
Lecture Notes in Computer Science 5825
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

María Alpuente Byron Cook
Christophe Joubert (Eds.)

Formal Methods
for Industrial
Critical Systems

14th International Workshop, FMICS 2009
Eindhoven, The Netherlands, November 2-3, 2009
Proceedings

13

Volume Editors

María Alpuente
Christophe Joubert
Universidad Politécnica de Valencia
DSIC/ELP
Camino de Vera s/n, 46022 Valencia, Spain
E-mail: {alpuente,joubert}@dsic.upv.es

Byron Cook
Microsoft Research
Roger Needham Building
J J Thomson Avenue, Cambridge, CB3 0FB, UK
E-mail: bycook@microsoft.com

Library of Congress Control Number: 2009935171

CR Subject Classification (1998): D.2.4, D.2, D.3, C.3, F.3, I.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-04569-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-04569-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12761746 06/3180 5 4 3 2 1 0

Preface

This volume contains the papers presented at FMICS 2009, the 14th Interna-
tional Workshop on Formal Methods for Industrial Critical Systems, which was
held on November 2–3, 2009, in Eindhoven, The Netherlands. Previous work-
shops of the ERCIM working group on Formal Methods for Industrial Critical
Systems were held in Oxford (March 1996), Cesena (July 1997), Amsterdam
(May 1998), Trento (July 1999), Berlin (April 2000), Paris (July 2001), Malaga
(July 2002), Trondheim (June 2003), Linz (September 2004), Lisbon (September
2005), Bonn (August 2006), Berlin (July 2007), and L’Aquila (September 2008).

The aim of the FMICS workshop series is to provide a forum for researchers
who are interested in the development and application of formal methods in
industry. In particular, these workshops bring together scientists and engineers
who are active in the area of formal methods and are interested in exchanging
their experiences in the industrial usage of these methods. These workshops
also strive to promote research and development for the improvement of formal
methods and tools for industrial applications.

The FMICS 2009 workshop was part of FMweek, the first Formal Methods
Week, which offered a choice of events in the area, including TESTCOM/FATES,
Conference on Testing of Communicating Systems and Workshop on Formal Ap-
proaches to Testing of Software; FACS, Formal Aspects of Component Software;
PDMC, Parallel and Distributed Methods of verifiCation; FM2009, Symposium
of Formal Methods Europe; CPA, Communicating Process Architectures; FAST,
Formal Aspects of Security and Trust ; FMCO, Formal Methods for Components
and Objects ; and the REFINE Workshop. All the information on FMweek can
be found at http://www.win.tue.nl/fmweek.

The topics chosen for FMICS 2009 included, but were not restricted to:

– design, specification, code generation and testing based on formal methods;
– methods, techniques and tools to support automated analysis, certification,

debugging, learning, optimization and transformation of complex, distributed,
real-time and embedded systems;

– verification and validation methods that address shortcomings of existing
methods with respect to their industrial applicability (e.g., scalability and
usability issues);

– tools for the development of formal design descriptions;
– case studies and experience reports on industrial applications of formal meth-

ods, focusing on lessons learned or new research directions;
– impact and costs of the adoption of formal methods;
– application of formal methods in standardization and industrial forums;

In response to the call for papers, 24 contributions were submitted from
16 different countries. The Program Committee selected ten papers, basing this
choice on their scientific quality, originality, and relevance to the workshop. Each

VI Preface

paper was reviewed by at least three Program Committee members or external
referees. This volume also includes four invited contributions by Dino Distefano
(Queen Mary, University of London, UK), Diego Latella (CNR/ISTI, Italy),
Thierry Lecomte (ClearSy, France), and Ken McMillan (Cadence Berkeley Labs,
USA), as well as six poster descriptions. The resulting volume offers the reader
a complete landscape of the recent advances in this area.

Following a tradition established over the past few years, the European As-
sociation of Software Science and Technology (EASST) offered an award to the
best FMICS paper. Further information about the FMICS working group and
the next FMICS workshop can be found at: http://www.inrialpes.fr/vasy/fmics.

On behalf of the Program Committee, we would like to express our gratitude
to all the authors who submitted papers and all external referees for their care-
ful work in the reviewing process. We are very grateful to the members of the
ELP group and the local organizers of FMweek who worked with enthusiasm
in order to make this event possible. We are also grateful to Andrei Voronkov
for making EasyChair available to us. Finally, we gratefully acknowledge the
institutions that sponsored this event: the Universidad Politécnica de Valencia,
ERCIM, FME, Microsoft Research, the Departamento de Sistemas Informáticos
y Computación (UPV), MEC (Feder) TIN2007-30509-E, EASST, and the Tech-
nical University of Eindhoven.

November 2009 Maŕıa Alpuente
Byron Cook

Christophe Joubert

Organization

Program Chairs

Maŕıa Alpuente Universidad Politécnica de Valencia, Spain
Byron Cook Microsoft Research, UK

Workshop Chair

Christophe Joubert Universidad Politécnica de Valencia, Spain

ERCIM FMICS Working Group Coordinator

Alessandro Fantechi Università degli Studi di Firenze and ISTI-CNR, Italy

Program Committee

Hassan Ait-Kaci Ilog, Canada
Thomas Arts IT-Universitetet i Göteborg, Sweden
Demis Ballis Università degli Studi di Udine, Italy
Josh Berdine Microsoft Research, UK
Lubos Brim Masarykova Univerzita, Czech Republic
Darren Cofer Rockwell Collins, USA
Patrick Cousot Ecole Normale Supérieure, France
Santiago Escobar Universidad Politécnica de Valencia, Spain
Azadeh Farzan University of Toronto, Canada
Hubert Garavel INRIA Rhône-Alpes, France
Stefania Gnesi ISTI-CNR, Italy
Alexey Gotsman University of Cambridge, UK
Holger Hermanns Universität des Saarlandes, Germany
Daniel Kroening ETH Zürich, Switzerland
Michael Leuschel Heinrich-Heine-Universität Düsseldorf, Germany
Pedro Merino Universidad de Málaga, Spain
Juan José

Moreno-Navarro Universidad Politécnica de Madrid, Spain
Corina Pasareanu NASA Ames Research Center, USA
Murali Rangarajan Honeywell, USA
Jakob Rehof Technische Universität Dortmund, Germany
Andrey Rybalchenko Max-Planck-Gesellschaft, Germany
Marcel Verhoef Chess, The Netherlands
Martin Wirsing Ludwig-Maximilians-Universität München, Germany

VIII Organization

Hongseok Yang Queen Mary, University of London, UK
Greta Yorsh IBM T.J. Watson Research Center, USA
Jaco van de Pol Universiteit Twente, The Netherlands

Local Organization

Erik de Vink Technische Universiteit Eindhoven, The Netherlands
Tijn Borghuis Technische Universiteit Eindhoven, The Netherlands

External Reviewers

Michele Baggi Università degli Studi di Siena, Italy
Jiri Barnat Masarykova Univerzita, Czech Republic
Axel Belinfante Universiteit Twente, The Netherlands
Jens Bendisposto Heinrich-Heine-Universität Düsseldorf, Germany
Nicolas Blanc ETH Zürich, Switzerland
Ivana Cerna Masarykova Univerzita, Czech Republic
Jerome Feret Ecole Normale Supérieure, France
Raúl Gutiérrez Universidad Politécnica de Valencia, Spain
Joe Hendrix Microsoft Corporation, USA
Ángel Herranz Universidad Politécnica de Madrid, Spain
José Iborra Universidad Politécnica de Valencia, Spain
Sumit Kumar Jha Carnegie Mellon University, USA
Zachary Kincaid University of Western Ontario, Canada
Franco Mazzanti ISTI-CNR, Italy
Antoine Miné Ecole Normale Supérieure, France
John Regehr University of Utah, USA
Daniel Romero Universidad Politécnica de Valencia, Spain
Philipp Ruemmer Oxford University, UK
Theo Ruys Universiteit Twente, The Netherlands
Wendelin Serwe INRIA Rhône-Alpes, France
Pavel Simecek Masarykova Univerzita, Czech Republic
Ofer Strichman Technion, Israel
Salvador Tamarit Universidad Politécnica de Valencia, Spain
Damien Thivolle INRIA Rhône-Alpes, France
Enrico Vicario Università degli Studi di Firenze, Italy
Georg Weissenbacher ETH Zürich, Switzerland
Michael Katelman University of Illinois at Urbana-Champaign, USA

Table of Contents

Invited Papers

Attacking Large Industrial Code with Bi-abductive Inference 1
Dino Distefano

On a Uniform Framework for the Definition of Stochastic Process
Languages . 9

Rocco de Nicola, Diego Latella, Michele Loreti, and Mieke Massink

Applying a Formal Method in Industry: A 15-Year Trajectory 26
Thierry Lecomte

What’s in Common between Test, Model Checking, and Decision
Procedures? . 35

Ken L. McMillan

Contributed Papers

Verifying Cryptographic Software Correctness with Respect to
Reference Implementations . 37

José Bacelar Almeida, Manuel Barbosa, Jorge Sousa Pinto, and
Bárbara Vieira

Towards an Industrial Use of FLUCTUAT on Safety-Critical Avionics
Software . 53

David Delmas, Eric Goubault, Sylvie Putot, Jean Souyris,
Karim Tekkal, and Franck Védrine

Dynamic State Space Partitioning for External Memory Model
Checking . 70

Sami Evangelista and Lars Michael Kristensen

Compositional Verification of a Communication Protocol for a
Remotely Operated Vehicle . 86

Alwyn E. Goodloe and César A. Muñoz

Modeling Concurrent Systems with Shared Resources 102
Ángel Herranz, Julio Mariño, Manuel Carro, and
Juan José Moreno Navarro

Platform-Specific Restrictions on Concurrency in Model Checking of
Java Programs . 117

Pavel Parizek and Tomas Kalibera

X Table of Contents

Formal Analysis of Non-determinism in Verilog Cell Library Simulation
Models . 133

Matthias Raffelsieper, MohammadReza Mousavi,
Jan-Willem Roorda, Chris Strolenberg, and Hans Zantema

Preemption Abstraction: A Lightweight Approach to Modelling
Concurrency . 149

Erik Schierboom, Alejandro Tamalet, Hendrik Tews,
Marko van Eekelen, and Sjaak Smetsers

A Rigorous Methodology for Composing Services . 165
Kenneth J. Turner and Koon Leai Larry Tan

A Certified Implementation on Top of the Java Virtual Machine 181
Javier de Dios and Ricardo Peña

Selected Posters

Formal Development for Railway Signaling Using Commercial Tools 197
Alessio Ferrari, Alessandro Fantechi, Stefano Bacherini, and
Niccoló Zingoni

Integrated Formal Approach for Qualified Critical Embedded Code
Generator . 199

Nassima Izerrouken, Marc Pantel, Xavier Thirioux, and
Olivier Ssi Yan Kai

Visualising Event-B Models with B-Motion Studio 202
Lukas Ladenberger, Jens Bendisposto, and Michael Leuschel

Behavioural Analysis of an I2C Linux Driver . 205
Dragan Bošnački, Aad Mathijssen, and Yaroslav S. Usenko

Model-Based Testing of Electronic Passports . 207
Wojciech Mostowski, Erik Poll, Julien Schmaltz, Jan Tretmans, and
Ronny Wichers Schreur

Developing a Decision Support Tool for Dam Management with
SPIN . 210

Maŕıa-del-Mar Gallardo, Pedro Merino, Laura Panizo, and
Antonio Linares

Author Index . 213

Attacking Large Industrial Code with

Bi-abductive Inference

Dino Distefano

Queen Mary, University of London

Abstract. In joint work with Cristiano Calcagno, Peter O’Hearn, and
Hongseok Yang, we have introduced bi-abductive inference and its use
in reasoning about heap manipulating programs [5]. This extended ab-
stract briefly surveys the key concepts and describes our experience in
the application of bi-abduction to real-world applications and systems
programs of over one million lines of code.

1 Introduction

Automatic software verification has seen an upsurge of interest in recent years.
This is exemplified by tools such as SLAM [1] and ASTRÉE [4], which have been
used to verify properties of special classes of real-world software, e.g., device
drivers and avionics code. Crucial in this reinvigoration of software verification
has been the employment of methods from static program analysis which have
the advantage to lessen annotation burden (e.g., by automatically inferring loop
invariants and procedure summaries).

While these advances are impressive, a persistent trouble area stands in the
way of verification-oriented program analysis for a wider range of real software:
the heap. The heap is one of the hardest open problems in automatic verifica-
tion and prominent tools such as ASTRÉE and SLAM either eschew dynamic
allocation altogether or use coarse models that assume pointer safety.

Shallow pointer analyses, which infer dereferencing information of bounded
length, often do not give enough information for verification purposes. For ex-
ample, for automatically proving that a device driver manipulating a collection
of nested cyclic linked lists, does not dereference null or a dangling pointer, the
analysis technique needs to be able to look unboundedly deep into the heap. This
is done by shape analyses [13]. Shape analyses are program analyses which aim
to be accurate in the presence of deep-heap update—They go beyond aliasing
or points-to relationships to infer properties such as whether a variable points
to a cyclic or acyclic linked list.

Until very recently shape analyses could only be applied to tiny toy programs
written to test an analysis. SpaceInvader [8,2,10] is an automatic tool aiming
at bringing such analyses into the real world. The driving force behind Space
Invader is the idea of local reasoning, which is enabled by the Frame Rule of
separation logic [11]:

{P} C {Q}
{P ∗ R} C {Q ∗ R}

M. Alpuente, B. Cook, and C. Joubert (Eds.): FMICS 2009, LNCS 5825, pp. 1–8, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 D. Distefano

In this rule R is the frame, i.e., the part of the heap which is not touched by the
execution of the command C. The connective ∗ is called separating conjunction
and it states that its operands hold for disjoint parts of memory. The Frame Rule
allows pre and postconditions to concentrate on the footprint: the cells touched
by command C. In by-hand proofs this enables specifications to be much more
succinct than they might otherwise be. SpaceInvader takes as its aim to port the
concept of footprint into automatic verification in order to enjoy similar benefits
and keep the proof process manageable.

2 Bi-Abduction

In moving from by-hand to automatic verification the ability to deduce the frame
becomes a central task. Computation of the frame is done by frame inference,
which can be formally defined as:

Definition 1 (Frame inference). Given (separation logic) formulae H and
H ′ compute a formula F such that H � H ′ ∗ F holds.

An algorithm for inferring frames was introduced in [3]. Interestingly, crucial
tasks necessary to perform automatic heap analysis — such as rearrangement
(materialization) and abstraction — can be reduced to solving frame inference
questions [9].

In our attempts to deal with incomplete code and increase automation in
Space Invader, we discovered that the idea of abductive inference (or abduction)
— introduced by Charles Peirce in the early 1900s in his writings on the scientific
process [12] — is highly valuable. When reasoning about the heap, abductive
inference, often known as inference of explanatory hypotheses, is a natural dual
to the notion of frame inference, and can be defined as follows:

Definition 2 (Abductive Inference). Given (separation logic) formulae H
and H ′ compute a formula A such that H ∗ A � H ′ holds.

In this definition we call A the “anti-frame”.
Bi-abductive inference (or bi-abduction) is the combination of frame inference

and abduction. It consists of deriving at the same time frames and anti-frames.

Definition 3 (Bi-Abductive inference). Given (separation logic) formulae
H and H ′ compute a frame F and an anti-frame A such that H ∗ A � H ′ ∗ F
holds.

Many solutions are possible for A and F . A criterion to judge the quality of
solutions as well as a bi-abductive prover were defined in [5].

Example 1. Let H � z �→ nil ∗ x �→ nil and H ′ � list(x) ∗ list(y). Informally H
represents a heap with two disjoint cells allocated at addresses x and z which
contain the value nil1. H ′ stands for a heap with two disjoint allocated lists
starting at x and y, respectively. Consider now the bi-abduction question:
1 The semantics of the predicate a �→ b is a heap with precisely one allocated cell at

address a with content b.

Attacking Large Industrial Code with Bi-abductive Inference 3

z �→ nil ∗ x �→ nil ∗ A � list(x) ∗ list(y) ∗ F
There are many solutions for the pair A and F , some of which are

A � list(y) F � z �→ nil

A � y �→ nil F � ∃v.z �→ v

A � y �→ nil F � list(z)
A � y �→ nil ∗ w �→ 0 F � list(z) ∗ ∃v.w �→ v

Notice how in synthesizing A we are discovering the part of the heap which is
missing in H w.r.t. H ′. Dually, F represents the part of the heap H which is
superfluous w.r.t. H ′. Given that there are many solutions, an automatic prover
will essentially make pragmatic choices in order to synthesize only one. In our
experience aiming for the “best” solution is hard.

3 Compositional Shape Analysis

Bi-abduction allows us to automatically compute (approximations of) footprints
of commands and preconditions of procedures. In particular, bi-abduction is the
main ingredient which allows for an analysis method where pre/post specs of pro-
cedures are inferred independently of their context. This has opened up a way to
design compositional shape analyses for sequential [5], and recently concurrent
programs [6]. Such analyses can be seen as the attempt to build proofs for Hoare
triples of a program. More precisely, given a program composed by procedures
p1(x1), . . . , pn(xn) a compositional analysis automatically synthesizes precondi-
tions P1, . . . , Pn and postconditions Q1, . . . , Qn such that the following are valid
Hoare triples:

{P1} p1(x1) {Q1}, . . . , {Pn} pn(xn) {Qn}
The triples are constructed by symbolically executing the program and by com-
posing existing triples. The composition (and therefore the construction of the
proof) is done in a bottom-up fashion starting from the leaves of the call-graph
and then using their triples to build other proofs for procedures which are on a
higher-level in the call-graph. To achieve that we use a special rule for sequential
composition which embeds directly the concept of bi-abduction:

{P1}C1 {Q1} {P2}C2 {Q2}
{P1 ∗ A}C1; C2 {Q2 ∗ F} Q1 ∗ A � P2 ∗ F

A compositional analysis has a great ability to scale since procedures are ana-
lyzed in isolation and, moreover, the analysis results of procedures can be easily
reused. When dealing with large programs, the ability to analyze parts of the
program independently of others, allows us to load only small parts of the source
program into memory avoiding to overspill the RAM and cause the analysis to
thrash. Finally, compositional analysis is incremental: that is, if the program
changes after being analyzed, only the modified part need to be re-analyzed.

4 D. Distefano

The results of the previous analysis are still valid for those parts of the program
which did not change. All these features provide a strong boost to accurate heap
analysis and make it scale up to millions of lines of code. Previous shape analyses
were whole-program, non-compositional and therefore did not scale.2

We have implemented a compositional shape analysis which uses abduction
in a new version of SpaceInvader called SpaceInvader/Abductor (or Abductor
for short).

4 Application to Real Code

In this section we discuss our experience of running SpaceInvader/Abductor on
large open source codebases (e.g. a complete Linux Kernel distribution with over
2.5 million lines of code). Figure 1 reports the results we obtained from these
experiments. The case studies were run on a machine with two 2.66GHz Quad-
Core Intel Xeon processors with 4GB memory. The number of lines of C code
was measured by instrumenting gcc so that only code actually compiled was
counted. The analysis was run using only one core in all examples except Linux
for which, instead, we used 8 cores. The experiments were run using a timeout
of one second.

The green bars indicate the percentage of procedures with at least one con-
sistent non-trivial specification found from the analyzer. The precondition of a
discovered specification denotes a set of states on which it is safe to run the
procedure: that is, states for which one will not get pointer errors such as a
double-free, dereference of null/dangling pointers, or memory leaks. Thus, for
example, if a procedure disposes an acyclic list the precondition will not de-
scribe cyclic lists, because otherwise the procedure would commit a null-pointer
violation.

The red bars instead show the percentage of procedures for which the ana-
lyzer was not able to synthesize any specification. The best results were obtained
for the IMAP experiment for which SpaceInvader/Abductor synthesized speci-
fications for 68.3% of the total number of procedures. The worst was OpenSSH
for which 45.3% of consistent specs were found. For Linux, specs for 58.4% of
procedures were discovered.

Focussing on the IMap example. Currently, Space Invader/Abductor provides
little support for interpreting the data resulting from the analysis. Given this
current user support and the huge quantity of results we decided to look closely
only at the data related to IMAP.3 Here we briefly summarize the outcomes.
As indicated above consistent specifications were found for 68.3% of the proce-
dures. Among the discovered specifications, we observed that 18 procedures (i.e.,
1% of the total and 1.5% of the successfully analyzed procedures) reported pre-
conditions involving complex data structures (e.g., different kinds of nested and
2 The largest example of whole-program shape analysis in the literature is around 10K

lines of code [10].
3 We used cyrus-impad-2.3.13 downloaded from http://cyrusimap.web.cmu.edu

Attacking Large Industrial Code with Bi-abductive Inference 5

Fig. 1. Results of SpaceInvader/Abductor’s analysis on large open source projects

non-nested lists). This indicates that a minority of procedures actually traverse
data structures.

Figure 2 reports (in a pictorial form) one of the three (heap) specifications
discovered for the procedure freeentryatts. The precondition is given by the
box on the top labelled by “PRE1”. On the bottom there are two post-conditions
labelled by “POST1” and “POST2”, respectively. The intuitive meaning is that
when running the procedure freeentryatts starting from a state satisfying
PRE1, the procedure does not commit any pointer errors, and if it terminates it
will reach a state satisfying either POST1 or POST2. A pre (or a post) displays
a heap structure. A small white rectangle with a label denotes an allocated cell,
a red rectangle stands for a possibly dangling pointer and a green rectangle
denotes nil. A long grey rectangle represents a list. A dashed blue box shows
the internal structure of the elements of a list. Hence we can observe that the
footprint of freeentryatts consists of a nested non-circular singly linked-list.

Figure 3 shows one specification of the function freeattvalues. It deallo-
cates the fields in the list pointed to by its formal parameter l. The proce-
dure freeentryatts calls freeattvalues(l->attvalues) asking to free the
elements of the inner list. Notice how the bottom-up analysis composes these
specifications. In freeentryatts the elements of the inner list pointed to by
attvalues are deallocated by using (composing) the specification found for
freeattvalues which acts on a smaller footprint. The field entry is instead
deallocated directly inside freeentryatts.

This relation between freeentryatts and freeentryattvalues illustrates,
in microcosm, the modularizing effect of bi-abductive inference. The specifica-
tion of freeentryattvalues does not need to mention the enclosing list from
freeentryatts, because of the principle of local reasoning. In a similar way, if

6 D. Distefano

lsPE

lsPE

lsNE

lsPE

SPEC 1

POST 1 POST 2

PRE 1

NIL

&freeentryatts$l

siltmp$85928

...

Next

Next

Next

INTERNAL STRUCTURE 3

_siltmp$1

NIL

_siltmp$4

_siltmp$0

.next

_siltmp$2

.attvalues

_siltmp$3

.entry

...

Next

Next

Next

INTERNAL STRUCTURE 4

_siltmp$1

_siltmp$3 _siltmp$5

_siltmp$0

.next

_siltmp$2

.attrib

_siltmp$4

.value

_siltmp$0

NIL

&freeentryatts$retn_freeentryatts
siltmp$85928

!=0

...

Next

Next

Next

INTERNAL STRUCTURE 5

_siltmp$1 _siltmp$3

NIL

_siltmp$0

.next .entry

_siltmp$2

.attvalues

...

Next

Next

Next

INTERNAL STRUCTURE 6

_siltmp1_siltmp3 _siltmp$2

_siltmp$0

.next.value .attrib

_siltmp$0

&freeentryatts$retn_freeentryatts

Fig. 2. A specification automatically synthesized by SpaceInvader/Abductor for the
procedure freeentryatts of the IMap example

a procedure touches only two or three cells, there will be no need to add any
predicates describing entire linked structures through its verification. In general,
analysis of a procedure does not need to be concerned with tracking an explicit
description of the entire global state of a system, which would be prohibitively
expensive.

Only 4 procedures timed out (that is 0.4% of the total). Among the proce-
dures for which the analysis was unable to synthesize specifications, 84 potential

Attacking Large Industrial Code with Bi-abductive Inference 7

lsPE

lsNE

SPEC 1

POST 1 POST 2

PRE 1

NIL

&freeattvalues$l

siltmp$2523

...

Next

Next

Next

INTERNAL STRUCTURE 1

_siltmp$1

_siltmp$3 _siltmp$5

_siltmp$0

.next

_siltmp$2

.attrib

_siltmp$4

.value

_siltmp$0

NIL

&freeattvalues$retn_freeattvalues
siltmp$2523

!=0

...

Next

Next

Next

INTERNAL STRUCTURE 2

_siltmp$1 _siltmp$3 _siltmp$2

_siltmp$0

.next .value .attrib

_siltmp$0

&freeattvalues$retn_freeattvalues

Fig. 3. A specification for the procedure freeattvalues called by freeentryatts

memory leaks were reported by SpaceInvader/Abductor. A quick inspection
of these possible errors revealed that 19 cases (22.6%) were clearly real leaks,
whereas 26 cases (30.9%) were false bugs. For the remaining 39 cases (46.4%),
it was not easy to establish whether or not they were genuine bugs. This would
require a good knowledge of the source code and/or better user support in report-
ing possible errors, a feature that is currently lacking in Abductor.4 Nevertheless,
given that SpaceInvader/Abductor was not designed as a bug catcher, but rather
as a proof tool, we found the unveiling of several real bugs a pleasant surpris-
ing feature of our technology. In this context, we add a final consideration. We
emphasize that SpaceInvader/Abductor computes a genuine over-approximation
(with respect to an idealized model) in the sense of abstract interpretation [7].
Thus, in contrast to several unsound bug-catching tools that can detect some

4 This feature has high priority in our to-do list of future work.

8 D. Distefano

heap errors, when Abductor finds a specification it has constructed a proof which
shows that no pointer errors can occur. For instance, from Figure 2 we can infer
that freeentryatts does not leak memory, does not dereference a null/dangling
pointer, and does not double-free memory.

Acknowledgments. I would like to thank Peter O’Hearn for many invaluable
suggestions and helpful ideas on preliminary versions of this paper. This work
was supported by a Royal Academy of Engineering research fellowship.

References

1. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.: Automatic predicate abstrac-
tion of C programs. In: PLDI, pp. 203–213. ACM, New York (2001)

2. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P., Wies, T., Yang,
H.: Shape analysis of composite data structures. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

3. Berdine, J., Calcagno, C., O’Hearn, P.: Symbolic execution with separation logic.
In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidelberg
(2005)

4. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: PLDI 2003,
pp. 196–207. ACM, New York (2003)

5. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. In: POPL, pp. 289–300. ACM, New York (2009)

6. Calcagno, C., Distefano, D., Vafeiadis, V.: Compositional resource invariant syn-
thesis (submitted, 2009)

7. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252. ACM, New York (1977)

8. Distefano, D., O’Hearn, P., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
287–302. Springer, Heidelberg (2006)

9. Distefano, D., Parkinson, M.: jStar: Towards Practical Verification for Java. In:
OOPSLA, pp. 213–226. ACM, New York (2008)

10. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn,
P.: Scalable shape analysis for systems code. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 385–398. Springer, Heidelberg (2008)

11. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142,
pp. 1–19. Springer, Heidelberg (2001)

12. Peirce, C.: Collected papers of Charles Sanders Peirce. Harvard University Press,
Cambridge (1958)

13. Sagiv, M., Reps, T., Wilhelm, R.: Solving shape-analysis problems in languages
with destructive updating. ACM TOPLAS 20(1), 1–50 (1998)

On a Uniform Framework for

the Definition of Stochastic Process Languages�

Rocco De Nicola1, Diego Latella2, Michele Loreti1, and Mieke Massink2

1 Dipartimento di Sistemi e Informatica - Università di Firenze
2 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”- CNR

Abstract. In this paper we show how Rate Transition Systems (RTSs)
can be used as a unifying framework for the definition of the semantics of
stochastic process algebras. RTSs facilitate the compositional definition
of such semantics exploiting operators on the next state functions which
are the functional counterpart of classical process algebra operators. We
apply this framework to representative fragments of major stochastic
process calculi namely TIPP , PEPA and IML and show how they
solve the issue of transition multiplicity in a simple and elegant way.
We, moreover, show how RTSs help describing different languages, their
differences and their similarities. For each calculus, we also show the
formal correspondence between the RTSs semantics and the standard
SOS one.

1 Introduction

Several stochastic, and in particular Markovian, process algebras have been
proposed in the recent past. An overview can be found in [16]. Examples in-
clude TIPP [13,17], PEPA [19], EMPA [3], stochastic π-calculus [24] and,
more recently, calculi for Mobile and Service Oriented Computing [10,6,7,23,4,8].
The main aim has been the integration of qualitative behavioural descriptions
with non-functional ones, e.g. performance, in a single mathematical framework,
namely that of process algebras. This has lead to the combination of two very
successful approaches to concurrent systems modelling and analysis, namely La-
beled Transition Systems (LTSs), widely used in the framework of process alge-
bra, and Continuous Time Markov Chains (CTMCs), one of the most successful
approaches to modelling and analysing system performance. The common fea-
ture of the most prominent stochastic process algebra proposals, including all the
above mentioned ones, is that the actions used to label transitions are enriched
with rates of exponentially distributed random variables (r.v.) characterising
their duration1. Although all these languages relay on the same class of r.v., the
underlying models and notions are significantly different, in particular with re-
gards to the issue of the correct representation of the race condition principle for
� Research partially funded by EU IP SENSORIA (contract n. 016004), CNR-RSTL

project XXL, FIRB-MUR project TOCAI.IT and by PRIN-MIUR PACO.
1 Sometimes actions are assumed to have zero duration; then the associated r.v. is

interpreted as a delay, before the action takes place.

M. Alpuente, B. Cook, and C. Joubert (Eds.): FMICS 2009, LNCS 5825, pp. 9–25, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

10 R. De Nicola et al.

the choice operator, inherited from the theory of CTMCs. This principle implies
that an expression like (α, λ).P +(α, λ).P , where there are two different ways of
executing α, both with (exponentially distributed duration with) rate λ should
model the same behavior as (α, 2 · λ).P , and not as (α, λ).P , as it would be the
case if one would look at the term as a standard process algebra one. Several,
significantly different, approaches have been proposed for addressing the issue of
transition multiplicity raised by the race condition principle ranging, e.g. from
multi relations [19], to proved transition systems [24,13], to LTS with numbered
transitions [16], to unique rate names [10,6]. A different approach has been taken
in [15] for IML, a language for Interactive Markov Chains, IMCs, where actions
are de-coupled from rates and interaction transitions, labelled with actions, are
kept separated from Markovian ones, labelled by rates. Multi-relations are used
for Markovian transitions. It should also be noted that some of the most success-
ful approaches, e.g. [19,15] suffer from technical imprecision in that they define
the relevant transition multi-relation as the least multi-relation satisfying a set of
Structured Operational Semantics (SOS) axioms and rules. Unfortunately, such
a least multi-relation turns out to be a relation, thus failing to formally repre-
senting transition multiplicity. In [20] a variant of LTSs, namely Rated Transition
Systems (RdTS) has been proposed as a model for the definition of the seman-
tics of Markovian process calculi by relying on the general framework of SGSOS.
Moreover, in [20] conditions are put forward for guaranteeing associativity of
the parallel composition operator in the SGSOS framework. It is then proved
that one cannot guarantee associativity of the parallel composition operator up
to stochastic bisimilarity when the synchronisation paradigm of CCS is used
in combination with the synchronisation rate computation based on apparent
rates [19]. This implies for instance that parallel composition of the Stochastic
π-calculus is not associative.

In the present paper, we use Rate Transition Systems (RTS) a variant of
RdTS where the transition relation � associates to a given process P and a
given transition label α a next state function, say P, mapping each term into a
non-negative real number. The transition P

α� P has the following meaning: if
P(Q) = v, (with v �= 0), then Q is reachable from P by executing α, the dura-
tion of such execution being exponentially distributed with rate v; if P(Q) = 0,
then Q is not reachable from P via α. The approach is somewhat reminiscent of
that of Deng et al. [12] where probabilistic process algebra terms are associated
to a discrete probability distribution over such terms. RTSs are similar to Con-
tinuous Time Markov Decision Processes (CTMDPs) as defined, e.g., in [18,2]
or Continuous Time Probabilistic Automata (CPA) (see [21,22,5]), as we shall
discuss in more detail in Sect. 2. A distinguishing feature of our approach is
compositionality, which, as in [20], is a direct consequence of a structured ap-
proach to semantics; furthermore, in our approach, next state functions are com-
posed and manipulated using operators which are in one to one correspondence
with those of process calculi. A pleasant side-effect of the resulting framework
is a simple and elegant solution to the transition multiplicity problem. Further-
more, RTSs make it relatively easy to define associative parallel composition

On a Uniform Framework for the Definition of Stochastic Process Languages 11

operators for calculi based on the CCS interaction paradigm. Finally, the possi-
bility of defining different stochastic process languages within a single, uniform
framework facilitates reasoning about them; their similarities and their major
differences. In this paper we will consider only a small number of stochastic
process calculi, due to space limitations. Moreover, we will focus only on the
fragment of each calculus which is relevant for the stochastic extension. For the
sake of conciseness, we will introduce the operators in an incremental fashion,
pointing out the relative differences, avoiding repeating the relevant definitions
for each language. We will not deal with behavioural relations and we will focus
only on language definition: that is why in the title we mention process lan-
guages and not calculi. The reader interested in process equivalencies is referred
to [8,9] for some initial results. The rest of the paper is organised as follows: in
Sect. 2 some preliminary notions and definitions are recalled. Sect. 3 introduces
the RTS semantics for a simple language for CTMCs. Sect. 4 shows the RTS se-
mantics of significant fragments of major Markovian Process Calculi. Emphasis
is put on calculi based on the multi-party CSP interaction paradigm, like TIPP
and PEPA. A brief discussion of other calculi, based on the binary, CCS, in-
teraction paradigm is also provided. The RTS semantics of a language based
on the Interactive Markov Chain principle of separating actions from rates is
presented in Sect.5. Irrelevance of self-loops for transient analysis of CTMCs is
proved in the appendix; for all other proofs concerning results presented in this
paper the interested reader is referred to [11], where the EMPA calculus is dealt
with as well; results are proved by induction either on the structure of terms or
on the length of the derivation in the relevant semantics deduction system. Basic
knowledge of prominent stochastic process calculi is assumed in the rest of the
paper.

2 Preliminaries

We let IN≥0 (IR≥0, respectively) denote the set {n ∈ IN | n ≥ 0} ({x ∈ IR |
x ≥ 0}, respectively) and, similarly, IN>0 (IR>0, respectively) denote the set
{n ∈ IN | n > 0} ({x ∈ IR | x > 0}, respectively). For set S we let 2S denote the
power-set of S and 2S

fin the set of finite subsets of S. In function definitions as
well as application Currying will be used whenever convenient.

Definition 1 (Negative Exponential Distributions). A random variable X
has a negative exponential distribution with rate λ if and only if IP{X ≤ t} =
1 − eλ·t for t > 0 and 0 otherwise. •

The expected value of an exponentially distributed r.v. with rate λ is λ−1

while its variance is λ−2. The min of exponentially distributed independent r.v.
X1, . . . , Xn with rates λ1, . . . , λn respectively is an exponentially distributed r.v.
with rate λ1 + . . . + λn while the probability that Xj is the min is λj

λ1+...+λn
.

The max of exponentially distributed r.v. is not exponentially distributed. For
the purpose of the present paper, CTMCs are defined as follows:

12 R. De Nicola et al.

Definition 2 (Continuous Time Markov Chains). A Continuous Time
Markov Chain (CTMC) is a tuple (S,R) where S is a countable non-empty
set of states, and R : S → S → IR≥0 is the rate matrix, where for all s ∈ S
there exists Ks < ∞ such that

∑
s′∈S R s s′ = Ks. •

We will often use the matrix notation R[s, s′] for R s s′. R[s, s′] > 0 means that
a transition from s to s′ can be taken. The sojourn time at state s before taking
a transition is an exponentially distributed r.v. with rate

∑
s′∈S R[s, s′] and the

probability that the transition from s to s′ is taken is R[s, s′]/
∑

s′′∈S R[s, s′′].
Notice that the above definition allows R[s, s] > 0, i.e. self-loops are allowed,

which is not the case in traditional definitions of CTMCs. The following propo-
sition, proved in Appendix A, shows that, as long as traditional measures of
CTMCs like transient (and consequently steady state) probabilities are con-
cerned, this more liberal definition does not affect the meaning of the CTMC
and, in fact, self-loops can be removed (i.e. R[s, s] set to zero) or added without
affecting transient and steady state probability analysis results.

Proposition 1. The transient behaviour of CTMC C = (S,R) with R[s̄, s̄] > 0
for some s̄ ∈ S coincides with that of CTMC C̃ = (S, R̃), such that R̃[s, s′] =def

0, if s = s′, and R̃[s, s′] =def R[s, s′] otherwise. �

As a consequence of the above result, the infinitesimal generator matrix repre-
sentation of CTMCs, traditionally used for CTMCs without self-loops, can be
safely used also for those with such loops.

For countable non-empty set S, we consider the set S → IR≥0 of total functions
from S to IR≥0. We let P, Q, R, . . . range over S → IR≥0. We let [] denote the
0 constant function in S → IR≥0, i.e. [] s =def 0 for all s ∈ S; moreover
given s1, . . . , sn ∈ S and, λ1, . . . , λn ∈ IR>0 we let [s1 �→ λ1, . . . , sn �→ λn]
denote the function in S → IR≥0 which maps s1 to λ1, . . . , sn to λn and any
s ∈ S \ {s1, . . . , sn} to 0. The following definition characterises Rate Transition
Systems [8,9].

Definition 3 (Rate Transition Systems). A Rate Transition System (RTS)
is a tuple (S, A, �) where S is a countable non-empty set of states, A is a
countable non-empty set of labels and �⊆ S ×A× (S → IR≥0) is the transition
relation.

In the sequel RTSs will be denoted by R, R1, R′,. . . As usual, we let s
α� P

denote (s, α, P) ∈�. Intuitively, s1
α� P and (P s2) = λ �= 0 means that s2

is reachable from s1 via the execution of α and that the duration of such an
execution is characterised by a random variable whose distribution function is
negative exponential with rate λ. On the other hand, (P s2) = 0 means that s2

is not reachable from s1 via α.

Definition 4 (ΣS). ΣS denotes the subset of S → IR≥0 including only all func-
tions expressed using the [. . .] notation, i.e. P ∈ ΣS if and only if P = [] or
there exist n > 0, s1, . . . , sn ∈ S and λ1, . . . , λn ∈ IR>0 such that P = [s1 �→
λ1, . . . , sn �→ λn] •

On a Uniform Framework for the Definition of Stochastic Process Languages 13

We equip ΣS with a few useful operations, i.e. + : ΣS × ΣS → (S → IR≥0)
with (P + Q) s =def (P s) + (Q s) and

⊕
: ΣS → 2S → IR≥0 with⊕

P C =def

∑
s∈C(Ps), for C ⊆ S, and we use the shorthand ⊕P for⊕

P S. The proposition below trivially follows from the relevant definitions:

Proposition 2. (i) All functions in ΣS yield zero almost everywhere, i.e. for
all P ∈ ΣS the set {s ∈ S | (P s) �= 0} is finite; (ii) ΣS is closed under +, i.e.
+ : ΣS → ΣS → ΣS. �

Proposition 2(i) above guarantees that
⊕

is well defined.

Definition 5. Let R = (S, A, �) be an RTS , then: (i) R is total if for all
s ∈ S and α ∈ A there exists P ∈ (S → IR≥0) such that s

α� P; (ii) R
is functional2 if for all s ∈ S, α ∈ A, and P, Q ∈ (S → IR≥0) we have:
s

α� P, s
α� Q =⇒ P = Q; (iii) R is well formed if �⊆ S × A × ΣS. •

Discussion
It is worth noting that RTSs are a slight generalization of Continuous Time
Markov Decision Processes (CTMDPs) as defined by Hermanns and Johr [18]
and Continuous Time Probabilistic Automata, as defined in [22]. In [18,22], in
fact, the transition relation is a subset of S×A×(S → IR≥0), i.e. it is not required
to be a function in S×A → (S → IR≥0), but sets S and A are required to be finite
and in [18] an initial state is assumed as well. There is also a direct relationship
between RTSs and Continuous Time Probabilistic Automata proposed by Knast
in [21], although the latter are studied in a language theoretic framework: the
element ai,j(x) of the infinitesimal matrix used in [21] coincides with (P j) for
i

x� P. Finally, the Continuous Time Probabilistic Automata used by Dang
Van Hung and Zhou Chaochen in [5] are based on standard automata, where
transitions are elements of S×S and have a rate and no label associated. In [20]
Rated Transition Systems (RdTSs) are proposed by Klin and Sassone. RdTSs
coincide with the class of functional RTS : the transition relation is required to
be a function in S × A × S → IR≥0 = S × A → (S → IR≥0). In [2], Baier et
al. define CTMDPs as tuples (S, A, �) where S and A are finite sets and � is
a function in S × A × S → IR≥0, while we allow also infinite sets and relations
over S × A × (S → IR≥0). Finally, we point out that RTSs can be used also to
model (passive) action weights, e.g. in EMPA or PEPA as well as interactive
transitions of Interactive Markov Chains in a natural way.

In the rest of the present paper we will consider only well-formed RTSs, since
they are powerful enough to provide a semantic model for the stochastic process
calculi we are interested in.

Definition 6 (Derivatives). Let R = (S, A, �) be an RTS ; for sets S′ ⊆ S
and A′ ⊆ A, the set of derivatives of S′ through A′, denoted Der(S′, A′), is
the smallest set such that: (i) S′ ⊆ Der(S′, A′), and (ii) if s ∈ Der(S′, A′) and
there exists α ∈ A′ and Q ∈ ΣS such that s

α� Q then {s′ ∈ S | Q(s′) �= 0} ⊆
Der(S′, A′). •
2 Fully-stochastic according to the terminology used in [9].

14 R. De Nicola et al.

Definition 7 (Derived CTMC). Let R = (S, A, �) be a functional RTS ;
for S′ ⊆ S, the CTMC of S′, when one considers only labels in finite set A′ ⊆
A is defined as CTMC[S′, A′] =def (Der(S′, A′),R) where, for all s1, s2 ∈
Der(S′, A′), R[s1, s2] =def

∑
α∈A′,s1

α�P
P(s2). •

We write Der(s, A′) and CTMC[s, A′] when S′ = {s}.
The semantics of stochastic process calculi are often defined in the litera-

ture by means of Structured Operational Semantics (SOS) which characterize
transition systems or multi-transition systems, i.e. transition systems where the
transition relation is instead a multi-relation. Such (multi-)transitions are usu-
ally labelled by rates λ ∈ IR>0, but sometimes they are also labelled with actions
drawn from some set A. In such LTSs there may be two or more transitions with
(the same action label and) different rates from a state to another one; in case of
multi-transition systems such distinct transitions may even have the same rate.
Henceforth we let rt(s1, s2) and rta(s1, s2) denote the cumulative rate over all
transitions from s1 to s2 and the cumulative rate over all a-labelled transitions
from s1 to s2 as defined below, where we use {| |} as a notation for multi-sets,
and λ−−→ (a,λ−−−→ , respectively) for a generic transition (a-labelled transition,
respectively):

Definition 8. The cumulative rates rt(s1, s2) and rta(s1, s2) are defined as fol-
lows: rt(s1, s2) =def

∑{|λ|s1
λ−−→ s2|} and rta(s1, s2) =def

∑{|λ|s1
a,λ−−−→ s2|},

with
∑{||} =def 0. •

3 A Language for CTMCs

In this section we define a simple language for CTMCs, in a similar way as
in [16]. The set PCTMC of CTMC terms includes inaction, rate-prefix-, choice-,
and constant-terms as defined by the following grammar:

P ::= nil
∣
∣
∣
∣ λ.P

∣
∣
∣
∣ P + P

∣
∣
∣
∣ X

where λ ∈ IR>0 and X is a constant defined by means of an equation of the form
X

Δ= P where constants X, X1, X
′, . . . may occur only guarded, i.e. under the

scope of a prefix λ. , in defining body P .
In order to give an RTS semantics to the calculus we first of all choose the set

ACTMC =def {√} as labels set; transitions have no action labels in standard
CTMCs. The transition relation �, is defined in Fig. 1, where α =

√
is assumed.

Intuitively, from Fig. 1 it is clear that there is no transition from nil to any
other state, while there is a single transition from λ.P to P and λ is the rate
associated to such a transition. The rule for choice postulates that if there is a
transition from P to a state, say R, with rate (PR) and a transition from Q
to the same state R, with rate (QR), then there is a transition from P + Q to
R with rate (PR) + (QR). Notice that, for term P + Q, if there is a transition
only from P to R (i.e. not from Q to R) then (QR) = 0. Similarly, (PR) = 0 if

On a Uniform Framework for the Definition of Stochastic Process Languages 15

(NIL)
nil

α� []
(PRF)

λ.P
α� [P�→λ]

(CHO)
P

α� P, Q
α�Q

P+Q
α�P+Q

(CNT)
P

α� P, X
Δ=P

X
α�P

Fig. 1. Semantics Rules for the CTMC Language

there is only a transition from Q to R. If, instead, there is both a transition from
P to R (i.e. (PR) > 0) and a transition from Q to R (i.e. (QR) > 0), then the
cumulative rate (PR) + (QR) will be associated directly to the transition from
P + Q to R. The use of RTSs, in particular in the rule for choice, incorporates
the race condition principle and solves the related transition multiplicity issue in

a simple and elegant way. In fact, from Fig. 1, for R1 �= R2 we get λ.R1+μ.R2

√
�

[R1 �→ λ, R2 �→ μ] where ⊕[R1 �→ λ, R2 �→ μ] = λ + μ is the exit rate of state
λ.R1 +μ.R2 while λ/(λ+μ) and μ/(λ+μ) are the probabilities of moving to R1

and R2, respectively. If R1 = R2 = R then we get λ.R+μ.R

√
� [R �→ λ+μ] and

if, moreover, λ = μ, we get λ.R + λ.R

√
� [R �→ 2λ]. The following proposition

ensures that the semantics are closed w.r.t. ΣPCT MC .

Proposition 3. For all P ∈ PCTMC and P ∈ PCTMC → IR≥0, if P � P can
be derived from the rules of Fig. 1, then P ∈ ΣPCT MC . �

Definition 9 (Formal semantics of the Language for CTMCs). The
formal semantics of the calculus for CTMCs is the RTS RCTMC =def

(PCTMC ,ACTMC , �) where �⊆ PCTMC ×ACTMC × ΣPCT MC is the least re-
lation satisfying the rules of Fig. 1. •
The following theorem characterises the structure of RCTMC .

Theorem 1. RCTMC is total and functional. �

The CTMC associated to a given term P ∈ PCTMC , CTMC[P, {√}] is generated

according to Def. 7. As a corollary of Theorem 1 we get that whenever P

√
�

P, the exit rate of P is given by ⊕P and P is the row of the rate matrix
corresponding to P .

4 Fully Markovian Stochastic Process Calculi

We first introduce some additional notation. Let S and A be countable non-
empty sets. We define function χ : S → S → IR≥0 as χ s =def [s �→ 1]. Let,
moreover, ⊗ : 2A

fin → S → S → S be a total function and let us define, with
a little bit of overloading, function ⊗ : 2A

fin → (S → IR≥0) → (S → IR≥0) →
(S → IR≥0) as follows:

(P ⊗L Q) s =def

⎧
⎨

⎩

(P s1) · (Q s2) , if ∃s1, s2 ∈ S. s = s1 ⊗L s2

0 , otherwise

16 R. De Nicola et al.

(PRF1)
(α,λ).P

α� [P�→λ]
(PRF2)

α�=β

(α,λ).P
β
� []

(PAR1)
α �∈L, P

α� P, Q
α� Q

P ||LQ
α� (P||L(χ Q))+((χ P)||LQ)

(PAR2)
α∈L, P

α�P, Q
α� Q

P ||LQ
α� P||LQ

Fig. 2. Additional Semantics Rules for TIPPk

We also define function · / : (S → IR≥0) → IR≥0 → IR≥0 → S → IR≥0 as
follows:

(P · x

y
) s =def

⎧
⎨

⎩

(P s) · x
y , if y �= 0

0 , otherwise

The proposition below trivially follows from the relevant definitions:

Proposition 4. ΣS is closed under the operations χ, (⊗), and · / , i.e.
χ : S → ΣS, (⊗) : 2A

fin → ΣS → ΣS → ΣS, and · / : ΣS → IR≥0 →
IR≥0 → ΣS. �

4.1 TIPPk

Here we consider a kernel language TIPPk of the version3 of TIPP presented
in [17]. Let ATIPPk

be a countable set of actions, τ �∈ ATIPPk
, and Aτ

TIPPk
=def

ATIPPk
∪{τ}, with τ representing the internal action. The set PTIPPk

of TIPP
terms we consider includes inaction, choice-, and constant-terms, defined as in
Sect. 3; moreover, PTIPPk

includes action-prefix (which replaces rate-prefix) and
parallel composition, as defined by the following grammar4:

P ::= (α, λ).P
∣
∣
∣
∣ P ||LP

where α ∈ Aτ
TIPPk

, λ ∈ IR>0, and finite synchronisation set L ∈ 2
AT IP Pk

fin .
Constants X, X1, X

′, . . . may only occur guarded, i.e. under the scope of a prefix
(α, λ). , in defining bodies.

The transition relation � for TIPPk is characterised by the set of rules
RLSTIPPk

defined below:

Definition 10 (RLSTIPPk
). Set RLSTIPPk

is the least set of semantics rules
including the rules in Fig. 2 plus rules (NIL), (CHO), (CNT) of Fig. 1, where
terms P, Q, X are assumed to range over PTIPPk

and α, β ∈ Aτ
TIPPk

. •
3 In [17] the synchronisation rate is defined as the product of those of the synchronising

actions, as opposed to the original definition of TIPP , given in [13], where, instead,
such rate is the max of the component rates.

4 In TIPP the notation stop, i, [] and P |[L]|P is used instead of nil, τ , +, and P ||LP .
Here we prefer to use a standard notation for the sake of uniformity.

On a Uniform Framework for the Definition of Stochastic Process Languages 17

In the rules, the generic functions χ and ⊗ on S are instantiated with specific
functions for PTIPPk

. In particular the specific function || is used in place of the
generic function ⊗; the specific function || : 2

ATIP Pk

fin → PTIPPk
→ PTIPPk

→
PTIPPk

is just the syntactical constructor for parallel composition on TIPP
terms. Rule (PAR1) ensures that all interesting continuations of P ||L Q are of
the form R ||L Q where P

α� P and (P R) > 0, for some P and α �∈ L, or of
the form P ||L R where Q

α� Q and (Q R) > 0, for some Q and α �∈ L. Rule
(PAR2), instead, formalizes the rate multiplication principle of TIPP : if α ∈ L,
P

α� P, Q
α� Q, (P RP) = λP > 0, and (Q RQ) = λQ > 0, then P ||L Q

evolves, via α, to RP ||L RQ with rate λP · λQ.
The following proposition ensures that the semantics are closed w.r.t.

ΣPTIP Pk
.

Proposition 5. For all P ∈ PTIPPk
, α ∈ Aτ

TIPPk
and P ∈ PTIPPk

→ IR≥0,

if P
α� P can be derived using only the rules in set RLSTIPPk

of Def. 10, then
P ∈ ΣPT IPPk

. �

Definition 11 (Formal semantics of TIPPk). The formal semantics of
TIPPk is the RTS RTIPPk

=def (PTIPPk
,Aτ

TIPPk
, �) where �⊆ PTIPPk

×
Aτ

TIPPk
× ΣPTIP Pk

is the least relation satisfying the rules of set RLSTIPPk

(Def. 10). •
The following theorem characterises the structure of RTIPPk

.

Theorem 2. RTIPPk
is total and functional.

Corollary 1. For all P ∈ PTIPPk
, α ∈ Aτ

TIPPk
there exists a unique P such

that P
α� P.

The following theorem establishes the formal correspondence between the RTS
semantics of TIPPk and the semantics definition given in [17].

Theorem 3. For all P, Q ∈ PTIPPk
, α ∈ Aτ

TIPPk
, and unique P ∈ ΣPTIP Pk

such that P
α� P the following holds: (P Q) = rtα(P, Q) �

4.2 PEPAk

The RTS semantics of the full PEPA [19] calculus can be found in [9]. Here we
confine our presentation to the kernel language PEPAk. Let APEPAk

, ranged
over by α, α′, . . . be a countable set of actions. The set PPEPAk

of PEPA terms
we consider includes choice- and constant-terms, defined as in Sect. 3, and action-
prefix and parallel composition, defined as in Sect. 4.1, but with synchronisation
set5 L ∈ 2

APEPAk

fin . Constants X, X1, X
′, . . . may occur only guarded, i.e. under

the scope of a prefix (α, λ). , in defining bodies.
The transition relation � for PEPAk is characterised by the set of rules

RLSPEPAk
defined below:

5 In PEPA the notation P��LP is used instead of P ||LP . Here we prefer to use a
standard notation for the sake of uniformity.

18 R. De Nicola et al.

(
PAR
PEPA

) α∈L, P
α�P, Q

α�Q

P ||LQ
α� P||LQ·min{⊕P,⊕Q}

⊕P·⊕Q

Fig. 3. Additional Semantics Rule for PEPAk

Definition 12 (RLSPEPAk
). Set RLSPEPAk

is the least set of semantics rules
including the rule in Fig.3 plus rules (CHO), (CNT) of Fig. 1 and Rules (PRF1),
(PRF2), and (PAR1) of Fig. 2. In all the above rules terms P, Q, X are assumed
to range over PPEPAk

and α ∈ APEPAk
. •

In the rules, the generic functions χ and ⊗ on S are instantiated with specific
functions on PPEPAk

. In particular the specific function || is used in place of
the generic function ⊗; the specific function || : 2

APEPAk

fin → PPEPAk
→

PPEPAk
→ PPEPAk

is just the syntactical constructor for co-operation on
PEPA terms. The rule for interleaving ensures that all continuations of P ||L Q

are of the form R ||L Q where P
α� P and (P R) > 0, for some α and

P or of the form P ||L R where Q
α� Q and (Q R) > 0, for some α and

Q. The rule for co-operation, instead, implements the apparent rate princi-
ple of PEPA (see corollary of Theorem 4): if α ∈ L, P

α� P, Q
α� Q,

(P RP) = λP > 0, and (Q RQ) = λQ > 0, then P ||L Q evolves to RP ||L RQ

with rate λP

⊕P · λQ

⊕Q · min{⊕P,⊕Q}.
The following proposition ensures that the semantics are closed w.r.t.

ΣPPEP Ak
.

Proposition 6. For all P ∈ PPEPAk
, α ∈ APEPAk

and P ∈ PPEPAk
→ IR≥0,

if P
α� P can be derived from the rules of Fig. 3, then P ∈ ΣPPEP Ak

. �

Definition 13 (Formal semantics of PEPAk). The formal semantics of
PEPAk is the RTS RPEPAk

=def (PPEPAk
,APEPAk

, �) where �⊆
PPEPAk

× APEPAk
× ΣPP EPAk

is the least relation satisfying the rules of set
RLSPEPAk

(Def. 12). •
Theorem 4. RPEPAk

is total and functional.

As a corollary of Theorem 4 we get that whenever P
α� P the apparent rate of

α in P—namely the exit rate of P relative to α, denoted by rα(P) in [19]—is
given by ⊕P. In [9] it is shown that the RTS semantics of PEPA coincides
with the original one.

We close this section by observing that PEPA passive actions [19] can be
easily dealt with in the RTS approach. One has to consider total functions in
PPEPAk

→ (IR≥0 ∪ {w · � | w ∈ IN>0}) and define Σ�
PPEPAk

by restricting only
to functions expressed using the [. . .] notation; all definitions involving ΣPP EPAk

must be extended to Σ�
PPEPAk

accordingly and taking into account the equations
for � introduced in [19]. The following is an example resulting from the related
derivation using the extended definitions:

On a Uniform Framework for the Definition of Stochastic Process Languages 19

(α,
√

2).P ||{α}((α, 2�).Q + (α, 4�).R)
α� [P ||{α}Q �→

√
2

3
, P ||{α}R �→ 2 · √2

3
]

4.3 CCS-Based Stochastic Process Calculi

Our RTS approach has been successfully applied to several CCS-based calculi
including Stochastic CCS [20], Stochastic π-calculus [24] and calculi for modeling
Service Oriented Computing [8]. The main issue is the treatment of the CCS one-
to-one synchronisation paradigm, as opposed to the CSP multicast one adopted
by TIPP , PEPA and EMPA. RTS semantics allows for an adequate and
elegant calculation of normalisation factors which make it possible to preserve
nice properties of the original calculi, like associativity of parallel composition,
which is not possible using other approaches, as discussed in e.g. [20]. Due to
space limitations we do not show the RTS semantics of Stochastic CCS and
SOC calculi here and we refer to [8,9].

5 A Language of Interactive Markov Chains

In this section we show an RTS semantics of Hermanns’ Language of Interac-
tive Markov Chains (IML). The definition of Interactive Markov Chains (IMC)
follows [15]:

Definition 14. An Interactive Markov Chain is a tuple (S, A,→, ���, s0) where
S is a nonempty, finite set of states, A a finite set of actions, →⊆ S×A×S the
set of interactive transitions, ���⊆ S × IR>0 × S the set of Markov transitions,
and s0 ∈ S the initial state. •
Also for IMCs we let the cumulative transition rate from s to s′ be denoted by
rt(s, s′). For the sake of simplicity and due to space limitations, in this section
we consider a kernel subset IMLk of the language IML defined in [15], which
is anyway sufficient for showing how RTSs can be used as a semantic model
for IML. Let AIMLk

be a countable set of actions. The set PIMLk
of IMLk

terms we consider includes inaction, rate-prefix-, choice-, and constant-terms,
defined as in Sect. 3, and action-prefix- and parallel composition-terms, defined
as in Sect. 4.1, but with α ∈ AIMLk

and L ∈ 2
AIMLk

fin as synchronisation set6.
Constants X, X1, X

′, . . . may occur only guarded, i.e. under the scope of a prefix
λ. or α. , in defining bodies.

In order to give interactive transitions a “first-class objects” status, we con-
sider a slight extension of RTS . We point out here that, technically, such an
extension is not necessary, as we shall briefly discuss later on. We use it only
because it makes our framework closer to the original model of IMCs. The exten-
sion of interest, namely RTSι, differs from RTS only because, instead of using
functions in PIMLk

→ IR≥0, we consider those in PIMLk
→ IRι

≥0, where IRι
≥0

6 In IMLk the notation 0 and P |[L]|P is used instead of nil and P ||LP . Here we
prefer to use a standard notation for the sake of uniformity.

20 R. De Nicola et al.

+ι 0 ι v2

0 0 ι v2

ι ι ι ι

v1 v1 ι v1 + v2

·ι 0 ι v2

0 0 0 0

ι 0 ι ι

v1 0 ι v1 · v2

Fig. 4. Definition of +ι and ·ι

denotes IR≥0∪{ι}, with ι a distinguished value such that ι �∈ IR≥0. Markov tran-
sitions are modeled as in Sect. 3, using the special element

√ �∈ AIMLk
as a label

and defining the label set of the relevant RTSι as A
√
IMLk

=def AIMLk
∪ {√},

ranged over by α, α1, α
′, We define Σι

PIMLk
as expected:

Definition 15 (Σι
PIMLk

). Σι
PIMLk

denotes the subset of PIMLk
→ IRι

≥0 in-
cluding only all functions expressed using the [. . .] notation, i.e. P ∈ Σι

PIMLk

if and only if P = [] or P = [P1 �→ v1, . . . , Pn �→ vn] for n ∈ IN>0,
P1, . . . , Pn ∈ PIMLk

and v1, . . . , vn ∈ IR>0 ∪ {ι}, with ([] P) =def 0 and
[P1 �→ v1, . . . , Pn �→ vn] P yielding vj if P = Pj for 1 ≤ j ≤ n and 0 other-
wise. •

We extend operations + and · to +ι, ·ι : IRι
≥0 → IRι

≥0 → IRι
≥0 as in Fig. 4,

where we assume that v1, v2 �∈ {0, ι}. We lift +ι : IRι
≥0 → IRι

≥0 → IRι
≥0 to

+ι : Σι
PIMLk

→ Σι
PIMLk

→ PIMLk
→ IRι

≥0; we moreover define ||L : Σι
PIMLk

→
Σι

PIMLk
→ PIMLk

→ IRι
≥0 by instantiating ⊗L on the syntactical constructor

for parallel composition on IMLk terms and using ·ι instead of ·. In the sequel
we refrain from using the superscript ι in +ι and ·ι when it is clear from the
context that we are using the extended operators. The following proposition
trivially follows from the relevant definitions.

Proposition 7. (i) All functions in Σι
PIMLk

yield zero almost everywhere, i.e.
for all P ∈ Σι

PIMLk
the set {P ∈ PIMLk

| P P �= 0} is finite; (ii)Σι
PIMLk

is closed under the extended operators, namely +, ||L : Σι
PIMLk

→ Σι
PIMLk

→
Σι

PIMLk
. �

We finally extend the notion of Derived CTMC (see Def. 7) to IMCs in the
obvious way:

Definition 16 (Derived IMC). Let R = (S, A, �) be a functional RTSι;
for s0 ∈ S, the IMC of s0, when one considers only labels in finite set A′ ⊆ A
is defined as IMC[{s0}, A′] =def (Der({s0}, A′), A′,→, ���, s0) where for all
s1, s2 ∈ Der({s0}, A′), α ∈ A′ such that s1

α� P: (i) s1
α→ s2 iff (P s2) = ι,

and (ii) s1
λ��� s2 iff (P s2) = λ > 0. •

The transition relation � for IMLk is characterised by the set of rules RLSIMLk

defined below:

On a Uniform Framework for the Definition of Stochastic Process Languages 21

λ.P

√
� [P�→λ]

α �=√

λ.P
α� []

α �=√

α.P
α� [P�→ι]

√ �= α �=β

α.P
β
� []

Fig. 5. Additional Semantics Rules for the IMLk

Definition 17 (RLSIMLk
). Set RLSIMLk

is the least set of semantics rules
including the rules in Fig.5 plus rules (NIL), (CHO), (CNT) of Fig. 1, and
rules (PAR1) and (PAR2) of Fig. 2. In all the above rules, terms P, Q, X are
assumed to range over PIMLk

and α, β ∈ A
√
IMLk

. •
The rule for choice allows for the integration of Markov transitions with inter-

action ones; as usual, if P

√
� P and (P Q) = λ then λ is the cumulative rate

for reaching Q from P , i.e. λ = rt(P, Q). For instance, for

P
Δ= (λ1.P1 + α.P2) + (α.P2 + λ2.P1)

we have P

√
� [P1 �→ λ1 + λ2] and P

α� [P2 �→ ι] with, moreover, P
α′
� []

for all α′ �∈ {α,
√}. The rule for interleaving ensures that all continuations of

P ||L Q are of the form R ||L Q where P

√
� P and (P R) > 0 or P

α� P

and (P R) = ι for some P and α, or of the form P ||L R where Q

√
� Q and

(Q R) > 0 or Q
α� Q and (Q R) = ι, for α �∈ L. The rule for synchronisation,

instead, applies only in the case of interactive transitions and postulates that the
only terms which can be reached from P ||L Q, via α ∈ L are those of the form
P ′ ||L Q′ with (P P ′) = (Q Q′) = ι, where P

α� P and Q
α� Q. It is worth

noting that we could have chosen to use standard ΣPIMLk
instead of its extension

Σι
PIMLk

by replacing axiom α.P
α� [P �→ ι] with α.P

α� [P �→ 1]. In particular,

whenever P
α� P the number of different (interaction) α-transitions from P to

Q would be given by (P Q). We preferred the first alternative because we are
not interested in counting such transition and we think that keeping different
types for the range of the two kinds of transitions makes the framework more
clear and closer to the original model of IMCs. We note also a clean separation
between internal non-determinism, represented within functions, and external
non-determinism, represented by different transitions. For instance, assuming
P1, P2 and P3 all different terms, the term

P
Δ= α.P1 + β.P2 + α.P3

has the following transitions: P
α� [P1 �→ ι, P3 �→ ι], P

β
� [P2 �→ ι], and P

α′
� []

for all α′ �∈ {α, β}
Proposition 8. For all P ∈ PIMLk

, α ∈ A
√
IMLk

and P ∈ PIMLk
→ IRι

≥0,

if P
α� P can be derived from the rules in set RLSIMLk

of Def. 17, then
P ∈ Σι

PIMC
. �

22 R. De Nicola et al.

Proposition 9. For all P ∈ PIMLk
, α ∈ A

√
IMLk

and P ∈ Σι
PIMC

such that

P
α� P can be derived from the rules in set RLSIMLk

of Def. 17, the following
holds: (i) if α ∈ AIMLk

and P �= [] then (range P) = {0, ι}, (ii) if α =
√

then
ι �∈ (rangeP). �.

