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Preface

We study applications of nonparametric function estimation into risk manage-
ment, portfolio management, and option pricing.

The methods of nonparametric function estimation have not been commonly
used in risk management. The scarcity of data in the tails of a distribution makes
it difficult to utilize the methods of nonparametric function estimation. How-
ever, it has turned out that some semiparametric methods are able to improve
purely parametric methods.

Academic research has paid less attention to portfolio selection, as compared
to the attention that has been paid to risk management and option pricing. We
study applications of nonparametric prediction methods to portfolio selection.
The use of nonparametric function estimation to reach practical financial deci-
sions is an important part of machine learning.

Option pricing might be the most widely studied part of quantitative finance
in academic research. In fact, the birth of modern quantitative finance is often
dated to the 1973 publication of the Black—Scholes option pricing formula.
Option pricing has been dominated by parametric methods, and it is especially
interesting to provide some insights of nonparametric function estimation into
option pricing.

The book is suitable for mathematicians and statisticians who would like to
know about applications of mathematics and statistics into finance. In addi-
tion, the book is suitable for graduate students, researchers, and practitioners
of quantitative finance who would like to study some underlying mathematics
of finance, and would like to learn new methods. Some parts of the book require
fluency in mathematics.

Klemel4 (2014) is a book that contains risk management (volatility prediction
and quantile estimation) and it describes methods of nonparametric regression,
which can be applied in portfolio selection. In this book, we cover those topics
and also include a part about option pricing.

xiii
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Preface

The chapters are rather independent studies of well-defined topics. It is
possible to read the individual chapters without a detailed study of the previous
material.

The research in the book is reproducible, because we provide R-code of the
computations. It is my hope, that this makes it easier for students to utilize
the book, and makes it easier for instructors to adapt the material into their
teaching.

The web page of the book is available in http://jussiklemela.com/statfina/.

Helsinki, Finland Jussi Klemeld
June 2017



Introduction

Nonparametric function estimation has many useful applications in quantita-
tive finance. We study four areas of quantitative finance: statistical finance, risk
management, portfolio management, and pricing of securities.!

A main theme of the book is to study quantitative finance starting only with
few modeling assumptions. For example, we study the performance of non-
parametric prediction in portfolio selection, and we study the performance
of nonparametric quadratic hedging in option pricing, without constructing
detailed models for the markets. We use some classical parametric methods,
such as Black—Scholes pricing, as benchmarks to provide comparisons with
nonparametric methods.

A second theme of the book is to put emphasis on the study of economic
significance instead of statistical significance. For example, studying economic
significance in portfolio selection could mean that we study whether prediction
methods are able to produce portfolios with large Sharpe ratios. In contrast,
studying statistical significance in portfolio selection could mean that we study
whether asset returns are predictable in the sense of the mean squared pre-
diction error. Studying economic significance in option pricing could mean
that we study whether hedging methods are able to well approximate the pay-
off of the option. In contrast, studying statistical significance in option pricing
could mean that we study the goodness-of-fit of our underlying model for asset
prices. Studying statistical significance can be important for understanding the
underlying reasons for economic significance. However, the study of economic
significance is of primary importance, and the study of statistical significance
is of secondary importance.

1 The quantitative finance section of preprint archive “arxiv.org” contains four additional sections:
computational finance, general finance, mathematical finance, and trading and market microstruc-
ture. We cover some topics of computational finance that are useful in derivative pricing, such
as lattice methods and Monte Carlo methods. In addition, we cover some topics of mathematical
finance, such as the fundamental theorems of asset pricing.

Nonparametric Finance, First Edition. Jussi Klemela.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.



2

1 Introduction

A third theme of the book is the connections between the various parts of
quantitative finance.

1) There are connections between risk management and portfolio selection: In
portfolio selection, it is important to consider not only the expected returns
but also the riskiness of the assets. In fact, the distinction between risk man-
agement and portfolio selection is not clear-cut.

2) There are connections between risk management and option pricing: The
prices of options are largely influenced by the riskiness of the underlying
assets.

3) There are connections between portfolio management and option pricing:
Options are important assets to be included in a portfolio. In addition, mul-
tiperiod portfolio selection and option hedging can both be casted in the
same mathematical framework.

Volatility prediction is useful in risk management, option pricing, and portfo-
lio selection. Thus, volatility prediction is a constant topic throughout the book.

1.1 Statistical Finance

Statistical finance makes statistical analysis of financial and economic data.

Chapter 2 contains a description of the basic financial instruments, and it
contains a description of the data sets that are analyzed in the book.

Chapter 3 studies univariate data analysis. We study univariate financial time
series, but ignore the time series properties of data. A decomposition of a uni-
variate distribution into the central part and into the tail parts is an important
theme of the chapter.

1) We use different estimators for the central part and for the tails. Non-
parametric density estimation is efficient at the center of a univariate
distribution, but in the tails of the distribution the scarcity of data makes
nonparametric estimation difficult. When we combine a nonparametric
estimator for the central part and a parametric estimator for the tails then
we obtain a semiparametric estimator for the distribution.

2) We use different visualization methods for the central part and for the tails.
We apply two basic visualization tools: (1) kernel density estimates and (2)
tail plots. Kernel density estimates can be used to visualize and to estimate
the central part of the distribution. Tail plots are an empirical distribution
based tool, and they can be used to visualize the tails of the distribution.

Chapter 4 studies multivariate data analysis. Multivariate data analysis con-
siders simultaneously several time series, but the time series properties are
ignored, and thus the analysis can be called cross-sectional. A basic concept
is the copula, which makes it possible to compose a multivariate distribution



1.2 Risk Management

into the part that describes the dependence and into the parts that describe
the marginal distributions. We can estimate the marginal distributions using
nonparametric methods, but to estimate dependence for a high-dimensional
distribution it can be useful to apply parametric models. Combining nonpara-
metric estimators of marginals and a parametric estimator of the copula leads
to a semiparametric estimator of the distribution. Note that there is an analogy
between the decomposition of a multivariate distribution into the copula and
the marginals, and between the decomposition of a univariate distribution into
the tails and the central area.

Chapter 5 studies time series analysis. Time series analysis adds the elements
of dependence and time variation into the univariate and multivariate data anal-
ysis. Completely nonparametric time series modeling tends to become quite
multidimensional, because dependence over k consecutive time points leads
to the estimation of a k-dimensional distribution. However, a rather conve-
nient method for time series analysis is obtained by taking as a starting point
a univariate or a multivariate parametric model, and estimating the parameter
using time localized smoothing. For example, we can apply time localized least
squares or time localized maximum likelihood.

Chapter 6 studies prediction. Prediction is a central topic in time series
analysis. The previous observations are used to predict the future observations.
A distinction is made between moving average type of predictors and state
space type of predictors. Both types of predictors can arise from parametric
time series modeling: moving average and GARCH (1, 1) models lead to moving
average predictors, and autoregressive models lead to state space predictors. It
is easy to construct nonparametric moving average predictors, and nonpara-
metric regression analysis leads to nonparametric state space predictors.

1.2 Risk Management

Risk management studies measurement and management of financial risks. We
concentrate on the market risk, which means the risk of unfavorable moves of
asset prices.?

Chapter 7 studies volatility prediction. Prediction of volatility means in our
terminology that the square of the return of a financial asset is predicted. The
volatility prediction is extremely useful in almost every part of quantitative

2 Other relevant types of risk are credit risk, liquidity risk, and operational risk. Credit risk means
the risk of the default of a debtor and the risks resulting from downgrading the rating of a debtor.
Liquidity risk means the risk from additional cost of liquidating a position when buyers are rare.
Operational risk means the risk caused by natural disasters, failures of the physical plant and equip-
ment of a firm, failures in electronic trading, clearing or wire transfers, trading and legal liability
losses, internal and external theft and fraud, inappropriate contractual negotiations, criminal mis-
management, lawsuits, bad advice, and safety issues.

3
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1 Introduction

finance: we can apply volatility prediction in quantile estimation, and volatility
prediction is an essential tool in option pricing and in portfolio selection.
In addition, volatility prediction is needed when trading with variance
products. We concentrate on the following three methods:

1) GARCH models are a classical and successful method to produce volatility
predictions.

2) Exponentially weighted moving averages of squared returns lead to volatility
predictions that are as good as GARCH (1, 1) predictions.

3) Nonparametric state space smoothing leads to improvements of GARCH
(1,1) predictions. We apply kernel regression with two explanatory
variables: a moving average of squared returns and a moving average of
returns. The response variable is a future squared return. A moving average
of squared returns is in itself a good volatility predictor, but including a
kernel regression on top of moving averages improves the predictions. In
particular, we can take the leverage effect into account. The leverage effect
means that when past returns have been low, then the future volatility tends
to be higher, as compared to the future volatility when the past returns have
been high.

Chapter 8 studies estimation of quantiles. The term value-at-risk is used to
denote upper quantiles of a loss distribution of a financial asset. Value-at-risk
at level 0.5 < p < 1 has a direct interpretation in risk management: it is such
value that the probability of losing more has a smaller probability than 1 — p.
We concentrate on the following three main classes of quantile estimators:

1) The empirical quantile estimator is a quantile of the empirical distribution.
The empirical quantile estimator has many variants, since it can be used in
conditional quantile estimation and it can be modified by kernel smoothing.
In addition, empirical quantiles can be combined with volatility based and
excess distribution based methods, since empirical quantiles can be used to
estimate the quantiles of the residuals.

2) Volatility based quantile estimators apply a location-scale model. A volatil-
ity estimator leads directly to a quantile estimator, since estimation of the
location is less important. The performance of volatility based quantile esti-
mators depends on the choice of the base distribution, whose location and
scale is estimated. However, in a time series setting the use of the empirical
quantiles of the residuals provides a method that bypasses the problem of
the choice of the base distribution.

3) Excess distribution based quantile estimators model the tail parametrically.
These estimators ignore the central part of the distribution and model only
the tail part parametrically. The tail part of the distribution is called the
excess distribution. Extreme value theory can be used to justify the choice
of the generalized Pareto distribution as the model for the excess distribu-
tion. Empirical work has confirmed that the generalized Pareto distribution
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provides a good fit in many cases. In a time series setting the estimation can
be improved if the parameters of the excess distribution are taken to be time
changing. In addition, in a time series setting we can make the estimation
more robust to the choice of the parametric model by applying the empiri-
cal quantiles of the residuals. In this case, the definition of a residual is more
involved than in the case of volatility based quantile estimators.

1.3 Portfolio Management

Portfolio management studies optimal security selection and capital allocation.
In addition, portfolio management studies performance measurement.

1)

1)

2)

Chapter 9 discusses some basic concepts of portfolio theory.

A major issue is to introduce concepts for the comparison of wealth dis-
tributions and return distributions. The comparison can be made by the
Markowitz mean—variance criterion or by the expected utility. We need to
define what it means that a return distribution is better than another return
distribution. This is needed both in portfolio selection and in performance
measurement.

A second major issue is the distinction between the one period portfolio
selection and multiperiod portfolio selection. We concentrate on the one
period portfolio selection, but it is instructive to discuss the differences
between the approaches.

Chapter 10 studies performance measurement.

The basic performance measures that we discuss are the Sharpe ratio, cer-
tainty equivalent, and the alpha of an asset.

Graphical tools are extremely helpful in performance measurement. The
performance measures are sensitive to the time period over which the per-
formance is measured. The graphical tools address the issue of the sensitivity
of the time period to the performance measures. The graphical tools help to
detect periods of good performance and the periods of bad performance,
and thus they give clues for searching explanations for good and bad perfor-
mance.

Chapter 11 studies Markowitz portfolio theory. Markowitz portfolios are

such portfolios that minimize the variance of the portfolio return, under a
minimal requirement for the expected return of the portfolio. Markowitz
portfolios can be utilized in dynamic portfolio selection by predicting the
future returns, future squared returns, and future products of returns of two
assets, as will be done in Chapter 12.

Chapter 12 studies dynamic portfolio selection. Dynamic portfolio selection

means in our terminology such trading where the weights of the portfolio are
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rebalanced at the beginning of each period using the available information.
Dynamic portfolio selection utilizes the fact that the expected returns, the
expected squared returns (variances), and the expected products of returns
(covariances) change in time. The classical insight of efficient markets has to be
modified to take into account the predictability of future returns and squared
returns.

1) First, we discuss how prediction can be used in portfolio selection. Time
series regression can be applied in portfolio selection both when we use
the maximization of the expected utility and when we use mean—variance
preferences. In the case of the maximization of the expected utility, we pre-
dict the future utility transformed returns with time series regression. In the
case of mean—variance preferences we predict, the future returns, squared
returns, and products of returns.

2) The Markowitz criterion can be seen as decomposing the expected utility
into the first two moments. The decomposition has the advantage that dif-
ferent methods can be used to predict the returns, squared returns, and
products of returns. The main issue is to study the different types of pre-
dictability of the mean and the variance. In fact, most of the predictability
comes from the variance part, whereas the expectation part has a much
weaker predictability.

a) We need to use different prediction horizons for the prediction of the
returns and for the prediction of the squared returns. For the prediction
of the returns we need to use a prediction horizon of 1 year or more. For
the prediction of squared returns we can use a prediction horizon of 1
month or less.

b) We need to use different prediction methods for the prediction of the
returns and for the prediction of the squared returns. For the prediction
of the returns, it is useful to apply such explanatory variables as dividend
yield and term spread. For the prediction of the squared returns we can
apply GARCH predictors or exponentially weighted moving averages.

1.4 Pricing of Securities

Pricing of securities considers valuation and hedging of financial securities and
their derivatives.

Chapter 13 studies principles of asset pricing. We start the chapter by a
heuristic introduction to pricing of securities, and discuss such concepts as
absolute pricing, relative pricing using arbitrage, and relative pricing using
“statistical arbitrage.”

3 'The term statistical arbitrage refers often to pairs trading and to the application of mean rever-
sion. We use term statistical arbitrage more generally, to refer to cases where two payoffs are close
to each other with high probability. Thus, also term probabilistic arbitrage could be used.
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1.4 Pricing of Securities

The first main topic is to state and prove the first fundamental theorem of
asset pricing in discrete time models, and to state the second fundamental
theorem of asset pricing. These theorems provide the foundations on which
we build the development of statistical methods of asset pricing. We give a
constructive proof of the first fundamental theorem of asset pricing, instead
of using tools of abstract functional analysis. The constructive proof of the
first fundamental theorem of asset pricing turns out to be useful, because the
method can be applied in practise to price options in incomplete models.
The construction uses the Esscher martingale measure, and it is a special
case of using utility functions to price derivatives.

The second main topic is to discuss evaluation of pricing and hedging meth-
ods. The basic evaluation method will be to measure the hedging error. The
hedging error is the difference between the payoft of the derivative and the
terminal value of the hedging portfolio. By measuring the hedging error,
we simultaneously measure the modeling error and the estimation error.
Minimizing the hedging error has economic significance, whereas modeling
error and estimation error are underlying statistical concepts. Thus, empha-
sizing the hedging error is an example of emphasizing economic significance
instead of statistical significance.

Chapter 14 studies pricing by arbitrage. The principle of arbitrage-free pric-

ing combines two different topics: pricing of futures and pricing of options in
complete models, like binary models and the Black—Scholes model.

1)

A main topic is pricing in multiperiod binary models. First, these models
introduce the idea of backward induction, which is an important numerical
tool to value options in the Black—Scholes model, and which is an important
tool in quadratic hedging. Second, these models lead asymptotically to the
Black-Scholes prices.

A second main topic is to study the properties of Black—Scholes hedging. We
illustrate how hedging frequency, strike price, expected return, and volatil-
ity influence the hedging error. These illustrations give insight into hedging
methods in general, and not only into Black—Scholes hedging.

A third main topic is to study how Black—Scholes pricing and hedging per-
forms with various volatility predictors. Black—Scholes pricing and hedging
provides a benchmark, against which we can measure the performance of
other pricing methods. Black—Scholes pricing and hedging assumes that
the stock prices have a log-normal distribution with a constant volatility.
However, when we combine Black—Scholes pricing and hedging with a time
changing GARCH (1, 1) volatility, then we obtain a method that is hard to
beat.

