studied in most detail in the case of exchangeable bivariate
copulas, and we concentrate on this case. Moreover, it proves slightly easier to
switch our focus at this stage and first consider the lower-left tail of a probability
distribution, before showing how the theory is adapted to the upper-right tail.

Lower threshold copulas and their limits. Consider a random vector (X1, X2)

with continuous margins F1 and F2 and an exchangeable copula C. We consider
the distribution of (X1, X2) conditional on both being below their v-quantiles, an
event we denote by Av = {X1 � F←

1 (v),X2 � F←
2 (v)}, 0 < v � 1. Assuming

C(v, v) �= 0, the probability that X1 lies below its x1-quantile and X2 lies below its
x2-quantile conditional on this event is

P(X1 � F←
1 (x1),X2 � F←

2 (x2) | Av) = C(x1, x2)

C(v, v)
, x1, x2 ∈ [0, v].

Considered as a function of x1 and x2 this defines a bivariate df on [0, v]2, and by
Sklar’s Theorem we can write

C(x1, x2)

C(v, v)
= C0

v (F(v)(x1), F(v)(x2)), x1, x2 ∈ [0, v], (7.60)

for a unique copula C0
v and continuous marginal distribution functions

F(v)(x) = P(X1 � F←
1 (x) | Av) = C(x, v)

C(v, v)
, 0 � x � v. (7.61)

This unique copula may be written as

C0
v (u1, u2) = C(F←

(v)(u1), F
←
(v)(u2))

C(v, v)
, (7.62)

and will be referred to as the lower threshold copula ofC at level v. Juri andWüthrich
(2002), who developed the approach we describe in this section, refer to it as a lower
tail dependence copula (LTDC). It is of interest to attempt to evaluate limits for this
copula as v → 0; such a limit will be known as a limiting lower threshold copula.

Much like the GPD in Example 7.19, limiting lower threshold copulas must pos-
sess a stability property under the operation of calculating lower threshold copulas
in (7.62). A copula C is a limiting lower threshold copula if, for any threshold
0 < v � 1, it satisfies

C0
v (u1, u2) = C(u1, u2). (7.63)

Example 7.54 (Clayton copula as limiting lower threshold copula). For the
standard bivariate Clayton copula in (5.12) we can easily calculate thatF(v) in (7.61)
is

F(v)(x) = (x−θ + v−θ − 1)−1/θ

(2v−θ − 1)−1/θ , 0 � x � v,



7.6. Multivariate Threshold Exceedances 323

and its inverse is

F←
(v)(u) = u(2v−θ − 1 + uθ (1 − v−θ ))−1/θ , 0 � u � 1.

Thus the lower threshold copula for the Clayton copula can be calculated from (7.62)
and it may be verified that this is again the Clayton copula. In other words, the Clayton
copula is a limiting lower threshold copula because (7.63) holds.

Upper threshold copulas. To define upper threshold copulas we consider again a
random vector (X1, X2)with copulaC and marginsF1 andF2. We now condition on
the event Āv = {X1 > F←

1 (v), X2 > F←
2 (v)} for 0 � v < 1. We have the identity

P(X1 > F←
1 (x1),X2 > F←

2 (x2) | Āv) = C̄(x1, x2)

C̄(v, v)
, x1, x2 ∈ [v, 1].

Since C̄(x1, x2)/C̄(v, v) defines a bivariate survival function on [v, 1]2, by (5.13)
we can write

C̄(x1, x2)

C̄(v, v)
= Ĉ1

v (Ḡ(v)(x1), Ḡ(v)(x2)), x1, x2 ∈ [v, 1], (7.64)

for some survival copula Ĉ1
v of a copula C1

v and marginal survival functions

Ḡ(v)(x) = P(X1 > F←
1 (x) | Āv) = C̄(x, v)

C̄(v, v)
, v � x � 1. (7.65)

The copula C1
v is known as the upper threshold copula at level v and it is now

of interest to find limits as v → 1, which are known as limiting upper threshold
copulas. In fact, as the following lemma shows, it suffices to study either lower or
upper threshold copulas because results for one follow easily from results for the
other.

Lemma 7.55. The survival copula of the upper threshold copula of C at level v is
the lower threshold copula of Ĉ at level 1 − v.

Proof. We use the identity C̄(u1, u2) = Ĉ(1 − u1, 1 − u2) and (7.65) to rewrite
(7.64) as

Ĉ(1 − x1, 1 − x2)

Ĉ(1 − v, 1 − v)
= Ĉ1

v

(
Ĉ(1 − x1, 1 − v)

Ĉ(1 − v, 1 − v)
,
Ĉ(1 − v, 1 − x2)

Ĉ(1 − v, 1 − v)

)
.

Writing y1 = 1 − x1, y2 = 1 − x2 and w = 1 − v we have

Ĉ(y1, y2)

Ĉ(w,w)
= Ĉ1

1−w

(
Ĉ(y1, w)

Ĉ(w,w)
,
Ĉ(w, y2)

Ĉ(w,w)

)
, y1, y2 ∈ [0, w],

and comparison with (7.60) and (7.61) shows that Ĉ1
1−w must be the lower threshold

copula of Ĉ at the level w = 1 − v.

It follows that the survival copulas of limiting lower threshold copulas are limiting
upper threshold copulas. The Clayton survival copula is a limiting upper threshold
copula.
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Relationship between limiting threshold copulas and EV copulas. We give one
result which shows how limiting upper threshold copulas may be calculated for
underlying exchangeable copulasC that are in the domain of attraction of EV copulas
with tail dependence, thus linking the study of threshold copulas to the theory of
Section 7.5.3.

Theorem 7.56. If C is an exchangeable copula with upper tail-dependence coeffi-
cient λu > 0 satisfyingC ∈ CDA(C0), thenC has a limiting upper threshold copula
which is the survival copula of the df

G(x1, x2) = (x1 + x2)(1 − A(x1/(x1 + x2)))

λu
, (7.66)

where A is the dependence function of C0. Also, Ĉ has a limiting lower threshold
copula which is the copula of G.

Example 7.57 (upper threshold copula of Galambos copula). We use this result
to calculate the limiting upper threshold copula for the Galambos copula. We recall
that this is an EV copula with dependence function given in (7.50) and consider the
standard exchangeable case with α = β = 1. Using the methods of Section 5.2.3 it
may easily be calculated that the coefficient of upper tail dependence of this copula
is λu = 2−1/θ . Thus the bivariate distribution G(x1, x2) in (7.66) is

G(x1, x2) = ( 1
2 (x

−θ
1 + x−θ

2 ))−1/θ , (x1, x2) ∈ (0, 1]2,

the copula of which is the Clayton copula. Thus the limiting upper threshold copula
in this case is the Clayton survival copula. Moreover, the limiting lower threshold
copula of the Galambos survival copula is the Clayton copula.

The Clayton copula turns out to be an important attractor for a large class of
underlying exchangeable copulas. Juri and Wüthrich (2003) have shown that all
Archimedean copulas whose generators are regularly varying at 0 with negative
parameter (meaning that φ(t) satisfies limt→0 φ(xt)/φ(t) = x−α for all x and some
α > 0) share the Clayton copula CCl

α as their limiting lower threshold copula.
It is of interest to calculate limiting lower and upper threshold copulas for the

t copula, and this can be done using Theorem 7.56 and the expression for the
dependence function in (7.55). However, the resulting limit is not convenient for
practical purposes because of the complexity of this dependence function. We have
already remarked in Section 7.5.4 that the dependence function of the t-EV copula is
indistinguishable for all practical purposes from the dependence functions of other
exchangeable EV copulas, such as Gumbel and Galambos. Thus Theorem 7.56
suggests that instead of working with the true limiting upper threshold copula of the
t copula we could instead work with the limiting upper threshold copula of, say, the
Galambos copula, i.e. the Clayton survival copula. Similarly, we could work with
the Clayton copula as an approximation for the true limiting lower threshold copula
of the t copula.
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Limiting threshold copulas in practice Limiting threshold copulas in dimensions
higher than two have not yet been extensively studied, nor have limits for non-
exchangeable bivariate copulas or limits when we define two thresholds v1 and v2

and let these tend to zero (or one) at different rates. Thus the practical use of these
ideas is largely in bivariate applications when thresholds are set at approximately
similar quantiles and a symmetric dependence structure is assumed.

Let us consider a situation where we have a bivariate distribution that appears to
exhibit tail dependence in both the upper-right and lower-left corners. While true
lower and upper limiting threshold copulas may exist for this unknown distribution,
we could in practice simply adopt a tractable and flexible parametric limiting thresh-
old copula family. It is particularly easy to use the Clayton copula and its survival
copula as lower and upper limits, respectively.

Suppose, for example, that we set high thresholds atu = (u1, u2)
′, so thatP(X1 >

u1) ≈ P(X2 > u2) and both probabilities are small. For the conditional distribution
of (X1, X2) over the threshold u we could assume a model of the form

P(X � x | X > u) ≈ ĈCl
θ (Gξ1,β1(x1 − u1),Gξ2,β2(x2 − u2)), x > u,

where ĈCl
θ is the Clayton survival copula and Gξj ,βj denotes a GPD, as defined

in 7.16. Inference about the model parameters (θ , ξ1, β1, ξ2, β2) would be based on
the exceedance data above the thresholds and would use the methods discussed in
Section 5.5.

Similarly, for a vector of low thresholds u satisfyingP(X1 � u1) ≈ P(X2 � u2)

with both these probabilities small, we could approximate the conditional distribu-
tion of (X1, X2) below the threshold u by a model of the form

P(X � x | X < u) ≈ CCl
θ (Ḡξ1,β1(u1 − x1), Ḡξ2,β2(u2 − x2)), x < u,

where CCl
θ is the Clayton copula and Ḡξj ,βj denotes a GPD survival function. Infer-

ence about the model parameters would be based on the data below the thresholds
and would use the methods of Section 5.5.

Note and Comments

The GPD-based tail model (7.58) and inference for censored data using a likeli-
hood of the form (7.59) have been studied by Ledford and Tawn (1996), although
the derivation of the model uses somewhat different asymptotic reasoning based on
a characterization of multivariate domains of attraction of MEV distributions with
unit Fréchet margins found in Resnick (1987). The authors concentrate on the model
with Gumbel (logistic) dependence structure and discuss, in particular, testing for
asymptotic independence of extremes. Likelihood inference is non-problematic (the
problem being essentially regular) when θ > 0 and ξj > − 1

2 , but testing for inde-
pendence of extremes θ = 1 is not quite so straightforward since this is a boundary
point of the parameter space. This case is possibly more interesting in environmental
applications than in financial ones, where we tend to expect dependence of extreme
values.
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A related bivariate GPD model is presented in Smith, Tawn and Coles (1997). In
our notation they essentially consider a model of the form

F̄ (x1, . . . , xd) = 1 + lnC0(exp(F̃ (x1) − 1), . . . , exp(F̃ (xd) − 1)), x � k,

where C0 is an extreme value copula. This model is also discussed in Smith (1994)
and Ledford and Tawn (1996); it is pointed out that F̄ does not reduce to a product
of marginal distributions in the case when C0 is the independence copula, unlike the
model in (7.58).

Another style of statistical model for multivariate extremes is based on the point
process theory of multivariate extremes developed in de Haan (1985), de Haan and
Resnick (1977) and Resnick (1987). Statistical models using this theory are found
in Coles and Tawn (1991) and Joe, Smith and Weissman (1992); see also the texts of
Joe (1997) and Coles (2001). New approaches to modelling multivariate extremes
can be found in Heffernan and Tawn (2004) and Balkema and Embrechts (2004);
the latter paper considers applications to stress testing high-dimensional portfolios
in finance.

Limiting threshold copulas are studied in Juri and Wüthrich (2002, 2003). In
the latter paper it is demonstrated that the Clayton copula is an attractor for the
threshold copulas of a wide class of Archimedean copulas; moreover a version
of our Theorem 7.57 is proved. Limiting threshold copulas for the t copula are
investigated in Demarta and McNeil (2005). The usefulness of Clayton’s copula and
survival copula for describing the dependence in the tails of bivariate financial return
data was confirmed in a large-scale empirical study of high-frequency exchange-rate
returns by Breymann, Dias and Embrechts (2003).
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Credit Risk Management

Credit risk is the risk that the value of a portfolio changes due to unexpected changes
in the credit quality of issuers or trading partners. This subsumes both losses due to
defaults and losses caused by changes in credit quality, such as the downgrading of
a counterparty in an internal or external rating system. Credit risk is omnipresent
in the portfolio of a typical financial institution. To begin with, the lending and cor-
porate bond portfolios are obviously affected by credit risk. Perhaps less obviously,
credit risk accompanies any OTC (over-the-counter, i.e. non-exchange-guaranteed)
derivative transaction such as a swap, because the default of one of the parties
involved may substantially affect the actual pay-off of the transaction. Moreover,
in recent years a specialized market for credit derivatives has emerged in which
financial institutions are active players (see Section 9.1 for details).

This brief list should convince the reader that credit risk is a highly relevant risk
category indeed, as it relates to the core activities of most banks. Credit risk is also
at the heart of many recent developments on the regulatory side, such as the new
Basel II Capital Accord discussed in Chapter 1. We devote two chapters to this
important risk category. In the present chapter we focus on static models and credit
risk management; dynamic models and credit derivatives are discussed in Chapter 9.

8.1 Introduction to Credit Risk Modelling

In this section we provide a brief overview of the various model types that are used
in credit risk before discussing some of the main challenges that are encountered in
credit risk management.

8.1.1 Credit Risk Models

The development of the market for credit derivatives and the Basel II process has
generated a lot of interest in quantitative credit risk models in industry, academia and
among regulators, so that credit risk modelling is at present a very active subfield of
quantitative finance and risk management. In this context it is interesting that parts
of the new minimum capital requirements for credit risk are closely linked to the
structure of existing credit portfolio models, as will be explained in more detail in
Section 8.4.5.

There are two main areas of application for quantitative credit risk models: credit
risk management and the analysis of credit-risky securities. Credit risk management
models are used to determine the loss distribution of a loan or bond portfolio over
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a fixed time period (typically at least one year), and to compute loss-distribution-
based risk measures or to make risk-capital allocations of the kind discussed in
Section 6.3. Hence these models are typically static, meaning that the focus is on the
loss distribution for the fixed time period rather than a stochastic process describing
the evolution of risk in time.

For the analysis of credit-risky securities, on the other hand, dynamic models
(generally in continuous time) are needed, because the pay-off of most products
depends on the exact timing of default. Moreover, in building a pricing model one
often works directly under an equivalent martingale or risk-neutral probability mea-
sure (as opposed to the real-world probability measure). Issues related to dynamic
credit risk models and risk-neutral and real-world measures will be studied in detail
in Chapter 9.

Depending on their formulation, credit risk models can be divided into structural
or firm-value models on the one hand and reduced-form models on the other; this
division cuts across that of dynamic and static models. The progenitor of all firm-
value models is the model of Merton (1974), which postulates a mechanism for the
default of a firm in terms of the relationship between its assets and the liabilities
that it faces at the end of a given time period. More generally, in firm-value models
default occurs whenever a stochastic variable (or in dynamic models a stochastic
process) generally representing an asset value falls below a threshold representing
liabilities. For this reason static structural models are referred to in this book as
threshold models, particularly when applied at portfolio level. The general structural
model approach is discussed in Section 8.2 (where the emphasis is on modelling the
default of a single firm). In Section 8.3 we look at threshold models for portfolios;
in particular we show that copulas play an important role in understanding the
multivariate nature of these models.

In reduced-form models the precise mechanism leading to default is left unspec-
ified. The default time of a firm is modelled as a non-negative rv, whose distribution
typically depends on economic covariables. The mixture models that we treat in
Section 8.4 can be thought of as static portfolio versions of reduced-form models.
More specifically, a mixture model assumes conditional independence of defaults
given common underlying stochastic factors.

It is important to realize that mixture models are not a new class of models;
on the contrary, the most useful static threshold models all have mixture model
representations, as will be shown in Section 8.4.4. In continuous time a similar
mapping between firm-value and reduced-form models is also possible if one makes
the realistic assumption that assets and/or liabilities are not perfectly observable (see
Notes and Comments).

From a practical point of view, mixture models represent perhaps the most use-
ful way of analysing and comparing one-period portfolio credit risk models. For
these models, Monte Carlo techniques from the area of importance sampling can
be used to approximate risk measures for the portfolio loss distribution, and to cal-
culate associated capital allocations, as will be shown in Section 8.5. Moreover, it
is possible to devise efficient methods of statistical inference for portfolio models
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using historical default data. These models exploit the connection between mixture
models and the well-known class of generalized linear mixed models in statistics;
this is the topic of Section 8.6.

8.1.2 The Nature of the Challenge

Credit risk management poses certain specific challenges for quantitative modelling,
which are less relevant in the context of market risk.

Lack of public information and data. Publicly available information regarding the
credit quality of corporations is typically scarce. This creates problems for corporate
lending, as the management of a firm is usually better informed about the true
economic prospects of the firm and hence about default risk than are prospective
lenders. The implications of this informational asymmetry are widely discussed
in the microeconomics literature (see Notes and Comments). The lack of publicly
available credit data is also a substantial obstacle to the use of statistical methods
in credit risk, a problem that is compounded by the fact that in credit risk the risk-
management horizon is usually at least one year. It is fair to say that data problems
are the main obstacle to the reliable calibration of credit models.

Skewed loss distributions. Typical credit loss distributions are strongly skewed
with a relatively heavy upper tail. Over the years a typical credit portfolio will
produce frequent small profits accompanied by occasional large losses. A fairly
large amount of risk capital is therefore required to sustain such a portfolio: the
economic capital required for a loan portfolio (the risk capital deemed necessary
by shareholders and the board of directors of a financial institution, independent
of the regulatory environment) is often equated to the 99.97% quantile of the loss
distribution (see Section 1.4.3).

The role of dependence modelling. A major cause for concern in managing the
credit risk in a given loan or bond portfolio is the occurrence in a particular time
period of disproportionately many defaults of different counterparties. This risk is
directly linked to the dependence structure of the default events. In fact, default
dependence has a crucial impact on the upper tail of a credit loss distribution for a
large portfolio. This is illustrated in Figure 8.1, where we compare the loss distri-
bution for a portfolio of 1000 firms that default independently (portfolio 1) with a
more realistic portfolio of the same size where defaults are dependent (portfolio 2).
In portfolio 2 defaults are weakly dependent, in the sense that the correlation between
default events (see Section 8.3.1) is approximately 0.5%. In both cases the default
probability is approximately 1% so that on average we expect 10 defaults. As will
be seen in Section 8.6, portfolio 2 can be viewed as a realistic model for the loss
distribution generated by a homogeneous portfolio of 1000 loans with a Standard
& Poor’s rating of BB. We clearly see from Figure 8.1 that the loss distribution of
portfolio 2 is skewed and that its right tail is substantially heavier than the right
tail of the loss distribution of portfolio 1, illustrating the drastic impact of default
dependence on credit loss distributions. Typically, more dependence is reflected in
the loss distribution by a shift of the mode to the left and a longer right tail. For this



330 8. Credit Risk Management

Number of losses

Pr
ob

ab
ili

ty
0

0.06

0.10

0.12

20 40 600 503010

0.08

0.04

0.02

Dependent defaults
Independent defaults

Figure 8.1. Comparison of the loss distribution of two homogeneous portfolios of
1000 loans with a default probability of 1% and different dependence structure. In port-
folio 1 defaults are assumed to be independent; in portfolio 2 we assume a default correlation
of 0.5%. Portfolio 2 can be considered as representative for BB-rated loans. We clearly see
that the default dependence generates a loss distribution with a heavier right tail.

reason we devote a large part of our exposition to the analysis of credit portfolio
models and dependent defaults.

There are sound economic reasons for expecting default dependence. To begin
with, the financial health of a firm varies with randomly fluctuating macroeconomic
factors, such as changes in economic growth. Since different firms are affected
by common macroeconomic factors, we have dependence between their defaults.
Moreover, default dependence is caused by direct economic links between firms,
such as a strong borrower–lender relationship. Given the enormous size of typical
loan portfolios it can be argued that, in credit risk management, direct business
relations play a less prominent role in explaining default dependence. Dependence
due to common factors, on the other hand, is of crucial importance and will be
a recurring theme in our analysis. In the pricing of portfolio credit derivatives, the
portfolios of interest are smaller, so modelling direct business relationships becomes
more relevant (see Section 9.8 for models of this kind).

Notes and Comments

Chapter 2 of Duffie and Singleton (2003) contains a good discussion of the economic
principles of credit risk management, elaborating on some of the issues discussed
above. For a microeconomic analysis of the functioning of credit markets in the
presence of informational asymmetries between borrowers and lenders we refer to
the seminal paper by Stiglitz and Weiss (1981).

Duffie and Lando (2001) established a relationship between firm-value models
and reduced-form models in continuous time. Essentially, they showed that, from
the perspective of investors with incomplete accounting information (i.e. incomplete
information about assets or liabilities of a firm), a firm-value model becomes a
reduced-form model. A less technical discussion of these issues can be found in
Jarrow and Protter (2004).
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The available empirical evidence for the existence of macroeconomic common
factors is surveyed in Section 3.1 of Duffie and Singleton (2003). Without going into
details, it seems that a substantial amount of the variation over time in empirical
default rates (the proportion of firms with a given credit rating that actually defaulted
in a given year) can be explained by fluctuations in GDP growth rates, with empirical
default rates going up in recessions and down in periods of economic recovery.

8.2 Structural Models of Default

A model of default is known as a structural or firm-value model when it attempts to
explain the mechanism by which default takes place. Because the kind of thinking
embodied in these models has been so influential in the development of the study of
credit risk and the emergence of industry solutions (like the KMV model discussed
in Section 8.2.3), we consider this to be the best starting point for a treatment of
credit risk models.

From now on we denote a generic stochastic process in continuous time by (Xt );
the value of the process at time t � 0 is given by the rv Xt .

8.2.1 The Merton Model

The model proposed in Merton (1974) is the prototype of all firm-value models.
Many extensions of this model have been developed over the years, but Merton’s
original model remains an influential benchmark and is still popular with practition-
ers in credit risk analysis.

Consider a firm whose asset value follows some stochastic process (Vt ). The firm
finances itself by equity (i.e. by issuing shares) and by debt. In Merton’s model
debt has a very simple structure: it consists of one single debt obligation or zero-
coupon bond with face value B and maturity T . The value at time t of equity and
debt is denoted by St and Bt and, if we assume that markets are frictionless (no
taxes or transaction costs), the value of the firm’s assets is simply the sum of these,
i.e. Vt = St +Bt , 0 � t � T . In the Merton model it is assumed that the firm cannot
pay out dividends or issue new debt. Default occurs if the firm misses a payment to
its debt holders, which in the Merton model can occur only at the maturity T of the
bond. At maturity we have to distinguish between two cases.

(i) VT > B: the value of the firm’s assets exceeds the liabilities. In that case
the debtholders receive B, the shareholders receive the residual value ST =
VT − B, and there is no default.

(ii) VT � B: the value of the firm’s assets is less than its liabilities and the firm
cannot meet its financial obligations. In that case shareholders have no interest
in providing new equity capital, which would go immediately to the bond-
holders. Instead they “exercise their limited-liability option” and hand over
control of the firm to the bondholders, who liquidate the firm and distribute
the proceeds among themselves. Shareholders pay and receive nothing, so
that we have BT = VT , ST = 0.



332 8. Credit Risk Management

Summarizing, we have the relations

ST = max(VT − B, 0) = (VT − B)+, (8.1)

BT = min(VT , B) = B − (B − VT )
+. (8.2)

Equation (8.1) implies that the value of the firm’s equity at time T equals the pay-
off of a European call option on VT , while (8.2) implies that the value of the firm’s
debt at maturity equals the nominal value of the liabilities minus the pay-off of a
European put option on VT with exercise price equal to B.

The above model is of course a stylized description of default. In reality the
structure of a company’s debt is much more complex, so that default can occur on
many different dates. Moreover, under modern bankruptcy code, default does not
automatically imply bankruptcy, i.e. liquidation of a firm. Nonetheless, Merton’s
model is a useful starting point for modelling credit risk and for pricing securities
subject to default.

Remark 8.1. The option interpretation of equity and debt is useful in explaining
potential conflicts of interest between shareholders and debtholders of a company. It
is well known that the value of an option increases if the volatility of the underlying
security is increased, provided of course that the mean is not adversely affected.
Hence shareholders have an interest in the firm taking on very risky projects. Bond-
holders, on the other hand, have a short position in a put option on the firm’s assets
and would therefore like to see the volatility of the asset value reduced.

In the Merton model it is assumed that under the real-world or physical probability
measure P the process (Vt ) follows a diffusion model (known as Black–Scholes
model or geometric Brownian motion) of the form

dVt = µV Vt dt + σV Vt dWt (8.3)

for constantsµV ∈ R,σV > 0, and a standard Brownian motion (Wt ). Equation (8.3)
implies that VT = V0 exp((µV − 1

2σ
2
V )T + σVWT ), and, in particular, that lnVT ∼

N(lnV0 + (µV − 1
2σ

2
V )T , σ

2
V T ). Under the dynamics (8.3) the default probability

of our firm is readily computed. We have

P(VT � B) = P(lnVT � lnB) = Φ

(
ln(B/V0) − (µV − 1

2σ
2
V )T

σV
√
T

)
. (8.4)

It is immediately seen from (8.4) that the default probability is increasing in B,
decreasing in V0 and µV and, for V0 > B, increasing in σV , which is all perfectly
in line with economic intuition.

8.2.2 Pricing in Merton’s Model

In the context of Merton’s model we can price securities whose pay-off depends
on the value VT of the firm’s assets at T . Prime examples are the firm’s debt (or,
equivalently, zero-coupon bonds issued by the firm) and the firm’s equity. We briefly
explain the main results, since we need them in our treatment of the KMV model
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in Section 8.2.3. The derivation of pricing formulas uses basic results from finan-
cial mathematics. Readers not familiar with these results should simply accept the
valuation formulas we present in the remainder of this section as facts and proceed
quickly to Section 8.2.3; references to useful texts in financial mathematics are given
in Notes and Comments.

We make the following assumptions.

Assumption 8.2.

(i) We have frictionless markets with continuous trading.

(ii) The risk-free interest rate is deterministic and equal to r � 0.

(iii) The firm’s asset-value process (Vt ) is independent of the way the firm is
financed, and in particular it is independent of the debt level B. Moreover,
(Vt ) is a traded security with dynamics given in (8.3).

Assumption (iii) merits some comment. First, the independence of (Vt ) from the
financial structure of the firm is questionable, because a very high debt level and
hence a high default probability may adversely affect the capability of a firm to
generate business and hence affect the value of its assets. This is a special case of
the indirect bankruptcy costs discussed in Section 1.4.2. Second, while there are
many firms with traded equity, the value of the assets of a firm is usually neither
completely observable nor traded. We come back to this issue in Section 8.2.3 below.

General pricing results. Consider a claim on the value of the firm with maturity T
and pay-off h(VT ), such as the firm’s equity and debt in (8.1) and (8.2), and suppose
that Assumption 8.2 holds. Standard derivative pricing theory offers two ways for
computing the fair value f (t, Vt ) of this claim at time t � T . Under the partial
differential equation (PDE) approach the function f (t, v) is computed by solving
the PDE (subscripts denote partial derivatives)

ft (t, v) + 1
2σ

2
V v

2fvv(t, v) + rvfv(t, v) = rf (t, v) for t ∈ [0, T ), (8.5)

with terminal condition f (T , v) = h(v) reflecting the exact form of the claim to be
priced. Equation (8.5) is the famous Black–Scholes PDE for terminal-value claims.

Alternatively, the value f (t, Vt ) can be computed as the expectation of the dis-
counted pay-off under the risk-neutral measureQ (the so-called risk-neutral pricing
approach). Under Q the process (Vt ) satisfies the stochastic differential equation
(SDE) dVt = rVt dt + σV Vt dW̃t for a standard Q-Brownian motion W̃ ; in par-
ticular, the drift µV in (8.3) has been replaced by the risk-free interest rate r . The
risk-neutral pricing rule now states that

f (t, Vt ) = EQ(e−r(T−t)h(VT ) | Ft ), (8.6)

where EQ denotes expectation with respect to Q. For details we refer to the text-
books on financial mathematics listed in Notes and Comments; the relationship
between physical probability measure P and risk-neutral measure Q and the eco-
nomic foundations of the risk-neutral pricing rule will be discussed in more detail
in Section 9.3.
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Application to equity and debt. According to (8.1), the firm’s equity corresponds
to a European call on (Vt ) with exercise price B and maturity T . The solution of the
PDE (8.5), or the risk-neutral value of equity obtained from (8.6), is simply given
by the Black–Scholes price CBS of a European call. This yields

St = CBS(t, Vt ; r, σV , B, T ) := VtΦ(dt,1)−Be−r(T−t)Φ(dt,2),

dt,1 = lnVt − lnB + (r + 1
2σ

2
V )(T − t)

σV
√
T − t

and dt,2 = dt,1 − σV
√
T − t .

⎫⎪⎬⎪⎭ (8.7)

Note that under the risk-neutral measure Q the distribution of the logarithmic asset
value at maturity is given by lnVT ∼ N(lnV0 + (r − 1

2σ
2
V )T , σ

2
V T ). Hence we get

at time t = 0

Q(VT � B) = Q

(
lnVT − (lnV0 + (r − 1

2σ
2
V )T )

σV
√
T

� −d0,2

)
= 1 − Φ(d0,2),

where we have used the fact that Φ(d) = 1 −Φ(−d). Hence 1 − Φ(d0,2) gives the
risk-neutral default probability. Similarly, 1 − Φ(dt,2) gives the risk-neutral default
probability given information up to time t .

Next we turn to the valuation of the risky debt issued by the firm. Note that by
Assumption 8.2(ii) the price at t � T of a default-free zero coupon bond with
maturity T equals p0(t, T ) = exp(−r(T − t)). According to (8.2) we have

Bt = Bp0(t, T ) − PBS(t, Vt ; r, σV , B, T ), (8.8)

where PBS(t, V ; r, σV , B, T ) denotes the Black–Scholes price of a European put
with strike B, maturity T on (Vt ) for given interest rate r , and volatility σV . It is
well known that

PBS(t, Vt ; r, σV , B, T ) = Be−r(T−t)Φ(−dt,2) − VtΦ(−dt,1), (8.9)

with dt,1 and dt,2 as in (8.7). Combining (8.8) and (8.9) we get

Bt = p0(t, T )BΦ(dt,2) + VtΦ(−dt,1). (8.10)

Credit spread. We may use (8.10) to infer the credit spread c(t, T ) implied by
Merton’s model. The credit spread measures the difference of the continuously
compounded yield to maturity of a default-free zero coupon bond p0(t, T ) and of a
defaultable zero coupon bond p1(t, T ) and is defined by

c(t, T ) = −1

T − t
(lnp1(t, T ) − lnp0(T , t)) = −1

T − t
ln
p1(t, T )

p0(t, T )
. (8.11)

In Merton’s model we obviously have p1(t, T ) = (1/B)Bt and hence

c(t, T ) = −1

T − t
ln

(
Φ(dt,2) + Vt

Bp0(t, T )
Φ(−dt,1)

)
. (8.12)
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Figure 8.2. Credit spread c(t, T ) in per cent as a function of (a) the firm’s volatility σV and
(b) the time to maturity τ = T − t for fixed leverage measure d = 0.6 (in (a) τ = 2 years; in
(b) σV = 0.25). Note that, for a time to maturity smaller than approximately three months,
the credit spread implied by Merton’s model is basically equal to zero. This is not in line with
most empirical studies of corporate bond spreads and has given rise to a number of extensions
of Merton’s model, which are listed in Notes and Comments. We will see in Section 9.4.4
that reduced-form models lead to a more reasonable behaviour of short-term credit spreads.

Since dt,1 can be rewritten as

dt,1 = − ln(Bp0(t, T )/Vt ) + 1
2σ

2
V (T − t)

σV
√
T − t

,

and similarly for dt,2, we conclude that, for a fixed time to maturity T − t , the spread
c(t, T ) depends only on the volatility σV and on the ratio d := Bp0(t, T )/Vt , which
is the ratio of the present value of the firm’s debt to the value of the firm’s assets and
hence a measure of the relative debt level or leverage of the firm. As the price of a
European put is increasing in the volatility, it is immediate from (8.8) that c(t, T )
is increasing in σV . In Figure 8.2 we plot the credit-spread as a function of σV and
of the time to maturity τ = T − t .

Extensions. Merton’s model is quite simplistic. Over the years this has given rise
to a rich literature on firm-value models. We briefly comment on the most important
research directions (bibliographic references are given in Notes and Comments).
To begin with, the observation that, in reality, firms can default at essentially any
time (and not only at a deterministic point in time T ) has led to the development of
so-called first-passage-time models. In this class of model default occurs when the
asset-value process crosses for the first time a default threshold B, which is usually
interpreted as the average value of the liabilities. Formally, the default time τ is
defined by τ = inf{t � 0 : Vt � B}. Further technical developments include
models with stochastic default-free interest rates and models where the asset-value
process (Vt ) is given by a diffusion with jumps.

Firm-value models with endogenous default threshold are an interesting eco-
nomic extension of Merton’s model. Here the default boundary B is determined
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endogenously by the strategic considerations of the shareholders and not fixed a
priori by the modeller. Finally, structural models with incomplete information on
asset value and/or liabilities provide an important link between the structural and
the reduced-form approach to credit risk modelling.

8.2.3 The KMV Model

An important example of an industry model that descends from the Merton model
is the KMV model, which was developed by KMV (a private company named after
its founders Kealhofer, McQuown and Vasicek) in the 1990s and which is now
maintained by Moody’s KMV. The KMV model is widely used in industry: Berndt
et al. (2004) report that 40 out of the world’s largest 50 financial institutions are
subscribers to the model. The major contribution of KMV is not the theoretical
development of the model, which is a relatively straightforward extension of the
Merton model, but its empirical testing and implementation using a huge proprietary
database. Our presentation of the KMV model follows Crosbie and Bohn (2002) and
Crouhy, Galai and Mark (2000). We have omitted certain details of the model, since
detailed information about actual implementation and calibration procedures is hard
to obtain; indeed, such procedures are likely to change as the model is developed
further.

Overview. The key quantity of interest in the KMV model is the so-called expected
default frequency (EDF); this is simply the probability (under the physical proba-
bility measure P ) that a given firm will default within one year as estimated using
the KMV methodology. Recall that in the classic Merton model the default prob-
ability of a given firm is given by the probability that the asset value in one year,
V1 say, lies below the threshold B representing the overall liabilities of the firm.
Under Assumption 8.2, the EDF is a function of the current asset value V0, the asset
value’s annualized mean µV and volatility σV and the threshold B; using (8.4) and
recalling that Φ(d) = 1 − Φ(−d), with T = 1, we get

EDFMerton = 1 − Φ

(
lnV0 − lnB + (µV − 1

2σ
2
V )

σV

)
. (8.13)

In the KMV model the EDF has a similar structure; however, 1 − Φ is replaced
by some decreasing function which is estimated empirically, B is replaced by a
new default threshold B̃ representing the structure of the firm’s liabilities more
closely, and the argument of the normal df in (8.13) is replaced by a slightly simpler
expression. Moreover, KMV does not assume that the asset value V0 of the firm is
directly observable. Rather, it uses an iterative technique to infer V0 from the value
of the firm’s equity.

Determination of the asset value. Firm-value-based credit risk models usually take
the market value of the firm’s assets as a primitive. The market value reflects investor
expectations about the business prospects of the firm and is hence a good measure
of the value of its ongoing business. Unfortunately, the market value of a firm is
typically not fully observable for a number of reasons. To begin with, market value
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can differ widely from the value of a company as measured by accountancy rules
(the book value) (see, for instance, Section 3.1.1 of Crouhy, Galai and Mark (2000)
for an example). Moreover, while the market value of the firm’s assets is simply
the sum of the market values of the firm’s equity and debt, only the equity and
parts of the debt, such as bonds issued by the firm, are actively traded, so that we
do not know the market value of the entire debt. For these reasons KMV relies on
an indirect approach and infers the asset value V0 from the more easily observed
value S0 of a firm’s equity.

We explain the approach in the context of the Merton model. Recall that under
Assumption 8.2 we have that

St = CBS(t, Vt ; r, σV , B, T ). (8.14)

Obviously, at a fixed point in time, t = 0 say, (8.14) is an equation with two
unknowns, V0 and σV . To overcome this difficulty, KMV uses an iterative pro-
cedure. In step (1), (8.14) with some initial estimate σ

(0)
V is used to infer a time

series of asset values (V (0)
t ) from equity values. Then a new volatility estimate σ (1)

V

is constructed from this time series; a new time series (V (1)
t ) is then constructed

using (8.14) with σ
(1)
V . This procedure is iterated several times (see Crosbie and

Bohn (2002) for details).
In the version of the model that is actually implemented, the capital structure

of the firm is modelled in a more sophisticated manner than in Merton’s model.
The equity value is thus no longer given by (8.14), but by some different function
f (t, Vt ; r, σV , d, T , c), which has to be computed numerically. Here d represents
the leverage ratio of the firm and c is the average coupon paid by the long-term debt.
The philosophy of the approach is, however, exactly as described above.

Calculation of EDFs. In the Merton model default, and hence bankruptcy, occurs
if the value of a firm’s assets falls below the value of its liabilities. With lognormally
distributed asset values, as implied for instance by Assumption 8.2, this leads to
default probabilities of the form (8.13). This relationship between asset value and
default probability may be too simplistic to be an accurate description of actual
default probabilities for a number of reasons: asset values are not necessary log-
normal but might follow a distribution with heavy tails; our assumptions about
the capital structure of the firm are too simplistic; there might be payments due
at an intermediate point in time causing default at that date; finally, under modern
bankruptcy code, default need not automatically lead to bankruptcy, i.e. to liquida-
tion of the firm.

To account for these factors, KMV introduces as an intermediary step a state
variable, the so-called distance to default (DD), given by

DD := (V0 − B̃)/(σV V0), (8.15)

where B̃ represents the default threshold (often the liabilities payable within one
year). Sometimes practitioners call the distance to default the “number of standard
deviations a company is away from its default threshold B̃”. Note that (8.15) is in
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Table 8.1. A summary of the KMV approach. The example is taken from Crosbie and Bohn
(2002); it is concerned with the situation of Philip Morris Inc. at the end of April 2001.
Financial quantities are in millions of US dollars.

Variable Value Notes

Market value of equity S0 110 688 Share price × shares outstanding

Overall book liabilities B 64 062 Determined from balance sheet

Market value of assets V0 170 558
}

Determined from option-pricing model
Asset volatility σV 0.21

Default threshold B̃ 47 499 Liabilities payable within one year

DD 3.5 Given by the ratio (170 − 47)/(0.21 × 170),
using relation (8.15)

EDF (one year) 0.25% Determined using empirical mapping between
distance to default and default frequency

fact an approximation of the argument of (8.13), since µV and σ 2
V are small and

since lnV0 − ln B̃ ≈ (V0 − B̃)/V0.
In the KMV model it is assumed that firms with equal DD have equal default proba-

bilities. The functional relationship between DD and EDF is determined empirically.
Using a database of historical default events, KMV estimates for every horizon the
proportion of firms with DD in a given small range that defaulted within the given
horizon. This proportion is the empirically estimated EDF. As one would expect, the
empirically estimated EDF is a decreasing function; its precise form is proprietary
to Moody’s KMV.

In Table 8.1, we illustrate the computation of the EDF using the KMV approach
for Philip Morris Inc.

8.2.4 Models Based on Credit Migration

In this section we present models where the default probability of a given firm is
determined from an analysis of credit migration. The standard industry model in
this class is CreditMetrics, developed by JPMorgan and the RiskMetrics Group (see,
for instance, RiskMetrics Group 1997). We first describe the basic idea of a credit-
migration model and the kind of data that is used to calibrate such a model, before
showing how a migration model can be embedded in a firm-value model and thus
treated as a structural model.

Credit ratings and migration. In the credit-migration approach each firm is
assigned to a credit-rating category at any given time point. There are a finite number
of such ratings and they are ordered by credit quality and include the category of
default. The probability of moving from one credit rating to another credit rating
over the given risk horizon (typically one year) is then specified.

Credit ratings for major companies or sovereigns and rating-transition matrices
are provided by rating agencies such as Moody’s or Standard & Poor’s (S&P);
alternatively, proprietary rating systems internal to a financial institution can be
used. In the S&P rating system there are seven rating categories (AAA, AA, A,
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Table 8.2. Probabilities of migrating from one rating quality to another within one year.
Source: Standard & Poor’s CreditWeek (15 April 1996).

Rating at year-end (%)
Initial ︷ ︸︸ ︷
rating AAA AA A BBB BB B CCC Default

AAA 90.81 8.33 0.68 0.06 0.12 0.00 0.00 0.00
AA 0.70 90.65 7.79 0.64 0.06 0.14 0.02 0.00
A 0.09 2.27 91.05 5.52 0.74 0.26 0.01 0.06

BBB 0.02 0.33 5.95 86.93 5.30 1.17 1.12 0.18
BB 0.03 0.14 0.67 7.73 80.53 8.84 1.00 1.06
B 0.00 0.11 0.24 0.43 6.48 83.46 4.07 5.20

CCC 0.22 0.00 0.22 1.30 2.38 11.24 64.86 19.79

BBB, BB, B, CCC) with AAA being the highest and CCC the lowest rating of
companies which have not defaulted; there is also a default state. Moody’s uses
seven pre-default rating categories labelled Aaa, Aa, A, Baa, Ba, B, C; a finer alpha-
numeric system is also in use. Transition probabilities are typically presented in the
form of a rating-transition probability matrix; an example from Standard & Poor’s
is presented in Table 8.2. These transition matrices are determined from historical
default data. Approaches for estimating rating-transition matrices are listed in Notes
and Comments.

In the credit-migration approach one assumes that the current credit rating com-
pletely determines the default probability, so that this probability can be read off
from the transition matrix. For instance, if we use the transition matrix presented
in Table 8.2, we obtain that the one-year default probability of a company whose
current S&P credit rating is A is 0.06%, whereas the default probability of a CCC-
rated company is almost 20%. Rating agencies also produce cumulative default
probabilities over larger time horizons. In Table 8.3 we present estimates (due to
Standard & Poor’s) for cumulative default probabilities of companies with a given
current credit rating. For instance, according to this table the probability that a
company whose current credit rating is BBB defaults within the next four years
is 1.27%. These cumulative default probabilities have been estimated directly. Alter-
natively, we could have used the one-year transition matrix presented in Table 8.2
to estimate these numbers. If we assume that the credit-migration process follows a
time-homogeneous Markov chain, the n-year transition matrix is simply the n-fold
product of the one-year transition matrix, and the n-year default probabilities can be
read off from the last column of the n-year transition matrix. Of course, under the
Markov assumption, both approaches should produce roughly similar results. In the
BBB-case above, the four-year default probability under the Markov assumption
becomes 1.41%, whereas the cumulative default probability for a BBB company
according to Table 8.3 is 1.27%, which is relatively close. Nonetheless, the hypoth-
esis that rating transitions occur in a Markovian way has been criticized heavily on
empirical grounds (see Notes and Comments).
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Table 8.3. Average cumulative default rates (%).
Source: Standard & Poor’s CreditWeek (15 April 1996).

Term
Initial ︷ ︸︸ ︷
rating 1 2 3 4 5 7 10 15

AAA 0.00 0.00 0.07 0.15 0.24 0.66 1.40 1.40
AA 0.00 0.02 0.12 0.25 0.43 0.89 1.29 1.48
A 0.06 0.16 0.27 0.44 0.67 1.12 2.17 3.00

BBB 0.18 0.44 0.72 1.27 1.78 2.99 4.34 4.70
BB 1.06 3.48 6.12 8.68 10.97 14.46 17.73 19.91
B 5.20 11.00 15.95 19.40 21.88 25.14 29.02 30.65

CCC 19.79 26.92 31.63 35.97 40.15 42.64 45.10 45.10

Remark 8.3 (accounting for business cycles). As discussed in Section 8.1, empir-
ical default rates tend to vary with the state of the economy, being high during
recessions and low during periods of economic expansion. Transition rates as esti-
mated by Standard & Poor’s or Moody’s on the other hand are historical averages
over longer time horizons covering several business cycles. Moreover, rating agen-
cies focus on the average credit quality “through the business cycle” when attribut-
ing a credit rating to a particular firm. Hence the default probabilities from the
credit-migration approach are estimates for the average default probability, inde-
pendent of the current economic environment. In situations where we are interested
in “point-in-time” estimates of default probabilities reflecting the current macro-
economic environment, such as in the pricing of a short-term loan, adjustments to
the long-term average default probabilities from the credit-migration approach have
to be made. For instance, we could use equity prices as an additional source of
information, as is done in the KMV approach.

The KMV model and credit-migration approaches compared. The KMV approach
has the following advantages.

• Rating agencies are typically slow in adjusting their credit ratings, so that the
current rating does not always reflect the economic condition of a firm. This
is particularly important if the credit quality of a firm deteriorates rapidly,
as is typically the case with companies which are close to default. The EDF
as estimated by KMV, on the other hand, reacts quickly to changes in the
economic prospects of a firm, as these tend to be reflected in the firm’s share
price and hence in the estimated distance to default. Examples that show that
the KMV approach often detects a deterioration in the credit quality of a
company prior to a downgrading by the rating agencies are given in Crosbie
and Bohn (2002).

• EDFs tend to reflect the current macroeconomic environment. The distance to
default is observed to rise in periods of economic expansion (essentially due
to higher share prices reflecting better economic conditions) and to decrease
in recession periods. The historical rating-transition probabilities provided by
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Moody’s and Standard & Poor’s on the other hand are relatively insensitive
to the current macroeconomic environment. Hence KMV’s EDFs might be
better predictors of default probabilities over short time horizons.

The following points are drawbacks of the KMV methodology and can be viewed
as advantages of the credit-migration approach.

• The KMV methodology is quite sensitive to global over- and underreaction
of equity markets. In particular, the breaking of a stock market bubble may
lead to drastically increased EDFs, even if the economic outlook for a given
corporation has not changed very much. This can be problematic if a KMV-
type model is widely used to determine the regulatory capital that a bank
needs to support its loan book. The breaking of a stock market bubble might
lead to a substantial increase in the required regulatory capital. This limits the
ability of banks to supply new credit, which might have an adverse impact on
the real economy. This is a prime example of the potential negative-feedback
effects of risk management and regulation that we discussed in Section 1.3
under the label “the crocodile of risk management is (possibly) eating its own
tail”.

• Finally, the KMV methodology as presented here applies only to firms with
publicly traded stock, whereas a ratings-based approach can be applied to all
companies for which some internal rating is available.

Credit-migration models as firm-value models. We now show how credit-migra-
tion models such as CreditMetrics can be embedded in a firm-value model of the
Merton type. We consider a firm which has been assigned to some rating category at
the outset of the time period of interest [0, T ] and for which transition probabilities
p̄(j), 0 � j � n, are available on the basis of that rating. These express the proba-
bility that the firm belongs to rating class j at the time horizon T and constitute a
row of some table similar to Table 8.2. In particular, p̄(0) is the default probability
of the firm.

Suppose that the asset-value process (Vt ) of the firm follows the model given
in (8.3), so that

VT = V0 exp((µV − 1
2σ

2
V )T + σVWT ) (8.16)

is lognormally distributed. We can now choose thresholds

−∞ = d̃0 < d̃1 < · · · < d̃n < d̃n+1 = ∞ (8.17)

such that P(d̃j < VT � d̃j+1) = p̄(j) for j ∈ {0, . . . , n}. Thus we have translated
the transition probabilities into a series of thresholds for an assumed asset-value pro-
cess. The threshold d̃1 is the default threshold; in the Merton model of Section 8.2.1,
d̃1 was interpreted as the value of the firm’s liabilities. The higher thresholds are the
asset-value levels that mark the boundaries of higher rating categories. The firm-
value model in which we have embedded the migration model can be summarized
by saying that the firm belongs to rating class j at the time horizon T if and only if
d̃j < VT � d̃j+1.
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The migration probabilities in the firm-value model obviously remain invariant
under simultaneous strictly increasing transformations of VT and the thresholds d̃j .
If we define

XT := lnVT − lnV0 − (µV − 1
2σ

2
V )T

σV
√
T

, (8.18)

dj := ln d̃j − lnV0 − (µV − 1
2σ

2
V )T

σV
√
T

, (8.19)

then we can equivalently say that the firm belongs to rating class j at the time
horizon T if and only if dj < XT � dj+1. Observe thatXT is a standardized version
of the asset-value log-return lnVT − lnV0; we can easily verify thatXT = WT /

√
T

and that it therefore has a standard normal distribution.

8.2.5 Multivariate Firm-Value Models

The firm-value models of this section, such as KMV and CreditMetrics, have been
discussed in relation to the default (or credit migration) risk of a single firm. In
order to apply these models at portfolio level we require a multivariate version of
Merton’s model.

Now assume that we have m companies and that the multivariate asset-value
process (Vt ) with Vt = (Vt,1, . . . , Vt,m)

′ follows an m-dimensional geometric
Brownian motion with drift vector µV = (µV 1, . . . , µVm)

′, vector of volatilities
σV = (σV 1, . . . , σVm)

′ and instantaneous correlation matrix P .
This implies that for all i the asset value VT,i is of the form (8.16), with µV =

µV i and σV = σV i and WT = WT,i . Moreover, WT := (WT,1, . . . ,WT,m)
′ is

a multivariate normal random vector satisfying WT ∼ Nm(0, TP). The model
is completed by setting thresholds as in (8.17) for each firm: in a Merton-style
model each firm would have a default threshold corresponding to liabilities, and in
a CreditMetrics model the thresholds would be determined by the credit-migration
probabilities of the firms. Note that we could again transform asset values and
thresholds using transformations of the form (8.18) and (8.19). This would result in
variables XT,i = WT,i/

√
T satisfying XT = (XT,1, . . . , XT,m)

′ ∼ Nm(0,P) and
the model would have again been translated onto a standard Gaussian scale. Models
of this kind will studied in more detail in Section 8.3.

Notes and Comments

There are many excellent texts, at varying technical levels, in which the basic results
on mathematical finance used in Section 8.2.2 can be found. Models in discrete
time are discussed in Cox and Rubinstein (1985), Jarrow and Turnbull (1999) and
in the more advanced book by Föllmer and Schied (2004). Excellent introduc-
tions to continuous-time models include Baxter and Rennie (1996), Duffie (2001),
Björk (1998), Bingham and Kiesel (1998) and Lamberton and Lapeyre (1996). More
advanced texts are Musiela and Rutkowski (1997) and Karatzas and Shreve (1998);
the technical level of the latter two volumes is not needed in this book.
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Lando (2004) gives a good overview of the rich literature on firm-value models.
First-passage-time models have been considered by, among others, Black and Cox
(1976) and, including stochastic interest rates, by Longstaff and Schwartz (1995).
The problem of the unrealistically low credit spreads for small maturities τ = T − t ,
which we pointed out in Figure 8.2, has also led to extensions of Merton’s model.
Partial remedies within the class of firm-value models include models with jumps
in the firm value, as in Zhou (2001), time-varying default thresholds, as in Hull
and White (2001), stochastic volatility models for the firm-value process with time-
dependent dynamics, as in Overbeck and Schmidt (2003), and incomplete informa-
tion on firm value or default threshold, as in Duffie and Lando (2001) and Giesecke
(2005). Models with endogenous default thresholds have been considered by, among
others, Leland (1994), Leland and Toft (1996) and Hilberink and Rogers (2002).

The original documentation for the KMV model is Crosbie and Bohn (2002) (for
the modelling of default of a single entity) and Kealhofer and Bohn (2001) (for
portfolio aspects of the model). Moreover, Moody’s KMV has recently developed
a private firm model, which provides EDFs for small-to-medium-size private firms
without publicly traded stock (see Nyberg, Sellers and Zhang 2001).

A good discussion of industry models for credit risk is given in Crouhy, Galai
and Mark (2000) (see also Chapters 8–10 of Crouhy, Galai and Mark (2001) for a
more detailed presentation). Chapter 7 of Crouhy, Galai and Mark (2001) contains
useful background information on credit-rating systems. Statistical approaches to
the estimation of rating-transition matrices are discussed in Hu, Kiesel and Perraudin
(2002) and in Lando and Skodeberg (2002). The latter paper also shows that there
is some momentum in rating-transition data, which contradicts the assumption that
rating transitions form a Markov chain. The literature on statistical properties of
rating transitions is surveyed extensively in Chapter 4 of Duffie and Singleton (2003).

8.3 Threshold Models

The models of this section are one-period models for portfolio credit risk inspired by
the firm-value models of Section 8.2. Their defining attribute is the idea that default
occurs for a company i when some critical rv Xi := XT,i lies below some critical
deterministic threshold di at the end of the time period [0, T ]. In Merton’s modelXi

is a lognormally distributed asset value and di represents liabilities; in CreditMetrics
Xi is a normally distributed rv, interpreted as a change in logarithmic asset value.
Portfolio extensions of firm-value models typically use multivariate lognormal or
normal distributions for the vector X = (X1, . . . , Xm)

′. The dependence among
defaults stems from the dependence among the components of the vector X.

The very general set-up of the threshold models of this section will allow both
more general interpretations for the critical variable and more general distributional
models. For example, in Li’s model, discussed in Example 8.7, the critical variables
are the “times to default” of the firms, and the critical threshold is the time horizon T
itself. The distributions assumed for X can be completely general and indeed a major
issue of this section will be the influence of the copula of the multivariate distribution
of X on the risk of the portfolio.
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8.3.1 Notation for One-Period Portfolio Models

It is convenient to introduce some notation for one-period portfolio models which
will be in force throughout the remainder of the chapter. We consider a portfolio of
m obligors and fix a time horizon T . For 1 � i � m, we let the rv Si be a state
indicator for obligor i at time T and assume that Si := ST,i takes integer values
in the set {0, 1, . . . , n} representing, for example, rating classes; as in the previous
section, we interpret the value 0 as default and non-zero values as states of increasing
credit quality. At time t = 0 obligors are assumed to be in some non-default state.

Mostly we will concentrate on the binary outcomes of default and non-default
and ignore the finer categorization of non-defaulted companies. In this case we write
Yi := YT,i for the default indicator variables so that Yi = 1 ⇐⇒ Si = 0 and
Yi = 0 ⇐⇒ Si > 0. The random vector Y = (Y1, . . . , Ym)

′ is a vector of default
indicators for the portfolio and p(y) = P(Y1 = y1, . . . , Ym = ym), y ∈ {0, 1}m,
is its joint probability function; the marginal default probabilities are denoted by
p̄i = P(Yi = 1), i = 1, . . . , m.

The default or event correlations will be of particular interest to us; they are
defined to be the correlation of the default indicators. Because

var(Yi) = E(Y 2
i ) − p̄2

i = E(Yi) − p̄2
i = p̄i − p̄2

i ,

we obtain for firms i and j , with i �= j ,

ρ(Yi, Yj ) = E(YiYj ) − p̄i p̄j√
(p̄i − p̄2

i )(p̄j − p̄2
j )
. (8.20)

We count the number of defaulted obligors at time T with the rvM := ∑m
i=1 Yi . The

actual loss if company i defaults—termed loss given default (LGD) in practice—is
modelled by the random quantity δiei , where ei represents the overall exposure to
company i and 0 � δi � 1 represents a random proportion of the exposure which
is lost in the event of default. We will denote the overall loss by L := ∑m

i=1 δieiYi

and make further assumptions about the ei and δi variables as and when we need
them.

It is possible to set up different credit risk models leading to the same multivariate
distribution of S or Y . Since this distribution is the main object of interest in the
analysis of portfolio credit risk, we call two models with state vectors S and S̃ (or
Y and Ỹ ) equivalent if S

d= S̃ (or Y
d= Ỹ ).

The exchangeable special case. To simplify the analysis we will often assume that
the state indicator S, and thus the default indicator Y , are exchangeable. This seems
the correct way to mathematically formalize the notion of homogeneous groups
that is used in practice. Recall that a random vector S is said to be exchangeable
if (S1, . . . , Sm)

d= (SΠ(1), . . . , SΠ(m)) for any permutation (Π(1), . . . ,Π(m)) of
(1, . . . , m). Exchangeability implies in particular that, for any k ∈ {1, . . . , m − 1},
all of the

(
m
k

)
possible k-dimensional marginal distributions of S are identical.

In this situation we introduce a simple notation for default probabilities where
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π := P(Yi = 1), i ∈ {1, . . . , m}, is the default probability of any firm and

πk := P(Yi1 = 1, . . . , Yik = 1), {i1, . . . , ik} ⊂ {1, . . . , m}, 2 � k � m,

(8.21)
is the joint default probability for k firms. In other words, πk is the probability that
an arbitrarily selected subgroup of k companies defaults in [0, T ]. When default
indicators are exchangeable, we get

E(Yi) = E(Y 2
i ) = P(Yi = 1) = π, ∀i,

E(YiYj ) = P(Yi = 1, Yj = 1) = π2, ∀i �= j,

so that cov(Yi, Yj ) = π2 − π2; this implies that the default correlation in (8.20) is
given by

ρY := ρ(Yi, Yj ) = π2 − π2

π − π2 , i �= j, (8.22)

which is a simple function of the first- and second-order default probabilities.

8.3.2 Threshold Models and Copulas

We start with a general definition of a threshold model before discussing the link to
copulas.

Definition 8.4. Let X = (X1, . . . , Xm)
′ be an m-dimensional random vector and

let D ∈ R
m×n be a deterministic matrix with elements dij such that, for every i, the

elements of the ith row form a set of increasing thresholds satisfyingdi1 < · · · < din.
Augment these thresholds by setting di0 = −∞ and di(n+1) = ∞ for all obligors
and then set

Si = j ⇐⇒ dij < Xi � di(j+1), j ∈ {0, . . . , n}, i ∈ {1, . . . , m}.
Then (X,D) is said to define a threshold model for the state vector S =
(S1, . . . , Sm)

′.

We refer to X as the vector of critical variables and denote its marginal dfs by
Fi(x) = P(Xi � x). The ith row of D contains the critical thresholds for firm i.
By definition, default (corresponding to the event Si = 0) occurs if Xi � di1 so that
the default probability of company i is given by p̄i = Fi(di1).

In the context of such models it is important to distinguish the default correlation
ρ(Yi, Yj ) of two firms i �= j from the so-called asset correlation (the correlation
of the critical variables Xi and Xj ). For given default probabilities, ρ(Yi, Yj ) is
determined by E(YiYj ) according to (8.20), and in a threshold model E(YiYj ) =
P(Xi � di1, Xj � dj1), so default correlation depends on the joint distribution of
Xi and Xj . If X is multivariate normal, as in the CreditMetrics/KMV-type models,
the correlation of Xi and Xj determines the copula of their joint distribution and
hence the default correlation (see Lemma 8.5 below). For general critical variables
outside the multivariate normal class, the correlation of the critical variables does
not fully determine the default correlation; this can have serious implications for the
tail of the distribution of M = ∑m

i=1 Yi , as will be shown in Section 8.3.5.
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We now give a simple criterion for equivalence of two threshold models in terms of
the marginal distributions of the state vector S and the copula of X.While straightfor-
ward from a mathematical viewpoint, the result is useful for studying the structural
similarities between various industry models for portfolio credit risk management.
For the necessary background information on copulas we refer to Chapter 5.

Lemma 8.5. Let (X,D) and (X̃, D̃) be a pair of threshold models with state vectors
S = (S1, . . . , Sm)

′ and S̃ = (S̃1, . . . , S̃m)
′, respectively. The models are equivalent

if the following conditions hold.

(i) The marginal distributions of the random vectors S and S̃ coincide, i.e.

P(Si = j) = P(S̃i = j), j ∈ {1, . . . , n}, i ∈ {1, . . . , m}.
(ii) X and X̃ admit the same copula C.

Proof. According to Definition 8.4, S
d= S̃ if and only if, for all j1, . . . , jm ∈

{1, . . . , n},
P(d1j1 < X1 � d1(j1+1), . . . , dmjm < Xm � dm(jm+1))

= P(d̃1j1 < X̃1 � d̃1(j1+1), . . . , d̃mjm < X̃m � d̃m(jm+1)).