Definition 18 (Formal semantics of IMLk). The formal semantics of IMLk

is the RTSι RIMLk
=def (PIMLk

,A
√
IMLk

, �) where �⊆ PIMLk
× A

√
IMLk

×
Σι

PIMLk
is the least relation satisfying the rules in set RLSIMLk

of Def. 17. •
Theorem 5. RIMLk

is total and functional.

Corollary 2. For all P ∈ PIMLk
, α ∈ A

√
IMLk

there exists a unique P such

that P
α� P.

The following theorem establishes the formal correspondence between the RTSι

semantics of IMLk and the semantics definition given in [15]. Notice that in
this case the cumulative rate must be computed over all copies of all transitions
from P to Q in the multi-relation ��� defined in [15].

Theorem 6. For all P, Q ∈ PIMLk
, α ∈ AIMLk

, and unique functions P, P ′ ∈
ΣPIMLk

such that P
α� P and P

√
� P ′ the following holds: (i) (P Q) = ι if

and only if P
α→ Q; (ii) (P ′ Q) = rt(P, Q). �

6 Conclusions

In this paper we introduced Rate Transition Systems and we showed how they
can be used as a unifying framework for the definition of the semantics of stochas-
tic process algebras. RTSs facilitate the compositional definition of such seman-
tics exploiting operators on the next state functions which are the functional
counterpart of classical process algebra operators. We applied this framework
to representative fragments of major stochastic process calculi including TIPP ,
PEPA and IML and showed how they solve the issue of transition multiplic-
ity in a simple and elegant way7. Moreover, we showed how RTSs throw light
on differences and similarities of different languages. For each calculus, we also
proved the formal correspondence between its RTS semantics and its standard
SOS one. It turned out that, in all cases we considered here, it is sufficient to use
functional RTSs, i.e. RTS where the transition relation is indeed a function.
General RTSs are however useful in translations of Interactive Markov Chains
to Continuous Time Markov Decision Processes [18], or in the definition of the
RTS semantics for the Stochastic π-calculus (see [9]). Future work includes the
investigation of the nature and actual usefulness of general RTSs, and in par-
ticular their explicit representation of non-determinism, also in the context of
behavioural relations, along the lines of [22].
7 The approach has been applied also to EMPA but is not reported here due to space

limitations. The details can be found in [11].

On a Uniform Framework for the Definition of Stochastic Process Languages 23

References

1. Aldini, A., Bernardo, M., Corradini, F.: A Process Algebraic Approach to Software
Architecture Design. Springer, Heidelberg (to appear)

2. Baier, C., Hermanns, H., Katoen, J.-P., Haverkort, B.: Efficient computation of
time-bounded reachability probabilities in uniform continuous-time Markov deci-
sion processes. Theoretical Computer Science 345, 2–26 (2005)

3. Bernardo, M., Gorrieri, R.: A tutorial on EMPA: A theory of concurrent processes
with nondeterminism, priorities, probabilities and time. Theoretical Computer Sci-
ence 202(1-2), 1–54 (1998)

4. Bravetti, M., Latella, D., Loreti, M., Massink, M., Zavattaro, G.: Combining Timed
Coordination Primitives and Probabilistic Tuple Spaces. In: Kaklamanis, C., Niel-
son, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 52–68. Springer, Heidelberg (2009)

5. Van Hung, D., Chaochen, Z.: Probabilistic Duration Calculus for Continuous Time.
Formal Aspects of Computing. The International Journal of Formal Methods 11,
21–44 (1999)

6. De Nicola, R., Katoen, J.-P., Latella, D., Loreti, M., Massink, M.: Klaim and its
Stochastic Semantics. Technical Report 6, Dipartimento di Sistemi e Informatica,
Università di Firenze (2006),
http://rap.dsi.unifi.it/~loreti/papers/TR062006.pdf

7. De Nicola, R., Katoen, J.-P., Latella, D., Loreti, M., Massink, M.: Model Check-
ing Mobile Stochastic Logic. Theoretical Computer Science 382(1), 42–70 (2007),
http://dx.doi.org/10.1016/j.tcs2007.05.008

8. De Nicola, R., Latella, D., Loreti, M., Massink, M.: MarCaSPiS: a Markovian
Extension of a Calculus for Services. In: Hennessy, M., Klin, B. (eds.) Proceedings
of the 5th Workshop on Structural Operational Semantics (SOS 2008), Reykjavik,
Iceland, July 6, pp. 6–20 (2008); Preliminary Proceedings. Final Proceedings to
appear as ENTCS by Elsevier

9. De Nicola, R., Latella, D., Loreti, M., Massink, M.: Rate-based Transition Systems
for Stochastic Process Calculi. In: Marchetti, A., Matias, Y. (eds.) Automata, Lan-
guages and Programming - C. LNCS. Springer, Heidelberg (2009)

10. De Nicola, R., Latella, D., Massink, M.: Formal modeling and quantitative anal-
ysis of KLAIM-based mobile systems. In: Haddad, H., Liebrock, L., Omicini, A.,
Wainwright, R., Palakal, M., Wilds, M., Clausen, H. (eds.) Applied Computing
2005. Proceedings of the 20th Annual ACM Symposium on Applied Computing,
pp. 428–435, Association for Computing Machinery - ACM (2005), ISBN 1-58113-
964-0

11. De Nicola, R., Latella, D., Moreli, M., Massink, M.: On a Uniform Framework for
the Definition of Stochastic Process Languages. Full Version. Technical report, Con-
siglio Nazionale delle Ricerche, Istituto di Scienza e Tecnologie dell’Informazione
’A. Faedo’ (to appear, 2009)

12. Deng, Y., van Glabbeek, R., Hennessy, M., Morgan, C., Zhang, C.: Characterising
testing preorders for finite probabilistic processes. In: IEEE Symposium on Logic
in Computer Science, pp. 313–325. IEEE Computer Society Press, Los Alamitos
(2007)

13. Gotz, N., Herzog, U., Rettelbach, M.: Multiprocessor and distributed systems de-
sign: The integration of functional specification and performance analysis using
stochastic process algebras. In: Donatiello, L., Nelson, R. (eds.) SIGMETRICS
1993 and Performance 1993. LNCS, vol. 729. Springer, Heidelberg (1993)

24 R. De Nicola et al.

14. Haverkort, B.: Markovian Models for Performance and Dependability Evaluation.
In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and FMPA
2000. LNCS, vol. 2090, pp. 38–83. Springer, Heidelberg (2001)

15. Hermanns, H.: Interactive Markov Chains. LNCS, vol. 2428, p. 129. Springer, Berlin
(2002)

16. Hermanns, H., Herzog, U., Katoen, J.-P.: Process algebra for performance evalua-
tion. Theoretical Computer Science 274(1-2), 43–87 (2002)

17. Hermanns, H., Herzog, U., Mertsiotakis, V.: Stochastic process algebras - between
LOTOS and Markov chains. Computer Networks and ISDN Systems 30, 901–924
(1998)

18. Hermanns, H., Johr, S.: Uniformity by Construction in the Analysis of Nonde-
terministic Stochastic Systems. In: 2007 International Conference on Dependable
Systems & Networks, pp. 718–728. IEEE Computer Society Press, Los Alamitos
(2007)

19. Hillston, J.: A compositional approach to performance modelling. In: Distinguished
Dissertation in Computer Science. Cambridge University Press, Cambridge (1996)

20. Klin, B., Sassone, V.: Structural Operational Semantics for Stochastic Process
Calculi. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 428–442.
Springer, Heidelberg (2008)

21. Knast, R.: Continuous-Time Probabilistic Automata. Information and Control 15,
335–352 (1969)

22. Zhang, L., Hermanns, H., Eisenbrand, F., Jansen, D.: Flow Faster: Efficient De-
cision Algorithms For Probabilistic Simulations. Logical Methods in Computer
Science 4(6), 1–43 (2008)

23. Prandi, D., Quaglia, P.: Stochastic COWS. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 245–256. Springer, Hei-
delberg (2007)

24. Priami, C.: Stochastic π-Calculus. The Computer Journal 38(7), 578–589 (1995)

A Proof of Proposition 1

Proposition 1. The transient behaviour of CTMC C = (S,R) with R[s̄, s̄] > 0
for some s̄ ∈ S coincides with that of CTMC C̃ = (S, R̃), such that

R̃[s, s′] =def

{
0 if s = s′

R[s, s′] otherwise

�

Proof. Suppose R[s̄, s̄] > 0 and let (π s̄ t) be the probability that C is in state
s̄ at time t, IP{C(t) = s̄}. For h small enough, the evolution of C in the period
[t, t + h) can be captured using (π s̄ t) as shown below, letting ps̄ denote the
probability that no transition from s̄ is taken during the period [t, t + h) and
ps,s̄ denote the probability that a transition from s to s̄ takes place during the
period [t, t + h)8:

8 Notice that, we do not require s �= s̄, as usually found in the literature (see, e.g.
[14]).

On a Uniform Framework for the Definition of Stochastic Process Languages 25

π s̄ (t + h)

= {Probability Theory; Definition of ps̄ and ps,s̄; h small}
(π s̄ t) · (1 − ∑

s∈S R[s̄, s] · h)
+

∑
s∈S(π s t) · R[s, s̄] · h + o(t)

= {Algebra}
(π s̄ t) − (π s̄ t) · ∑s∈S\{s̄} R[s̄, s] · h − (π s̄ t) ·R[s̄, s̄] · h +
∑

s∈S\{s̄}(π s t) ·R[s, s̄] · h + (π s̄ t) ·R[s̄, s̄] · h + o(t)

= {Algebra}
(π s̄ t) − (π s̄ t) · ∑s∈S\{s̄} R[s̄, s] · h +

∑
s∈S\{s̄}(π s t) · R[s, s̄] · h + o(t)

Thus the evolution of C in the period [t, t + h) does not depend on R[s̄, s̄]. And
in fact, letting

QR[s, s′] =def

⎧
⎨

⎩

R[s, s′], if s �= s′

−∑
s′′∈S\{s} R[s, s′′], if s = s′

we get π s̄ (t + h) = (π s̄ t)+
(∑

s∈S(π s t) · QR[s, s̄]
) ·h + o(t) from which we get

d(π s̄ t)
dt

= limh→0
(π s̄ (t + h)) − (π s̄ t)

h
=

∑

s∈S

QR[s, s̄] · (π s t)

The vector ((π s t))s∈S of the transient probabilities for C is thus characterised
as the solution of the equation

(
d(π s t)

dt

)

s∈S

= ((π s t))s∈SQR given ((π s 0))s∈S

which clearly coincides with the equation for the transient probabilities of C̃
observing that QR = QR̃.

M. Alpuente, B. Cook, and C. Joubert (Eds.): FMICS 2009, LNCS 5825, pp. 26–34, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Applying a Formal Method in Industry: A 15-Year
Trajectory

Thierry Lecomte

ClearSy,
Aix en Provence, France

Thierry.lecomte@clearsy.com

Abstract. This article presents industrial experience of applying the B formal
method in the industry, on diverse application fields (railways, automotive,
smartcard, etc.). If the added value of such an approach has been demonstrated
over the year, using a formal method is not the panacea and requires some pre-
cautions when introduced in an industrial development cycle.

Keywords: B formal method, deployment, industry.

1 Introduction

Historically, the B Method [1] was introduced in the late 80’s to design correctly safe
software. Promoted and supported by RATP1, B and Atelier B, the tool implementing
it, have been successfully applied to the industry of transportation. Figure 1 depicts
the worldwide implementations of the B technology for safety critical software,
mainly as automatic pilots for metros. Today, Alstom Transportation Systems and
Siemens Transportation Systems (representing 80% of the worldwide metro market)
are the two main actors in the development of B safety-critical software development.
Both have a product based strategy and reuse as much as possible existing B models
to develop future metros.

A more widely scope use of B appeared in the mid ‘90s, called Event-B [2], to ana-
lyze, study and specify not only software, but also whole systems. Event-B has been
influenced by the work done earlier on Action Systems by the Finnish School (Action
System however remained an academic project). Event-B is the synthesis between B
and Action System. It extends the usage of B to systems that might contain software
but also hardware and pieces of equipment. In that respect, one of the outcome of
Event-B is the proved definition of systems architectures and, more generally, the
proved development of, so called, “system studies” [7][10], which are performed
before the specification and design of the software. This enlargement allows one to
perform failure studies right from the beginning in a large system development.
Event-B has been applied in many cases to various fields: certification of smartcard
security policies (level EAL5+, Common Criteria), verification of Ariane 5 launcher

1 Régie Autonome des Transports Parisiens : operates bus and metro public transport in Paris.

 Applying a Formal Method in Industry: A 15-Year Trajectory 27

Fig. 1. Worldwide implementations of systems embedding software generated from B models

embedded flight software, generation of proven hardware specification [6], etc. Event-
B has now its own modelling and proof platforms: Atelier B2 and Rodin3.

In this article, we try to make clear what the different usages of B are in industry,
and to report on experienced added-value, in order to provide more arguments for and
against formal methods.

2 The Genesis

First real success was Meteor line 14 driverless metro in Paris: Over 110 000 lines of
B models were written, generating 86 000 lines of Ada. No bugs were detected after
the proofs, neither at the functional validation, at the integration validation, at on-site
test, nor since the metro lines operate (October 1998). The safety-critical software is
still in version 1.0 in year 2009, without any bug detected so far.

At that time, because of demographic explosion in Paris and its suburb, it was
decided to reduce the interval between trains (by using fully automated trains) in
order to transport more passengers, as it is not possible or is very costly to modify
existing infrastructures or to create bigger, specific trains and cars. No tech-
nique/technology/method was seen as mature enough to back the development off
the embedded software. RATP spent several millions €€ for transforming a tool de-
veloped internally at Alsthom Transportation Systems into a CASE tool able to
generate SIL4 compliant code, leading to the creation of Atelier B.

It was initially a one-man decision to fund the development of a prototype tool that
would be used for building a software responsible for transporting safely millions
passengers a year. This decision had many consequences on the organization of
RATP, leading to have almost more people involved in the verification of the

2 http://www.atelierb.eu/
3 http://sourceforge.net/projects/rodin-b_sharp/

28 T. Lecomte

development process and documentation than engineers producing software on con-
tracting company side. Even if Atelier B was not developed formally, this tool was
subject to extensive verification and validation. In particular:

- the theorem prover was subject to external expertise,
- a dedicated tableau-based prover was build to validate most of the theorem

prover mathematical rules,
- a committee was set up to demonstrate by hand unprocessed rules
- a mini automated prover was developed to verify the correctness of the dedi-

cated tableau-based prover

The overall process was time and resource consuming but at the end it was accepted
as a sound process. Several qualifications were operated by RATP on B software,
that are today subcontracted to any V&V engineer. Thanks to the huge contribution
on V&V methodology, B development cycle is perceived as a standard and doesn’t
require any more specific resources.

Siemens and Alstom claim today to develop most safety critical software with B.
Siemens has also developed a useful technology, a tool able to generate semi-
automatically refinements and implementations, leading to have safety-critical soft-
ware developed for a cost similar to any other not-safety related software [3].

However, the “magic” of a 100% proven software also requires verifying that its
formal specification complies with requirements written in natural language. As
everyone knows, natural language is imprecise, ambiguous and requires frequently
interpretation. Demonstrating that requirements and specification match is not an easy
game, and is not only a question of traceability/coverage but more related to under-
standing. Except for trivial examples, most requirements are expressed with jar-
gon/technical language which needs to be made explicit, transforming a 2 or 3 line
sentence into a full page mathematical predicate. Compliancy in this case requires
specialists and is highly subject to human error, requiring extensive valida-
tion/simulation at system level.

3 System Level Modeling

B was initially invented for modeling software. However it has appeared at several
occasions that a 100% proven software is not a guaranty against failure, as the proof
is related to the compliancy between specification and implementation, not to the
correctness of the specification of the software regarding the system where it is
plugged into. For example, one metro automatic pilot was not able to stop a train at a
platform because of a specification error.

The idea of using B for modeling system level specification and to identify for-
mally correct software specification then emerged.

3.1 Embedded Software

The invention of Event-B in the 90’s coincided with the massive introduction of elec-
tronics onboard cars, leading to a cultural shock and serious difficulties to specify and
maintain the electronic architecture of recent cars. Lack of methods and tools for
validating distributed specification lead us to enter a 5 year close collaboration with

 Applying a Formal Method in Industry: A 15-Year Trajectory 29

the maintenance department of a car manufacturer. At that time, a sub-contracted
diagnosis system was able to identity 40% of the faults, theoretically leading to
change all removable electronic components to solve the problems. It was too late to
operate on the design, so it was decided to set up a formal model of the 52 embedded
functions of a car, covering comfort and safety-related functions, (software based,
electronics, mecatronics, etc.). Models were developed from different sources of in-
formation such as driver manual, technical documents, diagrams, etc. Calling subcon-
tractors providing components was also part of the modeling phase, in order to get a
better understanding of the car behavior, being expected or not, especially in case of
failure. This aspect is of paramount importance as the real specification of a car ap-
pears to be distributed over a large number of persons. Sometimes this specification is
not reachable, for example in the case of a manufacturer not willing to share the inter-
nal of the devices he is producing. This lack of knowledge leads sometimes to misbe-
haviors or “self-emerging specification”, resulting from the contribution of several
devices put together on a car by independent teams. It was for example possible, in a
special case, to lock a driver inside a car, even if he had the key to release and open
the door.

In the case of our modeling, some of the 52 functions were abandoned because of
the lack of information. The related model was in fact full of question marks and we
were not able to answer these questions, even by testing the equipments. Hopefully
these functions are all not related to safety.

The modeling was constituted of a flat 30 000 lines B model, principally used to
make explicit the behavior of the car. No proof was conducted on it.
Cause/consequences matrices were extracted from this model and lead to the con-
struction of a excel file, providing hints on the equipment at fault on a diagnosed car.
This approach was repeated on 4 different cars but sharing architecture and some
equipment. Part of the modeling was reused from one car to the other, leading to cut
modeling time by 3 between the first one and the last one.

The resulting documentation was then provided to the design department while ex-
plaining that this kind of information is required to maintain modern cars.

3.2 Platform Screen Doors

In France, RATP has used for years platform screen doors (PSD) that prevent cus-
tomers to enter or to fall on tracks. Such a system was adopted by the METEOR
driverless metro, as it dramatically improves trains availability. In order to offer
higher quality services and more safety to its customers, RATP was trying to intro-
duce this kind of protection system in several lines, automated or not. For practical
reasons, trains and cars could not be modified with the introduction of PSD. Before
starting to deploy a new PSD system in an entire line, RATP initiated a project aimed
at developing a prototype PSD system for three stations of line 13 [5][8][9].

Once the train is at standstill, the controller should be able to detect train doors
opening and closing, and then issue PSD opening and closing orders. These orders
have to be securely issued (failure by elaborating a wrong opening order may lead to
customers injury or death), and controller have to be designed, tested and validated in
accordance with railway regulations (IEC 50126, 50128, 50129 in particular).

30 T. Lecomte

Fig. 2. Development and verification process

In order to reach the required safety level during project timescale, we decided to
set up a development method aimed at reaching targeted reliability, and also ensuring
traceability between the different stages of the projects in order to reduce the valida-
tion effort. This method was heavily based on the B formal method, and applied dur-
ing most phases of the project.

Before any development activity, a formal functional analysis of the system was
performed, to evaluate “completeness” and ambiguity freeness of the statement of
work. The B method was used to:

- Verify on the overall system (PSD + controller) that functional constraints and
safety properties were verified (no possibility to establish forbidden connec-
tions between train and platform or between train and tracks).

- Lead to the observation of dangerous system behaviour.

System and software specification were then formalized in B by the development
team, taking into account only nominal behaviour for the sensors (in absence of per-
turbation). Models obtained from previous functional analysis (independent from any
PSD controller architecture) were directly reused. The proposed architecture was
modelled and inserted in these previous models. New architecture was successfully
checked by proof to comply with functional specification of the system, including
parts of the French underground regulations. Controller functions were then precisely
modelled (train arrival, train detection, train departure, train door opening, train door
closing, etc). In the meantime, an independent safety case4 was developed in parallel
by the security team, in order to precisely define how external perturbations may
influence the behaviour of the PSD controller. Perturbations were given a priori or a
posteriori frequencies, depending on availability of such data at RATP, and a
mathematical model, independent from the B model, was set up in order to determine

4 Safety oriented study that provides a convincing and valid argument that a system is ade-

quately safe for a given application in a given environment.

 Applying a Formal Method in Industry: A 15-Year Trajectory 31

quantitatively the security level of the system. A priori frequencies were verified
during the eight month experiment. In case these frequencies were not verified and
lower system security below SIL3 level, the PSD controllers would have to be redes-
igned considering this new information.

Specification documentation was partly elaborated from the system level models
developed during this project. The composys5 tool helps the modeller to add contex-
tual information (comments, description, component name, etc) in B models that are
used to generate in natural language the specification documentation describing the
complete system. As events are associated to components and as variables are used
within events (read/write), Composys computes relationships among components
constituting the system being modelled, depending on how variables are read or modi-
fied. This document was used to check models with experts of the domain, unable to
read and understand formal models.

The development of the software was based on the formal models, as B enables the
production of source code, proven to comply with its specification. Siemens automa-
ton can be programmed in the LADDER language but, unfortunately, requires enter-
ing program source code via its graphical interface (according to its certificate) to
keep its SIL3 accreditation. A dedicated translation schema (from B to LADDER)
was elaborated. B to LADDER state diagrams translation is straightforward and some
optimisations were introduced in order to verify temporal constraints (cycle time in
particular). During validation phase, one can determine which event of the B model
corresponds to the path of the LADDER program for a cycle (a LADDER program is
defined by logical equations and is analyzed in term of execution path). In case the
source code is automatically generated by a qualified translator (as for automatic
pilots, by Siemens and Alstom), no unit test is required, this testing phase being cov-
ered by the proof of the model.

In this project, as the source code was not generated automatically by such a trans-
lator, test was required and test specification was elaborated by usual means. Some
months after the beginning of the project, we obtained a fully functional, tested and
validated application. The process described above has enabled us to produce a 100%
tested, error free (against its specification) software when running validation test
bench for the first time. A dedicated test bench was designed to simulate major per-
turbations (sensors were emulated) and run during days, but no faulty behaviour was
observed.

3.3 SmartCard

On the contrary of safety-critical systems where standards do not require to use for-
mal methods to reach highest safety level, the microelectronics security standards,
especially in the smart card domain, oblige circuits to be checked against formal
methods for EAL5+ levels and higher. For EAL5+ devices, the security policy needs
to be formally verified. Design modeling could make use of semi-formal methods and
a table based traceability between specification and design documentation is suffi-
cient. EAL6 and higher levels require (almost) fully use of formal methods at every
phase. EAL constraints also propagate to subcontractors involved in the development

5 http://www.composys.fr

32 T. Lecomte

as well as the technical/confidentiality organization (what is the use of inviolable
smartcard if information on the PIN code generation process is easily reachable?).

We were involved in the first certifications of EAL5+ smartcard microcircuits in
France, for different companies and in collaboration with different evaluation centers.
The main reason for reaching this level was initially due to marketing. Our first
evaluations were performed by independent experts that were not aware of B, its
restrictions (well known in the railway, due to experience) and French government
made some remarks on the resulting evaluation report, leading to the writing of a
methodological guidelines for conducting evaluation on Event-B models.

Since then, smartcard microcircuits are regularly evaluated at EAL5+ level, based
on an Event-B model of the security policy, with a far better confidence on the results.
For a recent product, the evaluation was also performed in Germany by a TÜV, lead-
ing to acceptance but also contributing to improve the process (the remarks emitted by
the evaluation center have been transmitted to the French government).

4 Animation and Documentation

Everyone has experienced difficulty to have third party person understanding a state
of the art formal model. The mathematical language is at fault, as well as the text-
based representation. To counter this, we have experimented two different ap-
proaches:

- Generation of documentation, based on the B model and on a dictionary
provided by the user, in order to have sentences in natural language describing
entities and behavior, as well as a static graphical representation of the rela-
tionships among the different entities. This approach is not error prone as you
can make mistakes when writing the dictionary, but its main advantage is to
make your modeling more understandable that could be evaluated and studied
by a third party expert.

- Generation of a graphical animation of the system would help to understand
and validate the dynamic part of the modeling, that could be tricky to assess
when dealing with large models and complex/complicated enabling conditions
for events. For example, a USB device was once modeled and proved correct
until the model was animated and demonstrated not being compliant with the
USB protocol (one guard was made too restrictive but it was not detected by
proof).

In the case of the development of PSD, specification documentation was partly elabo-
rated from the system level models developed during this project and documented
with composys. This tool has no proof capabilities but, as an engineering tool, helps
the modeller to add contextual information (comments, description, component name,
etc) in B models that are used to generate in natural language the specification docu-
mentation describing the complete system. As events are associated to components
and as variables are used within events (read/write), Composys computes relation-
ships among components constituting the system being modelled, depending on how
variables are read or modified.

 Applying a Formal Method in Industry: A 15-Year Trajectory 33

Fig. 3. An animated model submitted for a call for tender

Animation was used at several occasions, including during the writing of proposals
where B models were developed and associated with a flash-based animation The
resulting B model was animated [11] with the Brama animator6, in order to verify on
given scenarios that the model produced was corresponding to the real system we
were modelling. This model animator was not part of the validation process, as this
would require it to be qualified as a SIL3 software, but it helped us to check models
against reality and to internally verify their suitability.

The animations were also used to make top managers happy and “intelligent”, be-
cause usually they have to read thick documents (call for tender, proposals) and most
of the time they mainly read the commercial part. Standalone animations allow for
easily understanding the functional specification of a system and to play with the
system, keeping in mind that the resulting software will be generated from the B
model being animated. We finally discovered that this kind of deliverable was widely
distributed among target service and could be more or less considered as gentle virus
(we saw our animation used as screen-saver on many computers).

5 Conclusion

Formal methods have been considered for years as hobbies for PhD and academic peo-
ple, by industry. Being in charge of disseminating the B method, we have experimented
its introduction into several development processes, including ours. If B is well intro-
duced in the railways domain, it has started to conquer microelectronics, due to the fact
that this method has acquired maturity over the years. However it is important to

6 http://www.brama.fr

34 T. Lecomte

determine how much and where to use a formal method within an existing organization.
New tools and new practices are available to ease acceptance in industry.

References

1. Abrial, J.R.: The B-book: Assigning programs to meanings. Cambridge University Press,
Cambridge (1996)

2. Abrial, J.R.: Rigorous Open Development Environment for Complex Systems: event B
language (2005)

3. Burdy, L.: Automatic Refinement. In: Proceedings of BUGM at FM 1999 (1996)
4. Casset, L.: A formal specification of the Java byte code verifier using the B method. Lis-

bonne 99 (1999)
5. Sabatier, D., et al.: Use of the Formal B Method for a SIL3 System Landing Door Com-

mands for line 13 of the Paris subway. In: Lambda Mu 15 (2006)
6. Benveniste, M., et al.: A Proved “Correct by Construction” Realistic Digital Circuit. In:

RIAB, FMWeek (2009)
7. Sabatier, D., et al.: FDIR Strategy Validation with the B method. In: DASIA 2008 (2008)
8. Lecomte, T.: Safe and Reliable Metro Platform Screen Doors Control/Command Systems.

In: FM 2008 (2008)
9. Lecomte, T., et al.: Formal Methods in Safety Critical Railway Systems. In: SBMF 2007

(2007)
10. Hoffmann, S., et al.: The B Method for the Construction of Micro-Kernel Based Systems.

In: ZB 2007 (2007)
11. Lecomte, T., et al.: BRAMA: a New Graphic Animation Tool for B Models. In: ZB 2007

(2007)

What’s in Common between Test, Model

Checking, and Decision Procedures?

K.L. McMillan

Cadence Research Labs

Abstract. The interaction of proof search and counterexample search
is at the heart of recent methods in decision procedures model checking.
In this talk, we’ll consider the relation between these methods and test.

When we set out to prove a mathematical conjecture, often our first step is try
to construct a counterexample for the conjecture. When we fail to do this, our
failure may suggest a lemma: some salient fact that explains our failure. Knowing
this fact, we are then forced to look elsewhere for a counterexample, continuing
in this way until (hopefully) our lemmas add up to a proof. Thus, proof and
counterexample search are parallel processes that guide each other. We might
say that to be good at finding counterexamples, you have to be good at proof,
and vice versa.

This proof/counterexample duality is a thread that runs through much recent
research in formal verification. In this talk, we’ll follow this thread, and consider
some of the implications of this idea for the future of verification, formal and
otherwise.

Decision procedures. In decision procedures, both for Boolean SAT and SAT
modulo theories (SMT), the duality is embodied in the DPLL mechanism [1].
Here, we attempt to construct a satisfying assignment (a counterexample to our
conjecture) by assigning values to Boolean variables. When we reach a variable
that has no feasible assignment, we deduce a new fact. This new fact rules
out a class of possible counterexamples, forcing us to backtrack and reconsider
earlier choices. This interaction counterexample search and deduction helps to
focus both processes on relevant variables and relevant facts. Thus, we might
say that DPLL is relevance biased. More recently, this mechanism has also been
generalized to search in richer domains.

Model checking. In model checking, the proof/counterexample duality often
appears in the form of “abstraction refinement”. To avoid a combinatorial explo-
sion, the model checker works in an abstract domain, which we can think of as a
restricted language for expressing facts about the system state. When this lan-
guage is insufficient to prove the desired property, the model checker generates a
class of potential counterexamples. Refinement enriches the abstract domain to
allow it to rule out this class [2]. Interestingly, the refinement process is typically
based on a proof generated by a decision procedure using the DPLL mechanism
described above. This proof can be factored into an appropriate form using a
technique called Craig interpolation [4].

M. Alpuente, B. Cook, and C. Joubert (Eds.): FMICS 2009, LNCS 5825, pp. 35–36, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

36 K.L. McMillan

This latter observation has led to methods that generate proofs of system
properties directly from interpolants, without using an abstract domain [5]. This
is closer in spirit to the DPLL approach. We can think of these methods as gener-
ating tests for the system (potential counterexamples) and using the refutations
of these tests to build the required proof artifacts (such as inductive invariants
and procedure summaries).

Test. In test, a recent trend has been to use decision procedures to generate
program inputs that exercise alternate branches in program traces [3]. We cannot
quite describe this as a relevance-biased approach, since these testing tools do
not derive general facts about the program that are relevant to a given property.
However, we can observe a sort of convergence between testing methods and
model checking. In the talk, we’ll explore some ways in which model checking
methods could be incorporated into test tools in order to focus test generation
more on finding tests that violate particular properties.

Testing is in a sense searching for a counterexample. If it’s true that to be
good at counterexample search you must be good at proof, then it stands to
reason that (relevance biased) methods of proof generation might be useful in
test, even if ultimately no proofs are generated. Similarly, better test should lead
to more efficient proof. It seems plausible that we will see a convergence of test,
model checking and decision procedures, such that the difference between the
first two will be more a matter of degree than of principle.

About the speaker. Ken McMillan is currently a research scientist at Cadence
Berkeley Labs in Berkeley, California. He works in formal verification, primarily
in model checking, decision procedures and compositional methods. He holds
a BS in electrical engineering from the University of Illinois at Urbana (1984),
an MS in electrical engineering from Stanford (1986) and a Ph.D. in computer
science from Carnegie Mellon (1992). He is the author of the SMV symbolic
model checker, and received the 1992 ACM doctoral dissertation award for his
thesis on symbolic model checking. For his work in this area, he also received an
SRC technical excellence award (1995), the ACM Paris Kannelakis award (1998),
and the Alan Newell award from Carnegie Mellon (1998). His current research
is focused on using Craig interpolation methods for software verification.

References

1. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
IOS Press, Amsterdam (2009)

2. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

3. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: PLDI 2005, pp. 213–223. ACM, New York (2005)

4. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1), 101–
121 (2005)

5. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

Verifying Cryptographic Software Correctness

with Respect to Reference Implementations�

José Bacelar Almeida, Manuel Barbosa, Jorge Sousa Pinto, and Bárbara Vieira

CCTC / Departamento de Informática
Universidade do Minho

Campus de Gualtar, 4710-Braga, Portugal
{jba,mbb,jsp,barbarasv}@di.uminho.pt

Abstract. This paper presents techniques developed to check program
equivalences in the context of cryptographic software development, where
specifications are typically reference implementations. The techniques al-
low for the integration of interactive proof techniques (required given the
difficulty and generality of the results sought) in a verification infrastruc-
ture that is capable of discharging many verification conditions automat-
ically. To this end, the difficult results in the verification process (to be
proved interactively) are isolated as a set of lemmas. The fundamental
notion of natural invariant is used to link the specification level and the
interactive proof construction process.

1 Introduction

Software implementations of cryptographic algorithms and protocols are at the
core of security functionality in many IT products. However, the development
of this class of software products is understudied as a domain-specific niche in
software engineering.

The development of cryptographic software is clearly distinct from other areas
of software engineering due to a combination of factors. First of all, cryptogra-
phy is an inherently inter-disciplinary subject. The design and implementation
of cryptographic software draws on skills from mathematics, computer science
and electrical engineering. The assumption that such a rich body of research
can be absorbed and applied without error is tenuous for even the most expert
software engineer. Secondly, security is notoriously difficult to sell as a feature
in software products, even when clear risks such as identity theft and fraud
are evident. An important implication of this fact is that security needs to be
as close to invisible as possible in terms of computational and communication
load. As a result, it is critical that cryptographic software is optimised aggres-
sively, without altering the security semantics. Finally, typical software engineers
develop systems focussed on desktop class processors within computers in our of-
fices and homes. The special case of cryptographic software is implemented on a
� This work was partially supported by the European Union under the FP7-STREP

project CACE (Project Number 216499), and by the FCT-funded RESCUE project
(PTDC/EIA/65862/2006).

M. Alpuente, B. Cook, and C. Joubert (Eds.): FMICS 2009, LNCS 5825, pp. 37–52, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

38 J.B. Almeida et al.

much wider range of devices, from embedded processors with very limited com-
putational power, memory and autonomy, to high-end servers, which demand
high-performance and low-latency. Not only must the cryptographic software
engineers understand each platform and the related security requirements, they
must also optimise each algorithm with respect to each platform since each will
have vastly different performance characteristics.

CACE (Computer Aided Cryptography Engineering [5]) is an European
Project that targets the lack of support currently offered to cryptographic soft-
ware engineers. The central objective of the project is the development of a
tool-box of domain-specific languages, compilers and libraries, that supports
the production of high quality cryptographic software. The aim is that specific
components within the tool-box will address particular software development
problems and processes; and combined use of the constituent tools is enabled by
designed integration between their interfaces. The project started in 2008 and
will run for three years.

This paper stems from CACE - Work Package 5, which aims to add formal
methods technology to the tool-box, as a means to increase the degree of assur-
ance than can be provided by the development process. We describe promising
early results obtained during our exploration of existing verification techniques
and tools used to construct high-assurance software implementations for other
domains. Specifically, we present our achievements in using an off-the-shelf ver-
ification tool to reason about the functional correctness of a C implementation
of the RC4 encryption scheme that is included in the well-known open-source
library openSSL [15].

Contribution. The main contribution of this paper is to report on the appli-
cation of the off-the-shelf Frama-c verification platform to verifying correctness
of a real-world example of a cryptographic software implementation: the widely
used C implementation of the RC4 stream cipher available in the openSSL library.
We focus on functional correctness, which is a critical use-case for verification
tools when applied to cryptographic software. The (conceptual) specifications
of cryptographic schemes are very often presented as pseudo-code algorithms,
which may be easy to transcribe into a high-level programming language. How-
ever, given that cryptographic implementations are typically optimised for high
efficiency, the best implementation is unlikely to be the most readable one. For
this reason, we formalise the property of functional correctness of the RC4 imple-
mentation in terms of input/output behavioural equivalence to another (more
readable) C implementation of the same algorithm. We then explore techniques
to prove such an equivalence, which we believe may be of independent interest.

Paper Organisation. Sections 2 and 3 give background on deductive veri-
fication and RC4 in openSSL. Section 4 introduces the method used to prove
equivalence between the reference and practical implementations of RC4, and
Sections 5 and 6 describe the formalisation of loop refactorings in Coq, based on
the notion of natural invariant. Section 7 presents related work and Section 8
concludes the paper.

Verifying Cryptographic Software Correctness with Respect 39

2 Background: Deduction-Based Program Verification

The techniques employed in this paper are based on Hoare Logic [12], brought to
practice through the use of contracts – specifications consisting of preconditions
and postconditions, annotated into the programs. In recent years, verification
tools based on contracts have become more and more popular, as their scope
evolved from toy languages to very realistic fragments of languages like C, C#,
or Java.

In a nutshell, a verification infra-structure consists of a verification conditions
generator (VCGen for short) and a proof tool, which may be either an auto-
matic theorem prover or an interactive proof assistant. The VCGen reads in the
annotated code (which contains contracts and other annotations meant to facil-
itate the verification, such as loop invariants and variants) and produces a set of
proof obligations known as verification conditions, that will be sent to the proof
tool. The correctness of the VCGen guarantees that, if all the proof obligations
are valid, then the program is correct with respect to its specification. Depend-
ing on the specified properties, the verification conditions may, or may not, be
automatically provable.

The concrete tools we have used in this work were Frama-c [3], a tool for the
static analysis of C programs that contains a multi-prover VCGen [10]; and a set
of proof tools that included the Coq proof assistant [18], and the Simplify [9]
and Ergo [7] automatic theorem provers. C programs are annotated using the
ANSI-C Specification Language (ACSL [3]). Both Frama-c and ACSL are work
in progress; we have used the latest (Lithium) release of Frama-c.

Frama-c contains the gwhy graphical front-end that allows to monitor indi-
vidual verification conditions. This is particularly useful when combined with
the possibility of exporting the conditions to various proof tools, which allows
users to first try discharging conditions with one or more automatic provers,
leaving the harder conditions to be studied with the help of an interactive proof
assistant. An additional feature of Frama-c that we have found useful is the
declaration of Lemmas. Unlike axioms, which require no proof, lemmas are re-
sults that can be used to prove goals, but give themselves origin to new goals. In
the proofs we developed, it was often the case that once an appropriate lemma
was provided, all the verification conditions could be automatically discharged,
leaving only the difficult lemma to be proved in Coq.

3 The RC4 Cipher and Its Implementation in openSSL

RC4 is a symmetric cipher designed by Ron Rivest at RSA labs in 1987. It is
a proprietary algorithm, and its definition was never officially released. Source
code that allegedly implements the RC4 cipher was leaked on the internet in
1994, and this is commonly known as ARC4 due to trademark restrictions. In
this work we will use the RC4 denomination to denote the definition adopted in
literature [16]. RC4 is widely used in commercial products, as it is included as
one of the recommended encryption schemes in standards such as TLS, WEP

40 J.B. Almeida et al.

Key Stream Generator
SK

x

y

t

tkt

Fig. 1. Block diagram of the RC4 cipher

and WPA. In particular, an implementation of RC4 is provided in the pervasively
used open-source library openSSL, which we selected as the case study for this
paper.

In cryptographic terms, RC4 is a synchronous stream cipher, which means that
it is structured as two independent blocks, as shown in Figure 1. The security of
the RC4 cipher resides in the strength of the key stream generator, which is ini-
tialized with a secret key SK. The key stream output is a byte1 sequence kt that
approximates a perfectly random bit string, and is independent of plaintext and
ciphertext. The encryption operation consists simply of XOR-ing each plaintext
byte xt with a fresh keystream byte kt. Decryption operates in an identical way.
The key stream generator operates over a state which includes a permutation
table S = (S[l])l=255

l=0 of (unsigned) byte-sized values, and two (unsigned) byte-
sized indices i and j. We denote the values of these variables at time t by St, it
and jt. The state and output of the key stream generator at time t (for t ≥ 1)
are calculated according to the following recurrence, in which all additions are
carried out modulo 256.

it = it−1 + 1
jt = jt−1 + St−1[it]

St[it] = St−1[jt]
St[jt] = St−1[it]

kt = St[St[it] + St[jt]]

The initial values of the indices i0 and j0 are set to 0, and the initial value of
the permutation table S0 is derived from the secret key SK. The details of this
initialisation are imaterial for the purpose of this paper, as they are excluded
from the analysis.

We present in Appendix A the C implementation of RC4 included in the
openSSL open-source. The function receives the current state of the RC4 key
stream generator (key), and two arrays whose length is provided in parameter
len. The first array contains the plaintext (indata), and the second array will
be used to return the ciphertext (outdata). We note that this implementation
is much less readable than the concise description provided above, as it has
been optimised for speed using various tricks, including macro inlining and loop
unrolling.

1 We adopt the most widely used version of RC4 which operates over byte-sized words,
which is also the one implemented in openSSL.

Verifying Cryptographic Software Correctness with Respect 41

unsigned char RC4NextKeySymbol(RC4_KEY *key) {

unsigned char tx,ty;

key->x=(key->x+1) % 256;

tx=key->data[key->x];

key->y=(tx+key->y) % 256;

ty=key->data[key->y];

key->data[key->x]=ty;

key->data[key->y]=tx;

return key->data[(tx+ty) % 256];

}

void RC4(RC4_KEY *key, const unsigned long len,

const unsigned char *indata, unsigned char *outdata) {

int i=0;

while(i<len) { outdata[i]=indata[i] ^ RC4NextKeySymbol(key); i++; }

}

Fig. 2. RC4 specification

4 Functional Correctness of Code Refactoring

It is typical of cryptographic software that specifications are given as algorithms,
rather than using the notion of an abstract model. The programmer is free to
improve the code, say by introducing optimizations or internal reorganizations
(e.g. to improve efficiency, maintainability or to satisfy non-functional security
properties), as long as the input-output behaviour is the same as that prescribed
by a reference implementation. In software engineering, such a transformation
is usually known as code refactoring.

To illustrate this point, recall the description of the RC4 algorithm provided
in Section 3. A direct transcription of this specification to a C implementation
could look something like the code in Figure 2. Although this implementation is
quite readable, and arguably verifiable by inspection, it was created without the
slightest consideration for efficiency. This stands in contrast with the openSSL
implementation of RC4 (see Appendix A) where readability (and the inherent
assurance of correctness) was sacrificed to achieve better performance.

This example supports the domain-specific motivation for the discussion pre-
sented in this section: the natural way to obtain assurance that an implemen-
tation of a cryptographic algorithm is correct, is to verify that it is functionally
equivalent to another (more readable) implementation of the same algorithm.
We have investigated how this goal can be achieved for the particular case of
RC4, by identifying refactoring steps that may require a proof of equivalence in
order to establish the correctness of different RC4 implementations. We describe
these refactoring steps in the remainder of this section. In the next section we
present our approach to verifying the identified class of equivalence relations
using an off-the-shelf tool such as Frama-c. The results we obtain are, of course,

42 J.B. Almeida et al.

void RC4(RC4_KEY *key, const unsigned long len,

const unsigned char *indata, unsigned char *outdata) {

unsigned char keystream[len];

int i=0;

while(i<len) { keystream[i] = RC4NextKeySymbol(key); i++; }

i=0;

while(i<len) { outdata[i]=indata[i] ^ keystream[i]; i++; }

}

Fig. 3. RC4 implementation with key pre-processing

not only applicable to implementations of other cryptographic algorithms, but
also to other application domains where similar program transformations may
be employed.

A simple refactoring to capture key pre-processing. The first example we
present of a possible refactoring of the RC4 specification in Figure 2 is suggested
by a common optimisation performed when using stream ciphers. Indeed, one of
the ways of speeding up the throughput of stream cipher processing is to compute
(a portion of) the key stream before the plaintext is available (or the ciphertext
if one is decrypting). This means that the encryption operation to be performed
on-the-fly is then reduced to simple masking using an XOR operation, which can
be done extremely fast. For sychronous ciphers such as RC4, the number of key
stream bits that can be pre-computed can be arbitrarily large, as this is totally
independent of the encrypted data. The version of RC4 presented in Figure 3
moves in this direction by separating the key stream generation process from
the plaintext masking (or ciphertext unmasking process). In the next section
we will discuss a technique that can be used to prove equivalence beween the
programs in Figures 2 and 3 using a verification infrastructure like that discussed
in Section 2.

A sequence of refactorings leading to the openssl implementation. We
now discuss a more elaborate sequence of refactoring steps that permit reach-
ing the openSSL implementation of RC4 in Appendix A, departing from the
reference implementation in Figure 2. The first refactoring step, leading to the
RC4 function in Figure 4, top, is not very interesting from a verification point
of view. It consists of a number of simple transformations whose validity can
be proven with some effort using Frama-c: (1) removing the auxiliary function
by inlining the corresponding code in the main function body; (2) rearranging
local variables to match those in the openSSL implementation; (3) applying the
transitivity property of assignments in C to combine two statements; and (4)
replacing modular operations by their equivalent bit-wise operations. A macro
is also introduced to improve readability.

Verifying Cryptographic Software Correctness with Respect 43

void RC4(RC4_KEY *key, const unsigned long len,

const unsigned char *indata, unsigned char *outdata)

{

unsigned char x,y,tx,ty, *d;

int i;

x = key->x; y = key->y; d = key-> data;

i=0;

while(i<len) { RC4LOOP(indata,outdata,i); i++; }

key->x=x; key->y=y;

}

void RC4(RC4_KEY *key, const unsigned long len,

const unsigned char *indata, unsigned char *outdata)

{

unsigned char x,y,tx,ty, *d;

int i;

x = key->x; y = key->y; d = key-> data;

i= (int)(len>>3L);

while(i>0) {

RC4LOOP(indata,outdata,0);

RC4LOOP(indata,outdata,1);

RC4LOOP(indata,outdata,2);

RC4LOOP(indata,outdata,3);

RC4LOOP(indata,outdata,4);

RC4LOOP(indata,outdata,5);

RC4LOOP(indata,outdata,6);

RC4LOOP(indata,outdata,7);

indata+=8; outdata+=8; i--;

}

i=(int)(len&0x07);

while(i>0) {RC4LOOP(indata,outdata,i); i--; }

key->x=x; key->y=y;

}

Fig. 4. RC4 refactoring steps 1 (top) and 2 (bottom)

44 J.B. Almeida et al.

The next refactoring steps, leading to the version shown in Figure 4, bottom,
are more interesting examples of transformations involving loop refactorings.
Concretely, the main loop is first separated into two loops with the same body,
which are sequentially composed to realise the original number of iterations. The
first loop is then modified by explicitly composing the original body with itself
8 times, and altering the increments accordingly.

The final refactoring steps, leading to the openssl version of RC4 in Ap-
pendix A, are introduced to achieve additional speed-ups. Firstly, pointer arith-
metic is used to reduce the range of indexing operations, and loop counting
is inverted. Then, different control flow constructions are applied: all while
loops are reformulated using the break statement to remove the final back-
ward jump, and if constructions are introduced to detect termination cases.
Again, these refactoring steps can be handled in Frama-c with some effort,
but they do not require non-trivial proof steps that justify a detailed presen-
tation.

In the remainder of this paper we concentrate on presenting a technique that can
be used to prove the equivalence of the different versions of the RC4 function that
spring from the specific loop transformations outlined in the second step above.

Equivalence by Composition. We now formalise a notion of program equiva-
lence that permits dealing with the refactoring paradigm introduced above. The
required notion of program equivalence is based on Hoare logic, using a program
composition technique inspired by self-composition, a technique for reasoning ax-
iomatically about non-interference properties of programs [2]. The general tech-
nique introduced here sets the grounds for the work presented in the next section,
where we explore the technical details involved in proving program equivalence re-
lations such as those arising from the refactorings described above for RC4.

The basic principle underlying self-composition can be adapted to the current
context: given two terminating programs C1 and C2, they can be combined by
first renaming the variables in one of the programs so that they use distinct name
spaces, and then composing the programs sequentially. Given some program C,
let Cs be the program that is equal to C except that every variable x is renamed
to a fresh variable xs.

Let V be the set of variables occurring in both programs. The idea that we
want to capture is that if the programs are executed from indistinguishable states
with respect to V , they terminate in states that are also indistinguishable. C1

and C2 will be defined as equivalent if every execution of the composed program
C1; Cs

2 , starting from a state in which the values of corresponding variables are
equal, terminates in a state with the same property. This can be expressed as
the following Hoare logic total correctness specification, that can be expressed
in ACSL. [∧

x∈V

x = xs

]
C1; C

s
2

[∧
x∈V

x = xs

]

Weaker notions of equivalence can be handled by taking V to be a subset of
Vars(C1) ∩ Vars(C2).

Verifying Cryptographic Software Correctness with Respect 45

5 Proving Equivalence Using Natural Invariants

Is this section we elaborate on the general approach that we adopt to prove the
equivalence between a refactored version of a function such as those in Figure 4,
with respect to the originating function, in this case the reference implementation
in Figure 2. In order to establish this equivalence using a deductive framework
such as Frama-c, we need to:

– create a composed program which aggregates the two versions of the original
program we aim to prove functionally equivalent;

– annotate the composed program with appropriate contracts and loop invari-
ants;

– discharge the resulting proof obligations.

Moreover, we would like to overcome these steps with a reasonable degree of
automation. Here, reasonable essentially means that we intend to take the max-
imum advantage from the fact that we are dealing with program refactorings,
which admittedly share most of its control structure. Our strategy for tack-
ling these problems consist in: (1) extracting a relational specification directly
from the program code; (2) annotating the program with invariants derived from
the specification; (3) generating specific lemmas justifying the most significant
refactorings; and (4) using an automatic first-order theorem prover to discharge
the proof-obligations. The generated lemmas, which constitute the (small) non-
trivial part of the proof, must then be justified using an interactive theorem
prover.

To illustrate this methodology, we consider a simple While-language with
integer expressions and arrays. Its syntax is given by:

P ::= {P} | skip | P1; P2 | V := Eint | A[Eint] := Eint

| if (Ebool) then P1 else P2 | while (Ebool) P

Eint ::= Constint|Eint op Eint|A[Eint]|...
Ebool ::= true|false|Ebool ∧Ebool|Ebool ∨ Ebool|Eint opRel Eint

For simplicity we do not include any form of variable declaration. Instead, we
consider a fixed State type to keep track of all the variable values during the
execution of the program. Integer variables are interpreted as (unbound) integers
and arrays as functions from integers to integers (no size/range checking). We
also adopt the usual axioms for array access and update operations.

access : (Z → Z)× Z → Z

update : (Z → Z)× Z × Z → (Z → Z)
access(update(a, k, x), k) = x

access(update(a, k′, x), k) = access(a, k) , if k �= k′.

The State type is defined as the cartesian product of the corresponding interpre-
tation domains (each variable is associated with a particular position). We also

46 J.B. Almeida et al.

consider an equivalence relation ≡ that captures two extensionally equal states.
Integer and boolean expressions are interpreted in a particular state, that is
[[eInt]] : State→ Z, [[eBool]] : State→ B. We take the standard definition for the
big-step semantics of a program as its natural specification. Concretely:

specskip(s, s′) = s ≡ s′

spec{P}(s, s
′) = specP (s, s′)

specP1;P2
(s, s′) = ∃s′′, specP1

(s, s′′) ∧ specP2
(s′′, s′)

specv:=E(s, s′) = s′ ≡ s{v ← [[E]](s)}
speca[E1]=E2

(s, s′) = s′ ≡ s{a← update(a, [[E1]](s), [[E2]](s))}
specif (C) then P1 else P2

(s, s′) = ([[C]]s ∧ specP1
(s, s′)) ∨ (¬[[C]](s) ∧ specP2

(s, s′))

specwhile (C) P (s, s′) = ∃n, loopn
C,specP (s,s′)(s, s

′) ∧ ¬[[C]](s′)

where loopn
C,R(s, s′) is the inductively defined relation

loop0
C,R(s, s′)⇐= s ≡ s′

loop
S(n)
C,R (s, s′)⇐= ∃s′′, loopn

C,R(s, s′′) ∧ [[C]](s′′) ∧R(s′′, s′)

The relation loopn
C,R(s, s′) denotes the loop specification for the body R under

condition C. In this definition we have made explicit the iteration rank (iteration
count) in superscript – in fact, we will see that it is often convenient to consider
it explicitly in the proofs. Neverthless, when omitted, it should be considered
as existentially quantified. Also, we will omit subscripts (both in loop and spec)
when the corresponding programs are clear from the context. From the loop
relation we recover what we call the loop’s natural invariant as:

Invloop(s) = loopC,R(s@Init, s)

where C and R are the loop’s condition and body, respectively, and s@Init
denotes the snapshot of the loop’s initial state.

Expressiveness and Relative Completeness. Natural invariants depend
on a sufficiently expressive assertion language that should allow defining new
inductive relations. This corresponds essentially to Cook’s expressiveness criteria
in his relative completeness result for Hoare Logic [8]. In fact, from the definition
of spec we can easily recover the strongest liberal predicate as

slp(S, P) = {s′ | P (s) ∧ specS(s, s′)}
An immediate consequence of this observation is that we might conduct the
verification of an arbitrary Hoare triple logically, namely

{P}S{Q} iff slp(S, P) ⊇ Q iff P (s) ∧ specS(s, s′) ∧Q(s′).

Note that these requirements surpass the realm of first-order logic. Thus, when
the target verification tool is a first-order theorem prover, we shall rely on a weak

Verifying Cryptographic Software Correctness with Respect 47

axiomatisation of these predicates (in our case, we consider an axiom for each
constructor and a simple inversion principle). This observation clarifies why we
need to supplement the first-order theory with additional lemmas. Moreover, it
also shows that failure in verification is not necessarily caused by limitations in
the first-order theorem provers. When full-fledged inductive reasoning is needed,
we resort to Coq’s higher-order logic capabilities to interactively prove specific
lemmas. Fortunately, it is possible to identify a set of general lemmas that can
be proven once-and-for-all, and that permit justifying interesting refactorings.

General Properties. We call plain theory to the first-order theory resulting
from the program specification and the corresponding weak axiomatization of
loop predicates. A consequence of the limitations of first-order theory/provers
mentioned above is that the plain theory is insufficient to establish the adequacy
of even the most trivial refactoring (the identity refactoring) when the programs
use loops. To illustrate what is missing, we need to walk the reader through the
proof of the following spec properties:

Proposition 1. For every program fragment P and states s1, s2, s
′
1, s

′
2,

– spec preserves ≡, i.e. s1 ≡ s2 ∧ s′1 ≡ s′2 ∧ specP (s1, s
′
1)⇒ specP (s2, s

′
2).

– spec is deterministic, i.e. specP (s, s′1) ∧ specP (s, s′2)⇒ s′1 ≡ s′2.

The proof follows straight by induction on the program P using the following
lemma

Lemma 1. Let R(s, s′) be a deterministic relation on states, and C a boolean
condition. Then, loopC,R(s, s′) is deterministic whenever ¬[[C]](s′).

This in turn is a consequence of the following two assertions:

s1 ≡ s2 ∧ loopn1
C,R(s1, s

′
1) ∧ ¬[[C]](s′1) ∧ loopn2

C,R(s2, s
′
2) ∧ ¬[[C]](s′2) =⇒ n1 = n2

s1 ≡ s2 ∧ loopn
C,R(s1, s

′
1) ∧ loopn

C,R(s2, s
′
2) =⇒ s′1 ≡ s′2

Both of these statements are directly proved by a simple induction (on max(n1, n2)
in the first case, and on n in the second). The first statement establishes the syn-
chronization of both executions and the second their determinism. Augmenting
the plain theory with these lemmas is mandatory to perform even the most basic
reasoning.

This factorization strategy, in which we detach the synchronization and de-
terminism properties, underlies our proposed paradigm for reasoning about mul-
tiple executions of the same (or related) program fragments. Moreover, we can
strengthen the synchronization lemma by observing that it only depends on the
equivalence between fragments of the initial state, namely those that affect the
loop’s condition. The determinism lemma can itself be rephrased replacing state
equivalence by an arbitrary predicate.

Justifying Loop Refactorings. For the sake of presentation, we restrict our
attention to specifications obtained from single loops with loop-free bodies. That
is, we consider natural invariants of the form:

loopC,spec(P)(s, s′)

48 J.B. Almeida et al.

where P contain no loops. This scenario is enough to illustrate the applicability
of the proposed strategy in tackling the sort of program refactorings needed for
establishing correctness of the RC4 openSSL implementation.

The simplest loop refactoring that we can address using our technique is loop
unrolling, where we detach instances of the loop-body. We find this refactoring in
the optimisations described in the previous sections. This sort of transformation
is justified by the loop’s inversion lemma:

∀n s s′, loop
S(n)
C,R (s, s′) =⇒ ∃s′′, loopn

C,R(s, s′′) ∧ [[C]](s′′) ∧R(s′′, s′).

This relatively simple class of refactorings can then be handled directly by the
plain theory augmented with synchronization and determinism lemmas.

For more interesting refactorings, we may need to formulate specific lemmas
to justify them. Let us illustrate this by a loop-fusion refactoring: we consider
the equivalence between two consecutive loops (loops 1 and 2) and one single
fused loop (loop 3). This is applicable to the RC4 pre-processing optimisation
presented in the previous section. Let us denote the inductive predicates of these
loops by loop1, loop2 and loop3, respectively. We assume, for simplicity, that all
the loops share the same control structure (loop condition and associated state).
This means that we are able to prove mixed synchronization lemmas such as, for
all n1 n2 s1 s2 s′1 s′2,

πC(s1) ≡ πC(s2)∧loopn1
1 (s1, s

′
1)∧¬[[C]](s′1)∧loopn2

2 (s2, s
′
2)∧¬[[C]](s′2) =⇒n1 =n2.

Again, the proof is a straightforward generalisation of the single loop version.
Once this result is estabished, one can move to the proof of the main lemma
that can be used to justify the fusion refactoring:

∀n s1 s2 s′1 s′′1 s′2,
s1 ≡ s2 ∧ loopn

1 (s1, s
′′
1) ∧ loopn

2 (s′′1 , s′1) ∧ loopn
3 (s2, s

′
2) =⇒ s′1 ≡ s′2.

The advantage of our method is that, since this lemma is based on simple prop-
erties concerning the three loop bodies, which are all non-recursive, it can be
easily discharged by automatic provers.

6 Implementation Details

We have tested the proposed methodology in checking the correctness of the
RC4 openSSL implementation (shown in appendix). The specification predicates
were extracted manually, and included in the ACSL code as inductive defini-
tions. These definitions are allowed by the last revision of the ACSL language
(version 1.4), but we remark that when the target verification tool is a first-order
prover they are translated to a weak axiomatization (as described in Section 5).
Additional lemmas were also included in the ACSL code and proved by the Coq
proof assistant. For that purpose, we have developed a library that includes a full
formalization of natural invariants as presented in the last section. This library

Verifying Cryptographic Software Correctness with Respect 49

makes extensive use of the Coq’s module system [6] in order to structure the
development. As a rule, we embed each lemma and respective proof in a functor
parametrized by the basic facts it depends on. In particular, we have defined
functors for deriving synchronization, determinism and loop fusion lemmas. All
the facts required by these functors are non-iterative, and thus are easily dis-
charged by the automatic provers. In this way, we are able to treat this library
as a catalog of refactorings that can be used on demand during the verification
process — we emphasise that there is no need to conduct further interactive
proofs, unless this catalog is extended to cover a new class of loop refactorings.

7 Related Work

Natural Invariants provide an explicit rendition of program semantics. In [13]
a similar encoding of program semantics in logical form can be found, which
advocates the use of second-order logic as appropriate to reason about programs,
since it allows to capture the inductive nature of the input-output relations for
iterative programs. To some extent, our use of Coq’s higher-order logic may be
seen as an endorsement of that view. However, we have made an effort to combine
the strength of higher-order logic reasoning with facilities made available by
automatic first-order provers.

Our “proof-by-composition” technique is reminiscent of the self-composition
approach for verifying non-interference[2]. Terauchi and Aiken [17] identified
problems in applying it, arguing that automatic tools (software model checkers
like SLAM [1] and BLAST [11]) are not powerful enough to verify this property
over programs of realistic size. To compensate for this, the authors propose a
program transformation technique, which incorporates the notion of security
level downgrading using relaxed non-interference [14]. Our work proposes an
alternative solution since it enriches the uderlying first-order theory with lemmas
that overcome the identified limitations.

Relational Hoare Logic [4] has also been used to prove the soundness of pro-
gram analyses and optimising transformations. Its scope is thus similar to our
proofs-by-composition setting. The main difference is the fact that we do not
need to move away from traditional Hoare Logic, which allows us to rely on
standard available verification tools.

8 Conclusions

In this paper we have presented a methodology for verifying correctness of im-
plementations with regard to reference implementations, an important concern
in domains such as the verification and certification of cryptographic software
implementations. We have focused on proposing strategies and techniques allow-
ing us to maximize the benefits of using well established and publicly available
tools, such as Frama-c, first-order automatic theorem provers and the Coq proof
assistant. The approach can be summed up as follows

50 J.B. Almeida et al.

1. Program equivalences in general can be expressed (for terminating programs)
as Hoare triples using a composition technique that simulates the execution
of two programs by a single program. Such triples can be written in an
interface specification language like ACSL and fed to a standard VCGen like
Frama-c.

2. However, program equivalences are difficult verification challenges by nature,
and automatic proof is, on its own, of little help. Resorting to an interactive
proof tool to conduct inductive proofs involving loops is inevitable.

3. Natural invariants are good candidates for establishing the connection be-
tween the interface specification language and the proof assistant: on one
hand, all the interactive reasoning is transferred to the inductive predicates
that form the invariant; on the other hand, the invariant can be annotated
into the specification files to be fed through the VCGen. We remark that
these invariants (and some standard lemmas) can be generated mechani-
cally.

4. Concluding the verification process is then a matter of identifying the rele-
vant refactoring and instantiating the corresponding lemma. Once equipped
with these lemmas an automatic prover is able to discharge the remaining
proof obligations.

5. Once recognized, a new refactoring might be included by defining a new
functor responsible for instantiating the corresponding lemma. It will require
a once-and-for-all formal proof asserting the refactoring correctness (proved
interactively in Coq).

This approach was put to practice to prove (as a sequence of refactoring steps)
the equivalence between a reference implementation of an open-source crypto-
graphic algorithm and the realistic implementation included in the appendix.
Other applications that we are developing for this approach based on natu-
ral invariants include proofs of information flow security properties, using the
self-composition technique, and related properties such as the absence of error
propagation in stream ciphers.

References

1. Ball, T., Rajamani, S.K.: The slam project: debugging system software via static
analysis. In: POPL 2002: Proceedings of the 29th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pp. 1–3. ACM, New York (2002)

2. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: CSFW, pp. 100–114. IEEE Computer Society, Los Alamitos (2004)

3. Baudin, P., Filliâtre, J.-C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:
ANSI/ISO C Specfication Language. In: CEA LIST and INRIA, 2008. Preliminary
design (version 1.4), December 12 (2008)

4. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: Jones, N.D., Leroy, X. (eds.) POPL, pp. 14–25. ACM, New
York (2004)

5. Computer Aided Cryptography Engineering. EU FP7,
http://www.cace-project.eu/

Verifying Cryptographic Software Correctness with Respect 51

6. Chrzaszcz, J.: Implementation of modules in the Coq system. In: Basin, D., Wolff,
B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 270–286. Springer, Heidelberg (2003)

7. Conchon, S., Contejean, E., Kanig, J.: Ergo: a theorem prover for polymorphic
first-order logic modulo theories (2006)

8. Cook, S.A.: Soundness and completeness of an axiom system for program verifica-
tion. SIAM J. Comput. 7(1), 70–90 (1978)

9. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking.
J. ACM 52(3), 365–473 (2005)

10. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus platform for deduc-
tive program verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 173–177. Springer, Heidelberg (2007)

11. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL
2002: Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pp. 58–70. ACM, New York (2002)

12. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12, 576–580 (1969)

13. Leivant, D.: Logical and mathematical reasoning about imperative programs. In:
POPL, pp. 132–140 (1985)

14. Li, P., Zdancewic, S.: Downgrading policies and relaxed noninterference. In: POPL
2005: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pp. 158–170. ACM Press, New York (2005)

15. The OpenSSL Project, http://www.openssl.org
16. Schneier, B.: Applied cryptography: protocols, algorithms, and source code in C,

2nd edn. Wiley, New York (1996)
17. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin,

C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg
(2005)

18. The Coq Development Team. The Coq Proof Assistant Reference Manual – Version
V8.2 (2008), http://coq.inria.fr

52 J.B. Almeida et al.

A openSSL Implementation of RC4

typedef struct rc4_key_st { unsigned char x,y,data[256];} RC4_KEY;

void RC4(RC4_KEY *key,const unsigned long len,

unsigned char *indata, unsigned char *outdata) {

register unsigned char *d,x,y,tx,ty;

int i;

x=key->x;

y=key->y;

d=key->data;

#define LOOP(in,out) \

x=((x+1)&0xff); \

tx=d[x]; \

y=((tx+y)&0xff); \

d[x]=ty=d[y]; \

d[y]=tx; \

(out) = d[((tx+ty)&0xff)]^ (in);

#define RC4_LOOP(a,b,i) LOOP(a[i],b[i])

i=(int)(len>>3L);

if (i) {

while(1) {

RC4_LOOP(indata,outdata,0);

RC4_LOOP(indata,outdata,1);

RC4_LOOP(indata,outdata,2);

RC4_LOOP(indata,outdata,3);

RC4_LOOP(indata,outdata,4);

RC4_LOOP(indata,outdata,5);

RC4_LOOP(indata,outdata,6);

RC4_LOOP(indata,outdata,7);

indata+=8;

outdata+=8;

if (--i == 0) break;}}

i=(int)(len&0x07);

if(i) {

while(1) {

RC4_LOOP(indata,outdata,0); if (--i == 0) break;

RC4_LOOP(indata,outdata,1); if (--i == 0) break;

RC4_LOOP(indata,outdata,2); if (--i == 0) break;

RC4_LOOP(indata,outdata,3); if (--i == 0) break;

RC4_LOOP(indata,outdata,4); if (--i == 0) break;

RC4_LOOP(indata,outdata,5); if (--i == 0) break;

RC4_LOOP(indata,outdata,6); if (--i == 0) break;}}

key->x=x;

key->y=y;

}

Towards an Industrial Use of FLUCTUAT on

Safety-Critical Avionics Software�

David Delmas1, Eric Goubault2, Sylvie Putot2, Jean Souyris1, Karim Tekkal2,
and Franck Védrine2

1 Airbus France S.A.S., 316, route de Bayonne, 31060 TOULOUSE Cedex 9, France
Firstname.Lastname@airbus.fr

2 CEA LIST, Laboratory for the Modelling and Analysis of Interacting Systems,
Point Courrier 94, Gif-sur-Yvette, F-91191 France

Firstname.Lastname@cea.fr

Abstract. Most modern safety-critical control programs, such as those
embedded in fly-by-wire control systems, perform a lot of floating-point
computations. The well-known pitfalls of IEEE 754 arithmetic make sta-
bility and accuracy analyses a requirement for this type of software. This
need is traditionally addressed through a combination of testing and so-
phisticated intellectual analyses, but such a process is both costly and
error-prone. FLUCTUAT is a static analyzer developed by CEA-LIST
for studying the propagation of rounding errors in C programs. After a
long time research collaboration with CEA-LIST on this tool, Airbus is
now willing to use FLUCTUAT industrially, in order to automate part of
the accuracy analyses of some control programs. In this paper, we present
the IEEE 754 standard, the FLUCTUAT tool, the types of codes to be
analyzed and the analysis methodology, together with code examples and
analysis results.

