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Foreword

There are two main requirements for the development of intelligent industrial
systems: (i) learning and adaptation in unknown environments, (ii) compen-
sation of model uncertainties as well as of unknown or stochastic external
disturbances. Learning can be performed with the use of gradient-type al-
gorithms (also applied to nonlinear modeling techniques) or with the use
of derivative-free stochastic algorithms. The compensation of uncertainties
in the model’s parameters as well as of external disturbances can be per-
formed through stochastic estimation algorithms (usually applied to filtering
and identification problems), and through the design of adaptive and ro-
bust control schemes. The book aims at providing a thorough analysis of the
aforementioned issues.

Dr. Gerasimos G. Rigatos
Senior Researcher

Unit of Industrial Automation
Industrial Systems Institute
Greece



Preface

Incorporating intelligence in industrial systems can help to increase produc-
tivity, cut-off production costs, and to improve working conditions and safety
in industrial environments. This need has resulted in the rapid development
of modeling and control methods for industrial systems and robots, of fault
detection and isolation methods for the prevention of critical situations in
industrial work-cells and production plants, of optimization methods aiming
at a more profitable functioning of industrial installations and robotic devices
and of machine intelligence methods aiming at reducing human intervention
in industrial systems operation.

To this end, the book defines and analyzes some main directions of re-
search in modeling and control for industrial systems. These are: (i) industrial
robots, (ii) mobile robots and autonomous vehicles, (iii) adaptive and robust
control of electromechanical systems, (iv) filtering and stochastic estimation
for multi-sensor fusion and sensorless control of industrial systems (iv) fault
detection and isolation in robotic and industrial systems, (v) optimization in
industrial automation and robotic systems design, (vi) machine intelligence
for robots autonomy, and (vii) vision-based industrial systems.

In the area of industrial robots one can distinguish between two main prob-
lems: (i) robots operating in a free working space, as in the case of robotic
welding, painting, or laser and plasma cutting and (ii) robots performing
compliance tasks, as in the case of assembling, finishing of metal surfaces
and polishing. When the robotic manipulator operates in a free environment
then kinematic and dynamic analysis provide the means for designing a con-
trol law that will move appropriately the robot’s end effector and will enable
the completion of the scheduled tasks. In the case of compliance tasks, the
objective is not only to control the end effector’s position but also to regu-
late the force developed due to contact with the processed surface. There are
established approaches for simultaneous position and force control of robotic
manipulators which were initially designed for rigid-link robots and which
were subsequently extended to flexible-link robots.
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In the area of mobile robots and autonomous vehicles one has to handle
nonholonomic constraints and to avoid potential singularities in the design
of the control law. Again the kinematic and dynamic model of the mobile
robots provide the basis for deriving a control law that will enable tracking of
desirable trajectories. Several applications can be noted such as path track-
ing by autonomous mobile robots and automatic ground vehicles (AGVs),
trajectory tracking and dynamic positioning of surface and underwater ves-
sels and flight control of unmanned aerial vehicles (UAVs). Apart from con-
troller’s design, path planning and motion planning are among the problems
the robotics/industrial systems engineer have to solve. These problems be-
come particularly complicated when the mobile robot operates in an unknown
environment with moving obstacles and stochastic uncertainties in the mea-
surements provided by its sensors.

In the area of adaptive control for electromechanical systems it is neces-
sary to design controllers for the non-ideal but more realistic case in which
the system dynamics is not completely known and the system’s state vector
is not completely measurable. Thus, one has finally to consider the problem
of joint nonlinear estimation and control for dynamical systems. Most non-
linear control schemes are based on the assumptions that the state vector of
the system is completely measurable and that the system’s dynamical model
is known (or at least there are known bounds of parametric uncertainties
and external disturbances). However, in several cases measurement of the
complete state vector is infeasible due to technical difficulties or due to high
cost. Additionally, knowledge about the structure of the system’s dynamical
model and the values of its parameters can be only locally valid, therefore
model-based control techniques may prove to be inadequate. To handle these
cases control schemes can be implemented through the design of adaptive
observers, and adaptive controllers where the state vector is reconstructed
by processing output measurements with the use of a state observer or filter.

In the area of robust control for electromechanical systems one has to
consider controllers capable of maintaining the desirable performance of the
industrial or robotic system despite unmodeled dynamics and external dis-
turbances. The design of such controllers can take place either in the time
domain, as in the case of sliding mode control or H-infinity control, or in
the frequency domain as in the case of robust control based on Kharitonov’s
theory. In the latter case one can provide the industrial system with the
desirable robustness using a low-order controller and only feedback of the
system’s output. Whilst sliding-mode and H-infinity robust control can be
particularly useful for robotic and motion transmission systems, Kharitonov’s
theory can provide reliable and easy to implement robust controllers for the
electric power transmission and distribution system.

In the area of filtering and stochastic estimation one can see several ap-
plications to autonomous robots and to the development of control systems
over communication networks. The need for robots capable of operating au-
tonomously in unknown environments imposes the use of nonlinear estimation
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for reconstructing missing information and for providing the robots control
loop with robustness to uncertain of ambiguous information. Additionally,
the development of control systems over communication networks requires
the application of nonlinear filtering for fusing distributed sensor measure-
ments so as to obtain a global and fault-free estimate of the state of large-
scale and spatially distributed systems. Filtering and estimation methods
for industrial systems comprise nonlinear state observers, Kalman filtering
approaches for nonlinear systems and its variants (Extended Kalman Fil-
ter, Sigma-Point Kalman Filters, etc.), and nonparametric estimators such
as Particle Filters. Of primary importance is sensor-fusion based control for
industrial systems, with particular applications to industrial robotic manip-
ulators, as well as to mobile robots and autonomous vehicles (land vehicles,
surface and underwater vessels or unmanned aerial vehicles). Moreover, the
need for distributed filtering and estimation for industrial systems becomes
apparent for networked control systems as well as for the autonomous navi-
gation of unmanned vehicles.

In the area of fault detection and isolation one can note several exam-
ples of faults taking place in robotic and industrial systems. Robotic systems
components, such as sensors, actuators, joints and motors, undergo changes
with time due to prolonged functioning or a harsh operating environment
and their performance may degrade to an unacceptable level. Moreover, in
electric power systems, there is need for early diagnosis of cascading events,
which finally lead to the collapse of the electricity network. The need for a
systematic method that will permit preventive maintenance through the di-
agnosis of incipient faults is obvious. At the same time it is desirable to reduce
the false alarms rate so as to avoid unnecessary and costly interruptions of
industrial processes and robotic tasks. In the design of fault diagnosis tools
the industrial systems engineer comes against two problems: (i) development
of accurate models of the system in the fault-free condition, through system
identification methods and filtering/ stochastic estimation methods (ii) op-
timal selection of the fault threshold so as to detect slight changes of the
system’s condition and at the same time to avoid false alarms. Additionally
one can consider the problems of fault diagnosis in the frequency domain and
fault diagnosis with parity equations and pattern recognition methods.

In the area of optimization for industrial and robotic systems one can find
several applications of nonlinear programming-based optimization as well as
of evolutionary optimization. There has been extensive research on nonlinear
programming methods, such as gradient methods, while their convergence
to optimum has been established through stochastic approximations theory.
Robotics is a promising application field for nonlinear programming-based op-
timization, e.g. for problems of motion planning and adaptation to unknown
environments, target tracking and collective behavior of multi-robot systems.
On the other-hand evolutionary algorithms are very efficient for performing
global optimization in cases that real-time constraints are not restrictive, e.g.
in several production planning and resource management problems. Industrial
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and robotic systems engineers have to be well acquainted with optimization
methods, so as to design industrial systems that will excel in performance
metrics and at the same time will operate at minimum cost.

In the area of machine intelligence for robots autonomy one can note sev-
eral applications both in control and in fault diagnosis tasks. Machine intelli-
gence methods are particularly useful when analytical models of the robotic
system are hard to obtain due to inherent complexity or due to infinite di-
mensionality of the robot’s model. In such cases it is preferable to develop
a model-free controller of the robotic system, exploiting machine learning
tools (e.g. neural and wavelet networks, fuzzy models or automata models)
instead of pursuing the design of a model-based controller through analytical
techniques. Additionally, to perform fault diagnosis in robotic and industrial
systems with event-driven dynamics it is recommended again to apply ma-
chine intelligence tools such as automata, while to handle the uncertainty
associated with such systems probabilistic or possibilistic state machines can
be used as fault diagnosers.

In the area of vision-based industrial systems one can note robotic vi-
sual servoing as an application where machine vision provides the neces-
sary information for the functioning of the associated control loop. Visual
servoing-based robotic systems are rapidly expanding due to the increase
in computer processing power and low prices of cameras, image grabbers,
CPUs and computer memory. In order to satisfy strict accuracy constraints
imposed by demanding manufacturing specifications, visual servoing systems
must be fault tolerant. This means that in the presence of temporary of per-
manent failures of the robotic system components, the system must continue
to provide valid control outputs which will allow the robot to complete its
assigned tasks. Nowadays, visual servoing-based robotic manipulators have
been used in several industrial automation tasks, e.g. in the automotive indus-
try, in warehouse management, or in vision-based navigation of autonomous
vehicles. Moreover, visual servoing over networks of cameras can provide the
robot’s control loop with robust state estimation in case that visual measure-
ments are occluded by noise sources, as it usually happens in harsh industrial
environments (e.g. in robot welding and cutting applications).

It is noted that several existing publications in the areas of robotic and
industrial systems focus exclusively on control problems. In some cases, issues
which are significant for the successful operation of industrial systems, such
as modelling and state estimation, sensorless control, or optimization, fault
diagnosis, machine intelligence for robots autonomy, and vision-based indus-
trial systems operation are omitted. Thus engineers and researchers have to
address to different sources to obtain this information and this fragmenta-
tion of knowledge leads to an incomplete presentation of this research field.
Unlike many books that treat separately each one of the previous topics, this
book follows an interdisciplinary approach in the design of intelligent indus-
trial systems and uses in a complementary way results and methods from the
above research fields. The book is organized in 16 chapters:
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In Chapter 1, a study of industrial robotic systems is provided, for the
case of contact-free operation. This part of the book includes the dynamic
and kinematic analysis of rigid-link robotic manipulators, and advances to
more specialized topics, such as dynamic and kinematic analysis of flexible-
link robots, and control of rigid-link and flexible-link robots in contact-free
operation.

In Chapter 2, an analysis of industrial robot control is given, for the case
of compliance tasks. First, rigid-link robotic models are considered and the
impedance control and hybrid position-force control methods are analyzed.
Next, force control methods are generalized in the case of flexible-link robots
performing compliance tasks.

In Chapter 3, an analysis of the kinematic model of autonomous land ve-
hicles is given and nonlinear control for this type of vehicles is analyzed.
Moreover, the kinematic and dynamic model of surface vessels is studied and
nonlinear control for the dynamic ship positioning problem is also analyzed.

In Chapter 4, a method for the design of stable adaptive control schemes
for a class of industrial systems is first studied. The considered adaptive con-
trollers can be based either on feedback of the complete state vector or on
feedback of the system’s output. In the latter case the objective is to suc-
ceed simultaneous estimation of the system’s state vector and identification
of the unknown system dynamics. Lyapunov analysis provides necessary and
sufficient conditions in the controller’s design that assure the stability of the
control loop. Examples of adaptive control applications to industrial systems
are presented.

In Chapter 5, robust control approaches for industrial systems are stud-
ied. Such methods are based on sliding-mode control theory where the con-
troller’s design is performed in the time domain and Kharitonov’s stability
theory where the controller’s design is performed in the frequency domain.
Applications to the problem of robust electric power system stabilization are
given.

In Chapter 6, filtering and stochastic estimation methods are proposed for
the control of linear and nonlinear dynamical systems. Starting from the the-
ory of linear state observers the chapter proceeds to the standard Kalman fil-
ter and its generalization to the nonlinear case which is the Extended Kalman
Filter. Additionally, Sigma-Point Kalman Filters are proposed as an improved
nonlinear state estimation approach. Finally, to circumvent the restrictive as-
sumption of Gaussian noise used in Kalman Filtering and its variants, the
Particle Filter is proposed. Applications of filtering and estimation methods
to industrial systems control when using a reduced number of sensors are
presented.

In Chapter 7, sensor fusion with the use of filtering methods is studied and
state estimation of nonlinear systems based on the fusion of measurements
from distributed sources is proposed for the implementation of stochastic
control loops for industrial systems. The Extended Kalman and Particle Fil-
tering are first proposed for estimating, through multi-sensor fusion, the state
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vector of an industrial robotic manipulator and the state vector of a mobile
robot. Moreover, sensor fusion with the use of Kalman and Particle Filtering
is proposed for the reconstruction from output measurements the state vector
of a ship which performs dynamic positioning.

In Chapter 8, distributed filtering and estimation methods for industrial
systems are studied. Such methods are particularly useful in case that mea-
surements about the industrial system are collected and processed by dif-
ferent monitoring stations. The overall concept is that at each monitoring
station a filter tracks the state of the system by fusing measurements which
are provided by various sensors, while by fusing the state estimates from the
distributed local filters an aggregate state estimate for the industrial system
is obtained. In particular, the chapter proposes first the Extended Informa-
tion Filter (EIF) and the Unscented Information Filter (UIF) as possible
approaches for fusing the state estimates provided by the local monitoring
stations, under the assumption of Gaussian noises. The EIF and UIF es-
timated state vector can, in turn, be used by nonlinear controllers which
can make the system’s state vector track desirable setpoints. Moreover, the
Distributed Particle Filter (DPF) is proposed for fusing the state estimates
provided by the local monitoring stations (local filters). The motivation for
using DPF is that it is well-suited to accommodate non-Gaussian measure-
ments. The DPF estimated state vector is again used by nonlinear controller
to make the system converge to desirable setpoints. The performance of the
Extended Information Filter, of the Unscented Information Filter and of the
Distributed Particle Filter is evaluated through simulation experiments in
the case of a 2-UAV (unmanned aerial vehicles) model which is monitored
and remotely navigated by two local stations.

In Chapter 9, fault detection and isolation theory for efficient condition
monitoring of industrial systems is analyzed. Two main issues in statisti-
cal methods for fault diagnosis are residuals generation and fault threshold
selection. For residuals generation, an accurate model of the system in the
fault-free condition is needed. Such models can be obtained through nonlinear
identification techniques or through nonlinear state estimation and filtering
methods. On the other hand the fault threshold should enable both diagnosis
of incipient faults and minimization of the false alarms rate.

In Chapter 10, applications of statistical methods for fault diagnosis are
presented. In the first case the problem of early diagnosis of cascading events
in the electric power grid is considered. Residuals are generated with the use
of a nonlinear model of the distributed electric power system and the fault
threshold is determined with the use of the generalized likelihood ratio, as-
suming that the residuals follow a Gaussian distribution. In the second case,
the problem of fault detection and isolation in electric motors is analyzed.
It is proposed to use nonlinear filters for the generation of residuals and to
derive a fault threshold from the generalized likelihood ratio without prior
knowledge of the residuals statistical distribution.
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In Chapter 11, it is shown that optimization through nonlinear program-
ming techniques, such as gradient algorithms, can be an efficient approach for
solving various problems in the design of intelligent robots, e.g. motion plan-
ning for multi-robot systems. A distributed gradient algorithm is proposed
for coordinated navigation of an ensemble of mobile robots towards a goal
state, and for assuring avoidance of collisions between the robots as well as
avoidance of collisions with obstacles. The stability of the multi-robot system
is proved with Lyapunov’s theory and particularly with LaSalle’s theorem.
Motion planning with the use of distributed gradient is compared to motion
planning based on particle swarm optimization.

In Chapter 12, the two-fold optimization problem of distributed motion
planning and distributed filtering for multi-robot systems is studied. Track-
ing of a target by a multi-robot system is pursued assuming that the target’s
state vector is not directly measurable and has to be estimated by distributed
filtering based on the target’s cartesian coordinates and bearing measure-
ments obtained by the individual mobile robots. The robots have to converge
in a synchronized manner towards the target, while avoiding collisions be-
tween them and avoiding collisions with obstacles in their motion plane. To
solve the overall problem, the following steps are followed: (i) distributed
filtering, so as to obtain an accurate estimation of the target’s state vector.
This estimate provides the desirable state vector to be tracked by each one of
the mobile robots, (ii) motion planning and control that enables convergence
of the vehicles to the goal position and also maintains the cohesion of the
vehicles swarm. The efficiency of the proposed distributed filtering and dis-
tributed motion planning scheme is tested through simulation experiments.

In Chapter 13, it is shown that evolutionary algorithms are powerful opti-
mization methods which complement the nonlinear programming optimiza-
tion techniques. In this chapter, a genetic algorithm with a new crossover
operator is developed to solve the warehouse replenishment problem. The
automated warehouse management is a multi-objective optimization prob-
lem since it requires to fulfill goals and performance indexes that are usu-
ally conflicting with each other. The decisions taken must ensure optimized
usage of resources, cost reduction and better customer service. The pro-
posed genetic algorithm produces Pareto-optimal permutations of the stored
products.

In Chapter 14, it is shown that machine learning methods are of particular
interest in the design of intelligent industrial systems since they can provide
efficient control despite model uncertainties and imprecisions. The chapter
proposes neural networks with Gauss-Hermite polynomial basis functions for
the control of flexible-link manipulators. This neural model employs basis
functions which are localized both in space and frequency thus allowing bet-
ter approximation of the multi-frequency characteristics of vibrating struc-
tures. Gauss-Hermite basis functions have also some interesting properties:
(i) they remain almost unchanged by the Fourier transform, which means
that the weights of the associated neural network demonstrate the energy
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which is distributed to the various eigenmodes of the vibrating structure,
(ii) unlike wavelet basis functions the Gauss-Hermite basis functions have
a clear physical meaning since they represent the solutions of differential
equations of stochastic oscillators and each neuron can be regarded as the
frequency filter of the respective vibration eigenfrequency.

In Chapter 15, it is shown that machine learning methods can be of partic-
ular interest for fault diagnosis of systems that exhibit event-driven dynamics.
For this type of systems fault diagnosis based on automata and finite state
machine models has to be performed. In this chapter an application of fuzzy
automata for fault diagnosis is given. The output of the monitored system is
partitioned into linear segments which in turn are assigned to pattern classes
(templates) with the use of membership functions. A sequence of templates
is generated and becomes input to fuzzy automata which have transitions
that correspond to the templates of the properly functioning system. If the
automata reach their final states, i.e. the input sequence is accepted by the
automata with a membership degree that exceeds a certain threshold, then
normal operation is deduced, otherwise, a failure is diagnosed. Fault diagno-
sis of a DC motor is used as a case study.

In Chapter 16, applications of vision-based robotic systems are analyzed.
Visual servoing over a network of synchronized cameras is an example where
the significance of machine vision and distributed filtering and control for
industrial robotic systems can be seen. A robotic manipulator is considered
and a cameras network consisting of multiple vision nodes is assumed to pro-
vide the visual information to be used in the control loop. A derivative-free
implementation of the Extended Information Filter is used to produce the
aggregate state vector of the robot by processing local state estimates coming
from the distributed vision nodes. The performance of the considered vision-
based control scheme is evaluated through simulation experiments.

From the educational viewpoint, this book is addressed to undergraduate
and post-graduate students as an upper-level course supplement. The book’s
content can be complementary to automatic control and robotics courses, giv-
ing emphasis to industrial systems design through the integration of control,
estimation, fault diagnosis, optimization and machine intelligence methods.
The book can be a useful resource for instructors since it provides teaching
material for advanced topics in robotics and industrial engineering.

The book can be also a primary source of a course entitled ” Modelling and
Control of Intelligent Industrial Systems” which can be part of the academic
programme of Electrical, Mechanical, Industrial Engineering and Computer
Science Departments. It is also a suitable supplementary source for vari-
ous other automatic control and robotics courses (such as Control Systems
Design, Advanced Topics in Automatic Control, Dynamical Systems Identi-
fication, Stochastic Estimation and Multi-Sensor Fusion, Adaptive and Ro-
bust Control, Robotics: Dynamics, Kinematics and Basic Control Algorithms,
Probabilistic Methods in Robotics, Fault Detection and Isolation of Indus-
trial Systems, Industrial automation and Industrial Systems Optimization).
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From the applied research and engineering point of view the book will be a
useful companion to engineers and researchers since it analyzes a wide spec-
trum of problems in the area of industrial systems, such as: modelling and
control of industrial robots, modelling, and control of mobile robots and au-
tonomous vehicles, modelling and robust/adaptive control of electromechan-
ical systems, estimation and sensor fusion based on measurements obtained
from distributed sensors, fault detection/isolation, optimization for industrial
production and machine intelligence for adaptive behaviour. As a textbook
giving a thorough analysis of the aforementioned issues it is expected to en-
hance bibliography on industrial systems.