By standard measure-theoretic arguments this holds if, for all j1, . . . , jm ∈
{1, . . . , n},

P(X1 � d1j1 , . . . , Xm � dmjm) = P(X̃1 � d̃1j1 , . . . , X̃m � d̃mjm).

By Sklar’s theorem (Theorem 5.3) this is equivalent to

C(F1(d1j1), . . . , Fm(dmjm)) = C(F̃1(d̃1j1), . . . , F̃m(d̃mjm)),

where C is the copula of X and X̃ (using condition (ii)). Condition (i) implies that
Fi(dij ) = F̃i(d̃ij ) for all j ∈ {1, . . . , n}, i ∈ {1, . . . , m}, and the claim follows.

The copula in a threshold model determines the link between marginal probabili-
ties of migration for individual firms and joint probabilities of migration for groups
of firms. Consider for simplicity a two-state model for default and non-default and
a subgroup of k companies {i1, . . . , ik} ⊂ {1, . . . , m} with individual default prob-
abilities p̄i1 , . . . , p̄ik . Then

P(Yi1 = 1, . . . , Yik = 1) = P(Xi1 � di11, . . . , Xik � dik1)

= Ci1···ik (p̄i1 , . . . , p̄ik ), (8.23)

where Ci1···ik denotes the corresponding k-dimensional margin of C. As a special
case consider now a model for a single homogeneous group.We assume that X has an
exchangeable copula (i.e. a copula of the form (5.18)) and that all individual default
probabilities are equal to some constant π so that the default indicator vector Y is
exchangeable. The formula (8.23) reduces to the useful formula

πk = C1···k(π, . . . , π), 2 � k � m, (8.24)

which will be used for the calibration of some copula models later on.
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8.3.3 Industry Examples

As we have remarked, a number of popular industry models fit into the general
framework of threshold models and we give some more detail in this section.

Example 8.6 (CreditMetrics and KMV models). The portfolio versions of the
KMV and CreditMetrics models introduced in Section 8.2.5 use a similar mecha-
nism to model the joint distribution of defaults; they differ only with respect to the
approach used for the determination of individual default probabilities.

In both models the vector of critical variables X is assumed to have a multivariate
normal distribution andXi can be interpreted as a change in asset value for obligor i
over the time horizon of interest; di1 is chosen so that the probability that Xi �
di1 matches the given default probability p̄i for company i. Obviously, both the
CreditMetrics and KMV models work with a Gauss copula for the critical variables
X and are hence structurally similar. In particular, by Proposition 8.5 the two-
state versions of the models are equivalent, provided that the individual default
probabilities p̄1, . . . , p̄m and the correlation matrix P of X are identical.

In both models the covariance matrix of X is calibrated using a factor model of
the kind described in Section 3.4.1. Assume that we have transformed the critical
variables and thresholds in such a way that the margins of X are standard normal.
It is assumed that X can be written as

X = BF + ε (8.25)

for a p-dimensional random vector of common factors F ∼ Np(0,Ω) with p < m,
a loading matrixB ∈ R

m×p, and anm-dimensional vector of independent univariate
normally distributed errors ε, which are also independent of F . Here the random vec-
tor F represents country and industry effects. Obviously, the factor structure (8.25)
implies that the covariance matrix P of X (which will be a correlation matrix due to
our assumptions on the marginal distributions of X) is of the form P = BΩB ′ +Υ ,
where Υ is the diagonal covariance matrix of ε.

Writing bi = (bi1, . . . , bip)
′ for the ith row of B, the ith critical variable has the

structure Xi = b′
iF + εi . Recalling that var(Xi) = 1, it follows that

βi := b′
iΩbi (8.26)

can be viewed as the systematic risk of Xi : that is, the part of the variance of Xi

which is explained by the common factors F . The idiosyncratic risk not explained
by the common factors is var(εi) = 1 − βi .

In the factor model employed by KMV the factors are assumed to be observable,
and a time series of factor returns is constructed by forming appropriate indices
of asset values of publicly traded companies. The factor weights comprising B are
determined using non-quantitative economic arguments combined with regression
techniques; some details can be found in Kealhofer and Bohn (2001).

Example 8.7 (Li’s model). This model, proposed in Li (2001), is a simple dynamic
model used by practitioners to price basket credit derivatives. The author interprets
the critical variable Xi as the default time of company i and assumes that Xi is
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exponentially distributed with parameter λi so that Fi(t) = 1 − exp(−λit). Obvi-
ously, company i defaults by time T if and only if Xi � T , so p̄i = Fi(T ). To
determine the multivariate distribution of X, Li assumes that X has the Gauss cop-
ula CGa

P for some correlation matrix P (see, for example, (5.9) in Section 5.1.2)
so that P(X1 � t1, . . . , Xm � tm) = CGa

P (F1(t1), . . . , Fm(tm)). It is immediate
from Lemma 8.5 that in Li’s model the distribution of the default indicators at some
fixed horizon T is equivalent to a model of CreditMetrics/KMV type, provided that
individual default probabilities coincide and that the correlation matrix of the asset-
value change X in the KMV-type model equals P . This equivalence is often used
to calibrate Li’s model. We will have a closer look at the model in our analysis of
dynamic copula models in Section 9.7.

8.3.4 Models Based on Alternative Copulas

While most threshold models used in industry are based explicitly or implicitly on
the Gauss copula, there is no reason why we have to assume a Gauss copula. In fact,
simulations presented in Section 8.3.5 show that the choice of copula may be very
critical to the tail of the distribution of the number of defaults M . We now look at
threshold models based on alternative copulas.

The first class of model attempts to preserve some of the flexibility of models of
KMV/CreditMetrics type, which do have the appealing feature that they can accom-
modate a wide range of different correlation structures for the critical variables. This
is clearly an advantage in modelling a portfolio where obligors are exposed to sev-
eral risk factors and where the exposure to different risk factors differs markedly
across obligors, such as a portfolio of loans to companies from different industry
sectors or countries.

Example 8.8 (normal mean-variance mixtures). For the distribution of the critical
variables we consider the kind of model described in Section 3.2.2. We start with
an m-dimensional multivariate normal vector Z ∼ Nm(0,Σ) and a positive, scalar
rv W , which is independent of Z. The vector of critical variables X is assumed to
have the structure

X = m(W) + √
WZ, (8.27)

where m : [0,∞) → R
m is a measurable function. In the special case where m(W)

takes a constant value µ not depending on W , the distribution is called a normal
variance mixture.

An important example of a normal variance mixture is the multivariate t distribu-
tion, as discussed in Example 3.7, which is obtained when W has an inverse gamma
distribution, W ∼ Ig( 1

2ν,
1
2ν), or equivalently when ν/W ∼ χ2

ν . An example of a
general mean-variance mixture is the generalized hyperbolic distribution discussed
in Section 3.2.3.

In a normal mean-variance mixture model the default condition may be written
as

Xi � di1 ⇐⇒ Zi � di1√
W

− mi(W)√
W

=: D̃i, (8.28)
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where mi(W) is the ith component of m(W). A possible economic interpretation of
the model (8.27) is to consider Zi as the asset value of company i and di1 as an a
priori estimate of the corresponding default threshold. The actual default threshold
is stochastic and is represented by D̃i , which is obtained by applying a multiplicative
and an additive shock to the estimate di1. If we interpret this shock as a stylized
representation of global factors such as the overall liquidity and risk appetite in the
banking system, it makes sense to assume that the shocks to the default thresholds
of different obligors are driven by the same rv W .

Normal variance mixtures, such as the multivariate t , provide the most tractable
examples of normal mean-variance mixtures; they admit a similar calibration
approach using linear factor models to models based on the Gauss copula. In nor-
mal variance mixture models the correlation matrices of X (when defined) and Z

coincide. Moreover, if Z follows a linear factor model (8.25), then X inherits the
linear factor structure from Z. Note however, that the systematic factors

√
WF and

the idiosyncratic factors
√
Wε are no longer independent but merely uncorrelated.

A threshold model based on the t copula can be thought of as containing the
standard KMV/CreditMetrics model based on the Gauss copula as a limiting case
as ν → ∞. However, the additional parameter ν adds a great deal of flexibility to
the model. We will come back to this point in Section 8.3.5.

Another class of parametric copulas that could be used in threshold models is the
Archimedean family of Section 5.4.

Example 8.9 (Archimedean copulas). Recall that an Archimedean copula is the
distribution function of a uniform random vector of the form

C(u1, . . . , um) = φ−1(φ(u1) + · · · + φ(um)), (8.29)

where φ : [0, 1] → [0,∞] is a continuous, strictly decreasing function, known as
the copula generator, andφ−1 is its inverse.We assume thatφ(0) = ∞,φ(1) = 0 and
that φ−1 is completely monotonic (see equation (5.39) and surrounding discussion).
As explained in Section 5.4, these conditions ensure that (8.29) defines a copula for
any portfolio size m. Our main example in this chapter will be Clayton’s copula.
Recall from Section 5.4 that the Clayton copula has generator φθ (t) = t−θ − 1,
where θ > 0, leading to the copula

CCl
θ (u1, . . . , um) = (u−θ

1 + · · · + u−θ
m + 1 − m)−1/θ . (8.30)

As discussed in Section 5.4, exchangeable Archimedean copulas suffer from the
deficiency that they are not rich in parameters and can model only exchangeable
dependence and not a fully flexible dependence structure for the critical variables.
Nonetheless, they yield useful parsimonious models for relatively small homoge-
neous portfolios, which are easy to calibrate and simulate, as we discuss in more
detail in Section 8.4.4.

Suppose that X is a random vector with anArchimedean copula and with marginal
distributions Fi , 1 � i � m, so that (X,D) specifies a threshold model with indi-
vidual default probabilities Fi(di1). As a particular example consider the Clayton
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copula and assume a homogeneous situation where all individual default probabil-
ities are identical to π . Using relation (8.23), we can calculate that the probability
that an arbitrarily selected group of k obligors from a portfolio of m such obligors
defaults over the time horizon is given by πk = (kπ−θ − k + 1)−1/θ . Essentially,
the dependent default mechanism of the homogeneous group is now determined
by this equation and the parameters π and θ . We study this Clayton copula model
further in Example 8.22.

8.3.5 Model Risk Issues

Recall from Chapter 2 that model risk may be roughly defined as the risk associated
with working with misspecified models—in our case, models which are a poor
representation of the true mechanism governing defaults and migrations in a credit
portfolio. For example, if we intend to use our models to estimate measures of tail
risk, like VaR and expected shortfall, then we should be particularly concerned with
the possibility that they might underestimate the tail of the portfolio loss distribution.

As we have seen, a threshold model essentially consists of a collection of default
(and migration) probabilities for individual firms and a copula that describes the
dependence of certain critical variables. In discussing model risk in this context we
will concentrate on models for default only and assume that individual default prob-
abilities have been satisfactorily determined. It is much more difficult to determine
the copula describing default dependence and we will look at model risk associated
with the misspecification of this component of the threshold model.

The impact of the choice of copula. Since most threshold models used in industry
use the Gauss copula, we are particularly interested in the sensitivity of the dis-
tribution of the number of defaults M with respect to the assumption of Gaussian
dependence. Our interest is motivated by the observation made in Section 5.3.1 that,
by assuming a Gaussian dependence structure, we may underestimate the probabil-
ity of joint large movements of risk factors, with potentially drastic implications for
the performance of risk-management models.

We compare a model with multivariate normal critical variables and a model
where the critical variables are multivariate t . For simplicity we consider a homoge-
neous group model with factor structure, which we now describe. Given a standard
normal rv F , an iid sequence ε1, . . . , εm of standard normal variates independent
of F and an asset correlation parameter ρ ∈ [0, 1], we define a random vector Z by
Zi = √

ρF + √
1 − ρεi . Observe that this vector follows the so-called equicorre-

lation factor model described in Example 3.34 and equation (3.63).
In the t copula case we define the critical variables Xi := √

WZi , where
W ∼ Ig( 1

2ν,
1
2ν) is independent of Z, so that X has a multivariate t distribution.

In the Gauss copula case we simply set X := Z. In both cases we choose thresholds
so that P(Yi = 1) = π for all i and for some π ∈ (0, 1). Note that the correlation
matrix P of X (the asset correlation matrix) is identical in both models and is given
by an equicorrelation matrix with off-diagonal element ρ. However, the copula of
X differs, and we expect more joint defaults in the t model due to the higher level
of dependence in the joint tail of the t copula.
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Table 8.4. Results of simulation study. We tabulate the estimated 95th and 99th percentiles
of the distribution of M in an exchangeable model with 10 000 firms. The values for the
default probability π and the asset correlation ρ corresponding to the three groups A, B and
C are given in the text.

q0.95(M) q0.99(M)︷ ︸︸ ︷ ︷ ︸︸ ︷
Group ν = ∞ ν = 50 ν = 10 ν = ∞ ν = 50 ν = 10

A 14 23 24 21 49 118
B 109 153 239 157 261 589
C 1618 1723 2085 2206 2400 3067

We define three groups of decreasing credit quality, labelled A, B and C. These
groups do not correspond exactly to the A, B and C rating categories used by any
of the well-known rating agencies, but they are nonetheless realistic values for
Gaussian threshold models for real obligors. In group A we set π = 0.06% and
ρ = 2.58%; in group B we set π = 0.50% and ρ = 3.80%; in group C we set
π = 7.50% and ρ = 9.21%. We consider a portfolio of size m = 10 000. For each
group we vary the degrees-of-freedom parameter ν. In order to represent the tail
of the number of defaults M , we use simulations to determine (approximately) the
95% and 99% quantiles, q0.95(M) and q0.99(M), and tabulate them in Table 8.4.
The actual simulation was performed using a representation of threshold models as
Bernoulli mixture models that is discussed later in Section 8.4.4.

Table 8.4 shows that ν clearly has a massive influence on the high quantiles.
For the important 99% quantile the impact is most pronounced for group A, where
q0.99(M) is increased by a factor of almost six when we go from a Gaussian model
to a model with ν = 10.

The impact of changing asset correlation. Here we stick to the assumption that X

has a Gauss copula and study the impact of the factor structure of the asset returns
on joint default events and hence on the tail ofM . More specifically, we increase the
systematic risk component of the critical variables for the obligors in our portfolio
(see equation (8.26)) and analyse how this affects the tail of M . We use the homoge-
neous group model introduced above as a vehicle for our analysis. We fix the default
probability at π = 0.50% (the value for group B above) and vary the asset correla-
tion ρ, which gives the systematic risk for all obligors in the homogeneous group
model, using the values ρ = 2.58%, ρ = 3.80% and ρ = 9.21%. In Table 8.5 we
tabulate q0.95(M) and q0.99(M) for a portfolio with 10 000 counterparties. Clearly,
varying ρ also has a sizeable effect on the quantiles of M . However, this effect is
less drastic and, in particular, less surprising than the impact of varying the copula
in our previous experiment.

Commentary. Both simulation experiments indicate that attempts to calibrate
threshold models using estimates of marginal default probabilities and crude esti-
mates of the factor structure of the critical variables obtained from asset return data
are prone to substantial model risk. Ideally, historical default data should also be
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Table 8.5. Results of simulation study. Estimated 95th and 99th percentiles of the
distribution of M in an exchangeable model for varying values of asset correlation ρ.

Quantile ρ = 2.58% ρ = 3.80% ρ = 9.21%

q0.95(M) 98 109 148
q0.99(M) 133 157 250

used to estimate parameters describing default dependence; indeed, the best strat-
egy might involve combining factor models for asset-value returns with statistical
estimation of some of the key parameters (such as the systematic risk parameter β
in (8.26)) using historical default data.

Notes and Comments

Our presentation of threshold models is based, to a large extent, on Frey and McNeil
(2001, 2003). In those papers we referred to the models as “latent variable” mod-
els, because of structural similarities with statistical models of that name (see Joe
1997). However, whereas in statistical latent variable models the critical variables
are treated as unobserved, in credit models they are often formally identified, for
example, as asset values or asset-value returns.

The first systematic study of model risk for credit portfolio models is Gordy
(2000). Our analysis of the impact of the copula of X on the tail of M follows Frey,
McNeil and Nyfeler (2001). For an excellent discussion of various aspects of model
risk in risk management in general we refer to Gibson (2000).

8.4 The Mixture Model Approach

In a mixture model the default risk of an obligor is assumed to depend on a set
of common economic factors, such as macroeconomic variables, which are also
modelled stochastically. Given a realization of the factors, defaults of individual
firms are assumed to be independent. Dependence between defaults stems from the
dependence of individual default probabilities on the set of common factors. We
start with general definitions of Bernoulli and Poisson mixture models before going
on to specific examples.

Definition 8.10 (Bernoulli mixture model). Given some p < m and a p-dimen-
sional random vector Ψ = (Ψ1, . . . , Ψp)

′, the random vector Y = (Y1, . . . , Ym)
′

follows a Bernoulli mixture model with factor vector Ψ if there are functions pi :
R
p → [0, 1], 1 � i � m, such that conditional on Ψ the components of Y are

independent Bernoulli rvs satisfying P(Yi = 1 | Ψ = ψ) = pi(ψ).

For y = (y1, . . . , ym)
′ in {0, 1}m we have that

P(Y = y | Ψ = ψ) =
m∏
i=1

pi(ψ)yi (1 − pi(ψ))1−yi , (8.31)
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and the unconditional distribution of the default indicator vector Y is obtained by
integrating over the distribution of the factor vector Ψ . In particular, the default
probability of company i is given by p̄i = P(Yi = 1) = E(pi(Ψ )).

Since default is a rare event, we also explore the idea of approximating Bernoulli
rvs with Poisson rvs in Poisson mixture models. Here a company may potentially
“default more than once” in the period of interest, albeit with a very low probability;
we will use the notation Ỹi ∈ {0, 1, 2, . . . } for the counting rv giving the number of
“defaults” of company i. The formal definition parallels the definition of a Bernoulli
mixture model.

Definition 8.11 (Poisson mixture model). Given p and Ψ as in Definition 8.10, the
random vector Ỹ = (Ỹ1, . . . , Ỹm)

′ follows a Poisson mixture model with factors Ψ

if there are functions λi : R
p → (0,∞), 1 � i � m, such that conditional on

Ψ = ψ the random vector Ỹ is a vector of independent Poisson distributed rvs with
rate parameter λi(ψ).

CreditRisk+, which is discussed in Section 8.4.2, is an industry example of a
Poisson mixture model. Poisson mixture models also play an important role in
actuarial mathematics (see Section 10.2.4).

We define the rv M̃ = ∑m
i=1 Ỹi and observe that, for small Poisson parameters λi ,

M̃ is approximately equal to the number of defaulting companies. Given the fac-
tors, it is the sum of conditionally independent Poisson variables and therefore its
distribution satisfies

P(M̃ = k | Ψ = ψ) = exp

(
−

m∑
i=1

λi(ψ)

)
(
∑m

i=1 λi(ψ))k

k! . (8.32)

If Ỹ follows a Poisson mixture model and we define the indicators Yi = I{Ỹi�1},
then Y follows a Bernoulli mixture model and the mixing variables are related by
pi(·) = 1 − exp(−λi(·)).

Note that the two-stage hierarchical structure of mixture models facilitates sam-
pling from the models: first we generate the economic factor realizations, and then
the pattern of defaults conditional on those realizations. The second step is easy
because of the conditional independence assumption.

8.4.1 One-Factor Bernoulli Mixture Models

In many practical situations it is useful to consider a one-factor model. The infor-
mation may not always be available to calibrate a model with more factors, and
one-factor models may be fitted statistically to default data without great difficulty
(see Section 8.6). Their behaviour for large portfolios is also particularly easy to
understand, as will be shown in Section 8.4.3.

Throughout this section, Ψ is an rv with values in R and pi(Ψ ) : R → [0, 1]
are functions such that, conditional on Ψ , the default indicator Y is a vector of
independent Bernoulli rvs with P(Yi = 1 | Ψ = ψ) = pi(ψ). We now consider a
variety of special cases.
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Exchangeable Bernoulli mixture models. A further simplification occurs if the
functions pi are all identical. In this case the Bernoulli mixture model is termed
exchangeable, since the random vector Y is exchangeable. It is convenient to intro-
duce the rv Q := p1(Ψ ) and to denote the distribution function of this mixing
variable by G(q). Conditional on Q = q the number of defaults M is the sum of m
independent Bernoulli variables with parameter q and hence has a binomial distri-
bution with parameters q and m, i.e. P(M = k | Q = q) = (

m
k

)
qk(1 − q)m−k . The

unconditional distribution of M is obtained by integrating over q. We have

P(M = k) =
(
m

k

)∫ 1

0
qk(1 − q)m−k dG(q). (8.33)

Using the notation of Section 8.3.1 we can calculate default probabilities and joint
default probabilities for the exchangeable group. Simple calculations give π =
E(Y1) = E(E(Y1 | Q)) = E(Q) and, more generally,

πk = P(Y1 = 1, . . . , Yk = 1) = E(E(Y1 · · ·Yk | Q)) = E(Qk), (8.34)

so that unconditional default probabilities of first and higher order are seen to be
moments of the mixing distribution. Moreover, for i �= j , cov(Yi, Yj ) = π2 −π2 =
var(Q) � 0, which means that in an exchangeable Bernoulli mixture model the
default correlation ρY defined in (8.22) is always non-negative. Any value of ρY
in [0, 1] can be obtained by an appropriate choice of the mixing distribution G. In
particular, if ρY = var(Q) = 0, the rv Q has a degenerate distribution with all
mass concentrated on the point π and the default indicators are independent. The
case ρY = 1 corresponds to a model where π = π2 and the distribution of Q is
concentrated on the points 0 and 1.

Example 8.12 (beta, probit-normal and logit-normal mixtures). The following
mixing distributions are frequently used in Bernoulli mixture models.

Beta mixing distribution. Here we assume that Q ∼ Beta(a, b) for some param-
eters a > 0 and b > 0. See Section A.2.1 for more details concerning the beta
distribution.

Probit-normal mixing distribution. Here Q = Φ(µ + σΨ ) for Ψ ∼ N(0, 1),
µ ∈ R and σ > 0, where Φ is the standard normal distribution function. It turns
out that this model can be viewed as a one-factor version of the CreditMetrics
and KMV-type models; this is a special case of a general result in Section 8.4.4
(see equation (8.45) in particular).

Logit-normal mixing distribution. Here Q = F(µ + σΨ ) for Ψ ∼ N(0, 1),
µ ∈ R and σ > 0, where F(x) = (1 + exp(−x))−1 is the df of a so-called
logistic distribution.

In the model with beta mixing distribution, the higher-order default probabilities
πk and the distribution of M can be computed explicitly (see Example 8.13 below).
Calculations for the logit-normal, probit-normal and other models generally require
numerical evaluation of the integrals in (8.33) and (8.34). If we fix any two of
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π , π2 and ρY in a beta, logit-normal or probit-normal model, then this fixes the
parameters a and b or µ and σ of the mixing distribution and higher-order joint
default probabilities are automatic.

Example 8.13 (beta mixing distribution). By definition, the density of a beta
distribution is given by

g(q) = 1

β(a, b)
qa−1(1 − q)b−1, a, b > 0, 0 < q < 1,

where β(a, b) denotes the beta function. Below we use the fact that the beta function
satisfies the recursion formula β(a+1, b) = (a/(a+b))β(a, b); this is easily estab-
lished from the representation of the beta function in terms of the gamma function
in Section A.2.1. Using (8.34) we obtain for the higher-order default probabilities

πk = 1

β(a, b)

∫ 1

0
qkqa−1(1 − q)b−1 dq = β(a + k, b)

β(a, b)
, k = 1, 2, . . . .

The recursion formula for the beta function yields πk = ∏k−1
j=0(a + j)/(a + b + j);

in particular, π = a/(a + b), π2 = π(a + 1)/(a + b+ 1) and ρY = (a + b+ 1)−1.
The rv M has a so-called beta-binomial distribution. We obtain from (8.33) that

P(M = k) =
(
m

k

)
1

β(a, b)

∫ 1

0
qk+a−1(1 − q)m−k+b−1 dq

=
(
m

k

)
β(a + k, b + m − k)

β(a, b)
. (8.35)

One-factor models with covariates. It is quite straightforward to construct Ber-
noulli mixture models that have a single common mixing variableΨ but which allow
covariates for individual firms to influence the default probability; these covariates
might be indicators for group membership, such as rating class or industry sector,
or key ratios taken from a company’s balance sheet.

Writing xi ∈ R
k for a vector of deterministic covariates, a typical model for the

conditional default probabilities pi(Ψ ) in (8.31) would be to assume that

pi(Ψ ) = h(µ + β ′xi + σΨ ), (8.36)

where h : R → (0, 1) is a strictly increasing link function, such as h(x) = Φ(x)

or h(x) = (1 + exp(−x))−1, the vector β = (β1, . . . , βk)
′ contains regression

parameters,µ ∈ R is an intercept parameter, and σ > 0 is a scaling parameter. Such
a specification is commonly used in the class of generalized linear models in statistics
(see Section 8.6.3). We could complete the mixture model by specifying that Ψ is
standard normally distributed, which would mean that the mixing distribution for the
conditional default probability of each individual firm was of either probit-normal
or logit-normal form.

Clearly, if xi = x for all i, so that all risks have the same covariates, then we are
back in the situation of full exchangeability. Note also that, since the function pi(Ψ )

is increasing in Ψ , the conditional default probabilities (p1(Ψ ), . . . , pm(Ψ )) form



356 8. Credit Risk Management

a comonotonic random vector; hence, in a state of the world where the default prob-
ability is comparatively high for one counterparty, it is high for all counterparties.
For a discussion of comonotonicity we refer to Section 5.1.6.

Example 8.14 (model for several exchangeable groups). The regression structure
in (8.36) includes partially exchangeable models where we define a number of groups
within which risks are exchangeable. These groups might represent rating classes
according to some internal or rating-agency classification.

If the covariates xi are simply k-dimensional unit vectors of the form xi = er(i),
where r(i) ∈ {1, . . . , k} indicates, say, the rating class of firm i, then the model (8.36)
can be written in the form

pi(Ψ ) = h(µr(i) + σΨ ) (8.37)

for parameters µr := µ + βr for r = 1, . . . , k.
Inserting this specification in (8.31) we can find the conditional distribution of

the default indicator vector. Suppose there are mr obligors in rating category r for
r = 1, . . . , k, and write Mr for the number of defaults. The conditional distribution
of the vector M = (M1, . . . ,Mk)

′ is given by

P(M = l | Ψ = ψ) =
k∏

r=1

(
mr

lr

)
(h(µr + σψ))lr (1 − h(µr + σψ))mr−lr , (8.38)

where l = (l1, . . . , lk)
′. A model of precisely the form (8.38) will be fitted to

Standard & Poor’s default data in Section 8.6.4. The asymptotic behaviour of such
a model (when m is large) is investigated in Example 8.17.

8.4.2 CreditRisk+
CreditRisk+ is an industry model for credit risk that was proposed by Credit Suisse
Financial Products in 1997 (see Credit Suisse Financial Products 1997). The model
has the structure of a Poisson mixture model, where the factor vector Ψ consists ofp
independent, gamma-distributed rvs. The distributional assumptions and functional
forms imposed in CreditRisk+ make it possible to compute the distribution of M
fairly explicitly using techniques for mixture distributions that are well known in
actuarial mathematics and which are also discussed in Chapter 10.

The structure of CreditRisk+. CreditRisk+ is a Poisson mixture model in the
sense of Definition 8.11. The (stochastic) parameterλi(Ψ ) of the conditional Poisson
distribution for firm i is given byλi(Ψ ) = kiw

′
iΨ for a constant ki > 0, non-negative

factor weights wi = (wi1, . . . , wip)
′ satisfying

∑
j wij = 1, and p independent

Ga(αj , βj )-distributed factorsΨ1, . . . , Ψp with parameters set to beαj = βj = σ−2
j

for some σj > 0. This parametrization of the gamma variables ensures that we
have E(Ψj ) = 1, var(Ψj ) = σ 2

j and E(λi(Ψ )) = kiE(w
′
iΨ ) = ki . Observe that

in this model the default probability is given by P(Yi = 1) = P(Ỹi > 0) =
E(P (Ỹi > 0 | Ψ )). Since Ỹi is Poisson given Ψ , we have that

E(P (Ỹi > 0 | Ψ )) = E(1 − exp(−kiw
′
iΨ )) ≈ kiE(w

′
iΨ ) = ki, (8.39)
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where the approximation holds because ki is typically small. Hence ki is approxi-
mately equal to the default probability for firm i.

Gamma–Poisson mixtures. The distribution of M̃ = ∑m
i=1 Ỹi in CreditRisk+ is

conditionally Poisson and satisfies

M̃ | Ψ = ψ ∼ Poi

( m∑
i=1

kiw
′
iψ

)
. (8.40)

To compute the unconditional distribution of M̃ we require a well-known result on
mixed Poisson distributions, which appears as Proposition 10.20 in a discussion
of relevant actuarial methodology for quantitative risk management in Chapter 10.
This result says that if the rv N is conditionally Poisson with a gamma-distributed
rate parameter, Λ ∼ Ga(α, β), then N has a negative binomial distribution, N ∼
Nb(α, β/(β + 1)).

In the case when p = 1 we may apply this result directly to (8.40) to deduce that
M̃ has a negative binomial distribution (since a constant times a gamma variable
remains gamma distributed).

For arbitrary p we now show that M̃ is equal in distribution to a sum of p
independent negative binomial rvs. This follows by observing that

m∑
i=1

kiw
′
iΨ =

m∑
i=1

ki

p∑
j=1

wijΨj =
p∑

j=1

Ψj

( m∑
i=1

kiwij

)
.

Now consider rvs M̃1, . . . , M̃p such that M̃j is conditionally Poisson with mean
(
∑m

i=1 kiwij )ψj conditional on Ψj = ψj . The independence of the components
Ψ1, . . . , Ψp implies that the M̃j are independent, and by construction we have
M̃

d= ∑p
j=1 M̃j . Moreover, the rvs (

∑m
i=1 kiwij )Ψj are gamma distributed, so that

each of the M̃j has a negative binomial distribution by Proposition 10.20.
This observation is the starting point for the computation of the distribution of M̃

in CreditRisk+. Using Panjer recursion (see Section 10.2.3), it is in fact possible to
derive simple recursion formulas for the probabilities P(M̃ = k).

8.4.3 Asymptotics for Large Portfolios

We now provide some asymptotic results for large portfolios in Bernoulli mixture
models. These results can be used to approximate the credit loss distribution and
associated risk measures in a large portfolio. Moreover, they are useful for identi-
fying the crucial parts of a Bernoulli mixture model. In particular, we will see that
in one-factor models the tail of the loss distribution is essentially determined by the
tail of the mixing distribution, which has direct consequences for the analysis of
model risk in mixture models and for the setting of capital-adequacy rules for loan
books.

Since we are interested in asymptotic properties of the overall loss distribution, we
also consider exposures and losses given default. Let (ei)i∈N be an infinite sequence
of positive deterministic exposures, let (Yi)i∈N be the corresponding sequence of
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default indicators, and let (δi)i∈N be a sequence of rvs with values in (0, 1] represent-
ing percentage losses given that default occurs. In this setting the loss for a portfolio
of size m is given by L(m) = ∑m

i=1 Li , where Li = eiδiYi are the individual losses.
We now make some technical assumptions for our model.

(A1) There is a p-dimensional random vector Ψ and functions !i : R
p → [0, 1]

such that, conditional on Ψ , the (Li)i∈N form a sequence of independent rvs
with mean !i(ψ) = E(Li | Ψ = ψ).

In this assumption the conditional independence structure is extended from the
default indicators to the losses. Note that it is not assumed that losses given default
δi and default indicators are independent, an assumption which is made in many
standard models. In particular, (A1) allows for the situation where Yi and δi are only
conditionally independent given Ψ , such that !i(ψ) = δi(ψ)pi(ψ), where δi(ψ)

gives the expected percentage loss given default, given Ψ = ψ . This extension
is relevant from an empirical viewpoint since evidence suggests that losses given
default tend to depend on the state of the underlying economy (see Notes and Com-
ments).

(A2) There is a function !̄ : R
p → R

+ such that

lim
m→∞

1

m
E(L(m) | Ψ = ψ) = lim

m→∞
1

m

m∑
i=1

!i(ψ) = !̄(ψ)

for all ψ ∈ R
p. We call !̄(ψ) the asymptotic conditional loss function.

Assumption (A2) implies that we preserve the essential composition of the portfolio
as we allow it to grow (see, for instance, Example 8.17).

(A3) There is some C < ∞ such that
∑m

i=1(ei/i)
2 < C for all m.

This assumption prevents exposures from growing systematically with portfolio
size.

The following result shows that under these assumptions the average portfolio
loss is essentially determined by the asymptotic conditional loss function !̄ and the
realization of the factor random vector Ψ . The proof is based on a suitable version
of the strong law of large numbers (see Frey and McNeil (2003) for details).

Proposition 8.15. Consider a sequence L(m) = ∑m
i=1 Li satisfying Assump-

tions (A1)–(A3) above. Denote by P( · | Ψ = ψ) the conditional distribution of
the sequence (Li)i∈N given Ψ = ψ . Then

lim
m→∞

1

m
L(m) = !̄(ψ), P ( · | Ψ = ψ) a.s.

Proposition 8.15 obviously applies to the number of defaults M(m) = ∑m
i=1 Yi

if we set δi = ei ≡ 1. For a given sequence (Yi)i∈N following a p-factor Bernoulli
mixture model with default probabilities pi(ψ), Assumptions (A1) and (A3) are
automatically satisfied and (A2) becomes

lim
m→∞

1

m

m∑
i=1

pi(ψ) = p̄(ψ) for some function p̄ : R
p → [0, 1]. (8.41)
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For one-factor Bernoulli mixture models we can obtain a stronger result which
links the quantiles of L(m) to quantiles of the mixing distribution. Again we refer to
Frey and McNeil (2003) for a proof.

Proposition 8.16. Consider a sequence L(m) = ∑m
i=1 Li satisfying Assump-

tions (A1)–(A3) with a one-dimensional mixing variable Ψ with df G. Assume
that the conditional asymptotic loss function !̄(ψ) is strictly increasing and right
continuous and that G is strictly increasing at qα(Ψ ), i.e. that G(qα(Ψ ) + δ) > α

for every δ > 0. Then

lim
m→∞

1

m
qα(L

(m)) = !̄(qα(Ψ )). (8.42)

Comments. The assumption that !̄ is strictly increasing makes sense if it is assumed
that low values of Ψ correspond to good states of the world with lower conditional
default probabilities and lower losses given default than average, and that high values
of ψ correspond to bad states with correspondingly higher losses given default.

It follows from Proposition 8.16 that the tail of the credit loss in large one-factor
Bernoulli mixture models is essentially driven by the tail of the mixing variable Ψ .
Consider in particular two exchangeable Bernoulli mixture models with mixing dis-
tributions Gi(q) = P(Qi � q), i = 1, 2. Suppose that the tail of G1 is heavier than
the tail of G2, i.e. that we have G1(q) < G2(q) for q close to 1. Then Proposi-
tion 8.16 implies that for large m the tail of M(m) is heavier in model 1 than in
model 2.

Example 8.17. Consider the one-factor Bernoulli mixture model for k exchangeable
groups defined by (8.37). In this case equation (8.41) becomes

lim
m→∞

1

m

k∑
r=1

m(m)
r h(µr + σψ) = p̄(ψ)

for some function p̄, which is fulfilled if the proportions of obligors in each
group, m(m)

r /m, converge to fixed constants λr as m → ∞. Assuming unit expo-
sures and 100% losses given default, our asymptotic conditional loss function is
!̄(ψ) = p̄(ψ) = ∑k

r=1 λrh(µr + σψ). Since Ψ is assumed to have a standard nor-
mal distribution, (8.42) implies, for large m, that

qα(L
(m)) ≈ m

k∑
r=1

λrh(µr + σΦ−1(α)). (8.43)

8.4.4 Threshold Models as Mixture Models

Although the mixture models of this section seem, at first glance, to be different in
structure to the threshold models of Section 8.3, it is important to realize that the
majority of useful threshold models, including all the examples we have given, can
be represented as Bernoulli mixture models. This is a very useful insight, because
the Bernoulli mixture format has a number of advantages over the threshold format.
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• Bernoulli mixture models lend themselves to Monte Carlo risk studies. From
the analyses of this section we obtain methods for sampling from many of
the models we have discussed, such as the t copula threshold model used in
Section 8.3.5.

• Mixture models are arguably more convenient for statistical fitting purposes.
We show in Section 8.6.3 that statistical techniques for generalized linear
mixed models can be used to fit mixture models to empirical default data
gathered over several time periods.

• The large-portfolio behaviour of Bernoulli mixtures can be understood in
terms of the behaviour of the distribution of the common economic factors,
as was shown in Section 8.4.3.

The following condition ensures that a threshold model can be written as a
Bernoulli mixture model.

Definition 8.18. A random vector X has ap-dimensional conditional independence
structure with conditioning variable Ψ if there is some p < m and a p-dimensional
random vector Ψ = (Ψ1, . . . , Ψp)

′ such that, conditional on Ψ , the rvs X1, . . . , Xm

are independent.

Lemma 8.19. Let (X,D) be a threshold model for an m-dimensional random
vector X. If X has a p-dimensional conditional independence structure with con-
ditioning variable Ψ , then the default indicators Yi = I{Xi�di1} follow a Bernoulli
mixture model with factor Ψ , where the conditional default probabilities are given
by pi(ψ) = P(Xi � di1 | Ψ = ψ).

Proof. For y ∈ {0, 1}m define the set B := {1 � i � m : yi = 1} and let
Bc = {1, . . . , m}\B. We have

P(Y = y | Ψ = ψ) = P

(⋂
i∈B

{Xi � di1}
⋂
i∈Bc

{Xi > di1}
∣∣∣∣ Ψ = ψ

)
=
∏
i∈B

P (Xi � di1 | Ψ = ψ)
∏
i∈Bc

(1 −P(Xi � di1 | Ψ = ψ)).

Hence, conditional on Ψ = ψ , the Yi are independent Bernoulli variables with
success probability pi(ψ) := P(Xi � di1 | Ψ = ψ).

Application to normal mixtures with factor structure. Suppose that the critical
variables X = (X1, . . . , Xm)

′ have a normal mean-variance mixture distribution as
in Example 8.8 so that X = m(W) + √

WZ for W independent of Z. Suppose also
that Z (and hence X) follows the linear factor model (8.25), so that Z = BF + ε

for a random vector F ∼ Np(0,Ω), a loading matrix B ∈ R
m×p, and independent,

normally distributed rvs ε1, . . . , εm, which are also independent of F . Then X has
a (p + 1)-dimensional conditional independence structure.

To see this, define the random vector Ψ = (F1, . . . , Fp,W)′ and observe that,
conditional on Ψ = ψ , X is Nm(m(w) + √

wBf , wΥ )-distributed, where Υ is the
(diagonal) covariance matrix of ε. Since the covariance structure is diagonal, the
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rvs Xi are conditionally independent. For a threshold model (X,D), the equivalent
Bernoulli mixture model is now easy to compute. The conditional default probabil-
ities are

pi(ψ) = P(Xi � di1 | Ψ = ψ) = Φ

(
di1 − mi(w) − √

wb′
if√

wυi

)
, (8.44)

where mi(w) is the ith component of m(w), bi is the ith row of B, and υi is the ith
diagonal element of Υ .

Example 8.20 (threshold model of KMV/CreditMetrics type). Consider the spe-
cial case of Gaussian critical variables where X = Z and Ψ = F . If we standardize
the critical variables X1, . . . , Xn to have variance one and reparametrize the for-
mula in terms of the individual default probabilities p̄i and the systematic variance
component βi = b′

iΩbi = 1 − υi (see Example 8.6), we can infer from (8.44) that

pi(Ψ ) = Φ

(
Φ−1(p̄i) − b′

iΨ√
1 − βi

)
. (8.45)

By comparison with Example 8.12 we see that the individual stochastic default
probabilities pi(Ψ ) have a probit-normal distribution with parameters µi and σi

given by
µi = Φ−1(p̄i)/

√
1 − βi and σ 2

i = βi/(1 − βi).

Example 8.21 (threshold model with Student t copula). Consider the special
case of multivariate t-distributed critical variables where X = √

WZ and W ∼
Ig( 1

2ν,
1
2ν). Suppose that the margins of X1, . . . , Xm have been standardized to be

standard univariate t with ν degrees of freedom. Again writing βi for the proportion
of the variance of the critical variable Xi explained by the factors F , we infer
from (8.44) that

pi(Ψ ) = Φ

(
t−1
ν (p̄i)W

−1/2 − b′
iF√

1 − βi

)
. (8.46)

The formula (8.44) is the key to Monte Carlo simulation for threshold models
when the critical variables have a normal mixture distribution, particularly in a large-
portfolio context. For example, rather than simulating an m-dimensional t distribu-
tion to implement the t model, one only needs to simulate a p-dimensional normal
vector F with p � m and an independent gamma-distributed variate V = W−1.
In the second step of the simulation one simply conducts a series of independent
Bernoulli experiments with default probabilitiespi(Ψ ) to decide whether individual
companies default.

Application to Archimedean copula models. Another class of threshold models
with an equivalent mixture representation is provided by models where the criti-
cal variables have an exchangeable LT-Archimedean copula in the sense of Def-
inition 5.47. Consider a threshold model (X,D), where X has an exchangeable
LT-Archimedean copula C with generator φ such that φ−1 is the Laplace transform
of some df G on [0,∞) with G(0) = 0. Let d = (d11, . . . , dm1)

′ denote the first
column of D containing the default thresholds and write (X, d) for a threshold
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model of default with Archimedean copula dependence. Write p̄i = P(Xi � di1)

as usual and p̄ = (p̄1, . . . , p̄m)
′ for the vector of default probabilities.

Consider now a non-negative rvΨ ∼ G and rvsU1, . . . , Um that are conditionally
independent given Ψ with conditional distribution function P(Ui � u | Ψ =
ψ) = exp(−ψφ(u)) for u ∈ [0, 1]. Then Proposition 5.46 shows that U has df C.
Moreover, by Lemma 8.5, (X, d) and (U , p̄) are two equivalent threshold models
for default. By construction U has a one-dimensional conditional independence
structure with conditioning variable Ψ and the conditional default probabilities are
given by

pi(ψ) = P(Ui � p̄i | Ψ = ψ) = exp(−ψφ(p̄i)). (8.47)

In order to simulate from a threshold model based on an LT-Archimedean copula
we may therefore use the following efficient and simple approach. In a first step
we simulate a realization ψ of Ψ and then we conduct m independent Bernoulli
experiments with default probabilities pi(ψ) as in (8.47) to simulate a realization
of defaulting counterparties.

Example 8.22 (the Clayton copula). As an example consider the Clayton cop-
ula with generator φ(t) = t−θ − 1. Suppose we wish to construct an exchange-
able Bernoulli mixture model with default probability π and joint default prob-
ability π2 that is equivalent to a threshold model driven by the Clayton copula.
As mentioned in Algorithm 5.48, an rv Ψ ∼ Ga(1/θ, 1) (see Section A.2.4) has
Laplace transform equal to the generator inverse φ−1(t) = (t + 1)−1/θ , so the mix-
ing variable of the equivalent Bernoulli mixture model can be defined by setting
Q = exp(−Ψ (π−θ − 1)).

Using (8.23), the required value of θ to give the desired joint default probabilities
is the solution to the equation π2 = Cθ(π, π) = (2π−θ − 1)−1/θ , θ > 0. It is
easily seen that π2 and, hence, the default correlation in our exchangeable Bernoulli
mixture model are increasing in θ ; for θ → 0 we obtain independent defaults and
for θ → ∞ defaults become comonotonic and default correlation tends to one.

8.4.5 Model-Theoretic Aspects of Basel II

In this section we examine how the considerations of Sections 8.4.3 and 8.4.4 have
influenced the new Basel II capital-adequacy framework, which was discussed in
more general terms in Section 1.3. Under this framework a bank is required to hold
8% of the so-called risk-weighted assets (RWA) of its credit portfolio as risk capital.
The RWA of a portfolio is given by the sum of the RWA of the individual risks in
the portfolio, i.e. RWAportfolio = ∑m

i=1 RWAi . The quantity RWAi reflects exposure
size and riskiness of obligor i; it takes the form RWAi = wiei , where wi is a risk
weight and ei denotes exposure size.

Banks may choose between two options for determining the risk weight wi ,
which must then be implemented for the entire portfolio. Under the simpler stand-
ardized approach, the risk weight wi is determined by the type (sovereign, bank
or corporation) and the credit rating of counterparty i. For instance, wi = 50% for
a corporation with a Moody’s rating in the range of A+ to A−. Under the more
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advanced internal-ratings-based (IRB) approach, the risk weight takes the form

wi = (0.08)−1cδiΦ

(
Φ−1(p̄i) + √

ρΦ−1(0.999)√
1 − ρ

)
. (8.48)

Here c is a technical adjustment factor that is of minor interest to us, p̄i represents the
marginal default probability, and δi is the percentage loss given default of obligor i.
The parameter ρ ∈ (0.12, 0.24) can be viewed as an asset correlation, as will be
explained below. Estimates for p̄i and (under the so-called advanced IRB approach)
for δi and ei are provided by the individual bank; the adjustment factor c and, most
importantly, the value of ρ are determined by fixed rules within the Basel II Accord
independently of the structure of the specific portfolio under consideration. The risk
capital to be held for counterparty i is thus given by

RCi = 0.08RWAi = cδieiΦ

(
Φ−1(p̄i) + √

ρΦ−1(0.999)√
1 − ρ

)
. (8.49)

The interesting part of equation (8.49) is, of course, the expression involving the
standard normal df, and we now give a derivation. Consider a one-factor threshold
model of KMV/CreditMetrics type with marginal default probabilities p̄1, . . . , p̄m

and critical variables given by

Xi = √
ρF +√

1 − ρεi (8.50)

for iid standard normal rvs F , ε1, . . . , εm. It follows from Example 8.20 that
an equivalent Bernoulli mixture model can be constructed by setting Ψ = −F

(the sign change facilitates the derivation) and conditional default probabilities
pi(Ψ ) = Φ((Φ−1(p̄i) + √

ρΨ )/
√

1 − ρ). Assume, moreover, that the loss given
default of the firms is deterministic and equal to δiei and that exposures are rela-
tively homogeneous. According to Proposition 8.16, under these assumptions the
quantiles of the portfolio loss L = ∑m

i=1 δieiYi satisfy, for m large, the asymptotic
relation

qα(L) ≈
m∑
i=1

δieipi(qα(Ψ )) =
m∑
i=1

δieiΦ

(
Φ−1(p̄i) + √

ρΦ−1(α)√
1 − ρ

)
.

For c = 1, the risk capital RCi in (8.49) can thus be considered as the asymptotic
contribution of risk i to the 99.9% VaR of the overall portfolio in a one-factor
Gaussian threshold model with asset correlation ρ.

While formula (8.48) is influenced by portfolio-theoretic considerations, the new
Basel II framework falls short of reflecting the true dependence structure of a bank’s
credit portfolio for a number of reasons: first, in the Basel II framework the cor-
relation parameter ρ is specified ad hoc by regulatory rules irrespective of “true”
asset correlations; second, the simple one-factor model (8.50) is typically an over-
simplified representation of the factor structure underlying default dependence, par-
ticularly for internationally active banks; third, the rule is based on an asymptotic
result. Moreover, historical default experience for the portfolio under consideration
has no formal role to play in setting capital-adequacy standards. For these reasons
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Figure 8.3. Tail of the mixing distribution of Q in four different exchangeable Bernoulli-
mixture models: beta; probit-normal (one-factor KMV/CreditMetrics); logit-normal (Credit-
PortfolioView); Clayton. In all cases the first two moments have the values π = 0.049 and
π2 = 0.003 13, which correspond roughly to Standard & Poor’s rating category B; the actual
parameter values can be found in Table 8.6. The horizontal line at 10−2 shows that the models
only really start to differ around the 99th percentile of the mixing distribution.

the IRB approach is heavily debated in the risk-management community, and it is
widely expected that, with improved availability of credit loss data, in the long run
regulators will permit the use of internal portfolio models for capital-adequacy pur-
poses for credit risk, as was allowed for market risk in the 1996 Amendment of the
first Basel Accord (see Section 1.2.2).

8.4.6 Model Risk Issues

In this section, which is complementary to Section 8.3.5, we look briefly at an
aspect of model risk for Bernoulli mixture models. We consider an exchangeable
Bernoulli mixture model for a homogeneous portfolio and investigate the risk related
to the choice of mixing distribution under the constraint that the default probabil-
ity π and the default correlation ρY (or equivalently π and π2) are known and
fixed.

According to Proposition 8.16, the tail of M is essentially determined by the tail
of the mixing variableQ. In Figure 8.3 we plot the tail function of the probit-normal
distribution (corresponding to a one-factor KMV/CreditMetrics model), the logit-
normal distribution (corresponding to CreditPortfolioView), the beta distribution
(close to CreditRisk+) and the mixture distribution (corresponding to the Clayton
copula; see Example 8.22). The plots are shown on a logarithmic scale and in all
cases the first two moments have the values π = 0.049 and π2 = 0.003 13, which
correspond roughly to Standard & Poor’s rating category B; the parameter values
for each of the models can be found in Table 8.6.

Inspection of Figure 8.3 shows that the tail functions differ significantly only after
the 99% quantile, the logit-normal distribution being the one with the heaviest tail.
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Table 8.6. Parameter values for various exchangeable Bernoulli mixture models with iden-
tical values of π and π2 (and ρY ). The values of π and π2 correspond roughly to Standard &
Poor’s ratings CCC, B and BB (in fact, they have been estimated from 20 years of Standard
& Poor’s default data using the simple moment estimator in (8.61)). This table is used in the
model-risk study of Section 8.4.6 and the simulation study of Section 8.6.2.

Model Parameter CCC B BB

All models π 0.188 0.049 0.011 2
π2 0.042 0.003 13 0.000 197
ρY 0.0446 0.015 7 0.006 43

Beta a 4.02 3.08 1.73
b 17.4 59.8 153

Probit-normal µ −0.93 −1.71 −2.37
σ 0.316 0.264 0.272

Logit-normal µ −1.56 −3.1 −4.71
σ 0.553 0.556 0.691

Clayton π 0.188 0.049 0.0112
θ 0.0704 0.032 0.0247

From a practical point of view this means that the particular parametric form of the
mixing distribution in a Bernoulli mixture model is of minor importance once π

and ρY have been fixed. Of course this does not mean that Bernoulli mixtures are
immune to model risk; the tail of M is quite sensitive to π and in particular to ρY ,
and these parameters are not easily estimated (see Section 8.6.4 for a discussion of
statistical inference for mixture models).

Systematic recovery risk. Another important source of model risk in credit risk
management models is the modelling of loss given default or equivalently of the
recovery rates. In standard portfolio risk models it is assumed that the loss given
default is independent of the default event. However, one expects the loss given
default to depend on the same risk factors as default probabilities; in that case
we speak of systematic recovery risk. The presence of systematic recovery risk is
confirmed in a number of empirical studies. In particular, Frye (2000) has carried
out a formal empirical analysis using recovery data collected by Moody’s on rated
corporate bonds. He found that recovery rates are substantially lower than average
in times of economic recession. To quote from his paper:

Using that data [the Moody’s data] to estimate an appropriate credit
model, we can extrapolate that in a severe economic downturn recover-
ies might decline 20–25 percentage points from the normal-year aver-
age. This could cause loss given default to increase by nearly 100% and
to have a similar effect on economic capital. Such systematic recovery
risk is absent from first-generation credit risk models. Therefore these
models may significantly understate the capital required at banking
institutions.
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Clearly, this calls for the inclusion of systematic recovery risk in standard credit risk
models. The challenge is not in building models allowing for systematic recovery
risk—this can be accomplished easily in the framework of Section 8.4.3—but in
estimating the dependence of the loss given default δi on the economic factors. At
present there are few empirical studies dealing with recovery risk; a good survey is
Schuermann (2003).

Notes and Comments

The logit-normal mixture model can be thought of as a one-factor version of the
CreditPortfolioView model of Wilson (1997a,b). Details of this model can be found
in Section 5 of Crouhy, Galai and Mark (2000). Further details of the beta binomial
distribution can be found in Joe (1997).

The rating agency Moody’s uses a so-called binomial expansion technique to
model default dependence in a simplistic way. The method, which is very popular
with practitioners, is not based on a formal default risk model, but is related to
binomial distributions. The basic idea is to approximate a portfolio of m dependent
counterparties by a homogeneous portfolio of d < m independent counterparties
with adjusted exposures and identical default probabilities; the index d is called the
diversity score and is chosen according to rules defined by Moody’s. For further
information we refer to Davis and Lo (2001) and Section 9.2.7 of Lando (2004).

A comprehensive description of CreditRisk+ is given in the original manual for
CreditRisk+ (Credit Suisse Financial Products 1997). An excellent discussion of
the model structure from a more academic viewpoint is provided in Gordy (2000).
Both sources also provide further information on the calibration of the factor vari-
ances σi and factor weights wij . The derivation of recursion formulas for the prob-
abilities P(M̃ = k), k = 0, 1, . . . , via Panjer recursion is given in Appendix A10
of CreditRisk+ (Credit Suisse Financial Products 1997). In Gordy (2002) an alter-
native approach to the computation of the loss distribution in CreditRisk+ is
proposed—one which uses the saddle-point approximation (see, for instance, Jensen
1995). Further numerical work for CreditRisk+ can be found in papers by Kurth
and Tasche (2003), Glasserman (2003b) and Haaf, Reiss and Schoenmakers (2004).
Importance-sampling techniques for CreditRisk+ are discussed in Glasserman and
Li (2003b). In Frey and McNeil (2002) it is shown that the Bernoulli mixture model
corresponding to a one-factor exchangeable version of CreditRisk+ is very close to
an exchangeable Bernoulli mixture model with beta mixing distribution.

The results in Section 8.4.3 are taken from Frey and McNeil (2003); related results
have been derived by Gordy (2001). The first limit result for large portfolios was
obtained in Vasicek (1997) for a probit-normal mixture model equivalent to the
KMV model. Asymptotic results for credit portfolios related to the theory of large
deviations are discussed in Dembo, Deuschel and Duffie (2004).

The equivalence between threshold models and mixture models has been observed
by Koyluoglu and Hickman (1998) and Gordy (2000) for the special case of Credit-
Metrics and CreditRisk+. Applications of Proposition 5.46 to credit risk modelling
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are also discussed in Schönbucher (2002). It is of course possible to develop multi-
state mixture models to describe credit migrations as well as defaults and to derive
equivalence results between multi-state latent threshold models and multi-state mix-
ture models; see, for instance, Section 4.4 of Frey and McNeil (2001) for an appli-
cation to credit risk and Joe (1997) for mathematical background information. The
study of mixture representations for sequences of exchangeable Bernoulli rvs is
related to a well-known result of de Finetti, which states that any infinite sequence
Y1, Y2, . . . of exchangeable Bernoulli rvs has a representation as an exchangeable
Bernoulli mixture; see, for instance, Theorem 35.10 in Billingsley (1995) for a
precise statement. Hence any exchangeable model for Y that can be extended to
arbitrary portfolio sizem has a representation as an exchangeable Bernoulli mixture
model.

For details of the IRB approach, and the Basel II Capital Accord in general, we
refer to the website of the Basel Committee: www.bis.org/bcbs. Our discussion in
Section 8.4.5 is related to the analysis by Gordy (2001).

8.5 Monte Carlo Methods

In this section we consider a Bernoulli mixture model for a loan portfolio and assume
that the overall loss is of the formL = ∑m

i=1 Li , where theLi are conditionally inde-
pendent given some economic factor vector Ψ . A possible method for calculating
risk measures and related quantities such as capital allocations is to use Monte Carlo
(MC) simulation, although the problem of rare-event simulation arises. Suppose,
for example, that we wish to compute expected shortfall and expected shortfall
contributions at the confidence level α for our portfolio. We need to evaluate the
conditional expectations

E(L | L � qα(L)) and E(Li | L � qα(L)). (8.51)

If α = 0.99, say, then only 1% of our standard Monte Carlo draws will lead to a port-
folio loss higher than q0.99(L). The standard MC estimator of (8.51), which consists
of averaging the simulated values of L or Li over all draws leading to a simulated
portfolio loss L � qα(L), will be unstable and subject to high variability, unless the
number of simulations is very large. The problem is of course that most simulations
are “wasted”, in that they lead to a value of L which is smaller than qα(L). Fortu-
nately, there exists a variance-reduction technique known as importance sampling
(IS), which is well suited to such problems.

8.5.1 Basics of Importance Sampling

Consider an rv X on some probability space (Ω,F , P ) and assume that it has an
absolutely continuous df with density f . A generalization to general probability
spaces is discussed below. The problem we consider is the computation of the
expected value

θ = E(h(X)) =
∫ ∞

−∞
h(x)f (x) dx (8.52)



368 8. Credit Risk Management

for some known function h. To calculate the probability of an event we consider
a function of the form h(x) = I{x∈A} for some set A ⊂ R; for expected shortfall
computation we consider functions of the form h(x) = xI{x�c} for some c ∈ R.
Where the analytical evaluation of (8.52) is difficult, due to the complexity of the
distribution of X, we can resort to an MC approach, for which we only have to be
able to simulate variates from the distribution with density f .

Algorithm 8.23 (Monte Carlo integration).

(1) Generate X1, . . . , Xn independently from density f .

(2) Compute the standard MC estimate θ̂MC
n = (1/n)

∑n
i=1 h(Xi).

The MC estimator converges to θ by the strong law of large numbers, but the
speed of convergence may not be particularly fast, particularly when we are dealing
with rare-event simulation.

Importance sampling is based on an alternative representation of the integral
in (8.52). Consider a second probability density g (whose support should contain
that of f ) and define the likelihood ratio r(x) by r(x) := f (x)/g(x) whenever
g(x) > 0, and r(x) = 0 otherwise. The integral (8.52) may be written in terms of
the likelihood ratio as

θ =
∫ ∞

−∞
h(x)r(x)g(x) dx = Eg(h(X)r(X)), (8.53)

where Eg denotes expectation with respect to the density g. Hence we can approx-
imate the integral with the following algorithm.

Algorithm 8.24 (importance sampling).

(1) Generate X1, . . . , Xn independently from density g.

(2) Compute the IS estimate θ̂ IS
n = (1/n)

∑n
i=1 h(Xi) r(Xi).

The density g is often termed the importance-sampling density. The art (or sci-
ence) of importance sampling is in choosing an importance-sampling density such
that, for fixed n, the variance of the IS estimator is considerably smaller than that of
the standard Monte Carlo estimator. In this way we can hope to obtain a prescribed
accuracy in evaluating the integral of interest using far fewer random draws than are
required in standard Monte Carlo simulation. The variances of the estimators are
given by

varg(θ̂
IS
n ) = (1/n)(Eg(h(X)

2r(X)2) − θ2),

var(θ̂MC
n ) = (1/n)(E(h(X)2) − θ2),

so that the aim is to make Eg(h(X)
2r(X)2) small compared with E(h(X)2). In

theory, the variance of θ̂ IS can be reduced to zero by choosing an optimal g. To see
this, suppose for the moment that h is non-negative and set

g∗(x) = f (x)h(x)/E(h(X)). (8.54)



8.5. Monte Carlo Methods 369

With this choice, the likelihood ratio becomes r(x) = E(h(X))/h(x). Hence
θ̂ IS

1 = h(X1)r(X1) = E(h(X)), and the IS estimator gives the correct answer in
a single draw. In practice, it is of course impossible to choose an IS density of the
form (8.54), as this requires knowledge of the quantity E(h(X)) that one wants to
compute; nonetheless, (8.54) can provide useful guidance in choosing an IS density,
as we will see in the next section.

Consider the case of estimating a rare-event probability corresponding to
h(x) = I{x�c} for c significantly larger than the mean of X. Then we have that
E(h(X)2) = P(X � c) and, using (8.53), that

Eg(h(X)
2r(X)2) = Eg(r(X)

2;X � c) = E(r(X);X � c). (8.55)

Clearly, we should try to choose g such that the likelihood ratio r(x) = f (x)/g(x)

is small for x � c; in other words, we should make the event {X � c} more likely
under the IS density g than it is under the original density f .

