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Foreword

There are two main requirements for the development of intelligent industrial
systems: (i) learning and adaptation in unknown environments, (ii) compen-
sation of model uncertainties as well as of unknown or stochastic external
disturbances. Learning can be performed with the use of gradient-type al-
gorithms (also applied to nonlinear modeling techniques) or with the use
of derivative-free stochastic algorithms. The compensation of uncertainties
in the model’s parameters as well as of external disturbances can be per-
formed through stochastic estimation algorithms (usually applied to filtering
and identification problems), and through the design of adaptive and ro-
bust control schemes. The book aims at providing a thorough analysis of the
aforementioned issues.

Dr. Gerasimos G. Rigatos
Senior Researcher

Unit of Industrial Automation
Industrial Systems Institute

Greece



Preface

Incorporating intelligence in industrial systems can help to increase produc-
tivity, cut-off production costs, and to improve working conditions and safety
in industrial environments. This need has resulted in the rapid development
of modeling and control methods for industrial systems and robots, of fault
detection and isolation methods for the prevention of critical situations in
industrial work-cells and production plants, of optimization methods aiming
at a more profitable functioning of industrial installations and robotic devices
and of machine intelligence methods aiming at reducing human intervention
in industrial systems operation.

To this end, the book defines and analyzes some main directions of re-
search in modeling and control for industrial systems. These are: (i) industrial
robots, (ii) mobile robots and autonomous vehicles, (iii) adaptive and robust
control of electromechanical systems, (iv) filtering and stochastic estimation
for multi-sensor fusion and sensorless control of industrial systems (iv) fault
detection and isolation in robotic and industrial systems, (v) optimization in
industrial automation and robotic systems design, (vi) machine intelligence
for robots autonomy, and (vii) vision-based industrial systems.

In the area of industrial robots one can distinguish between two main prob-
lems: (i) robots operating in a free working space, as in the case of robotic
welding, painting, or laser and plasma cutting and (ii) robots performing
compliance tasks, as in the case of assembling, finishing of metal surfaces
and polishing. When the robotic manipulator operates in a free environment
then kinematic and dynamic analysis provide the means for designing a con-
trol law that will move appropriately the robot’s end effector and will enable
the completion of the scheduled tasks. In the case of compliance tasks, the
objective is not only to control the end effector’s position but also to regu-
late the force developed due to contact with the processed surface. There are
established approaches for simultaneous position and force control of robotic
manipulators which were initially designed for rigid-link robots and which
were subsequently extended to flexible-link robots.
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In the area of mobile robots and autonomous vehicles one has to handle
nonholonomic constraints and to avoid potential singularities in the design
of the control law. Again the kinematic and dynamic model of the mobile
robots provide the basis for deriving a control law that will enable tracking of
desirable trajectories. Several applications can be noted such as path track-
ing by autonomous mobile robots and automatic ground vehicles (AGVs),
trajectory tracking and dynamic positioning of surface and underwater ves-
sels and flight control of unmanned aerial vehicles (UAVs). Apart from con-
troller’s design, path planning and motion planning are among the problems
the robotics/industrial systems engineer have to solve. These problems be-
come particularly complicated when the mobile robot operates in an unknown
environment with moving obstacles and stochastic uncertainties in the mea-
surements provided by its sensors.

In the area of adaptive control for electromechanical systems it is neces-
sary to design controllers for the non-ideal but more realistic case in which
the system dynamics is not completely known and the system’s state vector
is not completely measurable. Thus, one has finally to consider the problem
of joint nonlinear estimation and control for dynamical systems. Most non-
linear control schemes are based on the assumptions that the state vector of
the system is completely measurable and that the system’s dynamical model
is known (or at least there are known bounds of parametric uncertainties
and external disturbances). However, in several cases measurement of the
complete state vector is infeasible due to technical difficulties or due to high
cost. Additionally, knowledge about the structure of the system’s dynamical
model and the values of its parameters can be only locally valid, therefore
model-based control techniques may prove to be inadequate. To handle these
cases control schemes can be implemented through the design of adaptive
observers, and adaptive controllers where the state vector is reconstructed
by processing output measurements with the use of a state observer or filter.

In the area of robust control for electromechanical systems one has to
consider controllers capable of maintaining the desirable performance of the
industrial or robotic system despite unmodeled dynamics and external dis-
turbances. The design of such controllers can take place either in the time
domain, as in the case of sliding mode control or H-infinity control, or in
the frequency domain as in the case of robust control based on Kharitonov’s
theory. In the latter case one can provide the industrial system with the
desirable robustness using a low-order controller and only feedback of the
system’s output. Whilst sliding-mode and H-infinity robust control can be
particularly useful for robotic and motion transmission systems, Kharitonov’s
theory can provide reliable and easy to implement robust controllers for the
electric power transmission and distribution system.

In the area of filtering and stochastic estimation one can see several ap-
plications to autonomous robots and to the development of control systems
over communication networks. The need for robots capable of operating au-
tonomously in unknown environments imposes the use of nonlinear estimation
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for reconstructing missing information and for providing the robots control
loop with robustness to uncertain of ambiguous information. Additionally,
the development of control systems over communication networks requires
the application of nonlinear filtering for fusing distributed sensor measure-
ments so as to obtain a global and fault-free estimate of the state of large-
scale and spatially distributed systems. Filtering and estimation methods
for industrial systems comprise nonlinear state observers, Kalman filtering
approaches for nonlinear systems and its variants (Extended Kalman Fil-
ter, Sigma-Point Kalman Filters, etc.), and nonparametric estimators such
as Particle Filters. Of primary importance is sensor-fusion based control for
industrial systems, with particular applications to industrial robotic manip-
ulators, as well as to mobile robots and autonomous vehicles (land vehicles,
surface and underwater vessels or unmanned aerial vehicles). Moreover, the
need for distributed filtering and estimation for industrial systems becomes
apparent for networked control systems as well as for the autonomous navi-
gation of unmanned vehicles.

In the area of fault detection and isolation one can note several exam-
ples of faults taking place in robotic and industrial systems. Robotic systems
components, such as sensors, actuators, joints and motors, undergo changes
with time due to prolonged functioning or a harsh operating environment
and their performance may degrade to an unacceptable level. Moreover, in
electric power systems, there is need for early diagnosis of cascading events,
which finally lead to the collapse of the electricity network. The need for a
systematic method that will permit preventive maintenance through the di-
agnosis of incipient faults is obvious. At the same time it is desirable to reduce
the false alarms rate so as to avoid unnecessary and costly interruptions of
industrial processes and robotic tasks. In the design of fault diagnosis tools
the industrial systems engineer comes against two problems: (i) development
of accurate models of the system in the fault-free condition, through system
identification methods and filtering/ stochastic estimation methods (ii) op-
timal selection of the fault threshold so as to detect slight changes of the
system’s condition and at the same time to avoid false alarms. Additionally
one can consider the problems of fault diagnosis in the frequency domain and
fault diagnosis with parity equations and pattern recognition methods.

In the area of optimization for industrial and robotic systems one can find
several applications of nonlinear programming-based optimization as well as
of evolutionary optimization. There has been extensive research on nonlinear
programming methods, such as gradient methods, while their convergence
to optimum has been established through stochastic approximations theory.
Robotics is a promising application field for nonlinear programming-based op-
timization, e.g. for problems of motion planning and adaptation to unknown
environments, target tracking and collective behavior of multi-robot systems.
On the other-hand evolutionary algorithms are very efficient for performing
global optimization in cases that real-time constraints are not restrictive, e.g.
in several production planning and resource management problems. Industrial
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and robotic systems engineers have to be well acquainted with optimization
methods, so as to design industrial systems that will excel in performance
metrics and at the same time will operate at minimum cost.

In the area of machine intelligence for robots autonomy one can note sev-
eral applications both in control and in fault diagnosis tasks. Machine intelli-
gence methods are particularly useful when analytical models of the robotic
system are hard to obtain due to inherent complexity or due to infinite di-
mensionality of the robot’s model. In such cases it is preferable to develop
a model-free controller of the robotic system, exploiting machine learning
tools (e.g. neural and wavelet networks, fuzzy models or automata models)
instead of pursuing the design of a model-based controller through analytical
techniques. Additionally, to perform fault diagnosis in robotic and industrial
systems with event-driven dynamics it is recommended again to apply ma-
chine intelligence tools such as automata, while to handle the uncertainty
associated with such systems probabilistic or possibilistic state machines can
be used as fault diagnosers.

In the area of vision-based industrial systems one can note robotic vi-
sual servoing as an application where machine vision provides the neces-
sary information for the functioning of the associated control loop. Visual
servoing-based robotic systems are rapidly expanding due to the increase
in computer processing power and low prices of cameras, image grabbers,
CPUs and computer memory. In order to satisfy strict accuracy constraints
imposed by demanding manufacturing specifications, visual servoing systems
must be fault tolerant. This means that in the presence of temporary of per-
manent failures of the robotic system components, the system must continue
to provide valid control outputs which will allow the robot to complete its
assigned tasks. Nowadays, visual servoing-based robotic manipulators have
been used in several industrial automation tasks, e.g. in the automotive indus-
try, in warehouse management, or in vision-based navigation of autonomous
vehicles. Moreover, visual servoing over networks of cameras can provide the
robot’s control loop with robust state estimation in case that visual measure-
ments are occluded by noise sources, as it usually happens in harsh industrial
environments (e.g. in robot welding and cutting applications).

It is noted that several existing publications in the areas of robotic and
industrial systems focus exclusively on control problems. In some cases, issues
which are significant for the successful operation of industrial systems, such
as modelling and state estimation, sensorless control, or optimization, fault
diagnosis, machine intelligence for robots autonomy, and vision-based indus-
trial systems operation are omitted. Thus engineers and researchers have to
address to different sources to obtain this information and this fragmenta-
tion of knowledge leads to an incomplete presentation of this research field.
Unlike many books that treat separately each one of the previous topics, this
book follows an interdisciplinary approach in the design of intelligent indus-
trial systems and uses in a complementary way results and methods from the
above research fields. The book is organized in 16 chapters:
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In Chapter 1, a study of industrial robotic systems is provided, for the
case of contact-free operation. This part of the book includes the dynamic
and kinematic analysis of rigid-link robotic manipulators, and advances to
more specialized topics, such as dynamic and kinematic analysis of flexible-
link robots, and control of rigid-link and flexible-link robots in contact-free
operation.

In Chapter 2, an analysis of industrial robot control is given, for the case
of compliance tasks. First, rigid-link robotic models are considered and the
impedance control and hybrid position-force control methods are analyzed.
Next, force control methods are generalized in the case of flexible-link robots
performing compliance tasks.

In Chapter 3, an analysis of the kinematic model of autonomous land ve-
hicles is given and nonlinear control for this type of vehicles is analyzed.
Moreover, the kinematic and dynamic model of surface vessels is studied and
nonlinear control for the dynamic ship positioning problem is also analyzed.

In Chapter 4, a method for the design of stable adaptive control schemes
for a class of industrial systems is first studied. The considered adaptive con-
trollers can be based either on feedback of the complete state vector or on
feedback of the system’s output. In the latter case the objective is to suc-
ceed simultaneous estimation of the system’s state vector and identification
of the unknown system dynamics. Lyapunov analysis provides necessary and
sufficient conditions in the controller’s design that assure the stability of the
control loop. Examples of adaptive control applications to industrial systems
are presented.

In Chapter 5, robust control approaches for industrial systems are stud-
ied. Such methods are based on sliding-mode control theory where the con-
troller’s design is performed in the time domain and Kharitonov’s stability
theory where the controller’s design is performed in the frequency domain.
Applications to the problem of robust electric power system stabilization are
given.

In Chapter 6, filtering and stochastic estimation methods are proposed for
the control of linear and nonlinear dynamical systems. Starting from the the-
ory of linear state observers the chapter proceeds to the standard Kalman fil-
ter and its generalization to the nonlinear case which is the Extended Kalman
Filter. Additionally, Sigma-Point Kalman Filters are proposed as an improved
nonlinear state estimation approach. Finally, to circumvent the restrictive as-
sumption of Gaussian noise used in Kalman Filtering and its variants, the
Particle Filter is proposed. Applications of filtering and estimation methods
to industrial systems control when using a reduced number of sensors are
presented.

In Chapter 7, sensor fusion with the use of filtering methods is studied and
state estimation of nonlinear systems based on the fusion of measurements
from distributed sources is proposed for the implementation of stochastic
control loops for industrial systems. The Extended Kalman and Particle Fil-
tering are first proposed for estimating, through multi-sensor fusion, the state
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vector of an industrial robotic manipulator and the state vector of a mobile
robot. Moreover, sensor fusion with the use of Kalman and Particle Filtering
is proposed for the reconstruction from output measurements the state vector
of a ship which performs dynamic positioning.

In Chapter 8, distributed filtering and estimation methods for industrial
systems are studied. Such methods are particularly useful in case that mea-
surements about the industrial system are collected and processed by dif-
ferent monitoring stations. The overall concept is that at each monitoring
station a filter tracks the state of the system by fusing measurements which
are provided by various sensors, while by fusing the state estimates from the
distributed local filters an aggregate state estimate for the industrial system
is obtained. In particular, the chapter proposes first the Extended Informa-
tion Filter (EIF) and the Unscented Information Filter (UIF) as possible
approaches for fusing the state estimates provided by the local monitoring
stations, under the assumption of Gaussian noises. The EIF and UIF es-
timated state vector can, in turn, be used by nonlinear controllers which
can make the system’s state vector track desirable setpoints. Moreover, the
Distributed Particle Filter (DPF) is proposed for fusing the state estimates
provided by the local monitoring stations (local filters). The motivation for
using DPF is that it is well-suited to accommodate non-Gaussian measure-
ments. The DPF estimated state vector is again used by nonlinear controller
to make the system converge to desirable setpoints. The performance of the
Extended Information Filter, of the Unscented Information Filter and of the
Distributed Particle Filter is evaluated through simulation experiments in
the case of a 2-UAV (unmanned aerial vehicles) model which is monitored
and remotely navigated by two local stations.

In Chapter 9, fault detection and isolation theory for efficient condition
monitoring of industrial systems is analyzed. Two main issues in statisti-
cal methods for fault diagnosis are residuals generation and fault threshold
selection. For residuals generation, an accurate model of the system in the
fault-free condition is needed. Such models can be obtained through nonlinear
identification techniques or through nonlinear state estimation and filtering
methods. On the other hand the fault threshold should enable both diagnosis
of incipient faults and minimization of the false alarms rate.

In Chapter 10, applications of statistical methods for fault diagnosis are
presented. In the first case the problem of early diagnosis of cascading events
in the electric power grid is considered. Residuals are generated with the use
of a nonlinear model of the distributed electric power system and the fault
threshold is determined with the use of the generalized likelihood ratio, as-
suming that the residuals follow a Gaussian distribution. In the second case,
the problem of fault detection and isolation in electric motors is analyzed.
It is proposed to use nonlinear filters for the generation of residuals and to
derive a fault threshold from the generalized likelihood ratio without prior
knowledge of the residuals statistical distribution.
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In Chapter 11, it is shown that optimization through nonlinear program-
ming techniques, such as gradient algorithms, can be an efficient approach for
solving various problems in the design of intelligent robots, e.g. motion plan-
ning for multi-robot systems. A distributed gradient algorithm is proposed
for coordinated navigation of an ensemble of mobile robots towards a goal
state, and for assuring avoidance of collisions between the robots as well as
avoidance of collisions with obstacles. The stability of the multi-robot system
is proved with Lyapunov’s theory and particularly with LaSalle’s theorem.
Motion planning with the use of distributed gradient is compared to motion
planning based on particle swarm optimization.

In Chapter 12, the two-fold optimization problem of distributed motion
planning and distributed filtering for multi-robot systems is studied. Track-
ing of a target by a multi-robot system is pursued assuming that the target’s
state vector is not directly measurable and has to be estimated by distributed
filtering based on the target’s cartesian coordinates and bearing measure-
ments obtained by the individual mobile robots. The robots have to converge
in a synchronized manner towards the target, while avoiding collisions be-
tween them and avoiding collisions with obstacles in their motion plane. To
solve the overall problem, the following steps are followed: (i) distributed
filtering, so as to obtain an accurate estimation of the target’s state vector.
This estimate provides the desirable state vector to be tracked by each one of
the mobile robots, (ii) motion planning and control that enables convergence
of the vehicles to the goal position and also maintains the cohesion of the
vehicles swarm. The efficiency of the proposed distributed filtering and dis-
tributed motion planning scheme is tested through simulation experiments.

In Chapter 13, it is shown that evolutionary algorithms are powerful opti-
mization methods which complement the nonlinear programming optimiza-
tion techniques. In this chapter, a genetic algorithm with a new crossover
operator is developed to solve the warehouse replenishment problem. The
automated warehouse management is a multi-objective optimization prob-
lem since it requires to fulfill goals and performance indexes that are usu-
ally conflicting with each other. The decisions taken must ensure optimized
usage of resources, cost reduction and better customer service. The pro-
posed genetic algorithm produces Pareto-optimal permutations of the stored
products.

In Chapter 14, it is shown that machine learning methods are of particular
interest in the design of intelligent industrial systems since they can provide
efficient control despite model uncertainties and imprecisions. The chapter
proposes neural networks with Gauss-Hermite polynomial basis functions for
the control of flexible-link manipulators. This neural model employs basis
functions which are localized both in space and frequency thus allowing bet-
ter approximation of the multi-frequency characteristics of vibrating struc-
tures. Gauss-Hermite basis functions have also some interesting properties:
(i) they remain almost unchanged by the Fourier transform, which means
that the weights of the associated neural network demonstrate the energy
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which is distributed to the various eigenmodes of the vibrating structure,
(ii) unlike wavelet basis functions the Gauss-Hermite basis functions have
a clear physical meaning since they represent the solutions of differential
equations of stochastic oscillators and each neuron can be regarded as the
frequency filter of the respective vibration eigenfrequency.

In Chapter 15, it is shown that machine learning methods can be of partic-
ular interest for fault diagnosis of systems that exhibit event-driven dynamics.
For this type of systems fault diagnosis based on automata and finite state
machine models has to be performed. In this chapter an application of fuzzy
automata for fault diagnosis is given. The output of the monitored system is
partitioned into linear segments which in turn are assigned to pattern classes
(templates) with the use of membership functions. A sequence of templates
is generated and becomes input to fuzzy automata which have transitions
that correspond to the templates of the properly functioning system. If the
automata reach their final states, i.e. the input sequence is accepted by the
automata with a membership degree that exceeds a certain threshold, then
normal operation is deduced, otherwise, a failure is diagnosed. Fault diagno-
sis of a DC motor is used as a case study.

In Chapter 16, applications of vision-based robotic systems are analyzed.
Visual servoing over a network of synchronized cameras is an example where
the significance of machine vision and distributed filtering and control for
industrial robotic systems can be seen. A robotic manipulator is considered
and a cameras network consisting of multiple vision nodes is assumed to pro-
vide the visual information to be used in the control loop. A derivative-free
implementation of the Extended Information Filter is used to produce the
aggregate state vector of the robot by processing local state estimates coming
from the distributed vision nodes. The performance of the considered vision-
based control scheme is evaluated through simulation experiments.

From the educational viewpoint, this book is addressed to undergraduate
and post-graduate students as an upper-level course supplement. The book’s
content can be complementary to automatic control and robotics courses, giv-
ing emphasis to industrial systems design through the integration of control,
estimation, fault diagnosis, optimization and machine intelligence methods.
The book can be a useful resource for instructors since it provides teaching
material for advanced topics in robotics and industrial engineering.

The book can be also a primary source of a course entitled ”Modelling and
Control of Intelligent Industrial Systems” which can be part of the academic
programme of Electrical, Mechanical, Industrial Engineering and Computer
Science Departments. It is also a suitable supplementary source for vari-
ous other automatic control and robotics courses (such as Control Systems
Design, Advanced Topics in Automatic Control, Dynamical Systems Identi-
fication, Stochastic Estimation and Multi-Sensor Fusion, Adaptive and Ro-
bust Control, Robotics: Dynamics, Kinematics and Basic Control Algorithms,
Probabilistic Methods in Robotics, Fault Detection and Isolation of Indus-
trial Systems, Industrial automation and Industrial Systems Optimization).
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From the applied research and engineering point of view the book will be a
useful companion to engineers and researchers since it analyzes a wide spec-
trum of problems in the area of industrial systems, such as: modelling and
control of industrial robots, modelling, and control of mobile robots and au-
tonomous vehicles, modelling and robust/adaptive control of electromechan-
ical systems, estimation and sensor fusion based on measurements obtained
from distributed sensors, fault detection/isolation, optimization for industrial
production and machine intelligence for adaptive behaviour. As a textbook
giving a thorough analysis of the aforementioned issues it is expected to en-
hance bibliography on industrial systems.

Through the aforementioned 16 chapters, the book is anticipated to pro-
vide a sufficient coverage of the topic of modeling and control for intelligent
industrial systems and to motivate the continuation of research effort to-
wards the development of adaptive algorithms for robotics and industrial
engineering. By proposing an interdisciplinary approach in intelligent indus-
trial systems design, the book can be a useful reference not only for the the
robotics and control community, but also for researchers and engineers in the
fields of mechatronics, signal processing, and computational intelligence.

Athens, October 2010 Gerasimos G. Rigatos
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Chapter 1
Industrial Robots in Contact-Free Operation

Abstract. A study of industrial robotic systems is provided, for the case of contact-
free operation. This part of the book includes the dynamic and kinematic analysis of
rigid-link robotic manipulators, and expands towards more specialized topics, such
as dynamic and kinematic analysis of flexible-link robots, and control of rigid-link
and flexible-link robots in contact-free operation.

1.1 Dynamic Analysis of Rigid Link Robots

In the area of industrial robots one can distinguish between two main problems: (i)
robots operating in a free working space, as in the case of robotic welding, paint-
ing, or laser and plasma cutting and (ii) robots performing compliance tasks, as in
the case of assembling, finishing of metal surfaces and polishing. When the robotic
manipulator operates in a free environment then kinematic and dynamic analysis
provide the means for designing a control law that will move appropriately the
robot’s end effector and will enable the completion of the scheduled tasks. The dy-
namic model of a multi-DOF rigid-link robotic manipulator, as the one depicted in
Fig. 1.1, is obtained from the Euler-Lagrange principles. A generic rigid-link dy-
namic model is:

D(θ)θ̈ + h(θ , θ̇)+ G(θ) = k(rgθm −θ ) (1.1)

where T (θ ) = k(rgθm −θ) represents the control input vector (torque). In the latter
relation, k is an elasticity coefficient and rg denotes gears ratio, i.e. joints flexibility
is introduced in the dynamic model of the manipulator [179],[180],[222]. The ele-
ments of the inertia matrix D(θ ), the Coriolis and centrifugal forces matrix h(θ , θ̇)
and the gravity matrix G(θ ) can be found in [107].

The physical characteristics of the manipulator and the range of values that the
different variables of the system acquire in a real working environment can be de-
fined for every type of industrial robot. The coordinates frames attached to each joint
are defined using the Denavit-Hartenberg method and are depicted in Fig. 1.1. The
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2 1 Industrial Robots in Contact-Free Operation

Fig. 1.1 A 3-DOF robotic manipulator with rigid links

Denavit-Hartenberg parameters for the general case of a 6-DOF robot are defined in
[17] and their indicative values are given in Table 1.1:

Table 1.1 Denavit-Hartenberg parameters

i θi ai αi di Joint range o

1 90 −90 0 0 −160 to 160
2 0 0 431.8mm 149.08mm −225 to 45
3 90 90 −20.32mm 0 −45 to 225
4 0 −90 0 433.07mm −110 to 170
5 0 90 0 0 −100 to 100
6 0 0 0 56.25mm −266 to 266

The rigid link coordinates system and its parameters is depicted in Fig. 1.2. Con-
sidering the ith and the (i− 1)th reference frames, the parameters of the Denavit-
Hartenberg representation are defined as follows:

1. θi is the joint angle from the xi−1 axis to the xi axis, about the zi−1 axis (using the
right hand rule).

2. di is the distance from the origin of the (i−1)th coordinate frame to the intersec-
tion of the zi−1 axis, with the xi axis along the zi−1 axis

3. αi is the offset distance from the intersection of the zi−1 axis with the xi axis to
the origin of the ith frame along the xi axis (or the shortest distance between the
zi−1 and zi axes).

4. ai is the offset angle from the zi−1 axis to the zi axis about the xi axis (using the
right hand rule)
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Fig. 1.2 Rigid link coordinates system and its parameters

The elements of the inertia matrix D(θ ), the Coriolis and centrifugal forces matrix
h(θ , θ̇) and the gravity matrix G(θ ) appearing in Eq. (1.1) are defined in [107] and
for a 3-DOF robot are given by

D(θ ) =⎛
⎝

m2l2
2 + m3(l2S2 + l3S23)2 0 0

0 m2l2
2 +m3(l2

2 +2l2l3C3 + l2
3) m3l3(l2C3 + l3)

0 m3l3(l2C3 + l3) m3l2
3

⎞
⎠ (1.2)

h(θ , θ̇) =⎛
⎝

2[m2l2
2 S2C2 +m3(l2S2 + l3S23)(l2S2 + l3C23)]θ̇1θ̇2 +2m3l3C23(l2S2 + l3S23)θ̇1θ̇3

−2m3l2l3S3θ̇2θ̇3 −m3l2l3S3θ̇ 2
3 − [m2l2S2C2 +m2(l2S2 + l3S23)(l2C2 + l3C23)]θ̇ 2

1

−m3(l2S2 + l3S23)l3C23θ̇ 2
1 +m2l2l3S3θ̇ 2

2 +m3l3θ̇2θ̇3

⎞
⎠

(1.3)

G(θ ) =

⎛
⎝

0
−m2gl2S2 −m3g(l2S2 + l3S23)

m3gl3S23

⎞
⎠ (1.4)
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where Si and Ci, denote sin(θi) and cos(θi) respectively, with i = 1,2,3, while Si j

denotes sin(θi +θ j) and Ci j denotes cos(θi +θ j).
For the dynamic model of the 3-DOF robot shown in Fig. 1.1 and with its dy-

namics described in Eq. (1.1), it holds that

θ = [θ1,θ2,θ3]T , θ̇ = [θ̇1, θ̇2, θ̇3]T , θ̈ = [θ̈1, θ̈2, θ̈3]T (1.5)

where θ is the vector of the joints angles, θ̇ is the vector of the angular velocities
and θ̈ is the vector of angular accelerations. Consequently, the robot’s state vector
is defined as x∈R6×1, and its derivative is given by ẋ∈R6×1,

x = [θ1,θ2,θ3, θ̇1, θ̇2, θ̇3]T , ẋ = [θ̇1, θ̇2, θ̇3, θ̈1, θ̈2, θ̈3]T (1.6)

Then, Eq. (1.1) is written as

θ̈ = D(θ)−1[−h(θ , θ̇)−G(θ)+ k(rgθm −θ)]⇒

θ̈ = D(θ )−1[−h(θ , θ̇)−G(θ )+ T(θ )]
(1.7)

where T (θ ) = k(rgθm −θ ). The control input u∈R3×1 is defined as

u = D(θ)−1[−h(θ , θ̇)−G(θ)+ T(θ)] (1.8)

Moreover, it holds that ẋ1 = x4, ẋ2 = x5 and ẋ3 = x6. Taking 03×3 to be 3×3 matrix
with zero elements, and I3×3 to be the identity 3×3 matrix one obtains

⎛
⎝

ẋ1

ẋ2

ẋ3

⎞
⎠=

(
03×3 I3×3

)
x +
(
03×3

)
u (1.9)

Furthermore, it holds that
⎛
⎝

ẋ4

ẋ5

ẋ6

⎞
⎠=

(
03×3 03×3

)
x +
(
I3×3

)
u (1.10)

Thus, finally the robot’s dynamic model can be written in a linear state-space form
given by

ẋ = Ax+ Bu (1.11)

with A =
(

03×3 I3×3

03×3 03×3

)
, B =

(
03×3

I3×3

)
.

The transition from the continuous time differential equations of Eq. (1.1) that de-
scribe the dynamics of the robotic manipulator, to the discrete time state-space de-
scription of Eq. (1.11) that is used in the simulation experiments can be carried
out using established discretization methods and after choosing an appropriate sam-
pling rate. Alternatively, the robot’s dynamics can be simulated through numerical
solution of the associated differential equations, given in Eq. (1.1).
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1.2 Kinematic Analysis of Rigid Link Robots

Using the rigid-link reference system depicted in Fig. 1.2, a joint axis is established
(for each joint i) at the connection of two links. This joint axis has two normals
connected to it, one for each end of the links. The relative position of two such
connected links (link i−1 and link i) is given by di which is the distance measured
along the joint axis between the normals. The joint angle θi between the normals is
measured in a plane that is taken to be normal to joint axis. Parameters di and θi are
called the distance and angle between the adjacent links, respectively, and define the
relative position of neighboring links.

A link i (i = 1, · · · ,6) is connected to at most two other links, i.e link i− 1 and
link i + 1 and two joint axes are established at the end of each connection. A fixed
configuration between joints can be obtained by parameters ai and αi which are
defined as follows: The parameter ai is the shortest distance measured along the
common normal between the joint axes, while αi is the angle between the joint axes
measured in a plane perpendicular to ai. Equivalently, ai and αi are called the length
and twist angle of link i.

An orthonormal cartesian coordinate system (xi,yi,zi) can be established for each
link at its joint axis, where i = 1,2, · · · ,n (n=number of degrees of freedom) plus
the base coordinate frame. Since a rotary joint has only one degree of freedom each
(xi,yi,zi) coordinate frame of a robot arm corresponds to joint i + 1 and is fixed in
link i. Since the i-th coordinate system is fixed in link i it moves together with link
i. Thus, the n-th coordinate frame moves the hand (link n). The base coordinates are
defined as the 0-th coordinate frame (x0,y0,z0) which is also the inertial coordinate
frame of the robot arm. Thus for a six-axis robot arm, there are seven coordinate
frames namely (x0,y0,z0),(x1,y1,z1), · · · ,(x6,y6,z6). Every coordinate frame is de-
termined and established on the basis of three rules:

1. The zi−1 axis lies along the axis of motion of the i-th joint
2. The xi axis is normal to the zi−1 axis and point away from it.
3. The yi axis completes the right-handed coordinate system as required.

By these rules one is free to choose the location of coordinate frame 0 anywhere in
the supporting base, as long as the z0 axis lies along the axis of motion of the first
joint. The last coordinate frame n-th frame can be placed anywhere in the robot’s
hand, as long as the xn axis is normal to the zn−1 axis.

Once the Denavit-Hartneberg (D-H) coordinate system has been established for
each link (according to the analysis given in subsection 1.1), a homogeneous trans-
formation matrix can easily be developed relating the i-th coordinate frame to the
(i−1)-th coordinate frame. Thus, a point ri expressed in the i-th coordinate system
may be expressed in the (i−1)-th coordinate system as ri−1 by performing the fol-
lowing successive transformations:

1. Rotate about the zi−1 axis of an angle θi to align the xi−1 axis with the xi axis
(xi−1 axis is parallel to xi axis and pointing in the same direction).
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2. Translate along the zi−1 axis a distance of di to bring the xi−1 and xi axes into
coincidence.
3. Translate along the xi axis a distance of αi to bring the two origins, as well as the
x axis into coincidence.
4. Rotate about the xi axis an angle of ai to bring the two coordinate systems into
coincidence.

Each of these four operations can be expressed by a basic homogeneous rotation-
translation matrix and the product of these four basic homogeneous transforma-
tion matrices yields a composite homogeneous transformation matrix i−1Ai, known
as the D-H transformation matrix for adjacent coordinate frames i and i − 1.
Thus,

i−1Ai = Tz,dTz,θTx,αTx,a =

=

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 di

0 0 0 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

cos(θi) −sin(θi) 0 0
sin(θi) cos(θi) 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

1 0 0 αi

0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

1 0 0 0
0 cos(ai) −sin(ai) 0
0 sin(ai) cos(ai) 0
0 0 0 1

⎞
⎟⎟⎠ ,

i.e.i−1Ai =

⎛
⎜⎜⎝

cos(θi) −cos(ai)sin(θi) sin(ai)sin(θi) αicos(θi)
sin(θi) cos(ai)cos(θi) −sin(ai)cos(θi) αisin(θi)

0 sin(ai) cos(ai) di

0 0 0 1

⎞
⎟⎟⎠

(1.12)

The inverse of this transformation enables transition from the reference system i to
the reference system i−1.

[i−1Ai]−1 =i Ai−1 =

⎛
⎜⎜⎝

cos(θi) sin(θi) 0 −αi

−cos(ai)sin(θi) cos(ai)cos(θi) sin(ai) −disin(ai)
sin(ai)sin(θi) −sin(ai)cos(θi) cos(ai) −dicos(ai)

0 0 0 1

⎞
⎟⎟⎠

(1.13)
where αi, ai, di are constants while θi is the joint variable for a revolute joint. For a
prismatic joint, the joint variable is di, while ai, αi and θi are constants. In this case,
i−1Ai becomes

i−1Ai = Tz,θTz,dTx,α =

⎛
⎜⎜⎝

cos(θi) −cos(ai)sin(θi) sin(ai)sin(θi) 0
sin(θi) cos(ai)cos(θi) −sin(ai)cos(θi) 0

0 sin(ai) cos(ai) di

0 0 0 1

⎞
⎟⎟⎠ (1.14)
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and its inverse is

[i−1Ai]−1 =i Ai−1 =

⎛
⎜⎜⎝

cos(θi) sin(θi) 0 0
−cos(ai)sin(θi) cos(ai)cos(θi) sin(ai) −disin(ai)
sin(ai)sin(θi) −sin(ai)cos(θi) cos(ai) −dicos(ai)

0 0 0 1

⎞
⎟⎟⎠

(1.15)
Using the [i−1Ai]−1 matrix, one can relate a point pi at the rest in link i, and ex-
pressed in homogeneous coordinates with respect to the coordinate system i, to the
coordinate system i−1 established at link i−1 by

pi−1 = [i−1Ai]−1 pi (1.16)

where pi−1 = (xi−1,yi−1,zi−1,1)T and pi = (xi,yi,zi)T . For the six-DOF robotic ma-
nipulator the associate coordinates transformation matrices i−1Ai are given by

0A1 =

⎛
⎜⎜⎝

C1 0 −S1 0
S1 0 C1 0
0 −1 0 0
0 0 0 1

⎞
⎟⎟⎠ , 1A2 =

⎛
⎜⎜⎝

C2 −S2 0 α2C2

S2 C2 0 α2S2

0 0 1 d2

0 0 0 1

⎞
⎟⎟⎠

2A3 =

⎛
⎜⎜⎝

C3 0 S3 α3C3

S3 0 −C3 α3S3

0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ , 3A4 =

⎛
⎜⎜⎝

C4 0 −S4 0
S4 0 C4 0
0 −1 0 d4

0 0 0 1

⎞
⎟⎟⎠

4A5 =

⎛
⎜⎜⎝

C5 0 S5 0
S5 0 −C5 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ 5A6 =

⎛
⎜⎜⎝

C6 −S6 0 0
S5 C6 0 0
0 0 1 d6

0 0 0 1

⎞
⎟⎟⎠

(1.17)

T1 = 0A1
1A2

2A3 =

⎛
⎜⎜⎝

C1C23 −S1 C1S23 α2C1C2 +α3C1C23 −d2S1

S1C23 C1 S1S23 α2S1C2 +α3S1C23 −d2C1

−S23 0 C23 −α2S2 −α3S23

0 0 0 1

⎞
⎟⎟⎠

T2 = 3A4
4A5

5A6 =

⎛
⎜⎜⎝

C4C5C6 −S4S6 −C4C5S6 −S4C6 C4S5 d6C4S5

S4C5C6 +C4S6 −S4C5S6 +C4C6 S4S5 d6S4S5

−S5C6 S5S6 C5 d6C5 + d4

0 0 0 1

⎞
⎟⎟⎠

(1.18)

where Ci = cos(θi), Si = sin(θi), Ci j = cos(θi +θ j), Si j = sin(θi +θ j). The homo-
geneous matrix 0Ti which specifies the location of the i-th coordinate frame with
respect to the base coordinate system is the chain product of successive coordinate
transformation matrices of i−1Ai and is expressed as
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0Ti = 0A1
1A2· · ·i−1Ai =Π i

j=1A j for i = 1,2, · · · ,n

=
(

xi yi zi pi

0 0 0 1

)
=
(

0Ri
0 pi

0 1

) (1.19)

1.3 Dynamic Analysis of Flexible-Link Robots

Flexible-link robots comprise an important class of systems that include lightweight
arms for assembly, civil infrastructure, bridge/vehicle systems, military applications
and large-scale space structures. Modelling and vibration control of flexible systems
have received a great deal of attention in recent years [8],[26],[176],[327],[328],[395].
Conventional approaches to design a control system for a flexible-link robot often in-
volve the development of a mathematical model describing the robot dynamics, and
the application of analytical techniques to this model to derive an appropriate control
law [11],[55],[78]. Usually, such a mathematical model consists of nonlinear partial
differential equations, most of which are obtained using some approximation or sim-
plification [176],[327].

A common approach in modelling of flexible-link robots is based on the Euler-
Bernoulli model [97],[445]. This model consists of nonlinear partial differential
equations, which are obtained using some approximation or simplification. In case
of a single-link flexible manipulator the basic variables of this model are w(x,t)
which is the deformation of the flexible link, and θ (t) which is the joint’s
angle.

E·I·w′′′′
(x,t)+ρẅ(x,t)+ρxθ̈(t) = 0 (1.20)

It θ̈(t)+ρ
∫ L

0
xẅ(x,t)dx = T(t) (1.21)

In Eq. (1.20) and (1.21), w
′′′′

(x,t) = ∂ 4w(x,t)
∂x4 ,ẅ(x,t) = ∂2w(x,t)

∂ t2 , while It is the moment
of inertia of a rigid link of length L, ρ denotes the uniform mass density and EI is
the uniform flexural rigidity with units N·m2. To calculate w(x,t), instead of solv-
ing analytically the above partial differential equations, modal analysis can be used
which assumes that w(x,t) can be approximated by a weighted sum of orthogonal
basis functions

w(x,t) =
ne

∑
i=1

φi(x)vi(t) (1.22)

where index i = [1,2, · · · ,ne] denotes the normal modes of vibration of the flexi-
ble link. Using modal analysis a dynamical model of finite-dimensions is derived
for the flexible link robot. Without loss of generality assume a 2-link flexible robot
(Fig. 1.3) and that only the first two vibration modes of each link are significant
(ne = 2). Σ1 is a point on the first link with reference to which the deformation vector
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Fig. 1.3 A 2-DOF flexible-link robot

is measured. Similarly, Σ2 is a point on the second link with reference to which the
associated deformation vector is measured. In that case the dynamic model of the
robot becomes [222],[445]:

(
M11(z) M12(z)
M21(z) M22(z)

)
·
(
θ̈
v̈

)
+
(

F1(z, ż)
F2(z, ż)

)
+
(

02×2 02×4

04×2 D(z)

)
·
(
θ̇
v̇

)
+

+
(

02×2 02×4

04×2 K(z)

)
·
(
θ
v

)
=
(

T (t)
04×1

) (1.23)

where z = [θ ,v]T , with θ = [θ1,θ2]T , v = [v11,v12,v21,v22]T (vector of the vibration
modes for links 1 and 2), and [F1(z, ż),F2(z, ż)]T = [0,0]T (centrifugal and Coriolis
forces). The elements of the inertia matrix are: M11 ∈ R2×2, M12 ∈ R2×4, M21 ∈
R4×2, M22 ∈ R4×4. The damping and elasticity matrices of the aforementioned
model are D ∈ R4×4 and K ∈ R4×4. Moreover the vector of the control torques is
T (t) = [T1(t),T2(t)]T .

1.4 Kinematic Analysis of Flexible-Link Robots

Assume the i-th link of the flexible-link robot and the associated rotating frame
OiXiYi (Fig. 1.3). Then the vector of coordinates of the end-effector M is given by

pi
M = [xi,wi(xi)]T (1.24)

The coordinates of the end-effector in the inertial frame O1X
′
1Y

′
1 is given by

pM = ri +Wip
i
M (1.25)
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with

Wi = Wi−1Ei−1Ri = Ŵi−1Ri

Ŵ0 = I
(1.26)

where Ri is the rigid rotation matrix that aligns the rotating frame of the i-th link to
the inertial frame of the same link, and Ei−1 is the flexible rotation matrix that aligns
the inertial frame of link i to the rotational frame of link i− 1:

Ri =
(

cos(θi) −sin(θi)
sin(θi) cos(θi)

)
, Ei =

(
1 −w

′
ie

w
′
ie 1

)
=

(
1 − ∂wi

∂xi
∂wi
∂xi

1

)
(1.27)

ri = ri−1 +Wir
i−1
i (1.28)

Variable ri−1
i denotes the distance vector between the origin of the and i-th and

the i− 1-th frame, ri is the distance vector between the origin of the i-th rotational
frame and the inertial frame, and Wi is the rotation matrix calculated with the use of
Eq.(1.26).

Using Eq. (1.25) and Eq. (1.28) in the 2-DOF flexible-link robot depicted in Fig.
1.3, one obtains

r2 = r1 +W1r1
2 =

(
L1cos(θ1)−w1(L1,t)sin(θ1)
L1sin(θ1)+ w1(L1,t)cos(θ1)

)
(1.29)

pM = r2 +W2 p2
M (1.30)

where

p2
M =

(
L2

w2(L2,t)

)
,W2 = R1E1R2 =

(
cos(θ1) −sin(θ1)
sin(θ1) cos(θ1)

)
·

·
(

1 −w
′
1e

w
′
1e 1

)
·
(

cos(θ2) −sin(θ2)
sin(θ2) cos(θ2)

) (1.31)

The differential kinematic model of the flexible-link robot can now be calculated.
The coordinates of the end-effector in the inertial frame are given by Eq. (1.25).
According to modal analysis the deformation wi(xi,t) in normal modes of vibra-
tion is given by Eq. (1.22). Using the previous 2 equations the kinematic model
can be written as a function of the joint angles θ and of the normal modes of
vibration v.

p = k(θ ,v) (1.32)

The velocity of the end-effector is calculated through the differentiation of Eq.
(1.25).

ṗM = ṙi +Ẇi p
i
M +Wiṗ

i
M (1.33)
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Moreover, it holds that ṙi
i+1 = ṗi

M(Li) = [0, ẇi(xi = Li)]T since there is no longitu-
dinal deformation (ẋi = 0). It also holds that

Ẇi = ˙̂Wi−1Ri +Ŵi−1Ṙi
˙̂Wi = ẆiEi +WiĖi

(1.34)

It also holds that

Ṙi = SRiθ̇i

Ėi = Sẇ
′
ie

(1.35)

with S =
(

0 −1
1 0

)
. Substituting Eq. (1.34) and Eq. (1.35) in Eq. (1.33) the differen-

tial kinematic model of the flexible-link robot is obtained:

ṗ = Jθ (θ ,v)θ̇ + Jv(θ ,v)v̇ (1.36)

where

Jθ = ∂k
∂θ : is the Jacobian with respect to θ

Jv = ∂k
∂v : is the Jacobian with respect to v.

If the end-effector is in contact with the surface Ω(θ) and is subject to contact-
forces F = [Fx,Fy] then the torques which are developed to the joints are:

JT
θ F : torques that produce the work associated with the rotation angle θ .

JT
v F : torques that produce work associated with the deformation modes v.

In case of contact with a surface, the dynamic model of the flexible-link robot given
initially in Eq. (1.23) is corrected into:

(
M11(z) M12(z)
M21(z) M22(z)

)(
θ̈
v̈

)
+
(

F1(z, ż)
F2(z, ż)

)
+
(

02×2 02×4

04×2 D(z)

)(
θ̇
v̇

)
+

+
(

02×2 02×4

04×2 K(z)

)(
θ
v

)
=
(

T (t)− JT
θ (θ ,v)F

−JT
v (θ ,v)F

) (1.37)

For a two-link flexible robot of Fig. 1.3 one gets

pM =
(

L1cos(θ1)−w1(L1,t)sin(θ1)
L1sin(θ1)+ w1(L1,t)cos(θ1)

)
+

+
(

cos(θ1 +θ2)−w
′
1esin(θ1 +θ2) −sin(θ1 +θ2)−w

′
1ecos(θ1 +θ2)

sin(θ1 +θ2)+ w
′
1ecos(θ1 +θ2) cos(θ1 +θ2)−w

′
1esin(θ1 +θ2)

)(
L2

w2

)

(1.38)
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with

w1(L1,t) = φ11(L1)v11(t)+φ12(L1)v12(t)
w2(L2,t) = φ21(L2)v21(t)+φ22(L2)v22(t)
w

′
1e = ∂w1(x,t)

∂x |x=L1 = φ ′
11(L1)v11(t)+φ ′

12(L1)v12(t)
(1.39)

The Jacobian Jθ is

Jθ =

⎛
⎝

∂ p(1)
M

∂θ1

∂ p(1)
M

∂θ2

∂ p
(2)
M

∂θ1

∂ p
(2)
M

∂θ2

⎞
⎠ (1.40)

∂ p(1)
M

∂θ1
= −L1sin(θ1)−w1(L1,t)cos(θ1)−L2sin(θ1 +θ2)−L2w

′
1ecos(θ1 +θ2)−

−w2(L2,t)cos(θ1 +θ2)+ w2(L2,t)w
′
1esin(θ1 +θ2)

∂ p(2)
M

∂θ1
= L1cos(θ1)−w1(L1,t)sin(θ1)+ L2cos(θ1 +θ2)−L2w

′
1esin(θ1 +θ2)−

−w2(L2,t)sin(θ1 +θ2)+ w2(L2,t)w
′
1ecos(θ1 +θ2)

∂ p(1)
M

∂θ2
= −L2sin(θ1 +θ2)−L2w

′
1ecos(θ1 +θ2)−w2(L2,t)cos(θ1 +θ2)+

+w2(L2,t)w
′
1esin(θ1 +θ2)

∂ p
(2)
M

∂θ2
= L2cos(θ1 +θ2)−L2w

′
1esin(θ1 +θ2)−w2(L2,t)sin(θ1 +θ2)−

−w2(L2,t)w
′
1ecos(θ1 +θ2)

(1.41)
Similarly, the Jacobian Jv is calculated:

Jv =

⎛
⎝

∂ p(1)
M

∂v11

∂ p(1)
M

∂v12

∂ p(1)
M

∂v21

∂ p(1)
M

∂v22

∂ p(2)
M

∂v11

∂ p(2)
M

∂v12

∂ p(2)
M

∂v21

∂ p(2)
M

∂v22

⎞
⎠ (1.42)

∂ p(1)
M

∂v11
= −φ11(L1)sin(θ1)−L2φ

′
11(L1)sin(θ1 +θ2)−w2(L2,t)φ

′
11(L1)cos(θ1 +θ2)

∂ p
(1)
M

∂v12
= −φ12(L1)sin(θ1)−L2φ

′
12(L1)sin(θ1 +θ2)−w2(L2,t)φ

′
12(L1)cos(θ1 +θ2)

∂ p(1)
M

∂v21
= −φ21(L2)sin(θ1 +θ2)−φ21(L2)w

′
1ecos(θ1 +θ2)

∂ p(1)
M

∂v22
= −φ22(L2)sin(θ1 +θ2)−φ22(L2)w

′
1ecos(θ1 +θ2)
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∂ p
(2)
M

∂v11
= φ11(L1)cos(θ1)+ L2φ

′
11(L1)cos(θ1 +θ2)−w2(L2,t)φ

′
11(L1)sin(θ1 +θ2)

∂ p(2)
M

∂v12
= φ12(L1)cos(θ1)+ L2φ

′
12(L1)cos(θ1 +θ2)−w2(L2,t)φ

′
12(L1)sin(θ1 +θ2)

∂ p
(2)
M

∂v21
= φ21(L2)cos(θ1 +θ2)−φ21(L2)w

′
1esin(θ1 +θ2)

∂ p(2)
M

∂v22
= φ22(L2)cos(θ1 +θ2)−φ22(L2)w

′
1esin(θ1 +θ2)

1.5 Control of Rigid-Link Robots in Contact-Free Operation

The computed torque method is the basis in all control methods for robotic ma-
nipulators [107],[391]. The robotic model undergoes a linearization transformation
and decoupling through state feedback and next one can design local PD-type con-
trollers for each joint of the robot. To compensate for modelling uncertainties or
external disturbances a robust control term can be included in the computed torque
control signal. On the other hand when the robotic model is unknown the computed
torque method can be implemented within an adaptive control scheme, where the
unknown robot dynamics is learned by an adaptive algorithm.

In the computed torque method the robot manipulator is modeled as a set of rigid
bodies connected in series with one end fixed to the ground and the other end free.
The rigid bodies are connected via revolute or prismatic joints and a torque actuator
acts at each joint. Taking into account the effect of disturbances Td in Eq. (1.1), the
dynamic equation of the manipulator is given by:

D(θ)θ̈ +B(θ , θ̇)+ G(θ) = T −Td (1.43)

where

T : (n× 1) is the vector of joint torques supplied by the actuators,
D(θ ) :(n×n) is the manipulator inertia matrix,
B(θ , θ̇ ) (n×1) is the vector representing centrifugal and Coriolis effects,
G(θ ): (n× 1) is the vector representing gravity,
Td: (n×1) is the vector describing unmodeled dynamics and external disturbances,
θ : (n×1) is the vector of joint positions,
θ̇ : (n× 1) is the vector of joint velocities,
θ̈ : (n× 1) is the vector of joint accelerations.

In the computed torque method (also known as inverse model control), a com-
pletely decoupled error dynamics equation can be obtained. The overall architecture
of this model is shown in Figure 1.4. If the dynamic model is exact, the dynamic
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Fig. 1.4 Computed torque controller architecture for rigid-link robot control, including on-
line estimation of the unknown parameters of the robot’s dynamic model

perturbations are exactly canceled. The total torque that drives the manipulator is
given by

T = D(θ )u + B̂(θ , θ̇)+ Ĝ(θ )+ Td, (1.44)

where u is defined as

u = θ̈d + Kv(θ̇d − θ̇)+ Kp(θd −θ ) (1.45)

Substituting Eq. (1.44) into Eq. (1.43) and noting that D̂ = D, B̂ = B and Ĝ = G
because of the exact dynamic model assumption, one obtains

D(θ )[θ̈d +Kv(θ̇d − θ̇)+ Kp(θd −θ )] = 0 (1.46)

The following error vectors can be defined: e = (θd − θ ), ė = (θ̇d − θ̇) and ë =
(θ̈d − θ̈). Under the assumption that D(θ ) is positive definite, these are related by
the following equation:

ë+ Kvė+Kpe = 0 (1.47)

1.6 Control of Flexible-Link Robots in Contact-Free Operation

1.6.1 Inverse Dynamics Control of Flexible-Link Robots

The inverse dynamics control approach can be also applied to flexible-link robot
models. Inverse dynamics control transforms the nonlinear system of Eq. (1.23)
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into a linear one, so that linear control techniques can be applied. From Eq. (1.23) it
holds that:

M11θ̈ + M12v̈+ F1(z, ż) = T (t) (1.48)

M21θ̈ + M22v̈ + F2(z, ż)+ Dv̇+ Kv = 0 (1.49)

Eq. (1.49) is solved with respect to v̈

v̈ = −M−1
22 M21θ̈ −M−1

22 F2(z, ż)−M−1
22 Dv̇−M−1

22 Kv (1.50)

Eq. (1.50) is substituted in Eq. (1.48) which results into:

(M11 −M12M−1
22 M21)θ̈ −M12M−1

22 F2(z, ż)−M12M−1
22 Dv̇−

−M12M−1
22 Kv + F1(z, ż) = T (t)

(1.51)

The following control law is now introduced [445]:

T (t) = −M12M−1
22 F2(z, ż)−M12M−1

22 Dv̇−M12M−1
22 Kv+

+F1(z, ż)+ (M11 −M12M−1
22 M21)u0

(1.52)

u0 = θ̈d −Kd(θ̇ − θ̇d)−Kp(θ −θd) (1.53)

By replacing Eq. (1.52) in Eq. (1.51) one gets

(M11 −M12M−1
22 M21)θ̈ −M12M−1

22 F2(z, ż)−M12M−1
22 Dv̇−M12M−1

22 Kv+F1(z, ż) =

= −M12M−1
22 F2(z, ż)−M12M−1

22 Dv̇−M12M−1
22 Kv+F1(z, ż)+(M11 −M12M−1

22 M21)u0

which finally results into

θ̈ = u0 (1.54)

Eq. (1.54) implies that linearisation and decoupling of the robotic model has been
achieved. Substituting Eq. (1.53) into Eq. (1.54) gives:

θ̈ − θ̈d + Kd(θ̇ − θ̇d)+ Kp(θ −θd) = 0 ⇒

ë(t)+ Kdė(t)+ Kpe(t) = 0
(1.55)

Gain matrices Kp and Kd are selected, so as to assure that the roots (poles) of Eq.
(1.55) are in the left semiplane. This results into

limt→∞e(t) = 0 ⇒ limt→∞θ (t) = θd(t) (1.56)

Consequently, for θd(t) =constant it holds limt→∞θ̈(t) = 0. Then Eq. (1.50) gives

v̈ = −M−1
22 F2 −M−1

22 Dv̇−M−1
22 Kv (1.57)
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and for F2(z, ż) = 0 results into

v̈+ M−1
22 Dv̇+ M−1

22 Kv = 0 (1.58)

which is the differential equation of the free damped oscillator. Suitable selection of
the damping matrix D and the elasticity matrix K assures that

limt→∞v(t) = 0 (1.59)

The objective of the above analyzed inverse-dynamics model-based control for
flexible-link robots, is to make the rigid-mode variable θ (t) follow a desired tra-
jectory or to converge to a certain set-point and at the same time to suppress
the flexible modes of the links v(t). However, this control approach has several
weaknesses [222]:

1. The inverse dynamics model-based control for flexible link robots is based on
modal analysis, i.e. on the assumption that the deformation of the flexible link can be
written as a finite series expansion containing the elementary vibration modes [445].
However, this inverse-dynamics model-based control may result into unsatisfactory
performance when an accurate model is unavailable, due to parameters uncertainty
or truncation of high order vibration modes [222].
2. In general there are nr flexible links, thus θ(t) ∈ Rnr . The control input available
is T (t) ∈ Rnr , since there is one actuator per link. Considering n f flexible modes
for each link means that nr×n f additional degrees of freedom are introduced. Thus
appropriate control is required to suppress the vibrations. However, the number of
control inputs is nr which is less than the number of the degrees of freedom. Conse-
quently, there is reduced control effectiveness.
3. Designing a controller for a flexible link robot without taking into account the
links vibrations is an unsuccessful approach. By selecting the control input T (t)
to achieve practical tracking performance of the rigid variable θ (t), one actually
destabilizes the flexible modes v(t). This is due to the non-minimum phase nature
of the zeros dynamics of the flexible-link arms.
4. Another drawback of model-based control is that the model of Eq. (1.23), is de-
rived assuming a finite number of vibration modes. This simplification is not always
applicable since higher-order modes may be excited. The proposed model-based
control does not provide robustness to external disturbances.

1.6.2 Energy-Based Control of Flexible Link Robots

1.6.2.1 Energy-Based Control

To overcome the weaknesses of the inverse-dynamics model-based control for flex-
ible link robots, model-free control methods have been proposed. These approaches
are analyzed in the rest part of Chapter 1. One such approach is the energy-based
control which requires only knowledge of the potential and kinetic energy of the
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flexible manipulator. Energy-based control of flexible-link robots assures closed-
loop system stability in the case of constant set-points (point-to-point control).

The kinetic energy Ekin of a n-link flexible robot is given by [119],[445]

Ekin =
n

∑
i=1

1
2
ρ
∫ Li

0
[ṗ2

xi
+ ṗ2

yi
]dx (1.60)

In Eq. (1.60), pxi is the position of elementary segment of the i-th link along x-axis,
while pyi is the position of elementary segment of the i-th link along y-axis. On the
other hand the potential energy Ep of a planar n-link flexible robot is due to the links
deformation and is given by

Ep =
n

∑
i=1

1
2

EI
∫ Li

0
[
∂ 2

∂x2 wi(x,t)]2dx (1.61)

Thus to estimate the robot’s potential energy, measurement of the flexible links

strain ∂ 2wi(x,t)
∂x2 is needed. The potential energy includes only the energy due to strain,

while the gravitational effect as well as longitudinal and torsional deformations are
neglected.

Moreover, the energy provided to the flexible-link robot by the i-th motor is given
by

Wi =
∫ t

0
Ti(τ)θ̇ (τ)dτ (1.62)

Consequently, the power of the i-th motor is

Pi(t) = Ti(t)θ̇i(t) (1.63)

where Ti(t) is the torque of the i-th motor and θ̇i(t) is the motor’s angular velocity.
Thus, the aggregate motors energy is given by

W =
n

∑
i=1

∫ t

0
Ti(τ)θ̇i(τ)dτ (1.64)

The energy that is provided to the flexible-link robot by its motors takes the form
of: (i) potential energy (due to the deformation of the flexible links) and (ii) kinetic
energy. This energy flow is described by

[Ekin(t)+ Ep(t)]− [Ekin(0)+ Ep(0)] = W (1.65)

Energy-based control of flexible-link robots considers that the torque of the i-th mo-
tor (control output) is based on a PD-type controller and is given by [119],[445]:

Ti(t) = −Kpi [θi(t)−θdi(t)]−Kdiθ̇i(t)−
−Kiw

′′
i (x,t)

∫ t
0 θ̇i(s)w

′′
i (x,s)ds, i = 1,2, · · · ,n (1.66)

where Kpi is the i-th P control gain, Kdi is the i-th D control gain, θdi , is the desir-
able angle of the i-th link, Ki is also a positive (constant) gain, and wi(x,t) is the
deformation of the i-th link.
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1.6.2.2 Stability Proof of Energy-Based Control for Flexible-Link Robots

The proposed control law of Eq. (1.66) assures the asymptotic stability of the closed-
loop system in case of constant set-points (point to point control). The following
Lyapunov (energy) function is considered [119],[445]:

V = Ekin +Ep +
1
2

N

∑
i=1

Kpi [θi(t)−θdi(t)]
2 +

1
2

n

∑
i=1

Ki[
∫ t

0
θ̇i(s)w

′′
i (s,t)ds]2 (1.67)

where Ekin is given by Eq. (1.60) and denotes the kinetic energy of the robot’s links,
while Ep is given by Eq. (1.61) and denotes the potential energy of the robot’s links
due to deformation.

It holds that V (t) > 0 since Ekin > 0, Ep > 0, 1
2∑

n
i=1Kpi [θi(t)− θdi(t)]

2 > 0 and
1
2∑

n
i=1Ki[

∫ t
0 θ̇i(t)wi(s,t)]2 > 0. Moreover, it holds that

V̇ (t) = Ėkin + Ėp +∑n
i=1Kpi [θi(t)−θdi(t)]θ̇i(t)+

1
2∑

n
i=12Ki[

∫ t
0 θ̇i(s,t)w

′′
i (s,t)ds][θ̇i(t)w

′′
i (x,t)]

(1.68)

while using Eq. (1.63) and Eq. (1.65) the derivative of the robot’s energy is found to
be

Ėkin(t)+ Ėp(t) =
n

∑
i=1

Ti(t)θ̇i(t) (1.69)

where the torque generated by the i-th motor is given by Eq. (1.66). By substituting
Eq. (1.69) and Eq. (1.66) in Eq. (1.68) one gets

V̇ (t) = −∑n
i=1Kpi [θi(t)−θdi(t)]θ̇i(t)−

−∑n
i=1Kdi θ̇

2
i (t)−∑n

i=1[Kiw
′′
i (x,t)

∫ t
0 θ̇i(s)w

′′
i (s,t)ds]θ̇i(t)

+∑n
i=1Kpi [θi(t)−θdi(t)]θ̇i(t)+∑n

i=1[Kiw
′′
i (x,t)

∫ t
0 θ̇i(s)w

′′
i (s,t)ds]θ̇i(t)

(1.70)

which finally results into,

V̇ (t) = −
n

∑
i=1

Kdi θ̇
2
i (1.71)

Obviously, from Eq. (1.71) it holds that V̇ (t)≤0, which implies stability of the
closed-loop system, but not asymptotic stability. Asymptotic stability can be proved
as follows [445]: If the i-th link did not converge to the desirable angle, i.e.
limt→∞θi(t)= ai �=θdi(t) then the torque of the i-th motor would become equal to
a small positive constant. This is easy to prove from Eq.(1.66) where the terms
Kdi θ̇i(t) = 0, Kiwi(x,t)

∫ t
0 θ̇i(s)w

′′
i (s,t)ds = 0, while the term Kpi [θi(t)− θdi(t)] =

Kpiai becomes equal to a positive constant.
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However, if Ti(t) = constant�=0 then the i-th link should continue to rotate. This
means that θi(t)�=ai , which contradicts the initial assumption limt→∞θi(t)= ai.
Therefore, it must hold limt→∞Ti(t) = 0 and limt→∞θi(t) = θdi(t). Consequently,
limt→∞V (t) = 0.

The proposed energy-based controller is a decentralized controller since the con-
trol signals Ti(t) of the i-th motor are calculated using only the angle θi(t) and the
deformation wi(x,t) of the i-th link.

The performance of the previously analyzed model-free control methods (energy-
based control and neural adaptive control) are compared to the performance of
model-based techniques (inverse-dynamics control), in a simulation case study for
planar 2-DOF manipulators.

1.6.3 Adaptive Neural Control of Flexible Manipulators

Adaptive neural network control of robotic manipulators has been extensively stud-
ied [118],[222]. Following [411] a method of neural adaptive control for flexible-
link robots will be proposed.

Eq. (1.51) represents the dynamics of the flexible-link manipulator. It actually
refers to a nonlinear transformation (mapping) from inputs (torques T (t) generated
by the motors) to outputs (motion of the joints). This nonlinear model can be written
in the general form:

θ̈ = G(θ , θ̇ ,v, v̇,T (t)) (1.72)

Consequently, the inverse dynamics of the flexible-link manipulator, is a relation
that provides the torque that should be generated by the motors of the joints so as
the joints angle, angular velocity and acceleration to take certain values. The inverse
model of Eq. (1.72) is given by

T (t) = G−1(θ , θ̇ , θ̈ ,v, v̇) (1.73)

The dynamic model and its inverse are time dependent. If the inverse dynamic model
of Eq. (1.73) can be explicitly calculated then a suitable control law for the flexible-
link robot is available.

However, this model is not usually available and the system dynamics has to be
adaptively identified. In this paper, a neural network model will be used to effec-
tively approximate the inverse dynamical model of Eq. (1.73). Variables θ , θ̇ , θ̈ can
be measured while variables v, v̇ are non-measurable. Thus, the inverse dynamics of
the manipulator can be decomposed into n sub-models given in the following form:

T (t) = G−1(θ , θ̇ , θ̈ ) =

⎛
⎜⎜⎝

g−1
1 (θ , θ̇ , θ̈ )

g−1
2 (θ , θ̇ , θ̈ )

· · ·
g−1

n (θ , θ̇ , θ̈ )

⎞
⎟⎟⎠ (1.74)

where each g−1
i , (i = 1,2, · · · ,n) defines the inverse dynamics of the corresponding

joint, while n is the number of joints of the manipulator.
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A neural network can be employed to approximate each sub-model g−1
i of the

flexible robot’s inverse dynamics. Therefore, the inverse dynamics of the overall
system can be represented by a neural network N(θ , θ̇ , θ̈ ,w) [411]

T (t)�N(θ , θ̇ , θ̈ ,w) =

⎛
⎜⎜⎝

N1(θ , θ̇ , θ̈ ,w1)
N2(θ , θ̇ , θ̈ ,w2)

· · ·
Nn(θ , θ̇ , θ̈ ,wn)

⎞
⎟⎟⎠ (1.75)

where Ni(θ , θ̇ , θ̈ ,wi) i = 1,2, · · · ,n is the i-th neural network that approximates the
i-th sub-model of robot’s inverse dynamics and wi is the associated weights vector.

Using a NN to model the dynamics of the flexible-link robot provides a mapping
of the joint angles vector to the motor torques vector. The torque appearing at the
output of the neural network can be combined with a PD-feedback controller to
generate the overall control signal that will finally drive the motors [422]. Therefore,
the control scheme can be given as

T (t) = N(θ , θ̇ , θ̈ ,w)+ Kpe + Kdė (1.76)

where N(θ , θ̇ , θ̈ ,w) is the neural network approximation of the actual inverse dy-
namics of the manipulators, while Kp ∈ Rn×m and Kd ∈ Rn×m are the diagonal
gain matrices with entries Kp and Kd , respectively, denoting a servo feedback that is
introduced to stabilize the system. In Eq. (1.76) e = θd −θ , and ė = θ̇d − θ̇ denote
the position and velocity error of the robot’s joints, respectively, and θd ∈ R2 is the
vector of the position and velocity set-points.

The architecture of NN-based control of flexible-link robots is depicted in
Fig. 1.5. Making use of Eq. (1.74) and Eq. (1.75), the neural network controller
that is described by Eq. (1.76) becomes

N(θ , θ̇ , θ̈ ,w)+ Kpe + Kdė = G−1(θ , θ̇ , θ̈ ) (1.77)

or equivalently,

Kpe + Kdė = G−1(θ , θ̇ , θ̈)−N(θ , θ̇ , θ̈ ,w) = N̄(θ , θ̇ , θ̈ ,w) (1.78)

Eq. (1.78) represents a decoupled linear system, driven by the nonlinear vector func-
tion N̄(θ , θ̇ , θ̈ ,w) ∈ Rn. This function represents the error between the actual in-
verse dynamics G−1(θ , θ̇ , θ̈) and its estimated model N(θ , θ̇ , θ̈ ,w) and can be writ-
ten as

N̄(θ , θ̇ , θ̈ ) =

⎛
⎝

N̄1(θ , θ̇ , θ̈ ,w)
· · ·

N̄n(θ , θ̇ , θ̈ ,w)

⎞
⎠=

⎛
⎝

g−1
1 (θ , θ̇ , θ̈ )−N1(θ , θ̇ , θ̈ ,w)

· · ·
g−1

n (θ , θ̇ , θ̈ )−Nn(θ , θ̇ , θ̈ ,w)

⎞
⎠ (1.79)

Instead of using one neural network to approximate the inverse dynamics of
the flexible-link robot one could use a separate network for each joint of the
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Fig. 1.5 Adaptive neural control of the flexible-link robot

manipulator. In that case and using Eq. (1.79), the error equation for the i-th joint of
the manipulator becomes

Ki
pei + Ki

dėi = N̄i(θ , θ̇ , θ̈ ,w), i = 1,2, · · · ,n (1.80)

where ei and ėi denote the position and velocity errors of the i-th joint respec-
tively, Ki

p and Ki
d are the proportional and derivative gains of the PD controller

of the i-th joint, and N̄i(θ , θ̇ , θ̈ ,w) is the approximation error of the NN assigned to
the i-th joint. The objective is to eliminate the approximation error, i.e. to succeed
limt→∞N̄i(θ , θ̇ , θ̈ ,w) = 0. In that case, a suitable selection of the control gains Ki

p

and Ki
d results into

Ki
pei + Ki

dėi = 0 ⇒
limt→∞ei(t) = 0, limt→∞ ėi(t) = 0

(1.81)

Eq. (1.81) denotes that, the convergence condition for the closed-loop system is to
make the error surface εi = Ki

pei +Ki
dėi to approach zero. Then the suitable selection

of the control gains will result in the asymptotic convergence of e(t) to 0

Ki
pei(t)+ Ki

dėi(t) = 0 ⇒ ėi(t) = −Ki
p

Ki
d

ei(t) ⇒ ei(t) = ei(0)e
−Ki

p
Ki

d
t

(1.82)

Thus a measure of the output error can be considered to be

εi = N̄i(θ , θ̇ , θ̈ ,w) (1.83)

which reflects the discrepancy between the actual inverse dynamics of the manipu-
lator and its neural network approximation. The update of the weights of the neural
network has to be carried out in such a way that the stability of the closed-loop
system is maintained. To this end, the following cost function is defined for each
joint
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Ei(t) =
1
2
ε2

i (1.84)

This cost function gives the squared distance of the error function εi = Ki
pei(t)+

Ki
dėi(t) from 0. The weights update algorithm is derived from the minimization of

the cost function Ei(t) over the weight space of the corresponding NN model.

1.6.4 Approximation of the Flexible-Links Dynamics

A diagonal recurrent neural network (RNN) is employed first to approximate the in-
verse dynamics of each link of the flexible manipulator. The structure of the i-th di-
agonal recurrent neural network is depicted in Fig. 1.6. The input vector of the RNN
is X = [θi, θ̇i, θ̈i]T , i.e. it consists of the position, angular velocity and acceleration
of the robot’s joints. The self-feedback connections at the hidden nodes of the RNN
enable the neural network to approximate dynamical systems. On the other hand
feed-forward neural networks without tapped delays, provide only a static input-
output mapping [203]. Thus, RNN are deemed as more appropriate for modelling
of the inverse dynamics of the flexible-link robot.

Fig. 1.6 Structure of the diagonal recurrent neural network

The weights update of the RNN consists of the forward and backwards computa-
tion. The forward computation is described as follows:

1. Input layer:
Im(k) = xm(k), m = 1,2,3 (1.85)

where [x1,x2,x3] = [θi, θ̇i, θ̈i].
2. Hidden layer:

Hj(k) = Fj(u j(k))
u j(k) = w(2)

j Hj(k−1)+∑mw(1)
m j xm(k)

(1.86)
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3. Output layer:

O(k) = Ni(θ , θ̇ , θ̈ ,w) =∑
j

w(3)
j Hj(k) (1.87)

where u j(k) and Hj(k) are the input and output of the hidden layer at the j-th unit,
respectively, O(k) is the output of the neural network (torque for the i-th joint), Fj()
is a sigmoid function, written as Fj(u j) = 1

1+e−u j
, w(1)

m j is the weight that connects the

m-th input layer neuron with the j-th hidden layer neuron, w(2)
j is the self-feedback

of the j-th neuron of the hidden layer and w(3)
j is the weight that connects the j-th

node of the hidden layer with the output layer node.
The update of the network weights is based on gradient descent [411]:

∂Ei

∂w(3)
j

= −εi(k)
∂O(k)

∂w(3)
j

(1.88)

∂Ei

∂w(2)
j

= −εi(k)
∂O(k)
∂Hj(k)

∂Hj(k)

∂w(2)
j

= −εi(k)w(3)
j δ (i)

j (k) (1.89)

∂Ei

∂w(1)
m j

= −∑
j

[εi(k)
∂O(k)
∂Hj(k)

]
∂Hj(k)

∂w(1)
m j

= −∑
j

εi(k)w
(3)
j β (i)

m j(k) (1.90)

where index i denotes the neural network that models the inverse dynamics of the
i-th flexible link

δ (i)
j (k) =

∂Hj(k)

∂w(2)
j

= F
′
(u j(k))[Hj(k−1)+ w(2)

j δ (i)
j (k−1)] (1.91)

β (i)
m j(k) =

∂Hj(k)

∂w(1)
m j

= F
′
(u j(k))[xm(k)+ w(2)

j β (i)
m j(k−1)] (1.92)

with F
′
j (u j) = Fj(u j)(1−Fj(u j)). The formula for the weights update is given by

w(k + 1) = w(k)−α∇Ei(w) (1.93)

and the gradient ∇Ei(w) is given by

∇Ei(w) = [
∂Ei

∂w(1)
m j

,
∂Ei

∂w(2)
j

,
∂Ei

∂w(3)
j

]T (1.94)

where w = [w(1)
m j ,w

(2)
j ,w(3)

j ]T and α is the learning rate. From Eq. (1.83), (1.84) and
(1.93) it can be seen that the parameters involved in the adaptation of the network’s
weights are: the output of the robot system θ , θ̇ , θ̈ , the current output of the PD
controller and the learning rate α.

It is noted that, the neural-adaptive control scheme depicted in Fig. 1.5 is generic
since in place of the diagonal recurrent neural network, a different neural network
(such as a RBF neural network, which does not include self-feedback in the hidden
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layer neurons) can be considered and can perform well in the suppression of the
flexible-links vibrations.

1.6.4.1 Local Stability Properties of Adaptive Neural Control

Local stability properties of the closed-loop system that consists of the flexible-link
robot, the PD controller and the neural adaptive controller, will be investigated. The
weights update law given in Eq. (1.93) can be suitably tuned so as to assure the sta-
bility of the closed-loop system. To this end, the following discrete-time Lyapunov
function is defined

VL(k) =
1
2
ε2

i (k) (1.95)

Thus, the change of the Lyapunov function due to the weights update is given by

ΔVL(k) = VL(k + 1)−VL(k) =
1
2
[ε2

i (k +1)− ε2
i (k)] (1.96)

The evolution of the modelling error εi in the discrete time is given by

εi(k + 1) = εi(k)+Δεi(k) = εi(k)+ [
∂Ei

∂w
]TΔw (1.97)

where Δw represents a change in an arbitrary weight vector. From the laws for
weights update, given in Eq. (1.88) to Eq. (1.90) one obtains for the weights of the
output layer

Δw = −α∇Ei(w) = αεi(k)
∂O(k)
∂w

(1.98)

Based on the above, the following general convergence lemma has been stated [203]:

Lemma 1: Let α be the learning rate for the weights of the RNN and zmax be defined
as zmax = max||z(k)||2, where z(k) = ∂O(k)

∂w and || · || is the Euclidean norm in Rn.
The convergence is guaranteed if α is chosen as

0 < α <
2

z2
max

(1.99)

Using the previous Lemma the learning rate α that assures the convergence of the
RNN weights update, can be found. The acceptable ranges of variation of the learn-
ing rate α are given in the following theorem [411]:

Theorem 1: Let α3 be the learning rate for the RNN weights w(3). The dynamic back

propagation algorithm converges if 0 < |w(3)
j |< 1, ( j = 1,2, · · · ,h) and the learning

rate α3 is selected as

0 < α3 <
2
h

(1.100)

where h is the number of recurrent neurons in the hidden layer.
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Proof : From Eq. (1.88) it holds that

z(k) =
∂O(k)
∂w(3) = H(k) (1.101)

where H(k) = [h1(k),h2(k), ...,hh(k)]T and h j(k) is the output value of the j-th
neuron in the hidden layer. Since 0 < h j(k) < 1 (due to the sigmoid function
F(x) = 1/(1 + e−x)) and using the definition of the Euclidean norm in Rh, it holds
that ||z(k)||<√

h and zmax(k) = h. Then from Lemma 1, Eq. (1.100) can be obtained.
Similarly, the learning rates α2 and α1 for the weights w(2) and w(1) can be

obtained

0 < α2 <
1
h
[

1

w(2)
max

]2 (1.102)

0 < α1 <
1

h+ 3
[

1

w(1)
maxxmax

]2 (1.103)

where w(2)
max = max||w(2)(k)||.

1.7 Simulation of Flexible-Link Robot Control

The performance of the previously analyzed model-free control methods (energy-
based control and neural adaptive control) are compared to the performance of
model-based techniques (inverse-dynamics control), in a simulation case study for
planar 2-DOF manipulators, in contact-free operation.

1.7.1 Model-Based Control of Flexible-Link Robots

The 2-DOF flexible link robot of Fig. 1.3 is considered. The robot is planar and
consists of two flexible links of length L1 = 0.45m and L2 = 0.45m, respectively.
The dynamic model of the robot is given by Eq. (1.23). The elements of the inertia
matrix M are:

M11 =
(

1 2
2 1

)
, M12 = MT

21 =
(

1 1 0.2 0.3
0.5 0.1 2 0.7

)
, M22 =

(
1 0
0 1

)

The damping matrix was taken to be D = diag{0.04,0.08,0.03,0.06} while the
stiffness matrices was selected as K = diag{0.02,0.04,0.03,0.06}. The inverse dy-
namics control law given in Eq. (1.52) and Eq. (1.53) is employed. The selection
of the gain matrices Kp and Kd determines the transient response of the closed loop
system. The following controller gains have been considered: Kp = diag{0.2,0.2}
and Kd = diag{0.1,0.1}. The desirable joints positions are θd1 = 1 rad and θd2 =
1.4 rad. The performance of the model-based controller is given in Fig. 1.23.
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(a) (b)

Fig. 1.7 Model-based control of a 2-link flexible robot (a) joints’ angles and joints’ angular
velocity, (b) the first two vibration modes for each link
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Fig. 1.8 Model-based control of a 2-link flexible robot in the presence of additive motor-
torques disturbances (a) joints’ angles and joints’ angular velocity, (b) the first two vibration
modes for each link

Moreover, it is considered that an additive disturbance torque appears on each
joint. The disturbance is given by di(t) = 0.3cos(t). The performance of the model-
based controller of the flexible-link robot in the presence of disturbance is depicted
in Fig. 1.8. It can be seen that vibrations around the desirable joint positions cannot
be eliminated.

1.7.2 Energy-Based Control

The same robotic model as in Subsection 1.7.1 is used to simulate the varia-
tion of the manipulator’s joints with respect to time. Energy-based control of
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flexible-link robots is based on Eq. (1.66). The following controller gains have been
used: Kp = diag{1.9,5.6}, Kd = diag{7.2,23.3} and Ki = diag{0.1,0.1}. The desir-
able joint positions are again θd1 = 1.0 rad and θd2 = 1.4 rad. To derive the control
signal of Eq. (1.66) the strains at the base of each link were used, i.e. w

′′
i (0,t). The

performance of the energy-based controller in the case of the 2-DOF flexible link
robot is shown in Fig. 1.9.

Moreover, the performance of the energy-based controller in presence of the ex-
ternal disturbances of Subsection 1.7.1 is given in Fig. 1.10. Suppression of the
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Fig. 1.9 Energy-based control of a 2-link flexible robot (a) joints’ angles and joints’ angular
velocity, (b) the first two vibration modes for each link
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Fig. 1.10 Energy-based control of a 2-link flexible robot in the presence of additive motor-
torques disturbances (a) joints’ angles and joints’ angular velocity, (b) the first two vibration
modes for each link
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vibrations can be achieved if the elements of the gain matrix Kd are given higher
values.

1.7.3 Adaptive Neural Control

The control scheme shown in Fig. 1.5 was implemented. A diagonal recurrent neural
network with 5 nodes at the hidden layer was first used. The following proportional-
derivative (PD) controller gains have been chosen: Kp = diag{1.4,5.6} and Kd =
diag{2.7,6.8}. The additive motor-torques disturbance of Subsection 1.7.1 were
considered. The performance of a PD controller without additional torque from the
neural adaptive controller is depicted in Fig. 1.11.

To compensate for the external disturbances the neural adaptive controller of
Fig. 1.5 was used. The simulation results are depicted in Fig. 1.13. It can be ob-
served that the neural adaptive controller achieves disturbance rejection and results
in suppression of the vibrations of the flexible links.

The flexible-link robot control was also implemented with the use of a Radial
Basis Function (RBF) neural network. The hidden layer of the NN contained 5 nodes
with Gaussian Basis functions, and unlike the diagonal recurrent neural network
no self-feedback in the hidden nodes was considered. The additive motor-torques
disturbance of Subsection 1.7.1 were considered. To compensate for the external
disturbances the neural adaptive controller of Fig. 1.5 was used, but this time using
a RBF neural network. The simulation results are depicted in Fig. 1.13. It can be
observed that the RBF-based neural adaptive controller succeeds suppression of the
vibrations of the flexible links and achieves also convergence of the robot’s joints to
the desirable set-points.
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Fig. 1.11 PD control of a 2-link flexible robot without additional torque from the neural
adaptive controller (a) joints’ angles and joints’ angular velocity, (b) the first two vibration
modes for each link
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Fig. 1.12 DRNN-based neural network control of a 2-link flexible robot in the presence of
additive motor-torques disturbances (a) joints’ angles and joints’ angular velocity, (b) the first
two vibration modes for each link
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Fig. 1.13 RBF-based neural network control of a 2-link flexible robot in the presence of
additive motor-torques disturbances (a) joints’ angles and joints’ angular velocity, (b) the
first two vibration modes for each link

The ISE (integral of the square error) criterion
∫ T

0 e2(t)dt of the examined control
loops is also calculated assuming for all controllers the same proportional-derivative
controller gains Kp = diag{1.2,1.5} and Kd = diag{2.4,1.8}. The results are sum-
marized in Table 1.2. It can be observed that the examined model-free controllers
of the flexible-link robot (i.e. the energy-based controller, the DRNN and RBF
neural-adaptive controllers) are equally effective to (or in certain cases outperform)
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Table 1.2 ISE tracking performance of the control loops

parameter θ1 θ2 θ̇1 θ̇2

inverse-dynamics control 130.31 173.79 31.89 82.41
energy-based control 104.36 180.64 24.83 91.62
DRNN adaptive neural control 88.68 163.76 33.82 85.11
RBF adaptive neural control 108.96 152.97 30.92 100.11

the inverse-dynamics model-based controller. Moreover, it should be taken into ac-
count that the model-free controllers use less a-priori known information about the
flexible-link robot’s dynamics than the inverse-dynamics controller.