Through the aforementioned 16 chapters, the book is anticipated to pro-
vide a sufficient coverage of the topic of modeling and control for intelligent
industrial systems and to motivate the continuation of research effort to-
wards the development of adaptive algorithms for robotics and industrial
engineering. By proposing an interdisciplinary approach in intelligent indus-
trial systems design, the book can be a useful reference not only for the the
robotics and control community, but also for researchers and engineers in the
fields of mechatronics, signal processing, and computational intelligence.

Athens, October 2010 Gerasimos G. Rigatos
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Chapter 1
Industrial Robots in Contact-Free Operation

Abstract. A study of industrial robotic systems is provided, for the case of contact-
free operation. This part of the book includes the dynamic and kinematic analysis of
rigid-link robotic manipulators, and expands towards more specialized topics, such
as dynamic and kinematic analysis of flexible-link robots, and control of rigid-link
and flexible-link robots in contact-free operation.

1.1 Dynamic Analysis of Rigid Link Robots

In the area of industrial robots one can distinguish between two main problems: (i)
robots operating in a free working space, as in the case of robotic welding, paint-
ing, or laser and plasma cutting and (ii) robots performing compliance tasks, as in
the case of assembling, finishing of metal surfaces and polishing. When the robotic
manipulator operates in a free environment then kinematic and dynamic analysis
provide the means for designing a control law that will move appropriately the
robot’s end effector and will enable the completion of the scheduled tasks. The dy-
namic model of a multi-DOF rigid-link robotic manipulator, as the one depicted in
Fig. [[.1] is obtained from the Euler-Lagrange principles. A generic rigid-link dy-
namic model is:

D(0)6 +h(6,0)+G(0) = k(r,6, — 6) (1.1)

where T(0) = k(r,6,, — 0) represents the control input vector (torque). In the latter
relation, k is an elasticity coefficient and r, denotes gears ratio, i.e. joints flexibility
is introduced in the dynamic model of the manipulator [179]],[180],[222]]. The ele-
ments of the inertia matrix D(6), the Coriolis and centrifugal forces matrix /(6, 8)
and the gravity matrix G(0) can be found in [I07].

The physical characteristics of the manipulator and the range of values that the
different variables of the system acquire in a real working environment can be de-
fined for every type of industrial robot. The coordinates frames attached to each joint
are defined using the Denavit-Hartenberg method and are depicted in Fig. 1.1. The

G.G. Rigatos: Modelling & Control for Intell. Industrial Sys., ISRL 7, pp. 1
springerlink.com (© Springer-Verlag Berlin Heidelberg 2011



2 1 Industrial Robots in Contact-Free Operation

Fig. 1.1 A 3-DOF robotic manipulator with rigid links

Denavit-Hartenberg parameters for the general case of a 6-DOF robot are defined in
[17] and their indicative values are given in Table 1.1:

Table 1.1 Denavit-Hartenberg parameters

i|6;| a; 0 d; Joint range ¢
1{90(—90 0 0 —160 to 160
2(0] 0 | 431.8mm [149.08mm| —225 to 45
3190| 90 |—20.32mm 0 —45 to 225
4101-90 0 433.07mm|—110 to 170
510190 0 0 —100 to 100
6/0] 0 0 56.25mm |—266 to 266

The rigid link coordinates system and its parameters is depicted in Fig. Con-
sidering the ith and the (i — 1)th reference frames, the parameters of the Denavit-
Hartenberg representation are defined as follows:

1. 6;is the joint angle from the x;_; axis to the x; axis, about the z;_ axis (using the
right hand rule).

2. d; is the distance from the origin of the (i — 1)th coordinate frame to the intersec-
tion of the z;_| axis, with the x; axis along the z;_; axis

3. o is the offset distance from the intersection of the z;_; axis with the x; axis to
the origin of the ith frame along the x; axis (or the shortest distance between the
z;—1 and z; axes).

4. a; is the offset angle from the z;_; axis to the z; axis about the x; axis (using the
right hand rule)
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' : Jointi+1
Joint i

eBY
Linki-1 : Link i
D

Link i+1

Fig. 1.2 Rigid link coordinates system and its parameters

The elements of the inertia matrix D(6), the Coriolis and centrifugal forces matrix
h(8,0) and the gravity matrix G(0) appearing in Eq. (II) are defined in [T07] and
for a 3-DOF robot are given by

D(6) =
myl3 +m3 (LS + 13523)? 0 0 L)
0 mﬂ% + M3(l% +2L13C3 + l%) msl3 (12C3 + l3) ’
0 m3l3(LCs +13) msl3
h(6,0) =

—2m3151353 6263 — m3 12138305 — [malyS2Cs +ma (122 + 13823) (1 Ca + 15C23)) 67

(2[’"21%526'2 +m3(HSy +13523) (1252 +13C23)161 62 + 2m313C23 (1252 + 13523 ) 6 93)
—m3 (1S, + 13523)13C23 912 + m21213S3922 +m3l3 9293

(1.3)

0
G(e) = | —moghSr — m3g(1252 + 13523) (1.4)
m3gl38y3
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where S; and C;, denote sin(6;) and cos(6;) respectively, with i = 1,2,3, while S;;
denotes sin(6; + 6;) and C;; denotes cos(6; + 6;).

For the dynamic model of the 3-DOF robot shown in Fig. [Tl and with its dy-
namics described in Eq. (L)), it holds that

0= [91792763]T7 9 = [9]a92393]T7 0= [élvé27é3}T (15)

where 6 is the vector of the joints angles, 6 is the vector of the angular velocities
and 0 is the vector of angular accelerations. Consequently, the robot’s state vector
is defined as xeR®*!, and its derivative is given by XEROXL,

x=[61,6,65,01,6,,63]", k= [01,61,03,61,6,,05]" (1.6)
Then, Eq. (L) is written as

§=D(0) " [~h(6,0) — G(0) + k(16 — 6)]=

(1.7)
6 =D(0) '[—h(6,6)—G(6)+T(6)]
where T(0) = k(ry6,, — 0). The control input ueR3*! is defined as
u=D(0)"'[~h(6,0)—G(6)+T(6)] (1.8)

Moreover, it holds that X; = x4, X» = x5 and X3 = x¢. Taking 033 to be 3 x3 matrix
with zero elements, and /343 to be the identity 3 X3 matrix one obtains

X1
X2 | = (0343 B3x3) x4 (03x3) u (1.9)
X3

Furthermore, it holds that

X4
X5 | = (03x3 03x3) x+ (I3x3) u (1.10)
Xe
Thus, finally the robot’s dynamic model can be written in a linear state-space form
given by

%=Ax+Bu (1.11)

with A — <O3><3 I3><3) B= <O3><3>.

033 03x3 EPE
The transition from the continuous time differential equations of Eq. (II) that de-
scribe the dynamics of the robotic manipulator, to the discrete time state-space de-
scription of Eq. (I.I1) that is used in the simulation experiments can be carried
out using established discretization methods and after choosing an appropriate sam-

pling rate. Alternatively, the robot’s dynamics can be simulated through numerical
solution of the associated differential equations, given in Eq. (L.I).
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1.2 Kinematic Analysis of Rigid Link Robots

Using the rigid-link reference system depicted in Fig. a joint axis is established
(for each joint i) at the connection of two links. This joint axis has two normals
connected to it, one for each end of the links. The relative position of two such
connected links (link i — 1 and link i) is given by d; which is the distance measured
along the joint axis between the normals. The joint angle 6; between the normals is
measured in a plane that is taken to be normal to joint axis. Parameters d; and 6; are
called the distance and angle between the adjacent links, respectively, and define the
relative position of neighboring links.

Alinki (i=1,---,6) is connected to at most two other links, i.e link i — 1 and
link i 4 1 and two joint axes are established at the end of each connection. A fixed
configuration between joints can be obtained by parameters a; and ¢; which are
defined as follows: The parameter a; is the shortest distance measured along the
common normal between the joint axes, while ¢ is the angle between the joint axes
measured in a plane perpendicular to a;. Equivalently, a; and o; are called the length
and rwist angle of link i.

An orthonormal cartesian coordinate system (x;,y;,z;) can be established for each
link at its joint axis, where i = 1,2,--- ,n (n=number of degrees of freedom) plus
the base coordinate frame. Since a rotary joint has only one degree of freedom each
(xi,yi,zi) coordinate frame of a robot arm corresponds to joint i + 1 and is fixed in
link i. Since the i-th coordinate system is fixed in link 7 it moves together with link
i. Thus, the n-th coordinate frame moves the hand (link 7). The base coordinates are
defined as the 0-th coordinate frame (xo, yo,z0) which is also the inertial coordinate
frame of the robot arm. Thus for a six-axis robot arm, there are seven coordinate
frames namely (x0,Y0,20), (x1,Y1,21)," " » (X6, Y6,26)- Every coordinate frame is de-
termined and established on the basis of three rules:

1. The z;_; axis lies along the axis of motion of the i-th joint
2. The x; axis is normal to the z;_; axis and point away from it.
3. The y; axis completes the right-handed coordinate system as required.

By these rules one is free to choose the location of coordinate frame 0 anywhere in
the supporting base, as long as the zg axis lies along the axis of motion of the first
joint. The last coordinate frame n-th frame can be placed anywhere in the robot’s
hand, as long as the x,, axis is normal to the z,_| axis.

Once the Denavit-Hartneberg (D-H) coordinate system has been established for
each link (according to the analysis given in subsection[L.]]), a homogeneous trans-
formation matrix can easily be developed relating the i-th coordinate frame to the
(i — 1)-th coordinate frame. Thus, a point r; expressed in the i-th coordinate system
may be expressed in the (i — 1)-th coordinate system as r;_; by performing the fol-
lowing successive transformations:

1. Rotate about the z;_; axis of an angle 6; to align the x;_; axis with the x; axis
(x;—1 axis is parallel to x; axis and pointing in the same direction).
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2. Translate along the z;_; axis a distance of d; to bring the x;_; and x; axes into
coincidence.

3. Translate along the x; axis a distance of ¢; to bring the two origins, as well as the
X axis into coincidence.

4. Rotate about the x; axis an angle of a; to bring the two coordinate systems into
coincidence.

Each of these four operations can be expressed by a basic homogeneous rotation-
translation matrix and the product of these four basic homogeneous transforma-
tion matrices yields a composite homogeneous transformation matrix "~ 'A;, known
as the D-H transformation matrix for adjacent coordinate frames i and i — 1.
Thus,

A =T yTo T o Tia =

1000\ [cos(6;) —sin(6;)00\ /100e\ /1 0 0 0
10100 sin(6;) cos(6;) 00 0100 0 cos(a;) —sin(a;) 0

001d; | 0 0 10| 0010 | |0sin(a) cos(a;) 0]

0001 0 0 01 0001 0 O 0 1

cos(6;) —cos(a;)sin(6;) sin(a;)sin(6;) oicos(6;)

el sin(6;) cos(aj)cos(6;) —sin(a;)cos(6;) ousin(6;)
R 0 sin(a;) cos(a;) d;
0 0 0 1

(1.12)

The inverse of this transformation enables transition from the reference system i to
the reference system i — 1.

cos(6;) sin(6;) 0 -0

—cos(a;)sin(0;) cos(a;)cos(6;) sin(a;) —d;sin(a;)

sin(a;)sin(6;) —sin(a;)cos(6;) cos(ai) —dicos(a;)
0 0 0 1

[i_lAi]_l :iAi—l _

(1.13)
where ¢, a;, d; are constants while 6; is the joint variable for a revolute joint. For a
prismatic joint, the joint variable is d;, while a;, o; and 6; are constants. In this case,
=14, becomes

cos(6;) —cos(a;)sin(6;) sin(a;)sin(6;) 0

i1, | sin(6;) cos(ai)cos(6;) —sin(a;)cos(6;) 0
Ai=ToTzalre = 0 sin(a;) cos(a;) d; (1.14)

0 0 0 1
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and its inverse is

cos(6;) sin(6;) 0 0
—cos(a;)sin(0;) cos(a;)cos(6;) sin(a;) —d;sin(a;)
sin(a;)sin(0;) —sin(a;)cos(6;) cos(a;) —dicos(a;)
0 0 0 1

[iflAl_]fl :iAi—l _

(1.15)
Using the ["_IA,-]_1 matrix, one can relate a point p; at the rest in link i, and ex-
pressed in homogeneous coordinates with respect to the coordinate system i, to the
coordinate system i — 1 established at link i — 1 by

pio1=[""A]""pi (1.16)

where p; 1 = (x;_1,Yi-1,zi-1,1)" and p; = (x;,yi,z;)". For the six-DOF robotic ma-
nipulator the associate coordinates transformation matrices ‘~'A; are given by

C1 0 —S1O Cz —SQOOQCZ
S 0 C 0 Sy G 0 S
04 _ |1 1 a _|S2 G 28>
A=l 100l 2 o 01 4
0 0 01 0O 0 0 1
C30 Sy 03C;3 Cy 0 =S4 0
S3 0 —C53 038 S4 0 C4 O
=57 oo A=Y 117
3=lo1 0 0 =101 0 d (A.17)
00 O 1 00 0 1
Cs0 Ss 0 Cs —S60 0
S50 —-C50 Ss C¢ 00
44 _ |95 5 s, _|S5 G
=101 00| 4 {0 o 1 de
00 O 1 0 0 01
C1C3 =81 C1523 C Gy + a3C1Co3 — darS)
S1Cy3 C1 81823 081Gy + 0381Crz — drC
041424 _ | S1C3 Cr 81823 0251C + 0351Co3 — daCy
hi="Ar A4 = =853 0 O3 — 008> — 03573
0 0 0 1
(1.18)

C4CsCs — S4Ss —CuCsSs — SuCs CuSs  dgCuSs
S4C5C6 + C4Se —84C586 + CaCo S4S5  dSaSs
—55Cs 8586 Cs deCs+dy
0 0 0 1

Ty =3A4%A5°Ag =

where C; = cos(@) S; = sin(6;), Cij = cos(6; + 6;), Sij = sin(6;+ 0;). The homo-
geneous matrix °7; which specifies the location of the i-th coordinate frame with
respect to the base coordinate system is the chain product of successive coordinate
transformation matrices of "~'A; and is expressed as
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07}:0A11A2---i*1Ai:Hj’::1AJ- fori=1,2,---,n
1.19
_ (Xivizipi)_ OR; “p, (19
0001 0 1

1.3 Dynamic Analysis of Flexible-Link Robots

Flexible-link robots comprise an important class of systems that include lightweight
arms for assembly, civil infrastructure, bridge/vehicle systems, military applications
and large-scale space structures. Modelling and vibration control of flexible systems
have received a great deal of attention in recent years [8),[26]], [TZ6], 327,328,393l
Conventional approaches to design a control system for a flexible-link robot often in-
volve the development of a mathematical model describing the robot dynamics, and
the application of analytical techniques to this model to derive an appropriate control
law [[I1]],[53],[[Z8]. Usually, such a mathematical model consists of nonlinear partial
differential equations, most of which are obtained using some approximation or sim-
plification [I76],[327].

A common approach in modelling of flexible-link robots is based on the Euler-
Bernoulli model [07],[#43]. This model consists of nonlinear partial differential
equations, which are obtained using some approximation or simplification. In case
of a single-link flexible manipulator the basic variables of this model are w(x,¢)
which is the deformation of the flexible link, and 6(r) which is the joint’s
angle.

E-dw" (x,t)+ pyo(x,t) + pxB(t) =0 (1.20)

. L
It6(t)—|-p/0 xw(x,t)dx =T(t) (1.21)

In Eq. (T20) and (C21), w"" (x,1) = 943)&”) W(x,1) = %, while 7, is the moment
of inertia of a rigid link of length L, p denotes the uniform mass density and E/ is
the uniform flexural rigidity with units N-m?. To calculate w(x,t), instead of solv-
ing analytically the above partial differential equations, modal analysis can be used
which assumes that w(x,#) can be approximated by a weighted sum of orthogonal

basis functions

e
wix,t) = Y i(x)vi(t) (1.22)
i=1
where index i = [1,2,---,n,] denotes the normal modes of vibration of the flexi-

ble link. Using modal analysis a dynamical model of finite-dimensions is derived
for the flexible link robot. Without loss of generality assume a 2-link flexible robot
(Fig. [3) and that only the first two vibration modes of each link are significant
(n, =2). X is a point on the first link with reference to which the deformation vector
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o, X

Fig. 1.3 A 2-DOF flexible-link robot

is measured. Similarly, X, is a point on the second link with reference to which the
associated deformation vector is measured. In that case the dynamic model of the

robot becomes [222]],[E43]:
() (5) (e - (25)- ()

28 (0)- ()
0452 K(2) v 041

where z = [0,v], with 8 = [0, 6,]7, v = [vi1,Vv12,v21,v22]T (vector of the vibration
modes for links 1 and 2), and [Fi(z,2),F3(z,2)]" = [0,0]” (centrifugal and Coriolis
forces). The elements of the inertia matrix are: My, € R?*2, M, € R>*, My, €
RY2, My, € R***. The damping and elasticity matrices of the aforementioned
model are D € R**and K € R**. Moreover the vector of the control torques is
T(t) = [Ty (1), o).

(1.23)

1.4 Kinematic Analysis of Flexible-Link Robots

Assume the i-th link of the flexible-link robot and the associated rotating frame
0:X;Y; (Fig.[L.3). Then the vector of coordinates of the end-effector M is given by

Ph = iwi(x)]" (1.24)
The coordinates of the end-effector in the inertial frame 01X{ le is given by

M= r,'—&—W,'p5W (1.25)
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with

W; = Wi\ Ei_ 1R = Wi 1 R;

Mot (1.26)

where R; is the rigid rotation matrix that aligns the rotating frame of the i-th link to
the inertial frame of the same link, and E;_ is the flexible rotation matrix that aligns
the inertial frame of link i to the rotational frame of link i — 1:

/ dw;
cos(6;) —sin(6;) 1 —w; I =33
Ri=|". Ei={ ) = / 1.27
! (sm(@,-) cos(6;) ) " w, | % 1 (1.27)

ri=rio1+ Wil (1.28)

Variable rf_l denotes the distance vector between the origin of the and i-th and
the i — 1-th frame, r; is the distance vector between the origin of the i-th rotational
frame and the inertial frame, and W; is the rotation matrix calculated with the use of
Eq.(L26).

Using Eq. (I.23) and Eq. (I.28) in the 2-DOF flexible-link robot depicted in Fig.
[[-3] one obtains

o 1 Licos(61) —wi(Ly,t)sin(6;)
re=rntWin = <L1sin(91) wi (L1, )cos(6)) (1.29)
pm = r2+ Wapiy (1.30)
where
2 _ Ly _ _ (cos(6y) —sin(61)\
Pt = <WQ<L2,t> W= R = Sin6) cos(6)
(1.31)

( 1 _Wlle) ' (COS(GQ) —sin(92)>

Wlle 1 s5in(6) cos(6,)

The differential kinematic model of the flexible-link robot can now be calculated.
The coordinates of the end-effector in the inertial frame are given by Eq. (I.23).
According to modal analysis the deformation w;(x;,#) in normal modes of vibra-
tion is given by Eq. (I.22). Using the previous 2 equations the kinematic model

can be written as a function of the joint angles 68 and of the normal modes of
vibration v.

p=k(6,v) (1.32)

The velocity of the end-effector is calculated through the differentiation of Eq.
(L.25).

P = i+ Wiphy + Wiply (1.33)
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Moreover, it holds that #, | = pi,(L;) = [0,w;(x; = L;)]" since there is no longitu-
dinal deformation (x; = 0). It also holds that

Wi =W, 1R+ Wi 1R

A . . (1.34)
W, = WiE; + Wik
It also holds that
R,’ = SR,'éi
. / 1.35
E; = Sw,, ( )
with § = <(1) _01> . Substituting Eq. (I.34) and Eq. (I.33) in Eq. (I.33)) the differen-
tial kinematic model of the flexible-link robot is obtained:
p=Jg(0,v)0+7,(8,v)v (1.36)

where

Jo = g—g: is the Jacobian with respect to 6
Jy = %: is the Jacobian with respect to v.

If the end-effector is in contact with the surface €2(6) and is subject to contact-
forces F = [Fy, Fy] then the torques which are developed to the joints are:

Jg F: torques that produce the work associated with the rotation angle 6.
JI'F: torques that produce work associated with the deformation modes v.