Exponential tilting. We now describe a useful way of finding IS densities when
X is light tailed. For t ∈ R we write MX(t) = E(etX) = ∫∞

−∞ etxf (x) dx for the
moment-generating function of X, which we assume is finite for t ∈ R. If MX(t) is
finite, we can define an IS density by gt (x) := etxf (x)/MX(t). The likelihood ratio
is rt (x) = f (x)/gt (x) = MX(t)e−tx . Define µt to be the mean of X with respect
to the density gt , i.e.

µt := Egt (X) = E(X exp(tX))/MX(t). (8.56)

How can we choose t optimally for a particular importance-sampling problem?
We consider the case of tail probability estimation and recall from (8.55) that the
objective is to make

E(r(X);X � c) = E(I{X�c}MX(t)e
−tX) (8.57)

small. Now observe that e−tx � e−tc for x � c and t � 0, so

E(I{X�c}MX(t)e
−tX) � MX(t)e

−tc.

Instead of solving the (difficult) problem of minimizing (8.57) over t , we choose
t so that this bound becomes minimal. Equivalently, we try to find t minimizing
lnMX(t) − tc. Using (8.56) we obtain that

d

dt
lnMX(t) − tc = E(X exp(tX))

MX(t)
− c = µt − c,

which suggests choosing t = t (c) as the solution of the equation µt = c, so that the
rare event {X � c} becomes a normal event if we compute probabilities using the
density gt(c). A unique solution of the equation µt = c exists for all relevant values
of c. In the cases that are of interest to us this is immediately obvious from the form
of the exponentially tilted distributions, so we omit a formal proof.

Example 8.25 (exponential tilting for normal distribution). We illustrate the
concept of exponential tilting in the simple case of a standard normal rv. Suppose
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that X ∼ N(0, 1) with density φ(x). Using exponential tilting we obtain the new
density gt (x) = exp(tx)φ(x)/MX(t). The moment-generating function of X is
known to be MX(t) = exp( 1

2 t
2). Hence

gt (x) = 1√
2π

exp(tx − 1
2 (t

2 + x2)) = 1√
2π

exp( 1
2 (x − t)2),

so that, under the tilted distribution, X ∼ N(t, 1). Note that in this case exponential
tilting corresponds to changing the mean of X.

An abstract view of importance sampling. To handle the more complex application
to portfolio credit risk in the next section it helps to consider importance sampling
from a slightly more general viewpoint. Given densities f and g as above, define
probability measures P and Q by

P(A) =
∫
A

f (x) dx and Q(A) =
∫
A

g(x) dx, A ⊂ R.

With this notation, (8.53) becomes θ = EP (h(X)) = EQ(h(X)r(X)), so that r(X)
equals dP/dQ, the (measure-theoretic) density of P with respect to Q. Using this
more abstract view, exponential tilting can be applied in more general situations:
given an rv X on (Ω,F , P ) such that MX(t) = EP (exp(tX)) < ∞, define the
measure Qt on (Ω,F ) by

dQt

dP
= exp(tX)

MX(t)
, i.e. Qt(A) = EP

(
exp(tX)

MX(t)
;A
)
,

and note that (dQt/dP)−1 = MX(t) exp(−tX) = rt (X). The IS algorithm remains
essentially unchanged: simulate independent realizations Xi under the measure Qt

and set θ̂ IS = (1/n)
∑n

i=1 Xirt (Xi) as before.

8.5.2 Application to Bernoulli-Mixture Models

In this section we return to the subject of credit losses and consider a portfolio loss
of the form L = ∑m

i=1 eiYi , where the ei are deterministic, positive exposures and
the Yi are default indicators with default probabilities p̄i . We assume that Y follows
a Bernoulli mixture model in the sense of Definition 8.10 with factor vector Ψ

and conditional default probabilities pi(Ψ ). We study the problem of estimating
exceedance probabilities θ = P(L � c) for c substantially larger than E(L) using
importance sampling. This is useful for risk-management purposes, as, for c ≈
qα(L), a good importance-sampling distribution for the computation of P(L � c)

also yields a substantial variance reduction for computing expected shortfall or
expected shortfall contributions.

We consider first the situation where the default indicators Y1, . . . , Ym are inde-
pendent and discuss subsequently the extension to the case of conditionally inde-
pendent default indicators. Our exposition is based on Glasserman and Li (2003a).
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Independent default indicators. Here we use the more general IS approach out-
lined at the end of the previous section. Set Ω = {0, 1}m, the state space of Y . The
probability measure P is given by

P({y}) =
m∏
i=1

p̄
yi
i (1 − p̄i)

1−yi , y ∈ {0, 1}m.

We need to understand how this measure changes under exponential tilting using L.
The moment-generating function of L is easily calculated to be

ML(t) = E

(
exp

(
t

m∑
i=1

eiYi

))
=

m∏
i=1

E(eteiYi ) =
m∏
i=1

(etei p̄i + 1 − p̄i).

The measure Qt is given by Qt({y}) = EP (etL/ML(t); Y = y) and hence

Qt({y}) = exp(t
∑m

i=1 eiyi)

ML(t)
P ({y}) =

m∏
i=1

exp(teiyi)

exp(tei)p̄i + 1 − p̄i
p̄
yi
i (1 − p̄i)

1−yi .

Define new default probabilities by q̄t,i := exp(tei)p̄i/(exp(tei)p̄i + 1 − p̄i). It fol-
lows that Qt({y}) = ∏m

i=1 q̄
yi
t,i (1 − q̄t,i )

1−yi , so that after exponential tilting the
default indicators remain independent but with new default probability q̄t,i . Note
that q̄t,i tends to one for t → ∞ and to zero for t → −∞, so that we can shift the
mean of L to any point in (0,

∑m
i=1 ei).

In analogy with our previous discussion, for IS purposes, the optimal value of t
is chosen such that EQt (L) = c, leading to the equation

∑m
i=1 ei q̄t,i = c.

Conditionally independent default indicators. The first step in the extension of
the importance-sampling approach to conditionally independent defaults is obvious:
given a realization ψ of the economic factors, the conditional exceedance probability
θ(ψ) := P(L � c | Ψ = ψ) is estimated using the approach for independent
default indicators described above. We have the following algorithm.

Algorithm 8.26 (IS for conditional loss distribution).

(1) Given ψ , calculate the conditional default probabilities pi(ψ) according to
the particular model, and solve the equation

m∑
i=1

ei
exp(tei)pi(ψ)

exp(tei)pi(ψ) + 1 − pi(ψ)
= c;

the solution t = t (c,ψ) gives the optimal degree of tilting.

(2) Generate n1 conditional realizations of the default vector (Y1, . . . , Ym). The
defaults of the companies are simulated independently, with the default prob-
ability of the ith company given by

exp(t (c,ψ)ei)pi(ψ)

exp(t (c,ψ)ei)pi(ψ) + 1 − pi(ψ)
.
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(3) Denote by ML(t,ψ) := ∏m
i=1{exp(tei)pi(ψ) + 1 − pi(ψ)} the conditional

moment-generating function of L. From the simulated default data construct
n1 conditional realizations of L = ∑m

i=1 eiYi and label these L(1), . . . , L(n1).
Determine the IS estimator for the conditional loss distribution:

θ̂ IS,1
n1

(ψ) = ML(t (c,ψ),ψ)
1

n1

n1∑
j=1

I{L(j)�c} exp(−t (c,ψ)L(j)).

In principle, the approach discussed above also applies in the more general situ-
ation where the loss given default is random; all we need to assume is that the Li

are conditionally independent given Ψ , as in Assumption (A1) of Section 8.4.3.
However, the actual implementation can become quite involved.

IS for the distribution of the factor variables. Suppose we now want to estimate the
unconditional probability θ = P(L � c). A naive approach would be to generate
realizations of the factor vector Ψ and to estimate θ by averaging the IS estimator of
Algorithm 8.26 over these realizations. As is shown in Glasserman and Li (2003a),
this is not the best solution for large portfolios of dependent credit risks. Intuitively,
this is due to the fact that for such portfolios most of the variation in L is caused by
fluctuations of the economic factors, and we have not yet applied IS to the distribution
of Ψ . For this reason we now discuss a full IS algorithm that combines IS for the
economic factor variables with Algorithm 8.26.

We consider the important case of a Bernoulli mixture model with multivariate
Gaussian factors and conditional default probabilities pi(Ψ ) for Ψ ∼ Np(0,Ω),
such as the probit-normal Bernoulli mixture model described by (8.45). In this con-
text it is natural to choose an importance-sampling density such that Ψ ∼ Np(µ,Ω)

for a new mean vector µ ∈ R
p, i.e. we take g as the density of Np(µ,Ω). For a

good choice of µ we expect to generate realizations of Ψ leading to high conditional
default probabilities more frequently. The corresponding likelihood ratio rµ(Ψ ) is
given by the ratio of the respective multivariate normal densities, so that

rµ(Ψ ) = exp(− 1
2Ψ ′Ω−1Ψ )

exp(− 1
2 (Ψ − µ)′Ω−1(Ψ − µ))

= exp(−µ′Ω−1Ψ + 1
2µ′Ω−1µ).

Essentially, this is a multivariate analogue of the exponential tilting applied to a
univariate normal distribution in Example 8.25.

Now we can describe the algorithm for full IS. At the outset we have to choose
the overall number of simulation rounds, n, the number of repetitions of conditional
IS per simulation round, n1, and the mean of the IS distribution for the factors, µ.
Whereas the value of n depends on the desired degree of precision and is best
determined in a simulation study, n1 should be taken to be fairly small. An approach
to determine a sensible value of µ is discussed below.

Algorithm 8.27 (full IS for mixture models with Gaussian factors).

(1) Generate Ψ1, . . . ,Ψn ∼ N(µ, Ip).

(2) For each Ψi calculate θ̂ IS,1
n1 (Ψi ) as in Algorithm 8.26.



8.5. Monte Carlo Methods 373

(3) Determine the full IS estimator:

θ̂ IS
n = 1

n

n∑
i=1

rµ(Ψi )θ̂
IS,1
n1

(Ψi ).

Choosing µ. A key point in the full IS approach is the determination of a good
value for µ, which leads to a low variance of the importance-sampling estima-
tor. Here we sketch the solution proposed by Glasserman and Li (2003a). Since
θ̂

IS,1
n1 (ψ) ≈ P(L � c | Ψ = ψ), applying IS to the factors essentially amounts to

finding a good importance-sampling density for the function ψ → P(L � c |
Ψ = ψ). Now recall from our discussion in the previous section that the optimal IS
density g∗ satisfies

g∗(ψ) ∝ P(L � c | Ψ = ψ) exp(− 1
2ψ ′Ω−1ψ), (8.58)

“∝” standing for “proportional to”. Sampling from that density is obviously not
feasible, as the normalizing constant involves the exceedance probability P(L � c)

that we are interested in. In this situation the authors suggest using a multivariate
normal density with the same mode as g∗ as an approximation to the optimal IS
density. Since a normal density attains its mode at the mean µ, this amounts to
choosing µ as the solution to the optimization problem

max
ψ

P(L � c | Ψ = ψ) exp(− 1
2ψ ′Ω−1ψ). (8.59)

An exact (numerical) solution of (8.59) is difficult because the function P(L � c |
Ψ = ψ) is usually not available in closed form. Glasserman and Li (2003a) discuss
several approaches to overcoming this difficulty; see their paper for details.

Notes and Comments

Our discussion of IS for credit portfolios follows Glasserman and Li (2003a) closely.
Theoretical results on the asymptotics of the IS estimator for large portfolios and
numerical case studies contained in Glasserman and Li (2003a) indicate that full
IS is a very useful tool for dealing with large Bernoulli mixture models. Merino
and Nyfeler (2003) and Kalkbrener, Lotter and Overbeck (2004) undertook related
work—the latter paper gives an interesting alternative solution to finding a reason-
able IS mean µ for the factors.

For a general introduction to importance sampling we refer to the excellent text-
book by Glasserman (2003a) (see also Robert and Casella 1999). For applications
of importance sampling to heavy-tailed distributions, where exponential families
cannot be applied directly, see Asmussen, Binswanger and Højgaard (2000) and
Glasserman, Heidelberger and Shahabuddin (1999).

As an alternative to simulation one can try to determine analytic approximations
for the loss distributions.Applications of the saddle-point approximation (see Jensen
1995) are discussed in Martin, Thompson and Browne (2001) and Gordy (2002).
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8.6 Statistical Inference for Mixture Models

In this section we consider the statistical estimation of model parameters from
historical default data for the kind of mixture models described in Section 8.4. This
is quite a specific issue in the general area of statistical inference for credit risk
models and the reader seeking more general literature should consult Notes and
Comments. Before turning to statistical methods we provide a word of motivation
for the approach we take in this section.

8.6.1 Motivation

The calibration of portfolio credit risk models used in industry (such as KMV,
CreditMetrics or CreditRisk+) has, in general, not relied on the formal statistical
estimation of model parameters from historical default and migration data. There
are good reasons for this, the main one being that, particularly for higher-rated
companies, there are simply not enough relevant data on historical defaults to obtain
reliable parameter estimates by formal inference alone.

Industry approaches generally separate the problems of estimating (i) default
probabilities and (ii) additional model parameters describing the dependence of
defaults. The default probability of an individual company is usually estimated by
an appropriate historical default rate for “similar companies”, where the similarity
metric may be based on a credit-rating system (CreditMetrics) or a proprietary
measure like distance-to-default (DD) in the case of KMV.

It is in the determination of other model parameters that current industry models
are much less “formally statistical”. While most industry models postulate plausi-
ble factor-model structures for the mechanism generating default dependence, the
parameters of these factor models are very often either simply “assigned” by eco-
nomic arguments or determined by auxiliary factor analyses of proxy variables. To
give an example of the latter, some threshold models that equate the critical variable
with a change in asset value (in the style of Merton’s model) calibrate the factor
model by taking equity returns as a proxy for asset-value changes and fitting a factor
model to equity returns.

The ad hoc nature of such approaches raises the question of how much confidence
can be placed in the model parameters thus derived, and how much model risk
remains? For example, in a model of KMV/CreditMetrics type, how confident are
we that we have correctly determined the size of the systematic risk component (8.26)
due to the factors? In Section 8.3.5 we showed that there is considerable model risk
associated with the size of the specific risk component, particularly when the tail of
a credit loss distribution is of central importance.

In this final section of this chapter we describe methods for the pure statistical
estimation of all model parameters from default data. Currently, such an approach is
perhaps only feasible for lower-grade credit risks where historical databases contain
sufficient material to estimate parameters relating to default probability as well as
parameters relating to default dependence. This picture may change as data become
more plentiful over the years. Moreover, someone who grasps the principles of
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model fitting in this section will see that current industry approaches could even be
combined with the approach of this section to yield a hybrid methodology. More
explicitly, components of the factor-model structure could be based on external
inputs from industry models, while key parameters, such as parameters governing
the overall sensitivity to systematic effects, could be statistically estimated from
historical data.

The models we describe are motivated by the format of the data we consider, which
can be described as repeated cross-sectional data. This kind of data, comprising
observations of the default or non-default of groups of monitored companies in a
number of time periods, is readily available from rating agencies. Since the group of
companies may differ from period to period, as new companies are rated and others
default or cease to be rated, we have a cross-section of companies in each period, but
the cross-section may change from period to period. A different kind of data that we
do not consider would be panel data or repeated-measures data (particularly panels
of ratings) for individual companies that are actively followed over time.

Our examples are relatively simple, but illustrate the main ideas. In Section 8.6.2
we discuss the estimation of default probabilities and default correlations for homo-
geneous groups, e.g. groups with the same credit rating. In Section 8.6.3 we consider
more complicated one-factor models allowing more heterogeneity and make a link
to the important class of generalized linear mixed models (GLMMs) used in many
statistical applications; an example is given in Section 8.6.4.

8.6.2 Exchangeable Bernoulli-Mixture Models

Suppose that we observe historical default numbers over n periods of time for a
homogeneous group; typically these might be yearly data. For t = 1, . . . , n, let
mt denote the number of observed companies at the start of period t and let Mt

denote the number that defaulted during the period; the former will be treated as
fixed at the outset of the period and the latter as an rv. Suppose further that within
a time period these defaults are generated by an exchangeable Bernoulli mixture
model of the kind described in Section 8.4.1. In other words, assume that, given
some mixing variable Qt taking values in (0, 1) and the cohort size mt , the number
of defaults Mt is conditionally binomially distributed and satisfies Mt | Qt =
q ∼ B(mt , q). Further assume that the mixing variables Q1, . . . ,Qn are identically
distributed. We consider two methods for estimating the fundamental parameters
of the mixing distribution π = π1, π2 and ρY (default correlation); these are the
method of moments and the maximum likelihood method.

A simple moment estimator. For 1 � t � n, let Yt,1, . . . , Yt,mt be default indicators
for the mt companies in the cohort. Suppose we define the rv(

Mt

k

)
:=

∑
{i1,...,ik}⊂{1,...,mt }

Yt,i1 · · ·Yt,ik ; (8.60)

this represents the number of possible subgroups of k obligors among the defaulting
obligors in period t (and takes the value zero when k > Mt ). By taking expectations
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in (8.60) we get

E

((
Mt

k

))
=
(
mt

k

)
πk

and hence

πk = E

((
Mt

k

))/(
mt

k

)
.

We estimate the unknown theoretical moment πk by taking a natural empirical
average (8.61) constructed from the n years of data:

π̂k = 1

n

n∑
t=1

(
Mt

k

)(
mt

k

) = 1

n

n∑
t=1

Mt(Mt − 1) · · · (Mt − k + 1)

mt (mt − 1) · · · (mt − k + 1)
. (8.61)

For k = 1 we get the standard estimator of default probability

π̂ = 1

n

n∑
t=1

Mt

mt

,

and ρY can obviously be estimated by taking ρ̂Y = (π̂2 − π̂2)/(π̂ − π̂2). The esti-
mator is unbiased for πk and consistent as n → ∞ (for more details see Frey and
McNeil (2001)). Note that, for Qt random, consistency requires observations for a
large number of years; it is not sufficient to observe a large pool in a single year.

Maximum likelihood estimators. To implement a maximum likelihood (ML) pro-
cedure we assume a simple parametric form for the density of the Qt (such as beta,
logit-normal or probit-normal). The joint probability function of the default counts
M1, . . . ,Mn given the cohort sizes m1, . . . , mn can then be calculated using (8.33),
under the assumption that the Qt variables in different years are independent. This
expression is then maximized with respect to the natural parameters of the mixing
distribution (i.e. a and b in the case of beta and µ and σ for the logit-normal and
probit-normal). Of course, independence may be an unrealistic assumption for the
mixing variables, due to the phenomenon of economic cycles, but the method could
then be regarded as a quasi-maximum likelihood (QML) procedure, which misspec-
ifies the serial dependence structure but correctly specifies the marginal distribution
of defaults in each year and still gives reasonable parameter estimates.

In practice, it is easiest to use the beta mixing distribution, since, in this case,
given the group size mt in period t , the rv Mt has a beta-binomial distribution with
probability function given in (8.35). The likelihood to be maximized thus takes the
form

L(a, b; data) =
n∏

t=1

(
mt

Mt

)
β(a + Mt, b + mt − Mt)

β(a, b)
,

and maximization can be performed numerically with respect to a and b. For further
information about the ML method consult, as usual, Section A.3. The ML estimates
of π = π1, π2 and ρY are calculated by evaluating moments of the fitted distribution
using (8.34); the formulas are given in Example 8.13.
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A comparison of moment estimation and ML estimation. To compare these two
approaches we conduct a simulation study summarized in Table 8.7. To generate
data in the simulation study we consider the beta, probit-normal and logit-normal
mixture models of Section 8.4.1. In any single experiment we generate 20 years of
data using parameter values that roughly correspond to one of the Standard & Poor’s
credit ratings CCC, B or BB (see Table 8.6 for the parameter values). The number of
firms mt in each of the years is generated randomly using a binomial-beta model to
give a spread of values typical of real data; the defaults are then generated using one
of the Bernoulli mixture models and estimates of π , π2 and ρY are calculated. The
experiment is repeated 5000 times and a relative root mean square error (RRMSE)
is estimated for each parameter and each method: that is, we take the square root of
the estimated MSE and divide by the true parameter value. Methods are compared
by calculating the percentage increase of the estimated RRMSE with respect to the
better method (i.e. the RRMSE minimizing method) for each parameter.

It may be concluded from Table 8.7 that the ML method is better in all but one
experiment. Surprisingly, it is better even in the experiments when it is misspecified
and the true mixing distribution is either probit-normal or logit-normal; in fact,
in these cases, it offers more of an improvement than in the beta case. This can
partly be explained by the fact that when we constrain well-behaved, unimodal
mixing distributions with densities to have the same first and second moments,
these distributions are very similar (see Figure 8.3). Finally, we observe that the
ML method tends to outperform the moment method more as we increase the credit
quality, so that defaults become rarer.

8.6.3 Mixture Models as GLMMs

A one-factor Bernoulli mixture model. Recall the simple one-factor model (8.36)
generalizing the exchangeable model in Section 8.4.1. Rewriting slightly, this has
the form

pi(Ψ ) = h(µ + β ′xi + Ψ ), (8.62)

where h is a link function, the vector xi contains covariates for the ith firm, such
as indicators for group membership or key balance sheet ratios, and β and µ are
model parameters. Examples of link functions include the standard normal df Φ(x)

and the logistic df (1 + exp(−x))−1. The scale parameter σ has been subsumed in
the normally distributed random variable Ψ ∼ N(0, σ 2), representing a common
or systematic factor.

This model can be turned into a multiperiod model for default counts in different
periods, by considering that a series of mixing variablesΨ1, . . . , Ψn generate default
dependence in each time period t = 1, . . . , n. The default indicator Yt,i for the ith
company in time period t is assumed to be Bernoulli with default probabilitypt,i(Ψt )

depending on Ψt according to

pt,i(Ψt ) = h(µ + x′
t,iβ + Ψt), (8.63)
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Table 8.7. Each part of the table relates to a block of 5000 simulations using a particular
exchangeable Bernoulli mixture model with parameter values roughly corresponding to a
particular S&P rating class. For each parameter of interest, an estimated RRMSE is tabulated
for both estimation methods: moment estimation using (8.61) and ML estimation based on the
beta model. Methods can be compared by using �, the percentage increase of the estimated
RRMSE with respect to the better method (i.e. the RRMSE minimizing method) for each
parameter. Thus, for each parameter the better method has � = 0. The table clearly shows
that MLE is better in all but one case.

Moment MLE-beta︷ ︸︸ ︷ ︷ ︸︸ ︷
Group True model Parameter RRMSE � RRMSE �

CCC Beta π 0.101 0 0.101 0
CCC Beta π2 0.202 0 0.201 0
CCC Beta ρY 0.332 5 0.317 0

CCC Probit-normal π 0.100 0 0.100 0
CCC Probit-normal π2 0.205 1 0.204 0
CCC Probit-normal ρY 0.347 11 0.314 0

CCC Logit-normal π 0.101 0 0.101 0
CCC Logit-normal π2 0.209 1 0.208 0
CCC Logit-normal ρY 0.357 11 0.320 0

B Beta π 0.130 0 0.130 0
B Beta π2 0.270 0 0.269 0
B Beta ρY 0.396 8 0.367 0

B Probit-normal π 0.130 0 0.130 0
B Probit-normal π2 0.286 3 0.277 0
B Probit-normal ρY 0.434 19 0.364 0

B Logit-normal π 0.131 0 0.132 0
B Logit-normal π2 0.308 7 0.289 0
B Logit-normal ρY 0.493 26 0.392 0

BB Beta π 0.199 0 0.199 0
BB Beta π2 0.435 0 0.438 1
BB Beta ρY 0.508 7 0.476 0

BB Probit-normal π 0.197 0 0.197 0
BB Probit-normal π2 0.492 10 0.446 0
BB Probit-normal ρY 0.607 27 0.480 0

BB Logit-normal π 0.196 0 0.196 0
BB Logit-normal π2 0.572 24 0.462 0
BB Logit-normal ρY 0.752 45 0.517 0

where Ψt ∼ N(0, σ 2) and xt,i are covariates for the ith company in time period t .
Moreover, the default indicators Yt,1, . . . , Yt,mt in period t are assumed to be con-
ditionally independent given Ψt .

To complete the model we need to specify the joint distribution of Ψ1, . . . , Ψn,
and it is easiest to assume that these are iid mixing variables. To capture possible
economic cycle effects causing dependence between numbers of defaults in succes-
sive time periods one could either enter covariates at the level of xt i that are known
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to be good proxies for “state of the economy”, such as changes in GDP over the time
period, or an index like the Chicago Fed National Activity Index (CFNAI) in the US,
or one could consider a serially dependent time series structure for the systematic
factors (Ψt ).

A one-factor Poisson mixture model. When considering higher-grade portfolios
of companies with relatively low default risk, there may sometimes be advantages
(particularly in the stability of fitting procedures) in formulating Poisson mixture
models instead of Bernoulli mixture models. A multiperiod mixture model based on
Definition 8.11 can be constructed by assuming that the default count variable Ỹt,i for
the ith company in time period t is conditionally Poisson with rate parameterλt,i(Ψt )

depending on Ψt according to

λt,i(Ψt ) = exp(µ + x′
t,iβ + Ψt), (8.64)

with all other elements of the model as in (8.63). Again the variables Ỹt,1, . . . , Ỹt,mt

are assumed to be conditionally independent given Ψt .

GLMMs. Both the multiperiod Bernoulli and Poisson mixture models in (8.63)
and (8.64) belong to a family of widely used statistical models known as generalized
linear mixed models (GLMMs). The three basic elements of such a model are as
follows.

(1) The vector of random effects. In our examples this is the vector (Ψ1, . . . , Ψn)

containing the systematic factors for each time period.

(2) A distribution from the exponential family for the conditional distribution of
the responses (Yt,i or Ỹt,i) given the random effects. Responses are assumed to
be conditionally independent given the random effects. The Bernoulli, bino-
mial and Poisson distributions all belong to the exponential family (see, for
example, McCullagh and Nelder 1989, p. 28).

(3) A link function relating E(Yt,i | Ψt), the mean response conditional on the
random effects, to the so-called linear predictor. In our examples the linear
predictor for Yt,i is

ηt,i(Ψt ) = µ + x′
t,iβ + Ψt . (8.65)

We have considered the so-called probit and logit link functions in the
Bernoulli case and the log-link function in the Poisson case. (Note that it
is usual in GLMMs to write the model as g(E(Yt,i | Ψt)) = ηt,i(Ψt ) and to
refer to g as the link function; hence the probit link function is the quantile
function of standard normal and the link in the Poisson case (8.64) is referred
to as “log” rather than “exponential”.)

When no random effects are modelled in a GLMM, the model is simply known as a
generalized linear model or GLM. The role of the random effects in the GLMM is,
in a sense, to capture patterns of variability in the responses that cannot be explained
by the observed covariates alone, but which might be explained by additional unob-
served factors. In our case, these unobserved factors are bundled into a time-period
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effect that we loosely describe as the state of the economy in that time period;
alternatively, we refer to it as the systematic risk.

The GLMM framework allows models of much greater complexity. We can
add further random effects to obtain multi-factor mixture models. For example,
we might know the industry sector of each firm and wish to include a random
effect for sector nested inside the year effect; in this way we might capture addi-
tional variability associated with economic effects in different sectors over and
above the global variability associated with the year effect. Such models can be
considered in the GLMM framework by allowing the linear predictor in (8.65) to
take the form ηt,i(Ψt ) = µ + x′

t,iβ + z′
t,iΨt for some vector of random effects

Ψt = (Ψt,1, . . . , Ψt,p)
′; the vector zt,i is a known design element of the model that

picks out the random effects that are relevant to the response Yt,i . We would then
have a total of p × n random effects in the model. We may or may not want to model
serial dependence in the time series Ψ1, . . . ,Ψn.

Inference for GLMMs. Full ML inference for a GLMM is only a viable option
for the simplest models. Consider the form of the likelihood for the one-factor
models in (8.63) and (8.64). If we writepYt,i |Ψt (y | ψ) for the conditional probability
mass function of the response Yt,i (or Ỹt,i) given Ψt , we have, for data {Yt,i : t =
1, . . . , n, i = 1, . . . , mt },

L(β, σ ; data) =
∫

· · ·
∫ ( n∏

t=1

mt∏
i=1

pYt,i |Ψt (Yt,i | ψt)

)
f (ψ1, . . . , ψn) dψ1 · · · dψn,

(8.66)
wheref denotes the assumed joint density of the random effects. If we do not assume
independent random effects from time period to time period, then we are faced
with an n-dimensional integral (or an (n × p)-dimensional integral in multi-factor
models).Assuming iid Gaussian random effects with marginal Gaussian density fΨ ,
the likelihood (8.66) becomes

L(β, σ ; data) =
n∏

t=1

(∫ mt∏
i=1

pYt,i |Ψt (Yt,i | ψt)fΨ (ψt ) dψt

)
, (8.67)

so that we have a product of one-dimensional integrals and this can be easily evalu-
ated numerically and maximized over the unknown parameters. Alternatively, faster
approximate likelihood methods, such as penalized quasi-likelihood (PQL) and
marginal quasi-likelihood (MQL), can be used (see Notes and Comments).

Another attractive possibility is to treat inference for these models from a Bayesian
point of view and to use Markov Chain Monte Carlo (MCMC) methods to make
inference about parameters. We believe that this holds particular promise for two
main reasons. First, a Bayesian MCMC approach allows us to work with much
more complex models than can be handled in the likelihood framework, such as a
model with serially dependent random effects. Second, the Bayesian approach may
be ideal for handling the considerable parameter uncertainty that we are currently
faced with in portfolio credit risk, particularly in models for higher-rated counter-
parties where default data are scarce. In the Bayesian approach, prior distributions
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are used to express opinions about parameters before data analysis; these opinions
are then updated with the help of the data and Bayes’ theorem to arrive at a pos-
terior distribution for the parameters. This mechanism could be used to combine
the parameter information coming from non-statistical industry models with the
evidence in historical data to achieve improved model calibration.

8.6.4 One-Factor Model with Rating Effect

In this section we fit a Bernoulli mixture model to annual default count data from
Standard & Poor’s for the period 1981–2000; these data may be easily reconstructed
from published default rates in Brand and Bahr (2001, Table 13, pp. 18–21). Stan-
dard & Poor’s uses the ratings AAA, AA, A, BBB, BB, B, CCC, but because the
observed one-year default rates for AAA-rated and AA-rated firms are mostly zero,
we concentrate on the rating categories A to CCC.

In our model we assume a single yearly random effect representing “state of the
economy” and treat rating category as an observed covariate for each firm in each
time period. Our model is a particular instance of the single-factor Bernoulli mixture
model in (8.63) and a multiperiod extension of the model described in Example 8.14.
We assume for simplicity that random effects in each year are iid normal, which
allows us to use the likelihood (8.67).

Since we are able to pool companies into groups by year and rating category, we
note that it is possible to reformulate the model as a binomial mixture model. Let
r = 1, . . . , 5 index the five rating categories in our study and write mt,r for the
number of followed companies in year t with rating r , and Mt,r for the number of
these that default. Our model assumption is that, conditional on Ψt (and the group
sizes), the default counts Mt,1, . . . ,Mt,5 are independent and distributed in such a
way that Mt,r | Ψt = ψ ∼ B(mt,r , pr(ψ)). Using the probit link the conditional
default probability of an r-rated company in year t is given by

pr(Ψt ) = Φ(µr + Ψt). (8.68)

The model may be fitted under the assumption of iid random effects in each year by
straightforward maximization of the likelihood in (8.67). The parameter estimates
and obtained standard errors are given in Table 8.8, together with the estimated
default probabilities π̂ (r) for each rating category and estimated default correlations
ρ̂
(r1,r2)
Y implied by the parameter estimates. Writing Ψ for a generic random effect

variable, the default probability for rating category r is given by

π̂ (r) = E(p̂r (Ψ )) =
∫ ∞

−∞
Φ(µ̂r + σ̂ z)φ(z) dz, 1 � r � 5,

where φ is the standard normal density. The default correlation for two firms with
ratings r1 and r2 in the same year is calculated easily from the joint default probability
for these two firms, which is

π̂
(r1,r2)
2 = E(p̂r11(Ψ )p̂r2(Ψ )) =

∫ ∞

−∞
Φ(µ̂r1 + σ̂ z)Φ(µ̂r2 + σ̂ )φ(z) dz.
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Table 8.8. Maximum likelihood parameter estimates and standard errors (se) for a
one-factor Bernoulli mixture model fitted to historical Standard & Poor’s one-year default
data, together with the implied estimates of default probabilities π̂ (r) and default correlations
ρ̂
(r1,r2)
Y

. The MLE of the scaling parameter σ is 0.24 with standard error 0.05. Note that we
have tabulated default correlation in absolute terms and not in percentage terms.

Parameter A BBB BB B CCC

µr −3.43 −2.92 −2.40 −1.69 −0.84
se (µr ) 0.13 0.09 0.07 0.06 0.08

π(r) 0.000 4 0.002 3 0.009 7 0.050 3 0.207 8

ρ
(r1,r2)
Y

0.000 40 0.000 77 0.001 30 0.002 19 0.003 04 A
0.000 77 0.001 49 0.002 55 0.004 35 0.006 15 BBB
0.001 30 0.002 55 0.004 40 0.007 63 0.010 81 BB
0.002 19 0.004 35 0.007 63 0.013 28 0.019 06 B
0.003 04 0.006 15 0.010 81 0.019 06 0.027 88 CCC

The default correlation is then

ρ̂
(r1,r2)
Y = π̂

(r1,r2)
2 − π̂ (r1)π̂ (r2)√

(π̂ (r1) − (π̂ (r1))2)(π̂ (r2) − (π̂ (r2))2)
.

Note that the default correlations are correlations between event indicators for very
low probability events and are necessarily very small.

The model in (8.68) assumes that the variance of the systematic factor Ψt is the
same for all firms in all years. When compared with the very general Bernoulli mix-
ture model corresponding to CreditMetrics/KMV in (8.45), we might be concerned
that the simple model considered in this section does not allow for enough hetero-
geneity in the variance of the systematic risk. A simple extension of the model is to
allow the variance to be different for different rating categories, that is to fit a model
where pr(Ψt ) = Φ(µr + σrΨt ) and Ψt is a standard normally distributed random
effect. This increases the number of parameters in the model by four, but is no more
difficult to fit than the basic model. The maximized value of the log-likelihood in
the model with heterogeneous scaling is −2557.4, and the value in the model with
homogeneous scaling is −2557.7; a likelihood ratio test suggests that no signifi-
cant improvement results from allowing heterogeneous scaling. If rating is the only
categorical variable, the simple model seems adequate but, if we had more informa-
tion on the industrial and geographical sectors to which the companies belonged, it
would be natural to introduce further random effects for these sectors and to allow
more heterogeneity in the model in this way.

The implied default probability and default correlation estimates in Table 8.8 can
be a useful resource for calibrating simple credit models to homogeneous groups
defined by rating. For example, to calibrate a Clayton copula to group BB we use
the inputs π(3) = 0.0097 and ρ(3,3)Y = 0.004 40 to determine the parameter θ of the
Clayton copula (see Example 8.22). Note also that we can now immediately use
the scaling results of Section 8.4.3 to calculate approximate risk measures for large



8.6. Statistical Inference for Mixture Models 383

portfolios of companies that have been rated with the Standard & Poor’s system (see
Example 8.17).

Notes and Comments

The estimator (8.61) for joint default probabilities is also used in Lucas (1995) and
Nagpal and Bahar (2001), although de Servigny and Renault (2002) suggest there
may be problems with this estimator for groups with low default rates. A related
moment-style estimator has been suggested by Gordy (2000) but it appears to have
a similar performance to (8.61) (see Frey and McNeil 2003). A further paper on
default correlation estimation is Gordy and Heitfield (2002).

A good overview article on generalized linear mixed models is Clayton (1996).
For generalized linear models a standard reference is McCullagh and Nelder (1989)
(see also Fahrmeir and Tutz 1994).

The analysis of Section 8.6.4 is very similar to the analysis in Frey and McNeil
(2003) (where heterogeneous variances for each rating category were assumed).
While the results reported in this book were obtained by full maximization of the
likelihood with our own code, we could also have used a number of existing software
packages for GLMMs. For example, we have verified that the glme function in the
S-PLUS correlated data library gives very similar results using the default penalized
quasi-likelihood method; for more information about penalized quasi-likelihood and
the related marginal quasi-likelihood method, see Breslow and Clayton (1993). For a
Bayesian approach to fitting the model using Markov chain Monte Carlo techniques,
see McNeil and Wendin (2003); this approach allows fairly complicated models to
be fitted, including models where the random effects have an autoregressive time
series structure.

Although we have only described default models it is also possible to analyse
rating migrations in the generalized linear model framework (with or without random
effects).A standard model is the ordered probit model, which is used without random
effects in Nickell, Perraudin andVarotto (2000) to provide evidence of time variation
in default rates attributable to macroeconomic factors; a similar message is found
in Bangia et al. (2002). Wendin and McNeil (2004) show how random effects may
be included in such models and discuss Bayesian inference.

A further strand of the literature is the modelling of rating-transition data with
Markov chain methods. Lando and Skodeberg (2002) estimate Markov chains in
continuous time from Standard & Poor’s data giving the exact dates of ratings
transitions. They find evidence of non-Markovian behaviour in the data and raise the
issue of “ratings momentum”, whereby information about the previous rating history
of a company beyond its current rating is predictive of the risk of downgrading. See
also Chapter 4 of Lando (2004) for more information on the Markov chain approach
as well as the application of survival analysis methodology to default data.

A number of authors have looked at models with latent structure to capture the
dynamics of systematic risk; an example is Crowder, Davis and Giampieri (2005),
who use a two-state hidden Markov structure to capture periods of high and low
default risk (see also Gagliardini and Gourieroux 2005).
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There is a huge amount of literature on the estimation of models for pricing credit-
risky securities that uses mainly data on corporate bond prices as input: Chapter 7
of Duffie and Singleton (2003) is a good starting point. Empirical work on the
calibration of credit risk models to loan data, on the other hand, is relatively sparse,
which is probably related to data problems. An example of the latter type of work
is Altman and Suggitt (2000).



9
Dynamic Credit Risk Models and

Credit Derivatives

In this chapter we study credit risk models in continuous time and consider the pric-
ing of credit derivatives in the framework of reduced-form models (see Section 8.1
for an overview of model types). Reduced-form models are popular in practice, since
they lead to tractable formulas explaining the price of credit-risky securities in terms
of economic covariates, which facilitates estimation. Moreover, with reduced-form
models it is possible to apply the well-developed pricing machinery for default-free
term structure models to the analysis of defaultable securities.

We begin with a brief introduction to credit derivatives in Section 9.1. These
products have become indispensable tools for the management of credit risk, and
the corresponding markets have seen a massive growth in recent years. We con-
tinue with two preparatory sections: Section 9.2 contains mathematical tools for
reduced-form models; Section 9.3 briefly introduces key concepts from mathemat-
ical finance, thereby providing the methodological basis for our analysis. Partic-
ular attention will be given to the distinction between real-world and risk-neutral
default probabilities. Sections 9.4 and 9.5 review standard but indispensable mate-
rial on the pricing of defaultable securities in reduced-form models; in particular,
the relationship between pricing problems for defaultable and default-free securi-
ties is discussed. Sections 9.6–9.8 are devoted to reduced-form models for credit
portfolios. We begin with models with conditionally independent defaults. In this
model class, default times are independent given the realization of some observable
economic background process, making these models a straightforward extension
of the static Bernoulli mixture models discussed in Chapter 8. More sophisticated
models, where there is interaction between defaults in the sense that the default of
one firm influences the conditional survival probability of the remaining firms in the
portfolio, are discussed thereafter.

In this book we have so far concentrated on static or discrete-time models and
risk-management issues; continuous-time models and the pricing of derivatives have
played only a minor role. In this chapter we make an exception for a number of
reasons. First, credit risk management and credit derivatives are intimately linked.
In fact, the quest of financial institutions for better tools to manage and diversify
the credit risk in their portfolios and the recent developments in the regulation of
credit risk are the main drivers of the tremendous growth of the credit derivatives
market that we are currently witnessing. Since the pay-off of most credit derivatives
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depends on the timing of default, dynamic credit risk models are clearly needed to
analyse these products. Second, the pricing of portfolio credit derivatives is a key
area of application for many of the concepts for modelling dependent risks discussed
in this book; in particular, copulas play a prominent role. Third, dynamic models
of portfolio credit risk have recently generated a lot of interest in academia and in
industry, and we want to offer our readership an introduction to the field.

Credit risk modelling is a large area that cannot be covered in a few chapters, and
consequently we have had to omit a lot of interesting and relevant material. Important
omissions include advanced firm-value models (other than Merton); continuous-
time models for rating transitions; an analysis of credit risk in interest-rate swaps;
and forward-rate models of Heath–Jarrow–Morton type for corporate bonds. The
main reason for these omissions is our decision to focus on the growing field of
dynamic portfolio credit risk models. Much of the material in this area is of recent
vintage and to our knowledge has not been discussed extensively at textbook level
before.

There are several full textbook treatments of dynamic credit risk models including
Bielecki and Rutkowski (2002), Bluhm, Overbeck and Wagner (2002), Duffie and
Singleton (2003), Lando (2004) and Schönbucher (2003). Excellent survey articles
include Schmidt and Stute (2004) and Giesecke (2004). While each text has a dif-
ferent focus, some overlap with the material treated here is unavoidable and will be
indicated, together with suggestions for further reading, in Notes and Comments of
the respective sections.

9.1 Credit Derivatives

9.1.1 Overview

We find it convenient to divide the universe of credit-risky securities into three
different types: vulnerable claims, single-name credit derivatives, and portfolio-
related credit derivatives. Vulnerable claims are securities whose promised pay-off
is not linked to credit events, but whose issuer may default. Hence the actual pay-off
received by the buyer of the security (for instance, a counterparty in a swap transac-
tion) is adversely affected by the default of the issuer. Important examples include
corporate bonds and interest-rate swaps. While the pricing of certain vulnerable
claims raises challenging issues, these products are of no concern to us here, as
credit risk is not their primary focus; some references can be found in Notes and
Comments.

Credit derivatives are securities which are primarily used for the management and
trading of credit risk. In the case of a single-name credit derivative the promised
pay-off depends on the occurrence of a credit event affecting a single financial
entity; otherwise the pay-off is related to credit events in a whole portfolio. Credit
derivatives are a fairly young asset class and the market continues to evolve, with
new products appearing frequently. Credit derivatives are traded over the counter,
so the precise pay-off specification may vary a lot between contracts of similar
type. Nonetheless, due to efforts of bodies such as the International Swap Dealers
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Association (ISDA), in recent years some standardization has taken place. Credit
derivatives have become popular because they help financial firms to manage the
credit risk on their books by dispersing parts of it through the wider financial sec-
tor, thereby reducing concentration of risk. In fact, the widespread use of these
instruments may have enhanced the resilience of the overall financial system. In this
context the following remarks made by Alan Greenspan in his speech before the
Council on Foreign Relations in November 2002 (see Section 1.4.1) are of interest.

More recently, instruments . . . such as credit default swaps, collateral-
ized debt obligations and credit-linked notes have been developed and
their use has grown rapidly in recent years. The result? Improved credit
risk management together with more and better risk-management tools
appear to have significantly reduced loan concentrations in telecom-
munications and, indeed, other areas and the associated stress on banks
and other financial institutions.

More generally, such instruments appear to have effectively spread
losses from defaults by Enron, Global Crossing, Railtrack, WorldCom,
Swissair, and sovereignArgentinian credits over the past year to a wider
set of banks than might previously have been the case in the past, and
from banks, which have largely short-term leverage, to insurance firms,
pension funds or others with diffuse long-term liabilities or no liabili-
ties at all. Many sellers of credit risk protection, as one might presume,
have experienced large losses, but because of significant capital, they
were able to avoid the widespread defaults of earlier periods of stress.
It is noteworthy that payouts in the still relatively small but rapidly
growing market in credit derivatives have been proceeding smoothly
for the most part. Obviously this market is still too new to have been
tested in a widespread down-cycle for credit, but, to date, it appears to
have functioned well.

Major participants in the market for credit derivatives are banks, insurance compa-
nies and investment funds. Banks are typically net buyers of protection against credit
events; insurance companies and other investors are net sellers of credit protection.

9.1.2 Single-Name Credit Derivatives

Credit default swaps. Credit default swaps (CDSs) are the workhorse of the credit
derivatives market; according to a study by Patel (2002), in 2002 the market share
of CDSs in the credit derivatives market was approximately 67%. Hence the market
for CDSs written on larger corporations is fairly liquid. Moreover, in contrast to
corporate bonds, the profitability of CDSs is barely affected by tax issues. For these
reasons CDSs are the natural underlying security for many more complex credit
derivatives, and models for pricing portfolio-related credit derivatives are usually
calibrated to quoted CDS spreads (see Section 9.3.3 below for details).

The basic structure of a CDS is depicted in Figure 9.1. There are three parties
involved in a CDS: the reference entity, the protection buyer and the protection
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B A

Premium payments until default or maturity

Default of C occurs?

yes: default payment

no: no payment

Figure 9.1. The basic structure of a CDS. Firm C is the reference entity,
firm A is the protection buyer, and firm B is the protection seller.

seller. If the reference entity experiences a default event before the maturity date T
of the contract, the protection seller makes a default payment to the protection buyer,
which mimics the loss on a security issued by the reference entity (often a corporate
bond) due to the default; this part of a CDS is called the default payment leg. In this
way the protection buyer has acquired financial protection against the loss on the
reference asset he would incur in case of a default; note, however, that the protection
buyer is not obliged to hold the reference asset. As a compensation the protection
buyer makes a periodic premium payment (typically quarterly or semiannually) to
the protection seller (the premium payment leg); after the default of the reference
entity, premium payments stop. There is no initial payment. The premium payments
are quoted in the form of an annualized percentage x∗ of the notional value of
the reference asset; x∗ is termed the (fair or market quoted) CDS spread. For a
mathematical description of the payments, see Section 9.3.3 below.

There are a number of technical and legal issues in the specification of a CDS.
In particular, the parties have to agree on the precise definition of a default event
and on a procedure to determine the size of the default payment in case a default
event of the reference entity occurs. Note that a CDS is traded over the counter and
is not guaranteed by some clearing house. Hence it is possible that the protection
seller itself defaults before the maturity of the contract, in which case the default
protection acquired by the protection buyer becomes worthless.

Credit-linked notes. A credit-linked note is a combination of a credit derivative and
a coupon bond that is sold as a fixed package. The coupon payments (and sometimes
also the repayment of the principal) are reduced if a third party (the reference entity)
experiences a default event during the lifetime of the contract, so the buyer of a
credit-linked note is providing credit protection for the seller. Credit-linked notes
are issued essentially for two reasons. First, from a legal point of view, a credit-linked
note is treated as a fixed-income investment, so that investors who are unable to enter
into a transaction involving credit derivatives directly may nonetheless sell credit
protection by buying credit-linked notes. Second, an investor buying a credit-linked
note pays the price up front, so that the credit protection sale is fully collaterized,
i.e. the protection buyer (the issuer of the credit-linked note) is protected against
losses caused by the default of the protection seller.
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9.1.3 Portfolio Credit Derivatives

Notation. In order to describe the pay-off of portfolio credit derivatives we intro-
duce some notation. We consider a portfolio with m firms. The random vector
Yt = (Yt,1, . . . , Yt,m)

′ describes the state of our portfolio at time t � 0. In keep-
ing with the notation introduced in Chapter 8, Yt,i = 1 if firm i has defaulted
up to time t , and Yt,i = 0 otherwise; (Yt,i) is termed the default indicator pro-
cess of firm i. The default time of firm i is denoted by τi > 0. Assuming that
there are no simultaneous defaults in our portfolio, we may define the ordered
default times T0 < T1 < · · · < Tm recursively by T0 = 0 and, for 1 � n � m,
Tn = min{τi : τi > Tn−1, 1 � i � m}. By ξn ∈ {1, . . . , m} we denote the identity
of the firm defaulting at time Tn, i.e. ξn = i if τi = Tn. As in Chapter 8, the exposure
to reference entity i is denoted by ei ; the percentage loss given default of firm i is
denoted by δi ∈ [0, 1]. The cumulative loss of the portfolio up to time t is thus given
by Lt = ∑m

i=1 δieiYt,i .

Basket default swaps. Basket default swaps, or, more technically, kth-to-default
swaps, offer protection against the kth default in a portfolio with m > k obligors
(the basket). As in the case of an ordinary CDS the premium payments on a kth-
to-default swap take the form of a periodic payment stream, which stops at the kth
default time Tk . The default payment is triggered if Tk is smaller than the maturity
date of the swap; the size of the default payment may depend on the identity ξk of the
kth defaulting firm. While first-to-default swaps are traded frequently, higher-order
default swaps are encountered only occasionally in real markets. We discuss the
pricing of first-to-default swaps in Sections 9.6.3 and 9.8.1 below.

Collaterized debt obligations (CDOs). CDOs are, at the time of writing, the most
important class of portfolio credit derivatives. A CDO is a financial instrument for
the securitization of credit-risky securities related to a pool of reference entities such
as bonds, loans or protection-seller positions in single-name CDSs; these securities
form the asset side of the CDO. While many different types of CDO exist, the basic
structure is the same. The assets are sold to a so-called special-purpose vehicle
(SPV), a company that has been set up with the single purpose of carrying out
the securitization deal. To finance the acquisition of the assets, the SPV issues
notes belonging to tranches of different seniorities, which form the liability side
of the structure. This amounts to a repackaging of the assets. The tranches of the
liability side are called (in order of increasing seniority) equity, mezzanine and
senior (sometimes also super-senior) tranches. In this way most of the losses on the
asset side generated by credit events are borne by the equity tranche, so the notes
issued by the SPV belonging to the more senior tranches have a credit rating which
is substantially higher than the average credit quality of the asset pool. This makes
the notes attractive to certain investor classes.

If the asset side consists mainly of bonds and loans, one speaks of asset-based
structures; if the underlying asset pool consists mainly of protection-seller positions
in single-name CDSs, the structure is termed synthetic CDO. The cash-flows of a
synthetic CDO are slightly different from those of an asset-based CDO: on the asset
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Figure 9.2. Schematic representation of the payments in a CDO structure.
Payments corresponding to synthetic CDOs are indicated in italics.

side the SPV receives the premium payments on the CDSs in the asset pool and
makes the corresponding default payments; on the liability side the SPV receives
default payments from the noteholders, which are triggered by credit events in the
asset pool, and makes periodic premium payments as a compensation. The payments
associated with a typical CDO are depicted schematically in Figure 9.2.

Asset-based structures where the asset pool consists mainly of bonds are known
as collaterized bond obligation (CBO); if the asset side consists mainly of loans, a
CDO is termed collaterized loan obligation (CLO). If the underlying asset pool is
actively traded with the goal of enhancing its value, a CDO structure is known as
an arbitrage CDO; if the asset side remains relatively constant during the lifetime
of the structure, one speaks of a balance-sheet CDO. Necessarily the asset pool of
an arbitrage CDO consists of tradable securities such as bonds or CDSs.

There are a number of economic motivations for arranging a CDO transaction.

• The proceeds from the sale of the notes issued by the SPV are often higher
than the initial value of the asset side of the structure, as the risk–return profile
of the notes is more favourable for investors. Similarly, in a synthetic CDO
the present value of the premium payments received by the SPV may exceed
the present value of the premium payments the SPV has to make. Arbitrage
CDOs are set up with the explicit purpose of exploiting this difference.

• Balance-sheet CDOs are often set up by banks who want to sell some of the
credit-risky securities on their balance sheet in order to reduce their regulatory
capital requirements; this is the typical motivation for arranging a balance-
sheet CLO transaction. In this way a bank can free up regulatory capital.

Stylized CDOs. Existing CDO contracts can be quite complicated. We therefore
discuss only stylized CDOs, as this allows us to gain a better understanding of
the main qualitative features of these products without getting bogged down in
institutional details. We consider a portfolio ofm different firms with cumulative loss
Lt = ∑m

i=1 δieiYt,i . We consider a CDO with k tranches, indexed by κ ∈ {1, . . . , k},
and characterized by attachment points 0 = K0 < K1 < · · · < Kk �

∑m
i=1 ei . The

value of the notional corresponding to trancheκ can be described as follows. Initially,
the notional is equal to Kκ − Kκ−1; it is reduced whenever there is a default event
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such that the cumulative loss falls in the layer [Kκ−1,Kκ ]. In mathematical terms,
Nκ(t), the notional of tranche κ at time t , is given by

Nκ(t) = fκ(Lt ) with fκ(l) =

⎧⎪⎨⎪⎩
Kκ − Kκ−1, for l < Kκ−1,

Kκ − l, for l ∈ [Kκ−1,Kκ ],
0, for l > Kκ.

(9.1)

Note that fκ can be written more succinctly as fκ(l) = (Kκ − l)+ − (Kκ−1 − l)+,
i.e. the notional is equal to the sum of a long position in a put option on Lt with
strike price Kκ and a short position in a put with strike price Kκ−1. Such positions
are sometimes called a put spread.

In a stylized CDO with maturity T as considered here, the pay-off of tranche κ is
equal to Nκ(T ). In Figure 9.3 we have graphed the pay-off for a stylized CDO with
three tranches (equity, mezzanine, senior) on a homogeneous portfolio ofm = 1000
firms, each with exposure one unit. The attachment points are K1 = 20, K2 = 40,
K3 = 60, corresponding to 2%, 4% and 6% of the overall exposure; tranches with
higher attachment points are ignored. Assuming that T equals one year and that
we have a homogeneous portfolio with δi = 0.5 for all firms, we have plotted two
distributions for L1: first, a loss distribution corresponding to a one-year default
probability of 0.5% and a default correlation of 2%; second, a loss distribution with
a one-year default probability of 0.5% but with independent defaults. In both cases
the expected loss is given by E(L1) = 25. Figure 9.3 illustrates how the value of
different CDO-tranches depends on the nature of the dependence between default
events.

• For independent defaults, L1 is typically close to its mean due to diversifi-
cation effects within the portfolio. Hence it is quite unlikely that a tranche
κ with lower attachment point Kκ−1 substantially larger than E(L1) (such
as the senior tranche in Figure 9.3) suffers a loss, so the value of such a
tranche is quite high. On the other hand, since the attachment point K1 of the
equity tranche is typically lower than E(L1), it is quite unlikely that L1 is
substantially smaller than K1, and the value of the equity tranche is low.

• If defaults are (strongly) dependent, diversification effects in the portfolio
are less pronounced. Realizations with L1 bigger than the lower attachment
point K2 of the senior tranche are more likely, as are realizations with L1

smaller than the upper attachment pointK1 of the equity tranche. This reduces
the value of tranches with high seniority and increases the value of the equity
tranche compared with the case with (almost) independent defaults.

The impact of changing default correlations on mezzanine tranches is unclear and
cannot be predicted up front. The relationship between default dependence and the
value of CDO tranches carries over to the more complex structures that are actually
traded, so dependence modelling is a key issue in any model for pricing CDO
tranches.
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Figure 9.3. Pay-off of a stylized CDO contract and distribution of the one-year loss L1
for a default probability of 0.5% and different default correlations. Detailed explanations are
given in the text.

Notes and Comments

In this brief introduction we have discussed a few essential features of credit deriva-
tives, but have omitted the rather involved regulatory, legal and accounting issues
related to these instruments. Reader interested in these topics are referred to the
book by Tavakoli (2001) or the recent paper collections edited by Gregory (2003)
and Perraudin (2004); the last two references also discuss pricing issues. An excel-
lent treatment of credit derivatives at textbook level is Schönbucher (2003). The
pricing of interest swaps in the presence of default risk is discussed, for example,
in Chapter 7 of Lando (2004); a good starting point for tackling the rich literature
on pricing convertible bonds with credit risk is Chapter 9 of Duffie and Singleton
(2003).

The credit derivatives market is evolving rapidly and new publications on these
instruments appear on a regular basis. The excellent website www.defaultrisk.com,
maintained by Greg Gupton, is a good place to look for new developments.

9.2 Mathematical Tools

In this section we present some mathematical tools for the analysis of reduced-
form credit risk models. In particular, we discuss random times (in applications,
usually the default time of a firm), hazard rates and martingale intensities. We start
with random times with deterministic hazard rates or, alternatively, with a situation
where the only observable quantity is the default time itself. This forms the basis
for an analysis of a more realistic situation where additional information, generated
for instance by economic background processes, is available, so the hazard rate will
typically be stochastic. We give a detailed treatment of doubly stochastic random
times. Doubly stochastic random times are the simplest example of random times
with stochastic hazard rates and are thus frequently used in dynamic credit risk
models.
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In our analysis we inevitably have to use basic notions from the theory of stochastic
processes, such as filtrations, stopping times or basic martingale theory. These issues
are covered in many standard textbooks on mathematical finance and probability
theory. For our purposes the technical level of Williams (1991) is sufficient.

In this chapter we use the following notational convention. A generic stochastic
process in continuous time is denoted by (Xt ); the rv Xt gives the value of the
process at time t � 0. Deterministic functions of time are denotedf (t) for t � 0. For
typographical reasons the notation X(t) is occasionally used for random quantities
as well. While this notation differs slightly from the conventions introduced in
Chapter 2, no confusion can arise, as we are dealing exclusively with continuous-
time processes.

9.2.1 Random Times and Hazard Rates

We consider a probability space (Ω,F , P ) and a random time τ defined on this
space, i.e. an F -measurable rv taking values in [0,∞], to be interpreted as the
default time of some company. By F(t) = P(τ � t) we denote the df of τ and
by F̄ (t) := 1 − F(t) the tail or survival function of τ ; we assume that P(τ =
0) = F(0) = 0, and that F̄ (t) > 0 for all t < ∞. We define the jump or default
indicator process (Yt ) associated with τ by Yt = I{τ�t} for t � 0. Note that (Yt ) is
a right-continuous process which jumps from 0 to 1 at the default time τ and that
1 − Yt = I{τ>t}.

A filtration (Ft ) on (Ω,F ) is an increasing family {Ft : t � 0} of sub-σ -algebras
of F : Ft ⊂ Fs ⊂ F for 0 � t � s < ∞. For a generic filtration (Ft ) we set
F∞ = σ(

⋃
t�0 Ft ). Filtrations are used to model the flow of information in a random

system. Ft represents the state of knowledge of an observer at time t , and A ∈ Ft

is taken to mean that at time t the observer is able to determine if the event A has
occurred. In this section we assume that the only observable quantity is the random
time τ or, equivalently, the associated jump indicator process (Yt ). The appropriate
filtration is therefore given by (Ht ) with

Ht = σ({Yu : u � t}), (9.2)

the history of the default information up to and including time t . By definition, τ is
an (Ht )-stopping time, as {τ � t} = {Yt = 1} ∈ Ht for all t � 0; moreover, (Ht )

is obviously the smallest filtration with this property.

Definition 9.1 (cumulative hazard function and hazard rate). The function
Γ (t) := − ln(F̄ (t)) is called the cumulative hazard function of the random time τ . If
F is absolutely continuous with density f , the function γ (t) := f (t)/(1 −F(t)) =
f (t)/F̄ (t) is called the hazard rate of τ .

By definition we have F(t) = 1 − e−Γ (t) and Γ ′(t) = f (t)/F̄ (t) = γ (t), so
Γ (t) = ∫ t

0 γ (s) ds. The hazard rate γ (t) can be interpreted as the instantaneous
chance of default at t , given survival up to time t . In fact, for h > 0 we have
P(τ � t + h | τ > t) = (F (t + h) − F(t))/F̄ (t). Hence we obtain

lim
h→0

1

h
P (τ � t + h | τ > t) = 1

F̄ (t)
lim
h→0

F(t + h) − F(t)

h
= γ (t).
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Example 9.2. Consider two popular distributions for survival times: the exponen-
tial distribution and the Weibull distribution. Recall that the df of the exponential
distribution with parameter λ equals F(t) = 1 − e−λt , so that γ (t) = λ for all
t > 0. The df of the Weibull distribution is given by F(t) = 1 − exp(−λtα) for
parameters λ, α > 0. This yields f (t) = λαtα−1 exp(−λtα) and γ (t) = λαtα−1,
which is decreasing in t if α < 1 and increasing if α > 1. For α = 1 we have the
special case of the exponential distribution.