Chapter 2
Industrial Robots in Compliance Tasks

Abstract. An analysis of industrial robot control is given, for the case of compliance
tasks. First, rigid-link robotic models are considered and the impedance control and
hybrid position-force control methods are analyzed. Next, force control methods are
generalized in the case of flexible-link robots performing compliance tasks.

2.1 Impedance Control

Up to now the study of control methods for flexible-link robots followed the as-
sumption that the robot operates in the free space. However, when in contact with
a surface, forces are exerted to the robot’s end-effector and a significant issue that
has to be taken into account in the design of the robotic controller is force con-
trol [186],[187]. To solve the force control problem, the kinematic model of the
flexible-link robot described in Chapter 1 will be used. In the case of compliance
tasks, the objective is not only to control the end effector’s position but also to reg-
ulate the force developed due to contact to the processed surface [189],[190]. There
are established approaches for simultaneous position and force control of robotic
manipulators which were initially designed for rigid-link robots and which were
subsequently extended to flexible-link robots.

Tasks like grinding, milling, polishing or assembling need the control of the force
that the end-effector exerts on the workpieces, as well as the control of its position.
The impedance control method is used for simultaneous control of both the position
and the force of the robotic manipulator. The implementation of impedance con-
trol can be understood through an example concerning the deburring process (see
Fig. 2.1). The aim of the deburring process is to remove the burrs from a rough
surface. The deburring quality depends on

1. the rotary speed of the grinding tool ωr

2. the grinding tools penetration depth x
3. the grinding tools velocity parallel to the metals surface ẏ.

G.G. Rigatos: Modelling & Control for Intell. Industrial Sys., ISRL 7, pp. 31–43.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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The above variables can be represented by the command signal Cd

Cd = wωωr + wxx +wyẏ (2.1)

which is equivalent to the force that has to be applied on the metal’s surface (contact
force) in order to succeed removal of all burrs and perform perfect smoothing of
the surface. Thus, the deburring problem initially aiming at finding the values of
ωr, x, and ẏ which assure perfect smoothing of the surface, can now be formulated
as aiming at finding the contact force C∗

d which assures perfect smoothing of the
surface.

Fig. 2.1 Contact forces to a robot’s end effector while performing a deburring task

The reaction force which is applied by the surface on the robot’s end effector is
described by the relation (see [204],[210])

Fe = Fn +Fj (2.2)

Ff is the tangential reaction force (i.e., the friction) and Fn is the perpendicular to
the metal surface reaction force. The analytic expressions of Ff and Fn are

Fn = Ke
ax+ by+ c√

a2 + b2
Ff = ρFn (2.3)

ρ friction coefficient and |Fe| =
√

F2
n +F2

f , Ke spring stiffness coefficient, a,b,c

parameters related to surface curvature. Every force setpoint Cd can be mapped to a
setpoint (xd ,yd) such that the condition |Cd | = |Fn| is satisfied, i.e.,
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Cd = Ke
a√

a2+b2
xd +Ke

b√
a2+b2

yd + Ke
c√

a2+b2

i.e. Cd = Kxxd +Kyyd +Kc

(2.4)

To calculate the setpoint (xd,yd) which corresponds to the command force Cd the
following steps are performed: 1) parameters Ke, xd , and yd are initialized arbitrar-
ily and 2) a continuous update of the above parameters with a gradient algorithm
follows.

The Euler-Lagrange joint-space equation of a n-DOF robot is

D(θ)θ̈ + B(θ , θ̇)+ G(θ ) = τ + JT Fe + τd (2.5)

q∈Rn×1 is the joint angles vector, D(q)∈Rn×n is the inertia matrix, B(q, q̇)∈Rn×1

is the vector of the Coriolis and centrifugal forces, G(q)∈Rn×1 is the gravity force
vector, τ is the torque vector, J is the Jacobian matrix of the robot, Fe is the vector
of the reaction contact forces applied to end-effector, and τd∈Rn×1 is the vector of
the external disturbances.

Unifying B(θ , θ̇ ),G(θ ) in h(θ , θ̇ ) = B(θ , θ̇)+ G(θ ), one gets

D(θ )θ̈ + h(θ , θ̇) = τ + JT F + τd. (2.6)

It is also possible to express the robot dynamic equation in a Cartesian coordinates
system [204],[210]. In this approach, X denotes the position and orientation of the

Fig. 2.2 Impedance controller for robotic deburring
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end-effector, Ẋ denotes its linear velocity, and Ẍ denotes its linear acceleration.
Using the relations Ẋ = J(θ)θ̇ , Ẍ = J̇θ̇ + Jθ̈ , and τ = JT F the robots dynamic
equation in Cartesian coordinates is found to be

D̃Ẍ + h̃ = F + Fe + Fd (2.7)

where D̃ = J−T DJ−1,h̃ = J−T h− D̃J̇q̇,Fe is the reaction force applied to the end-
effector, and Fd is the disturbance force vector.

When the robots end-effector comes in contact with the surface, the reaction
force Fe applied to the end-effector is expressed by a generalized spring model
[204],[210]

Fe = Aδ Ẍ + Bδ Ẍ + KδX (2.8)

where δX = Xd −X displacement from the desired position, K stiffness matrix (di-
agonal to achieve static decoupling). Here, Xd is intentionally designed so that X will
not be able to reach Xd in the steady state (X �= Xd) and is known as virtual com-
manded position. The matrices A, B, and K are positive-definite and influence the
stability and the transient behavior of position tracking. The concept of impedance
control is to find a control law that will transform equation 2.7 into equation 2.8.
Assuming no external disturbance, an appropriate impedance control law is
[204],[210]

F = D̃A−1[Bδ Ẋ + KδX −Fe]+ D̃Ẍd + h̃+(Aδ Ẍ + Bδ Ẋ + KδX) (2.9)

Using the impedance control law equation of Eq. (2.9), one succeeds in transforming
the Cartesian dynamic model of Eq. (2.7) of the robot to the equivalent form of
Eq. (2.8). If the matrices A,B, and K in Eq. (2.8) are appropriately selected such
that the polynomial Z(s) = As2 + Bs + K to be Hurwitz stable (to have poles in
the left complex semiplane), then one can succeed tracking of the desirable force
profile.

2.2 Hybrid Position/Force Control

Apart from impedance control, hybrid position/force control, is an approach for han-
dling compliance tasks. The milling process will be used as an example of the hybrid
position/force control applications to industrial systems. The hybrid controller is
based on the idea of weighting the joint torque’s components which are responsible
for the control of the robot’s degrees of freedom (position, force), via the selec-
tion matrix S. Hybrid position/force control is an expansion of the computed torque
control method [242],[314],[457],[466]. The computed torque method, in combina-
tion with the conversion of joint control signals to the end-effector coordinates and
the selection matrix S, gives the following equation for the hybrid position/force
controller:
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τ = D(θ )J−1[(I −S)ux − J̇θ̇ ]+h(θ , θ̇)
+ h(θ , θ̇ )+ g(θ)+ Fjc + JT f + JT Su f

(2.10)

where D(θ) is the inertia matrix, J is the robot Jacobian, θ is the vector of joint an-
gles, h(θ , θ̇) is the vector of Coriolis and centrifugal forces, g is the vector of gravity
forces, Fjc is the Coulomb friction of the robot joints, f is the force applied to the
environment and ux, u f are the position and force control signals respectively. The
selection matrix S consists of unit and zero elements on the diagonal depending on
the control way (position or force) of the respective degree of freedom. The control
signals ux and u f are provided by controllers which may be conventional or some
kind of adaptive controllers.

Fig. 2.3 Robotic milling

This architecture contains two independent control loops, one of which performs
the position control while the other performs the force control. The methodology
does not introduce any new control law but solves the problem of cooperation of the
two independent control loops in several compliance tasks [108].

2.2.1 Stiffness Identification in Compliance Tasks

In the milling process the knowledge of the materials’ stiffness is necessary. The
evaluation of the stiffness, except from its real value, is a function of the sharpness
of the tool which applies the force to the object. So, if a force is exerted to an object
with a tool of low sharpness the depth obtained will be smaller than that achieved if
the tool is more pointed. So the computed stiffness will be different when the manip-
ulator uses another milling tool. For this reason stiffness identification algorithms
are needed, and can be performed by the manipulator to useless experimental piece
of the material, before the actual milling process starts [108],[183].
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Fig. 2.4 Hybrid positiobforce controller

To this end, a stiffness identification method which is based on a gradient algo-
rithm and the hybrid position/force control method will be presented. The goal of
this method is to achieve a desirable depth by changing the set-point of the force
controller, while the manipulator is not moved to the other degrees of freedom. Let
kn be an arbitrary, initial value for the stiffness of the material to be milled, smaller
than the real stiffness and dmax a desirable depth. Initially a force set-point is calcu-
lated using the equation:

fd = kndmax (2.11)

When the force controller succeeds convergence to this set-point, then the tool is in
real depth dr. This real depth satisfies the equation:

fd = krdr (2.12)

where kr is the real stiffness of the object. From Eq. (2.12) and Eq. (2.11) the relation
of dr and dmax is found to be:

dr = (
kn

kr
)dmax (2.13)

The error ed between the desirable and real depth is:

ed = dmax − dr (2.14)

Now the error cost function J = 1
2 e2

d is defined. The aim of the gradient algorithm is
to minimize J. Differentiating J with respect to knand applying the chain rule gives:

∂J/∂kn = (∂J/∂ed)(∂ed/∂kn) =
ed∂ (dmax − kn

kr
dmax)/∂kn = −eddmax

kr

(2.15)
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The stiffness identification algorithm can not use kr from Eq. (2.15) because it is
unknown. Replacing the ratio dmax/kr in Eq. (2.15) by its value obtained from Eq.
2.13 yields :

∂J/∂kn = −eddr

kn
(2.16)

Therefore the updating equation of the object’s stiffness is:

kn(k +1) = kn(k)+η ed dr/kn (2.17)

where η is the renewal rate. The implementation of the stiffness identification algo-
rithm consists of the following five steps:

Step 1: Initialize the unknown stiffness to an arbitrary value and define the desired
depth.

Step 2: Calculate the force set-point based on the present stiffness value and the de-
sired depth.

Step 3: Wait until the force controller succeeds convergence to the desired force
set-point.

Step 4: If the desired depth has been achieved go to step 5, otherwise compute the
new stiffness value using Eq. (2.17) and go to step 2.

Step 5 : The stiffness has been identified and is equal to the present stiffness value
obtained from Eq. (2.17).

2.2.2 Application of Robot Hybrid Position/Force Control

The milling process is widely met in metal industry and is usually carried out by
appropriate CNC machines. However, when the surface of the metallic object is
of varying curvature (e.g. ship propellers) it might be difficult to tune and use a
conventional milling machine. Therefore when dextrous manipulations are required,
robot-based milling can be more suitable.

In this section the implementation of the robot hybrid position/force control on
the milling process by a desired depth curve will be presented. As desired depth
curve the sin2 function is selected. The milling process will be performed at 10cm
width interval on the object and will have four peaks in this interval. The shape of
this curve is shown in Fig. 2.5.

The milling process will be performed at an horizontal velocity of 2 cm/sec. It
will be assumed that in the horizontal motion there is friction between the tool and
the object which is opposite to the motion. This friction will be assumed propor-
tional to the real depth by a coefficient value 1500 N/m giving a 3 Nt maximum
friction value at the maximum depth of 2 mm.
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Fig. 2.5 Desired depth curve for the milling process

The conventional resolved acceleration hybrid control method and the neuro-
fuzzy hybrid control were applied using a 3-DOF robot manipulator. The robot has
the following parameters: m1 = 5kg, m2 = 5kg, m3 = 2.5kg and l1 = 30cm, l2 =
30cm and l3 = 15cm respectively. The dynamic model of this robot is:

τ = D(θ )θ̈ + h(θ , θ̇)+ g(θ)+ Fjc + JT F (2.18)

The Jacobian of the manipulator is:

J =

⎛
⎝
−l3S123 − l2S12 − l1S1 −l3S123 − l2S12 −l3S123

l3C123 + l2C12 + l1C1 l3C123 + l2C12 l3C123

1 1 1

⎞
⎠ (2.19)

where Si = sin(θi),S ji = sin(θi +θ j), Ci = cos(θi), Cji = cos(θi +θ j) and θi is the
angle between the links i and i+ 1.

The parameters (gains) of the controller are selected as: a) Angle Controller:
kpϕ = 700, kvϕ = 1500, b) Position controller: kpx = 15, kvx = 3.5, c) Force Con-
trolle: kp f = 15, kv f = 5000.

From the requirement the tool to be vertical to the object during the milling pro-
cess the desired angle set–point is found to be 90o. The aim of the horizontal posi-
tion controller is to move the tool with a desired velocity, and the force controller
has to apply the desired force to the object. The trials were performed at desired
horizontal velocities 4 cm/sec and 2 cm/sec and with several kinds of material and
forces. It was also assumed that there is friction between the tool and the object
which is proportional to the real depth by a coefficient with value 1500. The mo-
tion started from the point x = 0.29027m and directed opposite to the x axis, while
the tool was vertical to the object from the beginning. The results are shown in
Fig. 2.6.
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(a) (b)

Fig. 2.6 Stiffness 10000 Nt/m, desired force 20Nt and horizontal movement by 4cm/sec: (a)
force control, (b) position control

2.3 Force Control of Flexible-Link Robots

2.3.1 Interaction with the Compliant Surface

The flexible-link robot model of Eq. (1.37) is now considered. A simple model of
elastic force due to contact of the end-effector with a surface is given by:

F = KeηηT (p− pe) (2.20)

where p = k(θ ,v) are the coordinates of the end-effector which are calculated from
the kinematic model, and η is a vector normal to the surface pe. From the second
line of the dynamic model of Eq. (1.37) one obtains:

M21θ̈ +M22v̈+ Dv̇+Kv = −JT
v (θ ,v)F (2.21)

In the steady-state one obtains

v =−K−1JT
v (θ ,v)F −K−1JT

v (θ ,v)ηKe(pn − pen) ⇒

v = −K−1JvnKe(pn − pen)
(2.22)

where pn = ηT p, pen = ηT pe, and Jvn = JT
v η . The derivative of Eq. (2.22) with

respect to time t is calculated.

v̇ = ∂v
∂θ

∂θ
∂ t = ∂

∂θ {−K−1Jvn Ke(pn − pen)}θ̇ ⇒
v̇ = −K−1 ∂Jvn

∂θ Ke(pn − pen)+ K−1JvnKe
∂ pen
∂θ θ̇

(2.23)

which finally results into

v̇ = −K−1KeJf (θ )θ̇ (2.24)
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with Jf (θ) = ∂Jvn
∂θ Ke(pn − pen) + K−1Jvn Ke

∂ pen
∂θ . Substituting Eq. (2.24) into Eq.

(1.36) gives:

ṗ = Jθ (θ ,v)θ̇ + Jv(θ ,v){−K−1KeJf (θ )}⇒
ṗ = {Jθ (θ ,v)−K−1KeJv(θ ,v)Jf (θ )} (2.25)

The overall Jacobian matrix Jp is defined as:

Jp = Jθ (θ ,v)−K−1KeJv(θ ,v)Jf (θ ) (2.26)

which relates the velocity of the end-effector with the angular velocity of the joints

ṗ = Jp(θ ,v)θ̇ (2.27)

2.3.2 Force Control for Flexible-Link Robots

The desirable contact force along the normal vector of surface pe is denoted as Fd

and corresponds to the desirable position pd . The relation between Fd and pd is
given by

pdn = ηT pd = K−1
e Fd + pen (2.28)

or equivalently pdn − pen = K−1
e Fd ⇒ ηT pd −ηT pe = K−1

e Fd . Thus to succeed con-
tact force equal to Fd the end-effector should reach the depth ηT pd −ηT pe. The
design of the force controller comprises the following steps [380]:

1. For a certain force set-point Fd the corresponding position of the end-effector is
calculated using Eq. (2.28).
2. Knowing pd an inverse kinematics algorithm is used to calculate the associated
joint angles θd and the vibration modes vd .
3. The values of θd and vd are used as set-points of a simple proportional-derivative
joint controller, as the ones described in the previous sections.

The inverse kinematics problem can be solved with the use of an inverse kinematics
algorithm which enables the calculation of θd and vd through the convergence of the
closed-loop system:

θ̇ = JT
P (θ ,v)Kp(pd − p) (2.29)

where Jp is the Jacobian of Eq. (2.26), p is the current position of the end-effector,
pd is the desirable position of the end-effector, and Kp is the diagonal feedback
matrix of Eq. (2.29). The convergence conditions of the inverse kinematics algo-
rithm have been studied [380]. The calculated values θd and vd which are associated
with the desirable position pd are introduced as set-points in the PD controller of
each link. This is given in:

T (t) = K1(θd −θ )+ K2θ̇ + JT
θ (θd ,vd)Fdn (2.30)
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where Fdn = Ke[ηT pd − ηT pe]η and Jθ is the Jacobian of Eq. (1.40). The term
JT
θ Fdn is added to the control signal to compensate for the torques which are induced

to the joints due to the contact forces.
The discrete-time solution of the inverse kinematics gives

θd(k + 1) = θd(k)+ TsJ
T
P (θd(k),vd(k))Kp[pd(k)− p(k)] (2.31)

where the Jacobian Jp is given by Eq.(2.26), and Ts is the sampling period. From
Eq. (2.24), one obtains for the normal vibration modes,

vd(k + 1) = −K−1KeJvn(θd(k))[pn(k)− pen(k)] (2.32)

with pn = ηT p, pen = ηT pe and Jvn = JT
v η .

2.4 Simulation of Force Control for Flexible-Link Robots

In the previous example it was assumed that the flexible-link robot operates in free
space. In the sequel it will be assumed that the manipulator’s end effector contacts
a metallic surface of stiffness Ke and is thus subject to compliance forces.

The 2-DOF flexible manipulator of Fig. 2.7 is considered. The first link of the
robot is rigid and its length is L1 = 0.45m while the second link is flexible and its
length is L2 = 0.38m. The angle setpoints for the two joints are θd1 = 1 rad and
θd2 = 0.4 rad. The elements of the inertia matrix M are:

M11 =
(

1 2
2 1

)
, M12 = MT

21 =
(

1.2 1.3
2.0 1.7

)
, M22 =

(
1 0
0 1

)

Moreover, the damping and stiffness matrices are D = diag{0.03,0.06} and K =
diag{0.03,0.06}, respectively. The constraint surface is described as Ω(X

′
1,Y

′
1) = 0.

The position of the end-effector (XM,YM) can be expressed in terms of the joints
angles θ1 and θ2

XM = L1cos(θ1)+ L2cos(θ1 +θ2)−w(L2,t)sin(θ1 +θ2)
YM = L1sin(θ1)+ L2sin(θ1 +θ2)+ w(L2,t)cos(θ1 +θ2)

(2.33)

where w(L2,t) is the deformation of the flexible link at x = L2. The dynamic model
of the manipulator, initially given in Eq. (1.23) can now be expressed as

(
M11(z) M12(z)
M21(z) M22(z)

)(
θ̈
v̈

)
+
(

F1(z, ż)
F2(z, ż)

)
+
(

02×2 02×2

02×2 D(z)

)(
θ̇
v̇

)
+
(

02×2 02×2

02×2 K(z)

)(
θ
v

)
=

(
T (t)
02×1

)
+
(

JT F
02×1

)

(2.34)
In Eq. (2.34) T (t) is the vector of the motor torques, JT is the Jacobian of the
manipulator with respect to the joint angles θi, i = 1,2 and F = [Fx,Fy]T is the
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Fig. 2.7 A flexible-link robot which operates in the presence of compliance forces
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Fig. 2.8 Control of a 2-link flexible robot in the presence of disturbances induced by compli-
ance forces (a) joints’ angles and joints’ angular velocity when only a PD controller was used,
(b) joints angle and joints angular velocity when an adaptive neural controller was included
in the control-loop

vector of the compliance forces which are applied to the robot’s end-effector due to
contact with the constraint surface Ω(X

′
1,Y

′
1) : X +Y −1 = 0 . In the above dynamic

model it has been assumed that the Jacobian with respect to the vibration modes is
0 and thus the impact of elastic reaction forces can be neglected.
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From Eq. (2.33) the calculation of the Jacobian J with respect to the joint angles
θi, i = 1,2 is straightforward. Moreover, the compliance forces Fx and Fy are pro-
portional to the stiffness of the metallic surface Ke [421]. If the position (XM ,YM)
of the end effector can be measured then its projection (XΩ ,YΩ ) on the surface
Ω(X

′
1,Y

′
1) can be calculated, and the compliance forces will be: Fx = Ke(XM −XΩ )

and Fy = Ke(YM −YΩ).
The control architecture of Fig. 1.5 was employed. The following PD controller

gains were used: Kp = diag{11.1,26.5} and Kd = diag{17.9,45.9}. In the sim-
ulation experiments the value of the stiffness was set to K̄e = 200 Nt/m while
its nominal value was Ke = 100 Nt/m. Thus the effect of the compliance forces
could not be compensated effectively by subtracting the term JT F from the torques
vector [380]. Position error of the robot’s joints should be expected as shown in
Fig. 2.8(a). However, the neural adaptive controller was able to compensate for the
disturbance induced to the robot’s joints by the aforementioned compliance forces
and to eliminate the position error. The associated simulation results are depicted in
Fig. 2.8(b).





Chapter 3
Mobile Robots and Autonomous Vehicles

Abstract. An analysis of the kinematic model of automatic ground vehicles is given
and nonlinear control for this type of vehicles is presented. Moreover, the kinematic
and dynamic model of unmanned surface vessels is studied and nonlinear control
for the dynamic ship positioning problem is in turn formulated.

3.1 Kinematic Analysis of Mobile Robots

3.1.0.1 Nonholonomic Constraints of Autonomous Vehicles

The problem of control of autonomous ground vehicles (AGVs) is first considered.
The position of such a vehicle is described by the coordinates (x,y) of the center of
its rear axis and its orientation is given by the angle θ between the x-axis and the axis
of the direction of the vehicle. The steering angle φ and the speed u are considered
to be the inputs of the system. The kinematic model of autonomous vehicles can be
expressed in the general form [211]

⎛
⎝

ẋ
ẏ
θ̇

⎞
⎠=

⎛
⎝

cos(θ) 0
sin(θ ) 0

0 1

⎞
⎠ ·
(

v(t)
v(t)ρ(t)

)
(3.1)

where (x,y) are the coordinates of the center of the vehicle’s rear wheels axis, v(t)
is the velocity of the vehicle, and θ is the angle between the transversal axis of the
vehicle and axis OX . The autonomous vehicle is a nonholonomic system. Nonholo-
nomic systems are characterized by nonintegrable differential expressions, such as

n

∑
i=i

fi j(q1,q2, · · · ,qn,t)q̇i = 0, j = 1,2, · · · ,m (3.2)

where q̇i represents the n-th generalized coordinate (state variable), m is the number
of equations defining the nonholonomic constraints, q̇i represents the generalized
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speed and fi j are nonlinear functions of qi at time t. For the kinematic model of Eq.
(3.1) the following nonholonomic constraint exists:

ẋsin(θ)− ẏcos(θ ) = 0 (3.3)

The curvature radius for any path can be written as

R(t) =
1

ρ(t)
=

L
tan(φ)

(3.4)

where L is the distance between the front and the back wheels, and φ (namely the
steering angle) is the angle defined by the main axis of the vehicle and the velocity
vector of the front wheel (for cart like vehicles as shown in Fig. 3.1), or the central
front point (for car-like vehicles as shown in Fig. 3.1). The value of R(t) is usually
bounded by Rmin, the minimum curvature radius.

Fig. 3.1 The model of the unicycle autonomous vehicle (cart-like vehicle)

3.2 Control of Autonomous Ground Vehicles

The kinematic model of an autonomous vehicle (robotic unicycle) is considered.
This comes from Eq.(3.1) and is given by

ẋ = vcos(θ ), ẏ = vsin(θ ), θ̇ = ω = v
L tan(φ) (3.5)

where v(t) is the velocity of the vehicle, L is the distance between the front and the
rear wheel axis of the vehicle, θ is the angle between the transversal axis of the
vehicle and axis OX , and φ is the angle of the steering wheel with respect to the
transversal axis of the vehicle (the sign of v and φ depends on whether the vehicle
moves forward or backwards).
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Fig. 3.2 The model of the 4-wheel autonomous vehicle (car-like vehicle)

Flatness-based control can be used for steering the vehicle along a desirable tra-
jectory or for making the robot perform specific tasks such as the parallel park-
ing task. Flatness-based control is based on the property of differential flatness
[99],[209],[221][257],[264]. A system is said to be differentially flat if all its state
variables and the control inputs can be written as function of a suitably selected
variable and its derivatives, where this particular variable is known as flat output
[355],[356]. For linear systems, differential flatness is equivalent to controllability.
For nonlinear systems, flatness-based control enables linearization and calculation
of an appropriate control law for the linearized model [44],[273],[342],[333],[438].

3.2.1 Differential Flatness for Finite Dimensional Systems

Flatness-based control is proposed for steering an autonomous ground vehicle
(AGV) along a desirable trajectory [98],[295],[438]. The main principles of flatness-
based control are as follows [361]: A finite dimensional system is considered. This
can be written in the general form of an ODE, i.e.

Si(w, ẇ, ẅ, · · · ,wi), i = 1,2, · · · ,q (3.6)

The quantity w denotes the system variable while wi, i = 1,2, · · · ,q are its derivatives
(these can be for instance the elements of the system’s state vector). The system
of Eq. (1) is said to be differentially flat if there exists a collection of m functions
y = (y1, · · · ,ym) of the system variables wi, i = 1, · · · ,s and of their time-derivatives,
i.e.

yi = φ(w, ẇ, ẅ, · · · ,wαi), i = 1, · · · ,m (3.7)
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such that the following two conditions are satisfied [98], [333]:

1. There does not exist any differential relation of the form

R(y, ẏ, · · · ,yβ ) = 0 (3.8)

which implies that the derivatives of the flat output are not coupled in the sense of an
ODE, or equivalently it can be said that the flat output is differentially independent.

2. All system variables, i.e. the components of w (elements of the system’s state
vectors) can be expressed using only the flat output y and its time derivatives

wi = ψi(y, ẏ, · · · ,yγi), i = 1, · · · ,s (3.9)

An equivalent definition of differentially flat systems is as follows:

Definition: The system ẋ = f (x,u), x∈Rn, u∈Rm is differentially flat if there exist
relations h : Rn×Rm→Rm, φ : (Rm)r→Rn and ψ : (Rm)r+1→Rm, such that y =
h(x,u, u̇, · · · ,u(r)), x = φ(y, ẏ, · · · ,y(r−1),y(r)) and u = ψ(y, ẏ, · · · ,y(r−1),y(r)). This
means that all system dynamics can be expressed as a function of the flat output
and its derivatives, therefore the state vector and the control input can be written as
x(t) = φ(y(t), ẏ(t), · · · ,y(r)(t)) and u(t) = ψ(y(t), ẏ(t), · · · ,y(r)(t)).

3.2.2 Flatness-Based Control of the Autonomous Vehicle

In the case of the autonomous vehicle of Eq. (3.5) the flat output is the cartesian
position of the center of the wheel axis, denoted as η = (x,y), while the other model
parameters can be written as:

v = ±||η̇||
(

cos(θ )
sin(θ)

)
= η̇

v tan(φ) = ldet(η̇η̈)/v3 (3.10)

These formulas show simply that θ is the tangent angle of the curve and tan(φ) is
the associated curvature. With reference to a generic driftless nonlinear system

q̇, q ∈ Rn,w ∈ Rm (3.11)

dynamic feedback linearization consists in finding a feedback compensator of the
form

ξ̇ = α(q,ξ )+ b(q,ξ )u
w = c(q,ξ )+ d(q,ξ )u

(3.12)

with state ξ ∈ Rv and input u ∈ Rm, such that the closed-loop system of Eq.
(3.11) and Eq. (3.12) is equivalent under a state transformation z = T (q,ξ ) to
a linear system. The starting point is the selection of a m-dimensional output
η = h(q) to which a desired behavior can be assigned (this is the previously defined
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flat output). One then proceeds by successively differentiating the output until the
input appears in a non-singular way. If the sum of the output differentiation or-
ders equals the dimension n + v of the extended state space, full input-state-output
linearization is obtained. The closed-loop system is then equivalent to a set of de-
coupled input-output chains of integrators from ui to ηi. The exact linearization
procedure is illustrated for the unicycle model of Eq. (21). As flat output η = (x,y)
the coordinates of the center of the wheel axis is considered . Differentiation with
respect to time then yields [295],[333]

η̇ =
(

ẋ
ẏ

)
=
(

cos(θ ) 0
sin(θ ) 0

)
·
(

v
ω

)
(3.13)

showing that only v affects η̇ , while the angular velocityω cannot be recovered from
this first-order differential information. To proceed, one needs to add an integrator
(whose state is denoted by ξ ) on the linear velocity input

v = ξ , ξ̇ = α⇒η̇ = ξ
(

cos(θ)
sin(θ )

)
(3.14)

where α denotes the linear acceleration of the vehicle. Differentiating further one
obtains

η̈ = ξ̇
(

cos(θ )
sin(θ )

)
+ξ θ̇

(
sin(θ )
cos(θ)

)
=
(

cos(θ ) −ξ sin(θ )
sin(θ) ξ cos(θ )

)(
α
ω

)
(3.15)

and the matrix multiplying the modified input (α,ω) is nonsingular if ξ �=0. Under
this assumption one defines

(
α
ω

)
=
(

cos(θ ) −ξ sin(θ )
sin(θ) ξ cos(θ )

)
·
(

u1

u2

)
(3.16)

and η̈ is denoted as

η̈ =
(
η̈1

η̈2

)
=
(

u1

u2

)
= u (3.17)

which means that the desirable linear acceleration and the desirable angular velocity
can be expressed using the transformed control inputs u1 and u2. Then, the resulting
dynamic compensator is (return to the initial control inputs v and ω)

ξ̇ = u1cos(θ )+ u2sin(θ)
v = ξ

ω = u2cos(θ)−u1sin(θ)
ξ

(3.18)

Being ξ∈R, it is n + v = 3 + 1 = 4, equal to the output differentiation order in Eq.
(3.17). In the new coordinates
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z1 = x
z2 = y

z3 = ẋ = ξcos(θ )
z4 = ẏ = ξ sin(θ )

(3.19)

The extended system is thus fully linearized and described by the chains of integra-
tors, in Eq. (3.17), and can be rewritten as

z̈1 = u1

z̈2 = u2
(3.20)

The dynamic compensator of Eq. (3.18) has a potential singularity at ξ = v = 0,
i.e. when the vehicle is not moving, which is a case not met while executing the
parking manoeuvres. It is noted however, that the occurrence of such a singularity is
structural for non-holonomic systems. In general, this difficulty must be obviously
taken into account when designing control laws on the equivalent linear model.

A nonlinear controller for output trajectory tracking, based on dynamic feedback
linearization, is easily derived. Assume that the autonomous vehicle must follow a
smooth trajectory (xd(t),yd(t)) which is persistent, i.e. for which the nominal veloc-

ity vd = (ẋ2
d + ẏ2

d)
1
2 along the trajectory never goes to zeros (and thus singularities

are avoided). On the equivalent and decoupled system of Eq. (3.20), one can easily
design an exponentially stabilizing feedback for the desired trajectory, which has
the form

u1 = ẍd + kp1(xd − x)+ kd1(ẋd − ẋ)
u2 = ÿd + kp1(yd − y)+ kd1(ẏd − ẏ) (3.21)

and which results in the following error dynamics for the closed-loop system

ëx + kd1 ėx + kp1ex = 0
ëy + kd2 ėy + kp2ey = 0

(3.22)

where ex = x− xd and ey = y− yd. The proportional-derivative (PD) gains are cho-
sen as kpi > 0 and kdi > 0 for i = 1,2. Knowing the control inputs u1,u2, for the
linearized system one can calculate the control inputs v and ω applied to the vehi-
cle, using Eq. (3.12). The above result is valid, provided that the dynamic feedback
compensator does not meet the singularity. In the general case of design of flatness-
based controllers, the following theorem assures the avoidance of singularities in
the proposed control law [295]:

Theorem: Let λ11, λ12 and λ21, λ22, be respectively the eigenvalues of two equations
of the error dynamics, given in Eq. (3.12). Assume that, for i = 1,2 it is λi1 < λi2 < 0
(negative real eigenvalues), and that |λi2| is sufficiently small. If

mint≥0||
(

ẋd(t)
ẏd(t)

)
||≥
(
ε̇0

x
ε̇0

y

)
(3.23)

with ε̇0
x = ε̇x(0)�=0 and ε̇0

y = ε̇y(0)�=0, then the singularity ξ = 0 is never met.
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3.3 Kinematic and Dynamic Models of Surface Vessels

3.3.1 A Generic Kinematic and Dynamic Ship Model

The motion of a ship is described by two reference frames: (i) a local geographical
earth-fixed frame denoted as OXY and, (ii) a body-fixed frame denoted as O

′
X

′
Y

′

which is attached to the vessel (see Fig. 3.3). The components of the position vector
of the vessel are [x,y,ψ ]T where (x,y) are the coordinates of the ship’s center of
symmetry in a local geographical frame andψ is the orientation angle with reference
to the OX axis of the local coordinates frame.

Fig. 3.3 (i) Components of the linear velocity vector of the vessel in a body-fixed frame
denoted as surge, sway and heave, (ii) Components of the angular velocity of the vessel in a
body-fixed frame denoted as roll, pitch and yaw Euler angles.

The components of the ship’s velocity vector, denoted as us = [u,v,r]T , are the
surge and sway velocities (u,v) and the yaw rate r. The body-fixed velocities u and v
are the time derivatives of the position of the origin of the body-fixed frame relative
to the origin of the local geographical frame expressed in the body-fixed frame. The
yaw rate r stands for the angular velocity of the body-fixed frame with respect to
the local geographical reference frame expressed in the body-fixed frame. Although
in the most general case the ship’s angular velocity has three components, for ship
positioning and heading control, the translational motion is assumed to be confined
to the horizontal plane and the angular velocity to have only one component, which
is the rotation rate r (yaw) about the axis perpendicular to the horizontal plane. A
model for vessel kinematics, relating the ship’s position vector to the ship velocity
vector, can be expressed as

η̇ = R(ψ)v (3.24)
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The kinematic transformation of Eq. (3.24) relates the body-fixed velocities to the
position derivatives in the local geographical frame. The transformation is described
by the rotation matrix

R(ψ) =

⎛
⎝

cosψ −sinψ 0
sinψ cosψ 0

0 0 1

⎞
⎠ , R−1(ψ) = RT (ψ) (3.25)

The equation of the ship dynamics describes the relation between the ship’s velocity
and the generalized forces vector (forces and torques) which is applied to the vessel.

Mv̇ +CRB(v)v + d(Vrc,γc) = τcontrol + τwind + τwaves (3.26)

The inertia matrix M is the sum of two matrices MA and MRB. When a vessel moves
in the water, the changes in the pressure of the hull are proportional to the velocities
and accelerations of the vessel relative to the fluid. The coefficients used to express
the pressure induced forces proportional to the accelerations are called added-mass
coefficients. These forces show the change in momentum in the fluid due to the
vessel accelerations. The positive-definite hydrodynamic added-mass matrix MA is
represented by

MA =

⎛
⎝
−Xu̇ 0 0

0 −Yv̇ −Yṙ

0 −Yṙ −Nṙ

⎞
⎠ (3.27)

where the added-mass coefficients Xu̇, Yv̇, and Nṙ depend on the hull shape. On the
other hand the positive definite rigid-body mass matrix MRB and the skew-symmetric
Coriolis-centripetal matrix CRB(v) are given by

MRB =

⎛
⎝

m 0 0
0 m mxg

0 mxg Iz

⎞
⎠ (3.28)

where xg denotes the longitudinal position of the center of gravity of the vessel
relative to the body-fixed frame.

A frequently used form of the ship’s inertia matrix M is

M =

⎛
⎝

m11 0 0
0 m22 m23

0 m23 m33

⎞
⎠ (3.29)

The Coriolis-centripetal terms matrix CRB is given by

CRB =

⎛
⎝

0 0 −m(xgr + v)
0 0 mu

m(xgr + v) −mu 0

⎞
⎠ (3.30)

The Coriolis-centripetal terms appear as a consequence of expressing the equations
of motion in body-fixed coordinates. It is noted that when a vessel operates under
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positioning control the velocities are small and thus the Coriolis-centripetal terms
CRB(v)v in Eq. (3.26) can be omitted from the ship’s dynamic model.

3.3.2 Models of Current, Wind and Wave Forces

Apart from forces due to control, the right hand side of Eq.(3.26) contains terms
which represent wind and wave forces respectively. Moreover, the term d(Vrc,γc)
on the left hand side of Eq. (3.26) represents the current and damping forces. The
speed of the current is denoted as Vrc while the angle of the current is denoted as γrc

and is defined relative to the bow of the vessel.
It is common practice to write the current forces in surge, sway and yaw as func-

tions of nondimensional current coefficients CXc(γrc), CYc(γrc), CNc(γrc) which is

d(Vrc,γrc) =
1
2
ρV 2

rc

⎛
⎝

AFcCXc(γrc)
ALcCYc(γrc)

ALc L0αCNc(γrc)

⎞
⎠ (3.31)

where ρ is the water density, AFc and ALc are frontal and lateral projected areas of the
submerged part of the vessel and L0α is the length of the ship. However, the current
coefficients CXc(γrc), CYc(γrc), CNc(γrc) are difficult to estimate with accuracy. In
such cases, it is common practice to simplify the model of Eq. (3.31), in terms of a
linear damping term and a bias term which finally takes the form

d(Vrc,γrc)�D(v)v−RT (ψ)d (3.32)

where

D = DT =

⎛
⎝

D11 0 0
0 D22 D23

0 D32 D33

⎞
⎠ , d =

⎛
⎝

d1

d2

d3

⎞
⎠ (3.33)

The linear damping term also models the transfer of energy from the vessel to the
fluid due to the waves that are generated as a consequence of the vessel’s motion.

The wind forces and moments can be represented in a similar way to the current
forces and moments, i.e.

τwind =
1
2
ραV 2

rw

⎛
⎝

AFwCXw(γrw)
ALwCY w(γrw)

ALwL0αCNw(γrw)

⎞
⎠ (3.34)

where ρ0 is the air density, AFw and ALw are the frontal and lateral projected wind
areas and L0α is the vessel’s overall length. The wind speed is Vrw and its direction
is γrw in earth-fixed coordinates. The wind model coefficients can be obtained by
model tests while with reference to the control problem obtaining measurements of
the wind’s speed and direction enables to compensate τwind using a feed-forward
term τ̂wind . The difference (modelling error) between τwind and τ̂wind can be de-
scribed by a bias term RT (ψ)d, as in the case of the current bias term that was given
in Eq. (3.32).
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Wave forces are usually modeled as the sum of a linear and a nonlinear compo-
nent, i.e.

τwaves = τ lin
waves + τnlin

waves (3.35)

The low-frequency nonlinear wave forces can be modeled again by a bias term,
and are modeled as an input disturbance. On the other hand the linear wave forces
are considered to be output disturbances. Therefore, the observation (measurement)
equation of the ship is given by

y = η+ nw + v1 (3.36)

where n is the vessel’s position calculated using the ship’s dynamic model of Eq.
(3.44), v1 is sensor measurement noise and nw is the ship’s displacement due to the
linear wave forces. It has been proposed to approximate the displacement due to
linear wave forces by a linear model driven by Gaussian noise w

ξ̇ = Awξ + Eww
nw = Cwξ

(3.37)

3.3.3 Ship Model for the Dynamic Positioning Problem

Using Eq. (3.32) and the above assumptions about the wind and waves forces, the
vessel’s kinematic and dynamic model described in Eq.(3.24) and Eq. (3.26) re-
specively, is given by

η̇ = R(ψ)v (3.38)

v̇+ M−1Dv = M−1RT (ψ)d + M−1τcontrol + w (3.39)

ḋ = w (3.40)

y = η + nw + v1 or y = n + v (3.41)

The bias is an additive disturbance in the ship’s dynamic model which can be esti-
mated with the use of a state observer. Once the bias is accurately estimated it can
be compensated by including a suitable control term in the right hand side of Eq.
(3.39). This additional control term provides the required robustness to compensate
for the bias effects.

3.3.4 Ship Actuator Model

Without loss of generality the model of a vessel with two propellers and one bow
thruster is considered (see Fig. 3.4). The vector of the ship’s control forces and
torques τ∈R3 are related to propeller pitch ratios vector up (or propeller revolutions
for fixed blade propellers) as follows [126]



3.4 Feedback Linearization for Ship Dynamic Positioning 55

Fig. 3.4 Model of a vessel with two propellers and a bow thruster

τ = T ·K(U)·up (3.42)

where U is the magnitude of the ship’s velocity in the xy-plane i.e. U =
√

u2 + v2

while u denotes the surge velocity and v denotes the sway velocity. Vector u is de-
fined as up = [ f1(p1), f2(p2), f3(p3), f4(δ1), f5(δ2)]T . For the (fully actuated) ship
model of Fig. 3.4 with two propellers p1 and p2, one thruster p3 and two rudders
δ1 and δ2, matrix T∈R3×6 depends on the position of the actuators p1, p2 and p3,
while matrix K(U)∈R6×6 depends on the ship’s velocity and the type of the actua-
tors. The coefficients of matrices T and K are defined as follows: pi, (i = 1,2,3) are
the propeller pitch ratios (or for fixed-blade propellers are the propeller revolutions),
δi, (i = 1,2) are the rudder angles, ti, (i = 1, · · · ,5) are distances of the actuators
from the ship’s symmetry axes, and ki, (i = 1, · · · ,5) are the force coefficients.

3.4 Feedback Linearization for Ship Dynamic Positioning

3.4.1 Ship Control Using Dynamic Feedback Linearization

As mentioned above the kinematic and dynamic model of the ship is given by

η̇ = R·v (3.43)

Mv̇+ D(v)v−RT d = τ (3.44)

From Eq. (3.44) one obtains v = R−1η̇ or since RT = R−1 it can be written as v =
RT η̇ . Similarly one obtains v̇ = ṘT η̇+RT η̈ . Consequently, this gives

M(ṘT η̇ +RT η̈)+ DRT η̇−RT d = τ⇒
RMRT η̈ +RMṘT η̇+RD(v)RT η̇−RRT d = Rτ (3.45)
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Defining the matrices J(η) = RMRT ∈ R3×3, C(η , η̇) = RMṘT∈R3×3, F(η) =
RDRT∈R3×3 and τ∗ = Rτ the dynamic model of the vessel comes to the form of the
dynamic model of a robotic manipulator [94].

J(η)η̈ +C(η , η̇)η̇ + F(η)η̇−d = τ∗ (3.46)

Using the form of the ship inertia matrix M given in Eq. (3.29) and the form of
the damping matrix D given in Eq. (3.33) one obtains the following description for
matrices J(η)η̈ , C(η , η̇) and F(η)

J(η)η̈ =

⎛
⎝

m11cos2(ψ)+ m22sin2(ψ) (m11 −m22)sin(ψ)cos(ψ) −m23sin(ψ)
(m11 −m12)sin(ψ)cos(ψ) m11sin2(ψ)+ m22cos2(ψ) m23cos(ψ)

−m23sin(ψ) m23cos(ψ) m33

⎞
⎠

(3.47)

C(η, η̇) =

⎛
⎝

ψ̇(m22 −m11)sin(ψ)cos(ψ) ψ̇(m11cos2(ψ)+ m22sin2(ψ)) 0
−ψ̇(m11sin2(ψ))+ m22cos2(ψ))) ψ̇(m22 −m11)sin(ψ)cos(ψ) 0

−ψ̇(m23cos(ψ) −ψ̇(m23sin(ψ) 0

⎞
⎠

(3.48)

F(η) =

⎛
⎝

d11cos2(ψ)+ d22sin2(ψ) (d11 −d12)sin(ψ)cos(ψ) −d23sin(ψ)
(d11 −d12)sin(ψ)cos(ψ) d11sin2(ψ)+ d22cos2(ψ) d23cos(ψ)

−d32sin(ψ) d32cos(ψ) d23

⎞
⎠

(3.49)
If all parameters of the model are known, then a controller can be designed based
on dynamic feedback linearization.

η̈ + J(η)−1C(η, η̇)η̇+ J(η)−1F(η)η̇− J−1(η)d = J−1(η)τ∗ (3.50)

Then choosing the control signal to be

τ∗ = J(η)[η̈d + J(η)−1C(η, η̇)η̇ + J(η)−1F(η)η̇− J(η)−1d −KD ˙̃η−KPη̃ ]
(3.51)

where η̃ = η − ηd is the tracking error and KD = diag[kd1,kd2 ,kd3 ] and KP =
diag[kp1,kp2 ,kp3 ] are feedback gain matrices. This finally results into the tracking
error dynamics

η̈− η̈d + KD ˙̃η + KPη̃ = 0
or ¨̃η+ KD ˙̃η + KPη̃ = 0

(3.52)

3.4.2 Estimation of the Unknown Additive Disturbances

Estimation of unknown model parameters and external disturbances affecting a
dynamical system can be performed with the use of a state observer [469]. This
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approach is also applicable to the problem of dynamic ship positioning. It has been
shown that the nonlinear ship model is of the form

η̈ + J(η)−1C(η , η̇)η̇ + J(η)−1F(η)η̇ = J−1(η)τ + J−1(η)d (3.53)

Defining the generalized state vector x = [η,d, η̇ , ḋ]T and considering invariance of
the disturbance d for specific time periods, one obtains the generalized ship state-
space model

η̈ + J(η)−1C(η , η̇)η̇ + J(η)−1F(η)η̇− J−1(η)d = J−1(η)τ
η̈ = 0

(3.54)

Setting x1 = η , x2 = d, x3 = η̇ , x4 = ḋ one obtains
⎛
⎜⎜⎝

ẋ1

ẋ2

ẋ3

ẋ4

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3

03×3 J−1(x) −J−1(x)[C(x, ẋ)+ F(x)] 03×3

03×3 03×3 03×3 03×3

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

03×3

03×3

J−1(x)
03×3

⎞
⎟⎟⎠τ

(3.55)

where xi ∈ R3×1, i = 1,2,3,4 and τ ∈ R3×1. The measurement vector of the ship’s
model is given by

y =
(
x y ψ d1

)
(3.56)

where x,y are measurements of the ship’s cartesian coordinates,ψ is a measurement
of the ship’s orientation and d1 is a measurement of the ship’s distance from the
coast, measured e.g. with the use of a coast radar. Taking into account the existence
of process and measurement noise the ship’s model is written as

ẋ = Ax+ Bu + w
y = γ(x)+ v

(3.57)

there w and v are the vectors of process and measurement noise, respectively. State
vector x can be estimated by processing a sequence of output measurements y with
the use of Kalman or Particle Filtering.

3.5 Backstepping Control for the Ship Steering Problem

3.5.1 The Ship Steering Problem

In the recent years, sophisticated controllers have been proposed for the ship steering
problem, based on advanced control engineering concepts. These include model
reference adaptive control, self-tuning control, optimal control and neural control
[104],[103],[387],[431],[475].

The complete dynamic model of the ship stems from Euler-Lagrange dynamic
analysis [240]. The mathematical model relating the rudder angle δ of the ship to
the heading ψ (Fig. 3.5) was proposed by Norbin (1963) [103], [212]:
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T ψ̈+ K·HN(ψ̇) = K·δ

HN(ψ̇) = n3ψ̇3 + n2ψ̇2 +n1ψ̇+ n0

(3.58)

where HN(ψ̇) is the nonlinear maneuvering characteristic. For a course unstable ship
n1 < 0, whereas a course-stable ship satisfies n1 > 0. For single-screwed ships (one
propeller) n0 �= 0. Similarly, symmetry in the hull implies that n2 = 0. Usually, the
bias term n0 cannot be identified accurately due to the influence of the environmental
disturbances (wind, waves and currents). The function HN(ψ̇), can be found from
the relationship between δ and ψ in steady state, such that ψ̈ = ψ̇ = δ̇ = 0. An
experiment known as the spiral test has shown that HN(φ̇) can be approximated by
[105], [459]

HN(ψ̇) = n3ψ̇3 +n1ψ̇ (3.59)

In the above equations K is a gain (sec−1), and T is a time constant (sec). These
parameters are function of ship’s forward velocity and its length. The state-space
model of the ship can be written as

ẋ1 = x2

ẋ2 = −K
T H(x2)+ K

T u
(3.60)

where y = x1 and u = δ . Setting x1 = ψ and x2 = ψ̇ the state equation of the ship is
obtained: (

ẋ1

ẋ2

)
=
(

0 1
0 0

)(
x1

x2

)
+
(

0
1

)
( f (x,t)+ g(x,t)u + d̃) (3.61)

Fig. 3.5 Kinematic model of the ship
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y =
(
1 0
)(x1

x2

)
(3.62)

where d̃ stands for the external disturbances while the nonlinear functions f (x,t)
and g(x,t) are given by

f (x,t) = −K
T HN(ψ̇) = −K

T {n3ψ̇3 +n1ψ̇}

g(x,t) = K
T

(3.63)

3.5.2 Nonlinear Backstepping

Backstepping control can provide solution to the ship steering problem. Nonlin-
ear backstepping is related to feedback linearization. Backstepping control is based
on a change of coordinates (diffeomorfism). The transformed system is decom-
posed in two cascaded subsystems and a stabilizing function is introduced to the
first one [104]. The stability proof is recursive, i.e. starting from the second sub-
system and moving backwards. Unlike adaptive fuzzy H∞ control, backstepping
control assumes knowledge of the dynamic model of the system. For the nonlinear
system

ẋ = f (x)+ g(x)u
y = h(x) (3.64)

where x = [x1, · · · ,xn]T , it holds that ẏ = ∂h(x)
∂x ẋ = ∂h(x)

∂x [ f (x)+ g(x)u] = Lf h(x)+
Lgh(x)u, where the Lie derivatives are defined as

Lf h(x) = ∂h(x)
∂x f (x), Lgh(x) = ∂h(x)

∂x g(x)

To apply SISO nonlinear backstepping control, the system of Eq. (3.64) has to be
written in a SISO strict feedback form, which means the following lower triangular
form

ẋ1 = f1(x1)+ g1(x1)x2

ẋ2 = f2(x1,x2)+ g2(x1,x2)x3

ẋ3 = f3(x1,x2,x3)+ g3(x1,x2,x3)x4

· · ·
· · ·

ẋn−1 = fn−1(x1,x2, · · · ,xn−1)+ gn−1(x1,x2, · · · ,xn−1)xn

ẋn = fn(x1,x2, · · · ,xn)+ gn(x1,x2, · · · ,xn)u
y = h(x1)

(3.65)

It is considered that y = h(x1) = x1 and that the error is e = y− yd = x1 − yd . The
objective is to succeed limt→∞e(t) → 0. The following theorem holds [201]
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Theorem: N-th order backstepping control law

The n− th order SISO backstepping controller is given by

α1 = 1
Lg1 h(x1) [ẏd −Lf1h(x1)− k1z1 − n1(z1)z1]

α2 = 1
g2(x1,x2)

[α̇1 − f2(x1,x2)−Lg1h(x1)z1 − k2z2 − n2(z2)z2]
...

αi = 1
gi(x1,x2,··· ,xi)

[α̇i − fi(x1, · · · ,xi)−gi−1(x1,x2, · · · ,xi−1)zi−1 − kizi − ni(zi)zi]
· · ·

αn = 1
gn(x1,··· ,xn) [α̇n−1 − fn(x1, · · · ,xn)−gn−1(x1, · · · ,xn−2)zn−1 − knzn −nn(zn)zn]

u = αn
(3.66)

where z1 = h(x1)− yd , zi = xi −αi−1, (i = 2, · · · ,n) and the stabilizing functions αi

are selected so as to compensate for all nonlinearities. This control law leads asymp-
totically the system of Eq. (3.64) to the equilibrium z = 0. The controller gains are
ki > 0 and ni(zi) ≥ 0 for i = 1, · · · ,n. �

Denoting z = [z1, · · · ,zn]T , the resulting error dynamics is given by

ż = −K(z)z+ S(x)z, (3.67)

with K(z) = diag{k1 + n1(z1),k2 + n2(z2), · · · ,kn +nn(zn)}

S(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 Lg1(x1) 0 · · · 0 0 0
−Lg1(x1) 0 g2(x1,x2) · · · 0 0 0

0 −g2(x1,x2) · · · 0 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · 0 gn−1(x1, · · · ,xn−1) 0
0 0 0 · · · −gn−1(x1, · · · ,xn−1) 0 0
0 0 0 · · · 0 −gn(x1, · · · ,xn) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.68)

It holds that zT S(x)z = 0 ∀x,z and K(z) > 0 thus for Vn(z) = 1
2 zT z one gets V̇n(z) =

−zT K(z)z < 0.

3.5.3 Automated Ship Steering Using Backstepping Control

A nonlinear ship model connecting the ship’s heading angle ψ to the rudder’s angle
δ is considered. This model given by Eq. (3.58), i.e.

T ψ̈+HN(ψ̇) = Kδ

HN(ψ) = n3ψ̇3 + n2ψ̇2 +n1ψ̇+ n0
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The SISO backstepping controller is designed in two steps [104]:

Step 1: The error is defined as e = ψ−ψd. Thus

z1 = e
ż1 = ψ̇− ψ̇d

(3.69)

where y = a1 + z2, thus
ż1 = α1 + z2 − ψ̇d (3.70)

The stabilizing function α1 is selected so as to assure that z1 → 0. Therefore,

α1 = θ̇d − k1z1 −n1(z1)z1 (3.71)

Then, using Eq. (3.70) and (3.71) one gets:

ż1 = ψ̇d − k1z1 −n1(z1)z1 + z2 − ψ̇d ⇒ ż1 = −[k1 + n1(z1)]z1 + z2

where k1 and n1(z1) ≥ 0 are design parameters. A candidate Lyapunov function for
z1 is:

V1 = 1
2 z2

1 ⇒ V̇1 = z1ż1 ⇒ V̇1 =−[k1 + n1(z1)]z2
1 + z1z2

Step 2: For the stabilization of the dynamics of z2 one has

ż2 = ψ̈− α̇1 =
K
T
δ − 1

T
HN(ψ̇)− α̇1 (3.72)

The second candidate Lyapunov function is

V2 = V1 + 1
2 z2

2 ⇒ V̇2 = V̇1 + z2ż2 ⇒ V̇2 = −[k1 + n1(z1)]z2
1 + z1z2 + z2ż2 ⇒

V̇2 = −[k1 +n1(z1)]z2
1 + z2[z1 + K

T δ − 1
T HN(ψ̇)− α̇1]

The objective is to find the rudder’s angle δ for which V2 will become negative
definite.

The SISO back-stepping control law is given by

α1 = ψ̇d − k1z1 − n1(z1)z1

u = T
K [α1 − z1 + 1

T HN(x2)− k2z2 −n2(z2)z2]
(3.73)

where x1 = ψ and x2 = ψ̇ , and k2 > 0, n2(z2) ≥ 0 are design parameters. Thus, one
gets

V̇2 = −[k1 + n1(z1)]z2
1 + z2[z1 + K

T
T
K{α̇1 − [k2 +n2(z2)]z2 − z1}]

+K
T

1
K HN(ψ̇)− 1

T HN((̇ψ))− α̇1] ⇒ V̇2 = −[k1 +n1(z1)]z2
1 − [k2 +n2(z2)]z2

2 < 0
∀ z1 �= 0,z2 �= 0

3.5.4 Calculation of the SISO Backstepping Nonlinear Controller

The system of Eq. (3.58) is written in a SISO strict feedback form, according to Eq.
(3.65)
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ẋ1 = x2

ẋ2 = − 1
T [n3x2

3 +n1x2]+ K
T u

where f2(x1,x2)=− 1
T [n3x3

2 +n2x2
2 +n1x2 +n0] and g2(x1,x2) = K

T . Therefore, n = 2
and the SISO backstepping controller is given by the following relations

a1 = 1
Lg1 h(x1) [ẏd −Lf1h(x1)− k1z1 −η1(z1)z1]

a2 = 1
g2(x1,x2)

[α̇1 − f2(x1,x2)−Lg1h(x1)z1 − k2z2 −η2(z2)z2]
u = α2

(3.74)

It holds that
Lg1 h(x1) = ∂h(x1)

∂x1
g1(x1) = ∂x1

∂x1
1 = 1

Lf1 h(x1) = ∂h(x1)
∂x1

f1(x1) = ∂x1
∂x1

0 = 0
(3.75)

thus,
α1 = [ẏd − k1z1 −η1(z1)z1]

α2 = T
K [α̇1 + 1

T HN(θ̇ )− 1z1 − k2z2 −η2(z2)z2]
u = α2

(3.76)

i.e.
α1 = [ẏd − k1z1 −η1(z1)z1]

α2 = T
K [α̇1 − z1 + 1

T HN(ẋ2)− k2z2 −η2(z2)z2]
u = α2

(3.77)

The following gains were used k1 = 2.0, k2 = 2.0, n1(z1) = 1.5 and n2(z1) = 1.2.
The performance of backstepping nonlinear control has been tested in the case

of a see-saw set-point and a sinusoidal setpoint. The results are depicted in Fig. 3.6
and Fig. 3.7.
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Fig. 3.6 (a) Heading ψ (continuous line) and desirable heading ψd (dashed line) of the ship
control and (b) Angular velocity ψ̇ (continuous line) and desirable desirable angular velocity
ψ̇d (dashed line) of the ship when using backstepping control



3.5 Backstepping Control for the Ship Steering Problem 63

0 5 10 15 20 25 30
−5

−4

−3

−2

−1

0

1

2

time (sec)

c
o
n
tr

o
l 
in

p
u
t

0 0.5 1 1.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time (sec)

a
n
g
le

 (
ra

d
)

(a) (b)

Fig. 3.7 (a) Control input (rudder angle δ ) of the ship using backstepping control when
tracking a see-saw set-point, (b) Tracking of a sinusoidal set-point using backstepping control
in the presence of disturbance and measurement noise.





Chapter 4
Adaptive Control Methods for Industrial
Systems

Abstract. A method for the design of stable adaptive control schemes for a class
of industrial systems is first studied. The considered adaptive controllers can be
based either on feedback of the complete state vector or on feedback of the system’s
output. In the latter case the objective is to succeed simultaneous estimation of the
system’s state vector and identification of the unknown system dynamics. Lyapunov
analysis provides necessary and sufficient conditions in the controller’s design that
assure the stability of the control loop. Examples of adaptive control applications to
industrial systems are presented.

4.1 Adaptive Control of Industrial Systems with Full State
Feedback

4.1.1 Problem Statement

Controller design for systems having complex nonlinear dynamics is an important
research field [238],[239],[460]. Many results in this area have been obtained owing
to advances in feedback linearization techniques [118],[330],[345],[446] . Neuro-
fuzzy networks have been made particularly attractive for modeling and control
of nonlinear systems, due to their approximation capabilities, learning and adap-
tation and parallel distributed features. The feasibility of applying neuro-fuzzy
networks to model unknown dynamic systems has been demonstrated in several
studies [61],[227],[339],[392],[396],[478]. Both state feedback and output feedback
linearization methods have been presented. Under certain assumptions, output feed-
back controllers can guarantee the global stability of the closed-loop system, based
on state observers [120],[121],[122],[213],[215],[412].

In this chapter a method for the control of uncertain dynamical systems is ana-
lyzed. In certain cases the state vector of the system can be completely measurable
while in other cases the full state vector is unavailable and has to be reconstructed
with the use of state observers. The latter case forms a complex problem because
it requires to succeed simultaneous convergence of the system’s output to the de-
sirable set-point and convergence of the observer’s output to zero observation error.

G.G. Rigatos: Modelling & Control for Intell. Industrial Sys., ISRL 7, pp. 65–100.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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The chapter proposes neuro-fuzzy estimators to approximate the unknown dynam-
ics of the system and an H∞ control term to compensate for external disturbances.
First it is assumed that the complete state vector of the system is measurable. In
this case the overall control signal consists of i) the equivalent control term which is
based on neurofuzzy approximators, ii) the H∞ control term which compensates for
modelling inaccuracies and external disturbances.

Next it is considered that the system’s state vector is not directly measurable
and thus it has to be estimated from output measurements with the use of a state
observer. In the latter case the overall control signal consists of: i) the equivalent
control term which is based on the neurofuzzy approximators, ii) the H∞ control
term which compensates for modelling inaccuracies and external disturbances, iii)
a control term which compensates for the observation error [260]. The convergence
of the closed-loop that consists of the controller, the neuro-fuzzy approximators and
the state observer depends on the simultaneous existence of solution for two Riccati
equations. Parameters that also affect the closed-loop robustness are: i) the feedback
gain vector K, ii) the observer’s gain vector Ko, iii) the positive definite matrices
P1 and P2 which stem from the solution of the aforementioned algebraic Riccati
equations and which weigh the state observer and supervisory control terms. The
proposed control architecture guarantees that, the output of the closed-loop system
will asymptotically track the desired trajectory and that H∞ performance will be
achieved .

Comparing to model-based approaches the advantages of the proposed adaptive
fuzzy H∞ control are summarized as follows: (i) removal of any dependence upon
identification of the mathematical model expressing the dynamics of the system
under control, (ii) removal of any dependence upon complete knowledge of the
system’s state vector. Control is succeeded only through output feedback, (iii) since
training of the neuro-fuzzy approximators is repeatedly undertaken in every control
cycle, any changes to the system’s dynamics can be identified online, and hence the
control approach is useful for time-varying models, (iv) regarding operation under
external disturbances and measurement noise the adaptive fuzzy H∞ controller offers
improved robustness.

The following non-linear SISO system is considered:

x(n) = f (x,t)+ g(x,t)u + d̃ (4.1)

where f (x,t), g(x,t) are unknown nonlinear functions and d̃ is an unknown additive
disturbance. The objective is to force the system’s output y = x to follow a given
bounded reference signal xd . In the presence of non-gaussian disturbances w, suc-
cessful tracking of the reference signal is denoted by the H∞ criterion [61],[83].

∫ T

0
eT Qedt ≤ ρ2

∫ T

0
wT wdt (4.2)

where ρ is the attenuation level and corresponds to the maximum singular value of
the transfer function G(s) of the linearized equivalent of Eq. (4.1).
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Remark: From the H∞ control theory, the H∞ norm of a linear system with trans-
fer function G(s), is denoted by ||G||∞ and is defined as ||G||∞ = supωσmax[G( jω)]
[83],[208],[241]. In this definition sup denotes the supremum or least upper bound
of the function σmax[G( j(ω)], and thus the H∞ norm of G(s) is the maximum value
of σmax[G( j(ω)] over all frequenciesω . H∞ norm has a physically meaningful inter-
pretation when considering the system y(s) = G(s)u(s). When this system is driven
with a unit sinusoidal input at a specific frequency, σmax|G( jω)| is the largest pos-
sible output for the corresponding sinusoidal input. Thus, the H∞ norm is the largest
possible amplification over all frequencies of a sinusoidal input.

4.1.2 Transformation to a Regulation Problem

For measurable state vector x and uncertain functions f (x,t) and g(x,t) an appro-
priate control law for Eq. (4.1) would be

u =
1

ĝ(x,t)
[x(n)

d − f̂ (x,t)+ KT e +uc] (4.3)

with eT = [e, ė, ë, · · · ,e(n−1)]T , KT = [kn,kn−1, · · · ,k1], such that the polynomial
e(n) + k1e(n−1) + k2e(n−2) + · · ·+ kne is Hurwitz. The control law of Eq. (4.3) re-
sults into

e(n) = −KT e +uc +[ f (x,t)− f̂ (x,t)]+ [g(x,t)− ĝ(x,t)]u+ d̃, (4.4)

where the supervisory control term uc aims at the compensation of the approxima-
tion error

w = [ f (x,t)− f̂ (x,t)]+ [g(x,t)− ĝ(x,t)]u, (4.5)

as well as of the additive disturbance d̃. The above relation can be written in a state-
equation form. The state vector is taken to be eT = [e, ė, · · · ,e(n−1)], which after
some operations yields

ė = (A−BKT )e + Buc + B{[ f (x,t)− f̂(x,t)]+ g(x,t)− ĝ(x,t)]u + d̃} (4.6)

e1 = CT e (4.7)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · · · · 0
0 0 1 · · · · · · 0
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · · · · 1
0 0 0 · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
· · ·
· · ·
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

, K =

⎛
⎜⎜⎜⎜⎜⎜⎝

k0

k1

· · ·
· · ·

kn−2

kn−1

⎞
⎟⎟⎟⎟⎟⎟⎠

, CT =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
· · ·
· · ·
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.8)
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and e1 denotes the output error e1 = x−xd. Eq. (4.6) and (4.7) describe a regulation
problem. The control signal uc is the H∞ control term, used for the compensation of
d̃ and w

uc = − 1
r BT Pe (4.9)

4.1.3 Approximators of Unknown System Dynamics

The approximation of functions f (x,t) and g(x,t) of Eq. (4.1) can be carried out with
Takagi-Sugeno neuro-fuzzy networks of zero or first order (Fig. 4.1). The estimation
of f (x,t) and g(x,t) can be written as

f̂ (x|θ f ) = θT
f φ(x), ĝ(x|θg) = θT

g φ(x) (4.10)

where φ(x) are kernel functions with elements

φ l(x) =
∏n

i=1μ
l
Ai

(xi)

∑L
l=1∏

n
i=1μ

l
Ai

(xi)
l = 1,2, · · · ,L

It is assumed that the weights θ f and θg vary in the bounded areas Mθ f and Mθg

which are defined as

Mθ f = {θ f ∈ Rh : ||θ f || ≤ mθ f },

Mθg = {θg ∈ Rh : ||θg|| ≤ mθg}
(4.11)

with mθ f and mθg positive constants. The values of θ f and θg that give optimal
approximation are:

θ ∗
f = arg minθ f ∈Mθ f

[supx∈Ux | f (x)− f̂ (x|θ f )|]

θ ∗
g = arg minθg∈Mθg

[supx∈Ux |g(x)− ĝ(x|θg)|]
The approximation error of f (x,t) and g(x,t) is given by

w = [ f̂ (x|θ ∗
f )− f (x,t)]+ [ĝ(x|θ ∗

g )− g(x,t)]u ⇒

w = {[ f̂ (x|θ ∗
f )− f (x|θ f )]+ [ f (x|θ f )− f (x,t)]}+

+{[ĝ(x̂|θ ∗
g )− g(x|θg)]+ [g(x|θg)− g(x,t)]u}

where: i) f̂ (x|θ ∗
f ) is the approximation of f for the best estimation θ ∗

f of the weights’
vector θ f , ii) ĝ(x|θ ∗

g ) is the approximation of g for the best estimation θ ∗
g of the

weights’ vector θg. The approximation error w can be decomposed into wa and wb,
where

wa = [ f̂ (x|θ f )− f̂ (x|θ ∗
f )]+ [ĝ(x|θg)− ĝ(x|θ ∗

g )]u

wb = [ f̂ (x|θ ∗
f )− f (x,t)]+ [ĝ(x|θ ∗

g )−g(x,t)]u
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Fig. 4.1 Neuro-fuzzy approximator: Gi Gaussian basis function, Ni: normalization unit

Finally, the following two parameters are defined: θ̃ f = θ f −θ ∗
f , θ̃g = θg −θ ∗

g .

4.1.4 Lyapunov Stability Analysis in the Case of Full State
Feedback

The adaptation law of the weights θ f and θg as well as of the supervisory control
term uc are derived by the requirement for negative definiteness of the Lyapunov
function

V =
1
2

eT Pe+
1

2γ1
θ̃T

f θ̃ f +
1

2γ2
θ̃T

g θ̃g (4.12)

Substituting Eq. (4.6) into Eq. (4.12) and differentiating gives

V̇ = 1
2 ėT Pe+ 1

2 eT Pė+ 1
γ1
θ̃T

f
˙̃θ f + 1

γ2
θ̃T

g
˙̃θg ⇒

V̇ = 1
2 eT{(A−BKT )T P+ P(A−BKT)}e +BT Pe(uc +w+ d̃)+ 1

γ1
θ̃T

f
˙̃θ f + 1

γ2
θ̃T

g
˙̃θg

Assumption 1: For given positive definite matrix Q there exists a positive definite
matrix P, which is the solution of the following matrix equation

(A−BKT )
T

P +P(A−BKT )−PB(
2
r
− 1
ρ2 )BT P +Q = 0 (4.13)

Substituting Eq. (4.13) into V̇ yields after some operations

V̇ = − 1
2 eT Qe + 1

2 eT PB( 2
r − 1

ρ2 )BT Pe +BTPe(− 1
r eT PB)+ BT Pe(w+ d)+

+ 1
γ1
θ̃T

f
˙̃θ f + 1

γ2
θ̃T

g
˙̃θg.

It holds that ˙̃θ f = θ̇ f − θ̇ ∗
f = θ̇ f and ˙̃θg = θ̇g − θ̇ ∗

g = θ̇g. The following weight adap-
tation laws are considered
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θ̇ f = {−γ1eT PBφ(x) i f ||θ f || < mθ f

0 ||θ f || ≥ mθ f

(4.14)

θ̇g = {−γ2eT PBφ(x)uc i f ||θg|| < mθg

0 ||θg|| ≥ mθg

(4.15)

θ̇ f and θ̇g are set to 0, when ||θ f || ≥ mθ f , and ||θg|| ≥ mθg [446]. The update of θ f

stems from a LMS algorithm on the cost function 1
2 ( f − f̂ )2. The update of θg is

also of the LMS type, while uc implicitly tunes the adaptation gain γ2. Substituting
Eq. (4.14) and (4.15) in V̇ finally gives

V̇ = − 1
2 eT Qe− 1

2ρ2 eT PBBT Pe + eT PB(w+ d)−
−eT PB(θ f −θ ∗

f )
Tφ(x)− eT PB(θg −θ ∗

g )Tφ(x)uc

⇒ V̇ = − 1
2 eT Qe− 1

2ρ2 eT PBBT Pe + eT PB(w +d)+ eT PBwα

The control scheme is depicted in Fig. 4.2
Denoting w1 = w+ d +wα one gets

V̇ = − 1
2 eT Qe− 1

2ρ2 eT PBBT Pe + eT PBw1 or equivalently,

V̇ = − 1
2 eT Qe− 1

2ρ2 eT PBBT Pe + 1
2 eT PBw1 + 1

2 wT
1 BT Pe.

Fig. 4.2 The proposed H∞ control scheme in the case of full state feedback
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Lemma: The following inequality holds

1
2

eT PBw1 +
1
2

wT
1 BT Pe− 1

2
ρ2eT PBBT Pe ≤ 1

2
ρ2wT

1 w1 (4.16)

Proof : The binomial (ρa− 1
ρ b)2 ≥ 0 is considered. Expanding the left part of the

above inequality one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 −ab ≥ 0 ⇒

ab− 1
2ρ2 b2 ≤ 1

2ρ
2a2 ⇒ 1

2 ab + 1
2 ab− 1

2ρ2 b2 ≤ 1
2ρ

2a2.

The following substitutions are carried out a = w1 and b = eT PB and the previous
relation becomes

1
2 wT

1 BT Pe+ 1
2 eT PBw1 − 1

2ρ2 eT PBBT P2e ≤ 1
2ρ

2wT
1 w1

The previous inequality is used in V̇ , and the right part of the associated inequality
is enforced

V̇≤− 1
2

eT Qe +
1
2
ρ2wT

1 w1 (4.17)

Eq. (4.17) can be used to show that the H∞ performance criterion is satisfied . The
integration of V̇ from 0 to T gives

∫ T
0 V̇ (t)dt ≤− 1

2

∫ T
0 ||e||2dt + 1

2ρ
2∫ T

0 ||w1||2dt ⇒

2V (T )+
∫ T

0 ||e||2Qdt ≤ 2V (0)+ρ2∫ T
0 ||w1||2dt.

If there exists a positive constant Mw > 0 such that
∫ ∞

0 ||w1||2dt ≤ Mw. Therefore
one gets

∫ ∞
0 ||e||2Qdt ≤ 2V (0)+ρ2Mw (4.18)

Thus, the integral
∫ ∞

0 ||e||2Qdt is bounded and according to Barbalat’s Lemma one
obtains limt→∞e(t) = 0.

4.2 Adaptive Control of Industrial Systems with Output
Feedback

4.2.1 Transformation to a Regulation Problem

For measurable state vector x of the system and uncertain functions f (x,t) and g(x,t)
an appropriate control law for Eq. (4.49) is given by Eq. (4.3). When an observer
is used to reconstruct the state vector x of Eq. (4.3), the control law of Eq. (4.3) is
written as
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u =
1

ĝ(x̂,t)
[x(n)

m − f̂ (x̂,t)+ KT e +uc] (4.19)

The following definitions are used: i) error of the state vector e = x− xm, ii) error of
the estimated state vector ê = x̂− xm, iii) observation error ẽ = e− ê = (x− xm)−
(x̂− xm). Applying Eq. (4.19) to Eq. (4.49), after some algebraic operations, results
into

x(n) = x(n)
m −KT ê+uc +[ f (x,t)− f̂ (x̂,t)]+ [g(x,t)− ĝ(x̂,t)]u + d̃

It holds e = x−xm ⇒ x(n) = e(n) +x(n)
m . Substituting x(n) in the above equation gives

ė = Ae−BKT ê +Buc + B{[ f (x,t)− f̂ (x̂,t)]+ [g(x,t)− ĝ(x̂,t)]u + d̃}

e1 = CT e
(4.20)

ê =
(
ê, ˙̂e, ¨̂e, · · · , ê(n−1)

)T
and A, C, K are given by Eq. (4.8). According to Eq. (4.20)

the observer is:
˙̂e = Aê−BKT ê+ Ko[e1 −CT ê]

ê1 = CT ê
(4.21)

The observation gain Ko = [ko0 ,ko1 , · · · ,kon−2,kon−1 ] is selected so as to assure the
convergence of the observer. Subtracting Eq. (4.21) from Eq. (4.20) one gets

˙̃e = (A−KoCT )ẽ +Buc +B{[ f (x,t)− f̂ (x̂,t)]+ [g(x,t)− ĝ(x̂,t)]u+ d̃}

ẽ1 = Cẽ
(4.22)

The additional term uc which appeared in Eq. (4.3) is also introduced in the
observer-based control scheme to compensate for: i) The external disturbances d̃,
ii) The state vector estimation error ẽ = e− ê = x− x̂, iii) The approximation er-
ror of the nonlinear functions f (x,t) and g(x,t), denoted as w = [ f (x,t)− f̂ (x̂,t)]+
[g(x,t)− ĝ(x̂,t)]u. The control uc consists of: i) the H∞ control term ua, for the com-
pensation of d and w, ii) the control term ub, for the compensation of the observation
error ẽ. The control scheme is depicted in Fig. 4.3.

ua = − 1
r BT P2ẽ

ub = −KT
o P1ê

(4.23)

4.2.2 Approximation of Unknown System Dynamics

The approximation of functions f (x̂,t) and g(x̂,t) of Eq. (4.19) can be carried out
again with Takagi-Sugeno neuro-fuzzy networks of zero or first order (see again
Fig. 4.1). These consist of rules of the form:
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Rl : IFx̂ is Al
1AND ˙̂x is Al

2 AND · · · AND x̂(n−1) is Al
n THEN

ȳl = ∑n
i=1wl

i x̂i + bl, l = 1,2, · · · ,L (4.24)

The output of the Takagi-Sugeno model is calculated by taking the average of the
consequent part of the rules

ŷ =
∑L

l=1ȳl∏n
i=1μ

l
Ai

(x̂i)

∑L
l=1∏

n
i=1μ

l
Ai

(x̂i)

where μAl
i

is the membership function of xi in the fuzzy set Al
i . The training of the

neuro-fuzzy networks is carried out with 1st order gradient algorithms, in pattern
mode, i.e. by processing only one data pair (xi,yi) at every time step i. The estima-
tion of f (x,t) and g(x,t) can be written as

f̂ (x̂|θ f ) = θT
f φ(x̂) ĝ(x̂|θg) = θT

g φ(x̂) (4.25)

where φ(x̂) are kernel functions with elements

φ l(x̂) =
∏n

i=1μ
l
Ai

(x̂i)

∑L
l=1∏

n
i=1μ

l
Ai

(x̂i)
l = 1,2, · · · ,L

Fig. 4.3 The proposed H∞ control scheme in the case of output feedback
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It is assumed that that the weights θ f and θg vary in the bounded areas Mθ f and Mθg ,
while x and x̂ remain in the bounded areas Ux and Ux̂ respectively. The values of θ f

and θg for optimal approximation are:

θ ∗
f = arg minθ f ∈Mθ f

[supx∈Ux,x̂∈Ux̂ | f (x)− f̂ (x̂|θ f )|],

θ ∗
g = arg minθg∈Mθg

[supx∈Ux,x̂∈Ux̂ |g(x)− ĝ(x̂|θg)|].
The approximation error of f (x,t) and g(x,t) is given by

w = [ f̂ (x̂|θ ∗
f )− f (x,t)]+ [ĝ(x̂|θ ∗

g )− g(x,t)]u ⇒

w = {[ f̂ (x̂|θ ∗
f )− f (x|θ ∗

f )]+ [ f (x|θ ∗
f )− f (x,t)]}+

+{[ĝ(x̂|θ ∗
g )− g(x̂|θ ∗

g )]+ [g(x̂|θ ∗
g )g(x,t)]u}

where, i) f̂ (x̂|θ ∗
f ) is the approximation of f for the best estimation θ ∗

f of the weights’
vector θ f , ii) ĝ(x̂|θ ∗

g ) is the approximation of g for the best estimation θ ∗
g of the

weights’ vector θg. The approximation error w can be decomposed into wa and wb,
where

wa = [ f̂ (x̂|θ f )− f̂ (x̂|θ ∗
f )]+ [ĝ(x̂|θg)− ĝ(x̂|θ ∗

g )]u,

wb = [ f̂ (x̂|θ ∗
f )− f (x,t)]+ [ĝ(x̂|θ ∗

g )−g(x,t)]u.

Finally, the following two parameters are defined: θ̃ f = θ f −θ ∗
f and θ̃g = θg −θ ∗

g .