In case of contact with a surface, the dynamic model of the flexible-link robot given
initially in Eq. (I23)) is corrected into:

Mii(z) Mia(2) (0 Fi(z,2) 022 0244\ (6
(le(Z) Mzz(z)) (v> * (Fz(&z')) + <O4X2 D(z)) (v) +
0252 0axa\ (0 _ (T(t)—JE(6,v)F
s k@) \v) =\ —aremr
For a two-link flexible robot of Fig.[[3one gets

_ (Licos(6y) —wi(Ly,1)sin(6)
Py = <L:sin(91]) —|—wll(Lll,t)cos(9:)) +

(1.37)

(cos(91 +6)— w’]esin(el +6) —sin(6;+ 6) — wllecos(ﬂl + 92)> <L2)
sin(61 + 62) +w/lec0s(01 +6,) cos(61+6)— w/lesin(Gl +6)) w2
(1.38)
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with

wi(Li,t) = @11 (Li)vii () + ¢12(L1)via(r)

W2(L2,l‘) = 4}21(142)\/21(1‘) + ¢22(L2)V22(t) (1.39)
whe = 2|y = 01 (Li)vin (1) + 91 (L1 )iz (o)

The Jacobian Jy is

L) 20
20 06,
aply : . '
apTAT = —L;sin(0;) —wy(L1,t)cos(0)) — Lasin(6) + 62) — Lyw, ,cos(0) + 62)—

—wa(Lp,1)cos(6) + 62) —|—wz(L2,t)w/]esin(91 +6)

(2) ,
?T]‘f =Licos(61) —wi(Li,t)sin(61) + Lacos(01 + 6) — Lyw, ,sin(6; + 62)—

—wa (Lo, 1)sin(6) + 62) +wa(La,1)w cos(6) + 62)

(1) /
aapT]Vz[ = —Lzsin(el + 92) — LleeCOS(el =+ 92) — W2(L2,I)COS(91 + 92)+

+w» (Lz,t)wllesin(el + 92)

(2 ,
a;%."; = Lycos(0) + 62) — Low, sin(01 4 62) — wa(La,1)sin(6; + 65) —

—wa(La,1)wy,cos(6; + 6)

(1.41)
Similarly, the Jacobian J,, is calculated:
8[)1(‘/}) o"’p}(,}) 817;‘,}) 8[)1(‘/})
J, = v v dvy;  dv 1.42
31’25 31’%52) 317%) 31’@ (142

8v11 9\)12 ale a\/zz

AL — — 11 (L1 )sin(61) — Lady (L )sin(61 + 62) — wa(La, 1)y (L1 )cos(6) + 65)

) , ,
ot =—=012(L1)sin(61) — Lay¢y5 (L1 )sin(61 + 62) — w2 (Lo, 1)@y, (L1 )cos(61 + 62)

AL — — ) (Ly)sin(6) + 63) — 921 (Lo)wy cos(6) + 65)

ol = —922(L2)sin(6 + 62) — 022 (L)W, ,cos(0) + 65)
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2)

‘?;1;’]”1 = 011 (L1)cos(6)) + Loy, (L1 )cos(6) + 62) — wa(La, 1), (L1 )sin(6; + 6,)

(2) , /
I — g1 (L1)cos(61) + Lagy, (L1 )cos(6y + 62) — wa(La,1) 91 (Ly )sin(6; + 62)

avlz

op? ;oL
Py — 01 (Lz)cos(el + 92) — ¢21(L2)W16Sln(61 + 92)

(9\)21

@) ,
DAL — 43y (Lp)cos(6) + 62) — aa(La)w) sin () + 62)

asz

1.5 Control of Rigid-Link Robots in Contact-Free Operation

The computed torque method is the basis in all control methods for robotic ma-
nipulators [[I07]],[391]]. The robotic model undergoes a linearization transformation
and decoupling through state feedback and next one can design local PD-type con-
trollers for each joint of the robot. To compensate for modelling uncertainties or
external disturbances a robust control term can be included in the computed torque
control signal. On the other hand when the robotic model is unknown the computed
torque method can be implemented within an adaptive control scheme, where the
unknown robot dynamics is learned by an adaptive algorithm.

In the computed torque method the robot manipulator is modeled as a set of rigid
bodies connected in series with one end fixed to the ground and the other end free.
The rigid bodies are connected via revolute or prismatic joints and a torque actuator
acts at each joint. Taking into account the effect of disturbances 7 in Eq. (I.1), the
dynamic equation of the manipulator is given by:

D(6)0+B(6,0)+G(0)=T—T, (1.43)

where

T : (n x 1) is the vector of joint torques supplied by the actuators,

D(6) :(nxn) is the manipulator inertia matrix,

B(6,0) (n x 1) is the vector representing centrifugal and Coriolis effects,

G(0): (n x 1) is the vector representing gravity,

T;: (nx1) is the vector describing unmodeled dynamics and external disturbances,
0: (nx1) is the vector of joint positions,

6: (n x 1) is the vector of joint velocities,

6: (n x 1) is the vector of joint accelerations.

In the computed torque method (also known as inverse model control), a com-
pletely decoupled error dynamics equation can be obtained. The overall architecture
of this model is shown in Figure [[4l If the dynamic model is exact, the dynamic
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Fig. 1.4 Computed torque controller architecture for rigid-link robot control, including on-
line estimation of the unknown parameters of the robot’s dynamic model

perturbations are exactly canceled. The total torque that drives the manipulator is
given by

T=D(0)u+B(6,0)+G(0)+1Ty, (1.44)
where u is defined as

u=0,+K,(0,—0)+K,(6,—0) (1.45)

Substituting Eq. (L44) into Eq. (IL43) and noting that D =D, B=B and G = G
because of the exact dynamic model assumption, one obtains

D(6)[6,+K,(6,—6) +K,(6,—0)] =0 (1.46)

The following error vectors can be defined: e = (6; — 0),¢ = (0, — 0) and é =

(6, — 6). Under the assumption that D(8) is positive definite, these are related by
the following equation:

é+ K+ Kpe=0 (1.47)

1.6 Control of Flexible-Link Robots in Contact-Free Operation

1.6.1 Inverse Dynamics Control of Flexible-Link Robots

The inverse dynamics control approach can be also applied to flexible-link robot
models. Inverse dynamics control transforms the nonlinear system of Eq. (I.23)
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into a linear one, so that linear control techniques can be applied. From Eq. (T.23) it
holds that:

My10+Mypi+ Fy(z,2) = T(t) (1.48)
M>10 + My + F>(z,2) + Dv+Kv =0 (1.49)
Eq. is solved with respect to v

V= —My, M2 0 — My, F(z2,2) — Msy DV — My, Kv (1.50)
Eq. (1.30) is substituted in Eq. (L48)) which results into:

(M1 — MixMay' M>1 )6 — M1oMy, F(z,2) — MixMyy' Dv—

(1.51)
—MMyy Kv+ Fi(z,2) = T(t)
The following control law is now introduced [A43]:
T(t) = —MioMy, F>(z,2) — M1aMy, DV — MyaMy, Ko+ (152)
+F(2,2) + (Myy — MMy, Moy ug
up =0, —K;(6—0;) —K,(6—6y) (1.53)

By replacing Eq. (32)) in Eq. (IL31) one gets

(M1 — MioMay' Moy )6 — MMy, P (z,2) — MiaMy, Dy — Mip My, Kv+ Fy (z,2) =
= —M12M{21F2(Z,Z) *M12M2721DV7M12M2721KV+F1 (z,2) + (Mq; *M12M2721M21)u0

which finally results into

0 = uy (1.54)
Eq. (L34) implies that linearisation and decoupling of the robotic model has been
achieved. Substituting Eq. (IL33) into Eq. (I.34) gives:

6—6;+Ki(0—0,)+Ky(0—6,) =0=
(1.55)
é(r)+Kqé(t)+Kpe(t) =0

Gain matrices K, and K are selected, so as to assure that the roots (poles) of Eq.
(LS5} are in the left semiplane. This results into

limy_—ee(t) = 0 = lim;_.0(t) = O4(t) (1.56)

Consequently, for 6,(r) =constant it holds lim;_...0(¢) = 0. Then Eq. (L30) gives

i = —My,' Fy — My, Dv — My, Kv (1.57)
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and for F5(z,z) = 0 results into

¥+ My DV + Ma' Kv =0 (1.58)

which is the differential equation of the free damped oscillator. Suitable selection of
the damping matrix D and the elasticity matrix K assures that

limy—ov(t) =0 (1.59)

The objective of the above analyzed inverse-dynamics model-based control for
flexible-link robots, is to make the rigid-mode variable 6(r) follow a desired tra-
jectory or to converge to a certain set-point and at the same time to suppress
the flexible modes of the links v(r). However, this control approach has several
weaknesses [222]]:

1. The inverse dynamics model-based control for flexible link robots is based on
modal analysis, i.e. on the assumption that the deformation of the flexible link can be
written as a finite series expansion containing the elementary vibration modes [443]].
However, this inverse-dynamics model-based control may result into unsatisfactory
performance when an accurate model is unavailable, due to parameters uncertainty
or truncation of high order vibration modes [222].

2. In general there are n, flexible links, thus 6(r) € R™. The control input available
is T(r) € R™, since there is one actuator per link. Considering n; flexible modes
for each link means that n, xny additional degrees of freedom are introduced. Thus
appropriate control is required to suppress the vibrations. However, the number of
control inputs is n, which is less than the number of the degrees of freedom. Conse-
quently, there is reduced control effectiveness.

3. Designing a controller for a flexible link robot without taking into account the
links vibrations is an unsuccessful approach. By selecting the control input 7'(¢)
to achieve practical tracking performance of the rigid variable 0(¢), one actually
destabilizes the flexible modes v(¢). This is due to the non-minimum phase nature
of the zeros dynamics of the flexible-link arms.

4. Another drawback of model-based control is that the model of Eq. (T.23), is de-
rived assuming a finite number of vibration modes. This simplification is not always
applicable since higher-order modes may be excited. The proposed model-based
control does not provide robustness to external disturbances.

1.6.2 Energy-Based Control of Flexible Link Robots

1.6.2.1 Energy-Based Control

To overcome the weaknesses of the inverse-dynamics model-based control for flex-
ible link robots, model-free control methods have been proposed. These approaches
are analyzed in the rest part of Chapter 1. One such approach is the energy-based
control which requires only knowledge of the potential and kinetic energy of the
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flexible manipulator. Energy-based control of flexible-link robots assures closed-
loop system stability in the case of constant set-points (point-to-point control).
The kinetic energy Ey;, of a n-link flexible robot is given by [T19],[443]

no1 L
Ein = 25” /0 [P+ P}, dx (1.60)
i=1

In Eq. (L60), py, is the position of elementary segment of the i-th link along x-axis,
while p,, is the position of elementary segment of the i-th link along y-axis. On the
other hand the potential energy E, of a planar n-link flexible robot is due to the links
deformation and is given by

E —EnllE’/Li[a—z (x,1)]7d. (1.61)
p—i:lz A axzw, X, X .

Thus to estimate the robot’s potential energy, measurement of the flexible links
2 ); . . .
strain % is needed. The potential energy includes only the energy due to strain,
while the gravitational effect as well as longitudinal and torsional deformations are
neglected.
Moreover, the energy provided to the flexible-link robot by the i-th motor is given
by

1 .
Wi = / T(7)6 (t)d (1.62)
0
Consequently, the power of the i-th motor is

Pi(t) = T;(1)6;(¢) (1.63)

where T;(t) is the torque of the i-th motor and 6;(¢) is the motor’s angular velocity.
Thus, the aggregate motors energy is given by

n t .
W:Z;/0 Ti(1)6;(1)dt (1.64)

The energy that is provided to the flexible-link robot by its motors takes the form
of: (i) potential energy (due to the deformation of the flexible links) and (ii) kinetic
energy. This energy flow is described by

[Egin(t) + Ep(t)] — [Exin(0) + E,(0)] =W (1.65)

Energy-based control of flexible-link robots considers that the torque of the i-th mo-
tor (control output) is based on a PD-type controller and is given by [[T19]],[d43]:

i

Ti(t) = =K}, [6(t) — 64,(1)] — Kq,6;
ds,i=1

Ko () L6, ()W) (x,5) (1.66)

1)—

72’ .. ’n
where K),, is the i-th P control gain, Ky, is the i-th D control gain, 6y, is the desir-
able angle of the i-th link, K; is also a positive (constant) gain, and w;(x,?) is the

deformation of the i-th link.
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1.6.2.2 Stability Proof of Energy-Based Control for Flexible-Link Robots

The proposed control law of Eq. (I.66) assures the asymptotic stability of the closed-
loop system in case of constant set-points (point to point control). The following
Lyapunov (energy) function is considered [119],[443]:

1 N
V:Ekm—FEp—FEZKpi[Gi(t) 242 ZK/(—) (s,0)ds]E (1.67)
i=1

where Ey;, is given by Eq. and denotes the kinetic energy of the robot’s links,
while E, is given by Eq. (LL61) and denotes the potential energy of the robot’s links
due to deformation.

It holds that V (z) > 0 since Ey;, > 0, E, > 0, 33/ K, [6;(t) — 64,(1)]* > 0 and
Ly Ko 6i(¢)wi(s,1)]? > 0. Moreover, it holds that

V(1) = Egin+ Ep + X1 Ky [0:(1) — 04,(1)]6:(1) +
. ) ' , (1.68)
T 2Kl Jo0i(s.1)w; (s,1)ds)[6i(r)w; (x,1)]

while using Eq. (1.63) and Eq. (1.63) the derivative of the robot’s energy is found to
be

Epin(t) + Ep(1) = i]}(t)@,-(t) (1.69)
i=1

where the torque generated by the i-th motor is given by Eq. (L66). By substituting
Eq. (I.69) and Eq. (L66) in Eq. (L6Y) one gets

V(t) = =31 Ky, [0:(1) — 04, (1)) 63() —
— 7 Ka 02 (1) = X1 [Kiw; (x,1) [ Bi(s)wi (s,1)ds]6,(1) (1.70)

20 Ky [6:(1) — 04, (1)]6:(¢) + Siy [Kiw; (x,1) [ 61(s)w; (5,1)ds]6i(r)

which finally results into,

n
Y K, 67 (1.71)

Obviously, from Eq. (I7]) it holds that V(¢)<0, which implies stability of the
closed-loop system, but not asymptotic stability. Asymptotic stability can be proved
as follows [443]): If the i-th link did not converge to the desirable angle, i.e.
limy . 0;(t)= a;#6,,(t) then the torque of the i-th motor would become equal to
a small positive constant. This is easy to prove from Eq.(I.66) where the terms
Kq.0i(t) = 0, Kwi(x,1) [ 6:(s)w; (s,1)ds = 0, while the term K, [6;(r) — 6,,(1)] =
K,.a; becomes equal to a positive constant.
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However, if T;(r) = constant#0 then the i-th link should continue to rotate. This
means that 0;(r)#a; , which contradicts the initial assumption lim;_...0;(t)= a;.
Therefore, it must hold /iny_...T;(t) = 0 and lim;_...6;(t) = 64(t). Consequently,
lim—V (1) = 0.

The proposed energy-based controller is a decentralized controller since the con-
trol signals 7;(¢) of the i-th motor are calculated using only the angle 6;(¢) and the
deformation w;(x,#) of the i-th link.

The performance of the previously analyzed model-free control methods (energy-
based control and neural adaptive control) are compared to the performance of
model-based techniques (inverse-dynamics control), in a simulation case study for
planar 2-DOF manipulators.

1.6.3 Adaptive Neural Control of Flexible Manipulators

Adaptive neural network control of robotic manipulators has been extensively stud-
ied [II8]],[222)]. Following [411]] a method of neural adaptive control for flexible-
link robots will be proposed.

Eq. (I.31) represents the dynamics of the flexible-link manipulator. It actually
refers to a nonlinear transformation (mapping) from inputs (torques 7'(¢) generated
by the motors) to outputs (motion of the joints). This nonlinear model can be written
in the general form:

6=0G(6,0,v,v,T(t)) (1.72)

Consequently, the inverse dynamics of the flexible-link manipulator, is a relation
that provides the torque that should be generated by the motors of the joints so as
the joints angle, angular velocity and acceleration to take certain values. The inverse
model of Eq. is given by

T(1)=G'(6,0,06,v,v) (1.73)

The dynamic model and its inverse are time dependent. If the inverse dynamic model
of Eq. (L73) can be explicitly calculated then a suitable control law for the flexible-
link robot is available.

However, this model is not usually available and the system dynamics has to be
adaptively identified. In this paper, a neural network model will be used to effec-
tively approximate the inverse dynamical model of Eq. (I.Z3). Variables 6, 6,6 can
be measured while variables v, v are non-measurable. Thus, the inverse dynamics of
the manipulator can be decomposed into n sub-models given in the following form:

gfi(e,(?,?)
T(t)=G'(6,0,6)= | & (6:0:0) (1.74)
8,'(6,6,6)
where each g;l, (i=1,2,---,n) defines the inverse dynamics of the corresponding

joint, while n is the number of joints of the manipulator.



20 1 Industrial Robots in Contact-Free Operation

A neural network can be employed to approximate each sub-model g;° ! of the
flexible robot’s inverse dynamics. Therefore, the inverse dynamics of the overall
system can be represented by a neural network N(60,0, 6, w) [E11]

Ni(6,60,0,w)

N»(0,0,0,w,)

T(t)~N(6,6,0,w) = (1.75)

N, (0,0,0,w,)
where N;(0,0,8,w;)i=1,2,--- ,nis the i-th neural network that approximates the
i-th sub-model of robot’s inverse dynamics and w; is the associated weights vector.
Using a NN to model the dynamics of the flexible-link robot provides a mapping
of the joint angles vector to the motor torques vector. The torque appearing at the
output of the neural network can be combined with a PD-feedback controller to

generate the overall control signal that will finally drive the motors [422]. Therefore,
the control scheme can be given as

T(t)=N(6,0,0,w)+Kye+ Kgé (1.76)

where N(6,0,8,w) is the neural network approximation of the actual inverse dy-
namics of the manipulators, while K, € R" and K; € R"™ are the diagonal
gain matrices with entries K}, and K, respectively, denoting a servo feedback that is
introduced to stabilize the system. In Eq. (I.Z6) ¢ = 6; — 6, and ¢ = 6, — 6 denote
the position and velocity error of the robot’s joints, respectively, and 6; € R is the
vector of the position and velocity set-points.

The architecture of NN-based control of flexible-link robots is depicted in
Fig. Making use of Eq. (LZ4) and Eq. (IZ3), the neural network controller
that is described by Eq. (IZ6) becomes

N(6,6,8,w)+Kpe+Kse =G '(6,6,0) (1.77)
or equivalently,

Kpe+Kqe=G(6,0,6)—N(6,0,6,w) =N (6,6,6,w) (1.78)

Eq. (LZ8) represents a decoupled linear system, driven by the nonlinear vector func-
tion N(0,0,0,w) € R" This function represents the error between the actual in-
verse dynamics G~'(0, 0, 8) and its estimated model N(6, 8,8, w) and can be writ-
ten as

o N1(6797évw) gfl(eaévé)_Nl(eaéaéaw)
N(6,8,8) = - (1.79)
N.(0,0,0,w) 2,'(0,6,60)—N,(6,6,0,w)

Instead of using one neural network to approximate the inverse dynamics of
the flexible-link robot one could use a separate network for each joint of the
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Fig. 1.5 Adaptive neural control of the flexible-link robot

manipulator. In that case and using Eq. (L.79), the error equation for the i-th joint of
the manipulator becomes

Khei+Kjé; =Ni(6,0,0,w), i=1,2,---.n (1.80)
where ¢; and ¢; denote the position and velocity errors of the i-th joint respec-
tively, K}, and Kj; are the proportional and derivative gains of the PD controller
of the i-th joint, and N;(6, 8,6, w) is the approximation error of the NN assigned to
the i-th joint. The objective is to eliminate the approximation error, i.e. to succeed
lim,—N;(0,0,0,w) = 0. In that case, a suitable selection of the control gains K,
and K Zi results into

Kli,ei + Kéé,’ =0=

limy—wei(t) = 0, limy_...é;(t) =0 (1.81)

Eq. (L81) denotes that, the convergence condition for the closed-loop system is to
make the error surface & = K ;,ei + K¢ to approach zero. Then the suitable selection
of the control gains will result in the asymptotic convergence of e(¢) to 0

i 5
Khei(t)+ Kjéi(1) = 0= &i(1) = —K—Zei(t) = ¢;(t) = ¢;(0)e *a (1.82)
Thus a measure of the output error can be considered to be
& =N;(0,0,06,w) (1.83)

which reflects the discrepancy between the actual inverse dynamics of the manipu-
lator and its neural network approximation. The update of the weights of the neural
network has to be carried out in such a way that the stability of the closed-loop
system is maintained. To this end, the following cost function is defined for each
joint
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1
Ei(t) = 5 (1.84)
This cost function gives the squared distance of the error function & = Kli,e,'(t) +
K ée’,-(t) from 0. The weights update algorithm is derived from the minimization of

the cost function E;(r) over the weight space of the corresponding NN model.