Next we discuss conditional expectations with respect to the σ -algebra Ht . We
need the following auxiliary result on the structure of Ht -measurable rvs.

Lemma 9.3. Every Ht -measurable rv H is of the form H = h(τ)I{τ�t} + cI{τ>t}
for a measurable function h : [0, t] → R and some constant c ∈ R.

Proof. Intuitively the result is obvious, since Ht -measurable rvs can be expressed
as functions of events related to the default history at t . More formally, we argue as
follows. The σ -algebra Ht is generated by the events {Yu = 1} = {τ � u}, u < t ,
and {Yt = 0} = {τ > t}, and hence by the rvs min{τ, t} =: (τ ∧ t) and I{τ>t}. This
implies that any Ht -measurable rv H can be written as H = g(τ ∧ t, I{τ>t}) for
some measurable function g : [0, t] × {0, 1} → R. The claim follows if we define
h(u) := g(u, 0), u � t , and c := g(t, 1).

Lemma 9.4. Let τ be a random time with jump indicator process Yt = I{τ�t} and
natural filtration (Ht ). Then, for any integrable rv X and any t � 0, we have

E(I{τ>t}X | Ht ) = I{τ>t}
E(X; τ > t)

P (τ > t)
. (9.3)

Proof. Since E(I{τ>t}X | Ht ) is Ht -measurable and zero on {τ � t}, we
obtain from Lemma 9.3 that E(I{τ>t}X | Ht ) = I{τ>t}c for some constant c.
Taking expectations yields E(X; τ > t) = cP (τ > t) and hence c =
E(X; τ > t)/P (τ > t).

As an example we compute conditional survival probabilities. TakingX := I{τ>s}
for s > t in (9.3), we get

P(τ > s | Ht ) = E(X | Ht ) = E(I{τ>t}X | Ht ) = I{τ>t}
F̄ (s)

F̄ (t)
. (9.4)

The next proposition contains the first result on the stochastic-process properties
of the jump indicator process of a random time τ . Let (Ft ) be a generic filtration. An
(Ft )-adapted and integrable process (Mt) is called an (Ft )-martingale if E(Ms |
Ft ) = Mt for all 0 � t � s, i.e. if the current value Mt is the best prediction (in the
mean square sense) of the future value Ms .

Proposition 9.5. Let τ be a random time with absolutely continuous df F(t)

and hazard-rate function γ (t). Then Mt := Yt − ∫ t∧τ
0 γ (s) ds, t � 0, is an (Ht )-

martingale.
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Here and below τ ∧ t is short for min{τ, t}. In Section 9.2.3 we extend this
result to doubly stochastic random times and discuss its financial and mathematical
relevance.

Proof. Let s > t . We have to show that E(Ms − Mt | Ht ) = 0, i.e. that
E(Ys − Yt | Ht ) = E(

∫ s
t
γ (u)I{u<τ } du | Ht ). Using (9.4), we get

E(Ys − Yt | Ht ) = I{τ>t}P(τ � s | Ht ) = I{τ>t}
(

1 − F̄ (s)

F̄ (t)

)
= I{τ>t}

F̄ (t) − F̄ (s)

F̄ (t)
.

Note that X := ∫ s
t
γ (u)I{u<τ } du is zero on {τ � t}, so X = XI{τ>t}. Hence

we obtain from Lemma 9.4, Fubini’s Theorem and the identity F̄ ′(t) = −f (t) =
−γ (t)F̄ (t) that

E(X | Ht ) = I{τ>t}
E(X)

F̄ (t)
= I{τ>t}

∫ s
t
γ (u)F̄ (u) du

F̄ (t)
= I{τ>t}

F̄ (t) − F̄ (s)

F̄ (t)
,

and the result follows.

9.2.2 Modelling Additional Information

We now consider a situation where additional information affecting the distribution
of τ is available. In the context of credit risk models this information is typically
generated by background processes, often modelled as diffusions or continuous-
time Markov chains, representing, for instance, economic activity in a country or in
an industry sector, risk-free interest rates or rating transitions between non-default
states. Formally, we represent this additional information by some filtration (Ft )

on (Ω,F , P ).

Definition 9.6 (cumulative hazard and hazard-rate processes). Let τ be a ran-
dom time on the filtered probability space (Ω,F , (Ft ), P ) with P(τ > 0) = 1.
Let Ft = P(τ � t | Ft ) and F̄t = 1 − Ft . If Ft < 1 for all t � 0, the (Ft )-
conditional cumulative hazard process (Γt ) is defined by Γt := − ln(F̄t ). If (Γt )
is strictly increasing and absolutely continuous, i.e. Γt = ∫ t

0 γs ds for some a.s.
strictly positive, (Ft )-adapted process (γt ), then we call (γt ) the (Ft )-conditional
hazard-rate process of τ .

Recall the definition of the filtration (Ht ) in (9.2) and introduce a new filtration
(Gt ) by

Gt = Ft ∨ Ht , t � 0, (9.5)

meaning that Gt is the smallest σ -algebra that contains Ft and Ht . Obviously τ is
an (Ht ) stopping time and hence also a (Gt )-stopping time. In the context of credit
risk models the filtration (Gt ) contains information about the background processes
and the occurrence or non-occurrence of default up to time t , and thus typically
corresponds to the information available to investors.
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Remark 9.7. The notion of an (Ft )-conditional hazard-rate process is most useful
for the doubly stochastic random times discussed in Section 9.2.3 below. Note that if
we assume that Ft < 1 for all t > 0 so that (Γt ) is well defined, τ cannot be an (Ft )-
stopping time. Otherwise we would have Ft = P(τ � t | Ft ) = I{τ�t} ∈ {0, 1}, as
{τ � t} ∈ Ft by the definition of a stopping time.An important example of a random
time, which does not admit a conditional cumulative hazard process, is provided by
the first exit time of Brownian motion from some layer. More precisely, let (Wt ) be
standard Brownian motion and let (Ft ) be the filtration generated by (Wt ). Consider
some threshold a < 0 and define τa = inf{t � 0 : Wt � a}. It is well known that τa
is an (Ft )-stopping time, so the (Ft )-conditional cumulative hazard process is not
well defined. A similar argument shows that the default time in a first-passage-time
model (see Section 8.2) does not admit a cumulative hazard process (with respect to
the filtration generated by the firm-value process); hence the results derived below
do not apply to those models.

Conditional expectations. Next we extend the results of Section 9.2.1 and dis-
cuss the structure of conditional expectations with respect to the full-information
σ -algebra Gt . We need the following auxiliary result on the relationship between
the σ -algebras Ft and Gt .

Lemma 9.8. For every Gt -measurable rv X there is some Ft -measurable rv X̃ such
that XI{τ>t} = X̃I{τ>t}.

In economic terms this result tells us that before default all information is gen-
erated by the background filtration (Ft ); we omit a formal proof. Now we turn to
conditional expectations with respect to Gt .

Lemma 9.9. For every integrable rv X we have

E(I{τ>t}X | Gt ) = I{τ>t}
E(I{τ>t}X | Ft )

P (τ > t | Ft )
.

Note that Lemma 9.9 allows us to replace certain conditional expectations with
respect to Gt by conditional expectations with respect to the background informa-
tion Ft .

Proof. E(I{τ>t}X | Gt ) is Gt -measurable and zero on {τ � t}. By Lemma 9.8 there
is therefore an Ft -measurable rv Z̃ such that E(I{τ>t}X | Gt ) = I{τ>t}Z̃. Taking
conditional expectations with respect to Ft yields, as Ft ⊂ Gt ,

E(I{τ>t}X | Ft ) = P(τ > t | Ft )Z̃.

Hence Z̃ = E(I{τ>t}X | Ft )/P (τ > t | Ft ), which proves the lemma.

Corollary 9.10. Let s > t . If X̃ is integrable and Fs-measurable, we have

E(I{τ>s}X̃ | Gt ) = I{τ>t}E(e−(Γs−Γt )X̃ | Ft ).
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Proof. Let X := I{τ>s}X̃. Since X = I{τ>t}X (as s > t), Lemma 9.9 yields

E(I{τ>s}X̃ | Gt ) = E(I{τ>t}X | Gt ) = I{τ>t}eΓtE(I{τ>s}X̃ | Ft ),

where we have used the fact that P(τ > t | Ft ) = e−Γt . Since X̃ is Fs-measurable,

E(I{τ>s}X̃ | Ft ) = E(X̃P (τ > s | Fs) | Ft ) = E(X̃e−Γs | Ft ),

and the result follows.

Corollary 9.10 will be useful in the pricing of corporate bonds. Suppose that the
default time τ admits the conditional hazard-rate process (γt ), that the default-free
interest rate (rt ) is adapted to the background filtration (Ft ), and that P represents
the probability measure used for pricing (to be explained in Section 9.3). Consider
a corporate zero-coupon bond with zero recovery and maturity T > t ; at maturity
its value is given by I{τ>T }. Define X̃ := exp(− ∫ T

t
rs ds); the price at time t of our

bond is hence given by E(I{τ>T }X̃ | Gt ). We get, from Corollary 9.10,

E(I{τ>T }X̃ | Gt ) = I{τ>t}E
(

exp

(
−
∫ T

t

(rs + γs) ds

) ∣∣∣∣ Ft

)
.

Expressions of this type are often easily computed using techniques from standard
default-free term structure models (for details we refer to Sections 9.4.3 and 9.5
below).

Corollary 9.10 moreover implies that in the above setting γt gives a good approx-
imation of the one-year default probability in the following sense. We have

P(τ > t + 1 | Gt ) = I{τ>t}E
(

exp

(
−
∫ t+1

t

γs ds

) ∣∣∣∣ Ft

)
. (9.6)

Suppose now that the hazard rate remains relatively stable over time so that P(γs ≈
γt for all s ∈ [t, t + 1]) is close to one and that τ > t . Under these assumptions, the
right-hand side of (9.6) is approximated reasonably well by exp(−γt ). If γt is not
too large, we thus get on {τ > t} for the one-year default probability

P(τ < t + 1 | Gt ) ≈ 1 − exp(−γt ) ≈ γt . (9.7)

9.2.3 Doubly Stochastic Random Times

Doubly stochastic random times—also called conditional Poisson or Cox random
times in the literature—are the main example of random times with a stochastic
hazard rate. For our analysis of these random times we use the framework introduced
in the previous section. In particular, (Ft ) denotes the background filtration, (Ht ) is
the filtration generated by the jump indicator process associated with the random
time τ , and the filtration (Gt ) is defined by Gt = Ft ∨ Ht .

Definition 9.11 (doubly stochastic random time). A random time τ is called
doubly stochastic with respect to the background filtration (Ft ) if τ admits the (Ft )-
conditional hazard-rate process (γt ), if Γt = ∫ t

0 γs ds is strictly increasing, and if,
for all t > 0,

P(τ � t | F∞) = P(τ � t | Ft ). (9.8)
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Condition (9.8) is most easily interpreted if we assume that the background filtra-
tion is generated by some stochastic state variable process (Ψt ), i.e. if Ft = σ({Ψu :
u � t}). In that case (9.8) states that, given past values (Ψu)u�t of the state vari-
able, the future (Ψs)s>t does not contain any extra information for predicting the
probability that τ occurs before time t . Obviously, (9.8) excludes models where the
probability that τ � t depends on the future evolution (Ψs)s>t of the state variable.

Construction and simulation via thresholds. In the next lemma we give an explicit
construction of a doubly stochastic random time. This construction is very useful
for simulation purposes.

Lemma 9.12. Let E be a standard exponentially distributed rv on (Ω,F , P ) inde-
pendent of F∞, i.e. P(E � t | F∞) = 1 − e−t for all t � 0. Let (γt ) be a positive
(Ft )-adapted process such that Γt = ∫ t

0 γs ds is strictly increasing and finite for
every t > 0. Define the random time τ by

τ := Γ −1(E) = inf{t � 0 : Γt � E}. (9.9)

Then τ is doubly stochastic with (Ft )-conditional hazard-rate process (γt ).

Proof. We have, by definition,

P(τ � t | F∞) = P(Γt � E | F∞) = 1 − exp(−Γt),

since Γt is F∞-measurable and E is independent of F∞. Moreover, since 1 −
exp(−Γt) is Ft -measurable, we get, using iterated conditional expectations,

P(τ � t | Ft ) = E(P (τ � t | F∞) | Ft ) = 1 − exp(−Γt),

which proves the claim.

Lemma 9.12 has a converse, which is presented next.

Lemma 9.13. Let τ be a doubly stochastic random time with (Ft )-conditional
hazard-rate process (γt ). Denote byΓt = ∫ t

0 γs ds the conditional cumulative hazard
process of τ and put E := Γτ . Then the rv E is standard exponentially distributed
and independent of F∞, and τ = Γ −1(E) almost surely.

Proof. Since (Γt ) is strictly increasing by assumption, the relation τ = Γ −1(E) is
clear from the definition of E. To prove that E has the correct distribution we argue
as follows:

P(E � t | F∞) = P(Γτ � t | F∞) = P(τ � Γ −1(t) | F∞).

Since τ is doubly stochastic, the last expression equals 1 − exp(−Γ (Γ −1(t))) =
1 − e−t , which shows that E is independent of F∞ and that it is standard exponen-
tially distributed.

Lemma 9.12 forms the basis for the following algorithm for the simulation of
doubly stochastic random times.
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Figure 9.4. A graphical illustration of Algorithm 9.14: E ≈ 0.44, τ ≈ 6.59.

Algorithm 9.14 (univariate threshold simulation).

(1) Generate a trajectory of the hazard-rate process (γt ). References for suitable
simulation approaches are given in Notes and Comments.

(2) Generate a unit exponential rv E independent of (γt ) (the threshold) and set
τ = Γ −1(E); this step is illustrated in Figure 9.4.

Moreover, Lemmas 9.12 and 9.13 provide an interesting interpretation of dou-
bly stochastic random times in terms of operational time: for a given (Ft )-adapted
hazard-rate process (γt ), define a new timescale (operational time) by the associated
cumulative hazard process Γt = ∫ t

0 γs ds, so that c units of operational time corre-
spond to Γ −1(c) units of real time. Take a standard exponential rvE independent of
F∞ and measure time in units of operational time. Then the associated calendar time
τ := Γ −1(E) is doubly stochastic by Lemma 9.12. Conversely, by Lemma 9.13, if
we take a doubly stochastic random time τ , the associated operational timeE := Γτ

is standard exponential, independent of F∞. The notion of operational time plays
an important role in insurance mathematics (see Section 10.2.7).

Martingale intensity of doubly stochastic random times. We have seen in Proposi-
tion 9.5 that the jump indicator process (Yt ) can be turned into an (Ht )-martingale
if we subtract the process

∫ t∧τ
0 γ (s) ds. Here we generalize this result to doubly

stochastic random times.

Proposition 9.15. Let τ be a doubly stochastic random time with (Ft )-conditional
hazard-rate process (γt ). Then Mt := Yt − ∫ t∧τ

0 γs ds is a (Gt )-martingale.

Proof. Define a new artificial filtration (G̃t ) by G̃t = F∞ ∨ Ht ; in particular, G̃0 =
F∞ and Gt ⊂ G̃t for all t . Conditioning on G̃0 turns τ into a random time with
deterministic hazard rate γ (s): we have

P(τ � t | G̃0) = 1 − exp

(
−
∫ t

0
γs ds

)
,
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and γ is known given G̃0. Hence Proposition 9.5 implies thatMt := Yt − ∫ t∧τ
0 γs ds

is a martingale with respect to (G̃t ). Since (Mt) is (Gt )-adapted and Gt ⊂ G̃t , (Mt) is
also a martingale with respect to (Gt ).

We conclude with a brief discussion on Proposition 9.15 from the viewpoint of
stochastic calculus.

Definition 9.16. Given the set-up of Section 9.2.2, a non-negative (Gt )-adapted
process (λt ) is called a (Gt )-martingale intensity process of the random time τ if
Mt := Yt − ∫ t∧τ

0 λs ds is a (Gt )-martingale.

In reduced-form credit risk models, (λt ) is usually called the default intensity of
the default time τ . It is well known that the martingale intensity (λt ) is uniquely
defined on {t < τ }. This is an immediate consequence of general results from
stochastic calculus concerning the uniqueness of semimartingale decompositions
(see, for example, Chapter 2 of Protter (1992)). Martingale intensities are important
tools in the analysis of jump indicators and random times from the viewpoint of
stochastic calculus. In credit risk, martingale default intensities and credit spreads
of defaultable bonds are closely related, as will be discussed in Section 9.4 below.

Using the terminology of Definition 9.16, we may restate Proposition 9.15 in
the form “the (Gt )-martingale intensity of a doubly stochastic random time τ is
given by its (Ft )-conditional hazard-rate process (γt )”. Outside the realm of doubly
stochastic random times, the relationship between martingale default intensities and
hazard-rate processes becomes more subtle. In fact, in the analysis of reduced-form
credit portfolios one naturally encounters random times which admit a martingale
intensity process in the sense of Definition 9.16, but whose conditional cumulative
hazard process Γt is not absolutely continuous, for instance because it has jumps.
In that case Proposition 9.15 obviously no longer holds.

Notes and Comments

The material discussed in this section is treated in various sources; our presentation
is based on the book by Bielecki and Rutkowski (2002), where many extensions of
our results can also be found. In particular, Bielecki and Rutkowski discuss various
probabilistic characterizations of doubly stochastic random times. The threshold-
simulation approach for doubly stochastic random times requires the simulation of
trajectories of the hazard-rate process.An excellent source for simulation techniques
for stochastic processes is Glasserman (2003a).

More general reduced-form models where the default time τ is not doubly stochas-
tic are discussed, for example, in Kusuoka (1999), Elliot, Jeanblanc andYor (2000),
Bélanger, Shreve and Wong (2004), Collin-Dufresne, Goldstein and Hugonnier
(2004) and in Chapter 7 of Bielecki and Rutkowski (2002).

9.3 Financial and Actuarial Pricing of Credit Risk

Essentially, two approaches are used for the pricing of credit-risky securities: the
financial or risk-neutral pricing approach on the one hand, and the actuarial pricing
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Figure 9.5. Evolution of the price of p1(· , 1) in Example 9.17.

approach on the other. Under the risk-neutral pricing approach, prices are com-
puted as expected discounted values under some equivalent martingale measure
(see below). This approach is based on the notions of absence of arbitrage and
dynamic hedging. Nowadays, the risk-neutral pricing approach is standard for pric-
ing non-defaultable securities. In credit risk it is used for pricing traded securities
such as corporate bonds and credit default swaps and derivative securities related to
these products.

In the actuarial approach, prices are computed as the sum of the expected pay-off
under the physical measure and a risk premium. The size of the risk premium is
often related to the notion of economic capital. In credit risk, the actuarial approach
is applied mainly to the pricing of non-traded loans or structured products related
to illiquid securities.

In this section we discuss and compare both approaches with a view towards
pricing credit-risky securities. Our discussion provides the methodological basis for
the derivation of pricing formulas in subsequent sections.

9.3.1 Physical and Risk-Neutral Probability Measure

We begin with a discussion of the relationship between the real-world or physical
measure, which models the actual probability of default, and an equivalent martin-
gale measure or risk-neutral measure. We use the following simple example as a
vehicle for our analysis.

Example 9.17 (the basic static model). We consider a defaultable zero-coupon
bond with maturity T equal to one year. We assume that the recovery rate 1 − δ is
deterministic and equal to 60%; that the real-world default probability is equal to
p̄ = 1%; and that the risk-free simple interest rate equals 5%. Moreover, we assume
that the current (t = 0) price of the bond equals p1(0, 1) = 0.941; and that the price
of the corresponding default-free bond is p0(0, 1) = (1.05)−1 = 0.952. The price
evolution of the bond is depicted in Figure 9.5.

The expected discounted value of the bond equals (1.05)−1(0.99·1+0.01·0.6) =
0.949 > p1(0, 1). We see that the price p1(0, 1) is smaller than the expected dis-
counted value of the claim. This is the typical situation in real markets for corporate
bonds, as investors demand a premium for bearing the default risk of the bond. In
real markets, the price of corporate bonds is also affected by tax issues (interest
income from corporate bonds is often taxed at a higher rate than interest income
on treasury bonds) and by liquidity issues; both factors tend to further decrease the
price of corporate bonds relative to treasury bonds. An equivalent martingale mea-
sure or risk-neutral measure is an artificial measure Q equivalent to the physical
probability measure P such that the discounted price process of any security is a
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Q-martingale. According to a standard result of mathematical finance (the so-called
first fundamental theorem of asset pricing), a model for security prices is arbitrage
free if and, modulo technicalities, only if it admits at least one equivalent martin-
gale measure Q. In our two-state model, Q is simply given by an artificial default
probability q̄ such that p1(0, 1) = (1.05)−1((1 − q̄) · 1 + q̄ · 0, 6); q̄ is uniquely
determined from this equation and is given by q̄ = 0.03. Note that in our example q̄
is bigger than the physical default probability p̄ = 0.01; again this is typical for real
markets and reflects the risk premium demanded by buyers of defaultable bonds.

The risk-neutral default probability q̄ is closely related to the credit spread of
the defaultable bond (see (8.11)). Since c(0, 1) = −(lnp1(0, 1) − lnp0(0, 1)), we
obtain, in our two-state model,

c(0, 1) = − ln((1 − q̄) · 1 + q̄ · 0.6) = − ln(1 − q̄ · 0.4) ≈ q̄ · 0.4,

i.e. the credit spread is approximately equal to the product of default probability and
(percentage) loss given default. Similar relationships hold in more general reduced-
form credit risk models (see Section 9.4.2 below). Hence spread data for corporate
bonds can be used to estimate risk-neutral default probabilities. This observation
forms the basis for many empirical studies on the relationship between physical and
risk-neutral default probabilities; we discuss the findings of a recent extensive study
below.

From physical to risk-neutral default probabilities. How does the structure of
credit risk models and hence default probabilities change if we go from the physical
measure (labelled P ) to a risk-neutral measure (labelled Q)? A concise mathemat-
ical answer to this question requires the use of sophisticated tools from stochastic
calculus (variants of Girsanov’s theorem for diffusions and point processes) and is
beyond the scope of this book. We therefore content ourselves with an informal
discussion of the transition from physical to risk-neutral probabilities in firm-value
and reduced-form models.

In firm-value models such as Merton’s model (see Section 8.2.1), when going
from P to Q the drift of the asset-value process V is changed from some arbitrary µ
to the default-free short rate of interest r . According to (8.4), in Merton’s model the
physical default probability over the interval [0, T ] is given by

p̄ = P(VT � F) = Φ

(
lnF − lnV0 − (µ − 1

2σ
2)T

σ
√
T

)
;

the risk-neutral default probability over the same horizon is

q̄ = Q(VT � F) = Φ

(
lnF − lnV0 − (r − 1

2σ
2)T

σ
√
T

)
.

We obtain from these equations that

q̄ = Φ

(
Φ−1(p̄) + µ − r

σ

√
T

)
. (9.10)

Note that the correction term (µ − r)/σ equals the Sharpe ratio of V (a popular
measure of the risk premium earned by the firm). The transition formula (9.10) is
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frequently applied in practice to go from physical to risk-neutral default probabilities.
Note, however, that (9.10) is only justified, strictly speaking, in the narrow context
of the Merton model.

In standard reduced-form models the default time is modelled as a doubly stochas-
tic random time with hazard rate γ P

t = hP (Ψt ) (under the physical measure P ) and
γ
Q
t = hQ(Ψt ) (under a risk-neutral measure Q). Here (Ψt ) is some d-dimensional

process representing economic factors, which is adapted to the background filtra-
tion (Ft ); hP and hQ are functions from R

d to R+. In this context arbitrage theory
alone gives little guidance on the form of the ratio hQ/hP , the only restriction being
that hQ must be chosen so that the model is consistent with observed prices of traded
credit-risky securities. Recent research has therefore tried to derive further restric-
tions on the ratio hQ/hP by bringing in economic arguments (see, for example,
Jarrow, Lando and Yu 2005).

In practice, one usually postulates that hP and hQ belong to a given parametric
family of functions from R

d to R+. For instance, one might assume that hQ = νhP

for some scaling factor ν > 0. The function hP can be determined by fitting the
model to historical default probabilities; ν is found by fitting the model to observed
prices of corporate bonds or credit default swaps. Alternatively, the model is set up
directly under Q and one restricts oneself to determining hQ from observed market
prices of corporate bonds or credit default swaps; this is the martingale-modelling
approach discussed in Section 9.3.3 below.

Empirical evidence. As discussed above, the risk-neutral default probability of
a corporation can be estimated from credit-spread data for bonds issued by that
corporation. By comparing these estimates with estimates for the physical default
probability—obtained, for instance, from the KMV model introduced in Sec-
tion 8.2.3—it is possible to gain some empirical evidence on the relationship of
physical and risk-neutral default probabilities in real markets. Understanding this
relationship is important, as it enables market participants to use information on his-
torical default probabilities in pricing credit-risky securities, and conversely to use
prices of defaultable bonds or market quotes for credit default swaps as additional
input in determining historical default probabilities.

An extensive empirical study of the relationship between physical and historical
default probabilities is Berndt et al. (2004). In this study market quotes for fair
CDS spreads (instead of credit spreads of corporate bonds) are used to infer risk-
neutral default probabilities. In this way, problems related to the differing taxation
of corporate and treasury bonds can be circumvented. The authors ran regression
analyses of the observed spreads for five-year CDSs against five-year EDFs for a
large pool of firms. The five-year EDF of a firm with publicly traded stock is an
annualized estimate of the physical five-year default probability. The computation of
EDFs is described in detail in Section 8.2.3, and annualization is a way of expressing
EDFs for different time horizons on a common yearly scale. A formal treatment of
CDS pricing is given below in Section 9.3.3 (for models where the default time τ
has a deterministic risk-neutral hazard rate) and in Section 9.4.3 (for the case of a
doubly stochastic default time).
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For the interpretation of the regression results, it suffices to know that, in an
environment where the default-free interest rate (rt ) and the risk-neutral hazard rate
(γ

Q
t,i) of some firm i do not fluctuate too much, we have an approximate relationship

between the risk-neutral hazard rate γQ
t,i , the fair CDS spread x∗

i observed at time t
and the percentage loss given default δi (assumed deterministic) of the form

γ
Q
t,i ≈ x∗

i /δi (9.11)

(see Section 9.3.3 for details). Moreover, it is an immediate consequence of (9.7)
that in models with a doubly stochastic default time the risk-neutral hazard rate γQ

t,i

is approximately equal to the conditional risk-neutral one-year default probability
q̄t,i of firm i at time t .

Berndt et al. (2004) began by estimating the following simple linear model for
the relationship between the observed swap spread x∗

i of firm i and the five-year
EDF, labelled EDFi , on the same day, both measured in basis points (one basis point
equals 0.01%):

x∗
i = 52.26 + 1.627 EDFi +εi . (9.12)

The model (9.12) was estimated using a large sample of more than 18 000 CDS–EDF
observations from September 2000 toAugust 2003 for firms from three industry sec-
tors (North American Oil and Gas, North American Healthcare and North American
Broadcasting and Entertainment). The authors propose the following interpretation
of this regression result. Under the model (9.12) the fair swap spread x∗

i increases
by approximately 16 basis points for every 10 basis point increase in the five-
year EDF; neglecting the intercept, which is small, we have approximately that
x∗
i /EDFi ≈ 1.6. Assuming that the risk-neutral loss given default, δ, equals, say,

0.75, and that risk-neutral and physical default intensities are relatively stable over
time, this would imply a ratio of risk-neutral to physical default intensity of

γQ

γ P
≈ x∗

i /δ

EDFi
= 1

δ

x∗
i

EDFi
≈ 1

0.75
· 1.6 = 2.13.

As explained above, γQ/γ P ≈ q̄/p̄, so these numbers also relate to the ratio of
risk-neutral and physical default probabilities. A loss given default of δ = 0.75 is
a very conservative (high) estimate. If we take a lower value for δ, say δ = 0.5, we
obtain a ratio of q̄/p̄ ≈ 1

0.5 · 1.6 = 3.2, i.e. the ratio of risk-neutral to actual default
probability gets even higher.

A careful inspection of the CDS–EDF relationship shows that the simple linear
model (9.12) might not be appropriate for a number of reasons. First, the high
intercept of 52.26 basis points is implausible, as it would imply that even for a firm
with historical default probability p̄ close to zero the swap spread is still of the
order of 50 basis points. Second, Berndt et al. (2004) found that the ratio x∗

i /EDFi
varies between industry sectors—reflecting different recovery rates for different
industries—and over time, as is illustrated in Figure 9.6. Third, there seems to be
some concavity in the relationship between swap spreads and EDFs; in particular,
the ratio x∗

i /EDFi is higher for high-quality firms with low EDF values than for
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Figure 9.6. Ratio of one-year risk-neutral and historical default probabilities for
Vintage Petroleum, as estimated by Berndt et al. (2004).

low-quality firms. For these reasons the authors go on to consider a more refined
logarithmic regression model, which fits the data significantly better.

The analysis of Berndt et al. (2004) is corroborated by other empirical work on
default risk premiums mentioned in Notes and Comments. This empirical research
clearly shows that physical and risk-neutral default probabilities can differ substan-
tially, and care must be taken to distinguish between the two concepts.

9.3.2 Risk-Neutral Pricing and Market Completeness

It is a fundamental insight of modern mathematical finance that in a complete market
the price of derivative securities can be computed as the mathematical expectation
of the discounted pay-off under a risk-neutral measure. In this section we explain
the idea underlying this important result and discuss its applicability to the pricing
of credit derivatives. We refrain from a general analysis; instead we use variants of
the simple static model introduced in Example 9.17 as a vehicle for our discussion.

Consider, in the context of Example 9.17, an investor, for example an invest-
ment bank, who plans to sell credit derivatives on the zero-coupon bond with
price p1(· , T ). In particular, consider a default put option with maturity date T = 1.
This contract pays one unit if the bond defaults and zero otherwise; it can be thought
of as a simplified version of a CDS. Obviously, the pay-off of the default put is
unknown at date t = 0 and thus constitutes a risk. Therefore, two questions arise
for our investor: how should the option be priced, and how should the risk incurred
by selling it be dealt with? The answer given by the modern theory of mathematical
finance goes back to the seminal papers of Black and Scholes (1973) and Merton
(1973), who showed that it is often possible to replicate the pay-off of a deriva-
tive security by (dynamic) trading in the underlying assets. It follows that the risk
incurred by the seller can be eliminated; moreover, the fair price of the derivative is
given by the initial price of the replicating portfolio.

Let us apply this insight to the default put. We form a portfolio in the defaultable
bond and cash, with value at time t = 1 equal to the pay-off of the put. At time
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t = 0 we go short 2.5 units of the bond and hold 50
21 ≈ 2.38 units of cash. At time

t = 1 there are two possibilities for the value V1 of this portfolio.

• Default occurs: in which case V1 = (−2.5) · 0.6 + 50
21 · 1.05 = 1.

• No default: in which case V1 = (−2.5) · 1 + 50
21 · 1.05 = 0.

In either case the value V1 of the hedge portfolio equals the pay-off of the option.
Hence the fair price at t = 0 of the option should equal the value of the hedge
portfolio at t = 0 given by V0 = (−2.5) · 0.941 + 50

21 ≈ 0.0285; otherwise either
the buyer or the seller could make some riskless profit. To construct the portfolio in
this simple one-period, two-state setting we have to consider two linear equations.
Denote by ξ1 and ξ2 the units of the defaultable bond and the amount of cash in our
portfolio. At time t = 1 we must have ξ1 · 0.6 + ξ2 · 1.05 = 1 (the default case),
and ξ1 · 1 + ξ2 · 1.05 = 0 (the no-default case), which leads to the above values of
ξ1 = −2.5 and ξ2 = 50

21 .
In mathematical finance a derivative security is called attainable if there is a

(dynamic) portfolio strategy in traded underlying assets that replicates the pay-off
of the derivative. The above argument shows that in our simple one-period two-state
model every derivative security is attainable. Such models are termed complete.

Note that the physical default probability p̄ did not enter the pricing argu-
ment. It is nonetheless possible to compute the fair price of the default put as the
expected value of the discounted pay-off, if the risk-neutral measure Q is used
instead of the physical measure P . Recall that the risk-neutral default probabil-
ity is given by q̄ = 0.03. The expected discounted pay-off under Q is given by
(1.05)−1(0.97 · 0 + 0.03 · 1) = 0.0285 and is thus equal to the fair price V0. This is,
of course, not a lucky coincidence. In fact, a basic result from mathematical finance,
the so-called risk-neutral pricing rule, states that the fair price of any attainable
claim can be computed as the expected value of the discounted pay-off under a risk-
neutral measure. Armed with this result, one typically first computes the candidate
price (the expected value of the discounted pay-off under a risk-neutral measure)
and second determines the replicating strategy. For this reason a lot of research
focuses on the problem of computing prices. However, one should bear in mind
that the main economic justification for computing prices as expected discounted
value under a risk-neutral measure stems from the hedging argument, and is there-
fore strictly speaking only justified for attainable claims. This issue has, to a large
extent, been neglected in the literature on the pricing of credit-risky securities. The
next example illustrates some of the difficulties arising in incomplete markets, where
most derivatives are not attainable.

Example 9.18 (a model with random recovery). As there is a substantial amount
of randomness in real recovery rates (see Section 8.4.6), it is interesting to study
the impact of random recovery rates on the validity of the above pricing arguments.
Consider the following variant of Example 9.17 with random recovery: the loss given
default may be either 30% or 50%, p1(0, 1) = 0.941, and the riskless interest-rate
equals 5%. The price evolution of p1(· , 1) is illustrated in Figure 9.7. We leave
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Figure 9.7. Evolution of the price of p1(· , 1) in Example 9.18.

the physical measure unspecified—we assume only that all three possible outcomes
have strictly positive probability.

We begin our analysis of this model by determining the equivalent martingale
measures. Put q1 := Q(p1(1, 1) = 0.5), q2 := Q(p1(1, 1) = 0.7) and q3 :=
Q(p1(1, 1) = 1), so that q3 = 1 − q1 − q2. We obtain the following equation for
q1 and q2,

p1(0, 1) = 1.05−1(q1 · 0.5 + q2 · 0.7 + (1 − q1 − q2) · 1), (9.13)

and the restrictions q1 > 0, q2 > 0, 1 − q1 − q2 > 0. Obviously, Q is no longer
unique. It is easily seen from (9.13) that the set Q of equivalent martingale measures
is given by

Q = {q ∈ R
3 : q1 ∈ (0, 0.024), q2 = 10

3 (1 − 1.05 ·p1(0, 1)− 0.5 · q1),

q3 = 1 − (q1 + q2)}. (9.14)

It is interesting to look at the boundary cases. For q1 = 0 we obtain q2 = 4%,
q3 = 96%; this is the scenario where the risk-neutral default probability q̄ = q1 + q2

is maximized. For q1 = 2.4% we obtain q2 = 0, q3 = 97.6%; this is the scenario
where q̄ is minimized. Note, however, that the measures q0 := (0.024, 0, 0.976) and
q1 := (0, 0.04, 0.96) do not belong to Q, as they are not equivalent to the physical
measure P .

Consider a derivative security with pay-off H and maturity T = 1, such as the
default put with H = 0 if p1(1, 1) = 1 and H = 1 otherwise. Every price of the
form H0 = EQ(1.05−1H) for some Q ∈ Q is consistent with no arbitrage and will
therefore be called an admissible value for the derivative. If Q contains more than
one element, as in our case, there is typically more than one admissible value. For
instance, we obtain for the default put option that

inf
Q∈Q

EQ

(
H

1.05

)
≈ 0.023 and sup

Q∈Q
EQ

(
H

1.05

)
≈ 0.038; (9.15)

obviously, the infimum and supremum in (9.15) correspond to the measures q0

and q1, where q̄ is minimized and maximized, respectively. This non-uniqueness of
admissible values reflects the fact that in our three-state model the put is no longer
attainable. In fact, the hedging portfolio (ξ1, ξ2) now has to solve the following three
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equations:

ξ1 · 0.5 + ξ2 · 1.05 = 1 (default, low recovery),

ξ1 · 0.7 + ξ2 · 1.05 = 1 (default, high recovery),

ξ1 · 1 + ξ2 · 1.05 = 0 (no default).

⎫⎪⎬⎪⎭ (9.16)

It is immediately seen that the system (9.16) of three equations and only two
unknowns has no solution, so that the default put is not attainable. This illustrates
two fundamental results from modern mathematical finance: a claim with bounded
pay-off is attainable if and only if the set of admissible values consists of a sin-
gle number; an arbitrage-free market is complete if and only if there is exactly
one equivalent martingale measure Q. The second result is known as the second
fundamental theorem of asset pricing.

Example 9.18 shows that in an incomplete market conceptual issues arise which
are not present in models for complete markets. In particular, it is not obvious how
to choose the correct price of a derivative security from the range of admissible
values or how to deal with the risk incurred by selling a derivative security. This is
unfortunate, as realistic models, which capture the dynamics of financial time series,
are typically incomplete. In recent years a number of interesting concepts for the risk
management of derivative securities in incomplete markets have been developed.
These approaches typically propose mitigating the risk by an appropriate trading
strategy and often suggest a pricing formula for the remaining risk. However, the
systematic application of these approaches to the pricing and the hedging of credit-
risky securities is currently still in its infancy, and we refrain from further discussion.
A brief overview of the existing work on incomplete markets is given in Notes and
Comments.

9.3.3 Martingale Modelling

Recall that, according to the first fundamental theorem of asset pricing, a model
for security prices is arbitrage free if and (essentially) only if it admits at least one
equivalent martingale measure Q. Moreover, in a complete market, the only thing
that matters for the pricing of derivative securities is the Q-dynamics of the traded
underlying assets. When building a model for pricing derivatives it is therefore
a natural shortcut to model the objects of interest—such as interest rates, default
times and the price processes of traded bonds—directly, under some exogenously
specified martingale measureQ. In the literature this approach is termed martingale
modelling.

Martingale modelling is particularly convenient if the value of the underlying
assets at some maturity date T is exogenously given, as in the case of zero-coupon
bonds. In that case the price of the underlying asset at time t < T can be computed
as the conditional expectation under Q of the discounted value at maturity. For-
mally, denoting by B(t) > 0 the so-called numéraire (often the default-free savings
account) and by Gt the information available to investors at time t , we have the
following formula for the price at time t of a security, whose value at T is given by
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the FT -measurable rv H � 0:

Ht = B(t)EQ(B(T )−1H | Gt ), t � T . (9.17)

Model parameters are then determined using the requirement that at time t = 0 the
price of traded securities as computed from the model using (9.17) should coin-
cide with the price of these securities as observed in the market; this is known as
calibration of the model to market data.

Martingale modelling ensures that the resulting model is arbitrage free, which is
advantageous if one has to model the prices of many different securities simultane-
ously. Therefore the approach is frequently adopted in default-free term structure
models and in reduced-form models for credit-risky securities. Martingale mod-
elling has two drawbacks. First, historical information is, to a large extent, useless
in estimating model parameters, as these may change in the transition from the real-
world measure to the equivalent martingale measure. For instance, as explained
above, physical and risk-neutral default probabilities and default intensities may
differ substantially. Second, as illustrated in Example 9.18, realistic models for
pricing credit derivatives are typically incomplete, so that one cannot eliminate all
risk by dynamic hedging. In those situations one is interested in the distribution of
the remaining risk under the actual risk measure P , so martingale modelling alone
is not sufficient. In summary, the martingale-modelling approach is most suitable in
situations where the market for underlying securities is relatively liquid. In that case
we have sufficient price information to calibrate our models, and issues of market
completeness become less relevant.

Martingale modelling with given CDS spreads. We now use the martingale-
modelling approach to construct a simple reduced-form pricing model with deter-
ministic hazard rate for credit derivatives on a given reference entity. We assume
that market information consists of quotes for fair spreads for CDSs of varying
maturities on this entity. This example illustrates the model-building process if mar-
tingale modelling is used. Moreover, the example is of practical relevance: since the
CDS market is among the most liquid markets for credit-risky securities, the task of
building a model using CDS spreads as input is frequently encountered in practice.

Using martingale modelling we model the objects of interest directly under
some martingale measure Q. We assume that under Q the default time τ is
a random time with deterministic risk-neutral hazard rate γQ(t). For simplic-
ity we take interest rates and recovery rates (or equivalently loss given default)
to be deterministic. The percentage loss given default is denoted by δ ∈ (0, 1).
The continuously compounded interest rate at time t is denoted by r(t) � 0, so
p0(0, t) = exp(− ∫ t

0 r(s) ds) is the price of the default-free zero-coupon bond with
maturity t . This is the simplest type of model that can be calibrated to a given term
structure of default-free interest rates and CDS spreads; generalizations allowing
for stochastic interest rates, recovery rates and hazard rates will be discussed in
Section 9.4.3 below.

We consider the following CDS. We take the notional to be one, so that percent-
age loss given default and absolute loss given default are the same. The premium
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payments are due at N points in time 0 < t1 < · · · < tN . If τ > tk , the protec-
tion buyer pays in tk a premium of size x∗(tk − tk−1), where x∗ denotes the swap
spread. After default, no premium payments are made. If default occurs before the
maturity date tN of the swap, the protection seller makes a default payment of size δ
to the buyer at the default time τ . In a standard CDS the protection buyer pays the
protection seller at default the part of the premium which has accrued since the last
regular premium payment date; here we ignore these accrued premium payments to
simplify the exposition.

Given the risk-neutral hazard rate γQ and a generic spread x, we now price the
payments made by the protection buyer (the so-called premium payment leg of the
swap) and the payments made by the protection seller (the default payment leg)
separately. The price of the premium payment leg at t = 0 (the expected discounted
value of the payments) is given by

V prem(x; γQ) = EQ

( N∑
k=1

exp

(
−
∫ tk

0
r(u) du

)
x(tk − tk−1)I{tk<τ }

)

= x

N∑
k=1

p0(0, tk)(tk − tk−1)Q(τ > tk), (9.18)

which is easily computed using the fact thatQ(τ > tk) = exp(− ∫ tk
0 γQ(s) ds). The

expected discounted value of the default payment leg equals

V def(γQ) = EQ

(
exp

(
−
∫ τ

0
r(u) du

)
δI{τ<tN }

)
.

Since τ has density fτ (t) = γQ(t) exp(− ∫ t
0 γ

Q(u) du), defining R(u) := r(u) +
γQ(u), we get

V def(γQ) = δ

∫ tN

0
exp

(
−
∫ t

0
r(s) ds

)
fτ (t) dt

= δ

∫ tN

0
γQ(t) exp

(
−
∫ t

0
R(s) ds

)
dt. (9.19)

According to market convention there are no payments when two parties enter into
a CDS agreement. This implies that the fair CDS spread x∗ has to be chosen such
that the value of the contract at t = 0 is equal to zero. Hence x∗ is defined by the
relation V prem(x∗; γQ) = V def(γQ), which is easily solved for x∗. Obviously, x∗
depends on the intensity function γQ, as V prem and V def depend on γQ. Note that in
our pricing argument we have neglected the possibility of default for the protection
seller. More sophisticated CDS-pricing approaches would take this possibility into
account (see Notes and Comments).

Assume now that we observe spreads quoted in the market for one or more CDSs
on the same reference entity. Under the martingale-modelling approach we have to
calibrate our model to the available market information. In the context of our simple
default model we hence have to determine the implied risk-neutral hazard rate γQ,
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which ensures that the fair CDS spreads implied by the model equal the spreads
which are quoted in the market.

We consider the following simple example: market information consists of the fair
spread x∗ of one CDS with maturity tN ; the risk-neutral hazard rate γQ is constant,
i.e. γQ(t) = γ̄ Q for some γ̄ Q > 0. In this context, by (9.18) and (9.19), the implied
risk-neutral hazard rate γ̄ Q satisfies the equation

x∗
N∑
k=1

p0(0, tk)(tk − tk−1)e
−γ̄ Qtk = δγ̄ Q

∫ tN

0
p0(0, t)e

−γ̄ Qt dt. (9.20)

Now, the left-hand side of this equation (the value of the premium payments) is
decreasing in γ̄ Q, whereas the right-hand side (the value of the default payments) is
increasing in γ̄ Q. Therefore, in this example there is a unique implied risk-neutral
hazard rate, which is easily computed numerically.

If we observe spreads for several CDSs on the same reference entity but with
different maturities, a time-independent risk-neutral hazard rate is generally not
sufficient to calibrate the model to the observed swap spreads. Instead one typically
uses hazard-rate functions γQ(t) that are piecewise constant or piecewise linear. An
exception occurs in the special case where the spread curve is flat (i.e. all CDSs on
the reference entity have the same spread x∗, independent of the maturity), where
the risk-free interest rate is constant and where the time points tk are equally spaced
(i.e. tk − tk−1 = �t for all t). In that case the implied risk-neutral hazard rate γ̄ Q is
given as the solution to the following equation (equation (9.20) for the case N = 1):

x∗�tp0(0,�t)e
−γ̄ Q�t = δγ̄ Q

∫ �t

0
p0(0, t) exp(−γ̄ Qt) dt. (9.21)

For �t relatively small (quarterly or semiannual spread payments) a good approxi-
mation to the solution of (9.21) is given by γ̄ Q ≈ x∗/δ, i.e. by the ratio of the fair
swap spread and the percentage loss given default. This approximation is frequently
used in practice.

Remark 9.19. Recall that in reduced-form models historical default information
is of no use in determining the form of the risk-neutral hazard rate. For our simple
example it follows that the hypothesis of a constant risk-neutral hazard rate cannot
be tested by looking at historical default patterns: it is perfectly possible that under
the historical measure P default intensities are time dependent, but that under a
risk-neutral measure Q they are constant, and vice versa. The only way of testing
the assumption that γQ(t) is a constant or has any other functional form would be to
test the implications of this assumption on the dynamics of observable CDS spreads
or prices of other traded credit-risky securities.

9.3.4 The Actuarial Approach to Credit Risk Pricing

The actuarial approach is mainly used for the pricing of loans and related products,
which are relatively illiquid. Under the actuarial approach the total spread a loan
should earn (the difference between the interest rate which should be charged for
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the loan and the interest rate on a default-free bond with similar characteristics) is
computed according to the following schematic formula:

total spread = administrative cost + expected loss + risk premium. (9.22)

Administrative cost is of no concern to us here. Expected loss refers to expected
loss under the physical probability measure and, assuming independence between
default and recovery rates, it is given by the product of the annual default probability
and the expected percentage loss given default. The determination of an appropriate
risk premium is more involved from a methodological viewpoint and is discussed
below. Formula (9.22) for the total spread has the same structure as the standard
actuarial premium principles, hence the name actuarial approach to pricing credit
risk. Of course, in practice a formal loan-pricing rule of the form (9.22) is not applied
rigorously across the board; other factors, such as competitive pressure from other
lenders or a long-standing business relationship between borrower and lender, play
an important role in determining the yield spread for a loan.

Risk premiums and economic capital. In modern loan-pricing systems the risk
premium of a loan is computed by applying a target interest rate or hurdle rate to the
economic capital required as buffer against losses from the deal. Hurdle rates are set
by management; they reflect the return on equity aspired to by a financial institution.
Under a modern economic capital framework, the economic capital required for a
particular loan is determined in two steps. First, the economic capital of the entire
credit portfolio is determined. Here the financial industry typically distinguishes
between the so-called expected loss, given by the expected value E(L), and the so-
called unexpected loss, given by UL := L − E(L). Usually, the economic capital
for the entire loan portfolio is determined by applying a risk measure such as VaR
or expected shortfall to UL, whereas the expected loss is charged directly to the
borrower according to the general actuarial loan-pricing formula (9.22).

In a second step the total economic capital needs to be allocated to the individual
loans in the portfolio, a process called economic capital allocation. A fair economic
capital allocation has to reflect the contributions of the individual loans to the total
risk of the portfolio. For instance, a large loan, which is (almost) independent of the
overall portfolio, might contribute less to total risk than a smaller loan, which is likely
to default in circumstances where the portfolio produces large losses. Formally,
economic capital allocation is done using a capital allocation principle such as
standard deviation contributions or expected shortfall contributions (see Section 6.3
for details).

Financial and actuarial pricing compared. We conclude this section with a brief
comparison of the two pricing methodologies. The financial-pricing approach is a
relative pricing theory, which explains prices of credit products in terms of observ-
able prices of other securities. If properly applied, it leads to arbitrage-free prices of
credit-risky securities, which are consistent with prices quoted in the market. These
features make the financial-pricing approach the method of choice in an environment
where credit risk is actively traded and, in particular, for valuing credit instruments
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when the market for related products is relatively liquid. On the other hand, since
financial-pricing models have to be calibrated to prices of traded credit instruments,
they are difficult to apply when we lack sufficient market information. Moreover, in
such cases prices quoted using an ad hoc choice of some risk-neutral measure are
more or less “plucked out of thin air”.

The actuarial pricing approach is an absolute pricing approach, based on the
paradigm of risk bearing: a credit product such as a loan is taken on the balance
sheet if the spread earned on the loan is deemed by the lender to be a sufficient
compensation for the risk contribution of the loan to the total risk of the lending
portfolio. Moreover, the approach relies mainly on historical default information.
Therefore, the actuarial approach is well suited to situations where the market for
related credit instruments is relatively illiquid, such that little or no price information
is available; loans to medium or small businesses are a prime case in point. On the
other hand, the approach does not necessarily lead to prices that are consistent (in
the sense of absence of arbitrage) across products or that are compatible with quoted
market prices for credit instruments, so it is less suitable for a trading environment.

As markets for credit products become more and more liquid, the financial-
valuation paradigm is gaining in importance. This transition poses a challenge for
risk management in financial institutions, since it may well be that a particular
credit risk is priced differently by different parts of an institution, such as the loan
department and a trading desk for credit derivatives. It is the task of a sound risk-
management process to ensure that these inconsistencies are kept to a minimum; a
profound understanding of the differences between financial and actuarial valuation
is an important prerequisite for that.

Notes and Comments

Theoretical results on the relationship between physical and risk-neutral default
probabilities were obtained by Artzner and Delbaen (1995), Jarrow, Lando and Yu
(2005), Giesecke and Goldberg (2005) and others. General mathematical results
for the behaviour of point processes (such as default indicators) under a change
of measure (Girsanov-type theorems) can be found in Brémaud (1981) or Jacod
and Shiryaev (1987). Empirical studies on the relationship between actual and risk-
neutral default probabilities include Fons (1994), Bohn (2000), Driessen (2005),
Huang and Huang (2003) and Berndt et al. (2004). In their paper, Berndt et al. go
beyond the regression analysis presented in our text and estimate a full time series
model for the joint evolution of risk-neutral and actual default intensities.

The fundamental theorems of asset pricing are discussed in most textbooks on
mathematical finance (see, for example, Bingham and Kiesel 1998; Duffie 2001;
Shreve 2004). In recent years a number of interesting approaches to the risk manage-
ment of derivative securities in incomplete markets have been developed. Quadratic
hedging approaches were first developed by Föllmer and Sondermann (1986) and
Föllmer and Schweizer (1991); Schweizer (2001b) is an excellent survey. The the-
ory of superhedging is developed in El Karoui and Quenez (1995) and Kramkov
(1996); the related idea of quantile hedging is explored in Föllmer and Leukert
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(1999). Utility-based approaches to pricing and hedging in incomplete markets are
discussed in Delbaen et al. (2002) and Becherer (2004); the latter paper explicitly
considers applications of utility-based hedging strategies to credit risk models. A
discussion of incomplete-market models in discrete time can be found in Föllmer
and Schied (2004). Early papers dealing with market incompleteness in credit risk
models include Becherer (2004), Becherer and Schweizer (2005) and Bielecki, Jean-
blanc and Rutkowski (2004).

The term martingale modelling was coined by Björk (1998) in the context of
default-free short-rate models (see also Baxter and Rennie 1996). The pricing of
CDSs is discussed in most standard textbooks on credit risk models (see, for example,
Bielecki and Rutkowski 2002; Bluhm, Overbeck and Wagner 2002; Duffie and
Singleton 2003; Lando 2004; Schönbucher 2003). For results on CDS pricing with
possible default of protection seller see, for example, Hull and White (2001).

The relationship between actuarial and financial-pricing approaches is discussed
by Jensen and Nielsen (1996), Embrechts (2000), Schweizer (2001a) and Embrechts,
Frey and Furrer (2001), among others.

9.4 Pricing with Doubly Stochastic Default Times

The main result of this section concerns the pricing of two types of contingent
claims that can be used as building blocks for constructing the pay-off of many
important credit-risky securities. We will show that, for a default time which is
doubly stochastic, the computation of prices for these claims can be reduced to a
pricing problem for a corresponding default-free claim if we adjust the interest rate
and replace the default-free interest rate rt by the sum Rt = rt + γt of the default-
free interest rate and the hazard rate of the default time.

9.4.1 Recovery Payments of Corporate Bonds

To clarify the form of our building blocks we briefly survey different models for the
recovery of corporate zero-coupon bonds. As in previous sections, we denote the
price at time t of a corporate zero-coupon bond with maturity T � t by p1(t, T );
p0(t, T ) denotes the price of the corresponding default-free zero-coupon bond. The
face value of these bonds is always taken to be one. The following three recovery
models are frequently used in the literature.

Recovery of Treasury (RT). The RT model was proposed by Jarrow and Turn-
bull (1995). Under RT, if default occurs at some point in time τ � T , the
owner of the defaulted bond receives (1 − δτ ) units of the default-free zero-
coupon bond p0(· , T ) at time τ , where the rv δτ models the loss given default.
At maturity T the holder of the defaultable bond therefore receives the payment
p1(T , T ) = I{τ>T } + (1 − δτ )I{τ�T }. In particular, if δτ = δ for some constant
δ ∈ (0, 1), we get p1(T , T ) = (1 − δ) + δI{τ>T }, so the price of the corporate bond
at time t < T equals the sum of (1 − δ)p0(t, T ) and δ times the price of the
claim I{τ>T }.
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Recovery of FaceValue (RF). Under RF, if default occurs at τ � T , the holder of the
bond receives a (possibly random) recovery payment of size (1 − δτ ) immediately
at the default time τ . The value at maturity T is therefore given by

p1(T , T ) = I{τ>T } + 1 − δτ

p0(τ, T )
I{τ�T }.

Even with deterministic loss given default δτ ≡ δ and deterministic interest rates,
the value at maturity of the recovery payment is random as it depends on the exact
timing of default. This makes the pricing of recovery payments under RF more
difficult than under RT.

Recovery of MarketValue (RM). This recovery assumption has been put forward by
Duffie and Singleton (1999a); its main virtue is the fact that it leads to particularly
simple pricing formulas for corporate bonds. Under RM it is assumed that the
recovery payment at the default-time τ � T is given by a fraction (1 − δτ ) of the pre-
default value of the bond. Obviously, this is a recursive definition, as the pre-default
value depends on the recovery payment. Nonetheless, under some assumptions it is
possible to obtain a unique price for corporate bonds, where recovery is modelled
using the RM assumption (see Proposition 9.24 below).

In real markets recovery is a complex issue with many legal and institutional
features, and all three recovery models are at best a crude approximation of reality.
The RF-assumption comes closest to legal practice, as debt with the same seniority
is assigned the same (fractional) recovery, independent of the maturity. On the other
hand, for “extreme” parameter values (long maturities and high risk-free interest
rate), RF may lead to negative credit spreads, as we will see in Section 9.5.3 below.
Moreover, the RF model leads to slightly more involved pricing formulas for cor-
porate bonds than the RM and RT models. Empirical evidence on recovery rates for
loans and corporate bonds is discussed in Section 8.4.6.

9.4.2 The Model

We consider a firm whose default time is given by a doubly stochastic random time
as in Section 9.2.3. The economic background filtration represents the information
generated by an arbitrage-free and complete model for non-defaultable security
prices. More precisely, let (Ω,F , (Ft ),Q)denote a filtered probability space, where
Q is already the equivalent martingale measure. Prices of default-free securities such
as default-free bonds are (Ft )-adapted processes. By (rt ) we denote the default-free
rate of interest; Bt = exp(

∫ t
0 rs ds) models the default-free savings account.

Let τ be the default time of some company under consideration and letYt = I{τ�t}
be the associated default indicator process. As in Section 9.2.2 we set Ht = σ({Ys :
s � t}) and Gt = Ft ∨ Ht ; we assume that default is observable and that investors
have access to the information contained in the background filtration (Ft ), so that
the information available to investors at time t is given by Gt . We consider a market
for credit products which is liquid enough that we may use the martingale-modelling
approach, and we use Q as the pricing measure for defaultable securities. Finally,
we assume that, under Q, the default time τ is a doubly stochastic random time with
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background filtration (Ft ) and hazard-rate process (γt ). This latter assumption is
crucial for the results that follow.

9.4.3 Pricing Formulas

Definition 9.20. We introduce the following building blocks.

(i) A vulnerable claim, i.e. an FT -measurable promised payment X which is
made at time T if there is no default; the actual payment of the vulnerable
claim equals XI{τ>T }.

(ii) A recovery payment at the time of default of the form Zτ I{τ�T }, where
Z = (Zt )t�0 is an (Ft )-adapted stochastic process and where Zτ is short
for Zτ(ω)(ω). T is the maturity of the recovery payment.

Example 9.21 (corporate bonds). The actual payments of a corporate zero-coupon
bond can be represented as a combination of a vulnerable claim and a recovery
payment. Suppose that the loss given default is given by some (Ft )-adapted process
(δt ) with values in (0, 1). Under the RT hypothesis the actual payments are given by
the vulnerable claim I{τ>T } and the recovery payment (1 − δτ )p0(τ, T )I{τ�T }. In
the case where δτ = δ for some δ ∈ (0, 1), the pay-off at maturity simplifies further
to the sum of the deterministic payment (1 − δ) and the vulnerable claim δI{τ>T }.

Under RF the actual payment of the bond consists of the vulnerable claim I{τ>T }
and the recovery payment (1 − δτ )I{τ�T }. Obviously, since coupon-paying cor-
porate bonds can be represented as a portfolio of zero-coupon bonds issued by a
corporation, coupon-paying bonds can also be constructed from building blocks (i)
and (ii). However, see Remark 9.25 for a word of warning on the validity of linear
pricing rules in reduced-form models.

Example 9.22 (vulnerable option). Consider a call option with exercise price K
and maturity T on some default-free security (St ), and assume that the writer of the
option may default. Assume that in case of default of the writer at time τ < T the
owner of the option receives a fraction (1 − δτ ) of the intrinsic value of the option at
the time of default. This can be modelled as a combination of the vulnerable claim
(ST − K)+I{τ>T } and the recovery payment (1 − δτ )(Sτ − K)+I{τ�T }.

Credit default swaps can also be viewed as a combination of vulnerable claims
and a recovery payment (see Section 9.4.4 below).

According to (9.17), we obtain the following formula for the price at time t of an
arbitrary, non-negative, GT -measurable contingent claim H :

Ht = EQ

(
exp

(
−
∫ T

t

rs ds

)
H

∣∣∣∣ Gt

)
. (9.23)

Consider a default-free claim with FT -measurable pay-off X. Since τ is a doubly
stochastic random time, the additional information about the default history con-
tained in (Gt ) is of no use in computing the conditional expectation (9.23), and we
have

EQ

(
exp

(
−
∫ T

t

rs ds

)
X

∣∣∣∣ Gt

)
= EQ

(
exp

(
−
∫ T

t

rs ds

)
X

∣∣∣∣ Ft

)
. (9.24)
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A formal proof of this equality can be based on the representation of τ obtained
in Lemma 9.13; we omit the details. Relation (9.24) shows that we may write the
price of a non-negative default-free claim X as Xt = EQ(exp(− ∫ T

t
rs ds)X | Ft ),

which is obviously an (Ft )-adapted process. In particular, it does not matter if we
model default-free security prices using (Ft ) or the larger filtration (Gt ). In the
following theorem we show that, in a similar vein, the pricing of the building blocks
introduced in Definition 9.20 can be reduced to a pricing problem in a default-free
security market model with adjusted default-free interest rate.