4.2.3 Lyapunov Stability Analysis in the Case of Output Feedback

The adaptation law of the neuro-fuzzy approximators weights θ f and θg as well as
of the supervisory control term uc are derived from the requirement for negative
definiteness of the Lyapunov function

V = 1
2 êT P1ê+ 1

2 ẽT P2ẽ+ 1
2γ1

θ̃T
f θ̃ f + 1

2γ2
θ̃T

g θ̃g (4.26)

The selection of the Lyapunov function is based on the following two principles of
indirect adaptive control: i) ê : limt→∞ x̂(t) = xd(t), ii) ẽ : limt→∞ x̂(t) = x(t) which
yields limt→∞x(t) = xd(t). Substituting Eq. (4.20), and Eq. (4.22), into Eq. (4.26)
and differentiating results into

V̇ = 1
2 êT (A−BKT )T P1ê+ 1

2 ẽTCKT
o P1ê + 1

2 êT P1(A−BKT)ê+

+ 1
2 êT P1KoCT ẽ + 1

2 ẽT (A−KoCT )T P2ẽ+ 1
2 BT P2ẽ(uc +w +d)+

+ 1
2 ẽT P2(A−KoCT )ẽ+ 1

2 ẽT P2B(uc +w +d)+ 1
γ1
θ̃T

f
˙̃θ f + 1

γ2
θ̃T

g
˙̃θ g
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Assumption 1: For given positive definite matrices Q1 and Q2 there exist positive
definite matrices P1 and P2, which are the solution of the following Riccati equations

(A−BKT )T P1 +P1(A−BKT)+ Q1 = 0

(A−KoCT )T
P2 + P2(A−KoCT )−P2B( 2

r − 1
ρ2 )BT P2 +Q2 = 0

P2B = C

(4.27)

The conditions given in Eq. (4.27) are related to the requirement that the systems
described by Eq. (4.21) and Eq. (4.22), are strictly positive real. Substituting Eq.
(4.27) into V̇ yields

V̇ = − 1
2 êT Q1ê+ ẽTCKT

o P1ê− 1
2 ẽT{Q2 −P2B( 2

r − 1
ρ2 )BT P2}ẽ+

+BT P2ẽ(uc + w+d)+ 1
γ1
θ̃T

f
˙̃θ f + 1

γ2
θ̃T

g
˙̃θg

(4.28)

Substituting ua and ub in V̇ and assuming that Eq. (4.27) holds, after some operations
one gets

V̇ = − 1
2 êT Q1ê− 1

2 ẽT Q2ẽ− 1
2ρ2 ẽT P2BBT P2ẽ +BT P2ẽ(w+ d)+

+ 1
γ1
θ̃T

f
˙̃θ f + 1

γ2
θ̃T

g
˙̃θg

(4.29)

It holds that
˙̃θ f = θ̇ f − θ̇ ∗

f = θ̇ f
˙̃θg = θ̇g − θ̇ ∗

g = θ̇g

The following weight adaptation laws are considered [446]:

θ̇ f = {−γ1ẽT P2Bφ(x̂) i f ||θ f || ∈ Mθ f

0 ||θ f || /∈ Mθ f

(4.30)

θ̇g = {−γ2ẽT P2Bφ(x̂)uc i f ||θg|| ∈ Mθg

0 ||θg|| /∈ Mθg

(4.31)

Substituting Eq. (4.30) and using Eq. (4.25) and (4.30) results into

V̇ = − 1
2 êT Q1ê− 1

2 ẽT Q2ẽ− 1
2ρ2 ẽT P2BBT P2ẽ+ ẽT P2B(w +d)− ẽT P2B{[ f̂ (x̂|θ f )+

+ĝ(x̂|θ f )u]− [ f̂ (x̂|θ ∗
f )+ ĝ(x̂|θ ∗

g )u]}
(4.32)

where

[ f̂ (x̂|θ f )+ ĝ(x̂|θ f )u]− [ f̂ (x̂|θ ∗
f )+ ĝ(x̂|θ ∗

g )u] = wa.
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Thus setting w1 = w+ wa +d one finally gets

V̇ = − 1
2 êT Q1ê− 1

2 ẽT Q2ẽ− 1
2ρ2 ẽT P2BBT P2ẽ+ 1

2 wT
1 BT P2ẽ + 1

2 ẽT P2Bw1

Lemma: The following inequality holds

1
2 ẽT P2Bw1 + 1

2 wT
1 BT P2ẽ− 1

2ρ2 ẽT P2BBT P2ẽ ≤ 1
2ρ

2wT
1 w1 (4.33)

Proof : The binomial (ρa− 1
ρ b)2 ≥ 0 is considered. Expanding the left part of the

above inequality results in:

ab− 1
2ρ2 b2 ≤ 1

2ρ
2a2 ⇒ 1

2 ab + 1
2 ab− 1

2ρ2 b2 ≤ 1
2ρ

2a2 (4.34)

Substituting a = w1 and b = ẽT P2B and the previous relation one gets Eq. (4.33) �.

Eq. (4.33) is used in V̇ , and the right part of the associated inequality is enforced

V̇≤− 1
2

êT Q1ê− 1
2

ẽT Q2ẽ +
1
2
ρ2wT

1 w1 (4.35)

Eq. (4.35) is used to show that, the H∞ performance criterion of Eq.(4.2) is derived.
For ρ sufficiently small Eq. (4.35) will be true and the H∞ tracking criterion will
hold. In that case, the integration of V̇ from 0 to T gives

2V (T )+
∫ T

0 ||E||2Qdt ≤ 2V(0)+ρ2∫ T
0 ||w1||2dt (4.36)

where E = [ê, ẽ]T and Q = diag[Q1,Q2]T . If there exists a positive constant Mw > 0
such that

∫ ∞
0 ||w1||2dt ≤ Mw, then for the integral

∫ ∞
0 ||E||2Qdt one gets

∫ ∞
0 ||E||2Qdt ≤ 2V (0)+ρ2Mw (4.37)

Thus, the integral
∫ ∞

0 ||E||2Qdt is bounded and according to Barbalat’s Lemma

limt→∞E(t) = 0 ⇒ limt→∞ê(t) = 0, limt→∞ẽ(t) = 0 (4.38)

Therefore limt→∞e(t) = 0.

4.2.4 Riccati Equation Coefficients and H∞ Control Robustness

The linear system of Eq. (4.20) is considered again, i.e.

˙̃e = (A−KoCT )ẽ +Buc +B{[ f (x,t)− f̂ (x̂,t)]+ [g(x,t)− ĝ(x̂,t)]u+ d̃}
e1 = Cẽ

The aim of H∞ control is to eliminate the impact of the modelling errors w =
[ f (x,t)− f̂ (x̂,t)]+ [g(x,t)− ĝ(x̂,t)]u and the external disturbances d̃ which are not
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white noise signals. This implies the minimization of the quadratic cost function
[208],[241]:

J(t) =
1
2

∫ T

0
ẽT (t)ẽ(t)+ ruT

c (t)uc(t)−ρ2(w+ d̃)T (w+ d̃)dt, r,ρ > 0 (4.39)

The weight r determines how much the control signal should be penalized and the
weight ρ determines how much the disturbances influence should be rewarded in the
sense of a mini-max differential game. The H∞ control law is u(t) = − 1

r BT P2ẽ(t)
where P2 is the positive definite symmetric matrix derived from the algebraic Riccati
equation Eq. (4.27).

The parameter ρ in Eq. (4.39), is an indication of the closed-loop system ro-
bustness. If the values of ρ > 0 are excessively decreased with respect to r, then the
solution of the Riccati equation is no longer a positive definite matrix. Consequently
there is a lower bound ρmin of ρ for which the H∞ control problem has a solution.
The acceptable values of ρ lie in the interval [ρmin,∞). If ρmin is found and used
in the design of the H∞ controller, then the closed-loop system will have increased
robustness. Unlike this, if a value ρ > ρmin is used, then an admissible stabilizing
H∞ controller will be derived but it will be a suboptimal one.

The Hamiltonian matrix

H =

(
A −( 2

r − 1
ρ2 )BBT

−Q −AT

)
(4.40)

provides a criterion for the existence of a solution of the Riccati equation Eq. (4.27).
A necessary condition for the solution of the algebraic Riccati equation to be a
positive semi-definite symmetric matrix is that H has no imaginary eigenvalues [83].

4.3 Application to the Control of Electric Motors

4.3.1 The DC Motor Model

DC motors are widely used in industrial systems, such as robotic manipulators, be-
cause their control is relatively simple and they are reliable for a wide range of
operating conditions. DC motors are usually modelled as linear systems and then
linear control approaches are implemented. However, most linear controllers have
unsatisfactory performance due to changes of the motor/load dynamics and due to
nonlinearities introduced by the armature reaction. Neglecting the impact of ex-
ternal disturbances and of nonlinearities may risk the stability of the closed-loop
system. For the aforementioned reasons DC motor control based on conventional
PID or model-based feedback controllers can be inadequate and more effective con-
trol approaches are needed. If the nonlinearities of the motor are known functions,
then adaptive tracking control methods with the technique of input-output lineariza-
tion can be used [155],[192]. However, when these nonlinearities or disturbances
are unknown, neural or fuzzy control is more suitable for succeeding satisfactory
performance of the closed-loop system [146],[313],[358],[359].
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Results on the successful application of neural identification and control to DC
motor drives have been given in [90],[450],[451], were neural-network controllers
for a DC motor were introduced. The unknown nonlinear dynamics of the motor and
the external load torque were approximated by a multi-layer neural network. The ob-
tained model was used to generate the control input to the DC motor, following the
principles of indirect adaptive control. Several other examples on fuzzy/neural mod-
elling and control of DC motors can be noted. In [205] an identification approach
based on Takagi-Sugeno fuzzy models is applied to the DC motor model. In [72]
fuzzy logic is applied to the modelling of the dynamics of a DC motor drive, and the
obtained model is used to design a controller that compensates for nonlinear distur-
bances. In [166] a fuzzy logic controller with self-tuning properties was proposed to
remove dead-zone effects from DC motor drives. In [199] a self-learning fuzzy logic
controller was applied to the position control of a chopper-fed DC servo system. In
[268],[358],[360] nonlinear neurocontrollers with online learning capabilities were
developed for controlling the speed of brushless DC motors.

The design of nonlinear controllers for high performance servo systems is an on-
going research topic, which can further be advanced using results in the wider area
of neuro-fuzzy control [118],[330],[345],[446]. The feasibility of applying neuro-
fuzzy networks to model unknown dynamic systems has been demonstrated in sev-
eral studies. Both state feedback and output feedback linearization methods have
been presented [61],[227],[348],[392],[396],[478]. Moreover it has been shown that,
neural control based on output feedback controllers and state observers can guaran-
tee the global stability of the closed-loop system [120],[121],[122],[215],[412].

This paper proposes a method for the control of DC motors, which can be applied
to linear or nonlinear models, and which is also robust to uncertainties or external
disturbances. The paper extends the results of [341],[348]. Two cases can be dis-
tinguished: (i) control with feedback of the full state vector, (ii) control using only
output feedback. In the first case the closed-loop system consists of the DC motor
and an adaptive fuzzy controller based on H∞ theory [83],[208],[241]. Neuro-fuzzy
networks are used to approximate the unknown motor dynamics and subsequently
this information is used for the generation of the control signal. In the second case
the closed-loop system consists of the DC motor, a state observer that estimates the
parameters of the state vector from output measurements, and an adaptive fuzzy H∞
controller that uses the estimated state vector. Neuro-fuzzy estimators are employed
as in the first case to approximate the unknown dynamics of the system, but this time
they receive as input the estimated state vector [341]. Moreover, it is shown that the
proposed adaptive fuzzy control method can be applied to field-oriented induction
motors, following the results of [287],[442],[443],[444].

Comparing to model-based approaches, the advantages of the proposed adaptive
fuzzy control are summarized in the following: (i) there is no dependence upon iden-
tification of the mathematical model (linear or nonlinear) expressing the dynamics
of the DC motor, (ii) since training of the neuro-fuzzy approximators is repeat-
edly undertaken in every control cycle, any changes to the motor dynamics can be
identified online, and hence the control approach is useful for time-varying mod-
els, (iii) regarding operation under external disturbances and measurement noise the
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proposed adaptive fuzzy controller offers improved robustness. Finally, in case that
the control is based only on output feedback there is no need to use specific sensors
(for instance accelerometers) to measure all elements of the motor’s state vector.

4.3.2 State Feedback Controller of the DC Motor Model

A direct current (DC) motor model converts electrical energy into mechanical en-
ergy. The torque developed by the motor shaft is proportional to the magnetic flux in
the stator field and to the current in the motor armature (iron cored rotor wound with
wire coils) [357]. There are two main ways in controlling a DC motor: the first one
named armature control consists of maintaining the stator magnetic flux constant,
and varying (use as control input) the armature current. Its main advantage is a good
torque at high speeds and its disadvantage is high energy losses. The second way is
called field control, and has a constant voltage to set up the armature current, while a
variable voltage applied to the stator induces a variable magnetic flux. Its advantages
are energy efficiency, inexpensive controllers and its disadvantages are a torque that
decreases at high speeds. A linear model that approximates the dynamics of the DC
motor is derived as follows: the torque developed by the motor is proportional to the
stator’s flux and to the armature’s current thus one has

Γ = k fΨKα I (4.41)

where Γ is the shaft torque,Ψ is the magnetic flux in the stator field, I is the current
in the motor armature. Since the flux is maintained constant the torque of Eq. (4.41)
can be written as

Γ = kT I, where kT = k fΨKα (4.42)

Apart from this, when a current carrying conductor passes through a magnetic field,
a voltage Vb appears corresponding to what is called electromagnetic force (EMF)

Vb = keω (4.43)

where ω is the rotation speed of the motor shaft. The constants kT and ke have the
same value. Kirchhoff’s law yields the equation of the motor (Fig. 4.4):

V −Vres −Vcoil −Vb = 0 (4.44)

where V is the input voltage, Vres = RI is the armature resistor voltage (R denotes
the armature resistor), Vcoil = Lİ is the armature inductance voltage. The motor’s
electric equation is then

Lİ = −keω−RI +V (4.45)

From the mechanics of rotation it holds that

Jω̇ = Γ −Γdamp−Γd (4.46)
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The DC motor model is finally

Lİ = −keω−RI +V
Jω̇ = keI − kdω−Γd

(4.47)

with the following notations

Notation Significance

L armature inductance
I armature current
ke motor electrical constant
R armature resistance
V input voltage, taken as control input
J motor inertia
ω rotor rotation speed
kd mechanical dumping constant
Γd disturbance torque

where the armature designates the iron cored rotor wound with wired coils. Assum-
ing Γd = 0 and denoting the state vector as [x1,x2,x3]T = [θ , θ̇ , θ̈ ]T , a linear model
of the DC motor is obtained:

⎛
⎝

ẋ1

ẋ2

ẋ3

⎞
⎠=

⎛
⎝

0 1 0
0 0 1

0 −k2
e−kdR
JL

−JR−kdL
JL

⎞
⎠
⎛
⎝

x1

x2

x3

⎞
⎠+

⎛
⎝

0
0
ke
JL

⎞
⎠V (4.48)

Usually the DC-motor model is considered to be linear by neglecting the effect
of armature reaction or by assuming that the compensating windings remove this
effect. Introducing the armature reaction leads to a nonlinear system and in that
case a nonlinear model may be appropriate. In that case the dynamic model of the
DC-motor model can be written as [146]:

ẋ = f (x)+ g(x)u (4.49)

with ẋ denoting the derivative of the motor’s state vector, x = [x1,x2,x3]T = [θ , θ̇ , iα ]
(θ is the position of the motor, θ̇ is the angular velocity of the motor and iα is the
armature current). Functions f (x) and g(x) are vector field functions defined as:

f (x) =

⎛
⎝

x2

k1x2 + k2x3 + k3x2
3 + k4T1

k5x2 + k6x2x3 + k7x3

⎞
⎠ ,g(x) =

⎛
⎝

0
0
k8

⎞
⎠ (4.50)

where k1 = −F/J, k2 = A/J, k3 = B/J, k4 = −1/J, k5 = −A/L, k6 = −B/L, k7 =
−R/L, k8 = −1/L, R and L are the armature resistance and induction respectively,
and J is the rotor’s inertia, while F is the friction.
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Fig. 4.4 Parameters of the DC motor model

Now choosing the motor’s angle to be the system output, the state space equation
of the DC motor can be rewritten as

ẋ1 = x2

ẋ2 = k1x2 + k2x3 + k3x2
3 + k4T1

ẋ3 = k5x2 + k6x2x3 + k7x3 + k8u

y = x1

(4.51)

where T1 the load torque and u is the terminal voltage. From the second row of Eq.
(4.51) one obtains,

ẍ2 = k1ẋ2 + k2ẋ3 +2k3x3ẋ3 ⇒
ẍ2 = k1ẋ2 + k2ẋ3 +2k3k5x2x3 + 2k3k6x2x2

3 + 2k3k7x2
3 + 2k3k8x3u

(4.52)

Thus the input-output relation can be written as

ẍ2 = f̄ (x)+ ḡ(x)u (4.53)

where, f̄ (x) = k1ẋ2 + k2ẋ3 +2k3k5x2x3 + 2k3k6x2x2
3 +2k3k7x2

3, and ḡ(x) = 2k3k8x3.
The control approach that will be developed in this paper is model-free and generic
and can be applied to both linear and nonlinear models.

4.3.3 State Feedback Controller for the DC Motor

The performance of the previously analyzed adaptive fuzzy controller with full-state
feedback, when applied to the DC motor model, is tested in the tracking of several
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reference trajectories. The time step of the simulation experiments was taken to be
Ts = 0.01 sec [338].

For r = 1.0 and ρ = 1.0 the Riccati equation given in Eq. (4.13) was solved.
The basis functions used in the estimation of f (x,t) and g(x,t) were μA j(x̂) =

e(
x̂−c j
σ )2

, j = 1, · · · ,3. In the associated fuzzy rule base there are three inputs x1 = θ ,
ẋ1 = θ̇ and ẍ1 = θ̈ . The universe of discourse of each input variable consisted of 3
fuzzy sets. Consequently 27 fuzzy rules were derived which had the following form:

Rl : IF x1 is Al
1 AND ẋ1 is Al

2 AND ẍ1 is Al
3 T HEN f̂ l is bl (4.54)

and the approximation of function f (x,t) in the motor’s model of Eq. (4.49) was
given by

f̂ (x,t) =
∑27

l=1 f̂ l∏3
i=1μ l

Ai
(xi)

∑27
l=1∏

3
i=1μ l

Ai
(xi)

(4.55)

The centers c(l)
i , i = 1, · · · ,3 can take values in the set {−1.0,0.0,1.0} while the

variances v(l)
i , i = 1, · · · ,3 were given the value v(l)

i = 2.2. Thus taking the possible
combinations the following Rl , l = 1, · · · ,27 are derived where the associated cen-
ters and variances are defined as:

Rule c(l)
1 c(l)

2 c(l)
3 v(l)

R(1) -1.0 -1.0 -1.0 2.2
R(2) -1.0 -1.0 0.0 2.2
R(3) -1.0 -1.0 1.0 2.2
R(4) -1.0 0.0 -1.0 2.2
R(5) -1.0 0.0 0.0 2.2
R(6) -1.0 0.0 1.0 2.2
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

R(27) 1.0 1.0 1 1

Similar was the fuzzy rule base that was used in the approximation of function
g(x,t) of Eq. (4.49). The learning rates γ1 and γ2 of the neurofuzzy networks were
suitably tuned. The controller’s gain K = [k0,k1,k2]T was suitably selected so as to
result in a Hurwitz stable polynomial and to assure the asymptotic convergence of
the tracking error to zero. In the first half of the simulation time the training of the
neuro-fuzzy approximators was carried out. In the second half, the estimated func-
tions f̂ (x,t) and ĝ(x,t) were used to derive the control signal. First the performance
of the proposed state feedback controller was tested in the tracking of a sinusoidal
set-point.

• The position and velocity variations for a sinuoidal set-point are depicted in
Fig. 4.5(a) and Fig. 4.5(b), respectively.
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Fig. 4.5 Full state feedback control of the DC motor: (a) state x1 (dashed line) tracks a sinu-
soidal set-point (continuous line) (b) x2 (dashed line) tracks a sinusoidal set-point (continuous
line)
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Fig. 4.6 Full state feedback control of the DC motor: (a) state x3 (dashed line) tracks a sinu-
soidal set-point (continuous line) (b) control signal (dashed line) for the dc-motor

• The acceleration tracking succeeded for the sinusoidal set-point is shown in
Fig. 4.6(a), while the associated control input is shown in Fig. 4.6(b)

The simulation tests were also extended to the tracking of a see-saw set-point.

• The position and velocity variations for a see-saw set-point are depicted in
Fig. 4.7(a) and Fig. 4.7(b), respectively.

• The acceleration tracking succeeded for the see-saw set-point is shown in
Fig. 4.8(a), while the associated control input is shown in Fig. 4.8(b)
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Fig. 4.7 Full state feedback control of the DC motor: (a) state x1 (dashed line) tracks a see-
saw set-point (continuous line) (b) state x2 (dashed line) tracks the associated set-point (con-
tinuous line)
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Fig. 4.8 Full state feedback control of the DC motor for see-saw reference output: (a) state
x3 (dashed line) tracks the associated set-point (continuous line) (b) control signal (dashed
line) for the dc-motor

From the simulation tests the following remarks can be made: (i) adaptive fuzzy H∞
control based on state feedback succeeds excellent tracking of the reference motor’s
angle θd . Overshoot depends on the selection of the feedback gain K, (ii) Excellent
tracking of the reference angular velocity θ̇d is also achieved, (iii) The variation of
the control input (field voltage) is smooth. This was due to the proper selection of the
feedback gain K, (iv) The neuro-fuzzy networks can succeed good approximations
of the unknown functions f (x, t) and g(x,t). The accuracy in the estimation of g(x,t)
is important for the convergence of the control algorithm.
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4.3.4 Output Feedback Controller for the DC Motor

The performance of the output feedback controller was also tested in the tracking of
several set-points. The time step was again taken to be Ts = 0.01 sec.

The controller’s feedback gain K = [k0,k1,k2]T and the observer’s gain Ko =
[ko0 ,ko1 ,ko2 ]

T were suitably selected so as to assure the asymptotic elimination of
the tracking and observation errors respectively. The basis functions used in the

estimation of f (x,t) and g(x,t) were μA j (x̂) = e(
x̂−c j
σ )2

, j = 1, · · · ,3. Since there
were three inputs x̂1, ˙̂x1 and ¨̂x1 and the associated universes of discourse consisted
of 3 fuzzy sets there were again 27 fuzzy rules of the form:

Rl : IF x̂1 is Al
1 AND ˆ̇x1 is Al

2 AND ˆ̈x1 is Al
3 T HEN f̂ l is bl (4.56)

and

f̂ (x̂,t) =
∑27

l=1 f̂ l∏2
i=1μ

l
Ai

(x̂i)

∑27
l=1∏

2
i=1μ

l
Ai

(x̂i)
. (4.57)

The centers cl
i, i = 1, · · · ,3 take values from the set {−1.0,0.0,1.0} while the vari-

ance of the fuzzy sets vl
i, i = 1, · · · ,3 is given again the value 1. Thus, the centers

c(l)
i , i = 1,2,3 and the variances v(l) of each rule are as follows

Rule c(l)
1 c(l)

2 c(l)
3 v(l)

R(1) -1.0 -1.0 -1.0 2.2
R(2) -1.0 -1.0 0.0 2.2
R(3) -1.0 -1.0 1.0 2.2
R(4) -1.0 -0.0 -1.0 2.2
R(5) -1.0 -0.0 0.0 2.2
R(6) -1.0 -0.0 1.0 2.2
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

R(27) 1.0 1.0 1.0 2.2

Similar was the fuzzy rule base that provided the approximation of function g(x,t)
of Eq. (4.49). The first half of the simulation time was used for training the
neuro-fuzzy approximators and a measurable state vector was used. Matrices P1

and P2 were obtained from the solution of the Riccati equation given in Eq. (4.27).
First, the proposed controller was used for tracking a sinusoidal set-point:

• The position and velocity tracking succeeded in the case of the sinusoidal set-
point are depicted in Fig. 4.9(a) and Fig. 4.9(b), respectively.

• The acceleration tracking succeeded for the sinusoidal set-point is shown in
Fig. 4.10(a), while the associated control input is shown in Fig. 4.10(b).
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Fig. 4.9 Control of the DC motor using output feedback (a) state x1 (dashed line) tracks a
sinusoidal set-point (continuous line) (b) state x2 (dashed line) tracks a sinusoidal set-point
(continuous line)
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Fig. 4.10 Control of the DC motor using output feedback (a) state x3 (dashed line) tracks a
sinusoidal set-point (continuous line) (b) control signal (dashed line) for the dc-motor

The simulation experiments for the adaptive fuzzy control based on output feedback
were also extended to the tracking of a see-saw set-point

• The position and velocity tracking succeeded in the case of the see-saw set-point
are depicted in Fig. 4.11(a) and Fig. 4.11(b), respectively.

• The acceleration tracking succeeded for the see-saw set-point is shown in
Fig. 4.12(a) associated control input is shown in Fig. 4.12(b)
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Fig. 4.11 Control of the DC motor using output feedback (a) state x1 (dashed line) tracks
a see-saw set-point (continuous line) (b)state x2 (dashed line) tracks the associated set-point
(continuous line)
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Fig. 4.12 Control of the DC motor using output feedback for see-saw reference output (a)
state x3 (dashed line) tracks the associated set-point (continuous line) (b) control signal
(dashed line) for the dc-motor

The estimations succeeded for the state x1 = θ of the motor in the case of the
sinusoidal and the see-saw set-point are given in Fig. 4.13(a) and (b) respectively.
Finally, the approximation of the DC motor dynamics (function ĝ(x,t)) by the
neural-fuzzy approximators, in the case of output feedback, is depicted in
Fig. 4.14(a) and (b).

Adaptive fuzzy H∞ control with output feedback has the same advantages as
adaptive fuzzy control with state feedback. These are summarized in the follow-
ing: (i) removal of any dependence upon identification of the mathematical model
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Fig. 4.13 Control of the DC motor with output feedback: estimated (dashed line) vs real value
(continuous line) of the angle θ in the case of (a) sinusoidal set-point (b) see-saw set-point
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Fig. 4.14 Control of the DC motor with output feedback: approximation of the DC motor
dynamics (function ĝ(x,t)) when tracking (a) a sinusoidal set-point, (b) a see-saw set-point.

expressing the dynamics of the motor, (ii) since training of the neurofuzzy approx-
imators contained in the adaptive fuzzy H∞ controller is repeatedly undertaken in
every control cycle, any changes to the motor dynamics can be identified on-line,
and hence the control strategy is useful for time varying motor models, (iii) regard-
ing operation under external disturbances and measurement noise, robustness of the
closed loop is succeeded. Moreover, it should be noted that in the case of adap-
tive fuzzy control with output feedback there is no need to use additional sensors
to measure the velocity and the acceleration of the motor, since the state vector is
reconstructed with the use of an observer.
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4.3.5 Application to the Field-Oriented Induction Motor

4.3.5.1 The Model of the Induction Motor

With the field-oriented method, the dynamic behavior of the induction motor is
rather similar to that of a separately excited DC motor [287],[442],[443]. A decou-
pled relationship is obtained by means of a proper selection of state coordinates and
thus, the rotor speed is asympotically decoupled from the rotor flux, while the speed
can be controlled only by the torque current. However, the control performance of
the induction motor is still influenced by the uncertainties of the motor’s dynamic
model, such as mechanical parameters uncertainty, and external load disturbance
[40],[229],[254],[443]. To compensate for these uncertainties and to control effec-
tively the field-oriented induction motor the adaptive fuzzy controller analyzed in
the previous sections is proposed.

To derive the dynamic model of an induction motor the three-phase variables are
first transformed to two-phase ones. This two-phase system can be described in the
stator-coordinates frame α− b, and the associated voltages are denoted as vsα and
vsb , while the currents of the stator are isα and isb , and the components of the rotor’s
magnetic flux are ψrα and ψrb . Then, the rotation angle of the rotor with respect
to the stator is denoted by δ . Next, the rotating reference frame d − q on rotor, is
defined (Fig. 4.15).

Fig. 4.15 AC motor circuit, with the a−b stator reference frame and the d−q rotor reference
frame

The state vector of the motor is defined as x = [θ ,ω ,ψrα ,ψrb , isα , isb ] and the
dynamic model of the induction motor is written as [5]:

ẋ = f (x)+ gα(x)vsα +gb(x)vsb (4.58)
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with

f (x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

x2

μ1(x3x6 − x4x5)− TL
J

α1x3 − npx2x4 +α1Mx5

npx2x3 −α1x4 +α1Mx6

α1β1x3 + npβ1x2x4 − γx5

−npβ1x2x3 +α1β1x4 − γ1x6

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.59)

gα = [0,0,0,0, 1
σLs

,0]T gb = [0,0,0,0,0, 1
σLs

]T (4.60)

J is the rotor’s inertia, and TL is the external load torque. The rest of the model

parameters are α1 = Rr
Lr

, β1 = M
σLsLr

, γ1 = ( M2Rr
σLsL2

r
+ Rs

σLs
), μ1 = npM

JLr
, where Ls, Lr

are the stator and rotor autoinductances, M is the mutual inductance and np is the
number of poles.

4.3.5.2 Field-Oriented Control of the Induction Motor

The classical method for induction motors control is based on a transformation of
the stator’s currents (isα and isb ) and of the magnetic fluxes of the rotor (ψrα and
ψrb ) to the reference frame dq which rotates together with the rotor (Fig. 4.15). In
the d−q frame there will be only one non-zero component of the magnetic flux ψrd ,
while the component of the flux along the q axis equals 0 [340]. The new inputs of
the system are considered to be vsd , vsq , which are connected to vsα , vsb of Eq. (4.58)
according to the relation

(
vsα
vsb

)
= ||ψ ||·

(
ψsα ψsb
ψsb ψsα

)−1(
vsd
vsq

)
(4.61)

where ψ = ψrd and ||ψ|| =
√
ψ2

sα +ψ2
sb

. Next, the following nonlinear feedback

control law is defined

(
vsd
vsq

)
= σLs

⎛
⎝ −npω isq − αMisq

2

ψrd
−αbψrd + vd

npω isd + bnpωψrd + αMisqisd
ψrd

+ vq

⎞
⎠ (4.62)

The control signal in the coordinates system α− b is

(
vsα
vsb

)
= ||ψ ||σLs

(
ψsα ψsb
−ψsb ψsα

)
·−1

⎛
⎝ −npω isq − αMisq

2

ψrd
−αβψrd + vd

npωisd +βnpωψrd + αMisqisd
ψrd

+ vq

⎞
⎠

(4.63)
Substituting Eq. (4.63) into Eq. (4.58) one obtains

d
dt

= μψrdisq −
TL

J
(4.64)
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d
dt

isq = −γisq + vq (4.65)

d
dt
ψrd = −αψrd +αMisd (4.66)

d

dt
isd = −γisd + vd (4.67)

d

dt
ρ = npω+αM

isq

ψrd
(4.68)

The system of Eq. (4.64) to Eq. (4.68) consists of two linear subsystems, where
the first one has as output the magnetic flux ψrd and the second has as output the
rotation speed ω , i.e.

d
dt
ψrd = −αψrd +αMisd (4.69)

d
dt

isd = −γisd + vd (4.70)

d

dt
ω = μψrd isq −

TL

J
(4.71)

d
dt

isq = −γisq + vq (4.72)

If ψrd→ψr
ref
d , i.e. the transient phenomena for ψrd have been eliminated and there-

fore ψrd has converged to a steady state value then Eq. (4.71) is decoupled ψrd ,
then the two subsystems described by Eq. (4.69)-(4.70) and Eq. (4.71)-(4.72) are
decoupled.

The subsystem that is described by Eq. (4.69) and Eq. (4.70) is linear and has
as control input vsd , and can be controlled using methods of linear control, such as
optimal control, or PID control. For instance the following PI controller has been
proposed for the control of the magnetic flux

vd(t) = −kd1(ψrd −ψr
ref
d )− kd2

∫ t

0
(ψrd(τ)−ψrd

ref(τ))dτ (4.73)

If Eq. (4.73) is applied to the subsystem that is described by Eq. (4.69) and Eq.
(4.70), then one can succeed ψrd(t)→ψr

ref
d (t). If ψrd(t) is not sufficiently measur-

able using Hall sensors then it can be reconstructed using some kind of observer.
Now the subsystem that consists of Eq. (4.71) and Eq. (4.72) is examined. The

term T = μψrd
refisq denotes the torque developed by the motor. The above men-

tioned subsystem is a model equivalent to that of a DC motor and thus after succeed-
ing ψrd→ψr

ref
d , one can also control the motor’s speed ω , using control algorithms

already applied to the control of DC motors.
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4.3.5.3 Adaptive Fuzzy Control for the Decoupled Induction Motor

It is assumed that the motor rotates a rigid link of length l, while a lumped mass m
is attached to the end of the link. Then the model of Eq. (4.71) and Eq. (4.72) can
be written as [340]

J
′ d
dt
ω = μ

′
ψ re f

rd isq −bθ̇ −mglsin(θ ) (4.74)

d
dt

isq = −γisq + vd (4.75)

where J
′
= J + ml2 is the total inertia, b

′
is the friction coefficient, and μ ′

= np

J′
M
Lr

.

The above nonlinear model can be written as J
′ θ̈ = HN(θ)+ Kisq which is of the

form
ẍ = f (x)+ g(x)u (4.76)

with f (x) = HN (θ)
J′

and g(x) = K
J′

. The objective is to force the system’s output (angle
of the motor) y = x to follow a given bounded reference signal xd . The decoupled
model of the induction motor can be controlled using the adaptive fuzzy H∞ con-
troller that was analyzed in the previous sections.

Again, in the presence of non-gaussian disturbances w, successful tracking of the
reference signal is denoted by the H∞ criterion of Eq. (4.2). As in the case of the DC
motor, for measurable state vector and uncertain functions f (x,t) and g(x,t) an ap-

propriate control law for Eq. (4.76) is again given by Eq. (4.3), i.e. u = 1
ĝ(x,t) [x

(n)
d −

f̂ (x,t) + KT e + uc]. The error vector is given by eT = [e, ė, ë, · · · ,e(n−1)]T , and
the feedback gain KT = [kn,kn−1, · · · ,k1], is selected so as the polynomial e(n) +
k1e(n−1)+k2e(n−2)+ · · ·+kne to be Hurwitz. The control law of Eq. (4.3) results into
the error dynamics described in Eq. (4.4) to Eq. (4.8), which describe a regulation
problem. The control signal uc is the H∞ control term, used for the compensation of
d̃ and w, as defined in Eq. (4.9), i.e uc = − 1

r BT Pe.
The adaptive fuzzy controller described above was used in the control of the field-

oriented induction motor, while matrix P in the control law of Eq. (4.9) was found
from Eq. (4.13) . The following controller parameters were used: the feedback gain
was K = [10,2.65]T and for r = 0.1 and ρ = 0.235 the solution of Eq. (4.13) was

P =
(

12 2
2 0.8

)
, Q =

(
47.57 4.32
4.32 1.45

)
(4.77)

Finally, the learning rates of the neurofuzzy approximators were set to γ1 = 0.025,
and γ2 = 0.235. The results of set-point tracking are given in Fig. 4.16 to 4.17. It can
be observed that although prior knowledge of the induction motor’s dynamic model
was not available, the adaptive fuzzy H∞ controller resulted in satisfactory tracking
of the reference trajectory.
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Fig. 4.16 Adaptive fuzzy control: (a) state variable x1 = ωr of the motor (dashed line), (b)
state variable x2 = isq of the motor (dashed line)
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Fig. 4.17 Adaptive fuzzy control: (a) control input (dashed line) to the field-oriented induc-
tion motor, (b) approximation of function g(x,t) by the fuzzy neural network

4.4 Application to the Ship Steering Control Problem

Using the previously analyzed methodology an adaptive fuzzy controller is designed
for the ship steering problem described in Chapter 3. The performance of adaptive
fuzzy H∞ control is depicted in Fig. 4.18 [339]. The control input to the ship model
generated by adaptive fuzzy H∞ control and nonlinear backstepping control is de-
picted in Fig. 4.22(b).
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Fig. 4.18 (a) Heading ψ (continuous line) and desirable heading ψd (dashed line) of the ship
when tracking a see-saw setpoint using adaptive fuzzy H∞ control (b) Angular velocity ψ̇
(continuous line) and desirable desirable angular velocity ψ̇d (dashed line) of the ship when
tracking a see-saw set-point using adaptive fuzzy H∞ control.

0 5 10 15 20 25 30
−5

−4

−3

−2

−1

0

1

2

time (sec)

c
o
n
tr

o
l 
in

p
u
t

Fig. 4.19 Control input (rudder angle δ ) of the ship when tracking a see-saw set-point using
adaptive fuzzy H∞ control

The approximation of the unknown nonlinear functions f̂ (x,t) and ĝ(x,t) that
were obtained by the neuro-fuzzy approximators in the case of a see-saw setpoint
using adaptive fuzzy H∞ control are shown in Fig. 4.20.

The performance of adaptive fuzzy H∞ control was also examined in the case
of a sinuoidal set-point. The simulation results are given in Fig. 4.21. To further
increase the simulation difficulty, measurement noise was considered. Specifically,
a random sequence was added to the measurement of the ship’s heading angle ψ
and to the ship’s velocity ψ̇ . The noise in the measurement of ψ varied in the inter-
val [−1.0o,+1.0o], while the noise in the measurement of the change of the ship’s
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Fig. 4.20 Tracking of a see-saw setpoint with adaptive fuzzy H∞ control (a) approximation
f̂ (x,t) (continuous line) of function f (x,t) (dashed line) (b) approximation ĝ(x,t) (continuous
line) of function g(x,t) (dashed line).
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Fig. 4.21 Tracking of a sinusoidal setpoint (dashed line) with adaptive fuzzy H∞ control (a)
angle ψ (b) angular velocity ψ̇.

heading ψ̇ varied in the interval [−0.3o/sec,0.3o/sec]. The tracking of a sinusoidal
setpoint in the presence of measurement noise is depicted in Fig. 4.22(a).

From the simulation tests given in the sequel, as well as from the simulation
results on ship steering with the use of backstepping control which have been pre-
sented in subsection 3.5.4 the following remarks can be made: (i) In Fig. 4.18(a) it
can be observed that adaptive fuzzy H∞ control succeeds tracking of the reference
angle φd that is comparable to that of nonlinear back-stepping control. Overshooting
depends on the selection of the feedback gain K. (ii) From Fig. 4.18(b) it is clear that



96 4 Adaptive Control Methods for Industrial Systems

0 0.5 1 1.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time (sec)

a
n
g
le

 (
ra

d
)

Fig. 4.22 Tracking of a sinusoidal set-point in the presence of disturbance and measurement
noise, using adaptive fuzzy H∞ control

both control methods result in excellent tracking of the reference angular velocity
φ̇d . (iii) In Fig. 4.19 the variation of the control input appeared to be more abrupt in
the case of adaptive fuzzy H∞ control. This was due to the selection of the feedback
gain K, (iv) From Fig. 4.20 it can be seen that the neuro-fuzzy networks succeed
good approximations of the unknown functions f (x,t) and g(x,t). The accuracy in
the estimation of g(x,t) is critical for the convergence of the control algorithm (v)
In Fig. 4.21 the excellent performance of adaptive fuzzy H∞ control is verified in
the case of sinusoidal set-points. (vi) Finally, in Fig. 4.22 the performance of adap-
tive fuzzy H∞ control and nonlinear backstepping control is evaluated in case that
measurement noise is added to the ship’s state vector. It can be observed that both
controllers maintain the output of the closed-loop system within acceptable levels.

Comparing to nonlinear backstepping control, the advantages of adaptive fuzzy
H∞ control are summarized in the following: (i) removal of any dependence upon
identification of the mathematical model expressing the dynamics of the ship, (ii)
since training of the neurofuzzy approximators contained in the adaptive fuzzy H∞
controller is repeatedly undertaken in every control cycle, any changes to the ship
dynamics can be identified on-line, and hence the control strategy is useful for time
varying ship models. Moreover regarding operation under external disturbances and
measurement noise, the adaptive fuzzy H∞ controller performs equally well to the
nonlinear back-stepping controller.

4.5 Application to the Stabilization of Electromechanical
Systems

The performance of the proposed adaptive fuzzy H∞ controller was also tested in
the benchmark problem of cart-pole balancing (Fig. 4.23).
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Fig. 4.23 The cart-pole balancing problem

The derivation of the state equations of the cart-pole system stems from the solu-
tion of an Euler-Lagrange equation. The model presented here, follows [446],[447],
and considers only the dynamics of the pole (inverted pendulum). Denoting by θ
the angle of the pole, m the mass of the pole, M the mass of the cart and l the length
of the pole, one gets

θ̈ = mlsin(θ)cos(θ)θ̇2−(m+M)gsin(θ)
mlcos2(θ)−2(m+M)l + cos(θ)

mlcos2(θ)−2(m+M)l u (4.78)

Setting x1 = θ and x2 = θ̇ the state equation of the cart-pole system is obtained:
(

ẋ1

ẋ2

)
=
(

0 1
0 0

)(
x1

x2

)
+
(

0
1

)
( f (x,t)+ g(x,t)u + d̃) (4.79)

y =
(
1 0
)(x1

x2

)
(4.80)

where the nonlinear functions f (x,t) and g(x,t) are given by

f (x,t) =
mlx2

2sin(x1)cos(x1)− (M + m)gsin(x1)
mlcos2(x1)− 2l(M + m)

(4.81)

g(x,t) =
cos(x1)

mlcos2(x1)−2l(M +m)
(4.82)

The following parameter values were chosen: m = 0.1kg, M = 1.0kgr, l = 0.5m.
The learning rates of the neuro-fuzzy approximators were taken to be γ1 = 0.015,
γ2 = 0.035. The controller’s gain was K = [0.3,0.9]T while the observer’s gain was
Ko = [0.8,1.0]T . The basis functions used in the estimation of f (x,t) and g(x,t)
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were μA j(x̂) = e(
x̂−c j
σ )2

, j = 1, · · · ,5. Since there are two inputs x1 and ẋ1 and the
associated universes of discourse consist of 5 fuzzy sets there will be 25 fuzzy rules
of the form:

Rl : IF x̂1 is Al
1 AND ˙̂x1 is Al

2 THEN f̂ l is bl (4.83)

and f̂ (x̂,t) =
∑25

l=1 f̂ l∏2
i=1μ

l
Ai

(x̂i)

∑25
l=1∏

2
i=1μ

l
Ai

(x̂i)
. The centers c(l)

i , i = 1,2 and the variances v(l) of each

rule are as follows

Rule c(l)
1 c(l)

2 v(l)

R(1) -0.3 -0.03 3
R(2) -0.3 -0.01 3
R(3) -0.3 0.00 3
R(4) -0.3 0.01 3
R(5) -0.3 0.03 3
R(6) -0.1 -0.03 3
· · · · · · · · · · · ·
· · · · · · · · · · · ·

R(25) 0.3 0.03 3

The estimation ĝ(x̂,t) was derived in a similar way. The overall simulation time was
ts = 30sec. In the first half of the simulation time a measurable state vector was
assumed and used for the training of the neuro-fuzzy approximators. The positive
definite matrix P1 stems from the solution of the algebraic Riccati equation (4.27),
which for Q = I2 resulted into

P1 =
(

0.372 0.167
0.167 0.741

)
(4.84)

The positive definite matrix P2 stems from the solution of the algebraic Riccati equa-
tion (4.27), which for ρ = 0.773 and r = 0.003, and resulted into

P2 =
(

133.2 1.0
1.0 0.2

)
Q2 =

(
880.12 0.8

0.8 24.6

)
(4.85)

with P2B ≈ C. For the selected values of P2, Q2, ρ and r it can be verified that Eq.
(4.40) has no imaginary eigenvalues.

The time step was taken to be 0.01 sec. Two different set-points were studied: i)
a sinusoidal signal of amplitude 0.1 and period T = 15sec, ii) a see-saw set-point
of amplitude 0.15 and period T = 15sec. At the beginning of the second half of the
simulation time an additive sinusoidal disturbance of amplitude A = 1.0 and period
T = 7.5sec was applied to the system. The approximations f̂ and ĝ were used in the
derivation of the control law, given by Eq. (4.19).
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Fig. 4.24 (a) Tracking of a sinusoidal position set-point (dashed line) by the angle of the
pendulum (continuous line), using adaptive fuzzy control (b) Tracking of a sinusoidal veloc-
ity set-point (dashed line) by the angular velocity of the pendulum (continuous line) using
adaptive fuzzy control
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Fig. 4.25 Control input u of the cart-pole system when tracking a sinusoidal set-point under
the use of adaptive fuzzy control

Simulation experiments are presented for the case in which the state vector of
the cart-pole model in reconstructed with the use of an observer. A sinusoidal and a
see-saw set-point are considered.

The position and velocity variations for the sinusoidal set-point are depicted in
Fig. 4.24(a) and Fig. 4.24(b), respectively.

The associated control input is shown in Fig. 4.25.
The performance of the proposed adaptive fuzzy H∞ control is also tested in the

tracking of a see-saw set-point. The position and velocity variation are demonstrated
in Fig. 4.26(a) and Fig. 4.26(b), respectively. The variation of the control input for
the see-saw set-point is depicted in Fig. 4.27.
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Fig. 4.26 (a) Tracking of a see-saw position set-point (dashed line) by the angle of the pen-
dulum (continuous line), using adaptive fuzzy control (b) Tracking of a see-saw velocity set-
point (dashed line) by the angular velocity of the pendulum (continuous line) using adaptive
fuzzy control
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Fig. 4.27 Control input u of the cart-pole system when tracking a see-saw set-point under the
use of adaptive fuzzy control



Chapter 5
Robust Control Methods for Industrial Systems

Abstract. Robust control approaches for industrial systems are studied. Such meth-
ods are based on sliding-mode control theory where the controller’s design is per-
formed in the time domain and Kharitonov’s stability theory where the controller’s
design is performed in the frequency domain. Applications of robust control to in-
dustrial systems are given.

5.1 Robust Control with Sliding-Mode Control Theory

5.1.1 Sliding-Mode Control

The following nonlinear and non-autonomous open-loop system is considered:

x(n)(t) = f (x,t)+ b(x,t)u + d̃,xn =
dnx
dtn , (5.1)

where x(t) = (x, ẋ, . . . ,x(n−1))T is the state vector, d̃(x,t) is a time-dependent distur-
bance with known upper bound,and f (x,t) and b(x,t) are nonlinear functions.

The tracking problem for Eq. (5.1) is to find a control law for a desirable trajec-
tory xd(t) such that the tracking error x(t)−xd(t) tends to zero independently of the
system’s uncertainties. The tracking error of the state vector is

e(t) = x(t)− xd(t) = (e, ė, . . . ,e(n−1))T

with e(t) = x(t)− xd(t)
(5.2)

The sliding surface s(x,t) = 0 is defined,where

s(x,t) = (
d
dt

+λ )n−1e =
n−1

∑
k=0

(
n− 1

k
)λ ke(n−1−k) (5.3)

with initial condition e(0) = 0. This means that,by setting s(x,t) = 0, one has an
homogenous differential equation which has a unique solution e = 0. Consequently,

G.G. Rigatos: Modelling & Control for Intell. Industrial Sys., ISRL 7, pp. 101–118.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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an appropriate control rule u has to be found,to keep the state vector e on the sliding
surface s(x,t) = 0. To this end,a Lyapunov function is defined

V =
1
2

s2 (5.4)

with V (0) = 0 and V (s) > 0 for s > 0. An efficient condition for the stability of the
system is (see [233],[300],[388],[454]):

V̇ = 1
2

d
dt s2≤−η|s| (5.5)

which leads to the convergence condition:

sṡ ≤−η|s| ⇒ sṡ ≤−ηsign(s)s ⇒ ṡsign(s) ≤−η. (5.6)

Fig. 5.1 Error state vector in the sliding mode

If η > 0, then system is driven to the sliding mode. This means that, if the state
trajectory [e, ė]T has reached the sliding surface s = 0,then it remains on it while at
the same time it slides to the origin s = 0 independently of the system’s parametric
uncertainties and disturbances.

For a second-order system, convergence to the sliding mode is illustrated in the
(e, ė)- plane (Figure 5.1). The first step in the design of a sliding-mode controller
(SMC) is the selection of the parameter λ .The linear differential Equation (5.3) can
be considered as a chain of (n− 1)-order low-pass filters,where the scalar s plays
the role of the input, λ is the break frequency (bandwidth) and e is the output (see
Figure 2).
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The parameter λ must be selected such that the unmodelled frequencies of the
system to be rejected. From the elementary first-order filter H(p) = 1/(λ+ p), where
p = d/dt, it can be observed that a sufficient condition for frequency rejection is λ �
p.Thus in order to reject all unmodelled frequencies one should select λ � vumin,
where vumin is the lower bound of the system’s unmodelled frequencies vu.

The next step is to find the control law that will keep the system in sliding mode.
Equation (3) gives a sufficient condition for the asymptotic stability of the closed-
loop system.The first derivative ṡ is calculated as follows:

s(x,t) = ( d
dt +λ )n−1e =

n−1

∑
k=0

(
n−1

k
)λ ken−1−k

= e(n−1) + (
n−1

1
)λe(n−2) + (

n− 1
2

)λ 2e(n−3) + . . .+λ (n−1)e

(5.7)

or

ṡ(x,t) = e(n) + (
n−1

1
)λe(n−1) + (

n−1
2

)λ 2e(n−2) + . . .+λ (n−1)ė (5.8)

or

ṡ(x,t) = x(n) − x(n)
d +

n−1

∑
k=1

(
n−1

k
)λ ke(n−k). (5.9)

Using Eq. (5.9) and Eq. (5.1),one gets

([ f (x,t)+ b(x,t)u + d]− x(n)
d +

n−1

∑
k=1

(
n−1

k
)λ ke(n−k))sign(s) ≤−η . (5.10)

The sliding control law is now defined via the following equations:

u = b̂−1(ũ− f̂ )
ũ = G(û−K(x,t)sign(s))

û = x(n)
d −

n−1

∑
k=1

(
n− 1

k
)λ ke(n−k)

(5.11)

where K(x,t) > 0, and f̂ and b̂ are estimates of the functions f and b,respectively.
To choose the multiplicative coefficient (gain) G, the following bounds are defined:

0 ≤ βmin ≤ bb̂−1 ≤ βmax (5.12)

Then gain G is defined as
G = (βminβmax)−1/2 (5.13)

and the gain margin β is defined as

β = (β
max

βmin )1/2 (5.14)
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It now remains to find K(x,t) so as to satisfy Equation 5.6: ṡsign(s) ≤ −η . Intro-
ducing Eq. (5.11) into Eq. (5.10) yields

sign(s)( f +bb̂−1(ũ− f )+ d̃− x(n)
d +

n−1

∑
k=1

( n−1
k

)λ ke(n−k)) ≤−η (5.15)

i.e.,
sign(s)( f − bb̂−1 f + bb̂−1Gû− bb̂−1GK(x,t)sign(s)+

+d̃− x(n)
d +

n−1

∑
k=1

(
n− 1

k
)λ ke(n−k)) ≤−η (5.16)

whence
(Δ f +(bb̂−1G− 1)û+ d̃)sign(s)−bb̂−1GK(x,t) ≤−η (5.17)

where Δ f = f − bb̂−1 f .The above inequality is satisfied if

bb̂−1GK(x,t) ≥ |Δ f +(bb̂−1G−1)û+ d̃|+η (5.18)

or
bb̂−1GK(x,t) ≥ |Δ f |+ |(bb̂−1G−1)||û|+ |d̃|+η (5.19)

Now, if bb̂−1 is replaced by its lower bound βmin, and after using the relation

βminG = ( β
min

βmax )1/2 = β−1,one gets

β−1K(x,t) ≥ |Δ f |+ |1−β−1||û|+ |d̃|+η (5.20)

whence
K(x,t) ≥ β (|Δ f |+(1−β−1))|û|+ |d̃|+η (5.21)

The upper bounds F̃ , D and U

|Δ f | < F̃, |d̃| < D, |û| < U (5.22)

are supposed to be known from the system’s analysis. Thus, a sufficient condition
are the control law to make the sliding surface s = 0 a domain of attraction,is

K(x,t) ≥ β (F̃ +(1−β−1))U + D+η . (5.23)

5.1.2 An Application Example of Sliding-Mode Control

A second order system is considered

ẍ = f (x)+ u (5.24)

where the dynamics of f = a(t)ẋ2cos(3x) is not exactly known but estimated as f̂ .
The estimation error on f is assumed to be bounded by some known function F(x, ẋ)
i.e.
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| f̂ − f |≤F (5.25)

For example it is assumed that 1≤a(t)≤2 and f̂ = −1.5ẋ2cos(3x) where the bound
F is given by F = 0.5ẋ2|cos(3x)|. The associated sliding surface is defined as

ṡ = ẍ− ẍd +λ ˙̃x = f +u− ẍd +λ x̃ (5.26)

The equivalent control law results from ṡ = 0 and gives

û = f̂ + ẍd −λ ˙̃x (5.27)

To satisfy the sliding condition, despite the uncertainty of the dynamics f , a dis-
continuous control term is added to the equivalent control term û, across the surface
s = 0. Thus, the overall control input becomes

u = û− ksgn(s) (5.28)

where

sgn(s) = {+1 if s > 0
−1 if s < 0

(5.29)

The selection of the value of gain K results from the requirement to satisfy the
sliding condition given in Eq. (5.6). Indeed from Eq. (5.27) and Eq. (5.28) one has

1
2

d
dt

s2 = s·ṡ = [ f f̂ − ksgn(s)]s = ( f − f̂ )s = −k|s| (5.30)

thus, setting
k = F +η (5.31)

one gets from Eq. (5.25)
1
2

d
dt

s2≤−η |s| (5.32)

It is noted that the control discontinuity along the sliding surface s = 0 increases
with the extent of parametric uncertainty, while f̂ and F need not depend only on
x and ẋ. They may depend on any measured variables external to the system of Eq.
(5.24).

5.1.3 Sliding-Mode Control with Boundary Layer

An essential drawback of SMC is that, owing to the sign term K(x,t)sign(s), it
causes abrupt changes (chattering) to the control signal u. However, this can be
avoided by introducing a Boundary Layer (BL) from both sides of the sliding sur-
face s = 0. If the term K(x,t)sign(s) exceeds the width of the BL, then it becomes
saturated, and is assigned the maximum (minimum) permissible value. The width
of BL is selected to be 2Φ .
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Assume that |s| is the distance between the state vector e and the sliding surface
s = 0. Then,the state e is inside the boundary layer if |s| <Φ , and is outside the BL
if |s| > Φ .If the BL is imported in the control law of Eq. (5.11) one gets:

u = b̂−1(ũ− f̂ )
ũ = G(û−K(x,t)sat(s/Φ))

û = x(n)
d −

n−1

∑
k=1

(
n− 1

k
)λ ke(n−k)

(5.33)

where the saturation function sat(·) is defined as

sat(z) =

{
z, if |z| < 1

sign(z) if |z| ≥ 1
(5.34)

If K(x,t) is chosen according to Eq. (5.23),then the BL becomes a domain of attrac-
tion and the asymptotic stability of the closed loop system is guaranteed. Obviously,
this is a weaker requirement than making the sliding surface s(x,t) = 0 a domain of
attraction.The result is that the BL reduces the chattering phenomenon,at the price
of increased tracking error. The next step in the design of SMC with BL is the se-
lection of Φ . Equations (5.33) inside the boundary layer (BL) take the form:

Fig. 5.2 Sliding mode control with boundary layer
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u = b̂−1(ũ− f̂ )
ũ = G(û−K(x,t) s

Φ )

û = x(n)
d −

n−1

∑
k=1

(
n− 1

k
)λ ke(n−k)

(5.35)

Introducing Eq. (5.1) and û from Eq. (5.11) into Eq. (5.9)

ṡ(x,t) = f (x,t)+ b(x,t)u+ d̃− û
= f (x,t)+ b(x,t)(b̂−1(û− f̂ ))+ d̃ − û

(5.36)

or
ṡ(x,t) = bb̂−1ũ+( f −bb̂−1 f̂ )+ d̃− û (5.37)

or
ṡ(x,t) = bb̂−1ũ+Δ f + d̃− û (5.38)

Now, using ũ from Eq. (5.35) yields

ṡ(x,t) = bb̂−1G(û−K s
Φ )+Δ f + d̃− û (5.39)

whence
ṡ(x,t)+ bb̂−1GK

Φ s = û(bb̂−1G−1)+Δ f + d̃ (5.40)

Equation (5.40) represents a low-pass filter with input û(bb̂−1G−1)+Δ f + d̃, out-
put s, and break frequency (bb̂−1GK)/Φ . So far, it has been shown how to compute
the numerator of the break frequency expression. It only remains to determine the
width Φ of BL.There are two choices: The first is to select Φ in proportion to the
desirable tracking accuracy ε . Variable ε is selected such that

ε =
Φ

λ n−1 . (5.41)

The second choice is to select the bandwidth bb̂−1GK/Φ equal to λ . This choice is
known as ”balanced condition”

bb̂−1GK

Φ
= λ . (5.42)

From the above discussion one can see that the design of SMC with BL is identical
to the design of a simple SMC.The only additional step required is the selection of
the width Φ which can be done either Eq. (5.41) or Eq. (5.42).

5.2 Robust Control with Interval Polynomials Theory

5.2.1 Basics of Kharitonov’s Theory

The stability theory developed by Kharitonov deals with the robust Hurwitz sta-
bility of interval polynomials and can be used in the design of robust power
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Fig. 5.3 The hyperrectangle defined by the parameters of the interval characteristic
polynomial

Fig. 5.4 Closed-loop for power system stabilization

system stabilizers. The main points of Kharitonov’s theory have been studied in
[35],[148],[149],[389],[403],[414], and are summarized as follows:

Let I(s) be the set of the n-th order real polynomials of the form δx = δ0 +δ1s+
δ2s2 + · · ·+ δnsn where the coefficients δi, i = 1, · · · ,n take values in the intervals
δ0∈[x0,y0], δ1∈[x1,y1],· · · , δn∈[xn,yn]. The coefficient vector δ is defined as δ =
[δ0,δ1, · · · ,δn]. Therefore, δ lies in an hyper-rectangle box of coefficients, as shown
in Fig. 5.3 Π = δ : δ∈Rn+1, xi≤pi≤yi.

It is assumed that 0 is not in [xn,yn]. This kind of polynomials are called ’interval
polynomials’ and I(s) is the family of ’interval polynomials’. Kharitonov’s theo-
rem provides a simple necessary and sufficient condition for the family of interval
polynomials I(s). The following theorem holds:
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Theorem 1: Each polynomial of the family I(s) is Hurwitz if and only if the follow-
ing four extreme polynomials are Hurwitz

K1(s) = x0 + x1s+ y2s2 + y3s3 + x4s4 + x5s5 + · · ·
K2(s) = x0 + y1s+ y2s2 + x3s3 + x4s4 + y5s5 + · · ·
K3(s) = y0 + x1s+ x2s2 + y3s3 + y4s4 + x5s5 + · · ·
K4(s) = y0 + y1s+ x2s2 + x3s3 + y4s4 + y5s5 + · · ·

(5.43)

An assumption made in Kharitonov’s theorem is that the coefficients perturb inde-
pendently. It is noted however that, in some problems this assumption does not hold,
since the characteristic polynomial coefficients perturb inter-dependently through
other primary parameters. However, even in these cases Kharitonov’s theorem can
give computationally simple answers by overbounding the actual perturbations by
an axis parallel box Π in the coefficient space.

5.2.2 Extremal Properties of Kharitonov Polynomials

The case of a closed-loop control system with unit feedback is considered, where
the forward transfer function G(s) = n(s)/d(s) contains parameter uncertainty.
The polynomials n(s) and d(s) vary in independent polynomial families N(s)
and D(s) respectively. Moreover, the family of transfer functions of Eq. (5.44) is
considered:

G(s) =
n(s)
d(s)

: n(s) ∈ N(s), d(s) ∈ D(s) (5.44)

where each interval polynomial of degree n can be written δ (s) = δ0 +δ1s+δ2s2 +
· · ·+δnsn with the coefficients lying in the ranges δ0 ∈ [x0,y0], δ1 ∈ [x1,y1], · · · ,
δn ∈ [xn,yn]. For the closed-loop system with unity feedback containing G(s) to be
robustly stable, the associated characteristic polynomial given by P(s) = d(s+n(s))
should be Hurwitz for all n(s), d(s) ∈ N(s)×D(s). Let Ki

N(s), i = 1,2,3,4, and
K j

D(s), j = 1,2,3,4 denote the Kharitonov polynomials associated with N(s) and
D(s) respectively. The positive set of Kharitonov systems G+

K (s) which are associ-
ated with the interval family G(s) is now defined as:

G+
K (s) =

Ki
N(s)

K j
D(s)

, i, j = 1,2,3,4 (5.45)

The following two theorems hold:

Theorem 2: The closed-loop system with unity feedback containing G(s) is robustly
stable if and only if each of the positive Kharitonov systems in G+

K (s) is robustly
stable.
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Theorem 3: (Extremal Gain Margin Theorem) The worst case gain margin of a sys-
tem at an operating point P over the interval family G(s) is the minimum gain margin
corresponding to the positive Kharitonov systems G+

K (s).

Finally, the Kharitonov plants (linear system descriptions) are defined as follows:
the interval plant family P is considered consisting of all plants of the form:

P(s,q,r) =
N(s,q)
D(s,r)

=
qmsm +qm−1sm−1 + · · ·+q1s+q0

sn + rm−1sm−1 + · · ·+ r1s+ r0
(5.46)

where N(s,q) and D(s,r) are interval polynomials, with coefficients which vary
in the rectangles Q and R as defined by the cartesian products of [q−i ,q+

i ], i =
0,1, · · · ,m and [r−i ,r+

i ], i = 0,1, · · · ,n− 1. It is assumed that N(s,q) and D(s,r)
do not have common roots and that D(s,r) does not have roots on the imaginary
axis for all r∈R. Given c∈C, the polynomials family N(s,q)− cD(s,r) is said to be
robustly stable if all its roots are in the left complex semi-plane, ∀q∈Q and r∈R.
The interval polynomial N(s,q) is Hurwitz ∀q∈Q if and only if the 4 Kharitonov
polynomials Ni(s), i = 1,2,3,4, which are defined in Eq. (5.47), are Hurwitz. The
interval polynomial D(s,r) is Hurwitz if and only if the 4 Kharitonov polynomials
Dk(s), k = 1,2,3,4, which are defined in Eq. (5.47) are Hurwitz.

N1(s) = q+
0 + q+

1 s+ q−2 s2 +q−3 s3 + q−4 s4 +q+
5 s5 + · · ·

N2(s) = q+
0 + q−1 s+ q+

2 s2 +q+
3 s3 + q−4 s4 +q−5 s5 + · · ·

N3(s) = q−0 + q+
1 s+ q+

2 s2 +q−3 s3 + q−4 s4 +q+
5 s5 + · · ·

N4(s) = q+
0 + q−1 s+ q−2 s2 +q+

3 s3 + q+
4 s4 +q−5 s5 + · · ·

D1(s) = r+
0 + r+

1 s+ r−2 s2 + r−3 s3 + r−4 s4 + r+
5 s5 + · · ·

D2(s) = r+
0 + r−1 s+ r+

2 s2 + r+
3 s3 + r−4 s4 + r−5 s5 + · · ·

D3(s) = r−0 + r+
1 s+ r+

2 s2 + r−3 s3 + r−4 s4 + r+
5 s5 + · · ·

D4(s) = r+
0 + r−1 s+ r−2 s2 + r+

3 s3 + r+
4 s4 + r−5 s5 + · · ·

(5.47)

5.3 Application to the Stabilization of Electric Power Systems

Modern large-scale power systems have commonly experienced adverse impacts on
their operation and come against the risk for destabilization due to under-damped
oscillations [206]. Several research papers have tried to resolve the problem of sup-
pression of the oscillatory behavior of electric power transmission networks us-
ing either frequency response control methods or state-feedback control algorithms
[224],[248],[341]. The objective of the subsequent analysis is to develop robust
power system stabilizers that will be able to suppress the oscillatory behavior of
the power systems over a wide range of operating conditions, thus assuring their se-
cure operation. Since power generation systems are actually nonlinear, conventional
fixed parameter PSS cannot cope with great changes in operating conditions.
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Power system instability will mostly happen when a remote station sends a large
amount of power to the rest of the grid through a relatively weak transmission
line. This situation can be well modeled by a single-machine infinite-bus system.
In this representation the dynamic interaction between the various machines in the
system is not considered, however the resulting model is still adequate for many
types of studies, especially when the machines are identical and operate at nearly
the same load levels. In this chapter the model of a single-machine infinite-bus
power system is considered and a stabilizer is designed using Kharitonov’s extremal
gain margin theorem. According to Kharitonov’s theory the nonlinear power sys-
tem can be modeled by a set of transfer functions, where each transfer function
is described by the ratio of two interval polynomials. Such polynomials have the
form p(s) = αnsn +αn−1sn−1 + · · ·+α0, where each coefficient αi is independent
of the others and varies within an interval of known lower and upper bounds, i.e.
αi∈[α−

i ,α+
i ]. Thus, the problem of stabilization of the nonlinear power system is

transformed into the problem of stabilization of a set of linear systems and can be
succeeded with the use of simple phase-lead compensators, and frequency response
techniques, such as the root-locus diagram [353],[389],[426].

5.3.1 The Problem of Power System Stabilization

In a power generation system, the electromechanical coupling between the rotor
and the rest of the system components results in a behavior similar to that of a
damped oscillator. Thus, disturbances such as sudden changes in loads, changes
in transmission line parameters, or fluctuations in the output of turbine and faults,
cause low frequency oscillations around the equilibrium state. Furthermore, the use
of fast acting high gain Automated Voltage Regulators (AVR) and the development
of interconnected power systems with transfer of power across transmission lines
can result in further degradation of the power system’s oscillatory behavior. These
oscillations limit the power transmission capability of the network and, sometimes,
even cause a loss of generators’ synchronism and a subsequent breakdown of the
entire system [346]. The application of Power System Stabilizers (PSS) can help in
damping out these oscillations and in improving the system’s stability.

Usually, there are two approaches to succeed efficient operation of power sys-
tems in variable conditions: (i) adaptive control, and (ii) robust control [89],[224].
Adaptive control is based on the idea of continuously adapting the controller’s pa-
rameters according to recent measurements. However, the performance of adaptive
controllers maybe unsatisfactory during the learning phase, particularly when they
are improperly initialized. Successful operation of adaptive controllers requires the
measurements to satisfy persistence of excitation conditions, otherwise the adjust-
ment of the controller’s parameters fails. Moreover, the design of nonlinear adaptive
controllers can be complicated, and the selection of the adaptation gains which as-
sures closed stability may require extensive calculations [224]. Robust control can
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Fig. 5.5 Basic components of the single-machine infinite bus power system

Fig. 5.6 Transfer function elements of the linearized single-machine infinite bus power
system

be an effective approach to dealing with uncertainties introduced by variations of
the power system operating conditions. Among many techniques available in robust
control theory H∞ control has received significant attention in applications of power
system stabilization [4],[35],[60],[89],[136]. The H∞ controller is selected so that
the system’s closed-loop response lies between pre-specified bounds. The design of
such H∞ controllers requires (i) full state feedback or observer-based estimation of
the high-order parameters of the machine’s state vector (ii) the solution of Riccati
equations, which can be complicated if prior reduction of the linear model’s order
is not performed.

Taking into account the flaws and limitations of the aforementioned PSS design
approach, this chapter proposes a simple, yet robust controller for power system sta-
bilization, using Kharitonov’s stability theory. The diagram of the single-machine
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infinite-bus systems is given in Fig. 5.5 and 5.6. The PSS receives as input the ma-
chine’s speed deviation signal Δω . To select the parameters of the PSS, usually
the power system dynamics is linearized at an operating point, and once a transfer
function is obtained linear control techniques can be applied. However, in practice
the parameters of such a linear model are load dependent and thus the PSS has to
be adjusted at different loads. This may include calculations over a large number of
operating points. In the method for robust power system stabilization proposed by
this paper, the PSS parameters will be chosen so as to assure stability of the power
system model and suppression of the oscillatory behavior for a wide range of oper-
ating conditions. The steps of design of the proposed PSS according to Kharitonov’s
theory will be explained in the sequel.

5.3.2 Transfer Function of the Single-Machine Infinite-Bus
Model

The fourth-order transfer function for the single-machine infinite-bus system is
given by [89],[389]

Δω
U

=
bs

α4s4 +α3s3 +α2s2 +α1s+α0
(5.48)

(1) The transfer function coefficients are α4 = M·T ·TE , α3 = M(T + TE), α2 =
M +314k1T ·TE +kEk3k6M, α1 = 314k1(T +TE)−314k2k3k4TE , where T = k3Tdo

′
.

The parameters of the single machine infinite-bus system are as follows: k1, · · · ,k6

are the parameters of the power system block diagram as depicted in Fig. 5.6, T is
the mechanical torque, T

′
do is the open-circuit d-axis transient time constant, M is

the inertia coefficient, kE and TE are the exciter gain and time constant respectively,
Δω is the machine’s speed deviation and U is the stabilizing signal (PSS output).

5.3.3 Kharitonov’s Theory for Power System Stabilization

The transfer function that describes the single-machine infinite-bus model has been
given in Eq. (5.48). Using [389] indicative ranges of the parameters of the model
are b∈[21,96.1], α4 = 8.34, α3 = 167.3, α2 ∈ [427.1,744.4], α1 ∈ [2941,7500],
α0 ∈ [1093,1258]. First, the control-loop of the nominal model is considered to
contain a lead-lag compensator of the form

Gc(s) = Kc
s+ μ1

s+π1

s+ μ2

s+π2
(5.49)

where the μ1 and π1 are the zeros/poles of the phase-lead part while μ2, π2 are the
poles/zeros of the phase-lag part. Using the stability conditions of the closed loop

||Gc(s)G(s)|| = 1 ∠Gc(s)G(s) = −180o (5.50)
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Fig. 5.7 The inclusion of the compensator Gc(s) in the control-loop results in the desirable
transient and steady-state performance of the nominal power system model

and the requirement that the steady-state error of the control loop should be mini-
mized one obtains the compensator

Gc(s) = 65.38
s+2

s+2.33
s+1.76
s+0.05

(5.51)

Assuming step input to the control loop, the machine’s angle difference Δδ is de-
picted in Fig. 5.7. It can be observed that by introducing the compensator in the
control-loop the desirable transient and steady-state performance are achieved (ac-
cording to selected dominant poles for the closed-loop). It can be seen that the
steady-state becomes practically 0, oscillations are suppressed and settling time is
reduced.

Next, the design of a robust phase-lead compensator was performed, assuming
that the model’s parameters where defined within the uncertainty ranges described
above. The phase lead compensator was Gc(s) = Kc

s+μ1
s+π1

. According to Theorem

3, to find the stabilizing gain Kc one has to calculate the gain Ki
c which stabilizes

each one of the 16 Kharitonov plant’s G+
K defined in Eq. (5.45). However, since

coefficient b has two extreme values bmin and bmax the 16 Kharitonov plants of
Eq. (5.45) are reduced to only 8 models. Thus one obtains the following extreme
Kharitonov plants
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G1
k(s) = 21s

8.34s4+167.3s3+744.4s2+2941s+1093
G2

k(s) = 96.1s
8.34s4+167.3s3+744.4s2+2941s+1093

G3
k(s) = 21s

8.34s4+167.3s3+427.1s2+7500s+1258
G4

k(s) = 96.1s
8.34s4+167.3s3+744.4s2+2941s+1258

G5
k(s) = 21s

8.34s4+167.3s3+427.1s2+2941s+1258
G6

k(s) = 96.1s
8.34s4+167.3s3+427.1s2+2941s+1258

G7
k(s) = 21s

8.34s4+167.3s3+744.4s2+7500s+1093
G8

k(s) = 96.1s
8.34s4+167.3s3+744.4s2+7500s+1093

(5.52)
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Fig. 5.8 Root-locus of the Kharitonov extremal plants Gc(s)G1
k(s) to Gc(s)G4

k(s)

The root-locus diagrams which correspond to the models Gc(s)Gi
k(s), are de-

picted in Fig. 5.8 and Fig. 5.9. From these diagrams one obtains the variation range
ΔKi

c = [Ki
cmin,K

i
cmax], i = 1, · · · ,8 of the gain Ki

c which assures stability to each one
of the associated loops, while the overall stabilizing gain belongs to the intersection
of ΔKi

c . A suitable stabilizing gain is thus taken to be Kc = 2.
The impulse response of the 8 unit-feedback closed loops which contain the sta-

bilizing gain Kc, the phase lead compensator Gc(s) = s+μ1
s+π1

and each one of the ex-

treme Kharitonov polynomials Gi
k is shown in Fig. 5.10 and Fig. 5.11, as well as in

Fig. 5.12 and Fig. 5.13. Comparing to the response of the unit-feedback closed-loop
without phase lead compensator and with gain which has been selected according
to the stability ranges of the nominal plant, as depicted in Fig. 5.11 and Fig. 5.13,
one can observe the improvements in the closed-loop performance which is due to
the use of the power system stabilizer. It can be seen that the proposed robust power
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Fig. 5.9 Root-locus of the Kharitonov extremal plants Gc(s)G5
k(s) to Gc(s)G8

k(s)

0 2 4 6
0

0.2

0.4

0.6

0.8

impulse response of G
k
1

Time (sec)

A
m

p
li
tu

d
e

0 200 400 600
−2

0

2

4
x 10

7

impulse response of G
k
2

Time (sec)

A
m

p
li
tu

d
e

0 50 100 150 200 250
−4

−2

0

2

4
x 10

5

impulse response of G
k
3

Time (sec)

A
m

p
li
tu

d
e

0 5 10 15
−1

−0.5

0

0.5

1
x 10

7

impulse response of G
k
4

Time (sec)

A
m

p
li
tu

d
e

Fig. 5.10 Impulse response of the Kharitonov extremal plants G1
k to G4

k , in a unit-feedback
closed-loop which includes a phase-lead compensator
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k , in a unit-feedback
closed-loop with proportional gain Kc chosen according to the nominal plant’s stability ranges
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Fig. 5.12 Impulse response of the Kharitonov extremal plants G5
k to G8

k , in a unit-feedback
closed-loop which includes a phase-lead compensator
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Fig. 5.13 Impulse response of the Kharitonov extremal plants G5
k to G8

k , in a unit-feedback
closed-loop with proportional gain Kc chosen according to the nominal plant’s stability ranges

system stabilizer results in fast decay of oscillations and suppression of the oscilla-
tions’ amplitude. On the other hand the design of a control-loop which does not take
into account the parametric uncertainty in the single-machine infinite-bus model re-
sults in undesirable oscillations and may even lead the power system to instability
as shown in Fig. 5.10 and in Fig. 5.12.



Chapter 6
Filtering and Estimation Methods for Industrial
Systems

Abstract. Filtering and stochastic estimation methods are proposed for the control
of linear and nonlinear dynamical systems. Starting from the theory of linear state
observers the chapter proceeds to the standard Kalman filter and its generalization to
the nonlinear case which is the Extended Kalman Filter. Additionally, Sigma-Point
Kalman Filters are proposed as an improved nonlinear state estimation approach.
Finally, to circumvent the restrictive assumption of Gaussian noise used in Kalman
filter and its variants, the Particle Filter is proposed. Applications of filtering and
estimation methods to industrial systems control with a reduced number of sensors
are presented.

6.1 Linear State Observers

First, the linear dynamical system of Eq. (1) is considered
{

ẋ(t) = Ax(t)+ Bu(t)
y(t) = Cx(t)

(6.1)

where x∈Rm×1 is the system’s state vector u∈R1×1 is the control input, and y∈Rp×1

is the system’s output. It is assumed that the elements of the state vector x are not
completely measurable, either due to the system’s structure or due to high cost of
measurement sensors. In that case the system’s state vector can be reconstructed
using the sequence of output measurements y(t) and the associated sequence of
control inputs u(t). The basic requirement to perform the state vector’s reconstruc-
tion is the linear system to be observable as defined by the pair of matrices (A,C).
An important application of state observers is the design of state estimation-based
control schemes. For linear dynamical systems the principle of separation holds: (i)
the state feedback controller is designed assuming that the complete state vector of
the system is available, (ii) the state observer is designed for those state variables
which cannot be measured directly. The concept of state observers is due to Luen-
berger and includes the Kalman Filter as a special case [175]. Actually, the Kalman
Filter is an optimal state observer in the sense that it can compensate in optimal way

G.G. Rigatos: Modelling & Control for Intell. Industrial Sys., ISRL 7, pp. 119–140.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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for the effect that process and measurement noises have on the estimation of the
system’s state vector.

For the continuous time dynamical system of Eq. (6.1) the state observer is

˙̂x = Ax̂+ Bu + K(y−Cx̂) (6.2)

From Eq. (6.2) it can be seen that the linear state observer uses the state-space
equation of the dynamical system augmented by the additional term K(y− ŷ) where
the signal y−Cx̂ is called residual (or innovation) and is the difference between
the real measurement y(t) and the estimated output ŷ(t). Defining the state vector
estimation error as e = x− x̂, the dynamics of the observer becomes

ė(t) = (A−KC)e(t)⇒ė(t) = Âe(t) (6.3)

where Â = A−KC. The main problem in the design of the state observer is to select
gain K such that matrix Â = A−KC, which defines the estimation error dynamics,
to have eigenvalues strictly in the left complex semi-plane. Two typical methods for
the selection of gain K are:

1. All eigenvalues of matrix Â can be moved to desirable positions at the left com-
plex semi-plane using pole-placement techniques.
2. Gain K can be selected by solving an optimization problem (which finally pro-
vides the Kalman Filter). This is expressed as the minimization of a quadratic cost
functional (as in the case of Linear Quadratic Regulator - LQR optimal control) and
is performed through the solution of a Riccati equation. In that case the observer’s
gain K is calculated by K = PCT R−1 considering an optimal control problem for
the dual system (AT ,CT ), where the covariance matrix of the estimation error P is
found by the solution of the continuous-time Riccati equation of the form

Ṗ = AP+ PAT + Q−PCT R−1CP (6.4)

where matrices Q and R stand for the process and measurement noise covariance
matrices, respectively.

6.2 The Continuous-Time Kalman Filter for Linear Models

Next, the continuous-time dynamical system of Eq. (5) is assumed [174],[175]:
{

ẋ(t) = Ax(t)+ Bu(t)+ w(t), t≥t0
y(t) = Cx(t)+ v(t), t≥t0

(6.5)

where again x∈Rm×1 is the system’s state vector, and y∈Rp×1 is the system’s out-
put. Matrices A,B and C can be time-varying and w(t),v(t) are uncorrelated white
Gaussian noises. The covariance matrix of the process noise w(t) is Q(t), while the
covariance matrix of the measurement noise is R(t) . Then the Kalman Filter is again
a linear state observer which is given by
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⎧⎪⎨
⎪⎩

˙̂x = Ax̂+ Bu + K[y−Cx̂], x̂(t0) = 0

K(t) = PCT R−1

Ṗ = AP+ PAT + Q−PCT R−1CP

(6.6)

where x̂(t) is the optimal estimation of the state vector x(t) and P(t) is the covariance
matrix of the state vector estimation error with P(t0) = P0. It can be seen that as
in the case of the Luenberger observer, the Kalman Filter consists of the system’s
state equation plus a corrective term K[y−Cx̂]. The associated Riccati equation for
calculating the covariance matrix P(t) has the same form as Eq. (6.4).

6.3 The Discrete-Time Kalman Filter for Linear Systems

In the discrete-time case the dynamical system is assumed to be expressed in the
form of a discrete-time state model:

{
x(k + 1) = Φ(k)x(k)+ L(k)u(k)+ w(k)
z(k) = Cx(k)+ v(k)

(6.7)

where the state x(k) is a m-vector, w(k) is a m-element process noise vector and Φ
is a m×m real matrix. Moreover the output measurement z(k) is a p-vector, C is an
p×m-matrix of real numbers, and v(k) is the measurement noise. It is assumed that
the process noise w(k) and the measurement noise v(k) are uncorrelated.

Now the problem of interest is to estimate the state x(k) based on the measure-
ments z(1),z(2), · · · ,z(k). The initial value of the state vector x(0), the initial value
of the error covariance matrix P(0) is unknown and an estimation of it is considered,
i.e. x̂(0) = a guess of E[x(0)] and P̂(0)=a guess of Cov[x(0)].

For the initialization of matrix P one can set P̂(0) = λ I, with λ > 0. The state
vector x(k) has to be estimated taking into account x̂(0), P̂(0) and the output mea-
surements Z = [z(1),z(2), · · · ,z(k)]T , i.e. there is a function relationship:

x̂(k) = αn(x̂(0), P̂(0),Z(k)) (6.8)

Actually, this is a linear minimum mean squares estimation problem (LMMSE)
which is solved recursively, through the function relationship

x̂(k + 1) = an+1(x̂(k),z(k + 1)) (6.9)

The process and output noise are white and their covariance matrices are given by:
E[w(i)wT ( j)] = Qδ (i− j) and E[v(i)vT ( j)] = Rδ (i− j).