Chapter 15 gives an overview of several pricing methods in incomplete

models. Binary models and the Black—Scholes model are complete models,
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but we are interested in option pricing when the model makes only few
restrictions on the underlying distribution of the stock prices. Chapter 16 is
devoted to quadratic hedging, and in Chapter 15 we discuss pricing by utility
maximization, pricing by absolutely continuous changes of measures, pricing
in GARCH models, pricing by a nonparametric method, pricing by estimation
of the risk neutral density, and pricing by quantile hedging.

1)

A main topic is to introduce two general approaches for pricing derivatives
in incomplete models: the method of utility functions and the method of
an absolutely continuous change of measure (Girsanov’s theorem). For
some Gaussian processes and for some utility functions these methods
coincide. The method of utility functions can be applied to construct a
nonparametric method of pricing options, whereas Girsanov’s theorem can
be applied in the case of some processes with Gaussian innovations, such
as some GARCH processes.

A second main topic is to discuss pricing in GARCH models. GARCH (1, 1)
model gives a reasonable fit to the distribution of stock prices. Girsanov’s
theorem can be used to find a natural pricing function when it is assumed
that the stock returns follow a GARCH (1, 1) process. Heston—Nandi mod-
ification of the standard GARCH (1, 1) model leads to a computationally
attractive pricing method. Heston—Nandi model has been rather popular,
and it can be considered as a discrete time version of continuous time
stochastic volatility models.

Chapter 16 studies quadratic hedging. In quadratic hedging the price and the

hedging coefficients are determined so that the mean squared hedging error is
minimized. The hedging error means the difference between the terminal value
of the hedging portfolio and the value of the option at the expiration.

1)

A main aim of the chapter is to derive recursive formulas for quadratically
optimal prices and hedging coefficients. It is important to cover both the
global and the local quadratic hedging. Local quadratic hedging leads to
formulas that are easier to implement than the formulas of global quadratic
hedging. Quadratic hedging has some analogies with linear least squares
regression, but quadratic hedging is a version of sequential regression,
which is done in a time series setting. In addition, quadratic hedging
does not assume a linear model, but we are searching the best linear
approximation in the sense of the mean squared error.

A second main aim of the chapter is to implement quadratic hedging.
This will be done only for local quadratic hedging. We implement local
quadratic hedging nonparametrically, without assuming any model for the
underlying distribution of the stock prices. Although quadratic hedging
finds an optimal linear approximation for the payoff of the option, the
quadratically optimal price and hedging coefficients have a nonlinear
dependence on volatility, and thus nonparametric approach may lead to a
better fit for these nonlinear functions than a parametric modeling.



1.4 Pricing of Securities

Chapter 17 studies option strategies. Option strategies provide a large
number of return distributions to choose from, so that it is possible to create a
portfolio that is tailored to the expectations and the risk profile of each investor.
We discuss such option strategies as vertical spreads, strangles, straddles,
butterflies, condors, and calendar spreads. Options can be combined with
stocks to create covered calls and protective put. Options can be combined
with bonds to create capital guarantee products. We give insight into these
option strategies by estimating the return distributions of the strategies.

Chapter 18 describes interest rate derivatives. The market of interest rate
derivatives is even larger than the market of equity derivatives. Interest rate
forwards include forward zero-coupon bonds, forward rate agreements, and
swaps. Interest rate options include caps and floors.

9
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Financial Instruments

The basic assets which are traded in financial markets include stocks and bonds.
A large part of financial markets consists of trading with derivative assets, like
futures and options, whose prices are derived from the prices of the basic assets.
Stock indexes can be considered as derivative assets, since the price of a stock
index is a linear combination of the prices of the underlying stocks. A stock
index is a more simple derivative asset than an option, whose terminal price is
a nonlinear function of the price of the underlying stock.

In addition, we describe in this section the data sets which are used through-
out the book to illustrate the methods.

2.1 Stocks

Stocks are securities representing an ownership in a corporation. The owner
of a stock has a limited liability. The limited liability implies that the price of a
stock is always nonnegative, so that the price S, of a stock at time ¢ satisfies

0<S, < oo.

Stock issuing companies have a variety of legal forms depending on the country
of domicile of the company.! Common stock typically gives voting rights in
company decisions, whereas preferred stock does not typically give voting
rights, but the owners of preferred stocks are entitled to receive a certain
amount of dividend payments before the owners of common stock can receive
any dividends.

1 Statistical data of stock prices is usually available only for the stocks that are publicly traded in
a stock exchange. In UK the companies whose stocks are publicly traded are called public lim-
ited companies (PLC), and in Germany they are called Aktiengesellschaften (AG). The companies
whose owners have a limited liability but whose stocks are not publicly traded are called private
companies limited by shares (Ltd), and Gesellschaft mit beschrankter Haftung (GmbH).

Nonparametric Finance, First Edition. Jussi Klemela.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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2.1.1 Stock Indexes

We define a stock index, give examples of the uses of stock indexes, and give
examples of popular stock indexes.

2.1.1.1 Definition of a Stock Index
The price of a stock index is a weighted sum of stock prices. The value I, of a
stock index at time ¢ is calculated by formula

d
L=C) ns, (2.1)
i=1

where C is a constant, d is the number of stocks in the index, #; is the number of
shares of stock i, and S! is a suitably adjusted price of stock i at time ¢, where i =
1,...,d. Note that #,S} is the market capitalization of stock i. The definition of a
stock index involves three parameters: constant C, numbers 7,, and values S:

1) The constant C can be chosen, for example, to make the value of the index
equal to 100 at a given past day. When the constitution of the index is
changed, then the constant C is changed, to keep the index equal to 100 at
the chosen day.

2) The numbers 7, can equal the total number of shares of stock i, but they can
also be equal to the number of freely floating stocks. Float market capital-
ization excludes stocks which are not freely floating (cannot be bought in
the open market).

3) The values S! are calculated differently depending on whether the index is a
price return index or a total return index. Price return indexes are calculated
without regard to cash dividends but total return indexes are calculated by
reinvesting cash dividends. The adjusted closing price of a stock is the clos-
ing price of a stock which is adjusted to cash dividends, stock dividends,
stock splits, and also to more complex corporate actions, such as rights
offerings. The calculation of the adjusted closing price is often made by data
providers.

2.1.1.2 Uses of Stock Indexes

Stock indexes can be used to summarize information about stock markets.
Stock indexes can also be used as a proxy for the market index when testing
and applying finance theories. The market index is the stock index which sums
the values of all companies worldwide. Stock indexes are traded in futures
markets and in exchanges as exchange traded funds (ETF). Furthermore,
investment banks provide financial instruments whose values depend on stock
indexes.



2.1 Stocks

2.1.1.3 Examples of Stock Indexes

Dow Jones Industrial Average Dow Jones Industrial Average is an index where
the prices are not weighted by the number of shares, and thus Dow Jones Indus-
trial Average is an exception of the rule (2.1). Dow Jones Industrial Average is
just a sum of the prices of the components, multiplied by a constant.

S&P 500 S&P 500 was created at March 4, 1957. It was calculated back until
1928 and the basis value was taken to be 10 from 1941 until 1943. The S&P 500
index is a price return index, but there exists also total return versions (divi-
dends are invested back) and net total return versions (dividends minus taxes
are invested back) of the S&P 500 index. The S&P 500 is a market value weighted
index: prices of stocks are weighted according to the market capitalizations of
the companies. Since 2005 the index is float weighted, so that the market capi-
talization is calculated using only stocks that are available for public trading.

Nasdag-100 Nasdaq-100 is calculated since January 31, 1985. The basis value
was at that day 250. Nasdaq-100 is a price index, so that the dividends are not
included in the value of the index. Nasdaq-100 is a different index than Nasdaq
Composite, which is based on 3000 companies. Nasdaq-100 is calculated using
the 100 largest companies in Nasdaq Composite. Nasdaq-100 is a market value
weighted index, but the influence of the largest companies is capped (the weight
of any single company is not allowed to be larger than 24%).

DAX30 DAX 30 (Deutscher AktienindeX) was created at July 1, 1988. The basis
value is 1000 at December 31, 1987. DAX 30 is a performance index (dividends
are reinvested in calculating the value of the index). DAX 30 stock index is a
market value weighted index of 30 largest German companies. Market value
is calculated using only free floating stocks (stocks that are not owned by an
owner which has more than 5% of stocks). The largeness of a company is mea-
sured by taking into account both the free floating market value and the transac-
tion volume (total value of the stocks that are exchanged in a given time period).
The weight of any single company is not allowed to be larger than 10%.

2.1.2 Stock Prices and Returns

Statistical analysis of stock markets is usually done from time series of returns.
Before defining a return time series we describe the initial price data in its raw
form, as it is evolving in a stock exchange, and we describe some methods of
sampling of prices.

15
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2.1.2.1 Initial Price Data

During the opening hours of an exchange the stocks are changing hands at
irregular time points. The stock exchange receives bid prices with volumes
(numbers of stocks one is willing to buy with the given bid price) from buyers,
and ask prices with volumes from the sellers. The exchange has an algorithm
which allocates the stocks from the sellers to the buyers. The allocation hap-
pens when there are bid prices and ask prices that meet each other (ask prices
that are smaller or equal to bid prices). The algorithms of stock allocation take
into account the arrival times of the orders, the volumes of the orders, and the
types of the orders.

The most common order types are the market order and the limit order.
A market order expresses the intention to buy the stock at the lowest ask
price, or the intention to sell the stock at the highest bid price. A limit order
expresses the intention to buy the stock at the lowest ask price, under the
condition that the ask price is lower than the given limit price, or the intention
to sell the stock at the highest bid price, under the condition that the bid price
is higher than the given limit price.

2.1.2.2 Sampling of Prices

The price changes at irregular time intervals in a stock exchange, but for the
purpose of a statistical analysis we typically sample price at equispaced inter-
vals.

To obtain a time series of daily prices, we can pick the closing price of each
trading day. The closing price can be considered as the consensus reached
between the sellers and the buyers about the fair price, taking into account all
information gathered during the day. An alternative method would choose the
opening price.

However, depending on the purpose of the analysis, we can sample data once
in a second, once in 10 days, or once in a month, for example. Note that when
the sampling interval is longer (monthly, quarterly, or yearly), the number of
observations in a return time series will be smaller, and thus the statistical con-
clusions may be more vague. Note also, that the distribution of the returns may
vary depending on the sampling frequency.

It is not obvious how to define equispaced sampling, since we can measure
the time as the physical time, trading time, or effective trading time:

1) The physical time is the usual time in calendar days. Assume that we want
to sample data once in 20 days. If we use the physical time, then we calculate
all calendar days.

2) The trading time or market time takes into account only the time when mar-
kets are open. For example, when we want to sample data once in 20 days and
we use trading time, then we calculate only the trading days (not all calendar
days). However, information is accumulating also during the weekends (and
during the night), which would be an argument in favor of physical time.
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3) The effective trading time takes into account that the market activity is not
uniform during market hours. To define the sampling interval, we could take
into account the number of transactions, or the volume of the transactions.
The effective trading time is interesting especially when we gather intraday
data, but it can be used also in the case of longer sampling intervals, to cor-
rect for diminishing market activity during summer or at the end of year.?

Sampling daily closing prices can be interpreted as using the trading time,
because weekends and holidays are ignored in the daily sampling. Since there
is roughly the same number of trading days in every week and every month, we
can interpret sampling the weekly and monthly closing prices both as using the
physical time and using the trading time. Discussion about scales in finance is
provided by Mantegna and Stanley (2000).

2.1.2.3 Stock Returns
Let us consider a time series S, ..., S; of stock prices, sampled at equispaced
time points. We can calculate gross returns, net returns, or logarithmic returns.

1) Gross returns (price relatives) are defined by
S

ey
S,
2) net returns (relative price differences) are defined by
St+1 - St

St

3) logarithmic returns (continuously compounded returns) are defined by

log<£>,
St

wheret=0,...,T — 1.

Gross returns are positive numbers like 1.02 (when the stock rose 2%) or 0.98
(when the stock fell 2%). Value zero for a gross return means bankruptcy. The
gross returns have a concrete interpretation: starting with wealth W, and buy-
ing a stock with price S, leads to the wealth W, = W, x S,,,/S,.

Net returns are obtained from gross returns by subtracting one, and thus net
returns are numbers larger than —1. Net returns are numbers like 0.02 (when
the stock rose 2%) or —0.02 (when the stock fell 2%). Value —1 for a net return
means bankruptcy.

s

2 Let V, be the number or the volume of the transactions at time . After sampling time ¢, is chosen,
we can determine the next sampling time ¢, ; by

—mm{ DUV, it <u s}ZC},

where C > 0 is a constant.
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Logarithmic returns are obtained from gross returns by taking the loga-
rithm.? A logarithmic return can take any real value, but typically logarithmic
returns are close to net returns, because log(x) ~ x — 1 when x &~ 1. Value —
for a logarithmic return means bankruptcy. The logarithmic function is an
example of a utility function, as discussed in Section 9.2.2. We will consider
taking the logarithm as an application of a utility function, and apply mainly
gross returns. However, there are some reasons for the use of logarithmic
returns. First, we can derive approximate distributions for the stock price by
applying limit theorems for the sum of the logarithmic returns, which makes
the study of logarithmic returns interesting. Indeed, we can write

T-1 S
Sy =S, exp 2 log ( Hl) . (2.2)
t=0 St

See (3.49) for a more detailed derivation of the log-normal model for stock
prices. Second, taking logarithms of returns transforms the original time series
of prices to a stationary time series, as explained in the connection of Figure 5.1.

For a statistical modeling we need typically a stationary time series. Station-
arity is defined in Section 5.1. For example, autoregressive moving average pro-
cesses (ARMA) and generalized autoregressive conditional heteroskedasticity
(GARCH) models, defined in Section 5.3, are stationary time series models. The
original time series of stock prices is not a stationary time series, but it can be
argued that a return time series is close to stationarity.*

Note that we can write, analogously to (2.2),

T-1

Sy =S+ D (S1 =Sy

t=0

Thus, we can derive approximate distributions for the stock price by apply-
ing limit theorems for the sum of the price differences. See (3.46) for a more
detailed derivation of the normal model for stock prices. The time series of
price differences is not a stationary time series, as discussed in the connection
of Figure 5.2. However, for short time periods a time series of price differences
can be approximately stationary. Thus, modeling price differences instead of
returns can be reasonable.

3 We take the logarithm to be the natural logarithm, with e (Euler’s number or Napier’s constant)
as the basis. The logarithmic functions with other bases could be used as well.

4 Time series {Y,} is called strictly stationary, if (Y}, ..., ¥,) and (Y, ..., ¥,,,) are identically dis-
tributed for all £, k € {0, +1, +2, ...}. Stationarity means, roughly speaking, that every subperiod of
the time series has similar statistical characteristics. For example, consider a stock whose price is
1$, which then rises to have a price of 100$. The change of 1% is very large at the beginning of the
period but moderate at the end of the period. Thus, the time series of prices is not stationary.
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2.2 Fixed Income Instruments

One unit of currency today is better than one unit of currency tomorrow. Fixed
income research studies how much one should pay today, in order to receive a
cash payment at a future day.

Fixed income instruments are described in more detail in Chapter 18. Here
we give an overview of zero-coupon bonds, coupon paying bonds, interest
rates, and of calculation of bond returns.

2.2.1 Bonds
Bonds include zero-coupon bonds and coupon bearing bonds.

1) A zero-coupon bond, or a pure discount bond, is a certificate which gives
the owner a nominal amount P (principal) at the future maturity time 7.
Typically we take P = 1.

2) Coupon bearing bonds make regular payments (coupons) before the final
payment at the maturity. A coupon bond can be defined as a series of
payments Py, ..., P, at times T, ..., T,. The terminal payment contains the
principal and the final coupon payment.®

A zero-coupon bond is a more basic instrument than a coupon bond, because
a coupon bond can be defined as a portfolio of zero-coupon bonds. Let C(¢,, T,,)
be the price of a coupon bond which starts at £, and makes payments P,, ..., P,
attimes T} < --- < T,, where T} > t,. It holds that

n
Clty: T,) = ). P, Z(t, T)),
i=1
where Z(t,, T;) are the prices of zero-coupon bonds starting at ¢, with maturity
T;, and with principal P = 1.

The cash flow generated by a bond is determined when the bond is issued.
The bond can be traded before its maturity and its price can fluctuate before
the maturity. For example, the price of a zero-coupon bond with the nominal
amount P is equal to P at the maturity, but its price fluctuates until the maturity
is reached. The price fluctuates as a function of interest rate fluctuation. Thus,
bonds bear interest rate risk if they are not kept until maturity. If the bonds are
kept until maturity they bear the inflation risk and the risk of the default of the
issuer.