1 Introduction

For a decade, Airbus has been implementing formal techniques developed by
academia into its own verification processes, for some avionics software prod-
ucts. So far, the most successful technique has been abstract interpretation based
static analysis [5,6]. It is currently used industrially on several avionics software
products developed at Airbus to compute safe upper-bounds of stack consump-
tion with AbsInt StackAnalyzer, and worst-case execution time with AbsInt aiT
WCET [24,23].

More static analyzers could be transferred soon. For instance, ASTRÉE [7] is a
credible candidate for an industrial use in the near future [8,22], in order to prove
the absence of run-time errors on control programs. Indeed, such programs per-
form a lot of floating-point computations, so that the absence of floating-point

� This work is supported by FP7 European project INTERESTED, ITEA 2 European
project ES PASS, a grant from the DIGITEO foundation, and the french DPAC
(Direction des Programmes Aéronautiques Civils).

M. Alpuente, B. Cook, and C. Joubert (Eds.): FMICS 2009, LNCS 5825, pp. 53–69, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

54 D. Delmas et al.

overflow or other invalid operation has to be guaranteed. But proving freedom
from run-time errors is not enough: the issue of the precision of computations
has to be addressed also. This is typically the kind of properties for which FLUC-
TUAT is designed. For this reason, Airbus is willing to use FLUCTUAT within
its industrial process.

1.1 Numerical Computations in Control Programs

All control programs are based on control theory, which describes the physi-
cal data that are manipulated, together with control algorithms, in the realm
of (ideal) real numbers. Even if the control algorithms are correct by design
in real number computations, we have to prove that the imprecision due to
finite-precision implementation has negligible effects on the system, for instance,
introduces negligible errors compared to the imprecision of the computer I/O,
on which bounds are generally available. This view is complementary, but not
equivalent to the view taken in particular in robust control theory. Robust control
theory deals with control algorithms which are in some sense “robust” to per-
turbations of input signals and to uncertainties in parameters of the controlled
system but not to “computation” perturbation, i.e. the fact that finite-precision
machines do have subtle discrete semantics which perturb the control algorithm
along the full history of computation.

Take for instance, a flight control computer. It reads inputs from pilot controls
(side sticks and pedals) and other sensors and aircraft systems or functions (such
as the autopilot), and computes commands for actuators of control surfaces. This
has been achieved using fixed-point arithmetic until the 1990s, but the later fly-
by-wire generations have switched to floating-point representation. The main
difference between both formats is the nature of errors. Fixed-point numbers
yield absolute errors, whereas floating-point yield relative errors. Besides, the
IEEE 754 standard provides engineers with a precise specification of floating-
point data formats and basic operations, which makes it easier to assess accuracy
systematically. Moreover, more and more microprocessors implementing a native
Floating-Point Unit can be embedded.

1.2 Accuracy and Sensitivity Analyses

Control software is usually developed in a model-based approach. Most of the
source code is generated automatically from high-level synchronous data-flow
specifications. The computations to be performed are described by system de-
signers at model-level in a graphical stream language such as SCADE [9] or
Simulink [16], by means of external basic blocks. These basic operators imple-
ment the elementary calculations. They are usually available in some external
library including logical, temporal and numerical operators. This toolbox can be
either provided together with the modelling tool, or implemented by the user in
a lower-level programming language, in order to meet his specific needs exactly.
The latter case occurs typically for safety-critical avionics software that have to
be certified according to the DO-178B/ED-12B aeronautical international stan-
dard. In this context, assessing the accuracy and stability of all numerical library

Towards an Industrial Use of FLUCTUAT on Safety-Critical 55

operators is a key point in the overall numerical precision analysis. We need to
analyze very precisely, for each operator:

1. the potential loss of accuracy;
2. the potential propagation of errors from inputs to outputs (i.e. sensitivity).
3. the behavior of the underlying algorithm:

a. bounding the number of iterations of an iterative algorithm when it may
depend on the accuracy;

b. proving that the algorithm actually computes outputs close to what is
expected, both in real and floating-point numbers (functional proof).

This need has been addressed so far through a combination of testing and in-
tellectual analyses. In this paper, we aim at describing a way to automate this
analysis using the FLUCTUAT tool. Therefore, we first present the IEEE 754
standard and the FLUCTUAT tool, then we state the analysis method and
demonstrate it on examples similar to some of Airbus’s library operators1. We
will show mostly the use of FLUCTUAT for points 1 and 2 above, but also for
3.a and 3.b in Section 4.3.

2 The IEEE-754 Standard

The IEEE-754 standard [17] defines the format of floating-point numbers and
the basic arithmetic operations on every processor supporting it. The standard
defines the float format (8 bits for the exponent, 23 bits for the mantissa and
1 bit for the sign) and the double format (11 bits for the exponent, 52 bits for
the mantissa and 1 bit for the sign). It also makes a distinction between several
kinds of floating point numbers, which we describe for double precision numbers:

– the normalized numbers have a non-null, non-maximal exponent and, 53 rel-
evant bits in the mantissa (the upper bit is implicitly 1) : f = 2exp−211−1+1×
(1.0 + m/252), where exp is the exponent and m the mantissa,

– the denormalized numbers have a null exponent, a non-null mantissa and
1 + �log2(m)� relevant bits in the mantissa : f = 2−211−1+2 × (m/252),

– +0 (resp. −0) has a null exponent, a null mantissa and a positive (resp.
negative) sign,

– plus and minus infinities have a maximal exponent, a null mantissa,
– NaN (Not a Number) has a maximal exponent, a non-null mantissa. The

upper bit of the mantissa differentiates “Signaling NaN” from “Quiet NaN”.

The standard also specifies four possible rounding modes: round to nearest (and
in case of a tie, round to nearest even mantissa) which is the default mode, round
to minus infinity, round to plus infinity, round to zero. The atomic arithmetic
operations +, −, × /, and √ are exactly rounded, that is their result is the real
result rounded to the nearest floating-point number, according to the chosen
rounding mode. Some common pitfalls due to the use of finite precision may
1 For obvious confidentiality reasons, no real embedded code can be shown.

56 D. Delmas et al.

induce high relative errors or problematic behavior : among them, we can cite
representation errors (for example on seemingly innocent constants such as 0.1),
absorption (when adding two numbers of very different amplitudes), cancellation
(when subtracting two very close numbers), unstable tests (when the real and
float control flows are different, with a discontinuity between the two flows), or
a drift in computation that will eventually cause large errors. We give here a few
examples of these :

Representation error and computation drift
float time = 0.0; int ct = 0; while (++ct < 20000) time += 0.1;

The user could expect that the successive errors should cancel out and so
that time at the end of the loop is close to the real value 2000 . It is not the
case, and (time - 2000.0)/time = 2.7×10−4, since the initial error on the
representation of 0.1 is always the same, and then, for all time between any
[2n, 2n+1[, all computations are rounded in the same direction.

Invariant and safety The following example comes from [20].
double modulo(double x, double mini, double maxi)

{ double delta = maxi-mini; double decl = x-mini;

double q = decl/delta; return x - ((int) q)*delta; }
does not return a number ∈ [mini, maxi], since when decl/delta is rounded
up to a power of 2, like 1.0, the result is < mini. Such a case occurs one
time every 254 – e.g. modulo(179.99999999999998, -180, 180) < -180 –, but
it may be a source of crash for a system.

Absorption and cancellation Consider the function f(x, y) = 333.75y6 +
x2(11x2y2 − y6 − 121y4 − 2) + 5.5y8 + x/(2y) proposed by Rump: com-
puted in float ff(77617, 33096) = 1.172603..., in double fd(77617, 33096) =
1.1726039400531... We would thus think that the computation is correct,
however in real numbers f(77617, 33096) = −0.82739. This is due to a catas-
trophic cancellation during the computation.

Moreover, compilers can transform the code in order to optimize the final binary
code, in such a way that source-level analysis might be unsound. We will not
discuss this issue in detail here, but workarounds consist in, mainly, analyzing
compilation patterns and parameterize the static analyzer or partially rewrite the
C code so that it agrees with the binary (evaluation order etc.); using a certified
compiler [18]; or analyze the binary directly (see for instance [19] for a description
of a version of FLUCTUAT which directly analyzes relocatable assembly code)
or conjointly with the source code, through a “compilation of invariants”, see for
instance [21]. However, in Airbus’ process, no unsound optimisation is performed
by the compiler, and the compiled code can be safely traced back to the source
code, as imposed by the DO-178B standard.

3 The FLUCTUAT Tool

3.1 General Description

FLUCTUAT [15] is a static analyzer by abstract interpretation of ANSI C pro-
grams, that focuses on numerical properties. For that, it computes ranges of

Towards an Industrial Use of FLUCTUAT on Safety-Critical 57

values that can be taken, for all possible executions, at all control points of the
program, with two different semantics, the idealized one in real numbers, and the
implemented one in finite precision numbers (here IEEE 754 floating-point num-
bers and machine integers). It bounds the difference between the values taken
by variables with these two semantics, and decomposes it on its provenance on
the control points of the program, allowing the user to determine which parts of
the program mainly contribute to the rounding error.

A graphical interface (see Figure 4) allows in particular to visualize, at the
end of the program and for each variable, the errors committed in the program
as a graph, on which the user can quickly identify the main sources of errors.

3.2 Specific Abstract Domains Based on Affine Arithmetic

FLUCTUAT relies on weakly-relational abstract domains that use affine forms
[12,14,11] for the computation of values and errors on variables.

Abstract domain for idealized value in real numbers. Affine arithmetic is
a more accurate extension of interval arithmetic, introduced in 93 [3], that takes
into account linear correlation between variables. The real value of a variable x
is represented by an affine form x̂ :

x̂ = x0 + x1ε1 + . . . + xnεn,

where xi ∈ R and the noise symbols εi are independent symbolic variables with
unknown value in [−1, 1]. The coefficients xi ∈ R are the partial deviations to the
center x0 ∈ R of the affine form. Indeed, these deviations express uncertainties
on the values of variables, for example when inputs are given in a range of val-
ues. The sharing of the same noise symbols between variables expresses implicit
dependency.

The joint concretization of these affine forms is a center-symmetric polytope,
that is a zonotope. These zonotope-based abstract domains provide an excellent
trade-off between computational cost and accuracy. We refer the reader to [12,14]
for a full description of the abstract domain based on these forms.

In practice, these affine forms are themselves computed with floating-point co-
efficients, but the computation is made sound by over-approximating the round-
ing error committed on these coefficients and agglomerating this error in new
noise terms.

Abstract domain for floating-point value and difference with real value.
The abstract domain implemented in FLUCTUAT which we used for the exper-
imentations presented here, extends these affine forms for the computation of
the floating-point value of variables and for the difference between the real and
floating-point computation, in the following model :

fx = (αx
0 +

⊕

i

αx
i εi) + (ex

0 +
⊕

l

ex
l ηl +

⊕

i

mx
i εi),

where

58 D. Delmas et al.

– fx is the floating-point abstract value for variable x,
– αx

0 +
⊕

i αx
i εi is the affine form that models the real value of x, i being the

control points of the program,
– ex

0 is the center of the error,
– ηl are noise symbols that express the dependency between the errors, so that

ex
l ηl expresses the rounding error committed at point l of the program, and

its propagation through further computations,
– mx

i εi expresses the propagation of the uncertainty on value at point i, on
the error term; it allows to model dependency between errors and values.

A new noise symbol is created for each new rounding error introduced by the
computations. Thus, at the end of the program, for each visible variable, we can
associate each error term of its affine error form to the location in the program
that introduced it. This information is drawn on an error graph.

3.3 Use and Main Features of FLUCTUAT

We introduce in this section some features of FLUCTUAT that will be exempli-
fied in the following sections.

Directives. FLUCTUAT comes along with a language of directives to be added
in the source code by the user. The first kind of directives allows to spec-
ify values of variables, possibly with initial errors. For example double x =
DBETWEEN(0,1); will specify that x is a double precision variable which can
take a value between 0 and 1, whereas double x = DOUBLE WITH ERROR(0,1,-
0.01,0.01); will specify that is has in addition an error in [-0.01,0.01], for
example due to the use of an imperfect sensor to measure that value. Also, one
can, in a loop, bound the derivative between successive inputs, which is useful
in some cases to get plausible behavior. Note also that we have recently made
a further step in taking into account a model of a continuous environment in
our analysis, using a guaranteed integrator to bound the behavior of the contin-
uous environment. This is out of the scope of this paper, but more details can
be found in [2]. Also note that in some cases, we use the BUILTIN directives to
construct sub-domains on which to analyze a given function (as in Section 4.3)
which allows for improving precision of the analysis by a “manual” disjunctive
analysis. In that case, we collect back the values that variables can take on the
full domain using directive res=DCOLLECT(subres,res); (res is the result of
the analyzed function that we construct by collecting results on subdomains:
subres).

The second kind of directives allows the user to print more information than
just the values and graphs of errors at the end of the program. Specifying
DPRINT(x) in the source code will make the analyzer print the value and error
of double precision variable x each time it meets the directive, allowing the user
to follow the evolution of x in the program. If specifying DSENSITIVITY(x) at
some point of the program, the sensibility of variable x to inputs of the program
will be displayed : indeed, the abstract domains of FLUCTUAT are particularly

Towards an Industrial Use of FLUCTUAT on Safety-Critical 59

well suited to such sensitivity analysis, by constructing linearized forms on the
inputs. Also, using heuristics based on these same linearized forms, the ana-
lyzer can generate scenarii that allow to reach a value close to the maximal (or
minimal) bound on some variable, and then run it.

Parameters of the analysis. Many parameters allow to tune the analysis,
they can be set via the graphical interface. Among them, some allow to tune
the trade-off between accuracy and computation in the fixpoint computation for
loops, for instance the initial unfolding of loops, the number of cyclic unfoldings
(useful in some examples to compute the fixpoint of a more contractant function),
and the number of iterations before extrapolating the result (useful to reach a
fixpoint in finite time in all cases).

When in presence of highly non-linear computations, it can be needed to
subdivide some inputs for a more accurate computation, which can be done
automatically.

Also, symbolic execution can be used, in some cases where the analysis gives
large bounds, to confirm the behavior around some particular input values. The
symbolic execution mode is based on the same abstract semantics as for the
static analysis mode, but follows the abstract trace starting with input variables
having as values the midpoint of their input ranges, and as errors, their full error
range as specified through the corresponding directives. Symbolic execution can
thus also be combined with subdivision (regular, for the time being) to have
sample values in the input range.

4 Automating the Accuracy Analysis of Basic Operators
with FLUCTUAT

4.1 Families of Basic Operators

Synchronous control programs, among which fly-by-wire, are built with several
types of operators:

Pure boolean/integer operators. All inputs and outputs have boolean or
integer types, and outputs at time t only depend on inputs at time t. Algo-
rithms use no remanent data, and perform no floating-point computations.
Typical such operators are logic gates and boolean switches.

Pure temporal operators. All inputs and outputs have boolean or integer
types. Outputs at time t depend on inputs at ticks 0, 1, ..., t-1, t of the
synchronous clock. Algorithms perform no floating-point computation, but
use remanent data. Such operators include delays, timers, flip-flops, triggers,
input confirmation operators, etc.

Pure numerical operators. Most inputs and outputs are real-valued. Out-
puts at time t only depend on inputs at time t. Algorithms perform floating-
point computations, but use no remanent data. Main types are sum, product,
comparison, conversion and interpolation operators. Well-known examples
are divisions, square roots, trigonometric and transcendental functions.

60 D. Delmas et al.

Both numerical and temporal operators. Typical such recursive operators
are digital filters, and signal integrators, derivators and speed limiters.

This paper focuses on numerical operators, be they temporal or not. Previous
work has addressed functional verification of operators using theorem-proving
techniques [1], but floats could not be handled through weakest precondition
calculus.

In the examples we will give, note that the algorithms used for embedded
operators are somewhat specific. For instance, the source codes for pure numer-
ical operators contain hardly any loop at all, and no unbounded loop if any,
as worst-case execution time and timing determinism are key constraints for
safety-critical control programs. The same constraint applies for temporal nu-
merical operators, although there is always an implicit main loop implementing
the reactive nature of the control program, which will be emulated in the ex-
amples on recursive operators such as digital filters. These temporal numerical
operators can be used on a very long period of time (i.e. on a large number
of iterations) and we analyze them for any potential number of iterations, see
Section 4.4.

4.2 The Analysis Process

Building the analysis project. The user selects a set of C source files through
the GUI. The source code should be compilable/linkable, but for directives useful
to the analysis (see Section 3.3), that provide the tool with:

– hypotheses on the environment of the program:
• ranges of input variables (real or floating-point) values;
• ranges of errors on input variables;
• bounds on inputs variables speed.

– union or intersection strategies to:
• fine-tune the analysis process;
• build irregular “custom” subdivisions for input ranges.

– requirements for printing relevant information.

Parametrizing the analysis. Directives help tune the analysis locally, whereas
analysis options allow for global parametrisation. The main choices for the pur-
pose of analyzing basic operators are:

– abstract semantics: relational or non-relational static analysis versus sym-
bolic execution;

– initial and cyclic unfolding of loops (mainly for recursive operators);
– refinement of bitwise operations when such operations are used;
– regular subdivisions of input variable ranges (in case we want very precise

results on non-linear computations).

Towards an Industrial Use of FLUCTUAT on Safety-Critical 61

Exploitation of results. The tool warns about possible:

– run-time errors, and their source in the analyzed program: the user has to
make sure they cannot occur in his application, due to thresholds or closed-
loop control. This can be for instance achieved performing a global analysis
with ASTRÉE. When possible, the program should be fixed for the tool not
to issue such warnings.

– unstable tests (when the floating-point and the real control flows may be
different): the user must make sure they have no impact on the values com-
puted by his program. In particular, he must check these tests cannot create
discontinuities in the set of output values.

Static analyses may also yield infinite or abnormally large ranges or errors on
output variables (the analyzer points to the main sources of errors). In this case,
the user should switch to the symbolic execution mode of the tool, in order to
make sure the analyzed program is not trivially unstable. More generally, the
precision of the static analysis should be assessed through worst-case generation2

and symbolic execution with (possibly many) subdivisions. The static analysis
parameters should be tuned until results can be compared to that of symbolic
execution.

4.3 Analyzing Interpolation Operators

An arctangent approximation. Using rational functions to approximate the
arctangent function is a good trade-off between efficiency and precision. For
instance, one may choose the Padé approximant of order (2, 2):

arctan(x)
x

∼ 15 + 4x2

15 + 9x2
= 1 − x2

3 + 9
5x2

Using this approximation on the interval [0, 1] provides a method for approxi-
mating arctan(x) for all x in IR, via the identities:

arctan(x) = − arctan(−x) =
π

2
− arctan(

1
x

)

Let us derive a straightforward implementation for the arctangent operator:
const double Pi=3.141592653589793238;

double PADE_2_2(double x) {

double x_2=x*x;

return 1-x_2/(3+9./5*x_2);

}

double ARCTAN_0_1(double x) {

return x*PADE_2_2(x);

}

double ARCTAN_POS(double x) {

if (x>1) return Pi/2-ARCTAN_0_1(1/x);

else return ARCTAN_0_1(x); }

double ARCTAN(double x) {

if (x<0) return -ARCTAN_POS(-x);

else return ARCTAN_POS(x); }

Now we may run an accuracy analysis of the ARCTAN operator for the complete
range of double precision floating-point numbers:
2 FLUCTUAT is able to deliver its best guess for input values of a program, so that

to maximize or minimize some output variable, see [13].

62 D. Delmas et al.

double x = DBETWEEN(-DBL_MAX, DBL_MAX);

double y = ARCTAN(x);

The analysis takes 10 ms and 16 MB, and ensures y ∈ [−1.57, 1.57]. This interval
is of course very satisfactory, as the expected output range for an arctangent
approximation is]−π

2 , π
2 [. The computed over-approximation of the error interval

for y is [−4.83×10−16, 4.83×10−16]. This error interval is an over-approximation
of the difference between the algorithm result in the real field and the algorithm
result in floating-point arithmetic. It does not take into account the difference
between the implementation and the real arithmetic function arctan. However,
this model error can often be tackled with the tool (see paragraph “a glimpse
on functional proofs” at the end of this section for the sine implementation). A
side-remark is the fact that the π constant cannot be represented exactly as it is
declared in the code with Pi: the representation error is found by FLUCTUAT
to be in [1.214 × 10−16, 1.249 × 10−16].

Now we want to perform a sensitivity analysis on function ARCTAN. Because
this analysis does not cope with unstable tests nor subdivisions, for the time
being, we need to run separate analyses on the] − ∞,−1[, [−1, 0], [0, 1] and
]1,∞[subintervals. Besides, sensitivity has little meaning for very large inputs,
we thus restrict ourselves to [−104,−1[∪[−1, 0]∪ [0, 1]∪]1, 104].

The analysis for the restricted range [0,1] takes 10 ms and 16 MB, and ensures
that |Δy

Δx | ≤ 0.788. For]1, 104], we replace DBETWEEN(0,1) with DBETWEEN(DSU-
CC(1), 1.e4) where DSUCC(x) (resp. DPREC(x)) stands for the next (resp.
previous) floating-point number after (resp. before) x. The analysis costs are
unchanged. FLUCTUAT ensures that |Δy

Δx | ≤ 3.12 × 10−08. The results for] −
104,−1[(resp. [−1, 0]) are the same (resp. as for [0, 1]).

As a conclusion, FLUCTUAT helps us prove that the implementation in
floating-point numbers of this approximation of the arctangent function:

1. introduces only negligible errors;
2. cannot amplify errors on inputs.

An interpolated sine. Embedded programs classically use interpolation tables
to approximate trigonometric functions, such as the sine of an angle expressed
in degrees. For instance, one may build an array of 361 doubles providing ap-
proximations of the sine function for every half degree:

∀k = 0, 1, . . . 360,

∣∣∣∣T [k]− sin
(

k

2

)∣∣∣∣ < 10−4,

and implement an approximation of sine by interpolating between the points of
this table for angles between 0 and 180 degrees and using the identities

∀x ∈ IR, ∀k ∈ ZZ, sin(x)=− sin(−x)=sin(x+360k)=sin
(

x − 360
⌊

x + 180
360

⌋)

Let us, as for the arctangent, try to run an analysis for the full range of double
numbers, for the following näıve implementation of the sine operator:

Towards an Industrial Use of FLUCTUAT on Safety-Critical 63

extern const double T[361];

double SIN_0_180(double x) {

double dx, i_dx, v_inf;

double v_sup; int i;

dx=2*x; i=dx; i_dx=i;

v_inf=T[i]; v_sup=T[i+1];

return v_inf + (dx - i_dx)

* (v_sup - v_inf); }

double SIN_180(double x) {

if (x<0)

return -SIN_0_180(-x);

else

return SIN_0_180(x); }

double SIN_POS(double x) {

if (x>180) return SIN_180(x

-360.*(int)((x+180.)/360.));

else return SIN_180(x); }

double SIN(double x) {

if (x<0) return -SIN_POS(-x);

else return SIN_POS(x); }

The analysis takes only 1.52 seconds and 24 MB. FLUCTUAT issues infi-
nite values and errors for the result of the sine function, and warns that the
(int)((x+180.)/360.) cast may be undefined. Indeed this implementation
uses a conversion from double to int, so it is only valid for inputs x such that⌊
|x|+180

360

⌋
can be represented in the type int. In our 32 bits case, this is the

]−773094113100, 773094113100[interval. This is not an issue, provided that call
contexts for SIN in the whole control program are guaranteed to fall into this
last interval, for instance through a global static analysis with ASTRÉE.

The analysis costs for the reduced domain are unchanged, but its result
is still disappointing: the computed over-approximation of the value (and er-
ror) interval for the result of the sine algorithm in floating-point numbers is
[−3.09×1012, 3.09×1012], whereas it is [−1.5, 1.5] in the real-number semantics.
Besides, FLUCTUAT warns the user that the program test in function SIN 180
is unstable. The warning also stresses that “real is bottom” in the (x<0) branch,
which means that whenever the floating-point execution takes this branch, the
real execution executes the (x>=0) branch. This requires careful attention.

At this point, we realize we may be faced with the pitfall described in Section
2 with the modulo example. As a matter of fact, whenever x is very close to
(but smaller than) a number of the form 180 + 360 × k, for some k ∈ IN, then
a rounding error occurs when evaluating expression (x+180.)/360. in floating-
point arithmetic. The result is rounded to the double representing k + 1. In all
such cases, the x - 360.*(int)((x+180.)/360.) expression has value close to
(though below) 180 in the reals, but close to (though below) −180 in the floats.

In such a case, expression T [i + 1] in function SIN 0 180 attempts to access
array T out of bounds, as signalled by FLUCTUAT. Thus, we need to fix our
näıve implementation of the sine operator. We add a 362nd array element, such
that T [0] = T [360] = T [361] = sin(0) = sin(±180) = 0.

Now we have fixed the implementation, we subdivide the input ranges enough
for FLUCTUAT to perform a very accurate analysis on every subinterval defined
by the interpolation table. For instance, on the [−180, 180] range, using 720
subdivisions, a four hour / 20 MB analysis ensures y ∈ [−1.0004, 1.0004] with
errors in [−1.75 × 10−2, 1.75 × 10−2].

64 D. Delmas et al.

Such a large relative error is unacceptable, especially considering the inter-
polation table has been chosen to ensure a 10−4 accuracy. In order to decide
whether this is due to an issue in the implementation or to a lack of precision of
the static analysis, we switch to the symbolic execution mode of FLUCTUAT
with same range and subdivisions, thus choosing a sample of inputs in the input
range. As a result, we get a useful (though unsound for the whole range of val-
ues) estimate of the error range for y: [−1.05× 10−16, 1.05× 10−16]. This result
is a good hint that the accuracy of the implementation is not at stake. We thus
look for a more precise way to perform the static analysis: we write a new main
function implementing a custom irregular subdivision, with a singleton for every
interpolation point of the interpolation table:

[−180, 180.5[=
360⋃

i=−360

{
i

2

}
∪

]
i

2
,
i + 1

2

[

double x=-180., y=0., xi, yi; int i;

for (i=-360; i<=360; i++) {

xi = i*0.5; yi = SIN(xi);

x = DCOLLECT(x, xi); y = DCOLLECT(y, yi);

xi = DBETWEEN(DSUCC(i*0.5), DPREC((i+1)*0.5)) ;

yi = SIN(xi); x = DCOLLECT(x, xi); y = DCOLLECT(y, yi); }

The static analysis is run with no (tool-generated) subdivision, but unrolling the
main loop 720 times. It takes 97.39 seconds and 36 MB, and ensures x ∈ [−1.8×
102, 1.805× 102] and y ∈ [−1.0, 1.0] with errors in [−4.97× 10−16, 4.97× 10−16].

Over 99% of the error range originates from instruction dx=2*x. Next comes
expression v inf + (dx - i dx) * (v sup - v inf). The rest are negligible
representation errors within the interpolation table. Such a result is satisfac-
tory: the imprecision generated by the floating-point implementation is negligible
compared to the accuracy of the interpolation table.

Now we may also run sensitivity analyses for all [i
2 , i+1

2 [subintervals of the
[−180, 180[range. Each (separate) analysis takes 20 MB and runs (at most) for
0.71 second. Merging the 720 results, we can guarantee |Δy

Δx | ≤ 0.0176. This is
of course a very satisfactory result, as we are approximating a real-valued sine
function expressed in degrees, i.e. such that

∣∣∣∣
d

dx

(
sin

(
180
π

x

))∣∣∣∣ =
∣∣∣∣
180
π

cos
(

180
π

x

)∣∣∣∣ ≤
180
π

∼ 0.0175

A glimpse on approximate functional proofs. As previously indicated, we
can use FLUCTUAT to check that the approximate operator satisfies, in real
and in floating-point numbers, some properties close to classical properties of
the real sin function. For example here:

sin(x) = − sin(−x) = sin(180 − x) sin(x)2 + sin(x − 90)2 = 1
We basically replace the body of the loop calling the SIN function on subintervals
of length 1

2 by the following:

Towards an Industrial Use of FLUCTUAT on Safety-Critical 65

xi = DBETWEEN(DSUCC(i*0.5+90), DPREC((i+1)*0.5+90)) ;

s1 = SIN(xi); c1 = SIN(xi-90);

z1 = s1 + SIN(-xi); z4 = s1-SIN(180-xi);

z6 = s1*s1+c1*c1-1.0;

FLUCTUAT proves the following in 111 seconds and 40.96 Mb (for x in [90,180]):
z1 ∈ [−4.337 × 10−18, 4.337 × 10−18] in reals and z1 ∈ [−5.44 × 10−16, 5.44 ×
10−16] in floating-point numbers, z4 ∈ [−4.34× 10−18, 4.34× 10−18] in reals and
z4 ∈ [−4.34 × 10−16, 4.34 × 10−16] in floating-point numbers, z6 ∈ [−1.32 ×
10−4, 1.21 × 10−4] with negligible error (within [−8.44 × 10−16, 7.93 × 10−16]).
Moreover FLUCTUAT finds out that the worst-case for the value of z6 is at
iterate 74, and more precisely, it delivers as best guess for reaching the maximum
of z6: x = 127.5. Asking FLUCTUAT to check this value, it gives z6 = 1.21 ×
10−4 confirming the supremum bound found by static analysis. A simple analysis
shows that this is due to an error less than 10−4 on the corresponding table
entries. This shows that our algorithm for the sine function is actually most
probably computing something quite close to the sine function, with the 10−4

absolute precision expected, mostly due to the implementation even in infinite
precision (the interpolation table), and not to its finite precision implementation.

4.4 Analyzing Recursive Operators

Analyzing a set of order 2 filters conjointly. Consider the code of Figure
1. It implements a linear filter of order 2, run N times with at each iteration a
new unknown input E within [0,1], independent of the previous inputs.

We find the results summarized in Table 1. The first columns of the table
indicate respectively the number of cyclic unfolding and the number of iteration
at which we begin to widen (instead of using the join operator). These are
essential parameters to tune the accuracy of the analysis. We then give the time

double E, E0, E1, S0, S1, S;

int i;

E=DBETWEEN(0,1.0);

E0=DBETWEEN(0,1.0);

for (i=1;i<=N;i++) {

E1 = E0; E0 = E;

E = DBETWEEN(0,1.0);

S1 = S0; S0 = S;

S = 0.7*E-E0*1.3+E1*1.1

+S0*1.4-S1*0.7;

DPRINT(S); }

DSENSITIVITY(S);

Fig. 1. A linear order 2 filter

double E, E0, E1, S0, S1, S;

double A1, A2, A3, B1, B2; int i;

A1 = DBETWEEN(0.5, 0.8);

A2 = DBETWEEN(-1.5,-1);

A3 = DBETWEEN(0.8,1.3);

B1 = DBETWEEN(1.39,1.41);

B2 = DBETWEEN(-0.71,-0.69);

E=DBETWEEN(0,1.0);E0=DBETWEEN(0,1.0);

for (i=1;i<=N;i++) {

E1 = E0; E0 = E;

E = DBETWEEN(0,1.0);

S1 = S0; S0 = S;

S = A1*E+E0*A2+E1*A3+S0*B1+S1*B2;

DPRINT(S); }

DSENSITIVITY(S);

Fig. 2. A set of order 2 filters

66 D. Delmas et al.

of analysis on a laptop PC (1Gb memory, Pentium Duo 1.66GHz), the maximal
amount of memory used, and the ranges the analysis gives for the floating-point
value of the output S of the filter, and for its imprecision error:

Table 1. Results on the order 2 filter of Fig. 1

c. unfold widen. thresh. time mem. S (float) S (error)

10 50 41 s 53 Mb [−6.30; 7.96] [−5.13 × 10−14; 5.15 × 10−14]

30 50 167 s 53 Mb [−5.18; 6.84] [−3.23 × 10−14; 3.25 × 10−14]

60 50 418 s 53 Mb [−5.12; 6.78] [−3.11 × 10−14; 3.14 × 10−14]

Fig. 3. Floating-point values along the
iterations

Fig. 4. Fluctuat screen at the end of the anal-
ysis

Completely unfolding the loop on 100 iterations confirms that the bounds
found by the analysis are fairly precise (see Figure 3): S is found to be in [-
1.09, 2.76] with error in [−1.15 × 10−14, 1.17 × 10−14]. Still, there is room for
improvement. We are currently experimenting a new “global” union which would
find [-3.61,5.28] instead of [-6.30,7.96] in the case of a cyclic unfolding of 10, and
[-3.00,4.67] instead of [-5.12,6.78] in the case of a cyclic unfolding of 60. Note
that these results are just a bit less precise (for the floating-point range) than
what the specialized abstract domain for filters of [10] delivers, while also giving
precise bounds for the implementation error as well as their origins.

Consider the code of Figure 2 now. It is the same order 2 filter, but with
uncertain coefficients. These coefficients might look as narrow intervals, but a
manual calculation reveals that the poles of the Z-transform of this filter have a
module in [0.932,0.975], thus close to instability (the filter would be unstable if
the norm could go above one).

FLUCTUAT finds the results shown in Table 2. On the first line, we see the
results for the full static analysis for N unknown, the second and third line show
the results of the loop completely unfolded on the first 200 iterations (hence the
analysis is particularized to N=200), first without subdividing coefficients B1 and
B2, and then, subdividing them. We can see that the results of the static analysis
(i.e. [post]fixpoint calculation) are not too much over-approximated compared
to the results of the unfolded loop, which, as could be seen on the evolution

Towards an Industrial Use of FLUCTUAT on Safety-Critical 67

Table 2. Results on the order 2 filter of Fig. 2

#B1&B2 c. widen. time mem. S (float) S (error)

1, 1 200 20 1242 s 65 Mb [−15.1; 16.6] [−7.9 × 10−14; 7.9 × 10−14]

1, 1 200 no 21 s 57 Mb [−5.63; 7.13] [−2.93 × 10−14; 2.93 × 10−14]

10, 10 200 no 2943 s 57Mb [−4.81; 6.33] [−2.61 × 10−14; 2.61 × 10−14]

graph, are quite stable on the last iterations, so should not be far from the
actual invariant3. As in Table 1, we indicate the number of cyclic unfolding, the
widening threshold, time and memory usage, and floating-point/error range for
the output S. First column indicates how much we subdivide coefficients B1 and
B2 : FLUCTUAT can also deliver automatically estimates for coefficients A1, A2,
A3, B1 and B2 in their input ranges such that the corresponding output reaches
a value close to the bounds previously delivered by the static analysis (using
here 10 subdivisions on B1 and 10 subdivisions on B2). For the upper bound, it
finds B1=1.41, B2=-0.69, A1=0.8, A2=-1 and A3=1.3, along with input values for
successive iterates of E, when we unfold the loop for 200 iterations. When the
filter is executed with these values, S is found to be equal to 5.34.

For the lower bound, it finds B1=1.408, B2=-0.71, A1=0.5, A2=-1.5 and A3=0.8.
In that case, S is found to be equal to −0.75. This gives an idea of the quality
of the invariants found.

5 Conclusions and Future Work

In this paper, we have shown how FLUCTUAT can be used to automate part
of the accuracy analysis of basic numerical operators of control programs. We
have shown extremely precise results could be obtained in a quite systematic
way, which should ease the work of engineers in charge of this task.

The next step, for such a research prototype, is its industrial use within oper-
ational development teams. This requires some extra work. First, an “industrial”
version of the tool is needed: this phase has already been prepared through a
DIGITEO4 grant and plans are currently made for creating a service oriented
spinoff company, together with partial transfer to publishing companies, such as
ABSINT and ESTEREL (through the European project INTERESTED). Also,
depending on the verification strategy of operational end-users, FLUCTUAT
may need to be qualified as a verification tool, according to the DO-178B/ED-
12B aeronautical international standard. If such is the case, Airbus will conduct
qualification activities matching the targeted context. Detailed information on
the principles and architecture of the tool will be needed from the tool provider,

3 This could also be analyzed by a modified version of the ASTREE analyzer, imple-
menting a specific extension of the abstract domain of [10], with comparable, but
slighly less precise results.

4 DIGITEO is a French research foundation devoted to complex software-intensive
systems, regrouping such institutions as Ecole Polytechnique, CEA, INRIA, Supelec,
Paris XI, ENS Cachan, Centrale etc. see http://www.digiteo.fr.

68 D. Delmas et al.

in order to anticipate DO-178C extended qualification objectives for such formal
tools. There again, work has started thanks to the support from DIGITEO.

Further work on the accuracy analysis of basic operators could be to interoper-
ate FLUCTUAT with FRAMA C (http://frama-c.cea.fr) or ASTRÉE. The
latter could be used to compute over-approximated ranges for input variables
of all operators on the complete program, and the former could then restrict its
accuracy analyzes to these sound input intervals. In the cases where the local
value analysis with FLUCTUAT is more precise than the global analysis with
ASTRÉE, invariants computed by the former may be re-injected to improve the
precision of the analysis of the latter.

Beyond local accuracy analyses of basic operators, FLUCTUAT can also be
used to perform very accurate analyses on C code generated from sets of SCADE
sheets. First steps have been made in that direction with the successful study
of a complex program relying on set of linear recursive filters of orders varying
from 3 to 8. Outside the scope of the cooperation with Airbus, CEA-LIST has
also had successful experiences with other industrialists such as Hispano-Suiza
and IRSN, see [15], and a 33KLoC C program implementing a critical function
for Astrium’s Automated Transfer Vehicle, see [4]. This should be further inves-
tigated, in order to assess the accuracy of some critical independent system-level
aircraft functions.

References

1. Baudin, P., Delmas, D., Duprat, S., Monate, B.: Proving temporal properties at
code level for basic operators of control/command programs. In: Proceedings of
ERTS 2008, SIA (2008)

2. Bouissou, O., Goubault, E., Putot, S., Tekkal, K., Vedrine, F.: Hybridfluctuat: a
static analyzer of numerical programs within a continuous environment. In: Com-
puted Aided Verification conference, CAV 2009, Grenoble, France. LNCS, vol. 5643,
pp. 620–626. Springer, Heidelberg (2009)

3. Comba, J.L.D., Stolfi, J.: Affine arithmetic and its applications to computer graph-
ics. In: Anais do VI Simpósio Brasileiro de Computação Gráfica e Processamento
de Imagens (SIBGRAPI 1993), October 1993, pp. 9–18 (1993)

4. Conquet, E., Cousot, P., Cousot, R., Goubault, E., Ghorbal, K., Lesens, D., Putot,
S., Turin, M.: Space software validation using abstract interpretation. In: Proceed-
ings of DASIA (2009)

5. Cousot, P.: Abstract interpretation based formal methods and future challenges.
Informatics, 138–156 (2001)

6. Cousot, P., Cousot, R.: Basic concepts of abstract interpretation. In: IFIP Congress
Topical Sessions, pp. 359–366 (2004)

7. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The astrée analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp.
21–30. Springer, Heidelberg (2005)

8. Delmas, D., Souyris, J.: Astrée: From research to industry. In: Riis Nielson, H., Filé,
G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 437–451. Springer, Heidelberg (2007)

9. Dormoy, F.-X.: Scade 6 a model based solution for safety critical software devel-
opment. In: Embedded Real-Time Systems Conference (2008)

Towards an Industrial Use of FLUCTUAT on Safety-Critical 69

10. Feret, J.: Static analysis of digital filters. In: Schmidt, D. (ed.) ESOP 2004. LNCS,
vol. 2986, pp. 33–48. Springer, Heidelberg (2004)

11. Ghorbal, K., Goubault, E., Putot, S.: The zonotope abstract domain taylor1+.
In: Computed Aided Verification conference, CAV 2009, Grenoble, France. LNCS,
vol. 5643, pp. 627–633. Springer, Heidelberg (2009)

12. Goubault, E., Putot, S.: Static analysis of numerical algorithms. In: Yi, K. (ed.)
SAS 2006. LNCS, vol. 4134, pp. 18–34. Springer, Heidelberg (2006)

13. Goubault, E., Putot, S.: Under-approximations of computations in real numbers
based on generalized affine arithmetic. In: Riis Nielson, H., Filé, G. (eds.) SAS
2007. LNCS, vol. 4634, pp. 137–152. Springer, Heidelberg (2007)

14. Goubault, E., Putot, S.: Perturbed affine arithmetic for invariant computation in
numerical program analysis. CoRR, abs/0807.2961 (2008)

15. Goubault, E., Putot, S., Baufreton, P., Gassino, J.: Static analysis of the accuracy
in control systems: Principles and experiments. In: Leue, S., Merino, P. (eds.)
FMICS 2007. LNCS, vol. 4916, pp. 3–20. Springer, Heidelberg (2008)

16. Hunt, Lipsman, Rosenberg, Coombes, Osborn, Stuck: A Guide to MATLAB, 2e: for
Beginners and Experienced Users. Cambridge University Press, Cambridge (2006)

17. IEEE 754 standard for floating-point arithmetic. Floating-Point Working Group of
the Microprocessor Standards Subcommittee of the Standards Committee of the
IEEE Computer Society. Work in Progress (2004)

18. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In: 33rd ACM symposium on Principles of Programming
Languages, pp. 42–54. ACM Press, New York (2006)

19. Martel, M.: Validation of assembler programs for dsps: a static analyzer. In: PASTE
2004: Proceedings of the 5th ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering, pp. 8–13. ACM, New York (2004)

20. Monniaux, D.: The pitfalls of verifying floating-point computations. ACM Trans.
Program. Lang. Syst. 30(3), 1–41 (2008)

21. Rival, X.: Symbolic transfer functions-based approaches to certified compilation.
In: Leroy, X. (ed.) 31st Symposium on Principles of Programming Languages, pp.
1–13. ACM, New York (2004)

22. Souyris, J., Delmas, D.: Experimental assessment of astrée on safety-critical avion-
ics software. In: Saglietti, F., Oster, N. (eds.) SAFECOMP 2007. LNCS, vol. 4680,
pp. 479–490. Springer, Heidelberg (2007)

23. Souyris, J., Le Pavec, E., Himbert, G., Borios, G., Jégu, V., Heckmann, R.: Com-
puting the worst case execution time of an avionics program by abstract interpre-
tation. In: 5th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis,
Dagstuhl, Germany (2007)

24. Thesing, S., Souyris, J., Heckmann, R., Randimbivololona, F., Langenbach, M.,
Wilhelm, R., Ferdinand, C.: An abstract interpretation-based timing validation of
hard real-time avionics software. In: DSN (2003)

Dynamic State Space Partitioning

for External Memory Model Checking�

Sami Evangelista1 and Lars Michael Kristensen2

1 Computer Science Department, Aarhus University, Denmark
evangeli@cs.au.dk

2 Department of Computer Engineering, Bergen University College, Norway
lmkr@hib.no

Abstract. We describe a dynamic partitioning scheme usable by model
checking techniques that divide the state space into partitions, such as
most external memory and distributed model checking algorithms. The
goal of the scheme is to reduce the number of transitions that link states
belonging to different partitions, and thereby limit the amount of disk
access and network communication. We report on several experiments
made with our verification platform ASAP that implements the dynamic
partitioning scheme proposed in this paper.

1 Introduction

Model checking [3] is a technique used to prove that finite-state systems match
behavioral specifications. It is based on a systematic exploration of all reachable
states in the search for illegal behaviors violating the specification. Despite its
simplicity, its practical application is subject to the well-known state explosion
problem [17]: the state space may be far too large to be explored in reasonable
time or to fit within the available memory.

Most techniques devised to alleviate the state explosion problem can be classi-
fied as belonging to one of two families. The first family of techniques reduce the
part of the state space that needs to be explored in such a way that all properties
of interest are preserved. Partial order reduction [9] which limits redundant in-
terleavings is an example of such a technique. More pragmatic approaches do not
reduce the state space, but make a more economical use of available resources, or
augment them, in order to extend the range of problems that can be analyzed.
State compression [11], distributed verification [16], and disk-based verification
[4] belong to this second family of techniques.

In the field of external memory and distributed verification, it is common to
divide the state space into partitions (although some external and distributed
algorithms do not rely on such a partitioning, e.g., [4,10]). For example, in the
distributed algorithm of [16], each process involved in the verification is respon-
sible for storing and visiting all the states of a partition. Whenever a process
generates a state that does not belong to the partition it is responsible for, it
� Supported by the Danish Research Council for Technology and Production.

M. Alpuente, B. Cook, and C. Joubert (Eds.): FMICS 2009, LNCS 5825, pp. 70–85, 2009.
� Springer-Verlag Berlin Heidelberg 2009

Dynamic State Space Partitioning for External Memory Model Checking 71

sends it to its owner such that the state can be stored and its successor states
can be explored. An important component of this algorithm is the partition func-
tion (known to all processes) which is used to map states to partitions. In the
ideal case, the partition function should have two properties. Firstly, it should
generate as few cross transitions as possible. Cross transitions link two states of
different partitions and thus systematically generate messages over the network.
Secondly, it should distribute states evenly into partitions to ensure that all pro-
cesses have the same workload. A hash function based on the bit string used to
represent states may achieve an optimal distribution, but generates many cross
transitions due to the insensitivity of hashing to locality.

To address this problem, we introduce a dynamic partitioning scheme based
on the idea of partition refinement . Initially, there is a single partition in which
the partition function maps all states. Then, whenever a partition has to be split
up — for instance because its size exceeds memory capacity — it is divided into
sub-partitions and the partition function is refined accordingly. To represent a
partition function that can change over time we introduce the idea of composi-
tional partition functions . Refinement is done by progressively considering new
components of the state vector (descriptor) in the partition function, e.g., vari-
ables or communication channels. For instance, after a first refinement step, a
state will be mapped to one of the partitions p1, . . . , pn depending only on the
value of its ith component in the state vector. Then, if p1 has to be refined, we
consider an additional component of the state vector. As refinement is applied
on a single partition at a time, partitions p2, . . . , pn will remain unchanged.

Our intuition is to take advantage of the fact that events typically modify a
small number of components in the state vector. Thus, if a partition function
is based only on a few components of the system and does not consider others,
events that do not modify these components will not generate cross transition,
and hence disk accesses or network communications will be limited. However,
we replace the objective of a uniform distribution of states into partitions by
a less ambitious one: partitions may be of different sizes, but we can ensure an
upper bound on their size. Even though this does not have any consequence with
an external memory algorithm, it may impact a distributed algorithm in that
processes may not receive the same amount of workload.

The refinement algorithm has been implemented in the ASAP [18] tool, on
top of the external algorithm of [1]. We report the results of several experiments
showing that we were able to significantly decrease the number of disk accesses.
More importantly, our algorithm improves the algorithm of [1] such that it per-
forms well on classes of models where it previously performed poorly.

Structure of the paper. In the next section, we briefly recall the principle of
the two partitioning based algorithms of [16] and [1] that will be the basis of our
work. Section 3 presents related work. Our dynamic scheme based on partition
refinement is introduced in Section 4 followed in Section 5 by different heuristics
to support the refinement. The experiments conducted with our verification tool
are presented in Section 6. Finally, Section 7 concludes this paper. We assume
the reader is familiar with the principle of state space exploration.

72 S. Evangelista and L.M. Kristensen

Definitions and notations. We assume a universe of system states S, an
initial state s0 ∈ S, a set of events E , an enabling function en : S → 2E , and
a successor function succ : S × E → S. We want to explore the state space
implied by these parameters, i.e., the triple (R, T, s0) such that R ⊆ S is the set
of reachable states and T ⊆ R × R is the set of transitions defined by:

R = {s0} ∪ { s ∈ S | ∃s1, . . . , sn ∈ S with s = sn ∧
∀i ∈ {0, . . . , n − 1} : ∃ei ∈ en(si) with succ(si, ei) = si+1}

T = {(s, s′) ∈ R × R | ∃e ∈ en(s) with succ(s, e) = s′}

2 Partitioning the State Space

Algorithm 1 (left) shows the algorithm of [1] that mimics a distributed search
using external storage, and the distributed algorithm of [16] (right) which is the
basis of most work in the field of parallel and distributed model checking. Both
algorithms rely on a partitioning function part : S → {1, . . . , N} which partitions
the set of visited states and the queue of unprocessed states into V1, . . . ,VN and
Q1, . . . ,QN , respectively.

In the external algorithm (ll. 1–10), only a single partition i is loaded in
memory at a time. The visited states of partition i are stored in memory in Vi,
and its unprocessed states reside in the queue Qi. All other partitions j 	= i
are not stored in memory, i.e., Vj = ∅, but stored on disk files Fj . Queues are
also stored on disk, although, for the sake of simplicity of our presentation, we
assume here that they are kept in main memory. Initially, all structures and files
are empty. The algorithm inserts the initial state s0 in the appropriate queue
part(s0) (l. 4). Then, as long as one of the queues contains a state, the algorithm
selects the longest queue i (l. 6), loads the associated partition from disk file Fi to
memory in Vi (l. 7) and starts expanding the states in queue Qi using procedure
searchi (l. 8) which will be explained below. When the searchi procedure does
not have any new state to expand for this partition, it writes back the partition
to disk file Fi and empties Vi (ll. 9–10). Selecting the longest queue is mainly a
heuristic to perform few partition switches (writing back Vi in disk file Fi and
selecting a new partition).

In the distributed algorithm (ll. 11–19), data structures are kept in the mem-
ory of the N processes involved in the state space exploration. Each process i
owns a partition Vi and a queue of unprocessed states Qi that it has to explore.
Both structures are initially empty, and the process that owns the initial state
puts it in its queue (ll. 16–17). As long as termination is not detected (l. 18),
the process expands the states in its local queue using procedure searchi (l. 19).
Termination occurs when all queues and communication channels are empty.

The common part of both algorithms is the searchi procedure that expands
all the states queued in Qi until it becomes empty. Each state s removed from
Qi (l. 22) is checked to be in partition Vi. This check is performed since a state
in Qi may have been inserted in Qi because it was a destination state of a cross
transition. If s has not been met before it is inserted into Vi (l. 24) and then
expanded (ll. 25–29). During the expansion, we compute all the successors s′ of

Dynamic State Space Partitioning for External Memory Model Checking 73

Algorithm 1. Two search algorithms based on state space partitioning
1: (* external algorithm of [1] *)

2: for i in 1 to N do
3: Qi := ∅ ; Vi := ∅ ; Fi := ∅
4: Qpart(s0).enqueue(s0)
5: while ∃i : ¬Qi = ∅ do
6: i := longestQueue()
7: Fi.load(Vi)
8: searchi()
9: Vi.unload(Fi)

10: Vi := ∅

11: (* distributed algorithm of [16] *)

12: execute proc1 ‖ . . . ‖ procN

13:

14: procedure proci is
15: Qi := ∅ ; Vi := ∅
16: if part(s0) = i then
17: Qi.enqueue(s0)
18: while ¬ termination() do
19: searchi()

20: procedure searchi is (* search procedure common to both algorithms *)

21: while Qi �= ∅ do
22: s := Qi.dequeue()
23: if s /∈ Vi then
24: Vi.insert(s)
25: for e in en(s), s′ = succ(s, e) do
26: j := part(s′)
27: if i = j then (* local transition *)

28: if s′ /∈ Vi then Qi.enqueue(s′)
29: else Qj .enqueue(s′) (* cross transition *)

s and determine the partition j they belong to (l. 26), using function part. If
i = j the transition from s to s′ is a local transition. We can simply check if s′

is in memory in table Vi and put it the in queue Qi if needed. Otherwise, this
is a cross transition, and the partition of state s′ is not available in memory (it
is stored on disk or belongs to another process). We thus unconditionally put it
in Qj . For the external algorithm of [1] this is implemented by enqueueing the
state in the memory queue Qj (and possibly writing s′ in the disk file associated
with Qj), whereas for the distributed algorithm of [16] it implies to pack the
state in a message and send it to the owner of the appropriate partition, i.e.,
process j. Upon reception, the state is enqueued by the receiving process in Qj .

The performance of these algorithms depends to a large extent on the partition
function part. In the distributed algorithm, cross transitions highly impact the
number of messages exchanged and thereby indirectly the execution time. For
the external algorithm, partition swaps, and hence disk accesses, are generated
by cross transitions. Although this objective is more specific to the distributed
algorithm, function part should also distribute states evenly among partitions
so that processes receive a comparable workload.

3 Related Work

Stern and Dill [16], Bao and Jones [1] and Garavel et al. [8] left open the prob-
lem of the partition function. They used in their experiments a standard hash
function taking as input the entire state vector. The importance of the partition

74 S. Evangelista and L.M. Kristensen

function was stressed in [12]. Assuming that the system to be verified is a set
of communicating processes, the partition function proposed in [12] only hashes
the part of the state vector describing a selected process p. Thus, only when that
part changes, i.e., the search algorithm explores events in p, is a cross transition
generated. Compared to a global hash function, this scheme efficiently reduces
the number of messages exchanged (up to a factor of 5) and, hence, the execution
time (up to a factor of 3). The downside is a degraded distribution of states over
the nodes of the network.

The dynamic partitioning in [13] groups states into classes and partitions
consist of a set of classes. When memory becomes scarce, the partition function
is modified by reassigning some classes of the overflowing partition to other
partitions. The function mapping states to classes can be a local hash function
as in [12]. The results of this dynamic partitioning strategy in term of message
exchanges and verification time are comparable to the ones of [12]. The main
advantage is that no knowledge of the system is necessary: run-time information
is used to keep the partitioning balanced and, indeed, we generally observed in
our experiments (to be discussed in Sect. 6) a good distribution of states.

An efficient partitioning algorithm based on abstraction and refinement of
the state space is introduced in [2]. However, the state space has to be first
constructed in order to define the partition function meaning that this approach
mainly targets off-line model checking.

In structured duplicate detection [19] as used in external graph search, an
abstraction of the state space is used to determine when to load/unload parti-
tions from/to disk. However, this approach seems hard to apply in the context
of model checking due to the difficulty of defining an abstract graph from a com-
plex specification. Close to that idea is the work of Rangarajan et al. [15]. The
algorithm they propose first explores a sample of the state space. This sample
is abstracted into a higher level graph using a single variable v of the system.
An abstracted state aggregates all states having the same value of v. A partition
function can then be constructed from this abstracted graph. The algorithm can
reiterate this process on all variables to improve the quality of the function. The
underlying principle is the same as in [12] and [13]: only when the selected vari-
able is modified can a cross transition be generated. The experiment made in [15]
shows that this method can significantly outperform the local hash partitioning
implemented in PSPIN [12].

We propose a way to dynamically (i.e., during state space exploration) modify
the partition function by progressively taking into account more components of
the underlying system. Our work can be seen as an extension of [15] since some
of the ideas we develop were briefly mentioned in [15] – like the one of consid-
ering several variables of the system to define the partition function. Another
contribution of our dynamic approach is that it can still guarantee an upper
bound on the size of any partition loaded in memory which previous approach
like [12,13,15] could not. From now on, we focus on the external algorithm of
[1] although the proposed method and the heuristics in Sect. 5 can, to a large
extent, be applied also to distributed model checking.

Dynamic State Space Partitioning for External Memory Model Checking 75

Algorithm 2. The partition refinement procedure
1: procedure refine i is
2: update partition function part: partition i is divided into i1, . . . , in
3: for s ∈ Vi do { s.write(Fpart(s)) }
4: while ¬ Qi.isEmpty() do { s := Qi.dequeue() ; Qpart(s).enqueue(s) }
5: Vi := ∅ ; Fi := ∅ ; go to line 6 of Algorithm 1

4 Dynamic Partitioning Based on Refinement

Our dynamic partitioning scheme is based on the principle of partition refine-
ment . The algorithm starts with a single partition to which all states are initially
mapped. If the state space is small enough to be kept in main memory the al-
gorithm acts as a standard RAM algorithm. Otherwise, whenever the partition
Vi currently loaded in memory exceeds the memory capacity, procedure refinei

of Algorithm. 2 is triggered. It firsts updates the partition function part (l. 2)
in such a way that each state that was previously mapped to partition i is now
mapped to a new partition j ∈ {i1, . . . , in}. Then, it writes the states in Vi to
disk files Fi1 , . . . ,Fin (l. 3) and reorganizes the queue Qi in the same way (l. 4).
Once this reorganization is finished, the table Vi and the disk file Fi are emptied
(l. 5), and the search can restart by picking a new partition. Note that partition
i is the only one to be reorganized; all other partitions remain unchanged.

Our focus is now on the implementation of line 2 of procedure refinei. We
describe in the rest of this section how our algorithm uses a compositional parti-
tion function that can change during the state space exploration. We propose a
way to dynamically refine the partition function by gradually considering more
components of the state vector of the system being analyzed.

A compositional partition function can be represented as a partitioning dia-
gram. Figure 1 is the graphical representation of a diagram D. Rounded boxes
represent terminal nodes and branching nodes are drawn using circles. The nodes
are labeled either with a partition, e.g., p0, p1, or with a branching function of
which the domain is the universe of states S and the codomain can be deduced

p1i

h

a

c

b

2

1

0

g
t

f

p0

p4

p5 p3

p2

Fig. 1. A compositional par-
titioning diagram D

from the labels of its outgoing arcs: g : S → {t, f},
h : S → {a, b, c} and i : S → {0, 1, 2}. This di-
agram induces a partition function partD mapping
states to partitions. Starting from the root g of this
diagram, we successively apply to the state the dif-
ferent functions labeling the branching nodes of the
diagram until reaching a terminal node, i.e., a parti-
tion. The branches to follow are given by the labels
of the outgoing edges from branching nodes. Below
is a few examples of application of partD :

partD (s) = p0 ⇔ g(s) = t
partD (s) = p5 ⇔ g(s) = f ∧ h(s) = c
partD (s) = p3 ⇔ g(s) = f ∧ h(s) = a ∧ i(s) = 2

76 S. Evangelista and L.M. Kristensen

Three functions (g, h and i) are used to decide if a state belongs to partition p3.
Hence we say that partition p3 is dependent on functions g, h and i.

The following definition formalizes the notion of partitioning diagrams. Note
that the definition of the edge set E implies that partitions are the terminal
nodes of the diagram and that functions are branching nodes.

Definition 1 (Compositional partitioning diagram (CPD)). A Compo-
sitional partitioning diagram is a tuple D = (V, E, r0,F ,P) such that:

– G = (V, E) is a directed acyclic graph with vertices V = F ∪P and edges E,
and r0 ∈ V is the only root node of G;

– F = {fi : S → Li} is a set of branching functions;
– P ⊆ 2S is a set of state partitions;
– E ⊆ F ×L×V (with L = ∪iLi), such that for all fi ∈ F , l ∈ Li there exists

exactly one v′ ∈ V such that (fi, l, v
′) ∈ E.

A CPD determines a partition function as formalized in the following definition.

Definition 2 (Compositional partition function). Let D = (V, E, r0,F ,P)
be a CPD. The function part : V × S → P is defined by:

part(v, s) =
{

v if v ∈ P
part(v′, s) if v ∈ F ,where (v, v(s), v′) ∈ E

The compositional partition function partD : S → P is defined by:

partD(s) = part(r0, s)

Refinement of a CPD consists of replacing a terminal node representing a par-
tition by a new branching node. Thus, a state s that was previously mapped to
the refined partition is now redirected to a new sub-partition according to the
value of g(s) where g is the function labeling the new branching node.

Our refinement algorithm assumes the global system can be viewed as a set
of distinct components C1 ∈ D1, . . . , Cn ∈ Dn and that a state of the system
is obtained from the state of these components, i.e., S = D1 × . . . × Dn. This
naturally capture systems with a statically defined state vector (e.g., DVE sys-
tems [5], Petri nets). However, as the partition function dynamically evolves as
the search progresses, this constraint could easily be relaxed. We denote by fCi

the function that from a given state s returns the value of component Ci. Dur-
ing the refinement of partition p, the partition diagram is modified as follows.
The algorithm first inspects the diagram to determine the functions F on which
partition p is dependent. These functions label the branching nodes on the path
from the root to the terminal node associated with p in the diagram. Then it
picks a function fCi /∈ F . Each of its outgoing branches leads to a new partition.
At last, pi is replaced in the diagram by the branching node fCi . We shall use the
term candidate component (or simply candidate), to denote a component that
can be used to refine a partition, i.e., any component Ci such that the refined
partition is not already dependent on fCi .

Dynamic State Space Partitioning for External Memory Model Checking 77

fb

pf

pf

fb

p(t,3,t)

p(t,3,f)

p fb

f

t

pt

pf

fi

3

2

1

0

t

f

p(t,0)

p(t,1)

p(t,2)

p(t,3)

fi

3

2

1

0

fc

p(t,0)

p(t,1)

p(t,2)

f

f

t

R(D, p, fb)

t

R(D, pt, fi) R(D, p(t,3), fc)

Fig. 2. A dynamic compositional diagram D

Figure 2 shows the graphical representation of a compositional partition di-
agram D that dynamically evolves as described above. We assume the follow-
ing components are part of the underlying system: b ∈ {t, f}, c ∈ {t, f} and
i ∈ {0, 1, 2, 3}. Initially, there is a single partition p and all states are mapped
to that partition. As p exceeds the allowed size, it is refined into pt and pf after
the selection of the boolean component b to be used for the refinement. States
already visited with b = t are put in partition pt and states with b = f are
put in pf . Later, partition pt becomes too large. Since this partition is already
dependent on function fb it would not make sense to refine it using component
b: all states of pt would be redirected to the same partition. Hence, the algo-
rithm selects to refine it using component i. Partition pt is thus split in p(t,0),
p(t,1), p(t,2) and p(t,3) and states that were previously in pt, i.e.,with b = t, are
redirected to one of these according to the value of component i. Note that pf is
unchanged. Thus, states that satisfy b = f will still be mapped to this partition
whatever the value of their other components.

The definition below formalizes this idea of partition refinement.

Definition 3 (Partition refinement). Let D = (V, E, r0,F ,P) be a CPD.
The refinement R(D, f, p) of D with respect to f : S → Lf and p ∈ P is the
CPD D′ = (V ′, E′, r′0,F ′,P ′) with:

– F ′ = F ∪ {f};
– P ′ = P \ {p} ∪ PLf

, where PLf
= {pl | l ∈ Lf} and pl = {s ∈ p | f(s) = l};

– E′ = E\{(v, l, q) ∈ E | q = p}∪{(f, l, pl) | l ∈ Lf}∪{(v, l, f) | (v, l, p) ∈ E};
– r′0 = f (if r0 = p), and r′0 = r0 (otherwise).

The motivation behind this dynamic partitioning scheme is to benefit as much
as possible from system properties. Usually, realistic systems are composed of
many components, and events only modify a small fraction of them leaving others
unchanged. Our refinement algorithm tries to minimize cross transitions by only
selecting for each partition a few components to depend on. Let us consider, for
instance, the last step in the evolution of the compositional diagram of Fig. 2.

78 S. Evangelista and L.M. Kristensen

All the states of partition p(t,2) have in common that b = t∧ i = 2. Hence, from
any state of this partition, an event that does not change the value of b or i will
not generate a cross transition.