1.6.4 Approximation of the Flexible-Links Dynamics

A diagonal recurrent neural network (RNN) is employed first to approximate the in-
verse dynamics of each link of the flexible manipulator. The structure of the i-th di-
agonal recurrent neural network is depicted in Fig. The input vector of the RNN
is X = [6;,6;,0,)T, i.e. it consists of the position, angular velocity and acceleration
of the robot’s joints. The self-feedback connections at the hidden nodes of the RNN
enable the neural network to approximate dynamical systems. On the other hand
feed-forward neural networks without tapped delays, provide only a static input-
output mapping [203]. Thus, RNN are deemed as more appropriate for modelling
of the inverse dynamics of the flexible-link robot.

A2k)

m&)
wid)

W)

Q ) W)

0]

(k) wy; (k)

Fig. 1.6 Structure of the diagonal recurrent neural network

The weights update of the RNN consists of the forward and backwards computa-
tion. The forward computation is described as follows:

1. Input layer:
Ln(k) = xpm(k), m=1,2,3 (1.85)

where [x1,x2,x3] = [6;, 6;,6;].
2. Hidden layer:
Pg(k) = Fj(u;(k))

i (k) = W H (k= 1) + 5, (k)

(1.86)

—
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3. Output layer:
O(k) =Ni(6,6,6,w) Zw (1.87)

where u (k) and H;(k) are the input and output of the hidden layer at the j-th unit,
respectively, O(k) is the output of the neural network (torque for the i-th joint), F;()
(1)

is a sigmoid function, written as Fj(u;) = w,,; is the weight that connects the

1
m-th input layer neuron with the j-th hldden layer neuron, w( ) is the self-feedback

of the j-th neuron of the hidden layer and w§. ) is the weight that connects the j-th

node of the hidden layer with the output layer node.
The update of the network weights is based on gradient descent [411]:

JE; 20(k)
— = —&i(k (1.88)
8w5»3) ® QWE-B)
JE; d0(k) IH;(k l.
PRI &H;((k)) (91/:((2)) = —&(k)wy’ 5" (k) (1.89)
J ' J
IE; ) ,9H,(k) 3) 2 (i)
= [&(k) =" = —2&ilk)w;” B,y (k) (1.90)
awfn‘]? - dH;(k)" 5 fnl,) - i Pmj

where index i denotes the neural network that models the inverse dynamics of the
i-th flexible link

8 (k) = ajigj) = F (k) [H;(k— 1) +wlP8 (k—1)] (191
(i) JH,(k) / 2) 2 ()
ﬁmj(k): PO =F (u;(k))[x (k)+w ﬁmj(k—l)} (1.92)
mj

with F;(uj) = Fj(u;j)(1 — Fj(u;)). The formula for the weights update is given by
wk+1) =w(k) — aVE;(w) (1.93)
and the gradient VE;(w) is given by

JE; O0E; OE;

() — T
VEI(W) - [aw(l) I aw<2> I aw(:;)} (194)
mj j j
where w = [w£nl J) , wﬁ-z),wﬁ-S)}T and « is the learning rate. From Eq. (I.83), (1.84) and

(L.93) it can be seen that the parameters involved in the adaptation of the network’s
weights are: the output of the robot system 6, 8,6, the current output of the PD
controller and the learning rate .

It is noted that, the neural-adaptive control scheme depicted in Fig.[1.3is generic
since in place of the diagonal recurrent neural network, a different neural network
(such as a RBF neural network, which does not include self-feedback in the hidden
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layer neurons) can be considered and can perform well in the suppression of the
flexible-links vibrations.

1.6.4.1 Local Stability Properties of Adaptive Neural Control

Local stability properties of the closed-loop system that consists of the flexible-link
robot, the PD controller and the neural adaptive controller, will be investigated. The
weights update law given in Eq. can be suitably tuned so as to assure the sta-
bility of the closed-loop system. To this end, the following discrete-time Lyapunov
function is defined

Vi(k) = & (k) (1.95)

Thus, the change of the Lyapunov function due to the weights update is given by

1
AVL(k) = Vi (k+ 1) = Vi(k) = 5 (€7 (k+1) — g2 (k)] (1.96)
The evolution of the modelling error g in the discrete time is given by
JdE;.r
8i(k+1):£i(k)+A8i(k):Ei(k)—F[aW] Aw (1.97)

where Aw represents a change in an arbitrary weight vector. From the laws for
weights update, given in Eq. (L88) to Eq. (1.90) one obtains for the weights of the
output layer

Aw = —aVE;(w) = ocs,-(k)ag—v(vk) (1.98)

Based on the above, the following general convergence lemma has been stated [203]:

Lemma I: Let o be the learning rate for the weights of the RNN and z,,,4, be defined
as Zmax = max||z(k)||>, where z(k) = % and || - || is the Euclidean norm in R".

The convergence is guaranteed if o is chosen as

2
0<a<—o— (1.99)

Zmax
Using the previous Lemma the learning rate o that assures the convergence of the
RNN weights update, can be found. The acceptable ranges of variation of the learn-
ing rate o are given in the following theorem [E11]:
Theorem 1: Let o be the learning rate for the RNN weights w(3). The dynamic back
propagation algorithm converges if 0 < |w§-3)| <1, (j=1,2,---,h) and the learning
rate o3 is selected as
2
O<O‘3<E (1.100)

where £ is the number of recurrent neurons in the hidden layer.
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Proof: From Eq. (T.88) it holds that

(k) =H(k) (1.101)

 ow®
where H(k) = [h1(k),h2(k),...,hn(k)]T and h;(k) is the output value of the j-th
neuron in the hidden layer. Since 0 < £;(k) < 1 (due to the sigmoid function
F(x) =1/(1 +¢™)) and using the definition of the Euclidean norm in R", it holds
that ||z(k)|| < v/ and zx (k) = h. Then from Lemma 1, Eq. (LI0Q) can be obtained.

Similarly, the learning rates o and oy for the weights w®) and w(!) can be
obtained

1
0<op< E{W]z (1.102)
Wmnax
0< o< — [ ! )? (1.103)
1 sl N .
h+3 WSr%zzxxmax

2) _

where Wy, = max||w? (k)]|.

1.7 Simulation of Flexible-Link Robot Control

The performance of the previously analyzed model-free control methods (energy-
based control and neural adaptive control) are compared to the performance of
model-based techniques (inverse-dynamics control), in a simulation case study for
planar 2-DOF manipulators, in contact-free operation.

1.7.1 Model-Based Control of Flexible-Link Robots

The 2-DOF flexible link robot of Fig. [[3lis considered. The robot is planar and
consists of two flexible links of length L; = 0.45m and L, = 0.45m, respectively.
The dynamic model of the robot is given by Eq. (I.23). The elements of the inertia
matrix M are:

1o 1 10203 10
My, = (2 1) , My =Mj, = <O.5 0.1 2 0.7) » Mz2 = <O 1)

The damping matrix was taken to be D = diag{0.04,0.08,0.03,0.06} while the
stiffness matrices was selected as K = diag{0.02,0.04,0.03,0.06}. The inverse dy-
namics control law given in Eq. (IL32) and Eq. (I.33) is employed. The selection
of the gain matrices K, and K; determines the transient response of the closed loop
system. The following controller gains have been considered: K, = diag{0.2,0.2}
and K; = diag{0.1,0.1}. The desirable joints positions are 6;, = 1 rad and 6;, =
1.4 rad. The performance of the model-based controller is given in Fig.[[.23
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Fig. 1.7 Model-based control of a 2-link flexible robot (a) joints’ angles and joints’ angular
velocity, (b) the first two vibration modes for each link
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Fig. 1.8 Model-based control of a 2-link flexible robot in the presence of additive motor-
torques disturbances (a) joints’ angles and joints’ angular velocity, (b) the first two vibration
modes for each link

Moreover, it is considered that an additive disturbance torque appears on each
joint. The disturbance is given by d;(¢) = 0.3cos(t). The performance of the model-
based controller of the flexible-link robot in the presence of disturbance is depicted
in Fig. It can be seen that vibrations around the desirable joint positions cannot
be eliminated.

1.7.2 Energy-Based Control

The same robotic model as in Subsection [[.7.1] is used to simulate the varia-
tion of the manipulator’s joints with respect to time. Energy-based control of
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flexible-link robots is based on Eq. (T.66). The following controller gains have been
used: K, = diag{1.9,5.6},K; = diag{7.2,23.3} and K; = diag{0.1,0.1}. The desir-
able joint positions are again 6;, = 1.0 rad and 6;, = 1.4 rad. To derive the control
signal of Eq. (L66) the strains at the base of each link were used, i.e. w;/ (0,2). The
performance of the energy-based controller in the case of the 2-DOF flexible link
robot is shown in Fig.

Moreover, the performance of the energy-based controller in presence of the ex-
ternal disturbances of Subsection [L71] is given in Fig. Suppression of the
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Fig. 1.9 Energy-based control of a 2-link flexible robot (a) joints’ angles and joints’ angular
velocity, (b) the first two vibration modes for each link
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Fig. 1.10 Energy-based control of a 2-link flexible robot in the presence of additive motor-
torques disturbances (a) joints’ angles and joints’ angular velocity, (b) the first two vibration
modes for each link
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vibrations can be achieved if the elements of the gain matrix K; are given higher
values.

1.7.3 Adaptive Neural Control

The control scheme shown in Fig.[I.3]was implemented. A diagonal recurrent neural
network with 5 nodes at the hidden layer was first used. The following proportional-
derivative (PD) controller gains have been chosen: K, = diag{1.4,5.6} and K; =
diag{2.7,6.8}. The additive motor-torques disturbance of Subsection [[7.1] were
considered. The performance of a PD controller without additional torque from the
neural adaptive controller is depicted in Fig. [[.111

To compensate for the external disturbances the neural adaptive controller of
Fig. [[3] was used. The simulation results are depicted in Fig. It can be ob-
served that the neural adaptive controller achieves disturbance rejection and results
in suppression of the vibrations of the flexible links.

The flexible-link robot control was also implemented with the use of a Radial
Basis Function (RBF) neural network. The hidden layer of the NN contained 5 nodes
with Gaussian Basis functions, and unlike the diagonal recurrent neural network
no self-feedback in the hidden nodes was considered. The additive motor-torques
disturbance of Subsection [[.7.1] were considered. To compensate for the external
disturbances the neural adaptive controller of Fig. was used, but this time using
a RBF neural network. The simulation results are depicted in Fig. It can be
observed that the RBF-based neural adaptive controller succeeds suppression of the
vibrations of the flexible links and achieves also convergence of the robot’s joints to
the desirable set-points.
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Fig. 1.11 PD control of a 2-link flexible robot without additional torque from the neural
adaptive controller (a) joints’ angles and joints’ angular velocity, (b) the first two vibration
modes for each link
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Fig. 1.12 DRNN-based neural network control of a 2-link flexible robot in the presence of
additive motor-torques disturbances (a) joints’ angles and joints’ angular velocity, (b) the first
two vibration modes for each link
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Fig. 1.13 RBF-based neural network control of a 2-link flexible robot in the presence of
additive motor-torques disturbances (a) joints’ angles and joints’ angular velocity, (b) the
first two vibration modes for each link

The ISE (integral of the square error) criterion j;)Tez(t)dt of the examined control
loops is also calculated assuming for all controllers the same proportional-derivative
controller gains K, = diag{1.2,1.5} and K; = diag{2.4,1.8}. The results are sum-
marized in Table 1.2. It can be observed that the examined model-free controllers
of the flexible-link robot (i.e. the energy-based controller, the DRNN and RBF
neural-adaptive controllers) are equally effective to (or in certain cases outperform)
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Table 1.2 ISE tracking performance of the control loops

parameter 0, 0, 0, 0,
inverse-dynamics control 130.31|173.79|31.89| 82.41
energy-based control 104.36]180.64|24.83| 91.62

DRNN adaptive neural control| 88.68 [163.76|33.82| 85.11
RBF adaptive neural control [108.96{152.97|30.92|100.11

the inverse-dynamics model-based controller. Moreover, it should be taken into ac-
count that the model-free controllers use less a-priori known information about the
flexible-link robot’s dynamics than the inverse-dynamics controller.



Chapter 2
Industrial Robots in Compliance Tasks

Abstract. An analysis of industrial robot control is given, for the case of compliance
tasks. First, rigid-link robotic models are considered and the impedance control and
hybrid position-force control methods are analyzed. Next, force control methods are
generalized in the case of flexible-link robots performing compliance tasks.

2.1 Impedance Control

Up to now the study of control methods for flexible-link robots followed the as-
sumption that the robot operates in the free space. However, when in contact with
a surface, forces are exerted to the robot’s end-effector and a significant issue that
has to be taken into account in the design of the robotic controller is force con-
trol [I86],[187]. To solve the force control problem, the kinematic model of the
flexible-link robot described in Chapter 1 will be used. In the case of compliance
tasks, the objective is not only to control the end effector’s position but also to reg-
ulate the force developed due to contact to the processed surface [I89],[190]]. There
are established approaches for simultaneous position and force control of robotic
manipulators which were initially designed for rigid-link robots and which were
subsequently extended to flexible-link robots.

Tasks like grinding, milling, polishing or assembling need the control of the force
that the end-effector exerts on the workpieces, as well as the control of its position.
The impedance control method is used for simultaneous control of both the position
and the force of the robotic manipulator. The implementation of impedance con-
trol can be understood through an example concerning the deburring process (see
Fig. ZI). The aim of the deburring process is to remove the burrs from a rough
surface. The deburring quality depends on

1. the rotary speed of the grinding tool @
2. the grinding tools penetration depth x
3. the grinding tools velocity parallel to the metals surface y.

G.G. Rigatos: Modelling & Control for Intell. Industrial Sys., ISRL 7, pp. 31@
springerlink.com (© Springer-Verlag Berlin Heidelberg 2011
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The above variables can be represented by the command signal Cy

Ci = Wo O +wxx +wyy 2.1

which is equivalent to the force that has to be applied on the metal’s surface (contact
force) in order to succeed removal of all burrs and perform perfect smoothing of
the surface. Thus, the deburring problem initially aiming at finding the values of
oy, x, and y which assure perfect smoothing of the surface, can now be formulated
as aiming at finding the contact force C; which assures perfect smoothing of the
surface.

Y

C]% >

X

Fig. 2.1 Contact forces to a robot’s end effector while performing a deburring task

The reaction force which is applied by the surface on the robot’s end effector is
described by the relation (see [204]],[210])

F,=F,+F; 2.2)

Fy is the tangential reaction force (i.e., the friction) and F, is the perpendicular to
the metal surface reaction force. The analytic expressions of Fr and F, are

ax+by+c
B

p friction coefficient and |F,| = |/F2 + F?, K, spring stiffness coefficient, a,b,c

Fy=pF, 2.3)

parameters related to surface curvature. Every force setpoint C; can be mapped to a
setpoint (x4,y4) such that the condition |C,| = |F,| is satisfied, i.e.,
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_ a b c
Ca=K \/a2+b2xd ke \/a2+b2yd & Va2+b?

ie. Cy = Kxqg+Kyyq + K.

2.4)

To calculate the setpoint (x,4,ys) which corresponds to the command force C; the
following steps are performed: 1) parameters K,, x;, and y, are initialized arbitrar-
ily and 2) a continuous update of the above parameters with a gradient algorithm
follows.

The Euler-Lagrange joint-space equation of a n-DOF robot is

D(6)6+B(6,0)+G0)=1+J'F,+14 (2.5)

g€R™! is the joint angles vector, D(q)ER™" is the inertia matrix, B(g,§)€R"!
is the vector of the Coriolis and centrifugal forces, G(¢)€R"*! is the gravity force
vector, 7 is the torque vector, J is the Jacobian matrix of the robot, F, is the vector
of the reaction contact forces applied to end-effector, and 7,€R"*! is the vector of
the external disturbances.

Unifying B(0,0),G(0) in h(6,0) = B(6,8) + G(8), one gets

D(6)6+h(0,0)=1+JTF +1, (2.6)

It is also possible to express the robot dynamic equation in a Cartesian coordinates
system [204]],[210]. In this approach, X denotes the position and orientation of the

Stute machine tor contact force tuning

]
S——0—1
l T
Setpuint  Lstimator Performance Evaluator
X X

Impecance Rubut &

Cuntruller Envirunment

Fig. 2.2 Impedance controller for robotic deburring
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end-effector, X denotes its linear velocity, and X denotes its linear acceleration.
Using the relations X = J(0)8, X = J0 +J0, and T = JTF the robots dynamic
equation in Cartesian coordinates is found to be

DX +h=F+F,+F, (2.7)

where D=JTDJ Y h=JTh— qu,Fe is the reaction force applied to the end-
effector, and Fy is the disturbance force vector.

When the robots end-effector comes in contact with the surface, the reaction
force F, applied to the end-effector is expressed by a generalized spring model

s

F, =A8X +B8X + K8X 2.8)

where 6X = X; — X displacement from the desired position, K stiffness matrix (di-
agonal to achieve static decoupling). Here, X, is intentionally designed so that X will
not be able to reach Xy in the steady state (X # X,) and is known as virtual com-
manded position. The matrices A, B, and K are positive-definite and influence the
stability and the transient behavior of position tracking. The concept of impedance
control is to find a control law that will transform equation 2.7] into equation 2.8l
Assuming no external disturbance, an appropriate impedance control law is

(2041, [210]
F =DA ' [B6X + KSX — F,| + DX+ h+ (ASX + BSX + K5X) (2.9)

Using the impedance control law equation of Eq. (2.9), one succeeds in transforming
the Cartesian dynamic model of Eq. 7) of the robot to the equivalent form of
Eq. (Z.8). If the matrices A,B, and K in Eq. (2.8) are appropriately selected such
that the polynomial Z(s) = As”> + Bs + K to be Hurwitz stable (to have poles in
the left complex semiplane), then one can succeed tracking of the desirable force
profile.

2.2 Hybrid Position/Force Control

Apart from impedance control, hybrid position/force control, is an approach for han-
dling compliance tasks. The milling process will be used as an example of the hybrid
position/force control applications to industrial systems. The hybrid controller is
based on the idea of weighting the joint torque’s components which are responsible
for the control of the robot’s degrees of freedom (position, force), via the selec-
tion matrix S. Hybrid position/force control is an expansion of the computed torque
control method [242]],[314]],[437),[@66)]. The computed torque method, in combina-
tion with the conversion of joint control signals to the end-effector coordinates and
the selection matrix S, gives the following equation for the hybrid position/force
controller:
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T=D(0)J (I —S)u,—JO] +h(6,6)
+1(0,0)+g(0)+Fje+JT f+J"Suy

where D(6) is the inertia matrix, J is the robot Jacobian, 6 is the vector of joint an-
gles, h(0, 9) is the vector of Coriolis and centrifugal forces, g is the vector of gravity
forces, Fj. is the Coulomb friction of the robot joints, f is the force applied to the
environment and u,, u; are the position and force control signals respectively. The
selection matrix S consists of unit and zero elements on the diagonal depending on
the control way (position or force) of the respective degree of freedom. The control
signals u, and uy are provided by controllers which may be conventional or some
kind of adaptive controllers.

(2.10)

Milling
Direction
e

Vi

Fig. 2.3 Robotic milling

This architecture contains two independent control loops, one of which performs
the position control while the other performs the force control. The methodology
does not introduce any new control law but solves the problem of cooperation of the
two independent control loops in several compliance tasks [105].

2.2.1 Stiffness Identification in Compliance Tasks

In the milling process the knowledge of the materials’ stiffness is necessary. The
evaluation of the stiffness, except from its real value, is a function of the sharpness
of the tool which applies the force to the object. So, if a force is exerted to an object
with a tool of low sharpness the depth obtained will be smaller than that achieved if
the tool is more pointed. So the computed stiffness will be different when the manip-
ulator uses another milling tool. For this reason stiffness identification algorithms
are needed, and can be performed by the manipulator to useless experimental piece
of the material, before the actual milling process starts [T08],[I33].
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To this end, a stiffness identification method which is based on a gradient algo-
rithm and the hybrid position/force control method will be presented. The goal of
this method is to achieve a desirable depth by changing the set-point of the force
controller, while the manipulator is not moved to the other degrees of freedom. Let
k, be an arbitrary, initial value for the stiffness of the material to be milled, smaller
than the real stiffness and di,x a desirable depth. Initially a force set-point is calcu-
lated using the equation:

fd = kndmax (2.1

When the force controller succeeds convergence to this set-point, then the tool is in
real depth d,.. This real depth satisfies the equation:

fd = k,d, (212)

where k; is the real stiffness of the object. From Eq. (2.12)) and Eq. (2.11)) the relation

of d, and d\ax is found to be:
ky,

ks

The error e; between the desirable and real depth is:

dr = ( )dmax (213)

eq = dmax — dy (2.14)

Now the error cost function J = %efl is defined. The aim of the gradient algorithm is
to minimize J. Differentiating J with respect to k,and applying the chain rule gives:

dJ | ok, = (dJ [deq)(deq/dkn) =

- 2.15
Eda(dmax - ]Ii_’:dmax)/ak = % ( )
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The stiffness identification algorithm can not use k, from Eq. Z.13) because it is
unknown. Replacing the ratio dmax /k, in Eq. (ZI3) by its value obtained from Eq.
213 yields :

eddr

aJ Ik, = — X (2.16)
Therefore the updating equation of the object’s stiffness is:
kn(k+1) =ko(k)+neq dy/ky (2.17)

where 7 is the renewal rate. The implementation of the stiffness identification algo-
rithm consists of the following five steps:

Step I: Initialize the unknown stiffness to an arbitrary value and define the desired
depth.