Bonds can be divided by the issuer. The main classes are government bonds,
municipal bonds, and corporate bonds. Credit rating services give credit ratings

5 For example, a 5 year 4% semi-annual coupon bond with 1000$ face value makes ten 20$ pay-
ments every 6 months and the final payment of 1000$. Thus P, = 20$ for i = 1,...,n — 1 and the
last payment is P, = 1020%, where n = 10.
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to the bond issuers. Credit ratings help the investors to evaluate the probability
of the payment default. Credit rating services include Standard & Poor’s and
Moody’s.

US Treasury securities are backed by the US government. US Treasury secu-
rities include Treasury bills, Treasury notes, and Treasury bonds.

1) Treasury bills are zero-coupon bonds with original time to maturity of 1
year or less.°

2) Treasury notes are coupon bonds with original time to maturity between 2
and 10 years.

3) Treasury bonds are coupon bonds with original time to maturity of more
than 10 years.

Widely traded German government bonds include Bundesschatzanweisun-
gen (Schitze), which are 2 year notes, Bundesobligationen (Bobls), which are
5 year notes, and Bundesanleihen (Bunds and Buxl), which are 10 and 30 year
bonds.

There are many types of fixed income securities. Callable bonds are such
bonds that allow the bond issuer to purchase the bond back from the bond-
holders. The callable bonds make it possible for the issuer to retire old high-rate
bonds and issue new low-rate bonds. Floating rate bonds (floaters) are such
bonds whose rates are adjusted periodically to match inflation rates. Treasury
STRIPS are such fixed income securities where the principal and the interest
component of US Treasury securities are traded as separate zero coupon secu-
rities. The acronym STRIPS means separate trading of registered interest and
principal securities.

2.2.2 Interest Rates

Interest rates are the basis for many financial contracts. We can separate
between the government rates and the interbank rates. The government rates
are deduced from the bonds issued by the governments and the interbank rates
are obtained from the rates at which deposits are exchanged between banks.

Libor (London interbank offered rate) and Euribor (Euro interbank offered
rate) are important interbank rates. Eonia (Euro overnight index average) is an
overnight interest rate within the eurozone, but unlike the Euribor and Libor
does not include term loans. Eonia is similar to the federal funds rate in the
US. Sonia (Sterling overnight index average) is the reference rate for overnight
unsecured transactions in the Sterling market.

Euribor and Libor are comparable base rates. Euribor rates are trimmed aver-
ages of interbank interest rates at which a collection of European banks are

6 The Treasury issues bills with times to maturity of 13 weeks, 26 weeks, and 52 weeks (3-month
bills, 6-month bills, and 1-year bills). 13-week bills and 26-week bills are auctioned once a week
and 52-week bills are auctioned once a month.
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prepared to lend to one another. Libor rates are trimmed averages of interbank
interest rates at which a collection of banks on the London money market are
prepared to lend to one another. Euribor and Libor rates come in different
maturities. In contrast to Euribor rates, the Libor rates come in different cur-
rencies. Euribor and Libor rates are not based on actual transactions, whereas
Eonia is based on actual transactions. A study published in May 2008 in The
Wall Street Journal suggested that the banks may have understated the bor-
rowing costs. This led to reform proposals concerning the calculation of the
Libor rates.

The Eonia rate is the rate at which banks provide unsecured loans to each
other with a duration of 1 day within the Euro area. The Eonia rate is a vol-
ume weighted average of transactions on a given day and it is computed by the
European Central Bank by the close of the real-time gross settlement on each
business day. Eonia can be considered as the 1 day Euribor rate or as the Euro
version of overnight index swaps (OIS). The Eonia panel consists of over 50
mostly European banks. The banks are chosen to the panel based on their pre-
mium credit rating and the high volume of their money market transactions
conducted within the Eurozone. Banks on the Eonia panel are the same banks
included in the Euribor panel.

Euribor rates are used as a reference rate for euro-denominated forward rate
agreements, short term interest rate futures contracts, and interest rate swaps.
Libor rates are used for Sterling and US dollar-denominated instruments.

2.2.2.1 Definitions of Interest Rates
The different definitions of interest rate are discussed in detail in Chapter 18.
As an example we can consider a loan where the interest is paid at the end
of a given period, and the interest is quoted in annual rate. Rate conventions
determine how the quoted annual rate relates to the actual payment. Maybe
the most common convention is to pay P X rT /360, where P is the principal, r
is the annual rate, and 7 is the number of calendar days of the deposit or loan.
Note that loan rates are either rates that apply to a loan starting now until a
given expiry, or forward rates, that are rates applying to a loan starting in the
future for a given period of time.

Rates are quoted in percents but they are compared in basis points, where a
basis point is 0.01%, that is, 1% is 100 basis points.

2.2.2.2 The Risk Free Rate

The risk free rate is different depending on the investment horizon. For one day
horizon the risk free rate could be the Eonia rate or the rate of a bank account,
and for 1 month horizon the risk free rate could be the rate of 1 month govern-
ment bond.
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2.2.3 Bond Prices and Returns

A 10year zero-coupon bond has the time to maturity of 10 years at the emission,
after 1 year the time to maturity is 9 years, after 2 years the time to maturity is 8
years, and so on. The price of the zero-coupon bond is fluctuating according to
the fluctuation of the interest rates, until the price equals the nominal value at
the maturity. Thus, the price of the 10 year zero-coupon bond gives information
about the 10 year interest rate at the emission, after 1 year the price of the bond
gives information about the 9 year interest rate, after 2 years the price of the
bond gives information about the 8 year interest rate, and so on.

Information of the bond markets is given by data providers in terms of the
yields. The yield of a zero-coupon bond is defined as

1
-

Y, T)=- T log Z(t, T), (2.3)

where T — ¢ is the time to maturity in fractions of a year, and Z(t, T') is the bond
price with Z(T', T) = 1. The price of a bond can be written in terms the yield as

Z(t, T) = exp{—~(T - OY(t, T)}.

See Section 18.1.2 for a discussion of the yield of a zero-coupon bond.
Let s < t < T, where T is the expiration day of the zero-coupon bond. The
prices are Z(s, T) and Z(¢t, T). The return of a bond trader is equal to

Z(t, T) exp{—(T =Yt T)}

Z(s,T)  exp{—(T —s)Y(s,T)}
=exp{(T —s)[Y(s, T) = Y(t, )] + (t — )Y (£, T)}, (2.4)

where weused thefact T —t =T — s — (¢t — s).
Data providers give a time series Y, ..., Y, of yields of a 7 year bond, where

Y, = -L logZ(t, 1, + 1),
T

27

where ¢, < - - - < t, are the time points of sampling. How to obtain a time series
Ry, ..., R, of the returns of a bond investor? Let us denote t; = s, t;,; = £, and
T —s=r7.Then Y(s, T) = Y,. Let us make approximation

Y@, T)=Y(lu1 6+ 7)) B Y (g, by +7) = Yy
Then (2.4) implies
R, ~exp{r(Y; = Y1) + (s — )Y ) (2.5)

where £, — t; is the length of the sampling interval in fractions of a year. For
example, with monthly sampling ¢, ; — ¢, = 1/12.
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2.3 Derivatives
2.3 Derivatives

Derivatives are financial assets whose payoff is defined in terms of more basic
assets. We describe first forwards and futures, and after that we describe
options. For many assets trading with derivatives is more active than trading
with the basic assets. For example, exchange rates and commodities are traded
more actively in the future markets than in the spot markets.

Over-the-counter (OTC) derivatives are traded directly between two coun-
terparties. Exchange traded derivatives are traded in an exchange, which acts
as an intermediary party between the traders.

2.3.1 Forwards and Futures

First we define forwards and futures. After that we give examples of some
actively traded futures. Forwards are derivatives traded over the counter
whereas futures contracts are traded on exchanges. The underlyings of a for-
ward or a futures contract can be stocks (single-stock futures), commodities,
currencies, interest rates, or stock indexes, for example.

2.3.1.1 Forwards

A forward is a contract written at time £, with a commitment to accept delivery
of (or to deliver) the specified number of units of the underlying asset at a future
date T, at forward price F, , which is determined at #,.

At time ¢, nothing changes hands, all exchanges will take place at time 7. A
long position is a commitment to accept the delivery at time 7. A short position
is a commitment to deliver the contracted amount. The current price of the
underlying is called the spot price.

2.3.1.2 Futures

A futures contract can be considered as a special case of a forward contract.
An instrument is called a futures contract if the trading is done in a futures
exchange, where the forward commitment is made through a homogenized
contract so that the size of the underlying asset, the quality of the underlying
asset, and the expiration date are preset. In addition, futures exchanges require
a daily mark-to-market of the positions.

A futures exchange acts as an intermediary between the participants of a
futures contract. The existence of the intermediary minimizes the risk of the
default of the participants of the contract. When a participant enters a futures
contract the exchange requires to put up an initial amount of liquid assets into
the margin account. Marking to market means that the daily futures price is
settled daily so that the exchange will draw money out of one party’s margin
account and put it into the others so that the daily loss or profit is taken into
account. If the margin account goes below a certain value, then a margin call
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is made and the account owner must add money to the margin account. In
contrast to futures contracts, forward contracts may not require any marking
to market until the expiration day.

A futures contract can be settled with cash or with the delivery of the under-
lying. For example, if the underlying of the futures contract is a stock index,
then the futures contract is usually settled with cash. A futures contract can
be closed before the expiration day by entering the opposite direction futures
contract.

On the delivery date, the amount exchanged is not the specified price on the
contract but the spot value (i.e., the original value agreed upon, since any gain
or loss has already been previously settled by marking to market).

The situation where the price of a commodity for future delivery is higher
than the spot price, or where a far future delivery price is higher than a nearer
future delivery, is known as contango. The reverse, where the price of a com-
modity for future delivery is lower than the spot price, or where a far future
delivery price is lower than a nearer future delivery, is known as backwardation.

2.3.2 Options

We describe calls and puts, applications of options, and some exotic options.

2.3.2.1 Calls and Puts

The buyer of a call option receives the right to buy the underlying instrument
and the buyer of a put option receives the right to sell the underlying instru-
ment.

An European call option gives the right to buy an asset at the given expiration
time T at the given strike price K. An European put option gives the right to sell
an asset at the given expiration time T at the given strike price K. Let us denote
with C, the price of an European call option at time ¢ and with S, the price of
the asset. The value C; of the European call option at the expiration time 7 is
equal to

C; = max{S; — K, 0}.

Let us denote with P, the price of a put option at time £. The value of the Euro-
pean put option at the expiration time T is equal to

P, = max{K - S,0}.

American options have a different mode concerning the right to exercise the
option than the European options. American call and put options can be exer-
cised at any time before the expiration date, whereas European options can be
exercised only at the expiration day. Thus an American option is more expen-
sive than the corresponding European option. When we use the term “option”
without a further qualification, then we refer to an European option.
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The following terminology is used to describe options.

o A call option is out of the money if S, < K. A call option is at the money if
S, = K. A call option is in the money if S, > K. A call option is deep out of
the money (deep in the money) if S, < K (S, > K).

The moneyness of a call option is defined as S,/K. The moneyness of a put
option is defined as K /S,.”
e Before the expiration time T the price of a call option satisfies

C,> (S, —K),;

see (14.10). The difference C, — (S, — K), is called the time value of the
option. The value (S, — K), is called the intrinsic value. Thus,

C, = time value + intrinsic value. (2.6)

2.3.2.2 Applications of Options
Options can serve at least the following purposes:

1) Options can be used to create a large number of different payoffs. Some
payoffs applied in option trading are described in Chapter 17. For example,
buying a call and a put with the same strike price and the same expira-
tion creates a straddle position which profits from large positive or negative
movements of the underlying.

2) Options can provide insurance. With options it is possible to create a payoff
which cuts the losses that could occur without using of the options. Buying
a put option gives an insurance in the case one has to sell in a future time an
asset one possesses. Buying a call option gives an insurance in the case when
one has to buy in a future time an asset one does not possess. Examples of
providing insurance with options include the following:

e Buying a put option on a stock gives an insurance policy for an investor. If
an investor owns a stock, buying a put option will cut the future possible
losses.

e Buying a put option on an exchange rate gives an insurance policy for a
company receiving payments on a foreign currency in future.

3) Call options can be used to give a compensation to managers, since the pay-
off of a call option is positive only when the stock price is larger than the
strike price.

4) Options make leveraging possible, since option trading requires a small ini-
tial capital as compared to stock trading.?

7 Sometimes moneyness is defined by S, /(Ke™"T=9) and Ke7" 7= /S,, where T — t is the time to
expiration in fractions of year and r is the annualized short term interest rate.

8 Suppose that the stock price is S, = 100, the strike price is K = 105, and the call price is C, = 5.
If the stock price rises to S, = 110 at the expiration time of the call option, then the owner of the
stock has the return of 10% but the owner of the call option has the return of (110 — 105)/5 =
100%.
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2.3.2.3 Exotic Options
We say that an option is exotic if it is not an European or an American call or
put option.

Bermudan Options There exists three basic modes concerning the right to
exercise the option: European, American, and Bermudan. A Bermudan option
can be exercised at some times or time periods before the expiration. whereas
European options can be exercised only at the expiration date, and American
options can be exercised at any time before the expiration.

Asian Options The value of an Asian call option at the expiration is
Cr = max{0,M; — K},

where

with t; < --- < ¢, < T being a collection of predetermined time points. Asian
options are more resistant to manipulation than European options: The value
of an European option at the expiration depends on the value of the underlying
asset at one time point (the expiration date), whereas the value of an Asian
option depends on the values of the underlying asset at several time points.

Barrier Options Barrier options disappear if the underlying either exceeds, or
goes under the barrier. Alternatively, a barrier option could have value only if it
has exceeded, or went under the barrier. Knock-in options come into existence
if some barrier is hit and knock-out options cease to exist if some barrier is hit.
One speaks of up-and-out, down-and-out, up-and-in, down-and-in options.
For example, a knock-out option on stock S,, written at time 0, with expiration
time 7, has the payoff

B. = 0, when maxy,.; S; > H,
T max{0,S; — K}, otherwise,

where K > 0 is the strike price, and H > K is the barrier. Barrier options are
cheaper than the corresponding European options, which makes them useful.
Multiasset Options Multiasset options involve many underlying assets and
many strike prices. We give some examples of multiasset options.

1) A call can be generalized to a multiasset option with payoff

max {SlT - Kl,SzT - KZ,O} s



2.4 Data Sets

where S and $? are the underlying assets and K, K, > 0 are strike prices. A
payoff can have elements of a call and a put:

max {K; — 57,52 — K,,0} .

The payoff of an option on a linear combination can be written as

d
/(2)

where f : R — R is a payoff function, S!,...,S% are assets, and w,, ..., w,
are weights. For example, an option on a linear combination can be an option
on an index or an option on a spread.

Outperformance options are calls on the maximum and puts on the mini-
mum. We have that

max{Sl,Sz} =S+ max{S2 - SI,O}.

d

Thus, the payoff of an outperformance option can be written as a payoff of a
linear combination of the underlying and an option on the spread between
the underlyings.

The payoff of a univariate digital option is I .\ (Sy), where K > 0 is the
strike price. The option pays one unit at the maturity time if the value of
the underlying exceeds the strike price. The bivariate digital option pays one
unit if both of the underlyings exceed the respective strike prices. The payoff
is

1 Q2
I[Kl,oo)X[K),oo) (ST’ST) :

The payoft of an option written on a basket can be written as

G (v (Sy.....SY)).,
where G is a univariate function and y is a multivariate function.
For example, G(x)=(x—K), and w(S%,...,$% =min(S',...,59), or
w(Sh,...,5) = Y% ws.

2.4 Data Sets

We describe the data sets which are used to illustrate the methods throughout
the book. Some additional data are described in Section 6.3.

2.4.1 Daily S&P 500 Data

The daily S&P 500 data consists of the daily closing prices starting at January 4,
1950 and ending at April 2, 2014, which gives 16,046 daily observations.’

Figure 2.1 shows (a) the daily closing prices S, and (b) the returns R, = S,/S,_;

of S&P 500.

9 The data is obtained from Yahoo (http://finance.yahoo.com/) with ticker "GSPC.
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Figure 2.1 S&P 500 index. (a) Daily closing prices of S&P 500 and (b) daily returns.