Using the above, the discrete-time Kalman Filter can be decomposed into two
parts: i) time update, and ii) measurement update. The first part employs an estimate
of the state vector x(k) made before the output measurement z(k) is available (a
priori estimate). The second part estimates x(k) after z(k) has become available (a
posteriori estimate).
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• When the set of measurements Z− = {z(1), · · · ,z(k−1)} is available, from Z− an
a priori estimation of x(k) is obtained which is denoted by x̂−(k) = the estimate
of x(k) given Z−.

• When z(k) becomes available, the set of the output measurements becomes Z =
{z(1), · · · ,z(k)}, where x̂(k) = the estimate of x(k) given Z.

The associated estimation errors are defined by

e−(k) = x(k)− x̂−(k) = the a priori error
e(k) = x(k)− x̂(k) = the a posteriori error

(6.10)

The estimation error covariance matrices associated with x̂(k) and x̂−(k) are defined
as [139],[175]

P−(k) = Cov[e−(k)] = E[e−(k)e−(k)T ]
P(k) = Cov[e(k)] = E[e(k)eT (k)]

From the definition of the trace of a matrix, the mean square error of the estimates
can be written as

MSE(x̂−(k)) = E[e−(k)e−(k)T ] = tr(P−(k))
MSE(x(k)) = E[e(k)eT (k)] = tr(P(k))

Finally, the linear Kalman filter equations in cartesian coordinates are

measurement update: obtain measurement z(k) and compute

K(k) = P−(k)CT [C·P−(k)CT + R]−1

x̂(k) = x̂−(k)+ K(k)[z(k)−Cx̂−(k)]
P(k) = P−(k)−K(k)CP−(k)

(6.11)

time update: compute

P−(k + 1) = Φ(k)P(k)ΦT (k)+ Q(k)
x̂−(k + 1) =Φ(k)x̂(k)+ L(k)u(k) (6.12)

6.4 The Extended Kalman Filter for Nonlinear Systems

The following nonlinear time-invariant state model is now considered [331]:

x(k + 1) = φ(x(k))+ L(k)u(k)+ w(k)
z(k) = γ(x(k))+ v(k) (6.13)

where x∈Rm×1 is the system’s state vector and z∈Rp×1 is the system’s output,
while w(k) and v(k) are uncorrelated, zero-mean, Gaussian noise processes with
covariance matrices Q(k) and R(k) respectively. The operators φ(x) and γ(x) are
φ(x) = [φ1(x),φ2(x), · · · ,φm(x)]T , and γ(x) = [γ1(x),γ2(x), · · · ,γp(x)]T , respectively.
It is assumed that φ and γ are sufficiently smooth in x so that each one has a valid
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series Taylor expansion. Following a linearization procedure, φ is expanded into
Taylor series about x̂:

φ(x(k)) = φ(x̂(k))+ Jφ(x̂(k))[x(k)− x̂(k)]+ · · · (6.14)

where Jφ(x) is the Jacobian of φ calculated at x̂(k):

Jφ (x) =
∂φ
∂x

|x=x̂(k) =

⎛
⎜⎜⎜⎜⎝

∂φ1
∂x1

∂φ1
∂x2

· · · ∂φ1
∂xm

∂φ2
∂x1

∂φ2
∂x2

· · · ∂φ2
∂xm

...
...

...
...

∂φm
∂x1

∂φm
∂x2

· · · ∂φm
∂xm

⎞
⎟⎟⎟⎟⎠

(6.15)

Likewise, γ is expanded about x̂−(k)

γ(x(k)) = γ(x̂−(k))+ Jγ [x(k)− x̂−(k)]+ · · · (6.16)

where x̂−(k) is the estimation of the state vector x(k) before measurement at the
k-th instant to be received and x̂(k) is the updated estimation of the state vector after
measurement at the k-th instant has been received. The Jacobian Jγ(x) is

Jγ (x) =
∂γ
∂x

|x=x̂−(k) =

⎛
⎜⎜⎜⎜⎜⎝

∂γ1
∂x1

∂γ1
∂x2

· · · ∂γ1
∂xm

∂γ2
∂x1

∂γ2
∂x2

· · · ∂γ2
∂xm

...
...

...
...

∂γp
∂x1

∂γp
∂x2

· · · ∂γp
∂xm

⎞
⎟⎟⎟⎟⎟⎠

(6.17)

The resulting expressions create first order approximations of φ and γ . Thus the
linearized version of the plant is obtained:

x(k + 1) = φ(x̂(k))+ Jφ (x̂(k))[x(k)− x̂(k)]+ w(k)
z(k) = γ(x̂−(k))+ Jγ(x̂−(k))[x(k)− x̂−(k)]+ v(k) (6.18)

Now, the EKF recursion is as follows: First the time update is considered: by x̂(k)
the estimation of the state vector at instant k is denoted. Given initial conditions
x̂−(0) and P−(0) the recursion proceeds as [331]:

• Measurement update. Acquire z(k) and compute:

K(k) = P−(k)JT
γ (x̂−(k))·[Jγ (x̂−(k))P−(k)JT

γ (x̂−(k))+R(k)]−1

x̂(k) = x̂−(k)+ K(k)[z(k)− γ(x̂−(k))]
P(k) = P−(k)−K(k)Jγ(x̂−(k))P−(k)

(6.19)

• Time update. Compute:

P−(k +1) = Jφ (x̂(k))P(k)JT
φ (x̂(k))+ Q(k)

x̂−(k +1) = φ(x̂(k))+L(k)u(k)
(6.20)

The schematic diagram of the EKF loop is given in Fig. 6.1.
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Fig. 6.1 Schematic diagram of the EKF loop

6.5 Sigma-Point Kalman Filters

The Sigma-Point Kalman Filter overcomes the flaws of Extended Kalman Filtering
[263]. Unlike EKF no analytical Jacobians of the system equations need to be cal-
culated as in the case for the EKF. This makes the sigma-point approach suitable
for application in ”black-box” models where analytical expressions of the system
dynamics are either not available or not in a form which allows for easy lineariza-
tion. This is achieved through a different approach for calculating the posterior 1st
and 2nd order statistics of a random variable that undergoes a nonlinear transforma-
tion. The state distribution is represented again by a Gaussian Random Variable but
is now specified using a minimal set of deterministically chosen weighted sample
points. The basic sigma-point approach can be described as follows:

1. A set of weighted samples (sigma-points) are deterministically calculated using
the mean and square-root decomposition of the covariance matrix of the system’s
state vector. As a minimal requirement the sigma-point set must completely cap-
ture the first and second order moments of the prior random variable. Higher order
moments can be captured at the cost of using more sigma-points.
2. The sigma-points are propagated through the true nonlinear function using func-
tional evaluations alone, i.e. no analytical derivatives are used, in order to generate
a posterior sigma-point set.



6.5 Sigma-Point Kalman Filters 125

3. The posterior statistics are calculated (approximated) using tractable functions of
the propagated sigma-points and weights. Typically, these take on the form of a sim-
ple weighted sample mean and covariance calculations of the posterior sigma points.

It is noted that the sigma-point approach differs substantially from general stochastic
sampling techniques, such as Monte-Carlo integration (e.g Particle Filtering meth-
ods) which require significantly more sample points in an attempt to propagate an
accurate (possibly non-Gaussian) distribution of the state. The sigma-point approach
results in posterior approximations that are accurate to the third order for Gaussian
inputs for all nonlinearities. For non-Gaussian inputs, approximations are accurate
to at least the second-order, with the accuracy of third and higher-order moments
determined by the specific choice of weights and scaling factors.

The Unscented Kalman Filter (UKF) is a special case of Sigma-Point Kalman
Filters. The UKF is a discrete time filtering algorithm which uses the unscented
transform for computing approximate solutions to the filtering problem of the form

x(k + 1) = φ(x(k))+L(k)U(k)+ w(k)
y(k) = γ(x(k))+ v(k) (6.21)

where x(k)∈Rn is the system’s state vector, y(k)∈Rm is the measurement, w(k)∈Rn

is a Gaussian process noise w(k)∼N(0,Q(k)), and v(k)∈Rm is a Gaussian measure-
ment noise v(k)∼N(0,R(k)). The mean and covariance of the initial state x(0) are
m(0) and P(0), respectively.

Some basic operations performed in the UKF algorithm (Unscented Transform)
are summarized as follows:

1) Denoting the current state mean as x̂, a set of 2n + 1 sigma points is taken from
the columns of the n×n matrix

√
(n +λ )Pxx as follows:

x0 = x̂
xi = x̂+[

√
(n +λ )Pxx]i, i = 1, · · · ,n

xi = x̂− [
√

(n +λ )Pxx]i, i = n +1, · · · ,2n
(6.22)

and the associated weights are computed:

W (m)
0 = λ

(n+λ ) W (c)
0 = λ

(n+λ )+(1−α2+b)

W (m)
i = 1

2(n+λ ) , i = 1, · · · ,2n W (c)
i = 1

2(n+λ )

(6.23)

where i = 1,2, · · · ,2n and λ = α2(n+κ)−n is a scaling parameter, while α, β and
κ are constant parameters. Matrix Pxx is the covariance matrix of the state x.

2) Transform each of the sigma points as

zi = h(xi) i = 0, · · · ,2n (6.24)
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3) Mean and covariance estimates for z can be computed as

ẑ�∑2n
i=0W (m)

i zi

Pzz = ∑2n
i=0W (c)

i (zi − ẑ)(zi − ẑ)T
(6.25)

4) The cross-covariance of x and z is estimated as

Pxz = �∑2n
i=0W (c)

i (xi − x̂)(zi − ẑ)T (6.26)

The matrix square root of positive definite matrix Pxx means a matrix A =
√

Pxx such
that Pxx = AAT and a possible way for calculation is Singular Values Decomposition
(SVD).

Next the basic stages of the Unscented Kalman Filter are given:
As in the case of the Extended Kalman Filter and the Particle Filter, the Un-

scented Kalman Filter also consists of prediction stage (time update) and correction
stage (measurement update) [171], [368].

Time update: Compute the predicted state mean x̂−(k) and the predicted covariance
Pxx

−(k) as
[x̂−(k),P−

xx(k)] = UT( fd , x̂(k− 1),Pxx(k−1))
P−

xx(k) = Pxx(k−1)+ Q(k− 1) (6.27)

Measurement update: Obtain the new output measurement zk and compute the pre-
dicted mean ẑ(k) and covariance of the measurement Pzz(k), and the cross covariance
of the state and measurement Pxz(k)

[ẑ(k),Pzz(k),Pxz(k)] = UT (hd , x̂−(k),P−
xx(k))

Pzz(k) = Pzz(k)+R(k) (6.28)

Fig. 6.2 Schematic diagram of the Unscented Kalman Filter loop
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Then compute the filter gain K(k), the state mean x̂(k) and the covariance Pxx(k),
conditional to the measurement y(k)

K(k) = Pxz(k)P−1
zz (k)

x̂(k) = x̂−(k)+ K(k)[z(k)− ẑ(k)]
Pxx(k) = P−

xx(k)−K(k)Pzz(k)K(k)T
(6.29)

The filter starts from the initial mean m(0) and covariance Pxx(0). The stages of state
vector estimation with the use of the unscented filtering algorithm are depicted in
Fig. 6.2.

6.6 Particle Filters

6.6.1 The Particle Approximation of Probability Distributions

The functioning of the Particle Filters will be explained. Particle Filtering is a
method for state estimation that is not dependent on the probability density func-
tion of the measurements [128],[133]. In the general case, the equations of the op-
timal filter used for the calculation of the state-vector of a dynamical system do
not have an explicit solution. This happens for instance when the process noise and
the noise of the output measurement do not follow a Gaussian distribution. In that
case approximation through Monte-Carlo methods can be used [12],[45],[82],[409].
A sampling of size N is assumed, i.e. N i.i.d. (independent identically distributed)
variables ξ 1,ξ 2, · · · ,ξN . This sampling follows the p.d.f. p(x) i.e. ξ 1:N∼p(x). In-
stead of p(x) the function p(x)�pN(x) = 1

N∑
N
i=1δξ i(x) can be used. It is assumed

that all points ξ i have an equal weighted contribution to the approximation of p(x).
A more general approach would be if weight factors were assigned to the points ξ i,
which will also satisfy the normality condition ∑N

i=1wi = 1. In the latter case

p(x)�pN(x) =
N

∑
i=1

wiδξ i(x) (6.30)

If p(ξ i) is known then the probability P(x) can be approximated using the discrete
values of the p.d.f. p(ξ i) = wi. If sampling over the p.d.f. p(x) is unavailable, then
one can use a p.d.f. p̄(x) with similar support set, i.e. p(x) = 0⇒p̄(x) = 0. Then

it holds E(φ(x)) =
∫
φ(x)p(x)dx =

∫
φ(x)p̄(x) p(x)

p̄(x)dx. If the N samples of p̄(x) are

available at the points ξ̃ 1· · ·ξ̃N , i.e. p̄(ξ̃ )i = δξ̃ i(x) and the weight coefficients wi are

defined as wi = p(ξ̃ i)
p̄(ξ̃ i)

, then it is easily shown that

E(φ(x))�
N

∑
i=1

wiφ(ξ̃ i), where{ ξ̃ 1:N∼p̄(x)
wi = p(x̃i)/ p̄(x̃i)

(6.31)

The meaning of Eq. (6.31) is as follows: assume that the p.d.f. p(x) is unknown
(target distribution), however the p.d.f. p̄(x) (importance law) is available. Then, it
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is sufficient to sample on p̄(x) and find the associated weight coefficients wi so as to
calculate E(φ(x)).

6.6.2 The Prediction Stage

As in the case of the Kalman Filter or the Extended Kalman Filter the particles filter
consists of the measurement update (correction stage) and the time update (predic-
tion stage) [49],[350],[352],[409]. The prediction stage calculates p(x(k)|Z−) where
Z− = {z(1),z(2), · · · ,z(n− 1)} according to Eq. (6.30). It holds that:

p(x(k−1)|Z−) =
N

∑
i=1

wi
k−1δξ i

k−1
(x(k−1)) (6.32)

while from Bayes formula it holds p(x(k)|Z−)=
∫

p(x(k)|x(k−1))p(x(k−1)|Z−)dx.
Using also Eq. (6.32) one finally obtains

p(x(k)|Z−) =∑N
i=1wi

k−1δξ i
k−

(x(k))

with ξ i
k− ∼ p(x(k)|x(k− 1) = ξ i

k−1)
(6.33)

The meaning of Eq. (6.33) is as follows: the state equation of the system is executed
N times, starting from the N previous values of the state vectors x(k− 1) = ξ i

k−1

x̂(k +1) = φ(x̂(k))+ L(k)u(k)+ w(k)
z(k) = γ(x̂(k))+ v(k) (6.34)

Thus estimations of the current value of the state vector x̂(k) are obtained, and con-
sequently the mean value of the state vector will be given from Eq. (6.33). This
means that the value of the state vector which is calculated in the prediction stage is
the result of the weighted averaging of the state vectors which were calculated after
running the state equation, starting from the N previous values of the state vectors
ξ i

k−1.

6.6.3 The Correction Stage

The a-posteriori probability density is found using Eq. (6.33). Now, a new position
measurement z(k) is obtained and the objective is to calculate the corrected proba-
bility density p(x(k)|Z), where Z = {z(1),z(2), · · · ,z(k)}. From Bayes law it holds

that p(x(k)|Z) = p(Z|x(k))p(x(k))
p(Z) which can be also written as

p(x(k)|Z) =
p(z(k)|x(k))p(x(k)|Z−)∫

p(z(k)|x(k),Z−)p(x(k)|Z−)dx
(6.35)

Substituting Eq. (6.33) into Eq. (6.35) and after intermediate calculations one finally
obtains
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p(x(k)|Z) = ∑N
i=1wi

kδξ i
k−

(x(k))

where wi
k =

wi
k− p(z(k)|x(k)=ξ i

k− )

∑N
j=1wj

k− p(z(k)|x(k)=ξ j
k− )

(6.36)

Eq. (6.36) denotes the corrected value for the state vector. The recursion of the
Particle Filter proceeds in a way similar to the update of the Kalman Filter or the
Extended Kalman Filter, i.e. [333],[334],[343]:

• Measurement update: Acquire z(k) and compute

new value of the state vector
p(x(k)|Z) = ∑N

i=1wi
kδξ i

k−
(x(k))

with corrected weights

wi
k =

wi
k− p(z(k)|x(k)=ξ i

k− )

∑N
j=1wi

k− p(z(k)|x(k)=ξk− )i and ξ i
k = ξ i

k−

(6.37)

Resampling for substitution of the degenerated particles

• Time update: compute state vector x(k + 1) according to the pdf

p(x(k +1)|Z) = ∑N
i=1wi

kδξ i
k
(x(k))

where ξ i
k∼p(x(k + 1)|x(k) = ξ i

k)
(6.38)

The stages of state vector estimation with the use of the Particle Filtering algorithm
are depicted in Fig. 6.3.

Fig. 6.3 Schematic diagram of the Particle Filter loop
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6.6.4 The Resampling Stage

The algorithm of particle filtering which is described through Eq. (6.33) and Eq.
(6.36) has a significant drawback: after a certain number of iterations k, almost all
the weights wi

k become 0. In the ideal case, all the weights should converge to the
value 1

N , i.e. the particles should have the same significance. The criterion used to
define a sufficient number of particles is Neff

k = 1

∑N
i=1wi

k
2 ∈ [1,N]. When Neff

k is

close to value N then all particles have almost the same significance. However using
the algorithm of Eq. (6.33) and Eq. (6.36) results in Neff

k →1, which means that the
particles are degenerated, i.e. they lose their effectiveness. Therefore, it is necessary
to modify the algorithm so as to assure that degeneration of the particles will not
take place [335],[381],[409],[472].

When Neff
k is small, then most of the particles have weights close to 0 and conse-

quently they have a negligible contribution to the estimation of the state vector. To
overcome this drawback, the PF algorithm weakens such particles in favor of parti-
cles that have a non-negligible contribution. Therefore, the particles of low weight
factors are removed and their place is occupied by duplicates of the particles with
high weight factors. The total number of particles remains unchanged (equal to N)
and therefore this procedure can be viewed as a ”resampling” or ”redistribution” of
the particles set.

The particles resampling presented above maybe slow if not appropriately tuned.
There are improved versions of it which substitute the particles of low importance
with those of higher importance. A first choice would be to perform a multino-
mial resampling. N particles are chosen between {ξ 1

k , · · · ,ξN
k } and the correspond-

ing weights are w1
k , · · · ,wN

k . The number of times each particle is selected is given
by [ j1, · · · , jn]. Thus a set of N particles is again created, the elements of which
are chosen after sampling with the discrete distribution ∑N

i=1wi
kδξ i

k
(x). The particles

{ξ 1
k , · · · ,ξN

k } are chosen according to the probabilities {w1
k , · · · ,wN

k }. The selected
particles are assigned with equal weights 1

N .

6.6.5 Approaches to the Implementation of Resampling

Although sorting of the particles’ weights is not necessary for the convergence
of the particle filter algorithm, there are variants of the resampling procedure of
(ξ i

k,w
i
k i = 1, · · · ,N) which are based on previous sorting in decreasing order of the

particles’ weights [50]. Sorting of particles’ weights gives ws[1] > ws[2] > · · ·> ws[N].
A random numbers generator is evoked and the resulting numbers ui:N∼U [0,1] fall
in the partitions of the interval [0,1]. The width of these partitions is wi and thus
a redistribution of the particles is generated. For instance, in a wide partition of
width wj will be assigned more particles than to a narrow partition of witdh wm

(see Fig. 6.4).
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Fig. 6.4 Multinomial resampling: (i) conventional resampling, (ii) resampling with sorted
weights

Two other methods that have been proposed for the implementation of resampling
in Particle Filtering are explained in the sequel. These are Kitagawa’s approach and
the residuals resampling approach [50]. In Kitagawa’s resampling the speed of the
resampling procedure is increased by using less the random numbers generator. The
weights are sorted again in decreasing order ws[ j] so as to cover the region that
corresponds to the interval [0,1]. Then the random numbers generator is used to
produce the variable u1∼U [0, 1

N ], according to u1∼U [0, 1
N ] and ui = u1 + i

N , i =
2, · · · ,N. The rest of the variables ui are produced in a deterministic way (see
Fig. 6.5(i)) [193].

In the residuals resampling approach, the redistribution of the residuals is per-
formed as follows: at a first stage particle ξ i is chosen in a deterministic way [wi/N]
times (with rounding). The residual weights are w̃i = wi −N[wi/N] and are nor-
malized. Thus, a probability distribution is generated. The rest of the particles are
selected according to the multinomial resampling described above (see Fig. 6.5(ii)).
The method can be applied if the number Ñ which remains at the second stage is
small, i.e. when Neff = 1/∑N

i=1w2
i is small.

Finally, it is mentioned that tuning of the resampling procedure is of impor-
tance for succeeding improved performance of the Particle Filter algorithm and
convergence to an accurate estimation of the state vector. To tune resampling the
following issues are taken into account [333],[409]: (i) control of the diversity of
the particles population, (ii) avoidance of particles’ impoverishment, i.e. avoidance
of absence of particles in the vicinity of the correct state, (iii) selection of the op-
timal number of particles, (iv) selection of the particles’ subsets to be substituted
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Fig. 6.5 Multinomial resampling: (i) Kitagawa’s approach, (ii) residuals approach
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Fig. 6.6 Runtime of the particle filtering algorithm with respect to the number of particles

(stratified resampling), and (v) parallel implementation of resampling for improv-
ing the speed of the PF algorithm. It is noted that when resampling does not include
particles’ sorting the computation time of PF scales up linearly with the number of
particles [370], as shown in Fig. 6.6. On the other hand when particles’ sorting is
performed during resampling the computational complexity of PF is O(Nlog(N))
[41],[266].
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6.7 Application of Estimation Methods to Industrial Systems
Control

An application area of the previously analyzed estimation methods is in sensorless
control or control with a reduced number of sensors for electric motors. Measuring
the motor’s angle or current it is possible to estimate through filtering the rest of the
parameters of motor’s state vector and consequently to implement a state feedback
control scheme. For linear electric motor models subject to Gaussian measurement
or process noise the Kalman Filter is the optimal state estimator, since it results in
minimization of the trace of the estimation error’s covariance matrix. For nonlinear
electric motor models, subject to Gaussian noise one can use the Extended Kalman
Filter. However, since the Extended Kalman Filter is based on a linearization of
the system dynamics using a first order Taylor expansion, there is neither a proof
of its convergence, nor a proof that the estimation succeeded by the EKF satisfies
optimality criteria. Finally, to overcome the limitations of KF and of EKF, Sigma
Point Kalman Filters (and particularly the Unscented Kalman Filter) can be used.

6.7.1 Kalman Filter-Based Control of Electric Motors

The control law of Eq. (4.3) is used to make the motor track the desirable trajectory,
however the state vector x used in the control law is estimated through Kalman

Fig. 6.7 Example of approximation of a 2D distribution by the Sigma-Point Kalman Filtering
approach
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Filtering, as described in Eq. (6.11)-Eq. (6.12). Next, the same feedback control law
is applied to the DC motor but this time the state vector is reconstructed through
encoder measurements.

To simulate Gaussian noise Matlab’s function randn() can be used. The process
and measurement noises are considered to be uncorrelated. The process noise co-
variance matrix was taken to be E{w(i)wT ( j)}= Qδ (i− j), with diagonal elements
with diagonal elements wii = 10−3. The covariance matrix of the measurement noise
was defined E{v(i)vT ( j)} = Rδ (i− j), with diagonal elements rii = 10−2. The esti-
mation error covariance matrix P∈R3×3 and the KF gain K∈R3×1 were used in Eq.
(6.11)-Eq. (6.12).

To perform sensorless control only measurements of the rotor’s angle θ need
to be used. The sampling period is taken to be Ts = 0.01sec. The tracking per-
formance of the Kalman Filter-based control loop, in the case of a see-saw and a
sinusoidal setpoint are depicted in Fig. 6.8, Fig. 6.9 and Fig. 6.10. The reference
setpoint in denoted by the red line, the state vector variables of the motor are de-
noted by the blue line, while the estimated state vector elements are described by
the green line.
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Fig. 6.8 Parameter x1 of the state vector in state estimation with use of the Kalman Filter (a)
when tracking a see-saw set-point (b) when tracking a sinusoidal setpoint

6.7.2 Extended Kalman Filter-Based Control of Electric Motors

The induction motor model, given in Eq. (4.58) was considered. It was assumed
that the torque TL is due to the rotation of a rigid link, i.e. TL = mglsin(θ). The
model’s state variables were taken to be x1 = θ and x2 = θ̇ . The measurement up-
date of the EKF is given by Eq. (7.3), while the time update of the EKF is given by
Eq. (7.4). The measured state variable was supposed to be the rotor’s angle θ . The
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Fig. 6.9 Parameter x2 of the state vector in state estimation with use of the Kalman Filter (a)
when tracking a see-saw set-point (b) when tracking a sinusoidal setpoint
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Fig. 6.10 Parameter x3 of the state vector in estimation was performed with use of the
Kalman Filter (a) when tracking a see-saw setpoint (b) when tracking of a sinusoidal set-
point

Jacobian Jφ (x) is the 2×2 Jacobian of φ calculated through the expansion φ(x(k)) =
φ(x̂−(k))+ Jφ [x(k)− x̂−(k)]+ · · · , and is given by

Jφ = ∂φ
∂x |x=x̂−(k) =

( ∂φ1
∂x1

∂φ1
∂x2

∂φ2
∂x1

∂φ2
∂x2

)
=

(
1 T

−mglT
J′

cos(x1(k)) 1−bT
J′

)
(6.39)

where T is the sampling period. Likewise, γ is expanded about x̂−(k) as γ(x(k)) =
γ(x̂−(k))+ Jγ [x(k)− x̂−(k)]+ · · · , where x̂−(k) is the estimation of the state vector
x(k) before measurement at the k-th instant to be received and x̂(k) is the updated
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Fig. 6.11 Parameter x1 of the state vector in estimation with use of the Extended Kalman
Filter (a) when tracking a see-saw set-point (b) when tracking a sinusoidal setpoint
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Fig. 6.12 Parameter x2 of the state vector in state estimation with use of the Extended Kalman
Filter (a) when tracking a see-saw set-point (b) when tracking a sinusoidal setpoint

estimation of the state vector after measurement at the k-th instant has been received.
The 1×2 Jacobian Jγ (x) is

Jγ(x) =
∂γ
∂x

|x=x̂−(k) =
(
∂γ1
∂x1

∂γ1
∂x2

)
=
(
1 0
)

(6.40)

To implement sensorless control for the decoupled field-oriented induction motor
model described in subsection 4.3.5,only measurements of the rotor’s angle θ have
to be used. As it can be seen in Fig. 6.11 and Fig. 6.12 the sensorless controller
succeeded asympotic elimination of the tracking error despite abrupt changes in the
reference trajectory, or the existence of process and measurement noises.
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6.7.3 Unscented Kalman Filter-Based Control of Electric Motors

In Unscented Kalman Filter-based control a set of suitably chosen weighted sam-
ple points (sigma points) were propagated through the nonlinear system and used
to approximate the true value of the system’s state vector and of the state vec-
tor’s covariance matrix. As explained in Section 6.5 the UKF algorithm consists of
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Fig. 6.13 Parameter x1 of the state vector in estimation was performed with use of the Un-
scented Kalman Filter (a) when tracking a see-saw setpoint (b) when tracking of a sinusoidal
setpoint
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Fig. 6.14 Parameter x2 of the state vector in estimation was performed with use of the Un-
scented Kalman Filter (a) when tracking a see-saw setpoint (b) when tracking of a sinusoidal
setpoint
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two-stages, the time update and the measurement update, which can be summarized
as follows:

The time update of the UKF is

xi
k = φ(xi

k−1)+ L(k−1)U(k−1), i = 0,1, · · · ,2n

x̂−k = ∑2n
i=0wixi

k−

Pxxk− = Pxxk−1 + Qk

The measurement update of the UKF is

zi
k = h(xi

k− ,uk)+ rk, i = 0,1, · · · ,2n

ẑk = ∑2n
i=0wizi

k

Pzzk = ∑2n
i=0wi[zi

k − ẑk][zi
k − ẑk]T + Rk

Pxzk = ∑2n
i=0wi[xi

k− − ˆxk− ][zi
k − ẑk]T

Kk = Pxzk Pzzk
−1

x̂k = x̂k− + Kk[zk − ẑk]

Pxxk = Pk− −KkPzzkKT
k

The simulation experiments of Fig. 6.13 and 6.14 show the good tracking perfor-
mance of the UKF-based control loop, in the case of time varying setpoints (such as
see-saw and sinusoidal reference trajectories).

6.7.4 Particle Filter-Based Control of Electric Motors

The Particle Filter is also applied for estimating the state vector of a DC motor
by processing measurements only of the motor’s output (angle) θ . The DC motor
model was analyzed in subsection 4.3.2. The estimated state vector is again used by
the control law of Eq. (4.3) so as to make the motor’s state vector track desirable
set-points.

From the simulation experiments it can be deduced that the particle filtering algo-
rithm has satisfactory performance and results in accurate estimations of the motor’s
state vector . Of course the number of the particles influences the performance of
the algorithm. The accuracy of the estimation succeeded by the particle filter algo-
rithm improves as the number of particles increase. Indicative results about the PF’s
tracking accuracy, for N = 2500 particles and for a sinusoidal setpoint, are given in
Table 6.1.
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Fig. 6.15 Parameter x1 of the state vector in estimation with use of the Particle Filter under
Rayleigh noise (a) when tracking a see-saw set-point (b) when tracking a sinusoidal set-
point
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Fig. 6.16 Parameter x2 of the state vector in state estimation with use of the Particle Filter
under Rayleigh noise (a) when tracking a see-saw set-point (b) when tracking a sinusoidal
setpoint

Table 6.1 KF and PF variance for N = 2500

parameter θ θ̇ θ̈
KF 0.0543 0.2796 1.1596
PF 0.0003 0.0346 0.0678
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Fig. 6.17 Parameter x3 of the state vector in state estimation with use of the Particle Filter
under Rayleigh noise (a) when tracking a see-saw set-point (b) when tracking a sinusoidal
setpoint



Chapter 7
Sensor Fusion-Based Control for Industrial
Systems

Abstract. Sensor fusion with the use of filtering methods is studied and state esti-
mation of nonlinear systems based on the fusion of measurements from distributed
sources is proposed for the implementation of stochastic control loops for industrial
systems. Extended Kalman and Particle Filtering are first proposed for estimating,
through multi-sensor fusion, the state vector of an industrial robotic manipulator and
the state vector of a mobile robot. Moreover, sensor fusion with the use of Kalman
and Particle Filtering is proposed for the reconstruction from output measurements
the state vector of a ship which performs dynamic positioning.

7.1 Sensor Fusion-Based Control of Industrial Robots

7.1.1 The Sensor Fusion Problem

The next issue to be analyzed is that of fusion of measurements coming from dis-
tributed sensors, with the use of nonlinear filtering methods. Sensor fusion enables
more accurate estimation of the state vector variables as well as robustness to failure
of sensors and measuring devices. Moreover, it enables to substitute measurements
coming from costly and difficult to install or maintain sensors by measurements
given from low cost sensors or sensors which are suitable for harsh industrial envi-
ronments. Thus, sensor fusion-based control finally results in more reliable and fault
tolerant control loops. The fused data are used to reconstruct the state vector of an
industrial robot, such as the one depicted in Fig. 1.1, and the estimated state vector
is in turn used in a control loop. The robot’s end effector (tool) has to follow ac-
curately a specified trajectory expressed in cartesian coordinates. Then, through the
solution of the inverse kinematic problem, this information is mapped to the vector
of the angles of the robot’s joints and an appropriate control signal is generated.

However, measurements of the joint angles from the encoders of the robot’s mo-
tors do not suffice always, because they do not coincide with the angles of the joints
when the flexibility of the joints cannot be neglected (see Fig. 7.1). To avoid in-
accuracies in joints measurements provided by the encoders, the position of the

G.G. Rigatos: Modelling & Control for Intell. Industrial Sys., ISRL 7, pp. 141–173.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 7.1 A flexible joint of an industrial robotic manipulator

end-effector is measured, often using a laser tracker, which is a rather expensive
sensor. Alternatively a sensor fusion approach can be followed to make the robot’s
tool track a predefined trajectory. This approach is as follows: (i) the laser tracker is
substituted by a low cost accelerometer mounted on the robot’s end effector and ac-
celeration measurements in Cartesian coordinates are collected, (ii) measurements
from the encoders of the robot’s motors are also collected, (iii) the robot’s state vec-
tor is estimated through fusion of the measurements coming from the accelerometer
and the encoders, (iv) the estimated state vector is used to generate a suitable control
signal.

With reference to the 3-DOF industrial robotic manipulator of Fig. 1.1 the goal
is to estimate the joints positions θ i, and the joints angular velocities θ̇ i, where i
denotes the i-th robot joint, by measuring the motors angles θ i

m and the Cartesian
acceleration of the robot’s end effector. The measurement obtained by the motors’
encoders is related to the angle of the joint θ through

θm =
1
rg
{θ +

1
k
[D(θ )θ̈ +h(θ , θ̇)+ G(θ )]} (7.1)

Denoting by J the Jacobian of the robot, the cartesian acceleration is related to the
state vector through

ρ̈(t) = J(θ)θ̈(t)+ (
3

∑
i=1

∂J(θ )
∂θi

θ̇i)θ̇ (7.2)

Thus in the proposed sensor fusion approach the measurement vector is given
by h(t) = [θm(t), ρ̈(t)]T , where θm(t) is the vector of the measured motor angles
θ i

m, i = 1, · · ·,3 and ρ̈ is the cartesian acceleration vector in the accelerometer frame.
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7.1.2 Application of EKF and PF for Sensor Fusion

7.1.2.1 EKF-Based State Estimation for Sensor Fusion of the Industrial
Robot Model

Next, an overview of the Extended Kalman Filtering for the nonlinear
state-measurement model is given. The EKF loop is depicted in Fig. 6.1.

Given initial conditions x̂(0) and P̂−(0) the recursion proceeds as:

• Measurement update. Acquire z(k) = [θm(k), ρ̈(k)]T and compute:

K(k) = P−(k)JT
γ (x̂−(k))[Jγ (x̂−(k))P−(k)JT

γ (x̂−(k))+ R(k)]−1

x̂(k) = x̂−(k)+ K(k)[z(k)− γ(x̂−(k))]
P(k) = P−(k)−K(k)Jγ(x̂−(k))P−(k)

(7.3)

• Time update. Compute:

P−(k +1) = Jφ (x̂(k))P(k)JT
φ (x̂(k))+ Q(k)

x̂−(k + 1) = φ(x̂(k))
(7.4)

The application of the EKF algorithm for sensor fusion and state estimation in the
3-DOF industrial robot is described by Eq. (1.1) and next by Eq. (1.11). The mea-
surement relations given by Eq. (7.1) and Eq. (7.2) result in intensive numerical
computations. The measurement equations are nonlinear and are given by Eq. (7.1)
and Eq. (7.2). Thus, the time update of the EKF is based on linear relations and uses
φ(x̂(k)) = A·x̂. However, the measurement update is based on nonlinear relations
and needs extensive algebraic operations.

The measurement update of the EKF is given by Eq. (7.3), while the time update
of the EKF is given by Eq. (7.4). The measured quantities are

γ(θ , θ̇) =
(
γA(θ , θ̇ )
γB(θ , θ̇ )

)
=
(
θm

ρ̈

)
=

(
1
rg
{θ + 1

k [D(θ)θ̈ +h(θ , θ̇)+ G(θ)]

J(θ)θ̈(t)+ (∑3
i=1

∂J(θ)
∂θi

θ̇i)θ̇

)
(7.5)

To use the sensor measurements in Eq. (7.5), the Jacobian J∈R3×3 that relates the
cartesian coordinates of the end-effector to the angles of the joints has to be cal-
culated. To apply the EKF equations one has to calculate the Jacobian Jγ∈R2×6.

J =

⎛
⎜⎝

∂x
∂θ1

∂x
∂θ2

∂x
∂θ3

∂y
∂θ1

∂y
∂θ2

∂y
∂θ3

∂ z
∂θ1

∂ z
∂θ2

∂ z
∂θ3

⎞
⎟⎠ , Jγ =

⎛
⎜⎝

∂γA
∂θ1

∂γA
∂θ2

∂γA
∂θ3

∂γA
∂ θ̇1

∂γA
∂ θ̇2

∂γA
∂ θ̇3

∂γB
∂θ1

∂γB
∂θ2

∂γB
∂θ3

∂γB
∂ θ̇1

∂γB
∂ θ̇2

∂γB
∂ θ̇3

⎞
⎟⎠ (7.6)

Moreover, to calculate γB(θ , θ̇ ), the partial derivatives ∂J/∂θi, and ∂J/∂ θ̇i, i =
1,2,3 have to be computed. Thus, it becomes clear that the application of the EKF
algorithm for sensor fusion in the case of the 3-DOF robotic manipulator ends at
complicated calculations.
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7.1.2.2 Overview of PF-Based State Estimation

The Particle Filtering algorithm approximates the probability density function
pdf(xk) that describes the probability to locate the state vector xk at time instant
k in a certain region of the state space. After k output measurements z1,z2, ...,zk

generated by the input sequence u1,u2, ...,uk a state vector x[m]
k belongs to the set

of particles Xk that approximate accurately the real state vector xk with probabil-

ity given by the Bayes filter x[m]
k ∼p(xk|z1:k,u1:k). The stages of Particle Filtering,

previously described in Section 6.6 are summarized in Table 7.1.

Table 7.1 Particle Filtering Stages

1.Algorithm of Particle Filtering(Xk−1,uk,zk)
2. initializeXk = /0
3. for m = 1 to M do

4. sample x[m]
k ∼p(xk|uk,x

[m]
k−1) → time update

5. w[m]
k = p(zk|x[m]

k ) → measurement update

6. Xk = Xk +{x[m]
k ,w[m]

k }
7. endfor
8. for m = 1 to M do → resampling

9. draw x[i]
k with probability ∝ wi

k

10. add x[i]
k to Xk

11. endfor
12. return Xk

Recalling also Fig. 6.3, it can be observed that as in the case of the Kalman Filter or
the Extended Kalman Filter, the Particles Filter consists of the measurement update
(correction stage) and the time update (prediction stage).

1. The prediction stage (time update): The prediction stage calculates the probability
p(x(k)|Z−) where Z− = {z(1),z(2), · · · ,z(k − 1)}. It holds that p(x(k − 1)|Z−) =
∑N

i=1wi
k−1δξ i

k−1
(x(k− 1)), while using Bayes formula one finally obtains

p(x(k)|Z−) = ∑N
i=1wi

k−1δξ i
k−

(x(k)) with ξ i
k− ∼ p(x(k)|x(k−1) = ξ i

k−1) (7.7)

As already analyzed, the meaning of Eq. (7.7) is that the state equation of the non-
linear system (e.g. described by Eq. (1.1) or Eq. (1.11) is executed N times, starting
from the N previous values of the state vectors x(k− 1) = ξ i

k−1. Consequently, the
mean value of the state vector is given from Eq. (7.7).

2. The correction stage (measurement update): A new position measurement z(k) is
obtained and the objective is to calculate the corrected probability density p(x(k)|Z),
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where Z = z(1),z(2), ...,z(k). As discussed in Section 6.6 and from Bayes law one
gets [50],[95],[284],[303].

p(x(k)|Z) = ∑N
i=1wi

kδξ i
k−

(x(k))

where wi
k =

wi
k− p(z(k)|x(k)=ξ i

k− )

∑N
j=1wj

k− p(z(k)|x(k)=ξ j
k− )

(7.8)

3. Resampling for substitution of the degenerated particles is performed to keep the
particles which are closer to the optimal estimation of the robot’s state vector (see
Fig. 7.2).

Fig. 7.2 Particle filtering-based state estimation: convergence from an initial p.d.f. g(x) to
the desirable final p.d.f. f (x) through resampling

7.1.3 Simulation of EKF and PF-Based Sensor Fusion for
Industrial Robot Control

Simulation experiments based on the industrial robotic manipulator model of Chap-
ter 1 enable to study: (i) state estimation through sensor fusion with the EKF algo-
rithm, and (ii) state estimation through sensor fusion with the PF algorithm, in terms
of accuracy and computational effort. The parameters of the robotic manipulator
described in Eq.(1.2) to Eq. (1.4), were given the values m1 = 10, m2 = 7, and
m3 = 5, while the associated lengths of the robot’s links were l1 = 1.5, l2 = 1.2
and l3 = 1.0 m. The measurement units of the monitored parameters of the robotic
model were: (i) rad for motors’ angles and joints angles, (ii) m/sec2 for cartesian
accelerations of the robot’s end effector.

EKF for fusing the data that come from the accelerometer and the motor encoders
is expected to be efficient under Gaussian distribution of the measurements’ noise,
while under non-Gaussian noise the performance of EKF cannot be assured. On
the other hand, PF is a nonparametric state estimator and is expected be unaffected
by the distribution of the measurements’ noise. In most cases the combination of
measurements from different sensors improves the accuracy of state estimation.
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In state estimation of the 3-DOF robot with the use of the EKF and the PF al-
gorithm, Gaussian measurement noise was first assumed. To generate the Gaussian
noise Matlab’s function randn() was used, while to generate Rayleigh noise func-
tion raylrnd() was used. In the presented results, the variance of the measurement
noise considered for the cartesian accelerations was 0.1, while the variance of the
measurement noise of the motor angles’ was 0.05. Usually the process and mea-
surement noises are taken to be uncorrelated. The process noise covariance matrix
was E{w(i)wT ( j)} = Qδ (i− j) = 0 while the covariance matrix of the measure-
ment noise was taken to be diagonal E{v(i)vT j} = Rδ (i − j). In the simulation
experiments that follow no process noise was considered, thus the process noise
covariance matrix was taken to be Q = 06×6. The covariance matrix of the output
measurement noise was taken to be R = diag[rii], with rii = 10−4 i = 1, · · · ,6. The
estimation error covariance matrix P∈R6×6 and the EKF gain K∈R6×6 were initial-
ized and used in Eq. (7.3) and (7.4), while the Jacobian Jγ was calculated from Eq.
(7.6). The estimated state vector was used in the control law of Eq. (1.8) to make
the robot joints reach the desirable position and velocity set-points.

The performance of the EKF of the PF algorithm was also tested in the case of
non-Gaussian measurement noise. In the latter case, the Rayleigh noise p.d.f. was
assumed for the measurements received from the encoders and the accelerometer.
Rayleigh noise can be induced to measurements transmitted over a network and
in that case the effectiveness of the well-established Gaussian state-estimators is
questionable. Results on networked control of dynamical systems under Rayleigh
noise is given in [66],[234],[282].

The simulation experiments for the PF algorithm were carried out assuming a
sufficiently large number of particles equal to N = 2500. Again the dynamic model
of Eq. (1.1), and the measurement relations of Eq. (7.1) and Eq. (7.2) were used.
As described in subsection 7.1.2 the estimation of the state vector of the robot was
based on measurement and time update. The measurement vector z(k) at time instant
k is given by z(k) = [θm

1 ,θm
2 ,θm

3 , ρ̈x, ρ̈y, ρ̈z]. The measurement and the time update
of the particle filter were given by Eq. (7.7) and Eq. (7.8), respectively.

At each run of the time update of the PF, the state vector estimation x̂−(k + 1)
is calculated N times, starting each time from a different value of the state vector
ξ i

k. The mean value of the state vector can thus be found. The estimated state vector
is used in the measurement equations Eq. (7.1) and Eq. (7.2) and the outcome is
compared to the measurements obtained from the sensors. The recorded difference
(residual) is used to correct the weights associated with the N particles. It should
be noted that the particle filter can utilize the non-linear model directly, whereas
the EKF must use a linearized version. There is also no need to use a Gaussian
approximation of the measurements probability density function.

In Fig. 7.3 a constant reference trajectory was considered and the performance of
the control loop based on the state vector that was estimated either with the use of
the EKF or the PF is presented. In Fig. 7.3(a) the convergence of the angle of the first
joint of the robot to the desirable setpoint is demonstrated, when the measurements
obtained by the robot’s sensors (motor encoders and accelerometers) are subject to
Gaussian noise. In Fig. 7.3(b) the simulation results about convergence of the angle
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of the first joint of the robot to the reference trajectory are obtained considering that
the sensor measurements were affected by Rayleigh noise.

In Fig. 7.4 a constant reference trajectory was considered and simulation results
about the convergence of the angle of the second robot joint to the aforementioned
setpoint were presented. The control signal was generated again using the state vec-
tor that was estimated with the use of the EKF or the PF algorithm. In Fig. 7.4(a) the
measurements obtained by the robot’s sensors (motor encoders and accelerometers)
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Fig. 7.3 Desirable trajectory (constant) for the first joint of the robot, trajectory succeeded
when the state vector was estimated with the use of EKF (dashed line) and trajectory suc-
ceeded when the state vector was estimated with the use of PF (continuous line): (a) under
Gaussian measurement noise, (b) under Rayleigh measurement noise
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Fig. 7.4 Desirable trajectory (constant) for the second joint of the robot, trajectory succeeded
when the state vector was estimated with the use of EKF (dashed line) and trajectory suc-
ceeded when the state vector was estimated with the use of PF (continuous line): (a) under
Gaussian measurement noise, (b) under Rayleigh measurement noise
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Fig. 7.5 (a) Real values of the motor angles of the robot when tracking a constant setpoint,
(b) estimation error of the robot’s motor angles, when the state vector was estimated with the
use of EKF (dashed line) and with the use of PF (continuous line)
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Fig. 7.6 (a) Real values of the cartesian accelerations of the robot’s end effector when track-
ing a constant setpoint, (b) estimation error of the robot’s accelerations, when the state vector
was estimated with the use of EKF (dashed line) and with the use of PF (continuous line)

are subject to Gaussian noise, while in Fig. 7.4(b) the simulation results are obtained
considering that the sensor measurements were affected by Rayleigh noise.

In Fig. 7.5(a), three different plots are given, depicting the angles of the joints’
motors as the control algorithm advances in time, and convergence to a constant ref-
erence trajectory is pursued. In Fig. 7.5(b), the estimation errors of the three joints’
motors are depicted. Results on the estimation error of the EKF and the PF algorithm
are contained in each subplot. In Fig. 7.6(a), three different plots are given again,
depicting the variation of the end effectors cartesian acceleration as the control



7.1 Sensor Fusion-Based Control of Industrial Robots 149

0 10 20 30 40 50
0

1

2

Frequency (Hz)

|Θ
1m

(f
)|

0 10 20 30 40 50
0

5

Frequency (Hz)

|Θ
2m

(f
)|

0 10 20 30 40 50
0

1

2

Frequency (Hz)

|Θ
3m

(f
)|

0 10 20 30 40 50
0

0.5

1

Frequency (Hz)

|Θ
1m

(f
)|

0 10 20 30 40 50
0

5

Frequency (Hz)

|Θ
2m

(f
)|

0 10 20 30 40 50
0

2

4

Frequency (Hz)

|Θ
3m

(f
)|

(a) (b)

Fig. 7.7 (a) Frequency analysis of the signal that describes the motors’ angles when tracking
a constant setpoint and (a) the state vector of the robot was estimated with the use of EKF,
(b) the state vector of the robot was estimated with the use of PF
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Fig. 7.8 Frequency analysis of the signal that describes the end-effector’s accelerations when
tracking a constant setpoint when (a) the state vector of the robot was estimated with the use
of EKF, (b) the state vector of the robot was estimated with the use of PF

algorithm advances in time. In Fig. 7.6(b), the estimation errors of the end-effector’s
cartesian accelerations are depicted. Results on the estimation error of the EKF and
the PF algorithm are again contained in each subplot.

In Fig. 7.7 the frequency characteristics of the signals measured by the motor’s
encoders are depicted, when the feedback control pursues convergence to a constant
setpoint. The frequency analysis of the three motor angles, e.g. based on the (Fast
Fourier Transform) FFT algorithm, can provide information which is useful in fault
diagnosis tasks. In Fig. 7.7(a) the frequency analysis of the estimated motor angles
is based on the use of the state vector calculated by the EKF algorithm, while in
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Fig. 7.9 Desirable trajectory (sinusoidal) for the first joint of the robot, trajectory succeeded
when the state vector was estimated with the use of EKF (dashed line) and trajectory suc-
ceeded when the state vector was estimated with the use of PF (continuous line): (a) under
Gaussian measurement noise, (b) under Rayleigh measurement noise
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Fig. 7.10 Desirable trajectory (sinusoidal) for the second joint of the robot, trajectory suc-
ceeded when the state vector was estimated with the use of EKF (dashed line) and trajectory
succeeded when the state vector was estimated with the use of PF (continuous line): (a) under
Gaussian measurement noise, (b) under Rayleigh measurement noise

Fig. 7.7(b) the estimated motor angles come from the state vector vector calculated
by the PF algorithm. Frequency analysis can be also carried out for the signals mea-
sured by the cartesian accelerometer, which is mounted to the robot’s end-effector,
as shown in Fig. 7.8.

Next, tracking of a sinusoidal reference trajectory was considered. In Fig. 7.9 a
sinusoidal reference trajectory was considered and the performance of the control
loop based on the state vector that was estimated either with the use of the EKF or
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Fig. 7.11 (a) Real values of the motor angles of the robot when tracking a sinusoidal setpoint,
(b) estimation error of the robot’s motor angles, when the state vector was estimated with the
use of EKF (dashed line) and with the use of PF (continuous line)
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Fig. 7.12 (a) Real values of the cartesian accelerations of the robot’s end effector when track-
ing a sinusoidal setpoint, (b) estimation error of the robot’s accelerations, when the state
vector was estimated with the use of EKF (dashed line) and with the use of PF (continuous
line)

the PF is presented. In Fig. 7.9(a) the convergence of the angle of the first joint of the
robot to the desirable trajectory is demonstrated, when the measurements obtained
by the robot’s sensors (motor encoders and accelerometers) are subject to Gaussian
noise. In Fig. 7.9(b) the simulation results about convergence of the angle of the first
joint of the robot to the reference trajectory are obtained considering that the sensor
measurements were affected by Rayleigh noise.
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Fig. 7.13 Frequency analysis of the signal that describes the motors’ angles when tracking a
sinusoidal setpoint in case that (a) the state vector of the robot was estimated with the use of
EKF, (b) the state vector of the robot was estimated with the use of PF
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Fig. 7.14 Frequency analysis of the signal that describes the end-effector’s accelerations
when tracking a sinusoidal setpoint in case that (a) the state vector of the robot was esti-
mated with the use of EKF, (b) the state vector of the robot was estimated with the use of
PF

In Fig. 7.10 a sinusoidal reference trajectory was considered again and simu-
lation results about the convergence of the angle of the second robot joint to the
aforementioned setpoint were presented. The control signal was generated again
using the state vector that was estimated with the use of the EKF or the PF algo-
rithm. In Fig. 7.10(a) the measurements obtained by the robot’s sensors (motor en-
coders and accelerometers) are subject to Gaussian noise. while in Fig. 7.10(b) the
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Table 7.2 Variance of estimation using EKF and PF for N = 2500

parameter θ1 θ2 θ3 θ̇1 θ̇2 θ̇3

variance EKF 0.0123 0.0120 0.0122 0.0455 0.0364 0.0455
variance PF 0.0029 0.0051 0.0071 0.0433 0.0346 0.0447

simulation results are obtained considering that the sensor measurements were af-
fected by Rayleigh noise.

In Fig. 7.11(a), three different plots are given, depicting the angles of the joints’
motors as the control algorithm advances in time, and the joints’ angles convergence
to sinusoidal reference trajectories. In Fig. 7.11(b), the estimation errors of the three
joints’ motors are depicted. Results on the estimation error of the EKF and the PF
algorithm are contained in each subplot. In Fig. 7.12(a), three different plots are
given again, depicting the variation of the end effectors cartesian acceleration as the
control algorithm advances in time. In Fig. 7.12(b), the estimation errors of the end-
effector’s cartesian accelerations are depicted. Results on the estimation error of the
EKF and the PF algorithm are again contained in each subplot.

In Fig. 7.13 the frequency characteristics of the signals measured by the motor’s
encoders are depicted, when the feedback control pursues convergence to a sinu-
soidal setpoint. In Fig. 7.13(a) the spectral analysis of the estimated motor angles
is based on the use of the state vector calculated by the EKF algorithm, while in
Fig. 7.13(b) the estimated motor angles come from the state vector vector calcu-
lated by the PF algorithm. As mentioned above, spectral analysis can be extended to
the signals measured by the cartesian accelerometer which is mounted to the robot’s
end-effector, as shown in Fig. 7.14. Monitoring the changes of the spectrum of cer-
tain signals provided by the sensors of the industrial robotic manipulator is useful in
fault diagnosis and preventive maintenance tasks. Alternatively, fault detection and
isolation for the robotic manipulator can be performed through statistical processing
of measurements in the time domain, as described in [16],[161].

From the simulation experiments it can be deduced that the particle filter per-
forms better than the EKF and results in better estimations of the robot’s state vector.
Of course the number of the particles influences the performance of the algorithm.
It can be observed that the accuracy of the estimation succeeded by the particle
filter algorithm improves as the number of particles increases. The improved per-
formance of the PF is summarized in Table 7.2, where the presented results were
obtained considering equal noise levels for the EKF and PF simulation while the
number of particles used in the PF simulation was N = 2500. Table 7.2, provides
the variance of the estimation succeeded by the EKF and the PF for the parameters
θi and θ̇i, i = 1,2,3 of the robotic model.

Moreover, in Table 7.3, the maximum EKF and PF estimation error for the afore-
mentioned parameters of the robotic manipulator, is presented. The improved per-
formance of the PF algorithm can be noticed again.

In Table 7.4, an example is given on how the variance of the estimated parameter
θ1 is affected by the number of particles N. To test the performance of the parti-
cle filter with respect to the size of the particles set, the PF algorithm was run for
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Table 7.3 Max estimation error using EKF and PF for N = 2500

parameter θ1 θ2 θ3 θ̇1 θ̇2 θ̇3

max est. error PF 0.0912 0.0498 0.796 0.0803 0.0249 0.0467
max est. error EKF 0.1513 0.1498 0.1498 0.0843 0.0794 0.0839

Table 7.4 Particle number, simulation time and variance of θ̂1

No Particles 250 300 400 500 750 1000
Simulation time (sec) 33.76 45.38 56.42 78.00 129.42 192.10

Variance 0.0761 0.0504 0.0220 0.0114 0.0070 0.0067

different numbers of particles ranging between 200 and 3000. The number of effi-
cient particles used in the resampling procedure was set to Neff = 0.85·N. As ex-
pected, a larger number of particles resulted in smaller estimation error (variance),
however this also caused an increase of the simulation time of the algorithm. The
number of particles that gives the optimal trade-off between the estimation error and
the run-time of the PF algorithm has to be chosen ad-hoc.

The simulation time of the particle filtering algorithm with respect to the number
of particles, using the Matlab platform on a PC with 2GHz processor is depicted in
Table 7.4. Optimization of code (for instance the functions used in the re-sampling
of particle filtering) can improve to some extent the speed of the algorithm. It can be
seen that the time needed for calculations is a critical parameter for the suitability of
the PF algorithm for real-time applications. When it is necessary to use more par-
ticles, improved hardware, and parallel processing available to embedded systems,
enable the PF to be implemented in real-time systems [41],[266],[458].

Remark 1: A comparison between the EKF and the PF-based sensor fusion is out-
lined as follows:

(i) The Extended Kalman Filter is based on a linearization of the systems’ dynam-
ics according to a first order Taylor expansion, and thus there is neither a proof
of its convergence, nor a proof that the estimation succeeded by the EKF satisfies
optimality criteria.
(ii) The Particle Filter is a nonparametric state estimator since it is not dependant
on assumptions about the p.d.f. of the process and measurement noises and can
function equally well for Gaussian and non-Gaussian noise distributions.
(iii) The Particle Filter is not based on any linearization of the system dynamics and
can be very efficient in state estimation for nonlinear dynamical systems.
(iv) It is preferable to apply PF in sensor fusion for the industrial robot model since
linearizations and Gaussian approximation may result in low performance of the
EKF. The EKF algorithm needs the calculation of the Jacobians defined in Eq. (7.5)
and (7.6). Moreover, the calculation of the Jacobian’s derivatives ∂J

∂θi
in Eq. (7.5)

requires extensive computations which for a many DOF robot, make the design of
EKF a tedious task.
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(v) Complicated calculations are not needed in the PF design. The prediction and
correction stages consist of repetitive computations of the state estimates which
are based on the nonlinear model of the robot. These are much simpler than the
calculations of the Jacobians defined in Eq. (7.5) and (7.6).

Remark 2: The simulation tests have shown that the Particle Filter results in more
accurate state estimations that the EKF provided that a sufficient number of particles
is used. Moreover, PF avoids the calculations associated with the Jacobians that ap-
pear in the EKF equations. One could also consider other state estimators which are
suitable for nonlinear systems and which may have improved performance and less
complicated calculations comparing to EKF (no analytic derivation or Jacobians),
such as Sigma-Point Kalman Filters (SPKF) and in particular the Unscented Kalman
Filter (UKF) [177]. Comparing to PF the SPKF methods require less sample points
to approximate the state distribution. However, the SPKF state estimators are still
based on the assumption of a Gaussian process and measurement noise, while the
PF is a nonparametric filter which can be applied to any type of state distribution.

7.2 Sensor Fusion-Based Control for Mobile Robots

7.2.1 Simulation of EKF-Based Control for Mobile Robots

Another example of state estimation-based control is the use of nonlinear fil-
tering for fusing the data that come from different sensors of a mobile robot
[51],[168],[228],[244]. The model of the unicycle robot, already described in Eq.
(3.5), is considered again. Its continuous-time kinematic equation is:

ẋ(t) = v(t)cos(θ(t)), ẏ(t) = v(t)sin(θ(t)), θ̇(t) = ω(t) (7.9)

Fig. 7.15 Mobile robot with odometric and sonar sensors
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Fig. 7.16 Orientation of the sonar i

which is a simplified model of a car-like robot studied in [330]. Encoders placed on
the driving wheels, provide a measure of the incremental angles over a sampling pe-
riod T . These odometric sensors are used to obtain an estimation of the displacement
and the angular velocity of the vehicle v(t) and ω(t), respectively. These encoders
introduce incremental errors, which result in an erroneous estimation of the vehicle’s
orientation θ . To improve the accuracy of the vehicle’s localization, measurements
from sonars can be used. The distance measure of sonar i from a neighboring sur-
face Pj is thus taken into account (see Fig. 7.15 and Fig. 7.16). Sonar measurements
may be affected by white Gaussian noise as well as by crosstalk interferences and
multiples echoes.

The inertial coordinates system OXY is defined. Furthermore the coordinates sys-
tem O′X ′Y ′ is considered (see Fig. 7.15). O′X ′Y ′ results from OXY if it is rotated
by an angle θ (Fig. 7.15). The coordinates of the center of the wheels axis with
respect to OXY are (x,y), while the coordinates of the sonar i that is mounted on the
vehicle, with respect to O′X ′Y ′ are x

′
i,y

′
i. The orientation of the sonar with respect to

OX ′Y ′ is θ ′
i . Thus the coordinates of the sonar with respect to OXY are (xi,yi) and

its orientation is θi, and are given by:

xi(k) = x(k)+ x
′
isin(θ (k))+ y

′
icos(θ (k))

yi(k) = y(k)− x
′
icos(θ (k))+ y

′
isin(θ(k))

θi(k) = θ (k)+θi

(7.10)

Each plane P j in the robot’s environment can be represented by P j
r and P j

n

(Fig. 7.16), where (i) P j
r is the normal distance of the plane from the origin O,

(ii) P j
n is the angle between the normal line to the plane and the x-direction.

The sonar i is at position xi(k),yi(k) with respect to the inertial coordinates sys-
tem OXY and its orientation is θi(k). Using the above notation, the distance of the
sonar i, from the plane P j is represented by P j

r ,P j
n (see Fig. 7.16):
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d j
i (k) = P j

r − xi(k)cos(P j
n )− yi(k)sin(P j

n ) (7.11)

where P j
n ε [θi(n)− δ/2,θi(n)+ δ/2], and δ is the width of the sonar beam. As-

suming a constant sampling period Δ tk = T the measurement equation is z(k +1) =
γ(x(k))+v(k), where z(k) is the vector containing sonar and odometer measures and
v(k) is a white noise sequence ∼ N(0,R(kT )). The dimension pk of z(k) depends
on the number of sonar sensors. The measure vector z(k) can be decomposed in two
sub-vectors

z1(k + 1) = [x(k)+ v1(k),y(k)+ v2(k),θ (k)+ v3(k)]
z2(k + 1) = [d j

1(k)+ v4(k), · · · ,d j
ns(k)+ v3+ns(k)]

(7.12)

with i = 1,2, · · · ,ns, where ns is the number of sonars, d j
i (k) is the distance measure

with respect to the plane Pj provided by the i-th sonar and j = 1, · · · ,np where np is
the number of surfaces. By definition of the measurement vector one has that the out-
put function γ(x(k)) is given by γ(x(k)) = [x(k),y(k),θ (k),d1

1 (k),d2
2(k), · · · ,dnp

ns ]T .
The robot state is [x(k),y(k),θ (k)]T and the control input is denoted by U(k) =
[v(k),ω(k)]T .

In the simulation tests, the number of sonar is taken to be ns = 1, and the number
of planes np = 1, thus the measurement vector becomes γ(x(k)) =
[x(k),y(k),θ(k),d1

1 ]T . To obtain the Extended Kalman Filter (EKF), the kinematic
model of the vehicle is linearized about the estimates x̂(k) and x̂−(k) the control
input U(k−1) is applied.

The measurement update of the EKF is

K(k) = P−(k)JT
γ (x̂−(k))[Jγ (x̂−(k))P−(k)JT

γ (x̂−(k))+ R(k)]−1

x̂(k) = x̂−(k)+ K(k)[z(k)− γ(x̂−(k))]
P(k) = P−(k)−K(k)JT

γ P−(k)

The time update of the EKF is

P−(k + 1) = Jφ (x̂(k))P(k)JT
φ (x̂(k))+ Q(k)

x̂−(k + 1) = φ(x̂(k))+ L(k)U(k)

where

L(k) =

⎛
⎝

T cos(θ (k)) 0
T sin(θ(k)) 0

0 T

⎞
⎠

and

Jφ (x̂(k)) =

⎛
⎝

1 0 −v(k)sin(θ )T
0 1 −v(k)cos(θ)T
0 0 1

⎞
⎠

while Q(k) = diag[σ2(k),σ2(k),σ2(k)], with σ2(k) chosen to be 10−3 and φ(x̂(k))
= [x̂(k), ŷ(k), θ̂ (k)]T , γ(x̂(k)) = [, x̂(k), ŷ(k), θ̂ (k),d(k)]T , i.e.
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Fig. 7.17 Desirable trajectory of the autonomous vehicle i

γ(x̂(k)) =

⎛
⎜⎜⎝

x̂(k)
ŷ(k)
θ̂ (k)

P j
r − xi(k))cos(P j

n )− yi(k)sin(P j
n )

⎞
⎟⎟⎠ (7.13)

Assuming one sonar ns = 1, and one plane P1, np = 1 in the mobile robot’s neighbor-
hood one gets JT

γ (x̂−(k)) = [Jγ 1(x̂
−(k)),Jγ 2(x̂

−(k)),Jγ 3(x̂
−(k)),Jγ 4(x̂

−(k))]T , i.e.

JT
γ (x̂−(k)) =

⎛
⎜⎜⎝

1 0 0
0 1 0
0 0 1

−cos(P j
n ) −sin(P j

n ) {x
′
icos(θ −P j

n )− y
′
isin(θ −P j

n )}

⎞
⎟⎟⎠ (7.14)

The vehicle is steered by a dynamic feedback linearization control algorithm which
is based on flatness-based control [295] and which was described in detail in
Chapter 3:

u1 = ẍd +Kp1(xd − x)+ Kd1(ẋd − ẋ)
u2 = ÿd +Kp2(yd − y)+ Kd2(ẏd − ẏ)

ξ̇ = u1cos(θ )+ u2sin(θ)
v = ξ , ω = u2cos(θ)−u1sin(θ)

ξ

(7.15)

Under the control law of Eq. (12.3) the dynamics of the tracking error finally
becomes
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(a) (b)

Fig. 7.18 (a) Desirable trajectory (continuous line) and obtained trajectory using EKF fusion
based on odometric and sonar measurements (−.), (b) Desirable trajectory (continuous line)
and obtained trajectory using PF fusion based on odometric and sonar measurements (−.)

(a) (b)

Fig. 7.19 (a) The trajectory of the mobile robot (dashed line) tracks the reference circular
path (continuous line) when the robot’s state vector is estimated with the use of Extended
Kalman Filtering (b) The trajectory of the mobile robot (dashed line) tracks the reference
circular path (continuous line) when the robot’s state vector is estimated with the use of
Particle Filtering.

ëx + Kd1 ėx + Kp1ex = 0
ëy + Kd2 ėx + Kp2ey = 0

(7.16)

where ex = x − xd and ey = y − yd . The proportional-derivative (PD) gains are
chosen as Kp1 and Kd1 , for i = 1,2. The dynamic compensator of Eq. (12.3) has
a potential singularity at ξ = v = 0, i.e. when the vehicle is not moving. The
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(a) (b)

Fig. 7.20 (a) The trajectory of the mobile robot (dashed line) tracks the reference eight-
shaped path (continuous line) when the robot’s state vector is estimated with the use of
Extended Kalman Filtering (b) The trajectory of the mobile robot (dashed line) tracks the
reference eight-shaped path (continuous line) when the robot’s state vector is estimated with
the use of Particle Filtering.

(a) (b)

Fig. 7.21 (a) The trajectory of the mobile robot (dashed line) tracks the reference curved-
shaped path (continuous line) when the robot’s state vector is estimated with the use of
Extended Kalman Filtering (b) The trajectory of the mobile robot (dashed line) tracks the
reference curved-shaped path (continuous line) when the robot’s state vector is estimated
with the use of Particle Filtering.

occurrence of such a singularity is structural for non-holonomic systems. However,
singularities are avoided under the assumption that the vehicle follows a smooth
trajectory (xd(t),yd(t)) which is persistent, i.e. for which the nominal velocity
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vd = (ẋ2
d + ẏ2

d)
1/2 along the trajectory never goes to zero (and thus singularities are

avoided).

mint≥0||
(

ẋd(t)
ẏd(t)

)
||≥
(
ε̇0

x
ε̇0

y

)
(7.17)

with ε̇0
x = ε̇x(0)�=0 and ε̇0

y = ε̇y(0)�=0 then the singularity ξ = 0 is never met.
In the simulation experiments appearing in Fig.7.18 to Fig.7.20 the following

initialization is assumed (see Fig. 8.7):

• vehicle’s initial position in OXY: x(0) = 0m, y(0) = 0m, θ(0) = 45.0o.
• position of the sonar in O′X ′Y ′: x

′
1 = 0.5m, y

′
1 = 0.5m, θ ′

1 = 0o.
• position of the plane P1: P1

r = 15.5m, P1
n = 45o.

• state noise w(k) = 0, P̂(0) = diag[0.1,0.1,0.1], and R = diag[10−3,10−3,10−3,
10−3].

• Kalman Gain K(k) ε R3×4.

The use of the EKF for fusing the data that come from odometric and sonar
sensors provides an estimation of the state vector [x(t),y(t),θ(t)] and enables the
successful application of nonlinear steering control of Eq. (12.3). For the case of
motion along a straight line on the 2D-plane, the obtained resutls are depicted in
Fig. 7.18(a). Moreover, results on the tracking of a circular reference path are given
in Fig. 7.19(a), while the case of tracking of an eight-shaped reference path is de-
picted in Fig. 7.20(a) Tracking experiments for EKF-based state estimation were
completed in the case of a curved path as the one shown in Fig. 7.21(a).

7.2.2 Simulation of Particle Filter-Based Mobile Robot Control

The particle filter can also provide solution to the sensor fusion problem. The mobile
robot model described in Eq. (12.2), and the control law given in Eq. (12.3) are used
again. The number of particles was set to N = 1000.

The measurement update of the PF is

p(x(k)|Z) = ∑N
i=1wi

kδξ i
k−

(x(k))

with wi
k =

wi
k− p(z(k)|x(k)=ξ i

k− )

∑N
j=1w j

k p(z(k)|x(k)=ξ j
k− )

(7.18)

where the measurement equation is given by ẑ(k) = z(k)+v(k). The elements of the
state vector are z(k) = [x(k),y(k),θ(k),d(k)]T , while v(k) is the measurement noise.

The time update of the PF is

p(x(k +1)|Z) = ∑N
i=1wi

kδξ i
k
(x(k))

where ξ i
k∼p(x(k +1)|x(k) = ξ i

k−)
(7.19)

and the state equation is x̂− = φ(x(k))+ L(k)U(k), where φ(x(k)), L(k), and U(k)
are defined in subsection 7.2. At each run of the time update of the PF, the state
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vector estimation x̂−(k+1) is calculated N times, starting each time from a different
value of the state vector ξ i

k.
The measurement noise distribution was assumed to be Gaussian. As the num-

ber of particles increases, the performance of the particle filter-based tracking algo-
rithm also improves, but this happens at the demand for computational resources.
Control of the diversity of the particles through the tuning of the resampling pro-
cedure may also affect the performance of the algorithm. The obtained results
are given in Fig. 7.18(b) for the case of motion along a straight line on the 2D
plane, Additionally, results on the tracking of a circular reference path are given in
Fig. 7.19(b), while the case of tracking of an eight-shaped reference path is depicted
in Fig. 7.20(b). Tracking experiments for PF-based state estimation were completed
in the case of a curved path as the one shown in Fig. 7.21(b).

7.2.3 Simulation of EKF and PF-Based Parallel Parking Control

Finally the efficiency of the proposed sensor fusion-based control scheme is pre-
sented in the case of a different application example, which is the automated par-
allel parking. The parallel parking task has attracted considerable attention in the
area of mobile robotics since it has practical significance for the automotive in-
dustry [44],[127],[140],[438],[439]. A rectangular parking area is considered and a
reference frame is defined so as its axes to coincide with the rectangle’s side (see
Fig. 7.22). The vehicle starts from an initial position out of the rectangle and moves
backwards. After performing appropriate maneuvers the vehicle should be found
completely inside the parking area with its longitudinal axis to be aligned with the
horizontal axis of the reference system [329]. Collisions with the boundaries of the
parking area are not allowed, while several other constraints about the geometry
of the vehicle’s trajectory and the vehicle’s velocity can be imposed. To perform
the parallel parking task usually three stages can be distinguished: (i) detection of
a suitable parking area, (ii) path planning, i.e. selection of the trajectory to be fol-
lowed by the vehicle’s center of symmetry while moving towards the final position,
(iii) control of the vehicle’s motion. Parallel parking can be performed (a) in direct
motion, i.e. the vehicle moves only backwards, along a single continuous path, to-
wards its final position (b) in recursive motion, i.e. the vehicle moves backwards and
forwards and performs sequential maneuvers along different paths with different ve-
locity sign, before reaching its goal point [127],[329]. In Fig. 7.22 results on state
estimation-based nonlinear control for direct-motion parallel parking are presented.

A robotic unicycle and a rectangular parking area are considered and a collision-
free path that connects the initial to the final position of the vehicle is defined. The
objective is to steer the vehicle along the reference path when the vehicle’s state vec-
tor is not directly available but is estimated by fusing measurements coming from
distributed sensors. Again, two different types of measurements are considered: (i)
measurements of the distance covered by the robot which are provided by the robot’s
encoders and (ii) measurements of the distance from a reference surface (blue line in
Fig. 7.22) which can be provided by a sonar. It can be observed that EKF or PF-based
sensor fusion for estimating the state vector of the mobile loop enables tracking of



7.2 Sensor Fusion-Based Control for Mobile Robots 163

(a)

(b)

Fig. 7.22 Maneuvers performed by the autonomous vehicle for the completion of parallel
parking when the vehicle’s state vector is estimated using (a) Extended Kalman Filtering (b)
Particle Filtering.

the reference path and convergence of the vehicle to its goal point inside the parking
area. From this last simulation experiment it can be deduced again that for a suffi-
ciently large number of particles, the particle filter can have good performance, in the
problem of estimation of the state vector of the mobile robot, without being subject
in the constraint of Gaussian distribution for the obtained measurements. The ini-
tialization of the particles, (state vector estimates) may also affect the convergence
of the PF towards the real value of the state vector of the monitored system.

7.2.4 Performance Analysis of EKF and PF-Based Mobile Robot
Control

Finally about the convergence and stability of the Extended Kalman and the Particle
Filter-based control loops the following can be noted:

(i) For the closed-loop system which consists of the mobile robot, the nonlinear
controller and the state-vector estimator (EKF or PF), a nonlinear stochastic con-
trol problem is formulated. The problem of stochastic control for linear dynamical
systems affected by Gaussian noise, can be solved under certain assumptions fol-
lowing the Linear Quadratic Gaussian (LQG) methodology. The stability proof in
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the LQG approach results in the requirement for simultaneous solution of two Ric-
cati equations: one Riccati equation is associated with the optimal controller that
uses feedback of the estimated state vector, while the second Riccati equation is as-
sociated with the state estimator (Kalman Filter) which provides an approximation
of the state vector using output measurements. Certain assumptions are made on
the process and measurement noise (they are taken to be uncorrelated, of zero mean
and with known covariance matrices). The stochastic control for nonlinear dynami-
cal systems subject to non-Gaussian process/measurement noise is definitely a more
difficult problem and the current chapter contributes to the study of such a control
loop performance. The separation principle is also followed for the closed-loop of
Eq. (12.3), and a controller is designed independently from the observer using the
estimated vector in place of the real state vector [333],[341].

(ii) Demonstration of simultaneous convergence of the estimated state vector and
of the real state vector to the desirable state vector (i.e. x̂→xd and x→xd) would com-
plete a stability proof for the nonlinear stochastic control problem described above.
Stability issues for EKF-based control of a class of systems have been discussed in
[3], while the application of EKF to closed-loop control of robotic manipulators has
been also studied in [39] and [164] . Convergence proof for the particle filter when
the PF is used as observer in a stochastic control loop is an open research problem.
In [75] necessary conditions have been stated for the convergence of the particle fil-
tering algorithm, however these concern the case in which the PF is not included in
a control loop. In case that the PF becomes part of the control loop it is anticipated
that a particle filter with a sufficiently large number of particles, bounded weights,
and a standard resampling scheme can provide an accurate estimation of the mobile
robot’s state vector thus enabling the controller also to converge to the desirable set-
point.

From the simulation experiments it can be noticed that the Particle Filter has im-
proved performance comparing to EKF and that it results in better estimates of the
vehicle’s state vector, even when the process and measurement noises are taken to
be Gaussian. Table 7.5 presents results on the variance of the state vector estimates,
when considering equal noise levels for the EKF and the PF simulation, and assum-
ing that the number of particles used by the EKF was N = 1200.

Table 7.5 Variance using EKF and PF for N=1200

state variable x y θ
EKF 0.086 0.084 16.59·10−3

PF 0.061 0.079 1.40·10−3

The cycle time (runtime) of the Particle Filter with respect to the number of parti-
cles, using the Matlab platform on a PC with a 2GHz Intel Core Duo processor, is de-
picted in Table 7.6. Optimization of code of the resampling procedure can improve
to some extent the speed of the algorithm. As mentioned, when it is necessary to use
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more particles, improved hardware and parallel processing available to embedded
systems enable real-time implementation of the PF algorithm [41],[266],[458].

Table 7.6 Particle number, simulation time and variance of θ̂

No Particles 800 900 1000 1100 1200 1300
PF cycle time (sec) 0.219 0.264 0.317 0.371 0.432 0.490

Variance 0.073 0.068 0.066 0.066 0.061 0.059

When sorting of particles is not performed in the resampling procedure the run-
time of Particle Filtering increases linearly with respect to the number of particles
[370].

7.3 Sensor Fusion-Based Dynamic Ship Positioning

7.3.1 EKF and PF-Based Sensor Fusion for the Ship Model

7.3.1.1 Sensor Fusion Using Extended Kalman Filtering

Next, it will be shown how the state vector of a ship can be estimated with the
use of the Extended Kalman and the Particle Filter. It will also be explained how
the estimated state vector can be used in a nonlinear control loop for performing
dynamic positioning of the vessel.

The ship’s state space model described in Eq. (3.55) and in Eq. (3.56) is suitable
form applying the EKF [102],[104],[124],[335],[342],[362],[405]:

x(k + 1) = φ(x(k))+B(k)u(k)+ w(k)
z(k) = γ(x(k))+ v(k), (7.20)

where x∈Rm×1 is the system’s state vector and z∈Rp×1 is the system’s output, while
w(k) and v(k) are uncorrelated, Gaussian zero-mean noise processes with covari-
ance matrices Q(k) and R(k) respectively.

Again the application of EKF requires a linearization procedure around the cur-
rent estimate of the state vector x̂(k), which results to the linearized version of
the system: x(k + 1) = φ(x̂(k)) + Jφ (x̂(k))[x(k)− x̂(k)] + w(k), z(k) = γ(x̂−(k)) +
Jγ(x̂−(k))[x(k)− x̂−(k)] + v(k), where Jφ (x) and Jγ(x) are the Jacobians of φ and
γ respectively, calculated at x̂(k). As already analyzed, the EKF recursion is as
follows:

Measurement update. Acquire z(k) and compute:

K(k) = P−(k)JT
γ (x̂−(k))·[Jγ(x̂−(k))P−(k)JT

γ (x̂−(k))+R(k)]−1

x̂(k) = x̂−(k)+ K(k)[z(k)− γ(x̂−(k))]
P(k) = P−(k)−K(k)Jγ(x̂−(k))P−(k)

(7.21)
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Fig. 7.23 Estimation of the ship’s state vector by fusing the measurements of its position and
orientation with the measurement of its distance from the coast provided by a coastal sensor
(e.g. radar)

Time update. Compute:

P−(k +1) = Jφ (x̂(k))P(k)JT
φ (x̂(k))+ Q(k)

x̂−(k + 1) = φ(x̂(k))+B(k)u(k)
(7.22)

It is noted that for the previously analyzed ship model (see Chapter 3) it holds φ(x) =
Ax and Jφ (x̂) = A therefore the time update part of the state estimation algorithm is
the same with the time update of the standard Kalman Filter.

The coordinates of the center of symmetry of the ship with respect to OXY (in-
ertial coordinates system) are (x,y), while the coordinates of a reference point i of
the ship (e.g. bridge), with respect to O′X ′Y ′ (body-fixed coordinates system) are
x
′
i,y

′
i (Fig. 7.23). The orientation of the ship’s reference point with respect to O′X ′Y ′

is ψ ′
i . Thus the coordinates of the reference point i with respect to OXY are (xi,yi)

and its orientation is ψi, and are given by xi(k) = x(k)+x
′
isin(ψ(k))+ y

′
icos(ψ(k)),

yi(k) = y(k)− x
′
icos(ψ(k)) + y

′
isin(ψ(k)) and ψi(k) = ψ(k) +ψi. Each reference

plane P j on the coast can be represented by P j
r and P j

n (Fig. 7.23), where (i) P j
r is

the normal distance of the plane from the origin O, (ii) P j
n is the angle between the

normal line to the plane and the x-direction. Using the above notation, the distance
of the ship’s reference point i (e.g. bridge), from the reference plane P j on the coast
depends on P j

r ,P j
n (see Fig. 7.23): d1(k) = P j

r − xi(k)cos(P j
n )− yi(k)sin(P j

n ) [342].
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By definition of the measurement vector one has that the output function γ(x(k))
is given by γ(x(k)) = [x(k),y(k),ψ(k),d1(k)]T . To obtain the Extended Kalman
Filter (EKF), the model of the ship is linearized about the estimates x̂(k) and
x̂−(k) as described in the previous subsection. The process noise covariance matrix
Q(k)∈R12×12 and the measurement noise matrix R∈R4×4 are taken to be diagonal.
The Kalman Filter gain is K∈R12×4. For matrix γ appearing in the ship’s output
equation it holds γ(x̂(k)) = [x̂(k), ŷ(k), ψ̂(k),P j

r − xi(k))cos(Pj
n )− yi(k)sin(P j

n )]T .
The Jacobian of the ship model’s output γ with respect to the state vector x(k) is
thus,

JT
γ (x̂−(k)) =

⎛
⎜⎜⎝

1 0 0 01×9

0 1 0 01×9

0 0 1 01×9

α41 α42 α43 01×9

⎞
⎟⎟⎠ (7.23)

whereα41 =−cos(P j
n ), α42 =−sin(P j

n ) and α43 = {x
′
icos(ψ−Pj

n )−y
′
isin(ψ−Pj

n )}.
As analyzed in Chapter 3, the ship can be steered along the reference trajectory

using the estimated state vector and control based on feedback linearization of the
ship’s dynamic model. Alternatively nonlinear backstepping control or robust con-
trol can be used [32],[182].