Step 2: Calculate the force set-point based on the present stiffness value and the de-
sired depth.

Step 3: Wait until the force controller succeeds convergence to the desired force
set-point.

Step 4: If the desired depth has been achieved go to step 5, otherwise compute the
new stiffness value using Eq. (Z.17) and go to step 2.

Step 5 : The stiffness has been identified and is equal to the present stiffness value
obtained from Eq. (Z.17).

2.2.2 Application of Robot Hybrid Position/Force Control

The milling process is widely met in metal industry and is usually carried out by
appropriate CNC machines. However, when the surface of the metallic object is
of varying curvature (e.g. ship propellers) it might be difficult to tune and use a
conventional milling machine. Therefore when dextrous manipulations are required,
robot-based milling can be more suitable.

In this section the implementation of the robot hybrid position/force control on
the milling process by a desired depth curve will be presented. As desired depth
curve the sin® function is selected. The milling process will be performed at 10cm
width interval on the object and will have four peaks in this interval. The shape of
this curve is shown in Fig.

The milling process will be performed at an horizontal velocity of 2 cm/sec. It
will be assumed that in the horizontal motion there is friction between the tool and
the object which is opposite to the motion. This friction will be assumed propor-
tional to the real depth by a coefficient value 1500 N/m giving a 3 Nt maximum
friction value at the maximum depth of 2 mm.
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Fig. 2.5 Desired depth curve for the milling process

The conventional resolved acceleration hybrid control method and the neuro-
fuzzy hybrid control were applied using a 3-DOF robot manipulator. The robot has
the following parameters: m| = 5kg, my = 5kg, m3 = 2.5kg and I} = 30cm, I, =
30cm and I3 = 15cm respectively. The dynamic model of this robot is:

T=D(0)0+1(0,0)+g(0)+Fj.+J'F (2.18)
The Jacobian of the manipulator is:

—B3S123 — bLS12 — 1181 —1S123 — bS12 135123
J=| BCixs+hCi+1C1 BCixs+LCr B1Cixs (2.19)
1 1 1

where S; = sin(6;),S; = sin(6; + 0;), C; = cos(6;), Cji = cos(6; + 6;) and 6; is the
angle between the links i and i+ 1.

The parameters (gains) of the controller are selected as: a) Angle Controller:
kpe = 700, k,o = 1500, b) Position controller: kp; = 15, kyx = 3.5, c¢) Force Con-
trolle: k,,r = 15, k,y = 5000.

From the requirement the tool to be vertical to the object during the milling pro-
cess the desired angle set—point is found to be 90°. The aim of the horizontal posi-
tion controller is to move the tool with a desired velocity, and the force controller
has to apply the desired force to the object. The trials were performed at desired
horizontal velocities 4 cm/sec and 2 cm/sec and with several kinds of material and
forces. It was also assumed that there is friction between the tool and the object
which is proportional to the real depth by a coefficient with value 1500. The mo-
tion started from the point x = 0.29027m and directed opposite to the x axis, while
the tool was vertical to the object from the beginning. The results are shown in
Fig.
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Fig. 2.6 Stiffness 10000 Nt/m, desired force 20Nt and horizontal movement by 4cm/sec: (a)
force control, (b) position control

2.3 Force Control of Flexible-Link Robots

2.3.1 Interaction with the Compliant Surface

The flexible-link robot model of Eq. (I.37) is now considered. A simple model of
elastic force due to contact of the end-effector with a surface is given by:

F=Knn"(p—pe) (2.20)

where p = k(0,v) are the coordinates of the end-effector which are calculated from
the kinematic model, and 7 is a vector normal to the surface p.. From the second
line of the dynamic model of Eq. (L37) one obtains:

M>10 + Mayii+ Dv+Kv = —J! (6,v)F (2.21)
In the steady-state one obtains
v=—K 'I'(0,v)F —K 'JI(0,v)NK.(pn— Pen) =

(2.22)
v=—K '"JuKe(Pn— Pen)

where p, = nTp, p., = n' pe, and J,, = J'n. The derivative of Eq. 2.22) with
respect to time ¢ is calculated.
= 9190 = %{_K_ljvnKe(pn _pen)}é =

t
., . Ope, (2.23)
39’1 Ke(pn _pen) +K ljv,lKe 59” 6

N5

0
= —K_l

which finally results into

v=—K 'K.J;(0)0 (2.24)
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with Jp(0) = aajgl Ko(pn — Ppen) + KU, K, agg”. Substituting Eq. (2.24) into Eq.

(L.36) gives:

p=Jo(0,9)0 +1,(0,v){-K 'K.J;(0)} =

. " 2.25

p=1{J6(0.) — K~ 1KeJ,(0,9)J,(8)} (223
The overall Jacobian matrix J, is defined as:

Jp=Jg(08,v) — K 'K.J,(0,v)J(6) (2.26)

which relates the velocity of the end-effector with the angular velocity of the joints

p=J,(0,v)0 (2.27)

2.3.2 Force Control for Flexible-Link Robots

The desirable contact force along the normal vector of surface p, is denoted as Fy
and corresponds to the desirable position p,;. The relation between F; and py is
given by

pd, =N pa=K,"Fi+pe, (2.28)

or equivalently py — pe, = K, 'Fy = 1" ps—n" p. = K, ' F;. Thus to succeed con-
tact force equal to Fy the end-effector should reach the depth n” p; — n” p.. The
design of the force controller comprises the following steps [380]:

1. For a certain force set-point F; the corresponding position of the end-effector is
calculated using Eq. (2.28).

2. Knowing p, an inverse kinematics algorithm is used to calculate the associated
joint angles 6, and the vibration modes v,.

3. The values of 6, and v, are used as set-points of a simple proportional-derivative
joint controller, as the ones described in the previous sections.

The inverse kinematics problem can be solved with the use of an inverse kinematics
algorithm which enables the calculation of 6, and v, through the convergence of the
closed-loop system:

0 =Jp(6,v)Kp(pa—p) (2.29)

where J,, is the Jacobian of Eq. (2.28), p is the current position of the end-effector,
pa is the desirable position of the end-effector, and K, is the diagonal feedback
matrix of Eq. (Z.29). The convergence conditions of the inverse kinematics algo-
rithm have been studied [380]. The calculated values 6, and v; which are associated
with the desirable position p; are introduced as set-points in the PD controller of
each link. This is given in:

T(t) =K (6 — 0) + K20 +J} (64,v4)Fyn (2.30)
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where Fyn = K,[n” p; — T peJn and Jg is the Jacobian of Eq. (L40). The term
J 9T Fyn is added to the control signal to compensate for the torques which are induced
to the joints due to the contact forces.

The discrete-time solution of the inverse kinematics gives

6u(k+1) = 64 (k) + TyJp (8a(k),va (k) Kp[pa(k) — p(k)] (2.31)

where the Jacobian J, is given by Eq.(2.26), and T} is the sampling period. From
Eq. (2:24), one obtains for the normal vibration modes,

va(k+1) = —K~'KeJy, (64 (k) [pa(k) = pe, (K)] (2.32)

with p, = nTP’ Pe, = nTPe and J,, = Jan'

2.4 Simulation of Force Control for Flexible-Link Robots

In the previous example it was assumed that the flexible-link robot operates in free
space. In the sequel it will be assumed that the manipulator’s end effector contacts
a metallic surface of stiffness K, and is thus subject to compliance forces.

The 2-DOF flexible manipulator of Fig. 2.7 is considered. The first link of the
robot is rigid and its length is L; = 0.45m while the second link is flexible and its
length is L, = 0.38m. The angle setpoints for the two joints are 6;, = 1 rad and
04, = 0.4 rad. The elements of the inertia matrix M are:

12 1.2 1.3 10
My = (2 1) My =M, = (2.0 1.7) , Moy = (O 1)

Moreover, the damping and stiffness matrices are D = diag{0.03,0.06} and K =
diag{0.03,0.06}, respectively. The constraint surface is described as Q (X{ LY, 1’ )=0.
The position of the end-effector (Xjs,Yy) can be expressed in terms of the joints
angles 6, and 6,

Xy = Llcos(el) —|—L2C()S(91 + 92) — W(LQ,I)SiI’l(Q] + 92)

. . 2.33
Yy = Lisin(6y) + Lysin(6y + 02) + w(Ly,t)cos(6; + 6>) (2.33)

where w(L;,1) is the deformation of the flexible link at x = L,. The dynamic model
of the manipulator, initially given in Eq. (L23) can now be expressed as

G ) )+ (RED+ (@2 ) (O + G2 s) ()=

T(t) JIF
<O2><l> * (02><1>
(2.34)

In Eq. @34) T(¢) is the vector of the motor torques, J? is the Jacobian of the
manipulator with respect to the joint angles 6;, i = 1,2 and F = [Fx,Fy]T is the
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Fig. 2.7 A flexible-link robot which operates in the presence of compliance forces
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Fig. 2.8 Control of a 2-link flexible robot in the presence of disturbances induced by compli-
ance forces (a) joints’ angles and joints” angular velocity when only a PD controller was used,
(b) joints angle and joints angular velocity when an adaptive neural controller was included
in the control-loop

vector of the compliance forces which are applied to the robot’s end-effector due to
contact with the constraint surface Q(X{ , le ): X+Y—1=0.In the above dynamic
model it has been assumed that the Jacobian with respect to the vibration modes is
0 and thus the impact of elastic reaction forces can be neglected.
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From Eq. (Z.33) the calculation of the Jacobian J with respect to the joint angles
0;, i = 1,2 is straightforward. Moreover, the compliance forces F; and F; are pro-
portional to the stiffness of the metallic surface K, [E21]). If the position (X7, Ys)
of the end effector can be measured then its projection (Xg,Yo) on the surface
Q(Xl/ , Yl/ ) can be calculated, and the compliance forces will be: Fy = K. (X — Xg)
and Fy = KK(YM — YQ).

The control architecture of Fig. was employed. The following PD controller
gains were used: K, = diag{11.1,26.5} and K; = diag{17.9,45.9}. In the sim-
ulation experiments the value of the stiffness was set to K, = 200 Nt/m while
its nominal value was K, = 100 N¢/m. Thus the effect of the compliance forces
could not be compensated effectively by subtracting the term J7 F from the torques
vector [380]. Position error of the robot’s joints should be expected as shown in
Fig. 2-8(a). However, the neural adaptive controller was able to compensate for the
disturbance induced to the robot’s joints by the aforementioned compliance forces
and to eliminate the position error. The associated simulation results are depicted in

Fig. Z8(b).






Chapter 3
Mobile Robots and Autonomous Vehicles

Abstract. An analysis of the kinematic model of automatic ground vehicles is given
and nonlinear control for this type of vehicles is presented. Moreover, the kinematic
and dynamic model of unmanned surface vessels is studied and nonlinear control
for the dynamic ship positioning problem is in turn formulated.

3.1 Kinematic Analysis of Mobile Robots

3.1.0.1 Nonholonomic Constraints of Autonomous Vehicles

The problem of control of autonomous ground vehicles (AGVs) is first considered.
The position of such a vehicle is described by the coordinates (x,y) of the center of
its rear axis and its orientation is given by the angle 6 between the x-axis and the axis
of the direction of the vehicle. The steering angle ¢ and the speed u are considered
to be the inputs of the system. The kinematic model of autonomous vehicles can be
expressed in the general form [211]]

X cos(0) 0 v(1)

y|=1|sin(6)0]- ( ) 3.1
6 0 1

where (x,y) are the coordinates of the center of the vehicle’s rear wheels axis, v(¢)

is the velocity of the vehicle, and 6 is the angle between the transversal axis of the

vehicle and axis OX. The autonomous vehicle is a nonholonomic system. Nonholo-
nomic systems are characterized by nonintegrable differential expressions, such as

n
Zﬁj(q1,q27"'7CIn,t)q.i:0,j:1,2,“‘,m (3.2)
i=i

where ¢; represents the n-th generalized coordinate (state variable), m is the number
of equations defining the nonholonomic constraints, ¢; represents the generalized

G.G. Rigatos: Modelling & Control for Intell. Industrial Sys., ISRL 7, pp. 45
springerlink.com (© Springer-Verlag Berlin Heidelberg 2011



46 3 Mobile Robots and Autonomous Vehicles

speed and f;; are nonlinear functions of g; at time ¢. For the kinematic model of Eq.
(B1) the following nonholonomic constraint exists:

xsin(0) —ycos(6) =0 (3.3)
The curvature radius for any path can be written as

p(t)  tan(9)
where L is the distance between the front and the back wheels, and ¢ (namely the
steering angle) is the angle defined by the main axis of the vehicle and the velocity
vector of the front wheel (for cart like vehicles as shown in Fig.[3.1), or the central
front point (for car-like vehicles as shown in Fig. B.1l). The value of R(¢) is usually
bounded by R,,i,, the minimum curvature radius.

(3.4)

X

Fig. 3.1 The model of the unicycle autonomous vehicle (cart-like vehicle)

3.2 Control of Autonomous Ground Vehicles

The kinematic model of an autonomous vehicle (robotic unicycle) is considered.
This comes from Eq.(3.1)) and is given by

x=vcos(8), y=vsin(0), 6 = © = fran(¢) (3.5)

where v(¢) is the velocity of the vehicle, L is the distance between the front and the
rear wheel axis of the vehicle, 6 is the angle between the transversal axis of the
vehicle and axis OX, and ¢ is the angle of the steering wheel with respect to the
transversal axis of the vehicle (the sign of v and ¢ depends on whether the vehicle
moves forward or backwards).
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X

Fig. 3.2 The model of the 4-wheel autonomous vehicle (car-like vehicle)

Flatness-based control can be used for steering the vehicle along a desirable tra-
jectory or for making the robot perform specific tasks such as the parallel park-
ing task. Flatness-based control is based on the property of differential flatness
[©911,[209], [2210 23711, [264]]. A system is said to be differentially flat if all its state
variables and the control inputs can be written as function of a suitably selected
variable and its derivatives, where this particular variable is known as flat output
[B33]],[336]. For linear systems, differential flatness is equivalent to controllability.
For nonlinear systems, flatness-based control enables linearization and calculation
of an appropriate control law for the linearized model [44]], 273,342,333, [438].

3.2.1 Differential Flatness for Finite Dimensional Systems

Flatness-based control is proposed for steering an autonomous ground vehicle
(AGV) along a desirable trajectory [98]],[293]],[438]]. The main principles of flatness-
based control are as follows [361]: A finite dimensional system is considered. This
can be written in the general form of an ODE, i.e.

Sl‘(W,W,W,"',Wi), izlaza“'7q (36)

The quantity w denotes the system variable while w',i=1,2,--- g are its derivatives
(these can be for instance the elements of the system’s state vector). The system
of Eq. (1) is said to be differentially flat if there exists a collection of m functions
y=(y1,**,ym) of the system variables w;, i = 1,--- s and of their time-derivatives,
ie.

yi= 0w, W, W), i=1,--- . m (3.7)
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such that the following two conditions are satisfied [O8]], [333]:

1. There does not exist any differential relation of the form

Ry, ,¥P)=0 (3.8)

which implies that the derivatives of the flat output are not coupled in the sense of an
ODE, or equivalently it can be said that the flat output is differentially independent.

2. All system variables, i.e. the components of w (elements of the system’s state
vectors) can be expressed using only the flat output y and its time derivatives

Wi:llli(y?)}a"'ay%)7i:17"'7s (39)

An equivalent definition of differentially flat systems is as follows:

Definition: The system x = f(x,u), x€R", u€R™ is differentially flat if there exist
relations & : R"XR™—R™, ¢ : (R")"—R" and y : (R™)""1—R™, such that y =
h(x,u, i, --- 7u<r))’ x= 0y, - ,y(rfl)d,(r)) and u = y(y,y, - 7y(r*1),y(r>), This
means that all system dynamics can be expressed as a function of the flat output
and its derivatives, therefore the state vector and the control input can be written as

x(t) = ¢(y(t)>)>(t)>"' 7y(r)(t)) and M(t) = lp(y(t),y'(t),~~~ >y(r)(t))'

3.2.2 Flatness-Based Control of the Autonomous Vehicle

In the case of the autonomous vehicle of Eq. (3.3) the flat output is the cartesian
position of the center of the wheel axis, denoted as 1 = (x,y), while the other model
parameters can be written as:

v = %||| (if}féé’;) — 1 tan(9) = ldet(1#}) /v (3.10)

These formulas show simply that 0 is the tangent angle of the curve and ran(¢) is
the associated curvature. With reference to a generic driftless nonlinear system

g, g€ R, weR" (3.11)

dynamic feedback linearization consists in finding a feedback compensator of the
form

£ = ag,€) +b(g.E)u
w=c(g,) +d(q,Eu G-12)

with state & € R” and input u € R™, such that the closed-loop system of Eq.
@BT1I) and Eq. BI2) is equivalent under a state transformation z = T(g,&) to
a linear system. The starting point is the selection of a m-dimensional output
N = h(g) to which a desired behavior can be assigned (this is the previously defined
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flat output). One then proceeds by successively differentiating the output until the
input appears in a non-singular way. If the sum of the output differentiation or-
ders equals the dimension n 4 v of the extended state space, full input-state-output
linearization is obtained. The closed-loop system is then equivalent to a set of de-
coupled input-output chains of integrators from u; to 7;. The exact linearization
procedure is illustrated for the unicycle model of Eq. (21). As flat output 1 = (x,y)
the coordinates of the center of the wheel axis is considered . Differentiation with

respect to time then yields [293]],[333]]

1=(5) - (e o) (o) a13)

showing that only v affects 1], while the angular velocity @ cannot be recovered from
this first-order differential information. To proceed, one needs to add an integrator
(whose state is denoted by &) on the linear velocity input

NP S (i;j((gD (3.14)

where « denotes the linear acceleration of the vehicle. Differentiating further one
obtains

e (o) oo (0 < (cote) S () s

and the matrix multiplying the modified input (¢, ®) is nonsingular if £=£0. Under
this assumption one defines

() - (o) <) (&)

Lo (T fur)
-G e

which means that the desirable linear acceleration and the desirable angular velocity
can be expressed using the transformed control inputs #; and u;. Then, the resulting
dynamic compensator is (return to the initial control inputs v and )

and 1) is denoted as

& = uycos(0) + upsin()
v=2_§ (3.18)
o= upcos(0)—uysin(0)
Being £€R, itis n+v =3+ 1 =4, equal to the output differentiation order in Eq.
(@BI7). In the new coordinates
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71=x

L=y
zz=x=CEcos(0) (3.19)
2=y = Esin(6)

The extended system is thus fully linearized and described by the chains of integra-
tors, in Eq. (3.17), and can be rewritten as

a=m (3.20)
2 =u
The dynamic compensator of Eq. (3.18) has a potential singularity at & = v = 0,
i.e. when the vehicle is not moving, which is a case not met while executing the
parking manoeuvres. It is noted however, that the occurrence of such a singularity is
structural for non-holonomic systems. In general, this difficulty must be obviously
taken into account when designing control laws on the equivalent linear model.