Theorem 9.23. Suppose that, under Q, τ is doubly stochastic with background
filtration (Ft ) and hazard-rate process (γt ). Define Rs := rs + γs . Assume that the
rvs exp(− ∫ T

t
rs ds)|X| and

∫ T
t

|Zsγs | exp(− ∫ s
t
Ru du) ds are all integrable with

respect to Q. Then the following identities hold:

EQ

(
exp

(
−
∫ T

t

rs ds

)
I{τ>T }X

∣∣∣∣ Gt

)
= I{τ>t}EQ

(
exp

(
−
∫ T

t

Rs ds

)
X

∣∣∣∣ Ft

)
, (9.25)

EQ

(
I{τ>t} exp

(
−
∫ τ

t

rs ds

)
Zτ I{τ�T }

∣∣∣∣ Gt

)
= I{τ>t}EQ

(∫ T

t

Zsγs exp

(
−
∫ s

t

Ru du

)
ds

∣∣∣∣ Ft

)
. (9.26)

Proof. The integrability conditions ensure that all conditional expectations are well
defined. We start with the pricing formula (9.25) for the vulnerable claim. Define the
FT -measurable rv X̃ := exp(− ∫ T

t
rs ds)X. We obtain, using Corollary 9.10 with

s = T and Γt = ∫ t
0 γs ds, that

EQ(X̃I{τ>T } | Gt ) = I{τ>t}EQ(exp(−(ΓT − Γt))X̃ | Ft ).

Using the relation ΓT − Γt = ∫ T
t
γs ds and the definition of X̃, we immediately

obtain that the right-hand side equals I{τ>t}EQ(exp(− ∫ T
t
Rs ds)X | Ft ). Next we

turn to (9.26). We obtain from Lemma 9.9 that

EQ

(
I{τ>t} exp

(
−
∫ τ

t

rs ds

)
Zτ I{τ�T }

∣∣∣∣ Gt

)
= I{τ>t}

EQ(I{τ>t} exp(− ∫ τ
t
rs ds)Zτ I{τ�T } | Ft )

P (τ > t | Ft )
. (9.27)

Now note that

P(τ � t | FT ) = 1 − exp

(
−
∫ t

0
γs ds

)
,
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so the conditional density of τ given FT equals fτ |FT
(t) = γt exp(− ∫ t

0 γs ds).
Hence

EQ

(
I{τ>t} exp

(
−
∫ τ

t

rs ds

)
Zτ I{τ�T }

∣∣∣∣ FT

)
=
∫ T

t

exp

(
−
∫ s

t

ru du

)
Zsγs exp

(
−
∫ s

0
γu du

)
ds

= exp

(
−
∫ t

0
γu du

)∫ T

t

Zsγs exp

(
−
∫ s

t

Ru du

)
ds.

Hence we obtain, using iterated conditional expectations, that

EQ

(
I{τ>t} exp

(
−
∫ τ

t

rs ds

)
Zτ I{τ�T }

∣∣∣∣ Ft

)
= exp

(
−
∫ t

0
γu du

)
EQ

(∫ T

t

Zsγs exp

(
−
∫ s

t

Ru du

)
ds

∣∣∣∣ Ft

)
;

the identity (9.26) follows because of (9.27).

9.4.4 Applications

Credit default swaps. We extend our analysis of Section 9.3.3 and discuss the
pricing of CDSs in the model introduced in Section 9.4.2. This allows us to incor-
porate stochastic interest rates, recovery rates and hazard rates into our analysis.
As in our previous analysis, the premium payments are due at N points in time
0 < t1 < · · · < tN ; at a pre-default date tk , the protection buyer pays a premium of
size x(tk − tk−1), where x denotes the swap spread in percentage points (again we
take the nominal of the swap to be one). Moreover, if τ � tN , there is an accrued
premium payment of size x(τ − tk−1), provided that tk−1 < τ � tk . If τ � tN , the
protection seller makes the default payment of size δτ to the buyer at the default
time τ , where the percentage loss given default is now a general (Ft )-adapted pro-
cess. Using Theorem 9.23, both legs of the swap can be priced. The regular premium
payments constitute a sequence of vulnerable claims. Using (9.25), we obtain, for
the fair price in t = 0,

V prem,1 =
N∑
k=1

EQ

(
exp

(
−
∫ tk

0
ru du

)
x(tk − tk−1)I{tk<τ }

)

= x

N∑
k=1

(tk − tk−1)E
Q

(
exp

(
−
∫ tk

0
Ru du

))
.

The accrued premium payments constitute a recovery payment, where Z is given
by Zs = x

∑N
k=1(s − tk−1)I{tk−1<s�tk}; by (9.26) the fair price in t = 0 is given by

V prem,2 = x

N∑
k=1

EQ

(∫ tk

tk−1

(s − tk−1)γs exp

(
−
∫ s

0
Ru du

)
ds

)
.

The default payments also form a recovery payment, this time with Zs = δs and
maturity tN , so their value is given by V def = EQ(

∫ tN
0 δsγs exp(− ∫ s

0 Ru du) ds).
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Hence we have reduced the pricing of credit default swaps to a pricing problem in
the default-free world. Methods for solving this problem will be discussed in the
next section.

Recovery of market value. Next we turn to the pricing of credit-risky securi-
ties whose recovery payment is described by the RM assumption introduced in
Section 9.4.1. More precisely, we consider a claim whose pay-off consists of the
vulnerable claim X and a recovery-payment of size (1 − δτ )Vτ I{τ�T }, where the
(Ft )-adapted process (δt ) ∈ (0, 1) gives the percentage loss given default of the
claim and where the (Ft )-adapted process (Vt ) gives the pre-default value of the
claim. Note that this is a recursive definition, as the pre-default value at time t also
depends on the form of the future recovery payments in the time-period (t, T ].
Nonetheless, we have the following result.

Proposition 9.24. Suppose that, under Q, τ is doubly stochastic with hazard-rate
process (γt ), that X is integrable, and that the RM assumption holds. Then the
pre-default value process (Vt ) is uniquely determined and is given by

Vt = EQ

(
exp

(
−
∫ T

t

rs + δsγs ds

)
X

∣∣∣∣ Ft

)
, 0 � t � T . (9.28)

Note that for δt ≡ 1 the claim is a standard vulnerable claim; in that case,
(9.28) reduces to the formula (9.25). On the other hand, for δt ≡ 0 the claim is
essentially default free; in that case, (9.28) reduces to the standard pricing formula
for the claim X in a default-free security market model. For a formal proof of
Proposition 9.24 we refer to the references given in Notes and Comments.

Credit spreads and hazard rates. With doubly stochastic default times the risk-
neutral hazard-rate process (γt ) and the credit spread

c(t, T ) = − 1

T − t
(lnp1(t, T ) − lnp0(t, T ))

of defaultable bonds are closely related. Analytic results are most easily derived for
the instantaneous credit spread given by

c(t, t) = lim
T→t

c(t, T ) = − ∂

∂T

∣∣∣∣
T=t

(lnp1(t, T ) − lnp0(t, T )). (9.29)

Assume that τ > t , so that p1(t, t) = p0(t, t) = 1. Hence we get

∂

∂T

∣∣∣∣
T=t

lnp1(t, T ) = ∂

∂T

∣∣∣∣
T=t

p1(t, T ), (9.30)

and similarly forp0(t, T ). To compute the derivative in (9.30) we need to distinguish
between the different recovery models. Under RM, we have, from Proposition 9.24,
exchanging expectation and differentiation,

− ∂

∂T

∣∣∣∣
T=t

p1(t, T ) = −EQ

(
∂

∂T

∣∣∣∣
T=t

exp

(
−
∫ T

t

rs + δsγs ds

) ∣∣∣∣ Ft

)
= rt + δtγt . (9.31)
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Applying (9.31) with δt ≡ 0 yields

− ∂

∂T

∣∣∣∣
T=t

p0(t, T ) = rt ,

so that c(t, t) = δtγt , i.e. the instantaneous credit spread equals the product of hazard
rate and percentage loss given default, which is quite intuitive from an economic
point of view. Under RF, p1(t, T ) is given by the sum of the price of the vulnerable
claim I{τ>T } and the recovery payment (1 − δ)τ . Relation (9.31) with δt ≡ 0 shows
that the derivative with respect to T of the vulnerable claim at T = t is equal to
−(rt + γt ). For the recovery payment we get

∂

∂T

∣∣∣∣
T=t

E

(∫ T

t

γs(1 − δs) exp

(
−
∫ s

t

Ru du

)
ds

∣∣∣∣ Ft

)
= (1 − δt )γt .

Hence

− ∂

∂T

∣∣∣∣
T=t

p1(t, T ) = rt + γt − (1 − δt )γt = rt + δtγt ,

so that c1(t, t) is again equal to δtγt . An analogous computation shows that we also
have c1(t, t) = δtγt under RT. However, for T − t > 0 the credit spread corres-
ponding to the different recovery models differs, as is illustrated in Section 9.5.3
below.

Remark 9.25 (limitations of reduced-form models). The analogy with default-
free term structure models makes the reduced-form models with doubly stochastic
default times relatively easy to apply. However, in interpreting the results some care
is required. In particular, one must bear in mind that in these models the default
intensity does not explicitly take into account the structure of a firm’s outstanding
risky debt. This can lead to nonsensical results, as is illustrated in the following
simple example. Consider a firm whose risky debt consists of a single bond with
maturity T̄ . Suppose that the firm raises new funds by issuing another zero-coupon
bond with maturity T < T̄ . In order to value this new debt, in a naive application of
the reduced-form approach, one would set up a model with doubly stochastic default
time τ and calibrate the risk-neutral hazard rate to the price of the existing debt (the
bond with maturity T̄ ). This model would then be used to price the zero-coupon
bond with the short maturity. If the face value of the new debt is large relative to the
value of the firm, the price obtained in this way is out of line with economic reality.
As an extreme case, suppose that the firm uses the funds raised by the bond issue to
buy back a some of its own shares. Clearly, this makes the firm riskier and raises the
probability that the firm defaults on the new issue. This should be reflected in the
default intensity and, in fact, since T < T̄ , in the price of the existing debt. More
generally, these considerations show that the validity of the linear pricing rules for
corporate debt implied by the reduced-form approach must be interpreted with care.
A formal analysis of these issues is best carried out in firm-value models, where
the default is explicitly modelled in terms of fundamental economic quantities. An
excellent discussion can be found in Chapter 2 of Lando (2004).
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Notes and Comments

The results of this section, and in particular Theorem 9.23, are originally due to
Lando (1998); related results were obtained by Jarrow and Turnbull (1995) and
Jarrow, Lando and Turnbull (1997). An alternative treatment at the textbook level
(including a more detailed discussion of the RM recovery model) is given in Chap-
ter 5 of Lando (2004). Proposition 9.24 is due to Duffie and Singleton (1999a);
extensions are discussed in Becherer and Schweizer (2005). For a generalization of
Theorem 9.23 to reduced-form models where the default time is not doubly stochas-
tic we refer to Duffie, Schroder and Skiadas (1996) and Collin-Dufresne, Goldstein
and Hugonnier (2004).

9.5 Affine Models

In order to apply the pricing formulas for doubly stochastic random times obtained
in Theorem 9.23 we need effective ways to evaluate the conditional expectations on
the right-hand side of equations (9.25) and (9.26). In most models, where default is
modelled by a doubly stochastic random time, (rt ) and (γt ) are modelled as functions
of somep-dimensional Markovian state variable process (Ψt )with state space given
by the domain D ⊂ R

p, so that Rt := rt + γt is of the form Rt = R(Ψt ) for some
function R : D ⊆ R

p → R+, and thus the natural background filtration is given by
(Ft ) = σ({Ψs : s � t}). We hence have to compute conditional expectations of the
form E(exp(− ∫ T

t
R(Ψs) ds)g(ΨT ) | Ft ) for generic g : D ⊂ R

p → R+. Since
(Ψt ) is a Markov process, this conditional expectation is given by some function
f (t,Ψt ) of time and current value Ψt of the state variable process. It is well known
that the function f can be characterized in terms of a parabolic PDE—this is the
celebrated Feynman–Kac formula.

This yields an approach to determine f using analytical or numerical techniques
for PDEs. In particular, it is known that in the case where (Ψt ) belongs to the
class of affine jump diffusions (see below), where R is an affine function and where
g(ψ) = exp(u′ψ) for some u ∈ R

p, the function f is of the form

f (t,ψ) = exp(α(t, T ) + β(t, T )′ψ) (9.32)

for deterministic functions α : [0, T ] → R and β : [0, T ] → Rp; moreover, α and
β are determined by a (p + 1)-dimensional ordinary differential equation (ODE)
system that is easily solved numerically. A relationship of the form (9.32) is often
termed an affine term structure, as it implies that continuously compounded yields
of bonds at time t are affine functions of Ψt . Because of the ease of implementation,
most reduced-form models used in practice work with affine jump diffusions as state
variable process.

In this section we discuss these results. We concentrate on the case where the state
variable process is given by a one-dimensional diffusion; extensions to processes
with jumps will be considered briefly at the end.
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9.5.1 Basic Results

The PDE characterization of f . We assume that the state variable process (Ψt ) is
the unique solution of the SDE

dΨt = µ(Ψt ) dt + σ(Ψt ) dWt, Ψ0 = ψ ∈ D, (9.33)

with state space given by the domain D ⊆ R. Here (Wt ) is a standard, one-
dimensional Brownian motion on some filtered probability space (Ω,F , P , (Ft )),
andµ and σ are continuous functions fromD to R, respectively R+. Consider func-
tions R, g : D → R+. Since (Ψt ) is Markovian, given the present value Ψt , the
future evolution (Ψs)s�t of the state variable process is independent of Ft , and we
obtain

E

(
exp

(
−
∫ T

t

R(Ψs) ds

)
g(ΨT )

∣∣∣∣ Ft

)
= f (t, Ψt ) (9.34)

for some function f : [0, T ]×D → R+. The next lemma gives the characterization
of f in terms of a parabolic PDE announced above.

Lemma 9.26 (Feynman–Kac). If f is once continuously differentiable in t and
twice continuously differentiable in ψ , it solves the terminal-value problem

ft + µ(ψ)fψ + 1
2σ

2(ψ)fψψ = R(ψ)f, (t, ψ) ∈ [0, T ) × D,

f (T ,ψ) = g(ψ), ψ ∈ D,

}
(9.35)

where lower indices denote partial derivatives. Conversely, suppose that the function
g is bounded, that R(ψ) � 0 for all ψ ∈ D, and that f̃ : [0, T ] × D → R+ is a
bounded solution of the terminal value problem (9.35). Let (Ψt ) be a solution of the
SDE (9.33). Then E(exp(− ∫ T

t
R(Ψs) ds)g(ΨT ) | Ft ) = f̃ (t, Ψt ).

The Feynman–Kac formula is a standard result of stochastic calculus and it is
discussed in many textbooks on stochastic processes and financial mathematics, so
we omit the proof (references are given in Notes and Comments).

Affine term structure. The following assumption ensures that the solution of the
PDE (9.35), with terminal condition g(ψ) = exp(uψ), uψ � 0 for ψ ∈ D, is of
the form (9.32), so that we have an affine term structure. Note that g ≡ 1 for u = 0;
this is the appropriate terminal condition for pricing zero-coupon bonds.

Assumption 9.27. R, µ and σ 2 are affine functions of ψ , i.e. there are constants
ρ0, ρ1, k0, k1, h0 and h1 such that R(ψ) = ρ0 + ρ1ψ , µ(ψ) = k0 + k1ψ and
σ 2(ψ) = h0 + h1ψ . Moreover, for all ψ ∈ D we have h0 + h1ψ � 0 and
ρ0 + ρ1ψ � 0.

Fix some T > 0. We try to find a solution of (9.35) of the form f̃ (t, ψ) =
exp(α(t, T ) + β(t, T )ψ) for continuously differentiable functions α(· , T ) and
β(· , T ). As f̃ (T , ψ) = exp(uψ), we immediately obtain the terminal condition
α(T , T ) = 0, β(T , T ) = u. Denote by α′(· , T ) and β ′(· , T ) the derivative of α and
β with respect to t . Using the special form of f̃ we obtain that

f̃t = (α′ + β ′ψ)f̃ , f̃ψ = βf̃ and f̃ψψ = β2f̃ .
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Hence, under Assumption 9.27 the PDE (9.35) takes the form

(α′ + β ′ψ)f̃ + (k0 + k1ψ)βf̃ + 1
2 (h

0 + h1ψ)β2f̃ = (ρ0 + ρ1ψ)f̃ .

Dividing by f̃ and rearranging we obtain

α′ + k0β + 1
2h

0β2 − ρ0 + (β ′ + k1β + 1
2h

1β2 − ρ1)ψ = 0.

Since this equation must hold for all ψ ∈ D, we obtain the following ODE system:

β ′(t, T ) = ρ1 − k1β(t, T ) − 1
2h

1β2(t, T ), β(T , T ) = u, (9.36)

α′(t, T ) = ρ0 − k0β(t, T ) − 1
2h

0β2(t, T ), α(T , T ) = 0. (9.37)

The ODE (9.36) for β(· , T ) is a so-called Ricatti equation. While explicit solu-
tions exist only in certain special cases, the ODE is easily solved numerically. The
ODE (9.37) for α(· , T ) can be solved by simple (numerical) integration once β has
been determined. Summing up, we have the following proposition.

Proposition 9.28. Suppose that Assumption 9.27 holds, that the ODE system
(9.36), (9.37) has a unique solution (α, β) on [0, T ] and that there is some C such
that β(t, T )ψ � C for all t ∈ [0, T ], ψ ∈ D. Then

E

(
exp

(
−
∫ T

t

R(Ψs) ds

)
exp(uΨT )

∣∣∣∣ Ft

)
= exp(α(t, T ) + β(t, T )Ψt ).

Proof. The result follows immediately from Lemma 9.26, as our assumption on β

implies that f̃ (t, ψ) = exp(α(t, T ) + β(t, T )ψ) is bounded.

9.5.2 The CIR Square-Root Diffusion

A very popular affine model is the square-root diffusion model proposed by Cox,
Ingersoll and Ross (1985) as a model for the short rate of interest. In this model (Ψt )

is given by the solution of the SDE

dΨt = κ(θ̄ − Ψt) dt + σ
√
Ψt dWt, Ψ0 = ψ > 0, (9.38)

for parameters κ, θ̄ , σ > 0 and state space D = [0,∞). Clearly, (9.38) is an affine
model in the sense of Assumption 9.27; the parameters are given by k0 = κθ̄ ,
k1 = −κ , h0 = 0 and h1 = σ 2.

It is well known that the SDE (9.38) admits a global solution (see Notes and
Comments for a reference). This issue is non-trivial since the square-root function
is not Lipschitz and since one has to ensure that the solution remains in D for all
t > 0. Note that (9.38) implies that (Ψt ) is a mean reverting process: if Ψt deviates
from the mean-reversion level θ̄ , the process is pulled back towards θ̄ . Moreover, if
the mean reversion is sufficiently strong relative to the volatility, trajectories never
reach zero. More precisely, let τ0(Ψ ) := inf{t � 0 : Ψt = 0}. It is well known
that for κθ̄ � 1

2σ
2 we have P(τ0(Ψ ) < ∞) = 0, whereas for κθ̄ < 1

2σ
2 we have

P(τ0(Ψ ) < ∞) = 1.
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In the CIR square-root model the Ricatti equations (9.36) and (9.37) can be solved
explicitly. Using Proposition 9.28, one has

E

(
exp

(
−
∫ T

t

(ρ0 + ρ1Ψs) ds

) ∣∣∣∣ Ft

)
= exp(α(T − t) + β(T − t)Ψt ),

with

β(τ) = −2ρ1(eγ τ − 1)

γ − κ + eγ τ (γ + κ)
, (9.39)

α(τ) = −ρ0τ + 2
κθ̄

σ 2 ln

(
2γ e1/2τ(γ + κ)

γ − κ + eγ τ (γ + κ)

)
, (9.40)

and τ := T − t , γ := √
κ2 + 2σ 2ρ1. These formulas are the key to pricing bonds

in models where the risk-free short rate and default intensities are affine functions
of independent square-root processes, as is shown in the next example.

Example 9.29 (a three-factor model). We now consider the pricing of zero-coupon
bonds in a three-factor model similar to models that are frequently used in the
literature. We assume that Ψt = (Ψt,1, Ψt,2, Ψt,3)

′ is a vector of three independent
square-root diffusions with dynamics dΨt,i = κi(θ̄i − Ψt,i) dt + σi

√
Ψt,i dWt,i for

independent Brownian motions (Wt,i), i = 1, 2, 3. The risk-free short rate of interest
is given by rt = r0 + Ψt,2 − Ψt,1 for a constant r0 � 0; the hazard rate of the
counterparty under consideration is given by γt = γ1Ψt,1 + Ψt,3 for some constant
γ1 > 0. This parametrization allows for negative instantaneous correlation between
(rt ) and (γt ), which is in line with empirical evidence. Note, however, that this
negative correlation comes at the expense of possibly negative riskless interest rates.
In this context the price of a default-free zero-coupon bond is given by

p0(t, T ) = E

(
exp

(
−
∫ T

t

rs ds

) ∣∣∣∣ Ft

)
= e−r0(T−t)E

(
exp

(
−
∫ T

t

Ψs,2 ds

) ∣∣∣∣ Ft

)
E

(
exp

(∫ T

t

Ψs,1 ds

) ∣∣∣∣ Ft

)
,

(9.41)

where we have used the independence of (Ψt,1), (Ψt,2), (Ψt,3). Each of the terms
in (9.41) can be evaluated using the above formulas for α and β (equations (9.39)
and (9.40)).Assuming that we have recovery of treasury in default (see Section 9.4.1)
and a deterministic percentage loss given default δ, we obtain that the price of a
defaultable zero-coupon bond is given by

p1(t, T ) = (1 − δ)p0(t, T ) + δE

(
exp

(
−
∫ T

t

(rs + γs) ds

) ∣∣∣∣ Ft

)
.

By definition of rt and γt the last term on the right-hand side equals

δE

(
exp

(
−
∫ T

t

r0 + (γ1 − 1)Ψs,1 + Ψs,2 + Ψs,3 ds

) ∣∣∣∣ Ft

)
,

which can be evaluated in a similar way to the evaluation of expression (9.41). In the
next section we will show how one deals with more complicated recovery models,
such as recovery of face value.
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9.5.3 Extensions

A jump-diffusion model for (Ψt ). We briefly discuss an extension of the basic
model (9.33), where the economic factor process (Ψt ) follows a diffusion with jumps.
Adding jumps to the dynamics of (Ψt ) provides more flexibility for modelling default
correlations in models with conditionally independent defaults (see Section 9.6.3
below).

In this section we assume that (Ψt ) is the unique solution of the SDE

dΨt = µ(Ψt ) dt + σ(Ψt ) dWt + dZt , Ψ0 = ψ ∈ D. (9.42)

Here (Zt ) is a pure jump process whose jump intensity at time t is equal to λZ(Ψt )

for some function λZ : D → R+ and whose jump-size distribution has df ν on R.
Intuitively this means that given the trajectory (Ψt (ω))t�0 of the factor process,
(Zt ) jumps at the jump times of an inhomogeneous Poisson process (see Sec-
tion 10.2.7) with time-varying intensity λZ(t, Ψt ); the size of the jumps has df ν.

Suppose now thatAssumption 9.27 holds, and thatλZ(ψ) = l0+l1ψ for constants
l0, l1 such that λZ(ψ) > 0 for all ψ ∈ D. In that case we say that (Ψt ) follows
an affine jump diffusion. For x ∈ R denote by ν̂(x) = ∫

R
e−xy dν(y) ∈ (0,∞]

the extended Laplace–Stieltjes transform of ν (with domain R instead of the usual
domain [0,∞)). Consider the following extension of the ODE system (9.36), (9.37):

β ′(t, T ) = ρ1 − k1β(t, T ) − 1
2h

1β2(t, T ) − l1(ν̂(−β(t, T )) − 1), (9.43)

α′(t, T ) = ρ0 − k0β(t, T ) − 1
2h

0β2(t, T ) − l0(ν̂(−β(t, T )) − 1), (9.44)

with terminal condition β(T , T ) = u for some u � 0 and α(T , T ) = 0. Suppose
that the system (9.44), (9.43) has a unique solution α, β and that β(t, T )ψ � C

for all t ∈ [0, T ], ψ ∈ D (for l0 or l1 �= 0 this implicitly implies that
ν̂(−β(t, T )) < ∞ for all t). Define f̃ (t, ψ) = exp(α(t, T ) + β(t, T )ψ). Using
similar arguments to those above, it can then be shown that the conditional expec-
tation E(exp(− ∫ T

t
R(Ψs) ds) exp(uΨT ) | Ft ) equals f̃ (t, Ψt ).

Example 9.30 (the model of Duffie and Gârleanu (2001)). The following jump-
diffusion model has been used in the literature on CDO pricing. The dynamics of
(Ψt ) are given by

dΨt = κ(θ̄ − Ψt) dt + σ
√
Ψt dWt + dZt (9.45)

for parameters κ, θ̄ , σ > 0 and a jump process (Zt ) with constant jump intensity
l0 > 0 and exponentially distributed jump sizes with parameter 1/µ. Following
Duffie and Gârleanu, we will sometimes call the model (9.45) a basic affine jump
diffusion. Note that these assumptions imply that the mean of ν is equal toµ and that
ν has support [0,∞), so that (Ψt ) has only upward jumps. Hence the existence of a
solution to (9.45) follows from the existence of solutions in the pure diffusion case.
It is relatively easy to show that for t → ∞ we obtain E(Ψt ) → θ̄ + l0µ/κ . For
illustrative purposes we present the parameter values used in Duffie and Gârleanu
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Table 9.1. Parameters used in the model of Duffie and Gârleanu (2001). Recall that l0 gives
the intensity of jump in the factor process,µgives the average jump size.With these parameters
the average waiting time for a jump in the systematic factor process is 1/l0 = 5 years.

κ θ̄ σ l0 µ

0.6 0.02 0.14 0.2 0.1

0
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Time
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102 4 6 80
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(b)

Figure 9.8. (a) A typical trajectory of the basic affine jump diffusion model (9.45) and
(b) the corresponding jumps of (Zt ). The parameter values used are given in Table 9.1; the
initial value Ψ0 is equal to the long-run mean θ̄ + (l0µ)/κ marked by the horizontal line.

(2001) in Table 9.1; a typical trajectory of (Ψt ) is simulated in Figure 9.8. Next we
compute the Laplace–Stieltjes transform ν̂. We obtain for u > −1/µ that

ν̂(u) =
∫ ∞

0
e−ux(1/µ)e−x/µ dx = 1

1 + µu
;

for u � −1/µ we get ν̂(u) = ∞. We therefore have all the necessary ingredients
to set up the Ricatti equations (9.44) and (9.43). In the case of the model (9.45) it
is in fact possible to solve these equations explicitly (see, for example, Chapter 11
of Duffie and Singleton (2003)). However, the explicit solution is given by a very
lengthy expression, so we omit the details.

Application to recovery payments. According to Theorem 9.23, in a model with a
doubly stochastic default time τ with risk-neutral hazard rate γ (Ψt ), the price in t

of a recovery payment of size (1 − δ) at the default time τ equals

(1 − δ)E

(∫ T

t

γ (Ψs) exp

(
−
∫ s

t

R(Ψu) du

)
ds

∣∣∣∣ Ft

)
, (9.46)

where again R(ψ) = r(ψ) + γ (ψ). Using the Fubini Theorem this equals

(1 − δ)

∫ T

t

E

(
γ (Ψs) exp

(
−
∫ s

t

R(Ψu) du

) ∣∣∣∣ Ft

)
ds. (9.47)

Suppose now that γ (ψ) = γ 0 + γ 1ψ , that R(ψ) = ρ0 + ρ1ψ and that (Ψt )

is given by an affine jump diffusion as introduced above. In that case the inner
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expectation in (9.47) is given by a function F(t, s, Ψt ). This function can be com-
puted using an extension of the basic affine methodology, so that (9.47) can be
computed by one-dimensional numerical integration. Define for 0 � t � s the
function f̃ (t, s, ψ) = exp(α(t, s) + β(t, s)ψ), where α(· , s) and β(· , s) solve the
ODEs (9.44), (9.43) with terminal condition α(s, s) = β(s, s) = 0. Denote by ν̂′(x)
the derivative of the Laplace–Stieltjes transform of ν. Then it is a straightforward
application of standard calculus to show that, modulo some integrability conditions,
F(t, s, ψ) = f̃ (t, s, ψ)(A(t, s) + B(t, s)ψ), where A(· , s) and B(· , s) solve the
following ODE system:

B ′(t, s) + k1B(t, s) + h1βB(t, s) − l1ν̂′(−β)B(t, s) = 0, (9.48)

A′(t, s) + k0B(t, s) + h0βB(t, s) − l0ν̂′(−β)B(t, s) = 0, (9.49)

with terminal condition A(s, s) = γ0, B(s, s) = γ1. Again, (9.48) and (9.49) are
straightforward to evaluate numerically.

Example 9.31 (defaultable zero-coupon bonds and CDS). We now have all the
necessary ingredients to compute prices and credit spreads of defaultable zero-
coupon bonds and CDS spreads in a model with a doubly stochastic default time
with hazard rate γt = Ψt for a one-dimensional affine jump diffusion (Ψt ). In Fig-
ure 9.9 we plot the credit spread for defaultable bonds for the recovery assumptions
discussed in Section 9.4.1. Note that, for T → t , i.e. for time to maturity close to
zero, the spread tends to c(t, t) = δΨt > 0, as claimed in Section 9.4.3; in particular,
the credit spread does not vanish as T → t . This is in stark contrast to firm-value
models, where typically c(t, t) = 0, as was shown in Section 8.2.1. Note further
that, for T − t large, under the RF assumption we obtain negative credit spreads,
which is clearly unrealistic. These negative credit spreads are caused by the fact that
under RF we obtain a payment of fixed size 1 − δ immediately at default. If the
default-free interest rate r is relatively large, it may happen that

EQ

(
exp

(
−
∫ τ

0
rs ds

)
(1 − δ)I{τ�T }

)
< EQ

(
exp

(
−
∫ T

0
rs ds

)
I{τ�T }

)
,

even if δ > 0. This stems from the fact that on the right-hand side discounting is
done over the whole period [0, T ] (as opposed to [0, τ ]), so that discounting has a
large impact on the value of the right-hand side, compensating the higher terminal
pay-off. In Figure 9.10 we have plotted the fair spreads for CDS with and without
accrued payments for varying maturities, assuming that the risk-neutral hazard rate
follows a basic affine jump diffusion.

Notes and Comments

The Feynman–Kac formula is discussed, for example, in Section 4.5 of Björk (1998),
or, at a slightly more technical level, in Section 5.7 of Karatzas and Shreve (1988).

Important original papers on affine models in term structure modelling are Duffie
and Kan (1996) for diffusion models and Duffie, Pan and Singleton (2000) for jump
diffusions. The latter paper also contains other applications of affine models, such
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Figure 9.9. Spreads of corporate zero-coupon bonds in the Duffie–Gârleanu model (9.45)
for various recovery assumptions. The parameters of (Ψt ) are given in Table 9.1; the initial
value is Ψ0 ≈ 0.0533. The risk-free interest rate and the loss given default are deterministic
and are given by r = 6% and δ = 0.5. Note that under the RT recovery model, the spread
becomes negative for large times to maturity.

Time to maturity

Fa
ir

 s
pr

ea
d 

(%
)

10 15 20
2.4

2.5

2.6

2.7

2.8
No accrued payments
Accrued payments

0 5

Figure 9.10. Fair CDS spreads in the Duffie–Gârleanu model (9.45) for a CDS contract
with semiannual premium payments and varying time to maturity. The parameters of (Ψt )
are given in Table 9.1; the initial value is Ψ0 ≈ 0.0533. The risk-free interest rate and the loss
given default are deterministic and are given by r = 6% and δ = 0.5. Note that, for small
time to maturity, the fair swap spread is approximately equal to δΨ0 ≈ 2.7%.

as the pricing of equity options under stochastic volatility and econometric issues
related to affine models. It should be mentioned that there is also a converse to
Proposition 9.28: if the conditional expectations E(exp(− ∫ T

t
R(Ψs) ds)euΨT | Ft )

are all exponentially affine functions of Ψt , the process (Ψt ) is necessarily affine
(see Duffie and Kan (1996) and in particular Duffie, Filipovic and Schachermayer
(2003) for details).

The mathematical properties of the CIR model are discussed in, for example,
Chapter 6.2 of Lamberton and Lapeyre (1996), where the explicit solution (9.39)
and (9.40) of the Ricatti equations in the CIR model is also derived. The model
studied in Example 9.29 is akin to models proposed by Duffie and Singleton (1999a).
Problems related to the modelling of negative correlation between state variable
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process in an affine setting are discussed in Section 5.8 of Lando (2004). It is possible
to compute the conditional expectation (9.46) for the price of a recovery payment
as the solution of a parabolic PDE, which stems from the Feynman–Kac formula
(see, for example, Lando 1998 for details). Empirical work on affine models for
defaultable bonds includes the publications of Duffee (1999) and Driessen (2005).

9.6 Conditionally Independent Defaults

We begin our analysis of reduced-form models for portfolio credit risk with a brief
overview of the existing model classes.

9.6.1 Reduced-Form Models for Portfolio Credit Risk

The simplest reduced-form models for portfolio credit risk are models with condi-
tionally independent defaults. In this class default times are independent given the
realization of some observable economic background process; hence these mod-
els are an extension of the static Bernoulli mixture models of Section 8.4. More
sophisticated models for dependent defaults include copula models and models
with interacting intensities. Copula models have become popular in practice and we
give an in-depth discussion of this model class in Sections 9.7 and 9.8; models with
interacting intensities are discussed in Section 9.8.3.

The common feature of the latter two model classes, as opposed to models with
conditionally independent defaults, is the presence of default contagion and counter-
party risk. Loosely speaking, this means that the conditional default probability of
a non-defaulted firm jumps (usually upwards) given the additional information that
some other firm has defaulted. As a consequence the credit spread of bonds issued
by a non-defaulted firm increases given the news that some other firm has defaulted.
Mathematically, default contagion is reflected in jumps in the martingale default
intensity of non-defaulted firms at the default times of other firms in the portfolio.
The impact of the default of some firm on the conditional default probability of other
firms can arise via different channels. On the one hand it might be due to direct
economic links between firms, such as a close business relationship or a strong
borrower–lender relationship. For instance, the default probability of a corporate
bank is likely to increase if one of its major borrowers defaults. This direct channel
of default interaction is termed counterparty risk. On the other hand, changes in the
conditional default probability of non-defaulted firms can be caused by information
effects: investors might revise their estimate of the financial health of non-defaulted
firms in light of the news that a particular firm has defaulted. In that case one speaks
of information-based default contagion.

A lot of recent research deals with the modelling of counterparty risk and default
contagion for a number of reasons. First, there is substantial empirical evidence for
interaction between default events. A recent example is provided by the downfall
of the energy giant Enron in autumn 2001: the news that Enron had used illegal
accounting practices led to rising credit spreads for many other corporations as
bond investors lost confidence in the accounting statements of these corporations—
a striking example of default contagion. Moreover, the stock price of major lenders
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to Enron fell in anticipation of large losses on these loans, reflecting counterparty
risk. Formal empirical evidence for interaction between default events is listed in
Notes and Comments. A second reason for modelling default contagion is that
this might help to explain the clustering of defaults around economic recessions
observed in real data. However, this is not to say that models with conditionally
independent defaults are of little interest. Yu (2005a) shows that the low default
correlations in models with conditionally independent defaults may be related more
closely to an unsatisfactory modelling of state variables than to a problem of the
approach per se. We will discuss this issue in more detail in Section 9.6.3 below.
On a related note, not every default of a major corporation leads to changes in the
credit spreads of the remaining firms, so conditional independence is often realistic.
Moreover, more sophisticated models of default dependence may be hard to calibrate
in practice, particularly for large portfolios. In any case, the discussion of models
with conditionally independent defaults will provide a methodological basis for
studying more complicated models.

Notation. In keeping with Section 9.1, we use the following notation for our analy-
sis of dynamic portfolio credit risk models.We consider a portfolio ofmobligors with
default times τi and default indicator processes Yt,i = Yi(t) = I{τi�t}, 1 � i � m,
on some generic probability space (Ω,F , P ), where the interpretation of P (phys-
ical measure or equivalent martingale measure) will depend on the context. (Note
that we switch freely between the notation Xt,i and the notation Xi(t) for generic
processes defined at the level of individual obligors; generally we favour Xt,i for
stochastic processes and Xi(t) for deterministic ones, but we also depart from this
for reasons of notational elegance in individual formulas.)

In dynamic portfolio credit risk models it is convenient to consider survival
functions instead of distribution functions. As usual, F̄i(t) = P(τi > t) denotes
the tail or survival function of obligor i; the joint survival function is denoted
by F̄ (t1, . . . , tm) = P(τ1 > t1, . . . , τm > tm). Throughout our analysis we restrict
ourselves to models without simultaneous defaults. We may therefore denote the
ordered default times by T0 < T1 < · · · < Tm, where T0 = 0 and, for 1 � n � m,
Tn = min{τi : τi > Tn−1, 1 � i � m}. By ξn ∈ {1, . . . , m} we denote the identity
of the firm defaulting at time Tn. Finally,

An = {1 � i � m : Yi(Tn) = 0} = {1, . . . , m} \ {ξ1, . . . , ξn}
is the set of non-defaulted firms immediately after time Tn.

As in the previous sections, (Ft ) represents our background filtration, typically
generated by some observable process (Ψt ) representing economic factors. More-
over, we introduce the filtrations {H i

t }, 1 � i � m, (Ht ) and (Gt ) by

H i
t = σ({Ys,i : s � t}), Ht = H i

t ∨ · · · ∨ Hm
t and Gt = Ft ∨ Ht . (9.50)

{H i
t } is the filtration generated by default observation for obligor i alone; (Ht ) is

the filtration generated by default observation for all obligors; (Gt ) contains default
information for all obligors and observable background information and thus rep-
resents the information available to investors at time t . Often (Ht ) is called the
internal filtration generated by the default times τi , 1 � i � m.
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9.6.2 Conditionally Independent Default Times

In this section we discuss general mathematical properties of models with condi-
tionally independent defaults; specific examples from the literature are considered
in the next section. We start with a formal definition of conditionally independent
default times.

Definition 9.32. Given a probability space (Ω,F , P ) with background filtration
(Ft ) and random times τ1, . . . , τm, the τi are conditionally independent doubly
stochastic random times if

(i) each of the τi is a doubly stochastic random time in the sense of Defini-
tion 9.11 with background filtration (Ft ) and (Ft )-conditional hazard-rate
process (γt,i ); and

(ii) the rvs τ1, . . . , τm are conditionally independent given F∞, i.e. we have, for
all t1, . . . , tm > 0,

P(τ1 � t1, . . . , τm � tm | F∞) =
m∏
i=1

P(τi � ti | F∞). (9.51)

Construction and simulation via thresholds. The lemma that follows extends
Lemma 9.12.

Lemma 9.33. Let (γt,1), . . . , (γt,m) be positive, (Ft )-adapted processes such
that Γt,i := ∫ t

0 γs,i ds is strictly increasing and finite for any t > 0. Let E =
(E1, . . . , Em)

′ be a vector of independent, standard exponentially distributed rvs
independent of F∞. Define τi by τi = Γ −1

i (Ei). Then τ1, . . . , τm are conditionally
independent doubly stochastic random times.

Proof. According to Lemma 9.12, each of the τi is a doubly stochastic random time
with (Ft )-hazard-rate process (γt,i ). It remains to verify the conditional indepen-
dence. Using the fact that τi � t ⇐⇒ Ei � Γt,i , we have

P(τ1 � t1, . . . , τm � tm | F∞) = P(E1 � Γt1,1, . . . , Em � Γtm,m | F∞)

=
m∏
i=1

P(Ei � Γti ,i | F∞)

=
m∏
i=1

P(τi � ti | F∞). (9.52)

Note that (9.52) holds since the rvsΓti ,i are measurable with respect to F∞, whereas
the Ei are mutually independent and independent of F∞.

Lemma 9.33 is the basis for the following simulation algorithm.
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Algorithm 9.34 (multivariate threshold simulation).

(1) Generate a trajectory of the hazard-rate processes (γt,i ) for i = 1, . . . , m. Here
the same techniques as in the univariate case can be used; note, however,
that for a high-dimensional factor vector this step can become quite time-
consuming.

(2) Generate a vector E of independent standard exponentially distributed rvs
(the threshold vector) and set τi = Γ −1

i (Ei), 1 � i � m.

As in the univariate case, Lemma 9.33 has a converse, which we state without the
simple proof.

Lemma 9.35. Let τ1, . . . , τm be conditionally independent doubly stochastic ran-
dom times with (Ft )-hazard-rate processes (γt,i ). Define a random vector E by
Ei = Γi(τi), 1 � i � m. Then E is a vector of independent, standard exponentially
distributed rvs that is independent of F∞, and τi = Γ −1

i (Ei) almost surely.

Recursive default time simulation. We now describe a second recursive algorithm
for simulating conditionally independent default times, which is sometimes more
efficient than multivariate threshold simulation. Moreover, the algorithm generalizes
naturally to reduced-form models with interacting intensities (see Section 9.8.3). We
need the following lemma, which gives properties of the first default time T1.

Lemma 9.36. Let τ1, . . . , τm be conditionally independent doubly stochastic ran-
dom times with hazard-rate processes (γt,1), . . . , (γt,m). ThenT1 is a doubly stochas-
tic random time with (Ft )-conditional hazard-rate process γ̄t := ∑m

i=1 γt,i , t � 0.

Proof. Using the conditional independence of the τi we get

P(T1 > t | F∞) = P(τ1 > t, . . . , τm > t | F∞) =
m∏
i=1

exp

(
−
∫ t

0
γs,i ds

)
,

which is obviously equal to exp(− ∫ t
0 γ̄s ds). As this expression is Ft -measurable,

the result follows.

Next we compute the conditional probability of the event {ξ1 = i} given the first
default time T1 and full information about the background filtration.

Proposition 9.37. Under the assumptions of Lemma 9.36 we have

P(ξ1 = i | F∞ ∨ σ(T1)) = γi(T1)/γ̄ (T1), i ∈ {1, . . . , m}.
Proof. Conditional on F∞ the τi are independent with deterministic hazard rate
γi(t), so it is enough to prove the proposition for independent random times with
deterministic hazard rate. Fix some t > 0 and note that the probability of having
more than one default in the interval (t −h, t] is of order o(h), as the random vector
(τ1, . . . , τm) has a joint density. Hence

P({ξ1 = i} ∩ {T1 ∈ (t − h, t]}) = P({τi ∈ (t − h, t]} ∩ {τj > t, j �= i}) + o(h)

= P(τi ∈ (t − h, t])
∏
j �=i

P (τj > t)
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by the independence of the τi . Since P(τi > t) = exp(− ∫ t
0 γi(s) ds), 1 � i � m,

this equals

exp

(
−
∫ t−h

0
γi(s) ds

)(
1 − exp

(
−
∫ t

t−h

γi(s) ds

))
×
∏
j �=i

exp

(
−
∫ t

0
γj (s) ds

)
+ o(h).

Hence we get

lim
h→0+h−1P({ξ1 = i} ∩ {T1 ∈ (t − h, t]}) = γi(t) exp

(
−
∫ t

0
γ̄ (s) ds

)
.

Moreover, by Lemma 9.36,

lim
h→0+h−1P(T1 ∈ (t − h, t]) = ¯γ (t) exp

(
−
∫ t

0
γ̄ (s) ds

)
,

so the claim follows from the definition of elementary conditional expectation and
L’Hôpital’s rule.

Algorithm 9.38 (recursive default time simulation). This algorithm simulates a
realization of the sequence (Tn, ξn) up to some maturity date T . Recall that for
n � 1 the set of non-defaulted firms immediately after Tn is denoted by An and
set A0 := {1, . . . , m}. Define γ̄ n

t := ∑
i∈An

γt,i , 0 � n � m. Then the algorithm
proceeds in the following steps.

(1) Generate a trajectory of the hazard-rate processes (γt,i ).

(2) Generate T1 by standard univariate threshold simulation, using the fact that
T1 has hazard rate (γ̄ 0

t ) by Lemma 9.36.

(3) Determine ξ1 as a realization of an rv ξ withP(ξ = i) = γi(T1)/γ̄
0(T1) (using

Proposition 9.37).

(4) If T1 � T stop. Otherwise note that, for conditionally independent defaults,

P(T2 − T1 > t | T1, ξ1,F∞) = P(τj > T1 + t, j ∈ A1, | T1, ξ1,F∞)

P (τj > T1, j ∈ A1, | T1, ξ1,F∞)

= exp

(
−
∫ T1+t

T1

γ̄ 1
s ds

)
. (9.53)

Generate the waiting time T2 − T1 via univariate threshold simulation using
(9.53); determine ξ2 as before, using the fact that, for i ∈ A1,

P(ξ2 = i | T1, T2, ξ1,F∞) = γi(T2)/γ̄
1(T2).

(5) Proceed in this way until Tn � T for some n � m or until all firms have
defaulted.
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Recursive default time simulation is particularly efficient if we want to simulate
only defaults occurring before some maturity date T and if defaults are rare. In that
case, typically Tn > T already for n relatively small, so only a few ordered default
times need to be simulated. With multivariate threshold simulation, on the other
hand, we need to simulate the default times of all obligors in the portfolio.

Martingale intensities. The following proposition shows that, for conditionally
independent defaults, martingale intensities and hazard rates coincide.

Proposition 9.39. Let τ1, . . . , τm be conditionally independent doubly stochas-
tic random times with hazard-rate processes (γt,1), . . . , (γt,m). Then the process
Mt,i := Yt,i − ∫ t∧τi

0 γs,i ds is a (Gt )-martingale with (Gt ) as in (9.50).

Proof. We know from Proposition 9.15 that (Mt,i) is a martingale with respect to
the filtration {Gi

t } with Gi
t = Ft ∨ H i

t , i.e. that E(Ms,i | Gi
t ) = Mt,i , s > t .

However, this does not automatically imply that (Mt,i) is also a (Gt )-martingale, as
Gi
t ⊂ Gt , and so we could have E(Ms,i | Gt ) �= E(Ms,i | Gi

t ). In fact, this typically
happens in copula models (see Section 9.8.1 below). In the present situation the
conditional independence of the τi permits us to overcome this difficulty. This is quite
intuitive: since the τi are conditionally independent, default information for obligor
j �= i is of no use in predicting the default of obligor i. A formal argument is as
follows. Using Lemma 9.35, we may assume that there is a vector E of independent,
standard exponential rvs, independent of F∞, such that for all 1 � j � m we have
τj = Γ −1

j (Ej ). Obviously, τi is independent of Ej for j �= i, so

E(Ms,i | Gi
t ∨ σ({Ej : j �= i})) = E(Ms,i | Gi

t ) = Mt,i . (9.54)

On the other hand, if we know Ej and the trajectory (γu,j )0�u�t , we can determine
Yu,j for 0 � u � t . Hence Gt = Ft ∨ H1

t ∨ · · · ∨ Hm
t is a subset of Gi

t ∨ σ({Ej :
j �= i}), so (9.54) implies that E(Ms,i | Gt ) = Mt,i , as required.

Remark 9.40 (pricing of single-name credit products). Suppose that τ1, . . . , τm

are conditionally independent doubly stochastic random times. Consider a single-
name credit product with maturity T whose pay-off H depends only on the default
history of firm i and on the evolution of default-free security prices and is thus Gi

T -
measurable. A typical example is a vulnerable claim of the form H = I{τi>T }X for
an FT -measurable rv X. A similar argument to that in the proof of Proposition 9.39
shows that

EQ

(
exp

(
−
∫ T

t

rs ds

)
H

∣∣∣∣ Gi
t

)
= EQ

(
exp

(
−
∫ T

t

rs ds

)
H

∣∣∣∣ Gt

)
, t � T ,

where (rt ) is the Ft -adapted default-free short rate. Now, the left-hand side of the
above equation gives the price of the claim H in a single-firm model where the
information available to investors at time t is given by Gi

t , whereas the right-hand
side gives the price of H in the portfolio model where at time t investors have
access to the larger information set Gt containing default information on all firms
in the portfolio. Hence pricing formulas for single-name credit products obtained
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in a single-firm model with a doubly stochastic default time, such as the pricing
formulas from Theorem 9.23, remain valid in a portfolio model with conditionally
independent default times. If we go beyond conditional independence this is no
longer true, as will be discussed in Section 9.8.1.

9.6.3 Examples and Applications

In most models with conditionally independent defaults, hazard rates are modelled
as linear combinations of independent affine diffusions, possibly with jumps. A
typical model is as follows:

γt,i = γi0 +
p∑

j=1

γijΨ
syst
t,j + Ψ id

t,i , 1 � i � m. (9.55)

Here (Ψ syst
t,j ), 1 � j � p, and (Ψ id

t,i ), 1 � i � m, are independent CIR square-root
diffusions or, slightly more generally, basic affine jump diffusions as in (9.45); the
factor weights γij , 0 � j � p, are non-negative constants. Obviously, (Ψ syst

t ) rep-
resents the common or systematic factors, whereas (Ψ id

t,i ) is an idiosyncratic factor
process affecting only the hazard rate of obligor i. Note that the weight of the
idiosyncratic factor can be incorporated into the parameters of the dynamics of
(Ψ id

t ), so we do not need an extra factor weight. Throughout this section we assume
that the background filtration is generated by (Ψ

syst
t ) and (Ψ id

t,i ), 1 � i � m. In
practical applications of the model, the current value of these processes is derived
from observed prices of defaultable bonds.

We now present a few examples proposed in the literature. Duffee (1999) has esti-
mated a model of the form (9.55) with p = 2; in his model all factor processes are
assumed to follow CIR square-root diffusions, so that their dynamics are character-
ized by the parameter triplet (κ, θ̄ , σ ). In Duffee’s model, (Ψ syst

t ) represents factors
driving the default-free short rate; the parameters of these processes are estimated
from treasury data. The factor weights γij and the parameters of (Ψ id

t ), on the other
hand, are estimated from corporate bond-price data.

In their influential case study on CDO pricing, Duffie and Gârleanu (2001) use
basic affine jump diffusion processes of the form (9.45) to model the factors driving
the hazard rates. Jumps in (γt ) represent shocks which increase the default proba-
bility of a firm. They consider a homogeneous model with one systematic factor,
i.e. γt,i = Ψ

syst
t + Ψ id

t,i , 1 � i � m, and assume that the speed of mean-reversion κ ,
the volatility σ and the mean jump size µ are identical for (Ψ syst

t ) and (Ψ id
t,i ). It is

straightforward to show that this implies that the sum γt,i = Ψ
syst
t + Ψ id

t,i follows a
basic affine jump diffusion with parameters κ , θ̄ syst + θ̄ id, σ , (l0)syst + (l0)id and µ;
the parameters of (γt,i ) used in Duffie and Gârleanu (2001) can be found in the row
labelled “base case” in Table 9.2.

Pricing single-name credit products. As discussed in Remark 9.40, with condition-
ally independent defaults, pricing formulas obtained in a single-firm model remain
valid in the portfolio context. Moreover, with hazard rates as in (9.55) most actual
computations can be reduced to a one-dimensional problem involving affine pro-
cesses, to which the results of Section 9.5 apply. As a simple specific example we
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Table 9.2. Parameter sets of the Duffie–Gârleanu model used in Figure 9.11.

Parameter set κ θ̄ σ l0 µ

Pure diffusion 0.6 0.0505 0.141 0 0
Base case 0.6 0.02 0.141 0.2 0.1
High jump intensity 0.6 0.0018 0.141 0.32 0.1

consider the computation of the conditional survival probability of obligor i. We
obtain from Remark 9.40 and Theorem 9.23 that

P(τi > T | Gt ) = P(τi > T | Gi
t ) = I{τi>t}E

(
exp

(
−
∫ T

t

γs,i ds

) ∣∣∣∣ Ft

)
.

For hazard-rate processes of the form (9.55) this equals

I{τi>t}e−γi0(T−t)E

(
exp

(
−
∫ T

t

Ψ id
s,i ds

) ∣∣∣∣ Ft

)
×

p∏
j=1

E

(
exp

(
−
∫ T

t

Ψ
syst
s,j ds

) ∣∣∣∣ Ft

)
. (9.56)

Each of the conditional expectations in (9.56) can now be computed using the results
on one-dimensional affine models from Section 9.5. More general models, where
hazard rates are given by a general multivariate affine process (and not simply by a
linear combination of independent one-dimensional affine processes) can be dealt
with using the general affine-model technology from Duffie, Pan and Singleton
(2000).

Static version of the model. It is interesting to look at the implications of condi-
tional independence and the factor structure (9.55) of the hazard rates for the distri-
bution of the default indicators at a given point in time T , as this links our analysis
to the static models of Chapter 8. For simplicity we suppose that the idiosyncratic
factor (Ψ id

t,i ) vanishes for all firms. Fix some T > 0 and consider the random vector
YT = (YT,1, . . . , YT ,m)

′. We get, for y ∈ {0, 1}m,

P(YT = y) = E(P (YT = y | F∞))

= E

( ∏
j :yj=1

P(τj � T | F∞)
∏

j :yj=0

P(τj > T | F∞)

)
.

Now we obviously have, using (9.55),

P(τi � T | F∞) = 1 − exp

(
− γi0T −

p∑
j=1

γij

∫ T

0
Ψ

syst
s,j ds

)
. (9.57)

This shows that YT follows a Bernoulli mixture model with p-factor structure as in
Definition 8.10 with factor vector given by

Ψ :=
(∫ T

0
Ψ

syst
s,1 ds, . . . ,

∫ T

0
Ψ

syst
s,p ds

)′

and conditional default probabilities pi(Ψ ) as in (9.57).
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Default correlation. As we have seen in Chapter 8, default correlations (defined
as correlation ρ(YT,i , YT ,j ), i �= j , of the default indicators) are crucial for the
tail of the credit loss distribution. In computing default correlations in models
with conditionally independent defaults it is more convenient to work with the
survival indicator 1 − YT,i . By the definition of standard linear correlation we
have

ρ(YT,i , YT ,j ) = ρ(1 − YT,i , 1 − YT,j )

= P(τi > T , τj > T ) − F̄i(T )F̄j (T )

(F̄i(T )(1 − F̄i(T )))1/2(F̄j (T )(1 − F̄j (T )))1/2
. (9.58)

For models with hazard rates as in (9.55), the computation of the survival probabil-
ities F̄i(T ) using affine-model technology has been discussed above. For the joint
survival probability we obtain, using conditional independence,

P(τi > T , τj > T ) = E(P (τi > T , τj > T | F∞))

= E(P (τi > T | F∞)P (τj > T | F∞))

= E

(
exp

(
−
∫ T

0
(γs,i + γs,j ) ds

))
. (9.59)

For hazard rates of the form (9.55), expression (9.59) can be decomposed in a similar
way to the decomposition in (9.56) and can thus be evaluated using our results on
one-dimensional affine models.

It is often claimed that the default correlation values that can be attained in models
with conditionally independent defaults are too low compared with empirical default
correlations (see, for example, Hull and White 2001; Schönbucher and Schubert
2001). Since default correlations do have a significant impact on the loss distribution
generated by a model, we discuss this issue further. As a concrete example we use
the Duffie–Gârleanu model and assume that (Ψ id

t ) vanishes. As discussed above, in
that case the default indicator vector YT follows an exchangeable Bernoulli mixture
model with mixing variable Q̃ given by 1 − exp(− ∫ T

0 Ψ
syst
s ds).

We have seen in Section 8.4.1 that in exchangeable Bernoulli mixture models
every default correlation ρ ∈ (0, 1) can be obtained by choosing the variance
of the mixing variable sufficiently high. It follows that in the Duffie–Gârleanu
model high levels of default correlation can be obtained if the variance of the rv
ΓT := ∫ T

0 Ψ
syst
s ds is sufficiently high. A high variance of ΓT can be obtained by

choosing a high value for the volatility σ of the diffusion part of (Ψ syst
t ) or by

choosing a high value for the mean of the jump-size distribution µ or for the jump
intensity l0. A high value for σ translates into very volatile day-to-day fluctuations
of credit spreads, which might contradict the behaviour of real bond-price data. This
shows that it might be difficult to generate very high levels of default correlation
in models where hazard rates follow pure diffusion processes (see, however, Yu
(2005a) for an alternative view).

In the Duffie–Gârleanu model we may alternatively raise the frequency or size
of the jumps in the hazard rate by increasing l0 or µ. This is a very effective
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Figure 9.11. (a) Default correlations for varying time to maturity and three different param-
eter sets in the Duffie–Gârleanu model for (Ψ id

t ) ≡ 0 and different parameter sets for (Ψ syst
t ).

The parameters of (Ψ syst
t ) are given in Table 9.2. We see that by increasing the intensity of

jumps in (Zt ) the default correlation is increased substantially. (b) The survival probabilities
for the three parameter sets are essentially equal, so that the differences in default correlations
are solely due to the impact of the dynamics of (Ψ syst

t ) on the dependence structure of the
default times.

mechanism for generating default correlation, as is shown in Figure 9.11. In fact,
this additional flexibility in modelling default correlations is an important moti-
vation for considering affine jump diffusions instead of the simpler CIR diffusion
models.

These qualitative findings obviously carry over to other models with conditionally
independent defaults. Summing up, we conclude that it is certainly possible to
generate high levels of default correlation in models with conditionally independent
defaults; however, the required models for the hazard-rate processes may become
relatively complex.

First-to-default swaps. As a final application we study the pricing of first-to-
default swaps in models with conditionally independent defaults. We consider a
portfolio of m firms. Premium payments on the swap are due at N points in time
0 < t1 < · · · < tN =: T . Provided that T1 > tn, the premium at time tn is of the
form x(tn − tn−1); at T1 premium payments stop. For simplicity we neglect accrued
premium payments. The default payment occurs at time T1 provided T1 < T . We
assume that the payment depends on the identity ξ1 of the first defaulting firm (per-
haps because of differing exposure sizes) but is otherwise deterministic, i.e. there
are constants l1, . . . , lm such that the default payment is equal to li if T1 < T

and ξ1 = i. As usual, the fair spread x∗ of the swap is the value of x such
that at t = 0 the default payment leg and premium payment leg have the same
value.

Since, in practice, first-to-default swaps are always priced relative to traded single-
name CDSs, it is natural to adopt the martingale-modelling approach. We assume
that under the equivalent martingale measureQ the default times τi are conditionally
independent doubly stochastic random times with hazard rates of the form (9.55);
moreover, the risk-free short rate (rt ) is assumed to be of the form (9.55). In this
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set-up, for generic swap spread x the value of the premium payment equals

V prem =
N∑
n=1

EQ

(
exp

(
−
∫ tn

0
rs ds

)
I{T1>tn}

)
x(tn − tn−1). (9.60)

Using Theorem 9.23 and Lemma 9.36 we get

EQ

(
exp

(
−
∫ tn

0
rs ds

)
I{T1>tn}

)
= EQ

(
exp

(
−
∫ tn

0
(rs +

m∑
i=1

γs,i) ds

))
.

For hazard rates and a risk-free short rate of the form (9.55) this can be expressed
as a product of expectations of the form EQ(exp(−C

∫ tn
0 Ψs ds)) for a constant C

and a one-dimensional affine jump diffusion (Ψt ), so the premium payments can be
computed using the methods developed in Section 9.5. Next we turn to the default
payments. We have

V def =
m∑
i=1

liE
Q

(
exp

(
−
∫ T1

0
rs ds

)
I{T1�T }I{ξ1=i}

)
.

We begin by computing

EQ

(
exp

(
−
∫ T1

0
rs ds

)
I{T1�T }I{ξ1=i}

∣∣∣∣ F∞
)
.