2.4.2 Daily S&P 500 and Nasdaqg-100 Data

The S&P 500 and Nasdaq-100 data consists of the daily closing prices starting
at October 1, 1985 and ending at May 21, 2014, which gives 7221 daily obser-
vations.!?

Figure 2.2 shows (a) the normalized prices and (b) a scatter plot of the
returns of S&P 500 and Nasdaq-100. S&P 500 prices is shown with black and
the Nasdaq-100 prices is shown with red. The prices are normalized so that
they start with value one for both indexes. (Note that the normalized price is
the cumulative wealth when the initial wealth is one.)

2.4.3 Monthly S&P 500, Bond, and Bill Data

The data consists of the monthly returns of S&P 500 index, monthly returns of
US Treasury 10 year bond, and monthly rates of US Treasury 1 month bill. The
data starts at May 1953 and ends at December 2013, which gives 728 monthly
observations.!! The 10 year bond returns are calculated from the yields as
in (2.5).

Figure 2.3 shows (a) cumulative wealth and (b) a scatter plot of returns of S&P
500 and 10 year bond. The cumulative wealth is W, = [];_, R;, where R; are the
gross returns. The cumulative wealth of S&P 500 is shown with black, 10 year
bond with red, and 1 month bill with blue. Figure 2.4 shows (a) the treasury bill
rates (blue) and (b) the yields of 10 year Treasury bond (red).

10 The data is obtained from Yahoo (http://finance.yahoo.com/) with tickers "GSPC and "NDX.
11 The data is obtained from http://www.hec.unil.ch/agoyal/ (Amit Goyal).
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Figure 2.2 S&P 500 and Nasdaq-100 indexes. (a) The prices of S&P 500 (black) and Nasdag-100
(red). The prices are normalized to start at value one. (b) A scatter plot of the daily returns of
S&P 500 and Nasdag-100.

2.4.4 Daily US Treasury 10 Year Bond Data

The US Treasury 10 year bond data consists of the daily yields starting at Jan-
uary 2, 1962 and ending at March 3, 2014, which gives 13,006 daily observa-
tions.!? We have described the US 10 year Treasury bonds in Section 2.2.1.
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Figure 2.3 S&P 500, US Treasury 10 year bond, and 1 month bill. (a) The cumulative wealth of
S&P 500 (black), 10 year bond (red), and 1 month bill (blue). The cumulative wealths are nor-
malized to start at value one. (b) A scatter plot of monthly returns of S&P 500 and 10 year
bond.

12 The data is obtained from Federal Reserve Bank of St. Louis with ticker DGS10, see the web site
http://research.stlouisfed.org/. There were 13,590 days when the market is open but the data was
missing in 584 days.
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Figure 2.4 US Treasury bill rates and 10 year bond yields. (a) Treasury bill rates (blue).
(b) Yields of 10 year Treasury bond (red).
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Figure 2.5 10 year US Treasury bond. (a) Daily yields of the 10 year US Treasury bond and
(b) daily returns of the bond.

Figure 2.5 shows (a) the daily yields and (b) the daily returns of the US 10
year Treasury bond. The 10 year bond returns are calculated from the yields
asin (2.5).

2.4.5 Daily S&P 500 Components Data

The S&P 500 components data consists of daily closing prices of 312 stocks,
which were components of S&P 500 at May 23, 2014. The data starts September
30, 1991 and ends at May 23, 2014. There are 5707 daily observations.
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Figure 2.6 S&P 500 components. (a) Time series of the normalized prices of the components.
(b) A scatter plot of (g;, #;), where g; are the 95% empirical quantiles of the negative returns,
and y; are the annualized sample means of the returns.

Figure 2.6(a) shows the normalized prices of the stocks. The prices are nor-
malized to have value one at the beginning. Panel (b) shows a scatter plot of
points (g;, i;), where g, are the 95% empirical quantiles of the negative returns
of the ith stock, and p; are the annualized sample means of the returns of the
ith stock.!?

13 That is, g, satisfies approximately P(R. < —g,) = 0.05, where R = S, /S, | — 1 is the net return
of the ith stock, and , is approximately 250 X ER!.
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Univariate Data Analysis

Univariate data analysis studies univariate financial time series, but ignor-
ing the time series properties of data. Univariate data analysis studies also
cross-sectional data. For example, returns at a fixed time point of a collection
of stocks is a cross-sectional univariate data set.

A univariate series of observations can be described using such statistics as
sample mean, median, variance, quantiles, and expected shortfalls. These are
covered in Section 3.1.

The graphical methods are explained in Section 3.2. Univariate graphical
tools include tail plots, regression plots of the tails, histograms, and kernel
density estimators. We use often tail plots to visualize the tail parts of the
distribution, and kernel density estimates to visualize the central part of the
distribution. The kernel density estimator is not only a visualization tool but
also a tool for estimation.

We define univariate parametric models like normal, log-normal, and
Student models in Section 3.3. These are parametric models, which are
alternatives to the use of the kernel density estimator.

For a univariate financial time series it is of interest to study the tail proper-
ties of the distribution. This is done in Section 3.4. Typically the distribution of a
financial time series has heavier tails than the normal distributions. The estima-
tion of the tails is done using the concept of the excess distribution. The excess
distribution is modeled with exponential, Pareto, gamma, generalized Pareto,
and Weibull distributions. The fitting of distributions can be done with a ver-
sion of maximum likelihood. These results prepare us to quantile estimation,
which is considered in Chapter 8.

Central limit theorems provide tools to construct confidence intervals
and confidence regions. The limit theorems for maxima provide insight into
the estimation of the tails of a distribution. Limit theorems are covered in
Section 3.5.

Section 3.6 summarizes the univariate stylized facts.

Nonparametric Finance, First Edition. Jussi Klemela.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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3 Univariate Data Analysis
3.1 Univariate Statistics

We define mean, median, and mode to characterize the center of a distribution.
The spread of a distribution can be measured by variance, other centered
moments, lower and upper partial moments, lower and upper conditional
moments, quantiles (value-at-risk), expected shortfall, shortfall, and absolute
shortfall.

We define both population and sample versions of the statistics. In addition,
we define both unconditional and conditional versions of the statistics.

3.1.1 The Center of a Distribution

The center of a distribution can be defined using the mean, the median, or the
mode. The center of a distribution is an unknown quantity that has to be esti-
mated using the sample mean, the sample median, or the sample mode. The
conditional versions of theses quantities take into account the available infor-
mation. For example, if we know that it is winter, then the expected temperature
is lower than the expected temperature when we know that it is summer.

3.1.1.1 The Mean and the Conditional Mean

The population mean is called the expectation. The population mean can be
estimated by the arithmetic mean. The conditional mean is estimated using
regression analysis.

The Population Mean The population mean (expectation) of random variable
Y € R, whose distribution is continuous, is defined as

£ = [ o (31)

(oo}

where f, : R — R is the density function of Y.! Let X € R be an explanatory
random variable (random vector). The conditional expectation of Y given X = x
can be defined by

E(Y|X=x)=/ Y fy1x=(0) dy,

where fy | y_,(») : R = Ris the conditional density.?

1 The density function f,, : R — R is a function which satisfies (1) f,,(y) > 0 for almost all y € R,
and(2)P(Y € A) = /A fy(®) dy for measurable A C R. Thus, we can express all probabilities as inte-

grals of f,,.
2 The conditional density is defined as
*,9)
Frixee® = Dol e, (32)
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The population mean of random variable Y € R, whose distribution is

discrete with the possible values y,, ..., yy, is defined as
N
EY = ZyiP(Y =) (3.3)

i=1

The conditional expectation can be defined as

N
EY|X=x)= ) yP(Y =y,]X = ).

i=1

The Sample Mean Given a sample Y7, ..., Y, from the distribution of Y, the
mean EY can be estimated with the sample mean (the arithmetic mean):
T

Y,. (3.4)

t=1

1
T

Y=

Regression analysis studies the estimation of the conditional expectation. In
regression analysis, we observe values X|, ..., X of the explanatory random
variable (random vector), in addition to observing values Y, ..., Y, of the
response variable. Besides linear regression there exist various nonparametric
methods for the estimation of the conditional expectation. For example, in
kernel regression the arithmetic mean in (3.4) is replaced by a weighted mean

T
f@ =Y pwy,
=1
where p,(x) is a weight that is large when X, is close to x and small when X,
is far away from x. Now f(x) is an estimate of the conditional mean f(x) =
E(Y|X = x), for x € R?. Kernel regression and other regression methods are
described in Section 6.1.2.

The Annualized Mean The return of a portfolio is typically estimated using
the arithmetic mean and it is expressed as the annualized mean return. Let
S;+---»S, be observed stock prices, sampled at equidistant time points.
Let R, =(S, =S, )/S, , i=1,...,n, be the net returns. Let the sampling
interval be At = ¢t; — t,_,. The annualized mean return is

11
. YR, (3.5)

when fy(x) > 0, where fy , : R%*! — Ris the joint density of (X, Y), and f;, : R? — Ris the density
of X:

fx(x)=/fxyy(x,y) dy, xeR’
R

Iffy (x) = 0, then fy, | ,_ . (») = 0.
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For the monthly returns At = 1/12. For the daily returns A¢ = 1/250, because
there are about 250 trading days in a year. Sampling of prices and several defi-
nitions of returns are discussed in Section 2.1.2.

The Geometric Mean Let S, ..., S be the observed stock prices and let R, =
S,/S._1,t=1,...,T, be the gross returns. The geometric mean is defined as

(1)

The logarithm of the geometric mean is equal to the arithmetic mean of the
logarithmic returns:

T
1
7_' ; lOgRt.

Note that W, = []/_, R, is the cumulative wealth at time ¢ when we start with
wealth 1. Thus,

T
1 1
T log W, = T ; logR,.

3.1.1.2 The Median and the Conditional Median
The median can be defined in the case of a continuous distribution function of
arandom variable Y € R as the number median(Y’) € R satisfying

P(Y < median(Y)) = 0.5.

Thus, the median is the point that divides the probability mass into two equal
parts. Let us define the distribution function F : R — R by

F(y) = P(Y < y).
When F is continuous, then
median(Y) = F~1(0.5).

In general, covering also the case of discrete distributions, we can define the
median uniquely as the generalized inverse of the distribution function:

median(Y) = inf{y : F(y) > 0.5}. (3.6)
The conditional median is defined using the conditional distribution function
Fyix,(0) = P(Y <y|X =x),
where X is a random vector taking values in RY. Now we can define
median(Y | X = x) = inf{y : Fyx_,(y) 2 0.5}, (3.7)

where x € R4,
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The sample median of observations Y, ..., Y, € R can be defined as the
observation that has as many smaller observations as larger observations:
median(Yy, ..., Y7) = Y7241 (3.8)

where Y(;) <--- < Y7 is the ordered sample and [x] is the largest integer
smaller or equal to x. The sample median is a special case of an empirical
quantile. Empirical quantiles are defined in (8.21)—(8.23).

3.1.1.3 The Mode and the Conditional Mode
The mode is defined as an argument maximizing the density function of the
distribution of a random variable:

mode(Y) = argmax f,(y), (3.9)
yER

where f,, : R — R is the density function of the distribution of Y. The density
fy can have several local maxima, and the use of the mode seems to be
interesting only in cases where the density function is unimodal (has one local
maximum). The conditional mode is defined as an argument maximizing the
conditional density:

mode(Y | X = x) = argmax fyx_, ().
yER

A mode can be estimated by finding a maximizer of a density estimate:

mode(Y) = argmax f(y),
yER

where f, : R — R is an estimator of the density function f,. Histograms and
kernel density estimators are defined in Section 3.2.2.

3.1.2 The Variance and Moments

Variance and higher order moments characterize the dispersion of a univariate
distribution. To take into account only the left or the right tail we define upper
and lower partial moments and upper and lower conditional moments.

3.1.2.1 The Variance and the Conditional Variance
The variance of random variable Y is defined by

Var(Y) = E(Y — EY)? = EY* — (EY)~ (3.10)

The standard deviation of Y is the square root of the variance of Y. The condi-
tional variance of random variable Y is equal to

Var(Y | X = x) =E{[Y —E(Y | X = %)]*| X = x} (3.11)
=EY?*| X =x)- [EX|X =2 (3.12)

The conditional standard deviation of Y is the square root of the conditional
variance.
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The Sample Variance 'The sample variance is defined by

T T
Var 1 e 1 2 _ 2

Var(Y) = = Y,-Y)y== )Y -Y°, 3.13

ar(Y) = 21( i~ = 2; l (3.13)

where Y], ..., Y is a sample of random variables having identical distribution

with Y, and Y is the sample mean.?

The Annualized Variance The sample variance and the standard deviation
of portfolio returns are typically annualized, analogously to the annualized
sample mean in (3.5). Let S, ,...,S, be the observed stock prices, sampled
at equidistant time points. Let R, (S =8, /S, »i=1,...,n be the net
returns. Let the sampling interval be At = tl - tl_l The annualized sample
variance of the returns is

1 1v _
_t;Z‘(Rtf_R)’

where R=n"" 3" R,. For the monthly returns At =1/12. For the daily
returns At = 1/250, because there are about 250 trading days in a year.
Sampling of prices and several definitions of returns are discussed in
Section 2.1.2.

3.1.2.2 The Upper and Lower Partial Moments
The definition of the variance of random variable Y € R can be generalized to
other centered moments

E|Y —EY|X,

for k =1,2,.... The variance is obtained when k = 2. The centered moments
take a contribution both from the left and the right tail of the distribution. The
lower partial moments take a contribution only from the left tail and the upper
partial moments take a contribution only from the right tail. For example, if we
are interested only in the distribution of the losses, then we use the lower partial
moments of the return distribution, and if we are interested only in the distri-
bution of the gains, then we use the upper partial moments. The upper partial
moment is defined as

UPM, ((Y) = E(Y — o)} = E[(Y = D], oy ()], (3.14)

wherek =0,1,2, ..., (x), = max{x,0},and 7 € R. The lower partial moment is
defined as

LPM, (Y) = E(r = Y)§ = E[(r = )" _o ,(V)]. (3.15)

3 The sample variance is often defined as (7 — 1)7! Zszl (Y, — Y)?, because this is an unbiased
estimator of the population variance. For large and moderate T it does not matter whether the
divisor is T or T — 1.
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When Y has density f;, we can write

UPM, (Y) = / (= DMy ) dy. LM, 4(¥) = / (r —9fy9) dy.

For example, when k = 0, then
UPM, ((Y)=P(Y 2 7), LPM_ o(Y)=P( <7),

so that the upper partial moment is equal to the probability that Y is greater
or equal to 7, and the lower partial moment is equal to the probability that Y
is smaller or equal to 7. For k = 2 and 7 = EY the partial moments are called
the upper and lower semivariance of Y. For example, the lower semivariance is
defined as

E[(Y = EY)’I_ pr/(Y)]. (3.16)

The square root of the lower semivariance can be used to replace the standard
deviation in the definition of the Sharpe ratio, or in the Markowitz criterion.
The sample centered moments are

T
1

T

t=1

Y, - 715,
where Y is the sample mean. The sample upper and the sample lower partial
moments are
1 & 1 &
UPM, 4(Y) = ;(Yi -0 LM = o ;(1 -Y)k.  (317)

For example, when k = 0 we have

— N(r)
LPM_,(Y) = s
o)==
where
N@x)=#{Y,:i=1,....,T, Y, <7} (3.18)

3.1.2.3 The Upper and Lower Conditional Moments

The upper conditional moments are the moments conditioned on the right tail
of the distribution and the lower conditional moments are the moments con-
ditioned on the left tail of the distribution. The upper conditional moment is
defined as

UCM,, (Y)=E[(Y =) | Y =7 > 0]
and the lower conditional moment is defined as
LCM,,(Y)=E[(r-Y)" |t =Y > 0], (3.19)

where k =0,1,2,... and r € Ris a target rate.
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The sample lower conditional moment is

T
LCM, (V) = 1\% PACED OIS (3.20)
i=1

where N(r) is defined in (3.18). Note that in (3.17) the sample size is the denom-
inator but in (3.20) we have divided with the number of observations in the
left tail.

We can condition also on an external variable X and define conditional on X
versions of both upper and lower moments, and upper and lower conditional
moments.