A nonlinear controller for output trajectory tracking, based on dynamic feedback
linearization, is easily derived. Assume that the autonomous vehicle must follow a
smooth trajectory (x4(¢),y,(¢)) which is persistent, i.e. for which the nominal veloc-
ity vg = (xi + y%)% along the trajectory never goes to zeros (and thus singularities
are avoided). On the equivalent and decoupled system of Eq. (3.20)), one can easily
design an exponentially stabilizing feedback for the desired trajectory, which has
the form

Uy :xd+kp1 (xd —x) +kd1 (xd —)'C)
up = Ya +kp, (va—y) +kay(ya — )

and which results in the following error dynamics for the closed-loop system

(3.21)

év+ka,éx+kp ex =0

3.2
&y -+ kayéy + kpyey = 0 (3.22)

where e, = x — x4 and ey, = y — y,4. The proportional-derivative (PD) gains are cho-
sen as kp;, > 0 and kg, > 0 for i = 1,2. Knowing the control inputs u;,u, for the
linearized system one can calculate the control inputs v and @ applied to the vehi-
cle, using Eq. (3.12). The above result is valid, provided that the dynamic feedback
compensator does not meet the singularity. In the general case of design of flatness-
based controllers, the following theorem assures the avoidance of singularities in
the proposed control law [293]]:

Theorem: Let A1, A1 and Ay1, A2z, be respectively the eigenvalues of two equations
of the error dynamics, given in Eq. (3.12). Assume that, fori=1,2itis 4;; < Ap <0
(negative real eigenvalues), and that |A;| is sufficiently small. If

. -0
mino|| (’;38) [E (;0) (3.23)

with &2 = £,(0)7£0 and &) = &,(0)7£0, then the singularity & = 0 is never met.
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3.3 Kinematic and Dynamic Models of Surface Vessels

3.3.1 A Generic Kinematic and Dynamic Ship Model

The motion of a ship is described by two reference frames: (i) a local geographical
earth-fixed frame denoted as OXY and, (ii) a body-fixed frame denoted as ox'y
which is attached to the vessel (see Fig.[3.3). The components of the position vector
of the vessel are [x,y, y]” where (x,y) are the coordinates of the ship’s center of
symmetry in a local geographical frame and y is the orientation angle with reference
to the OX axis of the local coordinates frame.

¥ [sway) ¢ Ipitch)

Ya

1l
p (roll) Q) - o)

¥ [surge)
A/@ w [heave)

X, vz,

Fig. 3.3 (i) Components of the linear velocity vector of the vessel in a body-fixed frame
denoted as surge, sway and heave, (ii)) Components of the angular velocity of the vessel in a
body-fixed frame denoted as roll, pitch and yaw Euler angles.

The components of the ship’s velocity vector, denoted as u; = [u,v,7]”, are the
surge and sway velocities (u,v) and the yaw rate r. The body-fixed velocities u and v
are the time derivatives of the position of the origin of the body-fixed frame relative
to the origin of the local geographical frame expressed in the body-fixed frame. The
yaw rate r stands for the angular velocity of the body-fixed frame with respect to
the local geographical reference frame expressed in the body-fixed frame. Although
in the most general case the ship’s angular velocity has three components, for ship
positioning and heading control, the translational motion is assumed to be confined
to the horizontal plane and the angular velocity to have only one component, which
is the rotation rate r (yaw) about the axis perpendicular to the horizontal plane. A
model for vessel kinematics, relating the ship’s position vector to the ship velocity
vector, can be expressed as

1 =R(y)v (3.24)
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The kinematic transformation of Eq. (3.24) relates the body-fixed velocities to the
position derivatives in the local geographical frame. The transformation is described
by the rotation matrix

cosy —siny 0
R(y) = | siny cosy 0|, R (y)=R"(y) (3.25)
0 0 1

The equation of the ship dynamics describes the relation between the ship’s velocity
and the generalized forces vector (forces and torques) which is applied to the vessel.

My + CRB(V)V + d(er '}/c) = Teontrol + Twind + Twaves (3.26)

The inertia matrix M is the sum of two matrices My and Mrp. When a vessel moves
in the water, the changes in the pressure of the hull are proportional to the velocities
and accelerations of the vessel relative to the fluid. The coefficients used to express
the pressure induced forces proportional to the accelerations are called added-mass
coefficients. These forces show the change in momentum in the fluid due to the
vessel accelerations. The positive-definite hydrodynamic added-mass matrix My is
represented by

X, 0 0
My=| 0 —v, -y (3.27)
0 —Y —N;

where the added-mass coefficients X, ¥;;, and N; depend on the hull shape. On the
other hand the positive definite rigid-body mass matrix Mgp and the skew-symmetric
Coriolis-centripetal matrix Cgp(v) are given by

m 0 0
Mpp= |0 m mxg (3.28)
0 mx, I

where x, denotes the longitudinal position of the center of gravity of the vessel
relative to the body-fixed frame.
A frequently used form of the ship’s inertia matrix M is

nmii 0 0
M= 0 mpp my3 (3.29)
0 mo3 m33

The Coriolis-centripetal terms matrix Cgp is given by

0 0 —m(xgr+v)
Crp = 0 0 mu (3.30)
m(xgr-+v) —mu 0

The Coriolis-centripetal terms appear as a consequence of expressing the equations
of motion in body-fixed coordinates. It is noted that when a vessel operates under
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positioning control the velocities are small and thus the Coriolis-centripetal terms
Crp(v)v in Eq. (328) can be omitted from the ship’s dynamic model.

3.3.2 Models of Current, Wind and Wave Forces

Apart from forces due to control, the right hand side of Eq.(3.26) contains terms
which represent wind and wave forces respectively. Moreover, the term d(Vi., }.)
on the left hand side of Eq. (3.28)) represents the current and damping forces. The
speed of the current is denoted as V,. while the angle of the current is denoted as ;.
and is defined relative to the bow of the vessel.

It is common practice to write the current forces in surge, sway and yaw as func-
tions of nondimensional current coefficients Cx, (7. ), Cy, (%), Cn, (%) which is

1 ) AFc CXc (%C)
d(Vee: Yre) = 5PVie | ALCr(Yre) (33D
AL[?LO(XCNL' (’}/VL')

where p is the water density, Ar. and Az, are frontal and lateral projected areas of the
submerged part of the vessel and Lo, is the length of the ship. However, the current
coefficients Cx, (%), Cv.(¥.), Cn.(¥.) are difficult to estimate with accuracy. In
such cases, it is common practice to simplify the model of Eq. (3.31)), in terms of a
linear damping term and a bias term which finally takes the form

d(Vie, Yre)=D(v)v — R (y)d (3.32)
where
Dy 0 O d,
D=D"=| 0 DpnDy|, d=|d (3.33)
0 D3 D33 d3

The linear damping term also models the transfer of energy from the vessel to the
fluid due to the waves that are generated as a consequence of the vessel’s motion.

The wind forces and moments can be represented in a similar way to the current
forces and moments, i.e.

1 5 AFWCXW(}/rw)
Twind = Epaer ALWCYW(’}/VW) (3 34)
ALWLOOCCNW (’er)

where py is the air density, Ar,, and Ar,, are the frontal and lateral projected wind
areas and Ly, is the vessel’s overall length. The wind speed is V;,, and its direction
is ¥4, in earth-fixed coordinates. The wind model coefficients can be obtained by
model tests while with reference to the control problem obtaining measurements of
the wind’s speed and direction enables to compensate 7,,;,; using a feed-forward
term 7,;,q. The difference (modelling error) between 7,,;,s and 1,,,s can be de-
scribed by a bias term R (y)d, as in the case of the current bias term that was given

in Eq. (3.32).
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Wave forces are usually modeled as the sum of a linear and a nonlinear compo-
nent, i.e.
Tuaves = Tiaves T Tiaves (3.35)
The low-frequency nonlinear wave forces can be modeled again by a bias term,
and are modeled as an input disturbance. On the other hand the linear wave forces
are considered to be output disturbances. Therefore, the observation (measurement)
equation of the ship is given by

y=nN+n,+v (3.36)

where 7 is the vessel’s position calculated using the ship’s dynamic model of Eq.
(B:44), v, is sensor measurement noise and n,, is the ship’s displacement due to the
linear wave forces. It has been proposed to approximate the displacement due to
linear wave forces by a linear model driven by Gaussian noise w

E=A,E+E,w

R (3.37)

3.3.3 Ship Model for the Dynamic Positioning Problem

Using Eq. (3.32) and the above assumptions about the wind and waves forces, the
vessel’s kinematic and dynamic model described in Eq.(3.24) and Eq. (3.20) re-
specively, is given by

n=R(y)v (3.38)

v+M "Dy =M"'RT (W)d + M "eongo + W (3.39)
d=w (3.40)
y=n+ny+viory=n+v (3.41)

The bias is an additive disturbance in the ship’s dynamic model which can be esti-
mated with the use of a state observer. Once the bias is accurately estimated it can
be compensated by including a suitable control term in the right hand side of Eq.
(3:39). This additional control term provides the required robustness to compensate
for the bias effects.

3.3.4 Ship Actuator Model

Without loss of generality the model of a vessel with two propellers and one bow
thruster is considered (see Fig.[3.4). The vector of the ship’s control forces and
torques TER? are related to propeller pitch ratios vector u » (or propeller revolutions
for fixed blade propellers) as follows [[126]]
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Fig. 3.4 Model of a vessel with two propellers and a bow thruster

T=T-K(U)u, (3.42)

where U is the magnitude of the ship’s velocity in the xy-plane i.e. U = vu? + 1?2
while u# denotes the surge velocity and v denotes the sway velocity. Vector u is de-
fined as u, = [f1(p1), f2(p2), f5(P3), f4(81), f5(82)]" . For the (fully actuated) ship
model of Fig. 3.4 with two propellers p; and p,, one thruster p3 and two rudders
8 and &, matrix T€R3>*® depends on the position of the actuators p, p> and ps,
while matrix K (U)€R®*® depends on the ship’s velocity and the type of the actua-
tors. The coefficients of matrices T and K are defined as follows: p;, (i =1,2,3) are
the propeller pitch ratios (or for fixed-blade propellers are the propeller revolutions),
O, (i =1,2) are the rudder angles, ;, (i =1,---,5) are distances of the actuators
from the ship’s symmetry axes, and k;, (i =1,---,5) are the force coefficients.

3.4 Feedback Linearization for Ship Dynamic Positioning

3.4.1 Ship Control Using Dynamic Feedback Linearization
As mentioned above the kinematic and dynamic model of the ship is given by

=RV (3.43)

Mv+Dv)v—R'd=1 (3.44)

From Eq. (3.44) one obtains v = R~!1) or since R = R~! it can be written as v =
RT1). Similarly one obtains v = R” 1) + R” #j. Consequently, this gives

M(R™Hq +R"#))+ DR —RTd = 1=

RMRT#j + RMRT 1) + RD(v)RT7) — RRd = Rt (3.45)
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Defining the matrices J(1) = RMRT € R¥3, C(n,7) = RMRT€R¥>3, F(n) =
RDRT €R3*3 and 7" = Rt the dynamic model of the vessel comes to the form of the
dynamic model of a robotic manipulator [94].

Jmi+Cmmn+Fm)n—d=1 (3.46)

Using the form of the ship inertia matrix M given in Eq. (3.29) and the form of
the damping matrix D given in Eq. (3.33) one obtains the following description for
matrices J(1)i}, C(n,7n) and F(n)

myicos® (W) +mapsin () (myy —may)sin(y)cos(y) —mazsin(y)
JMH = | (m11 —myp)sin(yw)cos(y) myysin®(y) +mpcos®(y) mozcos(y)
—myzsin(y) ma3cos(Y) m33
(3.47)

Y (ma2 — mu)sin(llf)wsgllf) (miicos®(y) + maasin®()) O

C(n,n) = | —W(musin®(y)) +macos®(y))) Y(ma —mi)sin(y)cos(y) 0
—y(maszcos(y) =Y (massin(y) (3(18)

dy1cos* (W) + dyosin® (W) (dyy — dy2)sin(y)cos(y) —dassin(y)
F(n) = | (di1 —dp)sin(y)cos(y) disin® () +dacos*(y) dazcos(y)
—dzsin(y) dycos(y) da3
(3.49)
If all parameters of the model are known, then a controller can be designed based
on dynamic feedback linearization.

it +J(m)~'cn,mn+J(m) ' Fmyn -7 (n)d =717 (n)7* (3.50)

Then choosing the control signal to be

™ =J(M)[ig+J()~'C(n,m)n+J(n)"'F(n)n —J(n)~'d — Kpil — Kpi]
(3.51)
where fj = 1 —ny is the tracking error and Kp = diaglky, kg, k4] and Kp =
diaglkp, ,kp,.kp,] are feedback gain matrices. This finally results into the tracking
error dynamics

] *ﬁd+Kqﬁ+KPﬁ =0

= - ~ .52
or 1 +Kpf +Kpfl =0 (3.52)

3.4.2 Estimation of the Unknown Additive Disturbances

Estimation of unknown model parameters and external disturbances affecting a
dynamical system can be performed with the use of a state observer [d69]. This



3.5 Backstepping Control for the Ship Steering Problem 57

approach is also applicable to the problem of dynamic ship positioning. It has been
shown that the nonlinear ship model is of the form

it +J(m)~'Cn,mn+Jm) ' Fmn =1 (m)t+71"'(n)d (3.53)

Defining the generalized state vector x = [,d, 17, d]" and considering invariance of
the disturbance d for specific time periods, one obtains the generalized ship state-
space model

fi+J(m)~'cn,mn+Jm) ' Fmn—J- (m)d=J""(n)t (3.54)
=0 |

Setting x; =1, x» = d, x3 = 1, x4 = d one obtains

X1 03x3 O3x3 B3 033 x| 03x3

X2 | _ [ O3x3 03x3 033 Lo | fxa]| f O35 |,

X3 033 Jﬁl(x) —J*l(x)[C(x,X)—I—F(x)] 033 X3 Jﬁl(x)

X4 03x3 O3x3 033 033 X4 03x3
(3.55)

where x; € R3*!, i=1,2,3,4 and 7 € R**!. The measurement vector of the ship’s
model is given by

y=(xywyd") (3.56)

where x, y are measurements of the ship’s cartesian coordinates,  is a measurement
of the ship’s orientation and d' is a measurement of the ship’s distance from the
coast, measured e.g. with the use of a coast radar. Taking into account the existence
of process and measurement noise the ship’s model is written as

X=Ax+Bu+w
y=7v(x)+v
there w and v are the vectors of process and measurement noise, respectively. State

vector x can be estimated by processing a sequence of output measurements y with
the use of Kalman or Particle Filtering.

(3.57)

3.5 Backstepping Control for the Ship Steering Problem

3.5.1 The Ship Steering Problem

In the recent years, sophisticated controllers have been proposed for the ship steering
problem, based on advanced control engineering concepts. These include model
reference adaptive control, self-tuning control, optimal control and neural control

The complete dynamic model of the ship stems from Euler-Lagrange dynamic
analysis [240]]. The mathematical model relating the rudder angle & of the ship to
the heading v (Fig. was proposed by Norbin (1963) [I03]], [212]:



58 3 Mobile Robots and Autonomous Vehicles

Ty +K-Hy(y) =Ko
(3.58)
Hy () = n3yr + np® +nyy + ng

where Hy () is the nonlinear maneuvering characteristic. For a course unstable ship
n; < 0, whereas a course-stable ship satisfies n; > 0. For single-screwed ships (one
propeller) ny # 0. Similarly, symmetry in the hull implies that n, = 0. Usually, the
bias term n( cannot be identified accurately due to the influence of the environmental
disturbances (wind, waves and currents). The function Hy(y), can be found from
the relationship between 0 and v in steady state, such that { = y = 5=0. An
experiment known as the spiral test has shown that Hy(¢) can be approximated by
(OS], (591

Hy (W) = n3¥r +n1 s (3.59)

In the above equations K is a gain (sec™ 1), and T is a time constant (sec). These
parameters are function of ship’s forward velocity and its length. The state-space
model of the ship can be written as

x’1 = X2
(3.60)

Xp = —%H()Cg)-i— %M

where y = x; and u = §. Setting x| = y and x, =  the state equation of the ship is

obtained:
(1)=(00) ()+ (D ven+ewnnra  @on

,@ orientation angle

¢ rudder angle

0 X

Fig. 3.5 Kinematic model of the ship



3.5 Backstepping Control for the Ship Steering Problem 59

— X1
y=(10) (xz) (3.62)
where d stands for the external disturbances while the nonlinear functions f(x,?)
and g(x,1) are given by

flxt) ==Ky () = = E{nay? + nyr}
(3.63)

glxr)=5%

3.5.2 Nonlinear Backstepping

Backstepping control can provide solution to the ship steering problem. Nonlin-
ear backstepping is related to feedback linearization. Backstepping control is based
on a change of coordinates (diffeomorfism). The transformed system is decom-
posed in two cascaded subsystems and a stabilizing function is introduced to the
first one [I04]. The stability proof is recursive, i.e. starting from the second sub-
system and moving backwards. Unlike adaptive fuzzy H.. control, backstepping
control assumes knowledge of the dynamic model of the system. For the nonlinear
system

X = f(x)+g(x)u
y=h(x)

where x = [x1,---,x,]7, it holds that y = %x = ag(xx) [f(x) + g(x)u] = Lyh(x) +
Lgh(x)u, where the Lie derivatives are defined as

(3.64)

dh dh
Lyh(x) = T2 f(2), Leh(x) = 75 g(x)
To apply SISO nonlinear backstepping control, the system of Eq. (3.:64) has to be
written in a SISO strict feedback form, which means the following lower triangular
form

X1 = fi(x1) +g1(x1)x2
Xy = fo(xr,x2) +ga(x1,x2)x3
X3 = f3(x1,x0,x3) + g3(x1,X2,X3)x4

. (3.65)
Xn—1 :fnfl(xlax%"' 7xnfl) +gn7](xl>x2>"' 7xn71)xn
xl’l :fn(.Xl,Xz,"' 7xn) +gl’l('x17x27"' 7xl’l)u
y = h(x1)

It is considered that y = h(x;) = x; and that the error is ¢ = y — y; = x; — y4. The
objective is to succeed [in;_...e(t) — 0. The following theorem holds [201]|
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Theorem: N-th order backstepping control law
The n — th order SISO backstepping controller is given by

o = m Da —Lgh(x1) —kizi —ni(zi)z1]

o = o — fo(x1,x2) — L, h(x1)z1 — kazo — n2(22)22)

1
82(X17X2)[

o = m[% = filxr, - x) = gima (e, x2, 0+ xio1)zie1 — kizi — ni(2i)zi)
Oy = m[an—l _fn(xlv t axn) _gn—l(xh T 7xn—2)zn—1 — knzy _nn(zn)zn}
u= o

(3.66)

where 7y = h(x)) — yg4, 2z = x;i — 04—y, (i =2, ,n) and the stabilizing functions o;
are selected so as to compensate for all nonlinearities. This control law leads asymp-
totically the system of Eq. (3.64) to the equilibrium z = 0. The controller gains are
ki >0andn;(z;) >0fori=1,---,n. o

Denoting z = [z1,--+ ,za)", the resulting error dynamics is given by

z=—K(2)z+ S(x)z, (3.67)
with K (z) = diag{ki +ni(z1),ka +na(z2), - ,kn +nn(zn) }

0 L, (x1) 0 0 0 0

—Lg, (x1) 0 g (x1,x2) - 0 0 0

0 75’2()(],)62) 0 0 0 0

Sx) = : : : : : : :
0 0 0o - 0 gn1(x1,-+,%,-1) 0

0 0 0 - —gno1(xr, e xem1) 0 0

0 0 0 0 —gn(xt,--,x,) O

(3.68)

It holds that z'S(x)z = 0 Vx,z and K(z) > 0 thus for V,,(z) = 327z one gets V,,(z) =
—7'K(2)z < 0.
3.5.3 Automated Ship Steering Using Backstepping Control

A nonlinear ship model connecting the ship’s heading angle y to the rudder’s angle
§ is considered. This model given by Eq. (3.38)), i.e.