Conditioning on T1 we obtain that this equals∫ T

0
exp

(
−
∫ t

0
r(s) ds

)
Q(ξ1 = i | T1 = t,F∞)f

Q
T1|F∞(t) dt, (9.61)

where fQ
T1|F∞(t) is the Q-density of T1 given F∞. By Lemma 9.36,

f
Q
T1|F∞(t) = γ̄ (t) exp

(
−
∫ t

0
γ̄ (s) ds

)
.

Moreover, by Proposition 9.37,

Q(ξ1 = i | T1 = t,F∞) = γi(t)/γ̄ (t).

Hence (9.61) equals
∫ T

0 γi(t) exp(− ∫ t
0 (r(s) + γ̄ (s)) ds) dt . To compute the value

of V def we thus have to compute EQ(
∫ T

0 γt,i exp(− ∫ t
0 rs + γ̄s ds) dt). For hazard

rates of the form (9.55) this can be evaluated using the extended transform discussed
in Section 9.5.3; we omit the details. If the default payments li are all identical, the
first-to-default swap can be priced like a single-name CDS, with the hazard rate of
the default time given by (γ̄t ); this follows immediately from Lemma 9.36.

In certain special cases higher-order default swaps can be evaluated analytically.
However, in most cases that are practically relevant, one has to use Monte Carlo
simulation, and the recursive default time simulation algorithm from the previous
section comes in handy.
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Notes and Comments

The empirical literature on default contagion and counterparty risk has two different
strands. On the one hand, there are papers such as Collin-Dufresne, Goldstein and
Helwege (2003) or Lang and Stulz (1992) which focus on the impact of defaults or
credit-spread widenings of a given firm on the credit spreads or stock returns of other
firms and hence on default contagion under a risk-neutral measure. For instance,
Collin-Dufresne, Goldstein and Helwege (2003) found that, even after controlling
for other macroeconomic variables influencing bond returns, the return of large
corporate bond indices in months where one or several large firms experienced a
significant (above 200 basis points) widening in credit spreads is significantly lower
than the return of these indices in other months; this is clear evidence supporting
contagion. Das, Duffie and Kapadia (2005) and Jarrow and Yu (2001), on the other
hand, look at default contagion under the physical measure. Jarrow and Yu provide
a lot of anecdotal evidence for counterparty risk in small portfolios. Das, Duffie
and Kapadia formally test whether models with conditionally independent defaults
driven by observable macroeconomic factors are sufficient to explain the degree of
clustering one finds in actual default data for large portfolios (their default database
contains approximately 2000 firms). In their words, they “do not find substantial
evidence of default clustering beyond that predicted by the doubly stochastic model
in their data”. These findings are only preliminary, but indicate nonetheless that
default contagion is relevant for the pricing and the hedging of portfolio-related
credit derivatives; for credit risk management issues, on the other hand, a model
with conditionally independent defaults and appropriately specified factors might
be sufficient.

The results of Section 9.6.2 are well known; for an alternative treatment at textbook
level, see, for example, Chapter 9 of Bielecki and Rutkowski (2002). The simulation
of conditionally independent default times is discussed in Duffie and Singleton
(1999b) (see also Duffie and Singleton 2003). Further empirical work on affine
models for credit portfolios includes that of Duffee (1999) and Driessen (2005).
Default correlations in models with conditionally independent defaults are discussed
in Yu (2005a).

9.7 Copula Models

Copula models are widely used in practice for the pricing of basket credit derivatives
and CDO structures. They are easy to calibrate to a given term structure of defaultable
bonds or CDS spreads; moreover, they can be used to model default contagion.
In this section we introduce theses models; particular attention will be given to
models where the copula has a factor structure, since these models have a convenient
representation as mixture models. Dynamic properties of copula models and default
contagion are studied in Section 9.8 below.

9.7.1 Definition and General Properties

To motivate our definition of copula models we return briefly to models with
conditionally independent defaults. According to Lemma 9.35, if τ1, . . . , τm are
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conditionally independent doubly stochastic random times with (Ft )-adapted
hazard-rate processes (γt,1), . . . , (γt,m), we can find a random vector E with inde-
pendent, unit exponentially distributed components, independent of F∞, such that
τi = inf{t � 0 : Γt,i � Ei}. We may rewrite this as

τi = inf{t � 0 : 1 − exp(−Γt,i) � Ũi := 1 − exp(−Ei)}. (9.62)

Note that Ũ = (Ũ1, . . . , Ũm)
′ is a vector ofm independent rvs with uniform margins,

so that its joint df is the m-dimensional independence copula (see Section 5.1.2).
In the copula models we generalize this construction and replace the independence
copula with some other copula; obviously, this allows for a richer dependence struc-
ture of the τi than in the case of conditionally independent default times. Defining
Ui := 1 − Ũi we may rewrite (9.62) as τi = inf{t � 0 : exp(−Γt,i) � Ui}. To be
in line with the literature we work with this description of the τi and define copula
models in terms of the copula C of U (or equivalently the survival copula Ĉ of Ũ

introduced in Section 5.1.5). We call C the conditional survival copula of the firms;
this terminology will be justified below.

Definition 9.41 (copula model for default times). Let (γt,i ), . . . , (γt,m) be non-
negative, (Ft )-adapted processes such that Γt,i < ∞ for all t > 0, and let C be an
m-dimensional copula. Then the random times τ1, . . . , τm follow a copula model
with marginal hazard-rate processes (γt,i ), i = 1, . . . , m, and conditional survival
copula C, if there is an m-dimensional random vector U ∼ C, independent of F∞,
such that

τi = inf{t � 0 : exp(−Γt,i) � Ui}, 1 � i � m. (9.63)

Note that Definition 9.41 provides an obvious way to simulate a copula model of
default, provided we know how to simulate the copulaC. To simulate a realization of
τ1, . . . , τm we generate a realization of the hazard-rate processes (γt,1), . . . , (γt,m)
and, independently, a realization of the random vector U ; the τi are then constructed
according to (9.63).

The crucial part in setting up a copula model is the choice of the threshold cop-
ula C. Useful copulas and the resulting copula models will be discussed in the next
subsection; for the moment we merely recall that we obtain conditionally indepen-
dent default times if and only if we take C to be the independence copula.

We now collect some elementary consequences of Definition 9.41. Since Ei :=
− ln(1 −Ui) ∼ Exp(1), Lemma 9.12, together with (9.63), immediately yields that
each of the τi is a doubly stochastic random time with (Ft )-conditional hazard-rate
process (γt,i ). Hence Mt,i := Yt,i − Γi(t ∧ τi) is a martingale with respect to the
filtration {Gi

t } := (Ft )∨ {H i
t }. Unless C is the independence copula, it is, however,

not true that Mt,i is also a martingale with respect to the filtration (Gt ), i.e. given
default information for other obligors as well (see Section 9.8.1 for details).

At time t = 0 the marginal distribution of the τi can be computed as in the
single-firm case. We have, using iterated conditional expectations,

P(τi � T ) = E(P (τi � T | F∞)) = 1 − E

(
exp

(
−
∫ T

0
γs,i ds

))
. (9.64)
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In particular, at time t = 0 it is possible to calibrate the model to a given term
structure of credit or CDS spreads by calibrating each of the marginal hazard-rate
processes (γs,i) using methods for the single-firm case. This is an important feature
of the model in practical applications. Note, however, that for t > 0 the conditional
distribution of τi given the default history of all obligors in the portfolio generally
differs from the conditional distribution of τi given that τi > t , so for t > 0 the
single-firm and the portfolio versions of the model differ. We discuss this point in
more detail in Section 9.8.1 below.

Next we show that the threshold copula C is in fact the survival copula of the τi
conditional on F∞. By definition we have

F̄τi |F∞(t) := P(τi > t | F∞) = exp

(
−
∫ t

0
γs,i ds

)
.

Moreover, according to (9.63), τi > t if and only if Ui < F̄τi |F∞(t). Hence we
obtain, using the independence of U and F∞,

P(τ1 > t1, . . . , τm > tm | F∞) = P(U1 < F̄τ1|F∞(t1), . . . , Um < F̄τm|F∞(tm))

= C(F̄τ1|F∞(t1), . . . , F̄τm|F∞(tm)). (9.65)

By Sklar’s identity for survival functions (see (5.13)), C is thus the conditional
survival copula of the τi given F∞.

Models with deterministic hazard rates. From now on we concentrate on models
where the marginal hazard rate γi(s) is deterministic. Since dependence between
the τi can be introduced via the threshold copulaC, this gives rise to interesting mod-
els. In fact, the literature on copula models focuses almost exclusively on models
with deterministic marginal hazard rates. Moreover, understanding the properties
of models with deterministic hazard rates is an important step in the analysis of
more general models with stochastic hazard rates. These models are usually stud-
ied first under the artificial filtration (G̃t ), with G̃t = F∞ ∨ Ht , t � 0, for which
hazard rates are deterministic; pricing formulas with respect to the smaller filtration
Gt = Ft ∨ Ht , t � 0, are then derived using the theorem of iterated conditional
expectations.

With deterministic marginal hazard rates γi(t), the default times τi are indepen-
dent of the background filtration (Ft ), and we may restrict our attention to the
filtration (Ht ), which is generated by the default indicators. Moreover, in that case
the conditional survival function with respect to F∞ and the unconditional survival
functions obviously coincide: we have F̄i(t) = F̄τi |F∞(t) = exp(−Γi(t)). Hence
relation (9.65) yields

F̄i(t1, . . . , tm) = C(F̄1(t1), . . . , F̄m(tm)) (9.66)

= C

(
exp

(
−
∫ t

0
γ1(s) ds

)
, . . . , exp

(
−
∫ t

0
γm(s) ds

))
.

(9.67)

Relation (9.66) shows that with deterministic marginal hazard rates the conditional
survival copula C is the survival copula of the default times; (9.67) shows how this
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copula and the marginal hazard rates determine the joint survival function of the
default times. We will use both relations frequently below. From a mathematical
point of view it makes no difference whether we specify the copula and marginal
hazard rates or the joint survival function F̄ directly, because every joint survival
function F̄ with absolutely continuous marginal distributions has a unique represen-
tation of the form (9.67) (put γi(t) = −(∂/∂t) ln F̄i(t) and define C using Sklar’s
identity for survival functions). When deriving mathematical results we will there-
fore work directly with F̄ . The representation (9.67) is, however, convenient for the
calibration of the model, as will be discussed below.

Finally, a word of warning is in order: for models with stochastic hazard rates,
the unconditional survival copula of (τ1, . . . , τm) is different from the conditional
survival copula given F∞; for example, in models with conditionally independent
defaults but dependent hazard-rate processes the conditional survival copula given
F∞ is the independence copula, but (τ1, . . . , τm) is obviously not a vector of inde-
pendent rvs.

Static version. It is interesting to link copula models to the static threshold models
considered in Section 8.3. Fix some horizon T > 0. Obviously, YT,i = 1 if and
only τi � T , so YT follows a threshold model in the sense of Definition 8.4 with
critical variables X = (τ1, . . . , τm) and default threshold T . By (9.66) the survival
copula of (τ1, . . . , τm) equals C; if C is radially symmetric (see Definition 5.13),
C is also the copula of (τ1, . . . , τm). This is true, in particular, if C is an elliptical
copula such as the Gauss copula or the t copula. The findings of Section 8.3.5 on
the implications of the choice of C for the portfolio loss distribution thus carry
over to dynamic models. In particular, if C is an elliptical copula, increasing the
degree of dependence in the tail of C or choosing higher asset correlations leads to
a heavier-tailed distribution for MT = ∑m

i=1 YT,i .

On calibration. The calibration of a copula model with deterministic marginal
hazard rates for pricing purposes proceeds in two steps. Marginal risk-neutral hazard
rates are calibrated to a given term structure of credit spreads from defaultable bonds
or CDS spreads, as described in Section 9.3.3. If there is a liquid market for portfolio-
related credit derivatives, the parameters of the threshold copulaC can be calibrated
to the observed prices of these products. While this is a straightforward concept, the
technical details of this procedure can be quite involved (see Notes and Comments
for references).

Otherwise one typically calibrates the copula to estimates of default correlation
over the maturity of the products to be priced; such estimates are either obtained
using asset correlations in conjunction with the multivariate version of the Merton
model introduced in Section 8.2.4, or via one of the statistical procedures described
in Section 8.6. Note that in this approach it is implicitly assumed that risk-neutral
and historical default correlations are equal, which is a strong assumption. When we
calibrate a copula model under the real-world probability measure, hazard rates are
calibrated to estimates of historical default probabilities; parameters of the copula
are again calibrated to estimates of historical default correlations.
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9.7.2 Factor Copula Models

In this section we consider models where the threshold vector U has a conditional
independence structure in the sense of Definition 8.18, i.e. where there is a p-
dimensional random vector V , p < m, such that, conditional on V , the Ui are
independent. These models are sometimes called factor copula models. Under our
assumption of deterministic marginal hazard rates γi(t), we get from (9.63) and the
conditional independence of the Ui given V that

F̄ (t1, . . . , tm) = E(P (U1 � F̄1(t1), . . . , Um � F̄m(tm) | V ))

= E

( m∏
i=1

P(Ui � F̄i(ti) | V )

)
. (9.68)

Denote by F̄τi |V (t | v) the conditional survival function of τi given V = v and note
that, by construction, F̄τi |V (t | v) = P(Ui < F̄i(t) | V = v). Hence

F̄ (t1, . . . , tm) = E

( m∏
i=1

F̄τi |V (ti | V )

)
. (9.69)

Denoting by GV the df of V and by gV the density (if it exists), we will sometimes
write (9.69) more explicitly as

F̄ (t1, . . . , tm) =
∫

Rp

m∏
i=1

F̄τi |V (ti | v)GV (dv) =
∫

Rp

m∏
i=1

F̄τi |V (ti | v)gV (v) dv.

Note that the representation (9.69) is analogous to the representation of static
one-period threshold models with conditional independence structure as Bernoulli
mixture models, obtained in Section 8.4.4. In particular, (9.69) shows that for T
fixed the default indicators follow a Bernoulli mixture model with factor vector V

and conditional default probabilities Qi(v) = 1 − F̄τi |V (t | v). Following standard
terminology from survival analysis the unobservable vector V is sometimes termed
the frailty of the default times. As in the case of static models, the mixture-model
representation of a factor copula model is very useful. It leads to a natural interpre-
tation of default contagion in terms of incomplete information (see Section 9.8.2
below for details). Moreover, it can be used for simulation purposes; we sketch the
algorithm below.

Algorithm 9.42 (simulation of factor copula models).

(1) Generate a realization of V .

(2) Generate independent rvs τi with df 1 − F̄τi |V (t | V ), 1 � i � m. In order to
generate a sequence (Tn, ξn), Tn � T , of default times up to some maturity
date, one might use recursive generation of default times (Algorithm 9.38).

The importance-sampling techniques discussed in Section 8.5 in the context of
static Bernoulli mixture models can be employed to improve the performance of
Algorithm 9.42. These techniques are particularly useful if one deals with rare-event
simulation, such as in the pricing of CDO tranches with high attachment points.
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At first sight, the mathematical structure of factor copula models looks very simi-
lar to the structure of models with conditionally independent defaults; in particular,
the static versions of both model classes are Bernoulli mixture models. However,
the model classes differ with respect to the way information is revealed to investors
over time, which leads to completely different dynamic behaviour. In the models
with conditionally independent defaults it is assumed that the economic factor pro-
cess (Ψt ) is (Ft )-adapted, i.e. that its current value is known to investors at time t .
Hence a default event does not convey additional information for predicting the
default of other obligors.

In the factor copula models, on the other hand, the threshold U and the frailty V

are assumed to be unobservable. Since default probabilities depend on V , default
information such as the news that a particular obligor j has defaulted at a given
point in time t does convey additional information about the distribution of V . The
survival probabilities of the remaining obligors i �= j change, as they are computed
as the average of the conditional survival function F̄τi |V (t | v) with respect to the
conditional distribution of V given the default history Ht . The updating of the
distribution of the unobservable random vector V can lead to default contagion, as
will be discussed in more detail in Section 9.8.2 below. This comparison between
factor copula models and models with conditionally independent defaults shows
that dynamic models do possess a much richer structure than static models.

Below we consider specific examples of factor copula models. Obviously, every
continuous multivariate distribution with p-dimensional conditional independence
structure can be used to construct a factor copula model. Practically important exam-
ples include the Gauss copula CGa

P , the t copula Ct
ν,P (provided that the correlation

matrix P corresponds to a factor model, as explained in Section 3.4.1), and the LT-
Archimedean copulas discussed in Section 5.4.2. We consider certain special cases;
in particular, we derive the dynamic version of the two most important mixture mod-
els from Section 8.4, namely the probit-normal mixture model and CreditRisk+.

Example 9.43 (one-factor Gauss copula). Factor copula models based on a Gauss
copula CGa

P are frequently employed in practice. The static version of these models
corresponds to the popular CreditMetrics/KMV-type models discussed in Exam-
ple 8.6. Here we compute the conditional survival functions for the one-factor case.
Let Xi = √

ρiV + √
1 − ρiεi , where ρi ∈ (0, 1) and V , (εi)1�i�m are iid standard

normal rvs, so X ∼ Nm(0,P), with (i, j)th element of P given by ρij = √
ρiρj . Set

Ui = Φ(Xi), i.e. U ∼ CGa
P . The conditional survival function is easy to compute.

With di(t) := Φ−1(F̄i(t)), we have that

F̄τi |V (t | v) = P(Ui � F̄i(t) | V = v) = P

(
εi �

di(t) − √
ρiV√

1 − ρi

∣∣∣∣ V = v

)
,

leading to F̄τi |V (t | v) = Φ((di(t) − √
ρiv)

/
(
√

1 − ρi)). Hence

F̄ (t1, . . . , tm) = 1√
2π

∫
R

m∏
i=1

Φ

(
di(ti) − √

ρiv√
1 − ρi

)
e−v2/2 dv, (9.70)
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which is easily computed using one-dimensional numerical integration. The con-
ditional survival functions for general mean-variance mixture copulas with factor
structure such as the t copula can be derived by an analogous computation.

In applications of a one-factor Gauss copula model to the pricing of portfolio
credit derivatives it is frequently assumed that ρi = ρ for all i. In that case the
dependence structure of the model is governed by the single parameter ρ, the copula
of (τ1, . . . , τm) is exchangeable and ρ = corr(Xi,Xj ), so ρ is readily interpreted
in terms of asset correlation. This feature makes the exchangeable version of the
one-factor Gauss copula popular with practitioners. In fact, it is common practice
on CDO markets to quote prices for tranches of synthetic CDOs in terms of implied
asset correlation, i.e. to quote the value of ρ which, if plugged into an exchangeable
one-factor Gauss copula model with marginal survival probabilities calibrated to the
CDS spreads of the asset pool, yields the price of the tranche. References regarding
the technical details of this procedure can be found in Notes and Comments. In this
way, prices of CDO tranches can be made comparable across attachment points and
asset pools, in much the same way that implied volatilities are used as a common
yardstick on options markets. This is clearly convenient. Nonetheless, one should
bear in mind that the dependence structure of the default times in a portfolio is a
complex object which cannot, in general, be characterized by a single number (see,
for example, Duffie (2004) for a discussion of this point).

Example 9.44 (LT-Archimedean copulas). Recall from Definition 5.47 in Chap-
ter 5 that an LT-Archimedean copula is defined in terms of a positive rv V with df
GV , Laplace–Stieltjes transform ĜV and GV (0) = 0 using the relation

C(u1, . . . , um) = E

(
exp

(
− V

m∑
i=1

Ĝ−1
V (ui)

))
.

As usual, denote by F̄i(ti) the marginal survival function of τi . We thus get the
following joint survival function of (τ1, . . . , τm):

F̄ (t1, . . . , tm) = E

( m∏
i=1

exp{−V Ĝ−1
V (F̄i(ti))}

)
, (9.71)

which is obviously of the general form (9.69). Recall that in the special case of
the Clayton copula with parameter θ we have V ∼ Ga(1/θ, 1); explicit formulas
for ĜV and Ĝ−1

V for that case are given in Algorithm 5.48 for the simulation of LT-
Archimedean copulas. Note that LT-Archimedean copulas are in general not radially
symmetric, so the static version of a dynamic LT-Archimedean threshold copula
model with survival function (9.71) is not a threshold model with Archimedean
copula as discussed in Example 8.9. Nonetheless, default correlations in a dynamic
LT-Archimedean threshold copula model are easily computed using (9.58) and the
relation

P(τi > T , τj > T ) = ĜV (Ĝ
−1
V (F̄i(T )) + Ĝ−1

V (F̄j (T ))), i �= j.
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Example 9.45 (LT-Archimedean copulas with p-factor structure). As explained
in detail in Section 5.4.2, an LT-Archimedean copula with p-factor structure is con-
structed from a p-dimensional random vector V = (V1, . . . , Vp)

′ with independent
strictly positive components and a matrix A ∈ R

m×p with elements aij > 0 as
follows:

C(u1, . . . , um) = E

( m∏
i=1

exp(−a′
iV Ĝ−1

i (ui))

)
, (9.72)

where ai is the ith row of A and Ĝ−1
i is the Laplace–Stieltjes transform of the

strictly positive rv a′
iV . The joint survival function F̄ (t1, . . . , tm) of the τi is then

obtained from (9.72) by replacing ui with F̄i(ti). Expression (9.72) is fairly easy to
evaluate if the Laplace–Stieltjes transform of the Vi is available in closed form (see
Section 5.4.3 for details). LT-Archimedean copulas withp-factor structure are useful
factor copulas, since they allow for a more flexible dependence structure between the
τi than the exchangeable standard LT-Archimedean copulas while retaining many
of the computational advantages of the latter class.

If the Vi follow a gamma distribution with mean one, the static version of a
generalized LT-Archimedean factor copula model is the popular CreditRisk+ model
discussed in Section 8.4.2. In fact, forT fixed, the default indicatorsYT,i , 1 � i � m,
are conditionally independent given V with default probability

pi(V ) = 1 − F̄τi |V (T | V ) = 1 − exp(−a′
iV Ĝ−1

i (F̄i(T ))).

This corresponds to the structure of CreditRisk+ as given in (8.39) with

wij := aij∑p
j=1 aij

and ki =
( p∑

j=1

aij

)
Ĝ−1
i (F̄i(T )).

Notes and Comments

The first copula model for portfolio credit risk was given by Li (2001); his model
is based on the Gauss copula. General copula models were introduced for the first
time in Schönbucher and Schubert (2001). Factor copula models for portfolio credit
risk have been studied by Laurent and Gregory (2003). Models where the threshold
copula is given by an LT-Archimedean copula with p-factor structure have been
developed by Rogge and Schönbucher (2003).

We have not said much about the important topic of pricing portfolio-related
credit derivatives such as CDOs. This is mainly because, as this book goes to press,
the market for these products and the methodology for pricing them is in a state of
rapid development. Hence any summary of the current status of this topic is likely
to become outdated quickly. Given the practical relevance of the subject, we try to
compensate somewhat for this omission by briefly discussing the available litera-
ture. For asset-based CDOs pricing is typically done using Monte Carlo simulation.
Semianalytic approaches for the pricing of synthetic CDOs in factor copula models
have been developed by Laurent and Gregory (2003), Hull and White (2004) and
Andersen and Sidenius (2004), among others. Laurent and Gregory exploit the con-
ditional independence structure of factor copula models and develop methods based
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on Fourier analysis; Andersen and Sidenius and Hull and White propose recursive
methods.

The recent introduction of a quoted market for standardized synthetic CDO
tranches has made the calibration of copula models to observable market prices
an issue of high priority amongst financial engineers working in credit markets.
In this context a deficiency of the exchangeable Gauss copula model has become
apparent: the value of the implied asset correlation ρ needed to explain observable
market quotes varies with the attachment points of the tranches; in particular, ρ is
quite high for senior mezzanine and senior tranches. This phenomenon, which is
frequently called base-correlation skew, bears some similarities to the well-known
smile and skew patterns of implied volatility on options markets (see, for exam-
ple, Dumas, Fleming and Whaley 1998). Base-correlation skews on CDO markets
are discussed by McGinty et al. (2004), Andersen and Sidenius (2004) and oth-
ers; the latter paper develops several extensions of the standard one-factor Gauss
copula model that can be used to explain the base-correlation skew. A comparative
analysis of copula-based CDO pricing models is done in Burtschell, Gregory and
Laurent (2005). As mentioned previously, the methodology for pricing CDOs and
related products is developing rapidly. A good place to monitor new developments
is www.defaultrisk.com/.

9.8 Default Contagion in Reduced-Form Models

In this section we discuss default contagion in reduced-form models. We begin with
a detailed analysis of default contagion in general models for dependent defaults;
information-based default contagion in factor copula models is discussed in Sec-
tion 9.8.2. In Section 9.8.3 we briefly look at models with interacting intensities,
where default contagion and counterparty risk are modelled explicitly.

9.8.1 Default Contagion and Default Dependence

Martingale intensities. We start with a general result which characterizes the mar-
tingale default intensities of dependent default times. As we have seen before, when
discussing the martingale property of stochastic processes we have to be precise
about the information available to investors, or, in mathematical terms, the filtra-
tion we use. Here we assume that investors only have access to the default history
of firms in the portfolio under consideration, i.e. we are interested in martingale
properties with respect to the internal filtration (Ht ) introduced in (9.50). Note that
Ht can be described as Ht = σ({(Tn, ξn) : Tn � t}), as the sequence (Tn, ξn),
Tn � t gives an alternative description of the default history up to time t . By HTn

we denote the σ -algebra of events observable up to and including the nth default
time Tn, i.e. HTn = σ({(Tj , ξj ) : 1 � j � n}). (This coincides with the general
abstract definition of the σ -algebra of events observable up to some stopping time.)

Theorem 9.46. Consider default times τ1, . . . , τm and denote by (Ht ) the cor-
responding internal filtration. Suppose that for every 0 � n � m − 1 and every
i ∈ {1, . . . , m} there is a random mapping g(n)i : Ω × R+ → R+, measurable with
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respect to the product σ -algebra HTn ⊗ B(R+), such that

P(Tn+1−Tn � s, ξn+1 = i | HTn)(ω) =
∫ s

0
g
(n)
i (ω, u) du, 1 � i � m. (9.73)

Then the martingale default intensity of (Yt,i) with respect to (Ht ) is given by

λt,i(ω) = g
(n)
i (ω, t − Tn)

P (Tn+1 > t | HTn)(ω)
, Tn < t � Tn+1. (9.74)

The proof of this result is beyond the scope of this text. In Notes and Comments
we reference several texts in which a proof of Theorem 9.46 and extensions to copula
models with stochastic marginal hazard rates can be found.

Comments. The measurability requirement on the random function g
(n)
i simply

means that the functional form of g(n)i (ω, ·) depends only on the default history HTn .
We will see below that (9.73) is always satisfied if the vector (τ1, . . . , τm) admits a
joint density.

The form (9.74) for the martingale intensity is in fact quite natural. If investors
observe only past and present defaults, they obtain significant new information only
at the time points T1(ω), . . . , Tm(ω). Hence we expect the martingale default inten-
sity (λt,i ) of some firm i ∈ An (a surviving firm) to evolve in a deterministic fashion
for t ∈ (Tn, Tn+1] and to change with the random arrival of new information at Tn+1.
Moreover, it is possible to derive a different expression for (λt,i ) which resembles
more closely the common notion of an intensity as “the conditional probability of
default in the next instant”.Applying the fundamental theorem of calculus and (9.73)
we get, for t ∈ [Tn, Tn+1) and arbitrary n < m,

g
(n)
i (ω, t − Tn) = lim

h→0

1

h

∫ t−Tn+h

t−Tn

g
(n)
i (ω, u) du

= lim
h→0

1

h
P (Tn+1 ∈ (t, t + h], ξn+1 = i | HTn)(ω).

Hence we get, for a surviving firm i ∈ An, using (9.74),

λt,i = lim
h→0

1

h
P (τi � t + h | {τj > t for all j ∈ An},HTn). (9.75)

Now note that at time t ∈ [Tn, Tn+1) default information consists of HTn and the
atom B := {τj > t for all j ∈ An}. If we denote by F̄τi |Ht (T ) := P(τi > T | Ht )

the conditional survival probability of firm i given the default history up to time t ,
we thus get, on {τi > t},

λt,i = lim
h→0

1

h
P (τi � t + h | Ht ) = − ∂

∂T

∣∣∣∣
T=t

F̄τi |Ht (T ). (9.76)

Hence λt,i gives the instantaneous conditional probability that a surviving firm
i ∈ An defaults at time t given the default history of all firms in the portfolio up to
time t . Below we explain how the conditional survival F̄τi |Ht can be expressed in
terms of derivatives of the unconditional survival function of (τ1, . . . , τm).
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Remark 9.47 (martingale intensities and marginal hazard rates). Consider
random times τ1, . . . , τm following a threshold copula model with deterministic
marginal hazard rates γ1(t), . . . , γm(t) and a survival copula C admitting a density.
In this case the assumptions from Theorem 9.46 are satisfied. However, for t > 0 the
martingale intensity λt,i is in general different from the marginal hazard rate γi(t).
As explained earlier, this shows that Yt,i − ∫ t∧τ

0 γi(s) ds is an (H i
t )-martingale but

not a martingale with respect to the full default information (Ht ). To see that in
general, for t > 0, λt,i �= γi(t), recall from Section 9.2.1 that

γi(t) = lim
h→0

1

h
P (τi � t + h | τi > t). (9.77)

Hence γi(t) gives the instantaneous default probability of firm i given τi > t ,
whereas λt,i gives the instantaneous default probability given τi > t and the default
history of all other firms in the portfolio.With default dependence the two conditional
expectations will typically differ; a numeric illustration is given in Example 9.50
below. With (conditionally) independent defaults on the other hand, the additional
information about the default history of firms j �= i in the portfolio is of no use
in predicting the default time of firm i, and we have λt,i = γi(t), as was shown
formally in Proposition 9.39.

Conditional survival functions. Let Tn � t < Tn+1 for some 0 � n � m − 1. We
want to compute the conditional survival function F̄τi |Ht for some firm i ∈ An. To
simplify the notation we assume from now on that the indices have been permuted
in such a way that Ac

n = {1, . . . , n} and An = {n + 1, . . . , m}, i.e. the defaulted
firms correspond to the first n firms in our index set. Put τ1 = (τ1, . . . , τn)

′ and
τ2 = (τn+1, . . . , τm)

′.As an intermediate step we consider F̄τ2|τ1(t1, . . . , tm−n | τ1),
the conditional survival function of the lastm − nfirms given the vector of the default
times of the first n firms. We have the following lemma.

Lemma 9.48. Assume that the vector (τ1, . . . , τm) has a density. Then

F̄τ2|τ1(t1, . . . , tm−n | τ1, . . . , τn) =
∂n

∂t1 · · · ∂tn F̄ (τ1, . . . , τn, t1, . . . , tm−n)

∂n

∂t1 · · · ∂tn F̄ (τ1, . . . , τn, 0, . . . , 0)
.

Proof. Recall that the joint density of (τ1, . . . , τm) is given by

(−1)m
∂mF̄

∂t1 · · · ∂tm .

Hence the result follows from the conditional density formula (3.2) for the condi-
tional density of τ2 given τ1; we omit the details.

Finally, we turn to the conditional survival function F̄τi |Ht . At time t default
information consists of the vector τ1 of the default times of the firms from Ac

n and
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of the atom B := {τ2 > t}. Hence we have, for i ∈ {n + 1, . . . , m} and T � t ,
using the definition of elementary conditional expectation and Lemma 9.48, that

F̄τi |Ht (T ) = P(τi > T | B, τ1) = P(τi > T , τ2 > t | τ1)

P (τ2 > t | τ1)

=
∂n

∂t1 · · · ∂tn F̄ (τ1, . . . , τn, t, . . . , T , . . . , t)

∂n

∂t1 · · · ∂tn F̄ (τ1, . . . , τn, t, . . . , t, . . . , t)

. (9.78)

Combining (9.76) and (9.78) we can characterize martingale default intensities in
terms of the unconditional survival function of (τ1, . . . , τm).

Corollary 9.49. Suppose that the random vector (τ1, . . . , τm) admits a density. Let
Tn < t � Tn+1, 0 � n < m, and suppose thatAc

n = {1, . . . , n}. Then the martingale
default intensity of firm i ∈ An with respect to (Ht ) equals

λt,i = −
∂n+1

∂t1 · · · ∂tn∂ti F̄ (τ1, . . . , τn, t, . . . t)

∂n

∂t1 · · · ∂tn F̄ (τ1, . . . , τn, t, . . . , t)

.

If we have a closed-form expression for the unconditional survival function F̄ (or
equivalently for the survival copula C) of (τ1, . . . , τm), then it is straightforward,
in principle, to compute the martingale default intensities. However, Corollary 9.49
conveys little economic intuition, as it expresses martingale intensities and hence
default contagion in terms of purely mathematical objects, namely higher-order
derivatives of the unconditional survival function. Moreover, it seems difficult to
use the corollary in order to build a model where default contagion follows a partic-
ular pattern. In Section 9.8.2 we will therefore study conditional survival functions
in factor copula models, where default contagion permits a natural economic inter-
pretation in terms of incomplete information.

Applications to credit-risky securities. It is interesting to investigate the implica-
tions of our general results for martingale intensities for the pricing of credit-risky
securities. Following the literature we use the martingale-modelling approach and
assume that under the risk-neutral measure Q used for pricing the default times,
τ1, . . . , τm follow a copula model with deterministic hazard rates γ1(t), . . . , γm(t)

and survival copula C. Moreover, we assume that the risk-free short rate r(t) � 0
is deterministic; B(t) = exp(

∫ t
0 r(s) ds) denotes the default-free savings account.

The assumption of deterministic interest rates is routinely made in the literature
on pricing portfolio credit derivatives, essentially because the impact of stochas-
tic interest rates on prices is low compared with the impact of the assumptions on
default dependence.

We begin with the problem of pricing a first-to-default swap. We consider a similar
contract as in Section 9.6.3. Premiums are due at times 0 < t1 < · · · < tN = T ,
provided that no default has yet occurred; if T1 < T and, moreover, ξ1 = i, there is
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a default payment equal to the constant li . In this set-up the value at time t = 0 of
the default payment leg equals

V def =
m∑
i=1

liE
Q(B(τi)

−1I{τi=T1}I{τi�T }).

If we condition on τi , we get, for a single term of this sum,

EQ(B(τi)
−1I{T1=τi }I{τi�T }) =

∫ T

0
B(t)−1Q(τi = T1 | τi = t)fi(t) dt,

where fi(t) is the marginal density of τi . Now Lemma 9.48 yields

Q(τi = T1 | τi = t) = Q(τj > t for all j �= i | τi = t) = − 1

fi(t)

∂F̄

∂ti
(t, . . . , t),

and we obtain

V def = −
m∑
i=1

li

∫ T

0
B(t)−1 ∂F̄

∂ti
(t, . . . , t) dt.

If F̄ or, equivalently, the threshold copulaC is known in closed form, this is straight-
forward to compute by one-dimensional (numerical) integration. Note that, by defini-
tion,Q(T1 > t) = F̄ (tn, . . . , tn); hence the value in t = 0 of the premium payments
(assuming a generic swap spread x) is given by

V prem = x

N∑
n=1

B(tn)
−1(tn − tn−1)F̄ (tn, . . . , tn).

Next we consider the relationship between the instantaneous credit spread and
martingale intensities. Denote by p1,i (t, T ) the price of a zero-coupon bond with
maturity T issued by firm i and assume that the recovery rate of this bond is equal
to zero. Hence the price of the bond at time t < τi is given by

p1,i (t, T ) = exp

(
−
∫ T

t

r(s) ds

)
Q(τi > T | Ht ), (9.79)

so that the credit spread is given by ci(t, T ) = −1/(T − t) lnQ(τi > T | Ht ).
Since Q(τi > t | Ht ) = 1 on {t < τi}, by (9.76), the instantaneous credit spread
ci(t) = limT→t ci(t, T ) is given by

ci(t, T ) = − ∂

∂T

∣∣∣∣
T=t

lnQ(τi > T | Ht ) = − ∂

∂T

∣∣∣∣
T=t

Q(τi > T | Ht ) = λt,i ,

i.e. the martingale default intensity of τi under the equivalent martingale measure Q
is equal to the instantaneous credit spread of a zero-recovery bond issued by firm i.

Finally, we discuss issues related to dynamic consistency in the use of copula
models. In Section 9.7.1 we showed that at t = 0 pricing formulas for single-name
products remain valid in a portfolio model; we also mentioned that this is no longer
true at t > 0. Here we take a closer look at this fact. Consider a corporate zero-coupon
bond with zero recovery. According to (9.79), the price of this security at t > 0 is
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given by the discounted conditional survival probability of the firm given the default
history of all obligors up to time t . In a single-firm model, on the other hand, we have
p1,i (t, T ) = I{τi>t} exp(− ∫ T

t
r(s) ds)Q(τi > T | τi > t), i.e. the price of the bond

equals the discounted conditional survival probability of firm i given only its own
default history. As discussed previously, these two conditional survival probabilities
generally differ for t > 0.

Note, however, that, while correct from a theoretical point of view, (9.79) does not
correspond to the way practitioners tend to use a copula model. In deriving (9.79)
we fixed in t0 = 0 a model for the joint distribution of (τ1, . . . , τm), a model with
constant hazard rates and a Clayton survival copula with parameter θ0, say; at time
t1 > 0 we priced the bond using the conditional distribution of this model given
the default history Ht1 . Practitioners typically proceed in a different way: at time t1
they calibrate a new model—in our case again a Clayton copula model but with
parameter θ1, which may be different from θ0—to the market information available
in t1 and use the new model to price the bond. In general, both approaches lead to
different distributions for the default times of surviving firms and hence to different
prices. Clearly, the second approach is inconsistent over time; however, it leads to
prices which are consistent with the available market information at any given point
in time—a property that practitioners regard as highly important.

9.8.2 Information-Based Default Contagion

Default contagion in factor copula models can be attributed to the fact that informa-
tion about the default history alters the conditional distribution of the unobservable
factor vector V . In this section we make this statement precise and compute the
conditional distribution of V given the default history up to and including time t .
Moreover, we explain how the martingale default intensity at time t can be com-
puted as expectations with respect to the conditional distribution of V . We assume
throughout that the conditional distribution of τj given V admits the density

fτj |V (t | V ) = − ∂

∂t
F̄τj |V (t | V ).

To simplify the exposition, we further assume that V admits the density gV (v). By
gV |Ht (v) we denote the conditional density of V given Ht .

Computation of gV |Ht (v). We begin with the case t < T1. Using the definition of
elementary conditional expectation, we obtain for A ⊆ R

p that

P(V ∈ A | T1 > t) = 1

F̄ (t, . . . , t)

∫
A

m∏
j=1

F̄τj |V (t | v)gV (v) dv.

Hence, for t < T1, the conditional density of V given Ht is given by

gV |Ht (v) =
∏m

j=1 F̄τj |V (t | v)

F̄ (t, . . . , t)
gV (v), t < T1. (9.80)
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Now we turn to the case t ∈ [T1, T2). As an intermediary step we determine the
conditional density gV |τj (v | τj ). The conditional density formula (3.2) gives

gV |τj (v | τj ) = fτj |V (τj | v)gV (v)∫
Rp fj (τj | v)gV (v) dv

= fτj |V (τj | v)

fj (τj )
gV (v), (9.81)

where fj (t) is the unconditional density of τj . To keep the notation simple, we
assume, as in the previous subsection, that ξ1 = 1. For t ∈ [T1, T2), default infor-
mation consists therefore of the default time τ1 and of the atom B := {τj > t, 2 �
j � m}. Now we get, for A ⊂ R

p,

P(V ∈ A | B, τ1) = P({V ∈ A} ∩ B | τ1)

P (B | τ1)

=
∫
A

∏m
j=2 F̄τj |V (t | v)

P (B | τ1)
gV |τ1(v | τ1) dv

and

P(B | τ1) =
∫

Rp

( m∏
j=2

F̄τj |V (t | v)

)
gV |τ1(v | τ1) dv.

Hence

gV |Ht (v) =
∏n

j=2 F̄τj |V (t | v)

P (B | τ1)

fτ1|V (τ1 | v)

f1(τ1)
gV (v), t ∈ [T1, T2). (9.82)

For t � T2, the conditional density gV |Ht (v) can be determined analogously; we
omit the details. For models with Clayton threshold copula, explicit expressions for
gV |Ht (v) can be given (see Example 9.50 below).

Martingale default intensities. In factor copula models we can give an intu-
itive explanation for the dynamics of martingale default intensities. Suppose for
the moment that the factor vector V is observable, so that the information avail-
able to investors is given by the artificial filtration H̃t = Ht ∨ σ(V ), t � 0.
Since the τi are conditionally independent given V , by Proposition 9.39 the
martingale intensity of τi with respect to the large filtration (H̃t ) is given by
λ̃i (t | V ) = fτi |V (t | V )/F̄τi |V (t | V ). Now, it is well known that the martingale
intensity of τi with respect to the internal filtration (Ht ) can be computed by pro-
jection, i.e. λt,i = E(λ̃i(t | V ) | Ht ) (see, for example, Theorem 14 in Chapter 2 of
Brémaud (1981)). Hence we get

λt,i :=
∫

Rp

fτi |V (t | v)

F̄τi |V (t | v)
gV |Ht (v) dv. (9.83)

Example 9.50 (Clayton copula model). For models with a Clayton thresh-
old copula the conditional density gV |Ht (v) and the martingale default intensi-
ties (λt,i ) can be computed explicitly. Recall that the Clayton copula with param-
eter θ > 0 is an LT-Archimedean copula model, as introduced in Example 9.44
with V ∼ Ga(1/θ, 1). Fix θ > 0 and denote by Ĝ and Ĝ−1 the Laplace Stieltjes
transform of the Ga(1/θ, 1) distribution and its functional inverse. Recall that for
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arbitrary α, β > 0 the density g(v;α, β) of the Ga(α, β) distribution satisfies
g(v;α, β) ∝ vα−1 exp(−βv), where “∝” denotes “is proportional to”. As shown
in Example 9.44, in LT-Archimedean threshold copula models the conditional sur-
vival function F̄τi |V (t | v) equals exp(−vĜ−1(F̄i(t))). Hence the density of τi given
V = v is given by

fτi |V (t | v) = − ∂

∂t
F̄τi |V (t | v) = −fi(t)

Ĝ′(Ĝ−1(F̄i(t)))
v exp(−vĜ−1(F̄i(t))).

We obtain, for t < T1, using (9.80),

gV |Ht (v) ∝ v1/θ−1 exp

{
− v

(
1 +

m∑
i=1

Ĝ−1(F̄i(t))

)}
, t < T1. (9.84)

Hence, for t < T1, the conditional distribution of V given Ht is again a gamma
distribution but now with parameters α = 1/θ and β = 1 +∑m

i=1 Ĝ
−1(F̄i(t)).

Recall that the mean of a Ga(α, β) distributed rv equals α/β. Hence the conditional
mean of V given T1 > t is lower than the unconditional mean of V . This is in line
with economic intuition, since the fact that T1 > t is “good news” for the portfolio.

According to (9.81), the density of V given τ1 satisfies

gV |τ1(v | τ1) ∝ v exp{−vĜ−1(F̄1(τ1))}g(v; 1/θ, 1)

= v1/θ exp{−v(1 + Ĝ−1(F̄1(τ1)))}, (9.85)

so, given τ1, V is gamma distributed with parameters α = 1 + 1/θ and
β = 1 + Ĝ−1(F̄1(τ1)). It is instructive to look at the impact of τ1 on the mean of
the conditional distribution of V , given by (1/θ + 1)/Ĝ−1(F̄1(τ1)). Suppose that τ1

occurs unusually early, i.e. that F̄1(τ1) is close to one. This implies that Ĝ−1(F̄1(τ1))

is close to zero, and the mean of the conditional distribution is bigger than the
unconditional mean 1/θ . Since the conditional survival functions F̄τi |V (t | v) are
decreasing in v, the conditional survival probabilities of the remaining obligors are
thus decreased. A similar qualitative reasoning applies if τ1 occurs late in the sense
that F̄1(τ1) is close to zero; obviously, in that case conditional survival probabilities
are increased.

Next we turn to the case t ∈ [T1, T2). For notational simplicity again we assume
that ξ1 = 1. Using (9.82), it is easily seen that, given Ht , V follows a gamma distri-
bution with parameters α = 1 + 1/θ and β = 1 + Ĝ−1(τ1) +∑m

j=2 Ĝ
−1(F̄j (t)).

Note that, in T1, the conditional mean µV |Ht of V jumps upwards: we have

lim
t
<−→T1

µV |Ht = 1/θ

1 +∑m
j=1 Ĝ

−1(F̄j (T1))
,

µV |HT1
= 1 + 1/θ

1 +∑m
j=1 Ĝ

−1(F̄j (T1))
.

Finally, we compute the martingale intensity λt,i using (9.83). We obtain

λ̃i (t, V ) = −fi(t)V

Ĝ′(Ĝ−1(F̄i(t)))
so λt,i = −fi(t)E(V | Ht )

Ĝ′(Ĝ−1(F̄i(t)))
.
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Figure 9.12. Paths of the default intensity (λt ) in the Clayton copula model, assuming that
the first default time T1 equals four months. The parameters are as follows: portfolio size
m = 100; marginal default intensity γ = 0.02; one-year default correlation 2% (alternatively,
0.5%). As one would expect, a higher default correlation implies a stronger contagion effect.

The martingale default intensity is thus proportional to E(V | Ht ), the conditional
mean of V given Ht . In particular, λt,i jumps upward at each successive default
time Tn and decreases gradually between defaults. This is illustrated in Figure 9.12.

9.8.3 Interacting Intensities

In copula models the dependence structure of the default times is exogenously
specified; the form of the resulting default contagion can then be computed from the
model primitives. In models with interacting intensities, on the other hand, the impact
of defaults on the default intensities of surviving firms is exogenously specified; the
joint distribution of the default times is then endogenously derived. This leads to
a very intuitive parametrization of counterparty risk and default dependence. The
main drawback of models with interacting intensities is the fact that the marginal
distribution of individual default times is typically not available in closed form, so
the calibration of the model to defaultable term structure data is more evolved than
in copula models.

In models with interacting intensities the martingale default intensity of firm i

belonging to a given portfolio is given by an exogenously specified function λi(t,Yt )
of time and the current state Yt of the portfolio. The dependence on the current state
of the portfolio is the major innovation of the model; in this way, counterparty
risk can be modelled explicitly. Suppose, for instance, that firm i is a commercial
bank and that firm j is a major borrower from bank i, so that we expect the con-
ditional default probability of firm i to increase given that firm j defaults. This
can be modelled by taking λi(t, y) = ai0(t) + ai1(t)I{yj=1}(y) for non-negative
and bounded functions ai0, ai1 : [0,∞) → R+. It is straightforward to extend the
model to stochastic default intensities of the form λi(Ψt ,Yt ) for some observable
background process (Ψt ) (references are given in Notes and Comments).

It is convenient to model the default indicator process (Yt ) in a model with inter-
acting intensities as a time-inhomogeneous continuous-time Markov chain. In this



9.8. Default Contagion in Reduced-Form Models 457

way the computational tools from the theory of Markov chains can be used for the
analysis and simulation of the model. Below we summarize a few essential facts
about continuous-time Markov chains; several textbooks on stochastic processes
containing a detailed discussion of continuous-time Markov chains are listed in
Notes and Comments.

Continuous-time Markov chains. A time-inhomogeneous continuous-time Mar-
kov chain (Xt ) on a finite state space S is characterized by non-negative and bounded
transition rate functions λ(t, x, y), x, y ∈ S, x �= y, t � 0, with the following
interpretation. Fix t � 0 and let T := inf{s � t : Xs �= Xt }, i.e. T gives the time
of the first jump of the chain after time t . Define, for x ∈ S,

λ(t, x, x) := −
∑

y∈S,y �=x

λ(t, x, y), t � 0,

and denote by Ht := σ({Xs : s � t}) the internal filtration of the chain. Then

P(T > s | Ht ) = P(T > s | Xt ) = exp

(∫ s

t

λ(u,Xt ,Xt ) du

)
, s � t.

(9.86)
In the special case of a time-homogeneous Markov chain where the transition rate
functions are independent of time, given Ht , the rv (T − t) (the waiting time for the
next jump after time t) is thus Exp(−λ(Xt ,Xt )) distributed. Moreover, we have,
for y ∈ S and T as before,

P(XT = y | Ht , T ) = −λ(T ,Xt , y)/λ(T ,Xt ,Xt ); (9.87)

given that the chain has a jump at time t , the probability of jumping to a particular
state y is thus proportional to the transition rate λ(t,Xt−, y), where Xt− denotes the
state of the chain immediately before the jump. Next we introduce the generator G[t],
t � 0, of the chain (Xt ). For fixed t the operator G[t] associates with every function
f : S → R a new function G[t]f : S → R with

G[t]f (x) =
∑

y∈S, y �=x

λ(t, x, y)(f (y) − f (x)). (9.88)

The generator is a very useful mathematical object for a number of reasons. First, it
is a well-known result that, for any f : S → R, the process

M
f
t := f (Xt ) −

∫ t

0
G[s]f (Xs) ds, t � 0, (9.89)

is an (Ht )-martingale. Second, as explained below, the generator appears in the
Kolmogorov equations, a system of ODEs characterizing the transition probabilities
of the chain (Xt ).

Construction of interacting intensities via Markov chains. Now we turn to the
formal construction of models with interacting intensities. Set S := {0, 1}m and
define, for y ∈ S and i ∈ {1, . . . , m}, the state yi by yij = yj for j ∈ {1, . . . , m} \ i
and yii = 1 − yi , i.e. yi is constructed from y by flipping the ith coordinate. Given,
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for 1 � i � m, non-negative and bounded functions λi : [0,∞) × S → R+ (the
candidate martingale default intensities), we define the default indicator process
(Yt ) as a time-inhomogeneous continuous-time Markov chain with state space S

and transition rates

λ(t, y, x) =
{
I{yi=0}λi(t, y), if x = yi for some i ∈ {1 . . . , m},
0, otherwise.

(9.90)

Relation (9.90) implies that the chain can jump only to those neighbouring states Y i
t

that differ from the current state Yt by exactly one default; in particular, there are
no joint defaults. If Yt,i = 0, the probability that firm i defaults in the small time
interval [t, t+h), i.e. the probability of jumping to the neighbouring state Y i

t in [t, t+
h), is approximately equal to hλi(t,Yt ). The generator of (Yt ) is given by

G[t]f (y) =
m∑
i=1

I{yi=0}λi(t, y)(f (t, yi ) − f (t, y)), y ∈ S. (9.91)

The definition of (Yt ) suggests that (λi(t,Yt )) is the martingale default intensity of
firm i. Using (9.89), a formal proof is easy. Let fi(y) = yi , so Yt,i = fi(Yt ) and
G[t]fi(y) = I{yi=0}λi(t, y). Hence

Yt,i −
∫ t∧τi

0
λi(s,Ys) ds = Yt,i −

∫ t

0
G[s]fi(Ys) ds

is a martingale by (9.89).

Transition functions and Kolmogorov equations. The transition probabilities of
the chain (Yt ) are given by

p(t, s, x, y) := P(Ys = y | Yt = x), x, y ∈ S, 0 � t � s < ∞. (9.92)

It is well known that the function p(t, s, x, y) satisfies the Kolmogorov backward
and forward equations. These equations are very useful numerical tools in the analy-
sis of the model. The backward equation is a system of ODEs for the function
(t, x) → p(t, s, x, y), 0 � t � s; s and y are considered as parameters. The
general form of the equation is (∂/∂t)p(t, s, x, y) + G[t]p(t, s, x, y) = 0, with
terminal condition p(s, s, x, y) = I{y}(x). In our model this leads to the following
system of ODEs:

∂p(t, s, x, y)

∂t
+

m∑
i=1

(1 − xi)λi(t, x)(p(t, s, x
i , y) − p(t, s, x, y)) = 0.

The forward equation is an ODE system for the function (s, y) → p(t, s, x, y),
s � t , which is governed by the adjoint operator G∗[t] of the generator G[t]. The
derivation of the precise form of the equation is slightly more involved and we refer
to Frey and Backhaus (2004) for details.

For m small, the ODE systems corresponding to the Kolmogorov backward (and
forward) equation are easily solved numerically. Note, however, that the cardinality
of the state space equals #S = 2m, so for m large the Kolmogorov equations are no
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longer useful and one has to resort to simulation.A model with interacting intensities
is easily simulated using a variant of Algorithm 9.38 (recursive default time simula-
tion) (see, for example, Appendix C of Lando (2004) for details). Alternatively, one
may reduce the size of the state space by considering a model with a homogeneous
group structure, as will be explained below.

Models for the default intensities. The functionsλi(t, y) are an essential ingredient
in any model with interacting intensities. We therefore discuss several specifications
proposed in the literature. Jarrow and Yu (2001) study a model with stochastic
background process (Ψt ), but restrict themselves to a special form of interacting
intensities called the primary–secondary framework. In this framework firms are
divided into two classes: primary and secondary. The default intensity of primary
firms depends only on (Ψt ); the default intensity of secondary firms depends on (Ψt )

and on the default state of the primary firms. This simplifying assumption facilitates
the mathematical analysis of the model. Below we present a specific example from
their paper. We let m = 2 and identify (Ψt ) with the short rate of interest (rt ). The
default intensities are then given by

λ1(rt ,Yt ) = a10 + a11rt and λ2(rt ,Yt ) = a20 + a21rt + a22I{Yt,1=1},

so company one is a primary firm and company two is a secondary firm. A typical
scenario for the primary–secondary framework is as follows: primary firms corre-
spond to large corporations; secondary firms correspond to commercial banks which
have a major credit exposure to the primary firms. Note that, under the primary–
secondary framework, cyclical default dependence, such as a situation where the
default intensity of firm i is affected by the default of firm j �= i, and vice versa,
cannot be modelled.

Yu (2005b) analyses a model where the whole portfolio enters an “enhanced risk
state” after the first default. Default intensities of the form

λi(t,Yt ) = a0 + a1I{Yt �=0}, i ∈ {1, . . . , m}, a0, a1 > 0 (9.93)

are used. Hence, at the first default time T1, the default intensities of the surviv-
ing firms jump from a0 to a0 + a1. The assumption of identical default intensities
for all firms implies that the portfolio is homogeneous, i.e. that the default times
(τ1, . . . , τm) are exchangeable.Yu suggests that for a portfolio of high-quality cred-
its a reasonable order of magnitude for the model parameters is a0 ≈ 1% and
a1 ≈ 0.1%. Simulation studies reported in his paper indicate that the model might
be able to explain certain features of credit spreads in the market for European
telecom bonds.

Frey and Backhaus (2004) study a model where the default intensity of a given
firm depends on the overall proportion of companies that have defaulted so far. The
homogeneous-portfolio version of the model can be described as follows. Denote the
proportion of defaulted companies in state y by m̄(y) := 1/m

∑m
i=1 yi , for y ∈ S.

Then
λi(t,Yt ) = h(t, m̄(Yt )) (9.94)
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for some bounded function h : R+ × [0, 1] → R+ that is increasing in its second
argument. This type of interaction between default intensities makes immediate
sense: to begin with, if a financial institution has incurred an unusually high number
of losses in its loan portfolio, it is less likely to extend credit lines if another obligor
experiences financial distress. Obviously, this raises the default probability of the
remaining obligors. Moreover, an unusually small number of defaults might have
a negative impact on the overall business climate. From a mathematical point of
view, if we assume that the default times (τ1, . . . , τm) are exchangeable, the default
intensities are necessarily of the form (9.94). For instance, the default intensities in
the homogeneous model (9.93) are of the form (9.94) with h(t, l) = a0 + a1I{l>0}.

Exchangeable models. We conclude with a few results for the exchangeable
case (9.94). For default intensities of the form (9.94), the process (M̄t ) with
M̄t = m̄(Yt ) is itself a Markov chain with state space S̄ = {0, 1/m, . . . , 1}. In fact,
at time t the process M̄t can only jump to the state M̄t + 1/m, which happens with
intensity

∑m
i=1(1 − Yi(t))λi(t,Yt ) = m(1 − M̄t )h(t, M̄t ). This shows that (M̄t ) is

itself a Markov chain with generator

GM̄[t]f (l) = m(1 − l)h(t, l)(f (l + 1/m) − f (l)). (9.95)

Note that the state space S̄ of (M̄t ) is of sizem + 1, whereas the state space of (Yt ) is
of size 2m. Hence, under the interaction (9.94), the distribution of M̄T can be inferred
using analytical tools such as the Kolmogorov equations, even form relatively large.
In the exchangeable model (9.94), many quantities of interest can be easily computed
from the distribution of MT . For instance, we obtain for the default probability π

of some firm i from our portfolio π = 1/mE(MT ), and similar expressions can be
obtained for the higher-order default probabilities πk introduced in Section 8.3.1.

Finally, we present some numerical results from Frey and Backhaus (2004) that
illustrate the impact of interacting intensities on default correlations and quantiles
of M̄T . We consider a model with a stochastic background process given by a
one-dimensional CIR square-root diffusion, as in Section 9.5.2, with parameters
κ = 0.03, θ̄ = 0.005, σ = 0.016 and initial value Ψ0 = θ̄ . These values have been
taken from the empirical study by Driessen (2005). The default intensities are given
by

h(t, ψ, m̄) = [α(0.004 + 5.707ψ) + a1(m̄ − (1 − e−λ̄t ))]+.
The interpretation of this model is as follows. The number 1 − e−λ̄t measures the
expected proportion of defaulted firms at time t . For a1 > 0 the default intensity
of non-defaulted companies is increased (decreased) if the proportion of defaulted
companies is higher (lower) than the expected proportion 1 − e−λ̄t and we have
interaction between default events. For a1 = 0, on the other hand, we are in a
standard model with conditionally independent defaults, as studied in Section 9.6.3.
We take the horizon to be T = 1 year. In the simulations, the parameter a1, which
controls the strength of the interaction, is increased from 0 to 3; the parameter α
is adjusted in order to ensure that the one-year default probabilities P(Y1,i = 1)
remain unchanged as we vary a1. Simulation results are presented in Table 9.3 for
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Table 9.3. Default correlation and quantiles of M̄1 in a homogeneous model with
interacting intensities for m = 500 firms and varying interaction a1.

a1 P(Y1,i = 1) ρY q0.9 q0.95 q0.975 q0.99

0 0.031 99 0.000 415 79 0.044 0.046 0.05 0.054
1 0.031 98 0.005 075 3 0.052 0.058 0.066 0.072
3 0.031 99 0.058 283 0.096 0.128 0.156 0.19

the case m = 500. We see that the default correlation ρ(Y1,i , Y1,j ), i �= j , and
the quantiles of the distribution of M̄1 increase substantially as a1 increases. This
makes perfect sense: for a1 > 0 a higher (lower) than usual number of defaults in
the portfolio leads to an increase (decrease) in the default intensity of the remaining
firms in the portfolio and thus to a further increase (decrease) in the ratio of realized
versus expected defaults, so the resulting distribution of M̄1 will have more mass in
the tails.

Notes and Comments

Theorem 9.46 is taken from Brémaud but is originally due to Jacod (1975). Both texts
are excellent references that study point processes from the viewpoint of stochastic
calculus. Dynamic properties of copula models were first studied in Schönbucher and
Schubert (2001). The pricing of first-to-default swaps follows Laurent and Gregory
(2003).

The techniques used in Section 9.8.2 are popular in survival analysis (see, for
example, Chapter 10 of Andersen et al. 1993); in the context of portfolio credit
risk, related ideas can be found in Schönbucher (2004). Collin-Dufresne, Goldstein
and Helwege (2003) propose a model for information-based default contagion that
starts from the mixture representation (9.69) of the survival function. Giesecke and
Goldberg (2004) study information-based default contagion in a structural multi-
firm model with incomplete information about the default thresholds.