3.1.3 The Quantiles and the Expected Shortfalls

The quantiles are applied under the name value-at-risk in risk management to
characterize the probability of a tail event. The expected shortfall is a related
measure for a tail risk.

3.1.3.1 The Quantiles and the Conditional Quantiles
The pth quantile is defined as

Q1) = inf{y : FO) > p). (3.21)

where 0 < p <1 and F(y) = P(Y < y) is the distribution function of Y. The
value-at-risk is defined in (8.3) as a quantile of a loss distribution. For p = 1/2,
Q,(Y) is equal to median(Y), defined in (3.6). In the case of a continuous
distribution function, we have

FQ,(Y) =p

and thus it holds that
Q,(Y) =F(p),

where F~! is the inverse of F. The pth conditional quantile is defined replacing
the distribution function of Y with the conditional distribution function of Y:

Q,(Y|X =x) =inf{y : Fyx_,(») 2p}, x€R’, (3.22)

where 0 < p < land Fyy_,(y) = P(Y < y|X = x) is the conditional distribution
function of Y.
The empirical quantile is defined as

A

Q, = Y (3.23)
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where Y, <Y, <--- <Yy is the ordered sample and [x] is the smallest
integer > x. We give equivalent definitions of the empirical quantile in Section
8.4.1. Chapter 8 discusses various estimators of quantiles and conditional
quantiles.

3.1.3.2 The Expected Shortfalls
The expected shortfall is a measure of risk that aggregates all quantiles in the
right tail (or in the left tail). When Y has a continuous distribution function,
then the expected shortfall for the right tail is

ES,(Y)=EY|Y 2Q,(Y)) = I%P E(Y g, ()00 (Y)), (3.24)
where 0 < p < 1. Thus, the pth expected shortfall is the conditional expectation
under the condition that the random variable is larger than the pth quantile. The
term “tail conditional value-at-risk” is sometimes used to denote the expected
shortfall. In the general case, when the distribution of Y is not necessarily con-
tinuous, the expected shortfall for the right tail is defined as

1
ES,(Y) = 1 / QMY)du, 0<p<l. (3.25)
1-p »
The equality of (3.24) and (3.25) for the continuous distributions is proved in
McNeil ez al. (2005, lemma 2.16). In fact, denoting g, = Q,(Y),
E[Yf(qp,oo)(y)] = E[F_l(u)l[qp,oo)(F_l(U))]
= E[F_l(u)l[p,l)(u)]

1
=/ FY(w) du,
P

where U ~ Uniform([0, 1]) and we use the fact that F~1({J) ~ Y.* Finally, note
that P(Y > QY)=1-p for continuous distributions.
The expected shortfall for the left tail is

P
ES,(Y) =I% / Q(Y)du, 0<p<l.
0

When Y has a continuous distribution function, then the expected shortfall for
the left tail is

1
ES,(1) = EY1Y < Q1) = - EW g (1) (3.26)
This expression shows that in the case of a continuous distribution function,

PES,(Y) is equal to the expectation that is taken only over the left tail, when
the left tail is defined as the region that is on the left side of the pth quantile of

4 We have that P(F~1(U) < x) = P(U < F(x)) = F(x).
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the distribution. Note that the expected shortfall for the left tail is related to the
lower conditional moment of order k = 1 and target rate 7 = Q,(Y):
ES,(Y) = Q,(Y) — E(Q,(Y) - Y|Y < Q (1))
= QP(Y) — LCMQP(Y)J,
where the lower conditional moment LCMg, v is defined in (3.19).

The expected shortfall for the right tail, as defined in (3.24), can be estimated
from the data Y3, ..., Y by

T
= 1
ES,(Y) = ya— ;ﬂ Y, (3.27)

where Y;) <--- < Yy and m = [pT], with, for example, p = 0.95 or p = 0.99.
When the expected shortfall is for the left tail, as defined by (3.26), then we
define the estimator as

~ 1 -
ES, () =— ; Y, (3.28)

where m = [pT] with, for example, p = 0.05 or p = 0.01.

3.2 Univariate Graphical Tools

We consider sequence Y7, ..., Y, € R of real numbers, and assume that the
sequence is a sample from a probability distribution. We want to visualize
the sequence in order to discover properties of the underlying distribution.
We divide the graphical tools to those that are based on the empirical distri-
bution function and the empirical quantiles, and to those that are based on

5 Analogously to the definition of lower partial moments in (3.15), we can define the absolute
shortfall as

AS,(Y) = E(YI_y, g iy (Y)-
The absolute shortfall for the left tail is related to the lower partial moment of order k = 1 and
target rate 7 = Qp(Y):
AS,(Y) =pQ,(Y) — E((Q,(Y) - Y)1<,m,Qp(y>](Y))
= pr(Y) - LPMQMY)‘I.

The absolute shortfall is estimated from observations Y, ..., Y. by
1 m
AS,(N) = 2} Y,

where Y{;, <+ <Yy, is the ordered sample and m = [pT']. Here, we divide by T, but in the esti-

mator (3.28) of the expected shortfall we divide by m.
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the estimation of the underlying density function. The distribution function
and quantiles based tools give more insight about the tails of the distribution,
and the density based tools give more information about the center of the
distribution.

A two-variate data can be visualized using a scatter plot. For a univariate data
there is no such obvious method available. Thus, visualizing two-variate data
may seem easier than visualizing univariate data. However, we can consider
many of the tools to visualize univariate data to be scatter plots of points

(Y, level(Y))), i=1,...,T, (3.29)

where level : {Y;,...,Y;} = Ris a mapping that attaches a real value to each
data point Y; € R. Thus, in a sense we visualize univariate data by transforming
it into a two-dimensional data.

3.2.1 Empirical Distribution Function Based Tools
The distribution function of the distribution of random variable Y € Ris
Fx)=P(Y <x), x€R

The empirical distribution function can be considered as a starting point for
several visualizations: tail plots, regression plots of tails, and empirical quantile
functions. We use often tail plots. Regression plots of tails have two types: (1)
plots that look linear for an exponential tail and (2) plots that look linear for a
Pareto tail.

3.2.1.1 The Empirical Distribution Function
The empirical distribution function F, based on data Y3, ..., Y7, is defined as

Fx) = % #Y,: Y, <x, i=1,...,T}, (3.30)

where x € R, and #4 means the cardinality of set A. Note that the empirical dis-
tribution function is defined in (8.20) using the indicator function. An empirical
distribution function is a piecewise constant function. Plotting a graph of an
empirical distribution function is for large samples practically the same as plot-
ting the points

(Y i/T), i=1,...,T, (3.31)

where Y;) <--- <Y|; are the ordered observations. Thus, the empirical
distribution function fits the scheme of transforming univariate data to
two-dimensional data as in (3.29).

Figure 3.1 shows empirical distribution functions of S&P 500 net returns
(red) and 10-year bond net returns (blue). The monthly data of S&P 500 and
US Treasury 10-year bond returns is described in Section 2.4.3. Panel (a) plots
the points (3.31) and panel (b) zooms to the lower left corner, showing the
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Figure 3.1 Empirical distribution functions. (a) Empirical distribution functions of S&P 500
returns (red) and 10-year bond returns (blue); (b) zooming at the lower left corner.

empirical distribution function for the [T /10] smallest observations; the empir-
ical distribution function is shown on the range x € (-, g,), where g, is the
pth empirical quantile for p = 0.1. Neither of the estimated return distributions
dominates the other: The S&P 500 distribution function is higher at the left
tail but lower at the right tail. That is, S&P 500 is more risky than the 10-year
bond. Note that Section 9.2.3 discusses stochastic dominance: a first return dis-
tribution dominates stochastically a second return distribution when the first
distribution function takes smaller values everywhere than the second distri-
bution function.

3.2.1.2 The Tail Plots

The left and right tail plots can be used to visualize the heaviness of the tails of
the underlying distribution. A smooth tail plot can be used to visualize simul-
taneously a large number of samples. The tail plots are almost the same as the
empirical distribution function, but there are couple of differences:

1) In tail plots we divide the data into the left tail and the right tail, and we
visualize separately the two tails.

2) In tail plots the y-axis shows the number of observations and a logarithmic
scale is used for the y-axis.

Tail plots have been applied in Mandelbrot (1963), Bouchaud and Potters
(2003), and Sornette (2003).
The Left and the Right Tail Plots 'The observations in the left tail are
L={Y,:Y,<u, i=1,..,T},
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where u = g, is the pth empirical quantile for 0 < p < 1/2. For the left tail plot
we choose the level

level(Y) =#{Y, : ¥, <Y,Y,€ L}, Y, €L (3.32)

Thus, the smallest observation has level one, the second smallest observation
has level two, and so on. Note that level(Y;) is often called the rank of ;. The left
tail plot is the two-dimensional scatter plot of the points (Y}, level(Y))), Y; € L,
when the logarithmic scale is used for the y-axis.

The observations in the right tail are

R={Y,:Y,>u, i=1,....,T},

where u = g, is the pth empirical quantile for 1/2 < p < 1. We choose the level
of Y; as the number of observations larger or equal to Y;:

level(Y)) =#{Y, 1 ¥, 2 Y, Y, € R}, Y, €R. (3.33)

Thus, the largest observation has level one, the second largest observation has

level two, and so on. The right tail plot is the two-dimensional scatter plot of the

points (Y}, level(Y))), Y; € R, when the logarithmic scale is used for the y-axis.
The left tail plot can be considered as an estimator of the function

L(x) = TE(x), (3.34)

where F is the underlying distribution function and x € (—o0, #]. Indeed, for
the level in (3.32) we have that level(Y)) = Tl:"(}’i). The right tail plot can be
considered as an estimator of the function

R(x) = T(1 - F(x)), (3.35)

where x € [u, ). For the level in (3.33) we have that level(Y,) =~ T'(1 — ﬁ(Y,)).

Figure 3.2 shows the left and right tail plots for the daily S&P 500 data,
described in Section 2.4.1. Panel (a) shows the left tail plot and panel (b) shows
the right tail plot. The black circles show the data points. The y-axis is loga-
rithmic. The colored curves show the population versions (3.34) and (3.35) for
the Gaussian distribution (red) and for the Student distributions with degrees
of freedom v = 3,4,5,6 (blue).® We can see that for the left tail Student’s
distribution with degrees of freedom v = 3 gives the best fit, but for the right
tail degrees of freedom v = 4 gives the best fit.

6 The Gaussian curve in the left tail plot shows the function x » T®((x — {1)/6), where @ is the
distribution function of the standard Gaussian distribution, i is the sample mean, and 6 is the sam-
ple standard deviation. In the right tail plot the function is x = T'(1 — ®((x — /1)/6)). The Student
curves in the left tail plot are x = T'F, ((x — /1)/6), where F, is the distribution function of the Stu-
dent distribution with degrees of freedom v, and 6 = §/4/v/(v — 2), where § is the sample standard
deviation. The Student distributions are defined in (3.53). Note that when Y ~ N(u, 6%), then the
distribution function of Y is ®((x — u)/c). When Y ~ t(v, u, %), then the distribution function of
YisF ((x— p)/o).
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Figure 3.2 Leftandrighttail plots. (a) The left tail plot for S&P 500 returns; (b) the right tail plot.
The red curve shows the theoretical Gaussian curve and the blue curves show the Student
curves for the degrees of freedom v = 3-6.

A left tail plot and a right tail plot can be combined into one figure, at least
when both the left and the right tails are defined by taking the threshold to be
the sample median u = g, ; (see Figures 14.24(a) and 14.25(a)).

Smooth Tail Plots Figure 3.3 shows smooth tail plots for the S&P 500 com-
ponents data, described in Section 2.4.5. Panel (a) shows left tail plots and
panel (b) shows right tail plots. The gray scale image visualizes with one
picture all tail plots of the stocks in the S&P 500 components data. The red
points show the tail plots of S&P 500 index, which is also shown in Figure 3.2.
Note that the x-axes have the ranges [—0.1, 0] and [0, 0.1], so that the extreme
observations are not shown. Note that instead of the logarithmic scale of
y-values 1, ...,[T/2], we have used values log(1),log(2), ... ,log([7/2]) on the
y-axis. We can see that the index has lighter tails than most of the individual
stocks.

In a smooth tail plot we make an image that simultaneously shows several tail
plots. Let us have m stocks and T returns for each stock. We draw a separate
left or right tail plot for each stock. Plotting these tail plots in the same figure
would cause overlapping, and we would see only a black image. That is why we
use smoothing. We divide the x-axis to 300 grid points, say. The y-axis has [T /2]
grid points. Thus, we have 300 X [T'/2] pixels. For each x-value we compute the
value of a univariate kernel density estimator at that x-value. Each kernel esti-
mator is constructed using m observations. This is done for each [T /2] rows, so
that we evaluate [T /2] estimates at 300 points. See Section 3.2.2 about kernel
density estimation. We choose the smoothing parameter using the normal ref-
erence rule and use the standard Gaussian kernel. The values of the density
estimate are raised to the power of 21 before applying the gray scale.
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Figure 3.3 Smooth tail plots. The gray scale images show smooth tail plots of a collection of
stocks in the S&P 500 index. The red points show the tail plots of the S&P 500 index. (a) A
smooth left tail plot; (b) a smooth right tail plot.

3.2.1.3 Regression Plots of Tails

Regression plots are related to the empirical distribution function, just like tail
plots, but now the data is transformed so that it lies on [0, o), both in the case
of the left tail and in the case of the right tail. We use the term “regression
plot” because these plots suggest fitting linear regression curves to the data.
We distinguish the plot for which exponential tails looks linear and the plot for
which Pareto tails look linear.

Plots which Look Linear for an Exponential Tail Let the original observations be
Y;,..., Y. Let u € R be a threshold. We choose u# to be an empirical quantile
g, for some p € (0,1): g, = Y, for m = [pT], where Y;) <--- < Y are the
ordered observations. Let 7, be the left tail and 7., be the right tail, transformed
so that the observations lie on [0, 00):

Ti=(u-Y,:Y,<u), T,={Y—u:Y,>u).

For the left tail u =g, for p € (0,1/2) and for the right tail u =g, for
p € (1/2,1). Let us denote by 7 either the left tail or the right tail. Denote

n=4#T.

Let
. 1
Fz)=—#Z €T : Z <
(2) n+1{, s <z}

be the empirical distribution function, based on data 7. Note that in the usual
definition of the empirical distribution function we divide by », but now we
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divide by # + 1 because we need that F(Z,) < 1, in order to take the logarithm
of 1 — f:(Zi). Denote

T={Z,....Z,}.
Assume that the data is ordered:
Z,<---<Z,
We have that
i
n+1l
The regression plot that is linear for exponential tails is a scatter plot of the
points’
{(Zlog1 = F(Z) : Z, €T ). (3.36)

Figure 3.4 shows scatter plots of points in (3.36). We use the S&P 500 daily
data, described in Section 2.4.1. Panel (a) plots data in the left tail with p = 10%
(black), p = 5% (red), and p = 1% (blue). Panel (b) plots data in the right tail
with p = 90% (black), p = 95% (red), and p = 99% (blue).

The data looks linear for exponential tails and convex for Pareto tails. The
exponential distribution function is F(x) = 1 — exp{—x/f} for x > 0, where
p > 0. The exponential distribution function satisfies

Ez)=

log(1 — F(x)) = —% Lp.oo)®)-

o
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Figure 3.4 Regression plots which are linear for exponential tails: S&P 500 daily returns. (a) Left
tail with p = 10% (black), p = 5% (red), and p = 1% (blue); (b) right tail with p = 90% (black),
p = 95% (red), and p = 99% (blue).

7 Denote p; = ﬁ(Zi) and q, = Z,. Then we can write (3.36) as a plot of points (qp ,log(1 - p,)). The
plot of points (—log(1 - p,), q,)is called the return level plot; see Coles (2004, pp. 49, 81).
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Plotting the curve

(3.37)

x
x> ==

P

for x > 0 and for various values of § > 0 shows how well the exponential dis-
tributions fit the tail. The Pareto distribution function for the support [0, o0) is
F(x) =1— (u/(x + u))* for x > 0, where a > 0; see (3.74). The Pareto distribu-
tion function satisfies

bgl—F@D:—ﬂkg<£%ﬁ>%mﬁﬁ

Plotting the curve

x+”> (3.38)

x = —alog (
forx > 0and for various values of @ > 0 shows how well the Pareto distributions
fit the tail.®

Figure 3.5 shows how parametric models are fitted to the left tail, defined
by the pth empirical quantile with p = 5%. We use the S&P 500 daily data,
as described in Section 2.4.1. Panel (a) shows fitting of exponential tails: we
show functions (3.37) for three values of parameter §. Panel (a) shows fitting
of Pareto tails: we show functions (3.38) for three values of parameter a.
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Figure 3.5 Fitting of parametric families for data that is linear for exponential tails. The data
points are from left tail of S&P 500 daily returns, defined by the pth empirical quantile with
p = 0.05. (a) Fitting of exponential distributions; (b) fitting of Pareto distributions.