T+ Hy() = K&

Hy (y) = n3yr® + np +niyr + ng
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The SISO backstepping controller is designed in two steps [104]]:
Step 1: The error is defined as e = y — y;. Thus

L a=e (3.69)
21=Y—Y
where y = a; + 25, thus
=01 +20—y (3.70)
The stabilizing function ¢ is selected so as to assure that z; — 0. Therefore,
oy = 0, —kizi —ni(z1)z1 (3.71)

Then, using Eq. (3.70) and (3. 71)) one gets:

a=Vu—kizi—m@)at+n—V,=>z2=—lki+n(z1)]zi+22

where k; and n1(z;) > 0 are design parameters. A candidate Lyapunov function for
z1 1s:
V) = %z% >Vi=usn=Vi=—k+n)d+uz

Step 2: For the stabilization of the dynamics of z, one has

L K 1 . .
D=Y—o = 75 - THN(V/) — 0 (3.72)

The second candidate Lyapunov function is
Vo=Vi+ %Z% =W=Vi+nh=V=-k +n1(z1)]z% +z2120+ 0202 =
Vo =—lki+ni(21)|8 + 2 + 56 — $HN () — o]

The objective is to find the rudder’s angle 6 for which V, will become negative
definite.
The SISO back-stepping control law is given by

o =Yg —kizi —ni(z1)z1

3.73
u= Loy —z1+ 7Hy(x2) — kazo — m2(22)22] (373)

where x; = y and x, = V¥, and ky > 0, na(z2) > 0 are design parameters. Thus, one
gets
Vo = —[ki +m(2)laf + 22[a + 7 g {en — ke + n2(22)]z2 — 21}]
+ERHN () — $Hy (W) — 0] = Va = —[ki +n1(21)]} — ko +n2(22)]23 < 0
Vz1 #0,20 #0

3.5.4 Calculation of the SISO Backstepping Nonlinear Controller

The system of Eq. (3.58)) is written in a SISO strict feedback form, according to Eq.
(3.65)
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X1 =Xxp
Xy = —%[n3x23 +n1x2] + %M
where f>(x1,x) = —% [n3x§+n2x%+n1xz+n0] and g (x1,x2) = % Therefore, n =2

and the SISO backstepping controller is given by the following relations

a = L—glllz(xl) a — Ly h(x1) — kizy — M1 (21)z1]

ar = grylon — f(xn,x2) = Ly h(xi)z1 — koza — M2(22)22] (3.74)
u= 0o
It holds that
Lo h(x) = 22t gy (x)) = 211 = 1
e aﬁf{' )g1 v g (3.75)
X
Lyh(x) = =52 filxn) = 5310=0
thus,
o = Vg —kizi — mi(z1)z1]
0 = Floh + FHy(0) — 121 —kazo — Ma(22)22] (3.76)
u=0p
i.e.
oy = [ya —kizi — mi(z1)z1]
o = Lldy — 21+ FHy(%2) — kozo — M2 (22)22) (3.77)

u=0p

The following gains were used k; = 2.0, kp = 2.0, n1(z1) = 1.5 and np(z;) = 1.2.

The performance of backstepping nonlinear control has been tested in the case
of a see-saw set-point and a sinusoidal setpoint. The results are depicted in Fig.
and Fig.[3.71
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Fig. 3.6 (a) Heading v (continuous line) and desirable heading y, (dashed line) of the ship
control and (b) Angular velocity y (continuous line) and desirable desirable angular velocity
Y, (dashed line) of the ship when using backstepping control
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Fig. 3.7 (a) Control input (rudder angle &) of the ship using backstepping control when
tracking a see-saw set-point, (b) Tracking of a sinusoidal set-point using backstepping control

in the presence of disturbance and measurement noise.






Chapter 4

Adaptive Control Methods for Industrial
Systems

Abstract. A method for the design of stable adaptive control schemes for a class
of industrial systems is first studied. The considered adaptive controllers can be
based either on feedback of the complete state vector or on feedback of the system’s
output. In the latter case the objective is to succeed simultaneous estimation of the
system’s state vector and identification of the unknown system dynamics. Lyapunov
analysis provides necessary and sufficient conditions in the controller’s design that
assure the stability of the control loop. Examples of adaptive control applications to
industrial systems are presented.

4.1 Adaptive Control of Industrial Systems with Full State
Feedback

4.1.1 Problem Statement

Controller design for systems having complex nonlinear dynamics is an important
research field [238]],[239],[460]. Many results in this area have been obtained owing
to advances in feedback linearization techniques [118],[330],[343],[446] . Neuro-
fuzzy networks have been made particularly attractive for modeling and control
of nonlinear systems, due to their approximation capabilities, learning and adap-
tation and parallel distributed features. The feasibility of applying neuro-fuzzy
networks to model unknown dynamic systems has been demonstrated in several
studies [[61]],[2271],[339], 13921, [396],[478]|. Both state feedback and output feedback
linearization methods have been presented. Under certain assumptions, output feed-
back controllers can guarantee the global stability of the closed-loop system, based
on state observers [120], 1211, [122], 2131, 12131, [E12].

In this chapter a method for the control of uncertain dynamical systems is ana-
lyzed. In certain cases the state vector of the system can be completely measurable
while in other cases the full state vector is unavailable and has to be reconstructed
with the use of state observers. The latter case forms a complex problem because
it requires to succeed simultaneous convergence of the system’s output to the de-
sirable set-point and convergence of the observer’s output to zero observation error.

G.G. Rigatos: Modelling & Control for Intell. Industrial Sys., ISRL 7, pp. 65
springerlink.com (© Springer-Verlag Berlin Heidelberg 2011
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The chapter proposes neuro-fuzzy estimators to approximate the unknown dynam-
ics of the system and an H.. control term to compensate for external disturbances.
First it is assumed that the complete state vector of the system is measurable. In
this case the overall control signal consists of 1) the equivalent control term which is
based on neurofuzzy approximators, ii) the H.. control term which compensates for
modelling inaccuracies and external disturbances.

Next it is considered that the system’s state vector is not directly measurable
and thus it has to be estimated from output measurements with the use of a state
observer. In the latter case the overall control signal consists of: i) the equivalent
control term which is based on the neurofuzzy approximators, ii) the H.. control
term which compensates for modelling inaccuracies and external disturbances, iii)
a control term which compensates for the observation error [260]. The convergence
of the closed-loop that consists of the controller, the neuro-fuzzy approximators and
the state observer depends on the simultaneous existence of solution for two Riccati
equations. Parameters that also affect the closed-loop robustness are: i) the feedback
gain vector K, ii) the observer’s gain vector K,, iii) the positive definite matrices
Py and P> which stem from the solution of the aforementioned algebraic Riccati
equations and which weigh the state observer and supervisory control terms. The
proposed control architecture guarantees that, the output of the closed-loop system
will asymptotically track the desired trajectory and that H., performance will be
achieved .

Comparing to model-based approaches the advantages of the proposed adaptive
fuzzy H.. control are summarized as follows: (i) removal of any dependence upon
identification of the mathematical model expressing the dynamics of the system
under control, (ii) removal of any dependence upon complete knowledge of the
system’s state vector. Control is succeeded only through output feedback, (iii) since
training of the neuro-fuzzy approximators is repeatedly undertaken in every control
cycle, any changes to the system’s dynamics can be identified online, and hence the
control approach is useful for time-varying models, (iv) regarding operation under
external disturbances and measurement noise the adaptive fuzzy H.. controller offers
improved robustness.

The following non-linear SISO system is considered:

X" = fx,t) +gx,u+d 4.1

where f(x,t), g(x,t) are unknown nonlinear functions and d is an unknown additive
disturbance. The objective is to force the system’s output y = x to follow a given
bounded reference signal x;. In the presence of non-gaussian disturbances w, suc-
cessful tracking of the reference signal is denoted by the H.. criterion [G1],[B3].

T T
/ el Qedr < p2/ w!l wdt “4.2)
0 0

where p is the attenuation level and corresponds to the maximum singular value of
the transfer function G(s) of the linearized equivalent of Eq. (Z.1)).
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Remark: From the H.. control theory, the H., norm of a linear system with trans-
fer function G(s), is denoted by ||G||- and is defined as ||G||e = $upoOmax[G(jO)]
[B3]],[208]],[241]]. In this definition sup denotes the supremum or least upper bound
of the function Gy [G(j(®)], and thus the H.. norm of G(s) is the maximum value
of Oax[G(j(®)] over all frequencies @. H.. norm has a physically meaningful inter-
pretation when considering the system y(s) = G(s)u(s). When this system is driven
with a unit sinusoidal input at a specific frequency, Gyqx|G(j®)| is the largest pos-
sible output for the corresponding sinusoidal input. Thus, the H., norm is the largest
possible amplification over all frequencies of a sinusoidal input.

4.1.2 Transformation to a Regulation Problem

For measurable state vector x and uncertain functions f(x,7) and g(x,7) an appro-
priate control law for Eq. (1)) would be
1
8(x,1)
with e = [e,é,é,---,e" DT, KT = [ky,kn_1,--- k1], such that the polynomial

e 4 k1e" V) 4 kpe"=2) 4 ... 4+ k,e is Hurwitz. The control law of Eq. @3) re-
sults into

[xg") — f(x,t) +KTe+ uc| (4.3)

u =

e(n) = _KTE+MC+ [f(xat) _fA(xat)] + [g(x7t) _g(xat)]u+d~’ (44)

where the supervisory control term u,. aims at the compensation of the approxima-
tion error

w=[f(x,1) = f(x,0)] + [g(x,1) — &(x,1)]u, (4.5)
as well as of the additive disturbance d. The above relation can be written in a state-
equation form. The state vector is taken to be e’ = [e,é,--- ,e("_l)}, which after

some operations yields

¢ =(A—BK")e+Bu.+B{[f(x,t) — f(x,0)] + g(x,t) — g(x,0)ju+d}  (4.6)

e1=Cle (4.7
where
01 0 - 0 0 ko 1
0 | 0 0 ki
A= |l.B=| |.k=| |, = (4.8)
00 0 - 1 0 kn_n 0
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and e denotes the output error e; = x — x4. Eq. (@6) and (@.7) describe a regulation
problem. The control signal u, is the H.. control term, used for the compensation of
d and w

e =—1BTPe (4.9)

4.1.3 Approximators of Unknown System Dynamics

The approximation of functions f (x,#) and g(x,¢) of Eq. (1) can be carried out with
Takagi-Sugeno neuro-fuzzy networks of zero or first order (Fig.[4.1)). The estimation
of f(x,t) and g(x,) can be written as

F(xl6r) = 670 (x), &(x|8;) = 65 0 (x) (4.10)
where ¢ (x) are kernel functions with elements

H? I”A (x,)

1 — =
0'(v) = 5o Ry 1=1,2,,L

It is assumed that the weights 6y and 6, vary in the bounded areas Mg, and My,
which are defined as '

= {67 € R": 1|6f|| < mg, },
4.11)
Mg, = {6, € R" : ||6;|| < mg,}

with mg, and mg, positive constants. The values of 6y and 6, that give optimal
approximation are:

6 = arg ming,cyy, [supsce, f(x) — F(xl6))]

6; = arg ming,cyy, [supscu, 3(x) — 2(x16,)]
The approximation error of f(x,7) and g(x,¢) is given by
= [f(x167) — fx,0)] + [8(x]67) — g (x,1)]u =
={[f(x|9f) Fx0p)] + [ (x67) — f(x,0)]}+
+{[8(216;) — g(x[6g)] + [g(x[6g) — g(x,1)]u}

where: i) f(x| 6) is the approximation of f for the best estimation 6 of the weights’
vector Oy, ii) g(x|0;) is the approximation of g for the best estimation 6, of the
weights’ vector 6,. The approximation error w can be decomposed into w, and wy,
where

= [f(x]67) = f(x|67)] + [8(x|6) — &(x]6)]u

wp = [F(x16f) — f(x,0)] + [§(x167) — g (x,1)]u
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Fig. 4.1 Neuro-fuzzy approximator: G; Gaussian basis function, ;: normalization unit
Finally, the following two parameters are defined: 6y = 0y — 9}‘, 0 = 6, — 6.

4.1.4 Lyapunov Stability Analysis in the Case of Full State
Feedback

The adaptation law of the weights 6 and 6, as well as of the supervisory control
term u, are derived by the requirement for negative definiteness of the Lyapunov
function

1 | R
V=—ePe+—06T6,+—676, 4.12
26 €+2y1 f f+2’]/2 g Vg ( )

Substituting Eq. (#6) into Eq. (£.12) and differentiating gives

y 1, 1 .1 1ATH 1 AT H
VZQeTPe—FieTPe—s—y—lefTef—s—z . 6, =

V=1e"{(A—BK")"P+P(A—BK")}e+ BT Pe(u.+w+d)+ Yilé,?éf+ %égeg

Assumption I: For given positive definite matrix Q there exists a positive definite
matrix P, which is the solution of the following matrix equation

2 1

(A—BKT)TP—FP(A—BKT)—PB(;—E)BTP—i-Q:O .13)

Substituting Eq. @.13) into V yields after some operations

V=-—1e"Qe+1e"PB(2— #)BTPe—i-BTPe(—%eTPB) + BT Pe(w+d)+

LATH LATH
It holds that éf =67 —6; =07 and ég = 0, — 6; = 0. The following weight adap-
tation laws are considered
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—ne’ PBY(x) if ||6f|] < me,

6= 1 o e, (4.14)
, .
e PBY(x)uc if ||6g]| < mg
0 =1 016l =mo, o

0; and 6, are set to 0, when ||6f|| > me,, and ||| > mg, [A46]. The update of Of

stems from a LMS algorithm on the cost function %( f — f)?. The update of 0, is
also of the LMS type, while u, implicitly tunes the adaptation gain 9». Substituting

Eq. @.14) and @I3) in V finally gives
V=-—Ltege— Z#eTPBBTPe +eTPB(w+d) —
—e"PB(6; — 9}‘)T¢(x) —e"PB(6, — 6;)" ¢ (x)uc
=V=—1Qe— #eTPBBTPe +e"PB(w+d) + e PBwy,

The control scheme is depicted in Fig.
Denoting w; = w+d + wq one gets

V=— %eT Qe — 2P%eTPBBTPe +eT PBw; or equivalently,

V = —3e’ Qe — 555¢" PBB" Pe + se” PBw) + 3w{ B' Pe.

Controller d System

Ve v - el | | :
w= Ty - Fu - KTel |y = flen-glone — —
g£(x,0) 1

w, =——¢! PR

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

10

Adaptation

N t,
ﬁ

a(x0)

'

Fig. 4.2 The proposed H.. control scheme in the case of full state feedback
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Lemma: The following inequality holds

1 1 1 1
EeTPBwl + EWITBTPe — EpzeTPBBTPe < EpzwlTwl (4.16)

Proof: The binomial (pa — %b)2 > 0 is considered. Expanding the left part of the
above inequality one gets

p2a2+#b2—2ab202> %p2a2+2’%b2—ab20:

1 72 1,22 1 1 1 42 1,22

The following substitutions are carried out @ = wy and b = e’ PB and the previous
relation becomes
3wi B Pe+ 3¢ PBwy — 5 5" PBB" Pre < 5 p*wiwy

The previous inequality is used in V', and the right part of the associated inequality
is enforced

. 1 1
V< — 5eTQe + EpzwlTwl (4.17)

Eq. T can be used to show that the H.. performance criterion is satisfied . The
integration of V from 0 to T gives

Jo V(0)dt < =% [ [lelPdt + 3p* [ [[wn|*dr =

2V(T) + J llel gt < 2V(0) +p>fy [[wi .

If there exists a positive constant M,, > 0 such that [’ ||wi||>dt < M,,. Therefore
one gets

J5 lell%dt <2V (0) + p*M, (4.18)

Thus, the integral [;"||e| \2th is bounded and according to Barbalat’s Lemma one
obtains limy_,.e(t) = 0.

4.2 Adaptive Control of Industrial Systems with Output
Feedback

4.2.1 Transformation to a Regulation Problem

For measurable state vector x of the system and uncertain functions f(x,) and g(x,)
an appropriate control law for Eq. @#49) is given by Eq. @.3). When an observer
is used to reconstruct the state vector x of Eq. {@.3)), the control law of Eq. @3) is
written as



72 4 Adaptive Control Methods for Industrial Systems

Lo g T
= —f(x,t)+K 4.19
u e [on’ — f(®,8)+ K" e+uc] ( )
The following definitions are used: i) error of the state vector ¢ = x — x;,, ii) error of
the estimated state vector é = £ — Xy, iii) observation error & = e — & = (x — xp,) —
(£ —xm). Applying Eq. @.19) to Eq. @.49), after some algebraic operations, results
into

x) =)~ KTe e+ [f () = J(&.0)] + [gx.1) — g(&.)u+d
It holds e = x — x,, = x(") = (") +x,(,? ), Substituting x(") in the above equation gives

¢ =Ae—BK"é+ Buc+ B{[f(x,1) — f(&,1)] + [g(x,1) — &(£,1)]u+d}
(4.20)
er=CTe

e=(8,6,8, - ,é<"‘1))T and A, C, K are given by Eq. @.8). According to Eq. @20)
the observer is:

4.21)

The observation gain K, = [kgo,ko1 ook kgnfl] is selected so as to assure the

sRoy_2s

convergence of the observer. Subtracting Eq. (£.21) from Eq. (@.20) one gets

é=(A—K,CT)é + Buc+ B{[f (x,1) — f(£,0)] + [g(x,1) — &(%,0)]u+d}
(4.22)
é =Cé

The additional term u. which appeared in Eq. (£3) is also introduced in the
observer-based control scheme to compensate for: i) The external disturbances d,
ii) The state vector estimation error é = ¢ — é = x — &, iii) The approximation er-
ror of the nonlinear functions f(x,7) and g(x,), denoted as w = [f(x,1) — f(%,1)] +
[g(x,t) — 8(%,¢)]u. The control u, consists of: i) the He control term u,,, for the com-
pensation of d and w, ii) the control term uy, for the compensation of the observation
error . The control scheme is depicted in Fig. 4.3l

ug = —1BTPye
(4.23)
up = —KZPle‘A

4.2.2 Approximation of Unknown System Dynamics
The approximation of functions f(£,¢) and g(£,7) of Eq. can be carried out

again with Takagi-Sugeno neuro-fuzzy networks of zero or first order (see again
Fig.[.1). These consist of rules of the form:
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R': TFtis AL AND £ is A, AND -.- AND £"~1) is AL THEN

y=3r witi+b, 1=1,2,--- L (4.24)

The output of the Takagi-Sugeno model is calculated by taking the average of the
consequent part of the rules

N ZIL:Iy"H};lﬂf;i(%)
M B TS
where p,; is the membership function of x; in the fuzzy set Af. The training of the

neuro-fuzzy networks is carried out with 1*" order gradient algorithms, in pattern
mode, i.e. by processing only one data pair (x;,y;) at every time step i. The estima-
tion of f(x,7) and g(x,¢) can be written as

(&167) = 6] 9(2) 8(%/6,) = 6] 9 (%) (4.25)
where ¢(X) are kernel functions with elements

H,"’: 1 ”Ai (%)

1/a
O(#) = A" 1 =12, L
L [ (¢ [t )
( ) lell_lyzlllAi(xi)
Controller d System Ly
1 (G A H RN
¥ =l - F e+ R ey (( E M = Fn+ g (e
T e : '
' &
N = oA
w.=——c BE-K!Pe
_’ r
€
Observer
e=de-8h" e— ke, -C" el
1 ‘—‘
Kl :'1
Adaptation ¢
2(x.0)
A/

Fig. 4.3 The proposed H.. control scheme in the case of output feedback
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Itis assumed that that the weights 67 and 6, vary in the bounded areas My, and Mg,
while x and X remain in the bounded areas U, and Uj; respectively. The values of 8¢
and 6, for optimal approximation are:

07 =arg ming,cy, [supxcu,seuil f(x) = 7267,

6; =arg mi”egeMgg [supxev,.seu;|8(x) — 8(£]6,)]].
The approximation error of f(x,7) and g(x,¢) is given by
w=[£(3167) = f(x,0)] + [6(£167) — g (x,1)u =
w={[f(2167) — f(x|6))] +[/(x]6F) — f(x.0)]} +
[ (£[65) — &(£16)] + (%16 )& (x,1)]u}

where, i) f(£|0% ) is the approximation of f for the best estimation 6 of the weights’
vector Oy, ii) g(x|9 ) is the approximation of g for the best estimation 6, of the
weights’ vector 0,. The approximation error w can be decomposed into w, and wy,
where

wa = [f(£]67) — f(2167)] + [

wp = [F(%16f) = f(x,0)] + [8(£167) — g x,)]u.
Finally, the following two parameters are defined: 8, = 6y — 67 and 0, = 0, — 0,

(£[6g) — 8(%16;)]u,

4.2.3 Lyapunov Stability Analysis in the Case of Output Feedback

The adaptation law of the neuro-fuzzy approximators weights 6 and 6, as well as
of the supervisory control term u. are derived from the requirement for negative
definiteness of the Lyapunov function

V=38"Pie+ 38 e+ 5-0f0;+ 56/ 6, (4.26)
The selection of the Lyapunov function is based on the following two principles of
indirect adaptive control: i) & : limy_... £(f) = x4(7), ii) € : limy_.. £(¢) = x(¢) which
yields limy_..x(t) = x4(t). Substituting Eq. (.20), and Eq. @.22), into Eq. (4.26)
and differentiating results into
V =1e"(A—BK")TPié+ $eT CKIPié+ 3e"P(A— BKT )+
+1e"PK,CTe+ 1" (A— K,CT) Pyé+ ABTPoé(uc +w+d)+

+4eT'P(A—K,CT)é+ 1" PB(uc +w+d) +
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Assumption 1: For given positive definite matrices Q) and Q, there exist positive
definite matrices P; and P>, which are the solution of the following Riccati equations

(A—BKTYTP +P(A—BK")+Q0,=0
(A= K,LCT) P+ Py(A— K,CT) — PB(2 — #)BTPz +0,=0 (4.27)

PB=C

The conditions given in Eq. (£27) are related to the requirement that the systems
described by Eq. @21) and Eq. (.22), are strictly positive real. Substituting Eq.
#&27D) into V yields

V=—3¢"010+2"CK Pie— 52" {Qr — P,B( — 5)B" P} e+
. . (4.28)
+B Pré(uc+w+d) +-6] 07+ 5.6, 6,

Substituting u, and uy, in V and assuming that Eq. (#27) holds, after some operations
one gets

V=—1e"ge—Lel 06— #ETPQBBTPZE+BTP2é(w+d)+
(4.29)
L AT j LATH
+ﬁef 0y + Eeg 0,
It holds that . . . .
6y =b;—6; =6
6, = 0, — 62 = 6,
The following weight adaptation laws are considered [[446]:
o (1 PBOC) 7110/ € Mo,
/ 0 |16y & Mo,
o _ (1 PBOuc if 6] € My,
¢ 0 [|6]| & M,

Substituting Eq. (£30) and using Eq. .23) and (©.30) results into

(4.30)

4.31)

V=—36"018— 38" Q22— 552" BB Po2 + 2" PyB(w+d) — 2" PB{[f(2]67)+

+2(£07)u] — [F(£16) + 8(£]6; )u]}
(4.32)
where

[/ (2167) + 8(2167)u] — [7(%(67) + 8(£16; )u] = wa.
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Thus setting w; = w4+ w, +d one finally gets
V=—30"016~ 38" 028~ 552" P,BBT Pyé + w{ BT Py + 52" PyBw
Lemma: The following inequality holds
38" PyBwi + 5w{ B Pyé — 558" BB Po2 < 5 p*wiwi (4.33)

Proof: The binomial (pa — %b)2 > 0 is considered. Expanding the left part of the
above inequality results in:

ab — #bz < 1p%a*= lab+ tab— #bz <l1p2a® (4.34)

Substituting @ = wy and b = &’ P,B and the previous relation one gets Eq. @33) o.