Our presentation of models with interacting intensities is based on Frey and Back-
haus (2004). The first model with interacting intensities is due to Jarrow and Yu
(2001). Davis and Lo (2001) pointed out the link between models with interact-
ing intensities and finite-state Markov chains. Mathematical aspects of the Jarrow–
Yu model are discussed in Kusuoka (1999), Bielecki and Rutkowski (2002) and
Collin-Dufresne, Goldstein and Hugonnier (2004). Yu (2005b) provides an alter-
native construction of the Jarrow–Yu model using the general hazard construction
from survival analysis. Moreover, certain features of the model are studied using
simulation. The pricing of portfolio credit derivatives in models with interacting
intensities is discussed in Frey and Backhaus (2004); this paper also contains an
analysis of the asymptotic behaviour of the homogeneous model (9.94) for large
portfolios. Credit risk models with explicitly specified interaction between default
intensities are conceptually and mathematically close to models for interacting par-
ticle systems developed in statistical physics. Föllmer (1994) contains an inspiring
discussion of the relevance of ideas from the interacting-particle-systems literature
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for financial modelling; the link to credit risk is explored by Giesecke and Weber
(2004, 2005), Horst (2004) and Focardi and Fabozzi (2004). Egloff, Leippold and
Vanini (2004) study credit contagion in a firm-value model. Allen and Gale (2000)
discuss financial contagion from a financial economics viewpoint; an interesting
analysis of systemic risk in financial networks in general can be found in Eisenberg
and Noe (2001).

Many textbooks on stochastic processes contain an introduction to continuous-
time Markov chains. Excellent texts are Resnick (1992), Davis (1993) and Norris
(1997); a good summary is given in Appendix C of Lando (2004). Continuous-time
Markov chains are frequently used to build dynamic models for rating-transitions
(see, for example, Jarrow, Lando and Turnbull (1997) or Chapter 6 of Lando (2004)).



10
Operational Risk and Insurance Analytics

We have so far concentrated on the modelling of market and credit risk, which reflects
the historical development of quantitative risk management in the banking context.
Some of the techniques we have discussed are also relevant in operational risk
modelling, in particular the techniques of extreme value theory (EVT) in Chapter 7
and the aggregation methodology of Chapter 6. But we also need other techniques
tailored specifically to operational risk, and we believe that actuarial models used
in non-life insurance are particularly relevant.

In the first half of this chapter (Section 10.1) we examine the Basel II require-
ments for the quantitative modelling of operational risk, discussing various potential
approaches. On the basis of some industry data we highlight the possibilities and
limitations of existing tools for the calculation of an operational risk-capital charge.

In Section 10.2 we summarize the techniques from actuarial modelling that are
relevant to operational risk, under the heading of insurance analytics. Our discussion
in that section, though motivated by quantitative modelling of operational risk, has
a much wider applicability in quantitative risk management. For example, some
techniques have implicitly been used in the credit risk chapters. The Notes and
Comments section at the end of the chapter gives an overview of further techniques
from insurance mathematics that we feel will become useful in the years to come.

10.1 Operational Risk in Perspective

10.1.1 A New Risk Class

In our overview of Basel II, in Section 1.3.1, we introduced operational risk as
a new risk class for which financial institutions, bound by the Basel Committee
rules (Basel II) and to some extent also by Solvency 2 (Section 1.3.2), are required
to put aside regulatory capital. We first recall the Basel II definition as it appears in
the final document (Basel Committee on Banking Supervision 2004).

Operational risk is defined as the risk of loss resulting from inade-
quate or failed internal processes, people and systems or from external
events. This definition includes legal risk, but excludes strategic and
reputational risk.

Examples of losses falling within this category are, for instance, fraud (internal
as well as external), losses due to IT failures, errors in settlements of transactions,
litigation and losses due to external events like flooding, fire, earthquake or terrorism.
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Losses due to unfortunate management decisions, such as many of the mergers and
acquisitions of the 1990s or the launch of larger-scale bank-assurance projects, are
definitely not included.

A case that touched upon almost all aspects of the above definition was that of
Barings (see also Section 1.2.2). From insufficient internal checks and balances
(processes), to fraud (human risk), to external events (the Kobe earthquake), many
operational risk factors contributed to the downfall of this once proud merchant bank.
Further examples include the $691 million rogue trading loss at Allfirst Financial,
the $484 million settlement due to misleading sales practices at Household Finance,
and the estimated $140 million loss for the Bank of New York stemming from the
September 11 attacks.All examples offer a clear proof of the fundamental importance
of operational risk as a risk class to be monitored. Current estimates for capital
allocated to operational risk at large international banks are in the range $2–7 billion
(see deFontnouvelle et al. 2003).

An essential difference between operational risk, on the one hand, and market
and credit risk, on the other, is that operational risk has no upside for a bank. It
comes about through the malfunctioning of parts of daily business and hence is as
much a question of quality control as anything else. Clearly, banks try as hard as
possible to avoid operational risk but, despite their best efforts, operational losses
will continue to occur.

This has prompted the Basel Committee to decide that banks must set aside risk
capital under Pillar I of the three-pillar system (see Section 1.3.1). The Pillar II and
Pillar III proposals of the new accord imply that a supervisory review process for
operational risk must also be put in place and that an appropriate market discipline
with respect to public disclosure must be adhered to. The market has not been slow
to provide various ways of mitigating the effects of the new risk category, ranging
from IT solutions and data warehouses to improve the measurement of operational
risk, to insurance-type solutions for banks willing and able to enter into such deals.

Currently, and for the foreseeable future, the lack of operational loss data is a major
issue, and this is similar to the problem faced by underwriters of catastrophe insur-
ance. The insurance industry’s answer to the problem has involved data-pooling
across industry participants and a similar discussion is now taking place in the
banking industry. Once representative data sources become available, the imple-
mentation of many of the methods discussed in this book (such as EVT in Chapter 7
and the insurance analytics of Section 10.2) will become increasingly feasible. Exist-
ing sources of data at present are the databases produced by the Quantitative Impact
Studies (QISs) of the Basel Committee and by the Federal Reserve Bank of Boston.
Moreover, some private companies are also providing data.

In Section 10.1.3 we discuss the kind of advanced-measurement (AM) approach
that an analysis of operational loss data allows. Before this we discuss so-called
elementary approaches to operational risk modelling. In these approaches, aimed
at smaller banks without extensive international activities, the detailed modelling
of loss distributions for different risk classes and risk types is not required; a fairly
simple volume-based capital charge is proposed. We note that, as in the case of credit
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risk, the approaches proposed by Basel II for the calculation of regulatory capital
represent a gradation in complexity. Recall that, for credit risk, banks must imple-
ment either the standardized approach or the internal-ratings-based (IRB) approach,
as discussed in Section 1.3.1 and Section 8.1.

10.1.2 The Elementary Approaches

There are two elementary approaches to operational risk measurement. Under the
basic-indicator (BI) approach, banks must hold capital for operational risk equal to
the average over the previous three years of a fixed percentage (denoted by α) of
positive annual gross income (GI). Figures for any year in which annual gross income
is negative or zero should be excluded from both the numerator and denominator
when calculating the average. Hence the risk capital under the BI approach for
operational risk in year t is given by

RCt
BI(OR) = 1

Zt

3∑
i=1

α max(GIt−i , 0), (10.1)

where Zt = ∑3
i=1 I{GIt−i>0} and GIt−i stands for gross income in year t − i.

Note that an operational risk-capital charge is calculated on a yearly basis. The
BI approach gives a fairly straightforward, volume-based, one-size-fits-all capital
charge. Based on the various QISs, the Basel Committee suggests that α = 15%.

Under the standardized (S) approach, banks’activities are divided into eight busi-
ness lines: corporate finance; trading & sales; retail banking; commercial banking;
payment & settlement; agency services; asset management; and retail brokerage.
Precise definitions of these business lines are to be found in the Basel Committee’s
final document (Basel Committee on Banking Supervision 2004). Within each busi-
ness line, gross income is a broad indicator that serves as a proxy for the scale of
business operations and thus the likely scale of operational risk exposure. The capital
charge for each business line is calculated by multiplying gross income by a factor
(denoted by β) assigned to that business line. As in (10.1), the total capital charge
is calculated as a three-year average over positive GIs, resulting in the following
capital charge formula:

RCt
S(OR) = 1

3

3∑
i=1

max

[ 8∑
j=1

βjGIt−i
j , 0

]
. (10.2)

It is to be noted that in formula (10.2), in any given year t − i, negative capital
charges (resulting from negative gross income) in some business line j may offset
positive capital charges in other business lines (albeit at the discretion of the national
supervisor). This kind of “netting” should induce banks to go from the basic indicator
to the standardized approach; the word “netting” is of course to be used with care
here. Based on the QISs, the Basel Committee has set the beta coefficients as in
Table 10.1. Moscadelli (2004) gives a critical analysis of these beta factors, based
on the full database of more than 47 000 operational losses of the second QIS of the
summer of 2002 (see also Section 10.1.4).
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Table 10.1. Beta factors for the standardized approach.

Business line (j) Beta factors (βj )

j = 1, corporate finance 18%
j = 2, trading & sales 18%
j = 3, retail banking 12%
j = 4, commercial banking 15%
j = 5, payment & settlement 18%
j = 6, agency services 15%
j = 7, asset management 12%
j = 8, retail brokerage 12%

In both approaches (BI, S) the Basel Committee expects further guidelines (mainly
under Pillars II and III) to be adhered to. Also, at national discretion, supervisors
may adopt slight (often more conservative) changes to aspects of the above rules, the
latter clearly with a level playing field for the different market participants in mind.
Widely adopted risk-management rules should be formulated as much as possible in
such a way as to avoid regulatory arbitrage within and across national jurisdictions.

10.1.3 Advanced Measurement Approaches

Under an AM approach, the regulatory capital is determined by a bank’s own inter-
nal risk-measurement system according to a number of quantitative and qualitative
criteria set forth in documentation produced by the Basel Committee (Basel Com-
mittee on Banking Supervision 2004). We will not go into all relevant steps of the
procedure leading towards the acceptance of an AM approach for an internationally
active bank and its subsidiaries; the Basel Committee’s documents give a clear and
readable account of this. We focus instead on the methodological aspects of a full
quantitative approach to operational risk measurement. It should be stated, how-
ever, that, as in the case of market and credit risk, the adoption of an AM approach
to operational risk is subject to approval and continuing quality checking by the
national supervisor.

While the BI and S approaches prescribe the explicit formulas (10.1) and (10.2),
theAM approach lays down general guidelines. In the words of the Basel Committee
(Basel Committee on Banking Supervision 2004).

Given the continuing evolution of analytical approaches for operational
risk, the Committee is not specifying the approach or distributional
assumptions used to generate the operational risk measure for regula-
tory capital purposes. However, a bank must be able to demonstrate
that its approach captures potentially severe “tail” loss events. What-
ever approach is used, a bank must demonstrate that its operational risk
measure meets a soundness standard comparable to that of the internal
ratings-based approach for credit risk (comparable to a one year holding
period and the 99.9 percent confidence interval).
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In an AM approach, operational losses should be categorized according to the eight
business lines mentioned in Section 10.1.2 as well as the following seven loss-event
types: internal fraud; external fraud; employment practices & workplace safety;
clients, products & business practices; damage to physical assets; business disrup-
tion & system failures; and execution, delivery & process management. Banks are
expected to gather internal data on repetitive, high-frequency losses (three to five
years of data), as well as relevant external data on non-repetitive low-frequency
losses. Moreover, they must add stress scenarios both at the level of loss severity
(parameter shocks to model parameters) and correlation between loss types. In the
absence of detailed joint models for different loss types, risk measures for the aggre-
gate loss should be calculated by summing across the different loss categories. In
general, both so-called expected and unexpected losses should be taken into account
(i.e. risk-measure estimates cannot be reduced by subtraction of an expected loss
amount).

We now describe a skeletal version of a typical AM solution for the calculation
of an operational risk charge for year t . We assume that historical loss data from
previous years have been collected in a data warehouse with the structure

{Xt−i,b,!
k : i = 1, . . . , T ; b = 1, . . . , 8; ! = 1, . . . , 7; k = 1, . . . , Nt−i,b,!},

(10.3)
where X

t−i,b,!
k stands for the kth loss of type ! for business line b in year t − i;

Nt−i,b,! is the number of such losses and T � 5 years, say. Note that thresholds
may be imposed for each (i, b, !) category and small losses less than the threshold
may be neglected; a threshold is typically of the order of €10 000. The total historical
loss amount for business line b in year t − i is obviously

Lt−i,b =
7∑

!=1

Nt−i,b,!∑
k=1

X
t−i,b,!
k , (10.4)

and the total loss amount for year t − i is

Lt−i =
8∑

b=1

Lt−i,b. (10.5)

The problem in the AM approach is to use the loss data to estimate the distribution
of Lt for year t and to calculate risk measures such as VaR or expected shortfall
(see Section 2.2) for the estimated distribution. Writing  α for the risk measure at a
confidence level α, the regulatory capital is determined by

RCt
AM(OR) =  α(L

t ), (10.6)

where α would typically take a value in the range 0.99–0.999 imposed by the
local regulator. Because the joint distributional structure of the losses in (10.4)
and (10.5) for any given year is generally unknown, we would typically resort to
simple aggregation of risk measures across loss categories to obtain a formula of
the form

RCt
AM(OR) =

8∑
b=1

 α(L
t,b). (10.7)
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In view of our discussions in Chapter 6, the choice of an additive rule in (10.7)
can be understood. Indeed, for any coherent risk measure  α , the right-hand side
of (10.7) yields an upper bound for the total risk  α(L

t ). In the important case of
VaR, the right-hand side of (10.7) corresponds to the comonotonic scenario (see
Proposition 6.15). The optimization results of Section 6.2 can be used to calculate
bounds for  α(Lt ) under different dependence scenarios for the business lines; see,
in particular, Example 6.23 and Table 6.1.

Reduced to its most stylized form in the case when  α = VaRα and α = 0.999,
a capital charge under the AM approach requires the calculation of a quantity of the
type

VaR0.999

( N∑
k=1

Xk

)
, (10.8)

where (Xk) is some sequence of loss severities and N is an rv describing the fre-
quency with which operational losses occur. Random variables of the type (10.8) are
one of the prime examples of the actuarial models that we treat in Section 10.2.2.
Before we move on to those models in the next section, we highlight some “stylized
facts” of operational loss data.

10.1.4 Operational Loss Data

In order to reliably estimate (10.6), (10.7) or, in a stylized version, a quantity
like (10.8), we need extensive data. The data situation for operational risk is much
worse than that for credit risk, and is clearly an order of magnitude worse than for
market risk, where vast quantities of data are publicly available. Banks have only
recently started gathering data and pooling initiatives are in their infancy, so, as far
as we know, no reliable publicly available data source on operational risk exists.
Our discussion below is based on some industry data we have been able to analyse
as well as on the findings in Moscadelli (2004) for the QIS database and the results
of the 2004 loss-data collection exercise by the Federal Reserve Bank of Boston
(see Federal Reserve System 2005). An excellent overview of some of the data
characteristics is to be found in the Basel Committee’s report (Basel Committee
on Banking Supervision 2003). From the latter report we quote:

Despite this progress, inferences based on the data should still be made
with caution. . . . In addition, the most recent data collection exercise
provides data for only one year and, even under the best of circum-
stances, a one-year collection window will provide an incomplete pic-
ture of the full range of potential operational risk events, especially of
rare but significant “tail events”.

In Figure 10.1 we have plotted operational loss data obtained from several sources;
parts (a)–(c) show losses for three business lines for the period 1992–2001. It is less
important for the reader to know the exact loss type—it is sufficient to accept that
the data are typical for (b, !) categories in (10.3). In part (d), the data from the three
previous figures have been pooled.
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Figure 10.1. Operational risk losses: (a) type 1, n = 162; (b) type 2, n = 80;
(c) type 3, n = 175; and (d) pooled losses n = 417.

Exploratory data analysis reveals the following stylized facts (confirmed in several
other studies):

• loss severities have a heavy-tailed distribution;

• losses occur randomly in time;

• loss frequency may vary substantially over time.

The third observation is partly explained by the fact that banks have only recently
started gathering operational risk data prompted by Basel II. There is a considerable
amount of reporting bias resulting in fewer losses in the first half of the 1990s and
more losses afterwards. Moreover, several classes of loss may have a considerable
cyclical component and/or may depend on changing economic covariables. For
instance, back-office errors may depend on volume traded and fraud may be linked
to the overall level of the economy (depressions versus boom cycles). This clear
inhomogeneity in the loss frequency makes an immediate application of statistical
methodology difficult. However, it may be reasonable to at least assume that the
(inflation-adjusted) loss sizes have a common severity distribution, which would
allow, for instance, the application of methods from Chapter 7.

In Figure 10.2 we have plotted the sample mean excess functions (7.16) for the
data in Figure 10.1. This figure clearly indicates the first stylized fact of heavy-
tailed loss severities. The mean excess plots in (a) and (b) are clearly increasing in
an approximately linear fashion, pointing to Pareto-type behaviour. This contrasts
with (c), where the plot appears to level off from a threshold of one. This hints at a
loss distribution with finite upper limit, but this could only be substantiated by more
detailed knowledge of the type of loss concerned. Pooling the data in (d) masks the
different kinds of behaviour, and perhaps illustrates the dangers of naive statistical
analyses that do not consider the data-generating mechanism.

Moscadelli (2004) performed a detailed EVT analysis (including a first attempt to
solve the frequency problem) of the full QIS data set of more than 47 000 operational
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Figure 10.2. Corresponding sample mean excess plots for the data in Figure 10.1:
(a) type 1; (b) type 2; (c) type 3; (d) pooled.

losses and concluded that the loss dfs are well fitted by generalized Pareto distri-
butions (GPDs) in the upper-tail area (see Section 7.2.2 for the necessary statistical
background). The estimated tail parameters (ξ in (7.14)) for the different business
lines range from 0.85 for asset management to 1.39 for commercial banking. Six
of the business lines have an estimate of ξ greater than one, corresponding to an
infinite mean model! Based on these QIS data, the estimated RC/GI ratios (the β in
Table 10.1) range from 8.3% for retail banking to 33.3% for payment & settlement,
with an overall alpha value (see (10.1)) of 13.3%, slightly below the Basel II value
of 15% used in the BI approach. Note the much broader range of values of the β

emerging from the analysis of the QIS data compared with the prescribed range of
12–18% for the standardized approach in Table 10.1.

As more data become available, more conclusive analyses may be possible. It
is clear, however, from Moscadelli (2004) that the GPD method of Section 7.2
is one of the most useful statistical tools at our disposal and yields a fit that is
superior to other loss distributions in the high-tail area; this has been corroborated by
several practitioners from the banking and insurance industry. In view of the heavy-
tailedness of the data, and the necessity of calculating capital charges corresponding
to high quantiles, it seems very natural to use EVT methodology.

Notes and Comments

Several textbooks on operational risk have been published: see, for example, Cruz
(2002, 2004), King (2001), the Risk Books publication edited by Risk Books (2003)
and chapters in Ong (2004) and Crouhy, Galai and Mark (2001). In particular,
Chapter 4 of Cruz (2004), written by Carolyn Currie, gives an excellent overview
of the regulatory issues surrounding operational risk.

A practical implementation is discussed in Ebnöther et al. (2003). Frachot,
Georges and Roncalli (2001) discuss the loss-distribution approach to operational
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risk. Döbeli, Leippold and Vanini (2003) elaborate on the way in which a good
operational risk framework may lead to an overall improvement in quality of the
business operations.

Figure 10.1 is taken from Embrechts, Kaufmann and Samorodnitsky (2004). The
latter paper also stresses the important difference between so-called repetitive and
non-repetitive losses. For the former (to some extent less important) losses, statis-
tical modelling can be very useful. For non-repetitive, low-probability, high-severity
losses, much more care has to be taken before a statistical analysis can be performed
(see Pézier 2002a,b).

EVT methods for operational risk quantification have been used by numerous
authors (see, for example, Coleman 2002, 2003; Medova 2000a,b). Because of the
non-stationarity of operational loss data over several years, more refined EVT models
are called for. See, for example, Chavez-Demoulin and Embrechts (2004); Chavez-
Demoulin, Embrechts and Nešlehová (2005) for some examples of such models. For
a critical article on the use of EVT for the calculation of an operational risk-capital
charge, see Embrechts, Furrer and Kaufmann (2003), which contains a simulation
study of the number of data needed to come up with a reasonable estimate of a high
quantile. The use of statistical methods other than EVT are discussed in the textbooks
referred to above. These methods include linear predictive models, Bayesian belief
networks and discriminant analysis. Excellent data-analytic papers using published
operational risk losses are deFontnouvelle et al. (2003) and Moscadelli (2004).
Finally, recall from Notes and Comments of Section 6.2 the paper by Rosenberg
and Schuermann (2004), which addresses the aggregation of market, credit and
operational risk measures.

10.2 Elements of Insurance Analytics

10.2.1 The Case for Actuarial Methodology

Actuarial tools and techniques for the modelling, pricing and reserving of insurance
products in the traditional fields of life, non-life and reinsurance have a long history
going back more than a century. More recently, the border between financial and
insurance products has become blurred, examples of this process being equity-linked
life products and alternative risk-transfer vehicles (see Section 1.5.2 and Notes and
Comments of that chapter).

Whereas some of the combined bank-assurance products have not met with the
success that was originally hoped for, it remains true that there exists an increasing
need for financial and actuarial professionals who can close the methodological gaps
between the two fields. In the sections that follow we discuss insurance analytical
tools that we believe the more traditional finance-oriented risk manager ought to be
aware of; the story behind the name insurance analytics can be found in Embrechts
(2002).

It is not only the occasional instance of joint product development between the
banking and insurance worlds that prompts us to make a case for actuarial method-
ology in QRM, but also the observation that many of the concepts and techniques
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of QRM described in the preceding chapters are in fact borrowed from the actuarial
literature.

• Risk measures like expected shortfall (Definition 2.15) have been studied in
a systematic way in the insurance literature. Expected shortfall is also the
standard risk measure to be used under the Solvency 2 guidelines.

• Many of the dependence modelling tools presented in Chapter 5 saw their first
applications in the realm of insurance. Moreover, notions like comonotonicity
of risk factors have their origins in actuarial questions.

• In Section 6.1 we discussed the axiomatization of financial risk measures and
pointed at the parallel development of insurance premium principles (often
with very similar goals and results).

• The statistical modelling of extremal events has been a bread-and-butter sub-
ject for actuaries since the start of insurance. Hence, many of the tools pre-
sented in Chapter 7 are well known to actuaries.

• Within the world of credit risk management, the industry model CreditRisk+
(Section 8.4.2) is known as an actuarial model.

• The actuarial approach to the modelling of operational risk is apparent in the
AM approach of Section 10.1.3.

In the sections that follow, we give a brief discussion of relevant actuarial techniques.
The material presented should enable the reader to transfer actuarial concepts to
QRM in finance more easily. We do not strive for a full treatment of relevant tools
as these could fill a separate (voluminous) textbook (see, for example, Denuit and
Charpentier (2004), Mikosch (2004) and Partrat and Besson (2004) for excellent
accounts of many of the relevant techniques).

10.2.2 The Total Loss Amount

Reconsider formula (10.8), where a random number N of random losses or severi-
ties Xk occurring in a given time period are summed. To apply a risk measure like
VaR we need to make assumptions about the (Xk) and N , which leads us to one of
the fundamental concepts of (non-life) insurance mathematics.

Definition 10.1 (total loss amount and distribution). Denote by N(t) the (ran-
dom) number of losses over a fixed time period [0, t] and write X1, X2, . . . for the
individual losses. The total loss amount (or aggregate loss) is defined as

SN(t) =
N(t)∑
k=1

Xk, (10.9)

with df FSN(t)
(x) = P(SN(t) � x), the total (or aggregate) loss df. Whenever t is

fixed, t = 1 say, we may drop the time index from the notation and simply write SN
and FSN .

Remark 10.2. The definition of (10.9) as an rv is to be understood as SN(t)(ω) =∑N(t)(ω)
k=1 Xk(ω), ω ∈ Ω , and is referred to as a random (or randomly indexed) sum.
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A prime goal of this section will be the analytical and numerical calculation
of FSN , which requires further assumptions about (Xk) and N .

Assumption 10.3 (independence, compound sums). We assume that the rvs (Xk)

are iid with common df G, G(0) = 0. We further assume that the rvs N and (Xk)

are independent; in that case we refer to (10.9) as a compound sum. The probability
mass function of N is denoted by pN(k) = P(N = k), k = 0, 1, 2, . . . . The rv N

is referred to as the compounding rv.

Proposition 10.4 (compound distribution). Let SN be a compound sum and sup-
pose that Assumption 10.3 holds. Then, for all x � 0,

FSN (x) = P(SN � x) =
∞∑
k=0

pN(k)G
(k)(x), (10.10)

where G(k)(x) = P(Sk � x), the kth convolution of G. Note that G(0)(x) = 1 for
x � 0, and G(0)(x) = 0 for x < 0.

Proof. Suppose x � 0. Then

FSN (x) =
∞∑
k=0

P(SN � x | N = k)P (N = k) =
∞∑
k=0

pN(k)G
(k)(x).

Although formula (10.10) is explicit, its actual calculation in specific cases is
difficult because the convolution powers G(k) of a df G are in general not avail-
able in closed form. Hence, one resorts to (numerical) approximation methods.
A first class of these uses the fact that the Laplace–Stieltjes transform of a convo-
lution is the product of the Laplace–Stieltjes transforms. Using the usual notation
F̂ (s) = ∫∞

0 e−sx dF(x), where s � 0 for Laplace–Stieltjes transforms, we have
that Ĝ(k)(s) = (Ĝ(s))k . It follows from Proposition 10.4 that

F̂SN (s) =
∞∑
k=0

pN(k) Ĝ
k(s) = MN(Ĝ(s)), s � 0, (10.11)

where MN denotes the moment-generating function of N .

Example 10.5 (the compound Poisson df). Suppose that N has a Poisson df with
intensity parameter λ > 0, denoted N ∼ Poi(λ). In that case, pN(k) = e−λλk/k!,
k � 0, and, for s ∈ R,

MN(s) =
∞∑
k=0

e−λ λ
k

k! s
k = exp(−λ(1 − s)).

Hence from (10.11) it follows that, for s � 0,

F̂SN (s) = exp(−λ(1 − Ĝ(s))).

In this case, the df of SN is referred to as the compound Poisson df and we write
SN ∼ CPoi(λ,G). Formula (10.11) facilitates the calculation of moments of SN
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and lends itself to numerical evaluation through Fourier inversion, known as the
fast Fourier transform (FFT) (see Notes and Comments for references on the latter).
For the calculation of moments, note that, under the assumption of the existence of
sufficiently high moments and hence differentiability of Ĝ and MN , we obtain

dk

dsk
MN(s)

∣∣∣∣
s=1

= E(N(N − 1) · · · (N − k + 1))

and

(−1)k
dk

dsk
Ĝ(s)

∣∣∣∣
s=0

= E(Xk
1) = µk.

Example 10.6 (continuation of Example 10.5). In the case of the compound Pois-
son df, one obtains

E(SN) = (−1)
d

ds
F̂SN (s)

∣∣∣∣
s=0

= exp(−λ(1 − Ĝ(0)))λ(−Ĝ′(0))

= λµ1 = E(N)E(X1).

Similar calculations yield var(SN) = E(S2
N) − (E(SN))

2 = λµ2.

For the general compound case one obtains the following useful result.

Proposition 10.7 (moments of compound dfs). Under Assumption 10.3 and
assuming that E(N) < ∞, µ2 < ∞, we have that

E(SN) = E(N)E(X1) and var(SN) = var(N)(E(X1))
2 + E(N) var(X1).

(10.12)

Proof. This follows readily from (10.11), differentiating with respect to s. The
following direct proof avoids the use of transforms. Conditioning on N and using
Assumption 10.3, one obtains

E(SN) = E(E(SN | N)) = E

(
E

( N∑
k=1

Xk

∣∣∣∣ N))

= E

( N∑
k=1

E(Xk)

)
= E(N)E(X1)

and, similarly,

E(S2
N) = E

(
E

(( N∑
k=1

Xk

)2 ∣∣∣∣ N)) = E

(
E

( N∑
k=1

N∑
!=1

XkX!

∣∣∣∣ N))
= E(Nµ2 + N(N − 1)µ2

1) = E(N)µ2 + (E(N2) − E(N))µ2
1

= E(N) var(X1) + E(N2)(E(X1))
2,

so var(SN) = E(S2
N) − (E(SN))

2 = E(N) var(X1) + var(N)(E(X1))
2.
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Remark 10.8. Formula (10.12) elegantly combines the randomness of the frequency
(var(N))with that of the severity (var(X1)). In the compound Poisson case it reduces
to the formula var(SN) = λE(X2

1) = λµ2, as in Example 10.6. In the deterministic-
sum case, when P(N = n) = 1, say, we find the well-known results E(SN) = nµ1

and var(SN) = n var(X1); indeed, in this degenerate case, var(N) = 0.

The compound Poisson model is a basic model for aggregate financial or insur-
ance risk losses. The ubiquitousness of the Poisson distribution in insurance can
be understood as follows. Consider a time interval [0, 1] and let N denote the total
number of losses in that interval. Suppose further that we have a number of poten-
tial loss generators (transactions, credit positions, insurance policies, etc.) that can
produce, with probability pn, one loss or, with probability 1 − pn, no loss in each
small subinterval ((k − 1)/n, k/n] for k = 1, . . . , n. Moreover, suppose that the
occurrence or non-occurrence of a loss in any particular subinterval is not influ-
enced by the occurrence of losses in other intervals. Then the number Nn of losses
has a binomial df with parameters n and pn, so

P(Nn = k) =
(
n

k

)
pkn(1 − pn)

n−k, k = 0, . . . , n.

Combined with a loss-severity distribution this frequency distribution gives rise,
in (10.10), to the so-called binomial loss model. Next suppose that n → ∞ in such
a way that limn→∞ npn = λ > 0. It follows from Poisson’s theorem of rare events
(see also Section 7.4.1) that

lim
n→∞P(Nn = k) = e−λ λ

k

k! , k = 0, 1, 2, . . . ,

i.e. N∞ ∼ Poi(λ), explaining why the Poisson model assumption is very natural as
a frequency distribution and the compound Poisson model is a common aggregate
loss model. The compound Poisson model has several nice properties, one of which
concerns aggregation and is useful in the operational risk context in situations such
as (10.5).

Proposition 10.9 (sums of compound Poisson rvs). Suppose that the compound
sums SNi

∼ CPoi(λi,Gi), i = 1, . . . , d, and that these rvs are independent, then
SN = ∑d

i=1SNi
∼ CPoi(λ,G), where λ = ∑d

i=1 λi and G = ∑d
i=1(λi/λ)Gi .

Proof. (For d = 2, the general case being similar.) Because of independence and
Example 10.5 we have, for the Laplace–Stieltjes transform of SN ,

F̂SN (s) = F̂SN1
(s)F̂SN2

(s)

= exp

(
− (λ1 + λ2)

(
1 − 1

λ1 + λ2
(λ1Ĝ1(s) + λ2Ĝ2(s))

))
= exp(−λ(1 − Ĝ(s))),

where λ = λ1 + λ2 and

G = λ1

λ1 + λ2
G1 + λ2

λ1 + λ2
G2.
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The result follows since the Laplace–Stieltjes transform uniquely determines the
underlying df.

Hence the new intensity λ is just the sum of the old ones, whereas the new severity
df G is a discrete mixture of the loss dfs Gi with weights λi/λ, i = 1, . . . , d. We
can easily simulate losses from such a model through a two-stage procedure: first
draw i (i = 1, . . . , d) with probability λi/λ, and then draw a loss with df Gi .

Beyond the Poisson model. The Poisson model can serve as a stylized represen-
tation of the loss-generating mechanism from which more realistic models can be
derived. For instance, we may wish to introduce a time parameter in N to cap-
ture different occurrence patterns over time (see Section 10.2.6). Also, the intensity
parameter λ may be assumed to be random (see Example 10.20). Indeed, a fur-
ther step is to turn λ into a stochastic process, which gives rise to such models as
doubly stochastic (or Cox) processes (see Section 9.2.3) or self-exciting processes,
as encountered in Section 7.4.3. Furthermore, various forms of dependence among
the Xk rvs or between N and (Xk) could be modelled. Finally, multiline portfolios
require multivariate models for vectors of the type (SN1 , . . . , SNd

). An ultimate
goal of the AM approach to operational risk would be to model such random vectors
where where, for instance, d might stand for seven risk types, eight business lines,
or in total 56 loss category cells.

10.2.3 Approximations and Panjer Recursion

As mentioned in Section 10.2.2, the analytic calculation of FSN is not possible
for the majority of reasonable models, which has led actuaries to come up with
several numerical approximations. Below we review some of these approximations
and illustrate their use for several choices of the severity df G. The basic example
we look at is the compound Poisson case, SN ∼ CPoi(λ,G), though most of the
approximations discussed can be adjusted to deal with other distributions for N .
Given λ andGwe can easily simulateFSN and, by repeating this many times, we can
get an empirical estimate that is close to the true df. Figure 10.3 contains a simulation
of n = 100 000 realizations of SN ∼ CPoi(100,Exp(1)). Although the histogram
exhibits mild skewness (which can easily be shown theoretically (see (10.15))),
a clear central limit effect takes place. This is used in the first approximation below.

Normal approximation. As the loss rvs Xi are iid (with finite second moment,
say) and SN is a (random) sum of the Xi variables, one can apply Theorem 2.5.16
in Embrechts, Klüppelberg and Mikosch (1997) and Proposition 10.7 to obtain the
following approximation, for general N :

FSN (x) ≈ Φ

(
x − E(N)E(X1)√

var(N)(E(X1))2 + E(N) var(X1)

)
. (10.13)

Here, and in the approximations below, “≈” has no specific mathematical interpre-
tation beyond “there exists a limit result justifying the right-hand side to be used as
approximation of the left-hand side”. In particular, for the compound Poisson case
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Figure 10.3. Histogram of simulated compound loss data (n = 100 000) for
SN ∼ CPoi(100,Exp(1)) together with normal approximation (10.14).

above, (10.13) reduces to

FSN (x) ≈ Φ

(
x − 100√

200

)
, (10.14)

where Φ is the standard normal df, as usual. It is this normal approximation that is
superimposed on the histogram in Figure 10.3. Clearly, there are conditions under-
lying the approximation (10.13): for example, claims should not be too heavy-tailed
(see Theorem 10.21).

For CPoi(λ,G) it is not difficult to show that the skewness parameter satisfies

E((SN − E(SN))
3)

(var(SN))3/2 = E(X3
1)√

λ(E(X2
1))

3
> 0 (10.15)

(note thatX1 � 0 almost surely), so an approximation by a df with positive skewness
may improve the approximation (10.14), especially in the tail area. This is indeed
the case and leads to the next approximation.

Translated-gamma approximation. We approximate SN by k + Y , where k is
a translation parameter and Y ∼ Ga(α, β) has a gamma distribution (see Sec-
tion A.2.4). The parameters (k, α, β) are found by matching the mean, the variance
and the skewness of k + Y and SN . It is not difficult to check that the following
equations result:

k + α

β
= λE(X1),

α

β2 = λE(X2
1),

2√
α

= E(X3
1)√

λ(E(X2
1))

3
.

In our case, where λ = 100 and X1 has a standard exponential distribution, these
yield the equations k+α/β = 100, α/β2 = 200 and 2/

√
α = 0.2121 with solution

α = 88.89, β = 0.67, k = −32.72.

Commentary on these approximations. Both approximations work reasonably well
in the bulk of the data. However, for risk-management purposes, we are mainly
interested in upper tail risk; in Figure 10.4 we have therefore plotted both approx-
imations for x � 120 on a log–log scale. This corresponds to the tail area beyond
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Figure 10.4. Simulated CPoi(100,Exp(1)) data together with normal- and translated-
gamma approximations (log–log scale). The 99.9% quantile estimates are also given.

the 90% quantile of FSN . Similar plots were routinely used in Chapter 7 on EVT
(see, for example, Figure 7.6). It becomes clear that, as can be expected, the gamma
approximation works better in this upper tail area where the normal approximation
underestimates the loss potential.

Of course, for loss data with heavier tails than exponential (lognormal or Pareto,
say), even the translated-gamma approximation will be insufficient and other approx-
imations can be devised based on heavier-tailed distributions, such as translated F ,
inverse gamma or generalized Pareto.

Another approach could be based on Monte Carlo simulation of aggregate losses
SN to which an appropriate heavy-tailed loss distribution could then be fitted.
One possible approach would be to model the tail of these simulated compound
losses with the GPD using the methodology of Section 7.2.2. This is what has
been done in Figures 10.5 and 10.6, where we have plotted various approxima-
tions for CPoi(100, LN(1, 1)) and CPoi(100,Pa(4, 1)). The former corresponds to
a standard industry model for operational risk (see Frachot 2004). The latter corre-
sponds to a class of operational risk models used in Moscadelli (2004). From these
figures the message is clear: if the data satisfy the compound Poisson assumption,
then the GPD yields a superior fit for high quantiles.

We now turn to an important class of approximations based on recursive methods.
In the case where the loss sizes (Xi) are discrete and the distribution function of N
satisfies a specific condition (see Definition 10.10 below) a reliable recursive method
can be worked out.

Suppose that X1 has a discrete distribution so that P(X1 ∈ N0) = 1 with gk =
P(X1 = k), pk = P(N = k) (for notational convenience we write pk for pN(k))
and sk = P(SN = k). For simplicity assume that g0 = 0 and let g(n)k = P(X1 +
· · · + Xn = k), the discrete convolution of the probability mass function gk . Note
that, by definition, g(n+1)

k = ∑k−1
i=1 g

(n)
i gk−i . We immediately obtain the following
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Figure 10.5. Simulated CPoi(100, LN(1, 1)) data (n = 100 000) with normal-, trans-
lated-gamma, GPD and Panjer recursion (see Example 10.17) approximations (on log–log
scale).
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Figure 10.6. Simulated CPoi(100,Pa(4, 1)) data (n = 100 000) with normal-,
translated-gamma, and GPD approximations (on log–log scale).

identities:
s0 = P(SN = 0) = P(N = 0) = p0,

sn = P(SN = n) =
∞∑
k=1

pkg
(k)
n , n � 1,

⎫⎪⎪⎬⎪⎪⎭ (10.16)

where the latter formula corresponds to Proposition 10.4 but now in the discrete
case. As in Proposition 10.4 we note that (10.16) is difficult to calculate, mainly due
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to the convolutions g(k)n . However, for an important class of counting variables N ,
(10.16) can be reduced to a simple recursion. For this, we introduce the so-called
Panjer classes.

Definition 10.10 (Panjer class). The probability mass function (pk) of N belongs
to the Panjer(a, b) class for some a, b ∈ R if the following relationship holds for
r � 1: pr = (a + (b/r))pr−1.

Example 10.11 (binomial). If N ∼ B(n, p), then its probability mass function is
pr = (

n
r

)
pr(1 − p)n−r for 0 � r � n and it can be easily checked that

pr

pr−1
= − p

1 − p
+ (n + 1)p

r(1 − p)
,

showing that N belongs to the Panjer(a, b) class with a = −p/(1 − p) and
b = (n + 1)p/(1 − p).

Example 10.12 (Poisson). If N ∼ Poi(λ), then its probability mass function
pr = e−λλr/r! satisfies pr/pr−1 = λ/r , so N belongs to the Panjer(a, b) class
with a = 0 and b = λ.

Example 10.13 (negative binomial). If N has a negative binomial distribution,
denoted N ∼ NB(α, p), then its probability mass function is

pr =
(
α + r − 1

r

)
pα(1 − p)r , r � 0, α > 0, 0 < p < 1

(see Section A.2.7 for further details). We can easily check that

pr

pr−1
= 1 − p + (α − 1)(1 − p)

r
.

Hence N belongs to the Panjer(a, b) class with a = 1 −p and b = (α− 1)(1 −p).
In Proposition 10.20 we will show that the negative binomial model follows very
naturally from the Poisson model when one randomizes the intensity parameter of
the latter using a gamma distribution.

Remark 10.14. One can show that, neglecting degenerate models for (pk), the above
three examples are the only counting distributions satisfying Definition 10.10. This
result goes back to Johnson and Kotz (1969) and was formulated explicitly in the
actuarial literature in Sundt and Jewell (1982).

Theorem 10.15 (Panjer recursion). Suppose that N satisfies the Panjer(a, b)
class condition and g0 = P(X1 = 0) = 0, then s0 = p0 and, for r � 1,
sr = ∑r

i=1(a + (bi/r))gisr−i .

Proof. We already know that s0 = p0 from (10.16), so suppose that r � 1.
Noting that X1, . . . , Xn are iid, we require the following well-known identity for
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exchangeable rvs:

E

(
X1

∣∣∣∣ n∑
i=1

Xi = r

)
= 1

n

n∑
j=1

E

(
Xj

∣∣∣∣ n∑
i=1

Xi = r

)

= 1

n
E

( n∑
j=1

Xj

∣∣∣∣ n∑
i=1

Xi = r

)
= r

n
. (10.17)

Moreover, using the fact that g(n−1)
0 = 0 for n � 2, we make the preliminary calcu-

lation that

pn−1

r−1∑
i=1

(
a + bi

r

)
gig

(n−1)
r−i = pn−1

r∑
i=1

(
a + bi

r

)
gig

(n−1)
r−i

= pn−1

r∑
i=1

(
a + bi

r

)
P

(
X1 = i,

n∑
j=2

Xj = r − i

)

= pn−1

r∑
i=1

(
a + bi

r

)
P

(
X1 = i,

n∑
j=1

Xj = r

)

= pn−1

r∑
i=1

(
a + bi

r

)
P

(
X1 = i

∣∣∣∣ n∑
j=1

Xj = r

)
g(n)r

= pn−1E

(
a + bX1

r

∣∣∣∣ n∑
j=1

Xj = r

)
g(n)r

= pn−1

(
a + b

n

)
g(n)r = png

(n)
r ,

where (10.17) is used in the final step. Therefore, the identity (10.16) yields

sr =
∞∑
n=1

png
(n)
r = p1gr +

∞∑
n=2

png
(n)
r

= (a + b)p0gr +
∞∑
n=2

r−1∑
i=1

(
a + bi

r

)
gipn−1g

(n−1)
r−i

= (a + b)s0gr +
r−1∑
i=1

(
a + bi

r

)
gi

∞∑
n=2

pn−1g
(n−1)
r−i

= (a + b)grs0 +
r−1∑
i=1

(
a + bi

r

)
gisr−i

=
r∑

i=1

(
a + bi

r

)
gisr−i .
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Remark 10.16. In the case of both the FFT method and the Panjer recursion,
an initial discretization of the loss df G generally has to be made, which intro-
duces an approximation error. An in-depth discussion of discretization errors for the
computation of compound distributions is to be found in Grübel and Hermesmeier
(1999, 2000) (see also references therein for a comparison of these approaches). A
slight correction to Theorem 10.15 has to be made if g0 = P(X1 = 0) > 0. One
obtains s0 = ∑∞

k=0 pkg
k
0 and, for r � 1, sr = (1 − ag0)

−1∑r
i=1(a + bi/r)gisr−i

(see Mikosch 2004, Theorem 3.3.10). In Notes and Comments we give further ref-
erences.

Example 10.17 (Panjer recursion for the CPoi(100, LN(1, 1)) case). In Fig-
ure 10.5 we have included the Panjer approximation for the CPoi(100, LN(1, 1))
case. In order to apply Theorem 10.15, we first have to discretize the lognormal df.
An equispaced discretization of about 0.5 yields the Panjer approximation in Fig-
ure 10.5, which is excellent for quantile values around 0.999, relevant for applica-
tions. The 99.9% quantile estimate based on the Panjer recursion is 735, a value very
close to the GPD estimate. Far out in the tail, beyond 0.999, say, rounding errors
become important (the tail drifts off) and one has to be more careful; in Notes and
Comments we give some references on how to improve recursive methods far out
in the tail.

10.2.4 Poisson Mixtures

Poisson mixture models have been used in both credit and operational risk modelling;
for an example in the latter case see Cruz (2002, Section 5.2.2) as well as the book
jacket, which features a negative binomial distribution (a particular Poisson mixture
model). Poisson mixtures have been used by actuaries for a long time; the negative
binomial made its first appearance in the actuarial literature as the distribution of
the number of repeated accidents suffered by an individual in a given time span (see
Seal 1969).

In Example 10.5 we introduced the compound Poisson model CPoi(λ,G), where
N ∼ Poi(λ) counts the number of losses and G is the loss severity df. One disad-
vantage of the Poisson frequency distribution is that var(N) = λ = E(N), whereas
count data often exhibit so-called over-dispersion, meaning that they indicate a
model where var(N) > E(N). A standard way to achieve this is by mixing the
intensity λ over some df FΛ(λ), i.e. assume that λ > 0 is a realization of a positive
rv Λ with this df so that, by definition,

pN(k) = P(N = k) =
∫ ∞

0
P(N = k | Λ = λ) dFΛ(λ)

=
∫ ∞

0
e−λ λ

k

k! dFΛ(λ). (10.18)

Definition 10.18 (the mixed Poisson distribution). The rv N with df (10.18) is
called a mixed Poisson rv with structure (or mixing) distribution FΛ.

A consequence of the next result is that mixing leads to over-dispersion.
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Proposition 10.19. Suppose that N is mixed Poisson with structure df FΛ. Then
E(N) = E(Λ) and var(N) = E(Λ) + var(Λ), i.e. for Λ non-degenerate, N is
over-dispersed.

Proof. One immediately obtains

E(N) =
∞∑
k=0

kpN(k) =
∫ ∞

0

∞∑
k=0

ke−λ λ
k

k! dFΛ(λ) =
∫ ∞

0
λ dFΛ(λ) = E(Λ).

And, similarly,

E(N2) =
∞∑
k=0

k2pN(k) = E(Λ) + E(Λ2),

so the result follows.

We now give a concrete example of a mixed Poisson distribution, which is partic-
ularly important in both operational risk and credit risk modelling. Indeed we have
already used the following result when describing the industry credit risk model
CreditRisk+ in Section 8.4.2.

Proposition 10.20 (negative binomial as Poisson mixture). Suppose that the rv
N has a mixed Poisson distribution with a gamma-distributed mixing variable Λ ∼
Ga(α, β). Then N has a negative binomial distribution N ∼ NB(α, β/(β + 1)).

Proof. Using the definition of a gamma distribution in Section A.2.4 we have

P(N = k) =
∫ ∞

0

βα

Γ (α)

λk

k! e−λλα−1e−βλ dλ = βα

k!Γ (α)

∫ ∞

0
λα+k−1e−(β+1)λ dλ.

Substituting u = (β + 1)λ, the integral can be evaluated to be∫ ∞

0
(β + 1)−(α+k)uα+k−1e−u du = Γ (α + k)

(β + 1)α+k
.

This yields

P(N = k) =
(

β

β + 1

)α( 1

β + 1

)k
Γ (α + k)

k!Γ (α)
.

Using the relation Γ (α + k) = (α + k − 1) · · ·αΓ (α), we see that this is equal to
the probability mass function of a negative binomial rv with p := β/(β + 1) (see
Section A.2.7).

Recall the definition of compound sums from Section 10.2.2 (Assumption 10.3
and Proposition 10.4). In the special case of mixed Poisson rvs, compounding leads
to so-called compound mixed Poisson distributions. There is much literature on dfs
of this type (see Notes and Comments).
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10.2.5 Tails of Aggregate Loss Distributions

In Section 7.1.2 we defined the class of rvs with regularly varying or power tails. If
the (claim size) dfG is regularly varying with index α > 0, then there exists a slowly
varying function L (Definition 7.7) such that Ḡ(x) = 1 − G(x) = x−αL(x). The
next result shows that, for a wide class of counting dfs (pN(k)), the df of the
compound sum SN , FSN , inherits the power-like behaviour of G.

Theorem 10.21 (power-like behaviour of compound-sum distribution). Sup-
pose that SN is a compound sum and that there exists an ε > 0 such that∑∞

k=0(1 + ε)kpN(k) < ∞. If Ḡ(x) = x−αL(x) with α � 0 and L slowly vary-
ing, then

lim
x→∞

F̄SN (x)

Ḡ(x)
= λ,

so F̄SN inherits the power-like behaviour of Ḡ.

Proof. This result holds more generally for subexponential dfs; a proof together with
further discussions can be found in Embrechts, Klüppelberg and Mikosch (1997,
Section 1.3.3).

Example 10.22 (negative binomial). It is not difficult to show that the negative
binomial case satisfies the condition on N in Theorem 10.21. The kind of argument
required is to be found in Embrechts, Klüppelberg and Mikosch (1997, Exam-
ple 1.3.11). Hence, if Ḡ(x) = x−αL(x), the tail of the compound-sum df behaves
like the tail of G, i.e.

F̄SN (x) ∼ α

β
Ḡ(x), as x → ∞.

(For details, see Embrechts, Klüppelberg and Mikosch (1997, Section 1.3.3).)

Under the conditions of Theorem 10.21 the asymptotic behaviour of F̄SN (x) in
the case of a Pareto loss df is again Pareto with the same index. This is clearly seen
in Figure 10.6 in the linear behaviour of the simulated losses as well as the fitted
GPD. In the case of Figure 10.5, one can show that F̄SN (x) decays like a lognormal
tail; see the reference given in the proof of Theorem 10.21 for details. Note that the
GPD is able to pick up the features of the tail in both cases.

10.2.6 The Homogeneous Poisson Process

In the previous sections we looked at counting rvsN over a fixed time interval [0, 1],
say. Without any additional difficulty, we could have looked at N(t) counting the
number of events in [0, t] for t � 0. In the Poisson case this would correspond to
N(t) ∼ Poi(λt); hence, for fixed t and on replacing λ by λt , all of the previous
results concerning Poi(λ) rvs can be suitably adapted.

In this section we want to integrate the rvs N(t), t � 0, into a stochastic process
framework. The less mathematically trained reader should realize that there is a big
difference between a family of rvs indexed by time for which we only specify the
one-dimensional dfs (which is what we have done so far) and a stochastic process
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Figure 10.7. Sample path of a counting process.

with a specific structure in which these rvs are embedded. This difference is akin to
the difference between marginal and joint distributions, a topic we have highlighted
as very important in Chapter 5 through the notion of copulas; of course, in the
stochastic process case, there also has to be some probabilistic consistency across
time. In a certain sense, the finite-dimensional problem of Chapter 5 becomes an
infinite-dimensional problem.

After these words of warning on the difference between rvs and stochastic pro-
cesses, we now take some methodological shortcuts to arrive at our goal. The inter-
ested reader wanting to learn more will have to delve deeper into the mathematical
background of stochastic processes in general and counting processes in particular.
The Notes and Comments contain some references.

Definition 10.23 (counting processes). A stochastic process N = (N(t))t�0 is
a counting process if its sample paths are right continuous with left limits existing,
and there exists a sequence of rvs T0 = 0, T1, T2, . . . tending almost surely to ∞
such that N(t) = ∑∞

k=1 I{Tk�t}.

A typical realization of such a process is given in Figure 10.7. We now define the
homogeneous Poisson process as a special counting process.

Definition 10.24 (homogeneous Poisson process). A stochastic process N =
(N(t))t�0 is a homogeneous Poisson process with intensity (rate) λ > 0 if the
following properties hold:

(i) N is a counting process;

(ii) N(0) = 0, almost surely;

(iii) N has stationary and independent increments; and

(iv) for each t > 0, N(t) ∼ Poi(λt).
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Figure 10.8. Ten realizations of a homogeneous Poisson process with λ = 100.

Remark 10.25. Note that conditions (iii) and (iv) imply that, for 0 < u < v < t ,
the rvs N(v) − N(u) and N(t) − N(v) are independent and that, for k � 0,

P(N(v) − N(u) = k) = P(N(v − u) = k)

= e−λ(v−u) (λ(v − u))k

k! .

The rv N(v) − N(u) counts the number of events (claims, losses) in the interval
(u, v]; by stationarity, it has the same df as N(v − u). In Figure 10.8 we have
generated 10 realizations of a homogeneous Poisson process on [0, 1] with λ = 100.
Note the rather narrow band within which the various sample paths fall.

For practical purposes, the following result contains the main properties of the
homogeneous Poisson process.

Theorem 10.26 (characterizations of the homogeneous Poisson process). Sup-
pose that N is a counting process. Then the following statements are equivalent:

(1) N is a homogeneous Poisson process with rate λ > 0;

(2) N has stationary and independent increments and

P(N(t) = 1) = λt + o(t), as t ↓ 0,

P (N(t) � 2) = o(t), as t ↓ 0;
(3) the inter-event times (�k = Tk − Tk−1)k�1 are iid with df Exp(λ); and

(4) for all t > 0,N(t) ∼ Poi(λt) and, given that (N(t) = k), the occurrence times
T1, T2, . . . , Tk have the same distribution as the ordered sample from k inde-
pendent rvs, uniformly distributed on [0, t]; as a consequence, we can write
the conditional joint density as

fT1,...,Tk |N(t)=k(t1, . . . , tk) = k!
tk
I{0<t1<···<tk<t}.

Proof. Many standard textbooks on stochastic processes contain proofs of this
important theorem (see, for example, Mikosch 2004; Resnick 1992).
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Discussion. Statement (2) in Theorem 10.26 implies that λ can indeed be inter-
preted as a rate or intensity: λ = limt↓0(1/t)P (N(t) = 1). Moreover, the same
statement implies that a homogeneous Poisson process does not allow for clustering
of events: limt↓0 P(N(t) � 2) = 0. Statement (3) gives an event-time definition of
a homogeneous Poisson process. It follows immediately that the first event-time
has an Exp(λ) df: P(T1 > t) = P(N(t) = 0) = e−λt , t � 0. Statement (3), how-
ever, goes well beyond this by stating that the inter-event times �k are iid with
�k ∼ Exp(λ). This leads to a straightforward way to simulate a stream of loss
events from a homogeneous Poisson process with rate λ. Moreover, this equivalent
definition immediately yields a generalization by assuming that the �k are still iid
but that �k ∼ F�, a general df. The resulting process is a so-called renewal process
(note that the only Markovian renewal process is the homogeneous Poisson process).

Finally, statement (4) yields an easy algorithm to generate the occurrences of
homogeneous Poisson times over the interval [0, t] given that we have in total
k events till t—we simply generate k uniform rvs on [0, t] and order them.

Multivariate Poisson processes. In many applications we want to model the fre-
quencies of different loss types with a number of Poisson processes while consid-
ering possible dependence between loss frequencies for different loss types. More
generally, we might want to construct a number of compound Poisson processes
where loss severities for the different business lines were also dependent. A natural
approach to modelling this dependence is to assume that all losses can be related
to a series of underlying and independent Poisson shock processes. In insurance
these shocks might be natural catastrophes; in credit risk modelling they might be
a variety of economic events, such as local or global recessions; in operational risk
modelling they might be the failure of various IT systems. When a shock occurs this
may cause losses of several different types; the common shock causes the numbers
of losses of each type to be dependent. See Lindskog and McNeil (2003), Pfeifer
and Nešlehová (2004) and Chavez-Demoulin, Embrechts and Nešlehová (2005) for
models of this kind.

10.2.7 Processes Related to the Poisson Process

Using the fundamental building block of the homogeneous Poisson process, one can
construct more general counting processes that are useful for loss-event modelling
in finance and insurance. Such generalizations include the following.

Renewal processes (mentioned above). The exponential waiting time distribution
is replaced by a general df F�.

Inhomogeneous Poisson processes. The constant intensityλ is replaced by a deter-
ministic function λ(·).

Mixed Poisson processes. The deterministic constant intensity λ is replaced by an
rv Λ.

Doubly stochastic or Cox processes. λ is replaced by a stochastic process {λt :
t � 0} in accordance with notation used in Chapter 9 (see, for example, Defini-
tion 9.16).
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Self-exciting or Hawkes processes. λ is replaced by a stochastic process depend-
ing only on previous event times. See Section 7.4.3 for a concrete example.

Below, we highlight some features of some of these processes.

Inhomogeneous Poisson process.

Definition 10.27 (inhomogeneous Poisson). A counting process N is an inhomo-
geneous Poisson process if, for some deterministic function λ(s) � 0, the following
conditions hold:

(i) N(0) = 0, almost surely;

(ii) N has independent increments; and

(iii) for all t � 0,

P(N(t + h) − N(t) = 1) = λ(t)h + o(h), h ↓ 0,

P (N(t + h) − N(t) � 2) = o(h), h ↓ 0.

The function λ(·) is referred to as the intensity or rate function. The integral
Λ(t) = ∫ t

0 λ(s) ds is referred to as the intensity measure (or cumulative intensity
function).

Remark 10.28. A characterization theorem, similar to Theorem 10.26, can be
derived. In particular, we find that, for 0 < s < t ,N(t)−N(s) ∼ Poi(Λ(t)−Λ(s)).

The inhomogeneous Poisson process is a useful tool in loss modelling whenever a
deterministic trend or seasonality component is to be modelled in the loss frequency.
The next example also shows that this process naturally emerges as a counting
process for record losses.

Example 10.29 (records). The world of finance and insurance abounds with state-
ments on record events: the largest single day drop in the dollar/yen, the most
expensive hurricane, the three best fund managers during the last year, the second
largest loss due to internal fraud, the biggest one-day change in the credit spread of
a particular company, etc. Likewise, the world of records is intimately related to the
(general) theory of Poisson processes. In Notes and Comments we shall give several
references for this. Below we indicate how an easy example related to a question on
records leads to an inhomogeneous Poisson process as a model.

Suppose that the loss rvs Xi � 0 are iid with density function f (x) > 0, x � 0.
Define the counting process N :

N(t) =
∞∑
i=1

I{Xi�t and Xi>Xi−j , j=1,...,i−1}.
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N(t) counts the number of records in the sequence (Xi)i�1 of size less than t

and (N(t)) is referred to as the record process. It follows that, for h, t > 0,

P(N(t + h) − N(t) � 1) =
∞∑
i=1

P(Xi ∈ (t, t + h] and Xi−1 � t, . . . , X1 � t)

=
∞∑
i=1

(F (t + h) − F(t))(F (t))i−1

= F(t + h) − F(t)

1 − F(t)

= f (t)

1 − F(t)
h + o(h), as h ↓ 0.

Moreover, for h, t > 0:

P(N(t + h) − N(t) � 2)

�
∑
i<j

P (X1 � t, . . . , Xi−1 � t, Xi ∈ (t, t + h],
Xi+1 � t + h, . . . , Xj−1 � t + h, Xj ∈ (t, t + h])

=
(∫ t+h

t

f (s) ds

)2 ∑
i<j

(F (t))i−1(F (t))j−i−1

= o(h2), as h ↓ 0.

From these calculations one deduces that the record process N is inhomogeneous
Poisson with rate function λ(t) = f (t)/(1 − F(t)), the so-called hazard rate of F ,
a notion that we encountered in Section 9.2.1.

Suppose now that, as in most practical cases, Λ(t) is strictly increasing, so
Λ(Λ−1(t)) = Λ−1(Λ(t)) = t . We can then always transform an inhomogeneous
Poisson process N with integrated intensity Λ into a homogeneous Poisson process
with intensity 1 by a change of time.

Proposition 10.30 (time change, operational time). Suppose that N is an in-
homogeneous Poisson process with Λ strictly increasing and define, for t � 0,
Ñ(t) = N(Λ−1(t)), then Ñ is homogeneous Poisson with intensity 1.

Proof. For t > 0 fixed and k � 0,

P(Ñ(t) = k) = P(N(Λ−1(t)) = k) = e−Λ(Λ−1(t)) (Λ(Λ
−1(t)))k

k! = e−t t
k

k! ,
so Ñ(t) ∼ Poi(t). By definition, the increments of Ñ are independent; moreover,
for 0 < u < v we have that

P(Ñ(v) − Ñ(u) = k) = P(N(Λ−1(v)) − N(Λ−1(u)) = k)

= e−(Λ(Λ−1(v))−Λ(Λ−1(u))) (Λ(Λ
−1(v)) − Λ(Λ−1(u)))k

k!
= e−(v−u) (v − u)k

k! ,

from which stationarity follows.
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This is one of the many examples in insurance and finance where a more com-
plicated process (N) can be reduced to a standard (easier) model (Ñ) through
the careful choice of a new time clock (a so-called time change construction)
(see also Section 9.2.3 on credit risk). Proposition 10.30 can be formulated more
generally for Λ not strictly increasing and the converse also holds. Proposi-
tion 10.30 justifies the common simplifying assumption that a loss frequency
model is homogeneous (unit rate) Poisson, albeit in many cases only in opera-
tional time. The original time-scale of N is slowed down or speeded up in such a
way that, on average, Ñ has one claim per time unit, whereas N has, on average,
Λ(1) claims.