Clearly, the way the component is selected during a refinement step largely
impacts the number of cross transitions it will cause. For instance, the worst
choice would be to select a global variable updated by all events. In that case,
any transition from a state of the resulting partitions will be a cross transition.

5 Selection of Candidate Components

We propose in this section several heuristics to efficiently select components
to be used as a basis for the refinement. We classify these in two categories.
Static heuristics perform an analysis of the model or sample the state space to
order components. Then, during the search, the next component is always chosen
according to that predetermined order. Hence along two different paths (of same
length) of the partitioning diagram, we always find the same components in the
same order. With dynamic heuristics, the component selected is chosen during
the refinement step on the basis of data collected on-the-fly during the search.

Static Heuristics

Heuristic SA: Static Analysis. With this first heuristic, the algorithm tries to
predict from a static analysis of the model the modification frequency of com-
ponents. The analysis performed is simple. We count for each state component,
the number of events that modify it and order components accordingly in in-
creasing order. Some weights may also be associated with events as we did in
our implementation for the DVE language. For example, events nested in loops
can be assigned a high weight as we can reasonably assume that their execution
will occur frequently.

Heuristic SS: Static Sample. Heuristic SA from above is based on a static analy-
sis of the model and as such assumes a uniform distribution of event executions.
However, in practice, this assumption is not always valid. Some events are typ-
ically executed only a few times, e.g., initialization events, whereas some will
generate most of the state transitions. With heuristic SS, we attempt tackle this
problem by first exploring a sample of the state space. An array of integers in-
dexed by state components is maintained and each time an event is executed,
the counters of all modified components are incremented. State components are
then ordered according to the values of their counters, lowest values first. It is
very important to perform a randomized search in order to explore a reasonably
representative sample of the state space. A breadth-first search, for instance,
would only explore the states of the first levels of the state space, and these usu-
ally share very few characteristics with the states we can find at deeper levels
(and hence different executable events).

Dynamic State Space Partitioning for External Memory Model Checking 79

Dynamic Heuristics

Heuristic DR: Dynamic Randomized This strategy picks out a component ran-
domly from a set of candidates. The purpose of this strategy is only to serve as
a baseline to assess the other dynamic strategies below.

Heuristic DE: Dynamic Event execution Heuristic DE is the dynamic equivalent
of the heuristic SA: the array of integers specifying, for each component, the
number of modifications of that component, is maintained as the state space
exploration progresses. During a refinement step, the algorithm selects, among
candidates, the one which has, until now, been the least frequently modified.

Heuristic DD: Dynamic Distribution. The previous heuristics do not consider
how well states are distributed among sub-partitions during a refinement step.
This may, however, have important consequences in subsequent steps. Suppose
that a partition p is refined in two sub-partitions, the first one, p1, receiving 95%
of the states of p, and the second one, p2, receiving 5% of these states. Then, it
is likely that during the next expansion step of partition p1, new states will be
added to p1 which will cause it to exceed the maximal allowed size and hence to
be refined. We can thus reasonably consider the first refinement to be useless.
As refinement steps are costly — it entails writing back to disk each state in the
partition currently loaded in memory — these refinements should be avoided as
much as possible.

With heuristic DD, the refinement procedure simulates all possible refine-
ments by computing for each state s of the partition to be refined the values
fCi1

(s), . . . , fCik
(s), where fCi1

, . . . , fCik
are the partition functions for the

candidate components. This indicates how good the state distributions induced
by the different candidates are. Then, the algorithm picks the component that
achieves the lowest standard deviation, that is, the most even distribution of
states among partitions. Applying fCi1

, . . . , fCik
on all states does not incur a

major time penalty. In the worst case (if all components are candidates), this is
equivalent to compute a hash value on the entire state vector, which is usually
negligible compared to the later writing of the state in the sub-partition file. In
our experiments, we observed that, when heuristics DE and DDE (that extends
DE with this “simulation” process, see below) exhibited comparable performan-
ces in term of disk accesses, the execution times were roughly the same.

Heuristic DDE: Dynamic Distribution and Event execution. This last heuristic
combines the idea of heuristics DD and DE: we prefer candidates that achieve a
good state distribution and which is not frequently modified. During a refinement
step, the following metric is computed for each candidate Ci:

h(Ci) = updates[i] · std(Ci) (1)

where updates[i] is the number of modifications of component i recorded so far
and std(Ci) is the standard deviation in the sizes of sub-partitions obtained if
component Ci is chosen for refinement. The algorithm picks the candidate having
the lowest value.

80 S. Evangelista and L.M. Kristensen

6 Experiments

The part algorithm of [1] as well as our dynamic partitioning technique have
been implemented in the ASAP model checking platform [18]. We report in this
section on experimental results obtained with this implementation. Additional
data from the experiments can be found in [7].
Application of refinement to DVE systems. All models we have used are
written in the DVE language and comes from the BEEM database [14]. We did
not experiment with models belonging to the categories “Planning and sche-
duling” and “Puzzles” that are mostly toy examples having few common char-
acteristics with real-life models. In the DVE language, the system is described
as a set of automata synchronizing through communication channels and global
variables. Communications can either be synchronous or asynchronous. An au-
tomaton is described as a set of states, local variables, and guarded events. To
use our refinement algorithm, we considered as components each of the following
items: the state of an automaton, i.e., its program counter; a variable (global or
local); and the content of a communication channel. Arrays were considered as
components although this obviously was not a good solution in some cases. We
plan to refine that in a future implementation. Since the domain of variables can
be very large and cannot be defined a priori, we used for each component Ci the
component function fi = hi(Ci) mod p where hi is a hash function from Di (the
domain of component Ci), to N and p is the maximum number of sub-partitions
we want a partition to be refined in (p was set to 20 in our implementation).
Experimental context. Apart from our refinement technique, we also imple-
mented the static and dynamic partitioning schemes of [12] and [13] both using a
local hash function that only refers to the part of the state vector corresponding
to a specific process of the system. In our implementation of [13], a partition is
split in two sub-partitions when it exceeds memory capacity: half of the classes
that comprises the partition are put in a new partition. The process used for
hashing was selected after an initial sampling of the state space. We selected the
process which achieved both a uniform state distribution and a low number of
cross transitions using heuristic h in Equation 1 from the previous section. The
initial sampling was stopped after 100,000 states had been visited. This repre-
sents from 10% of the state space to less than 0.2% for the largest instances.

We experimented with part using different partitioning schemes on 35 in-
stances of the BEEM database having from 1·106 to 60·106 states. Since instances
of the same model often have similar state spaces, we only kept for each model
the instance with the largest state space. During each run we gave the part
algorithm the possibility to keep in memory at most 2% of the state space1. Half
of this amount was given to the memory buffer of the state queue (remember
that part stores the queue on disk) and half was given to the partition loaded
in memory. Hence, each partition could contain at most 1% of the total state
space size. With static partitioning, it is impossible to put an upper bound on
1 Other sizes were experimented: 10%, 5% and 1%. Due to lack of space, these exper-

iments have been left out in this section, but can be found in [7].

Dynamic State Space Partitioning for External Memory Model Checking 81

a partition size. Therefore, assuming the distribution of states upon partitions
might be unfair, we configured the static schemes with 256 partitions to guar-
antee (to the extend possible) that a partition will not contain more than 1% of
the state space. For dynamic partitioning strategies, when a partition exceeded
this capacity, it was automatically split using refinement with our algorithm or
by reassigning classes of states to partitions with the algorithm of [13]. As noted
earlier, the algorithm of [13] cannot guarantee an upper bound on a partition
size: when a partition contains a single class it cannot be further reorganized.

Experimental results. Table 1 shows the result of our experiments. Due to
lack of space, we only report the data for 14 representative instances, but still
provide the average over the 35 instances experimented2. We performed 10 runs
per instance, each with a different partitioning strategy. Each column provides
data for a single run. For static and dynamic settings, GHC stands for “Global
Hash Code”: the partition function is the global hash function modulo the num-
ber of partitions; and LHC stands for “Local Hash Code”: only the part of the
state vector corresponding to a specific process is hashed, that is, the algorithms
of [12] (in the static setting) and [13] (in the dynamic setting). Dynamic + Com-
positional is our refinement algorithm with the different heuristics proposed in
Section 5: SA (Static + Analysis), SS (Static + Sample), DR (Dynamic + Ran-
domized), DE (Dynamic + Event execution), DD (Dynamic + Distribution) and
DDE (Dynamic + Distribution and Event execution). For heuristic SS, we per-
formed exactly the same preliminary search as the one performed for strategies
with LHC: we stopped the search after the visit of 100,000 states. For each in-
stance, rows CT and IO provide the number of cross transitions and disk accesses
performed (both for the queue and for disk partitions). Absolute values are given
for column Static - GHC. Other values are relative to this one. The ε symbol is
used to denote values less than 0.001. Best values have been highlighted in bold.

We first observe that, for most instances, heuristic DR performs worse than
other heuristics. We found no instances where heuristic DR generated fewer cross
than heuristics SS and DE. This confirms our initial intuition on the impact of
the candidate’s choice made during refinement.

Heuristic SS and heuristic DE (the dynamic equivalent of SS) exhibit compa-
rable performances. This indicates that the preliminary randomized search often
provides a very good sample of the state space. We only observed a notable dif-
ference for a few instances, especially the largest ones for which the sample was
too small to be representative enough (e.g., train-gate.7 and collision.4).

In [6], we observed that part (using a global hash function to partition the
state space) is not designed for long state spaces, i.e., state spaces with many
levels, which should also hold for the distributed algorithm of [16]. To illustrate
that, let us consider the extreme case where the graph is a long sequence of states.
Using a good hash function we can assume the probability of a transition to be
a cross transition is close to N−1

N (where N is the number of partitions). Hence,
with this state space structure, most transitions will immediately be followed
by a partition swap. With a distributed algorithm, the search will consist of
2 The complete table can be found in [7].

82 S. Evangelista and L.M. Kristensen

Table 1. Performance of part with different partitioning schemes

Static Dynamic Dynamic + Compositional

GHC LHC GHC LHC SS SA DR DE DD DDE

bopdp.3 1,040,953 states 2,747,408 transitions

CT 2.7 M 0.091 0.965 0.078 0.223 0.300 0.311 0.183 0.256 0.306
IO 39 M 0.148 1.008 0.189 0.311 0.243 0.324 0.370 0.323 0.304

brp.6 42,728,113 states 89,187,437 transitions

CT 88 M 0.281 0.899 0.277 0.040 0.083 0.286 0.042 0.170 0.049
IO 5.9 G 0.346 1.057 0.292 0.132 0.130 0.979 0.123 0.046 0.082

collision.4 41,465,543 states 113,148,818 transitions

CT 112 M 0.088 0.969 0.087 0.078 0.030 0.255 0.011 0.131 0.056
IO 1.5 G 0.183 1.135 0.235 0.178 0.220 0.395 0.176 0.211 0.294

firewire link.5 18,553,032 states 59,782,059 transitions

CT 59 M 0.262 0.981 0.254 0.054 0.050 0.173 0.010 0.346 0.017
IO 788 M 2.282 0.971 0.869 0.224 0.190 0.488 0.220 0.715 0.206

firewire tree.5 3,807,023 states 18,225,703 transitions

CT 18 M 0.111 0.983 0.109 0.114 0.190 0.153 0.065 0.195 0.138
IO 141 M 0.177 0.969 0.461 2.148 0.323 0.665 0.757 0.248 0.287

fischer.6 8,321,728 states 33,454,191 transitions

CT 33 M 0.109 0.966 0.107 0.474 0.470 0.629 0.474 0.683 0.468
IO 130 M 0.478 1.221 0.547 0.896 0.915 0.980 0.874 0.855 0.840

iprotocol.7 59,794,192 states 200,828,479 transitions

CT 196 M 0.276 0.958 0.152 0.003 0.114 0.319 0.004 0.170 0.021
IO 2.6 G 1.390 1.090 0.634 0.190 0.220 1.383 0.209 0.784 0.211

msmie.4 7,125,441 states 11,056,210 transitions

CT 10 M 0.048 0.852 0.047 0.204 0.794 0.528 0.211 0.448 0.253
IO 97 M 0.315 0.925 0.419 0.603 1.013 0.739 0.545 0.797 0.556

pgm protocol.8 3,069,390 states 7,125,121 transitions

CT 6.3 M 0.273 0.932 0.268 0.024 0.110 0.208 0.024 0.286 0.025
IO 255 M 0.447 0.800 0.303 0.100 0.145 0.373 0.100 0.185 0.102

plc.4 3,763,999 states 6,100,165 transitions

CT 6.0 M 0.018 0.985 0.017 ε ε 0.073 ε 0.104 0.001
IO 1.3 G 0.085 1.251 0.107 0.030 0.018 0.393 0.030 0.110 0.020

rether.7 55,338,617 states 61,198,113 transitions

CT 60 M 0.040 0.980 0.039 0.042 0.049 0.183 0.051 0.106 0.093
IO 3.7 G 0.170 1.150 0.244 0.151 0.128 0.383 0.164 0.198 0.217

synapse.7 10,198,141 states 19,893,297 transitions

CT 19 M 0.301 0.970 0.297 0.014 0.012 0.238 0.010 0.451 0.015
IO 161 M 0.792 1.096 0.778 0.372 0.396 0.659 0.325 0.768 0.369

telephony.7 21,960,308 states 114,070,470 transitions

CT 111 M 0.245 0.976 0.239 0.450 0.450 0.495 0.447 0.708 0.505
IO 619 M 0.838 1.110 0.854 0.958 0.972 1.272 0.977 0.715 1.263

train-gate.7 50,199,556 states 106,056,460 transitions

CT 105 M 0.028 0.976 0.027 0.359 0.270 0.566 0.212 0.783 0.224
IO 1.7 G 0.105 1.332 0.142 0.392 0.498 1.771 0.318 0.751 0.321

Average on 35 models

CT 1.000 0.255 0.962 0.236 0.163 0.206 0.327 0.152 0.419 0.179
IO 1.000 0.504 1.050 0.496 0.458 0.423 0.661 0.411 0.531 0.393

Dynamic State Space Partitioning for External Memory Model Checking 83

a long series of message exchanges with processes constantly waiting for new
states. A partition function that exploits model structure can fill that gap. For
instances brp.6, iprotocol.7, pgm protocol.8, plc.4, and rether.7 that have
long state spaces (up to almost 8000 levels for plc.4), all partitioning strategies
based on the model structure significantly outperform strategies Static - GHC and
Dynamic - GHC with respect to both cross transitions and disk accesses. Also,
except for rether.7, compositional partitioning performs significantly better
than partitioning based on a local hash code.

For firewire tree.5, heuristic DE generates, after refinements, unfair state
distributions which leads to most time being spent on reorganizing partitions.
Thus, although it is the one that generates the fewest cross transitions, this has
little consequences on the overall number of disk accesses. Heuristics DD and
DDE that try to distribute states equally among partitions largely outperforms
DE on that instance. This observation can be generalized to most instances
experimented: heuristic DE is the one that minimizes cross transitions, but not
necessarily disk accesses. It would be interesting to experiment with the two
heuristics in a distributed environment. In [13] it is advised to delete states after
a reorganization rather than sending them to its new owner which is claimed to
be too expensive. This comes at the cost of possibly revisiting states that have
been deleted. Intuitively, since heuristic DE performs more refinements it should
cause the deletion and revisit of more states than DDE and, hence, generate
more cross transitions and message exchanges. It is therefore not immediately
clear which one should be preferred in a distributed setting.

Although we see some correlation between the number of cross transitions and
disk accesses, this is not always the case. Firstly, for the reason that explains the
bad performances of heuristic DE for instance firewire tree.5: disk accesses
are also triggered by partition refinements. Secondly, because the consequences
of cross transitions largely depend on the stage of the search they occur at: as
the search progresses, partitions contain more and more states which increases
the cost of swapping. Finally, it suffices that one cross transition leads to a
state of partition j when queue Qj is empty to guarantee that partition j will
eventually be loaded in memory. All subsequent cross transitions do not affect
the algorithm. Hence, a large number of cross transitions linking two partitions
is not necessarily a bad thing.

Synchronizations in models telephony and fischer are realized through
global arrays modified by most events. As the refinement procedure currently
implemented considers arrays as single components, our algorithm is not really
efficient in these cases. A better management of arrays should improve this. This
remark applies to most mutual exclusion algorithms we have experimented with.

Table 1 indicates that our refinement algorithm outperforms the partition-
ing algorithms of [12] and [13] although only slightly. However, the experiment
reported here is quite unfair to our algorithm as no memory limit was (and
could be) given to strategies Static - LHC and Dynamic - LHC whereas our re-
finement algorithm works within a bounded amount of RAM. Table 2 gives for
all instances of Table 1 and for these two partitioning schemes, the proportion

84 S. Evangelista and L.M. Kristensen

Table 2. Ratio of overflowing states (given by Eq. 2) with static (S-LHC) and dynamic
(D-LHC) partition functions of [12] and [13] based on local hash code

S-LHC D-LHC S-LHC D-LHC

bopdp.3 0.677 0.677 msmie.4 0.939 0.939
brp.6 0.735 0.735 pgm protocol.8 0 0

collision.4 0.722 0.722 plc.4 0 0
firewire link.5 0 0 rether.7 0.550 0.192
firewire tree.5 0.785 0.785 synapse.7 0.090 0.035

fischer.6 0.969 0.969 telephony.7 0.827 0.827
iprotocol.7 0 0 train-gate.7 0.950 0.950

∑
p∈partitions

max(size of partition p − memory limit per partition, 0)

state space size
(2)

of overflowing states (see Eq. 2 of Table 2) where, again, the memory limit per
partition that was given to our algorithm is 1% of the total number of states.

When the algorithm could stay within allowed memory, LHC based parti-
tioning is clearly outperformed by a refinement based partition function. This is
evidenced by Table 1 showing that for models firewire link.5, iprotocol.7,
pgm protocol.8, plc.4 and synapse.7, refinement based partitioning gener-
ates — sometimes considerably — fewer cross transitions and disk accesses. In
contrast, when LHC based partitioning performed better it usually meant that
it used more memory than what was given to our refinement algorithm. This is
especially the case for models fischer.6, msmie.4 and train-gate.7.

7 Conclusions and Future Work

We have proposed in this paper a dynamic partitioning algorithm for external and
distributed model checking, and extensively experimented with the disk-based
algorithm of [1]. Our algorithm is based on the key idea of partition refinement.
The search starts with a single partition and as memory becomes scarce, partitions
are refined using new components of the analyzed system. Different heuristics have
been proposed to appropriately select components during refinement steps. This
scheme allows us to efficiently limit cross transitions at the cost of possibly gener-
ating unequal state distributions upon partitions compared to a partition function
hashing the global state vector. However, our algorithm can still guarantee an up-
per bound on the size of any partition loaded in memory which previous approach
like [12,13,15] could not. In addition to this, we have presented a common frame-
work for external and distributed algorithms based on partitioning.

Our framework and results are also valid in the context of distributed mem-
ory verification. However, the choice of the heuristic is still an open question.
Heuristic DE was apparently the best regarding cross transitions, but may not
be the most appropriate as it can generate unfair state distributions and conse-
quently more refinements that imply the deletion (and revisit) of more states. As
part of a future work, we therefore plan to explore heuristics specifically designed
for a distributed context.

Dynamic State Space Partitioning for External Memory Model Checking 85

References

1. Bao, T., Jones, M.: Time-Efficient Model Checking with Magnetic Disk. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 526–540. Springer,
Heidelberg (2005)

2. Bourahla, M., Benmohamed, M.: Efficient Partition of State Space for Parallel
Reachability Analysis. In: AICCSA 2005, p. 21. IEEE Computer Society, Los
Alamitos (2005)

3. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

4. Dill, D.L., Stern, U.: Using Magnetic Disk Instead of Main Memory in the Murφ
Verifier. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 172–183. Springer,
Heidelberg (1998)

5. DVE Language, http://divine.fi.muni.cz/page.php?page=language
6. Evangelista, S.: Dynamic Delayed Duplicate Detection for External Memory Model

Checking. In: Havelund, K., Majumdar, R., Palsberg, J. (eds.) SPIN 2008. LNCS,
vol. 5156, pp. 77–94. Springer, Heidelberg (2008)

7. Evangelista, S., Kristensen, L.M.: Dynamic State Space Partitioning for External
and Distributed Model Checking. Technical report, DAIMI – Aarhus University
(2009), http://www.cs.au.dk/~evangeli/doc/ss-partitioning.pdf

8. Garavel, H., Mateescu, R., Smarandache, I.: Parallel State Space Construction for
Model-Checking. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 217–234.
Springer, Heidelberg (2001)

9. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems.
LNCS, vol. 1032. Springer, Heidelberg (1996)

10. Holub, V., Tuma, P.: Streaming State Space: A Method of Distributed Model
Verification. In: TASE 2007, pp. 356–368. IEEE Computer, Los Alamitos (2007)

11. Holzmann, G.J.: State Compression in Spin: Recursive Indexing and Compression
Training Runs. In: SPIN 1997 (1997)

12. Lerda, F., Sisto, R.: Distributed-Memory Model Checking with SPIN. In: Dams,
D.R., Gerth, R., Leue, S., Massink, M. (eds.) SPIN 1999. LNCS, vol. 1680, pp.
22–39. Springer, Heidelberg (1999)

13. Lerda, F., Visser, W.: Addressing Dynamic Issues of Program Model Checking. In:
Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 80–102. Springer, Heidelberg
(2001)

14. Pelánek, R.: BEEM: Benchmarks for Explicit Model Checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007)

15. Rangarajan, M., Dajani-Brown, S., Schloegel, K., Cofer, D.D.: Analysis of Dis-
tributed Spin Applied to Industrial-Scale Models. In: Graf, S., Mounier, L. (eds.)
SPIN 2004. LNCS, vol. 2989, pp. 267–285. Springer, Heidelberg (2004)

16. Stern, U., Dill, D.L.: Parallelizing the Murphi Verifier. In: Grumberg, O. (ed.) CAV
1997. LNCS, vol. 1254, pp. 256–278. Springer, Heidelberg (1997)

17. Valmari, A.: The State Explosion Problem. In: Reisig, W., Rozenberg, G. (eds.)
APN 1998. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998)

18. Westergaard, M., Evangelista, S., Kristensen, L.M.: ASAP: An Extensible Platform
for State Space Analysis. In: ATPN 2009. LNCS, vol. 5606, pp. 303–312. Springer,
Heidelberg (2009)

19. Zhou, R., Hansen, E.A.: Structured Duplicate Detection in External-Memory
Graph Search. In: AAAI 2004, pp. 683–689. AAAI Press/The MIT Press (2004)

Compositional Verification of a Communication

Protocol for a Remotely Operated Vehicle�

Alwyn E. Goodloe1 and César A. Muñoz2

1 National Institute of Aerospace
100 Exploration Way, Hampton, VA 23666, USA

Alwyn.Goodloe@nianet.org
2 National Aeronautics and Space Administration

Langley Research Center, Hampton, VA 23681, USA
Cesar.A.Munoz@nasa.gov

Abstract. We present the specification and verification, in PVS, of a
protocol intended to facilitate communication in an experimental re-
motely operated vehicle used by NASA researchers. The protocol is de-
fined as a stack-layered composition of simpler protocols. It can be seen
as the vertical composition of protocol layers, where each layer performs
input and output message processing, and the horizontal composition of
different processes concurrently inhabiting the same layer, where each
process satisfies a distinct requirement. We formally prove that the pro-
tocol components satisfy certain delivery guarantees. Then, we demon-
strate compositional techniques that allow us to prove that these guar-
antees also hold in the composed system. Although the protocol itself
is not novel, the methodology employed in its verification extends exist-
ing techniques by automating the tedious and usually cumbersome part
of the proof, thereby making the iterative design process of protocols
feasible.

1 Introduction

A Remotely Operated Aircraft (ROA) is a distributed system where its critical
components are dispersed between the airborne vehicle and the ground station.
When flying, commands from the ground-based pilot are broadcast to the aircraft
and telemetry data from the aircraft are broadcast to the ground station. Hence,
communication between the air and ground components is critical for the safe
operation of the vehicle. We present the formal verification, in the Prototype
Verification System (PVS) [15], of a communications protocol designed for use
in AirSTAR [2], a dynamically scaled experimental aircraft designed and built
by NASA’s Langley Research Center (LaRC) for use as a testbed for research
on software health management and flight control. This protocol is formed from
� This work was supported by the National Aeronautics and Space Administration

under NASA Cooperative Agreement NNX08AE37A awarded to the National Insti-
tute of Aerospace. This work was done while the second author was resident at the
National Institute of Aerospace. Authors are in alphabetical order.

M. Alpuente, B. Cook, and C. Joubert (Eds.): FMICS 2009, LNCS 5825, pp. 86–101, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Compositional Verification of a Communication Protocol 87

the composition of several simpler protocols structured as a protocol stack. The
verification approach presented in this paper is compositional allowing us to
verify invariants of each component in the stack separately and then lifting
those invariants to the composed system. We automate most of the proofs using
PVS’s proof scripting language. This promotes the iterative design of systems
as laborious proofs need not be repeated by hand at each design iteration.

The mathematical development presented in this paper has been formally veri-
fied in PVS. This development is electronically available from http://research.
nianet.org/fm-at-nia/IVHM.

2 Protocol Requirements

A ROA platform consists of an airborne vehicle and a ground station. Flight
commands are sent from the ground station to the vehicle and telemetry data
are sent from the aircraft to the ground station. Developments in both the de-
sign and application of ROAs have led to a number of innovations in wireless
communication in this domain. For instance, a flock of ROAs may employ ad-
hoc networking to imbue the collection with a routing capability allowing for
sophisticated communication. AirSTAR, on the other hand, has a simple orga-
nization with one vehicle in the air and a single ground station, where the pilots
are rarely out of visual sight of the aircraft and this is unlikely to change over
the life of the aircraft. The aircraft currently uses a very simple communica-
tion scheme in which all broadcast messages are treated alike. Flight commands
are time sensitive in the sense that if a message is lost or corrupted in transit,
then it should not be resent because it would be considered stale by the time a
new copy arrives. We call this requirement the weak delivery requirement. On the
other hand, engineers and researchers on the ground need to receive all data pro-
duced by the aircraft in order to analyze aircraft performance as well as to plan
future aircraft flights. Hence, the protocol should guarantee that all telemetry
data broadcast is eventually delivered. We call this requirement the guaranteed
delivery requirement.

We have been asked to design and formally verify a simple protocol that would
satisfy these requirements without adding unneeded complexity such as routing.
Since the requirements of weak and guaranteed delivery are in some sense or-
thogonal to each other, we structure the solution as two different protocols: the
weak delivery protocol (WDP) and the guaranteed delivery protocol (GDP). The
differences between WDP and GDP are similar to the differences between the
User Datagram Protocol (UDP) and the Transmission Control Protocol (TCP)
of the Internet protocol suite. However, WDP and GDP are considerably smaller,
simpler, and more verifiable than UDP and TCP, which are considered to be too
complex to be used in AirSTAR. In addition to these two protocols, other pro-
tocols are needed to support the communication between the aircraft and the
ground station. In particular, we also consider a link layer that performs error
detection and multiplexes WDP and GDP messages into the physical communi-
cation medium.

88 A.E. Goodloe and C.A. Muñoz

In this paper, we focus on functional correctness. Our correctness criteria for
guaranteed delivery is that messages are received in the order they are sent. A
liveness property says that the messages will eventually arrive. In the case of
weak delivery, the correctness criteria states that every message received was
in the sequence of messages that were sent. The protocol underwent several
iterations and we employed a methodology that accommodated such evolution.

3 Protocol Stack

A collection of protocols is structured in a protocol stack, where each layer han-
dles a different aspect of message processing. As a message moves down the
stack, each layer performs some processing and adds packet headers. As a mes-
sage moves up the stack, the corresponding packet headers are removed. Because
there is no network layer for routing, the layers of our protocol stack roughly
correspond to the application layer, transport layer, link layer, and physical
layer. Given that the physical layer is concerned with the details of the commu-
nication hardware, we do not model it in our analysis. Instead, we model the
communication medium, which we refer to as the ether.

At the top layer of our protocol stack is the application layer. All messages
sent and received from the application layer are presumed to be sent via WDP
or GDP depending on required message delivery guarantees. In other words, we
assume that the application chooses between the WDP and GDP protocol when
sending a message. The next layer down corresponds to the transport layer and
it is here that the core of the GDP and WDP protocols reside. WDP simply
sends a message, but provides no guarantee that the message ever arrived at
its destination. Hence messages may be lost or corrupted in transit and are
never resent. GDP is designed to provide its user with a guarantee that any
message sent is eventually received. The link layer is the next layer in our protocol
stack. Note that the GDP and WDP protocols directly interface with the link
layer as there is no network layer. The link layer performs error detection and
multiplexes the messages from the WDP and GDP layers. The ether models two
communication channels over which messages are sent and received.

The proposed protocol stack is illustrated in Figure 1. The protocol stack
can be viewed both vertically and horizontally. Vertically, each layer performs
a specific transformation on a message, adding headers as it traverses down the
stack and removing headers as it traverses up the stack. Horizontally, we see that
GDP and WDP lie at the same layer, but they behave differently as they satisfy
different requirements. These may be viewed as disjoint components occupying
the same layer in the stack, but possess no shared state. On the other hand,
the two layers interact with the same link layer. Consequently, the link layer
is shared between the WDP and GDP components. Each protocol in the stack
typically has a sender and receiver process. A message processed by the sender
at one node should be processed by the receiver at the destination node.

In our model of the protocol stack, the protocol layers are connected using
First In First Out (FIFO) queues. This structure is depicted in Figure 1, where

Compositional Verification of a Communication Protocol 89

Application

Weak Delivery Guaranteed Delivery

Link Layer

Ether

App-to-WDP WDP-to-App App-to-GDP GDP-to-App

WDP-to-LL LL-to-WDP GDP-to-LL LL-to-GDP

Input Output

to-WDP from-GDPto-GDPfrom-WDP

Fig. 1. Protocol stack

each queue is represented as a small rectangle with an arrow pointing in the di-
rection of the information flow with a label naming the queue attached. Ignoring
the details of the application layer, we model the messages to be sent by WDP
and GDP by a pair of sequences to-GDP and to-WDP. At the receiving process,
the messages are placed in the pair of sequences from-GDP and from-WDP. Note
that the ether is not a protocol layer, but a model of the transport medium.

4 Protocol Specification

A specification of the protocol stack described in the previous section has been
constructed using PVS, which provides a rich specification language and a power-
ful theorem prover. The use of a theorem prover, as opposed to a model checker,
allows for a specification that is more abstract than an implementation, but con-
crete enough to provide a detailed description of the design amenable to rapid
prototyping. In the following, we give an overview of the specification of each
layer of the protocol stack.

4.1 Ether

The ether is specified as a pair of multisets (bags) that represent, respectively,
input and output communication channels.

Ether = input : bag[LinkFrame] × output : bag[LinkFrame],

where LinkFrame is defined in Section 4.2. Our specification of the ether con-
siders the fact that messages may be duplicated, corrupted, or dropped in the
physical layer or while in transit. The possible actions are defined by the type
EtherAction as follows:

90 A.E. Goodloe and C.A. Muñoz

DropIn(linkframe:LinkFrame) : DropIn? +
DupIn(linkframe:LinkFrame) : DupIn? +
NoiseIn(linkframe:LinkFrame) : NoiseIn?

where the constructor is defined left of the colon and a recognizer for the type
defined to the right of the colon. The ether state machine, in effect, perturbs
the ether by taking the current state and the action to perform and returns a
transformed ether with a frame either corrupted, dropped, or duplicated. The
PVS code for dropping a frame on the inbound was :

next(s:Ether,a:EtherAction) :Ether = CASES a OF

DropIn(linkframe) : s WITH [‘ether‘input :=
remove(linkframe,s ‘ether‘input)]

...

which returns a new ether state with the value linkframe removed from the
ether’s input channel. Note the back-quote symbol is the PVS field access oper-
ator. In our models, the state machines are functional, but above this layer the
model is relational. In this case, the relation

ether?(s,n:Ether) : bool = ∃(a: EtherAction) : n = next(s,a),

non-deterministically selects a valid action for the state machine to execute.

4.2 Link Layer

The link layer is intended to serve as an interface between the protocol stack
and the communication medium, since we abstracted away the physical layer, as
well as to provide common services needed by the protocols that lay at the next
higher layer. The link layer also performs error detection, which in our model
assumes the use of a check-sum. Furthermore, the link layer multiplexes messages
sent from the WDP and GDP layers wrapping them in a common header, and
demultiplexes them on the receiving side removing this header and sending the
unwrapped frame to the appropriate protocol for processing.

A link layer frame is composed of a check-sum and either a GDP or WDP
frame:

LinkFrame = cs: CheckSum × frame: Frame,

where the type Frame can be thought of as a disjoint sum of WDP and GDP
frames. We do not model the details of performing a check-sum, but instead
treat this functionality in an abstract way. The type LinkInterface is a 4-
tuple formed from the four queues GDP-to-LL, WDP-to-LL, LL-to-GDP, and
LL-to-WDP. The type Link is a tuple formed from the LinkInterface and the
Ether. Hence, the type Link represents the state of all information entering and
leaving the link layer.

The link layer functionality is represented by a transition function that, given
the current Link and the action to perform, yields the next state, where the

Compositional Verification of a Communication Protocol 91

possible actions are: send a WDP message, send GDP message, and receive a
message. If sending a WDP or GDP message, the sate machine removes a frame
from the corresponding GDP-to-LL or WDP-to-LL queue, forms a link layer frame
as the product of that frame and its check-sum, and places the result in the
ether’s input channel. If receiving a message, a LinkFrame is removed from the
ether’s output channel, the check-sum is verified and if invalid, the packet is
dropped. Otherwise, the protocol checks if the packet is a GDP or WDP frame,
strips off the check-sum, and places the message on the appropriate LL-to-GDP
or LL-to-WDP queue. The state machine receive actions are expressed in PVS as
follows:

Receive(linkframe) : IF member(linkframe,s ‘ether‘output) THEN

IF ¬checksum?(linkframe) THEN

s WITH [‘ether‘output := remove(linkframe,s ‘ether‘output]
ELSE CASES linkframe‘frame OF

GDP(gdpframe) : s WITH [
‘link‘ll_to_gdp := enqueue(gdpframe,s ‘link‘ll_to_gdp) ,
‘ether‘output := remove(linkframe,s ‘ether‘output)] ,

WDP(wdpframe) : s WITH [
‘link‘ll_to_wdp := enqueue(wdpframe,s ‘link‘ll_to_wdp) ,
‘ether‘output := remove(linkframe,s ‘ether‘output)]

ENDCASES

ENDIF

4.3 Weak Delivery Protocol

The Weak Delivery Protocol is extremely simple and so is its model. The type WDP
is a 5-tuple formed from the two sequences to-WDP and from-WDP, the two queues
App-to-WDP and WDP-to-App, and the LinkInterface. Sending a message is
modeled as removing a message from the App-to-WDP queue and adding it to
the WDP-to-LL queue. Receiving a message is modeled as removing a message
from LL-to-WDP queue and adding it to the WDP-to-App queue.

4.4 Guaranteed Delivery Protocol

The Guaranteed Delivery Protocol shall satisfy the guaranteed delivery require-
ment. Following the standard solution to this problem, GDP is designed as a
sliding-window protocol [19]. Discussions with the AirSTAR engineers revealed
a communication pattern that led us to adapt a sliding-window protocol with
block acknowledgment developed by Gouda [7, 8]. Although an informal proof
may be found in the literature, ours appears to be the first attempt at a formal
mechanical proof of the protocol.

Each GDP message has a sequence number that acts as an identifier. The re-
ceiver replies with a message acknowledging the receipt of a contiguous block of
sequence of numbers. The sender and receiver maintain bounded windows, also

92 A.E. Goodloe and C.A. Muñoz

called windows. The sender window ackd contains the messages sent that are
waiting for a block acknowledgment. The receiver window, called rcvd, contains
the messages received but not yet delivered to the application layer. The upper
bounds of the sender’s and receiver’s windows are called, respectively, sw and
rw. Each window entry has two fields: a data field and a Boolean mask field.
The ackd mask field is set to false when that message is sent and true when an
acknowledgment is received. The rcvd mask field is set to true when a message
is received. The data in the buffers may be viewed as being indexed by the se-
quence numbers, although in the actual specification some amount of machinery
is needed to map an unbounded range of sequence numbers to a bounded buffer.

The sender maintains the following pointers. The variable ns is a pointer to
the sequence number of the next data item to be sent and the variable na is
a pointer to the first sequence number that has yet to be acknowledged. That
is, sequence numbers below na have all been acknowledged as received by the
sender, but sequence number na has not yet been acknowledged. An invariant
na ≤ ns ≤ na + sw is maintained by the sender indicating that the window of
sent but not acknowledged data is of size at most sw. The sender will not send
messages with a sequence number greater than na+ sw until data message na is
acknowledged. The sender may receive acknowledgments for sequence numbers k,
where na ≤ k < ns, in any possible order; yet, only when a block acknowledgment
for the contiguous sequence numbers (na,n), where n < ns, has been received is
the value of na slid forward to n + 1. If a timeout action occurs before message
na is acknowledged, then it is resent.

The receiver maintains the following pointers. The variable nd points to the
lowest sequence number that has yet to be delivered to the application layer. The
variable lr points the highest sequence number that has yet to be received with
the constraint that lr ≤ nd + rw. The receiver accepts messages for sequence
numbers k, where lr ≤ k < nd+rw, in any order, and ignores messages out of this
range. When the receiver has received the contiguous block of sequence numbers
(nd,n) the pointer nd is slid forward to n+1 and the corresponding messages are
delivered to the application layer. The variable la points to the last acknowledged
sequence number, i.e., messages with a sequence number below la have all been
acknowledged. Note that messages with a sequence number n, where la ≤ n ≤
nd−1, have been received and delivered, but not yet acknowledged. Periodically,
GDP sends the block acknowledgment for sequence numbers (la, n − 1) and la
is reset to nd.

4.5 Application Layer

The sender and receiver processes at the application layer are each composed
of two state machines. At the sender, one machine maintains a pointer to the
next message in to-GDP to be sent, copies that message to App-to-GDP, and
increments the pointer. The other machine behaves similarly by copying mes-
sages from to-WDP to App-to-WDP. The receiver processes move messages from
GDP-to-App to from-GDP and from WDP-to-App to from-WDP.

Compositional Verification of a Communication Protocol 93

4.6 Composing Models

For each one of the WDP and GDP protocols, we will assume that we have two
processes: a sender process and a receiver process. The WDP sender and receiver
processes are called WDPSender? and WDPReceiver?, respectively. Similarly, the
GDP sender and receiver processes are called GDPSender? and GDPReceiver?,
respectively. These processes behave in a non-deterministic way. Hence, each one
of them is defined as a relation between the current state and one of the possible
next states. For instance, GDPSender?, which relates the current state of the GDP
sender process and a possible next state, is defined as either a GDPSenderNext
transition, a LinkNext transition, or a EtherNext transition, where the fields
that are not modified by the transitions remain unchanged. The transitions are
a function from the current state and an action to perform to the next state.
In order to model the non-deterministic selection of actions, we use existential
quantifiers to generate actions for each transition. The relation GDPSender? is
formally expressed as follows:

GDPSender?(s, n : GDPSender) =
(∃ a : GDPSenderAction. n = GPDSenderNext(s, a))

∨

(∃ a : LinkAction. nl = LinkNext(sl, a)
∧ n‘App to GDP = s‘App to GDP ∧ s‘winsender = n‘winsender)

∨

(∃ a : EtherAction. ne = EtherNext(se, a)
∧ n‘link = s‘link ∧ n‘App to GDP = s‘App to GDP

∧ s‘winsender = n‘winsender),

where s and n stand for the current and next GDPSender state, respectively, and
the back-quote symbol is the field access operator. We denote by sub-indices l
and e the projections of states s, n into Link and Ether states, respectively. The
GDP receiver and WDP processes have a similar model.

5 Protocol Verification

In this paper, we focus on the functional correctness of WDP and GDP. The
functional correctness of a system is usually expressed by invariant safety and
liveness properties, i.e., predicates that hold in every reachable state of the sys-
tem. For the purpose of this verification, we consider a system of two distributed
nodes, one of which is the sender and the other is the receiver. The two nodes
interact only trough the ether.

There are many relationships that are local to either the sender or the re-
ceiver. For instance, the property that states that the index of the next message
to be sent is greater than or equal to the index of the next message waiting to
be acknowledged, i.e., na ≤ ns, only concerns the sender, and the property that

94 A.E. Goodloe and C.A. Muñoz

states that the index of the next message to be delivered to the application layer
is greater than or equal to the index of the last message to be acknowledged, i.e.,
la ≤ nd, only concerns the receiver. As these properties can be described solely
in terms of the states of the GDP sender or the GDP receiver processes, they can
be easily encoded using the PVS’s subtype and dependent type system. These
generate type correctness conditions, which most of the time can be automati-
cally proved by the PVS type checker. The remainder of this section will focus on
properties that relate the sender and receiver processes and consequently require
more complex reasoning.

Let us consider the case of a system of two nodes exclusively running the
WDP protocol. The state of this system, represented by the type WDPSystem, is
a n-tuple composed of the union of the fields in WDPSender and WDPReceiver
such that the input and output channels of the ether interface in the sender are
connected, respectively, to the output and input channels of the ether interface
in the receiver. The invariant predicate that expresses the correctness property
of WDP is defined as follows:

wdp sound(s : WDPSystem) ≡ from-WDPs ⊆ to-WDPs,

where s refers to a reachable state. Henceforth, we will sub-indicate variables
with the state to which they belong, e.g., from-WDPs refers to state of the se-
quence from-WDP in state s and to-WDPs refers to the state of the to-WDP se-
quence in s. This invariant states that all WDP messages that the receiver node
delivers to the application layer were indeed sent by the sender’s application
layer.

In the case of a system of two nodes exclusively running the GDP protocol, the
state, represented by the type GDPSystem, is a n-tuple composed of the union of
the fields in GDPSender and GDPReceiver. The ether in the sender and receiver
sides are connected in a similar way as in the WDP. The invariant predicate that
expresses the correctness property of GDP is defined as follows:

gdp sound(s : GDPSystem) ≡ from-GDPs � to-GDPs,

where � is the prefix relation between sequences. This invariant states that GDP
messages are delivered by the receiver to the application layer in the same order
as they were sent by the sender’s application layer.

For GDP, we consider a traditional fairness property [16], which states that
all messages in the to-GDPqueue are eventually sent. That is, for every message
in to-GDP, it is eventually the case that a state is recorded where each message
has been sent. Since it is an invariant that ns always points to the next item to
be sent, we can state the fairness property as saying that given any run of the
protocol, for every sequence number m the run records a state where ns > m.
This is stated formally as follows:

fair[(run)] = λ(r : (run)) : ∀(m : Nat) : ∃(n : Nat) : rn‘ns > m.

Compositional Verification of a Communication Protocol 95

The predicate live states that all data is eventually delivered. Formally, this is
expressed as a predicate on the runs of the protocol as follows:

live[(run)] = λ(r : (run)) : ∀(m : Nat) : ∃(n : Nat) : rn‘nd > m.

The liveness property is then given as:

liveness[(run)] = λ(r : (run)) : fair(r) ⇒ live(r).

Our primary verification objective is to formally prove that the predicates,
wdp sound, gdp sound, and liveness are indeed invariants when both WDP
and GDP run simultaneously in each node. Technically, this system is the asyn-
chronous composition of WDP and GDP and we will denote it by WDP ‖ GDP.
To verify wdp sound, gdp sound, and liveness in the composed system, we pro-
pose a compositional approach where each invariant is independently proved for
its respective system, i.e., wdp sound is an invariant of WDP and gdp sound is
an invariant of GDP, and then we provide a general framework that enables us
to lift an invariant on one system, e.g., gdp sound on GDP, to an invariant on a
composition of systems, e.g., gdp sound on WDP ‖ GDP.

5.1 Proving Invariants on WDP and GDP, Independently

Proving invariants on transition systems, such as WDP or GDP, are routine in
the theorem proving community. It usually entails the transformation of the ini-
tial invariant to a weaker form that can be proved by induction. In our case, we
use a simple set of theories developed by Rusu [16] for proving invariants on dis-
crete transition systems by natural induction on the length of the system traces.
The nontrivial task of finding auxiliary invariants that enable the inductive proof
of the original invariant is subject to the ingenuity of the human prover.

For WDP and GDP the problem is made harder by the fact that we have to
consider the full protocol stack and all possible interleavings between the sender
and receiver processes. We have seen in Section 4.6 that the sender and receiver
components of each protocol are formed from the disjunction of a number of
relations representing the layers of the stack. This means that that an invariant
must be shown to hold under each transition in each layer. Consequently, each
proof requires the discharge of a large number of cases. For each one of these
cases we have to prove that if an invariant is satisfied at step n, it is also satisfied
at step n + 1. This is a considerable amount of work even though many of the
cases can be easily discharged by using general properties of bags, queues, and
buffers.

To automate the verification task, we have defined a set of proof strategies
that are applied to discrete transition systems defined in PVS using Rusu’s
theories. The use of such strategies form the basis of a methodology that we
believe will allow Rusu’s techniques to scale to industrial-size problems. The
strategies basically unfold the transition relations and discharge the easy cases
of inductive proofs. For instance, to prove an invariant on GDP, we invoke the
strategy unroll-gdp that, in turn, invokes strategies unroll-gdp-sender and

96 A.E. Goodloe and C.A. Muñoz

unroll-gdp-receiver as well as strategies to unroll the application layer sender
and receiver processes. The unroll-gdp-sender strategy, for example, expands
the relational definitions, instantiating and skolemizing quantifiers as needed,
until it finally expands the definitions of the state machines. In the case of the
state machine GDPSenderNext, the strategy “lifts” the conditionals so as to ex-
pose the guarded cases, which, in turn, are discharged using PVS’s assert decision
procedure. Additional support strategies are employed that apply properties of
structures such as bags, FIFO queues, and bounded buffers to simplify expres-
sions to the point where basic decision procedures can be applied to complete
the proof. Even in the cases where the strategies do not succeed, they generate
enough information to assist a developer in finding weaker invariants.

To perform the proof of wdp sound, the first command is our strategy
discharge-inv, which automatically proves all but two inductive cases. The
first case is discharged by simply unfolding a definition. The second unproven
case suggests the need for an invariant saying that all frames in WDP-to-App are
in to-WDP:

WDP-to-Apps ⊆ to-WDPs.

To prove this we need an additional auxiliary invariant that states that WDP
frames in the link layer and in the ether belong to to-WDP. Once this invariant
is added as a lemma to the theory, the proof is finished by using our strategy
use-inv. To prove the auxiliary invariant, we use the same approach, which
suggests the new invariant:

App-to-WDPs ⊆ to-WDPs.

This new invariant is automatically discharged by discharge-inv.
The proof of gdp sound is considerably more complicated, but the general

method is the same. We use our strategy discharge-inv to eliminate the easy
cases and we add new invariants to discharge the unproven cases via use-inv.
We iterate this approach on the new invariants. In total we have added 6 auxil-
iary invariants to the GDP theory, including the following relations between the
sender’s and receiver’s windows:

– The counter of received messages is less than or equal to the counter of sent
messages: lrs ≤ nss

– The counter of delivered messages is less than or equal to the counter of sent
messages: nds ≤ nss

– The largest sequence number for which an acknowledgment has been received
is less than or equal to the counter of the sent acknowledgments

nas + last true(ackds) ≤ las,

where the function last true returns the difference between nas and the
largest sequence number for which an acknowledgment has been received.

The stack structure considerably affects the size of the proofs as we need to
ensure that an invariant is not violated at different layers. Although most of the

Compositional Verification of a Communication Protocol 97

manual tasks are routine, scale becomes a prohibitive factor that will get worse
in larger models. If heavy-weight formal methods are to be used in industrial
practice, they must accommodate an iterative design process. Manually proving
the GDP process after even a simple design change can take much of a day and
the prospect of repeatedly doing so for each design iteration is not practical. Our
strategies are written in a lisp-like PVS scripting language and are composed of
937 lines of code. To maintain a high degree of automation, changes to the model
are reflected in the strategy code, which is an integral part of our iterative design
methodology. All the strategies and proofs can be found at the aforementioned
web site.

5.2 Proving Invariants on the Asynchronous Composition of WDP
and GDP

We have seen that wdp sound is an invariant of WDP and that gdp sound is an
invariant of GDP. However, our verification objective is to show that both of
them are also invariants of WDP ‖ GDP. This goal could be trivially achieved if
WDP and GDP were completely independent. They are not. The GDP and WDP
sender and receiver processes share the same link layer and ether interfaces. We
could prove wdp sound and gdp sound are invariants of WDP ‖ GDP using the
method explained in the previous section. However, in that case we do not profit
from the invariants we have already proven for WDP and GDP independently,
and we are obliged to reprove these invariants for all possible interleavings of
WDP and GDP.

We propose a different approach. Instead of reproving all the invariants, we
develop, in PVS, a general theory of asynchronous composition of transition
systems where invariants on one system can be lifted to the composed system.
To this end, we consider that the state of a transition system consists of a private
state and a shared state. The state of the composed system has a copy of the
private states of each transition system but only one shared state common to
both of them. When the composed system performs a transition of one system,
the private state of the other system remains unchanged.

We define a transition system as follows. Let V be a finite set of typed variables
and Θ an initial condition defined on the variables. Define state SV as a type-
consistent valuation of the variables. A transition is a relation → in SV ×SV . A
transition system is defined as the tuple T = (SV , Θ,→). Given two transition
systems T1 = (SV1 , Θ1,→T1) and T2 = (SV2 , Θ2,→T2), we define T1 ‖ T2 =
(SV1∪V2 , ΘT1‖T2 ,→T1‖T2) as follows: the state space SV1∪V2 is a valuation of the
variables in V1 and V2. Let s ∈ SV1∪V2 , we then define the restriction operators
s↓Ti and s↓[Ti], for i = {1, 2}. The first operator projects the composed state
to the state of Ti, which only includes the private and shared state of Ti. The
second operator only projects the private part of Ti.

The composed initial state is defined as

ΘT1‖T2 = {s : SV1∪V2 | s↓T1 ∈ ΘT1 ∧ s↓T2 ∈ ΘT2},
and the composed transition relation is defined as

98 A.E. Goodloe and C.A. Muñoz

s →T1‖T2 s′ = {(s, s′) : SV1∪V2 × SV1∪V2 | s↓T1 →T1 s′↓T1 ∧ s↓[T2] = s′↓[T2]

∨ s↓T2 →T2 s′↓T2 ∧ s↓[T1] = s′↓[T1]}.
We define a simulation relation that we call an abstraction α of a transition
system T as a function that maps states into states such that

1. if s0 is an initial state in T , then α(s0) is also an initial state of T , and
2. if sn →T sn+1 then α(sn) →T α(sn+1).

The following theorem tells us when an invariant on the left-hand side of the
parallel operator is an invariant of the composed system.

Theorem 1 (Invariant Left-Lifting). Let P be an invariant of a transition
system T1. The predicate PT1‖T2 , where PT1‖T2(s : SV1∪V2) ≡ P (s↓T1), is an
invariant of the transition system T1 ‖ T2 if there is an abstraction α of T1 such
that the following conditions are met:

1. α is fixed under P , i.e., P (α(s↓T1)) implies P (s↓T1), and
2. under the abstraction α, T2 does not interfere with T1, i.e., given sn, sn+1 :

SV1∪V2 , if sn↓T2 →T2 sn+1↓T2 then α(sn↓T1) →T1 α(sn+1↓T1).

Proof (Sketch of PVS Proof). Consider an arbitrary trace s0, . . . , sn in T1 ‖ T2.
We will show that P holds in sn. First, we show that α(s0↓T1), . . . , α(sn↓T1) is
a trace in T1. There are two cases:

1. The transition (si, si+1) is transition in T1. In this case, α(si↓T1) →T1

α(si+1↓T1) since α is an abstraction of T1.
2. The transition (si, si+1) is a transition in T2. In this case, α(si↓T1) →T1

α(si+1↓T1) since T2 does not interfere with T1.

Therefore, α(s0↓T1), . . . , α(sn↓T1) is a trace in T1. Since P is an invariant on T1,
P holds in α(si↓T1), for i ≤ n. Since α is fixed under P , P holds in si↓T1 as well.
The result then follows from the fact that PT1‖T2(si) is defined as P (si↓T1). ��
A symmetric theorem for the right transition system can be proved in a sim-
ilar way. Both theorems have been mechanically proven in PVS and both the
formalization and proof can be found online.

For the case of the distributed system WDP ‖ GDP, the queues App-to-WDP and
WDP-to-App are private to WDP. Although the sequences to-WDP and from-WDP
reside in the application layer, for analytical purposes we can view them as
belonging to WDP since they are not shared in any way with the GDP processes.
The queues App-to-GDP and GDP-to-App as well as the fields winsender and
winreceiver are private to GDP. All the other fields. i.e., the link and the ether
interfaces, are shared. It should be noted that although these structures are
shared, it is not like classical shared variable concurrency in the sense that the
WDP and GDP processes do not share variables to which they both read and
write. Instead, the shared structures provide a service to the WDP and GDP
layers, but by design, the frames written by one higher-layer protocol will never

Compositional Verification of a Communication Protocol 99

be transformed into frames from a different layer protocol and frames written by
a higher-layer protocol will never be delivered to a different higher-layer protocol.

We now show that wdp sound is an invariant of WDP ‖ GDP via an applica-
tion of Invariant Lifting.

Theorem 2 (WDP Soundness). WDP sound is an invariant on WDP ‖ GDP.
For the proof of WDP, the abstractions that we need are filters that remove,
respectively, GDP packets from the link layer and the ether interface.

Proof (Sketch of PVS Proof). We consider an abstraction αw(s : WDP) such that
αw(s) = s in all fields but:

αw(s‘link‘GDP to Link) = empty,

αw(s‘link‘Link to GDP) = empty,

αw(s‘ether‘input) = remove gdp(s‘ether‘input),
αw(s‘ether‘output) = remove gdp(s‘ether‘output),

where empty is the empty queue and remove gdp removes all GDP frames from a
multiset. Then, we prove that αw is indeed an abstraction of WDP, that WDP sound
is fixed to αw, and that, under αw, GDP does not interfere with WDP. Therefore, by
the fact that the invariant WDP sound holds on WDP and theorem 1, WDP sound
is an invariant on WDP ‖ GDP. ��
The hypotheses to the theorem are automatically discharged by strategies that
we have developed to prove that a given function is an abstraction, that an
abstraction is fixed to an invariant, and that the noninterference condition holds.
The statement and proof that gdp sound is an invariant of WDP ‖ GDP is
similar.

6 Related Work and Conclusion

Numerous variations of the basic sliding window protocol have been subjected
to hand verification techniques. Stenning [18] is likely to have been the first to
discuss the correctness of such protocols. Snepscheut [6] and Hoogerwoord [10]
are representative of this work. Process algebras have also been used to manually
verify one-bit sliding window protocols [20,3]. Like our own work [1] considers a
protocol with arbitrary, but finite window size while others assume an unbounded
window size. Model checking has been applied to verifying a number of sliding
window protocols e.g. [9, 12, 17], but to prevent state explosion the window size
has to be kept to a relatively small size.

Others have applied automated theorem provers to verify sliding window pro-
tocols. Cardell-Oliver used HOL to verify safety properties [4]. A timed model
was given in [5] and a safety property is verified using PVS. Rusu [16] proved
safety and liveness of a protocol with unbounded window size in PVS.

100 A.E. Goodloe and C.A. Muñoz

Concurrently executing programs are complex artifacts making it difficult
to reason about their correctness. For parallel programs with shared variables,
the classical theory of Owicki and Gries [14] was the first breakthrough for
reasoning about the correctness of parallel programs having shared variables, but
the theory is not compositional. Assume-Guarantee methods modify the theory
to be compositional [11,21]. Nieto [13] formalized rely-guarantee in Isabelle. Our
approach is not as general as these techniques, but was targeted toward the
system under analysis, yet is largely mechanizable as we have shown here.

We have presented the verification of a small communication protocol stack in-
tended to be used by remotely operated vehicles. We have formulated and proved
the soundness and liveness properties of the GDP and WDP stack components.

All the mathematical development presented here, including the framework
to compose transition systems, was formally carried out in the PVS verification
system and is publicly available. In order to facilitate an iterative design process,
we developed novel proof strategies to automate tedious and complex tasks in
the verification process, such as finding inductive invariants and proving safety
properties of composed systems. As an added feature, the strategies are robust to
changes in the protocol specification. Therefore, protocol modifications usually
require only minor changes in the soundness proofs rather than having to redo
all the proofs by hand. We believe that this complements the techniques in [16]
by allowing them to be applied to larger systems where the designs evolve over
time.

Finally, since the protocol is specified in the declarative specification language
of PVS, it is amenable to rapid prototyping. Indeed, using recently added PVS
features, we were able to automatically generate Java code that implements
the functional and deterministic aspects of the protocol, although we recognize
that an actual implementation will likely be structured somewhat differently
for efficiency. However, we expect the semantics to be preserved allowing our
prototype to serve as a semantic benchmark for the implementation.

Acknowledgements

The author would like to thank the AirSTAR team and in particular David Cox
for their technical support, and Eric Cooper, Paul Miner and the anonymous
referees for their comments that help to improve the presentation of this work.

References

1. Badban, B., Fokkink, W., Groote, J., Pang, J., van de Pol, J.: Verification of a
sliding window protocol in µCRL and PVS. Formal Aspects of Computing 17,
342–388 (2005)

2. Bailey, R., Hostetler, R., Barnes, K., Belcastro, C., Belcastro, C.: Experimental
validation subscale aircraft ground facilities and integrated test capability. In: Pro-
ceedings of the AIAA Guidance Navigation, and Control Conference and Exhibit
2005, San Francisco, California (2005)

Compositional Verification of a Communication Protocol 101

3. Brunekreff, J.: Sliding window protocols. In: Algebraic Specification of Protocols.
Cambridge Tracts in Theoretical Computer Science, vol. 36, pp. 71–112 (1993)

4. Cardell-Oliver, R.M.: The Formal Verification of Hard Real-Time Systems, PhD
thesis. University of Cambridge, Cambridge (1992)

5. Chkliaev, D., Hooman, J., de Vink, E.: Verification and improvement of the sliding
windonw protocol. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619,
pp. 113–127. Springer, Heidelberg (2003)

6. Van de Snepscheut, J.L.A.: The sliding-window protocol revisited. Formal Aspects
of Computing 7, 3–17 (1995)

7. Gouda, M.: Elements of Network Protocols. Wiley-Interscience, Hoboken (1998)
8. Gouda, M., Multari, N.: Stabilizing communication protocols. IEEE Transactions

on Computers 40(4), 448–458 (1991)
9. Holzmann, G.: The model checker Spin. IEEE Transactionsactions of Software

Engineerng 23(4), 279–295 (1997)
10. Hoogerwoord, R.: A formal derviation of a sliding window protocol. Technical

University of Eindhoven (2006)
11. Jones, C.: Tentative steps toward a method for interfering programs. ACM Trans-

actions of Programming Languages and Systems (TOPLAS) 5(4), 596–619 (1983)
12. Kaivola, R.: Using compositional preorders in the verification of a sliding window

protocol. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 48–59. Springer,
Heidelberg (1997)

13. Nieto, L.: The rely-guarantee method in Isabelle/HOL. In: Degano, P. (ed.) ESOP
2003. LNCS, vol. 2618, pp. 348–362. Springer, Heidelberg (2003)

14. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs. Acta
Informatica 6, 319–340 (1976)

15. Owre, S., Rushby, J., Shankar, N.: PVS: A prototype verification system. In: Kapur,
D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992)

16. Rusu, V.: Verifying a Sliding-Window Using PVS. In: Formal Techniques for Net-
worked and Distributed Systems (FORTE 2001), pp. 251–266. Kluwer Academic,
Dordrecht (2001)

17. Stahl, K., Baukus, K., Lakhnech, K., Steffen, Y.: Divide, abstract, and model
check. In: Dams, D.R., Gerth, R., Leue, S., Massink, M. (eds.) SPIN 1999. LNCS,
vol. 1680, pp. 57–76. Springer, Heidelberg (1999)

18. Stenning, N.: A data transfer protocol. Computer Networks 1(2), 99–110 (1976)
19. Tannenbaum, A.: Computer Networks, 3rd edn. Prentice Hall, Englewood Cliffs

(1996)
20. Vaandrager, F.: Verification of two communication protocol by means of process

algebra. Technical report, CWI (1986)
21. Xu, Q., de Roever, W., He, J.: The rely-guarantee method for verifying shared

variable concurrent programs. Formal Aspects of Computing 9(2), 149–174 (1997)

Modeling Concurrent Systems
with Shared Resources

Ángel Herranz1, Julio Mariño1, Manuel Carro1, and Juan José Moreno Navarro2

1 Universidad Politécnica de Madrid
2 Spanish Ministry of Science and Innovation

Abstract. Testing is the more widely used approach to (partial) system valida-
tion in industry. The introduction of concurrency makes exhaustive testing ex-
tremely costly or just impossible, requiring shifting to formal verification tech-
niques. We propose a methodology to design and verify a concurrent system that
splits the verification problem in two independent tasks: internal verification of
shared resources, where some concurrency aspects like mutual exclusion and con-
ditional synchronisation are isolated, and external verification of processes, where
synchronisation mechanisms are not relevant. Our method is language indepen-
dent, non-intrusive for the development process, and improves the portability of
the resulting system. We demonstrate it by actually checking several properties
of an example application using the TLC model checker.

Keywords: Validation, Verification, Shared resource, Concurrency.

1 Introduction

Concurrency is a key aspect in many software systems and often a reason for their
failure as well, as programming concurrent systems is notoriously more difficult and
error-prone than programming sequential systems. Almost every aspect the program-
ming gets worse when several processes have to be considered at once: language con-
structs, library availability (and multi-thread safeness), debugging, runtime exceptions
and their semantics, specification and verification, etc.

Although it is common for industrial software to restrict features that can be a po-
tential source of hazards (e.g. by enforcing adherence to certain coding rule sets), many
applications show some degree of implicit concurrency that cannot be ignored, or which
brings about advantages which make them highly interesting. A recent example is the
trend towards multi-task web browsers where every web page, or even every compo-
nent in a web page, is handed out to a different thread in order to improve security and
stability by sandboxing these threads.

Unfortunately, there is still much room for improvement in terms of methods, tools
and language support for the development of concurrent software in industrial environ-
ments. To make things worse, software developers are in general insufficiently trained.
The following paragraphs outline what we think are some of the most salient issues.

Good Language Support. While some languages deploy good support for concur-
rency, with some of them providing developers with platform-independent constructs

M. Alpuente, B. Cook, and C. Joubert (Eds.): FMICS 2009, LNCS 5825, pp. 102–116, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Modeling Concurrent Systems with Shared Resources 103

(e.g. Ada, Java, C#. . .), there are still application niches where the use of languages
less suited for concurrency, like C or C++, is mandatory. In these cases, concurrency is
only possible through the use of certain mechanisms with not so clear semantics and,
sometimes, subject to change. Even when support is good, clear design guidelines /
patterns are not in widespread use.

Methodology. There are no standard notations or tools to model concurrent systems
which at the same time help developers in clearly documenting this aspect of software
in isolation from other requirements — the concurrency equivalent for UML/OCL is
not yet here. As a result, concurrency is often poorly documented and the chances that
some concurrency requirements are lost are considerable.

Validation and verification. The inherent nondeterminism introduced by concurrency
and the execution conditions often specific to the application itself (specially in an in-
dustrial environment) make standard testing techniques unreliable, more expensive, or
directly inapplicable. This is one of the reasons to emphasise the use of formal tech-
niques for the verification of this kind of software. Unfortunately, support for concur-
rency is still scarce in existing verification tools, which only deal with language subsets
which do not include synchronisation and communication primitives. An ongoing Eu-
ropean COST action on verification of O.O. software [2] places concurrency among
one of the three major challenges of verification technology for O.O. languages, along
with genericity and components.

Portability. Given the dependability often associated with industrial software, the risks
(and costs) associated with making an upgrade or porting a running system are huge.
Very often, systems of this kind become legacy code fossils that nobody dares to touch.
The risk, then, is that any seemingly innocent change in the execution environment
(hardware, operating system, running conditions. . .) may affect its behaviour in unpre-
dictable ways.1

There probably no single solution for these problems. But it seems that promoting the
separation of concerns when designing, providing developers with (graphical) notations
that address concurrency at the same level as other aspects, isolating the code which
depends on synchronisation and communication primitives from the rest, and giving
hints for the practical verification of concurrent software are steps in the right direction.

Here, we are proposing an approach to the development of concurrent systems based
on a sharp distinction between active (processes, clients) and passive (interactions, re-
sources) entities. This admittedly simplistic view of concurrency will help us, however,
in achieving some of the aforementioned goals. For example, synchronisation and com-
munication primitives (often language-dependent) will appear only inside the imple-
mentation of the shared resources, not in the process code. This separation will make
possible to work on the verification of the processes on relatively standard grounds.
On the other hand, the implementation of the shared resources will be ensured to be
correct by construction, using template-based code generation schemes both for shared

1 And, in fact, it is the case that whole lines of hardware and tools (e.g., compilers) have been
maintained for the sole purpose of keeping this kind of systems running untouched.