Eq. @33) is used in V, and the right part of the associated inequality is enforced
’ oy 1 1o g
V< —-é Q16— =& Qe+ =p-wiwi (4.35)
2 2 2
Eq. (&33) is used to show that, the H.. performance criterion of Eq.([.2) is derived.

For p sufficiently small Eq. (@33) will be true and the H.. tracking criterion will
hold. In that case, the integration of V from 0 to T gives

2V () + S NIEIBdr < 2V(0) + p2 ] w2 (4.36)

where E = [¢,¢]” and Q = diag[Q1,Q,]" . If there exists a positive constant M,, > 0
such that [5° [|wi[|*dr < M,,, then for the integral [3”||E|[3dr one gets

Jo NIE[[3dr <2V (0) + p*M,, (4.37)
Thus, the integral [;°||E| |2th is bounded and according to Barbalat’s Lemma
limy—wE (1) = 0 = limty—é(t) = 0, limy—ou&(t) = 0 (4.38)

Therefore lim;_..e(t) = 0.

4.2.4 Riccati Equation Coefficients and H.. Control Robustness
The linear system of Eq. (@.20) is considered again, i.e.

é=(A—K,C")e+Buc+B{[f(x,1) — f(£,0)] + [g(x,1) — &(£,1)ju+d}
€| = Ce

The aim of H.. control is to eliminate the impact of the modelling errors w =
[f(x,2) — f(£,0)] + [g(x,7) — &(£,7)]u and the external disturbances d which are not
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white noise signals. This implies the minimization of the quadratic cost function

[208]), 2411):
J(1) = %/OTET(t)é(t)—i—ruCT(t)uc(t)—pz(w—i—J)T(w—i-ci)dt, np>0 (439

The weight r determines how much the control signal should be penalized and the
weight p determines how much the disturbances influence should be rewarded in the
sense of a mini-max differential game. The H.. control law is u(t) = —%BTPZE(t)
where P, is the positive definite symmetric matrix derived from the algebraic Riccati
equation Eq. 27).

The parameter p in Eq. (£.39), is an indication of the closed-loop system ro-
bustness. If the values of p > 0 are excessively decreased with respect to r, then the
solution of the Riccati equation is no longer a positive definite matrix. Consequently
there is a lower bound p,,;,, of p for which the H., control problem has a solution.
The acceptable values of p lie in the interval [pyin,o0). If Pin is found and used
in the design of the H.. controller, then the closed-loop system will have increased
robustness. Unlike this, if a value p > py,in is used, then an admissible stabilizing
H.. controller will be derived but it will be a suboptimal one.

The Hamiltonian matrix

(2 A\ppT
H:<A (7 Z)BB> (4.40)

provides a criterion for the existence of a solution of the Riccati equation Eq. (€.27).
A necessary condition for the solution of the algebraic Riccati equation to be a
positive semi-definite symmetric matrix is that H has no imaginary eigenvalues [83]].

4.3 Application to the Control of Electric Motors
4.3.1 The DC Motor Model

DC motors are widely used in industrial systems, such as robotic manipulators, be-
cause their control is relatively simple and they are reliable for a wide range of
operating conditions. DC motors are usually modelled as linear systems and then
linear control approaches are implemented. However, most linear controllers have
unsatisfactory performance due to changes of the motor/load dynamics and due to
nonlinearities introduced by the armature reaction. Neglecting the impact of ex-
ternal disturbances and of nonlinearities may risk the stability of the closed-loop
system. For the aforementioned reasons DC motor control based on conventional
PID or model-based feedback controllers can be inadequate and more effective con-
trol approaches are needed. If the nonlinearities of the motor are known functions,
then adaptive tracking control methods with the technique of input-output lineariza-
tion can be used [133]],[192]. However, when these nonlinearities or disturbances
are unknown, neural or fuzzy control is more suitable for succeeding satisfactory

performance of the closed-loop system [[146],[313],[353],[359].
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Results on the successful application of neural identification and control to DC
motor drives have been given in [O0],[430],[@31]], were neural-network controllers
for a DC motor were introduced. The unknown nonlinear dynamics of the motor and
the external load torque were approximated by a multi-layer neural network. The ob-
tained model was used to generate the control input to the DC motor, following the
principles of indirect adaptive control. Several other examples on fuzzy/neural mod-
elling and control of DC motors can be noted. In [203] an identification approach
based on Takagi-Sugeno fuzzy models is applied to the DC motor model. In
fuzzy logic is applied to the modelling of the dynamics of a DC motor drive, and the
obtained model is used to design a controller that compensates for nonlinear distur-
bances. In [166] a fuzzy logic controller with self-tuning properties was proposed to
remove dead-zone effects from DC motor drives. In a self-learning fuzzy logic
controller was applied to the position control of a chopper-fed DC servo system. In
[268]1,[338]],[360] nonlinear neurocontrollers with online learning capabilities were
developed for controlling the speed of brushless DC motors.

The design of nonlinear controllers for high performance servo systems is an on-
going research topic, which can further be advanced using results in the wider area
of neuro-fuzzy control [T18],[330],[343],[@44d]. The feasibility of applying neuro-
fuzzy networks to model unknown dynamic systems has been demonstrated in sev-
eral studies. Both state feedback and output feedback linearization methods have
been presented [611],[227]],[348], 1392, [396], [A78]]. Moreover it has been shown that,
neural control based on output feedback controllers and state observers can guaran-
tee the global stability of the closed-loop system [[120],[121],[122],[213], [412].

This paper proposes a method for the control of DC motors, which can be applied
to linear or nonlinear models, and which is also robust to uncertainties or external
disturbances. The paper extends the results of [347]|,[348]]. Two cases can be dis-
tinguished: (i) control with feedback of the full state vector, (ii) control using only
output feedback. In the first case the closed-loop system consists of the DC motor
and an adaptive fuzzy controller based on H.. theory [83]],[208],[241]|. Neuro-fuzzy
networks are used to approximate the unknown motor dynamics and subsequently
this information is used for the generation of the control signal. In the second case
the closed-loop system consists of the DC motor, a state observer that estimates the
parameters of the state vector from output measurements, and an adaptive fuzzy H..
controller that uses the estimated state vector. Neuro-fuzzy estimators are employed
as in the first case to approximate the unknown dynamics of the system, but this time
they receive as input the estimated state vector [341]]. Moreover, it is shown that the
proposed adaptive fuzzy control method can be applied to field-oriented induction
motors, following the results of [287),[442]], [443], [444]).

Comparing to model-based approaches, the advantages of the proposed adaptive
fuzzy control are summarized in the following: (i) there is no dependence upon iden-
tification of the mathematical model (linear or nonlinear) expressing the dynamics
of the DC motor, (ii) since training of the neuro-fuzzy approximators is repeat-
edly undertaken in every control cycle, any changes to the motor dynamics can be
identified online, and hence the control approach is useful for time-varying mod-
els, (iii) regarding operation under external disturbances and measurement noise the
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proposed adaptive fuzzy controller offers improved robustness. Finally, in case that
the control is based only on output feedback there is no need to use specific sensors
(for instance accelerometers) to measure all elements of the motor’s state vector.

4.3.2 State Feedback Controller of the DC Motor Model

A direct current (DC) motor model converts electrical energy into mechanical en-
ergy. The torque developed by the motor shaft is proportional to the magnetic flux in
the stator field and to the current in the motor armature (iron cored rotor wound with
wire coils) [B37]. There are two main ways in controlling a DC motor: the first one
named armature control consists of maintaining the stator magnetic flux constant,
and varying (use as control input) the armature current. Its main advantage is a good
torque at high speeds and its disadvantage is high energy losses. The second way is
called field control, and has a constant voltage to set up the armature current, while a
variable voltage applied to the stator induces a variable magnetic flux. Its advantages
are energy efficiency, inexpensive controllers and its disadvantages are a torque that
decreases at high speeds. A linear model that approximates the dynamics of the DC
motor is derived as follows: the torque developed by the motor is proportional to the
stator’s flux and to the armature’s current thus one has

I =k¥YKol (4.41)

where I is the shaft torque, ¥ is the magnetic flux in the stator field, I is the current
in the motor armature. Since the flux is maintained constant the torque of Eq. (£.41)
can be written as

I' = krl, where kr = ks¥K, (4.42)

Apart from this, when a current carrying conductor passes through a magnetic field,
a voltage V), appears corresponding to what is called electromagnetic force (EMF)

V, = ko (4.43)

where o is the rotation speed of the motor shaft. The constants k7 and k. have the
same value. Kirchhoff’s law yields the equation of the motor (Fig. [4.4):

V—Vies — Veoit =V =0 (4.44)

where V is the input voltage, Vies = RI is the armature resistor voltage (R denotes
the armature resistor), Veoii = LI is the armature inductance voltage. The motor’s
electric equation is then

LI =—k.o—RI+V (4.45)

From the mechanics of rotation it holds that

Jo =T — Tamp — Ty (4.46)
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The DC motor model is finally

LI = —k.,o—RI+V

T = koJ — kg — I (4.47)

with the following notations

Notation Significance

armature inductance

armature current

motor electrical constant

armature resistance

input voltage, taken as control input
motor inertia

rotor rotation speed

mechanical dumping constant
disturbance torque

S~ <IxmIT~N

where the armature designates the iron cored rotor wound with wired coils. Assum-
ing I; = 0 and denoting the state vector as [x1,x2,x3]7 = [0,0,0]7, a linear model
of the DC motor is obtained:

X1 0 1 0 X1 0
wH|=10 20 1 n|+{0]Vv (4.48)
: —ks—kyR —JR—kyL ke
*3 0 =54 e x3 L

Usually the DC-motor model is considered to be linear by neglecting the effect
of armature reaction or by assuming that the compensating windings remove this
effect. Introducing the armature reaction leads to a nonlinear system and in that
case a nonlinear model may be appropriate. In that case the dynamic model of the
DC-motor model can be written as [146]:

x=f(x)+gx)u (4.49)

with x denoting the derivative of the motor’s state vector, x = [x1,x2,x3]7 =[6, 8, iq]
(0 is the position of the motor, 8 is the angular velocity of the motor and iy, is the
armature current). Functions f(x) and g(x) are vector field functions defined as:

X2 0
Fx) = | kixa+koxs +ksx +kaTy | ,g(x)=| O (4.50)

ksxp + kgxoxs + k7xs3 kg
where ky = —F/J, ko =A/J, ks =B/J, ks = —1/J, ks = —A/L, k¢ = —B/L, k7 =
—R/L, kg = —1/L, R and L are the armature resistance and induction respectively,

and J is the rotor’s inertia, while F' is the friction.
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Fig. 4.4 Parameters of the DC motor model

Now choosing the motor’s angle to be the system output, the state space equation
of the DC motor can be rewritten as

X1 =X

X = kixy + koxs +kax3 + ks T

X3 = ksxp + kexox3 + k7x3 + kgu (4.51)
y=X

where 77 the load torque and u is the terminal voltage. From the second row of Eq.

(@35T) one obtains,

X = kiXo + koxs + 2ksx3xs =

Xy = kiXp 4 koXs + 2kzksxpxs + 2k3k6x2x% + 2k3k7x§ + 2k3kgxzu 4.52)
Thus the input-output relation can be written as
¥ = f(x)+g(x)u (4.53)

where, f(x) = kyXp + koXxs + 2k3ksxox3 + 2k3k6)€2.x% + 2k3k7x§, and g(x) = 2kskgxs.
The control approach that will be developed in this paper is model-free and generic
and can be applied to both linear and nonlinear models.

4.3.3 State Feedback Controller for the DC Motor

The performance of the previously analyzed adaptive fuzzy controller with full-state
feedback, when applied to the DC motor model, is tested in the tracking of several
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reference trajectories. The time step of the simulation experiments was taken to be
T, = 0.01 sec [B33]].

For r = 1.0 and p = 1.0 the Riccati equation given in Eq. (13) was solved.
The basis functions used in the estimation of f(x,7) and g(x,t) were py, (%) =

i, . .
el ") ,j =1,---,3. In the associated fuzzy rule base there are three inputs x; = 0,
X1 = 0 and ¥; = 0. The universe of discourse of each input variable consisted of 3

fuzzy sets. Consequently 27 fuzzy rules were derived which had the following form:

R':IF x; is A} AND % is A, AND i, is Ay THEN f' is b'  (4.54)

and the approximation of function f(x,7) in the motor’s model of Eq. (4.49) was
given by
NP Vo0 & | YT ED)
f(x,t)— Z27 H3 1 ( )
i=1 = My, (X
9

The centers ¢;’, i = 1,---,3 can take values in the set {—1.0,0.0,1.0} while the

variances vl(l), i=1,---,3 were given the value vl(»l) = 2.2. Thus taking the possible
combinations the following R, I = 1,---,27 are derived where the associated cen-

ters and variances are defined as:

(4.55)

Rule c(ll) c(zl) cgl) v
RM 1.0 -1.0 -1.0 2.2
R@ -1.0 -1.0 0.0 2.2
(3) -1.0 -1.0 1.0 2.2
R® -1.0 0.0 -1.0 2.2
%) -1.0 0.0 0.0 22
R® 1.0 00 1.0 2.2

RN 10 10 1 1

Similar was the fuzzy rule base that was used in the approximation of function
g(x,1) of Eq. @49). The learning rates 71 and 9, of the neurofuzzy networks were
suitably tuned. The controller’s gain K = [k, k,k»]” was suitably selected so as to
result in a Hurwitz stable polynomial and to assure the asymptotic convergence of
the tracking error to zero. In the first half of the simulation time the training of the
neuro-fuzzy approximators was carried out. In the second half, the estimated func-
tions f(x,r) and g(x,7) were used to derive the control signal. First the performance
of the proposed state feedback controller was tested in the tracking of a sinusoidal
set-point.

e The position and velocity variations for a sinuoidal set-point are depicted in
Fig.[4.3(a) and Fig.[£.3(b), respectively.
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Fig. 4.5 Full state feedback control of the DC motor: (a) state x; (dashed line) tracks a sinu-
soidal set-point (continuous line) (b) x; (dashed line) tracks a sinusoidal set-point (continuous
line)

control signal of the motor
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Fig. 4.6 Full state feedback control of the DC motor: (a) state x3 (dashed line) tracks a sinu-
soidal set-point (continuous line) (b) control signal (dashed line) for the dc-motor

e The acceleration tracking succeeded for the sinusoidal set-point is shown in
Fig.[.6(a), while the associated control input is shown in Fig. Z.6[b)

The simulation tests were also extended to the tracking of a see-saw set-point.

e The position and velocity variations for a see-saw set-point are depicted in
Fig.[A7(a) and Fig.[A7(b), respectively.

e The acceleration tracking succeeded for the see-saw set-point is shown in
Fig.[A.8(a), while the associated control input is shown in Fig.[£.8[b)
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Fig. 4.7 Full state feedback control of the DC motor: (a) state x; (dashed line) tracks a see-
saw set-point (continuous line) (b) state x, (dashed line) tracks the associated set-point (con-
tinuous line)
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Fig. 4.8 Full state feedback control of the DC motor for see-saw reference output: (a) state
x3 (dashed line) tracks the associated set-point (continuous line) (b) control signal (dashed
line) for the dc-motor

From the simulation tests the following remarks can be made: (i) adaptive fuzzy H..
control based on state feedback succeeds excellent tracking of the reference motor’s
angle 6;. Overshoot depends on the selection of the feedback gain K, (ii) Excellent
tracking of the reference angular velocity 6, is also achieved, (iii) The variation of
the control input (field voltage) is smooth. This was due to the proper selection of the
feedback gain K, (iv) The neuro-fuzzy networks can succeed good approximations
of the unknown functions f(x,#) and g(x,). The accuracy in the estimation of g(x,)
is important for the convergence of the control algorithm.



4.3 Application to the Control of Electric Motors 85

4.3.4 Output Feedback Controller for the DC Motor

The performance of the output feedback controller was also tested in the tracking of
several set-points. The time step was again taken to be 7y = 0.01 sec.

The controller’s feedback gain K = [ko,kl,kz]T and the observer’s gain K, =
(ko s ko, s ko, )T were suitably selected so as to assure the asymptotic elimination of
the tracking and observation errors respectively. The basis functions used in the

X*(‘j

. o 2, .
estimation of f(x,7) and g(x,7) were py, (%) = els")" j=1,---,3. Since there
were three inputs £y, %1 and % and the associated universes of discourse consisted
of 3 fuzzy sets there were again 27 fuzzy rules of the form:

R':IF % is A} AND %, is A, AND %, is Ay THEN f' is b'  (4.56)

and 27 ply72 1
A a Sl iy g (Ri)
f(xat) = 21.121111_[2 g Y

aoN (4.57)

(
%
The centers ¢!, i = 1,---,3 take values from the set {—1.0,0.0, 1.0} while the vari-

ance of the fuzzy sets vf, i=1,---,3 is given again the value 1. Thus, the centers

cl(l)7 i=1,2,3 and the variances v of each rule are as follows

Rule c(ll) cg) cgl) v
1

RM 1.0 -1.0 -1.0 2.2
R® -1.0 -1.0 0.0 2.2
R®) 1.0 -1.0 1.0 2.2
R® 1.0 -0.0 -1.0 2.2
R®) -1.0 -0.0 0.0 2.2
R©)

-1.0 -0.0 1.0 2.2

R 1.0 1.0 1.0 22

Similar was the fuzzy rule base that provided the approximation of function g(x,)
of Eq. (@49). The first half of the simulation time was used for training the
neuro-fuzzy approximators and a measurable state vector was used. Matrices P;
and P, were obtained from the solution of the Riccati equation given in Eq. (£27).
First, the proposed controller was used for tracking a sinusoidal set-point:

e The position and velocity tracking succeeded in the case of the sinusoidal set-
point are depicted in Fig.[£.9(a) and Fig. £.9)b), respectively.

e The acceleration tracking succeeded for the sinusoidal set-point is shown in
Fig.[£.10(a), while the associated control input is shown in Fig.[£.I0(b).
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Fig. 4.9 Control of the DC motor using output feedback (a) state x| (dashed line) tracks a
sinusoidal set-point (continuous line) (b) state x, (dashed line) tracks a sinusoidal set-point

(continuous line)
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acceleration x,

control signal of the motor
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Fig. 4.10 Control of the DC motor using output feedback (a) state x3 (dashed line) tracks a
sinusoidal set-point (continuous line) (b) control signal (dashed line) for the dc-motor

The simulation experiments for the adaptive fuzzy control based on output feedback
were also extended to the tracking of a see-saw set-point

e The position and velocity tracking succeeded in the case of the see-saw set-point
are depicted in Fig.[4.11[a) and Fig. ETTIb), respectively.

o The acceleration tracking succeeded for the see-saw set-point is shown in
Fig. . 12(a) associated control input is shown in Fig. £.12(b)
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