7.3.1.2 Sensor Fusion Using Particle Filtering

As in the EKF case, the Particles Filter for the ship dynamic positioning
problem consists also of the measurement update (correction stage) and the
time update (prediction stage) [226],[409],[472]. The prediction stage calcu-
lates p(x(k)|Z−) where Z− = {z(1),z(2), ,z(k − 1)} are output measurements
up to time instant k − 1. As in has been shown in Section 6.6 it holds that
p(x(k − 1)|Z−) = ∑N

i=1wi
k−1δξ i

k−1
(x(k−1)), while from Bayes formula it holds

p(x(k)|Z−) =
∫

p(x(k)|x(k − 1))p(x(k− 1)|Z−)dx. From the above one finally ob-
tains: p(x(k)|Z−) = ∑N

i=1wi
k−1δξ i

k−
(x(k)), with ξ i

k− ∼ p(x(k)|x(k−1) = ξ i
k−1). The

previous relation means that the state equation of the system is executed N times,
starting from the N previous values of the state vectors x(k − 1) = ξ i

k−1. Conse-
quently, the value of the state vector which is calculated in the prediction stage is
the result of the weighted averaging of the state vectors of the ship which were
computed after running the state equation, starting from the N previous values of
the state vectors ξ i

k−1.
Again, following the analysis of Section 6.6, the a-posteriori probability density

is found as follows: a new position measurement z(k) is obtained and the corrected
probability density p(x(k)|Z) is calculated, where Z = {z(1),z(2), · · · ,z(k)}. From
Bayes law it holds that p(x(k)|Z) = p(Z|x(k))p(x(k))/p(Z) which can be also writ-
ten as

p(x(k)|Z) = p(z(k)|x(k))p(x(k)|Z−)/
∫

p(z(k)|x(k),Z−)p(x(k)|Z−)dx
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After intermediate calculations one finally obtains p(x(k)|Z) = ∑N
i=1wi

kδξ i
k−

(x(k)),

where it holds wi
k = wi

k− p(z(k)|x(k) = ξ i
k−)/∑N

j=1wj
k− p(z(k)|x(k) = ξ j

k−). The
previous equation denotes the corrected value for the state vector. The recursion of
the PF proceeds in a way similar to the update of the EKF, i.e.:

Measurement update: Acquire z(k) and compute the new value of the state vector

p(x(k)|Z) =∑N
i=1wi

kδξ i
k−

(x(k))

with corrected weights wi
k =

wi
k− p(z(k)|x(k)=ξ i

k−)

∑N
j=1wi

k− p(z(k)|x(k)=ξk−)i

and ξ i
k = ξ i

k−

(7.24)

Resampling: Substitute the degenerated particles. The particles of low weight
factors are removed and their place is occupied by duplicates of the particles with
high weight factors.

Time update: compute state vector x(k + 1) according to the pdf

p(x(k +1)|Z) = ∑N
i=1wi

kδξ i
k
(x(k))

where ξ i
k∼p(x(k + 1)|x(k) = ξ i

k).
(7.25)

Knowing the measured value of the ship’s position and orientation [x,y,ψ], one can
assign a weight to each particle (estimate of the state vector [x̂, ŷ, ψ̂ ]i), according to
how closely the particle approaches the measured state vector. Similarly knowing
the distance d1 from the coastal reference surface, and calculating an estimation of
this distance d̂1 for every particle [x̂, ŷ, ψ̂ ]i, one can assign a weight to the particle
according to the accuracy of estimation of the distance d1. Further averaging of these
two weight values associated with each particle provides the aggregate particle’s
weight which is used in the Particle Filter’s iteration.

7.3.2 Simulation of EKF and PF-Based Ship Dynamic
Positioning

The number of particles used by the PF was N = 1000. The use of Extended Kalman
and Particle Filtering for fusing the data that come from the ship’s navigation instru-
ments with the measurements that come from coastal sensors provides an estimation
of the state vector [x(t),y(t),θ (t)] and enables the successful application of nonlin-
ear steering control, as shown in Fig 7.24 to Fig. 7.28 and in Fig 7.29 to Fig. 7.33,
respectively. Moreover, from the simulation experiments it can be observed that the
Extended Kalman Filter and the Particle Filter provide accurate estimations of the
external disturbances. Thus, an auxiliary control term based on the disturbances es-
timation can be included in the right hand side of Eq. (3.51), and can compensate
for the disturbances’ effects.
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Fig. 7.24 (a) EKF-based estimation of the ship’s position along the x-axis (continuous line)
and desirable x-axis position (dashed line), (b) EKF-based estimation of the ship’s velocity
along the x-axis (continuous line) and desirable x-axis velocity).
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Fig. 7.25 (a) EKF-based estimation of the ship’s position along the y-axis (continuous line)
and desirable y-axis position (dashed line), (b) EKF-based estimation of the ship’s velocity
along the y-axis (continuous line) and desirable y-axis velocity).
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Fig. 7.26 (a) EKF-based estimation of the ship’s angle round the z-axis (continuous line) and
desirable z-axis rotation angle (dashed line), (b) EKF-based estimation of the ship’s angular
velocity round the z-axis (continuous line) and desirable angular velocity).
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Fig. 7.27 (a) EKF-based estimation of the disturbance along the x-axis (continuous line) and
real value of the x-axis disturbance (dashed line), (b) EKF-based estimation of the disturbance
along the y-axis (continuous line) and real value of the y-axis disturbance (dashed line).
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Fig. 7.28 (a) EKF-based estimation of the disturbance torque round the z-axis (continuous
line) and real value of the z-axis disturbance torque (dashed line), (b) Trajectory of the ship
on the xy-plane (continuous line) and desirable ship trajectory (dashed line) in the case of
EKF-based state estimation.
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Fig. 7.29 (a) PF-based estimation of the ship’s position along the x-axis (continuous line) and
desirable x-axis position (dashed line), (b) PF-based estimation of the ship’s velocity along
the x-axis (continuous line) and desirable x-axis velocity).
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Fig. 7.30 (a) PF-based estimation of the ship’s position along the y-axis (continuous line) and
desirable y-axis position (dashed line), (b) PF-based estimation of the ship’s velocity along
the y-axis (continuous line) and desirable y-axis velocity).
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Fig. 7.31 (a) PF-based estimation of the ship’s angle round the z-axis (continuous line) and
desirable z-axis rotation angle (dashed line), (b) PF-based estimation of the ship’s angular
velocity round the z-axis (continuous line) and desirable angular velocity).
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Fig. 7.32 (a) PF-based estimation of the disturbance along the x-axis (continuous line) and
real value of the x-axis disturbance (dashed line), (b) PF-based estimation of the disturbance
along the y-axis (continuous line) and real value of the y-axis disturbance (dashed line).
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Fig. 7.33 (a) PF-based estimation of the disturbance torque round the z-axis (continuous line)
and real value of the z-axis disturbance torque (dashed line), (b) Trajectory of the ship on the
xy-plane (continuous line) and desirable ship trajectory (dashed line) in the case of PF-based
state estimation.





Chapter 8
Distributed Filtering and Estimation for
Industrial Systems

Abstract. Distributed Filtering and estimation methods for industrial systems are
studied. Such methods are particularly useful in case that measurements about the
industrial system are collected and processed by n different monitoring stations. The
overall concept is that at each monitoring station a filter is used to track the state of
the system by fusing measurements which are provided by various sensors, while
by fusing the state estimates from the distributed local filters an aggregate state es-
timate for the industrial system is obtained. In particular, the chapter proposes first
the Extended Information Filter (EIF) and the Unscented Information Filter (UIF)
as possible approaches for fusing the state estimates provided by the local monitor-
ing stations, under the assumption of Gaussian noises. The EIF and UIF estimated
state vector can, in turn, be used by nonlinear controllers which can make the sys-
tem’s state track desirable setpoints. Moreover, the Distributed Particle Filter (DPF)
is proposed for fusing the state estimates provided by the local monitoring stations
(local filters). The motivation for using DPF is that it is well-suited to accommodate
non-Gaussian measurements. The DPF estimated state vector can again be used by
a nonlinear controller to make system converge to desirable setpoints. The perfor-
mance of the Extended Information Filter, of the Unscented Information Filter and
of the Distributed Particle Filter is evaluated through simulation experiments in the
case of a 2-UAV (unmanned aerial vehicle) model monitored and remotely navi-
gated by two local stations.

8.1 The Problem of Distributed State Estimation over Sensor
Networks

State estimation and control over sensor networks is a problem met in several ap-
plications such as surveillance and condition monitoring of large-scale systems,
multi-robot systems and cooperating UAVs. In sensor networks the simplest kind
of architecture is centralized. Distributed sensors send measurement data to a cen-
tral processing unit which provides the state estimate for the monitored system.
Such an approach has several weaknesses: (i) it lacks fault tolerance: if the central

G.G. Rigatos: Modelling & Control for Intell. Industrial Sys., ISRL 7, pp. 175–196.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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processing unit is subject to a fault then state estimation becomes impossible, (ii)
communication overhead often prohibits proper functioning in case of a large num-
ber of distributed measurement units. On the other hand decentralized architec-
tures are based on the communication between neighboring measurement units
[245],[318]. This assures scalability for the network since the number of messages
received or sent by each measurement unit is independent of the total number of
measurement units in the system. It has been shown that scalable decentralized state
estimation can be achieved for linear Gaussian models, when the measurements are
linear functions of the state and the associated process and measurement noise mod-
els follow a Gaussian distribution [283]. A solution to decentralized sensor fusion
over sensor networks with the use of distributed Kalman Filtering has been pro-
posed in [115],[290],[291],[408],[449]. Distributed state estimation in the case of
non-Gaussian models has been studied in [354] where decentralized sensor fusion
with the use of distributed particle filters has been proposed in several other research
works [77],[245],[247].

In this chapter autonomous navigation of UAVs will be examined and a solu-
tion to this problem will be first attempted with the use of the Extended Informa-
tion Filter and the Unscented Kalman filter [217],[218], [379],[435]. Comparatively,
autonomous UAV navigation with the use of the Distributed Particle Filter will be
studied. This problem belongs to the wider area of multi-source multi-target tracking
[73],[74],[151],[157],[272]. Subproblems to be solved for succeeding autonomous
navigation of the UAVs are: (i) implementation of sensor fusion with the use of
distributed filtering. In this approach the goal is to consistently combine the local
particle distribution with the communicated particle distribution coming from parti-
cle filters running on nearby measurement stations [47]. It is assumed that each local
measurement station runs its own local filter and communicates information to other
measurement stations close to it. The motivation for using particle filters is that they
can represent almost arbitrary probability distributions, thus becoming well-suited
to accommodate the types of uncertainty and nonlinearities that arise in the dis-
tributed estimation [335],[350] (ii) nonlinear control of the UAVs based on the state
estimates provided by the particle filtering algorithm. Various approaches have been
proposed for the UAV navigation using nonlinear feedback control [23],[322],[385].
The chapter proposes flatness-based control for the UAV models. Flatness-based
control theory is based on the concept of differential flatness and has been success-
fully applied to several nonlinear dynamical systems. Flatness-based control for a
UAV helicopter-like model has been developed in [216], assuming that the UAV
performs manoeuvres at a constant altitude.

The chapter proposes first the Extended Information Filter (EIF) and the Un-
scented Information Filter (UIF) as possible approaches for fusing the state esti-
mates provided by the local monitoring stations, under the assumption of Gaussian
noises. The EIF and UIF estimated state vector is in turn used by a flatness-based
controller that makes the UAV follow the desirable trajectory. The Extended Infor-
mation Filter is a generalization of the Information Filter in which the local filters do
not exchange raw measurements but send to an aggregation filter their local infor-
mation matrices (local inverse covariance matrices which can be also associated to
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the Fisher Information Matrices) and their associated local information state vectors
(products of the local information matrices with the local state vectors) [217],[379].
In the case of the Unscented Information Filter there is no linearization of the UAVs
observation equation. However the application of the Information Filter algorithm is
possible through an implicit linearization which is performed by approximating the
Jacobian matrix of the system’s output equation with the product of the inverse of
the state vector’s covariance matrix (information matrix) with the cross-correlation
covariance matrix between the system’s state vector and the system’s output [218],
[435]. Again, the local information matrices and the local information state vectors
are transferred to an aggregation filter which produces the global estimation of the
system’s state vector.

Next, the Distributed Particle Filter (DPF) is proposed for fusing the state esti-
mates provided by the local monitoring stations (local filters). The motivation for
using DPF is that it is well-suited to accommodate non-Gaussian measurements. A
difficulty in implementing distributed particle filtering is that particles from one par-
ticle set (which correspond to a local particle filter) do not have the same support (do
not cover the same area and points on the samples space) as particles from another
particle set (which are associated with another particle filter) [293], [294]. This can
be resolved by transforming the particles sets into Gaussian mixtures, and defining
the global probability distribution on the common support set of the probability den-
sity functions associated with the local filters. The state vector which is estimated
with the use of the DPF is used again by a flatness-based controller to make each
UAV follow a desirable flight path.

8.2 Distributed Extended Kalman Filtering

8.2.1 Calculation of Local Extended Kalman Filter Estimations

Again the discrete-time nonlinear system of Eq. (8.1) is considered.

x(k + 1) = φ(x(k))+ L(k)u(k)+ w(k)
z(k) = γ(x(k))+ v(k) (8.1)

The Extended Information Filter (EIF) performs fusion of the local state vector
estimates which are provided by the local Extended Kalman Filters, using the Infor-
mation matrix and the Information state vector [217],[218],[252],[435]. The Infor-
mation Matrix is the inverse of the state vector covariance matrix, and can be also
associated to the Fisher Information matrix [344]. The Information state vector is
the product between the Information matrix and the local state vector estimate

Y(k) = P−1(k) = I(k)
ŷ(k) = P−(k)−1x̂(k) = Y(k)x̂(k)

(8.2)
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The update equations for the Information Matrix and the Information state vector
are given by

Y (k) = P−(k)−1 + JT
γ (k)R−1(k)Jγ(k)

= Y−(k)+ I(k)
(8.3)

ŷ(k) = ŷ−(k)+ JT
γ R(k)−1[z(k)− γ(x(k))+ Jγ x̂−(k)]

= ŷ−(k)+ i(k)
(8.4)

where

I(k) = JT
γ (k)R(k)−1Jγ (k) is the associated information matrix and

i(k) = JT
γ R(k)−1[(z(k)− γ(x(k)))+ Jγ x̂−(k)] is the information state contribution

(8.5)
The predicted information state vector and Information matrix are obtained from

ŷ−(k)= P−(k)−1x̂−(k)
Y−(k) = P−(k)−1 = [Jφ (k)P−(k)Jφ (k)T + Q(k)]−1 (8.6)

The Extended Information Filter is next formulated for the case that multiple local
sensor measurements and local estimates are used to increase the accuracy and re-
liability of the estimation. It is assumed that an observation vector zi(k) is available
for N different sensor sites i = 1,2, · · · ,N and each sensor observes a common state
according to the local observation model, expressed by

zi(k) = γ(x(k))+ vi(k), i = 1,2, · · · ,N (8.7)

where the local noise vector vi(k)∼N(0,Ri) is assumed to be white Gaussian and
uncorrelated between sensors. The variance of a composite observation noise vector
vk is expressed in terms of the block diagonal matrix

R(k) = diag[R(k)1, · · · ,RN(k)]T (8.8)

The information contribution can be expressed by a linear combination of each local
information state contribution ii and the associated information matrix Ii at the i-th
sensor site

i(k) = ∑N
i=1Ji

γ
T (k)Ri(k)−1[zi(k)− γ i(x(k))+ Ji

γ(k)x̂
−(k)]

I(k) = ∑N
i=1Ji

γ
T (k)Ri(k)−1Ji

γ(k)
(8.9)

Using Eq. (8.9) the update equations for fusing the local state estimates become

ŷ(k) = ŷ−(k)+∑N
i=1Ji

γ
T (k)Ri(k)−1[zi(k)− γ i(x(k))+ Ji

γ(k)x̂
−(k)]

Y(k) = Y−(k)+∑N
i=1Ji

γ
T (k)Ri(k)−1Ji

γ(k)
(8.10)
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Fig. 8.1 Fusion of the distributed state estimates with the use of the Extended Information
Filter

It is noted that in the Extended Information Filter an aggregation (master) fusion
filter produces a global estimate by using the local sensor information provided by
each local filter.

As in the case of the Extended Kalman Filter the local filters which constitute
the Extended information Filter can be written in terms of time update and a
measurement update equation.

Measurement update: Acquire z(k) and compute

Y (k) = P−(k)−1 + JT
γ (k)R(k)−1Jγ(k)

or Y(k) = Y−(k)+ I(k) where I(k) = JT
γ (k)R−1(k)Jγ(k)

(8.11)

ŷ(k) = ŷ−(k)+ JT
γ (k)R(k)−1[z(k)− γ(x̂(k))+ Jγ x̂−(k)]
or ŷ(k) = ŷ−(k)+ i(k)

(8.12)

Time update: Compute

Y−(k +1) = P−(k +1)−1 = [Jφ (k)P(k)Jφ (k)T +Q(k)]−1 (8.13)

y−(k + 1) = P−(k +1)−1
x̂−(k + 1) (8.14)
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Fig. 8.2 Schematic diagram of the Extended Information Filter loop

8.2.2 Extended Information Filtering for State Estimates Fusion

In the Extended Information Filter each one of the local filters operates indepen-
dently, processing its own local measurements. It is assumed that there is no sharing
of measurements between the local filters and that the aggregation filter (Fig. 8.1)
does not have direct access to the raw measurements feeding each local filter. The
outputs of the local filters are treated as measurements which are fed into the ag-
gregation fusion filter [217], [218], [435]. Then each local filter is expressed by its
respective error covariance and estimate in terms of information contributions given
in Eq.(8.6)

Pi
−1(k) = P−

i (k)−1 + JT
γ R(k)−1Jγ(k)

x̂i(k) = Pi(k)(P−
i (k)−1x̂−i (k))+ JT

γ R(k)−1[zi(k)− γ i(x(k))+ Ji
γ(k)x̂

−
i (k)]

(8.15)

It is noted that the local estimates are suboptimal and also conditionally indepen-
dent given their own measurements. The global estimate and the associated error
covariance for the aggregate fusion filter can be rewritten in terms of the computed
estimates and covariances from the local filters using the relations

JT
γ (k)R(k)−1Jγ(k) = Pi(k)−1 −P−

i (k)−1

JT
γ (k)R(k)−1[zi(k)− γ i(x(k))+ Ji

γ(k)x̂
−(k)] = Pi(k)−1x̂i(k)−Pi(k)−1x̂i(k−1)

(8.16)
For the general case of N local filters i = 1, · · · ,N, the distributed filtering architec-
ture (aggregate covariance matrix and aggregate state vector estimate) is described
by the following equations
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P(k)−1 = P−(k)−1 +∑N
i=1[Pi(k)−1 −P−

i (k)−1]
x̂(k) = P(k)[P−(k)−1x̂−(k)+∑N

i=1(Pi(k)−1x̂i(k)−P−
i (k)−1x̂−i (k))]

(8.17)

It is noted that the global state update equation in the above distributed filter can be
written in terms of the information state vector and of the information matrix

ŷ(k) = ŷ−(k)+∑N
i=1(ŷi(k)− ŷ−i (k))

Ŷ (k) = Ŷ−(k)+∑N
i=1(Ŷi(k)− Ŷ−

i (k))
(8.18)

The local filters provide their own local estimates and repeat the cycle at step k +1.
In turn the global filter can predict its global estimate and repeat the cycle at the
next time step k + 1 when the new state x̂(k + 1) and the new global covariance
matrix P(k + 1) are calculated. From Eq. (16.63) it can be seen that if a local filter
(processing station) fails, then the local covariance matrices and the local state esti-
mates provided by the rest of the filters will enable an accurate computation of the
system’s state vector.

8.3 Distributed Sigma-Point Kalman Filtering

8.3.1 Calculation of Local Unscented Kalman Filter Estimations

It is also possible to estimate the state vectors of distributed industrial systems (such
as distributed UAVs constituting a multi-UAV swarm) through the fusion of the es-
timates provided by local Sigma-Point Kalman Filters. This can be succeeded using
the Distributed Sigma-Point Kalman Filter, also known as Unscented Information
Filter (UIF) [217], [218]. First, the functioning of the local Sigma-Point Kalman
Filters will be explained. Each local Sigma-Point Kalman Filter generates an esti-
mation of the state vector by fusing measurements from distributed sensors (e.g. in
the UAV case such sensors can be the IMU and the GPS), Sigma-Point Kalman Fil-
tering is proposed [170], [171], [368]. As explained in Section 6.5 the Sigma-Point
Kalman Filter overcomes some of the flaws of Extended Kalman Filtering. Unlike
EKF, in SPKF no analytical Jacobians of the system equations need to be calculated.
This makes the sigma-point approach suitable for application in ”black-box” models
where analytical expressions of the system dynamics are either not available or not
in a form which allows for easy linearization. This is achieved through a different
approach for calculating the posterior 1st and 2nd order statistics of a random vari-
able that undergoes a nonlinear transformation. The state distribution is represented
again by a Gaussian Random Variable but is now specified using a minimal set of
deterministically chosen weighted sample points.

The Unscented Information Filter is derived by introducing a linear error propa-
gation based on the unscented transformation into the Extended Information Filter
structure. First, an augmented state vector xα−(k) is considered, along with the pro-
cess noise vector, and the associated covariance matrix is introduced

x̂−α (k) =
(

x̂−(k)
ŵ−(k)

)
, Pα−(k) =

(
P−(k) 0

0 Q−(k)

)
(8.19)
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As in the case of local (lumped) Unscented Kalman Filters, a set of weighted sigma
points Xi

α
−(k) is generated as

X−
α ,0(k) = x̂−α (k)

X−
α ,i(k) = x̂−α (k)+ [

√
(nα +λ )P−

α (k−1)]i, i = 1, · · · ,n
X−
α ,i(k) = x̂−α (k)+ [

√
(nα +λ )P−

α (k−1)]i, i = n +1, · · · ,2n

(8.20)

where λ = α2(nα +κ)−nα is a scaling, while 0≤α≤1 and κ are constant param-
eters. The corresponding weights for the mean and covariance are defined as in the
case of the lumped Unscented Kalman Filter

W (m)
0 = λ

nα+λ W (c)
0 = λ

(nα+λ )+(1−α2+β )

W (m)
i = 1

2(nα+λ ) , i = 1, · · · ,2nα W (C)
i = 1

2(nα+λ ) , i = 1, · · · ,2nα
(8.21)

where β is again a constant parameter. The equations of the prediction stage (mea-
surement update) of the information filter, i.e. the calculation of the information
matrix and the information state vector of Eq. (8.6) now become

ŷ−(k) = Y−(k)∑2nα
i=0W m

i Xx
i (k)

Y−(k) = P−(k)−1 (8.22)

where Xx
i are the predicted state vectors when using the sigma point vectors Xw

i in
the state equation Xx

i (k + 1) = φ(Xw
i
−(k))+ L(k)U(k). The predicted state covari-

ance matrix is computed as

P−(k) =
2nα

∑
i=0

W (c)
i [Xx

i (k)− x̂−(k)][Xx
i (k)− x̂−(k)]T (8.23)

As noted, the equations of the Extended Information Filter (EIF) are based on the
linearized dynamic model of the system and on the inverse of the covariance ma-
trix of the state vector. However, in the equations of the Unscented Kalman Filter
(UKF) there is no linearization of the system dynamics, thus the UKF cannot be
included directly into the EIF equations. Instead, it is assumed that the nonlinear
measurement equation of the system given in Eq. (16.48) can be mapped into a lin-
ear function of its statistical mean and covariance, which makes possible to use the
information update equations of the EIF. Denoting Yi(k) = γ(Xx

i (k)) (i.e. the output
of the system calculated through the propagation of the i-th sigma point Xi through
the system’s nonlinear equation) the observation covariance and its cross-covariance
are approximated by

P−
YY (k) = E[(z(k)− ẑ−(k))(z(k)− ẑ−(k))T ]

�Jγ (k)P−(k)Jγ(k)T (8.24)

P−
XY (k) = E[(x(k)− x̂(k)−)(z(k)− ẑ(k)−)T ]

�P−(k)Jγ(k)T (8.25)
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where z(k) = γ(x(k)) and Jγ(k) is the Jacobian of the output equation γ(x(k)). Next,
multiplying the predicted covariance and its inverse term on the right side of the
information matrix Eq. (8.5) and replacing P(k)Jγ (k)T with P−

XY (k) gives the fol-
lowing representation of the information matrix [217], [218], [435]

I(k) = Jγ(k)
T R(k)−1Jγ(k)

= P−(k)−1P−(k)Jγ (k)T R(k)−1J−γ (k)P−(k)T (P−(k)−1)T

= P−(k)−1PXY (k)R(k)−1PXY (k)T (P−(k)−1)T

(8.26)

where P−(k)−1 is calculated according to Eq. (8.23) and the cross-correlation matrix
PXY (k) is calculated from

P−
XY (k) =

2nα

∑
i=0

W (c)
i [Xx

i (k)− x̂−(k)][Yi(k)− ẑ−(k)]T (8.27)

where Yi(k) = γ(Xx
i (k)) and the predicted measurement vector ẑ−(k) is obtained by

ẑ−(k) = ∑2nα
i=0W (m)

i Yi(k). Similarly, the information state vector ik can be rewritten
as

i(k) = Jγ (k)T R(k)−1[z(k)− γ(x(k))+ Jγ(k)T x̂−(k)]
= P−(k)−1P−(k)Jγ(k)T R(k)−1[z(k)− γ(x(k))+ Jγ(k)T (P−(k))T (P−(k)−1)T x̂−(k)]

= P−(k)−1P−
XY (k)R(k)−1[z(k)− γ(x(k))+ P−

XY (k)(P−(k)−1)T x̂−(k)]
(8.28)

To complete the analogy to the information contribution equations of the EIF a
”measurement” matrix HT (k) is defined as

H(k)T = P−(k)−1
P−

XY (k) (8.29)

In terms of the ”measurement” matrix H(k) the information contributions equations
are written as

i(k) = HT (k)R(k)−1[z(k)− γ(x(k))+ H(k)x̂−(k)]
I(k) = HT (k)R(k)−1H(k)

(8.30)

The above procedure leads to an implicit linearization in which the nonlinear mea-
surement equation of the system given in Eq. (8.1) is approximated by the statistical
error variance and its mean

z(k) = γ(x(k))�H(k)x(k)+ ū(k) (8.31)

where ū(k) = γ(x̂−(k))−H(k)x̂−(k) is a measurement residual term. (8.31).
Next, the local estimations provided by distributed (local) Unscented Kalmans

filters will be expressed in terms of the information contributions (information
matrix I and information state vector i) of the Unscented Information Filter, which
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were defined in Eq. (8.30) [217], [218], [435]. It is assumed that the observation
vector z̄i(k + 1) is available from N different sensors, and that each sensor observes
a common state according to the local observation model, expressed by

z̄i(k) = Hi(k)x(k)+ ūi(k)+ vi(k) (8.32)

where the noise vector vi(k) is taken to be white Gaussian and uncorrelated between
sensors. The variance of the composite observation noise vector vk of all sensors
is written in terms of the block diagonal matrix R(k) = diag[R1(k)T , · · · ,RN(k)T ]T .
Then one can define the local information matrix Ii(k) and the local information
state vector ii(k) at the i-th sensor, as follows

ii(k) = HT
i (k)Ri(k)

−1[zi(k)− γ i(x(k))+ Hi(k)x̂−(k)]
Ii(k) = HT

i (k)Ri(k)−1Hi(k)
(8.33)

Since the information contribution terms have group diagonal structure in terms
of the innovation and measurement matrix, the update equations for the multiple
state estimation and data fusion are written as a linear combination of the local
information contribution terms

ŷ(k) = ŷ−(k)+∑N
i=1ii(k)

Y (k) = Y−(k)+∑N
i=1Ii(k)

(8.34)

Then using Eq. (8.22) one can find the mean state vector for the multiple sensor
estimation problem.

As in the case of the Unscented Kalman Filter, the Unscented Information Filter
running at the i-th measurement processing unit can be written in terms of measure-
ment update and time update equations:

Measurement update: Acquire measurement z(k) and compute

Y (k) = P−(k)−1 + HT (k)R−1(k)H(k)
or Y (k) = Y−(k)+ I(k) where I(k) = HT (k)R−1(k)H(k) (8.35)

ŷ(k) = ŷ−(k)+ HT (k)R−1(k)[z(k)− γ(x̂(k))+ H(k)x̂−(k)]
or ŷ(k) = ŷ−(k)+ i(k) (8.36)

Time update: Compute

Y−(k + 1) = (P−(k + 1))−1

where P−(k + 1) = ∑2nα
i=0W (c)

i [Xx
i (k + 1)− x̂−(k + 1)][Xx

i (k + 1)− x̂−(k + 1)]T
(8.37)

ŷ(k + 1) = Y (k + 1)∑2nα
i=0W (m)

i Xx
i (k + 1)

where Xx
i (k + 1) = φ(Xw

i (k))+ L(k)U(k)
(8.38)
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Fig. 8.3 Schematic diagram of the Unscented Information Filter loop

8.3.2 Unscented Information Filtering for State Estimates Fusion

It has been shown that the update of the aggregate state vector of the Unscented
Information Filter architecture can be expressed in terms of the local information
matrices Ii and of the local information state vectors ii, which in turn depend on
the local covariance matrices P and cross-covariance matrices PXY . Next, it will be
shown that the update of the aggregate state vector can be also expressed in terms
of the local state vectors xi(k) and in terms of the local covariance matrices Pi(k)
and cross-covariance matrices Pi

XY (k). It is assumed that the local filters do not have
access to each other row measurements and that they are allowed to communicate
only their information matrices and their local information state vectors. Thus each
local filter is expressed by its respective error covariance and estimate in terms of
the local information state contribution ii and its associated information matrix Ii at
the i-th filter site. Then using Eq. (8.22) one obtains

Pi(k)−1 = P−
i (k)−1 +HT

i (k)Ri(k)−1Hi(k)
x̂i = Pi(k)(P−

i (k)x̂−i (k)+ HT
i (k)Ri(k)

−1[zi(k)− γ i(x(k))+ Hi(k)x̂−(k)])
(8.39)

Using Eq. (8.39), each local information state contribution ii and its associated in-
formation matrix Ii at the i-th filter are rewritten in terms of the computed estimates
and covariances of the local filters

HT
i (k)Ri(k)−1Hi(k) = Pi

−1(k)−P−
i (k)−1

HT
i (k)Ri(k)−1[zi(k)− γ i(x(k))+ Hi(k)x̂−(k)]) = Pi(k)−1x̂i(k)−P−

i (k)−1x̂−i (k)
(8.40)
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where according to Eq.(8.29) it holds Hi(k) = P−
i (k)−1P−

XY,i(k). Next, the aggre-
gate estimates of the distributed Unscented Information Filtering are derived for a
number of N local filters i = 1, · · · ,N and sensor measurements, first in terms of
covariances [217], [218],[435]

P(k)−1 = P−(k)−1 +∑N
i=1[Pi(k)

−1 −P−
i (k)−1]

x̂(k) = P(k)[P−(k)−1x̂−(k)+∑N
i=1(Pi(k)

−1x̂i(k)−P−
i (k)−1

x̂−i (k))]
(8.41)

and also in terms of the information state vector and of the information state covari-
ance matrix

ŷ(k) = ŷ−(k)+∑N
i=1(ŷi(k)− ŷ−i (k))

Y(k) = Y−(k)+∑N
i=1[Yi(k)−Y−

i (k)]
(8.42)

State estimation fusion based on the Unscented Information Filter (UIF) is fault
tolerant. From Eq. (8.41) it can be seen that if a local filter (processing station)
fails, then the local covariance matrices and local estimates provided by the rest of
the filters will enable a reliable calculation of the system’s state vector. Moreover,
it is and computationally efficient comparing to centralized filters and results in
enhanced estimation accuracy.

8.4 Distributed Particle Filter

8.4.1 Distributed Particle Filtering for State Estimation Fusion

The Distributed Particle Filter performs fusion of the state vector estimates which
are provided by the local Particle Filters. This is succeeded by fusing the discrete
probability density functions of the local Particle Filters into a common probability
distribution of the system’s state vector. Without loss of generality fusion between
two estimates which are provided by two different probabilistic estimators (particle
filters) is assumed. This amounts to a multiplication and a division operation to
remove the common information, and is given by [293], [294]

p(x(k)|ZA

⋃
ZB)∝

p(x(k)|ZA)p(x(k)|ZB)
p(x(k)|ZA

⋂
ZB)

(8.43)

where ZA is the sequence of measurements associated with the i-th processing unit
and ZB is the sequence of measurements associated with the j-th measurement unit.
In the implementation of distributed particle filtering, the following issues arise:

1. Particles from one particle set (which correspond to a local particle filter) do not
have the same support (do not cover the same area and points on the samples space)
as particles from another particle set (which are associated with another particle
filter). Therefore a point-to-point application of Eq. (8.43) is not possible.
2. The communication of particles representation (i.e. local particle sets and
associated weight sets) requires significantly more bandwidth compared to other
representations, such as Gaussian mixtures.
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Fusion of the estimates provided by the local particle filters (located at different
processing units) can be performed through the following stages. First, the discrete
particle set of Particle Filter A (Particle Filter B) is transformed into a continuous
distribution by placing a Gaussian kernel over each sample (Fig. 8.4) [277]

Kh(x) = h2K(x) (8.44)

where K() is the rescaled Kernel density and h > 0 is the scaling parameter. Then
the continuous distribution A (B) is sampled with the other particles set B (A) to
obtain the new importance weights, so that the weighted sample corresponds to
the numerator of Eq. (8.43) (Fig. 8.5). Such a conversion from discrete particle

probability distribution functions ∑N
i=1w(i)

A δ (x(i)
A ) (∑N

i=1w(i)
B δ (x(i)

B )) into continuous
distributions is denoted as

∑N
i=1w(i)

A δ (x(i)
A )→pA(x) (∑N

i=1w(i)
B δ (x(i)

B )→pB(x)) (8.45)

The common information appearing in the processing units A and B should not
be taken into account in the joint probability distribution which is created after
fusing the local probability densities of A and B. This means that in the joint p.d.f.
one should sample with importance weights calculated according to Eq. (8.43). The
objective is then to create an importance sampling approximation for the joint dis-
tribution that will be in accordance to Eq. (8.43). A solution to this can be obtained
through Monte Carlo sampling and suitable selection of the so-called ”proposal
distribution” [293], [294].

Fig. 8.4 Conversion of the particles discrete probability density function to a continuous
distribution, after allocating a Gaussian kernel over each particle
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8.4.2 Fusion of the Local Probability Density Functions

According to the above, for the joint distribution the idea behind Monte Carlo sam-
pling is to draw N i.i.d samples from the associated probability density function
p(x), such that the target density is approximated by a point-mass function of the
form

p(x)�
N

∑
i=1

w(i)
k δ (x(i)

k ) (8.46)

where δ (x(i)
k ) is a Dirac delta mass located at x(i)

k . Then the expectation of some
function f (x) with respect to the pdf p(x) is given by

I( f ) = Ep(x)[ f (x)] =
∫

f (x)p(x)dx (8.47)

the Monte-Carlo approximation of the integral with samples is then

IN( f ) =
1
N

N

∑
i=1

f (x(i)) (8.48)

where x(i)�p(X) and IN( f )→I( f ) for N→∞. since, the true probability distribution
p(x) is hard to sample from, the concept of importance sampling is to select a pro-
posal distribution p̄(x) in place of p(x), with the assumption that p̄(x) includes the
support space of p(x). Then the expectation of function f (x), previously given in
Eq. (8.47), is now calculated as

I( f ) =
∫

f (x)
p(x)
p̄(x)

p̄(x)dx =
∫

f (x)w(x)p̄(x)dx (8.49)

where w(x) are the importance weights

w(x) =
p(x)
p̄(x)

(8.50)

Consequently, the Monte-Carlo estimation of the mean value of function f (x) be-
comes

IN( f ) =
N

∑
i=1

f (x(i))w(x(i)) (8.51)

For the division operation, the desired probability distribution is

p(x(i)) =
pA(x(i))
pB(x(i))

(8.52)

In that case the important weights of the fused probability density functions become

w(x(i)) =
pA(x(i))

pB(x(i))p̄(x(i))
(8.53)
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Fig. 8.5 Fusion of the probability density functions produced by the local particle filters

which is then normalized so that ∑N
i=1w(x(i)) = 1/N, where N is the number of

particles. The next step is to decide what will be the form of the proposal distribution
p̄(x). A first option is to take p̄(x) to be a uniform distribution, with a support that
covers both of the support sets of the distributions A and B.

p̄(x) = U(x) (8.54)

Then the sample weights p̄(x(i)) are all equal at a constant of value C. Hence the
importance weights are

w(x(i)) =
pA(x(i))

pB(x(i))C
(8.55)

Another suitable proposal distribution that takes more into account the new infor-
mation received (described as the probability distribution of the second processing
unit) is given by

p̄(x) = pB(x) (8.56)

and the important weights are then adjusted to be

w(x(i)) =
pA(x(i))

pB(x(i))2 (8.57)
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8.5 Simulation Tests

8.5.1 Multi-UAV Control with Extended Information Filtering

It was assumed that m = 2 helicopter models were monitored by n = 2 different
ground stations. At each ground station an Extended Kalman Filter was used to
track each UAV. By fusing the measurements provided by the sensors mounted on
each UAV, each local EKF was able to provide an estimation of a UAV’s motion.
Next, the state estimates obtained by the pair local EKFs associated with each UAV
was fused with the use of the Extended Information Filter. This fusion-based state
estimation scheme is depicted in Fig 8.6. As explained in described in Section 8.2
the weighting of the state estimates of the local EKFs was performed using the local
information matrices. The distributed fitering architecture is shown in Fig. 8.6

Fig. 8.6 Distributed Filtering over WSN

Next, some details will be given about the local EKF design for the UAV model
of Eq. (3.5). Modeling of the UAV kinematics has been studied in [53], [181],[307].
Assuming that the UAV performs maneuvers at a constant altitude, its continuous-
time kinematic equation is :

ẋ(t) = v(t)cos(θ(t))
ẏ(t) = v(t)sin(θ (t))

θ̇ (t) = ω(t)
(8.58)
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The IMU system provides measurements or the UAV’s position [x,y] and the UAV’s
orientation angle θ over a sampling period T . These sensors are used to obtain an
estimation of the displacement and the angular velocity of the UAV v(t) and ω(t),
respectively. The IMU sensors can introduce incremental errors, which result in an
erroneous estimation of the orientation θ . To improve the accuracy of the UAV’s
localization, measurements from the GPS can be used. On the other hand, the GPS
on this own is not always reliable since its signal can be intermittent. Therefore, to
succeed accurate localization of the UAV it is necessary to fuse the GPS measure-
ments with the IMU measurements of the UAV or with measurements from vision
sensors (visual odometry) [117].

Fig. 8.7 Reference frames for the UAV

The inertial coordinates system OXY is defined. Furthermore the coordinates sys-
tem O′X ′Y ′ is considered (Fig. 8.7). O′X ′Y ′ results from OXY if it is rotated by an
angle θ . The coordinates of the center of symmetry of the UAV with respect to OXY
are (x,y), while the coordinates of the GPS or vision sensor that is mounted on the
UAV, with respect to O′X ′Y ′ are x

′
i,y

′
i. The orientation of the GPS (or vision sensor)

with respect to OX ′Y ′ is θ ′
i . Thus the coordinates of the GPS or vision sensor with

respect to OXY are (xi,yi) and its orientation is θi, and are given by:

xi(k) = x(k)+ x
′
isin(θ (k))+ y

′
icos(θ (k))

yi(k) = y(k)− x
′
icos(θ (k))+ y

′
isin(θ(k))

θi(k) = θ (k)+θi

(8.59)

For manoeuvres at constant altitude the GPS measurement (or the vision sensor
measurement) can be considered as the measurement of the distance from a ref-
erence surface P j . A reference surface P j in the UAVs 2D flight area can be
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represented by P j
r and P j

n , where (i) P j
r is the normal distance of the plane from

the origin O, (ii) P j
n is the angle between the normal line to the plane and the x-

direction.
The GPS sensor (or vision sensor i) is at position xi(k),yi(k) with respect to the

inertial coordinates system OXY and its orientation is θi(k). Using the above nota-
tion, the distance of the GPS (or vision sensor i), from the plane P j is represented
by P j

r ,Pj
n (see Fig. 8.7):

d j
i (k) = P j

r − xi(k)cos(P j
n )− yi(k)sin(P j

n ) (8.60)

Assuming a constant sampling period Δtk = T the measurement equation is z(k +
1) = γ(x(k))+ v(k), where z(k) is the vector containing GPS (or vision sensor) and
IMU measures and v(k) is a white noise sequence ∼ N(0,R(kT )).

By definition of the measurement vector one has that the output function is
γ(x(k)) = [x(k),y(k),θ (k),d(k)]T . The UAV state is [x(k),y(k),θ (k)]T and the con-
trol input is denoted by U(k) = [v(k),ω(k)]T . To obtain the Extended Kalman Filter
(EKF), the kinematic model of the UAV is linearized about the estimates x̂(k) and
x̂−(k) the control input U(k−1) is applied.

The measurement update of the EKF is

K(k) = P−(k)JT
γ (x̂−(k))[Jγ (x̂−(k))P−(k)JT

γ (x̂−(k))+ R(k)]−1

x̂(k) = x̂−(k)+ K(k)[z(k)− γ(x̂−(k))]
P(k) = P−(k)−K(k)JT

γ P−(k)

The time update of the EKF is

P−(k + 1) = Jφ (x̂(k))P(k)JT
φ (x̂(k))+ Q(k)

x̂−(k + 1) = φ(x̂(k))+ L(k)U(k)

where L(k) =

⎛
⎝

T cos(θ (k)) 0
Tsin(θ (k)) 0

0 T

⎞
⎠ and Jφ (x̂(k)) =

⎛
⎝

1 0 −v(k)sin(θ )T
0 1 −v(k)cos(θ)T
0 0 1

⎞
⎠ (8.61)

while Q(k) = diag[σ2(k),σ2(k),σ2(k)], with σ2(k) chosen to be 10−3 and
φ(x̂(k))= [x̂(k), ŷ(k), θ̂ (k)]T , γ(x̂(k)) = [, x̂(k), ŷ(k), θ̂ (k),d(k)]T , i.e.

γ(x̂(k)) =

⎛
⎜⎜⎝

x̂(k)
ŷ(k)
θ̂ (k)

Pj
r − xi(k))cos(P j

n )− yi(k)sin(P j
n )

⎞
⎟⎟⎠ (8.62)

In the calculation of the observation equation Jacobian one gets

JT
γ (x̂−(k)) =

⎛
⎜⎜⎝

1 0 0
0 1 0
0 0 1

−cos(P j
n ) −sin(P j

n ) {x
′
icos(θ −P j

n )− y
′
isin(θ −P j

n )}

⎞
⎟⎟⎠ (8.63)
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The UAV is steered by a dynamic feedback linearization control algorithm which is
based the flatness-based control analyzed in Chapter 3.

u1 = ẍd +Kp1(xd − x)+ Kd1(ẋd − ẋ)
u2 = ÿd +Kp2(yd − y)+ Kd2(ẏd − ẏ)

ξ̇ = u1cos(θ )+ u2sin(θ)
v = ξ , ω = u2cos(θ)−u1sin(θ)

ξ

(8.64)

Under the control law of Eq. (8.64) the dynamics of the tracking error finally
becomes

ëx +Kd1 ėx +Kp1ex = 0
ëy +Kd2 ėx +Kp2ey = 0

(8.65)

where ex = x−xd and ey = y−yd . The proportional-derivative (PD) gains are chosen
as Kpi and Kdi , for i = 1,2.
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Fig. 8.8 Autonomous navigation of the multi-UAV system when the UAVs state vector is
estimated with the use of the Extended Information Filter (a) tracking of circular reference
trajectory (b) tracking of a curve-shaped reference trajectory.

Results on the performance of the Extended Information Filter in estimating the
state vectors of multiple UAVs when observed by distributed processing units is
given in Fig. 8.8. Using distributed EKFs and fusion through the Extended Infor-
mation Filter is more robust comparing to the centralized EKF since (i) if a local
processing unit is subject to a fault then state estimation is still possible and can be
used for accurate localization of the UAV, as well as for tracking of desirable flight
paths, (ii) communication overhead remains low even in the case of a large number
of distributed measurement units, because the greatest part of state estimation is per-
formed locally and only information matrices and state vectors are communicated
between the local processing units, (iii) the aggregation performed on the local EKF



194 8 Distributed Filtering and Estimation for Industrial Systems

also compensates for deviations in state estimates of local filters (which can be due
to linearization errors).

The simulation experiments were repeated using the Unscented Information Fil-
ter in the place of the Extended Information Filter. The UIF-based state estimation of
the UAVs was again used by a flatness-based controller which made the UAVs track
desirable trajectories. The simulation results show that the Unscented Information
Filter is a reliable method for performing fusion of distributed state estimates (see
Fig. 8.9). Moreover, unlike the EIF, the UIF is not based on the calculation of Jaco-
bians and avoids cumulative linearization errors which are due to Taylor expansion
used in the local EKFs computation.
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Fig. 8.9 Autonomous navigation of the multi-UAV system when the UAVs state vector is
estimated with the use of the Unscented Information Filter (a) tracking of circular reference
trajectory (b) tracking of a curve-shaped reference trajectory.

8.5.2 Multi-UAV Control with Distributed Particle Filtering

Details on the implementation of the local particle filters are given first. Each local
particle filter provides an estimation of the UAVs state vector using sensor fusion.
The UAV model described in Eq. (12.2), and the control law given in Eq. (12.3) are
used again.

The measurement update of the PF is

p(x(k)|Z) = ∑N
i=1wi

kδξ i
k−

(x(k))

with wi
k =

wi
k− p(z(k)|x(k)=ξ i

k− )

∑N
j=1w j

k p(z(k)|x(k)=ξ j
k− )

where the measurement equation is given by ẑ(k) = z(k)+ v(k). The measurements
vector for the considered UAV model is z(k) = [x(k),y(k),θ (k),d(k)]T , and v(k) is
the measurement noise.
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The time update of the PF is

p(x(k + 1)|Z) = ∑N
i=1wi

kδξ i
k
(x(k))

where ξ i
k∼p(x(k + 1)|x(k) = ξ i

k−)

and the state equation is x̂− = φ(x(k))+ L(k)U(k), where φ(x(k)), L(k), and U(k)
are defined in subsection 8.5.1. At each run of the time update of the PF, the state
vector estimation x̂−(k+1) is calculated N times, starting each time from a different
value of the state vector ξ i

k. Although the Distributed Particle Filter can function
under any noise distribution in the simulation experiments the measurement noise
was assumed to be Gaussian. The obtained results are given in Fig. 8.10.
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Fig. 8.10 Autonomous navigation of the multi-UAV system when the UAVs state vector is
estimated with the use of the Distributed Particle Filter (a) tracking of circular reference
trajectory (b) tracking of a curve-shaped reference trajectory.

In the simulation experiments it was observed that the Distributed Particle Fil-
ter, for N = 1000 particles, succeeded accurate state estimation (small variance) and
consequently enabled accurate tracking of the desirable trajectories by the UAVs.
An advantage of the DPF and UIF over the EIF is due to the fact that the local EKFs
that constitute the EIF introduce cumulative errors due to the EKF linearization as-
sumption (truncation of higher order terms in the Taylor expansion of Eq. (6.14) and
Eq. (6.16)). Comparing to the Extended Information Filter and the Unscented Infor-
mation Filter, the Distributed Particle Filter demands more computation resources
and its computation cycle is longer. However, the computation cycle of PF can be
drastically reduced on a computing machine with a fast processor or with parallel
processors. Other significant issues that should be taken into account in the design of
the Distributed Particle Filter are the consistency of the fusion performed between
the probability density functions of the local filters and the communication overhead
between the local filters.
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The simulation results presented in Fig. 8.10 show the efficiency of the Dis-
tributed Particle Filtering in providing accurate localization for the multi-UAV
system, as well as for implementing state estimation-based control schemes. The ad-
vantages of using Distributed Particle Filtering are summarized as follows: (i) there
is robust state estimation which is not constrained by the assumption of Gaussian
noises. The fusion performed between the local probability density functions en-
ables to remove outlier particles thus resulting in an aggregate state distribution that
confines with accuracy the real state vector of each UAV. If a local processing unit
(local filter) fails, the reliability of the aggregate state estimation will be preserved
(ii) computation load can be better managed comparing to a centralized particle fil-
tering architecture. The greatest part of the necessary computations is performed at
the local filters. Moreover the advantage of communicating state posteriors over raw
observations is bandwidth efficiency, which is particularly useful for control over a
wireless sensor network.



Chapter 9
Fault Detection and Isolation for Industrial
Systems

Abstract. The chapter analyzes a fault detection and isolation approach for efficient
condition monitoring of industrial systems. As shown, two main issues in statistical
methods for fault diagnosis are residuals generation and fault threshold selection.
For residuals generation an accurate model of the system in the fault-free condition
is needed. Such models can be obtained through nonlinear identification techniques
or through nonlinear state estimation and filtering methods. On the other hand the
fault threshold should enable both diagnosis of incipient faults and minimization of
the false alarms rate.

9.1 Fault Diagnosis with Statistical Methods

9.1.1 Residual Generation through Nonlinear System Modelling

A fault is an undetermined deviation of at least one characteristic property (feature)
of the system from its acceptable standard condition. Frequently, faults are difficult
to detect particularly if they are small or hidden. Faults may develop abruptly (step-
wise) or incipiently (driftwise) (see Fig. 9.1). The task of fault diagnosis consists in
determining the type, size and location of the most possible fault in an industrial or
robotic system, as well as its time of detection. Fault diagnosis consists of (i) fault
detection which is the decision on the existence of the industrial or robotic system
in an abnormal state, and (ii) fault isolation i.e. finding the parameter or component
of the industrial or robotic system that is responsible for the abnormal functioning.

Model-based methods of fault detection use the relation between several mea-
sured variables to extract information on possible changes caused by faults. The
relations between the input and output signals are represented by a mathematical
model. Such models can be obtained through nonlinear identification techniques or
through nonlinear state estimation and filtering methods. Decisions on the existence
and cause of a fault are usually based on the comparison between the observed sys-
tem outputs with their nominal values. The differences between the nominal and the
observed system features are also called residuals.

G.G. Rigatos: Modelling & Control for Intell. Industrial Sys., ISRL 7, pp. 197–211.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011



198 9 Fault Detection and Isolation for Industrial Systems

Fig. 9.1 Evolution of faults in industrial and robotic systems: driftwise and stepwise faults

Many industrial or robotic systems (for instance [246]) can be written in terms of
differential equations and thus provide us with a physical model. However, the phys-
ical model is not always available or it can be too complex, or knowledge about it
maybe incomplete. In that case, the exact model of the system can be represented in
the form of a black-box model (i.e. a neural network, a wavelets network or a fuzzy
rule base, trained with the use of input and output measurements of the physical
system). Nevertheless, it should be noted that there is no one to one correspondence
between the parameters of the physical model and the parameters of a black-box
model. Thus, if the Fault Detection and isolation (FDI) method indicates a change
in a parameter of the black-box model this cannot be mapped clearly to a failure
of a certain component of the physical system. The physical model is usually of
higher dimension (parameter vector φ ) than the black-box model (parameter vector
θ ) and thus the transformation of the physical model into the black-box model im-
plies dimension reduction [22],[474]. In such cases, in place of the psysical model it
is possible to use the so-called exact model. In simple words the exact model model
is the model that describes the fault-free system up to random noise, or the model
within the model set that approximates best the system (see Fig. 9.2) [344].

Neuro-fuzzy networks have shown a good performance in problems of modeling
and identification for nonlinear dynamical systems. Fig. 9.4 shows the architecture
of a feed-forward neural network which can estimate the output y(k) of a dynamical
system, when receiving as input the regressor vector that contains past values of the
output and past values of the systems inputs. In that case, the input vector of the NN
is the regressor vector, z(k) = [y(k − 1), · · · ,y(k − n),u(k),u(k− 1), · · · ,u(k −m)].



9.1 Fault Diagnosis with Statistical Methods 199

Fig. 9.2 Residual between the neuro-fuzzy model and the exact model (the exact model is
the neuro-fuzzy model that is extracted from input/output data of the physical system when
the latter is in normal condition)

Identification of the unknown dynamical system can be also carried out with the use
of a diagonal recurrent neural network such as the one shown in Fig. 1.6.

9.1.2 Determination of the Nonlinear Model’s Structure

9.1.2.1 Determination of the Number of Fuzzy Rules

When constructing a neural-fuzzy model one has to decide on the optimal number
and the type of the fuzzy rules that will be used in this model. Two common ap-
proaches for the selection of the number of the fuzzy rules are the following [56]:
(i) The input space partition, (ii) The input dimension (grid) partition (see Fig. 9.3).

Input space partitioning can be the result of a clustering procedure, as shown
in Fig. 9.3(a). Two popular clustering algorithms are the fuzzy c-means (FCM)
algorithm and the Gustafson-Kessel (GK) algorithm. Furthermore, clustering can
be the outcome of an optimization procedure (selection of the centers and spreads
of the fuzzy sets from numerical data through a nonlinear least-squares approach).
The problem with all clustering methods is that the projections of the obtained par-
titions on the axes of the input variables xi may overlap, which implies loss of the
interpretability of the fuzzy rules. In input space partition the membership of the i-th
rule can be for example a Gaussian membership function, i.e.

μrl (x) = e
−∑n

i=1(
(xi−cl

i )

vl
i

)2
(9.1)
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(a) (b)

Fig. 9.3 (a) Input space partition (b) Input dimension (grid) partition.

where n is the number of the fuzzy membership functions of the i-th rule , while cl
i

denote the i-th center (spread) in the antecedent part of the l-th rule.
Input dimension partitioning can be the result of the so-called ”grid” approach.

If the partition of the patterns space is carried out following the ”grid” approach
the interpretability of the fuzzy rules is maintained. However an increased number
of fuzzy rules may be obtained and some of the rules maybe practically inactive
because they will be associated with empty areas of the patterns space. Therefore,
refinement of the fuzzy rule base has to be carried out at a second stage. In input
dimension partition, dimension xi is split into consecutive segments, each one de-

scribed by a membership function of the form: μRl (xi) = e
(
−xi−cl

i
vl
i

)2

, where cl
i denotes

the center of the i-th fuzzy set in the l-th fuzzy rule, and vl
i is the associated variance.

When the input variables xi are split into equal membership functions the in-
put space is covered by the grid shown in Fig. 9.3(b). This is the uniform grid
partition. It should be noted that the input space partition is equivalent to that of
an input dimension (grid) partition. The reason is that Eq. (9.1) can be rewritten
as μRl(x) = e−(x−c)TΛ−2(x−c), where x = [x1,x2, · · · ,xn]T , cl = [cl

1,c
l
2, · · · ,cl

n]T and
Λ = diag(vl

1,v
l
2, · · · ,vl

n). For different Λ l’s, multi-dimensional Gaussian member-
ship functions with different spreads are derived, thus defining a non-uniform grid
in the input space. To get a partition similar to the one depicted in Fig. 9.3(a), the
spread matrix Λ has to be non-diagonal.

In input dimension (grid) partition, the data space is split into Nd = Π n
i=1 pi,

where pi is the number of partitions of each one of the n input dimensions. This
is equal to the number of centers (spreads) that have to be tuned. If input space
partition is applied, the number of centers to be tuned is Ns = n·ps, where n is
again the number of dimensions and ps is the number of the partitions of the input
space. Usually Ns < Nd . The input space partition can succeed the same approxima-
tion accuracy with input dimension partition but with less tunable parameters. The
drawback of input space partition is that it may result in redundant rule bases which
are difficult to be linguistically interpreted [125].
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Fig. 9.4 Neural-fuzzy approximator

9.1.2.2 Determination of the Type of Fuzzy Rules

Once the number of rules has been determined one has to select the type of the rules
that will be employed by the model. There are several types of fuzzy rules such as
linguistic (Mamdani’s) rules, relational rules and rules of the Takagi-Sugeno type
[401],[447]. Linguistic fuzzy rules of the Mamdani type can be found in early ver-
sions of fuzzy models and are obtained from experts’ knowledge. Moreover, the
construction of fuzzy relational matrices is also a matter of human knowledge. In
both approaches the question that arises is how reliable can be the numerical vari-
ables contained in the fuzzy models. These approaches seem at most as reliable as
the expert-system method of asking an expert to give condition-action rules with
numerical uncertainty weights. On the other hand the neurofuzzy models studied in
this chapter are extracted from numerical data. The rules are obtained using opti-
mization criteria thus assuring accuracy and objectiveness of the obtained rule base.
The more generic type of fuzzy rules that numerically extracted models could con-
tain is the Takagi-Sugeno one.

In the sequel fuzzy rules of the Takagi-Sugeno type will be considered. These
have the form:

Rl : IF x1 is Al
1AND x2 is Al

2 AND · · ·AND xn is Al
n

THEN ȳl = ∑n
i=1wl

ixi + bl l = 1,2, · · · ,L (9.2)

where Rl is the l-th rule, x = [x1,x2, · · · ,xn]T is the input (antecedent) variable, ȳl

is the output (consequent) variable, and wl
i , bl are the parameters of the local linear
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models. The above model is a Takagi-Sugeno model of order 1. Setting wl
i = 0

results in the zero order Takagi-Sugeno model [125]. The output of the Takagi-
Sugeno model is given by the weighted average of the rules consequents (Fig. 9.4):

ŷ =
∑L

l=1ȳl∏n
i=1μAl

i
(xi)

∑L
l=1∏

n
i=1μAl

i
(xi)

(9.3)

where μAl
i
(xi) : R→[0,1] is the membership function of the fuzzy set Al

i in the

antecedent part of the rule Rl . In the case of a zero order TS system the output of the
l-th local model is ȳl = bl , while in the case of a first order TS system the output of
the l-th local model is given by ȳl = ∑L

l=1wl
ixi +bl .

If the numerically extracted neural-fuzzy model does not approximate efficiently
the monitored physical system then a refinement of the partitioning of the patterns
space may be required [160],[281].

9.1.3 Stages of Nonlinear Systems Modeling

The individual steps of data-driven neuro-fuzzy modeling for nonlinear identifica-
tion are discussed in [56],[159],[165],[375],[376]. These stages are demonstrated
in Fig. 9.5.

1. Initialization of the neural-fuzzy model: As explained in Subsection 9.1.2 the
creation of the initial neural-fuzzy model comprises two elements: (i) partition
of the data space and formation of data clusters [376],[375]. When clustering is

Fig. 9.5 General scheme of data-driven neural-fuzzy modelling
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complete a collection of L clusters C = (c1,c2, · · · ,cL) is produced. Each cluster is
associated with a fuzzy rule, (ii) Selection of the type of the fuzzy rules. As already
mentioned, the fuzzy model may consist of linguistic (Mamdani) rules, relational
rules or fuzzy rules of the Takagi-Sugeno type.

2. Parameter Optimization: To improve the model performance and to achieve
higher modelling accuracy, the parameters of the initial model should be optimized
against a certain performance index, such as the RMSE. The centers and spreads
of the membership functions and the weights of the local models are exctracted
through the recursive solution of a nonlinear least squares problem [453]. This can
be carried out with the use, for instance, of Extended Kalman Filtering (EKF) [448],
the Gauss-Newton or the Levenberg-Marquardt method [33],[34],[292],[382],[383].
If only the linear weights of the neural-fuzzy system are of interest then the problem
reduces to linear least squares and can be efficiently solved by e.g. applying the
LMS algorithm.

3. Model Simplification: The initial rule-base obtained from data is often redundant
and unnecessarily complex since it is generated from unconstrained optimization
[85],[147]. The absence of constraints on the nonlinear parameters (centers and
spreads of the Gaussian basis functions) may result in a redundant (non inter-
pretable) fuzzy rule base. The complexity is reduced when similarity analysis is
used to identify fuzzy sets that represent conflicting or redundant concepts. By
merging the redundant fuzzy sets, a more comprehensible fuzzy rule base can be
derived [374],[376],[463].

4. Neural-fuzzy model validation: Using a validation technique the final model is
either accepted as suitable for describing the real system or it is rejected and a new
training procedure is evoked. Model validation helps to decide which parameters of
the neural-fuzzy model need tuning thus avoiding global retraining [214],[344].

9.2 Fault Threshold Selection with the Generalized Likelihood
Ratio

9.2.1 The Local Statistical Approach to Fault Diagnosis

Apart from residuals generation through modeling of the monitored system’s func-
tion in the fault-free condition, another significant problem for fault detection and
isolation is optimal selection of the fault threshold. The value of the fault threshold
should be that small faults can be detected at their early stages and also the rate of
false alarms is minimized. A solution to the problem of fault threshold selection
in fault diagnosis systems has been provided by the Local Statistical Approach to
change detection [16],[474]. The Local Statistical Approach has been successfully
applied to several FDI problems, such as [19],[20],[28]: (i) Vibration monitoring in
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linear dynamic systems: this application concerns power plants (rotating machines,
core and pipes of nuclear power plants), civil engineering (large buildings subject to
earthquakes, bridges, dams and offshore structures), aeronautics (wings and other
structures subject to strength), automobile and train transportation, (ii) Nonlinear
static systems, such as the gas turbine: this example refers to the detection of faults
in the combustion chamber of gas turbines, which are widely used as industrial
motors, in electric power generators, and aircraft engines, (iii) Nonlinear dynamic
systems, such as the catalyst used in vehicles: the latter application concerns the de-
tection of faults in the catalytic converter and the oxygen sensors of the automobiles
[17],[21],[470].

Based on a small parametric disturbance assumption, the Local Statistical Ap-
proach to fault diagnosis aims at transforming complex detection problems con-
cerning a parameterized stochastic process into the problem of monitoring the mean
of a Gaussian vector. The local statistical approach consists of two stages : i) the
global test which indicates the existence of a change in some parameters of the
fuzzy model, ii) the diagnostics tests (sensitivity or min-max) which isolates the pa-
rameter affected by the change. The method’s stages are analyzed next, following
closely the method presented in [16],[19].

9.2.2 Fault Detection with the Local Statistical Approach

First, the dynamics of the monitored system in the fault-free condition is learned
by a non-linear model, as described in subsection 9.1.3. At each time instant the
model’s output ym

i is compared to the real condition of the system yi. The difference
between the real condition of the power system and the output of the model is the
previously defined residual. The statistical processing of a sufficiently large number
of residuals provides an index-variable that is compared against a fault threshold
and which can give early indication about deviation of the monitored system from
the normal operating conditions. Therefore alarm launching can be activated at the
early stages of a fault’s occurence, and restoration measures can be taken. Under
certain conditions (detectability of changes) the proposed FDI method enables also
fault isolation, i.e. to identify the source of fault within the monitored system.

The partial derivative of the residual square is:

H(θ ,yi) = ∂e2
i

∂θ = ei
∂ ŷi
∂θ

(9.4)

where θ is the vector of model’s parameters. The vector H having as elements the
above H(θ ,yi) is called primary residual. In the case of neuro-fuzzy models the
gradient of the output with respect to the consequent parameters wl

i is given by

∂ ŷ

∂wl
i

=
xiμRl (x)

∑L
l=1μRl (x)

(9.5)



9.2 Fault Threshold Selection with the Generalized Likelihood Ratio 205

The gradient with respect to the center cl
i is

∂ ŷ

∂cl
i

=
L

∑
l=1

yl 2(xi−cl
i)

vl
i

μRl (xi)[∑L
j=1 μR j(xi)− μRl(xi)]

[∑L
l=1 μRl (xi)]2

(9.6)

The gradient with respect to the spread vl
i is

∂ ŷ

∂vl
i

=
L

∑
l=1

yl 2(xi−cl
i )

2

vl
i
3 μRl (xi)[∑L

j=1 μR j(xi)− μRl (xi)]

[∑L
l=1 μRl (xi)]

2 (9.7)

Next, having calculated the partial derivatives of Eq.(9.5), Eq.(9.6) and Eq.(9.7), the
rows of the Jacobian matrix J are found by

J(θ0,yk) =
∂ ŷk(θ)
∂θ

∣∣∣∣∣
θ=θ0

(9.8)

The problem of change detection with the χ2 test consists of monitoring a change in
the mean of the Gaussian variable which for the one-dimensional parameter vector
θ is formulated as

X =
1√
N

=
N

∑
i=1

ek
∂ ŷk

∂θ
∼N(μ ,σ2) (9.9)

where ŷk is the output of the neural model generated by the input pattern xk, ek is the
associated residual and θ is the vector of the model’s parameters. For a multivariable
parameter vector θ should hold X∼(Mη ,Σ). In order to decide if the power system
is in fault-free operating conditions, a given set of data of N measurements, let θ∗
be the value of the parameters vector μ minimizing the RMSE. The notation is
introduced only for the convenience of problem formulation, and its actual value
does not need to be known. Then the fault detection problem amounts to make a
decision between the two hypotheses:

H0 : θ∗ = θ0

H1 : θ∗ = θ0 + 1√
N
δθ (9.10)

where δθ �=0. It is known from the central limit theorem that for a large data sam-
ple, the normalized residual given by Eq.(9.9) asymptotically follows a Gaussian
distribution when N→∞ [16,19]. More specifically, the hypothesis that has to be
tested is:

H0 : X ∼ N(0,S)
H1 : X ∼ N(Mη ,S)

where M is the sensitivity matrix (see Eq. (9.11)), η is the parameters’ vector and S
is the convariance matrix (see Eq. (9.12)). The product Mη denotes the new center of
the monitored Gaussian variable X , after a change on the system’s parameter θ . The
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sensitivity matrix M of 1√
N

X is defined as the mean value of the partial derivative

with respect to θ of the primary residual defined in Eq. 9.4, i.e. E{ ∂
∂θ H(θ ,yk)} and

is approximated by [8]:

M(θ0)� ∂
∂θ

1
N∑

N
k=1H(θ0,yk)� 1

N JT J (9.11)

The covariance matrix S is defined as E{H(θ ,yk)HT (θ ,yk+m)}, m = 0,±1, · · · and
is approximated by [19]:

S = �∑N
k=1[H(θ0,yk)HT (θ0,yk)]+

+∑I
m=1

1
N−m∑

N−m
k=1 [H(θ0,yk)HT (θ0,yk+m)+ H(θ0,yk+m)HT (θ0,yk)]

(9.12)

where an acceptable value for I is 3. The decision tool is the likelihood ratio s(X) =
ln

pθ1(x)
pθ0(x)

, where pθ1(X) = e[X−μ(X)]T S−1[X−μ(X)] and pθ0(X) = eXT S−1X . The center of

the Gaussian distribution of the changed system is denoted as μ(X) = Mη where
η is the parameters vector. The Generalized Likelihood Ratio (GLR) is calculated
by maximizing the likelihood ratio with respect to η [19]. This means that the most
likely case of parameter change is taken into account. This gives the global χ2 test
t, defined as:

t = XT S−1M(MT S−1M)−1MT S−1X (9.13)

Since X asymptotically follows a Gaussian distribution, the statistics defined in Eq.
(9.13) follows a χ2 distribution with n degrees of freedom. Mapping the change
detection problem to this χ2 distribution enables the choice of the change thresh-
old [367]. Assume that the desired probability of false alarm is α then the change
threshold λ should be chosen from the relation

∫ ∞
λ χ2

n (s)ds = α (9.14)

where χ2
n (s) is the probability density function (p.d.f.) of a variable that follows the

χ2 distribution with n degrees of freedom.

9.2.3 Fault Isolation with the Local Statistical Approach

9.2.3.1 The Sensitivity Test

Fault isolation is needed to identify the source of faults in the monitored system. A
first approach to change isolation is to focus only on a subset of the parameters while
considering that the rest of the parameters remain unchanged [19]. The parameters
vector η can be written as η = [φ ,ψ ]T , where φ contains those parameters to be
subject to the isolation test ,while ψ contains those parameters to be excluded from
the isolation test. Mφ contains the columns of the sensitivity matrix M which are
associated with the parameters subject to the isolation test. Similarly Mψ contains
the columns of M that are associated with the parameters to be excluded from the
sensitivity test.
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Assume that among the parameters η , it is only the subset φ that is suspected
to have undergone a change. Thus η is restricted to η = [φ ,0]T . The associated
columns of the sensitivity matrix are given by Mφ and the mean of the Gaussian to
be monitored is μ = Mφ φ , i.e.

μ = MAφ , A = [0, I]T (9.15)

Matrix A is used to select the parameters that will be subject to the fault isolation
test. The rows of A correspond to the total set of parameters while the columns of
A correspond only to the parameters selected for the test. Thus the fault diagnosis
(χ2) test of Eq. (9.13) can be restated as:

tφ = XT S−1Mφ (MT
φ S−1Mφ )−1MT

φ S−1X (9.16)

9.2.3.2 The Min-Max Test

In this approach the aim is to find a statistic that will be able to detect a change on
the part φ of the parameters vector η and which will be robust to a change in the
non observed part ψ [19]. Assume the vector partition η = [φ ,ψ ]T . The following
notation is used:

MT S−1M =
(

Iϕϕ Iϕψ
Iψϕ Iψψ

)
(9.17)

γ =
(
ϕ
ψ

)T

·
(

Iϕϕ Iϕψ
Iψϕ Iψψ

)
·
(
ϕ
ψ

)
(9.18)

where S is the previously defined covariance matrix. The min-max test aims to
minimize the non-centrality parameter γ with respect to the parameters that are
not suspected for change. It is noted that matrix I is also known as Fisher In-
formation matrix and provides indices on the diagnosability of nonlinear models
[109],[110],[111].

The minimum of γ with respect to ψ is given for:

ψ∗ = argmin
ψ

γ = ϕT (Iϕϕ − IϕψI−1
ψψ Iψϕ)ϕ (9.19)

and is found to be

γ∗ = min
ψ

γ = ϕT (Iϕϕ − IϕψI−1
ψψ Iψϕ)ϕ =

=
(

ϕ
−I−1

ψψ Iψϕϕ

)T (
Iϕϕ Iϕψ
Iψϕ Iψψ

) (
ϕ

−I−1
ψψ Iψϕϕ

) (9.20)

which results in

γ∗ = ϕT{[I,−Iϕψ I−1
ψψ ]MTΣ−1} Σ−1{Σ−1M[I,−Iϕψ I−1

ψψ ]}ϕ (9.21)
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The following linear transformation of the observations is considered :

X∗
φ = [I,−Iϕψ I−1

ψψ ]MTΣ−1X (9.22)

The transformed variable X∗
φ follows a Gaussian distribution N(μ∗

φ , I∗φ ) with mean:

μ∗
ϕ = I∗ϕϕ (9.23)

and with covariance :
I∗ϕ = Iϕϕ − IϕψI−1

ψψ Iψϕ (9.24)

The min-max test decides between the hypotheses :

H∗
0 : μ∗ = 0

H∗
1 : μ∗ = I∗ϕϕ

and is described by :
τ∗ϕ = X∗

ϕ
T I∗ϕ

−1X∗
ϕ (9.25)

The stages of fault detection and isolation (FDI) with the use of the local statistical
approach are summarized in the following table:

Table 9.1 Stages of the local statistical approach for FDI

1. Generate the residuals partial derivative given by Eq.(9.4)
2. Calculate the Jacobian matrix J given by Eq.(9.8)
3. Calculate the sensitivity matrix M given by Eq.(9.11)
4. Calculate the covariance matrix S given by Eq.(9.12)
5. Apply the χ2 test for change detection of Eq.(9.13)
6. Apply the change isolation tests of Eq. (9.16) or Eq.(9.25)

9.2.4 Fault Threshold for Residuals of Unknown Distribution

9.2.4.1 Residuals Generation Using Kalman Filtering

Apart from neuro-fuzzy models, statistical filters such as the Kalman Filter can be
used for estimating the output of the monitored system in the fault-free condition and
subsequently for generating residuals [399],[417]. As already analyzed in Chapter
6, the discrete-time Kalman Filter is an optimal state estimator for linear dynamical
systems of the form:

x(k +1) = Φx(k)+L(k)u(k)+w(k)
y(k) = Cx(k)+v(k) (9.26)

In the state model of Eq. (9.26), the state x(k) is a N-vector, w(k) is a N-element
process noise vector, Φ is a N ×N real matrix, C is an N-element row vector of
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Fig. 9.6 Fault detection and isolation based on filters (observers)

real numbers, and v(k) is the measurement noise. It is assumed that w(k) and v(k)
are uncorrelated. The process and output noise are Gaussian zero-mean and their
covariance matrices are given by: Q = E[w(i)wT ( j)] and R = E[v(i)vT ( j)]. The
initial value of the state vector x(0), and the initial value of the error covariance
matrix P(0) is unknown and an estimation of them is considered, i.e. x̂(0) = a guess
of E[x(0)], and P̂(0) = a guess of Cov[x(0)]. For the initialization of matrix P one
can set P̂(0) = λ I, with λ > 0 [175],[341].

According to the analysis given in Chapter 6, the Kalman filter consists of two
stages: (i) time update, and (ii) measurement update. The first part employs an es-
timate x̂−(k) of the state vector x(k) made before the output measurement y(k) is
available (a priori estimate), i.e. when the set of the measurements sequence is given
by Y− = {y(1), · · · ,y(k−1)}. The second part provides an estimate x̂(k) of x(k) af-
ter y(k) has become available (a posteriori estimate), when the set of measurements
becomes Y = {y(1), · · · ,y(k)}. The discrete Kalman filter equations, initially given
in Eq. (6.12) and Eq. (6.11), are:

measurement update:

K(k) = P−(k)CT [C·P−(k)CT + R]−1

x̂(k) = x̂−(k)+ K(k)[z(k)−Cx̂−(k)]
P(k) = P−(k)−K(k)CP−(k)

(9.27)

time update:
P−(k +1) =Φ(k)P(k)ΦT (k)+ Q(k)

x̂−(k +1) =Φ(k)x̂(k)+ L(k)u(k) (9.28)
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Thus, in the case of Gaussian process and measurement noise the Kalman Filter is
an optimal model (in terms of estimation’s accuracy) of the fault-free functioning
of the system and can be used for residuals generation (see Fig. 9.6). Such residuals
can be processed by the local statistical approach for detecting the existence and the
cause of the fault within the system.

9.2.4.2 Residuals Generation Using Particle Filtering

In [172],[226],[472] the likelihood ratio has been combined with Particle Filter
(PF) and a Particle Filtering-based LR method for FDI suitable for nonlinear non-
Gaussian systems has been presented. As mentioned, the monitored system is
governed by one of the M + 1 models based on Eq. (4.49) and including faults
as additional inputs. The normal operation situation is denoted by m = 0, while
m = 1, · · · ,M corresponds to one of the M faulty situations. For each one of the
faults m that may take place m = 1, · · · ,M, a particle filter is used to approximate
the posterior probability density function of the state vector of these models. The
main concept for FDI is (i) to use the M particle filters to calculate the pdf of the
M system models of Eq. (4.49) for m �=0, (ii) to generate residuals by comparing the
output of the monitored system to the output of the particle filters, (iii) to perform
M likelihood-ratio tests using the M generated residuals.

It is assumed that the measurement noise v has the same dimensionality as
the measurement y and for each model given the state xm

j and the measurement

y j the measurement noise v is defined by an observation-error function v(m)
j =

g(m)
j (y j,x

(m)
j ), where g(m)

j (., .) has a Jacobian defined by
∂g

(m)
j

∂yj
. The likelihood ra-

tio for the m-th hypothesized model is

Sk
j(m) = ∑k

j=rln
p(y j |Hm,Yj−1)
p(y j |H0,Yj−1) (9.29)

where the likelihood of the observation y j gives its past values Yj−1, i.e. the prob-
ability function p(y j|Hm,Yj−1), m = 0,1, · · · ,M is the output estimation based on
hypothesis Hm, which is defined by the m-th measurement model and the known

statistics of the observation error function e(m)
j = g(m)

j (y j,x
(m)
j ). If the pdf of e(m)

j

is denoted by q(m)
j (e(m)

j ), then the probability p(y j|Hm,Yj−1) can be expressed in a
way analogous to the LR residual

s(m)
j = p(y j|Hm,Yj−1) = q(m)

j (e(m)
j )| ∂e(m)

j
∂y j

| (9.30)

where m = 0,1, · · · ,M and x(m)
j| j−1 is the output estimation of the m-th model, given

Yk−1. It can be verified that in the Gaussian case, the quantity defined by Eq. (9.30)
is just the innovation likelihood, which can be derived from the Kalman Filter equa-
tions, based on the m-th model. For the general nonlinear non-Gaussian model there
are no analytical means to perform the calculation. However, with the particle filter
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this quantity can be estimated using the complete pdf information of the predicted

state x(m)
j| j−1 represented by the swarm of particles. Since x(m)

j| j−1 : i = 1, · · · ,N can

be considered as the samples from p(x j|Hm,Zj−1) for the m-th model, the required
quantity can be computed via the Monte-Carlo integration as follows:

s(m)
j = p(y j|Hm,Yj−1)� 1

N∑
N
i=1 p(y j|x(m)

j| j−1) (9.31)

This means that taking for N particles, the likelihood ratio corresponding to the m-th
fault model (filter) is given at time instant i by

s(m)
j (i) =

1
N

N

∑
j=1

w(m)
j (i) (9.32)

where w(m)
j (i) are the unnormalized particle weights, of the m-th particle estimator.





Chapter 10
Application of Fault Diagnosis to Industrial
Systems

Abstract. Applications of statistical methods for fault diagnosis are presented. First,
the problem of early diagnosis of cascading events in the electric power grid is con-
sidered. Residuals are generated with the use of a nonlinear model of the distributed
electric power system and the fault threshold is determined with the use of the gen-
eralized likelihood ratio assuming that the residuals follow a Gaussian distribution.
Next, the problem of fault detection and isolation in electric motors is analyzed. It
is proposed to use nonlinear filters for the generation of residuals and to derive a
fault threshold from the generalized likelihood ratio without prior knowledge of the
residuals statistical distribution.

10.1 Fault Diagnosis of the Electric Power System

10.1.1 Cascading Events in the Electric Power Grid

Modern large-scale power systems have commonly experienced adverse impacts on
the system operation and cascading events due to the under-damped low-frequency
oscillation. Low-frequency oscillations is a main cause for instability in power sys-
tems. Such oscillations are classified into two modes: (i) local modes representing
oscillations between one generator and the rest of the power grid or oscillations
among several adjacent synchronous power generators, and (ii) inter-area modes
representing swings among different power grids interconnected through tie-lines
[195],[206]. Monitoring of these oscillations can help to diagnose at its early stages
the risk of power system destabilization [173],[365],[404],. To succeed failure di-
agnosis and to enable restoration action, models of the power system have been
developed.

The behavior of the electric power transmission system is usually described by
a multi-area multi-machine power system model. Slow and fast modes can be dis-
tinguished. For instance slow modes correspond to the weak connection between
areas. Early detection of the system’s tendency to become unstable permits the
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springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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activation of automatic voltage regulators which can damp-out inter-area oscilla-
tions. Thus cascading events (black-outs) can be prevented. The chapter presents
results on modeling of the dynamics of power transmission systems, and on the ap-
plication of the local statistical approach for the detection of faults at their early
stages. Thus, through FDI it is possible to take measures for fault restoration and
actions for power system stabilization.