104 Á. Herranz et al.

memory and message-passing schemes [1], rather than verified a posteriori. This enor-
mously simplifies portability. Also, the method is supported by a graphical notation
intended to be reminiscent of UML class and collaboration diagrams.

The rest of the paper is organised as follows: Section 2 gives an informal overview
of the method and the notation by means of an example. Section 3 presents a translation
of shared resources into TLA. This serves two purposes: on one hand, it provides an
interlingua semantics, and, secondly, the translation is used as the basis for a practical
method to check properties of a concurrent system using the TLC model checker (Sec-
tion 4). Section 5 summarises our results, discusses related approaches, and points out
to future improvements.

2 Specifying Shared Resources by Example

Fig. 1. Recycling plant

In this section we will introduce
an example which will be used
throughout the rest of the pa-
per and we will use this example
to present our resource-oriented
notation [1]. We will present the
intended semantics of the speci-
fication language without formal
apparatus but, hopefully, with clar-
ity enough to justify its translation
into TLA+ and to grasp the more
relevant points of our notation.

2.1 The Recycling Plant Example

In a recycling plant (Fig. 1), steel is recovered from unsorted domestic waste with au-
tomatically controlled cranes equipped with electromagnets: cranes collect steel and
deposit it in a container until the container is (nearly) full. The crane controller is ac-
cessed using a library with a public API, part of which appears next.

package Cranes is

MAX_CRANES : constant Positive := 5;
subtype Crane_Id is Positive range 1 .. MAX_CRANES;
MIN_W_CRANE : constant Positive := 1000;

MAX_W_CRANE : constant Positive := 1500;
subtype Weight is Positive range MIN_W_CRANE .. MAX_W_CRANE;
-- Grab the steel and report its weight

procedure Collect (N : in Crane_Id; W : out Weight);
-- Move the crane to a dropping point and

-- deactivate the electromagnet .

procedure Drop (I : Crane_Id);
end Cranes;

The container is also electronically controlled, and its relevant API is:

Modeling Concurrent Systems with Shared Resources 105

package Container is

MAX_W_CONTAINER : constant Natural := 20000;
-- Replace the current container with an empty one

procedure Replace;

end Container;

Our aim is to specify and verify a concurrent system which controls the cranes and
the container so that the cranes simultaneously collect steel and fill in the container
without exceeding its maximum capacity, and replace full containers with empty ones,
making sure that cranes do not try to deposit debris when containers are being replaced.
We assume space enough for several cranes to deposit steel in the container without
interacting with each other.

Fig. 2. System Design

We assume that the system
can be expressed as a collection
of processes interacting through
a shared resource (see Fig. 2),
an instance of what we term
a CADT (Concurrent Abstract
Data Type). Using a generaliza-
tion of data abstractions as the
base for concurrency puts the
emphasis on the interaction with
the environment instead of on
internal organization and algo-
rithms, and also separates the

functionality and implementation (i.e., message passing vs. shared memory).
Unlike other proposals, our specification language does not capture process behavior,

which is instead written directly in a very simple programming language (Section 2.3).
In what follows we will give a brief account of the main characteristics of the specifi-
cation language using the crane example.

2.2 Design of a Resource-Based Solution

We are not aiming at describing the design process itself here, as to some extent, this
relies on experience and common sense.2 We will instead present a finished design and
describe how it is assumed to work.

A process is assigned to every crane and to the container. A shared resource will be
used as central point for synchronization. The state of the shared resource is rich enough
to to determine when a container change is needed and when it has been changed.
In particular, it contains the replacement state, which can take the following values:
ready (there is room for more waste), to replace (a crane carries more steel than what
the container can hold, and the crane has decided to order an empty container), and
replacing (the container is being replaced). Even if the to replace state is entered, a
crane carrying an amount of steel which still fits into the container can unload it as long
as the replacing state has not been entered yet.

2 Although there are, of course, guidelines which help in removing from an early stage many
clearly wrong designs or which help in moving towards arguably better designs.

106 Á. Herranz et al.

This approach does not maximize the container load, as the replacement process can
start when some crane still carries a load which fits in the container. The alternative
solution of storing the weight on every crane in the resource and making a central
decision on which crane leaves its load was not chosen since it reduces concurrency.

Updates to the state need to be performed atomically. We define the resource as
providing this atomicity for every operation, as well as more complex, data-dependent
synchronization operations (Section 2.4).

2.3 Processes

Our starting point is to express the behavior of the system in terms of processes and
then decide how they have to synchronize. As this is done exclusively by means of the
shared resource, processes drive the design of the shared resource. As an less desirable
but unavoidable side effect, this can result in resources with little reusability. We will
see later how to detect the lack of certain reusability properties.

A crane process controller follow. Variable Recycling_C represents the shared re-
source and variable I (with I different for every process) identifies the crane managed
by that process. The shared resource is represented by the object Recycling and all
operations prefixed by it belong to the resource.

loop -- Controller for the I-th crane

Cranes.Collect (I, W);

Recycling.Notify_Weight (Recycling_C, W);

Recycling.Increment_Weight (Recycling_C , W);

Cranes.Drop (I);

Recycling.Notify_Drop (Recycling_C);

end loop;

Notify_Weight decides if the container has to be replaced. Increment_Weight sus-
pends if the load cannot be unloaded because there is no space in the container or it is
being replaced. Otherwise, it increments the container weight before actually dropping
the steel. A counter of the cranes which have committed to unload but have not done it
yet is kept to avoid the container to be replaced when some cranes are not yet through.

The container controller waits for the container to be replaceable, changes its state
to replacing, replaces the container, and, atomically, changes the state to ready again.

loop -- Container controller main loop

Recycling.Prepare_Replacement (Recycling_C);

Container.Replace;

Recycling.Notify_Replacement (Recycling_C);

end loop;

2.4 Anatomy of a Specification

Our specification language is based on first-order logic, which is sufficiently known not
to need but a quick brush-up in most cases. Its core ideas are inspired on a simplifica-
tion of well-known formal methods (notably VDM [5]) with additional constructions to
address concurrency. Following [11], our specifications are state-based, with the state
accessible only through a set of public operations. Fig. 3 shows a partial specification
of the resource at hand, which we will explain in this section.

Modeling Concurrent Systems with Shared Resources 107

CADT Recycling Control
OPERATIONS
ACTION Prepare Replacement: Recycling Control [io]
ACTION Notify Replacement: Recycling Control [io]
ACTION Notify Weight: Recycling Control [io] × Weight[i]
ACTION Increment Weight: Recycling Control [io] × Weight[i]
ACTION Notify Drop: Recycling Control [io]

SEMANTICS
DOMAIN:
TYPE: Recycling Control = (weight: N× state: State Ty × accessing: N)

State Ty = ready | to replace | replacing
Weight =MIN W CRANE .. MAX W CRANE

INVARIANT: ∀r ∈ Recycling Control • r .weight ≤ MAX W CONTAINER∧
r .accessing ≤MAX CRANES

CPRE: r = (, to replace , 0)
Prepare Replacement(r)

POST: rout = (r in.weight , replacing , 0)

PRE: w ≤MAX W CRANE
CPRE: r .weight + w ≤MAX W ∧ r .state � replacing

Increment Weight(r, w)
POST: r in = (cw , e , a) ∧ rout = (cw + w , e , a + 1)

Fig. 3. Partial CADT for the central crane controller

Public Interface: Actions and Their Signatures. The OPERATIONS section defines
the names and signatures of the public operations and (optionally) tags arguments as
input and/or output. The state of the resource itself is currently not directly available to
the body of the specification; it must instead be a formal parameter (by convention, the
first one) of every operation.3

Domain: Types. The Domain section contains type definitions for the resource and,
optionally, an invariant which restricts the values of the resource state to those which
are admissible in the problem.

In this example, the resource state contains the weight in the container, its replace-
ment state (of enumerated type State Ty), and how many cranes remain to deposit their
load. Weight represents valid crane loads.

Basic types include Booleans, naturals, integers, and reals, and complex types are
built on them by means of algebraic types (free types). A series of predefined non-basic
types, such as we also provide sequences (indexable flexible-length arrays), sets, and
finite mappings, with a complete set of operations on them, are also provided.

3 This is not a strong requirement and is kept for compatibility with procedural languages.

108 Á. Herranz et al.

Domain: Invariants. The invariant is a formula which constrains the range of values
in the resource (maybe relating different state components). This allows restricting the
admissible states to those which are legal, and, therefore, it also specifies which states
the resource must not evolve into. It is defined on the current state and has no direct
means to refer to past or future states. It is the responsibility of the resource specification
to ensure that forbidden states are not reached. In our case, the container cannot carry
more weight than the maximum allowed, and the number of cranes waiting to unload
cannot exceed the total number of cranes.

Specifying the Effect of Operations. Preconditions and postconditions describe when
operations can proceed (i.e., they express synchronization) and how these operations
change the resource state. Both are first-order formulas which involve the resource and
the arguments of the operation.

Synchronization. The resource semantics assumes mutual exclusion between opera-
tions, and ensuring this is left to the final implementation. More involved operation
synchronization is taken care of by means of concurrency preconditions (CPRE), which
are evaluated against the resource state, and which are aimed at expressing safety condi-
tions. A call whose CPRE is evaluated to false will block until a change in the resource
(done by some other process) makes it true. Only one operation among those whose
CPRE evaluates to true is allowed to proceed. We do not assume any fixed selection
procedure — not even fairness.

Sequential preconditions (PRE) can be added to the operations to express condi-
tions which have to hold for the operations to be safely executed. While a CPRE states
synchronization, a PRE deals mainly with data structure coherence.

Updating Resources and Arguments. Changes in the resource and in the operation ar-
guments are specified using a postcondition (POST) for every operation which relates
the state of the resource and of the parameters before and after the call. The PRE and
CPRE of the operation and the invariant have to hold after a POSTs is executed, as-
suming they held before. Values before and after the operation are decorated with the
superscripts “in” and “out”, respectively.

In our case study, preparing the replacement keeps the number of cranes accessing
the container (to zero, as was necessary to make the CPRE true) and the weight in the
container, and sets the container state to replacing .

3 Translating Shared Resources into TLA

In this section we present an interlingua-based semantics for our notation. The interlin-
gua is the specification language TLA+ [7,9], a combination of a linear-time temporal
logic (The Temporal Logic of Actions [8]) and Zermelo-Fränkel set theory. We will
present the semantics in an informal way, introducing some general information about
the translation process and using the system specified in Section 2 to illustrate it.

Modeling Concurrent Systems with Shared Resources 109

3.1 Anatomy of a Translation

Roughly speaking, a TLA+ specification is a formula S written as a conjunction of a
TLA predicate I that states the initial value of TLA variables x , y , . . . representing the
state of the system and a next-state relation N (TLA action) that specifies valid value
changes of the variables: S Δ

= I ∧�[N]〈x ,y , ...〉.

Resource state. Each component of the domain of the specification in our notation will
be translated into a TLA variable.

Example: TLA variables that represent the resource domain:

variables weight , state, accessing

Types and predicates. Types are translated into sets and predicates (initial state pred-
icate, invariant, preconditions, and concurrency preconditions) into TLA predicates.

Example: TLA set that represents type Weight :

Weight Δ
= (MIN W CRANE . .MAX W CRANE)

Example: TLA predicate that represents the initial state:

Init Δ
= ∧ weight = 0 ∧ state = “ready” ∧ accessing = 0

Postconditions are translated into TLA actions (a TLA action is a predicate which re-
lates input and output states). The value of a variable before an action is represented
using the variable name, and its value after the action is represented with the same
name primed; so we replace x in by x and xout by x ′.
Example: Type information, PRE, CPRE, POST of Increment Weight in TLA:

TYPE Increment Weight (w)
Δ
= w ∈ Weight

PRE Increment Weight (w)
Δ
= w ≤ MAX W CRANE

CPRE Increment Weight (w)
Δ
=

∧ weight + w ≤ MAX W CONTAINER ∧ state � “replacing”

POST Increment Weight (w)
Δ
=

weight ′ = weight + w ∧ unchanged state ∧ accessing ′ = accessing + 1
We will not present in detail the translation of types, predicates and expressions, as it is
a non difficult compilation exercise made easier by the richness and expressiveness of
the mathematical toolkit of TLA+.

Operations. Every operation is translated into a TLA action which is the conjunction
of the predicates collecting type information, precondition, concurrency precondition,
and postcondition of the operation. This action will represent an atomic, valid transition
of the system.

Example: TLA action that represents operation Increment Weight :

Increment Weight (w)
Δ
=

∧ TYPE Increment Weight (w) ∧ PRE Increment Weight (w)
∧ CPRE Increment Weight (w) ∧ POST Increment Weight (w)

110 Á. Herranz et al.

Putting It All Together . The TLA formula that gives semantics to the resource spec-
ification as a dynamic system is given by the definition of the next-step relation as the
disjunction of all actions resulting from the translation of operations. Informally, every
transition (step) the resource may experience is triggered by the execution of some of
its operations. We are deliberately ignoring the restrictions that the processes impose
on the possible operation interleavings.

Example: A TLA action that represent the execution of any operation:

Next Δ
=

Prepare Replacement ∨ Notify Replacement
∨ ∃w ∈ Weight : Notify Weight (w) ∨ ∃w ∈ Weight : Increment Weight (w)
∨ Notify Drop

The formula Spec which specifies that the system starts in a valid state and every tran-
sition it takes is one of these defined by the Next formula, maybe leaving variables
weight , state, or accessing unchanged, is then

Spec Δ
= Init ∧�[Next]〈weight , state,accessing〉

3.2 Translation Explained

Let us summarise some of the most relevant points in the previous translation:

– The TLA specification syntactically reflects most of the components of our notation.
– Type information has been explicitly introduced in (the untyped) TLA by represent-

ing types as sets. Variable typing is therefore translated into set membership and
type declarations have been translated as guarded TLA formulae — for example,
Weight , which is used in the definition of predicate TYPE Increment Weight ,
itself part of the action Increment Weight , and the in the bounded existential
quantification in the definition of Next .

– The invariant will be also eventually translated into the TLA resulting specification.
It will be used during the checking stage (Section 4).

– Output parameters of operations which are private to processes are represented by
new TLA variables visible by all operations but conceptually not part of the re-
source. They are however necessary to faithfully represent the operation behaviour
and, since all operations are continuously available, the interleavings this specifica-
tion can represent are a superset of the ones the processes can perform.

4 Verifying System Properties Using TLC

In this section we will see how some execution properties of our example can be studied
thanks to the translation of shared resources into TLA and, eventually, the use of the
TLC model checker. Being able to use such a tool does not guarantee, in general, the
correctness of the system, but it helps to find possible inconsistencies or holes in the
specifications.

Some of the properties to check are generic (i.e., the invariant always holds) and
some of them depend on the system at hand. We will use in fact two variants of the

Modeling Concurrent Systems with Shared Resources 111

specification. The first one is what we described in Section 3.1, which leaves complete
freedom to the interleaving of the operations, and is adequate to verify safety proper-
ties which are connected with resource reuse. The second one includes the necessary
machinery to enact interleaving constraints which model the behaviour of the process.

4.1 Checking the Resource Integrity

With no information about the context in which the specified resource will be used, only
the integrity of the invariant and type information of variables can be checked.

Example: Checking the invariant

The invariant has been translated into the following TLA specification:

Types Δ
= weight ∈ Nat ∧ state ∈ State Ty ∧ accessing ∈ Nat

Invariant Δ
=

∧ weight ≤ MAX W CONTAINER ∧ accessing ≤MAX CRANES
The input to the model checker TLC (Fig. 4) consists of the TLA specification plus
the definition of values for constants and the properties (invariants in this case) to be
checked. The model checker found two violations of the invariant. The first one is a
type error:

Error: Invariant Types is violated. The behavior up to this point is:

STATE 1: <Initial predicate>

/\ state = "ready" /\ weight = 0 /\ accessing = 0

STATE 2: <Action Notify_Drop>

/\ state = "ready" /\ weight = 0 /\ accessing = -1

CONSTANTS

MAX_CRANES = 5

MIN_W_CRANE = 1000

MAX_W_CRANE = 1010

MAX_W_CONTAINER = 20000

SPECIFICATION Spec

INVARIANT Types

INVARIANT Invariant

Fig. 4. TLC definition of the sys-
tem to check

The second one is the violation of the property
weight ≤MAX W CONTAINER. We have mod-
ified the specification by introducing a CPRE in
the operations Increment Weight and Notify Drop
(accessing < MAX W CRANE and accessing > 0,
respectively). After this, it seems that our resource
specification has reached a better degree of integrity.
The model checker did not find more errors during the
checking of the specified resource invariant. Note that,
since we did not impose any restriction to the inter-
leavings of the operations due to the way processes are

defined, the properties we are checking here will be valid in any context of the resource,
guaranteeing the reusability of the shared resource.

4.2 Cooking the Processes

Studying properties which take wholly into account how processes and resources are
defined as needs some additional cooking in order to encode their behaviour in TLA.
We have followed this systematic method:

1. Introducing per-process program counters and local variables to represent the in-
ternal state of every process.

112 Á. Herranz et al.

2. Establishing relevant program points for every type of process.
3. Introducing next-step relations in the specification for every process.
4. Mixing next-step relations of processes with next-step relations of the resource.
5. Writing the whole system specification with the initial state, the disjunction of all

cooked TLA actions, and weak fairness conditions on every TLA action.

Example: Cooking Crane_Controllers

1. Variables Crane Controller PC and Crane Controller w represent the internal
state of the every crane controller:

variables Crane Controller PC , Crane Controller w
2. Crane_Controller program points:

Crane Controller Points Δ
=

{“toNotify Weight”, “toIncrement Weight”, “dropping”, “toNotify Drop”}
The following fragment captures the type of program counters, local variables and
initial state of the processes:
Processes Types Δ

=

∧Crane Controller PC ∈ [Crane Id → Crane Controller Points]
∧Crane Controller w ∈ [Crane Id →Weight]

Processes Init Δ
=

∧Crane Controller PC = [i ∈ Crane Id
→ “toNotify Weight”]
∧Crane Controller w = [i ∈ Crane Id
→ choose w ∈ Weight : true]

3. The next-step relations for the process Crane_Controller are the invocation of
shared resource operation and the invocation of the Cranes API. Actually, just one
new next-step relation is relevant: the transition from the invocation of
Increment_Weight to the invocation of Cranes.Drop:
Dropping Δ

=

∃ i ∈ Crane Id :
∧Crane Controller PC [i] = “dropping”
∧Crane Controller PC ′ =

[Crane Controller PC except ! [i] = “toNotify Drop”]
∧ unchanged Container Controller PC
∧ unchanged Crane Controller w
∧ unchanged weight ∧ unchanged state ∧ unchanged accessing

4. We extend the next-step relations of the resource with the valid state changes in the
processes:
Cooked Notify Weight (w)

Δ
=

∃ i ∈ Crane Id :
∧Crane Controller PC [i] = “toNotify Weight”
∧Crane Controller w [i] = w
∧Notify Weight (w)
∧Crane Controller PC ′ =

[Crane Controller PC except ! [i] = “toIncrement Weight”]
∧ unchanged Container Controller PC
∧ unchanged Crane Controller w

Modeling Concurrent Systems with Shared Resources 113

Cooked Increment Weight (w)
Δ
=

∃ i ∈ Crane Id :
∧Crane Controller PC [i] = “toIncrement Weight”
∧Crane Controller w [i] = w
∧ Increment Weight (w)
∧Crane Controller PC ′ =

[Crane Controller PC except ! [i] = “dropping”]
∧ unchanged Container Controller PC
∧ unchanged Crane Controller w

Cooked Notify Drop Δ
=

∃ i ∈ Crane Id : ∃w ∈ Weight :
∧Crane Controller PC [i] = “toNotify Drop”
∧Notify Drop
∧Crane Controller PC ′ =

[Crane Controller PC except ! [i] = “toNotify Weight”]
∧ unchanged Container Controller PC
∧Crane Controller w ′ = [Crane Controller w except ! [i] = w]

5. Putting it all together:

Cooked Next Δ
=

∨Cooked Prepare Replacement ∨Cooked Notify Replacement
∨ ∃w ∈ Weight : Cooked Notify Weight (w)
∨ ∃w ∈ Weight : Cooked Increment Weight (w)
∨Cooked Notify Drop
∨Dropping ∨ Replacing

Cooked Spec Δ
= Cooked Init ∧�[Cooked Next]Cooked State

4.3 Checking System Properties

With this cooked specification we can check the following system properties:

1. Absence of deadlock (this is automatically provided by TLC).
2. That no cranes drop any material while the container is being replaced:

No Dropping While Replacing Δ
=

�(¬(∧ ∃ i ∈ Crane Id : Crane Controller PC [i] = “dropping”
∧ Container Controller PC = “replacing”))

3. Component state in the resource has a cyclic behaviour (ready → to replace →
replacing → ready . . .):

State Is Cyclic Δ
=

�[∨ state = “ready” ∧ state′ = “to replace”
∨ state = “to replace” ∧ state′ = “replacing”
∨ state = “replacing” ∧ state = “ready”]state

TLC then detects the violation of one of the properties:

114 Á. Herranz et al.

Error: Action property State_Is_Cyclic is violated. The behavior up to this point is:

...

STATE 76: <Action Notify_Weight>

/\ state = "to_replace" /\ weight = 19000 /\ accessing = 1

/\ Crane_Controller_PC = <<"toNotify_Weight", "toIncrement_Weight", "dropping">>

/\ Crane_Controller_w = <<1000, 1001, 1000>>

/\ Container_Controller_PC = "toPrepare_Replacement"

STATE 77: <Action Notify_Weight>

/\ state = "ready" /\ weight = 19000 /\ accessing = 1

/\ Crane_Controller_PC = <<"toIncrement_Weight", "toIncrement_Weight", "dropping">>

/\ Crane_Controller_w = <<1000, 1001, 1000>>

/\ Container_Controller_PC = "toPrepare_Replacement"

273320 states generated, 77163 distinct states found, 3008 states left on queue.

The depth of the complete state graph search is 77.

4.4 Analysis of the Error Detected

During the design process, the specifier decided to write the following specification for
Notify Weight (already translated into TLA):
Notify Weight (w)

Δ
=

CPRE

∧ state � “replacing”
POST

∧ unchanged weight ∧ unchanged accessing
∧ weight + w > MAX W CONTAINER ⇒ state′ = “to replace”
∧ weight + w ≤ MAX W CONTAINER ⇒ state′ = “ready”

The motivation to write such specification is that just because one crane asks for a
replacement (state′ = to replace if the weight of its load exceeds the limit) no other
crane with a valid load weight should wait to drop (resulting in changing the value of
state to ready and avoiding the container to be replaced).

Is the formalised system a right system? Is State Is Cyclic a desirable property of
the system to be built? At least, the violation of the property revealed a liveness issue
in the formalisation: if a crane controller i asks for a replacement (state′ = to replace)
and another crane controller j invalidates that request (state′ = ready), then the crane
i will have to wait (conditional synchronisation of operation Increment Weight) until
another crane k (probably j) reactivates a new request.

5 Conclusion

We have presented a method for structuring and analysing concurrent software that
allows developers to focus on concurrency in isolation from other aspects. Although
conceptually simple, it enables the use of formal methods in order to verify nontrivial
properties of realistic systems.

We sketched a semantics for our shared resource specifications based on a trans-
lation of CADTs into Temporal Logic of Actions. This translation has two practical
advantages that can be relevant for a wider industrial adoption of similar approaches.
On one hand, we think that a CADT is much easier to write and understand than the

Modeling Concurrent Systems with Shared Resources 115

corresponding TLA specification; although it forces a more rigid architecture, in many
cases it is arguably more advantageous to have a series of tools /mechanisms which are
easy to apply to different scenarios instead of a generic, more complex, one. Our CADT
is an example of such a perhaps more specific approach.

On the other hand, the availability of tools such as TLC gives system designers the
ability to pinpoint mistakes /misconceptions at an early stage. The automatic translation
from a more “focused” formalism to a general, powerful tool helps their adoption. Ad-
ditionally, from a formal standpoint, providing an interlingua semantics can be easier to
follow than introducing a new calculus, specially considering a formalism in evolution.

The process structure presented here is a very simple one. More sophisticated
schemes have been proposed in the literature, all of them with the common goals of
providing language and platform independence when designing and reasoning about
concurrent applications. Models such as Creol [4], that proposes a formal model of dis-
tributed concurrent objects based on asynchronous message passing, or CoBoxes [10]
which unifies active objects with structured heaps, are relatively recent proposals that
elaborate on previous ones such as the actors model.

In the service-oriented computing paradigm, which is attracting much attention in
the last years and which is inherently concurrent, languages like BPEL [6] have been
used to implement business processes. While BPEL is very powerful and can express
complex service networks, their full verification is challenging, partly because of its
complex semantics.

Although it can be argued that these alternatives allow to express more complex
process structures, the absence of a clear separation between active and passive entities
does not favour a simple analysis of the behaviour of systems. On the other hand, it is
usually a requirement of many industrial software system to avoid complexity as much
as possible. In other words, some models can be far more expressive than needed or
wanted in practise.

Several relatives to our resources can also be found in the literature. It is worth men-
tioning the concurrency features in VDM++ [3], similar in spirit, although our CADT’s
relax some of their restrictions as can be seen in [1]. Moreover, the CADT formalism
permits some extensions for improving the expressiveness of CPREs that still allow
semi-automatic code generation. We have not used these extensions in this paper for
the sake of simplicity.

One of the shortcomings of our method, in its current state, is that system properties,
unlike shared resources, must be specified directly in TLA. One possible way to over-
come this would be to enrich CADTs with trace-dependent conditions which could, in
turn, simplify the way in which liveness properties are specified.

Our original CADT notation included a construct similar to the history counters in
VDM [3]: number of times each operation has been requested, activated and completed
with information about process identifiers and actual parameters. Formulae on history
counters can be very expressive (path expressions or UML protocol state machines can
be easily encoded with them) and protocol order between operations or certain liveness
conditions can be formalised.

As some programming languages come equipped with constructs that allow to check
the lock state of processes at run time, automatic code generation from these specifica-

116 Á. Herranz et al.

tions seems feasible. These extensions, and a more formal specification of the transla-
tion into TLA, are subject of future work.

References

1. Carro, M., Mariño, J., Herranz, Á., Moreno-Navarro, J.J.: Teaching how to derive correct
concurrent programs (from state-based specifications and code patterns). In: Dean, C.N.,
Boute, R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 85–106. Springer, Heidelberg (2004)

2. COST Action IC 0701 on Verification of Object Oriented Software,
http://www.cost-ic0701.org

3. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs for
Object-oriented Systems. Springer, Heidelberg (2004)

4. Johnsen, E.B., Owe, O., Yu, I.C.: Creol: A type-safe object-oriented model for distributed
concurrent systems. In: Theoretical Computer Science (2006)

5. Jones, C.B.: Systematic Software Development Using VDM. Prentice-Hall, Upper Saddle
River (1995)

6. Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera,
F., Ford, M., Goland, Y., Guı́zar, A., Kartha, N., Liu, C.K., Khalaf, R., König, D., Marin,
M., Mehta, V., Thatte, S., van der Rijn, D., Yendluri, P., Yiu, A.: Web Services Business
Process Execution Language Version 2.0. Technical report, IBM, Microsoft, BEA, Intalio,
Individual, Adobe Systems, Systinet, Active Endpoints, JBoss, Sterling Commerce, SAP,
Deloitte, TIBCO Software, webMethods Oracle (2007)

7. Leslie Lamport. The TLA home page,
http://www.research.microsoft.com/users/lamport/tla/tla.html

8. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst. 16(3), 872–
923 (1994)

9. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Soft-
ware Engineers. Pearson Education, Inc., London (2002)

10. Schäfer, J., Poetzsch-Heffter, A.: Coboxes: Unifying active objects and structured heaps. In:
Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 201–219. Springer,
Heidelberg (2008)

11. van Lamsweerde, A.: Formal Specification: a Roadmap. In: Finkelstein, A. (ed.) The Future
of Software Engineering, pp. 147–159. ACM Press, New York (2000)

Platform-Specific Restrictions on Concurrency

in Model Checking of Java Programs

Pavel Parizek and Tomas Kalibera

Distributed Systems Research Group, Department of Software Engineering,
Faculty of Mathematics and Physics, Charles University in Prague

Malostranske namesti 25, 118 00 Prague 1, Czech Republic
{parizek,kalibera}@dsrg.mff.cuni.cz

Abstract. The main limitation of software model checking is that, due
to state explosion, it does not scale to real-world multi-threaded pro-
grams. One of the reasons is that current software model checkers adhere
to full semantics of programming languages, which are based on very per-
missive models of concurrency. Current runtime platforms for programs,
however, restrict concurrency in various ways — it is visible especially
in the case of critical embedded systems, which typically involve only a
single processor and use a threading model based on limited preemption.

In this paper, we present a technique for addressing state explosion
in model checking of Java programs for embedded systems, which ex-
ploits restrictions on concurrency common to current Java platforms for
such systems. We have implemented the technique in Java PathFinder
and performed a number of experiments on Purdue Collision Detector,
which is a non-trivial multi-threaded Java program. Results of experi-
ments show that use of the restrictions on concurrency in model check-
ing with Java PathFinder reduces the state space size by an order of
magnitude and also reduces the time needed to discover errors in Java
programs.

Keywords: model checking, Java programs, embedded systems, state
explosion, restrictions of concurrency.

1 Introduction

Software for mission- and safety-critical systems is typically based on multi-
threaded programs, since such systems must be able to process concurrent inputs
from their environment in a timely manner. This is the case, for example, of
software in control systems in vehicles (cars, aircrafts) and software running on
high-availability server systems. A significant part of the development process of
programs for critical systems is devoted to testing and verification, since runtime
errors in such programs are very costly. The errors particularly relevant for
multi-threaded software used in critical systems are violations of temporal safety
and liveness properties and also concurrency errors (e.g., deadlocks and race
conditions). The verification technique most suitable for detection of such errors
is model checking. A model checker systematically traverses the whole state

M. Alpuente, B. Cook, and C. Joubert (Eds.): FMICS 2009, LNCS 5825, pp. 117–132, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

118 P. Parizek and T. Kalibera

space of a given program with the goal of detecting property violations and
errors.

The main limitation of model checking is that it does not scale to complex
multi-threaded programs, which are often used in critical systems, due to the
well-known problem of state explosion. The state space of a program, which a
model checker has to explore, captures all possible sequences of thread schedul-
ing choices and all possible threads interleavings that can occur during pro-
gram’s execution — the size of the state space depends roughly exponentially
on the number of threads. Although many techniques for addressing state ex-
plosion have been designed and implemented in various model checkers over the
years [17], state explosion still occurs in model checking of large and complex
multi-threaded programs written in mainstream programming languages. One of
the reasons is that semantics of mainstream programming languages (e.g., Java,
C and C#) are based on very permissive models of concurrency. For exam-
ple, semantics of such languages allow preemption to happen at any program
point and impose no restrictions on thread scheduling algorithms (e.g., any
runnable thread can be scheduled when another thread is suspended). Model
checkers for programs in such languages [24,7,2] then have to adhere to the
full semantics of the languages for the sake of generality — in particular, the
model checkers have to systematically check the behavior of programs under all
possible thread scheduling sequences allowed by the semantics of the program-
ming languages, including those thread scheduling sequences that cannot happen
in practice due to concurrency-related characteristics of runtime platforms for
programs. We propose to address state explosion in model checking by exploit-
ing restrictions on concurrency that are based on characteristics and behavior of
runtime platforms formed by hardware, operating systems and, in case of lan-
guages like Java and C#, also by virtual machines. The goal is to reduce the
state space size of multi-threaded programs such that the chance of traversing
the whole state space of such programs in limited memory and reasonable time,
and thus the chance of discovering more errors, is much greater.

To be more specific, the main contributions of this paper are:

– a technique for efficient model checking of multi-threaded Java programs,
which is based on platform-specific restrictions of concurrency,

– an implementation of the technique as an extension to the Java PathFinder
model checker (JPF) [24], and

– evaluation of the technique on Purdue Collision Detector, which is a non-
trivial multi-threaded Java program.

We focus on model checking of Java programs, since Java is used for imple-
mentation of software for many critical server-side systems and is also becoming
a language of choice for implementation of multi-threaded software for critical
embedded systems.

Platform-Specific Restrictions on Concurrency 119

2 Current Platforms for Java Programs

In this section, we provide an overview of concurrency-related characteristics and
behavior of current runtime platforms for Java programs from the perspective of
model checking with JPF and we also define terminology that is used throughout
the rest of the paper.

We consider a runtime platform for Java programs, further denoted as a Java
platform, to be a specific combination of a hardware configuration, an operating
system (OS), and a Java virtual machine (JVM). The key concurrency-related
characteristics of Java platforms are:

– the maximal number of Java threads that can run in parallel,
– a threading and scheduling model that determines the level, at which threads

in Java programs (Java threads) are implemented and scheduled, and
– a set of program points (Java bytecode instructions), at which a running

thread may be suspended (preempted) by a platform — such program points
are further referred to as thread yield points.

The maximal number of threads that can possibly run in parallel is bounded
by the number of processors in a particular hardware configuration, and can be
further limited by JVM — some processors can be dedicated to garbage collection
or non-Java tasks, or the JVM can explicitly support only a single processor.
In this text, we use the term processor to denote a logical processing unit of
any kind, including a single processor (CPU) in a multi-processor machine or a
single core in a multi-core CPU. Threading and scheduling models are typically
implemented by the operating system and/or the JVM. The scheduling models
implemented in most of the current Java platforms are based on preemption. The
platforms differ in the set of thread yield points, i.e. in the set of program points
where a running thread can be suspended, and also in the kind of preemption that
they use — some use time preemption, in which case a thread can be suspended
at any program point (i.e., all program points are considered as thread yield
points in that case), while other platforms use limited preemption, in which
case only specific Java bytecode instructions and calls of specific methods are
considered as thread yield points.

The specifications of the Java language [9] and JVM [15] define a very per-
missive model of concurrency with respect to the characteristics listed above. In
particular, (i) they do not put any restrictions on the maximal number of Java
threads running in parallel, (ii) they do not specify any particular threading
and scheduling model that should be used, and (iii) they allow threads to be
preempted at any bytecode instruction and at call of any method, i.e. they allow
the set of thread yield points to be defined as an arbitrary subset of the set of
all program points. On the other hand, the current Java platforms restrict the
concurrency in Java programs in various ways. The platforms can be divided
into the following two groups depending on the way they restrict concurrency:
(1) Java platforms for embedded systems and (2) Java platforms for server and
desktop systems.

120 P. Parizek and T. Kalibera

2.1 Java Platforms for Embedded Systems

Typically, Java platforms for embedded systems use the green threading model,
hardware configurations in such platforms are based on a single processor, and
the set of thread yield points contains only a subset of all program points. The key
idea behind green threading is that Java threads are managed and scheduled by
a JVM (at the level of JVM), out of control of the underlying operating system.
All Java threads in a program are mapped to a single native (OS-level) process
in which the JVM runs (Fig. 1a), and therefore only a single thread can run at a
time — the threads in a program are effectively interleaved. The green threading
model is supported, for example, by Purdue OVM [3], which is a research JVM
aiming at embedded and real-time systems, and also by the CLDC HotSpot Im-
plementation [5], which is an industrial JVM for embedded devices compliant
with the Java ME CLCD profile (e.g., mobile phones). Java platforms in this
group also do not use scheduling based on time preemption. The platforms typ-
ically consider as thread yield points only those program points that correspond
to one of the following actions: acquiring and releasing of locks (monitors), calls
of blocking native methods (I/O), calls of selected methods of the Thread class
(e.g., sleep, start, and yield), calls of the wait and notify methods, and,
in case of more complex JVMs, also method invocations (method prologues),
returns from methods (method epilogues), and back-branches (back-jumps to
the beginning of a loop). For example, Purdue OVM considers back-branches as
thread yield points, while the CLDC Hotspot Implementation does not. Selec-
tion of program points to be used as thread yield points is motivated mainly by
performance and implementation reasons — the goal is to ensure that all threads
get a fair share of processor time and also to allow easier implementation of JVM.

Although most embedded systems use only a single processor, there are also
some embedded systems that employ multiple processors and therefore can run
multiple threads in parallel. In case of such systems, either native threading
model (explained in Sect. 2.2) or quasi-preemptive threading model can be used.
The quasi-preemptive threading model is a generalization of green threading to
multiple processors, which supports mapping of Java threads to N native (OS-
level) processes such that N ≥ 2 — the native processes may run truly in parallel
and therefore also Java threads mapped to them may run truly in parallel.
Still, Java threads are suspended and scheduled only at specific program points
enumerated above (at the same program points as in the green threading model).
A specific variant of the quasi-preemptive threading model is implemented in the
Jikes Research Virtual Machine (RVM) [14].

An important subclass of embedded systems is formed by real-time systems,
which must satisfy temporal constraints (e.g., meeting all deadlines). The key
characteristic of real-time systems is that thread schedulers strictly enforce
thread priorities. In case of non-real-time systems, thread priorities are not
strictly enforced; however, threads with higher priorities should be in general
scheduled more likely compared to threads with lower priorities.

To summarize, the key restrictions of concurrency in Java platforms for em-
bedded systems are: (i) a bound on the number of threads that can run in

Platform-Specific Restrictions on Concurrency 121

Fig. 1. Threading models in Java platforms: a) green threads; b) native threads

parallel, which is determined by the number of processors, (ii) use of green
threading model such that only specific bytecode instructions and calls of spe-
cific methods are considered as thread yield points, and, in case of real-time
systems, (iii) strict enforcement of thread priorities.

2.2 Java Platforms for Server and Desktop Systems

Java platforms for server and desktop systems use native threading model, and
the hardware configurations in such platforms are typically based on multiple
processors. In the case of a native threading model, Java threads are directly
mapped to native (OS-level) threads that are scheduled by the OS-level scheduler
(Fig. 1b); therefore, Java threads can run truly in parallel if multiple processors
are available in a Java platform. Moreover, since schedulers in current operating
systems use time preemption, the Java threads can be suspended at any program
point (i.e., all program points have to be considered as potential thread yield
points). It follows that the only important restriction of concurrency used in
Java platforms for server and desktop systems is the bound on the number of
threads that can possibly run in parallel.

Note that most industrial JVMs use native threading and time preemption-
based scheduling — in particular, this applies to Sun Java Hotspot [23] and
IBM J9 [12], which are both state-of-the-art industrial JVMs for desktop and
server-side Java applications.

3 Running Example

The concepts and ideas presented in the paper will be illustrated on the Java
program shown in Fig. 2, which is an instance of the producer-consumer design

122 P. Parizek and T. Kalibera

1 class Consumer extends Thread {

2 private Object[] buffer;

3

4 public void run() {

5 int pos = 0;

6 while (true) {

7 synchronized (buffer) {

8 while (buffer[pos] == null) buffer.wait();

9 }

10

11 Object msg = buffer[pos];

12 buffer[pos] = null;

13 pos++;

14 synchronized (buffer) {

15 buffer.notify();

16 }

17 }

18 }

19 }

20

21 class Producer extends Thread {

22 private Object[] buffer;

23

24 public void run() {

25 int pos = 0;

26 while (true) {

27 synchronized (buffer) {

28 while (buffer[pos] != null) buffer.wait();

29 }

30

31 // code that creates a message is omitted

32 buffer[pos] = msg;

33 pos++;

34 synchronized (buffer) {

35 buffer.notify();

36 }

37 }

38 }

39 }

40

41 public static void main(String[] args) {

42 Object[] buffer = new Object[10];

43 Consumer cons = new Consumer(buffer);

44 Producer prod = new Producer(buffer);

45 cons.start();

46 prod.start();

47 }

Fig. 2. Example Java program: producer-consumer pattern

Platform-Specific Restrictions on Concurrency 123

pattern. We selected the producer-consumer design pattern, since it forms the
basis of many multi-threaded programs for critical systems (both embedded
and server-side), including Purdue Collision Detector (PCD) that we use for
evaluation of the proposed technique (details in Sect. 6).

4 Java PathFinder

Java PathFinder (JPF) [24] is an explicit state model checker for Java bytecode
programs, which is based on a special Java virtual machine (JPF VM) that sup-
ports backtracking and state matching. It is highly extensible and configurable,
and supports common optimizations of state space traversal like partial order
reduction and thread/heap symmetry reduction.

The key features of JPF in the context of this paper are that (i) it implements
the concurrency model of Java with no restrictions (i.e., it adheres to the full
semantics of Java) and (ii) it does not model real time. To be more specific, JPF
checks the behavior of a given Java program under the following assumptions:

– an unlimited number of processors is available,
– time preemption-based scheduling with an arbitrary (and dynamically chang-

ing) size of time slots is used, and
– all program points are considered as potential thread yield points.

The contention of multiple threads for shared data (variables) under such a model
of concurrency is captured in JPF by systematic exploration of all interleav-
ings of concurrent accesses to shared variables that are performed by individual
threads. Technically, JPF suspends threads also at Java bytecode instructions
corresponding to accesses to shared variables in addition to thread yield points,
and selects the thread to be scheduled from the set of all runnable threads (in-
cluding the one that was just suspended, if it is not blocked) at each thread
scheduling choice point — this means that when a thread performs an access to
a shared variable and is then suspended, any runnable thread may execute the
next access to a shared variable. This is sufficient to capture the contention for
shared variables both in case of threads running concurrently on a single proces-
sor, which are effectively interleaved, and also in case of threads running truly
in parallel (on multiple processors), since parallel accesses to shared memory
are actually serialized in the hardware (a particular interleaving of the parallel
accesses is non-deterministically selected by hardware).

The actual state space of a given Java program is constructed by JPF on-
the-fly in a way that reflects the concurrency model described above and the
supported optimizations of state space traversal. A transition is a sequence of
bytecode instructions performed by a single thread, which is terminated either
by a scheduling-relevant instruction (thread yield point or an access to a shared
variable) or by an instruction corresponding to non-deterministic data choice
(e.g., use of a random generator). A state in the state space of a Java program
is a snapshot of the current state of the JPF VM at the end of a transition,
including complete heap and stacks of all threads.

124 P. Parizek and T. Kalibera

Given the Java program on Fig. 2, JPF may terminate a transition at any
instruction corresponding to the following program points:

– accesses to the buffer variable in all threads (source code lines 8, 11, 12,
28, and 32),

– attempts to acquire a monitor, i.e. attempts to enter a synchronized block
(lines 7, 14, 27, and 34),

– calls of the wait and notify methods (lines 8, 15, 28, 35), and
– start of a new thread (lines 45 and 46).

JPF provides a powerful API that allows to extend it in various ways. With
respect to the technique proposed in this paper, the key parts of JPF’s API
are: (i) configurable scheduling model and (ii) choice generators. Configurability
of thread scheduling allows to use a domain-specific scheduling algorithm (e.g.,
one based on thread priorities) and, in particular, to restrict concurrency in
various ways. The mechanism of choice generators unifies all possible causes for
a branch in the state space of a Java program, including thread scheduling and
non-deterministic data value choice. A specific instance of a choice generator
is associated with each state — it maintains the list of enabled and unexplored
transitions leading from the state. The choice generator API also provides means
for altering the set of enabled and unexplored transitions; for example, it is
possible to select specific transitions that should be explored.

5 Restrictions of Concurrency in Model Checking Java
Programs with Java PathFinder

The key idea behind our approach is that it is not necessary to check the behavior
of a Java program under all possible sequences of thread scheduling choices
that are allowed by the concurrency model and semantics of Java, when Java
platforms restrict concurrency in such a way that some of the sequences of thread
scheduling choices cannot occur during execution of a Java program.

It follows from the overview of current Java platforms (Sect. 2) and JPF
(Sect. 4) that no significant restriction of concurrency in model checking with
JPF is possible in case of Java platforms for server and desktop systems, which
typically involve multiple processors and use native threading with time preemp-
tion-based scheduling. Therefore we focus only on Java platforms for embedded
systems, where significant restrictions of concurrency are possible. Such plat-
forms typically involve only a single processor, in which case the green threading
model is used, or a very low number of multiple processors, in which case the
quasi-preemptive threading can be used. In both cases, time preemption-based
scheduling is not used and thus only specific program points are considered as
thread yield points. As indicated in Sect. 2.1, there are also Java platforms for
real-time embedded systems that strictly enforce thread priorities and perform
priority-based thread scheduling. However, in this paper we focus only on Java
platforms for non-real-time embedded systems that involve JVMs like CLDC [5]
— we assume (i) that all threads in a Java program have the same priority

Platform-Specific Restrictions on Concurrency 125

during the whole lifetime of a program and (ii) that bytecode instructions corre-
sponding to back-branches, method prologues and method epilogues are not used
as thread yield points by the JVM. We leave support for thread priorities and
priority-based scheduling to our future work (see the end of Sect. 7 for details).

We propose to use two platform-specific restrictions of concurrency for the
purpose of addressing state explosion in model checking of Java programs for
such platforms with JPF — specifically, we propose (i) to bound the maximal
number of threads that can run in parallel, and (ii) to consider only specific
bytecode instructions and calls of specific methods as thread yield points.

Maximal number of parallel threads. The rationale behind this restriction
is that if there are N processors in a Java platform and M threads running in
parallel, such that M > N , only at most N threads can compete for a particular
shared variable at a specific moment in time (exactly N threads can compete
only if there are N active threads at the moment). Therefore, if this restriction
is applied, JPF has to explore only those thread interleavings that correspond
to parallel execution of some N threads at most at each point in the program’s
running time. In particular, it is not necessary to explore those interleavings that
involve suspending of a thread Ti, 1 ≤ i ≤ N , and scheduling of another thread
Tj, N + 1 ≤ j ≤ M , when an access to a shared variable occurs in Ti.

Thread yield points. Since we focus only on Java platforms for non-real-
time embedded systems that involve JVMs like CLDC, for the purpose of model
checking of Java programs with JPF it is sufficient to consider as thread yield
points only those bytecode instructions and method calls, whose effects are visi-
ble to other threads and may therefore influence their behavior. Effects visible to
other threads are, most notably, changes of shared variables’ values and changes
of threads’ status (including synchronization). Therefore, the set of program
points considered as thread yield points by JPF has to include (i) bytecode in-
structions that correspond to acquiring and releasing of monitors (locks) and
(ii) calls of methods that change status of a thread (specific methods of the
Thread class, and the wait and notify methods). If the platform involves mul-
tiple processors, JPF has to consider as thread yield points also bytecode in-
structions corresponding to accesses to shared variables — this is necessary in
order to properly capture the contention for the shared variables among multiple
threads running concurrently or truly in parallel.

Consequences on model checking with JPF. A consequence of applica-
tion of both restrictions of concurrency in model checking with JPF is that the
number of thread scheduling choices on any execution path in a checked Java
program is greatly reduced, which implies that the number of paths (branches)
in the state space of the Java program is greatly reduced. Therefore, the whole
reachable state space of a multi-threaded Java program is much smaller and thus
model checking of such a program with JPF is less prone to state explosion. Note,
however, that if there is a thread yield point (e.g., acquire of a monitor or call
of wait) between each pair of accesses to shared variables in the program code,

126 P. Parizek and T. Kalibera

then the proposed restrictions would not help very much (even if the number of
processors is set to 1) — the state space size would be the same as in the case
of default JPF with no restriction.

Given the Java program on Fig. 2, JPF with both restrictions and the num-
ber of processors set to 1 may terminate transitions (i.e. suspend and schedule
threads) only at program points corresponding to bytecode instructions for: en-
try to a synchronized block (source code lines 7, 14, 27 and 34), call of the
wait method (lines 8 and 28), call of the notify method (lines 15 and 35), and
start of a thread (lines 45 and 46). This means, for example, that the code at
lines 11 and 12 will be executed atomically (in a single transition) by JPF. If the
number of processors is set to 2, JPF may terminate transitions also at program
points (bytecode instructions) corresponding to accesses to shared variables —
this includes, in particular, accesses to the buffer variable (source code lines 8,
11, 12, 28 and 32).

JPF extension. We have implemented the proposed restrictions of concur-
rency in a JPF extension. The extension has two components: a custom choice
generator, which maintains the mapping of threads to processors, and a custom
scheduler, which creates an instance of the choice generator at each scheduling-
relevant instruction (corresponding to a thread yield point or an access to a
shared variable). An instance of the choice generator, which is associated with a
particular state, determines the correct set of threads that can be scheduled at
that state with respect to the JPF extension’s configuration. The configuration
consists of the number of processors in a Java platform (unlimited by default)
and of a boolean flag that determines whether thread yield points should be at-
tached only to selected program points (for green or quasi-preemptive threading)
or to all program points (for time preemption).

6 Experiments

We have performed a number of experiments with our JPF extension in order to
find how much the proposed platform-specific restrictions of concurrency help in
addressing state explosion in model checking of multi-threaded Java programs
with JPF. To be more specific, we performed two sets of experiments — the
goal of the first set of experiments was to show how much the restrictions of
concurrency reduce the size of the whole state space, and the goal of the second
set of experiments was to show how much the restrictions reduce the time and
memory needed to find concurrency errors.

All the experiments were performed on the Purdue Java Collision Detector
(PCD), which is a plain-Java version of the Purdue Real-Time Collision Detec-
tor [18,1] developed at the Purdue university as a benchmark for Java virtual
machines. PCD is a non-trivial model (12Kloc in Java) of a multi-threaded Java
application that could be run on Java platforms for embedded systems. The
architecture of PCD is an instance of the classic producer-consumer pattern
that involves three threads running in parallel — the main thread that starts

Platform-Specific Restrictions on Concurrency 127

other threads and waits till they finish (via Thread.join), simulator thread
(producer), and detector thread (consumer). The simulator thread computes ac-
tual positions of physical objects (aircrafts) with respect to time and generates
messages with information about positions of the objects, which it sends to the
detector thread via a shared buffer. The detector thread performs the actual
detection of collisions on the basis of information received from the simulator
thread. The aspect of PCD’s code that has the greatest influence on the size of
its state space is the number of messages generated by the simulator thread and
sent to the detector thread — the number of messages to be exchanged between
the threads in a particular run of PCD can be specified via one of the PCD’s
configuration variables.

Configuration of each experiment consists of (i) the number of messages ex-
changed between the simulator and detector threads and (ii) the list of restric-
tions of concurrency that are applied. If the restriction of the maximal number
of threads that can run in parallel is used, then also the number of proces-
sors in a platform has to be provided. We selected two relatively low num-
bers of messages in PCD — 5 and 10 — in order to make checking with JPF
finish in reasonable time. As for JPF, we have used three different configura-
tions:

– native threading with time preemption and no bound on the number of
threads running in parallel (default in JPF),

– quasi-preemptive threading with two processors, and
– green threading with a single processor.

Note that both the restriction of the set of thread yield points and the bound
on the number of threads running in parallel are applied in the latter two con-
figurations. The difference is in the number of processors, which determines
the bound on the number of threads running in parallel. For the purpose of
experiments in the first set, we turned off the search for errors of any kind
in JPF in order to let JPF traverse the whole state space of PCD and we
also put a limit on the maximal running time of JPF and on the available
memory — the limits were set to 5 days (432000 seconds) and 3 GB, respec-
tively.

Table 1. Results of experiments on PCD: traversal of the whole state space

Restrictions Time (s) Mem (MB) States

5 messages

default JPF (no restriction) > 432000 1967 19992569
quasi-preemptive threading + two processors 2317 1535 102482
green threading + single processor 127 740 5217

10 messages

default JPF (no restriction) > 432000 1725 19986412
quasi-preemptive threading + two processors 41803 2249 2016072
green threading + single processor 3369 1336 162093

128 P. Parizek and T. Kalibera

Table 2. Results of experiments on PCD: search for concurrency errors

Restrictions Time (s) Mem (MB) States

5 messages

default JPF (no restriction) 38 487 1260
quasi-preemptive threading + two processors 16 396 236
green threading + single processor 17 401 236

10 messages

default JPF (no restriction) 42 496 1420
quasi-preemptive threading + two processors 21 416 391
green threading + single processor 20 411 391

The results of experiments are listed in Tables 1 and 2. We measured the
following characteristics of JPF runs: time in seconds, memory in MB and total
number of states. If checking with JPF exceeded the time limit in case of exper-
iments in the first set, then the value of the ’Time’ column is set to ”> 432000”
(number of seconds in 5 days) and the value of the ’Memory’ column shows the
peak in memory usage up to the point of limit’s exceeding. Similarly, if checking
with JPF run out of available memory, then the value of the ’Memory’ column
is set to ”> 3 GB” and the value of the ’Time’ column shows the time of run-
ning out of memory. The ’States’ column shows the number of states traversed
up to the moment of exceeding the limit in both cases. The concurrency errors
discovered by experiments in the second set were race conditions in accesses to
the shared buffer that were already present in the code of PCD.

7 Evaluation and Related Work

The results of experiments on PCD (Sect. 6) show that the proposed platform-
specific restrictions of concurrency help quite significantly in addressing state
explosion in model checking of multi-threaded Java programs for embedded sys-
tems with JPF. Specifically, the restrictions reduce the size of the state space
of such Java programs by an order of magnitude and they also reduce the time
needed to discover concurrency errors in the code. In case of really complex
multi-threaded Java programs, for which model checking with JPF may still not
be realistic due to state explosion, the proposed restrictions at least make it
possible for JPF to explore a larger part of the programs’ state space and thus
also to discover more errors in the code. This is very important in particular for
programs used in critical systems, where the costs of errors (and fixing of errors
in already deployed systems) are typically very high.

An inherent drawback of the proposed restrictions is that results of model
checking with JPF are specific to a particular platform. A given Java program
has to be verified separately for each Java platform on which it will be deployed,
since a run of JPF will discover only those errors that may occur on a particular
Java platform characterized by the specific configuration of the restrictions. Nev-
ertheless, this is not a big issue in the domain of embedded systems, since both

Platform-Specific Restrictions on Concurrency 129

the hardware and software configurations of an embedded platform are typically
specified in advance — this is the case especially for critical embedded systems.

Also, the restrictions of concurrency are not specific to Java programs and
neither to model checking with JPF — the same or similar platform-specific
restrictions could be applicable to programs in any mainstream programming
language that supports multi-threading (e.g., C# and C), and they could be
implemented in any model checker for such languages with the goal of improving
performance and scalability of verification.

Related work. Many techniques for addressing state explosion in model check-
ing were proposed and implemented over the years — an extensive overview
of the techniques can be found in [17]. Focusing on model checking of multi-
threaded programs, the techniques most closely related to our approach can be
divided into two groups:
1. techniques for reduction of the number of states and paths in the state space

that have to be explored in order to check the behavior of a given program
under all possible sequences of thread scheduling choices, and

2. techniques for efficient discovery of some errors only that are based on traver-
sal of a part of the state space.

The first group of techniques includes, for example, partial order reduction [8]
and thread symmetry reduction [13], while the second group includes heuristics
for state space traversal [10] (directed model checking) and techniques based
on bounding of the number of thread context switches [19,20,16]. All these tech-
niques are complementary to our approach — they can be applied in combination
with the platform-specific restrictions of concurrency in order to mitigate state
explosion even further.

We are, however, not aware of any approach or technique that attempts to
exploit concurrency-related characteristics and properties of a specific platform
(runtime environment) for programs with the goal of addressing state explo-
sion. The only approach in a similar direction that we are aware of is memory
model-sensitive model checking [11,6], which aims to improve the completeness
of model checking with respect to behavior of state-of-the-art compilers for mod-
ern programming languages (Java, C#). The key idea is to also take into account
possible reorderings of operations that are allowed by the memory model and/or
concurrency model of a language — typically, reorderings of writes to variables
are performed by compilers for the purpose of performance optimization.

Future directions. Although the proposed restrictions of concurrency help
quite significantly in addressing state explosion in model checking of multi-
threaded Java programs with JPF, still there is much space for further opti-
mization. We have identified several additional platform-specific restrictions of
concurrency that could reduce the state space size of multi-threaded Java pro-
grams even further, thus making model checking with JPF even more scalable.
The additional restrictions can be divided into two groups: (i) restrictions im-
posed by the Real-Time Specification for Java (RTSJ) [4] and (ii) more realistic
modeling of time preemption.

130 P. Parizek and T. Kalibera

Ad (i) The key aspect of concurrency imposed by RTSJ is strict enforcement
of thread priorities, which means that a runnable thread with the highest priority
always has to be scheduled at each thread scheduling choice point. The number
of thread scheduling sequences can be significantly reduced in this way. On the
other hand, it is necessary to capture asynchronous unblocking of threads with
high priorities (e.g., when a higher priority thread was blocked in an attempt
to read data from a file and the data become available) and dynamic changes
of priorities during a program run (e.g., via the setPriority method of the
Thread class). Moreover, bytecode instructions corresponding to back-branches,
and probably also bytecode instructions corresponding to method prologues and
epilogues, would have to be considered as thread yield points by JPF in order to
faithfully capture the concurrency-related behavior and characteristics of Java
platforms for real-time systems (e.g., such that involve Purdue OVM [3]). An-
other option related to real-time programs is to consider only those sequences of
thread scheduling choices that are determined as valid with respect to temporal
constraints (e.g., real-time deadlines) by WCET analysis [25]. Technically, the
restriction to valid sequences of thread scheduling choices can be implemented
by a specific choice generator and the WCET analysis can be performed by an
external tool.

Ad (ii) A possible approach to more realistic modeling of time preemption in
JPF is to suspend a thread at a Java bytecode instruction with visible effects
on shared variables only when the thread has run out of its time slot. This way
it could be possible to model-check complex server-side business applications
in Java (i.e. such as those that typically run on Java platforms for server and
desktop systems), which are characteristic by a great number of accesses to
shared variables. Nevertheless, a prerequisite for this optimization is support for
modeling of real time and execution cost of bytecode instructions in JPF.

Restrictions of concurrency of some form could also be applied for the purpose
of efficient model checking of programs that use actor concurrency and huge
numbers of lightweight threads (JVM-level threads). This is, for example, the
case of programs written in the Scala language [21], which are compiled to Java
bytecode and run on JVMs, or Java programs using the Kilim library [22].

8 Conclusion

In this paper, we proposed a technique for addressing state explosion in model
checking of multi-threaded Java programs for embedded systems, which is based
on restrictions of concurrency and thread scheduling that are common in current
Java platforms for embedded systems. The technique is complementary to ex-
isting approaches for addressing state explosion — it aims to reduce the size of
the whole state space of a given program, while most of the existing techniques
aim to reduce the number of states and paths in the state space that have to be
explored by a model checker to check all behaviors of a program. We have imple-
mented the technique as an extension to Java PathFinder and performed several
experiments on Purdue Collision Detector, which is a non-trivial multi-threaded

Platform-Specific Restrictions on Concurrency 131

Java program, in order to show the benefits of the technique. The results of our
experiments show that the proposed restrictions (i) reduce the state space size
of Java programs by an order of magnitude and (ii) reduce the time needed to
discover concurrency errors.

While the proposed technique helps in addressing state explosion quite sig-
nificantly, there is a number of additional platform-specific restrictions of con-
currency and optimizations that could be used to mitigate state explosion even
further. We plan to focus especially on restrictions and optimizations related to
Real-Time Specification for Java (RTSJ), since software for critical embedded
systems often has real-time characteristics.

Acknowledgments. This work was partially supported by the Czech Academy
of Sciences project 1ET400300504 and by the Grant Agency of the Czech Re-
public project 201/08/0266.

References

1. Andreae, C., Coady, Y., Gibbs, C., Noble, J., Vitek, J., Zhao, T.: Scoped Types and
Aspects for Real-Time Java. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067,
pp. 124–147. Springer, Heidelberg (2006)

2. Andrews, T., Qadeer, S., Rajamani, S.K., Rehof, J., Xie, Y.: Zing: A Model
Checker for Concurrent Software. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS,
vol. 3114, pp. 484–487. Springer, Heidelberg (2004)

3. Armbuster, A., Baker, J., Cunei, A., Flack, C., Holmes, D., Pizlo, F., Pla, E.,
Prochazka, M., Vitek, J.: A Real-Time Java Virtual Machine for Avionics. ACM
Transactions on Embedded Computing Systems 7(1) (2007)

4. Bollella, G., Gosling, J., Brosgol, B., Dibble, P., Furr, S., Turnbull, M.: The Real-
Time Specification for Java. Java Series. Addison-Wesley, Reading (2000)

5. CLDC HotSpot Implementation Virtual Machine, White Paper, Sun Microsystems,
http://java.sun.com/products/cldc/wp/CLDC_HI_WhitePaper.pdf (accessed in
March 2009)

6. De, A., Roychoudhury, A., D’Souza, D.: Java Memory Model aware Software Val-
idation. In: Proceedings of the 8th ACM Workshop on Program Analysis for Soft-
ware Tools and Engineering (PASTE 2008). ACM Press, New York (2008)

7. Dwyer, M.B., Hatcliff, J., Hoosier, M., Robby: Building Your Own Software Model
Checker Using The Bogor Extensible Model Checking Framework. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 148–152. Springer,
Heidelberg (2005)

8. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems.
LNCS, vol. 1032. Springer, Heidelberg (1996)

9. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd
edn. Addison-Wesley, Reading (2005)

10. Groce, A., Visser, W.: Heuristics for Model Checking Java Programs. International
Journal on Software Tools for Technology Transfer 6(4) (2004)

11. Huynh, T.Q., Roychoudhury, A.: A Memory Model Sensitive Checker for C#. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 476–491.
Springer, Heidelberg (2006)

132 P. Parizek and T. Kalibera

12. IBM J9 Java Virtual Machine, http://wiki.eclipse.org/index.php/J9 (ac-
cessed March 2009)

13. Iosif, R.: Symmetry Reductions for Model Checking of Concurrent Dynamic Soft-
ware. International Journal on Software Tools for Technology Transfer (STTT) 6(4)
(2004)

14. Jikes RVM (Research Virtual Machine), http://jikesrvm.org (accessed in March
2009)

15. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification, 2nd edn. Prentice
Hall, Englewood Cliffs (1999)

16. Musuvathi, M., Qadeer, S.: Iterative Context Bounding for Systematic Testing of
Multithreaded Programs. In: Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2007). ACM Press,
New York (2007)

17. Pelanek, R.: Fighting State Space Explosion: Review and Evaluation. In: Cofer, D.,
Fantechi, A. (eds.) FMICS 2008. LNCS, vol. 5596, pp. 37–52. Springer, Heidelberg
(2009)

18. Pizlo, F., Fox, J., Holmes, D., Vitek, J.: Real-time Java Scoped Memory: Design
patterns and Semantics. In: Proceedings of the 7th IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing (ISORC 2004). IEEE CS,
Los Alamitos (2004)

19. Qadeer, S., Rehof, J.: Context-Bounded Model Checking of Concurrent Software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

20. Rabinovitz, I., Grumberg, O.: Bounded Model Checking of Concurrent Programs.
In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 82–97.
Springer, Heidelberg (2005)

21. The Scala Programming Language, http://www.scala-lang.org/ (accessed in
March 2009)

22. Srinivasan, S., Mycroft, A.: Kilim: Isolation-Typed Actors for Java. In: Vitek, J.
(ed.) ECOOP 2008. LNCS, vol. 5142, pp. 104–128. Springer, Heidelberg (2008)

23. Sun Java SE HotSpot, Sun Microsystems,
http://java.sun.com/javase/technologies/hotspot/ (accessed in March 2009)

24. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model Checking Programs.
Automated Software Engineering Journal 10(2) (2003)

25. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.B.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P.P., Staschulat, J., Stenstrom, P.: The Worst-Case Execution-Time
Problem - Overview of Methods and Survey of Tools. ACM Transactions on Em-
bedded Computing Systems 7(3) (2008)

Formal Analysis of Non-determinism in Verilog

Cell Library Simulation Models

Matthias Raffelsieper1, MohammadReza Mousavi1, Jan-Willem Roorda2,
Chris Strolenberg2, and Hans Zantema1,3

1 Department of Computer Science, TU Eindhoven,
P.O. Box 513, Eindhoven, The Netherlands

{M.Raffelsieper,M.R.Mousavi,H.Zantema}@tue.nl
2 Fenix Design Automation,

P.O. Box 920, Eindhoven, The Netherlands
{janwillem,chris}@fenix-da.com

3 Institute for Computing and Information Sciences, Radboud University
P.O. Box 9010, Nijmegen, The Netherlands

Abstract. Cell libraries often contain a simulation model in a system
design language, such as Verilog. These languages usually involve non-
determinism, which in turn, poses a challenge to their validation. Sim-
ulators often resolve such problems by using certain rules to make the
specification deterministic. This however is not justified by the behavior
of the hardware that is to be modeled. Hence, simulation might not be
able to detect certain errors. In this paper we develop a technique to prove
whether non-determinism does not affect the behavior of the simulation
model, or whether there exists a situation in which the simulation model
might produce different results. To make our technique efficient, we show
that the global property of equal behavior for all possible evaluations is
equivalent to checking only a certain local property.