8 The generalized Pareto distribution is defined in (3.83). The distribution function F satisfies

_1 &
: log (1 + 5 )Ilo’m)(x), E>0,

log1—F@x) =14 ¢
0og X, { _EI[O.oo)(x)’ E=0,

where g > 0.
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The middle values of the parameters are the maximum likelihood estimates,
defined in Section 3.4.2.

Plots which Look Linear for a Pareto Tail Let
Ti={Y/u:Y,<u), T,=(Y/u:Y,>u).

For the right tail we assume that # > 0 and for the left tail we assume that # < 0.
Let us denote by 7 either the left tail or the right tail. Denote

T ={Z.....2,}.

Assume that the dataisordered: Z; < - - - < Z,. Theregression plot that is linear
for Pareto tails is a scatter plots of the points

{(ogZ,log(1 - E(Z))) : Z, €T }. (3.39)

Figure 3.6 shows scatter plots of points in (3.39). We use the S&P 500 daily
data, described in Section 2.4.1. Panel (a) plots data in the left tail with p = 10%
(black), p = 5% (red), and p = 1% (blue). Panel (b) plots data in the right tail
with p = 90% (black), p = 95% (red), and p = 99% (blue).

The data looks linear for Pareto tails and concave for exponential tails.
The exponential distribution function for the support [u,o0) is F(x) =
1—exp{—(x —u)/pB} for x > u, where f > 0. The exponential distribution
function satisfies

xX—u

log(1 — F(x)) = 5 1 (,00) (%)
Plotting the curve
|ul
x> —— (e =1)
p

Figure 3.6 Regression plots which are linear for Pareto tails: S&P 500 daily returns. (a) Left tail
with p = 10% (black), p = 5% (red), and p = 1% (blue); (b) right tail with p = 90% (black),
p = 95% (red), and p = 99% (blue).
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Figure 3.7 Fitting of parametric families for data that is linear for Pareto tails. The data points
are from left tail of S&P 500 daily returns, defined by the pth empirical quantile with p = 0.05.
(a) Fitting of exponential distributions; (b) fitting of Pareto distributions.

for x > 0 and for various values of f > 0 shows how well the exponential dis-
tributions fit the tail. The Pareto distribution function for the support [, o)
is F(x) = 1 — (u/x)* for x > u, where a > 0. The Pareto distribution function
satisfies

log(1 — F(x)) = —a log (f ) )
Py
Plotting the curve
X —ax

forx > 0 and for various values of @ > 0 shows how well the Pareto distributions
fit the tail.

Figure 3.7 shows how parametric models are fitted to the left tail, defined
by the pth empirical quantile with p = 5%. We use the S&P 500 daily data,
described in Section 2.4.1. Panel (a) shows fitting of exponential tails: we show
functions (3.37) for three values of parameter f. Panel (a) shows fitting of Pareto
tails: we show functions (3.38) for three values of parameter @. The middle
values of the parameters are the maximum likelihood estimates, defined in
Section 3.4.2.

3.2.1.4 The Empirical Quantile Function
The pth quantile of the distribution of the random variable Y € R is defined in
(3.21) as

Q, =inf{y : F(y) 2 p},
where 0 < p < 1 and F(y) = P(Y < y) is the distribution function of Y. The
empirical quantile can be defined as

Q, = inf{y : F(y) > p},
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where F is the empirical distribution function, as defined in (3.30); see (8.21).
Section 8.4.1 contains equivalent definitions of the empirical quantile.
The quantile function is

p—~Q, pe@).

For continuous distributions the quantile function is the same as the inverse of
the distribution function. The empirical quantile function is

p~Q, pe©.D), (3.40)

where Qp is the empirical quantile. A quantile function can be used to compare
return distributions. A first return distribution dominates a second return dis-
tribution when the first quantile function takes higher values everywhere than
the second quantile function. See Section 9.2.3 about stochastic dominance.

Plotting a graph of the empirical quantile function is close to plotting the
points

(i/T.Yy), i=1,...T, (3.41)

where Y(;) < - -+ < Y|, are the ordered observations.

Figure 3.8 shows empirical quantile functions of S&P 500 returns (red) and
10-year bond returns (blue). The monthly data of S&P 500 and US Treasury
10-year bond returns is described in Section 2.4.3. Panel (a) plots the points
(3.41) and panel (b) zooms at the lower left corner, showing the empirical quan-
tile on the range p € (0, 0.1). Neither of the estimated return distributions dom-
inates the other: The S&P 500 returns have a higher median and higher upper
quantiles, but they have smaller lower quantiles. That is, S&P 500 is more risky
than 10-year bond.

oo

00 02 04 06 08 1.0 0.00 0.02 004 006 008 0.10
P p
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Figure 3.8 Empirical quantile functions. (a) Empirical quantile functions of S&P 500 returns
(red) and 10-year bond returns (blue); (b) zooming to the lower left corner.



3.2 Univariate Graphical Tools

3.2.2 Density Estimation Based Tools

We describe both histograms and kernel density estimators.

3.2.2.1 The Histogram
A histogram estimator of the density of X € R?, based on identically distributed
observations X, ..., X, is defined as

M

Jw=3 L1 et (3.42)

P volume(R,;)
where {R,, ..., R,,} is a partition on R? and
mo=#{i:X,€R, i=1,...,T)

is the number of observations in R;. The partition is a collection of sets
R,,...,R,, that are (almost surely) disjoint and they cover the space of the
observed values X, ..., X;.0

Figure 3.9(a) shows a histogram estimate using S&P 500 returns. We use
the S&P 500 monthly data, described in Section 2.4.3. The histogram is
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Figure 3.9 Histogram estimates. (a) A histogram of historically simulated S&P 500 prices. A
graph of kernel density estimate is included. (b) A histogram of historically simulated call
option pay-offs.

9 In the univariate case the partition to the intervals of equal length can be defined by

R =la,b)l. a,=X,+6(i-1). b=a,+5 b=Xg —X,)/M,
where Xy = min{X;} and X r) = max{X;}. Then the histogram can be written as

M

> 1
fx) = Ts ;"1 I, ®), x€R
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constructed from the data 100X R,, t =1, ..., T, where R, are the monthly
gross returns. Panel (b) shows a histogram constructed from the historically
simulated pay-offs of the call option with the strike price 100. The histogram
is constructed from the data max{100R, —100,0}, ¢t =1,...,T. Panel (a)
includes a graph of a kernel density estimate, defined in (3.43). The histogram
in panel (b) illustrates that a histogram is convenient to visualize the density of
data that is not from a continuous distribution; for this data the value 0 has a
probability about 0.5.

3.2.2.2 The Kernel Density Estimator

The kernel density estimator f(x) of the density function f : R? - R of ran-
dom vector X € R%, based on identically distributed data X, ..., X; € RY, is
defined by

T
Fa) = % Y Kx—-X). xR (3.43)
i=1

where K : R? — Ris the kernel function, K,(x) = K(x/h)/h?, and h > 0 is the
smoothing parameter.!

We can also take the vector smoothing parameter s = (k,...,h,;) and
K, (%) =K, /hy,....x;/h,)/ Hf]:l h;. The smoothing parameter of the kernel
density estimator can be chosen using the normal reference rule:

1/(d+4)
b = (di+2> TV (3.44)

fori=1,...,d, where 6, is the sample standard deviation for the ith variable;
see Silverman (1986, p. 45). Alternatively, the sample variances of the marginal
distributions can be normalized to one, so that6;, =--- =6, = 1.

Figure 3.10(a) shows kernel estimates of the distribution of S&P 500 monthly
net returns (blue) and of the distribution of US 10-year bond monthly net
returns (red). The data set of monthly returns of S&P 500 and US 10-year bond
is described in Section 2.4.3. Panel (b) shows kernel density estimates of S&P

10 The definition of the kernel density estimator can be motivated in the following way. The density
a point x € R? can be approximated by
 P(B,()

AMB,(x))’

f(x)

where B, (x) = {y € R : ||lx—y|| <k}, h > 0 is small, and A(B,,(x)) is the Lebesgue measure of
B, (x). We have that

PB,®) 1 1
AB,(%) ~ AB,x) T 4

i

T T
1
Iy, = = Y Kyx = X)),
=1 i=1
when K(x) =1 Bl(O)(x). We arrive into (3.43) by allowing other kernel functions than only the indi-
cator function.
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Figure 3.10 Kernel density estimates of distributions of asset returns. (a) Estimates of the
distribution of S&P 500 monthly returns (blue) and of US 10-year bond monthly returns (red);
(b) estimates of S&P 500 net returns with periods of 1-5 trading days (colors black-green).

500 net returns with periods of 1-5 trading days (colors black—green). We
use S&P 500 daily data of Section 2.4.1 to construct returns for the different
horizons.

3.3 Univariate Parametric Models

We describe normal and log-normal distributions, Student distributions,
infinitely divisible distributions, Pareto distributions, and models that interpo-
late between exponential and polynomial tails. We consider also the estimation
of the parameters, in particular, the estimation of the tail index.

3.3.1 The Normal and Log-normal Models

After defining the normal and log-normal distributions, we discuss how the
central limit theorem can be used to justify that these distributions can be used
to model stock prices.

3.3.1.1 The Normal and Log-normal Distributions

A univariate normal distribution can be parameterized with the expectation
u# € R and the standard deviation ¢ > 0. When X is a random variable with a
normal distribution we write

X ~N(u,0”).
The density of the normal distribution N(u, 6?) is

1 (x— u)?
fx) = exp { } ,
o\ 2 202
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where x € R. The parameters ;s and ¢ can be estimated by the sample mean and
sample standard deviation.

When log X ~ N(u, 6?), then it is said that X has a log-normal distribution,
and we write

X ~ lognorm(u, 2).
The density function of a log-normal distribution is

N2
fa) = 1 exp {_(logx : ) } ’
xc\/ 27 20

where x > 0. Thus, log-normally distributed random variables are positive
(almost surely). The expectation of a log-normally distributed random variable
X is

EX = e/,

(3.45)

For k > 1, EX* = #+K°/2_ Given observations X, ..., X, from a log-normal
distribution, the parameters y and o can be estimated using the sample
mean and sample standard deviation computed from the observations
log X, ..., logX,,.

Note that a linear combination of log-normal variables is not log-normally
distributed, but a product of log-normally distributed random variables is
log-normally distributed, because a linear combination of normal variables is
normally distributed.

3.3.1.2 Modeling Stock Prices

We can justify heuristically the normal distribution for the differences of stock
prices using the central limit theorem. The central limit theorem can also be
used to justify the log-normal model for the gross returns (which amounts to a
normal model for the logarithmic returns). Let us consider time interval [0, T']
andlet¢, = iT/nfori=0,...,n, so that S:O» e Stﬂ is an equally spaced sample
of stock prices, where £, = 0 and ¢, = T. The time interval between the sampled
pricesis At =t,,, —¢t, =T /n.

1) Normal model. We may write the price at time ¢;, 1, ..., 7, as

i-1

S, =So+ (S, =S, (3.46)
j=0

Ifthe price increments S, — S, arei.i.d. with expectation m and variance s,
Jt+ 7
then an application of the central limit theorem gives the approximation!!

S, = So ~ N(typ, t;6%), (3.47)

11 We have approximately that i~/2(S, — S, — im)/s ~ N(0,1). Thus, approximately S, — S, ~
N(im, is*). We can write im = t,m/At and is? = t,5?/ At.
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where p = m/At, and 62 = s*/At. Equation (3.47) defines the Gaussian
model for the asset prices. Under the normal model we have

S, =Sy +tip+ 1\t oZ, (3.48)

where Z ~ N(0, 1) is a random variable that has the standard normal distri-
bution.
2) Log-normal model. We may write the asset price at time ¢,,i =1, ..., 7, as

-1 g, i-1
S, =S H SH =S, exp {Z log( > } : (3.49)
t j=0

j=0
Iflog(S, /S, ) areiid. with expectation m and variance s%, then an applica-

St/+ 1
S
4

J

tion of the central limit theorem gives the approximation'?
S,
log S—' ~ N(t;u, t,;6%), (3.50)
0

where
u=m/At, c*=s*/At. (3.51)

This is equivalent to saying that S, is log-normally distributed with param-
eters t;u + log S, and \/Zcr:

S,
— ~ lognorm (t;u, t,6%) .
So
Equation (3.50) defines the log-normal model for the asset prices. Under the
log-normal model we have

S, = Syexp {ti,u + \/E GZ} , (3.52)

where Z ~ N(0, 1) is a random variably that has the standard normal distri-
bution.

Parameter y in (3.51) is called the annualized mean of the logarithmic returns
and parameter o is called the annualized volatility. For the daily data 1/At =
250 and for the monthly data 1/A¢ = 12, when we take T' = 1.

Figure 3.11 shows estimates of the densities of stock price S, using the data
of S&P 500 daily prices, described in Section 2.4.1. In panel (a) T = 20/250,
which equals 20 trading days, and in panel (b) T' = 2 years. The normal den-
sity is shown with black and the log-normal density is shown with red. We take
S, = 100, and for the purpose of fitting a normal distribution for the price incre-
ments we change the price data to St,v =100 xS, /S, .For the normal model the

12 We have approximately that i~1/2(logS, —logS, — im)/s ~ N(0,1). Thus, approximately
logS, —logS, ~ N(im, is*). We can write im = t,m/At and is? = ¢,s?/ At.
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Figure 3.11 Normal and log-normal densities. Shown are a normal density (black) and a
log-normal density (red) of the distribution of the stock price S;, when S, = 100. In panel (a)
T = 20/250, which equals 20 trading days, and in panel (b) T = 2 years.

estimate 771, is the sample mean and §, is the sample standard deviation of the
daily increments. Then we arrive at the distribution
Tin, T%

At T At > ’
where At = 1/250. For the log-normal model the estimate 7%, is the sample
mean and §, is the sample standard deviation of the logarithmic daily returns.
Then we arrive at the distribution

Tin, T8
S ~ lognorm <logSo + AL E) .

The log-normal density is skewed to the left and the right tail is heavier than
the left tail. The normal density is symmetric with respect to the mean.

Log-normally distributed random variables take only positive values, but nor-
mal random variables can take negative values. Note, however, that the tail of
the normal distribution is so thin that the probability of negative values can
be very small. Thus, the positivity of log-normal distributions is not a strong
argument in favor of their use to model prices.

The Gaussian model for the increments of the stock prices was used by
Bachelier (1900). The continuous time limit of the log-normal model is the
Black—Scholes model, that is used in option pricing. The log-normal model
is applied in (14.49) to derive a price for options. A log-normal distribution
allows for greater upside price movements than downside price movements.
This leads to the fact that in the Black—Scholes model 105 call has more value
than 95 put when the stock is at 100. See Figure 14.4 for the illustration of the
asymmetry.

ST~N<SO+
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3.3.2 The Student Distributions

The density of the standard Student distribution with degrees of freedom v > 0
is given by

i x2 —(v+1)/2
f@ =c(1+ — , (3.53)

for x € R, where the normalization constant is equal to
e (v+1)/2)
(vm)/2I(v/2)’
and the gamma function is defined by I'(i) = fow x*Le™ dx for u > 0. When
X follows the Student distribution with degrees of freedom v, then we write

X ~ t(v).

3.3.2.1 Properties of Student Distributions
Let X ~ t(v). If v > 1 then E|X| < oo and EX = 0. If v > 2, then

12
Var(X) = .
X) —
We have that E|X|* < oo only when 0 < k < v. In fact, a Student density has
tails

(3.54)

fx) =< x|, (3.55)

as |x| = 00.!2 Thus, Student densities have Pareto tails, as defined in Section 3.4.