Linear models or NARX representations (nonlinear autoregressive models with
exogenous inputs) and NARMAX representations (nonlinear autoregressive moving
average models with exogenous inputs) have shown in several cases for deficiencies
for modeling the complete dynamics of power systems. On the other hand, neural-
fuzzy networks have demonstrated a good performance in problems of modeling the
nonlinear dynamics of electric power systems [48],[114],[158],[341],[423],[437]
and [13],[87],[253],[406], [407],[427]. In this chapter, modeling of the multi-
machine multi-area power system dynamics (in fault-free operating conditions) will
be carried out with a neuro-fuzzy network (alternatively, one can use neural net-
works that are able to capture the multi-frequency characteristics of the power sys-
tem dynamics, such as wavelet networks, or feed-forward neural networks with
Hermite polynomial activation functions [112],[347],[471]). Comparing the mea-
surements from the power system with the output of the neural model the early
detection of cascading events (black-outs) is possible. To this end, the statistical
fault detection and isolation (FDI) algorithm analyzed in [16] is used. If the devi-
ation exceeds a threshold, which is defined by the aforementioned FDI algorithm,
then an alarm can be launched [18],[19],[473]. In several cases fault isolation can
be also performed, i.e. the sources of fault in the power transmission system can be
also identified. The use of pattern recognition methods for FDI in the electric power
system is also possible [161],[349].

Many research efforts aim at finding ways to prevent or mitigate cascading events:
study of the cascade model, dynamic decision event tree analysis, wide area backup
protection, relay hidden failure analysis, special protection scheme, self-healing
system with the aid of multi-agent technology, etc. [52],[62],[88],[237],[404]. The
above mentioned techniques are still far from being an established practice in solv-
ing the cascading event problem. In general, cascading events can be prevented by
in-time operator actions.

Various methods have tried to analyze the oscillations in real-time, such as peak-
value detecting [142], oscillation decay time detecting [452], FFT analysis and
wavelet transform [143],[144]. However, enough detailed information about the os-
cillations from real-time measurements cannot be acquired by using these methods.
The detailed oscillatory modes can be instead obtained with the stochastic subspace
identification method [123] and the Kalman filtering method [197]. However none
of them is suitable for online applications as the former is only appropriate for
small disturbance responses and the latter requires a high computation time. The
Prony algorithm, provided with fairly good performance [365], has been widely
used in power systems [9],[132],[148],[464],[467],[476] as it can be used for online
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monitoring of system behavior and prediction of system instability. Nevertheless,
it cannot ensure accurate mode identification and deal with the distorted real-time
signals.

Normally there are two stages of a cascading event. First, there is a stage of
slowly evolving consecutive events that can be approximated with steady state anal-
ysis. Several new disturbances following one another can make the system oper-
ating conditions worse. Then, as a consequence of a succession of several major
disturbances a fast transient process takes place that results in cascading events, and
finally the system collapses. When the total system collapse starts, normally it is too
late to stop it. Nevertheless, much can be done during the slow steady state succes-
sions at the first stage and early proper control actions at the steady state stage can
prevent the possible cascading event [390]. Analysis of blackouts of power systems
has shown that these outages are caused by a cascading sequence of events involving
line outages, overloading of certain lines in the transmission system, malfunctions
of protection systems, power oscillations and voltage problems and finally system
separation and collapse. A dynamical system model of the failure phenomena in the
power transmission network has been presented in [79] while a probabilistic model
of the propagation of failures in a power system has been given in [321].

Apart from low frequency oscillations, some examples of basic patterns of cas-
cading events are: (i) line tripping due to overloading (a line fault can cause power
flows to be rerouted, leading to overload of other lines. As a result the overloaded
lines may be tripped due to a depressed voltage and /or high current resulting
in a low apparent impedance seen by the impedance relay), (ii) generator trip-
ping due to over-excitation (line outages may cause low voltages and high reactive
power demand on generators nearby, leading to tripping of these generator units by
over-excitation protection equipment), (iii) line tripping due to loss of synchronism
(system disturbances such as faults, line outages and generator tripping can cause
oscillation in machine rotor angles and system bus voltages leading to a power flow
swing. Furthermore, when the angle difference between two buses is sufficiently
large due to a power swing, the impedance seen by a relay may trigger line trip-
ping), (iv) generator tripping due to abnormal voltage and frequency system condi-
tion (a loss of a generator may affect the system voltage and frequency and sustained
low voltage may cause other generator tripping. Furthermore, high voltage on some
part of the system can also contribute to generator tripping. Additionally, under-
frequency or over-frequency can trigger relays thus provoking generator tripping),
(v) under-frequency / voltage load shedding (automatic under-frequency load shed-
ding or under-voltage load-shedding may be triggered when the system voltage or
frequency in some areas falls below a pre-specified value) [6],[2],[46],[156],[249],
[288],[455].

The relation between the major network problems and the time available to con-
trol actions is shown in Table 10.1.

Cascading events can be stopped by a number of complementary and corrective
actions, including load rejection, controlled separation, load shedding and low-
frequency isolation scheme.
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Table 10.1 Relationship between network faults and the time available to control actions

Major network Time available Blackout prevention Blackout prevention
problems to control action by operation actions by emergency controls

overloads second to minutes partially possible possible
low transmission voltage second to minutes partially possible possible
low frequency 0.1 seconds to seconds impossible possible
loss of synchronism milliseconds to seconds impossible possible

10.1.2 Electric Power Systems Dynamics

To analyze the various stability problems, power system dynamics are usually mod-
eled into the following four time scales: (i) Long-term dynamics (several minutes
and slower): Boiler dynamics, daily load cycles, etc, (ii) Mid-term dynamics (1-5
min): Load Tap Changers (LTC), Automatic Generation Control (AGC), thermostat-
controlled loads, generator over-excitation limiters, etc, (iii) Transient dynamics
(seconds): Generators, Automatic Voltage Regulators (AVR), governors, induction
motors, HVDC controllers, etc. (iv) Practically instantaneous (less than a msec):
Electromagnetic and network transients, various electronically controlled loads, etc.

A power system can be modeled as a set of nonlinear differential equations and
algebraic equations. Usually in control and fault diagnosis problems it is aimed to
obtain a model representation of the monitored system in linear state-space form, as
knowledge of the system states is required by several established methodologies for
detection of fault detection and isolation (FDI). If the dynamic system is described
in linear state-space form, i.e. ẋ = Ax + Bu, then the modes of the power system
are the eigenvalues of matrix A. In that case the dynamic behavior of the power
system is a linear combination of the modes of its state-space description. Slow and
fast modes can be distinguished. For instance slow modes correspond to the weak
connection between areas. Faults can be associated with eigenstructure change.

In the more general case, a nonlinear model of the power system can be extracted
from input-ouput data which makes possible the representation of the system in
input-output form. A nonlinear representation of the nonlinear dynamical system
usually takes the form [137]:

x(t + 1) = g(x(t),u(t))
y(t) = h(x(t),u(t)) (10.1)

As in all dynamical systems, in electric power systems the property of stability is of
primary importance [206].
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Definition: A system with state vector x is said to be globally stable about the equi-
librium point 0 if for any initial state vector x0 (x0 can be arbitrarily large) it holds
that ∀ ε≥0, ∃δ (ε) > 0 such that if ||x0|| < δ then ||x(t)|| < ε, for all t > t0.

If the above property holds for small ||x0|| < δ then the system is locally stable
(or the system is said to be stable in the small), which is the case to be examined
after linearization of a nonlinear system about an operating point 0. The system is
said to be asymptotically stable if ∀ ε≥0, ∃δ (ε) > 0 such that if ||x0|| < δ then
limt→∞||x(t)|| = 0.

It should be noted that the dynamics of power generation and transmission sys-
tems is actually nonlinear and that power systems are described by nonlinear dif-
ferential equations. At certain operating points linearization can be performed thus
resulting in locally valid linear models. Small signal analysis of power systems as-
sumes that the power system can be described by a linear model. Linear modeling
can be sufficient for small signal stability analysis of the power system as well as for
performing fault diagnosis in case of small perturbations of the model’s parameters.
A problem also remains to define the order of the linear models if the associated
linear differential equations are unknown. On the other hand, working with the non-
linear model gives more reliable stability analysis of the power system. Furthermore,
when the differential equations of the power system are not available and the power
system has to be modeled with a black-box representation (using input and output
training data), it is better to a develop a nonlinear model since this is applicable to a
wide range of operating points. Nonlinear modeling in model-based fault-diagnosis
outperforms the use of local linear models which have to be substituted according
to the change of the operating point.

10.1.3 The Multi-area Multi-machine Electric Power System

Kundur’s multi-area multi-machine power system is considered here. Fig. 10.1
shows Kundur’s 2-area 4-machine power system model consisting of two symmet-
rical areas interconnected by a 220km two-looped weak tie-line. G1-G4 are syn-
chronous generators with rating of 900MVA and 20kV which consist two power
areas - Area 1 and Area 2 respectively. The transmission system nominal voltage is
230kV. The local loads of the two areas and the active power transmitted on tie-line
are also shown in Fig. 10.1.

A parametric representation of the linearized dynamics of the single-machine
power system is given in the form [206]:

⎛
⎜⎜⎜⎜⎜⎜⎝

Δω̇r

Δδ̇
Δψ̇ f d

Δψ̇1d

Δψ̇1q

Δψ̇2q

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

α11 α12 α13 α14 α15 α16

α21 0 0 0 0 0
0 α32 α33 α34 α35 α36

0 α42 α43 α44 α45 α46

0 α52 α53 α54 α55 α56

0 α62 α63 0 α65 α66

⎞
⎟⎟⎟⎟⎟⎟⎠
·

⎛
⎜⎜⎜⎜⎜⎜⎝

Δωr

Δδ
Δψ f d

Δψ1d

Δψ1q

Δψ2q

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

b11 0
0 0
0 b32

0 0
0 0

⎞
⎟⎟⎟⎟⎠
·
(
ΔTm

ΔE f d

)

(10.2)
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Fig. 10.1 Four-machine two-area model

Using the d −q reference frame to express the magnetic flux and assuming that the
model includes one d-axis amortissuer and two q-axis amortisseurs, the components
of the state vector are defined as follows: Δωr is the rotor’s speed difference, and
Δδ is the rotor’s angle difference. The rest of the parameters of the state vector are
defined as Δψ f d is the difference of the field (stator) flux along axis d, Δψ1d , is the
difference of the rotor’s flux of the d-axis amortisseur, and Δψ1q is the difference
of the rotor’s flux of the first amortisseur of the q-axis, Δψ2d is the difference of the
rotor’s flux of the second amortisseur of the q-axis. Moreover, the components of
the control input vector are defined as follows: ΔTm is the difference of the rotor’s
input torque and ΔE f d is the difference of the excitation (stator’s) field along axis d.
The parameters ai j, i = 1, · · · ,6 and j = 1, · · · ,6 and bi j i = 1, · · · ,6 and j = 1, · · · ,2
are described in [206].

For the 2-area four-machine model depicted in Fig. 10.1 the state vector
of the dynamic model is x∈R24×1. The state vector can be written as x =
[x1,x2,x3,x4], where xi, i = 1, · · · ,4 is the state vector of the i-th generator given
by xi = [Δω̇r,Δδ̇ ,Δψ̇ f d ,Δψ̇1d,Δψ̇1q,Δψ̇2q]T . Low frequency oscillation modes in
Fig. 10.1 include two local modes and one inter-area mode. The two local oscilla-
tion modes are the swing between G1 and G2, and the swing between G3 and G4,
respectively. The inter-area mode is the oscillation between Area 1 and Area 2 con-
nected by transmission tie line. Indicative values of the system modes, when a linear
model of the power system is considered, are given in Table 10.2. [195],[206],[267].

To stabilize the multi-area, multi-machine power system the distributed gener-
ators Gi are equipped with Automatic Voltage Regulators (AVR). For instance in
Fig. 10.1 G1 and G2 are equipped with local Power System Stabilizer (PSS) in
order to restrain the poorly damped local oscillation mode between G1 and G2.
In order to eliminate poorly damped inter-area oscillation between Area 1 and
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Table 10.2 Modes (eigenvalues) for the two-area four-machines power system

No. Eig. Real Eig. Imag. Frequency Damping Ratio Dominant States
1,2 −0.76E −3 ±0.22E −2 0.0003 0.331 Δω , Δδ of G1,G2,G3,G4
3 −0.96E −1 − − − ”

4,5 −0.111 ±3.43 0.545 0.032 ”
6 −0.117 − − − ”
7 −0.265 − − − Δψ f d of G3 and G4
8 −0.276 − − − Δψ f d of G1 and G2

9,10 −0.492 ±6.82 1.087 0.072 Δω , Δδ of G1,G2
11,12 −0.506 ±7.02 1.117 0.072 Δω , Δδ of G3,G4

13 −3.428 − − − d,q amortisseur flux linkages
14 −4.139 − − − ”
15 −5.287 − − − ”
16 −5.303 − − − ”
17 −31.03 − − − ”
18 −32.45 − − − ”
19 −34.07 − − − ”
20 −35.53 − − − ”

21,22 −37.89 ±0.142 0.023 �1.0 ”
23,24 −38.01 ±0.38E −1 0.006 �1.0 ”

Area 2, the following variables can be measured and used by algorithm for con-
trol of supplementary excitation: (1) Remote/global signals of area speed difference
Δω1 +Δω2 −Δω3 −Δω4, (2) Local signals at a generator Gi, such as shaft speed
ωi, terminal voltage Vti , excitation voltage E f di and accelerating power Pαi .

10.1.4 Nonlinear Modeling of the Electric Power System

Because of linear models or NARX representations and NARMAX representations
(nonlinear autoregressive moving average models with exogenous inputs) have been
proved in several cases inadequate to model the complete dynamics of power sys-
tems, neural-fuzzy network models have been considered in this paper. Artificial
neural networks (ANNs) proved to be suitable at identifying and controlling non-
linear systems with complex dynamic and transient processes and they can easily
identify the interactions between the system’s inputs and outputs for multivariable
applications [121],[153],[279],[437]. It has been shown that the complex and non-
linear dynamics of a single machine infinite bus configuration can be identified with
sufficient accuracy by a Multilayer Perceptron neural network using deviation sig-
nals as inputs [437].

ANNs have also been used for dynamic security assessment [13],[43],[87],[253]
an ANN is used to predict system stability in [43] and to estimate maximum gen-
erators swing angles in [87],[437]. The transient energy margins are used for con-
tingencies screening and ranking in [253]. In [13], recurrent radial basis function,
and multilayer perceptron ANN schemes are used for dynamic system modeling
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and generators’ angles and angular velocities prediction for multi-machine power
systems. Transient stability is assessed based on monitoring generators’ angles and
angular velocities with time, and checking whether they exceed the specified limits
for system stability or not. In [406],[407] a new method based on neural networks for
eigenvalue predictions of critical stability modes of power systems is proposed, the
interest is focused on inter-area oscillations in the European interconnected power
system.

Neural-fuzzy modeling using the data of the power system is described as fol-
lows: a collection of N data in a n+1-dimensional space is considered, and a generic
neuro-fuzzy model is presented as a set of fuzzy rules in the following form:

Rl : IF x1 is Al
1 AND x2 is Al

2 AND · · ·AND xn is Al
n THEN ȳl = zl(x) (10.3)

where x = [x1,x2, · · · ,xn] ∈ U are input variables, ȳl ∈ V is the output variable, Al
i

are the fuzzy sets in which Ui ∈ R is divided and zl(x) is a function of the input
variables.

The modeling procedure begins with the model initialization stage that in-
cludes data processing, prior knowledge utilization, and initial rule-base genera-
tion. The optimal number of fuzzy rules is determined and the appropriate type
of fuzzy rules is selected. Model optimization follows which includes parameter
learning and rule-base simplification. Finally, the acquired neurofuzzy model is
validated under certain performance indexes. If the model performance is not sat-
isfactory, further modication including structure and parameter optimization is re-
quired [56],[59],[137],[138],[447].

In the sequel fuzzy rules of the Takagi-Sugeno type will be considered. These
have the form:

Rl : IF x1 is Al
1AND x2 is Al

2 AND · · ·AND xn is Al
n

THEN ȳl = ∑n
i=1wl

ixi + bl l = 1,2, · · · ,L (10.4)

where Rl is the l-th rule, x = [x1,x2, · · · ,xn]T is the input (antecedent) variable, ȳl

is the output (consequent) variable, and wl
i , bl are the parameters of the local linear

models. The above model is a Takagi-Sugeno model of order 1. Setting wl
i = 0

results in the zero order Takagi-Sugeno model [125],[160],[281],. The output of the
Takagi-Sugeno model is given by the weighted average of the rules consequents
(Fig. 9.4):

ŷ =
∑L

l=1ȳl∏n
i=1μAl

i
(xi)

∑L
l=1∏

n
i=1μAl

i
(xi)

(10.5)

where μAl
i
(xi) : R→[0,1] is the membership function of the fuzzy set Al

i in the

antecedent part of the rule Rl . In the case of a zero order TS system the output of the
l-th local model is ȳl = bl , while in the case of a first order TS system the output of
the l-th local model is given by ȳl = ∑L

l=1wl
ixi +bl .

The individual steps of data-driven nonlinear modeling, and particularly of
neuro-fuzzy modeling, are discussed in [159],[165],[376],[375]. Methods for
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optimization of neuro-fuzzy models parameters has been extensively discussed in
bibliography [33],[85],[308],[374],[382],[383],[463]. These issues were analyzed
in detail in Chapter 9.

10.2 Fault Diagnosis Tests for the Electric Power System

10.2.1 Parameters of the Nonlinear Power System Model

Neuro-fuzzy modelling of the presented power transmission system has been car-
ried out. The power system dynamics can be modelled using a neural network for
each generator, having as output the rotor’s speed difference Δωr(k) and as inputs
Δωr(k−1), Δωr(k−2) and Δδ (k−1). Neural models with a different output, such
as Δδ and a larger number of inputs could be also considered. The input space was
segmented using the input dimension (grid) partition (additionally, a neural network
with Hermite basis functions was used to model the dynamics of the power system.
In the latter case the Hermite basis functions can capture with increased accuracy
the multi-frequency characteristics of the oscillatory behavior of the power trans-
mission system).

For a fault-free condition, a comparison between the neural model output and
the exact model output is shown in Fig. 10.2, for generator G1. The exact model
has been simulated by using Kundur’s power system model of PSAT [267]. The
neural model has been identified considering both a neural network with Hermite
polynomial basis functions and a neuro-fuzzy network of the Takagi-Sugeno type.

As pointed out in Section 10.2, the neural model is used to simulate the physical
power system in a stable undistorted state and the real power system is simulated
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Fig. 10.2 (a) Approximation of the oscillatory behavior of the electric power system (dashed
line) by a neural network with Hermite polynomial basis functions(continuous line) (b) Ap-
proximation of the oscillatory behavior of the electric power system (dashed line) by a neuro-
fuzzy network of the Takagi-Sugeno type (continuous line)
.
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by the exact model (a neural model extracted from input/output data of the power
system). Due to parameters variation in the exact model, its output differs from the
output of the neural model, and thus the residuals described in Section 10.2 have
been calculated.

Regarding the general description of the training set used to identify both the
neural model and the general description of the exact model, this is given by:

⎛
⎜⎜⎜⎝

u(k−m) · · · u(k−1) y(k−n) · · · y(k−1) → y(k)
u(k−m−1) · · · u(k−2) y(k−n−1) · · · y(k−2) → y(k−1)

...
...

...
...

...
...

...
u(k) · · · u(m−1) y(1) · · · y(n−1) → y(n)

⎞
⎟⎟⎟⎠ (10.6)

An indicative model consists of rules of the form:

Rl : IF y(k−3) is Ai AND y(k−2) is B j AND y(k−1) is Ck THEN y(k) is Dm

(10.7)

with i, j,k,m = 1,2,3,4. The size of the training set was 3000. The LMS (Least

Mean Square) algorithm was used for the adaptation of the linear weights w(l)
1 . The

rule base consists of 64 rules (3 input variables partitioned in 4 fuzzy subsets each).
All fuzzy sets where assumed to have the same spread. Inactive rules have been
removed from the fuzzy rule base.

The reduced-size rule base contained 22 rules. Therefore, the dimension of the
parameters vector is 34, (22 linear weights in the antecedent part of the rules, and
12 nonlinear centers). Using Eq.(9.14) and setting the false alarm rate α = 0.5, from
the table of the χ2 distribution one obtains that the value of the change threshold λ
should be set to η = 34. In the case of absence of change to the parameters of the
rule base the global χ2 test was (averaging over 10 trials) t = 38.6216. The condition
of the Fisher Information Matrix was cond(MTΣ−1M) = 4.4314×109.

10.2.2 Efficiency of the Fault Diagnosis Method

Next, faults were imposed to the linear and the nonlinear parameters of the exact
model that describes the power system dynamics. Detailed diagrams on the per-
formance of the change detection and isolation tests, in the case of a change in

parameter w(10)
1 = 1.195923 of the exact model, are given in Fig. 10.3. The success

rate of the two tests is depicted in Fig. 10.3(a). The mean value of the global χ2 is
depicted in Fig. 10.3(b).

Detailed diagrams on the performance of the change detection and isolation tests,

in the case of a change in parameter c(1)
1 = 1.954000 of the exact model, are given

in Fig. 10.4. The parameters vector contained only the centers of the fuzzy model.
The success rate of the two tests is depicted in Fig. 10.4(a).

The mean value of the global χ2 is depicted in Fig. 10.4(b). It is clear that when

c(1)
1 is close to its nominal value the χ2 test takes a value close to the change
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Fig. 10.3 Success rate of the sensitivity (×) and the min-max (o) tests in case of a change

(fault) in parameter w(10)
1 of the exact model of the electric power transmission system. (b)

mean value of the global χ2 test.
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Fig. 10.4 Success rate of the sensitivity (×) and the min-max (o) tests in case of a change

(fault) in parameter c(1)
1 of the exact model of the electric power transmission system. (b)

mean value of the global χ2 test.

threshold η = 34. On the other hand when the deviation of c(1)
1 from its nominal

value increases the value of the χ2 test grows significantly.
To increase the success rate of the change isolation tests one had better perform

the tests separately to the linear and the nonlinear parameters of the fuzzy model
[344]. This is summarized as follows: (i) perform the diagnostic test to the linear
parameters. If it finds a fault then stop, otherwise (ii) perform the test to the nonlinear
parameters.
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The success rate of the change isolation tests is also affected by the following
factors [473]: (a) the magnitude of the parameter change: a parameter change close
to the nominal value results in increased success of the sensitivity test, (b) the size of
the data set used for the statistical tests : if the number of data used in the statistical
tests is large then the success rate is high, (c) the signal-to-noise ratio.

The changes on the parameters of the power system model that were used in the
simulation experiments are summarized in Table 10.4:

Table 10.4 % parameter change and % success rate of fault isolation tests

w(10)
1 = 1.195931 sensitivity min-max c(1)1 = 1.954000 sensitivity min-max

0.0083 100 80 0.0083 60 30
0.0166 100 65 0.0166 60 45
0.0249 100 55 0.0249 75 30
0.0332 100 20 0.0332 65 0
0.0415 100 10 0.0415 50 0
0.0498 100 20 0.0498 55 0
0.0581 100 10 0.0581 60 0
0.0664 100 15 0.0664 65 0
0.0747 100 5 0.0747 80 0
0.0830 100 5 0.0830 55 0

10.3 Fault Diagnosis of Electric Motors

10.3.1 Failures in Rotating Electrical Machines

Next, the problem of fault detection and isolation in electric motors is analyzed.
The reasons behind failures in rotating electrical machines have their origin in de-
sign,manufacturing tolerance, assembly, installation, working environment, nature
of load and schedule of maintenance. Motor faults can be classified in two types:
mechanical and electrical. Mechanical faults in the rotor are identified as eccentric-
ity (static or dynamic) and misalignment, while stator eccentricity and core slacking
are the main type of mechanical faults in the stator [274]. Moreover, bearing fault,
which may also cause rotor eccentricity, is the common mechanical fault in the
induction motors. Other mechanical faults, such as rotor rubbing, stator and rotor
fatigue etc., are the consequence of the previously mentioned faults. Winding faults,
such as turn to turn, phase to phase and winding to earth faults are the roots of elec-
trical faults in the rotor [96],[150],[196],[276],[384]. The causes of electrical faults
in the squirrel cage rotor are bars crack, bars slack and bad connection with the end
rings. In addition, short circuit of rotor laminations is a common fault. Stator is sub-
ject to some types of fault, such as winding faults and core faults. Winding faults
are due to turn to turn, phase to phase or winding to earth short circuit, while core
faults are due to core slacking, laminations short circuit and rotor strike. Statistics
on electric motor faults are given in the diagrams depicted in Fig. 10.5 [384].
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Fig. 10.5 Classification of the major faults in electric motors

It is important to spot faults in time because they can lead to the total destruction
of the motor. Stator winding faults can be classified as follows: (i) turn to turn short
circuits within a coil (inter-turn short circuit), (ii) short circuits between coils, (iii)
coils to earth short circuits, (iv) open circuits within coils.

10.3.2 Faults in the DC Motor Control Loop

In Fig. 10.6 the DC motor control loop and the associated disturbances (faults) are
given: e is the input to the controller, fc is the controller’s fault, uc is a disturbance
to the system’s input, fα is the motor’s fault, ηp is the disturbance to the motor’s
output, and ηs is a disturbance to the sensor measuring the motor’s angle. In [161]
the following indicative faults have been examined: F1: offset sensor signal, F2:
increased input-output gain, F3: increased actuator friction, F4: offset in the motor’s
output, F6: increased sensor gain.

10.3.3 Residual Generation with the Use of Kalman Filtering

To model the motor dynamics in the fault-free condition Kalman Filtering is used.
As explained in Chapter 9 the output of the model produced by the Kalman Filter
is compared to the real output and thus residuals are generated. The statistical pro-
cessing of the residuals sequence enables to decide on the existence of a fault and to
distinguish its cause. To perform fault detection one can consider only one Kalman
filter, which provides an estimation of the motor’s state vector (see Fig. 10.6). This
in turn is compared to the real state vector so as to generate a residual and to decide
on whether the motor functions in normal mode or not. To perform fault isolation
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Fig. 10.6 Control loop with variables and fault influences

one should consider M Kalman filters, each one designed to estimate the motor’s
state vector in the case of the m-th fault (see Fig. 9.6).

Fault diagnosis takes place in-the-loop. The controller assures convergence of
the system’s state vector to the reference state vector despite changes in the model’s
parameters. This in turn means that despite the existence of parametric changes to
the model, a typical residual (e.g. the difference between the output that is associ-
ated with the Kalman Filter state vector and the output of the monitored system)
will hardly differ from the residual of the normal system, thus making fault diag-
nosis a not-so-easy task. On the other hand faults in sensors out of the loop, as
denoted by disturbance ηs in Fig. 10.6, can be detected by processing the residual
with simple decision criteria (e.g. root mean square error or likelihood ratio). The
results obtained are given in Fig. 10.7 to 10.11. In the case of Kalman Filtering the
process and measurement noise covariance matrices were taken to be diagonal with
non-zero elements equal to 10−3.

10.3.4 Residual Generation with the Use of Particle Filtering

Again the residual is the difference between the output that is associated with the
Particle Filter state vector and the output of the monitored system. Fault diagnosis
is again performed in-the-loop and as explained in the case of the Kalman Filter,
change decision criteria (which are based on the RMSE and the likelihood ratio)
will not make distinguishable changes in the model’s structure. On the other hand
it is possible to visualize with the aforementioned residuals and change detection
criteria (e.g root mean square error or likelihood ratio) faults affecting sensors out
of the loop. Here, the fault ηs shown in Fig. 10.6 is considered. The results obtained
from the fault diagnosis tests are shown in Fig. 10.8 to 10.12. Convergence prob-
lems in Particle Filter algorithms for FDI have been analyzed in [76],[472]. In the
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Fig. 10.7 State variable x1 of the real system (blue line) and estimated state variable x̂1 (red
line) provided by the Kalman Filter when the motor operates in (a) normal mode (b) faulty
mode.
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Fig. 10.8 State variable x1 of the real system (blue line) and estimated state variable x̂1 (red
line) provided by the Particle Filter when the motor operates in (a) normal mode (b) faulty
mode.

simulation experiments the number of particles in the PF state estimation was set
equal to 1000. It is also noted that the computation cycle of Particle Filter is signifi-
cantly longer than the computation cycle of the Kalman Filter. This means that the
simulation time of the Particle Filter is given by ( t

Ts
)× computation cycle, where

t is the time value appearing in the simulation diagrams, and Ts is the sampling
period. The computation time of the PF depends linearly on the number of particles
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Fig. 10.9 Estimation error between x1 and x̂1 when using the Kalman Filter and the motor
operates in (a) normal mode (b) faulty mode.
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Fig. 10.10 Estimation error between x1 and x̂1 when using the Particle Filter and the motor
operates in (a) normal mode (b) faulty mode.

(when no sorting is performed in the resampling procedure). Detailed results on the
relation between computation time of the PF and number of particles can be found
in [333],[335].

10.3.5 Fault Diagnosis in Control Loops

As it can be observed from the simulation experiments, fault detection and isolation
in the control loop is more difficult than fault diagnosis in the open loop. Small
faults in the actuator, be they additive or multiplicative are usually compensated by



10.3 Fault Diagnosis of Electric Motors 229

0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

t (sec)

ro
o

t 
m

e
a

n
 s

q
u

a
re

 o
f 

e
s
ti
m

a
ti
o

n
 e

rr
o

r

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

t (sec)

ro
o

t 
m

e
a

n
 s

q
u

a
re

 o
f 

e
s
ti
m

a
ti
o

n
 e

rr
o

r

(a) (b)

Fig. 10.11 Root of the mean square of the estimation error Se when using the Kalman Filter
the motor operates in (a) normal mode (b) faulty mode.
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Fig. 10.12 Root of the mean square of the estimation error when using the Particle Filter Se

and the motor operates in (a) normal mode (b) faulty mode.

the feedback controller and they are not detectable by considering a residual based
on the output’s error e(k) and on the output y(k), as long as the control deviation
turns back to approximately zero [161]. Also faults due to small sensor offsets (in
the measurement of x1(k), x2(k) and x3(k)) will not be detected. The controller
will just make the wrong sensor signal equal to the reference input xd(k). Only by
a redundant sensor or other redundant information for the controlled variable, the
offset fault can usually be detected.

Since the root-mean square error, the likelihood ratio or the performance crite-
ria mentioned above do not give a clear view of the system’s condition when fault
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diagnosis is performed in the closed loop, one has to search for more elaborated
statistical change detection criteria [81]. Such a change detection criterion is pro-
vided by the local statistical approach to FDI, which finally results to the χ2 test
analyzed in Chapter 9. The aforementioned statistical method for FDI can detect
slight changes in the motor’s dynamic model, which are due to small changes in
the model’s parameters. Therefore, this FDI method is more efficient in performing
in-the-loop fault diagnosis for the motor’s model [474].



Chapter 11
Optimization Methods for Motion Planning of
Multi-robot Systems

Abstract. Optimization through nonlinear programming techniques, such as gra-
dient algorithms, can be an efficient approach for solving various problems in the
design of intelligent robots, e.g. motion planning for multi-robot systems. A dis-
tributed gradient algorithm is proposed for enabling coordinated convergence of
an ensemble of mobile robots towards a goal state, and at the same time for as-
suring avoidance of collisions between the robots as well as avoidance of colli-
sions with obstacles in the motion plane. The stability of the multi-robot system is
proved with Lyapunov’s theory and particularly with LaSalle’s theorem. Motion
planning with the use of distributed gradient is compared to motion planning based
on particle swarm optimization.

11.1 Distributed Gradient for Motion Planning of Multi-robot
Systems

11.1.1 Approaches to Multi-robot Motion Planning

In recent years there has been growing interest in multi-robot systems since swarms
of cooperating robots can perform complicated tasks that a single robot can not carry
out [477]. As the cost of robotic vehicles goes down and their size becomes more
compact the number of military and industrial applications of mobile multi-robot
systems increases. Possible industrial applications of multi-robot systems include
hazardous inspection, underwater or space exploration, assembling and transporta-
tion, search and rescue, and underground exploitation of energy resources [130].
Some examples of military applications are guarding, escorting, patrolling (surface
surveillance) and strategic behaviors, such as stalking and attacking.

Control of cooperating robotic vehicles has been extensively studied in both the
behavior-based and the system-theoretic approach. Behavior-based approaches for
multi-robot systems have the advantage of being flexible, easy to implement and
update, while they require no explicit models of the vehicle/robot and its environ-
ment [329]. These approaches are well suited to domains in which mathematical

G.G. Rigatos: Modelling & Control for Intell. Industrial Sys., ISRL 7, pp. 231–251.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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representation of tasks are difficult to obtain, and models are not available, too com-
plex for computation, or time-varying [37]. On the other hand, system-theoretic
approaches have provable performance and are applicable in cases where tasks can
be parameterized, but require models of the vehicles and their environment. In the
system-theoretic approach the stability of cooperative motion can been analyzed us-
ing Lyapunov theory through which suitable control functions for the steering of
the individual mobile agents can be also found [145]. In the latter case, distributed
control laws for multi-robot systems have been derived and have made possible
motion planning through obstacles and convergence of mobile agents to targeted
regions [131],[386]. To implement this cooperative behavior issues related to dis-
tributed sensing, measurements fusion and communication between the individual
robots have also to be taken into account [299],[372]

This chapter studies multi-robot swarms following principally the system-
theoretic point of view, i.e. it is assumed that an explicit mathematical model of
the robots and their interaction with the environment is available. The objective
is to succeed motion planning of the multi-robot system in a workspace that con-
tains obstacles. A usual approach for doing this is the potential fields theory, in
which the individual robots are steered towards an equilibrium by the gradient of
an harmonic potential [185],[259],[320],[351]. Variances of this method use non-
linear anisotropic harmonic potential fields which introduce to the robots’ motion
directional and regional avoidance constraints [259].

The novelty introduced is the so-called distributed gradient algorithm. There are
M robots which emanate from arbitrary positions in the 2D space and the potential
of each robot consists of two terms: (i) the cost V i due to the distance of the i-th
robot from the goal state, (ii) the cost due to the interaction with the other M − 1
robots. Moreover, a repulsive field, generated by the proximity to obstacles, is taken
into account. The gradient of the aggregate potential provides the kinematic model
for each robot, and defines a path towards the equilibrium. Thus, it is proved that
the update of the position of each robot is described by a gradient algorithm which
contains an interaction term with the gradient algorithms defining the motion of
the rest M − 1 robots. Distributed gradient assures simultaneous convergence of
the individual robots towards the equilibrium, and this convergence is analytically
proved with the use of Lyapunov stability theory and LaSalle’s theorem. It is shown
that the mean position of the multi-robot system reaches precisely the goal state
x∗ while each robot stays in a bounded area close to x∗. The distributed gradient
algorithm is an original result for the area of stochastic approximations and adaptive
systems and can have several engineering applications. Moreover, it is of interest for
the field of nanorobotics since it approximates the Brownian motion and simulates
the diffusion of nanoparticles [68].

An alternative solution to multi-robot motion planning proposed by this paper is
based on swarm intelligence. Previous applications of the particle swarm optimiza-
tion algorithm for the steering towards desirable final positions and the simulation-
solution of diffusion systems can be found in [167]. This method works by searching
iteratively in regions defined by each robot’s best previous move and the best pre-
vious move of its neighbors. Swarm intelligence is evident in biological systems
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and has been also studied in statistical physics, where collective behavior of self-
propelled particles has been observed [220]. The method is useful for the avoidance
of local minima. A swarm, which is a collection of robots, can converge to a wide
range of distributions, while no individual robot is aware of the distribution it is
working to realize. The dynamic behavior of the robots under the particle swarm
algorithm can be analyzed with the use of ordinary differential equations [65]. It
can be shown that appropriate tuning of the differential equation’s coefficients can
prevent explosion, i.e. the robots velocity is kept within certain bounds.

11.1.2 The Distributed Gradient Algorithm

In the following sections it will be shown how motion planning of multi-robot sys-
tems can be solved with the use of distributed stochastic search algorithms. These
can be multiple gradient algorithm’s that start from different points in the solu-
tions space and interact with each other while moving towards the goal position.
Distributed gradient algorithms, stem from stochastic search algorithms treated in
[29],[86] if an interaction term is added:

xi(t +1) = xi(t)+ γ i(t)[h(xi(t))+ ei(t)]+
M

∑
j=1, j �=i

g(xi − x j), i = 1,2, · · · ,M (11.1)

The term h(x(t)i) = −∇xiV i(xi) indicates a local gradient algorithm, i.e. motion in

the direction of decrease of the cost function V i(xi) = 1
2 ei(t)T

ei(t). The term γ i(t)
is the algorithm’s step while the stochastic disturbance ei(t) enables the algorithm
to escape from local minima. The term ∑M

j=1, j �=ig(xi − x j) describes the interac-
tion between the i-th and the rest M− 1 stochastic search algorithms. Convergence
analysis based on the Lyapunov stability theory can be stated in the case of dis-
tributed gradient algorithms. This is important for the problem of multi-robot motion
planning.

11.1.3 Kinematic Model of the Multi-robot System

The objective is to lead a swarm of M mobile robots, with different initial positions
on the 2-D plane, to a desirable final position. The position of each robot in the 2-D
space is described by the vector xi ∈ R2. The motion of the robots is synchronous,
without time delays, and it is assumed that at every time instant each robot i is aware
about the position and the velocity of the other M − 1 robots. The cost function
that describes the motion of the i-th robot towards the goal state is denoted as
V (xi) : Rn → R. The value of V (xi) is high on hills, small in valleys, while it holds
∇xiV (xi) = 0 at the goal position and at local optima. The following conditions
must hold:

(i) The cohesion of the swarm should be maintained, i.e. the norm ||xi − x j|| should
remain upper bounded ||xi − x j||< εh,
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(ii) Collisions between the robots should be avoided, i.e. ||xi − x j|| > ε l ,
(iii) Convergence to the goal state should be succeeded for each robot through the
negative definiteness of the associated Lyapunov function V̇ i(xi) = ėi(t)T

ei(t) < 0
[86].

The interaction between the i-th and the j-th robot is

g(xi − x j) = −(xi − x j)[ga(||xi − x j||)−gr(||xi − x j||)] (11.2)

where ga() denotes the attraction term and is dominant for large values of ||xi −x j||,
while gr() denotes the repulsion term and is dominant for small values of ||xi − x j||.
Function ga() can be associated with an attraction potential, i.e. ∇xiVa(||xi − x j||) =
(xi − x j)ga(||xi − x j||). Function gr() can be associated with a repulsion potential,
i.e. ∇xiVr(||xi − x j||) = (xi − x j)gr(||xi − x j||). A suitable function g() that describes
the interaction between the robots is given by [113]

g(xi − x j) = −(xi − x j)(a− be
||xi−x j ||2

σ2 ) (11.3)

where the parameters a, b and c are suitably tuned. It holds that ga(xi − x j) = −a,
i.e. attraction has a linear behavior (spring-mass system) ||xi−x j||ga(xi−x j). More-

over, gr(xi−x j) = be
−||xi−x j ||2

σ2 which means that gr(xi−x j)||xi−x j|| ≤ b is bounded.
Applying Newton’s laws to the i-th robot yields

ẋi = vi, miv̇i = Ui (11.4)

where the aggregate force is Ui = f i + Fi. The term f i = −Kvvi denotes friction,
while the term Fi is the propulsion. Assuming zero acceleration v̇i = 0 one gets Fi =
Kvvi, which for Kv = 1 and mi = 1 gives Fi = vi. Thus an approximate kinematic
model is

ẋi = Fi (11.5)

According to the Euler-Langrange principle, the propulsion Fi is equal to the deriva-
tive of the total potential of each robot, i.e.

Fi = −∇xi{V i(xi)+ 1
2∑

M
i=1∑

M
j=1, j �=i[Va(||xi − x j||+Vr(||xi − x j||)]} ⇒

Fi = −∇xi{V i(xi)}+∑M
j=1, j �=i[∇xiVa(||xi − x j||)−∇xiVr(||xi − x j||)] ⇒

Fi = −∇xi{V i(xi)}+∑M
j=1, j �=i[−(xi − x j)ga(||xi − x j||)− (xi − x j)gr(||xi − x j||)] ⇒

Fi = −∇xi{V i(xi)}−∑M
j=1, j �=ig(xi − x j)

Substituting in Eq. (11.5) one gets Eq. (11.1), i.e. xi(t + 1) = xi(t) +
γ i(t)[−∇xiV i(xi) + ei(t + 1)]−∑M

j=1, j �=ig(xi − x j), i = 1,2, · · · ,M, with γ i(t) = 1,
which verifies that the kinematic model of a multi-robot system is equivalent to a
distributed gradient search algorithm.
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11.1.4 Cohesion of the Multi-robot System

The behaviour of the multi-robot system is determined by the behaviour of its center
(mean of the vectors xi) and of the position of each robot with respect to this center.
The center of the multi-robot system is given by

x̄ = E(xi) = 1
M∑M

i=1xi ⇒ ˙̄x = 1
M∑M

i=1ẋi ⇒
˙̄x = 1

M∑M
i=1[−∇xiV i(xi)−∑M

j=1, j �=i(g(xi − x j))] (11.6)

From Eq. (11.3) it can be seen that g(xi − x j) = −g(x j − xi), i.e. g() is an odd
function. Therefore, it holds that 1

M (∑M
j=1, j �=ig(xi − x j)) = 0, and

˙̄x =
1
M

M

∑
i=1

[−∇xiV i(xi)] (11.7)

Denoting the goal position by x∗ , and the distance between the i-th robot
and the mean position of the multi-robot system by ei(t) = xi(t)− x̄ the objec-
tive of distributed gradient for robot motion planning can be summarized as follows:

(i) limt→∞x̄ = x∗, i.e. the center of the multi-robot system converges to the goal
position,
(ii) limt→∞xi = x̄, i.e. the i-th robot converges to the center of the multi-robot system,
(iii) limt→∞ ˙̄x = 0, i.e. the center of the multi-robot system stabilizes at the goal
position.

If conditions (i) and (ii) hold then limt→∞xi = x∗. Furthermore, if condition (iii) also
holds then all robots will stabilize close to the goal position.

It is known that the stability of local gradient algorithms can be proved with the
use of Lyapunov theory [29]. A similar approach can be followed in the case of the
distributed gradient algorithms given by Eq. (11.1). The following simple Lyapunov
function is considered for each gradient algorithm [113]:

Vi =
1
2

eiT ei ⇒Vi =
1
2
||ei||2 (11.8)

Thus, one gets

V̇ i = eiT ėi ⇒ V̇ i = (ẋi − ˙̄x)ei ⇒

V̇ i = [−∇xiV i(xi)−∑M
j=1, j �=ig(xi − x j)+ 1

M∑M
j=1∇x jV j(x j)]ei.

Substituting g(xi − x j) from Eq. (11.3) yields

V̇i = [−∇xiV i(xi)−∑M
j=1, j �=i(x

i − x j)a+
+∑M

j=1, j �=i(x
i − x j)gr(||xi − x j||)+ 1

M∑M
j=1∇x jV j(x j)]ei
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which gives,

V̇i = −a[∑M
j=1, j �=i(x

i − x j)]ei+
+∑M

j=1, j �=igr(||xi − x j||)(xi − x j)T ei − [∇xiV i(xi)− 1
M∑M

j=1∇x jV j(x j)]T ei

It holds that ∑M
j=1(x

i − x j) = Mxi −M 1
M∑M

j=1x j = Mxi −Mx̄ = M(xi − x̄) = Mei,
therefore

V̇i =−aM||ei||2 +
M

∑
j=1, j �=i

gr(||xi−x j||)(xi − x j)T ei− [∇xiV i(xi)− 1
M

M

∑
j=1

∇x jV j(x j)]T ei

(11.9)
It assumed that for all xi there is a constant σ̄ such that

||∇xiV i(xi)|| ≤ σ̄ (11.10)

Eq. (11.10) is reasonable since for a robot moving on a 2-D plane, the gradient of
the cost function ∇xiV i(xi) is expected to be bounded. Moreover it is known that the
following inequality holds:

∑M
j=1, j �=igr(xi − x j)T ei≤∑M

j=1, j �=ibei≤∑M
j=1, j �=ib||ei||.

Thus the application of Eq. (11.9) gives:

V̇ i≤aM||ei||2 +∑M
j=1, j �=igr(||xi − x j||)||xi − x j|| · ||ei||+

+||∇xiV i(xi)− 1
M∑M

j=1∇x jV j(x j)||||ei||

⇒ V̇ i≤aM||ei||2 + b(M− 1)||ei||+2σ̄ ||ei||
where it has been taken into account that

∑M
j=1, j �=igr(||xi − x j||)T ||ei||≤∑M

j=1, j �=ib||ei|| = b(M− 1)||ei||,

and from Eq. (11.10),

||∇xiV i(xi)− 1
M∑M

j=1∇xiV j(x j)||≤||∇xiV i(xi)||+ 1
M ||∑M

j=1∇xiV j(x j)||
||∇xiV i(xi)− 1

M∑M
j=1∇xiV j(x j)||≤σ̄ + 1

M Mσ̄ ≤ 2σ̄ .

Thus, one gets

V̇ i≤aM||ei||·[||ei||− b(M− 1)
aM

−2
σ̄

aM
] (11.11)

The following bound ε is defined:

ε =
b(M−1)

aM
+

2σ̄
aM

=
1

aM
(b(M−1)+ 2σ̄) (11.12)

Thus, when ||ei||> ε , V̇i will become negative and consequently the error ei = xi− x̄
will decrease. Therefore the error ei will remain in an area of radius ε i.e. the position
xi of the i-th robot will stay in the cycle with center x̄ and radius ε.
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11.1.5 Convergence to the Goal Position

The case of a convex quadratic cost function is examined, for instance

V i(xi) =
A

2
||xi − x∗||2 =

A

2
(xi − x∗)T (xi − x∗) (11.13)

where x∗ = [0,0] is a minimum point V i(xi = x∗) = 0. The distributed gradient al-
gorithm is expected to converge to x∗. The robotic vehicles will follow different
trajectories on the 2-D plane and will end at the goal position.

Using Eq.(11.13) yields ∇xiV i(xi) = A(xi − x∗). Moreover, the assumption
∇xiV i(xi)≤ σ̄ can be used, since the gradient of the cost function remains bounded.
The robotic vehicles will concentrate round x̄ and will stay in a radius ε given by
Eq. (11.12). The motion of the mean position x̄ of the vehicles is

˙̄x = − 1
M∑M

i=1∇xiV i(xi) ⇒ ˙̄x = − A
M (xi − x∗) ⇒

˙̄x− ẋ∗ = − A
M xi + A

M x∗ ⇒ ˙̄x− ẋ∗ =−A(x̄− x∗)
(11.14)

The variable eσ = x̄− x∗ is defined, and consequently

ėσ = −Aeσ ⇒ εσ (t) = c1e−At + c2, (11.15)

with c1 + c2 = eσ (0). Eq. (11.15) is an homogeneous differential equation, which
for A > 0 results into limt→∞eσ (t) = 0, thus limt→∞x̄(t) = x∗. It is left to make more
precise the position to which each robot converges.

11.1.6 Stability Analysis Using La Salle’s Theorem

It has been shown that limt→∞x̄(t) = x∗ and from Eq. (11.11) that each robot will
stay in a cycle C of center x̄ and radius ε given by Eq. (11.12). The Lyapunov
function given by Eq. (11.8) is negative semi-definite, therefore asymptotic stability
cannot be guaranteed. It remains to make precise the area of convergence of each
robot in the cycle C of center x̄ and radius ε . To this end, La Salle’s theorem can be
employed [113],[184].

La Salle’s Theorem: Assume the autonomous system ẋ = f (x) where f : D → Rn.
Assume C ⊂ D a compact set which is positively invariant with respect to ẋ = f (x),
i.e. if x(0) ∈ C ⇒ x(t) ∈C ∀ t. Assume that V (x) : D → R is a continuous and dif-
ferentiable Lyapunov function such that V̇ (x) ≤ 0 for x ∈ C, i.e. V (x) is negative
semi-definite in C. Denote by E the set of all points in C such that V̇ (x) = 0. De-
note by M the largest invariant set in E and its boundary by L+, i.e. for x(t) ∈ E :
limt→∞x(t) = L+, or in other words L+ is the positive limit set of E. Then every
solution x(t) ∈C will converge to M as t → ∞.
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Fig. 11.1 LaSalle’s theorem: C: invariant set, E ⊂C: invariant set which satisfies V̇ (x) = 0,
M ⊂ E: invariant set, which satisfies V̇ (x) = 0, & and which contains the limit points of
x(t) ∈ E , L+ the set of limit points of x(t) ∈ E

La Salle’s theorem is applicable in the case of the multi-robot system and helps to
describe more precisely the area round x̄ to which the robot trajectories xi will con-
verge. A generalized Lyapunov function is introduced which is expected to verify
the stability analysis based on Eq. (11.11). It holds that

V (x) =∑M
i=1V i(xi)+ 1

2∑
M
i=1∑

M
j=1, j �=i{Va(||xi − x j||−Vr(||xi − x j||)}⇒

V (x) =∑M
i=1V i(xi)+ 1

2∑
M
i=1∑

M
j=1, j �=i{a||xi − x j||−Vr(||xi − x j||)

and

∇xiV (x) = [∑M
i=1∇xiV i(xi)]+ 1

2∑
M
i=1∑

M
j=1, j �=i∇xi{a||xi − x j||−Vr(||xi − x j||)}⇒

∇xiV (x) = [∑M
i=1∇xiV i(xi)]+∑M

j=1, j �=i(x
i − x j){ga(||xi − x j||)− gr(||xi − x j||)}⇒

∇xiV (x) = [∑M
i=1∇xiV i(xi)]+∑M

j=1, j �=i(x
i − x j){a− gr(||xi − x j||)}

and using Eq. (11.1) with γ i(t) = 1 yields ∇xiV (x) = −ẋi, and

V̇ (x) = ∇xV (x)T ẋ =
M

∑
i=1

∇xiV (x)T ẋi ⇒ V̇ (x) = −
M

∑
i=1

||ẋi||2 ≤ 0 (11.16)

Therefore, in the case of a quadratic cost function it holds V (x) > 0 and V̇ (x)≤0
and the set C = {x : V (x(t)) ≤ V (x(0))} is compact and positively invariant. Thus,
by applying La Salle’s theorem one can show the convergence of x(t) to the set
M ⊂C, M = {x : V̇ (x) = 0}⇒ M = {x : ẋ = 0}.
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11.2 Particle Swarm Theory for Multi-robot Motion Planning

11.2.1 The Particle Swarm Theory

It has been shown that the distributed gradient algorithm can have satisfactory per-
formance for the motion planning problem of multi-robot systems in the case of
quadratic cost functions. An alternative method of distributed search for the goal
position is the particle swarm algorithm which belongs to derivative-free optimiza-
tion techniques [65].

The similarity between the particle models and the distributed gradient algo-
rithms is noteworthy. Particle models consist of M particles with mass mi, position
xi and velocity vi. Each particle has a self-propelling force Fi. To prevent the par-
ticles from reaching large speeds, a friction force with coefficient Kv is introduced.
In addition, each particle is subject to an attractive force which is affected by the
proximity σ to other particles. This force is responsible for swarming. To prevent
particle collisions a shorter-range repulsive force is introduced. In analogy to Eq.
(11.3), the potential of the particles is given by

Va −Vr = ∑M
j=1, j �=iae− (|xi−x j |)2

σ2 −∑M
j=1, j �=ibe− (|xi−xj |)2

σ2

where a and b determine the strength of the attractive and the repulsive force respec-
tively. Thus, the motion equations for each particle are [220]:

mi
∂
∂ t vi = Fi −Kvvi −∇(Va −Vr)

∂
∂ t xi = vi (11.17)

The particle swarm algorithm evolves in the search space by modifying the trajec-
tories of the independent vectors xi(t) which are called particles. Considering each
robot as a particle, the new position of each robot xi(t +1) is selected taking into ac-
count the moves of the robot from its current position xi(t) and the best moves of the
rest M−1 robots from their positions at time instant t, i.e. x j(t) j = 1, · · · ,M∨ j �= i.

Assume a set of M robots which is initialized at random positions xi(0) and
which have initial velocities vi(0). The cost function of the i-th robot is denoted
again by V i(xi). The following parameters are defined (Fig. 11.2):

(i) xi(t) is the position vector of the i-th robot at time instant t,
(ii) pi(t) is the best position (according to V i) to which the i-th robot can move,
starting from its current position xi(t),
(iii) pg(t) is the best position (according to V i) to which the neighbors of the i-th
robot can move, starting from their current positions x j(t) j = 1, · · · ,M ∨ j �= i.

Figure 11.2 describes the Von Neumann region round each mobile robot. The 2D-
plane is divided into a grid of square cells and at the time instant k the robot is
assumed to be cell at ci, j . Then at time instant k + 1 the robot can make one of the
following moves: ci+1, j, ci+1, j−1,ci+1, j+1, ci−1, j, ci−1, j−1, ci−1, j+1, ci, j−1, and ci, j+1.
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Fig. 11.2 Von Neumann region round each robot in the particle swarm algorithm

11.2.2 Stability of the Particle Swarm Algorithm

The primary concerns of the particle swarm theory are: (i) Each particle i should
move in the direction of cost function decrease (negative gradient), taking into ac-
count the directions already examined by the neighboring particles, (ii) The velocity
of each particle should approach 0 as time goes to infinity. To this end, the dynamic
behavior of the particle swarm can be studied with the use of ordinary differential
equations, following the analysis given in [65]. The position and the velocity update
of the i-th particle is:

vi(t +1) = vi(t)+φ1(pk − xi)+ φ2(pg − xi) (11.18)

xi(t + 1) = xi(t)+ vi(t +1) (11.19)

Variable pk denotes the best possible move of the k-th individual robot, taking into
account that the Von-Neumann motion pattern of the robot permits movement to 8
neighboring cells. pg is the best possible move of the neighboring robots, i.e. the
movement that results in the largest decrease of the cost function. It holds that

vi(t +1) = vi(t)+ φ1(pk − xi)+φ2(pg − xi) ⇒
vi(t +1) = vi(t)+ φ1 pi+φ2 pg

φ1+φ2
(φ1 +φ2)− xi(φ1 +φ2) ⇒

vi(t +1) = vi(t)+ φ p̄−φxi ⇒ vi(t +1) = vi(t)+ φ(p̄− xi)

The parameter φ1 determines the contribution to the update of the position of the
i-th robot of the term pk − xi which denotes the distance between robot’s position
xi and the position reached after its best possible move pk. The parameter φ2 de-
termines the contribution to the update of the position of the i-th robot of the term
pg − xi, which denotes the distance between the robot’s position xi and the position
reached after the best possible move of its neighbors pg. Through parameters φ1 and
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φ2 the following parameters are defined: φ = φ1 + φ2 and p̄i = φ1 pi+φ2 pg

φ1+φ2
.Thus, the

following simplified equations can be derived

vi(t + 2) = vi(t + 1)+φ(p̄− xi(t + 1)) (11.20)

xi(t + 1) = xi(t)+ vi(t +1) (11.21)

To refine the search in the solutions space, tuning through a constriction coefficient
χ = κ

ρ2
, κ ∈ (0,1) is introduced in Eq. (11.19) and Eq. (11.18). In that case the

particle swarm algorithm takes the following form:

vi(t + 1) = χ(vi(t)+φ(p̄i − xi(t))
xi(t +1) = χ(xi(t)+ vi(t + 1)) (11.22)

It holds that
vi(t + 2) = vi(t + 1)(1−φ)+φ(p̄− xi(t)). (11.23)

Subtracting Eq. (11.20) from Eq. (11.23) yields

vi(t +2)+ (φ−2)vi(t + 1)+ vi(t) = 0

Using the z-transform a frequency space expression of the above difference equation
is z2 + (φ − 2)z + 1 = 0. Thus, the dynamic behavior of the particle depends on

the roots of the polynomial z2 +(φ − 2)z + 1 which are ρ1 = 1− φ
2 +

√
φ2−4φ

2 and

ρ2 = 1− φ
2 −

√
φ2−4φ

2 . The general solution of the differential equation is

vi(t) = ci
1eρ1t + ci

2eρ2t (11.24)

The parameters ci
1 and ci

2 are random. In Eq. (11.24) the stability condition
limt→∞vi(t) = 0 is assured if φ ≥ 4 [65]. The pseudocode of the particle swarm
algorithm is summarized as follows:

Initialize the robots population randomly: xi(0),vi(0), i = 1,2, · · · ,M
Do (until convergence to x∗)
{

For (i = 1; i < M; i++)
For all possible moves pi, i = 1,2, · · · ,N from xi

pk = arg minpi{V i(pi)}
For all particles x j, j = 1,2, · · · ,G in area g
pg = arg minp j{V i(pg)};
If (V i(pk) < V i(xi))

vi(t +1) = vi(t)+φ1(pk − xi)+φ2(pg − xi);
vi(t + 1) = sgn{vi(t + 1)min[vi(t +1),vmax]};
xi(t + 1) = xi(t)+ vi(t +1);

}
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Parameters φ1 and φ2 are selected from a uniform distribution, taking into
account the above mentioned convergence conditions. The robots velocity is
bounded in the interval ±vmax. Random weighting with the use of the parameters φ1

and φ2 helps to avoid local minima but can lead to explosion. It can be observed that:

• The term φ1(pk − xi) stands for ∇xiV i(xi) of Eq. (11.1)
• The term φ2(pg − xi) stands for the term ∑M

j=1, j �=ig(xi − x j). It is assumed that in
the neighborhood of the i-th particle the rest M−1 particles are contained.
• The condition V i(pk) < V i(xi) denotes movement in the direction of the negative
gradient of the cost function V i(xi).

11.3 Evaluation Tests for the Stochastic Search Algorithms

11.3.1 Convergence towards the Equilibrium

In the conducted simulation tests the multi-robot system consisted of 10 robots
which were randomly initialized in the 2-D field. Theoretically, there is no con-
straint in the number of robots that constitute the robotic swarm. Of course, the
number of robots can be increased and if it is sufficiently large then the obtained
measurements will be also statistically significant. Two cases were distinguished:
(i) motion in an obstacle-free environment (Fig. 11.3 -Fig. 11.4) and (ii) motion in
an environment with obstacles (Fig. 11.5 - Fig. 11.6). The objective was to lead the
robot swarm to the origin [x1,x2] = [0,0]. To avoid obstacles, apart from the motion
equations given in Sections 11.1 and 11.2 repulsive forces between the obstacles
and the robots had to be taken into account.

Results about the motion of the robots in an obstacle-free 2D-plane were ob-
tained. Fig. 3(a) describes the motion of the individual robots towards the goal state,
in an obstacle-free environment, when the distributed gradient algorithm is applied,
while Fig. 3(b) shows the motion of the robots in the same environment when par-
ticle swarm optimization is used to steer the robots. Fig. 4(a) demonstrates how
the mean position of the multi-robot formation approaches the goal state when the
motion takes place in an obstacle-free environment and the distributed-gradient al-
gorithm is used to steer the robots. Fig. 4(b) shows the convergence of the aver-
age position of the robotic swarm to the equilibrium [x∗,y∗] = [0,0], in a 2D-plane
without obstacles, when the steering of the robots is the result of particle swarm
optimization. Next, motion of the robots in a 2D-plane that contains obstacles is
studied. Fig. 5(a) demonstrates the motion of the individual robots towards the goal
state, in an environment with obstacles, when the steering of the robots is the re-
sult of the distributed gradient algorithm. The robots are now also subject to attrac-
tive and repulsive forces due to the obstacles. Fig. 5(b) presents the convergence of
the individual robots to the attractor [x∗,y∗] = [0,0], when the motion takes place
again in an environment with obstacles and when the robots’ steering is the result
of the particle swarm optimization. Fig. 6(a) shows how the average position of the
multi-robot formation reaches the equilibrium when the motion is performed in a
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Fig. 11.3 (a) Distributed gradient and (b) Particle swarm with robots interaction in an
obstacles-free environment, considering a quadratic cost function.
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Fig. 11.4 (a) Distributed gradient and (b) Particle swarm with robots interaction in an
obstacles-free environment: Trajectory of the mean of the multi-robot system.

2D-plane which contains obstacles and when the robots’ trajectories are generated
by the distributed gradient algorithm. Finally, in Fig.6(b) the motion of the mean of
the multi-robot system towards the goal state is given, when the robots move again
in an environment that contains obstacles, while their paths are generated by the
particle swarm optimization algorithm.

When the multi-robot system evolved in an environment with obstacles, the in-
teraction between the individual robots (attractive and repulsive forces) had to be
loose, so as to give priority to obstacles avoidance. Therefore coefficients a and b in
Eq. (11.3) were set to small values. The repulsive potential due to the obstacles was
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calculated by a relation similar to Eq. (11.3) after substituting x j with x j
o, where x j

o

was the center of the j-th obstacle.
In the case of distributed gradient the relative values of the parameters a and b that

appear in the attractive and repulsive potential respectively, affected the performance
of the algorithm. For a > b the cohesion of the robotic swarm was maintained and
abrupt displacements of the individual robots were avoided. In the particle swarm
algorithm the area of possible moves round each robot was a Von Neumann one
(Fig. 11.2). It was observed that the ratio λ = φ1

φ2
affected the performance of the

algorithm. It was observed that large λ resulted in excessive wandering of the robots,
while small λ led to the early formation of a robot cluster.
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Fig. 11.5 (a) Distributed gradient and (b) Particle swarm with robots interaction in an envi-
ronment with obstacles, considering a quadratic cost function.

Fig. 11.7 presents the variation of the Lyapunov functions of the robots when the
motion takes place in an environment without obstacles, and the distributed gradient
approach is applied to steer the robots towards the attractor. The Lyapunov function
is given both in the case of the individual robots and in the case of the mean position
of the multi-robot formation. It can be observed that the Lyapunov functions are not
monotonous, and this change of the sign of the Lyapunov function’s derivative is
due to the fact that the robots’ path encircle the target position several times before
finally stabilizing at [x∗,y∗] = [0,0]. This means that robots which were initially
approaching fast the goal position had to make circles round the attractor in order
to wait for those robots which had delayed. This maintained the cohesion of the
multi-robot swarm.

Fig. 11.8 presents the variation of the Lyapunov function of the robots when the
motion takes place in an environment with obstacles, and the distributed gradient
approach is applied to steer the robots towards the attractor. The Lyapunov function
is given again both in the case of the individual robots and in the case of the mean
position of the multi-robot formation. In that case the Lyapunov functions tend to
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Fig. 11.6 (a) Distributed gradient and (b) Particle swarm with robots interaction in an
obstacles-free environment: Trajectory of the mean of the multi-robot system.

become monotonous, i.e. continuously decreasing, and this is due to the fact that the
interaction forces between the robots have been made weaker after suitable tuning
of the coefficients α and β . This enables the robots to approach to the goal state
following an almost linear trajectory, since the interaction forces that caused curving
of the robots path and encircling of the attractor have now been diminished.

Fig. 11.9 shows the variation of the Lyapunov function of the robots and the
Lyapunov function of the mean position of the multi-robot formation, when parti-
cle swarm optimization is applied to steer the robots towards the attractor and no
obstacles are present in the 2D plane. The Lyapunov functions are monotonically
decreasing which is due to the tuning of the interaction forces between the robots.
Setting the interaction between the robots at low values enables almost linear con-
vergence towards the goal state, which means that the quadratic error function keeps
on decreasing as the motion of the robots continues.

Fig. 11.10 shows the variation of the Lyapunov function of the robots and of the
Lyapunov function of the average position of the multi-robot system when particle
swarm optimization is applied to steer the robots towards the attractor in the pres-
ence of obstacles. It can be observed again that the Lyapunov functions decrease
monotonically until they become zero, and comparing to the motion in an obstacle-
free environment the rate of approach towards the steady state [e = 0, ė = 0] is larger.
This is due to the fact that the interaction between the robots has become looser, thus
the robots are enabled to approach rapidly the goal state without waiting for conver-
gence of the rest of the swarm.

Regarding the significance of the mean and the variance of the multi-robot sys-
tem for evaluating the behavior of the robotics swarm the following can be stated:
although the average position of the multi-robot system is not always meaningful,
for instance in case that the individual robots bypass a obstacle with equal proba-
bility from its left or right side, it is a useful parameter that helps to monitor this



246 11 Optimization Methods for Motion Planning of Multi-robot Systems

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

time k

L
y
a
p
u
n
o
v
 o

f 
th

e
 r

o
b
o
ts

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

time k

L
y
a
p
u
n
o
v
 o

f 
th

e
 m

e
a
n

(a) (b)

Fig. 11.7 Distributed gradient approach in an obstacles-free environment: (a) Lyapunov func-
tion of the individual robots and (b) Lyapunov function of the mean.
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Fig. 11.8 Distributed gradient approach in an environment with obstacles: (a) Lyapunov
function of the individual robots and (b) Lyapunov function of the mean.

many-body system. The mean and the variance of the multi-robot formation be-
comes particularly significant when the motion takes place at micro or nanoscale.
In the latter case, all information about the behavior of the micro or nano particles
swarm is contained in the mean position of the swarm and its variance.

Finally, simulation results about the motion of the multi-robot swarm in a
workspace with polyhedric obstacles have been given. Thus additional evaluation
for the performance of the proposed motion planning algorithms is obtained. The
obstacles considered in the simulation experiments are not points but polyhedra
which cover certain regions in the 2D plane. Therefore the attractive and repulsive
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Fig. 11.9 Particle swarm approach in an obstacles-free environment: (a) Lyapunov function
of the individual robots and (b) Lyapunov function of the mean.
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Fig. 11.10 Particle swarm approach in an environment with obstacles : (a) Lyapunov function
of the individual robots and (b) Lyapunov function of the mean.

forces generated between the robots and obstacles affect the robots’ trajectories and
may also result in local minima. These results are depicted in Fig. 11.11 to Fig.
11.14.

It can be observed that in the case of motion in a 2D-plane with arbitrarily posi-
tioned polyhedric obstacles the distributed gradient algorithm results in smoother
trajectories than the particle swarm optimization method. For even though the
obstacles are not symmetrically placed in the 2D-plane and thus the aggregate force
exerted on the robots in not zero, the multi-robot system in both cases converges
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Fig. 11.11 (a) Distributed gradient and, (b) Particle swarm optimization for motion planning
of the multi-robot system in a 2D-plane with polyhedric obstacles.
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Fig. 11.12 (a) Distributed gradient, and (ii) Particle swarm optimization in a 2D-plane with
polyhedric obstacles: trajectories of the mean of the multi-robot system.

to the origin [x∗ = 0,y∗ = 0]. The cost function is no longer a convex one. Local
minima can be generated due to the proximity to obstacles and the attractive forces
between the individual robots. For instance, local minima can be found in narrow
passages between the obstacles. The inclusion of a stochastic term in the equations
that describe the position update of the robots, i.e. in Eq. 11.1 and Eq. 11.19 may
enable escape from minima. Moreover, suitable tuning of the attractive and repulsive
forces that exist between the robots may also permit the robots to move away from
local minima.
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Fig. 11.13 Distributed gradient in a 2D-plane with polyhedric obstacles: (i) Lyapunov func-
tions of the robots, (ii) Lyapunov function of the mean of the multi-robot formation.
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Fig. 11.14 Particle swarm optimization in a 2D-plane with polyhedric obstacles: (i) Lya-
punov functions of the robots, (ii) Lyapunov function of the mean of the multi-robot
formation.

11.3.2 Tuning of the Stochastic Search Algorithms

Regarding the tuning of the coefficients α and b which appear in Eq. (11.3) and
which affect the trajectories of the individual robots the following should be noted:
coefficient α describes the influence that the attractive potential Vα(x) has on the
i-th robot (particle), and coefficient b describes the effect of the repulsive potential
Vr(x). These potential terms are respectively given by

Vα(x) = 1
2α(xi − x j)2, Vr(x) = 1

2σ
2be

|| (xi−x j2

σ2 || (11.25)
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The derivation of Vα(x) with respect to xi generates an attractive spring force Fα(x)
while the derivation of Vr(x) with respect to xi results in a repulsive force that con-
tains a Gaussian term. These forces are explicitly given by:

Fα(x) = ∇Vα(x) = α(xi − x j), Fr(x) = ∇Vb(x) = (xi − x j)be
|| (xi−x j )

2

σ2 ||

Similarly a repulsive force can describe the interaction between the i-th particle and
the j-th obstacle, where the latter is assumed to be located at position x j

o. Setting
α≤b, or in general choosing the ratio α/b to be much smaller than 1 means that
attractive forces between the individual robots are weaker than the repulsive forces.
This may delay the convergence of the individual robots to the goal state [x∗,y∗] =
[0,0]. One may also notice that the robots’ paths become curved and encircle the
goal state several times, and in that way the robots remain in sufficient distance.

Regarding the tuning of coefficient λ = φ1/φ2 which appears in the particle
swarm optimization algorithm, this is performed ad hoc. Large values of λ resulted
in excessive wandering of the robots, i.e. the robots encircled many times the goal
state before finally converging to it. On the other hand small values of λ resulted
in an early formation of a robots cluster, which may delay convergence to the goal
state in a motion-plane with obstacles.

Regarding the convergence of the distributed gradient algorithm to the global
minimum this can be sure only in the case of a convex cost function. The distributed
gradient algorithm risks to be trapped to local minima, however the fact that the
search in the solutions space is distributed and the existence of random terms to the
individual gradient algorithms make possible the escape from these local minima.
The tuning of the coefficients of the distributed gradient algorithm is performed ad-
hoc and affects the paths in which the individual robots approach the goal state,
as well as the shape of the trajectories the robots follow trying to deviate from
obstacles.

Finally regarding the performance of the proposed motion planning algorithms,
distributed gradient appears to be superior than particle swarm optimization for
the following reasons: (i) distributed gradient stands for the mathematical formu-
lation of a physical phenomenon (Brownian motion and interaction between dif-
fusing particles [194]) while particle swarm optimization has no direct relation
to physics laws, (ii) in distributed gradient, convergence to attractors is proved
based on Lyapunov stability analysis. It is shown that the mean of the variables
updated through the distributed gradient algorithm converges exactly to the equilib-
rium [x∗,y∗] = [0,0], while the individual variables stay at a circle of radius ε round
the attractor, as predicted by LaSalle’s theorem. On the other hand there is no strict
mathematical proof of the convergence of particle swarm optimization approach (iii)
the fact that the particle swarm optimization method is a derivative-free optimization
technique (while distributed gradient required the explicit calculation of derivatives)
is moderated by the fact that particle-swarm optimization needs heuristic tuning of
several parameters to converge to a fixed point, (iv) Regarding the capability to suc-
ceed global optimization, the distributed gradient algorithm is as powerful as the
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particle swarm optimization approach, since it can contain stochastic terms that en-
able escape from local minima.

In conclusion, both the distributed gradient and the particle swarm optimiza-
tion method succeeded cooperative behavior of the robots without requirement for
explicit coordination or communication. The performance of both methods was sat-
isfactory, however distributed gradient was evaluated to have advantages over the
particle swarm optimization mainly due to its sound convergence proof and the
smooth motion patterns it produced in various environments.





Chapter 12
Optimization Methods for Target Tracking by
Multi-robot Systems

Abstract. The chapter studies the two-fold optimization problem of distributed mo-
tion planning and distributed filtering for multi-robot systems. Tracking of a target
by a multi-robot system is pursued assuming that the target’s state vector is not
directly measurable and has to be estimated by distributed filtering based on the
target’s cartesian coordinates and bearing measurements obtained by the individ-
ual mobile robots. The robots have to converge in a synchronized manner towards
the target, while avoiding collisions between them and avoiding collisions with ob-
stacles in the motion plane. To solve the overall problem, the following steps are
followed: (i) distributed filtering, so as to obtain an accurate estimation of the tar-
get’s state vector. This estimate provides the desirable state vector to be tracked by
each one of the mobile robots, (ii) motion planning and control that enables con-
vergence of the vehicles to the goal position and also maintains the cohesion of the
vehicles swarm. The efficiency of the proposed distributed filtering and distributed
motion planning scheme is tested through simulation experiments.

12.1 Distributed Motion Planning and Filtering in Multi-robot
Systems

12.1.1 Target Tracking in Mobile Sensors Networks

The problem treated in this chapter is as follows: there are N mobile robots (un-
manned ground vehicles) which pursue a moving target. The vehicles emanate from
random positions in their motion plane. Each vehicle can be equipped with vari-
ous sensors, such as odometric sensors, cameras and non-imaging sensors such as
sonar, radar and thermal signature sensors. These vehicles can be considered as mo-
bile sensors while the ensemble of the autonomous vehicles constitutes a mobile
sensor network [91],[290],[291],[342]. At each time instant each vehicle can obtain
a measurement of the target’s cartesian coordinates and orientation. Additionally,
each autonomous vehicle is aware of the target’s distance from a reference surface
measured in a cartesian coordinates system. Finally, each vehicle can be aware of
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the positions of the rest N−1 vehicles. The objective is to make the unmanned vehi-
cles converge in a synchronized manner towards the target, while avoiding collisions
between them and avoiding collisions with obstacles in the motion plane. To solve
the overall problem, the following steps are necessary: (i) to perform distributed fil-
tering, so as to obtain an estimate of the target’s state vector. This estimate provides
the desirable state vector to be tracked by each one of the unmanned vehicles, (ii)
to design a suitable control law for the unmanned vehicles that will enable not only
convergence of the vehicles to the goal position but will also maintain the cohesion
of the vehicles ensemble.

Regarding the implementation of the control law that will allow the mobile robots
to converge to the target in a coordinated manner, this can be based on the calcu-
lation of a cost (energy) function consisting of the following elements : (i) the cost
due to the distance of the i-th mobile robot from the target’s coordinates, (ii) the cost
due to the interaction with the other N − 1 vehicles, (iii) the cost due to proximity
to obstacles or inaccessible areas in the motion plane. The gradient of the aggregate
cost function defines the path each vehicle should follow to reach the target and at
the same time assures the synchronized approaching of the vehicles to the target. In
this way, the update of the position of each vehicle will be finally described by a
gradient algorithm which contains an interaction term with the gradient algorithms
that defines the motion of the rest N −1 mobile robots. A suitable tool for proving
analytically the convergence of the vehicles’ swarm to the goal state is Lyapunov
stability theory and particularly LaSalle’s theorem [325],[326].

Regarding the implementation of distributed filtering, the Extended Information
Filter (EIF) and the Unscented Information Filter (UIF) are suitable approaches. Fu-
sion of state estimates with the use of the Extended Information Filter and the Un-
scented Information Filter was analyzed in Chapter 8. In the Extended Information
Filter there are local filters which do not exchange raw measurements but send to an
aggregation filter their local information matrices (local inverse covariance matri-
ces) and their associated local information state vectors (products of the local infor-
mation matrices with the local state vectors) [341]. The Extended Information Filter
performs fusion of the local state vector estimates which are provided by the local
Extended Kalman Filters (EKFs), using the Information matrix and the Information
state vector [217], [218], [252],[435]. The Information Matrix is the inverse of the
state vector covariance matrix and can be also associated to the Fisher Information
matrix [344]. The Information state vector is the product between the Information
matrix and the local state vector estimate [379]. The Unscented Information Filter
is a derivative-free distributed filtering approach which permits to calculate an ag-
gregate estimate of the target’s state vector by fusing the state estimates provided by
Unscented Kalman Filters (UKFs) running at the mobile sensors. In the Unscented
Information Filter an implicit linearization is performed through the approximation
of the Jacobian matrix of the system’s output equation by the product of the inverse
of the estimation error covariance matrix with the cross-covariance matrix between
the system’s state vector and the system’s output. Again the local information ma-
trices and the local information state vectors are transferred to an aggregation filter
which produces the global estimation of the system’s state vector.



12.1 Distributed Motion Planning and Filtering in Multi-robot Systems 255

Using distributed EKFs and fusion through the Extended Information Filter or
distributed UKFs through the Unscented Information Filter is more robust com-
paring to the centralized Extended Kalman Filter, or similarly the centralized Un-
scented Kalman Filter since, (i) if a local filter is subject to a fault then state estima-
tion is still possible and can be used for accurate localization of the target, (ii) com-
munication overhead remains low even in the case of a large number of distributed
measurement units, because the greatest part of state estimation is performed lo-
cally and only information matrices and state vectors are communicated between
the local filters, (iii) the aggregation performed also compensates for deviations in
the state estimates of the local filters [342].

12.1.2 The Problem of Distributed Target Tracking

It is assumed that there are N mobile robots (unmanned vehicles) with positions
p1, p2, ..., pN ∈ R2 respectively, and a target with position x∗ ∈ R2 moving on a
plane (see Fig. 12.1). Each unmanned vehicle can be equipped with various sensors,
cameras and non-imaging sensors, such as sonar, radar or thermal signature sensors.
The unmanned vehicles can be considered as mobile sensors while the ensemble
of the autonomous vehicles constitutes a mobile sensors network. The discrete-time
target’s kinematic model is in the form

xt(k + 1) = φ(xt(k))+ L(k)u(k)+ w(k)
zt(k) = γ(xt(k))+ v(k) (12.1)

where x∈Rm×1 is the target’s state vector and z∈Rp×1 is the measured out-
put, while w(k) and v(k) are uncorrelated, zero-mean, Gaussian zero-mean noise
processes with covariance matrices Q(k) and R(k) respectively. The opera-
tors φ(x) and γ(x) are defined as φ(x) = [φ1(x),φ2(x), · · · ,φm(x)]T , and γ(x) =
[γ1(x),γ2(x), · · · ,γp(x)]T , respectively.

At each time instant each mobile robot can obtain a measurement of the target’s
position. Additionally, each mobile robot is aware of the target’s distance from a
reference surface measured in an inertial coordinates system. Finally, each mobile
sensor can be aware of the positions of the rest N − 1 sensors. The objective is
to make the mobile sensors converge in a synchronized manner towards the target,
while avoiding collisions between them and avoiding collisions with obstacles in the
motion plane. To solve the overall problem, the following steps are necessary: (i) to
perform distributed filtering, so as to obtain an estimate of the target’s state vector.
This estimate provides the desirable state vector to be tracked by each one of the
mobile robots, (ii) to design a suitable control law that will enable the mobile sensors
not only convergence to the target’s position but will also preserve the cohesion of
the mobile sensors swarm (see Fig. 12.2).

The exact position and orientation of the target can be obtained through dis-
tributed filtering. Actually, distributed filtering provides a two-level fusion of the
distributed sensor measurements. At the first level, local filters running at each mo-
bile sensor provide an estimate of the target’s state vector by fusing the cartesian
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Fig. 12.1 Distributed target tracking in an environment with inaccessible areas.

Fig. 12.2 Mobile robot providing estimates of the target’s state vector, and the associated
inertial and local coordinates reference frames

coordinates and bearing measurements of the target with the target’s distance from
a reference surface which is measured in an inertial coordinates system [440]. At a
second level, fusion of the local estimates is performed with the use of the Extended
Information Filter and the Unscented Information Filter. It is also assumed that the
time taken in calculating the selection of data and in communicating between mo-
bile robots is small, and that time delays, packet losses and out-of-sequence mea-
surement problems in communication do not distort significantly the flow of the
exchanged data.
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Comparing to the traditional centralized or hierarchical fusion architecture, the
network-centric architectures for the considered multi-robot system has the follow-
ing advantages: (i) Scalability: since there are no limits imposed by centralized com-
putation bottlenecks or lack of communication bandwidth, every mobile robot can
easily join or quit the system, (ii) Robustness: in a decentralized fusion architecture
no element of the system is mission-critical, so that the system is survivable in the
event of on-line loss of part of its partial entities (mobile robots), (iii) Modularity:
every partial entity is coordinated and does not need to possess a global knowledge
of the network topology. However, these benefits are possible only if the sensor data
can be fused and synthesized for distribution within the constraints of the available
bandwidth.