Remark 10.31. A standard way in which an inhomogeneous Poisson process
can be obtained from a homogeneous Poisson process is by random sampling.
Suppose an intensity function λ satisfies λ(s) � c < ∞ for s � 0. Start from
a homogeneous Poisson process with rate c > 0 and denote its arrival times
by T0 = 0, T1, T2, . . . . Construct a new process Ñ from (Ti)i�0 through dele-
tion of each Ti independently of the other Tj with probability 1 − (λ(Ti)/c).
The so-called thinned counting process Ñ consists of the remaining (undeleted)
points. It can be shown that this process is inhomogeneous Poisson with intensity
function λ(·).

Mixed Poisson process. The mixed Poisson rvs of Section 10.2.4 can be embedded
into a so-called mixed Poisson process. A single realization of such a process can-
not be distinguished through statistical means from a realization of a homogeneous
Poisson process; indeed, to simulate a sample path, one first draws a realization
of the random intensity λ = Λ(ω) and then draws the sample path of the homo-
geneous Poisson process with rate λ. (Here Λ denotes an rv and not the intensity
measure in the inhomogeneous Poisson case above.) Only by repeating this simu-
lation more frequently does one see the different probabilistic nature of the mixed
Poisson process: compare Figure 10.9 with Figure 10.8. In the former we have
simulated 10 sample paths from a mixed Poisson process with mixing variable
Λ ∼ Ga(100, 1) so that E(Λ) = 100. Note the much greater variability in the
paths.

Example 10.32. When counting processes are used in credit risk modelling the times
Tk typically correspond to credit events, for instance default or downgradings. More
precisely, a credit event can be constructed as the first jump of a counting processN .
The df of the time to the credit event can be easily derived by observing that P(T1 >

t) = P(N(t) = 0). This probability can be calculated in a straightforward way for
a homogeneous Poisson process with intensity λ; we obtain P(N(t) = 0) = e−λt .
When N is a mixed Poisson process with mixing df FΛ we obtain

P(T1 > t) = P(N(t) = 0) =
∫ ∞

0
e−tλ dFΛ(λ) = F̂Λ(t),
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Figure 10.9. Ten realizations of a mixed Poisson process with Λ ∼ Ga(100, 1).

the Laplace–Stieltjes transform of FΛ in t . In the special case when Λ ∼ Ga(α, β),
the negative binomial case treated in Proposition 10.20, one finds that

P(T1 > t) =
∫ ∞

0
e−tλ βα

Γ (α)
λα−1e−βλ dλ

= βα

Γ (α)
(t + β)−α

∫ ∞

0
e−ssα−1 ds

= βα(t + β)−α, t � 0,

so that T1 has a Pareto distribution T1 ∼ Pa(α, β) (see Section A.2.8).

Processes with stochastic intensity. A further important class of models is obtained
when λ in the homogeneous Poisson case is replaced by a general stochastic pro-
cess (λt ), yielding a two-tier stochastic model or so-called doubly stochastic process.

For example, one could take λt to be a diffusion or, alternatively, a finite-state
Markov chain. The latter case gives rise to a regime-switching model: in each state of
the Markov chain the intensity has a different constant level and the process remains
in that state for an exponential length of time, before jumping to another state. In
Figure 10.10 we have simulated the sample path of such a process randomly switch-
ing between λ = 10 and λ = 100. In Section 9.2.3 we looked at doubly stochastic
random times, which correspond to the first jump of a doubly stochastic Poisson
process.

Notes and Comments

The story behind the name insurance analytics is told in Embrechts (2002). A good
place to start a search for actuarial literature is the website of the International Actu-
arial Association: www.actuaries.org. Several interesting books can be found on the
website of the Society of Actuaries, www.soa.org (whose postal address is, coinci-
dentally, 475 North Martingale Rd #600, Schaumburg, Illinois). A standard Society
of Actuaries textbook on actuarial mathematics is Bowers et al. (1986); financial
economics for actuaries is to be found in Panjer et al. (1998). For our purposes excel-
lent texts are Mikosch (2004) and Partrat and Besson (2004). Rolski et al. (1999)
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Figure 10.10. Realization of a counting process with
a regime switch from λ = 10 to λ = 100.

gives a broad, more technical overview of the relevant stochastic process models. In
Chapter 6 we have given several references to actuarial tools relevant for the study
of risk measures; key words there were premium principles (Section 6.1), comono-
tonicity (Sections 5.1.6 and 6.2.2) and Fréchet bounds (Sections 5.1.6 and 6.2).
Finally, an overview of the state of the art of actuarial modelling is to be found in
Teugels and Sundt (2004).

Actuarial textbooks dealing in particular with the modelling of loss distributions in
insurance are Hogg and Klugman (1984) and Klugman, Panjer and Willmot (1998).
Besides the general references above, an early textbook discussion of the use of
numerical methods for the calculation of the df of total loss amount rvs is Feilmeier
and Bertram (1987); Bühlmann (1984) contains a first comparison between the FFT
method and Panjer recursion. More extensive comparisons, taking rounding and dis-
cretization errors into account, are found in Grübel and Hermesmeier (1999, 2000).
A discussion of the use of the FFT in insurance is given in Embrechts, Grübel and
Pitts (1993). Algorithms for the FFT are freely available on the Web, as a search will
quickly reveal. The original paper by Panjer (1981) also contains a density version of
Theorem 10.15. For an application of Panjer recursion to credit risk measurement
within the CreditRisk+ framework, see Credit Suisse Financial Products (1997).
Based on Giese (2003), Haaf, Reiss and Schoenmakers (2004) propose an alterna-
tive recursive method. For more recent work on Panjer recursion, especially in the
multivariate case, see, for example, Hesselager (1996) and Sundt (1999, 2000).

Asymptotic approximation methods going beyond the normal approximation
(10.13) are known in statistics under the names Berry–Esséen, Edgeworth and
saddle-point. The former two are discussed, for example, in Embrechts, Klüppelberg
and Mikosch (1997) and are of more theoretical importance. The saddle-point tech-
nique is very useful: see Jensen (1995) for an excellent summary, and Embrechts
et al. (1985) for an application to compound distributions. Gordy (2002) discusses
the importance of saddle-point methods for credit risk modelling, again within the



10.2. Elements of Insurance Analytics 493

context of CreditRisk+. Wider applications within risk management can be found
in Studer (2001) and Glasserman (2003a,b)

Poisson mixture models with insurance applications in mind are summarized in
Grandell (1997) (see also Bening and Korolev 2002). In order to enter more deeply
into the world of counting processes, one has to study the theory of point processes.
Very comprehensive and readable accounts are Daley and Vere-Jones (2003) and
Karr (1991).A study of this theory is both mathematically demanding and practically
rewarding. Such models are being used increasingly in credit risk. The notion of
time change is fundamental to many applications in insurance and finance; for an
example of how it can be used to model operational risk, see Embrechts, Kaufmann
and Samorodnitsky (2004). For its introduction into finance, see Ané and Geman
(2000) and Dacorogna et al. (2001). An excellent survey is to be found in Peeters
(2004).

What have we not included in our brief account of the elements of insurance
analytics? We have not treated ruin theory and the general stochastic process theory
of insurance risk, credibility theory, dynamic financial analysis, also referred to as
dynamic solvency testing, and reinsurance, to name but a few omissions.

The stochastic process theory of insurance risk has a long tradition. The first
fundamental summary came through the pioneering work of Cramér (1994a,b).
Bühlmann (1970) made the field popular to several generations of actuaries. This
early work has now been generalized in every way possible. A standard textbook on
ruin theory is Asmussen (2000). The modelling of large claims and its consequences
for ruin estimates can be found in Embrechts, Klüppelberg and Mikosch (1997).

Credibility theory concerns premium calculation for non-homogeneous portfolios
and has a very rich history rooted in non-life insurance mathematics. Its basic con-
cepts were first developed by American actuaries in the 1920s; pioneering papers
in this early period were Mowbray (1914) and Whitney (1918). Further important
work is found in the papers of Bailey (1945), Robbins (1955, 1964) and Bühlmann
(1967, 1968, 1971). An excellent review article tracing the historical development
of the basic ideas is Norberg (1979); see also Jewell (1990) for a more recent review.
Various textbook versions exist: Bühlmann and Gisler (2005) give an authoritative
account of its actuarial usage and hint at applications to financial risk management.

Dynamic financial analysis (DFA), also referred to as dynamic solvency testing
(DST), is a systematic approach, based on large-scale computer simulations, for
the integrated financial modelling of non-life insurance and reinsurance companies
aimed at assessing the risks and benefits associated with strategic decisions (see
Blum 2005; Blum and Dacorogna 2004). An easy introduction can be found in
Kaufmann, Gadmer and Klett (2001). The interested reader can consult the website
of the Casualty Actuarial Society (www.casact.org/research/drm).



Appendix

A.1 Miscellaneous Definitions and Results

A.1.1 Type of Distribution

Definition A.1 (equality in type). Two rvs V and W (or their distributions) are
said to be of the same type if there exist constants a > 0 and b ∈ R such that
V

d= aW + b.

In other words, distributions of the same type are obtained from one another by
location and scale transformations.

A.1.2 Generalized Inverses and Quantiles

Let T be an increasing function, i.e. a function satisfying y > x =⇒ T (y) � T (x),
with strict inequality on the right-hand side for some pair y > x. Thus an increasing
function may have flat sections; if we want to rule this out, we stipulate that T is
strictly increasing, so y > x ⇐⇒ T (y) > T (x). We first note some useful facts
concerning what happens when increasing transformations are applied to rvs.

Lemma A.2.

(i) If X is an rv and T is increasing, then {X � x} ⊂ {T (X) � T (x)} and

P(T (X) � T (x)) = P(X � x) + P(T (X) = T (x), X > x). (A.1)

(ii) If F is the df of the rv X, then P(F(X) � F(x)) = P(X � x).

The second statement follows from (A.1) by noting that, for any x, the event given
by {F(X) = F(x), X > x} corresponds to a flat piece of the df F and thus has zero
probability mass.

The generalized inverse of an increasing function T is defined to be T←(y) =
inf{x : T (x) � y}, where we use the convention inf ∅ = ∞. Strictly speaking,
this generalized inverse is known as the left-continuous generalized inverse. The
following basic properties may be verified quite easily.

Proposition A.3 (properties of the generalized inverse). For T increasing, the
following hold.

(i) T← is an increasing, left-continuous function.

(ii) T is continuous ⇐⇒ T← is strictly increasing.

(iii) T is strictly increasing ⇐⇒ T← is continuous.

For the remaining properties assume additionally that T←(y) < ∞.
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Figure A.1. Calculation of quantiles in tricky cases. The first case (a) is a continuous df,
but the flat piece corresponds to an interval with zero probability mass. In the second case (b)
there is an atom of probability mass such that, for X with df F , we have P(X = qα(F )) > 0.

(iv) If T is right-continuous, T (x) � y ⇐⇒ T←(y) � x.

(v) T← ◦ T (x) � x.

(vi) T ◦ T←(y) � y.

(vii) T is strictly increasing =⇒ T← ◦ T (x) = x.

(viii) T is continuous =⇒ T ◦ T←(y) = y.

We apply the idea of generalized inverses to distribution functions. If F is a df,
then the generalized inverse F← is known as the quantile function of F . In this
case, for α ∈ (0, 1), we also use the alternative notation qα(F ) = F←(α) for the
α-quantile of F . Figure A.1 illustrates the calculation of quantiles in two tricky
cases.

In general, since a df need not be strictly increasing (part (a) of the figure), we have
F← ◦ F(x) � x, by Proposition A.3(v). But the values x, where F← ◦ F(x) �= x,
correspond to flat pieces and have zero probability mass. That is, we have the fol-
lowing useful fact.

Proposition A.4. If X is an rv with df F , then P(F← ◦ F(X) = X) = 1.

A.1.3 Karamata’s Theorem

The following result for regularly varying functions is used in Chapter 7. For more
details see Bingham, Goldie and Teugels (1987). Essentially, the result says that the
slowly varying function can be taken outside the integral as if it were a constant. Note
that the symbol “∼” indicates asymptotic equality here, i.e. if we write a(x) ∼ b(x)

as x → x0, we mean limx→x0 a(x)/b(x) = 1.

Theorem A.5 (Karamata’s Theorem). Let L be a slowly varying function which
is locally bounded in [x0,∞) for some x0 � 0. Then,

(a) for κ > −1,
∫ x

x0

tκL(t) dt ∼ 1

κ + 1
xκ+1L(x), x → ∞,

(b) for κ < −1,
∫ ∞

x

tκL(t) dt ∼ − 1

κ + 1
xκ+1L(x), x → ∞.
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A.2 Probability Distributions

The gamma and beta functions appear in the definitions of a number of these distri-
butions. The gamma function is

Γ (α) =
∫ ∞

0
xα−1e−x dx, α > 0, (A.2)

and satisfies the useful recursive relationship Γ (α + 1) = αΓ (α). The β function
is

β(a, b) =
∫ 1

0
xa−1(1 − x)b−1 dx, a, b > 0. (A.3)

It is related to the gamma function by β(a, b) = Γ (a)Γ (b)/Γ (a + b).

A.2.1 Beta

The rv X has a beta distribution, written X ∼ Beta(a, b), if its density is

f (x) = 1

β(a, b)
xa−1(1 − x)b−1, 0 < x < 1, a, b > 0, (A.4)

where β(a, b) is the beta function in (A.3). The uniform distributionX ∼ U(0, 1) is
obtained as a special case when a = b = 1. The mean and variance of the distribution
are, respectively, E(X) = α/(α + β) and var(X) = (αβ)/((α + β + 1)(α + β)2).

A.2.2 Exponential

The rv X has an exponential distribution, written X ∼ Exp(λ), if its density is

f (x) = λ exp(−λx), x > 0, λ > 0. (A.5)

The mean of this distribution is E(X) = λ−1 and the variance is var(X) = λ−2.

A.2.3 F

The rv X has an F distribution, written X ∼ F(ν1, ν2), if its density is

f (x) = 1

β( 1
2ν1,

1
2ν2)

(
ν1

ν2

)ν1/2
x(ν1−2)/2

(1 + ν1x/ν2)(ν1+ν2)/2
, x > 0, ν1, ν2 > 0.

(A.6)
The mean of this distribution isE(X) = ν2/(ν2 −2) provided that ν2 > 2. Provided
that ν2 > 4, the variance is

var(X) = 2

(
ν2

ν2 − 2

)2
ν1 + ν2 − 2

ν1(ν1 − 4)
.

A.2.4 Gamma

The rv X has a gamma distribution, written X ∼ Ga(α, β), if its density is

f (x) = βα

Γ (α)
xα−1 exp(−βx), x > 0, α > 0, β > 0, (A.7)

where Γ (α) denotes the gamma function in (A.2). Using the recursive property of
the gamma function, the mean and variance of the gamma distribution are easily
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calculated to be E(X) = α/β and var(X) = α/β2. For fitting a multivariate t dis-
tribution using the EM approach of Section 3.2.4 it is also useful to know that
E(lnX) = ψ(α) − ln(β), where ψ(k) = d ln(Γ (k))/dk is the digamma or psi
function.

An exponential distribution is obtained in the special case when α = 1. If X ∼
Ga(α, β) and k > 0, then kX ∼ Ga(α, β/k). For two independent gamma variates
X1 ∼ Ga(α1, β) andX2 ∼ Ga(α2, β)we have thatX1+X2 ∼ Ga(α1+α2, β). Note
also that, if X ∼ Ga( 1

2ν,
1
2 ), then X has a chi-squared distribution with ν degrees

of freedom, also written X ∼ χ2
ν .

A.2.5 Generalized Inverse Gaussian

The rv X has a generalized inverse Gaussian (GIG) distribution, written X ∼
N−(λ, χ,ψ), if its density is

f (x) = χ−λ(
√
χψ)λ

2Kλ(
√
χψ)

xλ−1 exp(− 1
2 (χx

−1 + ψx)), x > 0, (A.8)

where Kλ denotes a modified Bessel function of the third kind with index λ and the
parameters satisfy χ > 0, ψ � 0 if λ < 0; χ > 0, ψ > 0 if λ = 0; and χ � 0,
ψ > 0 if λ > 0. For more on this Bessel function see Abramowitz and Stegun
(1965).

The GIG density actually contains the gamma and inverse gamma densities as spe-
cial limiting cases, corresponding to χ = 0 and ψ = 0, respectively. In these cases
(A.8) must be interpreted as a limit, which can be evaluated using the asymptotic rela-
tions Kλ(x) ∼ Γ (λ)2λ−1x−λ as x → 0+ for λ > 0 and Kλ(x) ∼ Γ (−λ)2−λ−1xλ

as x → 0+ forλ < 0. The fact thatKλ(x) = K−λ(x) is also useful. In this way it can
be verified that, for λ > 0 andχ = 0,X ∼ Ga(λ, 1

2ψ). If λ < 0 andψ = 0, we have
X ∼ Ig(−λ, 1

2χ). The case λ = − 1
2 is known as the inverse Gaussian distribution.

Note that, in general, if Y ∼ N−(λ, χ,ψ), then 1/Y ∼ N−(−λ,ψ, χ).
For the non-limiting case when χ > 0 and ψ > 0 it may be calculated that

E(Xα) =
(
χ

ψ

)α/2
Kλ+α(

√
χψ)

Kλ(
√
χψ)

, α ∈ R, (A.9)

E(lnX) = dE(Xα)

dα

∣∣∣∣
α=0

. (A.10)

A.2.6 Inverse Gamma

The rv X has an inverse gamma distribution, written X ∼ Ig(α, β), if its density is

f (x) = βα

Γ (α)
x−(α+1) exp(−β/x), x > 0, α > 0, β > 0. (A.11)

Note that if Y ∼ Ga(α, β), then 1/Y ∼ Ig(α, β). Provided that α > 1, the
mean is E(X) = β/(α − 1), and provided that α > 2 the variance is var(X) =
β2/((α − 1)2(α − 2)). Moreover, E(lnX) = ln(β) − ψ(α).
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A.2.7 Negative Binomial

The rvN has a negative binomial distribution with parametersα > 0 and 0 < p < 1,
written X ∼ NB(α, p), if its probability mass function is

P(N = k) =
(
α + k − 1

k

)
pα(1 − p)k, k = 0, 1, 2, . . . , (A.12)

where
(
x
k

)
for x ∈ R and k ∈ N0 denotes an extended binomial coefficient defined

by
(
x
0

) = 1 and (
x

k

)
= x(x − 1) · · · (x − k + 1)

k! , k > 0.

The moments of this distribution are

E(N) = α(1 − p)/p and var(N) = α(1 − p)/p2.

For α = r ∈ N the rv N + r represents the waiting time until the rth success
in independent Bernoulli trials with success probability p, i.e. the total number of
trials that are required until we have r successes. For α = 1 the rv N + 1 is said to
have a geometric distribution.

A.2.8 Pareto

The rv X has a Pareto distribution, written X ∼ Pa(α, κ), if its df is

F(x) = 1 −
(

κ

κ + x

)α
, α, κ > 0, x � 0. (A.13)

Provided that α > n, the moments of this distribution are given by

E(Xn) = κnn!∏n
i=1(α − i)

.

A.2.9 Stable

The rvX has an α-stable distribution, writtenX ∼ St(α, β, γ, δ), if its characteristic
function is

φ(t) = E exp(itX) =
{

exp(−γ α|t |α(1 − iβ sign(t) tan(π/2)α)+ iδt), α �= 1,

exp(−γ |t |(1 + iβ sign(t)(2/π) ln |t |)+ iδt), α = 1,
(A.14)

where α ∈ (0, 2], β ∈ [−1, 1], γ > 0 and δ ∈ R. Note that there are various
alternative parametrizations of the stable distributions and we use a parametrization
of Nolan (2005, Definition 1.8). The case X ∼ St(α, 1, γ, 0) for α < 1 gives a dis-
tribution on the positive half-axis, which we refer to as a positive stable distribution.

A simulation algorithm for a standardized variate Z ∼ St(α, β, 1, 0) is given
in Nolan (2005, Theorem 1.19). In the case where α �= 1, X = δ + γZ has a
St(α, β, γ, δ) distribution; the case α = 1 is more complicated.
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A.3 Likelihood Inference

This appendix summarizes the mechanics of performing likelihood inference, but
omits theoretical details. A good starting reference for the theory is Casella and
Berger (2002), which we refer to in this appendix where relevant. Other useful books
include Serfling (1980), Lehmann (1983), Schervish (1995) and Stuart, Ord and
Arnold (1999), all of which give details concerning the famous regularity conditions
that are required for the asymptotic statements.

A.3.1 Maximum Likelihood Estimators

Suppose that the random vector X = (X1, . . . , Xn)
′ has joint probability density (or

mass function) in some parametric family fX(x; θ), indexed by a parameter vector
θ = (θ1, . . . , θp)

′ in a parameter space Θ . We consider our data to be a realization
of X for some unknown value of θ .

The likelihood function for the parameter vector θ given the data is L(θ; X) =
fX(X; θ) and the maximum likelihood estimator (MLE) θ̂ is the value of θ max-
imizing L(θ; X), or equivalently the value maximizing the log-likelihood function
l(θ; X) = lnL(θ; X). We will also write this estimator as θ̂n when we want to
emphasize its dependence on the sample size n.

For large n we expect that the estimate θ̂n should be close to the true value θ ,
and various well-known asymptotic results give information about the quality of
the estimator in large samples. In describing these results we consider the classical
situation where X is assumed to be a vector of iid components with univariate density
f so that

lnL(θ; X) = ln
n∏

i=1

f (Xi; θ) =
n∑

i=1

lnL(θ;Xi).

A.3.2 Asymptotic Results: Scalar Parameter

We consider the case when p = 1 and we have a single parameter θ . Under suitable
regularity conditions (see, for example, Casella and Berger 2002, p. 516), θ̂n may be
shown to be a consistent estimator of θ (i.e. tending to θ in probability as the sample
size n is increased). Notable among the regularity conditions are that θ should be an
identifiable parameter (θ �= θ̃ ⇒ f (x; θ) �= f (x; θ̃ )), the true parameter θ should
be an interior point of the parameter spaceΘ , and that the support of f (x; θ) should
not depend on θ .

Under stronger regularity conditions (see again Casella and Berger 2002, p. 516),
θ̂n may be shown to be an asymptotically efficient estimator of θ , so it satisfies

√
n(θ̂n − θ)

d−→ N(0, I (θ)−1), (A.15)

where I (θ) denotes the Fisher information of an observation, defined by

I (θ) = E

(
∂

∂θ
lnL(θ;X)

)2

. (A.16)
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Under the regularity conditions, the Fisher information can generally also be calcu-
lated as

I (θ) = −E

(
∂2

∂θ2 lnL(θ;X)
)
. (A.17)

Asymptotic efficiency entails both asymptotic normality and consistency. More-
over, it implies that, in a large enough sample, var(θ̂) ≈ 1/(nI (θ)), where the right-
hand side is the so-called Cramér–Rao lower bound, which is a lower bound for the
variance of an unbiased estimator of θ constructed from an iid sample X1, . . . , Xn.
The MLE is efficient in the sense that it attains this lowest possible bound asymp-
totically.

A.3.3 Asymptotic Results: Vector of Parameters

When p > 1 and we have a vector of parameters to estimate, similar results apply.
The ML estimator θ̂n of θ is asymptotically efficient in the sense that, as n → ∞
and under suitable regularity conditions,

√
n(θ̂n − θ)

d−→ Np(0, I (θ)−1), (A.18)

where I (θ) denotes the expected Fisher information matrix for a single observation,
given, in analogy to (A.16) and (A.17), by

I (θ) = E

(
∂

∂θ
lnL(θ;X) ∂

∂θ ′ lnL(θ;X)
)

= −E

(
∂2

∂θ∂θ ′ lnL(θ;X)
)
.

The notation employed here should be taken to mean a matrix with components

I (θ)ij = E

(
∂

∂θi
lnL(θ;X) ∂

∂θj
lnL(θ;X)

)
= −E

(
∂2

∂θi∂θj
lnL(θ;X)

)
.

The convergence result (A.18) implies that, for n sufficiently large, we have

θ̂n ∼ Np(θ , n
−1I (θ)−1), (A.19)

and this can be used to construct asymptotic confidence regions for θ or intervals
for any component θj . In practice, it is often easier to approximate I (θ) with the
observed Fisher information matrix

Ī (θ) = −1

n

n∑
i=1

∂2

∂θ∂θ ′ lnL(θ;Xi)

for whatever realization ofX has been obtained. This should converge to the expected
information matrix by the law of large numbers and it has been suggested that in
some situations this may even lead to more accurate inference (Efron and Hinkley
1978). In either case, the information matrices depend on the unknown parameters
of the model and are usually estimated by taking I (θ̂) or Ī (θ̂).
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A.3.4 Wald Test and Confidence Intervals

From (A.19) we have that, for n sufficiently large,

Z := θ̂j − θj

se(θ̂j )
∼ N(0, 1), (A.20)

where se(θ̂j ) denotes an asymptotic standard error (estimate of the asymptotic
standard deviation) for θ̂j , given by

se(θ̂j ) =
√
n−1I (θ̂)−1

jj or
√
n−1Ī (θ̂)−1

jj .

Equation (A.20) can be used to test the null hypothesis H0 : θj = θj,0 for some
value of interest θj,0 against the alternative H1 : θj �= θj,0. For an asymptotic test
of size α we would reject H0 if |Z| � Φ−1(1 − 1

2α).
An asymptotic 100(1 − α)% confidence interval for θj consists of those values

θj,0 for which the null hypothesis is not rejected and it is given by

(θ̂j − se(θ̂j )Φ
−1(1 − 1

2α), θ̂j + se(θ̂j )Φ
−1(1 − 1

2α)). (A.21)

A.3.5 Likelihood Ratio Test and Confidence Intervals

Now consider testing the null hypothesis H0 : θ ∈ Θ0 against the alternative
H1 : θ ∈ Θc

0, where Θ0 ⊂ Θ . We consider the likelihood ratio test statistic

λ(X) = supθ∈Θ0
L(θ; X)

supθ∈Θ L(θ; X)

and assume, as before, that X1, . . . , Xn are iid and that appropriate regularity
conditions apply. Under the null hypothesis it can be shown that, as n → ∞,
−2 ln λ(X) ∼ χ2

ν , where the degrees-of-freedom parameter ν of the chi-squared
distribution is essentially given by the number of free parameters specified by Θ

minus the number of free parameters specified by the null hypothesis θ ∈ Θ0.
For example, suppose that we partition θ so that θ ′ = (θ ′

1, θ
′
2), where θ1 has

dimension q and θ2 has dimension p − q. We wish to test H0 : θ1 = θ1,0 against
H1 : θ1 �= θ1,0. Writing the likelihood as L(θ1, θ2), the likelihood ratio test statistic
satisfies

−2 ln λ(X) = −2(lnL(θ1,0, θ̂2,0; X) − lnL(θ̂1, θ̂2; X)) ∼ χ2
q ,

asymptotically, where θ̂1 and θ̂2 are the unconstrained MLEs of θ1 and θ2, and θ̂2,0

is the constrained MLE of θ2 under the null hypothesis. We would reject H0 if
−2 ln λ(X) > cq,1−α , where cq,1−α is the (1 − α)-quantile of the χ2

q distribution.
An asymptotic 100(1 − α)% confidence set for θ1 consists of the values θ1,0 for

which the null hypothesis H0 : θ1 = θ1,0 is not rejected, that is

{θ1,0 : lnL(θ1,0, θ̂2,0; x) � lnL(θ̂1, θ̂2; x) − 0.5cq,1−α}.
In particular, if q = 1, so that we are interested only in θ1, we get the confidence
interval

{θ1,0 : lnL(θ1,0, θ̂2,0; x) � lnL(θ̂1, θ̂2; x) − 0.5c1,1−α}. (A.22)
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Note that such an interval will, in general, be asymmetric about the MLE θ̂1, in the
sense that the distance from the MLE to the upper and lower bounds will be different.
This is in contrast to the Wald interval in (A.21), which is rigidly symmetric.

The curve (θ1,0, lnL(θ1,0, θ̂2,0; x)) is sometimes known as the profile log-like-
lihood curve for θ1 and attains its maximum at θ̂1.

A.3.6 Akaike Information Criterion

The likelihood ratio test is applicable to the comparison of nested models, i.e. situ-
ations where one model forms a special case of a more general model when certain
parameter values are constrained.We often encounter situations where we would like
to compare non-nested models with possibly quite different numbers of parameters.

Suppose we have m models M1, . . . ,Mm and that model j has kj parameters
denoted by θj = (θj1, . . . , θjkj )

′ and a likelihood function Lj (θj ; X). In Akaike’s
approach we choose the model minimizing

AIC(Mj ) = −2 lnLj (θ̂j ; X) + 2kj ,

where θ̂j denotes the MLE of θj . The AIC number essentially imposes a penalty
equal to the number of model parameters kj on the value of the log-likelihood at the
maximum. The model favoured is the one for which the penalized log-likelihood
lnLj (θ̂j ; X) − kj is largest. There are alternatives to the AIC, such as the Bayesian
information criterion (BIC) of Schwartz, which impose different penalties for the
number of parameters. See Burnham and Anderson (2002) for more about model
comparison using these criteria.
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Université de Lyon and BNP Paribas.

Lawrence, C. and G. Robinson. 1995. Liquid measures. Risk 8(7):52–55.
Leadbetter, M. R. 1983. Extremes and local dependence of stationary sequences. Zeitschrift

für Wahrscheinlichkeitstheorie und Verwandte Gebiete 65:291–306.
. 1991. On a basis for “Peaks over Threshold” modeling. Statistics & Probability Letters

12:357–362.
Leadbetter, M. R., G. Lindgren and H. Rootzén. 1983. Extremes and Related Properties of

Random Sequences and Processes. Springer.
Ledford, A. W. and J. A. Tawn. 1996. Statistics for near independence in multivariate extreme

values. Biometrika 83(1):169–187.
Lee, S. and B. Hansen. 1994.Asymptotic properties of the maximum likelihood estimator and

test of the stability of parameters of GARCH and IGARCH models. Econometric Theory
10:29–52.

Lehmann, E. L. 1983. Theory of Point Estimation. Wiley.
. 1986. Testing Statistical Hypotheses, 2nd edn. Wiley.

Leland, H. E. 1994. Corporate debt value, bond covenants, and optimal capital structure.
Journal of Finance 49:157–196.

Leland, H. E. and K. Toft 1996. Optimal capital structure, endogenous bankruptcy and the
term structure of credit spreads. Journal of Finance 51:987–1019.

Lemaire, J. 1984.An application of game theory: cost allocation. ASTIN Bulletin 14(1):61–82.
Li, D. 2001. On default correlation: a copula function approach. Journal of Fixed Income

9:43–54.
Li, R.-Z., K.-T. Fang and L.-X. Zhu. 1997. Some Q–Q probability plots to test spherical and

elliptical symmetry. Journal of Computational and Graphical Statistics 6(4):435–450.
Lindsey, J. K. 1996. Parametric Statistical Inference. Oxford University Press.
Lindskog, F. 2000. Linear correlation estimation. RiskLab Report, ETH Zurich.



520 References

Lindskog, F. and A. J. McNeil. 2003. Common Poisson shock models: applications to insur-
ance and credit risk modelling. ASTIN Bulletin 33(2):209–238.

Lindskog, F., A. J. McNeil and U. Schmock. 2003. Kendall’s tau for elliptical distributions.
In Credit Risk: Measurement, Evaluation and Management (ed. G. Bol, G. Nakhaeizadeh,
S. T. Rachev, T. Ridder and K.-H. Vollmer), pp. 149–156. Heidelberg: Physica.

Liu, C. 1997. ML estimation of the multivariate t distribution and the EM algorithm. Journal
of Mathematical Economics 63:296–312.

Liu, C. and D. B. Rubin. 1994. The ECME algorithm: a simple extension of EM and ECM
with faster monotone convergence. Biometrika 81:633–648.

. 1995. ML estimation of the t distribution using EM and its extensions, ECM and
ECME. Statistica Sinica 5:19–39.

Ljung, G. M. and G. E. P. Box. 1978. On a measure of lack of fit in time series models.
Biometrika 65:297–303.

Lo, A. W. and A. C. MacKinlay. 1999. A Non-Random Walk Down Wall Street. Princeton
University Press.

Longin, F. M. 1996. The asymptotic distribution of extreme stock market returns. Journal of
Business 69:383–408.

Longstaff, F. E. and E. S. Schwartz. 1995. Valuing risky debt: a new approach. Journal of
Finance 50:789–821.

Lowenstein, R. 2000. When Genius Failed. The Rise and Fall of Long-Term Capital Manage-
ment. Random House.

Lucas, D. 1995. Default correlation and credit analysis. Journal of Fixed Income (March),
pp. 76–87.

Lumsdaine, R. 1996. Asymptotic properties of the quasi maximum likelihood estimator in
GARCH(1, 1) and IGARCH(1, 1) models. Econometrica 64:575–596.

Lütkepohl, H. 1993. Introduction to Multiple Time Series Analysis, 2nd edn. Springer.
Lux, T. 1996. The stable Paretian hypothesis and the frequency of large returns: an analysis

of major German stocks. Applied Financial Economics 6:463–475.
McCullagh, P. and J.A. Nelder. 1989. Generalized linear models, 2nd edn. London: Chapman

& Hall.
McCullough, B. D. and C. G. Renfro. 1999. Benchmarks and software standards: a case study

of GARCH procedures. Journal of Economic and Social Measurement 25:59–71.
McGinty, L., R. Beinstein, E. Ahluwalia and M. Watts. 2004. Introducing base correlation.

Preprint, JPMorgan.
McLeish, D. L. and C. G. Small. 1988. The Theory and Applications of Statistical Inference

Functions. Lecture Notes in Statistics, vol. 44. Springer.
McNeil, A. J. 1997. Estimating the tails of loss severity distributions using extreme value

theory. ASTIN Bulletin 27:117–137.
. 1998. History repeating. Risk 11(1):99.

McNeil, A. J. and R. Frey. 2000. Estimation of tail-related risk measures for heteroscedastic
financial time series: an extreme value approach. Journal of Empirical Finance 7:271–300.

McNeil, A. J. and T. Saladin. 2000. Developing scenarios for future extreme losses using the
POT method. In Extremes and Integrated Risk Management (ed. P. Embrechts), pp. 253–
267. London: Risk Waters Group.

McNeil, A. J. and J. Wendin. 2003. Generalised linear mixed models in portfolio credit risk
modelling. Preprint, ETH Zurich.

Madan, D. B. and E. Seneta. 1990. The variance gamma (v.g.) model for share market returns.
Journal of Business 63:511–524.

Madan, D. B., P. Carr and E. C. Chang. 1998. The variance gamma process and option pricing.
European Finance Review 2:74–105.



References 521

Makarov, G. 1981. Estimates for the distribution function of a sum of two random vari-
ables when the marginal distributions are fixed. Theory of Probability and Its Applications
26:803–806.

Marazzi, A. 1993. Algorithms, Routines and S-Functions for Robust Statistics. Boca Raton,
FL: CRC Press.

Mardia, K. V. 1970. Measures of multivariate skewness and kurtosis with applications.
Biometrika 57:519–530.

. 1972. Statistics of Directional Data. Academic Press.

. 1974. Applications of some measures of multivariate skewness and kurtosis in testing
normality and robustness studies. Sankhyā 36:115–128.
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mathematical aspects, 427
Ricatti equation, 423

aggregate loss distribution, see also
compound sum, 472

Akaike information criterion (AIC), 502
alternative risk transfer (ART), 22, 24
ARCH models, 139

as stochastic recurrence equations,
141

estimation of
using ML, 150
using QML, 152, 153

extremal index of, 271
kurtosis of, 144
parallels with AR, 144
stationarity of, 142

Archimedean copulas, 220
credit risk and, 361, 446
dependence measures for

Kendall’s tau, 221
tail dependence, 222

estimation using rank correlation, 230
generators of, 220
Laplace–Stieltjes transforms and, 223
multivariate, 222
non-exchangeable, 224

bivariate, 225
multivariate, 226

simulation of, 224
ARIMA models, 132
ARMA models, 128

as models for conditional mean, 132
estimation of, 135
extremal index, 271
multivariate, 168
prediction, 136
with GARCH errors, 148

autocorrelation function, 126
autocovariance function, 126

backtesting, 55, 162
of expected shortfall, 163
of predictive distribution, 163
of VaR, 55, 58, 162

Barings case, 7
Basel Accords, 8
Basel II, 9, 10

criticisms of, 13
internal-ratings-based approach

(IRB), 362
three-pillar concept, 10, 464
treatment of credit risk, 11, 362
treatment of operational risk, 12, 463

BEKK GARCH model, 177
Bernoulli mixture models, 352

beta mixing distribution, 355
estimation of

in exchangeable case, 375
using GLMMs, 377, 381

large portfolio asymptotics, 357
mixing distributions

beta, 354
logit-normal, 354
probit-normal, 354

Monte Carlo methods for, 367
beta distribution, 496
binomial expansion technique

(Moody’s BET), 366
Black–Scholes, 6

evidence against model, 120
formula, 334
Greeks, 30
model, 332
option-pricing formula, 30
PDE for terminal-value claims, 333

capital allocation, 256
capital allocation principle, see also

Euler allocation principle, 257
loan pricing and, 412

CDO, 389
base correlations, 448
collaterized bond obligation (CBO),

390
collaterized loan obligation (CLO),

390



530 Index

CDO (continued)
default dependence and, 391
pricing approaches, 447
synthetic structure, 389
tranches, 389

CDS, 387
calibration to spread curves, 410
pay-off description, 409
pricing with deterministic hazard

rates, 410
pricing with doubly stochastic default

times, 418
spreads, 410, 427

central limit theorem, 265
characteristic function, 64
Chicago Mercantile Exchange, 36, 244
CIR model, 423

Ricatti equation, 424
Clayton copula, 192, 220

as limiting lower threshold copula,
322, 324

as survival copula of bivariate Pareto,
196

information-based default contagion
and, 454

Kendall’s tau for, 222
lower tail dependence of, 209
survival copula in CDA of Galambos

copula, 315
coherent risk measures, 238

axioms, 238
monotonicity, 240
positive homogeneity, 240
subadditivity, 239
translation invariance, 239

examples of
expected shortfall, 243
Fischer premium principle, 244
generalized scenarios, 244

non-coherence of VaR, 241, 253
except for elliptical risks, 242

collaterized debt obligation, see CDO
comonotonicity, 189, 199

VaR additivity and, 250
worst-case VaR and, 251

compound distribution
mixed Poisson, 483
Poisson, 473

approximation of, 476, 477
convolutions of, 475
justification of Poisson
assumption, 475

compound sum, 473
approximation of

normal approximation, 476
translated-gamma approximation,
477

Laplace–Stieltjes transform of, 473
moments of, 474
Panjer recursion for, 480
Poisson example, 473
tail of distribution of, 484

concentration risk, 20
concordance, 206
conditional independence structure, 360
conditionally independent default times,

431
recursive simulation, 432
threshold simulation, 431

constant conditional correlation (CCC)
GARCH model, 172

convex risk measures, 241, 247
Cooke ratio, 13
copulas, 184

comonotonicity and, 199
constrained optimization and, 252
countermonotonicity and, 200
credit risk models based on, 440

calibration of, 443, 448
using factor copulas, see also
factor copula models, i, 444
with deterministic hazard rates,
442

densities of, 197
domain of attraction, 314
estimation of, 228

using MLE, 234
using rank correlations, 229

examples of, 189
t , see t copula
Clayton, see Clayton copula
Frank, 220
Galambos, 313
Gaussian, see Gauss copula
generalized Clayton, 220
grouped t , 218
Gumbel, see Gumbel copula
skewed t , 217

exchangeability, 198
families

Archimedean, see Archimedean
copulas
extreme value, see extreme value
copulas
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limiting threshold copulas, see
threshold copulas
normal mixture copulas, 210

radial symmetry, 196
restrictions on dependence and, 251
Sklar’s Theorem, 186
survival copulas, 195

corporate bond
modelling of pay-off, 416
pricing in affine models, 427

correlation, 63, 201
attainable correlations, 204
matrix, 63

estimation in elliptical models, 96
function, 165
standard sample estimator, 65

pitfalls and fallacies, 202, 251
rank, see Kendall’s tau and

Spearman’s rho
correlogram, 118, 133
countermonotonicity, 190, 200
counterparty risk, 429
counting process, 485
covariance matrix, 63

estimation in elliptical models, 96
function, 164
standard sample estimator, 65

Cox processes, see doubly stochastic
processes

Cox random time, see doubly stochastic
random time

Cox–Ingersoll–Ross model, see CIR
model

credit default swap, see CDS
credit derivatives, 386

basket default swaps, 389
credit-linked note, 388
financial stability and, 387
first-to-default swap, see

first-to-default swap
vulnerable claims, 386, 416

credit ratings, 338
business cycle and, 340
Markov property, 339, 343
statistical inference and, 383
transition probability matrix, 339

credit risk, 3, 327
credit spread, 33
dynamic models of, 328, 385
importance of dependence modelling,

329
mapping credit-risky portfolio, 32
overview of models, 327

regulatory treatment of, 11, 362
static models of, 328
statistical methods for, 374

credit spread, 33, 334
default intensities and, 419, 452
EDFs and, 403
reduced-form models and, 427
structural models and, 334

credit-migration models, 338
as firm-value models, 341

credit-risky securities, see credit
derivatives

CreditMetrics, 338
portfolio version of, 347

CreditRisk+, 356, 472, 483
factor copula models and, 447
negative binomial distribution and,

357
numerical methods for, 366

cross-correlogram, 167

daily earnings at risk, 38
DD (distance to default), see KMV

model
declustering of extremes, 303
default, 3

contagion, 429
dependent defaults and, 448
empirical evidence for, 440
information-based default
contagion, 453, 454

correlation, 344
asset correlation and, 345
conditionally independent
defaults and, 437
estimation of, 375, 381
in exchangeable Bernoulli
mixture models, 354

intensity, see martingale default
intensity

probability
empirical evidence for, 403
in the Merton model, 332
physical versus risk-neutral, 402,
403

delta of option, 30
dependence measures, 201

copula, see copulas
correlation, see correlation
rank correlation, see rank correlation
tail-dependence coefficients, see tail

dependence
devolatized process, 173
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diagonal vector GARCH (DVEC)
model, 175

discordance, 206
doubly stochastic

processes, 487, 491
random time, 397

martingale default intensity of,
399
pricing of credit-risky securities
and, 414, 417
simulation of, 398

drawdowns, 47
Duffie–Gârleanu model, 425, 435
duration of bond portfolio, 31
dynamic conditional correlation (DCC)

GARCH model, 174

economic capital, 18, 38
EDF (expected default frequency), see

KMV model
elliptical distributions, 93

Euler capital allocation and, 260
portfolio optimization and, 247
properties of, 95
subadditivity of VaR for linear

portfolios, 242
tail dependence in, 297
testing for, 99

EM algorithm, 81
Enron, 387, 429
equicorrelation matrix, 104, 198
equivalent martingale measure, see

risk-neutral measure
ES, see expected shortfall
Euler allocation principle, 257

examples of
covariance principle, 258
shortfall contributions, 260
VaR contributions, 258

justification of, 261
EV copulas, see extreme value copulas
EVT, see extreme value theory
EWMA method, 159

exponential smoothing, 138
multivariate version, 182
use in risk measurement, 57, 162, 183

exceedances of thresholds, 275
excess distribution, 276

GPD as limit for, 277
mean excess function, 276
modelling

excess losses, 278
tails of distributions, 282

multivariate exceedances, 319
modelling multivariate tails with
EV copulas, 319

point process of, 299, 300
Poisson limit for, 121, 299, 300

self-exciting models for, 307
excess distribution, see exceedances of

thresholds
excesses over thresholds, see

exceedances of thresholds
exchangeability, 197

portfolio credit risk models and, 344
expected shortfall, 44

backtesting of, 55, 163
calculation of

for GPD tail model, 283
for t distribution, 45, 46
for normal distribution, 45, 46

capital allocation with, 260
coherence of, 243
continuous loss distribution, 45
discontinuous loss distribution, 45
limiting average of upper order

statistics, 46
relation to Value-at-Risk, 44
scaling, 53
shortfall-to-quantile ratio, 47, 283

exponential distribution
in MDA of Gumbel, 267
lack-of-memory property, 277

exponentially weighted moving-average,
see EWMA method

extremal index, 270
extreme value copulas, 311

copula domain of attraction, 314
dependence function of, 312
examples of

t-EV copula, 316
Galambos, 313
Gumbel, 312

in models of multivariate threshold
exceedances, 319

Pickands representation of, 312
tail dependence of, 315

extreme value theory
clustering of extremes, 121, 270, 303
conditional EVT, 57, 291
extreme value distribution

multivariate, 311
univariate, see GEV distribution

for operational loss data, 469
maxima, see maxima
motivation for, 20, 121
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multivariate
maxima, see maxima
threshold exceedances, see
exceedances of thresholds

POT model, 301
threshold exceedances, see

exceedances of thresholds

F distribution, 92, 496
factor copula models (credit), 444

default contagion and, see default
contagion

examples of
Li’s model, 445
with Archimedean copulas, 446
with Gauss copula, 445

mixture representation, 444
simulation of, 444

factor models, 103
latent factors, 105
macroeconomic, fundamental and

statistical, 114
multivariate GARCH and, 179
observed factors, 105
principal components, see principal

component analysis
regression analysis of, 106
statistical factor analysis, 105

Feynman–Kac formula, 422
filtration, 393
financial mathematics

quantitative risk management and, 21
textbooks, 342

firm-value models, 328, 331
endogenous default barrier, 335
first-passage-time models, 335
with incomplete accounting

information, 330
first-to-default swap, 438, 451
Fisher–Tippett–Gnedenko Theorem, 266
Fréchet

bounds, 188, 200
distribution, 265

MDA of, 267, 268, 293
problems, 248

frailty, 444
Frank copula, 220

Galambos copula, 313
as EV limit for Clayton survival

copula, 315
as extreme value copula, 313
limiting upper threshold copula of,

324

gamma distribution, 75, 496
in MDA of Gumbel, 294

gamma of option, 30
GARCH models, 145

combined with ARMA, 148
estimation of

using ML, 150
using QML, 152, 153

extremal index of, 271
IGARCH, 148
kurtosis of, 146
multivariate, see multivariate

GARCH models
parallels with ARMA, 146, 147
residual analysis, 154
stationarity of, 145, 147
tail behaviour of, 296
threshold GARCH, 150
use in risk measurement, 57, 162
volatility forecasting with, 158
with leverage, 149

Gauss copula, 190
asymptotic independence of, 211
credit risk and, 347, 445
estimation of

using ML, 234
using Spearman’s rho, 230

joint quantile exceedance
probabilities, 212

rank correlations for, 215
simulation of, 193

Gaussian distribution, see normal
distribution

generalized extreme value distribution,
see GEV distribution

generalized hyperbolic distributions, 78
elliptically symmetric case, 75
EM estimation of, 81
special cases

hyperbolic, 80
NIG, 80
skewed t , 80
variance gamma, 80

variance–covariance method and, 79
generalized inverse, 39, 185, 494
generalized inverse Gaussian

distribution, see GIG distribution
generalized linear mixed models, see

GLMMs
generalized Pareto distribution, see GPD
generalized scenarios, 37, 244
geometric Brownian motion, see

Black–Scholes model
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GEV distribution, 265
as limit for maxima, 265
estimation using ML, 271

GIG distribution, 75, 497
in MDA of Gumbel, 294

GLMMs, 379
estimation of, 380

Bayesian inference, 380
mixture models in credit risk as, 377

Gnedenko’s Theorem, 268, 269
GPD, 275

as limit for excess distribution, 277
likelihood inference, 278
tail model based on, 282

confidence intervals for, 283
estimation of ES, 283
estimation of VaR, 283

Greeks, 30
Greenspan, Alan, 15, 20, 387
Gumbel

copula, 192, 220
as extreme value copula, 312
Kendall’s tau for, 222
upper tail dependence of, 209

distribution, 265
MDA of, 267, 294

Höffding’s lemma, 203
Hawkes process, see self-exciting

processes
hazard rate, 393

cumulative hazard function, 393
with additional information, 395

Hill estimator, 286
Hill plot, 287
tail estimator based on, 289

comparison with GPD approach,
289

historical-simulation method, 50, 57
conditional version, 52, 57, 59
critique of, 51
empirical risk measure estimation in,

51
extensions of, 51

hyperbolic distribution, 80

IGARCH (integrated GARCH), 148
immunization of bond portfolio, 31
importance sampling, 367

application to Bernoulli mixture
models, 370

density, 368
exponential tilting and, 369
for general probability spaces, 370

incomplete markets, 413
inhomogeneous Poisson process, 487

time changes and, 489
insurance analytics, 471

literature on, 491
the case for, 471

inverse gamma distribution, 497
in MDA of Fréchet, 294

Karamata’s Theorem, 495
Kendall’s tau, 97, 206

calculation of
for Archimedean copulas, 221
for Gaussian and t copulas, 215,
217

estimation of t copula and, 231
sample estimate of, 229

KMV model, 336
distance to default (DD), 337
equivalent Bernoulli mixture model,

361
expected default frequency (EDF),

337
portfolio version of, 347

kurtosis, 69, 70, 121

lead-lag effect, 165
LGD (loss given default), 344
linearization of loss, 27

in variance–covariance method, 48
linearized loss operator, 27
liquidity risk, 3, 41
Ljung–Box test, 119, 134
log-returns, 29

generalized hyperbolic models for, 84
longer-interval returns, 122
non-normality of, 70
stylized facts of, 117

loss distribution, 26
conditional, 26, 28
issue of holding period, 27
operational, 467
P&L, 26
risk measures based on, 35, 37, 43
unconditional, 26, 28

loss operator, 27
LT-Archimedean copulas, 224

p-factor, 227
one-factor, 224

LTCM case, 7, 20, 23, 41

mapping of risks, 26
examples, 29

bond portfolio, 30
currency forwards, 32
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European call option, 29
portfolio of risky loans, 32
stock portfolio, 29

time units convention, 27
market completeness, 406
market risk, 2

regulatory treatment of, 8, 9, 11
standard methods for, 48, 55
use of time series methods, 160

Markov chains (in continuous time), 457
Markowitz portfolio optimization, 6
martingale, 394

default intensity, 400
for conditionally independent
defaults, 434
general characterization, 448, 449
hazard rate and, 400, 450
in factor copula models, 454

modelling, 408
application to CDS spreads, 409

martingale-difference sequence, 127, 166
maxima, 264

block maxima method, 271
estimating return levels and
periods, 273

Fisher–Tippett–Gnedenko Theorem,
266

GEV distribution as limit for, 265
maximum domain of attraction, 266,

267
of Fréchet, 267, 268, 286, 293
of Gumbel, 267, 269, 294
of Weibull, 269

models for minima, 267
multivariate, 314

multivariate, 311
block maxima method, 317
maximum domain of attraction,
311

of stationary time series, 270
maximum domain of attraction, see

maxima
maximum likelihood inference, 499
MDA (maximum domain of attraction),

see maxima
mean excess

function, 276
plot, 279

Merton model, 331
extensions, 335, 342
modelling of default, 331
multivariate version, 342
pricing of equity and debt, 332

meta distributions, 192
meta-t distribution, 193
meta-Gaussian distribution, 193

MGARCH model, see multivariate
GARCH models

mixed Poisson
distributions, 482

example of negative binomial, 483
process, 490

mixture models (credit), 328, 352
Bernoulli mixture models, see

Bernoulli mixture models
Poisson mixture models, 353, 379

CreditRisk+, see CreditRisk+
ML, see maximum likelihood inference
model risk, 3

in credit risk models, 350, 364
models with interacting intensities

(credit), 456
examples of default intensities, 459
Markov chains and, 457

Modigliani–Miller Theorem, 17
Monte Carlo method, 52

application to credit risk models, 367
critique of, 52
importance sampling, see importance

sampling
rare-event simulation, 367

multivariate distribution, 62
elliptical, see elliptical distributions
generalized hyperbolic, see

generalized hyperbolic
distributions

normal, see normal distribution
normal mixture, see normal mixture

distributions
t , see t distribution

multivariate extreme value theory, see
extreme value theory

multivariate GARCH models, 170
estimation using ML, 178
examples of

BEKK, 177
CCC, 172
DCC, 174
DVEC, 175
orthogonal GARCH, 181
PC-GARCH, 181
pure diagonal, 173
VEC, 175

general structure, 170
use in risk measurement, 57, 182
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negative binomial distribution, 498
as mixed Poisson distribution, 483
in Panjer class, 480

NIG distribution, 80
normal distribution

expected shortfall, 45
multivariate, 66

copula of, 190
in variance–covariance method,
49
properties of, 67
simulation of, 66
spherical case, 90
testing for, 69

testing for, 68
unsuitability for log-returns, 70
Value-at-Risk, 39

normal inverse Gaussian distribution, 80
normal mixture distributions, 73

copulas of, 210
examples of

t distribution, 75
generalized hyperbolic, 75, 78
two point mixture, 75

mean-variance mixtures, 77
tail behaviour of, 295
variance mixtures, 73

simulation of, 76
spherical case, 90

notional-amount approach, 34

operational risk, 3
approaches to modelling, 465, 466

advanced measurement (AM),
466
basic indicator (BI), 465
standardized (S), 465

data issues, 468
regulatory treatment of, 12, 463

operational time, 399
orthogonal GARCH model, 181

P&L distribution, 26
Panjer

distribution class, 480
recursion, 480

Pareto distribution, 196, 498
in MDA of Fréchet, 267, 268

PCA, see principal component analysis
peaks-over-threshold model, see POT

model
physical measure, 401
Pickands–Balkema–de Haan Theorem,

277

point processes, 298, 299
counting processes, 485
point process of exceedances, 300
Poisson point process, 299
self-exciting processes, 306

Poisson mixture distributions, see mixed
Poisson distributions

Poisson process, 484, 485
as counting process, 485
as limit for exceedance process, 300
characterizations of, 486
in POT model, 301
inhomogeneous, 487

example of records, 488
time changes and, 489

multivariate version of, 487
Poisson cluster process, 303

portmanteau tests, 134
POT model, 301

as two-dimensional Poisson process,
301

estimation using ML, 302
self-exciting version of, 307
unsuitability for financial time series,

303
principal component

analysis, 109
link to factor models, 111
multivariate GARCH and, 181

GARCH model, 181
probability transform, 185
profile likelihood, 501

quantile estimation and, 284
profit-and-loss distribution, 26
pseudo-maximum likelihood copula

estimation, 234

QIS, see Quantitative Impact Studies
QML, see quasi-maximum likelihood

inference
QQplot, 68
quantile

function, 39, 186, 495
transform, 185

Quantitative Impact Studies, 9
operational risk and, 464, 468

quasi-maximum likelihood inference,
152, 153, 279

radial symmetry, 196
rank correlation, 206

Kendall’s, see Kendall’s tau
properties of, 207
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sample rank correlations, 229
Spearman’s, see Spearman’s rho

recovery modelling
for corporate bonds, 414
model-risk issues, 365
recovery of market value, 419

reduced-form models (credit), 328, 385
for portfolio credit risk, 429
limitations, 420

regularly varying function, 268
regulation, 8, 10, 43

Basel II, see Basel II
Solvency 2, see Solvency 2

regulatory capital, 43
renewal process, 487
return

level, 273
period, 273

rho of option, 30
risk, 1

credit risk, see credit risk
history of, 5
market risk, see market risk
operational risk, see operational risk
overview of risk types, 2
randomness and, 1
reasons for managing, 15

risk factors, 26
mapping, 26
time units convention, 27

risk measurement, 4, 34, 55
approaches

factor-sensitivity measures, 35
loss-distribution-based risk
measures, 35
notional-amount approach, 34
scenario-based risk measures, 36

conditional versus unconditional, 28,
57

standard market risk methods, 48
risk measures

backtesting of, 55
based on loss distributions, 35
calculating bounds for, 249
coherence of, see coherent risk

measures
convex, 241, 247
examples of

CVaR, 47
drawdowns, 47
expected shortfall, see expected
shortfall
Fischer premium principle, 244

partial moments, 44
semivariance, 44
tail conditional expectation, 47
Value-at-Risk, see Value-at-Risk
variance, 43
worst conditional expectation, 47

scaling, 53
scenario-based, 36, 244
spectral, 251
uses of, 34

risk-factor changes, 26
examples of, 56
stylized facts of, 117

risk-neutral
measure, 333, 401
pricing rule, 333, 406

RiskMetrics
documentation, 33
the birth of VaR and, 9
treatment of bonds, 32

robust statistics, 96
RORAC (return on risk-adjusted

capital), 256

sample mean excess plot, 279
scaling of risk measures, 53

Monte Carlo approach, 54
square-root-of-time, 54

scenario-based risk measures, 36
coherence and, 244

self-exciting processes, 306, 488
self-exciting POT model, 307

predictable marks, 308
risk measures for, 309
unpredictable marks, 308

semivariance, 44
shortfall contributions, 260
skewed t distribution, 80
skewness, 69, 70, 121
Sklar’s Theorem, 186
slowly varying function, 268, 495
Solvency 2, 13
Spearman’s rho, 207

for Gauss copula, 215
use in estimation of, 230

sample estimate of, 229
spherical distributions, 89

tail behaviour of, 295
square-root processes, see CIR model
square-root-of-time rule, 54
stable distribution, 224, 498
stationarity, 126, 165
strict white noise, 127, 166
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structural models, see firm-value
models

Student t distribution, see t distribution
stylized facts

of financial time series, 117
multivariate version, 123

of operational risk data, 468
survival copulas, 195

t copula, 191
estimation of

using Kendall’s tau, 231
using ML, 235

grouped, 218
joint quantile exceedance

probabilities, 212
Kendall’s tau for, 217
simulation of, 193
skewed, 217
tail dependence of, 211

t distribution
expected shortfall, 45
in MDA of Fréchet, 293
multivariate, 75

copula of, 191
skewed version, 80

Value-at-Risk, 39
tail

dependence, 194, 208
in t copula, 211
in Archimedean copulas, 222
in elliptical distributions, 297
in Gumbel and Clayton copulas,
209

equivalence, 294
index, 268, 286

tails of distributions, 293
compound sums, 484
mixture distributions, 295
regularly varying, 268, 293

threshold copulas, 322
lower, 322

limits for, 322
upper, 323

limits for, 323
use in modelling, 325

threshold exceedances (EVT), see
exceedances of thresholds

threshold models (credit), 343
copulas and, 346
equivalent Bernoulli mixture models

and, 359

examples of
in industry, 347
Li’s model, 347
using t copula, 348, 361
using Archimedean copulas, 349,
361
using Clayton copula, 362
using Gauss copula, 347
using normal mean-variance
mixture copulas, 348, 360

model risk in, 350
type of distribution, 265, 494

Value-at-Risk, 37
additivity for comonotonic risks, 250
as quantile, 38
backtesting of, 55, 162
bounds on VaR of portfolio, 250
calculation of

for t distribution, 39, 46
for GPD tail model, 283
for normal distribution, 39, 46

capital allocation with, 258
dangers of portfolio optimization

with, 246
non-coherence of, 241
origins of, 8
pictorial representation of, 39
practical issues concerning, 40
regulatory capital and, 43
scaling, 53
shortfall-to-quantile ratio, 47, 283

VaR, see Value-at-Risk
VAR (vector AR), 169
variance–covariance method, 48, 57

critique of, 49
extensions, 50
with generalized hyperbolic

distribution, 79
variance-gamma distribution, 80
VARMA (vector ARMA), 168
vector GARCH (VEC) model, 175
vega of option, 30
volatility

clustering, 117
forecasting, 158

with EWMA, 159
with GARCH, 158

von Mises distributions, 294

Weibull distribution, 265
white noise, 127, 166

yield of bond, 31