We can consider three-parameter location-scale Student families. When
X ~ t(v), then Y = u + 6 X follows a location-scale Student distribution, and
we writel

Y ~ t(v, u, o).
Note that for v > 1, EY = u but 62 is not the variance of Y. Instead,
Var(Y) = —2— 62,
V F—

due to (3.54).1%

13 Notation a, < b, means that 0 < lim inf__(a,/b,) < limsup,_ (a,/b,) < c.
14 Random variable Y has the density f((x — #)/0)/c, where f is the density of #(v) distribution.
The distribution function is F((x — u)/o), where F is the distribution function of ¢(v) distribution.
15 Thus, an estimate of o2 is

s2ov=2 &

%

where s? is the sample variance, when we assume that v is known. Analogously, in simulations we
have to note that when Y ~ #(v), then

oY

+ —_—
V=2

has mean y and variance 62.
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When v — o0, then the Student density approaches the Gaussian density.
Indeed, (14 £%/v)~*D/2  exp{—t?/2}, as v = oo, since (1+a/v)’ — e,
when v - 0.

A student distributed random variable X ~ £(v) can be written as

V4

\/W/v’

where Z ~ N(0, 1), and W has y2-distribution with degrees of freedom v. Thus,
Student distributions belong to the family of normal variance mixture distribu-
tions (scale-mixtures of normal distribution), as defined in Section 4.3.3.

X =

3.3.2.2 Estimation of the Parameters of a Student Distribution

Let us observe Y, ..., Y, from a Student distribution #(v, u, 62) with the den-
sity function f(x; v, u, ¢). The maximum likelihood estimates are maximizers
of the likelihood over v > 0, 4 € R, and ¢ > 0. Equivalently, we can minimize
the negative log-likelihood. Assuming the independence of the observations,
the negative log-likelihood is equal to

T
(v, p,0) = — Z logf(Y;; v, u, o).
i=1

We apply the restricted maximum likelihood estimator that minimizes
I(v, p,0) (3.56)

over v > 0 and o > 0, where /i is the sample mean.

Figure 3.12 studies how the return horizon affects the maximum likelihood
estimates for the Student family. We consider the data of daily S&P 500 returns,
described in Section 2.4.1. The data is used to consider return horizons up to
40 days. Panel (a) shows the estimates of parameter v as a function of return
horizon in trading days. Panel (b) shows the estimates of ¢ as a function of
the return horizon. We see that the estimates are larger for the longer return
horizons but there is fluctuation in the estimates.

Figure 3.13 shows the estimates of the degrees of freedom and the scale
parameter for each series of daily returns in the S&P 500 components data,
described in Section 2.4.5. We get an individual estimate of v and ¢ for each
stock. Panel (a) shows a kernel density estimate and a histogram estimate of
the distribution of ¥. Panel (b) shows the estimates of the distribution of &.1°
The maximizers of the kernel estimates (modes) are indicated by the blue lines.
The most stocks has ¥ & 3.5, but the estimates vary as V € [1.5, 5].

16 The smoothing parameter is chosen using the normal reference rule, and the kernel function is
the standard normal density. In fact, we show the values 1/250 x 100 X 6.
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Figure 3.12 Parameter estimates for various return horizons. The maximum likelihood
estimates of (a) v and (b) ¢ as a function of the return horizon in trading days.
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Figure 3.13 Distribution of estimates ¥ and 6. (a) A kernel density estimate and a histogram
of the distribution of ¥; (b) the estimates of the distribution of 6. The maximizers of the kernel
estimates are indicated by the blue lines.

3.4 Tail Modeling

The normal, log-normal, and Student distributions provide models for the com-
plete return distribution. These models assume that the return distribution is
approximately symmetric. We consider an approach where the left tail, the right
tail, and the central area are modeled and estimated separately. There are at least
two advantages with this approach:
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1) We may better estimate distributions whose left tail is different from the
right tail. For example, it is possible that the distribution of losses is different
from the distribution of gains.

2) We may apply different estimation methods for different parts of the distri-
bution. For example, we may apply nonparametric methods for the estima-
tion of the central part of the distribution and parametric methods for the
estimation of the tails.

In risk management, we are mainly interested in the estimation of the left tail
(the probability of losses). In portfolio selection, we might be interested in the
complete distribution.

A semiparametric approach for the estimation of the complete return distri-
bution estimates the left and the right tails of the distribution using a parametric
model, but the central region of the distribution is estimated using a kernel
estimator, or some other nonparametric density estimator. It is a nontrivial
problem to make a good division of the support of the distribution into the
area of the left tail, into the area of the right tail, and into the central area.

3.4.1 Modeling and Estimating Excess Distributions

We model the left and the right tails of a return distribution parametrically. The
estimation of the parameters can be done using maximum likelihood, or by a
regression method, for example.

3.4.1.1 Modeling Excess Distributions
Let f(x;0) be a parameterized family of density functions whose support is
[0, ). This family will be used to model the tails of the density g : R — R of
the returns.

To estimate the right tail, we assume that the density function g : R — R of
the returns satisfies

&, %) = (1 = p)f (x — u; 0) (3.57)

for some 0, where u is the pth quantile of the return density: 1 — p = /u *g,and
the probability p satisfies 0.5 < p < 1.1 To estimate the left tail we assume that
the density function g : R — R of the returns satisfies

8 10 (%) = pf (u — x;0) (3.58)

for some 60, where u is the pth quantile of the return density: p = f_”oo g, and
0<p<05.

The assumptions can be expressed using the concept of the excess distribu-
tion with threshold # > 0. Let G : R — R be the distribution function of the

17 The indicator function I, : R — R is defined for any A C R by I,(x) = 1, when x € A, and
I,(x) = 0, when x & A.
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Figure 3.14 Excess distributions. (a) The density function of t-distribution with degrees of
freedom five. The green, blue, and red vectors indicate the location of quantiles g, for
p =0.95,p =0.99,and p = 0.999. (b) The right excess distributions for u = qp-

returns and let ¢ : R — R be the density function of the returns. Let X be the
return. Now P(X < x) = G(x). The distribution function of the excess distribu-
tion with threshold u is

G(x + u) — G(u)

Gx)=PX-u<x|X>u = ) (3.59)
The density function of the excess distribution with threshold u is
gx+u)
g,(x) = 1-Gw Ij6,00)(%). (3.60)

Thus, the assumption in (3.57) says that
8,(x) =f(x;0)

for some 6. Limit theorems for threshold exceedances are discussed in
Section 3.5.2.

Figure 3.14 illustrates the definition of an excess distribution. Panel (a)
shows the density function of ¢-distribution with degrees of freedom five. The
green, blue, and red vectors indicate the location of quantiles g, for p = 0.95,
p=0.99, and p = 0.999. Panel (b) shows the right excess distributions for
u = q,,. The choice of the threshold « affects the goodness-of-fit, and this issue
will be addressed in the following sections.

3.4.1.2 Estimation

Estimation is done by first identifying the data coming from the left tail, and the
data coming from the right tail. Second, the data is transformed onto [0, o).
Third, we can apply any method of fitting parametric models.
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Identifying the Data in the Tails We choose threshold u of the excess distribution
to be an estimate of the pth quantile. For the estimation of the left tail we need
to estimate the pth quantile for 0 < p < 0.5, and for the estimation of the right
tail we need to estimate the pth quantile for 0.5 < p < 1. The data in the left tail
and the right tail are

L={Y, Y, <ul, R={Y,:Y,>u}, (361)
where u are estimates of a lower and an upper quantile, respectively. We use
the empirical quantile to estimate the population quantile. Let Yi,...,Y;

be the sample from the distribution of the returns, and let Y{;) <--- < Y7, be
the ordered sample. The empirical quantile is

4y = Ypry»
where [x] is the integer part of x € R. See Section 3.1.3 and Chapter 8 for more
information about quantile estimation. Now the data in the left tail and the right
tail can be written as

L= YY) R = (Yprp s Yo )- (3.62)

The Basic Principle of Fitting Tail Models Assume that we have an estimation pro-
cedure for the estimation of the parameter 8 of the family f(-; 6), 8 € ©. The
family consists of densities whose support is [0, ), and it is used to model the
left or the right part of the density, as written in assumptions (3.58) and (3.57).
We need a procedure for the estimation of the parameter 6 = 6,,, in model
(3.58), or the parameter 6 = 6,,,,,, in model (3.57). We apply the estimation pro-
cedure for estimating 6 using data

{u=Y,: Y, <u}, {Y,—u:Y, >u}

Maximum Likelihood in Tail Estimation We use the method of maximum likeli-
hood for the estimation of the tails under the assumptions (3.57) and (3.58).
We write the likelihood function under the assumption of independent and
identically distributed observations, but we apply the maximum likelihood esti-
mator for time series data. Thus, the method may be called pseudo maximum
likelihood. Time series properties will be taken into account in Chapter 8, where
quantile estimation is studied using tail modeling. The likelihood is maximized
separately using the data in the left tail and in the right tail.

The family f( - , ), 0 € ©, models the excess distribution. The maximum like-
lihood estimator for the parameter of the left tail is

01, = argmax Hf(u - Y30, (3.63)
b  Yer
where u = g, for 0 < p < 0.5 and f( - ,6) has support [0, ). The maximum
likelihood estimator for the parameter of the right tail is
0,1 = argmax [ /¥, - :0), (3.64)
0  Yver

where u = g, for 0.5 <p < 1.
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3.4.2 Parametric Families for Excess Distributions
We describe the following one- and two-parameter families:

1) One-parameter families. The exponential and Pareto distributions.
2) Two-parameter families. The gamma, generalized Pareto, and Weibull dis-
tributions.

Furthermore, we describe a three parameter family which contains many one-
and two-parameter families as special cases.

The exponential distributions have a heavier tail than the normal distribu-
tions. The Pareto distributions have a heavier tail than the exponential distribu-
tions, but an equally heavy tail as the Student distributions. The Pareto densities
have polynomial tails, the exponential densities have exponential tails, and the
gamma densities have densities whose heaviness is between the Pareto and the
exponential densities.

3.4.2.1 The Exponential Distributions
The exponential densities are defined as

Sx) = % exp {—% } 1jg,00) (), (3.65)

where f§ > 0is the scale parameter. The parameter A = 1/f > 0Ois called the rate
parameter. The distribution function and the quantile function are

F(x) = <1 — exp {—% }) I[OYOO)(x), F‘l(p) = —flog(1 —p)I[Oyl)(p).

The expectation and the variance are
EX =p, Var(X)= (3.66)

where X is a random variable following the exponential distribution.

Maximum Likelihood Estimation: Exponential Distribution When we observe

Yy, ..., Yy, which are ii.d. with exponential distribution, then the maximum
likelihood estimator is!'®
T
~ 1
b= pRa (3.67)
i=1

18 The likelihood function is

T
L(ﬁ>=ﬁTexp{—/%ZYi}-

i=1

The logarithmic likelihood is

T
1
logL(p) = ~Tlog - 5 Z Y,

Putting the derivative equal to zero and solving the equation gives the maximum likelihood esti-
mator.
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Regression Method: Exponential Distribution Regression plots were shown in
Figures 3.4 and 3.5. We study further the regression method for fitting an
exponential distribution.

For exponential distributions the logarithm of the survival function 1 — F
is a linear function, which can be used to visualize data and to estimate the

parameter of the exponential distribution (see Section 3.2.1). Let Y3, ..., Y be
a sample from an exponential distribution and assume Y; < --- < Y;. Let F
be the empirical distribution function, based on the observations Y, ..., Yy,

defined as F(x) = #{Y, <x}/(T + 1). The empirical distribution function is
defined in (3.30), but we modify the definition so that the divisor is 7'+ 1
instead of T. We use the facts that (for the ordered data)

1-FY)=1-i/(T+1), 1-FY,)=¢e"7
Thus,
—Y, =~ flog(1 —i/(T + 1)).
The least squares estimator of f is'’
YL, Yilog(l = i/(T +1)
37, og(l —i/(T + )P’

Now we can write

T
ﬁA = Z ini’
i=1

where

f= (3.69)

0, log(T + 1)/(T +1—1)) (3.70)

T Qog((T + D/(T +1 = i))?
Thus, more weight is given to the observations in the extreme tails.?
Figure 3.15 shows the fitting of regression estimates for the S&P 500
daily returns, described in Section 2.4.1. Panel (a) considers the left tail and
panel (b) the right tail. The tails are defined by the pth empirical quantiles for

19 In the regression model Y; = X, +¢,i=1,..., T, the least squares estimator of f is
T
N L YX
f= Z‘*Tl i (3.68)
Yo X

20 Note that, unlike in the case of the maximum likelihood estimator, we do not obtain an esti-
mator for the rate parameter A =1/§ by 1/f. Instead, an estimator for A = 1/§ follows from
log(1 —i/(T + 1)) ~ —AY,. Thus, the least squares estimator of 4 is

>, Y logl —i/(T +1))

1=
T
Zia ¥}

(3.71)
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Figure 3.15 Exponential model for S&P 500 daily returns: Regression fits. Panel (a) considers the
left tail and panel (b) the right tail. We show the regression data and the fitted regression lines
for p = 10%/90% (blue), 5%/95% (green), and 1%/99% (red).

p =10%/90% (blue), 5%/95% (green), and 1%/99% (red). We also show the
fitted linear regression lines.

3.4.2.2 The Pareto Distributions
We define first the class of Pareto distributions with the support [#, o0), where
u > 0. The class of Pareto distributions with support [0, c0) is obtained by trans-
lation.

The Pareto distributions are parameterized by the tail index @ > 0. Parameter
u > 0 is taken to be known, but in the practice of tail estimation u is used to
define the tail area and u# chosen by a quantile estimator. The density function is

afx\71
=2(2) g i 3.72
f@=2(2) @ (372)
where a > 0 is the tail index. The distribution function and the quantile func-

tion are

F@ = 1= (2) | huw@.  F'@) =0 =p) Loy ). (373)

Pareto Distributions as Excess Distributions Assumption (3.57) says that the excess
distribution is modeled with a parametric distribution whose support is [0, c0).
The density function of a Pareto distribution can be moved by the translation
f(x) = f(x + u) to have the support [0, c0), which gives the density function®!

f(x)=%(

X+ u

—1l-a
) ) (3.74)

21 The distribution function and the quantile function are

Fe = [1- (77 | o @ F710) = [ = )/ = 111, ).
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Now we could consider # > 0 as the scaling parameter, which leads to the
two-parameter Pareto distributions, which are called the generalized Pareto
distributions, and defined in (3.82) and (3.84).

Maximum Likelihood Estimation: Pareto Distribution When Y follows the Pareto
distribution with parameters « >0 and u# >0, then X =log(Y/u) fol-
lows the exponential distribution with scale parameter f = 1/a. Indeed,
P(Y > x) = (x/u)™® and thus P(X > x) = P(Y > ue*) = e **. We observed in
(3.67) that scale parameter f§ of the exponential distribution can be estimated
with f = T~ Z;T=1 X;. Thus, the maximum likelihood estimator of 1/a is

—

T
Ta=1/a= % ; log(Y, /).

The maximum likelihood estimator of the shape parameter « of the Pareto dis-
tribution is??

T -1
X 1
&= <T ; log(Yi/u)> . (3.75)

We are more interested in estimating 1/a, since it appears in the quantile func-
tion.

Regression Method: Pareto Distribution Regression plots were shown in
Figures 3.6 and 3.7. We study further the regression method for fitting a
Pareto distribution.

Let us consider the estimation of the tail index @ > 0 and the inverse
1/a. The basic idea is that the logarithm of the distribution function F or
the logarithm of the survival function 1 — F are linear in a: From (3.78)
we get that log(l — F(x)) = log L(x) — alogx, and from (3.79) we get that
log F(—x) = log L(x) — a log x.

Let Y,, ..., Y, be a sample from a Pareto distribution and assume

Y, << Y.