1 Introduction

System description languages such as (System)Verilog and SystemC provide sev-
eral abstraction layers for specifying designs. At higher levels of abstraction, such
languages allow for designs with non-deterministic behavior. Although this fa-
cility is desirable for high-level designs, it poses a serious challenge for their
validation. The common practice in hardware design is to use dynamic vali-
dation using simulation kernels, which in turn usually fix a scheduler (i.e., fix
several, otherwise arbitrary, parameters) in order to obtain an execution trace
of the system. As a result, many plausible runs of the system may be hidden
during the validation phase but only show up in the subsequent lower layers and
thus, jeopardize the correctness of the final outcome.

An exhaustive search of all possible non-deterministic behavior, using sym-
bolic model-checking techniques, can theoretically solve this challenge. However,
in most practical cases, taking all combinations of non-deterministic behavior of
components leads to an intractable (symbolic) state space. To alleviate this prob-
lem, two main techniques are used: language-based techniques, which make use

M. Alpuente, B. Cook, and C. Joubert (Eds.): FMICS 2009, LNCS 5825, pp. 133–148, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

134 M. Raffelsieper et al.

of language (e.g., Verilog) constructs to rule out irrelevant/impossible combina-
tions at design time and reduction techniques, which propose efficient algorithms
to explore only a fraction of the state space while providing sound verification
results. The aim of the present paper is to tackle this challenge by combining
the above-mentioned techniques in the verification of Verilog cell libraries.

The main motivation for this paper comes from our ongoing cooperation with
Fenix Design Automation on the verification of cell libraries. In our earlier pub-
lication [8], we report on a formal semantics for the subset of Verilog used in
cell libraries. There we observed that the IEEE Standard for Verilog [1], allows
for non-deterministic behavior, due to the unspecified order of processing input
changes (in case of simultaneous changes in the inputs). Tackling this hugely
non-deterministic structure naively (by using a brute-force search) is bound for
failure according to our past experience.

In this paper, we propose exhaustive analysis techniques for Verilog cell li-
braries while addressing their non-deterministic behavior. Our approach is in-
spired by confluence-checking and confluence reduction techniques from term
rewriting and makes use of Verilog timing checks (taking into account constructs
such as $hold and $recovery). Although we develop and apply our techniques
to the verification of cell libraries in Verilog, the general problem addressed in
this paper is ubiquitous in system design and thus, the techniques can be adapted
to and adopted for other domains and input languages. To aid this, we abstract
from the exact implementation of evaluating user defined primitives in Verilog
and fix only the structure of the computation and two intuitive properties.

Related work. In [5], an application of dynamic partial-order reduction tech-
niques is used to efficiently explore all possible execution runs of a test-suite for
parallel SystemC processes. To this end, the code of parallel SystemC processes is
analyzed and non-commutative transitions are detected. Subsequently, all possi-
ble permutations of non-commutative actions are considered in order to generate
all schedules that may possibly lead to different final states. The technique re-
ported in [5] is comparable to our confluence-detection and -reduction technique
(used in [5] for the purpose of testing instead of exhaustive model-checking). The
input language considered in [5] is very rich and hence to cater for the dynamic
communication structure of parallel processes some manual code instrumenta-
tion is required there, which may be a restrictive factor in industrial cases. In
[6], the approach of [5] is enhanced with slicing techniques and combined with
static partial order reduction techniques.

Neither of the approaches reported in [5,6] claim the minimality of the gener-
ated schedules. Our approach, however, guarantees that for each two generated
schedules, they do produce different output from some initial state and thus,
there is a formal justification for including both.

In [4], the technique of [5] is extended to test the vulnerability of a sys-
tem against changes in the timing specification. To this end, they consider the
deviation in timing specification as an ordinary set of inputs for the test pro-
cess, and thus, check whether a certain choice of deviation for timing specifica-
tion can result in a new schedule (order of execution), which was not possible

Formal Analysis of Non-determinism in Verilog Cell Library Models 135

before. Conceptually, this might be considered as dual to our approach, where
we make sure that extra, possibly erroneous, execution traces are ruled out by
an appropriate timing specification.

Structure of the paper. In Section 2, we recall some preliminary concepts.
In Section 3, we introduce our basic analysis techniques, namely, commuting
diamond analysis and timing checks. In Section 4, we show how to combine
these techniques and use model-checking in order to generate concrete counter-
examples witnessing all sources of non-determinism in a Verilog cell library. In
Section 5, we report on the result of experiments with open source and propri-
etary cell libraries. Section 6 concludes the paper.

2 Preliminaries

2.1 Basic Concepts

Permutations and Lists. We let Πn denote the set of all permutations on the set
{1, . . . , n}, that is, all bijective functions from {1, . . . , n} to {1, . . . , n}. Composi-
tion of permutations is denoted by juxtaposition, where (π1 π2) (x) = π1(π2(x)).
The identity permutation is denoted by id. It is well known that every permu-
tation can be expressed as the composition of adjacent transpositions. A trans-
position is a permutation denoted (a b) and defined as (a b)(a) = b, (a b)(b) = a,
and (a b)(i) = i for all 1 ≤ i ≤ n, i /∈ {a, b}. (a b) is called adjacent if b = a + 1.

The set Πn denotes the set of all lists of numbers from 1 to n which do not
contain duplicates. A list � ∈ Πn is denoted � = j1 : . . . : jk : nil, with the
constructor : associating to the right. This list � is interpreted as the start of a
permutation π�, i.e., an injective function from {1, . . . , k} to {1, . . . n}, for which
we have π�(m) = jm for all 1 ≤ m ≤ k. The length of a list is denoted |�|
and is defined as |j : �′| = 1 + |�′| and |nil| = 0. Therefore, we have that � is
a permutation if |�| = n. We identify every permutation π ∈ Πn with the list
π(1) : . . . : π(n) : nil. A list � = j1 : . . . : jk : nil ∈ Πn can be constructed by
concatenating two lists �1, �2 ∈ Πn, denoted �1++�2 = �, if �1 = j1 : . . . : jm : nil
and �2 = jm+1 : . . . : jk : nil for some 1 ≤ m ≤ k.

User defined primitives (UDPs). UDPs are the main building blocks in the Ver-
ilog specification of cell libraries. They specify the behavior of basic IP blocks
in the form of tables defining an output value corresponding to a set of input
values (or changes therein). UDPs can be combinational or sequential, where in
the latter the current value of output is not only dependent on inputs but also
on the previous value of outputs. Verilog provides different notation for com-
binational and sequential circuits, with which we deal in our implementation;
however, for the sake of uniformity, we only consider sequential UDPs. (Combi-
national UDPs are of little relevance for our study of non-determinism anyway.)
In this setting, combinational UDPs can be considered as sequential UDPs, in
which the row corresponding to the previous value of output is arbitrary (de-
noted by ?). Henceforth, we drop the word sequential and simply write UDP for
sequential UDP.

136 M. Raffelsieper et al.

UDPs work on the ternary values T, defined as {0, 1, X}. Here, the values 0
and 1 correspond to the Boolean values false and true, respectively. The third
value X can be thought of as representing an unknown value, however this is
not enforced for UDPs. A UDP with n inputs is a set of rows of the shape
i1 . . . in : op : o, where op, o ∈ T, there exists at most one j, with 1 ≤ j ≤ n, such
that ij ∈ T×T, and for all 1 ≤ k ≤ n with k �= j, ik ∈ T. The input specification
for ij is called an edge, the other specifications are called levels. Note that at
most one edge specification is allowed in a row; hence, multiple changes in the
inputs should be handled one by one and by matching against different rows.
Furthermore, for each two rows r1 = i1 . . . in : op : o1 and r2 = i1 . . . in : op : o2

in a UDP it holds that o1 = o2, i.e., two rows specifying the same input and
previous output should also produce the same output.

The set of UDPs with n inputs is denoted by UDPsn. Note that in Verilog,
row definitions often contain syntactic sugar that allows to combine multiple row
specification in a single row. For example, the symbol ? represents all levels (i.e.,
all of the three values 0, 1, X), whereas the symbol ∗ represents all edges (i.e., all
specifications (v w) with v, w ∈ T and v �= w). Furthermore, the symbol − can
be used in the last column of the row, which indicates the current output value
for this row. This symbol stands for no change in the output, i.e., if the value
in the previous column, indicating the previous output value, is a value from T,
then it can be placed here. A row is called level-sensitive if all of its specifications
are levels, otherwise, if it contains an edge, it is called edge-sensitive. A UDP
can be instantiated in a module specification.

An example of a sequential UDP, a D Flip-Flop with an enable input, together
with a module that instantiates it, is given in Figure 1. A sequential UDP can
be distinguished by the keyword reg, which declares that the output holds its
value between assignments. We use this UDP as our running example throughout
the paper. In particular, we check whether prim ff en uniquely determines an
output function regardless of the order of evaluating its inputs. In other words,
we would like to check whether this UDP is order-independent.

2.2 Semantics of UDPs

We defined the formal semantics of UDPs in [8]. In this section, we briefly recall
this semantics and define some notations (for the computation of intermediate
states). Furthermore, we state some semantic properties, which are of relevance
for the technical developments in the remainder of the paper.

For a UDP udp with n inputs, we define the set of all input vectors for
this UDP to be Iudp = (T × T)n. We drop the subscript udp whenever the
considered UDP is clear from the context. Given a UDP and an input vector
�i = ((ip1, i1), . . . , (i

p
n, in)) ∈ I for it, we define projections on it: For 1 ≤ k ≤ n,

the projections ρp
k, ρk : I → T are defined as ρp

k(�i) = ipk and ρk(�i) = ik. The set
of all projections for a given UDP udp is denoted Projudp . We drop the subscript
when the udp is understood from the context. Furthermore, a substitution for
such a vector is denoted by σ = [ap

1 := v1, . . . , a
p
r := vr, b1 := w1, . . . , bs := ws]

where a1, . . . , ar, b1, . . . , bs ∈ {1, . . . , n}, v1, . . . , vr, w1, . . . , ws ∈ T, and for every

Formal Analysis of Non-determinism in Verilog Cell Library Models 137

primitive p r im f f en (q , d , ck , en) ;
output q ; reg q ;
input d , ck , en ;

table
// d ck en : q : q+

0 (01) 1 : ? : 0 ;
1 (01) 1 : ? : 1 ;
? (10) ? : ? : −;
∗ ? ? : ? : −;
? ? 0 : ? : −;
? ? ∗ : ? : −;

endtable
endprimitive

module f f e n (q , d , ck , en) ;
output q ;
input d , ck , en ;

p r im f f en (q , d , ck , en) ;
endmodule

Fig. 1. D Flip-Flop with Enable

1 ≤ i, j ≤ r with i �= j we have ai �= aj and also for every 1 ≤ i, j ≤ s with i �= j

we have bi �= bj . The application of a substitution σ to a vector �i is denoted �iσ

and is defined for all 1 ≤ k ≤ n as ρp
k(�iσ) = v if kp := v ∈ σ, ρk(�iσ) = w if

k := w ∈ σ, and ρp
k(�iσ) = ρp

k(�i), ρk(�iσ) = ρk(�i) in the respective other cases.
We formally defined the semantics of UDP evaluation previously in [8]. This

semantics works by considering one input at a time as changed and computing
the corresponding next output, which is then used as previous output during
the next computation. Intuitively, the next output is computed as follows: First,
it is checked whether the considered input has changed. If not, then also the
output remains unchanged. Otherwise, the output is determined by looking up
a matching row (taking into account that, according to the IEEE standard [1],
level-sensitive rows have precedence over edge-sensitive rows) and using its out-
put value. If no such row exists, but the considered input has changed, the next
output is set to the default value X.

In this paper, we do not need the full formal definition of the functions,
denoted Φj : I × T → T, that are used repeatedly to compute the output when
considering the j-th input as changed. Instead, we abstract from the concrete
implementation in Verilog and only require two properties of these functions.

The first requirement is that when the input considered by such a function
is unchanged, then also the output remains unchanged. This clearly holds for
Verilog, as can already be seen from the above informal description.

138 M. Raffelsieper et al.

Property 1. Let 1 ≤ j ≤ n and let �i ∈ I such that ρp
j (�i) = ρj(�i). Then for all

op ∈ T, Φj(�i, op) = op.

The second requirement states that the computation of a next output value only
depends on the previous values of the inputs, except for the currently considered
one. Therefore, one may change a non-considered input of a UDP and will still
get the same next output value.

Property 2. Let 1 ≤ j ≤ n, let 1 ≤ k ≤ n with k �= j, let �i ∈ I, and let v, op ∈ T.
Then Φj(�i, op) = Φj(�i[k := v], op).

Also this property holds for the concrete functions Φj used in Verilog. Intuitively,
this is the case since a change on a different position has either already taken
place, or it will only take place shortly after the current change.

The semantics of UDP evaluation repeatedly updates the output value, using
the above output functions Φj in some specified order. It is defined by the func-
tion �·� : UDPsn × I × T × Πn → T, which differs slightly from the definition
in [8] since in this paper we are also interested in output values after considering
only certain inputs, instead of full permutations. Hence, we use a list, instead of
a permutation and an index, to identify the input to be considered next. For a
udp ∈ UDPsn, a vector �i ∈ I of previous and current input values, a previous
output value op ∈ T, and a list j : � ∈ Πn the evaluation is defined recursively:

�udp,�i, op, nil � = op

�udp,�i, op, j : � � = �udp,�i[jp := ρj(�i)], Φj(�i, op), � �

We will drop the argument udp from the above function if the evaluated UDP
is clear from the context. Hence, instead of �udp,�i, op, �� we write ��i, op, ��.

Order Independence. A sequential UDP udp with n inputs is called order-
independent, if for all previous and current inputs �i, all previous outputs op,
and all permutations π, π′ ∈ Πn considered as lists, as defined above, we have
��i, op, π� = ��i, op, π′�. Otherwise, it is called order-dependent.

In the example of Figure 1, we have that the order of the inputs d and ck
matters for the output of the UDP: For example, if both inputs change from 0
to 1 and the flip-flop is enabled by setting input en to 1, then the value of the
output q depends on whether the previous or the current value of input d is used,
since in the former case the first row is applicable and sets the output of the UDP
to 0, whereas in the latter case the second row is applicable and sets the output
to 1. Formally, we have for the UDP prim ff en that �((0, 1), (0, 1), (1, 1)), op,
2 : 1 : 3 : nil� = 0 �= 1 = �((0, 1), (0, 1), (1, 1)), op, 1 : 2 : 3 : nil� for all previous
output values op ∈ T.

3 Order Dependency Analysis

3.1 Commuting Diamond Analysis

As stated in the preliminaries, a UDP is called order-dependent if two different
orders of evaluation lead to different output values. This description leads to

Formal Analysis of Non-determinism in Verilog Cell Library Models 139

�i, op

�i[ip := ρi(�i)], oi
�i[jp := ρj(�i)], oj

�i[ip := ρi(�i), j
p := ρj(�i)], o

i j

j i

Fig. 2. Commuting Diamond Property

a very simple test for order independence, namely to enumerate all pairs of
permutations and testing whether the output is the same for all pairs. This
naive approach can be slightly improved, by observing that one of the orders
can be fixed, for example to the identity permutation.

Lemma 3. A UDP udp ∈ UDPsn is order-independent iff ��i, op, π� = ��i, op, id�
for all �i ∈ I, op ∈ T, π ∈ Πn.

Proof. The “only if”-direction is trivial from the definition given in the prelim-
inaries. The “if”-part follows from the transitivity of equality. ��
This reduces the number of comparisons from O((n!)2) to O(n!). As we show
in the remainder of this section, a quadratic number of comparisons is sufficient
to prove order-independence. To this end, we consider pairs of inputs and check
whether they satisfy the commuting diamond property. Informally, this property
expresses that the order of two inputs does not influence the output.

Definition 4. Let udp ∈ UDPsn.
We say that inputs 1 ≤ i, j ≤ n, i �= j have the commuting diamond property,

denoted i 	udp j, iff for all �i ∈ I, op ∈ T:

�udp,�i, op, i : j : nil� = �udp,�i, op, j : i : nil�

The commuting diamond property is a well-known property from term rewrit-
ing, e.g., given in [2, Section 2.7.1]. The idea is that each two one-step rewrites
(evaluations) can be joined again by executing the respective other step. Graph-
ically, this is depicted in Figure 2, where only the inputs and the output value
are denoted. The solid lines are universally quantified, whereas the dashed lines
are existentially quantified.

Considering one-step evaluation as a rewrite step, the commuting diamond
property implies confluence in the induced term-rewrite system, i.e., the final
state (and hence especially the output) is unique regardless of the order of con-
sidering inputs. In the sequel we prove a stronger result, namely, that the com-
muting diamond property and confluence coincide in the case of UDP evaluation.
This relies on the semantics of UDPs and does not hold in the general setting
of term rewriting. For sake of completeness, we will also include the proof of
sufficiency of the commuting diamond property (for the purpose of confluence).

140 M. Raffelsieper et al.

The formal definition of the commuting diamond property amounts to check-
ing that in case of two simultaneous changes in the input, both orders of con-
sidering them leads to the same output. To put such evaluations into longer
evaluations, where more elements exist in the list of input numbers to be con-
sidered, the following lemma shows that this does not change the behavior.

Lemma 5. For a udp ∈ UDPsn, �i ∈ I, op ∈ T, and a list �1++�2 ∈ Πn with
�1 = k1 : . . . : k|�1| : nil:

��i, op, �1++�2� = ��i[kp
r := ρkr (�i) | 1 ≤ r ≤ |�1|], ��i, op, �1�, �2�

Proof. Induction is performed on |�1|.
If |�1| = 0, then �1 = nil, ��i, op, �1� = op, and �i[kp

r := ρkr (�i) | 1 ≤ r ≤ |�1|] =�i.
Hence, ��i, op, �1++�2� = ��i, op, �2� = ��i, ��i, op, �1�, �2�.

Otherwise, let |�1| > 0 and �1 = k1 : � with � = k2 : . . . : k|�1| : nil. Then
��i, op, �1� = ��i, op, k1 : �� = ��i[kp

1 := ρk1(�i)], o′, �� for o′ = Φk1(�i, op). Furthermore,
��i, op, �1++�2� = ��i, op, k1 : �++�2� = ��i[kp

1 := ρk1(�i)], o′, �++�2�. The induction
hypothesis is applicable to �, which proves the theorem:

��i, op, �1++�2�

= ��i[kp
1 := ρk1(�i)], o′, �++�2�

IH= ��i[kp
1 := ρk1(�i)][kp

r := ρkr (�i) | 2 ≤ r ≤ |�1|], ��i[kp
1 := ρk1(�i)], o′, ��, �2�

= ��i[kp
r := ρkr(�i) | 1 ≤ r ≤ |�1|], ��i[kp

1 := ρk1(�i)], o′, ��, �2�

= ��i[kp
r := ρkr(�i) | 1 ≤ r ≤ |�1|], ��i, op, �1�, �2� ��

Using the commuting diamond property, we can now show our main lemma.
This lemma states that the commuting diamond property is a necessary and
sufficient condition to be able to swap the order of two inputs.

Lemma 6. Let udp ∈ UDPsn and let i : j : � ∈ Πn.
We have i 	udp j, iff for all �i ∈ I and op ∈ T, ��i, op, i : j : �� = ��i, op, j : i : ��.

Proof. In the “only if”-direction, we have the following two computations:

��i, op, i : j : �� = ��i[ip := ρi(�i), jp := ρj(�i)], o , ��

��i, op, j : i : �� = ��i[ip := ρi(�i), jp := ρj(�i)], o′, ��

Lemma 5 tells us that we can split these computations, and because i 	 j holds
by assumption, we have o = ��i, op, i : j : nil� = ��i, op, j : i : nil� = o′. Since the
remaining computation is the same, we have shown this direction.

To show the “if”-direction, let i �	 j. Then �i ∈ I and op, o, o′ ∈ T exist such
that:

o = ��i, op, i : j : nil� �= ��i, op, j : i : nil� = o′

Define �i′ =�i[k := ρp
k(�i) | 1 ≤ k ≤ n, k /∈ {i, j}], i.e., set all current values to their

previous values except for those on positions i and j. Due to Property 2 we still

Formal Analysis of Non-determinism in Verilog Cell Library Models 141

have o = ��i′, op, i : j : nil� and o′ = ��i′, op, j : i : nil�. Because of Lemma 5 we
have the following two evaluations:

��i′, op, i : j : �� = ��i′[ip := ρi(�i), jp := ρj(�i)], o , ��

��i′, op, j : i : �� = ��i′[ip := ρi(�i), jp := ρj(�i)], o′, ��

By the requirements on lists in Πn, all remaining elements in � are neither i nor
j. Formally, let � = k1 : . . . : k|�| : nil, then kr /∈ {i, j} for all 1 ≤ r ≤ |�|. Hence,
we have ρp

kr
(�i′) = ρkr(�i′) by construction of �i′ for all 1 ≤ r ≤ |�|. This allows to

repeatedly apply Property 1 to prove this lemma:

��i′, op, i : j : �� = ��i′[ip := ρi(�i), jp := ρj(�i)], o , ��
= o
�= o′

= ��i′[ip := ρi(�i), jp := ρj(�i)], o′, ��
= ��i′, op, j : i : ��

��
Using the above lemma, we can now prove our desired theorem stating that
order-independence is equivalent to all pairs of inputs having the commuting
diamond property.

Theorem 7. A UDP udp ∈ UDPsn with n inputs is order-independent, iff for
all pairs 1 ≤ i < j ≤ n we have i 	udp j.

Proof. To show the “only if”-direction, let i �	 j. Define list � = 1 : . . . : i − 1 :
i+1 : . . . : j−1 : j +1 : . . . : n : nil. Then by construction both π = i : j : � ∈ Πn

and π′ = j : i : � ∈ Πn. Lemma 6 tells us that �i ∈ I and op ∈ T exist such that
��i, op, i : j : �� �= ��i, op, j : i : ��, which proves that udp is order-dependent.

To show the “if”-direction, we assume that i 	 j for all 1 ≤ i < j ≤ n. Let
π ∈ Πn with π = (a1 a1+1) · · · (ak ak+1). Induction on k is performed to prove
the property of Lemma 3.

If k = 0, then π = id and hence trivially ��i, op, π� = ��i, op, id�.
Otherwise, let π′ = (a1 a1+1) · · · (ak−1 ak−1+1). Then for �i′ = �i[π(r)p :=

ρπ(r)(�i) | 1 ≤ r < ak], o = ��i, op, π(1) : . . . : π(ak−1) : nil�, and � = π(ak+2) :
. . . : π(n) : nil we get the following due to Lemmas 5 and 6, since π′(ak)	π′(ak+1)
by assumption:

��i, op, π� = ��i, op, π′ (ak ak+1)�
= ��i′, o, π′(ak+1) : π′(ak) : ��

= ��i′, o, π′(ak) : π′(ak+1) : ��

Furthermore, for all 1 ≤ m ≤ n with m /∈ {ak, ak + 1} we have that π(m) =
π′(m). Therefore, by Lemma 5, ��i′, o, π′(ak) : π′(ak+1) : �� = ��i, op, π′�, to
which we can apply the induction hypothesis ��i, op, π′� = ��i, op, id� which shows
the theorem. ��
Coming back to the problem stated at the beginning of this section, we have
now a method to check order-independence of UDPs in just O(n2) function

142 M. Raffelsieper et al.

comparisons. To do this, we construct for every pair 1 ≤ i < j ≤ n of inputs
the BDDs of the two functions �udp,�i, op, i : j : nil� and �udp,�i, op, j : i : nil�,
which are then compared for equality. If we have equality of every such pair
of functions, then we can conclude order-independence of the UDP, due to the
above theorem. If however we find two functions that compute different outputs,
then their xor describes the counterexample states and we have found that the
UDP is order-dependent. Furthermore, the construction in the proof of Lemma 6
allows us to conclude that there is a previous output value and an input vector
in which only the currently considered inputs are changed that leads to two
different outputs depending on the order of the two considered inputs.

When applying this method to the UDP prim ff en of Figure 1, then we find,
among others, also the example for the input pair d and ck where both inputs
change from 0 to 1, which we already described previously.

For the pair d and en however, no order-dependence exists. This is intuitively
true because both changes in d and en will simply keep the current output value,
since the output of a Flip-Flop is only changed on a positive edge of the clock.

3.2 Verilog Timing Checks

Verilog provides a number of language constructs to specify that critical events
(do not) happen within a specified time interval. These constructs are widely
used, among others, by the designers of cell libraries for timing specifications
that may influence the functional correctness of the designed circuits. The most
popular constructs used for this purpose are: $setup, $hold, $recovery, and
$removal. The syntax of these constructs is given below:

$setup/$hold(reference event, data event, timing check limit
[, notifier]);

The reference event is usually an edge of the clock signal (positive, nega-
tive or arbitrary, prefixed by posedge, negedge, or no prefix, respectively). The
argument data event is a change in any data signal, and timing check limit
specifies the length of a timing interval in a specified unit of time, e.g., in nanosec-
onds. Optionally, a notifier can be supplied, which is a variable that changes
its value whenever the timing check was violated.

The syntax of the $recovery and $removal timing checks is identical to
above, but reference event for these statements denotes an edge of (an asyn-
chronous) control signal. To unclutter the presentation, we only mention $setup
and $hold in the remainder of this paper but the same techniques are applied
to $recovery and $removal constructs.

The semantics of the $setup statement enforces that no data event may
happen in the (left- and right-) open interval starting timing check limit
before the occurrence of reference event and ending by the occurrence of
reference event. The $hold statement is dual to $setup; it ensures that the
data event cannot occur in the left-closed right-open interval starting from
the occurrence of reference event and ending timing check limit time units
later. Thus, a pair of $setup and $hold constructs guarantee a safe margin
around any change in the reference event during which the data event

Formal Analysis of Non-determinism in Verilog Cell Library Models 143

cannot occur. In particular, the $hold statement prevents the reference event
and the data event from happening simultaneously. (Note that the $setup
statement does not exclude this possibility.)

Constraints Imposed by Timing Checks. As stated above, timing checks
are added to assert a certain behavior of the system. Otherwise, if this behavior
is not encountered, an error is triggered. Hence, for our purposes we can regard
the timing checks as describing illegal behavior. Since we are only interested in
whether two inputs might change simultaneously, we do not regard the actual
time limits nor the notifier variable. We only make use of the restriction that the
events of a $hold timing check may not occur simultaneously in any execution
that is considered legal.

Such constraints can reduce the number of counterexample states for which an
order-dependence is found. However, for this to work we have to infer information
about the inputs of UDPs from these constraints. The constraints are usually
defined on the inputs of the cell which are not necessarily the inputs of the UDP.

If the output of another UDP is used as input to the UDP that is currently
checked for order-independence, then we handle this case by making this in-
ternal signal a new input of the module. This input might therefore exhibit
behavior that is not possible in the implementation, i.e., we might find an order-
dependence that does not occur in the implementation.

For the combinational logic driving the inputs of the currently considered
UDP, we require that it does not contain loops and we assume that it computes
its value instantaneously. Under these assumptions, we can create functions in
the external inputs and the outputs of other UDPs (which are now also assumed
to be external inputs) and use these as inputs when checking the commuting
diamond property. Thereby, we exclude behavior that cannot occur due to func-
tional dependencies of the UDP inputs, and furthermore we get counterexample
states that are expressed using these external inputs and the output value of the
current UDP.

From these counterexample states we then remove all those states that violate
one of the constraints imposed by the $hold timing checks. This way, certain
input signals of the UDP might become order-independent in all of the allowed
executions of the module. Note however, that this order-independence does not
solely depend on the UDP anymore, but also especially on the combinational
logic and the timing checks present in the module that instantiates the UDP.

To illustrate this, we again consider the UDP prim ff en of Figure 1 which
admits an order-dependent counterexample for the pair d and ck of inputs, as
discussed above. However, this situation is usually considered to be illegal for a
D Flip-Flop, hence a designer is likely to add the following timing checks:

$hold (posedge ck , negedge d , t1) ;
$hold (posedge ck , posedge d , t2) ;

These timing checks rule out the behavior leading to the order-dependent coun-
terexample that was described earlier, since the second timing check expresses that
it is illegal for the inputs ck and d to change both from 0 to 1 simultaneously.

144 M. Raffelsieper et al.

Similarly, all other possible counterexample states involving inputs ck and d are
ruled out by these timing constraints, therefore the UDP prim ff en has no order-
dependency for these two inputs anymore under these constraints.

4 Verifying Counterexamples

In the previous sections, we presented how to check order-independence of a
UDP and how to restrict this check to only those cases which are not ruled
out by the timing specification in the form of $hold and $recovery timing
checks. However, when we report a counterexample this might still be a spurious
one. This is due to our overapproximation of UDP outputs and the fact that
Verilog has a predetermined initial state, in which all signals have the value
X. From this initial state not all counterexample states have to be reachable.
Therefore, the idea is to do a reachability analysis, to determine whether a
found counterexample is spurious or not.

4.1 Required Permutations for Reachability Analysis

Whether a counterexample is spurious or not depends on whether from the
initial state one of the counterexample states can be reached or not. However, in
contrast to our earlier approach [8], we want to consider all possible execution
traces, instead of just those that correspond to the order chosen by the simulator.
Our approach is to consider every evaluation of a UDP as independent, i.e., for
every evaluation of a UDP the order might be a different one than the order
used in another evaluation. This models the behavior of uncontrollable external
influences that might determine the order.

Since we want to keep the amount of non-determinism in the generated model
as small as possible, we do not generate all orders, but only as many orders as
needed for the UDP to exhibit all different behaviors. For this purpose, we use the
commuting diamond property presented in Section 3.1 to reduce the number of
permutations we have to consider. To this end, we create the set of equivalence
classes with respect to the transitive closure of swapping neighboring inputs
that have this property. For example, if we have 2 	 3, then the permutations
2 : 3 : 1 : nil and 3 : 2 : 1 : nil are in the same equivalence class and we only have
to consider one of them.

Definition 8. For a UDP udp ∈ UDPsn we define a relation ↔udp on Πn,
where π ↔udp π′ iff a 1 ≤ k < n exists such that π = π′ (k k+1) and π′(k) 	udp

π′(k + 1). Using this relation we define the equivalence relation ≡udp on Πn as
the reflexive transitive closure of ↔udp .

This equivalence relation can then be used to partition the set of all permuta-
tions into equivalence classes. These equivalence classes still capture all required
permutations.

Lemma 9. Let udp ∈ UDPsn. For all �i ∈ I, op ∈ T, and all permutations
π ≡udp π′ ∈ Πn we have that ��i, op, π� = ��i, op, π′�.

Formal Analysis of Non-determinism in Verilog Cell Library Models 145

Proof. Let π ≡ π′. Then π = π′ (a1 a1+1) · · · (ak ak+1) for some a1, . . . , ak ∈
{1, . . . , n − 1} with πl−1(al) 	 πl−1(al + 1) for all 1 ≤ l ≤ k, where for every
0 ≤ l < k we define πl = π′ (a1 a1+1) · · · (al al+1). Induction on k is performed.

If k = 0, then π = π′, which directly shows the desired property.
Otherwise, π = πk−1 (ak ak+1). Because of πk−1(ak) 	 πk−1(ak+1) we can

apply Lemmas 5 and 6, which give us for �i′ = �i[π(r)p := ρπ(r)(�i) | 1 ≤ r < ak],
o = ��i, op, π(1) : . . . : π(ak−1) : nil�, and � = πk−1(ak+2) : . . . : πk−1(n) : nil:

��i, op, π� = ��i, op, πk−1 (ak ak+1)�
= ��i′, o, πk−1(ak+1) : πk−1(ak) : ��

= ��i′, o, πk−1(ak) : πk−1(ak+1) : ��

Furthermore, since π(m) = πk−1(m) for all 1 ≤ m < ak, we have that ��i′, o,
πk−1(ak) : πk−1(ak+1) : �� = ��i, op, πk−1� because of Lemma 5. Hence, we can
apply the induction hypothesis which gives us ��i, op, πk−1� = ��i, op, π′�. ��
Note that above we only use the commuting diamond property and not the
$hold timing checks. To integrate the latter, we extend the commuting diamond
property to a property 	module

udp by removing counterexample states that were
ruled out, as described in the previous section. The resulting equivalence relation
is denoted ≡module

udp . Also for this relation the above lemma holds, when restricting
to only those inputs that do not conflict with the combinational logic and that
are not ruled out by a timing check.

These equivalence classes are used in the next section to implement the non-
deterministic reachability check. This is done by using only one permutation
from each equivalence class, the above lemma tells us that we thereby have
considered all possible behaviors of that UDP.

4.2 Non-deterministic Reachability Analysis

In order to check reachability, we follow the approach of [8] and encode the
problem as a Boolean Transition System (BTS), which is a transition system
with vectors of Booleans as states. However, in contrast to [8], we consider all
possible behaviors of the UDPs. For this purpose, we use the required per-
mutations as presented in the previous section and encode the problem in a
(non-deterministic) transition relation. This transition relation is defined as the
conjunction of the following formulas for each UDP in the cell:

∨

π∈Πn

/
≡module

udp

next(o) ↔ �udp,�i, o, π�B×B

To make these formulas work on Booleans, we also use a dual-rail encoding
of the ternary values, where we define 0 = (true, false), 1 = (false, true), and
X = (true, true). Furthermore, (vL, vH) ↔ (wL, wH) = (vL ↔ wL)∧ (wL ↔ wH).
The dual-rail encoding �·�B×B of UDPs is a straight-forward modification of the

146 M. Raffelsieper et al.

primitive p r im f f e n r s t (q , d , ck , en , r s t) ;
output q ; reg q ;
input d , ck , en , r s t ;

table
// d ck en r s t : q : q+

0 (01) 1 ? : ? : 0 ;
1 (01) 1 0 : ? : 1 ;
? (10) ? 0 : ? : −;
∗ ? ? 0 : ? : −;
? ? 0 0 : ? : −;
? ? ∗ 0 : ? : −;
? ? ? 1 : ? : 0 ;
? ? ? ∗ : 0 : 0 ;

endtable
endprimitive

Fig. 3. D Flip-Flop with Enable and Reset

dual-rail encoding given in [8], where instead of modeling the order used by
simulators we use the order given as extra argument.

Using such a non-deterministic BTS, we can now express the reachability
problem in the input language of the SMV model checker. The property we
want to verify is the negation of the counterexample states that we want to
reach. This way, we get a trace leading to a counterexample state in case an
order-dependent UDP can exhibit this behavior in an execution. Note however
that we have to restrict the considered traces to the legal traces, as specified
by the $hold timing checks. This is implemented by adding a state variable
hold constraints that is true if all states of the currently considered trace have
not violated any timing check.

The LTL formula to be checked for a pair i and j of order-dependent inputs
is the following, where, by slight abuse of notation, we let i�	module

udp j denote the
set of all counterexample states for this pair:

G ¬
⎛

⎝hold constraints ∧
∨

s∈i��module
udp j

s

⎞

⎠

As an example, we extend the UDP given in Figure 1 with an asynchronous reset
signal as shown in Figure 3. Furthermore, we consider the same $hold timing
checks for the ck and d inputs that were discussed in Section 3.2.

For this UDP our method finds a counterexample for the inputs d and rst.
However, this counterexample depends on the previous output value being 1
or X and the input rst having the previous value 1. Such a configuration is not
reachable, since setting the input rst to 1 in some previous state always results in
the value 0 for the output. This is verified by the SMV model checker, reporting
that none of the reachable states is a counterexample state.

Formal Analysis of Non-determinism in Verilog Cell Library Models 147

No order-dependency between the inputs d and ck is found by our method
due to the $hold timing checks, as discussed in Section 3.2, and therefore no
orders have to be considered which differ in these two inputs.

For the inputs ck and en however, a set of counterexample states is found.
When applying the encoding and checking reachability, a trace to a counterex-
ample state is produced, where the previous output is 1, inputs d and rst are 0,
and both inputs ck and en change from 0 to 1. This indeed may lead to two
different outputs of the UDP, since either the output remains unchanged if the
enable signal en is still 0 while the change in the clock ck is processed, or the
output takes on the value 0 from the input d if the enable signal is first set to 1
and then the rising edge of ck is considered.

5 Experimental Results

To check the applicability of our method, we used it on the Nangate Open Cell
Library [7]. It contains 10 different cells that instantiate a sequential UDP and
that are in the subset of Verilog studied in this paper.

Using the SMV encoding of the previous section and the NuSMV model
checker [3], we found a reachable order-dependent state for all of the cells. How-
ever, these counterexamples were due to the value X being allowed as an input
of the cell, something that is not possible in a hardware implementation. Hence,
we restricted the external inputs to be binary, i.e., to be either 0 or 1. With
this restriction, only for 6 cells states exist that can cause an order-dependency.
For 4 of these cells none of the counterexample states can be reached, hence the
UDPs used in these cells with binary inputs are order-independent.

For the last 2 cells, which are the cells DFFRS and SDFFRS implementing a
Flip-Flop (with scan logic) that can be set and reset, a counterexample state can
still be reached. The inputs that cause this behavior are in both cases the set
and reset inputs. When switching both from active to inactive, the order of this
deactivation determines the output of the cell. When deactivating the set signal
first, then the reset is still active, forcing the output to be 0. Otherwise, when
first deactivating the reset signal, the activated set signal will set the output to
be 1. Looking at the Verilog implementation, it seems that for this combination
of inputs a $hold check was forgotten, since a $setup check has been specified.
This demonstrates that formal verification of these timing checks is needed and
that our method is able to indicate what timing checks might be missing.

We measured the time it took NuSMV to model check reachability of possible
counterexample states for both the presented method based on the commuting
diamond property and the naive approach based on Lemma 3. It showed that the
approach based on the diamond property was consistently faster. Particularly for
the largest cell SDFFRS the model checking time could be reduced from more than
40 minutes to less than 40 seconds. Also NuSMV’s memory consumption was
reduced, in the case of the cell SDFFRS from more than 880 MB to ca. 110 MB.

Moreover, we have verified a proprietary cell library provided by a client to
Fenix Design Automation and found a reachable order dependency there. The

148 M. Raffelsieper et al.

reported counterexample is more complex in nature and cannot be traced back
to (and possibly even solved by the addition of) missing $hold checks. We are
investigating other timing specifications / analyses that can generically solve
such order dependencies.

6 Conclusions

In this paper, we presented formal analysis techniques for detecting nondeter-
minism in Verilog cell libraries. The source of non-determinism in cell libraries
is the arbitrary order of handling multiple changes in inputs. We showed that
instead of checking all possible ordering, which is exponential in the number of
inputs, it suffices to check the two possible evaluations for each pair of inputs.
This approach not only efficiently detects possible sources of non-determinism,
but is also complete in that any detected source of non-determinism can lead
to two different outputs from some initial state. Our approach is complemented
with the language-based control of non-determinism using setup and hold con-
structs in Verilog. We combined these two approaches and implemented them in
a model-checking tool. Open source as well as proprietary cell libraries were ana-
lyzed using our implementation and in both cases a number of counterexamples
(reachable nondeterministic behavior) were reported using our implementation.

References

1. IEEE Std 1364-2005: IEEE Standard for Verilog Hardware Description Language.
IEEE Computer Society Press, Los Alamitos (2006)

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

3. Cimatti, A., et al.: NuSMV Version 2: An OpenSource Tool for Symbolic Model
Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002), http://nusmv.irst.itc.it

4. Helmstetter, C., Maraninchi, F., Maillet-Contoz, L.: Test coverage for loose timing
annotations. In: Brim, L., Haverkort, B.R., Leucker, M., van de Pol, J. (eds.) FMICS
2006 and PDMC 2006. LNCS, vol. 4346, pp. 100–115. Springer, Heidelberg (2007)

5. Helmstetter, C., Maraninchi, F., Maillet-Contoz, L., Moy, M.: Automatic generation
of schedulings for improving the test coverage of Systems-on-a-Chip. In: Proceedings
of FMCAD 2006, pp. 171–178. IEEE Computer Society Press, Los Alamitos (2006)

6. Kundu, S., Ganai, M.K., Gupta, R.: Partial order reduction for scalable testing of
SystemC TLM designs. In: Proc. of DAC 2008, pp. 936–941. ACM Press, New York
(2008)

7. Nangate Inc. Open Cell Library v2008 05 (2008),
http://www.nangate.com/openlibrary/

8. Raffelsieper, M., Roorda, J.-W., Mousavi, M.R.: Model Checking Verilog Descrip-
tions of Cell Libraries. In: Proceedings of ACSD 2009, pp. 128–137. IEEE Computer
Society Press, Los Alamitos (2009)

Preemption Abstraction

A Lightweight Approach to Modelling Concurrency

Erik Schierboom3, Alejandro Tamalet1,�, Hendrik Tews1,��,
Marko van Eekelen1,2, and Sjaak Smetsers3

1 Digital Security Group, Radboud Universiteit Nijmegen
2 Faculty of Computer Science, Open University

3 BliXem Internet Services
{eschierb,tamalet,tews,marko,s.smetsers}@cs.ru.nl

Abstract. This paper presents the preemption abstraction, an abstrac-
tion technique for lightweight verification of one sequential component
of a concurrent system. Thereby, different components of the system are
permitted to interfere with each other. The preemption abstraction yields
a sequential abstract system that can easily be described in the higher-
order logic of a theorem prover. One can therefore avoid the cumbersome
and costly reasoning about all possible interleavings of state changes of
each system component. The preemption abstraction is best suited for
components that use preemption points, that is, where the concurrently
running environment can only interfere at a limited number of points.

The preemption abstraction has been used to model the IPC subsys-
tem of the Fiasco microkernel. We proved two practically relevant prop-
erties of the model. On the attempt to prove a third property, namely
that the assertions in the code are always valid, we discovered a bug that
could potentially crash the whole system.

1 Introduction

In this paper we focus on the verification of the following kind of systems: a
component C is running in a concurrent environment E , where E interferes asyn-
chronously with the component C by, for instance, changing some state variables
of C. The goal is to prove some specified property about the component, regard-
less of how the environment behaves.

This kind of problem appears for instance in operating-system verification.
Every recent operating system permits several threads of execution running in
quasi parallel, even on a system with only one processor core. Typically each
such thread might invoke any operating-system call. Nevertheless, the effects
the different threads might have on each other are relatively limited. For the
verification of the operating system, it is therefore often sufficient to consider only

� Sponsored by the Netherlands Organization for Scientific Research grant
612.063.511.

�� Supported by the European Union through PASR grant 104600.

M. Alpuente, B. Cook, and C. Joubert (Eds.): FMICS 2009, LNCS 5825, pp. 149–164, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

150 E. Schierboom et al.

Fig. 1. Environment (thread II + III) asynchronously interfering with thread I. The
zigzags in the lines represent system calls: the threads are executing user code in the
solid lines and operating-system code in the dotted lines. Dashed lines and separated
dots indicate that the thread is not scheduled.

one thread of execution, and to model all the threads that can asynchronously
affect the given thread as some kind of environment.

As an example, Figure 1 shows three threads. Initially, thread I and thread II
want to exchange a message via inter-process communication (IPC), while thread
III is sleeping. Thread II and thread III can be considered as the environment
of thread I, that is, they can asynchronously affect thread I. When thread I
performs a system call in order to send a message to thread II, the environment
could react in several ways (where only the last one is displayed in Figure 1):

– The environment could do nothing, corresponding to a situation where
thread II never performs the system call necessary to receive from thread I.

– The environment could engage in IPC with thread I, corresponding to a
situation where thread II successfully receives the message from thread I.

– The environment kills thread I, as displayed in Figure 1. Here thread II starts
the system call to receive from thread I, but then an external interrupt wakes
up thread III. Thread III immediately gets scheduled (for instance because
it has a higher priority) and kills thread I.

It is important to notice here that the number of different effects that the en-
vironment can have on thread I, is rather limited. Although every thread runs
arbitrary user code, there is only a limited number of system calls and only few
of them can have an effect on thread I.

Only few operating-system kernels are fully interruptible, meaning that re-
scheduling of a different thread can occur at every point in every kernel proce-
dure. Maintaining consistency of kernel data structures for a fully interruptible
kernel is difficult, therefore many kernels disable rescheduling or even interrupts
over large portions of the kernel. When real-time properties are a concern, a
kernel design with preemption points is sometimes used. In this design, inter-
rupts (and therefore rescheduling) are generally disabled, except at well-defined

Preemption Abstraction 151

points —the preemption points. Pending interrupts are then delivered only at
these points. Kernel data structures are synchronized before any preemption
point so that rescheduling a different thread (which might engage in different
kernel activities) can be done without danger of corruption.

In this article we describe and use the preemption abstraction, an abstraction
technique tailored for this kind of systems. The technique has been developed
for creating and verifying models in the higher-order logic of an interactive the-
orem prover. The preemption abstraction is equally well applicable in a model-
checking environment, although its benefits there will not be as remarkable as in
interactive theorem proving. We used the abstraction technique in the modeling
and verification of the inter-process communication (IPC) facilities of the mi-
crokernel Fiasco [HH01, Hoh98, HP01]. Our verification attempt identified one
programming error, although the part of the IPC subsystem that was modelled
was thoroughly tested and in daily use. The bug could only be triggered when
a specific interrupt occurred precisely in a very short time frame during the ex-
ecution of the IPC system call. It was therefore so unlikely to trigger the bug
that it could have stayed unidentified for decades.

This paper is organized as follows. The next section describes the preemption
abstraction while Section 3 describes Fiasco, in particular its IPC subsystem. In
Section 4 the PVS model is discused, with emphasis on the application of the
preemption abstraction. Section 5 comments on the properties that were verified
and on the programming error that was found. In Section 6 we evaluate the case
study and give pointers to future work. Finally, Section 8 draws conclusions.

2 The Preemption Abstraction

Consider a parallel system S, as exemplified in the introduction, with the fol-
lowing properties. S consists of an arbitrary number of threads and each thread
consists of a sequence of atomic blocks. Between each two atomic blocks there is
a preemption point, in which no computations and state changes are performed
(in practice a preemption point consist of one or two NOP instructions). For
each atomic block, each thread acquires a global lock, which is released during
the preemption points. Thus, a computation of the whole system consists of one
sequential interleaving of all the atomic blocks. Apart from the sequential inter-
leaving, the threads may interfere in arbitrary ways, for instance, a thread t1 may
change the state of another thread t2. Because of the sequential interleaving, t2
is of course waiting in a preemption point when t1 changes its state.

The preemption abstraction focuses on one selected thread t. All other threads
are considered as the environment of t. When t is waiting for the global lock in a
preemption point, any thread from the environment can change the state of t. All
such potential changes are collected in the set of side effects SE. For real systems
this set would typically have a small finite cardinality, but the correctness of the
abstraction does not depend on that. In this work we assume that the events
in SE are independent, however, the abstraction could still be applied if such
dependencies are made explicit on the model.

152 E. Schierboom et al.

In the following we consider (finite) lists of side effects taken from SE. Note
that one particular side effect can occur multiple times in such a list.

The preemption abstraction A of the system S consists only of the thread t
with the following changes:

– The preemption-point function is substituted for all preemption points in
t. The preemption-point function nondeterministically chooses an arbitrary
list of side effects and executes it.

– The global lock, its acquisition and release are abstracted away.

In the preemption abstraction all the other threads of S that form the environ-
ment of t are condensed into the preemption-point function.

The preemption abstractionA is a sequential model of S that faithfully models
the behavior of the thread t. Under the assumption that there are no dependen-
cies between the threads the abstraction suffices to prove arbitrary (functional)
properties of t that can be proved in S. Since it takes the point of view of a single
thread, the abstraction cannot be used to prove properties about cooperating
threads. The abstraction is sound in the sense that every property proved for t
in A also holds in S. The soundness crucially depends on the completeness of
the set of side effects SE.

The main advantage of the preemption abstraction A is that it is a sequential
model, consisting of only one thread. For a description of its behavior one does
not have to consider different interleavings of atomic blocks. The abstraction
A can therefore be conveniently described as a functional model in the higher-
order logic of an interactive theorem prover. In contrast, modelling the behavior
of S with all possible interleavings of its threads in higher-order logic would be
a major hassle. The preemption abstraction is therefore absolutely necessary in
order to verify nontrivial systems S in an interactive theorem prover.

The preemption abstraction can also be applied in a model-checking context.
Because model checkers have built-in support for parallel systems the sequen-
tiality of the preemption abstraction is not an advantage per se. However, the
reduction of the system S with its arbitrarily many threads to just one thread
should make the state space much smaller. Using the preemption abstraction for
model checking remains future work.

3 Interprocess Communication in Fiasco

The Fiasco microkernel belongs to the L4 microkernel family. It has been de-
veloped since 1998 at TU Dresden, Germany. It is mainly written in C++ with
some inline assembly and assembly short-cuts for the most performance critical
system calls. In a microkernel based system many operating-system services are
implemented as separate modules, which are running as normal application pro-
grams. Therefore inter-process communication (IPC) is often the bottleneck of
microkernel based systems. With very stringent optimizations, the L4 microker-
nel interface and some of its implementations remedied this problem, achieving

Preemption Abstraction 153

Fig. 2. Typical communication pattern for applications running on an L4 microkernel.
As before solid lines indicate user code and dotted lines indicate operating-system code.

performance within 5% of traditionally designed systems [HHW98]. The L4 fam-
ily (and other microkernels) is therefore sometimes referred to as a microkernel
of the second generation.

The Fiasco microkernel implements processes, threads, address spaces, inter-
process communication and delegation of memory resources. The only device
that the kernel controls itself is the interrupt controller. Drivers for all other
devices, such as hard disks, graphic cards and keyboards run outside of the
kernel as normal application programs.

IPC will play an important role for this paper, so let us elaborate a little bit
on it. IPC in the L4 interface is optimized for the common case of client-server
communication. There is just one system call for IPC, whose precise behavior
can be modified via certain parameters. IPC in Fiasco is always synchronous,
that is, sender and receiver must perform a rendezvous. If either the sender or
the receiver is not ready, the other party blocks. In general the IPC system call
always performs a send operation followed by a receive. Both the send and the
receive operation are optional and can be disabled via parameters to obtain a
send-only or receive-only IPC system call. If the send operation is enabled it
always sends to a specified destination thread. The receive operation can be
either open or closed. In an open receive any IPC partner is accepted, while
in a closed receive only messages from one specified thread are accepted. Both
the send and the receive operation always transfer two registers plus, optionally,
some memory contents. If some memory is copied it is called long IPC, otherwise
short IPC. Typically short IPC prevails and shared memory is used for bulk
data transfer. The time the IPC system call blocks in either the send or the
receive operation can be controlled via timeout parameters. As special cases
the timeout can be zero (abort IPC if the partner is not ready) or infinite (no
timeout).

Figure 2 shows how the IPC operation is exploited in client-server commu-
nication. At the beginning the server blocks with infinite timeout in an open
receive until client I starts a complete IPC call. This call consists of a send op-
eration and a closed receive, both with the server as IPC partner. When the

154 E. Schierboom et al.

send operation from client I to the server is complete, the server finishes its IPC
system call and starts working on the client request. Meanwhile, client I blocks
in a closed receive (typically with infinite timeout) until the server answers.

When the server finishes working on the request, it starts a new complete IPC
system call. In the send operation it sends its answer back to client I. Client I
thereby finishes its IPC system call and continues normal computation. After
sending the answer, the server blocks in an open receive waiting for the next
client. The server can thus be programmed in a loop with one IPC system call
as last statement of the loop. At server boot time, just before entering its main
loop, the server does an open receive without send operation.

In Fiasco IPC is implemented such that the sender is the active part. That is,
the sending IPC partner performs the necessary locking and copies the message.
The receiving IPC partner simply waits until some sender finished its job.1

In Fiasco, thread ID’s are 64-bit numbers. They are used to denote potential
senders and receivers. There are two special thread ID’s: the invalid thread ID,
sometimes referred to as null-thread ID, and the nil-thread ID. The nil-thread
ID can for instance be used in a closed receive with some timeout. As effect the
thread will sleep until the timeout elapses.

4 The Model

This section describes our model of Fiasco’s inter-process communication with
special emphasis on the abstraction described in Section 2.

For the formalization we chose the theorem proving approach and, in particu-
lar, we used the PVS theorem prover [OSRS01]. Section 7 describes other works
that used the model checking approach to model the same subsystem.

PVS consists of a specification language based on higher-order logic with
dependent types and predicate subtyping, and tools to create and manipulate
proofs. Its intuitive syntax is reminiscent of functional languages like Haskell.

The code that had to be modelled was written in a small subset of C++:
mainly assignments, conditionals and method calls. We reduced it even more
by abstracting most loops and splitting functions with side effects into a state
transformer plus a pure function that returns a value. This resulted in a shallow
embedding of the C++ sources in PVS.

4.1 Key Abstractions

In a real system executing on the Fiasco microkernel, many threads can run in
parallel, and each one can start an IPC system call. Therefore, the IPC code in
the kernel potentially runs in parallel with itself many times. In order to obtain a
sequential model that can be easily described in PVS, we applied the preemption
abstraction as explained in Section 2.
1 An exception are interrupts that are mapped into an IPC message to the thread that

registered for that interrupt. In this case the receiving thread is active. However,
interrupt IPC is not considered throughout this paper.

Preemption Abstraction 155

As the first step we identified the set of side effects SE. When a thread t per-
forms an IPC operation other threads can modify the state of t in the following
way: (1) the thread t can be killed, (2) a timeout can occur meaning that t
should not wait any longer for an IPC partner to become ready, (3) the IPC
operation of t can be canceled or (4) a receiver can become ready, meaning that
t can proceed with the send part of the IPC. The side effects are modeled in
PVS with the type PreemptionAction and the function doPreemptionAction, as
we will explain in Section 4.2 below.

As a second step we focused on the IPC code of just one thread, ignoring the
rest of the system. The preemption points are replaced by the preemption-point
function, which is formalized in PVS by preemptionPoint, see Section 4.2 below.
Note, that after applying the preemption abstraction there is no scheduler left in
the model. The only effect the scheduler could have is that our thread t remains
for a longer time in some preemption point and that therefore some more side
effects accumulate.

Independently from the preemption abstraction, we decided to focus on the
core functionality of IPC. We only model short IPC between real threads (no
preemption IPC, no interrupt IPC, no long IPC). Note that we do model time-
outs in an abstract way without any notion of time in the model: A timeout side
effect can occur in any preemption point.

4.2 PVS Specification

In PVS a theory is a module that encapsulates definitions and properties. It
provides a means to hierarchically decompose a specification. Our work is com-
posed of several theories with simple dependencies among them. The theories
state and ipc contain the model and will be discussed in this section. For rea-
sons of clarity and space, we will restrict ourselves to some relevant, slightly
simplified extracts of our model. The complete specification can be obtained via
http://www.cs.ru.nl/~tamalet/.

We define ThreadPointer as an uninterpreted type, which essentially repre-
sents an arbitrary set. This set should have at least two elements, which will
be enforced by an axiom. We say that null is a ThreadPointer, and declare
NonNullTP as the set of non-null thread pointers. The nil_thread_ptr constant
points to the special nil thread (see Section 3), used to encode send-only or
receive-only IPCs

ThreadPointer: TYPE

not_empty_or_single: AXIOM ∃ (tp1,tp2: ThreadPointer): tp1 �= tp2
null: ThreadPointer
NonNullTP: TYPE = { tp:ThreadPointer | tp �= null }
nil_thread_ptr: NonNullTP

Fiasco stores the status of a thread in a bit vector. We have represented the flags
of this vector that are relevant to our model as a record with boolean fields. A
complete description of the status flags can be found in [Hoh02].

156 E. Schierboom et al.

ThreadStatus: TYPE = [# ready, cancel, dead, busy, invalid,
polling, receiving, ipc_in_progress,
send_in_progress, transfer_in_progress: bool #]

Each thread is composed of a status, a partner to engage with in IPC and a
list of senders (named senders_waiting) containing the senders that are queued
if the receiver is busy. As explained in Section 3, the sender is the active part in
an IPC, and one of the actions a sender performs is locking the receiver. In our
abstract model, it is sufficient to know which sender owns the lock. This results
in the following representation of threads.

Thread: TYPE = [# status: ThreadStatus,
partner,lock: ThreadPointer, senders_waiting: list [NonNullTP] #]

Though the status flags can be set/cleared individually, one usually considers a
certain combination of flags to check whether a thread is in a specific state. For
instance, to determine whether two threads are engaged in IPC, the following
tests are necessary:

inIpc(snd, rcv: NonNullTP)(s : System): bool =
LET rcv = s‘threads(rcv) , rcv_stat = rcv‘status IN

rcv_stat‘transfer_in_progress ∧ rcv_stat‘ipc_in_progress ∧
¬rcv_stat‘cancel ∧ rcv‘partner = snd

PVS-functions are explicitly parameterized with a System object representing the
global state of the machine. Moreover, each function will produce the modified
global state as a result. This state is defined as follows:

System: TYPE = [# current: NonNullTP, threads: [NonNullTP →
Thread] ,
error, timeout, fail: bool, seed: nat #]

The field current is a pointer to the active thread, threads is a ‘dereference’
function yielding the threads of the system, error and timeout indicate if an
error or a timeout occurred, respectively, and fail is set if one of the assertions
failed. The field seed is explained below.

The manipulation of state information makes specifications needlessly com-
plex. However, with a suitable set of helper functions, one can easily avoid an
explicit state object. Particularly, the following composition operation appears
to be convenient in our description.

SystemFun: TYPE = [System → System]

>>(s1 , s2: SystemFun): SystemFun = λ (s: System):
LET s1s = s1(s) IN IF s1s‘error THEN s1s ELSE s2(s1s) ENDIF

This operation resembles standard function composition. Observe that the sec-
ond function will not be applied if the first one resulted in an error.

In the first step of our approach the set SE of possible side effects is identified.
This was done by careful examination of the possible effects concurrent threads
can have on a each other, resulting in the following set of preemption actions:

Preemption Abstraction 157

PreemptionAction : TYPE =
{ kill, % The partner is killed
timeout, % A timeout occurs
ipc_cancelled, % IPC has been canceled
receiver_ready } % The receiver becomes ready

Next, all preemption points are replaced by non-deterministically chosen list
of preemption actions that are executed. Since PVS does not directly support
non-determinism, we introduce the following auxiliary function:

generatePAs(n: nat): list [PreemptionAction]

This function is not further specified. In a proof, this means that we cannot
assume anything about the actions appearing in the result list, hence it has to
be considered as arbitrary. The argument n is necessary for technical reasons: by
using different argument values each time generatePAs is called, different result
lists will be produced. For, had we omitted this argument, generatePAs would
have been treated as a constant, yielding the same unspecified list of preemption
actions everywhere it is called. This explains the existence of the seed field in
the system state. At each preemption point, the seed is passed to generatePAs,
and it is incremented.

The effect of preemption actions on the system state is specified by the func-
tion doPreemptionAction:

doPreemptionAction(partner: NonNullTP, allow_timeout: bool)
(act: PreemptionAction, s:System): System =

CASES act OF

ipc_cancelled: sysThreadExRegs(s‘current)(s) ,
timeout: IF allow_timeout THEN timeOut(s‘current)(s)

ELSE s ENDIF,
kill: kill(partner)(s) ,
receiver_ready: IF s‘current = partner THEN s

ELSE receiverReady(s‘current, partner)(s) ENDIF

ENDCASES

The functions sysThreadExRegs and kill basically set the cancel and dead
flags of the thread status vector, respectively, while timeOut sets the timeout
flag of the system state. The function receiverReady sets the ready and
transfer_in_progress bits on the sender and unsets ready on the receiver. En-
suring that the sender and the receiver are not the same whenever receiverReady
is called was necessary to prove certain properties; see Section 5. In Fiasco, this
is implicit since it doesn’t make sense for a thread to engage in IPC with itself 2.

Finally, we define preemptionPoint as the preemption-point function that
executes a list of preemption actions.

preemptionPoint(partner: NonNullTP, allow_timeout: bool)
(s:System): System =

2 And if it tries to, it will get deadlocked waiting for itself to become ready.

158 E. Schierboom et al.

doPAs(partner, allow_timeout)(generatePAs(s‘seed))(newSeed(s))

newSeed(s: System): System = s WITH [seed := s‘seed + 1]

doPAs(partner: NonNullTP, allow_timeout: bool)
(pas: list [PreemptionAction])(s: System): System =

reduce(s , doPreemptionAction(partner, allow_timeout))(pas)

The function reduce is a predefined list function, similar to fold or fold left in
other languages. In essence, doPAs composes the effects of the preemption actions
occurring in the list.

These and other basic definitions form the state theory. The ipc theory con-
tains the model of the C++ functions that implement Fiasco’s IPC mechanism.
The main function of this theory is

doIpc(rcv,snd: NonNullTP, has_rcv,has_snd: bool)(s:System):System =
IF has_snd∧ has_rcv
THEN doIpcSend (rcv,TRUE) >> doIpcReceive(snd)(s)
ELSIF has_snd THEN doIpcSend(rcv, FALSE)(s)
ELSIF has_rcv THEN doIpcReceive(snd)(s)
ELSE s ENDIF

A few details of doIpcSendwill be discussed later; the definition of doIpcReceive
is unimportant for this paper.

5 Validating Some Properties

This section in based on the PVS theories prop_wakeup, prop_locks, and
prop_assertions containing our properties of interest.

Property 1: Receiver woken. Consider the send part of an IPC call of a
thread ts that transfers data to a partner thread tr. In Fiasco the sender is
the active part, that is, tr is sleeping during its receive operation. Sleeping here
means that the ready flag of tr is false, causing the scheduler to never select
tr. It is therefore essential that, after the send has been finished, the thread ts
wakes up its partner tr, such that tr can be scheduled again. This property is
formalized as follows:

receiver_woken: LEMMA

∀ (partner: Non_Null_TP)(s: System):
LET sSend = doIpcSend(partner)(s) IN

¬sSend‘error∧ inIpc(sSend‘current, partner)(sSend)
⇒ sSend‘threads(partner)‘state‘ready

The property states that if after the execution of doIpcSend there is no error
on the system state and the sender and the receiver are still engaged, then the
ready bit of the receiver is set. The proof posed no difficulty and it consisted
mainly of definition unfoldings and case distinctions.

Preemption Abstraction 159

Property 2: Lock removed. Consider again a thread ts that wants to engage
in a send operation with tr as receiver. Before actually starting the send, ts
obtains the lock of tr to make sure that it is the only thread sending to tr. After
the send the lock must of course be released again.

lock_removed: LEMMA

∀ (rcv_ptr: NonNullTP)(s: System):
¬s‘error∧ ¬s‘threads(rcv_ptr)‘status‘invalid∧
rcv_ptr �= nil_thread_ptr ⇒

LET new_state = doIpcSend(rcv_ptr)(s) IN

new_state‘threads(rcv_ptr)‘lock = null

The property has three requirements, namely, the state of the receiver must be
valid, the receiver must not be the nil thread and there should be no error flagged
on the initial system state. Under these conditions we were able to prove that
after the execution of doIpcSend, the lock on the receiver is free.

To reduce the complexity of the proof, five lemmas were created. They assert
that the lock is released on each of the possible path taken by do_ipc_send.
This decomposition was also very helpful in making the proof more resistant to
changes in the model.

Property 3: Assertions passed. The Fiasco sources contain some assertions.
When an assertion in the kernel is violated, the system simply halts. We included
all the assertions that were expressible in our model, but some referred to things
we had abstracted from, like the CPU lock, and thus were omitted. In total nine
assertions were checked and it was in one them where the bug was found.

To find out if any of them could fail during a call to sysIpc, we added the
field fail to the system state and we defined:

assert(b: bool)(s: System): System =
IF b THEN s ELSE s WITH [fail := TRUE] ENDIF

Then the property was stated as shown next.

assertions_passed: LEMMA

∀ (rcv, snd: NonNullTP, has_rcv,has_snd: bool, s:System):
¬doIpc(rcv, snd, has_rcv, has_snd)(s)‘fail

The function doIpcSendPart contained the assertion causing the failure.

doIpcSendPart(partner: NonNullTP, b: bool): SystemFun =
tryHandshakeReceiver(partner) >>
λ(s:System): assert(¬s‘threads(s‘current)‘status‘polling) >>
[...]

The problem found is related to the polling bit, which is set on the sender when
it has to wait for the receiver to become ready. Essentially, the sender polls the
receiver at intervals to see if it has become ready. Once the receiver is ready and
the handshake finishes successfully, this bit should be cleared.

When trying to prove that after a (successful) call to tryHandshakeReceiver,
the polling bit is cleared, we found an execution path in the doSendWait function

160 E. Schierboom et al.

(invoked by tryHandshakeReceiver) that did not clear it. After careful exami-
nation of the model, the author of that code was contacted and it was confirmed
that indeed we had found an error.

But this was not the only complication we faced. There was also an assertion
that could not be completely verified within our model due to the abstractions
made on the sender. Since we did not model the sender as a separate thread, we
could not prove that inIpc is commutative, that is, if the sender is engaged in
IPC with the receiver, then the receiver is engaged with the sender. An axiom
was added to overcome this problem.