12.1.3 Tracking of the Reference Path by the Target

The continuous-time target’s kinematic model is assumed to be that of the unicycle
robot described in Chapter 7 and is given by

ẋ(t) = v(t)cos(θ(t))
ẏ(t) = v(t)sin(θ (t))

θ̇ (t) = ω(t)
(12.2)

The target is steered by a dynamic feedback linearization control algorithm which
is based on flatness-based control, as described in Chapter 3 [98],[216],[332],[438]:

u1 = ẍd +Kp1(xd − x)+ Kd1(ẋd − ẋ)
u2 = ÿd +Kp2(yd − y)+ Kd2(ẏd − ẏ)

ξ̇ = u1cos(θ )+ u2sin(θ)
v = ξ , ω = u2cos(θ)−u1sin(θ)

ξ

(12.3)

The dynamics of the tracking error is given by

ëx +Kd1 ėx +Kp1ex = 0
ëy +Kd2 ėx +Kp2ey = 0

(12.4)

where ex = x − xd and ey = y − yd . The proportional-derivative (PD) gains are
chosen as Kpi and Kdi , for i = 1,2. The dynamic compensator of Eq. (12.3) has a
potential singularity at ξ = v = 0, i.e. when the target is not moving. It has been
noted that the occurrence of such a singularity is structural for non-holonomic
systems. It is assumed that the target follows a smooth trajectory (xd(t),yd(t))
which is persistent, i.e. for which the nominal velocity vd = (ẋ2

d + ẏ2
d)

1/2 along the
trajectory never goes to zero (and thus singularities are avoided). The conditions for
avoiding singularities in the implementation of the mobile robot’s control law have
already been discussed in Chapter 7.
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12.1.4 Convergence of the Multi-robot System to the Target

The kinematic model of the multi-robot system as well as its cohesion round the
mean position of the robots ensemble was studied in Chapter 11, with the use of
Lyapunov’s theory and LaSalle’s theorem. Now the convergence of the multi-robot
system to the moving target’s position is analyzed. The case of a convex quadratic
cost function is examined, for instance

V i(xi) =
A
2
||xi − x∗||2 =

A
2
(xi − x∗)T (xi − x∗) (12.5)

where x∗ ∈ R2 denotes the target’s position, while the associated Lyapunov function
has a minimum at x∗, i.e. V i(xi = x∗) = 0. The distributed gradient algorithm is
expected to converge to x∗. The robotic vehicles will follow different trajectories on
the 2-D plane and will end at the target’s position.

Using Eq.(12.5) yields ∇xiV i(xi) = A(xi − x∗). Moreover, the assumption
∇xiV i(xi)≤ σ̄ can be used, since the gradient of the cost function remains bounded.
The robotic vehicles will concentrate round x̄ and will stay in a radius ε given by
Eq. (11.12). The motion of the mean position x̄ of the vehicles is

˙̄x = − 1
N∑

N
i=1∇xiV i(xi) ⇒ ˙̄x = − A

N∑
N
i=1(x

i − x∗) ⇒
˙̄x = − A

N∑
N
i=1xi + A

N Nx∗ ⇒ ˙̄x− ẋ∗ = −A(x̄− x∗)− ẋ∗ (12.6)

The variable eσ = x̄− x∗ is defined, and consequently

ėσ = −Aeσ − ẋ∗ (12.7)

The following cases can be distinguished:

(i) The target is not moving, i.e. ẋ∗ = 0. In that case Eq. (12.7) results in an homo-
geneous differential equation, the solution of which is given by

εσ (t) = εσ (0)e−At (12.8)

Knowing that A > 0 results into limt→∞eσ (t) = 0, thus limt→∞x̄(t) = x∗.

(ii) the target is moving at constant velocity, i.e. ẋ∗ = a, where a > 0 is a constant
parameter. Then the error between the mean position of the multi-robot formation
and the target becomes

εσ (t) = [εσ (0)+
a
A

]e−At − a
A

(12.9)

where the exponential term vanishes as t→∞.

(iii) the target’s velocity is described by a sinusoidal signal or a superposition of
sinusoidal signals, as in the case of function approximation by Fourier series ex-
pansion. For instance consider the case that ẋ∗ = b·sin(at), where a,b > 0 are con-
stant parameters. Then the nonhomogeneous differential equation Eq. (12.7) admits
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a sinusoidal solution. Therefore the distance εσ (t) between the center of the multi-
robot formation x̄(t) and the target’s position x∗(t) will be also a bounded sinusoidal
signal.

12.2 Simulation Tests

12.2.1 Target Tracking Using Extended Information Filtering

The number of mobile robots used for target tracking in the simulation experiments
was N = 10. However, since the mobile robots ensemble (mobile sensor network)
is modular a larger number of mobile robot’s could have been also considered. It
is assumed that each mobile robot can obtain an estimation of the target’s cartesian
coordinates and bearing, i.e. the target’s cartesian coordinates [x,y] as well as the tar-
get’s orientation θ . To improve the accuracy of the target’s localization, the target’s
coordinates and bearing are fused with the distance of the target from a reference
surface measured in an inertial coordinates system (see Fig. 12.2 and 12.3).

Fig. 12.3 Distance of the target’s reference point i from the reference plane P j, measured in
the inertial coordinates system OXY

The inertial coordinates system OXY is defined. Furthermore the coordinates sys-
tem O′X ′Y ′ is considered (Fig. 12.2). O′X ′Y ′ results from OXY if it is rotated by an
angle θ (Fig. 12.2). The coordinates of the center of the wheels axis with respect to
OXY are (x,y), while the coordinates of the reference point i that is mounted on the
vehicle, with respect to O′X ′Y ′ are x

′
i,y

′
i. The orientation of the reference point with

respect to OX ′Y ′ is θ ′
i . Thus the coordinates of the reference point with respect to

OXY are (xi,yi) and its orientation is θi, and are given by:
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xi(k) = x(k)+ x
′
isin(θ (k))+ y

′
icos(θ (k))

yi(k) = y(k)− x
′
icos(θ (k))+ y

′
isin(θ(k))

θi(k) = θ (k)+θi

(12.10)

Each plane P j in the robot’s environment can be represented by P j
r and P j

n (Fig.
12.3), where (i) P j

r is the normal distance of the plane from the origin O, (ii) Pj
n is

the angle between the normal line to the plane and the x-direction.
The target’s reference point i is at position xi(k),yi(k) with respect to the inertial

coordinates system OXY and its orientation is θi(k). Using the above notation, the
distance of the reference point i, from the plane Pj is represented by Pj

r ,Pj
n (see Fig.

12.3):
d j

i (k) = P j
r − xi(k)cos(P j

n )− yi(k)sin(P j
n ) (12.11)

Assuming a constant sampling period Δtk = T the measurement equation is z(k +
1) = γ(x(k))+ v(k), where z(k) is the vector containing (i) target’s coordinates and
bearing estimates obtained from sensors on the mobile robot and (ii) the measure-
ment of the target’s distance to the reference surface. Variable v(k) denotes a white
noise sequence ∼ N(0,R(kT )). The measure vector z(k) can thus be written as

z(k) = [x(k)+ v1(k),y(k)+ v2(k),θ(k)+ v3(k),d
j
1(k)+ v4(k)] (12.12)

with i = 1,2, · · · ,ns, d j
i (k) to be the distance measure with respect to the plane

P j and j = 1, · · · ,np to be the number of reference surfaces. By definition of the
measurement vector one has that the output function γ(x(k)) is given by γ(x(k)) =
[x(k),y(k),θ(k),d1

1 (k)].
To obtain the Extended Kalman Filter (EKF), the kinematic model of the target

described in Eq. (12.2) is discretized and written in the discrete-time state-space
form, as already described in Section 7.2 [332],[335].

The measurement update of the EKF is

K(k) = P−(k)JT
γ (x̂−(k))[Jγ (x̂−(k))P−(k)JT

γ (x̂−(k))+ R(k)]−1

x̂(k) = x̂−(k)+ K(k)[z(k)− γ(x̂−(k))]
P(k) = P−(k)−K(k)JT

γ P−(k)

The time update of the EKF is

P−(k + 1) = Jφ (x̂(k))P(k)JT
φ (x̂(k))+ Q(k)

x̂−(k + 1) = φ(x̂(k))+ L(k)U(k)

where

L(k) =

⎛
⎝

T cos(θ (k)) 0
T sin(θ(k)) 0

0 T

⎞
⎠
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and

Jφ (x̂(k)) =

⎛
⎝

1 0 −v(k)sin(θ )T
0 1 −v(k)cos(θ)T
0 0 1

⎞
⎠

while Q(k) = diag[σ2(k),σ2(k),σ2(k)], with σ2(k) chosen to be 10−3 and
φ(x̂(k))= [x̂(k), ŷ(k), θ̂ (k)]T , γ(x̂(k)) = [x̂(k), ŷ(k), θ̂ (k),d(k)]T , i.e.

γ(x̂(k)) =

⎛
⎜⎜⎝

x̂(k)
ŷ(k)
θ̂ (k)

Pj
r − xi(k))cos(P j

n )− yi(k)sin(P j
n )

⎞
⎟⎟⎠ (12.13)

The vector of the control input is given by U(k) = [v(k),ω(k)]T . Assuming one
reference surface in the target’s neighborhood one gets

JT
γ (x̂−(k)) = [Jγ 1(x̂

−(k)),Jγ 2(x̂
−(k)),Jγ 3(x̂

−(k)),Jγ 4(x̂
−(k))]T , i.e.

JT
γ (x̂−(k)) =

⎛
⎜⎜⎝

1 0 0
0 1 0
0 0 1

−cos(P j
n ) −sin(Pj

n ) {x
′
icos(θ −Pj

n )− y
′
isin(θ −P j

n )}

⎞
⎟⎟⎠ (12.14)

The use of EKF for fusing the target’s coordinates and bearing measured by each
mobile robot with the target’s distance from a reference surface measured in an
inertial coordinates system provides an estimation of the state vector [x(t),y(t),θ (t)]
and enables the successful tracking of the target’s motion by the individual mobile
robots (mobile sensors).

The tracking of the target by the swarm of the autonomous vehicles was tested in
the case of several reference trajectories, both for motion in an environment with-
out obstacles as well as for motion on a plane containing obstacles. The proposed
distributed filtering scheme enabled accurate estimation of the target’s state vector
[x,y,θ ]T through the fusion of the measurements of the target’s coordinates and ori-
entation obtained by each mobile robot with the measurement of the distance from
a reference surface in an inertial coordinates frame. The state estimates provided
by the Extended Kalman Filters running at each mobile sensor were fused into one
single state estimate using Extended Information Filtering. The aggregate estimated
coordinates of the target (x̂∗, ŷ∗) provided the reference setpoint for the distributed
motion planning algorithm. Each mobile sensor was made to move along the path
defined by (x̂∗, ŷ∗). The convergence properties of the distributed motion planning
algorithm were described in subsection 12.1.4. The tracking of the target’s trajec-
tory by the mobile robots ensemble as well as the accuracy of the two-level sen-
sor fusion-based estimation of the target’s coordinates is depicted in Fig. 12.4 to
Fig. 12.8. The target is marked as a thick-line rectangle and the associated reference
trajectory is plotted as a thick line.
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Fig. 12.4 (a) Distributed target tracking by an ensemble of autonomous vehicles when the
target follows a circular trajectory in an obstacles-free motion space, (b) Aggregate estimation
of the target’s position with the use of Extended Information Filtering (continuous line) and
target’s reference path (dashed line).

It is noted that using distributed EKFs and fusion through the Extended Infor-
mation Filter is more robust comparing to the centralized EKF since (i) if a local
processing unit is subject to a fault then state estimation is still possible and can be
used for accurate localization of the target, as well as for tracking of target’s tra-
jectory by the individual mobile sensors (autonomous vehicles), (ii) communication
overhead remains low even in the case of a large number of distributed mobile sen-
sors, because the greatest part of state estimation procedure is performed locally and
only information matrices and state vectors are communicated between the local pro-
cessing units, (iii) the aggregation performed on the local EKF also compensates for
deviations in state estimates of local filters (which can be due to linearization errors).

12.2.2 Target Tracking Using Unscented Information Filtering

Next, the estimation of the target’s state vector was performed using the Unscented
Information Filter. Again, the proposed distributed filtering enabled precise estima-
tion of the target’s state vector [x,y,θ ]T through the fusion of measurements of the
target’s coordinates and bearing obtained by each mobile sensor with the distance of
the target from a reference surface measured in an inertial coordinates system. The
state estimates of the local Unscented Kalman Filters running at each mobile sensor
(autonomous vehicle) were aggregated into a single estimation by the Unscented
Information Filter. The estimated coordinates [x̂∗, ŷ∗] of the target were used to gen-
erate the reference path which was followed by the mobile sensors. The tracking
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Fig. 12.5 (a) Distributed target tracking by an ensemble of autonomous vehicles when the
target follows an eight-shaped trajectory in an obstacles-free motion space, (b) Aggregate
estimation of the target’s position with the use of Extended Information Filtering (continuous
line) and target’s reference path (dashed line).

of the target’s trajectory by the mobile robots ensemble as well as the accuracy of
the two-level sensor fusion-based estimation of the target’s position is shown in Fig.
12.9 to Fig. 12.13.

As previously analyzed, the Unscented Information Filter is a derivative-free dis-
tributed filtering approach in which the local Unscented Kalman Filters provide
estimations of the target’s coordinates using the update in-time of a number of suit-
ably chosen sigma-points. Therefore, unlike the Extended Information Filter and the
local Extended Kalman Filters contained in it, in the Unscented Information Filter
there is no need to calculate Jacobians through the computation of partial deriva-
tives. Additionally, unlike the case of local Extended Kalman Filters there is no
truncation of higher order Taylor expansion terms and no linearization errors are
introduced at the local estimators. In that sense the Unscented Information Filter
provides a robust distributed state estimation and enables accurate tracking of the
target by the mobile sensors (autonomous vehicles).

A conclusive remark is that using distributed EKFs or UKFs and fusion through
the Extended Information Filter and the Unscented Kalman Filter respectively, is
more robust comparing to the centralized EKF and centralized UKF since (i) if a
local processing unit is subject to a fault then state estimation of the target’s position
is still possible and can be used for planning of the mobile robot’s motion towards
the target, (ii) communication overhead remains low even in the case of a large
number of mobile robots, because the greatest part of state estimation is performed
locally and only information matrices and state vectors are communicated between
the local processing units.
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Fig. 12.6 (a) Distributed target tracking by an ensemble of autonomous vehicles when the
target follows a curve-shaped trajectory in an obstacles-free motion space, (b) Aggregate
estimation of the target’s position with the use of Extended Information Filtering (continuous
line) and target’s reference path (dashed line).
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Fig. 12.7 (a) Distributed target tracking by an ensemble of autonomous vehicles when the
target follows a line path in a motion space with obstacles, (b) Aggregate estimation of the
target’s position with the use of Extended Information Filtering (continuous line) and target’s
reference path (dashed line).
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Fig. 12.8 (a) Distributed target tracking by an ensemble of autonomous vehicles when the
target follows a circular path in a motion space with obstacles, (b) Aggregate estimation of the
target’s position with the use of Extended Information Filtering (continuous line) and target’s
reference path (dashed line).
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Fig. 12.9 (a) Distributed target tracking by an ensemble of autonomous vehicles when the
target follows a circular trajectory in an obstacles-free motion plane, (b) Aggregate estimation
of the target’s position with the use of Unscented Information Filtering (continuous line) and
target’s reference path (dashed line)
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Fig. 12.10 (a) Distributed target tracking by an ensemble of autonomous vehicles when the
target follows an eight-shaped trajectory in an obstacles-free motion plane, (b) Aggregate
estimation of the target’s position with the use of Unscented Information Filtering (continuous
line) and target’s reference path (dashed line).
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Fig. 12.11 (a) Distributed target tracking by an ensemble of autonomous vehicles when the
target follows a curve-shaped trajectory in an obstacles-free motion plane, (b) Aggregate
estimation of the target’s position with the use of Unscented Information Filtering (continuous
line) and target’s reference path (dashed line).
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Fig. 12.12 (a) Distributed target tracking by an ensemble of autonomous vehicles when the
target follows a line path in a motion plane with obstacles, (b) Aggregate estimation of the
target’s position with the use of Unscented Information Filtering (continuous line).
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Fig. 12.13 (a) Distributed target tracking by an ensemble of autonomous vehicles when the
target follows a circular path in a motion plane with obstacles, (b) Aggregate estimation of
the target’s position with the use of Unscented Information Filtering (continuous line) and
target’s reference path (dashed line).





Chapter 13
Optimization Methods for Industrial
Automation

Abstract. Evolutionary algorithms are powerful optimization methods which in sev-
eral cases can go beyond nonlinear programming optimization techniques and can
be successfully applied to complex optimization problems. In this chapter, a genetic
algorithm with a new crossover operator is developed to solve the warehouse re-
plenishment problem. The automated warehouse management is a multi-objective
optimization problem since it requires to satisfy goals and performance indexes
that are usually conflicting with each other. The decisions taken must ensure op-
timized usage of resources, cost reduction and better customer service. It is shown
that the proposed genetic algorithm produces Pareto-optimal permutations of the
stored products.

13.1 Multi-objective Optimization for Industrial Automation

13.1.1 The Warehouse Replenishment Problem

Warehouse replenishment is the process of moving inventory from distant back-up
locations, to locations that are easily accessible, i.e. the relocation of products closer
to specific delivery points, or collection points or picking locations. Thus the prob-
lem is essentially to find which products would be most suitable to occupy the pick-
ing locations or be placed near the collection points,so that there is maximum gain
in time and effort during running of the warehouse. The replenishment task can be
carried out when the warehouse is idle and helps to reduce the time required for the
products’ shipment when the transactions start again. Furthermore, the warehouse
operator can initiate a replenishment procedure each time he realises that inventory
at the picking positions has fallen bellow a predefined level.

The replenishment task can be viewed as a multi-objective optimization problem
(MOP) since it tries to allocate the inventory using objectives that can be conflicting
with each other [57],[148],[162],[219],[479]. Such objectives are the distance from
the delivery points, the distance from the collection points, the distance from the
picking locations, the expiration date of the product and its seasonal demand [430].
The solution of a MOP is often given in the Pareto-optimality sense. In simple words

G.G. Rigatos: Modelling & Control for Intell. Industrial Sys., ISRL 7, pp. 269–292.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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a solution x ∈ X is Pareto optimal if it cannot result in further improvement of an
objective fi(x) without causing the degradation of another objective.

The aim is to find as many Pareto-optimal solutions as possible. The operator of
the warehouse is going to select among these solutions according to his preferences,
i.e. according to the significance he gives to each one of the objective functions fi(x)

To this end the weighting approach is employed. A cost function J(x) =
n

∑
i=1

wi fi(x)

is minimized with respect to x. The weights wi represent the importance that is
attributed to each objective fi(x) The minimum x∗ of J(x) is found through a genetic
algorithm. For different weights wi’s a different optimum x∗ is obtained. All these
optimums are also Pareto-optimal solutions.

The choice of the weights wi’s can be done either in a stochastic or a deterministic
way [468]. If the aim is to have Pareto-optimal solutions that are uniformly scattered
in the cost functions space one has to perform a stochastic tuning of the weights wi’s
as described in subsection 13.2.3. On the other hand if the warehouse administrator
knows approximately the acceptable values of the objectives fi(x)’s, a fuzzy rule-
base can be used to choose the different values for the wi’s.

13.1.2 Multi-objective Optimization Problems

Multi-objective Optimization Problems (MOP) are an extension of the single-
objective (scalar) optimization. In MOP, a number of conflicting objective functions
have to be optimized simultaneously. An ideal solution, at which each objective
function gets its optimal value usually does not exist due to the conflicting nature
of objective functions. Thus, a different definition of optimality is required. The
solution of a MOP is associated with the definition of Pareto-optimal solutions [57].

The concept of Pareto optimality was introduced at the turn of the previous cen-
tury by the Swiss economist Pareto. A solution is said to be Pareto optimal (also
referred in the literature as non-inferior or efficient or non-dominated) if the value
of any objective function fi(x) cannot be improved without degrading at least one
of the other objective functions. Two Pareto-optimal solutions are not comparable
without some preference ordering (provided by the decision maker).

To find the best compromise solution of a MOP, two general stages are followed:
(a) find the set or a representative subset of Pareto-optimal solutions, (b) appropri-
ately apply the decision makers preference to choose the best compromise solution
from the generated set. A genetic algorithm can be used to find a representative set
of Pareto-optimal solutions while the tuning of the weighting vector of the objective
function makes possible to enrich the optimal solutions set [148],[219],[479].

13.1.3 The Pareto-optimality Principles

A Multi-objective Optimization Problem is defined as [57]:

min
x∈X

f (x) (13.1)
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where f (x) = ( f1(x), . . . , fn(x)) is a vector of n real-valued objective. Defining
UN = RN in case that x is a real-valued vector and UN = DN in case that x is
a discrete variable,the following notation is introduced: x ∈ UN is a vector of N-
dimensional decision variables, X = x|x ∈UN is the feasible solution set, gi(x) with
i = 1,2, . . . ,q and x ∈ S is a function representing the ith constraint, S is a subset of
UN representing the definition set of the constraints.

An alternative x1 is at least as preferable as x2 if the value of each objective
function at x1 is not larger than that at x2: Formally, an alternative x∗ is said to be a
Pareto-optimal solution of the MOP stated in Eq. 13.1, if and only if there exists no
other feasible alternative x ∈ X such that f (x) ≤ f (x∗), meaning that f j(x) ≤ f j(x∗)
for all j = 1, . . . ,n n with strict inequality holding for at least one j. A solution x1

is said to be dominated or inferior or inefficient, if there exists a x ∈ X such that
f (x) ≤ f (x1).

In MOPs two decision vectors x1 and x2 have three possibilities regarding the ≥
relation (in contrast to single-objective optimization problems (SOPs)):

f (x1) ≥ f (x2) (x1 dominates x2),
f (x2) ≥ f (x1) (x2 dominates x1),

f (x1) � f (x2)∧ f (x2) � f (x1) (x1 is indi f f erent to x2)
(13.2)

In simple words, a MOP solution x is Pareto optimal in the sense that, it cannot be
improved in any objective fi(x), without causing a degradation in at least another
objective f j(x).

In Fig. 13.1 a 2-D MOP is depicted. Both objective functions f1(x) and f2(x)
are assumed to improve when moving far from the origin. Since f1(B) > f1(C)
and f2(B) > f2(C) the solution represented by point B is better than the solution
represented by point C. On the other hand, it holds f1(B) > f1(E) and f2(E) >

Fig. 13.1 Possible relations of solutions in the cost functions space
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f2(B) Therefore, the solution represented by the point B is indifferent to the solution
represented by the point E .

13.1.4 Replenishment as a Pareto Optimization Problem

In the case of the warehouse replenishment problem various objectives can be
included in the objective vector f (x). These can be:

f1(x): Distance of the products from the delivery points.
f2(x): Distance of the products from the collection points.
f3(x): Distance of the products from the picking locations.
f4(x): Cost to keep the products with close expiration date far from the collection
points.
f5(x): Cost to keep the products with increased seasonal demand far from the
delivery points.

More objectives can be added. Vector x denotes the permutation of the products
in the storage positions (Fig. 13.2). Each one of its components xi, i = 1,2, · · · ,N
corresponds to a storage position, and takes its value from the discrete set C =
c1,c2, . . . ,cM of products codes that exist in the warehouse. A product code ci is
assigned to an item according to its content (e.g. food,beverages, chemicals etc.), its
size (small, medium, large,etc.) and its package type (e.g. box, pallete, bulk, etc.).

The replenishment task is also subject to several constraints gi(x) such as:

g1(x): Products of specific types are not allowed to be placed in adjacent locations
(e.g. foods or beverages with chemicals).
g2(x): Products of large size cannot be moved to storage positions for small sizes.
g3(x): Products of a specific package type (e.g. pallets) cannot be moved to storage
positions for a different package type (e.g. boxes) etc.

Thus in the case of the warehouse replenishment the constraints definition set S
contains the prohibited allocations of products to the storage positions.

13.1.5 Approaches to Obtain Pareto-optimal Solutions

A MOP may have multiple Pareto-optimal solutions. Different decision makers with
different preferences may select different Pareto-optimal solutions. It is desirable to
find all the Pareto-optimal solutions so that the decision maker (in our case the ware-
house administrator)can select the best one based on his preference.

Assume for instance the 2-D MOP described by the cost functions [ f1(x), f2(x)].
The Pareto-optimal solutions can be denoted as points in the cost functions space
defined by the axes f1(x) and f2(x). The line that connects the Pareto-optimal
solutions in the cost function space defines the Pareto frontier. This is shown
in Fig. 13.3.
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Fig. 13.2 Sketchy map of a warehouse. d: delivery points, c: collection points, p: picking
locations, storage position

The most common strategy to generate Pareto-optimal solutions is to describe
them in terms of some appropriate SOPs. Common classes of SOPs used for this
purpose are the Lagrangian and the weighting approach [57], [219]. The weighting
approach was introduced in [468], while the Lagrangian approach was elaborated in
[27]. Formally, the weight characterization of the MOP in (1) is

J(x) : min
x∈X

W T f (x) =
n

∑
j=1

wj f j(x), (13.3)

where W = {w|w ∈ RN},wj ≥ 0, j = 1,2, . . . ,n and
n

∑
j=1

wj = 1. The Lagrangian

formulation is derived from the above relation. If for a specific 1 ≤ k ≤ n,wk > 0,
letting u j = wj/wk for all j �= k, j = 1, . . . ,n yields a Lagrangian formulation:

Jk(x) = min
x∈X

fk(x)+∑
j �=k

u j f j(x) (13.4)

where u ∈Uk = {u|u = (u1, . . . ,u(k−1),u(k+1), . . . ,un)T ≥ 0}.
It can be proven that:

Lemma. If x0 is a global optimum of J(x) or Jk(x) means that x0 is also a Pareto
optimum.

Proof. Assume that x is a global optimum of J(x) but not a Pareto optimum. Then
there exists a solution x′ that dominates x. Thus, without loss of generality, it can
be assumed that f1(x′) > f1(x), and for i = 2, . . . ,n holds fi(x′) ≥ fi(x). Assuming
also that the weights vector [w = w1,w2, . . . ,wn] is strictly positive, one gets J(x′) >
J(x),i.e. x′ is a global optimum, which contradicts the initial assumption.
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Fig. 13.3 Pareto-optimal solutions and Pareto frontier over a 2-D cost function space

(a) (b)

Fig. 13.4 Interpretation of the weighting method for (a) convex and (b) non-convex cost
function.

The converse does not hold always, i.e. there may be Pareto optimums that
do not coincide with any of the optimums of J(x). This happens when J(x) is not
convex. If J(x) is not convex then for some Pareto-optimal solutions x0 it may
be impossible to find a weights vector w,such that x0 is also a global optimum
of J(x).

A graphical interpretation of the relation between global optimality and Pareto
optimality is given in subsection 13.1.6.
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13.1.6 Graphical Representation of Pareto Optimal Solution

As stated in Section 2.4 if J(x) is convex then all the solutions of J(x) are also
Pareto-optimal solutions. However in the case that J(x) is not convex there maybe
some Pareto-optimal solutions that are not contained in the set of optimal solutions
of J(x). This is depicted in Figs. 13.4a and b.

Assume that the Pareto frontier is the border of the shaded area and that the
points A,B,C and D represent different Pareto-optimal solutions. Assume also that
x is a global optimum (maximum) of J = w1 f1(x)+ w2 f2(x) for certain weights w1

and w2. Then the tangent f2(x) = −(w1/w2) f1(x)+(J/w2) at x should be above all
points of the shaded area. If J(x) is convex then for every point of the Pareto frontier
there is a combination of weights w1 and w2 such that the tangent line leaves all
other solutions below it. In that case, all Pareto-optimal solutions can be identified
because they coincide with a global maximum (see Fig. 13.4a). On the contrary if
J(x) is not convex then the tangent at some points of the Pareto frontier intersects
the shaded area (see Fig. 13.4b, points B and C). For a Pareto optimum x0 it is
not always possible to find a weights combination (w1,w2) such that the tangent at
the point ( f1(x0), f2(x0)) leaves all other points ( f1(x), f2(x)) below it. Thus, these
points x0 will not be found through the optimization of J(x).

According to the above, the solutions found through the optimization of J(x) =
∑n

(i=1) wi fi(x) are also Pareto optimums. To acquire many Pareto-optimal solutions
one should try to optimize J(x) with a variety of weight vectors [w1,w2, . . . ,wn] This
problem is addressed in Section 3.3.

13.2 Genetic Algorithms in the Search of Pareto-optimal
Solutions

13.2.1 Basic Principles of Evolutionary Algorithms

An evolutionary algorithm (EA) consists of 3 elements: (i) There exists a set of can-
didate solutions (population), (ii) The population undergoes a selection process, (iii)
New candidate solutions are created through genetic operators, usually crossover
and mutation. An initial population is generated at random. An individual can be
either a bit vector or a real valued vector and encodes a possible solution. A loop of
the steps (ii) and (iii) is executed for a certain number of times. Each iteration of the
loop is called generation.

The loop terminates after a number of generations, or if a sufficient solution has
been produced. The selection process can be either deterministic or stochastic. Low-
quality solutions (individuals) are removed from the population, while high-quality
individuals are reproduced. The quality of an individual is represented by a scalar
cost function (fitness).

Crossover and mutation produce new solutions in the search space by the varia-
tion of the existing ones. Recombining a number of parents the crossover operator
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generates a number of children. A crossover probability can be assigned to this op-
erator. The mutation operator in turn, modifies a small sample of individuals that is
selected according to a mutation probability.

13.2.2 Evolutionary Algorithms for Multi-objective Optimization

In the following, the basic structure of a GA for a MOP is formalized [369],[479].
The population P at a certain generation t is represented by the symbol Pt and the
symbol + denotes the multi-set union in conjunction of populations.

Input: N (population size)
T (maximum number of generations)
pc (crossover probability)
pm(mutation rate)

Output: A (non-dominated set)

Step 1: Initialization: Set P0 = ∅ and t = 0. For i = 1, . . . ,N do
(a) Choose a candidate solution x according to some probability distribution.
(b) Set P0 = P0 + x

Step 2: Fitness assignment: For each individual x ∈ Pt calculate the objective vector
[ f1(x), f2(x), . . . , fn(x)] and calculate the scalar fitness value J(x).

Step 3: Selection: Set P′ = ∅. For i = 1, . . . ,N do

(a) Select an individual x ∈ Pt according to its fitness function J(x).
(b) Set P′ = P′ + x

Step 4: Recombination: Set P′′ = ∅: For i = 1, . . . ,N/2 do

(a) Choose two individuals x′,x′′ ∈ P′ and remove them from P′.
(b) Crossover x′ and x′′ The resulting children are c′ and c′′
(c) Add c′ and c′′ to P′′ with probability pc Otherwise add x′ and x′′ to P′′.

Step 5: Mutation: Set P′′′ = ∅ For each individual x ∈ P′′ do

(a) Mutate x with mutation rate pm The resulting individual is m.
(b) P′′′ = P′′′ + m.

Step 6: Termination: Set Pt+1 = P′′′ and t = t + 1. If t ≥ T or another stopping
criterion is satisfied then set A = Pt .
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A large number of selection, crossover and mutation operators have been proposed
for different applications. The suitable operators for the warehouse replenishment
problem are analyzed in Section 4.

13.2.3 Control of Diversity of the Pareto-optimal Solutions

It is desirable to find as many Pareto-optimal solutions as possible in order to pro-
vide more choices to the decision maker. To succeed this the weight vector w of the
objective function J(x) has to be successfully tuned. The choice of the weights wi’s
can be done either in a stochastic or a deterministic way. If the aim is to have Pareto-
optimal solutions that are uniformly scattered in the cost functions space, one has to
perform a stochastic tuning of the weights wi’s, based for example, on probability
distributions. On the other hand if the warehouse administrator knows approxima-
tively the acceptable values of the objectives fi(x)’s, a fuzzy rule-base can be used
to choose the different values for the wi’s.

Assume that the weighting approach is used and the following cost function is
defined:

J = w1 f1(x)+ w2 f2(x)+ . . .+ wn fn(x) (13.5)

where w1,w2, . . . ,wn are non-negative weights such that
n

∑
i=1

wi = 1.The objectives

fi(x) are assumed to be normalized with respect to their maximum value (see Sec-
tion 3.4). If a GA uses one weight vector to compose one fitness function, there is
one search direction.

For example, if w′ = (0.5,0.5) is used in a 2-D MOP, the associated search direc-
tion is shown in Fig. 13.5. Since w′

1 = w′
2 = 0.5 the resulting Pareto-optimal solution

is expected to satisfy f1(x) ≈ f2(x)and is described by the points B and C.
However, there may be other Pareto-optimal solutions such as A and D

(Fig. 13.5). Solution A corresponds to f1(x) > f2(x) and can be approached if
w1 < w2 i.e. moving along the direction of the weights vector w′′.On the other hand,
solution D corresponds to f1(x) < f2(x)and can be approached if w1 > w2 i.e. mov-
ing along the direction of the weights vector w′′′.

To extend the search towards other Pareto-optimal solutions various combina-
tions of the weight vectors have to be tried. To this end, the following methods have
been proposed in the relevant bibliography:

(i) The division of the population into M sub-populations is proposed in [369] and
M independent fitness functions are used where the first fitness function is f1(x) the
second fitness function is f2(x) etc. Each sub-population is guided by one fitness
function, and hence there are M fixed search directions.
(ii) A weighted sum of the objective functions fi(x) is proposed in [162] for the
construction of the overall cost function, while the weight vector is randomly
generated.
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Fig. 13.5 Influence of the weight vector on the search direction of Pareto-optimal solutions.

(iii) The assignment of a probability to each objective fi(x) is proposed in [207].
This probability denotes how likely it is for each objective to become the sorting
criterion of the chromosomes x at the next generation of the genetic algorithm.
(iv) A weighting-based Genetic Algorithm is proposed in [135] in order to maintain
a diverse population and to achieve a well distributed non-dominated set. To search
for multiple solutions in parallel, the weights are not fixed but instead attached to
the candidate solution vector x.

The fitness assignment in the weighting-based GA described above is:

Input: Pt (generation of the initial population).
Output:J (fitness value).
Step 1: For each individual x ∈ Pt do

(a) Create the augmented vector x′ = [x,w].
(b) Extract weights wj ( j = 1,2, . . . ,k) from x′.
(c) Set J(x′) = w1 f1(x)+ . . .+wn fn(x)

Thus, the chromosome in this weighting-based GA is the augmented vector x′ =
[x,w]. The diversity of the weight combinations is promoted by the GA search in the
objective space. As a consequence this GA evolves solutions and weight combina-
tions simultaneously.

A fuzzy rule-base is proposed in [14] for the tuning of the aggregate cost func-
tion. This approach takes advantage of the experts knowledge in order to restrict
the search for the Pareto-optimal solutions only to specific regions of the cost func-
tion space. For a 2-D MOP the antecedent part of the fuzzy rules will contain the
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Fig. 13.6 Fuzzy incremental changes of the weights wi.

Fig. 13.7 Fuzzy values of the objective functions fi(x).

objective functions f1(x) and f2(x), while in the conclusion part the fuzzy increment
of the value of the weight w1 or w2 will be included (see Table 13.1).

The incremental changes of the weights wi are realized through fuzzy inference.
The fuzzy rules are of the form:

R(l) : IF f1(x) is Poor AND f2(x)is Poor THENΔw1(Δw2) is Small,etc. (13.6)

The fuzzy sets in the antecedent and the consequent part of the rules are shown in
Figs. 13.6 and 13.7. For the warehouse replenishment, a similar fuzzy rule base can
be provided by the warehouses administrator.

It should be noted that since methods (i)-(v) contain heuristics, their relative ad-
vantages and drawbacks cannot be easily assessed. The stochastic search performed
by the first four methods is computationally more demanding than the fuzzy rules
approach but on the other hand results in a more detailed search of the cost functions
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space. The fuzzy rules approach bares resemblance to a gradient algorithm thus it is
more likely to behave well when the Pareto frontier is convex (see Fig. 13.4).

13.2.4 Genetic Algorithm Convergence to Pareto-optimal
Solutions

The factors that influence the convergence of GA optimization to global optimums
(and thus Pareto optimums) are:

(i) Generation of the initial population: An initial population is generated in which
the population members are scattered uniformly over the feasible solution space, so
that the genetic algorithm can explore the whole solution space evenly.
(ii) Normalization of the objective function: The values of different objective func-
tions may have different order of magnitude. If the fitness function J(x) is equal
to the weighted sum of objective functions, it may be dominated by the objective
functions with large values.

For example, if f1(x) represents the aggregate distance from the picking positions of
the warehouse with 104 ≤ f1(x) ≤ 105 and f2(x) represents the expiration date cost
of the stored products with 102 ≤ f1(x)≤ 103, then w1 f1(x)+w2 f2(x) may be dom-
inated by f1(x) To overcome this problem, each objective function is normalized as
follows:

h1(x) =
fi(x)

max
y∈Ψ

{| fi(y)|} (13.7)

where Ψ is the set of points in the current population and hi(x) is the normalized
i-th objective function.

13.3 A Genetic Algorithm for the Warehouse Replenishment
Task

13.3.1 Constraints of Genetic Algorithms in Ordering Problems

Regarding the warehouse replenishment problem the status of all storage places in
the warehouse can be encoded into a linear chromosome. For instance, the chromo-
some {1−3−6−5− 2− 4} describes that at the first storage position the product
with code number 1 is placed while in the second storage position one finds the
product with code number 2, etc. The value of the objective function depends on the
relative order of these objects. Every new configuration of product placement in the
warehouse corresponds to a permutation of the original chromosome.

It should also be stressed out that in such ordering problems the classic genetic
operators, (crossover,mutation) cannot be applied the way they are usually defined
in most applications [265],[434]. In a chromosome there must be a 1 to 1 mapping
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between storage position and product. Therefore, when crossover takes place, some
parts of the chromosomes of the two parents cannot be freely copied, otherwise
the offspring will carry instances of the same object. For the same reason mutation
cannot swap arbitrarily two objects within the same chromosome.

In Fig. 13.8 are demonstrated illegal chromosomes which are generated when a
conventional crossover operator (e.g. 1-point crossover) is applied. It is also shown
how a specialized crossover operator works fine instead.

In some order-based problems there are also other techniques that permit the
application of normal genetic operators, but they are in general inefficient and the
case where permutations of elements are considered they would not work at all. In
these methods there are two ways that prevent the production of illegal offspring.

Fig. 13.8 Crossover in order-based problems: (a) ordinary crossover leads to illegal offspring,
(b) specialized crossover produces legal offspring.

The first is to allow the generation of illegal chromosomes that are penalized in
the sequel according to some criteria. The second is to try to reestablish the unique-
ness of the permutation after the crossover has taken place and degrade the fitness
of the new configuration by an amount proportional to the damage that has been
repaired [434].

In Fig. 13.8, the crossover operator is applied at a randomly chosen site of the
chromosome and divides every parent into two pieces: left side and right side. The
first child is generated by copying the leftmost of the first parent and the rightmost
of the second parent, while the other child is generated by copying the rightmost
of the first parent and the leftmost of the second parent. It is obvious, that illegal
configurations are generated in this way. It is also shown how a specialized crossover
operator performs some additional swaps between genes in order to produce an
admissible offspring. In the case described in this example both swaps (4 with 1) and
(5 with 3), take place in the parents and generate the children. A mutation is simply
implemented by swapping with some small pre-defined probability two elements of
the same chromosome randomly chosen.
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Similar problems with illegal chromosomes generated by crossover and muta-
tion appear in the GA for the warehouse replenishment. The operators developed to
resolve them are described in the following paragraph.

13.3.2 The Genetic Algorithm for Replenishment Optimization

Since the solution needed is the best warehouse configuration possible, it is rea-
sonable to define the chromosomes of our genetic population of type warehouse.
The algorithm produces a population of warehouses of random configurations but
retaining the same contents as the initial state and then lets the population evolve
into better warehouses. At each generation, the best half of the population mates to
produce two children per couple, while the other half dies. This reproduction keeps
steady the population of the warehousechromosomes.

However, during this process of evolution, certain constraints must be taken into
account; warehouses in general-as well as the warehouse used in our simulation
(see Section 13.4)-have many different types of storage space. As already explained
in Section 13.2 products belonging to one type may not migrate to a location of a
different type. Moreover, even locations of the same type are categorized by type
of product (flammable, fragile, food, poison, etc). Thus, a tall palette may not move
into the area of short palettes even if they are both in the back-to-back storage area,
just as poison substances may not move into the area where food is stored. These
distinct categories are assumed to be pre-defined in the warehouse.

To produce a valid solution of a MOP one has to find a reasonable way of mating
warehouse chromosomes while at the same time complying with these constraints.
This requires that the operators of the genetic algorithm be applied to each category
separately; therefore in the discussion which follows, the term ”configuration” is
used to refer to each chromosome category of the warehouse wherein products may
be legally relocated.

13.3.3 Mating Procedure

In the work presented, warehouse configurations are defined as the string of product
locations. Each product, i.e. each box, palette, etc, is given its own unique code.In
the following example products are represented by letters, whereas locations by
numbers. Locations not associated with a letter represent empty (unused) locations.
Numbers are chosen to be consecutive in the interest of simplicity and better vi-
sualization of the encoding of the chromosomes; no specific connection between
locations of consecutive numbers (such as physical proximity) is implied.

During reproduction, a random crossover point is picked, for instance just before
location 6.

Combining the two parent configurations in a crosswise way as dictated by the
classic approach in genetic algorithms would produce more than one instances of
the same product (or missing products) in the resultant offspring and hence invalid
configurations. To overcome this problem a more complex method of combining
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Fig. 13.9 Typical chromosomes

Fig. 13.10 Typical crossover

warehouse configurations is used. The basic properties of mating are maintained,
namely that the offsprings bare some resemblance to their parents and also that the
extent to which an offspring resembles its parent is proportional to the amount of
chromosome it has inherited from that parent.

The first step is to align the two configurations with respect to products. Assum-
ing we transform only one,say configuration 2, we end up with configuration 2′, as
shown in Fig. 13.11.

The next step is to produce moulds for the offspring by combining the locations
of each parent configuration in a crosswise fashion, thus producing configurations
3′ and 4′, shown again in Fig. 13.11.

The final step is to assign valid locations to our products so that there are no
discrepancies and so that the basic rules of mating mentioned above are observed.
This is done by considering products in the location order dictated by our moulds,
ascending for configuration 3′ and descending for configuration 4′. Thus, our final
offspring configurations would look like Configuration 3, shown in Fig. 13.12.

It should be noticed how products are shifted into the next available location (in
configuration 3) when their designated location in the respective mould is occupied.
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Fig. 13.11 Configuration 2’: Aligned chromosome configuration with respect to products,
Configuration 3’ and 4’: Offspring generated by combining the locations of each aligned
parent configuration in a crosswise fashion

Fig. 13.12 Final offsprings configuration

Recall also that one of the parent configurations was altered in order to align with
the other. Using ascending order with the offspring containing the first chromosome
part of the unaltered parent and descending order with the offspring containing the
last chromosome part ensures that this shifting of products does not extend past the
limits of the warehouse configuration.

13.3.4 Mutation Procedure

Mutation is carried out by transforming a specified percentage of the population,
the mutation level [423]. The chromosomes chosen for transformation undergo a
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predefined number of arbitrary swaps of their genes locations in the chromosome,
i.e. the products locations in their configuration. Thus the resulting chromosomes
are essentially permutations of the originals under the constraint that genes can only
be permuted in their corresponding categories.

13.3.5 Definition and Tuning of the Cost Function

The evaluation of a specific configuration x is achieved by means of a cost function.
This is defined as a weighted sum of several factors:

• f1(x) Distance from delivery point. This is the accumulated distance of all prod-
ucts in the configuration from the point of the warehouse where products are
delivered, typically an entrance to the warehouse facility.

• f2(x): Distance from collection point. This is the accumulated distance of all
products in the configuration from the point of the warehouse where products are
shipped, typically an entrance to the warehouse facility.

• f3(x) : Distance from picking locations. Every product receives a penalty for not
being near picking locations. Products residing in picking locations receive no
penalty. Products residing in pro-picking locations receive a penalty of 1 and
products residing in stock locations receive a penalty of 3.

• f4(x): Expiration date. Each product receives a penalty P if its placed too far
away from the collection point and its expiration date is near or it is placed too
near the collection point and its expiration date is far. The penalty is defined as
P = |dL−dT | where dL is the normalized distance of the product from the col-
lection area and dT is the normalized time remaining before the product expires.
The cost of this factor is the sum of all products penalties.

• f5(x): Seasonal demand. If the product is not out of season, it is penalized with
its distance from the delivery point. The cost of this factor is the sum of all these
penalties.

All these factors are normalized, then weighted by user-supplied weights and finally
summed to form the total cost of the configuration considered:

J(x) =
5

∑
i=1

wi fi(x), (13.8)

where the fi(x)’s are the individual costs and the wi’s their corresponding weights.
Obviously, the cost function uses much more information than appears in the

chromosome encoding. As far as implementation is concerned, this data is assumed
to reside in a database indexed by location numbers and product letters. It is not
incorporated into the chromosome encoding itself in order to avoid duplications of
the same data and therefore save resources.

The lower the cost the better the configuration. This is the only mean by which
one can evaluate a specific configuration (chromosome). No conclusions can be de-
rived by visually examining the chromosome’s encoding because there is simply
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no correspondence between the number assigned to a location and any of the loca-
tions properties, just as there is no correspondence between the letter assigned to a
product and any of the products properties.

A Pareto-optimal solution x is found if no further decrease of an individual
objective fi(x), i = 1,2, . . . ,5 is possible without causing the degradation of another
objective f j(x) (e.g. after some generations further decrease of the cost related to
the distance from the picking locations will cause an increase of the cost associated
with the seasonal demand).

Remarks

(1) f4(x) and f5(x) can be considered as dependent objective functions since they
depend, respectively,on the distance from the collection point f2(x)and the distance
from the delivery point f1(x):
(2) The weights of the objective function (7) are derived by the experience of the
warehouse operators and are organized in a fuzzy protocol as the one given in Table
I. They depend upon the individual characteristics,goals and demands of the ware-
house. Small, fast-moving warehouses will require quite different weights compared
to vast, slow-moving ones.

13.4 Results on Genetic Algorithm-Based Warehouse
Optimization

13.4.1 Cost Function Tuning through Weights Selection

For the evaluation of the performance of the proposed GA, real data from a working
industrial warehouse were gathered and input into software implementing the algo-
rithm. Performance was investigated in two different ways: (i) how it is affected by
different weights (dependence of the diversity of the Pareto-optimal solutions on the
weight vector w) and (ii) how it is affected by different mutation levels (dependence
of the overall cost function J(x) on the mutation rate).

It is important to note that it is not possible for the costs to decrease indefinitely
since they depend on constrained factors, which impose a definite lower limit. In
the spatial representation of the warehouse in Fig. 13.8, different shapes represent
different types of storage,while crosses represent the beginning of subcategories
within the same storage type. These subcategories, may correspond to further dis-
crimination, either in type of storage or in product categories. The map is read from
left to right and represents a continuous row of warehouse locations (much like
our chromosome encoding, only products are not distinguished) fitted into a square.
Products, designated by dots, may only move within their category (the area defined
by two consecutive crosses).

Fig. 13.13 pictures the optimal replenishment suggested by the algorithm when
run with a weight configuration bent heavily on bringing products to picking loca-
tions and to a lesser extent closer to the collection area.Within each category there
are three shaded areas: (a) the picking area, (b) the pro-picking area and (c) the
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Fig. 13.13 Spatial representation of the warehouse after the GA-based replenishment.
�,◦,�� storage positions of different geometry and capacity, ×: beginning of subcategories
within the same storage type, •: products.

stock area. Darker hues designate small distances from the collection area. The al-
gorithm has filled the picking areas entirely, as required. It then proceeds to fill the
pro-picking areas and the stock areas. Finally, because it has been asked to slightly
take into account distance, the algorithm makes a small attempt to bring products to
darker locations.

Various runs with weights coming from the fuzzy protocol of Table 13.1 and
with data coming from the daily operation of the warehouse were carried out. Two
indicative of these runs correspond to the normalized weight configurations w1 and
w2, and are shown in Table 13.2.

Distance represents the distance cost f2(x) associated with the collection point.
Only one distance cost was taken into account (the other been set to zero) since
the two are similar in nature, and therefore, when investigating the behavior of the
algorithm using just one, would result in the same conclusions in a clearer way.

Both runs used populations of 1000 chromosomes,with 100 generations and a
mutation level of 7%. The total cost decreases considerably (around 40%) in both
cases, as shown in Fig. 13.10.

However, despite the apparently seamless reduction of the total cost, the detailed
behavior of the algorithm is more complex. Useful insights into the inner workings
of the algorithm can be gained by looking at the variation of each individual cost
fi(x) with the number of generations.
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Fig. 13.14 Evaluation of the total cost J(x) vs. generations.

Table 13.1 A protocol with f1(x) and f2(x) as inputs and w1 (or) w2 as output

f1(x) f2(x)

good acceptable poor unacceptable
good zero change zero change small increase large increase

acceptable small decrease small decrease small increase small increase
poor small decrease small decrease small decrease small increase

unacceptable large decrease large decrease small decrease small decrease

Table 13.2

Weight coefficients configuration w1 ẇ2
Distance cost function 0.091 0.6
Picking cost function 0.454 0.2
Expire cost function 0.136 0.08
Season cost function 0.318 0.12

The distance cost f2(x) displays the expected behavior; it decreases as the al-
gorithm progresses much like the total cost. In configuration w1 its contribution
to the total cost is less than it is in configuration w2 which is reflected in the fact
that it reaches a lower (better) value in configuration w2. Moreover, the cost de-
creases more steadily in configuration w2 with fewer and smaller fluctuations (see
Fig. 13.15).

A similar situation is seen in the case of the Picking cost f3(x). Its contribution is
significant in both configurations and thus the performance of the algorithm with
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Fig. 13.15 Evaluation of the distance cost f2(x) vs. generations.

Fig. 13.16 Evaluation of the picking cost f3(x) vs. generations.

respect to this cost is almost entirely similar in both cases. Configuration w1 is
slightly smoother than w2 and results in marginally lower cost, as expected (see
Fig. 13.16).

A different aspect of the behavior of the algorithm is revealed by the variation
of the Season cost f5(x); in configuration w1 where the contribution of this cost is
large, it decreases steadily as expected. However, in configuration w2, where the
corresponding weight is relatively low, the algorithm results in an early increase of
f5(x) (see Fig. 13.17).

This practice is repeated in the case of the Expire cost f4(x), which, having small
contributions in both configurations,does not affect significantly the total cost which
keeps on decreasing. Since its weight in configuration w1 is relatively larger than its
weight in configuration w2 (13% of total versus 8%), the cost in configuration w1
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Fig. 13.17 Evaluation of the season cost f5(x) vs. generations.

Fig. 13.18 Evaluation of the expiration cost f4(x). generations.

increases less than it does in w2 and shows greater fluctuations as the algorithm is
more reluctant to increase it (see Fig. 13.18).

It is evident that the algorithm does not exhibit the same behavior for all objective
functions fi(x), given the same weights. For example, the distance cost f2(x) has
a contribution around 9% in configuration w1, while the expire cost f4(x) has a
contribution of 8% in configuration w2. Nevertheless, the former decreases satisfac-
torily while the latter increases. Even in configuration w1, where the expire cost has
a contribution of more than 13% it increases while the distance cost decreases. This
behavior is due to the fact that the season and expire costs depend implicitly on the
distance cost (Remark 1, in subsection 13.3.5); for them to decrease the distance
cost needs to decrease too, so there is a greater momentum for reducing the distance
cost. On the other hand, the picking cost not only is independent, but also has no
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Fig. 13.19 Influence of the mutation rate on the overall cost function J(x)

objective functions which are influenced by it. Thus it is reduced effectively in both
configurations,despite its contribution being more than double in the aggregate cost
function.

The optimal level of mutation is an important consideration in genetic algorithms.
Obviously, if one allows the population size to become extremely large, mutation
becomes meaningless, as large amounts of genetic information will be readily avail-
able within the population itself without the need to mutate. Therefore mutation is
essentially a mean by which population can be reduced without significantly affect-
ing the quality of generated solutions. Reducing population size is very desirable,
as it is what mainly devours computational resources. The number of generations is
less important since the quality of solutions depends more heavily on the richness
of genetic information present within the population.

To find the optimal mutation level, several runs were carried out, with the level
of mutation varying from 0% to 20%. A population of 1000 individuals was left
to evolve for 100 generations in all cases. The weight configuration used was a
compromise between configurations w1 and w2. The diagram below shows how the
total cost varies with mutation level. It is clear that a level of around 8% is opti-
mal, thus the chosen level of 7% in the runs described in the previous section (see
Fig. 13.19).

13.4.2 Evaluation of the Genetic Algorithm Performance

The warehouse replenishment is a multi-objective optimization problem (MOP)
where various contradictory performance objectives have to be fulfilled. Since the
combinatorial search of optimal solutions is impractical the GA-based search is
deemed to be a good alternative. The individual costs with respect to which the
warehouse replenishment was optimized were: f1(x): distance from the delivery
points, f2(x): distance from the collection points, f3(x): distance from the picking
locations, f4(x): cost due to expiration date, f5(x): cost due to seasonal demand.
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It is desirable for the decision maker to have at his disposal as much as Pareto-
optimal solutions as possible. To succeed that, a fuzzy rule base enables to tune the

weight vector of the objective function J =
n

∑
i=1

wi fi(x). The fuzzy rules can be de-

rived using the experience of the warehouse operators. The trial of various weight
vectors steers the search of Pareto-optimal solutions to different directions and en-
riches the non-dominated solutions set.

The special crossover operator introduced in the proposed genetic algorithms,
prevents the appearance of illegal permutations, i.e. of chromosomes where a prod-
uct would appear in more than one storage positions.The efficiency of the algorithm
was tested using data from the daily operation of a real warehouse. The results were
satisfactory. An improvement of the aggregate cost function J(x) of about 80% was
recorded. More Pareto-optimal permutations x can be found if the weight vector w
is better tuned. A drawback of the proposed methodology is the appearance of un-
necessary small displacements of products. For example, a product could end up
in the location next to its original one. These movements are part of the stochastic
nature of the algorithm and are obviously a waste of resources as they rarely make
any difference to the effectiveness of the replenishment. Human intervention could
be employed in these cases to make real-time decisions regarding the usefulness
of such displacements. Alternatively, the algorithm could be run once to establish
products that appear to be well placed,i.e. products that do not move far from their
original position after replenishment. These products could be marked as unmove-
able and the algorithm would then run again to assign the remaining locations to the
remaining products.

The convergence of the optimization algorithm can be evaluated by launching
it multiple times starting from different initial populations. The convergence speed
depends on the size of the population and the processing speed of the machine. For
a population of 1000 individuals over 100 generations, the computation time was
small enough to permit in-line decision making. The optimization algorithm can
be executed when the warehouse remains idle or when the inventory at the picking
locations falls bellow acceptable levels.

A final remark is that the presented genetic algorithm performs well in consid-
erably complicated warehouse environments where many different constraints are
in effect and compromises are unavoidable. On the other hand, when applied to
warehouse environments with reduced complexity, the algorithm would perhaps be
bettered by a more deterministic approach.



Chapter 14
Machine Learning Methods for Industrial
Systems Control

Abstract. Machine learning methods are of particular interest in the design of in-
telligent industrial systems since they can provide efficient control despite model
uncertainties and imprecisions. The chapter proposes neural networks with Gauss-
Hermite polynomial basis functions for the control of flexible-link manipulators.
This neural model employs basis functions which are localized both in space and
frequency thus allowing better approximation of the multi-frequency characteristics
of vibrating structures. Gauss-Hermite basis functions have also some interesting
properties: (i) they remain almost unchanged by the Fourier transform, which means
that the weights of the associated neural network demonstrate the energy which is
distributed to the various eigenmodes of the vibrating structure, (ii) unlike wavelet
basis functions the Gauss-Hermite basis functions have a clear physical meaning
since they represent the solutions of differential equations of stochastic oscillators
and each neuron can be regarded as the frequency filter of the respective vibration
eigenfrequency.

14.1 Model-Free Control of Flexible-Link Robots

14.1.1 Approaches for Model-Based Control of Flexible-Link
Robots

Machine learning methods, such as neural networks have been proven to be very ef-
ficient for the control of nonlinear dynamical systems, and particularly for robot
control [422],[424],[427]. Control of flexible-link robots has already been dis-
cussed in Chapter 1, following a model-based approach. In this chapter model-free
control of flexible-link robots will be analyzed based on machine learning meth-
ods. In general, the design of model-based flexible-link robot controllers can be
performed either using a description in the s-frequency domain or using a de-
scription in the time domain through a state-space model (e.g. [8],[25],[289]). Re-
garding controller design in the s-frequency domain, some indicative results are
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as follows: In [24],[305] a description of the dynamic model of the flexible-link
robot is given in the s-frequency domain, however this is constrained to a linear
1-DOF manipulator model [317]. In [317] a proportional derivative adaptive con-
trol scheme is proposed. This requires measurements of the motor’s angle and of
the coupling torque at the basis of the flexible beam. The associated description in
the s-frequency domain for a 1-DOF flexible-link robot is a MIMO transfer func-
tion matrix. In [63] again a description of the flexible-link robot dynamics in the
s-frequency domain is derived. The robotic model is separated in two parts with
fast and slow dynamics. For the slow subsystem, which is associated to the rigid
link dynamics included in the dynamic model of Eq. (1.23) a PD controller is
used. For the fast subsystem another PID controller is used which performs modal
feedback. The vibration modes are measured using a pair of strain gauges at each
link.

Regarding controller design in the time domain through state-space description
some representative results are summarized in the following: In [92], [366] and
[141] a sliding mode control is used in the flexible-link robot control loop. The
robot’s model is decomposed into a slow subsystem which is due to the rigid-link
part appearing in Eq. (1.23) and into a fast subsystem which is due to the vibrations
of the flexible link. The sliding mode controller is used for the rigid-link part aiming
also at the compensation of external disturbances and parametric uncertainties. For
the compensation of the fast dynamics (vibrations of the flexible link) an H∞ or LQR
controller is proposed. This however requires linearization of the flexible robot’s
model at the final desirable configuration. A similar methodology is adopted in [223]
where again the complete state vector of the flexible-link robot is assumed to be
measurable. Finally, optimal control of the flexible-link robot model is proposed in
[441], after previously linearizing the robot’s dynamics through the calculation of
nonlinearities with the use of a neural model.

Design of controllers for flexible-link robots using state-space description of the
system and full state feedback is based on the assumption that the complete state
vector of the robot is measurable [188]. However, the vibration modes of the flexi-
ble link are elements of the state vector which are difficult to measure. In attempts
to measure indirectly the first vibration modes of the flexible link, higher order vi-
bration modes are still neglected [64]. In general, vibration modes of the flexible
links are hard to obtain. To overcome this, the state vector of the flexible-link robot
can be reconstructed from joint position measurements using state observers of fil-
ters. Following this concept, results on observer-based control of flexible-link robots
have been obtained. Estimation of the robot’s vibration modes is performed either
with the use of nonlinear state observers [10],[262],[278],[285], or with the use of
Kalman Filtering [15].

The above analysis shows that model-based controller design for flexible-link
robots comes against specific difficulties. In the design in the s-frequency domain a
linear dynamic model has to be assumed which is directly applicable only to single-
link flexible robots, while the unknown vibration modes have to be found through
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an identification procedure. In the design in state space, the main difficulty is
that the state vector of the flexible-link robot is not completely measurable, there-
fore part of the state vector has to be estimated with the use of a state observer
and a joint controller-observer scheme has to be implemented. Therefore, model-
free techniques for flexible-link robot control appear to have significant advan-
tages, such as simple structure, smaller number of parameters to be tuned and
ability to compensate for the multi-frequency characteristics of the flexible-link
vibrations [67], [481].

14.1.2 Approaches for Model-Free Control of Flexible-Link
Robots

In parallel to model-based control for flexible-link robots, model-free control meth-
ods have been studied [26],[275],[328],[397]. A number of research papers employ
model-free approaches for the control of flexible-link robots based on fuzzy logic
and neural networks. In [410] control of a flexible manipulator with the use of a
neuro-fuzzy method is described, where the weighting factor of the fuzzy logic con-
troller is adjusted by the dynamic recurrent identification network. The controller
works without any prior knowledge about the manipulator’s dynamics. Control of
the end-effector’s position of a flexible-link manipulator with the use of a neural
and a fuzzy controller has been presented in [134],[231],[398],[402],[441],[462].
In [441] an intelligent optimal control for a nonlinear flexible robot arm driven by a
permanent-magnet synchronous servo motor has been designed using a fuzzy neural
network control approach. This consists of an optimal controller which minimizes
a quadratic performance index and a fuzzy neural-network controller that learns the
uncertain dynamics of the flexible manipulator. In [402] a fuzzy controller has been
developed for a three-link robot with two rigid links and one flexible fore-arm. This
controller design is based on fuzzy Lyapunov synthesis where a Lyapunov candidate
function has been chosen to derive the fuzzy rules. In [398] a neuro-fuzzy scheme
has been proposed for position control of the end effector of a single-link flexi-
ble robot manipulator. The scale factors of the neuro-fuzzy controller are adapted
on-line using a neural network which is trained with an improved back-propagation
algorithm. In [54] two different neuro-fuzzy feed-forward controllers have been pro-
posed to compensate for the nonlinearities of a flexible manipulator. In [323] the
dynamics of a flexible link has been modeled using modal analysis and then an in-
verse dynamics fuzzy controller has been employed to obtain tracking and deflection
control. In [378] a fuzzy logic controller has been applied to a flexible-link manipu-
lator. In this distributed fuzzy logic controller the two velocity variables which have
higher importance have been grouped together as the inputs to a velocity fuzzy con-
troller while the two displacement variables which have lower importance degrees
have been used as inputs to a displacement fuzzy logic controller. In [152] adap-
tive control for a flexible-link manipulator has been achieved using a neuro-fuzzy
time-delay controller. In [286] a genetic algorithm has been used to improve the per-
formance of a fuzzy controller designed to compensate for the links’ flexibility and
the joints’ flexibility of a robotic manipulator. Research results on neural-adaptive
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control and PD control with feedforward control elements for the case of flexible-
link manipulators have been also given in [269],[377].

14.1.3 Neural Control Using Multi-frequency Basis Functions

In this chapter, a neural controller using wavelet basis functions is first proposed for
the control of the flexible-link robot. The neural controller operates in parallel to a
PD controller the gains of which are calculated assuming rigid link dynamics. The
general structure of neural control for flexible-link robots was discussed in Chapter
1. Neural networks with wavelet basis functions, also known as ’wavelet networks’,
were first introduced in [471] aiming at giving to feed-forward neural networks with
multi-resolution analysis features and at providing neural models having good ap-
proximation features while using a small number of tunable parameters. The wavelet
neural networks can be classified into orthogonal and non-orthogonal. Orthogonal
wavelet networks depend on generating orthonormal basis using the wavelet func-
tion. However, in order to create the orthonormal basis the wavelet function has to
satisfy restrictions. The training of the orthonormal wavelet network is fast and its
expansion is easy. On the other hand, the non-orthogonal wavelet network uses the
so-called wavelet frame. The family of the wavelet functions that constitute a frame
are such that the energy of the resulting wavelet coefficients lies within a certain
bounded range of the energy of the original signal [1]. Controllers based on orthog-
onal wavelets have been used in vibration control problems [178]. In this paper the
neural controller that is designed for the suppression of the vibrations of the flexible
links, contains orthogonal wavelet basis functions.

Next, a neural network with Gauss-Hermite polynomial basis functions is con-
sidered for the control of flexible-link manipulators. This neural model follows
the concept of wavelet networks [471] and employs basis functions which are
localized both in space and frequency thus allowing better approximation of the
multi-frequency characteristics of vibrating structures [31],[58],[202],[232],[400].
Gauss-Hermite basis functions have also some interesting properties [319],[348]:
(i) they remain almost unchanged by the Fourier transform, which means that the
weights of the associated neural network demonstrate the energy which is dis-
tributed to the various eigenmodes of the vibrating structure, (ii) unlike wavelet ba-
sis functions the Gauss-Hermite basis functions have a clear physical meaning since
they represent the solutions of differential equations describing stochastic oscillators
and each neuron can be regarded as the frequency filter of the respective vibration
eigenfrequency.

It is noted that unlike neural networks with sigmoidal or Gaussian basis functions,
Hermite polynomial-based FNN remain closer to Fourier series expansions by em-
ploying activation functions which satisfy the property of orthogonality [480]. Other
basis functions with the property of orthogonality are Hermite, Legendre, Cheby-
shev, and Volterra polynomials [319],[348],[461].
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14.2 Neural Control Using Wavelet Basis Functions

14.2.1 Wavelet Frames

The continuous time wavelet is defined at scale a and b as

ψa,b(x) =
1√
a
ψ(

x−b
α

) (14.1)

It will be shown that a continuous time signal f (x) can be expressed as a series
expansion of discrete wavelet basis functions. The discrete wavelet has the form
[1], [413]

ψm,n(x) =
1√
αm

0

ψ(
x−nb0αm

0

αm
0

) (14.2)

The wavelet transform of a continuous signal f (x) using discrete wavelets of the
form of Eq. (14.2) is given by

Tm,n =
∫ +∞

−∞
f (x)

1√
αm

0

ψ(
x−nb0αm

0

αm
0

)dx (14.3)

which can be also expressed as the inner product Tm,n =< f (x),ψm,n >. For the
discrete wavelet transform, the values Tm,n are known as wavelet coefficients. To
determine how good the representation of a signal is in the wavelet space one can
use the theory of wavelet frames. The family of wavelet functions that constitute
a frame are such that the energy of the resulting wavelet coefficients lies within a
certain bounded range of the energy of the original signal

AE≤
+∞

∑
m=−∞

+∞

∑
n=−∞

|Tm,n|2≤BE (14.4)

where Tm,n are the discrete wavelet coefficients, A and B are the frame bounds, and
E is the energy of the signal given by E =

∫ +∞
−∞ | f (x)|2dt = || f (x)||2. The values of

the frame bounds depend on the parameters α0 and b0 chosen for the analysis and
the wavelet function used. If A = B the frame is known as tight and has a simple
reconstruction formula given by the finite series

f (x) =
1
A

+∞

∑
m=−∞

+∞

∑
n=−∞

Tm,nψm,n(x) (14.5)

A tight frame with A = B > 1 is redundant, with A being a measure of the redun-
dancy. When A = B = 1 the wavelet family defined by the frame forms an orthonor-
mal basis. Even if A �=B a reconstruction formula of f (x) can be obtained in the
form:

f
′
(x) =

2
A +B

+∞

∑
m=−∞

+∞

∑
n=−∞

Tm,nψm,n(x) (14.6)
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where f
′
(x) is the reconstruction which differs from the original signal f (x) by an

error which depends on the values of the frame bounds. The error becomes accept-
ably small for practical purposes when the ratio B/A is near unity. The closer this
ratio is to unity, the tighter the frame.

14.2.2 Dyadic Grid Scaling and Orthonormal Wavelet Transforms

The dyadic grid is perhaps the simplest and most efficient discretization for practical
purposes and lends itself to the construction of an orthonormal wavelet basis. Sub-
stituting α0 = 2 and b0 = 1 into Eq. (14.2) the dyadic grid wavelet can be written as

ψm,n =
1√
2m

ψ(
x− n2m

2m ) (14.7)

or more compactly

ψm,n(t) = 2−
m
2 ψ(2−mx−n) (14.8)

Discrete dyadic grid wavelets are commonly chosen to be orthonormal. These
wavelets are both orthogonal to each other and normalized to have unit energy. This
is expressed as

∫ +∞

−∞
ψm,n(x)ψm′

,n′ (x)dx ={1 if m = m
′
, and n = n

′

0 otherwise
(14.9)

Thus, the products of each wavelet with all others in the same dyadic system are
zero. This also means that the information stored in a wavelet coefficient Tm,n is not
repeated elsewhere and allows for the complete regeneration of the original signal
without redundancy. In addition to being orthogonal, orthonormal wavelets are nor-
malized to have unit energy. This can be seen from Eq. (14.9), as using m = m

′
and

n = n
′

the integral gives the energy of the wavelet function equal to one. Orthonor-
mal wavelets have frame bounds A = B = 1 and the corresponding wavelet family
is an orthonormal basis. An orthonormal basis has components which, in addition
to being able to completely define the signal, are perpendicular to each other.

Using the dyadic grid wavelet of Eq. (14.7) the discrete wavelet transform is
defined as

Tm,n =
∫ +∞

−∞
x(t)ψm,n(x)dt (14.10)

By choosing an orthonormal wavelet basis ψm,n(x) one can reconstruct the origi-
nal signal f (x) in terms of the wavelet coefficients Tm,n using the inverse discrete
wavelet transform:

f (x) =
+∞

∑
m=−∞

+∞

∑
n=−∞

Tm,nψm,n(x) (14.11)

requiring the summation over all integers m and n. In addition, the energy of the
signal can be expressed as
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∫ +∞

−∞
| f (x)|2dx =

+∞

∑
m=−∞

+∞

∑
n=−∞

|Tm,n|2 (14.12)

14.2.3 The Scaling Function and the Multi-resolution
Representation

Orthonormal dyadic discrete wavelets are associated with scaling functions and their
dilation equations. The scaling function is associated with the smoothing of the
signal and has the same form as the wavelet

φm,n(x) = 2−m/2φ(2−mx−n) (14.13)

The scaling functions have the property

∫ +∞

−∞
φ0,0(x)dx = 1 (14.14)

where φ0,0(x) = φ(x) is sometimes referred as the father scaling function or father
(mother) wavelet. The scaling function is orthogonal to translations of itself, but
not to dilations of itself. The scaling function can be convolved with the signal to
produce approximation coefficients as follows:

Sm,n =
∫ +∞

−∞
f (x)φm,n(x)dx (14.15)

One can represent a signal f (x) using a combined series expansion using both the
approximation coefficients and the wavelet (detail) coefficients as follows:

f (x) =
+∞

∑
n=−∞

Sm0,nφm0,n +
m0

∑
m=−∞

+∞

∑
n=−∞

Tm,nψm,n(x) (14.16)

It can be seen from this equation that the original continuous signal is expressed as
a combination of an approximation of itself, at arbitrary scale index m0 added to
a succession of signal details form scales m0 down to negative infinity. The signal
detail at scale m is defined as

dm(x) =
+∞

∑
n=−∞

Tm,nψm,n(x) (14.17)

and hence one can write Eq. (14.16)

f (x) = fm0(t)+
m0

∑
m=−∞

dm(x) (14.18)

From this equation it can be shown that

fm−1(x) = fm(x)+ dm(x) (14.19)
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which shows that if one adds the signal detail at an arbitrary scale (index m) to
the approximation at that scale he gets the signal approximation at an increased
resolution (at a smaller scale index m− 1). This is the so-called multi-resolution
representation.

14.2.4 Examples of Orthonormal Wavelets

The scaling equation (or dilation equation) describes the scaling function φ(x) in
terms of contracted and shifted versions of itself as follows [1],[251]:

φ(x) =∑
k

ckφ(2x− k) (14.20)

where φ(2x− k) is a contracted version of φ(t) shifted along the time axis by an
integer step k and factored by an associated scaling coefficient ck. The coefficient of
the scaling equation should satisfy the condition

∑
k

ck = 2 (14.21)

∑
k

ckck+2k′ ={2 if k
′
= 0

0 otherwise
(14.22)

This also shows that the sum of the squares of the scaling coefficients is equal to
2. The same coefficients are used in reverse with alternate signs to produce the
associated wavelet equation

ψ(x) =∑
k

(−1)kc1−kφ(2x− k) (14.23)

This construction ensures that the wavelets and their corresponding scaling func-
tions are orthogonal . For wavelets of compact support, which have a finite number
of scaling coefficients Nk the following wavelet function is defined

ψ(x) =∑
k

(−1)kcNk−1−kφ(2x− k) (14.24)

This ordering of scaling coefficients used in the wavelet equation allows for our
wavelets and their corresponding scaling equations to have support over the same
interval [0,Nk−1]. Often the reconfigured coefficients used for the wavelet function
are written more compactly as

bk = (−1)kcNk−1−k (14.25)

where the sum of all coefficients bk is zero. Using this reordering of the coefficients
Eq. (14.24) can be written as
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ψ(x) =
Nk−1

∑
k=0

bkφ(2x− k) (14.26)

From the previous equations and examining the wavelet at scale index m + 1 one
can see that for arbitrary integer values of m the following holds

2−(m+1)/2φ(
1

2m+1 −n) = 2−m/22−1/2∑
k

ckφ(
2t

2×2m −2n− k) (14.27)

which may be written more compactly as

φm+1,n(x) =
1√
2
∑
k

ckφm,2n+k(x) (14.28)

That is the scaling function at an arbitrary scale is composed of a sequence of shifted
functions at the next smaller scale each factored by their respective scaling coeffi-
cients. Similarly, for the wavelet function one obtains

ψm+1,n(x) =
1√
2
∑
k

bkφm,2n+k(x) (14.29)

14.2.5 The Haar Wavelet

The Haar wavelet is the simplest example of an orthonormal wavelet. Its scaling
equation contains only two nonzero scaling coefficients and is given by

φ(x) = φ(2x)+φ(2x−1) (14.30)

that is, its scaling coefficients are c0 = c1 = 1. These values can be obtained from
Eq. (14.21) and Eq. (14.22). The solution of the Haar scaling equation is the single
block pulse defined as

φ(x) ={ 1 0≤x < 1
0 elsewhere

(14.31)

Using this scaling function, the Haar wavelet equation is

ψ(x) = φ(2x)−φ(2x−1) (14.32)

The Haar wavelet is finally found to be

ψ(x) ={ 1 0≤x < 1
2

−1 1
2≤x < 1

0 elsewhere
(14.33)

The mother wavelet for the Haar wavelet system ψ(x) =ψ0,0(x) is formed from two
dilated unit block pulses sitting next to each other on the time axis, with one of them
inverted. From the mother wavelet one can construct the Haar system of wavelets
on a dyadic grid ψm,n(x).
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Fig. 14.1 i) The Haar scaling function in terms of shifted and dilated versions of itself, ii)
The Haar wavelet in terms of shifted and dilated versions of its scaling function.

14.3 Neural Networks Using Hermite Activation Functions

14.3.1 Identification with Feed-Forward Neural Networks

The concept of function approximation with the use of feed-forward neural net-
works (FNN) comes from generalized Fourier series. It is known that any function
ψ(x) in a L2 space can be expanded in a generalized Fourier series in a given or-
thonormal basis, i.e. ψ(x) =∑∞

k=1ckψk(x), a≤ x ≤ b. Truncation of the series yields
in the sum SM(x) = ∑M

k=1akψk(x). If the coefficients ak are taken to be equal to the
generalized Fourier coefficients, i.e. when ak = ck =

∫ b
a ψ(x)ψk(x)dx, then SM(x) is

a mean square optimal approximation of ψ(x) [348].
Unlike generalized Fourier series, in FNN the basis functions are not necessarily

orthogonal. The hidden units in a FNN usually have the same activation functions
and are often selected as sigmoidal functions or Gaussians. A typical feed-forward
neural network consists of n inputs xi, ı = 1,2, · · · ,n, a hidden layer of m neurons
with activation function h : R → R and a single output unit (see Fig. 14.3). The
FNN’s output is given by

ψ(x) =
n

∑
j=1

c jh(
n

∑
i=1

wjixi + b j) (14.34)

The root mean square error in the approximation of function ψ(x) by the FNN is

given by ERMS =
√

1
N∑

N
k=1(ψ(xk)− ψ̂(xk))2, where xk = [xk

1,x
k
2, · · · ,xk

n] is the k-th
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Fig. 14.2 i) Three consecutive scales shown from the Haar wavelet family specified on a
dyadic grid, e.g. from the bottom ψm,n(x), ψm+1,n(x), ψm+2,n(x), ii) Three Haar wavelets at
three consecutive scales on a dyadic grid, iii) Three Haar wavelets at different scales. This
time the Haar wavelets are not defined on a dyadic grid and are hence not orthogonal to each
other.

Fig. 14.3 Feed-forward neural network with Hermite polynomial basis functions

input vector of the neural network. The activation function is usually a sigmoidal
function h(x) = 1

1+e−x while in the case of radial basis functions networks it is a
Gaussian [138]. Several learning algorithms for neural networks have been studied.



304 14 Machine Learning Methods for Industrial Systems Control

The objective of all these algorithms is to find numerical values for the network’s
weights so as to minimize the mean square error ERMS. The algorithms are usu-
ally based on first and second order gradient techniques. These algorithms belong
to: (i) batch-mode learning, where to perform parameters update the outputs of a
large training set are accumulated and the mean square error is calculated (back-
propagation algorithm, Gauss-Newton method, Levenberg-Marquardt method, etc.),
(ii) pattern-mode learning, in which training examples are run in cycles and the pa-
rameters update is carried out each time a new datum appears (Extended Kalman
Filter algorithm) [341].

14.3.2 The Gauss-Hermite Series Expansion

Next, as orthogonal basis functions of the feed-forward neural network Hermite
polynomials are considered. These are the spatial components Xk(x) of the solution
of Schrödinger’s differential equation and describe a stochastic oscillation:

Xk(x) = Hk(x)e
−x2

2 , k = 0,1,2, · · · (14.35)

where Hk(x) are the Hermite orthogonal functions (Fig. 14.4). The Hermite func-
tions Hk(x) are the eigenstates of the quantum harmonic oscillator. The general
relation for the Hermite polynomials is

Hk(x) = (−1)kex2 d(k)

dx(k) e−x2
(14.36)

According to Eq. (14.36) the first five Hermite polynomials are:

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, H3(x) = 8x3 − 12x, H4(x) =
16x4 − 48x2 +12

It is known that Hermite polynomials are orthogonal, i.e. it holds

∫ +∞

−∞
e−x2

Hm(x)Hk(x)dx ={ 2kk!
√
π i f m = k

0 i f m �=k
(14.37)

Using now, Eq. (14.37), the following basis functions can be defined [319]:

ψk(x) = [2kπ
1
2 k!]−

1
2 Hk(x)e−

x2
2 (14.38)

where Hk(x) is the associated Hermite polynomial. From Eq. (14.37), the orthogo-
nality of basis functions of Eq. (14.38) can be deduced, which means

∫ +∞

−∞
ψm(x)ψk(x)dx ={ 1 i f m = k

0 i f m�=k
(14.39)
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Fig. 14.4 (a) First five one-dimensional Hermite basis functions (b) Analytical represenation
of the 1D Hermite basis function

Moreover, to succeed multi-resolution analysis Hermite basis functions of Eq.
(14.38) are multiplied with the scale coefficient α . Thus the following basis func-
tions are derived

βk(x,α) = α− 1
2ψk(α−1x) (14.40)

which also satisfy orthogonality condition

∫ +∞

−∞
βm(x,α)βk(x,α)dx ={ 1 i f m = k

0 i f m�=k
(14.41)

Any function f (x), x ∈ R can be written as a weighted sum of the above orthogonal
basis functions, i.e.

f (x) =
∞

∑
k=0

ckβk(x,α) (14.42)

where coefficients ck are calculated using the orthogonality condition

ck =
∫ +∞

−∞
f (x)βk(x,α)dx (14.43)

Assuming now that instead of infinite terms in the expansion of Eq. (14.42), M
terms are maintained, then an approximation of f (x) is succeeded. The expansion
of f (x) using Eq. (14.42) is a Gauss-Hermite series. Eq. (14.42) is a form of Fourier
expansion for f (x). Eq. (14.42) can be considered as the Fourier transform of f (x)
subject only to a scale change. Indeed, the Fourier transform of f (x) is given by

F(s) =
1

2π

∫ +∞

−∞
f (x)e− jsxdx ⇒ f (x) =

1
2π

∫ +∞

−∞
F(s)e jsxds (14.44)
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The Fourier transform of the basis function ψk(x) of Eq. (14.38) satisfies [319]

Ψk(s) = jnψk(s) (14.45)

while for the basis functions βk(x,α) using scale coefficient α it holds that

Bk(s,α) = jnβk(s,α−1) (14.46)

Therefore, it holds

f (x) =
∞

∑
k=0

ckβk(x,α)
F
→ F(s) =

∞

∑
k=0

ck jnβk(s,α−1) (14.47)

which means that the Fourier transform of Eq. (14.42) is the same as the initial
function , subject only to a change of scale. The structure of a a feed-forward neural
network with Hermite basis functions has been given in Fig. 14.3(b).