Proving this property was quite laborious; 78 other lemmas were used directly
or indirectly. The proofs were not intrinsically hard but cumbersome. The un-
folding of some definitions resulted in proof sequents spanning hundreds of lines
in the PVS prover. The following simple pattern can be identified in many of
the proofs: unfold definitions and give names to intermediate states (to reduce
the size of a sequent) as needed, then prove each branch using other lemmas if
needed. Thanks to our lightweight approach to model concurrency, the number
of branches was amenable to interactive theorem proving. The only proofs that
needed induction were the ones concerning the list of actions that occur at a
preemption point and the proofs dealing with the list of senders in the receiver.

6 Case Study Evaluation

In this section we share some reflections and lessons learned from our case study.
We also comment on possible directions for future work.

Main lessons learned. The case study has validated the applicability of the
preemption abstraction approach as a lightweight formal proof method for con-
current code.

Using the proof asistant PVS, we modeled sys_ipc: the function that handles
all inter-process communication focusing on the interaction between senders and
receivers. While constructing the model we followed the source code (its structure
and names) as much as possible. We focused both on a few key properties and on
the assertions that were contained in the code. Furthermore, we abstracted from
some important parts of the system, such as scheduling and Long IPC. Therefore,
this case study cannot give a full formal proof of the studied system. However,
the proofs of the studied properties significantly increased the confidence in
the studied code and, when we found the bug, we could easily point out the
corresponding place in the source code where the error occurred.

The code that was analyzed is about 3000 lines. The PVS model is about
2000 lines and the proof scripts are another 5000 lines long. Developing the
proofs took 2 man-months but checking the proofs takes just a few minutes.

We want to emphasize the fact that the bug was found thanks to an assertion
in the code. One usually thinks of assertions as just a runtime check mechanism,
but they are more than that: they describe the intended behavior of the code.
We used them to generate properties of our model of the system. Had the code
not been instrumented with assertions, we would have probably missed the bug.

Preemption Abstraction 161

The soundness of our approach to model concurrency depends of course on
the completeness of the list of actions that may occur at preemption points. We
determined the possible events that the environment could have on thread at a
preemption point by studying the source code. We are fairly confident that our
list is exhaustive, however, a fully formal proof would also verify this assertion.

Applicability to systems without explicit preemption points. The ap-
plicability of the preemption abstraction does not depend on the presence of
explicit atomic blocks and preemption points in the software. On conventional
hardware memory access is atomic, even in systems with multiple processors.
For the preemption abstraction it is therefore not relevant whether there are
possibly several threads running truly in parallel on several CPU’s or not. The
important point is, that at the level of memory access, all activity in the system
is sequentialized. Therefore, one can think of a memory access as an atomic block
with preemption points between memory accesses.

Under this interpretation, the number of preemption points will truly be
tremendous. One clearly has to formulate the abstract model without writing out
every invocation of the preemption-point function. This can easily be achieved
with a higher-order combinator that inserts the preemption-point function after
each memory access. A legitimate question is, whether it is still possible to verify
any property in such a model. In general, the situation is admittedly hopeless.
However, systems that have been designed to run in a truly parallel environment
without the use of locks are far from the general case.

As an example let us consider a predecessor version of Fiasco that was fully
preemptable. There, a timer interrupt could occur after each assembly instruc-
tion and induce the scheduling of a different thread. This new thread could
potentially modify the state of the interrupted thread. This predecessor version
of Fiasco was written in the lock-free programming style [HH01]: To modify a
kernel data structure, a thread would first make a private copy, modify this pri-
vate copy and finally write back the new version in an atomic way (for instance
by using the compare-and-swap instruction). If the original data structure has
been modified in between, it tries the same procedure again. This way, large por-
tions of the code cannot be affected by parallel running threads, because it only
operates on data structures that the other threads do not modify. The calls to
the preemption-point function in the abstract model of such code can therefore
be treated automatically in the verification environment.

Future Work. A logical next step could be to extend the model and prove
more properties. We would start by adding preemption and interrupt senders as
well as long IPCs. It would also be interesting to prove the completeness of the
set of preemption actions. This could be done by modelling all system calls and
showing that any effect these calls can have on a running thread has already been
considered. During the first phase of this work, we would have benefited from
having a tool that, once configured, semi-automatically produces an abstract
model. How to create a general tool that yields different models depending on
the user’s needs, is an interesting research topic with much potential.

162 E. Schierboom et al.

7 Related Work

This work is based on the master’s thesis of Erik Schierboom [Sch07], in which
a first version of the model was developed and the error was spotted.

Fiasco, and in particular its IPC subsystem, has been the subject of several
case studies in the application of formal methods to real-world software. In her
master’s thesis, Endrawaty [End05] modelled the same subsystem of an earlier
Fiasco version. She used Promela as specification language and the SPIN model
checker [HPV00] to perform simulations and to verify some simple properties.
Annamalai [Ann05] extended Endrawaty’s model by adding timeouts among
other things, and proved more properties, some of which were liveness properties.
Instead of having a lightweight approach to concurrency, they run complete
threads in parallel in the model checker leading to huge state spaces. Modelling
only two threads where each does only 1 IPC, proving a property took about 8
hours, 2GBs of RAM and 8GBs of hard disk. Proving properties about several
IPCs or more than two threads was unfeasible. None of these studies found any
error in the code. The bug that we found was only introduced later, when René
Reussner rewrote Fiasco’s IPC in his master thesis [Reu05].

Kolanski and Klein worked closely with the L4 development team to obtain
a formalization of the kernel’s application programming interface (API) using
the B method [KK06]. Concurrency is modeled using B’s parallel composition,
hence it is not explicit in their abstract model.

One of the authors of this paper was involved in both the VFiasco and the
Robin projects [HT05, TVW09, Tew07]. In both projects the verification of
operating-system kernels was attempted, for VFiasco it was the Fiasco micro-
kernel, for Robin it was the Nova micro-hypervisor. At the time of the VFi-
asco project the Fiasco microkernel was fully preemptable. The Nova micro-
hypervisor consists of atomic code blocks with preemption points in between.
Both projects concentrated on the modelling and the semantics of certain as-
pects of the execution environment of these kernels. The verification of larger
portions of code was not attempted. Therefore no solution on how to deal with
parallelism has been developed in these two projects.

The l4.verified project [Kle09, EKE08, CKS08, Tuc09] attempts the verifi-
cation of the seL4 kernel. While l4.verified has good chances to finish the first
complete verification of a realistic operating-system kernel, we are not aware of
any published information about the interruptability of the seL4 kernel or the
treatment of parallelism in the verification.

Coyotos [SDSM04] is a secure, microkernel-based operating system built in a
new systems programming language (BitC) with a well-defined, mechanically-
specified semantics. Singularity [HLA+05] is a research operating system at Mi-
crosoft Research that aims to build a dependable operating system written in
a type-safe language like C# and specified in Sing#, a Spec# extension. These
projects are far more comprehensive and long term than our case study.

The Verisoft project [AHL+08, DDB08, HP08] aims at the complete verifica-
tion of a computer system from an e-mail client down to the gate level of the
processor. For the verification of their ATAPI disk driver the Verisoft project

Preemption Abstraction 163

used a model in which processor steps are interleaved with the steps of the
ATAPI device. To simplify the reasoning the interleaved steps are reordered into
larger non-interleaved chunks as much as possible.

8 Conclusions

This work presented a lightweight approach to model concurrency which avoids
the need of setting up an interleaving semantics and allows one to reason in a non-
parallel fashion. This technique is best suited for systems where a component can
be affected by its environment at specific points and by well identified actions.

This approach was applied in the modelling of the IPC subsystem of Fiasco
microkernel. It enabled proving some properties of the model with reasonable
effort. Under the assumption that our high-level model is faithful and that the
identified list of actions is exhaustive, we can ensure that the code honours the
properties here studied. During this process we spotted a programming error
that, due to its concurrent nature, was hard to be found by testing techniques.

Acknowledgements. We would like to thank the operating-systems group at TU
Dresden for their support, in particular Rene Reussner and Michael Hohmuth
for answering many questions about IPC in Fiasco.

References

[AHL+08] Alkassar, E., Hillebrand, M.A., Leinenbach, D., Schirmer, N.W.,
Starostin, A.: The Verisoft approach to systems verification. In: Shankar,
N., Woodcock, J. (eds.) VSTTE 2008. LNCS, vol. 5295, pp. 209–224.
Springer, Heidelberg (2008)

[Ann05] Annamalai, S.: Verification of the Fiasco IPC implementation. Master’s
thesis, Dresden University of Technology (December 2005)

[CKS08] Cock, D., Klein, G., Sewell, T.: Secure microkernels, state monads and
scalable refinement. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.)
TPHOLs 2008. LNCS, vol. 5170, pp. 167–182. Springer, Heidelberg (2008)

[DDB08] Daum, M., Dörrenbächer, J., Bogan, S.: Model stack for the pervasive ver-
ification of a microkernel-based operating system. In: Beckert, B., Klein,
G. (eds.) 5th International Verification Workshop, CEUR Workshop Pro-
ceedings, vol. 372, pp. 56–70 (2008), CEUR-WS.org

[EKE08] Elkaduwe, D., Klein, G., Elphinstone, K.: Verified protection model of
the seL4 microkernel. In: Shankar, N., Woodcock, J. (eds.) VSTTE 2008.
LNCS, vol. 5295, pp. 99–114. Springer, Heidelberg (2008)

[End05] Endrawaty: Verification of the Fiasco IPC Implementation. Master’s the-
sis, Dresden University of Technology (March 2005)

[HH01] Hohmuth, M., Härtig, H.: Pragmatic nonblocking synchronization for
real-time systems. In: Proceedings of the General Track: 2002 USENIX
Annual Technical Conference, Berkeley, CA, USA, pp. 217–230. USENIX
Association (2001)

[HHW98] Hartig, H., Hohmuth, M., Wolter, J.: Taming linux. In: Proceedings of the
5th Annual Australasian Conference on Parallel And Real-Time Systems,
PART 1998 (1998)

164 E. Schierboom et al.

[HLA+05] Hunt, G., Larus, J.R., Abadi, M., Aiken, M., Barham, P., Fähndrich,
M., Hawblitzel, C., Hodson, O., Levi, S., Murphy, N., Steensgaard, B.,
Tarditi, D., Wobber, T., Zill, B.D.: An overview of the Singularity project.
Technical report, Microsoft Research (October 2005)

[Hoh98] Hohmuth, M.: The Fiasco kernel: Requirements definition. Technical Re-
port TUD-FI98-12, TU Dresden (1998),
http://os.inf.tu-dresden.de/fiasco/doc.html

[Hoh02] Hohmuth, M.: Pragmatic nonblocking synchronization for real-time sys-
tems. PhD thesis, TU Dresden, Fakultät Informatik (September 2002)

[HP01] Hohmuth, M., Peter, M.: Helping in a multiprocessor environment. In:
Proceeding of the Second Workshop on Common Microkernel System
Platforms (2001)

[HP08] Hillebrand, M.A., Paul, W.J.: On the architecture of system verification
environments. In: Yorav, K. (ed.) HVC 2007. LNCS, vol. 4899, pp. 153–
168. Springer, Heidelberg (2008)

[HPV00] Havelund, K., Penix, J., Visser, W. (eds.): SPIN 2000. LNCS, vol. 1885.
Springer, Heidelberg (2000)

[HT05] Hohmuth, M., Tews, H.: The VFiasco approach for a verified operating
system. In: Proceedings of the 2nd ECOOP Workshop on Programming
Languages and Operating Systems, Glasgow (2005)

[KK06] Kolanski, R., Klein, G.: Formalising the L4 microkernel API. In: CATS
2006: Proceedings of the 12th Computing: The Australasian Theroy Sym-
posium, Darlinghurst, Australia, pp. 53–68 (2006)

[Kle09] Klein, G.: Operating system verification—an overview. Sādhanā 34(1),
27–69 (2009)

[OSRS01] Owre, S., Shankar, N., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS lan-
guage reference (version 2.4). Technical report, Computer Science Labo-
ratory, SRI International, Menlo Park, CA (November 2001)

[Reu05] Reusner, R.: Implementierung eines Echtzeit-IPC-Pfades mit Unterbre-
chungspunkten für L4/Fiasco. Master’s thesis, TU Dresden (July 2005)

[Sch07] Schierboom, E.G.H.: Verification of the Fiasco IPC Implementation. Mas-
ter’s thesis, Radboud University, Computing Science Department (2007)

[SDSM04] Shapiro, J., Doerrie, M., Sridhar, S., Miller, M.: Towards a verified,
general-purpose operating system kernel. In: Proc. NICTA OS Verifica-
tion Workshop 2004, Sydney, New South Wales, Australia (October 2004)

[Tew07] Tews, H.: Formal Methods in the Robin project: Specification and verifi-
cation of the Nova microhypervisor. In: Tews, H. (ed.) Proceedings of the
C/C++ Verification Workshop, July 2007, pp. 59–68 (2007); Technical
eport ICIS-R07015, Radboud University Nijmegen

[Tuc09] Tuch, H.: Formal verification of C systems code: Structured types, separa-
tion logic and theorem proving. Journal of Automated Reasoning: Special
Issue on Operating System Verification, 59 (to appear, 2009)

[TVW09] Tews, H., Völp, M., Weber, T.: Formal memory models for the verifica-
tion of low-level operating-system code. Journal of Automated Reason-
ing 42(2-4), 189–227 (2009)

A Rigorous Methodology for Composing Services

Kenneth J. Turner and Koon Leai Larry Tan

Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, UK
{kjt,klt}@cs.stir.ac.uk

Abstract. Creating new services through composition of existing ones is an at-
tractive option. However, composition can be complex and service compatibility
needs to be checked. A rigorous and industrially-usable methodology is therefore
desirable for creating, verifying, implementing and validating composed services.
An explanation is given of the approach taken by CRESS (Communication Rep-
resentation Employing Systematic Specification). Formal verification and val-
idation are performed through automated translation to LOTOS (Language Of
Temporal Ordering Specification). Implementation and validation are performed
through automated translation to BPEL (Business Process Execution Logic) and
WSDL (Web Services Description Language). The approach is illustrated with
an application to grid service composition in e-Social Science.

1 Introduction

1.1 Motivation

Workflows have been widely adopted to create new services by composing existing
ones. Grid services are similar to web services, so it is not surprising that common
mechanisms can be used with both to combine services. Such composite services are
becoming increasingly common in commercial and scientific applications. They can
require complex logic to combine independently designed services. Compatibility with
third-party services can also be an issue.

It is therefore desirable to have a rigorous methodology for creating and analysing
composed services. However, formal approaches are mostly restricted to computer sci-
entists and are hard to sell to industry. This paper reports on work to encourage use of
formal methods in the field of grid and web services:

– an accessible graphical notation is used to describe composite services
– formal models are automatically created, validated and verified without requiring

detailed knowledge of formal methods
– implementations are automatically created and deployed once services have been

validated and verified.

1.2 Composing Services

Grid computing allows heterogeneous systems and resources to interoperate following
the paradigm of SOA (Service Oriented Architecture). New services can be created by
combining existing ones. The terms ‘composition’, ‘orchestration’ and ‘workflow’ are

M. Alpuente, B. Cook, and C. Joubert (Eds.): FMICS 2009, LNCS 5825, pp. 165–180, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

166 K.J. Turner and K.L.L. Tan

all very similar, and are used interchangeably in this paper. BPEL (Business Process
Execution Language [1]) is a standardised approach for orchestrating web services. The
authors and others have investigated techniques for orchestrating grid services.

Service composition raises a number of issues. The logic that combines services can
become complex. Sophisticated error handling may also be required. Compatibility of
component services may be a concern, especially if the services are defined using only
WSDL (Web Services Description Language). Since WSDL describes just interface
syntax and not semantics, deeper issues of compatibility can arise.

A methodology is hence desirable for developing composed services. Defining com-
positions should be made straightforward since the developer may well have a limited
computing background. Verification (‘doing the thing right’) should allow the service
composition to be automatically checked against desirable properties. Once confidence
has been built in the design, implementation and deployment should be fully automatic.
Validation (‘doing the right thing’) should be possible during specification (to build con-
fidence in the design) and also after implementation (to check non-functional properties
such as performance and dependability).

Grid and web services differ in their emphasis on use of resources, e.g. for process-
ing, distributed data and specialised devices. Resources are often used by grid services
to offer stateful services to clients. It is therefore necessary to formally model interac-
tions with dynamic resources in grid service composition. For flexibility, it should also
be possible to dynamically allocate the partners that support a composite service. Part-
ners are third-party services that are combined through workflow logic to offer a new,
composite service.

1.3 Service Composition Methodology

Surprisingly little attention has been given to rigorous composition of grid services
(though more has been done on composed web services). Even where this has been
studied, formal models are usually developed separately from their implementations. In
contrast, the work reported here is a complete methodology that handles all aspects of
service creation, from initial design through to system testing. This approach is called
CRESS (Communication Representation Employing Systematic Specification, www.cs.
stir.ac.uk/~kjt/ research/cress.html). In fact, CRESS was designed for modelling many
kinds of services and has been applied in many domains. For grid and web services,
CRESS can be viewed as a workflow language for specifying composite behaviour.

Early work by the authors demonstrated that grid service composition could be
achieved by adapting BPEL. However, there were significant limitations in BPEL that
required work-arounds (e.g. for EndPoint References). Composed grid services were
also not much more than simple web services, e.g. there was no support for service
resources and dynamic partners in the style that grid services commonly use. Only for-
mal validation was supported. The new work reported in the present paper has resulted
in a rounded methodology for orchestrating services. Formalisation has been extended
to deal with full grid services. Formal verification and implementation validation have
also been added to the methodology.

There are several advantages to this approach. A composite service need be described
only once, using an accessible graphical notation. The formal specification and the

A Rigorous Methodology for Composing Services 167

implementation code can then be automatically generated from this single descrip-
tion. Automatic formal verification and formal validation can be used to ensure that the
service composition is functionally correct. Errors at the design stage can be cheaply
corrected by modifying how the composition is described. Implementation and deploy-
ment are then fully automatic. Although further checking might appear unnecessary, a
range of practical issues make implementation validation desirable. For example per-
formance bottlenecks may arise, or factors such as dependability and reliability might
need attention. Although the methodology described here supports all aspects of com-
posing services, the emphasis in this paper is on a new and distinct facet: how formal
verification and validation can be supported.

1.4 Relationship to Other Work

Specifying Composed Services. Several visual programming tools can be used to de-
sign workflows, e.g. jABC (Java Application Building Center, jabc.cs.tu-dortmund.de/
opencms/en) and Triana (www.trianacode.org). However, these are rather generalised
and not specifically focused on web/grid services and their standards. Formalising web
services has, however, been studied by the formal methods community.

LTSA-WS (Labelled Transition System Analyser for Web Services [8]) is a finite
state method. Abstract service scenarios and actual service implementations are gen-
erated through behavioural models in the form of state transition systems. Verification
and validation are performed by comparing the two systems. The approach is limited
to handling data types but not their values. This restricts the formal analysis of service
composition since data values are often used in conditions that influence behaviour.
CRESS differs in generating the formal model and the service implementation from a
single abstract description. CRESS uses LOTOS (Language Of Temporal Ordering Spec-
ification [12]) to model service composition, and can therefore model data types as well
as their values.

Temporal business rules have been used to synthesise composite service models [21].
The pattern-based specification language PROPOLS (Property Specification Pattern On-
tology Language for Service Composition) expresses these rules. Each rule has a pre-
defined finite state automaton to represent it. A behavioural model is then generated
by composing the rules using their respective finite state automata. This can be fur-
ther iterated with additional rules until a satisfactory model is generated. The process
model can then be transformed into BPEL, although this aspect appears to be under
development. The approach does not, however, deal with data types. CRESS differs in
generating both the implementation and the formal specification from the same CRESS

description, dealing fully with data types and values.
WSAT (Web Services Analysis Tool [9]) is used to analyse and verify composite

web services, particularly focusing on asynchronous communication. Specifications can
be written bottom-up or top-down, finally being translated into Promela and model-
checked using SPIN. For composite web services that interact asynchronously, WSAT
is able to verify the concepts of synchronisability and realisability. However, the tool
does not support the full range of capabilities found in standards such as BPEL. A
composite web service specification often deals with error handling, compensation and
correlation – things that are not yet handled by WSAT.

168 K.J. Turner and K.L.L. Tan

[4,7] use a process algebraic approach to automate translation between BPEL and
LOTOS. CRESS differs in that no specification is required of either BPEL or LOTOS.
Instead a graphical notation, accessible to the non-specialist, supports abstract service
descriptions that are translated into BPEL and LOTOS automatically. This is an advan-
tage as the service developer may well not be familiar with either BPEL or LOTOS.

Implementing Composed Services. Web service orchestration has been actively stud-
ied and supported in a number of pragmatic developments (e.g. IBM WebSphere Pro-
cess Server, Oracle Business Process Server). There are several implementations for
modelling and executing service workflows, but they lack formal analysis.

JOpera [14] is a service composition tool for building new services by combining
existing ones. It provides a visual composition language and also a run-time platform to
execute services. JOpera claims to offer greater flexibility and expressivity than BPEL.
Although JOpera initially focused on web services, support for grid service composition
has also been investigated.

Taverna [13] was developed to model web service workflows – specifically for bioin-
formatics. It introduced SCUFL (Simple Conceptual Unified Flow Language) to model
grid applications in a specialised workflow language.

BPEL has been investigated by several researchers for orchestrating grid services.
[16] developed BPEL extensibility mechanisms to orchestrate services based on OGSI
(Open Grid Service Infrastructure) and WSRF (Web Services Resource Framework
[11]). [22] used specialised constructs to achieve interoperability with WSRF services.
These efforts showed that grid service orchestration was possible, but restricted.

Since web services may vary dynamically, partner services may become inconsistent
with respect to workflows that rely on them. ALBERT (Assertion Language for BPEL
Process Interactions [2]) is a language for expressing (non)-functional properties of
workflows. The continued validity of these properties can be monitored at run time.

OMII-BPEL (Open Middleware Infrastructure Institute BPEL [19]) aims to support
the orchestration of scientific workflows with a multitude of service processes and long-
duration process executions. It provides a customised BPEL engine, and supports a set
of constructs desirable for specification of scientific workflows.

The OMII-BPEL work is the closest to CRESS. The authors strongly believe that
implementations should be created in standard languages (BPEL, WSDL, XSD) which
are already widely used. For example, this allows the use of a variety of orchestration
engines. CRESS differs from similar BPEL approaches in taking a more abstract (and
language-independent) view. Specification, implementation and analysis can therefore
be integrated in a single methodology.

2 Background

2.1 Service Composition and Grid Services

SOA (Service Oriented Architecture) treats capabilities or functions as individual ser-
vices. Service composition is a key feature of SOA for creating new services by com-
bining the behaviour of existing ones. BPEL (Business Process Execution Language

A Rigorous Methodology for Composing Services 169

[1]) is one of the most popular languages for specifying composite web services. Al-
though early work on composing grid services using BPEL showed promise, this was
not straightforward. Fortunately, the latest standard for BPEL supports WSRF (Web
Services Resources Framework [11]) and is hence appropriate for grid services.

WSRF allows a service instance to be associated with arbitrary numbers and types of
resources. ‘Resource pairs’ are identified by an EPR (EndPoint Reference [20]). Grid
services promote virtual collaboration among users of distributed systems. A grid en-
vironment can be highly dynamic, with resources, partners and services being created,
added, shared and removed over time.

Grid computing initially developed through applications in the physical sciences.
The trend is now towards use in other areas such as e-Social Science, which has been
recognised as a promising application of grid computing. The authors are formalising
support for workflows on the DAMES project (Data Management through e-Social Sci-
ence, www.dames.org.uk).

To illustrate the methodology for developing workflows, this paper tackles a common
task performed by social scientists: representing occupations in different classification
schemes. Occupational data researchers are interested in analysing questions such as
how jobs affect social position, social interaction patterns, etc. There are many occu-
pational classification schemes, some of them international standards. As each clas-
sification scheme favours certain types of analysis, occupational researchers have to
map datasets to particular schemes to perform the analysis. This might involve several
intermediate mappings to arrive at the desired encoding. As a result, translation is of-
ten performed using computer scripts or paper indexes that map between (usually) two
schemes. Sections 3 and 4 discuss how an occupational translation service was rigor-
ously developed using service composition.

2.2 CRESS

CRESS is a domain-independent graphical notation for describing services. CRESS

takes an abstract approach in which a high-level service description automatically gen-
erates a formal specification and an executable implementation. In other work, it has
been used to describe a variety of voice services and also web services. CRESS can be
used as a graphical workflow notation for grid and web services.

CRESS service descriptions are graphical, making the approach accessible to non-
specialists. The focus is on high-level description, abstracting away the technical details
required in an actual implementation. CRESS is designed as an extensible framework
where support for new domains and target languages can be added like plug-ins.

The CRESS representation for service composition is intentionally close to BPEL. A
brief description of the notation subset used in this paper is given here. Refer to figures 1
and 2 for the examples cited below.

A CRESS diagram typically includes a rule box, numbered nodes, and arcs that link
nodes. A rule box is a rounded rectangle which (for grid and web services) defines
variables and their types, as well as dynamic partners. Complex data structures can
be defined, e.g. ‘{...}’ for records. As an example, the following defines two variables
mapping1 and mapping2 whose type is a record with two string fields:

{ String job String scheme } mapping1:ALLOCATOR, mapping2:ALLOCATOR

170 K.J. Turner and K.L.L. Tan

Variables and their types are normally associated with the diagram that defines them. A
variable can be qualified by its owning diagram (Allocator above).

A rule box can also indicate which other services are required, e.g. ‘/ Allocator’ in
the description of the Lookup service shows it depends on the Allocator service.

The activities in a composed service are described in numbered ellipses. A typical
composition starts with Receive as an incoming request that specifies the service, port
and operation names, as well as the input variable. A typical composition ends with a
Reply as an outgoing response that returns an output variable or a fault. There can be
alternative Reply activities for one Receive, and even several Receive activities. Invoke
is used to call an external partner by service, port and operation. Invocation specifies an
output variable, an optional input variable, and optional faults that may be thrown. (A
one-way invocation is useful for long-running transactions.) Some examples are:

Receive lookup.job.translate schemes (input schemes)
Reply lookup.job.translate codes (output codes)
Reply lookup.job.translate allocatorError.reason (fault allocatorError.reason)
Invoke allocator.job.translate mapping1 code1 (output mapping1, input code1)

Faults can be defined with just a name (allocatorError), with just a value (.reason), or
with both elements.

Other activities include Terminate (to end behaviour), Compensate (to undo work
following a failure), and Fork/Join (for concurrency). For the latter, a fine degree of
control over concurrency can be specified. In general, each activity may complete suc-
cessfully or may fail. A join condition such as ‘3 && 4’ means that activities 3 and 4
must succeed before behaviour continues. Activities as well as arcs can contain assign-
ments such as ‘/ mapping1.job <− schemes.job’.

Branches in CRESS diagrams normally represent choices. A deterministic choice has
labels on arcs for conditions that govern which path is followed. A non-deterministic
choice has unlabelled arcs. Event choices are not made immediately, but rather when
some event happens. For example, a ‘Catch .reason’ branch is followed only when
a fault with some reason value occurs. A Compensation branch is taken only when a
Compensate activity is used to undo previous work. Typically, compensation is defined
after an Invoke since a failure may mean that changes already made have to be undone.

3 Formal Specification and Analysis of Composed Grid Services

3.1 Describing Service Composition

The service developer starts by drawing a CRESS diagram that describes the logic used
to combine the functions of external service partners. Typically these partners have
already been created by others, though new partner services might also be created for the
purposes of the orchestration. In a complex development, a number of CRESS diagrams
may be defined to realise the orchestration. CRESS also supports feature diagrams for
common functions that can be added automatically to service descriptions.

During the work reported in this paper, CRESS was extended to treat EPRs (EndPoint
References) as first-class values, to support grid resources fully, to handle dynamic

A Rigorous Methodology for Composing Services 171

Fig. 1. CRESS Description of The Occupation Lookup Service

service partners, to formally verify properties, and to validate implementations. These
aspects are all illustrated using the following example.

The diagrams in figures 1 and 2 show the use of CRESS to describe an e-Social Sci-
ence workflow. This supports the classification of occupations mentioned in section 2.1.
The services involved in this example are as follows:

Lookup: This is the top-level workflow that takes a request to translate a job title into
two occupational schemes. It uses the Allocator partner to perform these transla-
tions in parallel, and returns the combined result.

Allocator: This partner service is itself a workflow that takes a request to map an occu-
pation into some scheme. It uses the Factory partner to find a suitable resource (i.e.
a Mapper service), perform the translation, and then return the occupation code.

Factory: This partner service accepts a request to find an occupational classification
translator. It dynamically allocates a resource for performing this task, and returns
a reference to it. If no suitable resource can be allocated, a fault is thrown.

172 K.J. Turner and K.L.L. Tan

Fig. 2. CRESS Description of The Occupation Allocator Service

Mapper: This partner service is selected dynamically, so it represents a class of transla-
tion services. The given job title is translated into a particular occupational scheme.

Lookup Service. The service in figure 1 defines translation logic that makes use of
the partner Allocator service. Initially the service proceeds along the arc from Start
to node 1. The service then accepts a request to translate a job title into two specified
schemes (node 1). The translations may be automated (e.g. through an online service)
or may be manual (e.g. requiring a researcher to look up a classification scheme). Since
the delay in translation for each scheme is unknown, both translations are performed in
parallel (node 2 to node 5).

Both parallel branches are similar. For example, the left-hand branch copies the job
and scheme names into the mapping1 structure (arc from node 2 to node 3). The Allo-
cator service is then called to translate this into a job code (node 3). This service may
give rise to a fault if the translation cannot be performed (fault name allocatorError,
fault value reason). Both parallel branches require to complete successfully before fur-
ther action is taken, as specified by the join condition in node 5. At this point, the two
job codes are combined into a codes structure (arc from node 5 to node 6). The Lookup
service ends by sending this to its caller (node 6).

Concurrency requires proper handling of faults. For example, if one of the parallel
branches fails then the other cannot be left hanging. The top-level error handler (arc

A Rigorous Methodology for Composing Services 173

from Start to node 7) catches a fault from either parallel invocation. It replies to the
caller with the reason why the Allocator failed, and terminates the whole workflow.

Allocator Service. The service in figure 2 initially proceeds along the arc from Start to
node 1. Here it accepts a request for a particular job mapping. The classification scheme
is extracted into scheme2 (arc from node 1 to 2). Since it is necessary to find a suitable
translation service, the Factory partner is called to find one for the particular scheme
(node 2). This returns a Mapper reference for a suitable service instance. If no suitable
service is found, a fault is thrown.

The Allocator then dynamically sets the partner (mapper.job) for the Mapper ser-
vice, and extracts the job title into job2 (arc from node 2 to node 3). When the Mapper
is called to translate the job title, this dynamic partner is used (node 3). In normal cir-
cumstances, the Allocator replies with the job code (mappedJob) to its caller (node 4).

Various error conditions are handled by the Allocator. If the Factory invocation in
node 2 fails, the error is caught in the local scope and returned to the caller (node 5).
A mapping failure in node 3 needs to be handled differently. Since no fault handler is
defined for this invocation, the global fault handler is used (arc from Start to node 7).
This requires compensation because simply terminating the Allocator would leave the
translation resource allocated. Compensate in node 7 requests global compensation.
All subsidiary compensation activities are then called in reverse order of completion.
In this example, there is only one such activity (arc from node 2 to node 6). The effect
is to deallocate the service instance (mapperReference) that the Factory had allocated
(node 6). Following compensation, the Allocator returns the fault reason to its caller
and terminates the workflow (nodes 8 and 9).

Collectively, figures 1 and 2 define a composite service with four partners. However,
a client of the whole translation service sees just a single grid service; the internal design
of this is intentionally hidden, and could be changed in future.

3.2 Formalising Service Composition

A CRESS diagram is automatically translated into LOTOS (Language Of Temporal
Ordering Specification [12]), including support for diagram-defined data types and be-
haviour. (A number of formal approaches to grid or web services support only ele-
mentary data types such as booleans and integers.) Service behaviour is represented by
interacting LOTOS processes. As the focus is on service composition, CRESS fully spec-
ifies the logic that combines external partner services. CRESS does not normally have
enough information to specify these partners, and instead defines only their interfaces.
However if a partner service is itself a composition, CRESS will specify it fully.

Since partner services are usually defined by others, it is likely that no formal spec-
ification exists of them. Indeed, the design of a partner service may be proprietary and
hidden. The automated interface specifications generated by CRESS are sufficient for
basic compatibility checks with partners. For a more thorough analysis it is desirable
to have more complete (though still abstract) specifications of partner services. These
specifications have to be created manually, by the developer of the partner service or by
the developer of the composite service. However, having a formal specification of all
services is good practice anyway.

174 K.J. Turner and K.L.L. Tan

Handling of dynamic resources in LOTOS has been added for the work reported
here. For static service partners, interactions between a composite service and a service
partner are via LOTOS events that specify the service, port and operation. For dynamic
service partners, synchronisation is specified with a resource prior any interaction. This
is reasonable as an actual implementation also does the same thing.

The Partner type in CRESS is a unique key that identifies a resource pair. An as-
signment to partner.port is performed prior to invoking a dynamic partner. In LOTOS,
this is translated as an assignment to the corresponding EndPoint Reference variable.
Synchronisation with a dynamic partner specifies the EPR required. It is only after this
that a dynamic partner instance can be invoked.

Figure 3 shows how the various specification elements are combined in the CRESS

methodology. The generated specification of the composite service normally dominates
the specifications of its partner services. The composite LOTOS specification that results
is sufficient for use with several LOTOS tools, e.g. LOLA (LOTOS Laboratory [15]).
However, some LOTOS tools such as CADP (Construction and Analysis of Distributed
Processes [10]) require the specification to be preprocessed first.

A CRESS service description is rigorously analysed through formal validation and
verification of the automatically generated LOTOS. Once the composition has been
checked to have the desired properties, an implementation can be created automatically.

Lookup/Allocator
LOTOS

Factory
LOTOS

Composite Service
LOTOS

Mapper
LOTOS

combine completecomplete

Annotated Service
LOTOS

annotate

Verification
Results

verify

Lookup/Allocator
CRESS

generate

Validation
Results

validate

interface interface

Fig. 3. Formal Validation and Verification with CRESS

A Rigorous Methodology for Composing Services 175

3.3 Validating Service Compositions

Formal validation can be directly performed on the composite specification produced
by CRESS. This makes use of a test notation and tool called MUSTARD (Multiple Use
Scenario Test and Refusal Description [18]). MUSTARD can be used to test partner
services as well as service compositions.

As a simple example of validation with MUSTARD, the following acceptance test
checks the translation of job title ‘nurse’ into the SOC2000 and SIC92 classifications
(codes ‘3211’ and ‘95.14’ respectively). The test succeeds if it is possible to send a
translation request and then to read the expected response. Strings in MUSTARD are
preceded by a single quote.

test(Nurse_Translation,
succeed(

send(lookup.job.translate, schemes(′Nurse,′SOC2000,′SIC92)),
read(lookup.job.translate, codes(′3211,′95.14))))

Acceptance tests check only what a system must do. MUSTARD is also used to define
refusal tests that check what a system must not do. Concurrent behaviour can be checked
as well. In the following test, parallel requests are performed to translate a job title using
different occupational schemes:

test(Parallel_Translation,
succeed(

interleave(
sequence(

send(lookup.job.translate, schemes(′Cab Driver,′SOC2000,′SIC92)),
read(lookup.job.translate, codes(′8214,′60.22))),

sequence(
send(lookup.job.translate, schemes(′Private Detective,′SIC92,′SOC2000)),
read(lookup.job.translate, codes(′74.60/1,′9241))))))

MUSTARD translates such tests into LOTOS, adds them to the composite specification
generated by CRESS, and uses the validation facilities of LOLA to formally check that
the specification passes its tests. This is achieved through abstract execution of the spec-
ification, constrained by the test behaviours. The tests above are simple examples. In
practice, MUSTARD is used for a variety of tests that may include alternatives, condi-
tions, non-determinism, variables, wild-card values, service dependencies (whether a
particular service is deployed), fixtures (common preambles for tests), and reset actions
(to put a service into a known state). As will be seen in section 4, the same MUSTARD

tests are used to validate implementations as well as specifications.
Although such validation is formally based, testing is necessarily limited. Its main

advantage is that validation is practical: automated validation of even a complex service
is performed in seconds or minutes. However, formal verification is desirable as a com-
plement to this. Rather than showing that the specification exhibits desirable behaviour
on certain test cases, it is preferable to prove properties in general for classes of tests.

3.4 Annotating LOTOS

For formal verification of LOTOS, the toolset of choice is CADP (Construction and Anal-
ysis of Distributed Processes [10]). However, CADP places a number of restrictions on

176 K.J. Turner and K.L.L. Tan

the form of LOTOS that it will accept. In particular, data types need to be extensively
annotated. Verification is performed only after an automated CRESS step to annotate a
LOTOS specification for CADP. This requires a tool that knows about standard LOTOS

data types as well as the data types that CRESS generates.
CADP does not allow parameterised data types, so they must be instantiated first.

The authors have developed a tool to ‘flatten’ and annotate data types: all data types are
collapsed into one, and CADP pragmas are inserted. CADP also does not support infi-
nite sorts. Annotations in the form of special LOTOS comments are therefore added to
a specification prior to verification, e.g. to identify constructor operations and external
implementations of data types.

CADP can verify a LOTOS specification through model checking. Abstract data types
with infinite values have to be limited to a finite range for verification. Most data types
in grid and web services have finite (although possibly large) ranges whose size may
depend on the programming language or platform. Several CRESS library data types
such as Number have an infinite range.

In previous work, finite ranges were manually specified for CRESS data types (e.g.
Char, Number, Text). In the work reported here, the automated annotation tool also
deals with restricting ranges. C implementation skeletons are created automatically for
user-defined data types (e.g. record structures in CRESS). For the occupation transla-
tion example, C skeleton files are created automatically for CRESS types like schemes
and mapping. As it happens, this particular example does not need any special imple-
mentations for data types – CADP supplies default implementations. However, specific
implementations can be created manually to replace the default ones.

Roughly speaking, each CRESS diagram node corresponds to a LOTOS process. A
LOTOS process communicates using events at gates. Processes synchronise their com-
munications at gates, which may be selectively hidden from external view. Processes
may run independently in parallel or may synchronise on specific gates.

Factory and Mapper are normal partners, and are instantiated where they are used
inside the definition of Allocator. The Allocator is actually instantiated twice: once in-
side Lookup, where it is used, and again at the global level. This is because Allocator
is a composite service that can also be used in its own right. A Resource partner im-
plicitly represents the set of dynamic resources that may be allocated by the Factory. In
implementation terms, this is called the ‘resource home’. In CRESS terms, Resource is
a ‘phantom partner’ that is instantiated at the global level for use by all services.

3.5 Verifying Service Compositions

Verification allows general properties to be checked, whereas validation can check only
specific cases (though these are usually selected to be the critical ones). Model check-
ing requires a finite (though possibly large) state space, and so will not be practicable
in some cases. Validation can deal with very large or infinite state spaces. The two
techniques are therefore complementary, and help to ensure that the methodology for
service development is both rigorous and practical.

Service properties are verified using the notation and tool called CLOVE (CRESS

Language-Oriented Verification Environment). This supports the high-level formula-
tion of properties, and provides a simple way of using the actual verification tools. To

A Rigorous Methodology for Composing Services 177

some extent, CLOVE is oriented towards the needs of verifying grid or web services.
Verification is normally undertaken only by specialists. To fit in with the pragmatic
aims of CRESS, CLOVE is designed for use by those with limited knowledge of for-
mal methods. For example, common properties of services are automatically checked,
and property templates are also supported. This allows the domain specialist the verify
correctness of service descriptions.

The specification patterns repository (patterns.projects.cis.ksu.edu) builds on the fact
that verification properties are often common across many application domains. This
makes it possible to develop template properties that can be supported by different
formal methods [6]. CLOVE supports this approach by embedding and extending these
properties, using the LOTOS representations developed by Mateescu (www.inrialpes.
fr/vasy/cadp/resources/evaluator/rafmc.html). In addition, CLOVE supports common
properties such as freedom from deadlock and livelock, as well as specialised properties
that are appropriate for services.

As examples, the following properties are desirable for the occupational translation
service in figures 1 and 2:

– The service should always be available, i.e. free from deadlocks (a safety property).
– If the service receives a request, it must able to accept a new request at a future

point (a liveness property).
– For correct service requests, the client should receive the translated job title or a

fault due to partner failure.
– For incorrect service requests (an unknown job title or classification scheme), a

fault must be reported to the client.
– If an occupation translator cannot be found, a fault must be reported to the client.

As a concrete example, the following CLOVE property deals with service requests
and responses. A request to translate an occupation into some schemes must always
(‘global’) must result in the occupation codes or a lookup error with a string message.
(‘?’ means any value of the given type.) If this property does not hold of the service
description, the cause of the failure is analysed.

property(General_ Response,
response(global,

signal(lookup.job.translate,?schemes),
or(

signal(lookup.job.translate,?codes),
signal(lookup.job.translate,lookupError,?string))))

The Nurse_ Translation example in section 3.3 runs only one test. The following CLOVE

property asserts that translating job title ‘nurse’ into the SOC2000 and SIC92 classifi-
cations should yield the correct result in all cases.

property(Nurse_ Response,
response(global,

signal(lookup.job.translate,schemes(’Nurse,’SOC2000,’SIC92)),
signal(lookup.job.translate,codes(’3211,’95.14))))

Common service properties (e.g. deadlock freedom) are automatically verified without
having to be specified explicitly. In addition, service-specific properties like the above

178 K.J. Turner and K.L.L. Tan

can be formulated by the developer. The CLOVE notation is intended to be more acces-
sible than the underlying formalism (µ-calculus). CLOVE is also designed to be similar
to MUSTARD, allowing the developer to verify and validate services in a similar way.
Although these example properties are simple, they are typical of service verification
practice. CLOVE also supports other types of property, e.g. for safety or liveness.

Behind the scenes, CLOVE automatically translates the properties into µ-calculus
[5] – a temporal logic that allows branching-time properties to be checked. CLOVE then
invokes CADP to carry out property verification. The goal for verifying CRESS service
descriptions is to make this as ‘push button’ as possible, especially since the service de-
veloper is unlikely to be a formal methods expert. In fact it is possible for the developer
to compose services without leaving the CRESS diagram editor. A service composi-
tion can be described graphically, validated, verified, implemented and deployed from
within this graphical tool.

The CADP tools used for verification are CAESAR (behaviour compiler), CAE-
SAR.ADT (data type compiler) and Evaluator. CAESAR.ADT generates a C header file
from the LOTOS specification, including references to the C skeleton files generated by
CRESS. CAESAR is then used to generate a BCG (Boundary Components Graph) for
the specification. The Evaluator tool verifies properties of a specification in LOTOS or
BCG form. Verification steps are defined by an automated script written in SVL (Script
Verification Language). Desirable properties include deadlock freedom, consistency of
service behaviour, and reachability of service states.

The CRESS specification generated from figures 1 and 2 was successfully verified
against these properties after some corrections. For example, the original description
would deadlock if a request contained an invalid occupational scheme. As a result,
there was no response to the client request.

4 Implementing and Deploying Composed Grid Services

The main emphasis of this paper is on formal aspects, so the automated implementation
will be described only briefly. The same CRESS description as used for specification
is automatically implemented through translation into BPEL/WSDL and is packaged
for deployment. Services that are part of the composition have their interfaces and data
types generated in WSDL and XSD respectively. The BPEL, WSDL interface, WSDL
catalogue, deployment descriptor and common definitions are automatically generated
for the composite service and its partners. CRESS generates outline implementations of
partners that are completed manually for use in the final implementation.

Service orchestration (for Lookup and Allocator in this example) is performed by
the ActiveBPEL engine (www.activebpel.org). The composed service is automatically
created and deployed as a BPEL archive. If orchestration makes use of partner web
services, these are also deployed in ActiveBPEL. More typically, the partners are grid
services (Factory and Mapper here). These are automatically packaged and deployed
as grid service archives using the Globus Toolkit (www.globus.org).

ActiveBPEL, Globus Toolkit, the composite service and its partners can all run on
one system, though more typically they are distributed. This is defined by a CRESS

configuration diagram (not shown here) that defines the locations and deployment char-
acteristics of all services. The running implementation can then be validated again using

A Rigorous Methodology for Composing Services 179

the same MUSTARD tests as were used for the specification (section 3.3). In particular,
this evaluates non-functional properties such as performance, dependability and relia-
bility. This time, MUSTARD is translated into an intermediate form that is suitable for
use in testing an implementation. MINT (MUSTARD interpreter) executes these tests in
a similar kind of way as LOLA does for LOTOS. However, MINT has additional ca-
pabilities for evaluating an implementation. For example, it can perform stress testing
by running many tests concurrently or sequentially to check implementation perfor-
mance.

5 Conclusion

The CRESS methodology for composing services has now been rounded out to handle
all the key characteristics of grid services. For example, service resources, EndPoint
References and dynamic partner assignments are now fully handled in both the specifi-
cation and implementation phases of CRESS. Formal validation of the generated LOTOS

specifications was already possible using MUSTARD. New work has added automatic
verification of desirable specification properties, allowing properties of a composite ser-
vice to be proven in general. Automatic validation of the generated implementation is
also now possible, using MINT to check (non-)functional characteristics.

Verification through model checking requires a finite state space. This is a reason-
able restriction since the data types of an actual grid service implementation are finite.
Though the state space can grow very large, the size of it can be constrained by using
subsets of data values and by choosing significant values for verification. However, val-
idation still has a useful role. For example, it can be used with infinite state spaces, can
check specific cases, and can be used for stress-testing the implementation.

Support for automated formal analysis will be further improved. It is planned to
allow data types to be annotated in CRESS with regard to useful ranges and interesting
values. A possible approach here is to use PCL (Parameter Constraint Language [17]) to
specify significant values for validation and verification. This would allow MUSTARD

test cases to be automatically defined.
A rigorous methodology for developing composite grid services has been presented.

This uses an accessible graphical notation and a high degree of automation to make it at-
tractive to industry. An occupational classification service has been used to explain how
interactions with dynamic resources and dynamic partners are supported by CRESS.
Abstract CRESS descriptions are automatically translated into LOTOS for formal veri-
fication of desirable properties, and also for formal validation of significant test cases.
These are almost ‘push button’ procedures. The CRESS descriptions can then be auto-
matically translated into implementations with confidence. The same MUSTARD tests
can again be used to check the performance characteristics of these implementations.

Acknowledgements

Larry Tan was supported by an Overseas Research Studentship, by the University of
Stirling, and by the Economic and Social Research Council (grant RES-149-25-1066).

180 K.J. Turner and K.L.L. Tan

References

1. Arkin, A., et al. (eds.) Web Services Business Process Execution Language, Version 2.0.
Organization for The Advancement of Structured Information Standards (April 2007)

2. Baresi, L., et al.: Validation of web service compositions. Software 1(6), 219–232 (2007)
3. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language Lotos. Computer

Networks 14(1), 25–59 (1988)
4. Chirichiello, A., Salaün, G.: Encoding abstract descriptions into executable web services:

Towards a formal development. In: Proc. Web Intelligence 2005, December 2005. IEEE, Los
Alamitos (2005)

5. Clark, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2000)
6. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state

verification. In: Proc. 21st Int. Conf. on Software Engineering, pp. 411–420 (1999)
7. Ferrara, A.: Web services: A process algebra approach. In: Proc. 2nd Int. Conf. on Service-

Oriented Computing, pp. 242–251. ACM Press, New York (2004)
8. Foster, H.: A Rigorous Approach to Engineering Web Service Compositions. PhD thesis,

Imperial College, London (January 2006)
9. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL web services. In: Proc. 13th. Int.

World Wide Web Conf., pp. 621–630. ACM Press, New York (2004)
10. Garavel, H., Lang, F., Mateescu, R.: An overview of CADP 2001. European Association for

Software Science and Technology Newsletter 4, 13–24 (2002)
11. Graham, S., et al.: Web Services Resource. Version 1.2. Organization for The Advancement

of Structured Information Standards (April 2006)
12. ISO/IEC. LOTOS – A Formal Description Technique based on the Temporal Ordering of

Observational Behaviour. ISO/IEC 8807 (1989)
13. Oinn, T., et al.: Taverna: A tool for the composition and enactment of bioinformatics work-

flows. Bioinformatics 20(17), 3045–3054 (2004)
14. Pautasso, C.: JOpera: An agile environment for web service composition with visual unit

testing and refactoring. In: Proc. IEEE Symp. on Visual Languages and Human Centric Com-
puting. IEEE, Los Alamitos (2005)

15. Pavón Gomez, S., Larrabeiti, D., Rabay Filho, G.: Lola user manual (version 3R6). Technical
report, Polytechnic University of Madrid (February 1995)

16. Slomiski, A.: On using Bpel extensibility to implement OGSI and WSRF grid workflows. In:
Proc. Global Grid Forum 10, Berlin (March 2005)

17. Turner, K.J.: Test generation for radiotherapy accelerators. Software Tools for Technology
Transfer 7(4), 361–375 (2005)

18. Turner, K.J.: Validating feature-based specifications. Software Practice and Experi-
ence 36(10), 999–1027 (2006)

19. Wassermann, B., et al.: Sedna: A Bpel-based environment for visual scientific workflow mod-
elling. In: Workflows for E-Science, pp. 428–449. Springer, Heidelberg (2007)

20. W3C. Web Services Addressing (WS-Addressing). World Wide Web Consortium (May
2006)

21. Yu, J., et al.: Using temporal business rules to synthesize service composition process mod-
els. In: Proc. 1st Int. Workshop on Architectures, Concepts and Technologies for Service
Oriented Computing, July 2007, pp. 86–95. INSTICC Press (2007)

22. Zager, M.: SOA/web services – Business process orchestration with BPEL (October 2008),
http://webservices.sys-con.com/read/155631_1.htm

A Certified Implementation on Top of the Java

Virtual Machine�

Javier de Dios and Ricardo Peña

Departamento de Sistemas Informáticos y Computación
Universidad Complutense de Madrid

jdcastro@aventia.com, ricardo@sip.ucm.es

Abstract. Safe is a first-order functional language with unusual mem-
ory management features: memory can be both explicitly and implicitly
deallocated at some specific points in the program text, and there is no
need for a runtime garbage collector. The final code is bytecode of the
Java Virtual Machine (JVM), so the language is useful for programming
small devices based on this machine.

As an intermediate stage in the compiler’s back-end, we have defined
the Safe Virtual Machine (SVM), and have implemented this machine on
top of the Java Virtual Machine (JVM). The paper presents the certified
implementation of the SVM on top of the JVM. We have used the proof
assistant Isabelle/HOL for this purpose.

1 Introduction

Safe1 [20,15] was introduced as a research platform for investigating the suit-
ability of functional languages for programming small devices and embedded
systems with strict memory requirements. Its final aim is to be able to infer
and certify —at compile time— safe upper bounds on memory consumption
in a Proof Carrying Code environment [17]. Two features make Safe different
from conventional functional languages: (1) Its region-based memory manage-
ment system does not need a garbage collector; and (2) The programmer may
ask for explicit destruction of memory cells, so that they could be reused by the
program. The compiler produces as target language Java bytecode. These char-
acteristics, together with the formal certification of memory safety properties,
would make Safe useful for programming small devices.

Regions in Safe are inferred by the compiler and their allocation and dealloca-
tion are implicit. However, cell destruction, if desired, is explicit in the text and
it is expressed as a special form of pattern matching. This is a dangerous feature
which could result in having dangling pointers at runtime. The Safe compiler is
at present equipped with a battery of static analyses, which taken as a whole
infer the important property of absence of dangling pointers [20,15,14,16]. These

� Partially supported by the Spanish and Madrid Region Government grants S-
0505/TIC/0407 (PROMESAS), and TIN2008-06622-C03-01/TIN (STAMP).

1 http://dalila.sip.ucm.es/safe

M. Alpuente, B. Cook, and C. Joubert (Eds.): FMICS 2009, LNCS 5825, pp. 181–196, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

182 J. de Dios and R. Peña

analyses are conveyed on an intermediate language called Core-Safe (explained
in Sec. 2.1), obtained after type-checking and desugaring the source language
called Full-Safe. The back-end comprises two more phases:

1. A translation from Core-Safe to the bytecode language of an imperative
abstract machine of our own, called the Safe Virtual Machine (SVM). This
language is explained in Sec. 2.2.

2. A translation from SVM to the bytecode language of the Java Virtual Ma-
chine (JVM) [13].

We have decided to provide certificates on the absence of dangling pointers and
(future certificates) on memory consumption at the Core-Safe level. The main
reason for that is avoiding translating the certificates down to the JVM level, in
parallel with the code. We also conjecture that this latter approach would result
in huge certificates and huge checking times. For this reason, we prove instead
that the translation does not destroy the certified properties. In particular, that
the heap structure and the number of active cells are correctly mapped to the low
level machine. Otherwise, absence of dangling pointers or memory consumption
would not be preserved.

In a previous work [5], we certified the translation from Core-Safe to SVM.
The main proof technique used there was structural induction on Core-Safe
expressions. The distance between Core-Safe and the SVM was not so long as
both languages shared the same heap definition, and the main emphasis was on
proving that the resources ‘consumed’ at the Core-Safe level were the same that
at the SVM level. Here we present the certification of the last translation step.
The proof technique is different because here both languages are imperative.
In essence we show that the JVM correctly simulates the SVM. The distance
between both machines is so long (there is an expansion factor of around 20
between an SVM instruction and its translation to JVM) that the proofs are
huge, although not difficult. The hardest part is showing that the final states in
both machines preserve the simulation relation.

Machine-assisted compiler certification has been developed by several authors
in the last few years. In Sec. 6 we review some of these works. As it is ar-
gued in [10,11], mechanised certification is superior to manual verification and
of course to plain testing. For the certification being really trustable, the code
running in the compiler’s back-end should be exactly the same which has been
proved correct by the proof-assistant. Fortunately, modern proof-assistants such
as Coq [2] and Isabelle/HOL [19] provide code extraction facilities which deliver
code written in some widely used languages such as Caml or Haskell. Of course,
one must trust the translation done by the proof-assistant.

Isabelle/HOL is a well-known proof assistant, allowing to express definitions
and properties in a formal language and to prove them with some human help.
We have formalised in Isabelle/HOL the semantics of our abstract machine SVM,
its translation to the JVM, and the JVM itself by extending a previous formal-
isation by G. Klein [7]. This was needed because Klein’s machine was a rather
small subset of the actual JVM and it did not cover some features needed by

A Certified Implementation on Top of the Java Virtual Machine 183

our implementation. This infrastructure allowed us to formally state and prove
the correctness theorem.

The plan of the paper is as follows: In Section 2 we summarise our language
Safe and formalise in Isabelle/HOL the semantics of the SVM; Section 3 presents
the JVM formalisation made by Klein and our extension; in Section 4, we ex-
plain our design for mapping our machine to the JVM, and present the main
code generation functions; the certification itself is summarised in Section 5: we
define a simulation relation and prove that the pair formed by the instructions
translation and our memory management system, correctly simulates the SVM
semantics; there is finally a conclusions and related work section.

The paper is a summary of a rather large development whose full details
can be found at http://dalila.sip.ucm.es/safe/certifsvm2jvm, where all the
Isabelle/HOL theories containing the code generation functions, the lemmas,
and the proofs are available.

2 The Safe Language

Safe [20,15,14,16] is a first-order eager language with a syntax similar to Haskell’s.
Its runtime system uses regions, i.e. disjoint parts of the heap where the program
allocates data structures. The smallest memory unit is the cell, a contiguous
memory space big enough to hold a data construction. A cell contains the mark
of the constructor and a representation of the free variables to which the con-
structor is applied. These may consist either of basic values, or of pointers to
other constructions. It is allocated at constructor application time. A region is
a collection of cells. It is created empty and it may grow and shrink while it is
active. Region deallocation frees all its cells. The allocation and deallocation of
regions is bound to function calls. A working region is allocated when entering
the call and deallocated when exiting it. Inside the function, data structures not
belonging to the output may be built there. When a function body is executing,
the live regions are the working regions of all the active calls leading to this one.
Not all live regions are in scope: they are (for reading, or for cell destruction)
those regions where the arguments live, also (for reading, destruction, or inser-
tion) the regions received as additional arguments, and the self working region.
The region arguments are explicit in the intermediate code but not in the source,
since they are inferred by the compiler. The following list sorting function builds
and intermediate tree not needed in the output:

treesort xs = inorder (makeTree xs)

After region inference [14], the code is annotated with region arguments (those
occurring after the @):

treesort xs @ r = inorder (makeTree xs @ self) @ r

so that the tree is created in treeSort’s self region and deallocated upon termina-
tion. The destruction facilities are associated to pattern matching. For instance,
we show here a constant space function appending two lists:

184 J. de Dios and R. Peña

append []! ys = ys

append (x:xs)! ys = x : append xs ys

The ! mark is the way programmers indicate that the matched cell must be
destroyed. The constant space consumption is due to that, at each recursive
call, a cell is deleted by the pattern matching while a new one is allocated by
the (:) construction.

2.1 Core-Safe and Its Translation to SVM

The Safe front-end desugars Full-Safe and produces a bare-bones functional lan-
guage called Core-Safe. The transformation starts with region inference and
continues with Hindler-Milner type inference, pattern matching desugaring into
case expressions, transforming where clauses into let expressions, and some
others. A Core-Safe program is a sequence of possibly recursive polymorphic
data and function definitions followed by a main expression e whose value is the
program result. Destructive pattern matching is transformed into case! expres-
sions, and only constants or variables are allowed in function and constructor
applications. Also, only variables are allowed in case/case! discriminants and
in copy and reuse expressions. Region arguments are explicit in constructor and
function applications and in the copy expression. Function definitions have ad-
ditional region arguments r1, . . . , rm where the function is allowed to build data
structures. As an example, we show the Core-Safe version of the above append
function, and a main program invoking it:

append xs ys @ r = case! xs of
[] → ys
x : xx → let yy = append xx ys @ r in

let zz = (x : yy) @ r in zz ;
let l = [] @ self in append l l @ self

2.2 The Safe Virtual Machine

The Safe compiler translates Core-Safe into a set of sequences of imperative SVM
instructions. These belong to the instruction set of the SVM, whose semantics in
terms of configuration transitions is shown Fig. 1. A configuration of the SVM
consists of the six components (is , Δ, k0, k, S, cs), where is is the current
instruction sequence, Δ is the heap, k and k0 are machine registers respectively
denoting the topmost region in the heap and the topmost region that must be
preserved upon reaching a normal form, S is the stack and cs is the code store
where the instruction sequences are kept. For example, the Core-Safe append
program of Sec. 2.1 generates the code store of Fig. 2.

A heap Δ is a function from pointers to construction cells w of the form
(j, C bi

n
), meaning that the cell is located in region j, that C is the data construc-

tor and the bi are its arguments. Regions are stacked as functions are invoked.
Region identifiers j are natural numbers indicating the position of the region in
the region stack. By Δ |k we denote the heap obtained by deleting from Δ those

A Certified Implementation on Top of the Java Virtual Machine 185

Initial/final configuration Condition

(DECREGION : is, Δ, k0, k, S, cs) k ≥ k0

⇒ (is, Δ |k0 , k0, k0, S, cs)
([POPCONT], Δ, k, k, b : (k0, p) : S, cs[p �→ is])

⇒ (is, Δ, k0, k, b : S, cs)
(PUSHCONT p : is, Δ, k0, k, S, cs[p �→ is ′])

⇒ (is, Δ, k, k, (k0, p) : S, cs)

(COPY : is, Δ[b �→ (l, C bi
n
)], k0, k, b : j : S, cs) (Θ, b′) = copy(Δ, j, b)

⇒ (is, Θ, k0, k, b′ : S, cs) j ≤ k
(REUSE : is, Δ � [b �→ w], k0, k, b : S, cs) fresh(b′)

⇒ (is, Δ � [b′ �→ w], k0, k, b′ : S, cs)
([CALL p], Δ, k0, k, S, cs[p �→ is])

⇒ (is, Δ, k0, k + 1, S, cs)
(PRIMOP ⊕ : is, Δ, k0, k, c1 : c2 : S, cs) c = c1 ⊕ c2

⇒ (is, Δ, k0, k, c : S, cs)

([MATCH l pj
m], Δ[S!l �→ (j, Cm

r bi
n
)], k0, k, S, cs[pj �→ isj

m
])

⇒ (isr, Δ, k0, k, bi
n
: S, cs)

([MATCH! l pj
m], Δ � [S!l �→ (j, Cm

r bi
n
)], k0, k, S, cs[pj �→ isj

m
])

⇒ (isr, Δ, k0, k, bi
n
: S, cs)

([MATCHN l v m pj
m], Δ, k0, k, S, cs[pj �→ isj

m+1
]) r = S!l − v + 1 ∧ 1 ≤ r ≤ m

⇒ (isr, Δ, k0, k, S, cs)

([MATCHN l v m pj
m], Δ, k0, k, S, cs[pj �→ isj

m+1
]) r = S!l − v + 1 ∧ ¬(1 ≤ r ≤ m)

⇒ (ism+1, Δ, k0, k, S, cs)

(BUILDENV Ki
n

: is, Δ, k0, k, S, cs)

⇒ (is, Δ, k0, k, Itemk(Ki)
n

: S, cs) (1)

(BUILDCLS Cm
r Ki

n
K : is, Δ, k0, k, S, cs) Itemk(K) ≤ k, fresh(b)

⇒ (is, Δ � [b �→ (Itemk(K), Cm
r Itemk(Ki)

n
)], k0, k, b : S, cs) (1)

(SLIDE m n : is, Δ, k0, k, bi
m

: b′i
n

: S, cs)

⇒ (is, Δ, k0, k, bi
m

: S, cs)

(1) Itemk(K)
def
=

8<
:

S!j if K = j ∈ N

c if K = c
k if K = self

Fig. 1. The abstract machine SVM

regions above region k. We will use p, q, . . . to denote code labels solved by cs ,
and b, bi, . . . to denote either cell pointers solved by Δ, or basic constants. By
Cm

r we denote the data constructor which leads to the r-th alternative out of m
of a case. By S!j we denote the j-th element of the stack S counting from the
top and starting at 0 (i.e. S!0 is the top element).

We do not show the translation functions from Core-Safe to SVM here but,
in order to understand the machine behaviour, we give some hints about it:
– let x1 = e1 in e2 is translated into pushing a continuation for e2 in the SVM

stack (PUSHCONT instruction), followed by the instructions of e1. If e1 is a
constructor application, a new cell is allocated for it (BUILDCLS instruction)
and the execution proceeds with e2.

– case expressions are translated into a MATCH/MATCH!/MATCHN instruction
jumping to the appropriate alternative. Each one is a separate sequence.

– The translation of function application consists of pushing the arguments in
the SVM stack (BUILDENV instruction), and then jumping to the function
body (CALL instruction). Function calls are always tail recursive, so there is
no need for a return instruction.

186 J. de Dios and R. Peña

P1 �→ [BUILDCLS Nil20 [] self , BUILDENV [0, 0, self], SLIDE 3 1, CALL P2]
P2 �→ [MATCH ! 0 [P3, P4]]
P3 �→ [BUILDENV [1], SLIDE 1 3, DECREGION , POPCONT]
P4 �→ [PUSHCONT P5,BUILDENV [3, 5, 6], SLIDE 3 0,CALL P2]
P5 �→ [BUILDCLS Cons2

1 [1, 0] 5, BUILDENV [0], SLIDE 1 6, DECREGION ,POPCONT]

Fig. 2. Imperative code for the Core-Safe append program

– When a normal form is reached: (1) the current environment is discarded
from the stack (SLIDE instruction); (2) some regions may be deallocated,
since a tail recursive call chain terminates (DECREGION instruction); and (3)
a continuation sequence is looked for in the stack (POPCONT instruction).

– The copy x@r, reuse x!, and primitive operation a1 ⊕ a2 expressions are
respectively translated into sequences containing a COPY, a REUSE, and a
PRIMOP instructions.

We now explain more closely each individual instruction: DECREGION deletes from
the heap all the regions between the current region k and region k0, excluding
the latter; POPCONT pops a continuation from the stack or stops the execution if
there is none. Notice that b —which will usually be a value— is left in the stack
so that it can be accessed by the continuation; PUSHCONT pushes a continuation
represented by a region number and a code pointer.

Instruction COPY copies to region j the data structure starting at pointer b on
top of the stack; REUSE creates a fresh pointer b′ and makes it to point to the data
structure pointed to by b on top of the stack; CALL jumps to a new instruction
sequence and stacks an empty region k + 1; PRIMOP operates two basic values
located in the stack and replaces them by the result of the operation.

Instruction MATCH does a vectored jump depending on the matched cell con-
structor; MATCH! additionally destroys the matched cell; MATCHN is used when
the case discriminant is a basic value. The equations respectively describe what
happens when the discriminant is matched by one alternative, and when it is
not matched and the default alternative must be taken.