14.3.3 Neural Networks Using 2D Hermite Activation Functions

Two-dimensional Hermite polynomial-based neural networks can be constructed by
taking products of the one dimensional basis functions Bk(x,α) [319]. Thus, setting
x = [x1,x2]T one can define the following basis functions

Bk(x,α) =
1
α

Bk1(x1,α)Bk2(x2,α) (14.48)

These two dimensional basis functions are again orthonormal, i.e. it holds
∫

d2xBn(x,α)Bm(x,α) = δn1m1δn2m2 (14.49)

The basis functions Bk(x) are the eigenstates of the two dimensional harmonic os-
cillator and form a complete basis for integrable functions of two variables. A two
dimensional function f (x) can thus be written in the series expansion:

f (x) =
∞

∑
k1,k2

ckBk(x,α) (14.50)

The choice of an appropriate scale coefficient α and maximum order kmax is of
practical interest. The coefficients ck are given by

ck =
∫

dx2 f (x)Bk(x,α) (14.51)

Indicative basis functions B2(x,α), B6(x,α), B9(x,α), B11(x,α) and B13(x,α),
B15(x,α) of a 2D feed-forward neural network with Hermite basis functions are
depicted in Fig. 14.5, Fig. 14.6, and Fig. 14.7.
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Fig. 14.5 2D Hermite polynomial activation functions: (a) basis function B2(x,α) (b) basis
function B6(x,α).
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Fig. 14.6 2D Hermite polynomial activation functions: (a) basis function B9(x,α) (b) basis
function B11(x,α).
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Fig. 14.7 2D Hermite polynomial activation functions: (a) basis function B13(x,α) (b) basis
function B15(x,α).

14.4 Results on Flexible-Link Control and Vibrations
Suppression

14.4.1 The Flexible-Link Robot Model

The 2-DOF flexible link robot of Fig. 1.3 is considered again. The robot is planar
and consists of two flexible links of length L1 = 0.45m and L2 = 0.45m, respectively.
The dynamic model of the robot is given by Eq. (1.23). The elements of the inertia
matrix M are:

M11 =
(

1 2
2 1

)
, M12 = MT

21 =
(

1 1 0.2 0.3
0.5 0.1 2 0.7

)
, M22 =

(
1 0
0 1

)

The damping matrix was taken to be D = diag{0.04,0.08,0.03,0.06} while the
stiffness matrices was selected as K = diag{0.02,0.04,0.03,0.06}. The inverse dy-
namics control law given in Eq. (1.52) and Eq. (1.53) is employed. The selection
of the gain matrices Kp and Kd determines the transient response of the closed loop
system. The following controller gains have been considered: Kp = diag{0.2,0.2}
and Kd = diag{0.1,0.1}. The desirable joints positions are θd1 = 1 rad and θd2 =
1.4 rad.

14.4.2 Control Using Hermite Polynomial-Based Neural
Networks

The neural controller operates in parallel to a PD controller, as shown in Fig. 1.5.
An additive disturbance torque equal to di(t) = 0.3cos(t) was considered to appear
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Fig. 14.8 (a) Diagrams of the angular positions θ1 and θ2, and of the angular velocities ω1
and ω2 of the joints of the flexible link manipulator when only a PD controller is used, (b)
Diagrams of the first two vibration modes v11 and v12 of the first joint, and of the vibra-
tion modes v21 and v22 of the second joint of the flexible link manipulator when only a PD
controller is used.

at each joint. The simulation diagram of Fig. 14.8(a) shows the evolution in time of
the angles of the robot’s joints θ1 and θ2, respectively, when only a PD controller
is used in the loop and the flexibility of the link is not taken into account int the
controller’s design. In Fig. 14.8(b) the evolution in time of the vibration modes of
the first link v11, v12 and of the second link v21 and v22, respectively, is presented. It
can be seen that vibrations around the desirable joint positions cannot be eliminated.

Next, a control loop with a neural controller which used the Haar orthogonal
wavelet functions of subsection 14.2.5 has been considered. The neural controller
is a single layer NN with wavelet basis functions, as shown in Fig. 14.3, and it
is linear with respect to the output weights. Fig. 14.9(a) presents the evolution in
time of the joint angles of the robot when NN with wavelet basis functions are used
for suppressing the vibrations of the flexible links. Fig. 14.9(b) shows the variation
in time of the joint angles of the robot θ1 and θ2, respectively, when the neural
controller uses Gauss-Hermite basis functions.

Finally, simulation diagrams are presented showing how the proposed neural con-
trollers succeed the suppression of the vibration modes of the flexible links. Fig.
14.10(a) shows the evolution in time of the vibration modes v11 and v12 of the first
link, as well as of the vibration modes v21 and v22 of the second link, when the neural
controller uses wavelet basis functions. Similarly, Fig. 14.10(b) shows the variation
in time of the vibration modes v11, v12 of the first link and v21, v22 of the second
link, respectively, when the neural controller uses Gauss-Hermite basis functions.

From the simulation experiments it can be observed, that using a neural controller
with basis functions which are localized both in space and frequency allows better
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Fig. 14.9 Diagrams of the robot’s joint angles θ1 and θ2 (a) when a wavelet neural network
is included in the control loop to suppress vibrations, (b) a Gauss-Hermite neural network is
included in the control loop to suppress vibrations

approximation of the multi-frequency characteristics of the vibrating robot links.
The angles of the robot’s joints converge to the desirable set-points θ d

1 and θ d
2 ,

while fast and efficient suppression of the vibration modes v11, v12 and v21, v22 is
also succeeded.

Comparing the Gauss-Hermite basis functions to the Haar wavelet basis functions
one can note the following: (i) both are basis functions which are local in space and
spatial frequency. This allows better approximation of the multi-frequency charac-
teristics of vibrating structures, such as the flexible-link robot, (ii) both satisfy the
orthogonality property which helps to locally improve the accuracy of approxima-
tion of the unknown system dynamics. This means that the neural controller can
be dynamically expanded by adding new basis functions which are orthogonal to
the existing ones and the coefficients of the new basis functions can be computed
independently of the existing coefficients (iii) unlike wavelet basis functions, the
Gauss-Hermite basis functions have a clear physical meaning, since they represent
the solutions of differential equations of stochastic oscillators and each neuron can
be regarded as the frequency filter of the respective vibration eigenfrequency, (iv)
unlike the Haar wavelet basis functions, the Gauss-Hermite basis functions remain
almost unchanged by the Fourier transform, which means that the weights of the as-
sociated neural network demonstrate the energy which is distributed in the various
eigenmodes of the vibrating structure. This in turn allows to define thresholds for
truncating the expansion and using neural controller with a small number of nodes
and weight coefficients, (v) in the above simulation experiments it was observed
that the control signal (torque) generated by the neural controller with Hermite basis
functions is smoother than the control signal of the neural controller which employs
wavelet basis functions.



14.4 Results on Flexible-Link Control and Vibrations Suppression 311

0 50 100 150 200
−4

−2

0

2

time

1
s
t 

li
n

k
 −

 1
s
t 

m
o

d
e

 o
f 

v
ib

ra
ti
o

n flexible link robot control

0 50 100 150 200
−2

−1

0

1

time
1

s
t 

li
n

k
 −

 2
n

d
 m

o
d

e
 o

f 
v
ib

ra
ti
o

n flexible link robot control

0 50 100 150 200
−5

0

5

time

2
n

d
 l
in

k
 −

 1
s
t 

m
o

d
e

 o
f 

v
ib

ra
ti
o

n flexible link robot control

0 50 100 150 200
−2

−1

0

1

2

time2
n

d
 l
in

k
 −

 2
n

d
 m

o
d

e
 o

f 
v
ib

ra
ti
o

n flexible link robot control

0 50 100 150 200
−4

−2

0

2

time

1
s
t 
li
n
k
 −

 1
s
t 
m

o
d
e
 o

f 
v
ib

ra
ti
o
n flexible link robot control

0 50 100 150 200
−2

−1

0

1

time

1
s
t 
li
n
k
 −

 2
n
d
 m

o
d
e
 o

f 
v
ib

ra
ti
o
n flexible link robot control

0 50 100 150 200
−5

0

5

time

2
n
d
 l
in

k
 −

 1
s
t 
m

o
d
e
 o

f 
v
ib

ra
ti
o
n flexible link robot control

0 50 100 150 200
−2

−1

0

1

2

time2
n
d
 l
in

k
 −

 2
n
d
 m

o
d
e
 o

f 
v
ib

ra
ti
o
n flexible link robot control

(a) (b)

Fig. 14.10 Diagrams of the first two vibration modes v11 and v12 of the first joint, and of the
vibration modes v21 and v22 of the second joint of the flexible link manipulator (a) when a
wavelet neural network is included in the control loop to suppress vibrations, (b) a Gauss-
Hermite neural network is included in the control loop to suppress vibrations





Chapter 15
Machine Learning Methods for Industrial
Systems Fault Diagnosis

Abstract. Machine learning methods can be of particular interest for fault diagnosis
of systems that exhibit event-driven dynamics. For this type of systems fault diag-
nosis based on automata and finite state machine models has to be performed. In
this chapter the application of fuzzy automata for fault diagnosis is analyzed. The
output of the monitored system is partitioned into linear segments which in turn are
assigned to pattern classes (templates) with the use of membership functions. A se-
quence of templates is generated and becomes input to fuzzy automata which have
transitions that correspond to the templates of the properly functioning system. If the
automata reach their final states, i.e. the input sequence is accepted by the automata
with a membership degree that exceeds a certain threshold, then normal operation
is deduced, otherwise, a failure is diagnosed. Fault diagnosis of a DC motor is used
as a case study.

15.1 Automata in Fault Diagnosis Tasks

15.1.1 Fault Diagnosis of Systems with Event-Driven Dynamics

As shown in several research studies machine learning methods can be particularly
useful for fault diagnosis [418],[419],[420]. To some level, industrial systems can
be described by continuous-time variables and for such models the fault detection
and isolation methodologies presented in Chapters 9 and 10 have been proven to
be quite effective [16],[161]. On the other hand there are industrial systems which
can be better described using event driven dynamics [116],[163]. For this type of
systems fault diagnosis based on automata has to be performed [7],[36],[316],[364].

The use of automata in fault diagnosis tasks has gained particular attention in the
case of discrete event dynamical systems and hybrid systems [38],[70],[71],[129]
[243],[456]. Fault diagnosis based on syntactic analysis considers that the output
of a dynamic system is a sequence of linear segments of variable length and slope
which leads from an initial state to a final one. This sequence of segments is a regular
expression and according to Kleene’s theorem is equivalent to a finite automaton

G.G. Rigatos: Modelling & Control for Intell. Industrial Sys., ISRL 7, pp. 313–326.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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M [200],[271]. Thus the output of the system can be described by the five-tuple
M = {Φ,B,δ ,s,F} where: i) Φ is the set of states, ii) B is the set of input strings b,
iii) δ :Φ×B→Φ is the transition function, iv) s ∈Φ is the start state, and v) F ⊆Φ
is the set of final states. The automaton is said to accept the input string b if starting
from s and following the permitted transitions a final state is reached. A string of
segments leading to a final state of M is a regular expression and is called pattern.
The language of M is denoted by L(M) and consists of all regular expressions.

In fault diagnosis based on syntactic analysis, the system’s failures can be de-
tected if the following two strings are compared: i) pattern a which is the segmented
output of the properly functioning system, ii) string b which is the segmented output
of the monitored system. If b matches a, i.e. b is accepted by M, then the monitored
system operates properly and no fault is detected. If b does not match a, i.e. b is re-
jected by M, then a fault is deduced. To isolate that fault, pattern matching between
b and a set of fault patterns Af can be attempted. Each fault pattern A fi is in turn
equivalent to an automaton Mfi .

The detection of a fault is based on distance or similarity measures [425]. If the
distance between the input string b and pattern a exceeds a certain threshold then a
fault is reported, otherwise the system is assumed to work properly. The distance be-
tween two strings is related to the sequence of edit operations (substitution, insertion
and deletion) required to transform one string into another.

In this chapter, to compare strings a and b, similarity measures are used and
the concept of fuzzy automata is employed. Update of the membership value of
the state φ j of M, which is connected to state φi via the transition ai takes place
using the fuzzy inference rule [393],[432],[433]. After having applied input b, the
membership function of the final state of a provides a measure of the matching
between strings b and a. If this measure goes below a certain threshold then fault is
deduced.

15.1.2 System Modelling with the Use of Finite Automata

Automata have been used to model the dynamics of Discrete Event Systems (DES)
[279],[297],[298],[303],[304],[315]. In that case automata describe dynamical sys-
tems the behavior of which cannot be completely represented by differential equa-
tions, because of the existence of asynchronous events that affect the system’s state.
Apart from industry and manufacturing, such systems are also met in database con-
currency control, telecommunication or computer networks, and in biomedical ap-
plications such as clinical monitoring. Usually a DES is described by a finite au-
tomaton, which is defined by the five-tuple [230],[306],[310],[311],[324],[424]

M = (Φ,B,δ ,S,q0) (15.1)

where Φ is a set of discrete states, B is the set of events that enable the transi-
tion between states, δ : Φ×B→Φ is the transitions mapping, and q0 is the ini-
tial state. An example of a DES is depicted in Fig. 15.1(a) where Φ = {E,F,P},
B = {α1,α2,α3,β1,β2,β3}, S contains the arcs that appear in Fig. 15.1(a). At time
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(a) (b)

Fig. 15.1 (a) Modelling of a discrete event system with the use of an automaton (b) Class
labels for segments of variable slope (vertical axis) and of variable length (horizontal axis)

instant k the system can be in one of the nodes depicted in the above graph, for
instance node i, thus the state of the system is the vector φ k = [0, · · · ,1, · · · ,0].

The transition between the various states of the automaton are enabled through
the events ai, i = 1,2,3, and βi, i = 1,2. Each event is associated with a transition
matrix which in the case of the automaton shown in Fig. 15.1(a) becomes [230]

α1 =

⎛
⎝

0 1 0
0 0 0
0 0 0

⎞
⎠ , β1 =

⎛
⎝

0 0 0
1 0 0
0 0 0

⎞
⎠ , α2 =

⎛
⎝

0 0 0
0 0 1
0 0 0

⎞
⎠

β2 =

⎛
⎝

0 0 0
0 0 0
0 1 0

⎞
⎠, α3 =

⎛
⎝

0 0 1
0 0 0
0 0 0

⎞
⎠ , β3 =

⎛
⎝

0 0 0
0 0 0
1 0 0

⎞
⎠

(15.2)

Thus, if the system is initially in state F = [0,1,0] and event β1 appears then the
next state of the DES is state E = [1,0,0] as shown in the following calculation

(
0 1 0

) ·
⎛
⎝

0 0 0
1 0 0
0 0 0

⎞
⎠=

(
1 0 0

)
(15.3)

In DES the following properties are of importance (i) observability, i.e. measure
of the uncertainty that a supervisor can have about the state of the automaton,
(ii) diagnosability, i.e. the possibility to deduce a fault (occurrence of an event
that results in a faulty state) in the DES by monitoring a sequence of observ-
able events. The diagnoser is an automaton that accepts the string of the events
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which follow the fault. Several problems of diagnosability and diagnosers’ design
have been studied in the recent bibliography of discrete event dynamical systems
[38],[70],[106],[191],[236],[296],[363]. These properties have been also extended
to fuzzy DES [230],[311]. Recently, the results of [363] have been generalized to
the framework of stochastic DESs in [235],[312].

15.1.3 System Modelling with the Use of Fuzzy Automata

Crisp DES are not adequate for the cases in which the states and the transitions of a
system are uncertain. Subjective human observation, judgement and interpretation
invariably play a significant role in describing the status of a state, usually not crisp.
Thus, classical automata theory was extended in [309] where a framework of au-
tomata based on completed residuated lattice-valued logic was established and then
[225] dealt with automata theory based on ordered lattice monoids. To overcome the
limitations of crisp DES, fuzzy discrete event systems (FDES) have been proposed
[230],[311]. In FDES the possibility of being at a state of the automaton depicted in
Fig. 15.1(a), at a time instant k, is denoted by a membership function [301],[302].
Assume that the states of the automaton are φ1,φ2, · · · ,φn, and the associated mem-
bership functions at time instant k are [μk

1 ,μk
2 , · · · ,μk

n ]. Then at time instant k the
FDES is at a state defined by the vector gk = [μk

1 , · · · ,μk
n ]. The transition matrix

between the state of the FDES at time instant k and the state of the FDES at time
instant k + 1 is given by

α = [αi j]n×n =

⎛
⎜⎜⎝
α11 · · · α1n

· · · · · · · · ·
· · · · · · · · ·
αn1 · · · αnn

⎞
⎟⎟⎠ (15.4)

A fuzzy discrete event system is represented by a fuzzy automaton where
[230],[424]: (i) the possibility to find the automaton at a certain state at time in-
stant k is given by a membership function, (ii) the possibility of a transition between
states to take place is also given by a membership function. It is noted that the equiv-
alence between probabilistic and possibilistic (fuzzy) representations of uncertainty
has been studied in [84].

Next, it is assumed that the states of the automaton depicted in Fig. 15.1(a) are
fuzzy and the associated membership functions are:

φ̃ = [0.4,0.8,0] (15.5)

It is also assumed that the fuzzy event α̃1 is given by the transition matrix

α̃1 =

⎛
⎝

0.1 0.9 0.1
0.2 0.1 0.2
0 0.1 0.1

⎞
⎠ (15.6)
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i.e. again it is most likely to have a transition from state E to state F . Then using the
max-product inference one has

φ̃◦α̃1 = [0.4,0.8,0]◦
⎛
⎝

0.1 0.9 0.1
0.1 0.1 0.1
0 0.1 0.1

⎞
⎠=

(
0.08 0.36 0.08

)
(15.7)

A typical definition of a fuzzy automaton is the five-tuple M̃ = (Φ̃ , B̃, δ̃ , s̃, F̃), where

• Φ̃ is the finite set of fuzzy states. A membership value μ(φi) ∈ [0,1] is assigned
to each state.

• B̃ is the set of inputs where each input has a membership function μ(bi) ∈ [0,1],
provided by the classification procedure.

• δ̃ : Φ × B → Φ is the set of fuzzy transitions, where a membership function
μ(δ̃ ) ∈ [0,1] is associated with each transition from state φi to state φ j .

• s̃ is the fuzzy start state.
• F̃ ⊂ Φ̃ is the set of fuzzy final states.

15.1.4 Monitoring Signals with the Use of Fuzzy Automata

It was shown that fuzzy automata can be used to describe discrete event systems
with uncertain states or uncertain transitions. Fuzzy automata can be also used to
describe the degree of similarity between the output of a dynamical system, and a
reference signal [433]. If each linear segment of the output is considered as a state,
then the monitored system can be viewed as a discrete-state system. The knowl-
edge of the system states and of the transitions between different states is subject
to uncertainty. This uncertainty can be described by a possibilistic model such as a
fuzzy automaton. In this case fuzzy states and fuzzy transitions are assumed for the
description of the system’s condition.

The advantages of fuzzy automata for describing the matching of dynamical sys-
tem’s output to a reference signal are summarized as follows:

• Fuzzy automata give a measure of similarity between patterns that is tolerant
to measurement noise. Fuzzy automata can be used instead of Markov models
to represent discrete-state systems subject to uncertainty. Unlike Markov mod-
els where transition probabilities have to be approximated, fuzzy automata have
transition membership functions which can be provided by experts.

• Unlike correlation, syntactic analysis based on fuzzy automata permits to asso-
ciate changes of certain parts of the output signal with parametric changes of the
monitored system. Correlation provides a similarity measure between signals but
does not identify the uneven segments in case of mismatch.

• In fuzzy automata, fault thresholds are defined by experts, thus human knowledge
about the monitored system can be exploited.
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15.2 A Fault Diagnosis Approach Based on Fuzzy Automata

15.2.1 Generation of the Templates String

The main concept in Fault Detection and Isolation (FDI) based on fuzzy automata,
is to divide the output signal into consecutive linear segments and to classify each
one of them in pattern classes according to a membership function. A candidate
segment of n points is selected and the line that connects the first to the last point is
calculated. If the distances of all points from this line are below a certain threshold ε
then it is considered that all n points belong to the same segment. Otherwise, the first
point (x j,y j), j ∈ {1,2, · · · ,n} which exceeds ε is found, the candidate segment
(x1,y1), · · · ,(x j,y j) is defined and a new check is performed to see if points 1 to j
can be assigned to the same segment.

To decompose the output signal into segments, a sliding window is used. The
size of the sliding window determines the number of segments. A classification
algorithm, assigns each segment to a template (pattern class) and provides also the
corresponding membership function. The steps of the segmentation procedure are
[198]:

Step 1: Preprocessing of the output signal. First the output signal is filtered with a
low pass filter to remove high frequency noise. The preprocessed signal is a set of
points {(x1,y1), · · · ,(xN ,yN)} where xi is measured in time units and yi(1 ≤ i ≤ N)
is the associated output sample.

Step 2: Segmentation of the output signal. A subset of points X (0)
i : (x1,y1) · · · (xn,yn)

is collected, and the equation of the line that connects the first to the last element of

X (0)
i is calculated, L : Ax + By +C = 0. The segment’s end is the last point in X (0)

i
which has a distance from L less than ε. Thus, if ∃(x j,y j), j = 1, · · · ,n such that the
distance D of (x j,y j) from L exceeds a threshold ε , i.e.

D{(x j,y j),Ax+ By+C = 0} > ε (15.8)

then n is set to n = min{ j} satisfying Eq. (15.8) and the calculation of L is repeated

for the subset of data C(1)
i = {(x1,y1), · · · ,(x j,y j)}. The segmentation algorithm

can be summarized as follows:

• Inputs: threshold ε , X (0)
i = {(x1,y1), · · · ,(xn,yn)}

• Output: segments xh, h = 1,2, · · · .
1. Set j = n, h = 1.
2. Examine the last point (x j,y j) and calculate Ah = (y j − y1), Bh = (x j − x1) and

Ch = x1y j − x jy1.
3. For i = 1,2, · · · , j calculate the distance of (xi,yi) from L : Ahx + Bhy +Ch = 0
4. If Eq. (15.8) is true then set j = j−1 and go to 2.

5. If Eq. (15.8) is false ∀i = 1, · · · , j then X (1)
i = {(x1,y1), · · · ,(x j,y j)}

6. Set h = h + 1, j = n, go to 2 and repeat for another candidate segment.
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Fig. 15.2 Generation of a string of templates from a monitored signal

Step 3: To organise segments in pattern classes (templates), each segment xi is taken
to be a line described by an equation AhX + BhY +Ch = 0, h = 1, · · · ,M where
M is the number of templates in which the output is segmented. The slope −Ah

Bh
of

each segment is calculated. The segments are organised in classes according to their
slope and length, using algorithms of statistical pattern recognition (e.g. C-Means).
An example of class labels is given in Fig. 15.1(b).

Once the pattern classes have been found, a neural network can be used to mem-
orize the mapping of input segments to classes. By considering membership in
multiple pattern classes, more information is provided to the syntactic analyzer. In
that case there will be multiple paths that connect the start to the end state of the
automaton.

15.2.2 Syntactic Analysis Using Fuzzy Automata

As already mentioned, the sequence of segments of the output signal leads from an
initial to a final state and can be considered as a formal language. Thus it can be
recognized by an automaton. Usually, this automaton can be decomposed into sev-
eral sub-automata. Each sub-automaton is capable to recognize a specific part of the
output signal and operates as a transition between the states of the main automaton
[415],[416], [433].

The syntactic analyzer consists of the main automaton and a number of sub-
automata and is shown in Fig. 15.3. Syntactic analysis is accomplished through the
following steps:

• Step 1: The main automaton is designed. This is also a finite state machine where
the transitions correspond to the sub-automata associated with the patterns of the
output signal. The degree of activation of a transition of the main automaton depends
on the degree of acceptance of a pattern of the output signal. If the main automaton
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Fig. 15.3 Automata-based system for fault diagnosis

recognizes the input string which comes from the properly functioning system then
no fault exists.

To design a sub-automaton for a certain pattern, all occurrences of the pattern
are recorded. Each occurrence is a sequence of alphabet symbols. Next, a path of
states is inserted to the sub-automaton and is used to recognize this sequence of
symbols. Human experts provide the transition possibility (transition threshold) for
each sub-automaton.

Initialization with memberships reflecting the maximum ambiguity μ(δi j) = 0.5
is used to allow any possible transition that occurs in the sub-automaton. Prunning
of redundant transitions may result in simpler fuzzy sub-automata.

• Step 2: Synchronization of the input. The objective is to find a unique state in the
main automaton that is activated by the incoming string of templates. Initially all
states of the main automaton have a non-zero membership function and are exam-
ined as possible start states.

The first template is applied to all sub-automata and is examined if the sub-
automata reach a final state. The procedure continues until only one state of the
main automaton remains active. At this point synchronization of the input has been
succeeded.

• Step 3: The sequence of templates anbncndn· · · continues and becomes input to
each sub-automaton and if a final state is reached with a membership degree above
a certain threshold then a specific pattern is recognized. When a sub-automaton ter-
minates, then transition to another state of the main automaton takes place, and a
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Fig. 15.4 Main automaton

Fig. 15.5 Automata corresponding to subpatterns A and B

Fig. 15.6 Automaton corresponding to subpattern C

fuzzy membership degree is assigned to this transition. Thus these automata can
be considered as transitions of a higher level automaton which is the main automa-
ton. The sub-automata which are associated with the transitions A,B,C of the main
automaton of Fig. 15.4, are shown in Fig. 15.5 and Fig. 15.6.
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Fig. 15.7 Update rule of fuzzy subautomaton

It should be noted that the fault diagnosis scheme shown in Fig. 15.3 is a cen-
tralized one. It considers that all information contained in the fuzzy sub-automata is
collected centrally by the main automaton which gives diagnosis about the system’s
condition. However, centralized fault diagnosis may not be recommended for some
spatially distributed systems (e.g. communication networks or the power generation
and transmission grid). For the latter category of systems it may be preferable to
have a set of local diagnosers (sub-automata) that will be running at different sites
and will be processing local observations (sub-patterns), without explicit communi-
cation with a central unit, or with local communication subject to time delays. In this
case, the concept of co-detectability (co-diagnosability) is of importance, i.e a fault
in the overall system is detected if at least one diagnoser (sub-automaton) recognizes
a faulty situation in a locally recorded sequence of events [235]. Decentralized fault
diagnosis, as well as necessary and sufficient conditions for diagnosability in dis-
tributed systems has been a significant research direction in the area of distributed
discrete event dynamical systems [30],[69],[93],[169],[312],[394].

15.2.3 Detection of Fault Patterns by the Fuzzy Automata

The segments sequence x is said to be recognized by the fuzzy automaton M =
{Q̃, Σ̃ , δ̃ , s̃, F̃} if there is an initial state s̃, such that when applying a sequence of
inputs x∗ and following the transition rule given in Eq. (15.9), a final state f̃ is
reached, with f̃ having a nonzero fuzzy membership value, above a certain thresh-
old. The output signal can be decomposed into patterns, such as the one depicted in
Fig. 15.2. Patterns are denoted by A which represents the 1st stage, B which repre-
sents the 2nd stage and C which is associated to the 3rd complex. In Fig. 15.4, the
states of the main automaton are denoted by φ1, φ2, φ3 and φ4. The templates be-
come inputs to the sub-automata which are associated to the transitions of the main
automaton. The sub-automata update rule is given by Eq. (15.9):
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μ(φ (k+1)
j ) =

{
maxIk

j
{μ(φ k

j ),min(μ(φ k
i ),μ(xk

i ))} i f μ(δ (k)
i j ) ≤ μ(x(k)

i )

μφ (k)
i otherwise

(15.9)
where

• μ(φ j)(k) is the fuzzy membership value of state φ j at instant k

• μ(φ j)(k+1) is the fuzzy membership value of the state φ j at instant k + 1
• μ(δi j) is the fuzzy membership value (threshold of activation) of the transition

δi j. This value depends on how close is the input template associated with the
transition from i to j.

• I(k)
j is the set of states φi which are connected to state φ j through a transition.

For a transition from one state of the main automaton to another to take place, a
sub-automaton must recognize the incoming templates and reach its final state. To
design a sub-automaton several experiments are carried out and several instances
of the same pattern are collected. These patterns are segmented and thus several
strings that connect the start to the end state are obtained. These strings are the
paths of the graph that represents the fuzzy sub-automaton. The simplest form of
a sub-automaton is a single state-transitions chain between the start and the end
state. Inside the sub-automata, for a transition to occur from a state φi to a state
φ j , the membership of the current input template xi must be greater than or equal
to the membership of the transition. If this condition is fulfilled, the membership of
the resulting state φ j is the maximum between the membership of the destination
state φ j and the minimum between the membership of the input template xi and the
membership of the source state φi. This is depicted in Fig. 15.7.

Example

It is assumed that the discrete states system is described by the main automaton
given in Fig. 15.4. The subautomata associated with the transitions of the main
automaton are given in Fig. 15.5 and Fig. 15.6. Transitions from states φ1 or φ3 can
be enabled if the sequence of templates forming pattern A is recognized. Transition
from state φ2 is enabled if the sequence of templates forming pattern B is recognized.
Finally, transition from state φ4 can be enabled if the sequence of templates that form
pattern C is recognized.

Initially, the start states of the sub-automata A,B,C are assigned a membership
of 0.5 (it is equipossible for a state of a sub-automaton to be active or not). Once
the pattern associated with a transition of the main automaton has been recognized,
the main automaton moves from state φi to state φ j . Without loss of generality it can
be assumed that the main automaton shown in Fig. 15.4 is in state φ3 and that the
automaton which substantiates the transition from φ3 to φ4 is C shown in Fig. 15.6.
Assume also that the incoming template is a. Then subautomaton C moves from
state C1 to state C2 via a. If the next two input templates are a and c respectively
then the subautomaton will move from state C2 to state C3 and finally to state CF .
The membership value of the final state CF depends on the degree of matching of
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the input templates a,a,c to the templates that have been defined in the classification
procedure. This process continues until all templates are presented to the system.

15.3 Simulation Tests of Fault Diagnosis with Fuzzy Automata

The performance of fuzzy automata for fault diagnosis is tested in the case of a
DC-motor. An example of modelling and fault detection and isolation (FDI) for
electromechanical systems with the use of formal languages theory, has been also
given in [258]. A sinusoidal output of amplitude A and frequency f is assumed, as
shown in Fig. 15.8 and Fig. 15.9. Faults should cause a change to the output’s am-
plitude or frequency. In this case, syntactic analysis is expected to identify a change
of the sinusoidal output pattern. The sinusoid is a single pattern and thus it can be
recognized by one single fuzzy automaton. The events sequence that corresponds to
the fault-free operation of the motor is given in Fig. 15.9.

In Section 4.3.1 the DC motor model controlled by the armature current was ana-
lyzed. Equivalently, one can derive a DC motor model controlled by the field (stator)
voltage. This is explained in the following, using the DC motor circuit depicted in
Fig. 4.4.

The produced (electromagnetic) torque T is proportional to the field current i f ,
i.e. T = Kf i f , where Kf is a constant. This happens because T = KΦia where the
magnetic flux Φ is proportional to the current i f and the armature current ia is
assumed to be constant. The relation between i f and v f is v f = R f i f + Lf i̇ f and
the torque T which is developed is used to move a load with moment of inertia J
and friction coefficient β i.e.

T = J · θ̈m +β θ̇m (15.10)

Introducing T and i f from the previous relations and applying the Laplace transform
yields

θm(s)
v f (s)

=
K

s(1 + s·τ f )(1 + s·τm)
(15.11)

where, K = Kf
βR f

, τ f = L f
R f

and τm = J
β are time constants. The corresponding state

space equations are

⎛
⎝
θ̇m

ω̇m

γ̇m

⎞
⎠ =

⎛
⎜⎝

0 1 0
0 0 1

0 −1
τ f τm

−(τ f +τm)
τ f τm

⎞
⎟⎠
⎛
⎝
θm

ωm

γm

⎞
⎠+

⎛
⎝

0
0
K

τ f τm

⎞
⎠ ·v f (15.12)

where θm is the angular position , ωm is the angular speed and γm is the angular
acceleration. In practice some of the parameters of the motor model, namely the
moment of inertia or the friction coefficient β are not known or can be time varying.

When the parameters of the motor are subject to a fault/change then the motor’s
output deviates from the output of the nominal model, as shown in Fig. 15.8. The
templates string that corresponds to the normal output (R f = 100) is a simple chain
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Fig. 15.8 Angle θ of the motor when operating in fault free conditions (continuous line), and
when a fault takes place at the stator’s resistance R f (dashed line)

Fig. 15.9 Language of the normally functioning motor

a1a2· · ·an (the start point of the automaton is connected to the end point through one
single path).

The segmentation procedure of the reference output resulted into a symmet-
ric chain a of M = 27 templates, namely c6bade11dabc6. The threshold for each
transition was taken to be μ(δi j) = 0.5. The initial state memberships were set to
μ(φ0

1 ) = 1 and μ(φ 0
i ) = 0, i = 2, · · · ,M + 1. Then, a change in resistance R f was

introduced, the output was monitored and the associated string of templates b was
generated. The elements bi of b were classified to fuzzy sets and fuzzy memberships
μ(bi) were obtained. For μ(bi)≥ μ(δi j), i = 1, · · · ,27 the application of Eq. (1) gave
the membership of the final state μ(φM+1) = min{μ(b1),μ(b2), · · · ,μ(bM)}.

Changes of R f caused a drop of μ(φM+1). For large changes of R f mismatch
between the template string of the reference and the monitored output appeared. For
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μ(φM+1) greater than the fault threshold the monitored signal was considered to
be normal. The fuzziness in the automaton, enabled the processing of an imperfect
signal and allowed for toleration of measurement noise and other ambiguities.

In conclusion, fuzzy automata and the syntactic analysis approach can be used for
fault diagnosis. The main concept is to segment the output of the monitored system
and to classify each one of its segments into pattern classes according to a fuzzy
membership value.

The string of templates a which corresponds to the properly operating system is
represented by a fuzzy automaton M. The string of templates b which corresponds
to the monitored output, becomes input to the fuzzy automaton M. Update of the
membership value of the state φ j of a, which is connected to state φi via the tran-
sition ai takes place using the fuzzy inference rule of Eq. (15.9). If the automaton
ends at a final state with membership degree that exceeds a certain threshold then
normal operation can be deduced. Transition fuzziness provides the automaton with
the flexibility to make multiple transitions simultaneously. The state fuzziness pro-
vides the automaton with the capability of being at multiple states at the same time.
Syntactic analysis based on fuzzy automata is an easily interpretable method for
model validation.



Chapter 16
Applications of Machine Vision to Industrial
Systems

Abstract. Applications of vision-based industrial robotic systems are rapidly ex-
panding due to the increase in computer processing power and low prices in ma-
chine vision hardware. Visual servoing over a network of synchronized cameras is
an example where the significance of machine vision and distributed filtering for
industrial robotic systems can be seen. A robotic manipulator is considered and a
cameras network consisting of multiple vision nodes is assumed to provide the vi-
sual information to be used in the control loop. A derivative-free implementation
of the Extended Information Filter is used to produce the aggregate state vector
of the robot by processing local state estimates coming from the distributed vision
nodes. The performance of the considered vision-based control scheme is evaluated
through simulation experiments.

16.1 Machine Vision and Imaging Transformations

16.1.1 Some Basic Transformations

In Chapter 1 the kinematics of a multi-link robot were analyzed. In the following,
several important transformations used in machine vision for robotic applications
will be discussed. It will also be explained how a camera model can be derived and
how one can treat the stereo imaging problem. The basic imaging transformations
are [107]:

(i) Translation: The objective is to translate a point with coordinates (X ,Y,Z) to a
new location by using displacements (X0,Y0,Z0). The translation is easily accom-
plished by using the following equation:

⎛
⎝

X∗
Y ∗
Z∗

⎞
⎠=

⎛
⎝

X
Y
Z

⎞
⎠+

⎛
⎝

X0

Y0

Z0

⎞
⎠ (16.1)
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where (X∗,Y ∗,Z∗) are the coordinates of the new point. Eq. (16.1) can be also writ-
ten in the form

⎛
⎜⎜⎝

X∗
Y ∗
Z∗
1

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

1 0 0 X0

0 1 0 Y0

0 0 1 Z0

0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

X
Y
Z
1

⎞
⎟⎟⎠ (16.2)

It is often useful to concatenate several transformations to produce a composite
result, such as translation, followed by scaling, and then rotation. Eq. (16.2) can be
written as

v∗ = Tv (16.3)

where T is a 4×4 transformation matrix, v is a column vector containing the orig-
inal coordinates and v∗ is a column vector whose components are the transformed
coordinates:

v =

⎛
⎜⎜⎝

X
Y
Z
1

⎞
⎟⎟⎠ , v∗ =

⎛
⎜⎜⎝

X∗
Y ∗
Z∗
1

⎞
⎟⎟⎠ (16.4)

while the matrix used for translation is given by

T =

⎛
⎜⎜⎝

1 0 0 X0

0 1 0 Y0

0 0 1 Z0

0 0 0 1

⎞
⎟⎟⎠ (16.5)

(ii) Scaling: Scaling by factors Sx, Sy and Sz along the X , Y and Z axes is given by
the transformation matrix

S =

⎛
⎜⎜⎝

Sx 0 0 0
0 Sy 0 0
0 0 Sz 0
0 0 0 1

⎞
⎟⎟⎠ (16.6)

(iii) Rotation: Rotation of a point about the Z coordinate axis by an angle θ is
achieved by using the transformation:

Rθ =

⎛
⎜⎜⎝

cos(θ) sin(θ ) 0 0
−sin(θ) cos(θ) 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (16.7)

The rotation angle θ is measured clockwise. Similarly, rotation of a point about the
X axis by an angle α is performed by using the transformation
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Rα =

⎛
⎜⎜⎝

1 0 0 0
0 cos(α) sin(α) 0
0 −sin(α) cos(α) 0
0 0 0 1

⎞
⎟⎟⎠ (16.8)

while rotation of a point about the Y axis by an angle β is achieved by using the
transformation

⎛
⎜⎜⎝

cos(β ) 0 −sin(β ) 0
0 1 0 0

sin(β ) 0 cos(β ) 0
0 0 0 1

⎞
⎟⎟⎠ (16.9)

(iv) Concatenation and inverse transformations: The application of several trans-
formations can be represented by a single 4×4 transformation matrix. For example,
translation, scaling and rotation about the Z axis of a point v is given by

v∗ = Rθ [S(Tv)] = Av (16.10)

where A is the 4×4 matrix A = RθST .

(v) inverse translation: The inverse translation matrix is given by

T−1 =

⎛
⎜⎜⎝

1 0 0 −X0

0 1 0 −Y0

0 0 1 −Z0

0 0 0 1

⎞
⎟⎟⎠ (16.11)

(vi) Inverse rotation: The inverse rotation matrix R−1
θ is given by

R−1
θ =

⎛
⎜⎜⎝

cos(−θ) sin(−θ ) 0 0
−sin(−θ) cos(−θ ) 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (16.12)

16.1.2 Perspective Transformation

A perspective transformation (also called imaging transformation) projects 3D
points onto a plane. Perspective transformations play a central role in image pro-
cessing because they provide an approximation to the manner in which an image is
formed by viewing the three-dimensional world. These transformations are differ-
ent from the ones described in the previous section because they are nonlinear in the
sense that they involve division by coordinate values [107].

A model of the image formation process is shown in Fig. 16.2. The camera co-
ordinate system (x,y,z) is defined as having the image plane coincident with the xy
plane, and optical axis (established by the center of the lens) along the z axis. Thus,
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Fig. 16.1 Rotation of a point about each of the coordinate axes. Angles are measured clock-
wise when looking along the rotation axis towards the origin

Fig. 16.2 Basic model of the imaging process. The camera coordinate system (x,y,z) is
aligned with the world coordinate system (X ,Y,Z)

the center of image plane is at the origin, and the center of the lens is at coordinates
(0,0,λ ). If the camera is in focus for distant objects, λ is the focal length of the
lens. It is assumed that the camera coordinate system (X ,Y,Z). This restriction will
be removed in the following section.

Let (X ,Y,Z) be the world coordinates of any point in a 3D scene, as shown in
Fig. 16.2. It will be assumed throughout the following discussion that Z > λ , that is
all points of interest lie in the front of the lens. What one wishes to do first is obtain
a relationship that gives the coordinates (x,y) of the projection of the point (X ,Y,Z)
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onto the image plane. This is easily accomplished by the use of similar triangles.
With reference to Fig. 16.2, it follows that

x
λ = − X

Z−λ = X
λ−Z

y
λ = − Y

Z−λ = Y
λ−Z

(16.13)

where the negative signs in front of X and Y indicate the image points are actu-
ally inverted, as it can be seen from the geometry of Fig. 16.2. The image-plane
coordinates of the projected 3D point follow directly from

x = λX
λ−Z

y = λY
λ−Z

(16.14)

where the negative signs in front of X and Y indicate that image points are actually
inverted, as can be seen from Fig. 16.2. The homogeneous coordinates of a point
with cartesian coordinates (X ,Y,Z) are defined as (kX ,kY,kZ,k), where k is an arbi-
trary, nonzero constant. Conversion of homogeneous coordinates back to cartesian
coordinates is accomplished by dividing the first three homogeneous coordinates by
the fourth. A point in the cartesian coordinates system is expressed in vector form
as

w =

⎛
⎝

X
Y
Z

⎞
⎠ (16.15)

and its homogeneous equivalent is given by

wh =

⎛
⎜⎜⎝

kX
kY
kz
k

⎞
⎟⎟⎠ (16.16)

If one defines the perspective transformation matrix

P =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 − 1

λ 1

⎞
⎟⎟⎠ (16.17)

Then, the product Pwh yields a vector that is denoted by ch and which provides the
camera coordinates in homogeneous form:

ch = Pwh =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 − 1

λ 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

kX
kY
kZ
k

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

kX
kY
kZ

− kZ
λ + k

⎞
⎟⎟⎠ (16.18)
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These coordinates can be converted to cartesian form by dividing each of the first
three components of ch by the fourth. Thus, the cartesian coordinates of any point
in the camera coordinate system are given in vector form by

c =

⎛
⎝

x
y
z

⎞
⎠=

⎛
⎜⎝

λX
λ−Z
λY
λ−Z
λZ
λ−Z

⎞
⎟⎠ (16.19)

The first two components of c are the (x,y) coordinates in the image plane of a
projected 3D point (X ,Y,Z) as given in Eq. (16.14). In terms of the model of Fig.
16.2 the third variable is not of interest. This component acts as a free variable in the
inverse perspective transformation. The inverse perspective transformation maps a
point back into 3D. In terms of Eq. 16.18 the inverse perspective transformation is
written as

wh = P−1ch (16.20)

where P−1 is easily found to be

P−1 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1

λ 1

⎞
⎟⎟⎠ (16.21)

It is assumed that a given image point has coordinates (x0,y0,0) where the 0 in the z
location simply indicates the fact that the image plane is located at z = 0. This point
can be expressed in homogeneous vector form as

ch =

⎛
⎜⎜⎝

kx0

ky0

0
k

⎞
⎟⎟⎠ (16.22)

The application of Eq. (16.20) provides the homogeneous coordinate vector

wh =

⎛
⎜⎜⎝

kx0

ky0

0
k

⎞
⎟⎟⎠ (16.23)

or, in cartesian coordinates

w =

⎛
⎝

X
Y
Z

⎞
⎠=

⎛
⎝

x0

y0

0

⎞
⎠ (16.24)
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This is undesirable since it gives Z = 0 for any 3D point. The problem is caused by
the fact that mapping a 3D scene onto the image plane is a many-to-one transfor-
mation. The image point (x0,y0) corresponds to the set of colinear 3D points which
lie on the line that passes through (x0,y0,0) and 0,0,λ . The equations of this line in
the world-coordinate system are obtained from Eq. (16.14), which gives

X = x0
λ (λ −Z)

Y = y0
λ (λ −Z) (16.25)

According to the previous equations, unless one knows something about the 3D
point which generated a given image point (for example, its Z coordinates), it is not
possible to completely recover the 3D point from its 2D image. This observation
can be used to formulate the inverse perspective transformation simply by using the
z component of ch as a free variable instead of 0. Thus, setting the homogeneous
transform

ch =

⎛
⎜⎜⎝

kx0

ky0

kz
k

⎞
⎟⎟⎠ (16.26)

one has about the inverse perspective transformation

wh =

⎛
⎜⎜⎝

kx0

ky0

kz
kz
λ

⎞
⎟⎟⎠ (16.27)

which after transforming to cartesian coordinates is written as

w =

⎛
⎝

X
Y
Z

⎞
⎠=

⎛
⎜⎝

λx0
λ+z
λy0
λ+z
λ z
λ+z

⎞
⎟⎠ (16.28)

Equivalently, treating z as a free variable results in the equations

X = λx0
λ+z , Y = λy0

λ+z , Z = λ z
λ+z

(16.29)

Finally, solving for z in terms of Z in the last equation and substituting in the first
two expressions yields

X = x0
λ (λ −Z)

Y = y0
λ (λ −Z) (16.30)

This shows that reconstructing a 3D point from its image by means of the inverse
perspective transformation requires knowledge of at least of the world coordinates
of the point.
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16.1.3 Camera Model

The formation of an image via the projection of 3D points onto an image plane is
described by Eq. (16.18) and Eq. (16.20). These two equations give the mathemati-
cal model of an imaging camera, which is based on the assumption that the camera
and the world a coordinate system coincide. Here a more general problem is con-
sidered in which the two coordinate systems are allowed to separate. This is shown
in Fig. 16.3, where the world coordinate system (X ,Y,Z) is used to locate both the
camera and the 3D points (denoted by w). The camera coordinate system is denoted
by (x,y,z) and the image points are denoted by c. It is assumed that the camera is
mounted on a gimbal which allows pan through an angle θ and tilt through an an-
gle α . Pan is defined as the angle between the x and X axes, and tilt as the angle
between the z and Z axes. The offset of the center of the gimbal from the origin
of the world coordinate system is denoted by vector w0 and the offset of the center
of the imaging plan with respect to the gimbal center is denoted by a vector r with
components (r1,r2,r3).

The objective is to bring the camera and the world coordinate system into align-
ment by applying a set of transformations. Once this is done, one can apply the per-
spective transformation given in Eq. (16.17) to obtain the image-plane coordinates
of any given world point [107]. Translation of the origin of the world coordinate

Fig. 16.3 Camera imaging and the two associated axes reference systems
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system to the location of the gimbal center is accomplished by using the following
transformation matrix

G =

⎛
⎜⎜⎝

1 0 0 −X0

0 1 0 −Y0

0 0 1 −Z0

0 0 0 1

⎞
⎟⎟⎠ (16.31)

This means that a homogeneous world point wh that is at coordinates X0,Y0,Z0 is
at the origin of the new coordinate system after the transformation Gwh. The pan
angle is measured between the x and X axes. In normal position, these two axes are
aligned. In order to pan the x axis through the desired angle, the angle is simply
rotated by θ . The rotation is with respect to the z-axis and is accomplished by using
the transformation matrix Rθ given in Eq. (16.6). Application of this matrix to all
points, (including the point Gwh) effectively rotates the x axis to the desired location.
When using Eq. (16.6) it is important to use the notation that angles are considered
positive when points are rotated clockwise, which implies a counterclockwise ro-
tation of the camera about the z-axis. The unrotated position 0o corresponds to the
case when the x and X axes are aligned.

Moreover, since tilt is the angle between the z and Z axes, the camera is tilt
an angle α by rotating the z axis by α . The rotation is with respect to the x axis
and is accomplished by applying the transformation matrix Rα given in Eq. (16.8)
to all points (including point RθGwh). As above, a counterclockwise rotation of
the camera implies positive angles, and the 0o mark is where the z and Z axes are
aligned.

The rotating matrices, which enable camera’s alignment, can be concatenated
into a single matrix R = RαRθ which is given by

R =

⎛
⎜⎜⎝

cos(θ) sin(θ ) 0 0
−sin(θ )cos(α) cos(θ)cos(α) sin(α) 0
sin(θ )sin(α) −cos(θ)sin(α) cos(α) 0

0 0 0 1

⎞
⎟⎟⎠ (16.32)

Finally, displacement of the origin of the image plane by r is achieved by the trans-
formation matrix

C =

⎛
⎜⎜⎝

1 0 0 −r1

0 1 0 −r2

0 0 1 −r3

0 0 0 1

⎞
⎟⎟⎠ (16.33)

Consequently, the application of the series of transformations CRGwh to wh brings
the world and camera coordinate systems into coincidence. The image-plane coordi-
nates of a point wh are finally obtained by using Eq. (16.17). An homogeneous world
point which is being viewed by a camera as derived in Fig. 16.3 has the following
homogeneous representation in the camera coordinate system

ch = PCRGwh (16.34)
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The cartesian coordinates of the imaged points can be expressed with the reference
to the camera coordinates

x = λ (X−X0)cos(θ)+(Y−Y0)sin(θ)−r1
−(X−X0)sin(θ)sin(α)+(Y−Y0)cos(θ)sin(α)−(Z−Z0)cos(α)+r3+λ

y = λ −(X−X0)sin(θ)cos(α)+(Y−Y0)cos(θ)cos(α)+(Z−Z0)sin(α)−r2
−(X−X0)sin(θ)sin(α)+(Y−Y0)cos(θ)sin(α)−(Z−Z0)cos(α)+r3+λ

(16.35)

16.1.4 Camera Calibration

In the previous section explicit equations for the image coordinates (x,y) of a world
point have been obtained. In Eq. (16.35) it has been shown that implementation of
these equations requires knowledge of the focal length, camera offsets, and angles
of pan and tilt. While these parameters could be measured directly, it is often more
convenient (e.g. when the camera moves frequently) to determine one or more of
the parameters by using the camera itself as a measuring device. This requires a set
of image points with known world coordinates, and the computational procedure
is used to obtain the camera parameters using these points, which is a procedure
known as camera calibration.

Starting from Eq. (16.34) one can set A = PCRG. The elements of A contain all
the camera parameters, and it holds that ch = Awh. Thus the relation between ch and
wh is given by ⎛

⎜⎜⎝
ch1

ch2

ch3
ch4

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎞
⎟⎟⎠

⎛
⎜⎜⎝

X
Y
Z
1

⎞
⎟⎟⎠ (16.36)

The camera coordinates in cartesian form are given by
(

x = ch1
ch4

y = ch2
ch4

)
(16.37)

Then, performing the substitutions ch1 = xch4 and ch2 = xch4 in Eq. (16.36) and
expanding the matrix product yields

xch4 = α11X +α12Y +α13Z +α14

ych4 = α21X +α22Y +α23Z +α24

ch4 = α41X +α42Y +α43Z +α44

(16.38)

where the expansion of ch3 has been ignored because it is related to z. Substitution
of ch4 in the first two equations of Eq. (16.38) yields two equations with two twelve
unknown coefficients:

α11X +α12Y +α13Z−α41xX −α42xY −α43xZ −α44x +α14 = 0
α21X +α22Y +α23Z−α41xX −α42xY −α43xZ −α44x +α24 = 0

(16.39)
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The calibration procedure is analyzed in the following steps: (i) obtaining m≥6
world points with known coordinates (Xi,Yi,Zi), i = 1,2, · · · ,m (there are two equa-
tions involving the coordinates of these points, so at least six points are needed), (ii)
imaging these points with the camera in a given position to obtain the corresponding
image points (xi,yi), i = 1,2, · · · ,m, using these results in Eq. (16.39) to solve for
the unknown coefficients.

16.1.5 Stereo Imaging

Mapping a 3D scene onto an image plane is a many-to-one transformation, therefore
an image point does not uniquely determine the location of a corresponding world
point. However, the missing depth information can be obtained by using stereo-
scopic imaging techniques. Stereo imaging as shown in fig. 16.4 involves obtaining
two separate image views of an object of interest (e.g. a world point w). The dis-
tance between the centers of the two lenses is called the baseline and is denoted by
B, and the objective is to find the coordinates (X ,Y,Z) of a point w given its image
points (x1,y1) and (x2,y2). It is assumed that the cameras are identical and that the
coordinate systems of both cameras are aligned, differing only in the location of
their origins. After the camera and world coordinate system have been brought into
coincidence, the xy plane of the image is aligned with the XY plane of the world
coordinate system. Then, the Z coordinate of w is exactly the same for both camera
coordinate systems [107].

It is assumed that the first camera is brought into coincidence with the world
coordinate system, as shown in Fig. 16.5. Then, from Eq. (16.25) point w lies on the
line with (partial) coordinates

Fig. 16.4 Model of the stereo imaging process
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Fig. 16.5 Top of the model of the stereo imaging process with the first camera brought into
coincidence with the world coordinate system

X1 =
x1

λ
(λ −Z1) (16.40)

where the subscripts on X and Z indicate that the first camera was moved to the
origin of the world coordinate system, while the second camera keeps its relative
arrangement shown in Fig. 16.4. If instead, the second camera had been brought to
the origin of the world coordinate system, then one would have that point w lies on
the line with coordinates

X2 =
x2

λ
(λ −Z2) (16.41)

However, due to the separation between cameras and the fact that the Z coordinate
of w is the same for both camera coordinate systems, it follows that

X2 = X1 + B
Z2 = Z1 = Z

(16.42)

Substituting Eq. (16.42) into Eq. (16.40) and Eq. (16.41) one obtains the following
equations

X1 + B = x2
λ (λ −Z)

X1 = x1
λ (λ −Z) (16.43)

Using the above two equations and solving for Z one obtains

Z = λ − λB
x2 − x1

(16.44)



16.2 Multi Cameras-Based Visual Servoing for Industrial Robots 339

which indicates that if the difference between the corresponding image coordinates
x2 and x1 can be determined, and the baseline and focal length are known, then the
calculation of the measured point’s depth is also possible. Knowing Z one can also
calculate coordinates X and Y from Eq. (16.40) and Eq. (16.41). The most difficult
task in using Eq. (16.44) is to find two corresponding points in different images
of the same scene. Since these points are in the same vicinity, a frequently used
approach is to select a point within a small region in one of the image views and
then attempt to find the best matching region in the other view by using correlation
techniques. When the scene contains distinct features, such as prominent corners, a
feature matching-matching approach is easier to provide a solution for establishing
correspondence.

16.2 Multi Cameras-Based Visual Servoing for Industrial
Robots

Going beyond the previous analysis on machine vision and the basic imaging trans-
formations, nonlinear dynamical systems control will be examined and its implemen-
tation will be attempted based on the fusion of state estimates which are derived from
local filters processing position measurements from distributed cameras. A possible
approach for fusing the state estimates from distributed filters, under the assumption
of Gaussian noises and nonlinear dynamics, is the Extended Information Filter (EIF).
As analyzed in Chapter 8, the Extended Information Filter is a distributed Extended
Kalman Filter, which performs fusion of state estimates provided by local Extended
Kalman Filters. In the Extended Information Filter the local filters do not exchange
raw measurements but send to an aggregation filter their local information matrices
(local inverse covariance matrices which can be also associated to Fisher Informa-
tion Matrices) and their associated local information state vectors (products of the
local information matrices with the local state vectors) [218],[435].

Since the operation of the local Extended Kalman Filters is based on a lineariza-
tion assumption around the local state estimates and on the truncation of the higher
order terms that result from the associated Taylor series expansion, cumulative state
estimation errors are introduced and the optimality property of the standard Kalman
Filter is no longer maintained. These cumulative local state estimation errors are
also transferred to the Extended Information Filter, and consequently when the ag-
gregate state estimation is used in a control loop, the stability of the control loop
may be affected [335],[336]. To overcome the aforementioned drawbacks, it is pro-
posed to use a derivative-free Kalman Filter in place of the local Extended Kalman
Filters. The nonlinear system is first subject to a linearization transformation and
next state estimation is performed by applying the Kalman Filter to the linearized
model. Unlike EKF, the proposed method provides state estimates without the need
to calculate partial derivatives and Jacobians. Then, fusion of the state estimates
provided by the local derivative-free Kalman Filters is possible through the stages
of the standard Information Filter.

The aggregate state vector produced by the derivative-free Extended Information
Filter can be used for sensoless control and robotic visual servoing. The problem of
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visual servoing over a network of synchronised cameras has been previously studied
in [371]. In this chapter, visual servoing over a cameras network is considered for the
nonlinear dynamic model of a planar single-link robotic manipulator. The position
of the robot’s end effector in the cartesian space (and equivalently the angle of the
robotic link) is measured through m cameras (see Fig. 16.6). In turn m distributed
derivative-free Kalman Filters are used to estimate the robotic link’s state vectors.
Next, the local state estimates are fused with the use of the standard Information
Filter. Finally, the aggregate estimation of the state vector is used in a control loop
which enables the robotic link to perform trajectory tracking.

16.3 Distributed Filtering for Sensorless Control

16.3.1 Visual Servoing over a Network of Synchronized Cameras

Visual servoing over a network of synchronized cameras is an example where the
significance of the proposed distributed filtering approach can be seen. Applica-
tions of vision-based robotic systems are rapidly expanding due to the increase
in computer processing power and low prices of cameras, image grabbers, CPUs
and computer memory [80],[154],[250],[261],[465]. In order to satisfy strict accu-
racy constraints imposed by demanding manufacturing specifications visual servo-
ing systems must be fault tolerant. This means that in the presence of temporary or
permanent failures of the robotic system components, the system must continue to
provide valid control outputs which will allow the robot to complete its assigned
tasks. By parallelizing the execution of modules in the vision-based control loop,
not only are the delays minimized such that the vision constraints can be satisfied,
but also the system can be made fault tolerant.

Next, a position-based visual servoing system will be analyzed. This visual servo-
ing system is characterized by the use of multiple fixed cameras to control a planar
robot, as shown in Fig. 16.6 and Fig. 16.7. The presented approach relies on neither
position nor velocity sensors, and directly sets the motor control current using only
visual feedback. Direct visual servoing is implemented using a distributed filtering
scheme which permits to fuse the estimates of the robot’s state vector computed by
local filters, each one associated to a camera in the cameras network. The cameras’
network can be based on multiple cameras connected to a computer with a frame
grabber to form a vision node. Each vision node has the ability to control the cam-
era’s synchronization and to capture and process images. Each vision node consists
of the camera, the frame grabber and the filter which estimates motion characteris-
tics of the monitored robot joint. The vision nodes are connected by a network to
form a distributed vision system controlled by a master computer. The master com-
puter is in turn connected to a planar 1-DOF robot joint and uses the vision feedback
to perform direct visual servoing.

The master computer communicates video synchronization information over the
network to each vision node. Typical sources of measurement noise include charge-
coupled device (CCD) noise, analog-to-digital (A/D) noise and finite word-length
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Fig. 16.6 Distributed cameras network and distributed information processing units for vi-
sual servoing

effects. Under ideal conditions, the effective noise variance from these sources
should remain relatively constant. Occlusions can be also considered as a noise
source.

16.3.2 Robot’s State Estimation through Distributed Filtering

Fusion of the local state estimates which are provided by filters running on the vision
nodes can improve the accuracy and robustness of the performed state estimation,
thus also improving the performance of the robot’s control loop. Under the assump-
tion of Gaussian noise, a possible approach for fusing the state estimates from the
distributed local filters is the Extended Information Filter (EIF). The Extended In-
formation Filter provides an aggregate state estimate by weighting the state vectors
produced by the local Extended Kalman Filters with the inverse of the associated
estimation error covariance matrices.

Visual servoing over the previously described cameras network is considered for
the nonlinear dynamic model of a single-link robotic manipulator (see Fig. 16.7).
The robot can be programmed to execute a manufacturing task, such as disassem-
bly or welding. The position of the robot’s end effector in the cartesian space (and
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Fig. 16.7 Visual servoing based on fusion of distributed EKF state estimates

consequently the angle for the robotic link) is measured by the aforementioned m
distributed cameras. The proposed multi-camera based robotic control loop can be
useful in several vision-based industrial robotic applications where the vision is oc-
cluded or heavily disturbed by noise sources, e.g. arc welding and plasma cutting
[428],[429]. In such applications there is need to fuse measurements from multiple
cameras so as to obtain redundancy in the visual information and permit the robot
to complete safely and within the specified accuracy constraints its assigned tasks
[270]. The nonlinear control loop of the robotic manipulation which is based on
the fusion of position measurements from distributed cameras with the use of the
distributed filtering is depicted in Fig. 16.7.

16.4 Distributed State Estimation Using the EIF

16.4.1 Local State Estimation with Extended Kalman Filtering

As analyzed in Chapter 6, in the discrete-time case a dynamical system can be ex-
pressed in the form of a discrete-time state model:

x(k +1) =Φ(k)x(k)+ L(k)u(k)+ w(k)
z(k) = Cx(k)+ v(k) (16.45)

where the state x(k) is a m-vector, w(k) is a m-element process noise vector and Φ
is a m×m real matrix. Moreover the output measurement z(k) is a p-vector, C is
an p×m-matrix of real numbers, and v(k) is the measurement noise. It is assumed
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that the process noise w(k) and the measurement noise v(k) are uncorrelated. The
process and measurement noise covariance matrices are denoted as Q(k) and R(k),
respectively. Now the problem is to estimate the state x(k) based on the measure-
ments z(1),z(2), · · · ,z(k). This can be done with the use of Kalman Filtering. As
explained in Chapter 6, the discrete-time Kalman filter can be decomposed into
two parts: i) time update (prediction stage), and ii) measurement update (correction
stage).

measurement update:

K(k) = P−(k)CT [C·P−(k)CT + R]−1

x̂(k) = x̂−(k)+ K(k)[z(k)−Cx̂−(k)]
P(k) = P−(k)−K(k)CP−(k)

(16.46)

time update:

P−(k + 1) = Φ(k)P(k)ΦT (k)+ Q(k)
x̂−(k + 1) =Φ(k)x̂(k)+ L(k)u(k) (16.47)

Again as explained in Chapter 6, in a more generic case, the following nonlinear
state-space model can be considered:

x(k + 1) = φ(x(k))+ L(k)u(k)+ w(k)
z(k) = γ(x(k))+ v(k) (16.48)

The operators φ(x) and γ(x) are φ(x) = [φ1(x),φ2(x), · · · ,φm(x)]T , and γ(x) =
[γ1(x),γ2(x), · · · ,γp(x)]T , respectively. It is assumed that φ and γ are sufficiently
smooth in x so that each one has a valid series Taylor expansion. Following a lin-
earization procedure, about the current state vector estimate x̂(k) the the linearized
version of the system is obtained: x(k+1) = φ(x̂(k))+Jφ (x̂(k))[x(k)− x̂(k)]+w(k),
z(k) = γ(x̂−(k))+ Jγ (x̂−(k))[x(k)− x̂−(k)]+ v(k), where Jφ (x̂(k)) and Jγ(x̂(k)) are
the associated Jacobian matrices of φ and γ respectively. Now, the EKF recursion
is as follows:

Measurement update. Acquire z(k) and compute:

K(k) = P−(k)JT
γ (x̂−(k))·[Jγ(x̂−(k))P−(k)JT

γ (x̂−(k))+ R(k)]−1

x̂(k) = x̂−(k)+ K(k)[z(k)− γ(x̂−(k))]
P(k) = P−(k)−K(k)Jγ(x̂−(k))P−(k)

(16.49)

Time update. Compute:

P−(k + 1) = Jφ (x̂(k))P(k)JT
φ (x̂(k))+ Q(k)

x̂−(k + 1) = φ(x̂(k))+ L(k)u(k)
(16.50)
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16.4.2 State Estimation through a Nonlinear Transformation

It will be shown that through a nonlinear transformation it is possible to design a
state estimator (observer) for a class of nonlinear systems, including models of in-
dustrial robotic manipulators. This result will be generalized towards derivative-free
Kalman Filtering for nonlinear systems. The following continuous-time nonlinear
single-output system is examined [256]

ẋ = f (x)+ q0(x,u)+∑p
i=1θiqi(x,u), z = h(x), y∈R (16.51)

with qi : Rn×Rm →Rn, 0≤i≤p, f : Rn→Rn, h : Rn→R, smooth functions, h(x0) = 0,
q0(x,0) = 0 for every x ∈ Rn; x is the state vector, u(x,t) : R+→Rm is the control
which is assumed to be known, θ is the parameter vector which is supposed to
be constant and z is the scalar output. A main assumption is that the systems of
Eq.(16.51) are transformable by a parameter independent state-space change of co-
ordinates in Rn , given by ζ = T (x), T (x0) = 0, into the system

ζ̇ = Acζ +ψ0(z,u)+∑p
i=1θiψi(z,u), z = Ccζ (16.52)

Ac =

⎛
⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 0

⎞
⎟⎟⎟⎠ CT

c =

⎛
⎜⎜⎜⎜⎝

1
0
0
· · ·
0

⎞
⎟⎟⎟⎟⎠

(16.53)

and ψi : R×Rm→Rn smooth functions for i = 0, · · · , p. The necessary and suffi-
cient conditions for the initial nonlinear system to be transformable into the form of
Eq.(16.52) have been given in [255],[256]. Then for every parameter vector θ , the
system

ζ̂ = Acζ̂ +ψ0(z,u)+∑p
i=1θiψi(z,u)+ K(z−Ccζ̂ )

x̂ = T−1(ζ̂ )
(16.54)

is an asymptotic observer for a suitable choice of K provided that the state x(t) is
bounded, with estimation error dynamics

ė = (Ac −KCc)e =

⎛
⎜⎜⎜⎜⎜⎝

−k1 1 0 · · · 0
−k2 0 1 · · · 0

...
...

...
...

...
−kn−1 0 0 · · · 1
−kn 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠

e (16.55)

The eigenvalues of Ac −KCc can be arbitrarily placed by choosing the vector K,
since they coincide with the roots of the polynomial sn + k1sn−1 + · · ·+ kn.
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16.4.3 Derivative-Free Kalman Filtering for Nonlinear Systems

Since Eq. (16.54) provides an asympotic observer for the initial nonlinear system of
Eq. (16.51) one can consider a case in which the observation error gain matrix K can
be provided by the Kalman Filter equations given initially in the continuous-time KF
formulation, or in their discrete-time equivalent of Eq. (16.46) and Eq. (16.47) [42].
The following single-input single-output nonlinear dynamical system is considered

x(n) = f (x,t)+ g(x,t)u(x,t) (16.56)

where y = x is the system’s output, and f (x,t), g(x,t) are nonlinear functions. It can
be noticed that the system of Eq. (16.56) belongs to the general class of systems
of Eq. (16.51). Assuming the transformation ζi = x(i−1), i = 1, · · · ,n, and x(n) =
f (x,t)+ g(x,t)u(x, t) = v(ζ ,t), i.e. ζ̇n = v(ζ ,t), one obtains the linearized system
of the form: ζ̇1 = ζ2, ζ̇2 = ζ3, · · · · · · , ζ̇n−1 = ζn, ζ̇n = v(ζ ,t), which in turn can be
written in state-space equations as

⎛
⎜⎜⎜⎜⎝

ζ̇1

ζ̇2

· · ·
ζ̇n−1

ζ̇n

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ζ1

ζ2

· · ·
ζn−1

ζn

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

0
0
· · ·
0
1

⎞
⎟⎟⎟⎟⎠

v(ζ ,t) (16.57)

z =
(
1 0 0 · · · 0

)
ζ (16.58)

The system of Eq. (16.57) and Eq. (16.58) has been written in the form of Eq.
(16.52), which means that Eq. (16.54) is the associated asymptotic observer. There-
fore, the observation gain K appearing in Eq. (16.54) can be found using either
linear observer design methods (in that case the elements of the observation error
gain matrix K have fixed values), or the recursive calculation of the Kalman Fil-
ter gain described Eq. (16.46) and Eq. (16.47) [337]. The latter approach will be
followed in this chapter.

16.4.4 Fusing Estimations from Local Distributed Filters

Again the discrete-time nonlinear system of Eq. (16.48) is considered. The Extended
Information Filter (EIF) performs fusion of the local state vector estimates which
are provided by the local Extended Kalman Filters, (running at vision nodes shown
in Fig. 16.6) using the Information matrix and the Information state vector [218].
As noted in Chapter 8, the Information Matrix is the inverse of the state vector
covariance matrix, and can be also associated to the Fisher Information matrix [344].
The Information state vector is the product between the Information matrix and the
local state vector estimate

Y(k) = P−1(k) = I(k)
ŷ(k) = P−(k)−1x̂(k) = Y(k)x̂(k)

(16.59)
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Following the analysis of Chapter 8, the update equation for the Information Matrix
and the Information state vector are given by Y (k) = P−(k)−1 +JT

γ (k)R−1(k)Jγ(k) =
Y−(k)+ I(k) and ŷ(k) = ŷ−(k)+JT

γ R(k)−1[z(k)−γ(x(k))+Jγ x̂−(k)] = ŷ−(k)+ i(k),
where I(k) = JT

γ (k)R(k)−1Jγ(k) is the associated information matrix and,

i(k) = JT
γ R(k)−1[(z(k)− γ(x(k))) + Jγ x̂−(k)] is the information state contribution.

The predicted information state vector and Information matrix are obtained from
ŷ−(k)= P−(k)−1x̂−(k), Y−(k) = P−(k)−1 = [Jφ (k)P−(k)Jφ (k)

T + Q(k)]−1. It is
assumed that an observation vector zi(k) is available for the N different sensor sites
(vision nodes) i = 1,2, · · · ,N and each vision node observes the robot according to
the local observation model, expressed by zi(k) = γ(x(k))+ vi(k), i = 1,2, · · · ,N,
where the local noise vector vi(k)∼N(0,Ri) is assumed to be white Gaussian and un-
correlated between sensors. The variance of a composite observation noise vector vk

is expressed in terms of the block diagonal matrix R(k) = diag[R1(k), · · · ,RN(k)]T .
The information contribution can be expressed by a linear combination of each
local information state contribution ii and the associated information matrix Ii

at the i-th sensor site i(k) = ∑N
i=1Ji

γ
T (k)Ri(k)−1[zi(k) − γ i(x(k)) + Ji

γ (k)x̂−(k)],

I(k) =∑N
i=1Ji

γ
T (k)Ri(k)−1Ji

γ(k). Thus, the update equations for fusing the local state

estimates become ŷ(k) = ŷ−(k)+∑N
i=1Ji

γ
T (k)Ri(k)−1[zi(k)−γ i(x(k))+Ji

γ (k)x̂
−(k)],

and Y(k) = Y−(k)+∑N
i=1Ji

γ
T (k)Ri(k)−1Ji

γ(k). It is noted that in the Extended Infor-
mation Filter an aggregation (master) fusion filter produces a global estimate by
using the local sensor information provided by each local filter. As in the case of the
Extended Kalman Filter the local filters which constitute the Extended Information
Filter can be written in terms of time update and a measurement update equation.

Measurement update: Acquire z(k) and compute

Y (k) = P−(k)−1 + JT
γ (k)R(k)−1Jγ(k), or Y (k) = Y−(k)+ I(k)

where I(k) = JT
γ (k)R−1(k)Jγ (k),and

ŷ(k) = ŷ−(k)+ JT
γ (k)R(k)−1[z(k)− γ(x̂(k))+ Jγ x̂−(k)]
or ŷ(k) = ŷ−(k)+ i(k)

(16.60)

Time update: Compute

Y−(k + 1) = P−(k + 1)−1 = [Jφ (k)P(k)Jφ (k)T + Q(k)]−1

and y−(k + 1) = P−(k + 1)−1x̂−(k + 1)
(16.61)

If the derivative-free Kalman Filter is used in place of the Extended Kalman Filter
then in the EIF equations the following matrix substitutions should be performed:
Jφ (k)→Ac, Jγ(k)→Cc, where matrices Ac and Cc have been defined in Eq. (16.53).
Moreover, the covariance matrices P(k) and P−(k) are the ones obtained from the
linear Kalman Filter update equations given in Eq. (16.46) and Eq. (16.47).
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16.4.5 Calculation of the Aggregate State Estimation

The outputs of the local filters are treated as measurements which are fed into
the aggregation fusion filter [218]. Then each local filter is expressed by its re-
spective error covariance and estimate in terms of information contributions and
is described by Pi

−1(k) = P−
i (k)−1 +JT

γ R(k)−1Jγ(k)x̂i(k) = Pi(k)(P−
i (k)−1x̂−i (k))+

JT
γ R(k)−1[zi(k)−γ i(x(k))+Ji

γ (k)x̂
−
i (k)]. As shown in Chapter 8, the global estimate

and the associated error covariance for the aggregate fusion filter can be rewritten
in terms of the computed estimates and covariances from the local filters using the
relations

JT
γ (k)R(k)−1Jγ(k) = Pi(k)−1 −P−

i (k)−1

JT
γ (k)R(k)−1[zi(k)− γ i(x(k))+ Ji

γ(k)x̂
−(k)] = Pi(k)−1x̂i(k)−Pi(k)−1x̂i(k−1).

(16.62)
For the general case of N local filters i = 1, · · · ,N, the distributed filtering architec-
ture is described by the following equations

P(k)−1 = P−(k)−1 +∑N
i=1[Pi(k)−1 −P−

i (k)−1]
x̂(k) = P(k)[P−(k)−1x̂−(k)+∑N

i=1(Pi(k)−1x̂i(k)−P−
i (k)−1x̂−i (k))]

(16.63)

The global state update equation in the above distributed filter can be written in
terms of the information state vector and of the information matrix, i.e. ŷ(k) =
ŷ−(k)+∑N

i=1(ŷi(k)− ŷ−i (k)), and Ŷ (k) = Ŷ−(k)+∑N
i=1(Ŷi(k)− Ŷ−

i (k)). From Eq.
(16.63) it can be seen that if a local filter (processing station) fails, then the local
covariance matrices and the local state estimates provided by the rest of the filters
will enable an accurate computation of the target’s state vector.

16.5 Simulation Tests of the Vision-Based Control System

16.5.1 Dynamics and Control of the Robotic Manipulator

The 1-DOF robotic model to be controlled with the use of visual servoing over a
distributed cameras network consists of a rigid link which is rotated by a DC motor,
as shown in Fig. 16.7. The model of the DC motor was analyzed in subsection 4.3.1
and is described by the set of equations: Lİ =−keω−RI +V , Jω̇ = keI−kdω−Γd,
with the following notations L : armature inductance, I : armature current, ke : mo-
tor electrical constant, R : armature resistance, V : input voltage, taken as control
input, J : motor inertia, ω : rotor rotation speed, kd : mechanical dumping con-
stant, Γd : disturbance or external load torque. It is assumed that Γd = mgl·sin(θ ),
i.e. that the DC motor rotates a rigid robotic link of length l with a mass m at-
tached to its end. Then, denoting the state vector as [x1,x2,x3]T = [θ , θ̇ , θ̈ ]T , a non-
linear model of the DC motor is obtained ẋ = f (x,t) + g(x,t)u, where f (x,t) =
[ f1(x,t), f2(x,t), f3(x,t)]T is a vector field function with elements: f1(x,t) = x2,

f2(x,t) = x3, f3(x,t) = − k2
e+kdR

JL x2 − RJ+Kd L
JL x3−, −Rmgl

JL sin(x1) − mgl
J cos(x1)x2.

Similarly g(x,t) = [g1(x,t),g2(x,t),g3(x,t)]T is a vector field function with
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elements: g1(x,t) = 0, g2(x,t) = 0, g3(x,t) = ke
JL . Having chosen the joint’s angle

to be the system’s output, the state space equation of the 1-DOF robot manipulator
can be rewritten as

x(3) = f̄ (x)+ ḡ(x)u (16.64)

where functions f̄ (x) and ḡ(x) are given by

f̄ (x) = − k2
e+kdR

JL x2 − RJ+Kd L
JL x3 − Rmgl

JL sin(x1)− mgl
J cos(x1)x2

and ḡ(x) = ke
JL .

(16.65)

This is a system in the form of Eq. (16.56), therefore a state estimator can be de-
signed according to the results on derivative-free Kalman Filtering.

The controller has to make the system’s output (angle θ of the motor) follow
a given reference signal xd . For measurable state vector x and uncertain func-
tions f (x,t) and g(x,t) an appropriate control law for the 1-DOF robotic model is

u = 1
g(x,t) [x

(n)
d − f (x,t)−KT e +uc], with e = x−xd , eT = [e, ė, ë, · · · ,e(n−1)]T , KT =

[kn,kn−1, · · · ,k1], such that the polynomial e(n) + k1e(n−1) + k2e(n−2) + · · ·+ kne is
Hurwitz. The previously defined control law results into e(n) = −KT e + uc + d̃,
where the supervisory control term uc aims at the compensation of modeling er-
rors as well as of the additive disturbance d̃. Suitable selection of the feedback gain
K assures that the error dynamics will result into limt→∞e(t) = 0. In case of state
estimation-based (sensorless control), and denoting, x̂ as the estimated state vector
and ê = x̂− xd as the estimated tracking error one has

u =
1

g(x̂,t)
[x(n)

d − f (x̂,t)−KT ê+ uc] (16.66)

As explained in the previous sections the estimated state vector x̂ is obtained by
fusing local state estimates from the vision nodes with the use of the Extended
Information Filter, or with the use of the derivative-free Extended Information Filter.

16.5.2 Evaluation of Results on Vision-Based Control

The simulation experiments show that for the considered class of nonlinear systems,
and particularly for the multi-cameras visual servoing model, it is possible to apply
the standard Information Filter for fusing distributed state estimates from derivative-
free local Kalman Filters.

This approach enables to avoid use of the Extended Information Filter which
is based on local Extended Kalman Filters, thus also avoiding to introduce in the
estimation procedure linearization errors due to the truncation of higher order Taylor
expansion terms. Consequently, this means that one can have a more robust state
estimation, as in the case of the Unscented Information Filter. The performance of
the control loop which is based on Extended Information Filtering and on derivative-
free Extended Information Filtering is shown in Fig. 16.8 and Fig. 16.9.
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Fig. 16.8 Tracking of a sinusoidal setpoint using fusion of position measurements from dis-
tributed cameras with the use of (a) the Extended Information Filter (b) the derivative-free
Extended Information Filter
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Fig. 16.9 Tracking of a seesaw setpoint using fusion of position measurements from dis-
tributed cameras with the use of (a) the Extended Information Filter (b) the derivative-free
Extended Information Filter





References

1. Addison, P.S.: The illustrared wavelet transform handbook. Institute of Physics Pub-
lishing (2002)

2. Adibi, M.M., Kafka, R.J., Maram, S., Mili, L.M.: On power system controlled separa-
tion. IEEE Transactions on Power Systems 21(4), 1894–1902 (2006)

3. Ahrens, J.H., Khalil, H.K.: Closed-Loop Behavior of a Class of Nonlinear Systems Un-
der EKF-Based Control. IEEE Transactions on Automatic Control 52, 536–540 (2007)

4. Al-Baiyat, S.A.: Power system transient stability enhancement by STATCOM with non-
linear H∞ stabilizer. Electric Power Systems Research 73, 45–52 (2005)

5. Amari, S., Murata, N., Müller, K.-R., Finke, M., Yang, H.H.: Asymptotic Statisti-
cal Theory of Overtraining and Cross-Validation. IEEE Transactions on Neural Net-
works 8(5), 985–996 (1997)

6. Anderson, G., Donalek, P., Farmer, R., Hatziargyriou, N., Kamwa, I., Kundur, P., Mar-
tins, N., Paserba, J., Pourbeik, P., Sanchez-Gasca, J., Schulz, R., Stankovic, A., Taylor,
C., Vittal, V.: Causes of the 2003 Major Grid Blackouts in North America and Europe,
and Recommended Means to Improve System Dynamic Performance. IEEE Transac-
tions on Power Systems 20(4), 1922–1928 (2005)

7. Antsaklis, P., Kohn, W., Nerode, A., Sastry, S.: HS 1994. LNCS, vol. 999. Springer,
Heidelberg (1995)

8. Aoustin, Y., Fliess, M., Mounier, H., Rouchon, P., Rudoplh, J.: Theory and practice
in the motion planning control of a flexible robot arm using Mikusiǹski operators, In:
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50. Campillo, F.: Particulaire & Modèles de Markov Cachés, Master Course Notes “Filtrage
et traitement des doneées”. Université de Sud-Toulon Var, France (2006)
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viscoélasticité et contrôle optimal, huitièmes entretiens du Centre Jacques Cartier, Lyon
(1996)

98. Fliess, M., Mounier, H.: Tracking control and π-freeness of infinite dimensional linear
systems. In: Picci, G., Gilliam, D.S. (eds.) Dynamical Systems, Control, Coding and
Computer Vision, vol. 258, pp. 41–68. Birkhaüser, Basel (1999)
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