Instruction BUILDENV receives a list of keys Ki and creates a portion of envi-
ronment on top of the stack: If a key K is a natural number j, the item S!j is
copied and pushed on the stack; if it is a basic constant c, it is directly pushed on
the stack; if it is the identifier self , then the current region number k is pushed
on the stack; BUILDCLS allocates fresh memory and constructs a heap cell. It
receives a list of keys and the cell constructor Cm

r ; SLIDE removes some parts of
the stack and it is used to discerd environments when they are no longer needed.

The following invariant is ensured by the Safe compiler: For every instruc-
tion sequence in the code store cs, instruction i is the last one if and only if it
belongs to the set {POPCONT, CALL, MATCH, MATCH!, MATCHN}. It is introduced in
Isabelle/HOL as an axiom, since it is needed for proving the correctness theorem.

We have formalised the SVM by first defining in Isabelle/HOL some datatypes
for normal form values, and cells:

datatype Val = Loc Location | IntT int | BoolT bool
types Cell = Constructor × Val list

A Certified Implementation on Top of the Java Virtual Machine 187

The heap is modelled as a partial function from locations to pairs (Region ,Cell),
and a nat with the total number of regions. The stack is modelled as a list.

types HeapMap = Location ⇀ (Region × Cell)
Heap = HeapMap × nat
Stack = StackObject list

where stack objects can be values, region numbers or continuations. The SVM
code is modelled by a list of triples, each one consisting of a code label, a SVM
instruction sequence, and a function name. The aim is to represent a partial
function, but one which can be traversed. A code store provides also information
about which labels correspond to continuations.

types CodeSequence = SafeInstr list
SVMCode = (CodeLabel × CodeSequence × FunName) list
ContinuationMap = FunName ⇀ CodeLabel list
CodeStore = SVMCode × ContinuationMap

The program counter of the SVM is a pair (CodeLabel , nat) indicating the in-
struction sequence under execution and the next instruction of the sequence to
be executed. The SVM state consists of the heap, the register k0, the program
counter and the stack. Finally, the static part of a SVM program consist of a
code store, a constructor table containing constructor static attributes needed
at runtime, and a sizes table with sizes for the heap and the stack.

types PC = CodeLabel × nat
SVMState = Heap × Region × PC × Stack
SafeImpProg = CodeStore × ConstructorTableType × SizesTable

We have defined a function execSVM making the SVM to execute the next in-
struction, or to stop if there is none:

execSVM :: SafeImpProg ⇒ SVMState ⇒ (SVMState ,SVMState) Either
execSVM ((code , cm), ct , st) (h, k0, (l, i), S) =

execSVMInst (the (map of code l) ! i) (map of ct) h k0 (l, i) S

where map of , defined in Isabelle/HOL, transforms a list of pairs into a partial
function. If execSVM P s gives Left s, this means that s is a stopping state.
Otherwise, it gives Right s′. There is an equation defining execSVMInst for every
SVM instruction. The definitions closely follow the semantics given in Fig. 1.

3 Formalisation of the JVM in Isabelle/HOL

In the past years, there have been some efforts to formally define the JVM in
proof assistants in order to verify properties of the machine itself or of applica-
tions written in Java bytecode. Concerning Isabelle/HOL, there was some early
work by Cornelia Pusch [22] followed by Tobias Nipkow, Gerwin Klein and oth-
ers in the framework of some EU-funded projects [9,6,8]. As starting point, we

188 J. de Dios and R. Peña

datatype instr =
Store nat | Return | ArrLoad

| Load nat | Pop | ArrStore
| Tableswitch int int (int list) | Dup | ArrLength
| Getfield vname cname | Dup x1 | ArrNew ty
| Putfield vname cname | Dup x2 | Checkcast cname
| Getstatic vname cname | Swap | New cname
| Putstatic vname cname | BinOp op | LitPush val
| Invoke cname mname (ty list) | Ifcmpeq int | Jsr int
| Invoke static cname mname (ty list) | Throw | Ret nat
| Invoke special cname mname (ty list) | Goto int

Fig. 3. Supported instructions of the JVM

have used the definition of the JVM done in 2003 by G. Klein for Microjava, a
subset of Java [7], and have extended it with a static heap and some instruc-
tions such as Tableswitch, Invoke static, binary operators, and others. These
extensions are part of the actual JVM and we needed in our implementation.

A JVM program is formalised as a list of class declarations, each one con-
sisting of the class and super-class names, and two lists for field and method
declarations.

types fdecl = vname × ty -- field declaration
sig = mname × ty list -- signature of a method
′c mdecl = sig × ty × ′c -- method declaration (′c is the body)
′c class = cname × fdecl list × ′c mdecl list -- class = superclass, fields, method
′c cdecl = cname × ′c class -- class declaration
′c prog = ′c cdecl list -- program

A method’s body provides the lengths of the operand stack and of the local
variable list, the bytecode instructions, and an exception table.

types bytecode = instr list
jvm method = nat × nat × bytecode × exception table
jvm prog = jvm method prog

The supported instructions are listed in Fig. 3. They represent both a subset
and an abstraction of the actual JVM instruction set [13].

The dynamic state of the JVM (jvm state) is formed by four components:
a possibly raised exception, a static heap (sheap), a dynamic heap (dheap), an
initial heap, and a stack of frames. The second is a partial function from pairs
〈class, field〉 to values, and the third is a partial function from locations to
either objects or arrays (heap entry). An object contains its class name and a
mapping from pairs 〈field, class〉 to values. An array consists of its elements
type, its length, and a partial mapping from indices to values. A frame (frame)
is formalised as a tuple containing the operand stack, the local variables (these
include the this pointer and the method arguments), the class name, the method
signature, the program counter, and a tag. This and the initial heap are not
present in the actual JVM, and they are related to a proof about the bytecode
type system made by Klein.

A Certified Implementation on Top of the Java Virtual Machine 189

datatype heap entry = Obj cname (vname × cname ⇀ val)
| Arr ty nat (nat ⇀ val)

types sheap = cname × vname ⇀ val -- static heap
dheap = loc ⇀ heap entry -- dynamic heap
frame = opstack × locvars × cname × sig × pc × tag
jvm state = val option × sheap × dheap × ini heap × frame list

Klein defines a function exec :: jvm prog × jvm state ⇒ jvm state option, execut-
ing the next instruction in the machine, which we have extended to the added
instructions. In addition, he defines the reflexive-transitive closure of the exec P

relation, for a given program P , as follows:

exec all :: [jvm prog , jvm state , jvm state] ⇒ bool (� − jvm →)
P � s − jvm → t ≡ (s, t) ∈ {(s, t) . exec (P, s) = Some t}∗

4 Implementation of the SVM on Top of the JVM

The JVM provides support for allocating new objects in the heap but not for
releasing them. Instead, there is an automatic garbage collector system which
collects unused objects. On the contrary, the SVM has explicit releasing of cells
and no garbage collector. The JVM provides a frames stack for invoking and
returning from methods. The SVM control flow does not follow the typical
call/return scheme of imperative languages. The SVM is a kind of ‘jumping
machine’ where the control flow is in part driven by the stack. So, the JVM
stack is not appropriate to be used as the SVM stack. Finally, the SVM stores
code addresses in the stack which are used to jump to the corresponding code.
There is no support instruction in the JVM for this need. Summarising, careful
design decisions are needed in order to correctly map the SVM to the JVM.
First we explain how data structures are mapped, and then how the code is
mapped.

4.1 Mapping the SVM Data Structures

As explained in Sec. 1, one aim of Safe is to statically infer and certify upper
bounds for heap and stack sizes. In order to make the reusing of released cells
easier, we have decided to have fixed-size cells in the heap. The size is determined
at compile time for each particular program, according to the biggest size data
constructor.

The heap is implemented by two classes, DirectoryCell and Heap providing
a pool of free cells and a stack of regions, each one consisting of a collection of
cells. Before refining this description, let us look at the main interface methods,
which we present in Fig. 4. Following their order of occurrence, they respectively
give support to the SVM instructions CALL, DECREGION (2 methods), BUILDCLS
(2 methods), MATCH! and COPY.

Notice that access to an arbitrary region is needed in insertCell and copy ,
while releaseCell is provided with only the cell pointer as an argument. We have
implemented all the methods (except decregion) running in constant time by

190 J. de Dios and R. Peña

void pushRegion () -- creates a top empty region
void popRegion () -- removes the topmost region
void decregion () -- removes the k − k0 topmost regions
cell reserveCell () -- returns a fresh cell
void insertCell (p, j) -- inserts cell p into region j
void releaseCell (p) -- releases cell p
cell copy (p, j) -- copies the data structure beginning at p into region j

Fig. 4. The interface of the classes Heap and CellFactory

representing the regions and the pool as circular doubly-chained lists. Method
decregion has a cost in Θ(k − k0) independently of the number of cells of the
deleted regions. The region stack is represented by a static array of dynamic
lists and a static field k, so that constant time access to each region is provided.
Register k0 is also a static field of the class Heap.

Initially, all the cells and the region array are allocated with sizes provided by
the compiler. During program execution, ‘allocating’ and ‘releasing’ cells mean
moving them from/to the freelist to/from the appropriate region list.

The SVM stack is implemented by a class Stack having a static array with a
size provided by the compiler. Its only meaningful method is slide (m,n), which
gives support to the SLIDE instruction. The rest of accesses are done by the
in-line code emitted by the compiler. We will call RTS (run-time system) to the
package consisting of the classes Heap, DirectoryCell, and Stack.

4.2 Mapping the SVM Code

The code generated by translating a SVM program consists of a single JVM
class PSafe with a single method PSafeMain(). Core-Safe functions and the
main expression correspond to certain fragments of this method. This decision
is forced by the previous one of not using the frames stack of the JVM. Since
arguments are pushed to the SVM stack, function calls are implemented by
JVM goto instructions. A sequence of SVM instructions is represented by a
jump-free bytecode sequence. Invocation to RTS methods are allowed in the
sequence.

A SVM MATCH instruction is implemented by using the JVM Tableswitch
instruction, which can branch in constant time to any label of a list of static
labels. The problem of storing/retrieving code addresses into/from the stack is
solved in this way: every continuation label p of every Safe function is given a
number i = cm(p) in the range 0, . . . , totC − 1, being totC the total number of
continuations in the program, which in turn is equal to the number of its non
constructor-building let expressions —so totC is a static quantity—, and being
cm an appropriate bijective function. Instruction PUSHCONT p just pushes i to
the stack, while POPCONT uses a global Tableswitch instruction indexed by i to
jump to the appropriate static label.

A Certified Implementation on Top of the Java Virtual Machine 191

[Getstatic Sf stackC,
Getstatic topf stackC,
Dup2,
Dup2,
Dup2,
ArrLoad,
Store 1, (* local1 <- b *)
LitPush (Intg 1),
BinOp Substract,
ArrLoad,
Store 2, (* local2 <- k’ *)
LitPush (Intg 2),
BinOp Substract,

ArrLoad,
Store 3, (* local3 <- p *)
LitPush (Intg 2),
BinOp Substract,
Dup,
Putstatic topf stackC, (* top <- top - 2 *)
Load 1,
ArrStore, (* S[top] <- b *)
Load 2,
Putstatic k0f heapC, (* k0 <- k’ *)
Load 3, (* jump to continuation *)
Goto (trAddr pcc (pc + incPop))]

Fig. 5. The JVM bytecode produced by POPCONT

4.3 Translation Functions

As we have said, we have defined in Isabelle the translation from SVM to JVM
and used its code extraction facilities to produce the Haskell code actually exe-
cuted in the compiler. The translation provides, as add-ons, a function mapping
the SVM program counters to the JVM program counters corresponding to the
translation, a function mapping continuation labels to the small integers men-
tioned in Sec. 4.2, and a function assigning to each constructor a unique number.
These mappings are needed later to define the simulation relation between the
states of the SVM and the JVM.

codeMap :: PC ⇀ pc
contMap :: CodeLabel ⇀ nat
consMap :: Constructor ⇀ nat
trSVM2JVM :: SafeImpProg ⇒ jvm prog × codeMap × contMap × consMap

This function creates the initialisation code and the constructor mapping, builds
the SafeMain class and attaches to it the RTS classes. To produce the bytecode
of the only method of that class, it uses the function

trCodeStore :: [CodeLabel , pc,ContinuationMap, consMap,SVMCode]
⇒ instr list × codeMap × contMap

which traverses the SVM code sequences, accumulating the bytecode fragments
and the program counter mapping produced by them. It also assigns unique
numbers to continuations. In order to translate a sequence, it uses the function

trSeq :: [contMap,consMap,pc,pc ×codeMap,CodeLabel ×CodeSequence ×FunName]
⇒ (pc × codeMap) × instr list

which traverses one SVM sequence, accumulating the bytecode fragments pro-
duced by each SVM instruction. It also updates the program counter mapping
after each translation. The main translation function, defined by cases on the
SVM instruction being translated is

trInstr :: [pc, codeMap, contMap, consMap, pc,SafeInstr] ⇒ instr list

where the first pc is the one corresponding to the first JVM instruction of the
translation, and the second one is the program counter of the global Tableswitch

192 J. de Dios and R. Peña

mentioned in Sec, 4.2 to deal with continuations. As an example, we show in
Fig. 5 the bytecode resulting from the translation of POPCONT. The code of all
these functions can be found at http://dalila.sip.ucm.es/safe/certifsvm2jvm.

5 Certification of the Implementation

The main idea of the proof is defining a simulation relation between SVM and
JVM states and showing that both machines evolve through states made equiv-
alent by the relation when executing a SVM program and its translation.

To define the simulation relation we must consider that part of the JVM state
is implemented by the static data structures kept in the RTS classes Heap and
Stack, and that the rest is kept in the cell objects and arrays of the dynamic heap.
The relation admits a SVM state to be simulated by several JVM states, since
there is an abstraction when going from lists of cells in the JVM to set of cells in
the SVM. The critical part of the relation is the existence of a bijection between
the SVM heap locations and the JVM dynamic heap locations corresponding
to active cells, i.e. cells linked in some list of the region stack. The bijection
must preserve the heap structure in the sense that equivalent cells must point
to equivalent cells. In the following, we will assume that P is a SVM program
and (P ′, cdm, ctm, com) = trSVM2JVM P its translation.

Definition 1. Given an injection g :: dom H ⇒ loc, and a constructor mapping
com , the JVM dynamic heap h and the region stack regS with k′ regions simulate
the SVM heap (H, k), denoted equivH (H, k) h k′com regS g, if:

range g = activeCells regS k′∧k = k′∧∀l ∈ dom H.equivC (H l) (h (g l)) com g

The first condition guarantees that g is in fact a bijection. Predicate equivC
(not shown) defines that two cells are equivalent under g and com when both
live in the same region j and contain pointers made equivalent by g in equivalent
argument positions. Equivalent constructor names are the string C in the SVM
and the unique number com C in the JVM.

Definition 2. The JVM state s′=(None, hs, hd, hi, ([], vs,“PSafe”,(“PSafeMain”, ts),

pc, tag)#[]) simulates the SVM state s = (H, k0,PC , S), denoted cdm, ctm, com 	
s

�= s′, if there exists an injection g :: dom H ⇒ loc such that:

1. equivH H hd k′com regS g, where the region stack (regS , k′) is obtained
from hs and hd by using the RTS class Heap.

2. equivS S S′ top ctm g, where the stack (S′, top) is obtained from hs and hd

by using the RTS class Stack.
3. k0 = k′

0, where k′
o is the static field k0 of the class Heap.

4. pc = cdm PC .

Predicate equivS (not shown) defines that the JVM stack (S′, top) simulates the
SVM stack S when, position by position, both contain either the same two basic

A Certified Implementation on Top of the Java Virtual Machine 193

values, or two heap locations made equivalent by g, or two continuations made
equivalent by ctm2.

Notice that the simulation relation guarantees that the heap structure is ex-
actly the same in both machines. So, properties such as the number of active
cells and the absence of dangling pointers are preserved.

The main correctness theorem states that, if the SVM and its implementation
are started in equivalent states, then after the SVM executes its next instruction,
and after the number of steps required by the JVM to execute its translation,
both machines arrive to equivalent states. The Isabelle/HOL formalisation is:

theorem correctSVM2JVM :
[[(P’,cdm,ctm,com) = trSVM2JVM P;

cdm, ctm, com � S1
�
= S1’;

execSVM P S1 = Right S2]] =⇒
∃ S2’ . P’ � S1’ -jvm→ S2’ ∧ cdm, ctm, com � S2

�
= S2’

A first set of lemmas deal with the static properties of the translation and prove
that, if (p, i) and pc are two program counters made equivalent by cdm, then the
JVM bytecode starting at pc is exactly the translation of the SVM instruction
found at (p, i). The topmost one is the following:

lemma fun SVM2JVM [rule format]:
(P’, cdm, ctm, com) = trSVM2JVM ((svms, ctmap), ini, ct, st) −→
l < length svms −→
svms ! l = (p,seq,fn) −→
i < length seq −→
svm = fst (the (map of svms p)) ! i −→
pc = the (cdm (p,i)) −→
bytecode = extractBytecode P’ −→
(∃ cdm’ ctm’ pcc inss bytecode’ . inss = trInstr pc cdm’ ctm’ com pcc svm ∧

drop pc bytecode = inss @ bytecode’)

After some initial massaging, the kernel of the main proof is done by cases on
the instruction executed in the SVM. We have proved one auxiliary lemma for
each SVM instruction. We show below the one corresponding to POPCONT:

lemma execSVMInstr POPCONT :
[[(P’, cdm, ctm, com) = trSVM2JVM ((svms, ctmap), ini, ct, ah, ai, bc);

cdm , ctm, com � ((hm, k), k0, (l, i), S)
�
= S1’;

(fst (the (map of svms l)) ! i) = POPCONT;
execSVMInst POPCONT (map of ct) (hm, k) k0 (l, i) S = Right S2;
drop (the (cdm (l, i))) (extractBytecode P’) =
trInstr (the (cdm (l, i))) cdm’ ctm’ com pcc POPCONT @ bytecode’

]] =⇒ ∃ v’ sh’ dh’ ih’ fms’ . P’ � S1’ -jvm→ (v’,sh’,dh’,ih’, fms’) ∧
cdm , ctm, com � S2

�
= (v’,sh’,dh’,ih’, fms’)

The conclusion of the lemma is the same as that of the main theorem, but the
premises inform us that the instructions about to be executed in the JVM are

2 More details can be found at http://dalila.sip.ucm.es/safe/certifsvm2jvm.

194 J. de Dios and R. Peña

exactly those produced by the translation of POPCONT. The proof of this kind
of lemmas is rather long and consists of passing through all the intermediate
JVM states determined by the JVM bytecode and showing that the final state
is equivalent to the arrival state in the SVM. If the bytecode contains loops, the
proof become harder as we must introduce invariants and prove loop termination.

6 Conclusions and Related Work

We have presented a summary of the formalisations in Isabelle/HOL of two
abstract machines, one functional (the SVM) and one imperative (the JVM).
The latter is an extension of a previous one done by G. Klein [7]. We have also
formalised the implementation of the first on top of the second, and defined
a simulation relation between the abstract and the concrete states. As part of
the relation, we have proved the existence of a bijection across the execution,
guaranteeing that the number of cells and the heap structure is the same in
both machines. In a previous work, we proved that a similar equivalence held
between the Core-Safe and the SVM levels of the translation. Considering both
proofs as a whole, this certifies that the memory consumption and the absence
of dangling pointers properties certified at the Core-Safe level are preserved in
the JVM code actually executed.

The complete specification in Isabelle/HOL of the syntax and semantics of
both languages, of the translation functions, the theorems and the proofs, repre-
sent about one person-year of effort. Including comments, about 21 000 lines of
Isabelle/HOL scripts have been written, and about 120 lemmas, some of them
very long, have been proved. Isabelle/HOL features a Higher-Order Logic and
gives enough facilities for defining recursive and higher-order functions. These
are written in much the same way as a programmer would do in a modern func-
tional language such as ML or Haskell. Isabelle/HOL provides also inductive
predicates, inductive n-relations, transitive closures as well as ordinary first-
order logic. This has made it easy to express the desired properties with almost
the same concepts one would use in hand-written proofs. Partial functions have
also been very useful in modelling programming language structures such as en-
vironments, heaps, and the like. Being able to quantify these objects in HOL
has been essential for stating and proving the theorems.

Using some form of formal verification to ensure the correctness of compilers
has been a hot topic for many years. An annotated bibliography covering up to
2003 can be found at [4]. Most of the papers reflected there propose techniques
whose validity is established by formal proofs made and read by humans.

Using machine-assisted proofs for compilers starts around the seventies, with
an intensification at the end of the nineties. For instance, [18] uses a constraint
solver to asses the validity of the GNU C compiler translations. They do not try
to prove the compiler correctness but to validate its output, by comparing it with
the corresponding input. This technique was originally proposed in [21]. A more
recent experiment in compiler validation is [12], where the source is the term
language of HOL and the target is assembly language of the ARM processor.

A Certified Implementation on Top of the Java Virtual Machine 195

More closely related to our work is [23] where the author uses Isabelle/HOL to
formalise the translation from a small subset of Java (called μ-Java) to a stripped
version of the Java Virtual Machine. He defines a big-step semantics for μ-Java
and a sate-transition semantics for the small JVM (17 bytecode instructions).
Then, the translation functions are defined and a correctness theorem similar to
ours is proved. This work can be considered as a first attempt, and it was con-
siderably extended by Klein, Nipkow, Berghofer, and Strecker himself in [7,8,1].
Only the latter claims that the extraction facilities of Isabelle/HOL have been
used to produce an actually running Java compiler. The main emphasis is on
formalisation of Java and JVM features and on creating an infrastructure on
which other authors could verify properties of Java or Java bytecode programs.

A realistic C compiler for programming embedded systems has been built and
verified in [3,10,11]. The source is a small C subset called Cminor to which C is
informally translated, and the target is Power PC assembly language. The com-
piler runs through six intermediate languages for which the semantics are defined
and the translation pass verified. The authors use the Coq proof-assistant and its
extraction facilities to produce Caml code. They provide figures witnessing that
the compile times obtained are competitive with those of gcc running with level-2
optimisations activated. This is perhaps the biggest project on machine-assisted
compiler verification done up to now.

As we have said in Sec. 1, the motivation for verifying the Safe back-end arises
in a different context. We have approached this development because we found it
more rapid than translating the Core-Safe properties to certificates at the level
of the JVM. Also, we expected the size of our certificates to be considerably
smaller than the ones obtained with the other approach. Additionally to previous
efforts, we have complemented functional correctness with a proof of resource
consumption and memory structure preservation.

Acknowledgement. We are grateful to Delfin Rupérez for providing prelimi-
nary Isabelle/HOL code for the RTS, the JVM extensions, and the translation.

References

1. Berghofer, S., Strecker, M.: Extracting a formally verified, fully executable compiler
from a proof assistant. In: Proc. Compiler Optimization Meets Compiler Verifica-
tion, COCV 2003. ENTCS, pp. 33–50 (2003)

2. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development
Coq’Art: The Calculus of Inductive Constructions. In: Texts in Theoretical Com-
puter Science. EATCS. Springer, Heidelberg (2004)

3. Blazy, S., Dargaye, Z., Leroy, X.: Formal verification of a C compiler front-end.
In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp.
460–475. Springer, Heidelberg (2006)

4. Dave, M.A.: Compiler verification: a bibliography. SIGSOFT Software Engineering
Notes 28(6), 2 (2003)

196 J. de Dios and R. Peña

5. de Dios, J., Peña, R.: Formal Certification of a Resource-Aware Language Im-
plementation. In: Berghofer, S., et al. (eds.) TPHOL 2009. LNCS, vol. 5674, pp.
196–212. Springer, Heidelberg (2009)

6. Klein, G.: Verified Java Bytecode Verification, PhD thesis, Institut für Informatik,
Technische Universität München (2003)

7. Klein, G., Nipkow, T.: Verified Bytecode Verifiers. Theoretical Computer Sci-
ence 298, 583–626 (2003)

8. Klein, G., Nipkow, T.: A Machine-Checked Model for a Java-Like Language, Vir-
tual Machine and Compiler. ACM Transactions on Programming Languages and
Systems 28(4), 619–695 (2006)

9. Klein, G., Nipkow, T., Schirmer, N., Strecker, M., Wildmoser, M.: Project Verifi-
Card (2001–2003), http://isabelle.in.tum.de/VerifiCard/

10. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In: Principles of Programming Languages, POPL 2006, pp.
42–54. ACM Press, New York (2006)

11. Leroy, X.: A formally verified compiler back-end, 79 pages (July 2008) (submitted)
12. Li, G., Owens, S., Slind, K.: Structure of a Proof-Producing Compiler for a Subset

of Higher Order Logic. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
205–219. Springer, Heidelberg (2007)

13. Lindholm, T., Yellin, F.: The Java Virtual Machine Sepecification, 2nd edn. The
Java Series. Addison-Wesley, Reading (1999)

14. Montenegro, M., Peña, R., Segura, C.: A Simple Region Inference Algorithm for
a First-Order Functional Language. In: Trends in Functional Programming, TFP
2008, Nijmegen (The Netherlands), May 2008, pp. 194–208 (2008)

15. Montenegro, M., Peña, R., Segura, C.: A Type System for Safe Memory Manage-
ment and its Proof of Correctness. In: ACM Principles and Practice of Declarative
Programming, PPDP 2008, Valencia, Spain, July 2008, pp. 152–162 (2008)

16. Montenegro, M., Peña, R., Segura, C.: An Inference Algorithm for Guarantee-
ing Safe Destruction. In: Selected papers of Logic-Based Program Synthesis and
Transformation, LOPSTR 2008. LNCS, vol. 5438, pp. 135–151. Springer, Heidel-
berg (2009)

17. Necula, G.C.: Proof-Carrying Code. In: ACM SIGPLAN-SIGACT Principles of
Programming Languages, POPL 1997, pp. 106–119. ACM Press, New York (1997)

18. Necula, G.C.: Translation validation for an optimizing compiler. SIGPLAN No-
tices 35(5), 83–94 (2000)

19. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

20. Peña, R., Segura, C., Montenegro, M.: A Sharing Analysis for SAFE. In: Selected
Papers of the 7th Symp. on Trends in Functional Programming, TFP 2006, pp.
109–128. Intellect, Bristol (2007)

21. Pnueli, A., Siegel, M., Singerman, E.: Translation Validation. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998)

22. Pusch, C.: Proving the Soundness of a Java Bytecode Verifier Specification in
Isabelle/HOL. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 89–
103. Springer, Heidelberg (1999)

23. Strecker, M.: Formal Verification of a Java Compiler in Isabelle. In: Voronkov, A.
(ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 63–77. Springer, Heidelberg (2002)

Formal Development for Railway Signaling

Using Commercial Tools

Alessio Ferrari1, Alessandro Fantechi2,
Stefano Bacherini1, and Niccoló Zingoni1

1 General Electric Transportation Systems (GETS), Firenze, Italy
2 Universitá di Firenze, DSI, Firenze, Italy

Abstract. This report presents the approach experimented by a rail-
way signaling manufacturer for the development of applications through
Simulink/Stateflow in a standard–regulated industrial framework.

The General Electric Transportation Systems (GETS) railway signaling division
of Florence, inside a long-term effort of introducing formal methods to enforce
product safety, decided to adopt the Simulink/Stateflow tool-suite to exploit
model based development and code generation within its own development pro-
cess [1]. Products traditionally provided by GETS, like any railway signaling
application developed for Europe, shall comply with the CENELEC norms [2].

Introducing the Simulink/Stateflow tool-suite within a CENELEC based pro-
cess is not a straightforward step, and GETS faced two crucial obstacles: the lack
of a formal semantics for the Simulink/Stateflow languages, and the absence of
a CENELEC compliant code generator.

The languages used by Simulink and Stateflow are not formally specified and
their semantics is essentially given by the simulation engine itself. This increases
the difficulty of defining an effective formal verification strategy, a highly recom-
mended practice according to the CENELEC norms.

Code generators provided for the tool-suite (in particular Stateflow Coder)
are not certified for railway software development, this complicating their adop-
tion in this domain. In order to overcome these problems, GETS first introduced
a set of modeling guidelines to restrain the semantics of the tools [3]. The idea
is based on the intuition that reducing the Simulink/Stateflow languages to a
semantically unambiguous subset enables proper code synthesis and formal ver-
ification. Once developed this set of modeling rules, a proper strategy including
formal development, model based unit testing and formal verification of modules
has been defined. Given a set of system-level functional requirements, these can
be partitioned into separate sets of unit requirements and then formalized into
Stateflow models according to the GETS guidelines. Each model represents an
independently verifiable system component. Unit testing based on requirement
coverage is then performed on the models through the Simulink environment, and
during test execution a test observer is used to register the test-suite input data
and the test results. The registered test-suite is executed on the auto-coded unit
and results are automatically compared. Finally, the unit is analyzed through

M. Alpuente, B. Cook, and C. Joubert (Eds.): FMICS 2009, LNCS 5825, pp. 197–198, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

198 A. Ferrari et al.

Fig. 1. Overview of our strategy for model based testing

Fig. 2. Overview of our strategy for formal verification

the Polyspace tool, based on abstract interpretation, in order to increase the
confidence on the correctness (in particular, absence of runtime errors) of the
generated code (Fig. 1). This strategy basically settles the problem of having a
qualified code generator, since certification of conformity is ensured each time
code is synthesized from a model. Verification of functional requirements is pro-
vided at Stateflow chart level: unit requirements are translated into formulas
made of Simulink blocks and validated against the Stateflow model through the
property proving engine called Simulink Design Verifier (fig. 2). The presented
approach is focused on the level of system modules, since the strategy has been
fully put into practice only at this level during the development of the logic of an
Automatic Train Protection system called SSC/SCMT BaseLine 3 (150K LOC
of auto-generated code). Extension of the approach at the overall system level
is theoretically feasible, but we are still working on strategies for putting it into
practice in the most effective manner.

References

1. Bacherini, S., Fantechi, A., Tempestini, M., Zingoni, N.: A Story about Formal
Methods Adoption by a Railway Signaling Manufacturer. In: Misra, J., Nipkow, T.,
Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 179–189. Springer, Heidelberg
(2006)

2. European Committee for Electrotechnical Standardization: CENELEC EN 50128,
Railway Applications - Software for Railway Control and Protection Systems (1997)

3. Ferrari, A., Fantechi, A., Bacherini, S., Zingoni, N.: Modeling Guidelines for Code
Generation in the Railway Signaling Context. In: Proceedings of 1st NASA Formal
Methods Symphosium (NFM), Moffet Field, California, U.S.A. (2009)

Integrated Formal Approach for Qualified Critical
Embedded Code Generator

Nassima Izerrouken1,2, Marc Pantel1, Xavier Thirioux1, and Olivier Ssi Yan Kai2

1 University of Toulouse, IRIT-ENSEEIHT Laboratory
Toulouse, France

2 Continental Automotive, Toulouse, France
{Nizerrou,Pantel,Thirioux}@enseeiht.fr,

{Olivier.Ssi-Yan-Kai}@continental-corporation.com

Abstract. This paper sums up the integration of a correct-by-construction com-
ponents for the qualifiable GENEAUTO1 automatic code generator (ACG). It trans-
forms SIMULINK models to C code for safety critical systems. Our approach
which combines classical development process and formal specification and ver-
ification using proof-assistants, led to preliminary fruitful exchanges with French
certification authorities. The most rigorous objectives from qualification level and
user standards conforms with DO-178B/ED-12B recommendations for a level A
development tool. The resulting tool has been applied successfully to real-size
industrial use cases from various transportation domain partners and led to detec-
tion of requirement errors.

Keywords: automatic code generator, formal verification, qualification, Coq
proof assistant.

1 Problem Statement

Both the complexity of software in safety critical systems and the level of require-
ments from the certification authorities are rising regularly. There exists a huge back-
ground of work related both to ACG for model-based languages and to the verification
of compilers such as [1,2,3,4,5]. Large part of these works is dedicated to synchronous
language-based models such as SCADE-KCG [1]. Semantics of models supported by
GENEAUTO [6], however, mix data-flow and control-flow. These can be expressed us-
ing synchronous languages [7,8], but they do not allow to respect easily the model/code
structural traceability constraints expressed in GENEAUTO by several industrial part-
ners. Also, to our knowledge, there is no formal verification applied to these code gen-
erators. The code generator of [2] focuses on the verification on source code. Important
related works rely on compiler verification and validation [3,4], but the verification is
focused on instances of compilation. A promising approach consists in the formal de-
velopment of a correct-by-construction compiler, e.g. [5]. Our work is based on this
later approach. However, there is a significant difference with our proposal. In order
to avoid departing from the usual industrial approach to qualification and ease its ac-
ceptance by certification authorities, we do not work at the semantic level directly. In

1 www.geneauto.org

M. Alpuente, B. Cook, and C. Joubert (Eds.): FMICS 2009, LNCS 5825, pp. 199–201, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

200 N. Izerrouken et al.

Importer
models

Simulink C Code

 Typer Clock calculus Model OptimiserBlock sequencer

Code Optimiser

Code Generator

C Printer

Preprocessor

Fig. 1. GENEAUTO ACG architecture

fact, we developed a two-step approach: in a first step, translate natural specification of
requirements into a formal specification using the COQ proof assistant; then in a second
step, these requirements are proved correct w.r.t. the semantics of the languages.

2 Qualification of Critical Code Generators

The architecture of the GENEAUTO toolset (cf. figure 1) is composed of several ele-
mentary tools which exchange XML files representing either system or code models.
The main purpose of splitting the ACG in several steps is to ease the verification of
each one independently. Some parts (elementary tools) in GeneAuto are written with
classical technologies using the JAVA programming language (Importer, Preprocessor,
...), and other parts are written with COQ (Block Sequencer, Typer, ...) and extracted
to OCAML programming language. In order to interface the extracted code from COQ

with the other parts of the GENEAUTO toolset, each elementary tool developed using
formal technologies is composed of two software artifacts as illustrated in the figure
2. The JAVA front-end model (reader and writer) which, on the one hand relies on the
commonModel Factory to read and write the full XML model files representing the
system and code models, and on the other hand executes the OCAML wrapper for the
extracted implementation of the elementary tool from the COQ development. In order
to exchange information with the concerned module, it writes simple text files which
contain the minimal description of the model required for the current module. This
choice relies on simple verification of text files printers and parsers by cross-reading
instead of XML more complicated ones. Then, after executing OCAML wrapper, reads
a simple text file which contains minimal required information for building the out-
puts of the elementary tool. This artifact will also read the text log file produced by the
OCAML model wrapper and output the messages through the standard GeneAuto log-
ging facility. The OCAML wrapper which reads the simple text model file and computes
the necessary information for the wrapper. For instance, the OCAML model sequencer
computes the input and output dependencies, sorts the blocks according to the rules in
the tool requirements, assigns an execution order to all blocks of the model and writes
these to the execution order simple file. This artifact will also produce a log file. As a
result, the specification, implementation and proofs associated to the Block Sequencer
have been done in COQ with more than 4500 lines of code and more than 130 proved
theorems. The resulting software has many properties that have not been anticipated
before using formal methods such as detecting lack of specification properties. Thus,
mixing classical development process and formal specification and verification using

Integrated Formal Approach for Qualified Critical Embedded Code Generator 201

Fig. 2. Component architecture in GeneAuto

proof assistant was applied successfully and led to preliminary fruitful exchanges with
some certification bodies.

References

1. Colaço, J.L., Pouzet, M.: Type-based initialization analysis of a synchronous data-flow lan-
guage. International Journal on Software Tools for Technology Transfer (STTT) 6(3), 245–
255 (2004)

2. Berry, G., Bouali, A., Fornari, X., Ledinot, E., Nassor, E., de Simone, R.: Esterel: A formal
method applied to avionic software development. Science of Computer Programming 36(1),
5–25 (2000)

3. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Steffen, B. (ed.) TACAS
1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998)

4. Necula, G.C.: Translation validator for an optimizing compiler. ACM SIGPLAN No-
tices 35(5), 83–94 (2000)

5. Leroy, X.: Formal certification of a compiler back-end or: Programming a compiler with a
proof assistant. In: Proceedings of the 33rd Symposium on Principles Of Programming Lan-
guages (POPL 2006), vol. 41(1), pp. 42–54 (2006)

6. Tooms, A., Naks, T., Pantel, M., Gandriau, M., Wati, I.: Geneauto: An automatic code gener-
ator for a safe subset of simulink/stateflow. In: Proceedings of the 4th European symposium
on Real Time Systems, ERTS 2008 (2008)

7. Caspi, P., Curic, A., Maignan, A., Sofronis, C., Tripakis, S.: Translating discrete-time simulink
to lustre. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 84–99. Springer,
Heidelberg (2003)

8. Halbwachs, N., Raymond, P., Ratel, C.: Generating efficient code from data-flow programs.
In: Małuszyński, J., Wirsing, M. (eds.) PLILP 1991. LNCS, vol. 528. Springer, Heidelberg
(1991)

Visualising Event-B Models

with B-Motion Studio�

Lukas Ladenberger, Jens Bendisposto, and Michael Leuschel

Institut für Informatik, Heinrich-Heine Universität Düsseldorf
Universitätsstr. 1, D-40225 Düsseldorf

{bendisposto,leuschel}@cs.uni-duesseldorf.de

1 Motivation

The communication between a developer and a domain expert (or manager) is
very important for successful deployment of formal methods. On the one hand
it is crucial for the developer to get feedback from the domain expert for further
development. On the other hand the domain expert needs to check whether
his expectations are met. An animation tool allows to check the presence of
desired functionality and to inspect the behaviour of a specification, but requires
knowledge about the mathematical notation. To avoid this problem, it is useful
to create domain specific visualisations. One tool which performs this task is
Brama. This tool is very important for ClearSy, and is being used for several
industrial projects and has helped to obtain several contracts. However, the tool
cannot be applied in conjunction with ProB. Also, creating the code that defines
the mapping between a state and its graphical representation is a rather time
consuming task. It can take several weeks to develop a custom visualisation.

In [1], we introduced a tool that like Brama allowed to create sophisticated
visualisations using Macromedia Flash. The tool, however, still required the user
to write some gluing code in Java to link the model and the visualisation. The
visualisation built into ProB as described in [2] did not require to write code, as
it uses a function written in B to link the model and its visualisation. These visu-
alisations are rather simple and restricted. Also writing the required animation
function can still be a considerable challenge.

We now introduce B-Motion Studio, a tool that allows to create visualisations
as easy as using animation functions in ProB while being almost as sophisticated
as our previous Flash based tool (e.g., see Figure 1). B-Motion Studio comes
with a graphical editor that allows to create a visualisation within the modeling
environment. Also, it does not require to use a different notation for gluing the
state and its visualisation.

B-Motion Studio uses two important concepts: Controls and Observers. A
control is a graphical representation of some aspects of the model. Typically we
use labels, images or buttons to represent informations. For instance, if we model
� This research is being carried out as part of the DFG funded research project

GEPAVAS and the EU funded FP7 research project 214158: DEPLOY (Industrial
deployment of advanced system engineering methods for high productivity and de-
pendability).

M. Alpuente, B. Cook, and C. Joubert (Eds.): FMICS 2009, LNCS 5825, pp. 202–204, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Visualising Event-B Models with B-Motion Studio 203

Fig. 1. The Visualisation in Action

a system that has a temperature and a threshold temperature that triggers a
cool down, we might simply use two labels displaying both values, or maybe
we can incorporate both information into a gauge display. It is also possible to
define new controls for domain specific visualisations. Observers are used to link
controls to the model’s state, i.e., they do the same as the animation function
in ProB. The main difference is, that we allow to decompose the animation
function into different aspects, i.e., if our model contains information about the
speed of a motor, we can separate all information regarding the speed from the
information regarding the temprature. This allows us to write small functions
and combine them rather than writing a single funtion covering all aspects of
the model.

2 Conclusion

The main advantages of B-Motion Studio are:

– The modeler stays within a single notation. B-Motion Studio uses Event-B
predicates and expressions as gluing code.

– An easy to use graphical editor, that allows to create visualisations with a
few mouse clicks (see Figure 2).

– B-Motion Studio comes with a number of default observers and controls that
are sufficient for most visualisations.

– It can be extended for specific domains.

204 L. Ladenberger, J. Bendisposto, and M. Leuschel

Fig. 2. The B-Motion Studio Perspective

In summary, we hope that B-Motion Studio provides a way to quickly generate
domain specific visualisations for a formal model, enabling domain experts and
managers to understand and validate the model. We also believe that our tool
will be of use when teaching formal methods, both during lectures as a way to
motivate students to write their own formal models.

3 Further Information

More technical details, a tutorial and installation instructions can be found at the
project’s website http://www.stups.uni-duesseldorf.de/BMotionStudio.

References

1. Bendisposto, J., Leuschel, M.: A generic flash-based animation engine for ProB.
In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 266–269.
Springer, Heidelberg (2006)

2. Leuschel, M., Samia, M., Bendisposto, J., Luo, L.: Easy Graphical Animation and
Formula Viewing for Teaching B. The B Method: from Research to Teaching, 17–32
(2008)

Behavioural Analysis of an I2C Linux Driver

Dragan Bošnački1, Aad Mathijssen1, and Yaroslav S. Usenko2

1 Technische Universiteit Eindhoven, The Netherlands
2 Centrum Wiskunde en Informatica, Amsterdam, The Netherlands

Introduction. Formal methods for the analysis of system behaviour offer solutions
to problems with concurrency, such as race conditions and deadlocks. We employ
two such methods that are presently most applied in industry: model checking
and static analysis on a common case study to analyse the behaviour of a Linux
driver for I2C (Inter-Integrated Circuit).

An industrial client provided us with the source code of the driver for which
it was known that it contained defects. Based on the code, some documentation,
and feedback by the developers we extracted a model of the device driver. The
model was checked using the mCRL2 toolset [3] and some potential defects were
revealed which were later confirmed by the developers. The errors were caused
by inconsistent use of routines for interrupt enabling and disabling, resulting in
unprotected references to shared memory and calls to lower-level functions. In
addition, we performed checks with UNO [4], a static analysis tool that works
directly with the source code. We employed UNO to statically detect the errors
that were found by the dynamic analysis in the model checking phase. Based
on our findings, we modified the source code to avoid the discovered potential
defects. Although some errors remained unsolved, an improvement was observed
in the standard tests that were carried out with our fixed version.

The I2C Linux driver. In general, the Linux 2.6 kernel contains an I2C driver
stack that is split up into three layers [5]: chip driver, core module and bus driver.
The core module is part of the Linux kernel, as are a number of chip drivers and
bus drivers. In our case, an I2C bus driver was supplied by the client. The code
mainly performs two tasks: handle ioctl calls from user space, offered via the
core module, and handle interrupts from the hardware.

To find race conditions we focused on the interaction between the two parallel
components of the driver: the ioctl handler and the interrupt service routine.

mCRL2 analysis. The mCRL2 language and toolset [3] allows users to model
and automatically verify the behaviour of distributed systems. Systems can be
modelled using a process algebra enriched with data types. Automated verifica-
tion is supported by checking temporal properties on all states of the model.

Based on the source code of the I2C bus driver we have created an mCRL2
model consisting of a translation of the ioctl handler and the interrupt service
routine and the environment in which these functions occur. For the verification
of our model we focused on violation of mutual exclusion of shared memory
accesses. Exploration of all states and transitions revealed two types of violations:
more than 100 concurrent shared memory accesses and one concurrent access of
low-level functions.

M. Alpuente, B. Cook, and C. Joubert (Eds.): FMICS 2009, LNCS 5825, pp. 205–206, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

206 D. Bošnački, A. Mathijssen, and Y.S. Usenko

These violations were caused by misplaced or absent calls to functions that
disable and enable interrupts. We fixed this by making a number of small changes
to the source code, by moving or adding these functions to protect the usage of
shared memory and low-level functions. We have also made these changes to our
mCRL2 model. Verification of this model showed us that these violations have
been resolved.

State space exploration for instances involving multiple ioctl threads became
prohibitively large. To resolve this, we have employed symbolic techniques as
implemented in the LTSmin toolset [1].

Static Analysis Results. We applied UNO to find the same violations as reported
by the mCRL2 analysis. The mutual exclusion properties needed to be encoded
as property automata. A property automaton monitors the traversal of the con-
trol flow graphs of the C functions. UNO produces an error trace, in case a
violation of the property is found.

After formulating the property automata, UNO was able to reproduce all
possible defects that were discovered with mCRL2: the errors of accessing shared
memory without previously disabling interrupts and unsafe function calls.

Conclusions. By means of both model checking using mCRL2 and static analysis
using UNO, we were able to find possible non-trivial defects, which have been
confirmed by the developers. Furthermore, we have provided a verified fix for
the found defects.

Although in general model checking is a more powerful technique than static
analysis, in this case study it seems that they are evenly matched. We think that
this is due to the low number of parallel components involved in the properties
we wanted to check. Instead of choosing between model checking and static
analysis, we can also use them in tandem, e.g. by employing static analysis as a
light-weight analysis to locate possible problems. Once the possible defects are
located, one can apply the more expensive fully-fledged model checking only to
the critical modules in the code base.

A more detailed account of this summary can be found in [2].

References

1. Blom, S., van de Pol, J.: Symbolic Reachability for Process Algebras with Recursive
Data Types. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008.
LNCS, vol. 5160, pp. 81–95. Springer, Heidelberg (2008)

2. Bošnački, D., Mathijssen, A., Usenko, Y.S.: Behavioural analysis of an I2C Linux
Driver, CS-Report 09/09, Technische Universiteit Eindhoven (2009)

3. Groote, J.F., Mathijssen, A.H.J., Reniers, M.A., Usenko, Y.S., van Weerdenburg,
M.J.: Analysis of distributed systems with mCRL2. In: Alexander, M., Gardner, W.
(eds.) Process Algebra for Parallel and Distributed Processing, pp. 99–128. Chap-
man and Hall, Boca Raton (2008)

4. Holzmann, G.J.: Static Source Code Checking for User-Defined Properties. In: Proc.
World Conference on Integrated Design & Process Technology, IDPT (2002)

5. Kroah-Hartman, G.: I2C Drivers, Part I. Linux Journal (December 2003)

Model-Based Testing of Electronic Passports

Wojciech Mostowski1, Erik Poll1, Julien Schmaltz2, Jan Tretmans1,2,
and Ronny Wichers Schreur1

1 Radboud University, Nijmegen, The Netherlands
2 Embedded Systems Institute (ESI), Eindhoven, The Netherlands

Introduction

Electronic passports, or e-passports for short, contain a contactless smartcard
which stores digitally-signed data. To rigorously test e-passports, we developed
formal models of the e-passport protocols that enable model-based testing using
the TorXakis framework.

E-Passport Protocols

Access to e-passports involves several protocols. All e-passports should conform
to the standards of the International Civil Aviation Organization (ICAO) [3].
To prevent surreptitious access to the e-passport chip, ICAO specifies the Ba-
sic Access Control (BAC) protocol, which establishes a secure channel based on
a symmetric session key. To prevent cloning of e-passports, ICAO specifies an
optional Active Authentication protocol. The second generation of e-passports
being introduced in the EU in the summer of 2009 contains more sensitive bio-
metric data, namely fingerprints. To protect this information, the EU mandates
the use of a stronger security mechanism called Extended Access Control (EAC)
[1]. EAC requires the passport terminal to authenticate itself (with a chain of
PKI certificates) to the passport before any sensitive biometric data can be read.

Formal Models and Model-Based Testing

The official standards give long and detailed descriptions of the individual pro-
tocols. Understanding the combination and possible interaction of the various
protocols is difficult. To better understand the protocols, we developed formal
models in the form of finite state diagrams. Initially we just drew these on
a whiteboard to understand the specifications, but then we realised that they
could be used to test e-passports using model-based testing.

In model-based testing a formal model is used to automate the testing process:
a formal model of the desired behaviour is used to generate tests and analyse the
test results. One theory for model-based testing uses labelled-transition systems
as models, and an implementation relation called ioco that formally defines
when an implementation is correct with respect to its specification model [5].

M. Alpuente, B. Cook, and C. Joubert (Eds.): FMICS 2009, LNCS 5825, pp. 207–209, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

208 W. Mostowski et al.

We expressed our state diagrams as labelled-transition systems and then used
the TorXakis model-based testing tool to test actual e-passports. TorXakis is
based on the model-based testing tool TorX [6] extended with symbolic test
generation capabilities [2]. TorXakis performs random walks through the model,
sends commands to the passport chip and verifies that the responses conform to
the model. TorXakis is implemented in Haskell.1 For lower-level communication
with the passport chip using a card reader, we used the open source passport-
terminal software that we helped develop in the JMRTD project.2

Results and Conclusions

The most difficult part of the testing process was understanding the official
specifications and constructing a formal model for them. Finite state diagrams
turn out to be a very effective and perspicuous way to specify the combination
of passport protocols. Indeed, it amazes us that the official specifications do not
use finite state diagrams anywhere.

Once we had the model, the actual testing only took about a week, includ-
ing developing the extra software. Here we did take advantage of the existing
e-passport terminal software. But note that this software, like any passport ter-
minal software, only executes one particular sequence of protocol steps, whereas
to rigorously test the security of a passport all different possible sequences of
these steps have to be exercised. This is what we let TorXakis do for us.

The tests were run fully automatically: an overnight test was able to per-
form over 100 000 protocol steps on a passport. Once the test infrastructure has
been set up, model-based testing simply amounts to playing with models. By
slightly changing the model, new tests are derived automatically with a simple
key stroke. By refining and tweaking the model we could quickly find out how
any underspecification or unclarities in the specifications had been resolved in
the implementation that we tested.

We will publish our formal models of the e-passport protocols as an aid to
anyone implementing or testing e-passport software, or indeed anyone just trying
to understand the specifications. We plan to do the same for the ‘twin brother’
of the e-passport: the new electronic driving license [4].3

References

1. Advanced security mechanisms for machine readable travel documents – Extended
Access Control (EAC) – Version 1.11. Technical Report TR-03110, German Federal
Office for Information Security (BSI), Bonn, Germany (2008)

2. Frantzen, L., Tretmans, J., Willemse, T.: Test generation based on symbolic spec-
ifications. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
1–15. Springer, Heidelberg (2005)

1 http://www.haskell.org
2 http://jmrtd.org
3 For which we developed the first (open source) reference implementation,
http://isodl.sourceforge.net.

Model-Based Testing of Electronic Passports 209

3. Doc 9303 – Machine readable travel documents – Part 1–2. Technical report, ICAO,
6th edn. (2006)

4. ISO/ICE. ISO-compliant driving license – Part 1, 2, 3. Technical report (2009), ISO
18013

5. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp. 1–38.
Springer, Heidelberg (2008)

6. Tretmans, J., Brinksma, E.: TorX: Automated model based testing. In: Hartman,
A., Dussa-Zieger, K. (eds.) First European Conference on Model-Driven Software
Engineering, Imbuss, Möhrendorf, Germany, December 2003, 13 pages (2003)

Developing a Decision Support Tool for Dam
Management with SPIN�

Marı́a-del-Mar Gallardo1, Pedro Merino1, Laura Panizo1, and Antonio Linares2

1 Dep. Lenguajes y Ciencias de la Computación, University of Málaga
{gallardo,pedro,laurapanizo}@lcc.uma.es

2 BEFESA AGUA, SAU
Antonio.linares@befesa.abengoa.com

1 Motivation

Analysis of many critical systems is usually based on the simulation of numerical mod-
els. This solution is suitable for analyzing systems with continuous and deterministic
behaviors that evolve over time. However, real critical systems are more complex and
can exhibit non-deterministic behavior due to unexpected events. Furthermore, critical
systems present both discrete and continuous behaviors, which interact regularly. Both
features can be modeled with hybrid formal methods, taking advantage of exploration
techniques like model checking.

We have selected dam management as a case study. A dam is a critical system that
has a hybrid behavior, there are continuous variables such as the water level, and dis-
crete states such as the opening degrees of the spillways. At present, Decision Support
Systems, based on numerical models, are used to manage complete river basins. Dams
are modelled as black boxes which store and release water. A Decision Support Tool
(DST) for dam management provides information about the possible consequences of
dam operator actions, which can help to ensure the safety of the dam, as well as the
efficient use of the water. In this work we have used formal methods to model a dam as
a hybrid system, and we have obtained decision support information from the analysis
performed with model checking.

2 Modeling Hybrid Systems with PROMELA

In our previous work [4], we evaluated the same case study with the SCADE suite. Now
we have used SPIN [2] to obtain a realistic model of a dam, by integrating numerical
models into PROMELA, the formal specification language used in SPIN. In Figure 1, it
can be seen how the hybrid model is built, taking into account the different outflow
elements of the dam and other components necessary to carry out the analysis, such as
the models of the environmental inflows and the user operations. In addition, the hybrid
model includes properties that reflect the initial condition (weather forecast) and the
desired evolution of the dam and its variables.
� Partially supported by Befesa Agua and by grants P07-TIC3131 (Andalusia) and TIN2008-

05932 (Spain).

M. Alpuente, B. Cook, and C. Joubert (Eds.): FMICS 2009, LNCS 5825, pp. 210–212, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Developing a Decision Support Tool for Dam Management with SPIN 211

Discrete and continuous behaviors have to be reflected in the hybrid model of the
dam. The discrete part can be easily defined in PROMELA. However, the continuous
behavior presents some difficulties, mainly because PROMELA is an asynchronous lan-
guage without a time model. Defining hybrid systems in PROMELA has two main goals:
the first is to implement a model of time that allows us (a) to carry out time-bounded
analysis, (b) to discretize the numerical models, and (c) to include timed processes.
The second goal is to deal with continuous behaviors by integrating numerical models
in PROMELA. A mechanism to emulate a timed operation has been developed based
on [1], in which a discrete time model is proposed that uses a synchronization process
to control the execution of the other processes. A timer variable is associated to each
process, and a global timer is included to allow both the time-bounded analysis and the
definition of timed properties. To manage continuous behaviors, we use the embedded
C code extension for PROMELA [3]. Using this extension has some benefits: (1) func-
tions implemented in C code can use more powerful libraries; (2) c code statements are
executed as atomic steps, which considerably reduces the number of states produced in
the analysis;(3) C variables can be excluded from the state space when they do not hold
relevant information for the analysis. The PROMELA model of the dam is composed of
3 processes that represent the 3 spillways that comprise the real dam. It has also a pro-
cess that represents the water inflows and another one to model the dam operator that
sends commands to the different elements of the dam to vary their discrete position.

3 DST with SPIN

To obtain support information, model checking is applied to the hybrid model. In Fig-
ure 1 the architecture of the DST developed is shown. The objective has to be expressed
as a non desired behavior, and the result is a counter example with information about

Fig. 1. Decision Support Tool Architecture

212 M.M. Gallardo et al.

Table 1. Results of SPIN analysis

Property A Property B
1 Core 2 Core Cpu0 1 Core 2 Core Cpu0

State Vector 148 148 156 156
Depth reached 2837 2299 2839 1139
States(stored) 1117623 524113 8968761 112986

States(matched) 1025582 592117 9686355 136935
Transitions 2143205 1116230 18655116 249921

Atomic Steps 1231807 678326 11435409 186293
Total memory (MB) 132,583 192,558 1174,497 145,512
Elapsed Time (sec) 4,89 3,75 53,4 1,060

the operations performed to satisfy the user requirements. Two types of timed prop-
erties have been defined: a) properties that check if a condition is true in a period of
time, and b) properties that check if the elapsed time between two conditions is within
a given time range. Properties in SPIN can be expressed with LTL formulas or can be
introduced with a special automaton called never claim. To express timed properties it
is more suitable to modify the never claim automaton. We have carried out some tests
to evaluate both the basic capabilities of SPIN and its multi-core extension. The system
configuration is as follows: the period of time analyzed is 60 minutes, in our discrete
time model one minute is equal to one time step. The user model can only act at time
points 0, 20 and 40. The analysis has been performed on an Intel Core2 Quad PC with
2.40GHz and 3GB of RAM. The operating system is Ubuntu. Table 1 shows the results
of analyzing two different timed properties with 1 and 2 cores, respectively. Property A
checks that the dam level is in the range [53.07, 53.06] from minute 40 to 60. Property
B checks that the time needed to decrease the dam level from more than 53.018Hm3 to
53.007Hm3 is less than 10 time steps. Both properties return a counter example with a
possible execution path that satisfies the condition.

4 Conclusions

The analysis shows that the SPIN multi-core extension reduces the analysis time notably.
Furthermore, the use of memory in each cpu can be reduced even more if a correct load
balance is applied. The DST is still a prototype, but the results of the implementation are
very promising and show the suitability of the methodology for this type of systems. Fu-
ture work will focus on enhancing DST and the dam model, adding new elements with
more complex behaviors. To improve the capabilities of DST, new property templates
should be developed.

References

1. Bosnacki, D., Dams, D.: Discrete-time promela and spin. In: FTRTFT 1998: Proc. of the
5th Int. Symp. on Formal Techniques in Real-Time and Fault-Tolerant Systems. Springer,
Heidelberg (1998)

2. Holzmann, G.J.: SPIN Model Checker: Primer and Reference Manual. Addison-Wesley Pro-
fessional, Reading (2003)

3. Holzmann, G.J., Joshi, R.: Model-driven software verification. In: SPIN, pp. 76–91 (2004)
4. Gallardo, M.M., Merino, P., Panizo, L., Linares, A.: Using SCADE for decision support in

Dam management. In: MSVVEIS 2009, pp. 125–131 (2009)

Author Index

Almeida, José Bacelar 37

Bacherini, Stefano 197
Barbosa, Manuel 37
Bendisposto, Jens 202
Bošnački, Dragan 205

Carro, Manuel 102

de Dios, Javier 181
Delmas, David 53
de Nicola, Rocco 9
Distefano, Dino 1

Evangelista, Sami 70

Fantechi, Alessandro 197
Ferrari, Alessio 197

Gallardo, Maŕıa-del-Mar 210
Goodloe, Alwyn E. 86
Goubault, Eric 53

Herranz, Ángel 102

Izerrouken, Nassima 199

Kalibera, Tomas 117
Kristensen, Lars Michael 70

Ladenberger, Lukas 202
Latella, Diego 9
Lecomte, Thierry 26
Leuschel, Michael 202
Linares, Antonio 210
Loreti, Michele 9

Mariño, Julio 102
Massink, Mieke 9
Mathijssen, Aad 205
McMillan, Ken L. 35
Merino, Pedro 210

Moreno Navarro, Juan José 102
Mostowski, Wojciech 207
Mousavi, MohammadReza 133
Munoz, César A. 86

Panizo, Laura 210
Pantel, Marc 199
Parizek, Pavel 117
Peña, Ricardo 181
Poll, Erik 207
Putot, Sylvie 53

Raffelsieper, Matthias 133
Roorda, Jan-Willem 133

Schierboom, Erik 149
Schmaltz, Julien 207
Smetsers, Sjaak 149
Sousa Pinto, Jorge 37
Souyris, Jean 53
Ssi Yan Kai, Olivier 199
Strolenberg, Chris 133

Tamalet, Alejandro 149
Tan, Koon Leai Larry 165
Tekkal, Karim 53
Tews, Hendrik 149
Thirioux, Xavier 199
Tretmans, Jan 207
Turner, Kenneth J. 165

Usenko, Yaroslav S. 205

van Eekelen, Marko 149
Védrine, Franck 53
Vieira, Bárbara 37

Wichers Schreur, Ronny 207

Zantema, Hans 133
Zingoni, Niccoló 197

	Front matter
	Chapter 1
	Attacking Large Industrial Code with Bi-abductive Inference
	Introduction
	Bi-Abduction
	Compositional Shape Analysis
	Application to Real Code
	References

	Chapter 2
	On a Uniform Framework for the Definition of Stochastic Process Languages
	Introduction
	Preliminaries
	A Language for CTMCs
	Fully Markovian Stochastic Process Calculi
	$TIPP_k$
	$PEPA_k$
	CCS-Based Stochastic Process Calculi

	A Language of Interactive Markov Chains
	Conclusions
	References
	Proof of Proposition 1

	Chapter 3
	Applying a Formal Method in Industry: A 15-Year Trajectory
	Introduction
	The Genesis
	System Level Modeling
	Embedded Software
	Platform Screen Doors
	SmartCard

	Animation and Documentation
	Conclusion
	References

	Chapter 4
	What’s in Common between Test, Model Checking, and Decision Procedures?
	References

	Chapter 5
	Verifying Cryptographic Software Correctness with Respect to Reference Implementations
	Introduction
	Background: Deduction-Based Program Verification
	The RC4 Cipher and Its Implementation in openSSL
	Functional Correctness of Code Refactoring
	Proving Equivalence Using Natural Invariants
	Implementation Details
	Related Work
	Conclusions
	References
	openSSL Implementation of RC4

	Chapter 6
	Towards an Industrial Use of FLUCTUAT on Safety-Critical Avionics Software
	Introduction
	Numerical Computations in Control Programs
	Accuracy and Sensitivity Analyses

	The IEEE-754 Standard
	The FLUCTUAT Tool
	General Description
	Specific Abstract Domains Based on Affine Arithmetic
	Use and Main Features of FLUCTUAT

	Automating the Accuracy Analysis of Basic Operators with FLUCTUAT
	Families of Basic Operators
	The Analysis Process
	Analyzing Interpolation Operators
	Analyzing Recursive Operators

	Conclusions and Future Work
	References

	Chapter 7
	Dynamic State Space Partitioning for External Memory Model Checking
	Introduction
	Partitioning the State Space
	Related Work
	Dynamic Partitioning Based on Refinement
	Selection of Candidate Components
	Experiments
	Conclusions and Future Work
	References

	Chapter 8
	Compositional Verification of a Communication Protocol for a Remotely Operated Vehicle
	Introduction
	Protocol Requirements
	Protocol Stack
	Protocol Specification
	Ether
	Link Layer
	Weak Delivery Protocol
	Guaranteed Delivery Protocol
	Application Layer
	Composing Models

	Protocol Verification
	Proving Invariants on WDP and GDP, Independently
	Proving Invariants on the Asynchronous Composition of WDP and GDP

	Related Work and Conclusion
	References

	Chapter 9
	Modeling Concurrent Systems with Shared Resources
	Introduction
	Specifying Shared Resources by Example
	The Recycling Plant Example
	Design of a Resource-Based Solution
	Processes
	Anatomy of a Specification

	Translating Shared Resources into TLA
	Anatomy of a Translation
	Translation Explained

	Verifying System Properties Using TLC
	Checking the Resource Integrity
	Cooking the Processes
	Checking System Properties
	Analysis of the Error Detected

	Conclusion
	References

	Chapter 10
	Platform-Specific Restrictions on Concurrency in Model Checking of Java Programs
	Introduction
	Current Platforms for Java Programs
	Java Platforms for Embedded Systems
	Java Platforms for Server and Desktop Systems

	Running Example
	Java PathFinder
	Restrictions of Concurrency in Model Checking Java Programs with Java PathFinder
	Experiments
	Evaluation and Related Work
	Conclusion
	References

	Chapter 11
	Formal Analysis of Non-determinism in Verilog Cell Library Simulation Models
	Introduction
	Preliminaries
	Basic Concepts
	Semantics of UDPs

	Order Dependency Analysis
	Commuting Diamond Analysis
	Verilog Timing Checks

	Verifying Counterexamples
	Required Permutations for Reachability Analysis
	Non-deterministic Reachability Analysis

	Experimental Results
	Conclusions
	References

	Chapter 12
	Preemption Abstraction
	Introduction
	The Preemption Abstraction
	Interprocess Communication in Fiasco
	The Model
	Key Abstractions
	PVS Specification

	Validating Some Properties
	Case Study Evaluation
	Related Work
	Conclusions
	References

	Chapter 13
	A Rigorous Methodology for Composing Services
	Introduction
	Motivation
	Composing Services
	Service Composition Methodology
	Relationship to Other Work

	Background
	Service Composition and Grid Services
	Cress

	Formal Specification and Analysis of Composed Grid Services
	Describing Service Composition
	Formalising Service Composition
	Validating Service Compositions
	Annotating Lotos
	Verifying Service Compositions

	Implementing and Deploying Composed Grid Services
	Conclusion
	References

	Chapter 14
	A Certified Implementation on Top of the Java Virtual Machine
	Introduction
	The Safe Language
	Core-Safe and Its Translation to SVM
	The Safe Virtual Machine

	Formalisation of the JVM in Isabelle/HOL
	Implementation of the SVM on Top of the JVM
	Mapping the SVM Data Structures
	Mapping the SVM Code
	Translation Functions

	Certification of the Implementation
	Conclusions and Related Work
	References

	Chapter 15
	Formal Development for Railway Signaling Using Commercial Tools
	References

	Chapter 16
	Integrated Formal Approach for Qualified Critical Embedded Code Generator
	Problem Statement
	Qualification of Critical Code Generators
	References

	Chapter 17
	Visualising Event-B Models with B-Motion Studio
	Motivation
	Conclusion
	Further Information
	References

	Chapter 18
	Behavioural Analysis of an I2C Linux Driver
	References

	Chapter 19
	Model-Based Testing of Electronic Passports
	References

	Chapter 20
	Developing a Decision Support Tool for Dam Management with SPIN
	Motivation
	Modeling Hybrid Systems with PROMELA
	DSTwithSPIN
	Conclusions
	References

	Back matter