22 The likelihood function is
! au”
L@ =]] Yo
i=1 1;

where itis assumed that Y}, ..., Y, arei.i.d. Pareto distributed random variables. Taking logarithms
leads to

T
logL(a) = Tlog(a) + Talogu — (a + 1) Z logY,.

i=1

Differentiating with respect to « and setting the derivative equal to zero gives the maximum likeli-
hood estimator.
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Let F be the empirical distribution function, based on the observations
Y,,..., Y, defined as F(x) = #{Y, <x}/(T +1). The empirical distribution
function is defined in (3.30), but we modify the definition so that the divisor is
T + 1 instead of T. We use the facts that

1-FY)=1-i/(T+1), 1-F,) =(,/u)™.
Thus,
—log(Y;/u) = (1/a)log(1 —i/(T + 1)).
The least squares estimator of 1/« is
T llog(¥,/u) - log(1 = i/(T + 1))]
Yy (log(1 —i/(T +1)))?

see (3.68) for the least squared formula. The estimator of 1/a can be written as

1/a=- (3.76)

T
o= w,log(¥,/u),
i=1
where w; is defined in (3.70). More weight is given to the observations in the
extreme tails.
To estimate «, instead of 1/a, we use

log(1 - i/(T + 1)) % —alog(Y;/u).
The least squares estimator of « is
X llog(Y;/u) - log(1 = i/(T + 1)]

Xioy (log(¥, /w2

Figure 3.16 shows the fitting of regression estimates for the S&P 500
daily returns, described in Section 2.4.1. Panel (a) considers the left tail and
panel (b) the right tail. The tails are defined by the pth empirical quantiles for
p =10%/90% (blue), 5%/95% (green), and 1%/99% (red). We also show the
fitted linear regression lines. If the tails are Pareto tails, then the points should
be on a straight line whose slope is equal to @. We can see that the slopes
increase when we move to the more extreme parts of the tail (p decreases).

a=-

(3.77)

Pareto Tails 'The Student distributions have Pareto tails, as written in (3.55). The
Lévy distributions with 0 < @ < 2 have Pareto tails, as written in (3.94).

A distribution of random variable X € R with distribution function F : R —
[0, 1] is said to have a Pareto right tail when

PX >2x)=1-F(x) =L(x) x™ ¢, (3.78)

forx > 0, forsome @ > 0, where L : (0, ) — (0, o0) is a slowly varying function
at +oo:
L(Ax)
im =1
X—00 L(x)

s
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Figure 3.16 Pareto model for S&P 500 daily returns: Regression fits. Panel (a) considers the left
tail and panel (b) the right tail. We show the regression data and the fitted regression lines for
p = 10%/90% (blue), 5%/95% (green), and 1%/99% (red).
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for all A > 0.2 A distribution is said to have a Pareto left tail when
P(X £ —x) = F(—x) = L(x) x™¢, (3.79)

for x > 0, for some a > 0, where L : (0, ) — (0, 00) is a slowly varying func-
tion.
For example, if density function f : R — R satisfies

fx)=Cx17®

for x > u, where u > 0, « > 0, and C > 0, then the distribution has a Pareto
right tail. If

f@x) = C(=x)"

for x < —u, where u > 0, @ > 0, and C > 0, then the distribution has a Pareto
left tail.

3.4.2.3 The Gamma Distributions
For the gamma distributions the density functions have a closed form expres-
sion but the distribution functions and the maximum likelihood estimator can-
not be written in a closed form.

The gamma densities are defined as

f@) = C(x, p) -« ' exp {—% } L0.00)(%), (3.80)

23 If0 < lim__ L(4x)/L(x) < oo for all 4, then L : (0, ) — (0, ) is called regularly varying.

x—00
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where ¥ > 0, # > 0 and the normalization constant is

1
Ck,p) = ——,
pI(x)
whereI'(x) = fooo t*~le7t dt is the gamma function. The distribution function is
y(x,x/PB)
Fx) = W ][O’m)(x)9

where the lower incomplete gamma function is defined as

X
y(K, %) :/ et dt
0

forx > 0andy > 0.

When k = 1, then we obtain the family of exponential distributions. When
k > 1, then the gamma densities have a tail that is heavier than the exponen-
tial densities but lighter than the Pareto densities. When 0 < k < 1, then the
gamma densities have a tail that is lighter than the exponential densities.

Assuming independent and identically distributed observations Y, ..., Y
the logarithmic likelihood is

log L(x, p) = —Tx log fp — T logI'(x)
T T
+(x = 1) ) log ¥, — ;:} pRa (3.81)
i=1 i=1

The maximum likelihood estimator of parameter f, given «, is

T

A 1
= Y.
B KT;,
The maximum likelihood estimator of k is the maximizer of log L(k, B(x)) over
k > 0. The maximum likelihood estimator of § is § = f(&).

3.4.2.4 The Generalized Pareto Distributions
The one-parameter Pareto distributions were defined in (3.73) and (3.72). We
define the two-parameter generalized Pareto distributions, which contain the
exponential distributions as a limiting case.

The density functions, distribution functions, and quantile functions have a
closed form expression but the maximum likelihood estimator does not have a
closed form expression.

The density functions of the generalized Pareto distributions are

1 Ex —1/¢6-1
-(1 + —) Lp @), €0,

fx)=1"7 b (3.82)
}%mm, £=0,

X

B
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where # > 0 and & > 0. The distribution functions are

1- (1 + 9)_1/51 x), £>0
ﬂ [0,00) ) )

F(x) =
1—exp {_E } Low®), E=0.

(3.83)

The quantile functions are

Flp) = g[(l -p -1 Io ), £>0,
—plog(1 — p)ljg 1 (%), £=0.

When & = 0, then the distributions are exponential distributions, defined in
(3.65).

The generalized Pareto distribution can be defined for the cases ¢ < 0. In this
case the supportis [0, —f/£]. See (3.101) for the distribution function and (8.65)
for the density function. The generalized Pareto distributions are obtained as
limit distributions for threshold exceedances (see Section 3.5.2).

For the calculation of the maximum likelihood estimation it is convenient to
use the following parameterization. We define the class of generalized Pareto
distributions using the tail index @ > 0 (shape parameter) and the scaling
parameter o > 0 by defining the density function as

—l-a

fx) = %(1 + g) I[O,w)(x). (3.84)

The parameters of the generalized Pareto distribution (3.84) are related to the
parameterization in (3.83) by @ = 1/& and o = f/£. Note that the densities
(3.84) can be obtained heuristically from a translation of the one-parameter
Pareto distributions, as written in (3.74).

The maximum likelihood estimator cannot be expressed in a closed form
but we can reduce the numerical maximization of the two-variate likelihood
function to the numerical maximization of a univariate function. For the com-
putation of the maximum likelihood estimator, we use the parameterization of
the density as in (3.84).

The logarithmic likelihood function for i.i.d. observations Y, ..., Y, is

a 4 Y,
log L(a, 6) = Tlog<—> ~(1+a) Y log <1+—>. (3.85)
o P o
Setting the partial derivative equal to zero and solving for a gives*
T -1
. 1 Yi
a(o) = lT;log <1+;>] .

24 The partial derivative with respect to a is

T
2 T Y
alogL(a,a) =" ;log <1+ ;)
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The maximum likelihood estimator é for ¢ is the maximizer of the univariate
function log L(&(c), o) over ¢ > 0. The maximum likelihood estimator for « is
& = @(6). The maximum likelihood estimators for £ and g are

E=1/a, p=Es.

3.4.2.5 The Weibull Distributions
For the Weibull distributions the density functions, distribution functions, and
quantile functions have a closed form expression but the maximum likelihood
estimator cannot be written in a closed form.

The Weibull densities are defined as

k-1 K
5 <%> exp{—(%) }I[O,w)(x), (3.86)

K
S ==

where k > 0 is the shape parameter and f > 0 is the scale parameter. The dis-

tribution function is

F(x) = (1 —exp {—(%) }) Lip ooy ().

The quantile function is

F7(p) = p(—log(1 — p)"/*1 5 1,(P).

For ¥ = 1 we obtain the exponential distribution. The Weibull distributions are
also called stretched exponential distributions because 1 — F(x) is a stretched
exponential function.

The maximum likelihood estimator cannot be expressed in a closed form but
we can reduce the numerical maximization of the two-variate likelihood func-
tion to the numerical maximization of a univariate function. The logarithmic
likelihood function for i.i.d. observations Y7, ..., Y, is

T T
log L(k. f) = Tlog(x/P) + (x = 1) " log(Y,/p) = ¥ (Y,/B)".  (3.87)
i=1 i=1

Setting the partial derivative equal to zero and solving for § gives®
) T 1/x
f(xc) = <? ; ; ) .

The maximum likelihood estimator & for « is the maximizer of the univariate
function log L(f(x), k) over k > 0. The maximum likelihood estimator for f is

B = B&).

25 The partial derivative with respect to f is

T
% log L(x, ) = k™" (ﬁ‘ ; Yy - T) )
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3.4.2.6 AThree Parameter Family
A flexible family for the modeling of the right tail is defined in Malevergne and
Sornette (2005, p. 57) by density functions

f@®) = Ca, b, c,u) - 5~V exp{—(x/0)"} I, o)), (3.88)

where u > 0 is the starting point of the distribution, a € R, and b, ¢ € [0, ).
When b =0, then a > 0. The normalization constant C(a, b, c, 1) has the
expression

b
['(—a/b,(u/c)t)’
where I'(a, x) = /x ® t*~le~t dt is the nonnormalized incomplete Gamma func-

tion.
The family contains several sub-families:

C(a,b,c,u) =

1) The exponential density is obtained when ¥ = 0,2 =—-1,b =1, and ¢ > 0.
The exponential densities are f(x) = ¢ - exp{—x/c}]jg (%), where ¢ > 0.
We defined exponential densities in (3.65).

2) The Pareto density is obtained when a > 0 and b = 0. The Pareto densities
are f(x) = au® - x~“*V I, (x), where a > 0 and u > 0. We defined Pareto
densities in (3.72).

3) The gamma density is obtained by choosing # = 0 and b = 1. The gamma
densities are f(x) = [¢*/T'(—a)] =V e™/°I;  (x), where a < 0 and ¢ > 0.
The gamma densities were defined in (3.80).

4) The Weibull density is obtained when a = —b, b > 0, and ¢ > 0:

fx)=Cb,c,u)- X1 exp{—(x/c)b}l[u’oo)(x),

where C(b,c,u) = b/c’ exp{(u/c)’}. The Weibull densities were defined in
(3.86).
5) The incomplete gamma density is obtained whena = b =1and ¢ > 0:

f@) = Cle,u) - x7% exp{—(x/) Hj, 0y (%),
where C(c, u) = ¢/T'(-1,u/c).

The Pareto density and the stretched exponential density can be interpolated
smoothly by the log-Weibull density

f@) = C(a,b) - x ' [log,(x/u)]”™" exp{—allog,(x/u)]’} I, o) (%)
where C(a, b, u) = ab.

3.4.3 Fitting the Models to Return Data

We fit models first to S&P 500 returns, and then to a collection of individual
stocks in S&P 500. Fitting of the distributions gives background for the quantile
estimation of Chapter 8.
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3.4.3.1 S&P 500 Daily Returns: Maximum Likelihood
We fit one-parameter models (exponential and Pareto) and two-parameter
models (gamma, generalized Pareto, and Weibull) to the tails of S&P 500 daily
returns. The S&P 500 daily data is described in Section 2.4.1.

We study maximum likelihood estimators (3.63) and (3.64). The estimates are
constructed using data

{Qp_Yi: )/LSQp}’ {Yi_QI—p: }/L'ZQI—p}’

for the left and the right tails, respectively. Threshold g, is the pth empirical
quantile, and g;_,, is the (1 — p)th empirical quantile, where 0 < p < 0.5. The
estimators 9,eﬁ and éright depend on the parameter p.

To show the sensitiveness of the estimates with respect the parameter p we
plot the values of the estimates as a function of p. These plots are related to
the Hill’s plot, which name is used in the case of estimating parameter « of the
Pareto distribution.

To characterize the goodness of fit we show tail plots, as defined in
Section 3.2.1. The tail plots include both the observations and the fitted curves,
for several values of p.

The one-parameter models indicate that the left tail is heavier than the right
tail. However, the two-parameter families seem to give much better fits than
the one-parameter families.

The Exponential Model 'The maximum likelihood estimator of the parameter of
the exponential distribution is given in (3.67). The estimators for the parameters
of the left tail and the right tail are obtained from (3.63) and (3.64) as

ﬂleft @, =YD, Prgn = Y, —q
7 2 o = 7 20~ i)
where £ and R are defined in (3.61) and (3.62). The estimates ﬁleﬁ and ﬁnght are

related to the estimates of the expected shortfall in (3.28) and (3.27).

Figure 3.17 shows estimates of the parameter f and 1/f of the exponential
distribution. Panel (a) shows estimates of 100 X # and panel (b) shows esti-
mates of 1/, as a function of p. Parameter § occurs in the quantile function,
and is more important in quantile estimation, but for the convenience of
the reader we also show the estimates of the rate parameter 1/f. The red
curves show the maximum likelihood estimates for the left tail, and the blue
curves show the maximum likelihood estimates for the right tail. In addition,
we show the values of the regression estimates (3.69) and (3.71). The pink
curves show the regression estimates for the left tail, and the green curves
show the regression estimates for the right tail. We see that the estimates for
p are larger for the left tail than for the right tail. This indicates that the left tail
is heavier than the right tail. The estimates become smaller when p increases.
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Figure 3.17 Exponential model for S&P 500 daily returns: Parameter estimates. Panel (a) shows
estimates of 100 x g and panel (b) shows estimates of 1/, as a function of p. Red and blue:
the maximum likelihood estimates; pink and green: the regression estimates; red and pink:
the left tail; blue and green: the right tail.

The regression estimates are larger than the maximum likelihood estimates.
For the estimates of 1/ the behavior is opposite.

Figure 3.18 shows tail plots, defined in Section 3.2.1. Panel (a) shows the left
tail plots and panel (b) shows the right tail plots. The red and green points show
the observed data and the black lines show the exponential distribution func-
tions when parameter f is estimated with maximum likelihood. The four black
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Figure 3.18 Exponential model for S&P 500 daily returns: Tail plots with maximum likelihood.
Panel (a) shows the left tail plots and panel (b) shows the right tail plots. The red and green
points show the observed data and the black lines show the exponential fits with p = 0.5%,
1%, 5%, and 10%.
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curves show the cases p = 0.5%, 1%, 5%, and 10%. The tails are fitted better
with small values of p.

The Pareto Model The maximum likelihood estimator of the parameter of the
Pareto distribution is given in (3.75).2¢ The estimators for the parameters of the
left and the right tails are obtained from (3.63) and (3.64) as

-1 -1

B = <% YZ log(Yi/u)> By = (# 3 1og(1g/u)> . (3.89)
EL Y, ER

where £ ={Y; 1 Y; <u} with u = g, for the left tail, and R = {Y; : Y, > u}

withu = g,_,, for the right tail. Now 0 < p < 0.5. The maximum likelihood esti-

mators are called Hill’s estimators.?’

Figure 3.19 shows estimates of the parameter 1/a and « of the Pareto distri-
bution. Panel (a) shows estimates of 100/« and panel (b) shows estimates of «,
as a function of p. The plot in panel (b) is known as Hill’s plot. Parameter 1/«
occurs in the quantile function, and is more important in quantile estimation,
but for the convenience of the reader we also show the estimates of parame-
ter a. The red curves show the maximum likelihood estimates for the left tail
and the blue curves show the maximum likelihood estimates for the right tail.
In addition, we show the values of regression estimates of 100/a, defined in
(3.76), and the values of regression estimates of a, defined in (3.77). The pink
curves show the regression estimates for the left tail and the green curves show
the regression estimates for the right tail. We see that the estimates of 1/a are
larger for the left tail than for the right tail, which means that the left tail is
estimated to be heavier than the right tail. The estimates of 1/a become larger
when p increases. The regression estimates of 1/a are smaller than the maxi-
mum likelihood estimates. For the estimates of a the behavior is opposite.

Figure 3.20 shows tail plots. Panel (a) shows the left tail plots and panel (b)
shows the right tail plots. The red and green points show the observed data
and the black curves show the Pareto distribution functions when parameter
a is estimated with maximum likelihood. The four black curves show the cases
p = 0.5%, 1%, 5%, and 10%.

26 For the Pareto distribution translated to have support [0, o) the maximum likelihood estimator
isa= (T Y], log((Y, +u)/uw)™.

27 The computation of the estimates can be done in the following way. Let 0 < p < 0.5 and m =
[pT]. Let Yy <+ <Y be the ordered sample. The Hill’s estimators are

m

By = —= (3.90)

I log(Yy) /Y741y
and
m

= = (3.91)
o Y log(Y(i)/Y(m))
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Figure 3.19 Pareto model for S&P 500 daily returns: Parameter estimates. Panel (a) shows
estimates of 100/« and panel (b) shows estimates of a as a function of p. Red and blue: the
maximum likelihood estimates; pink and green: the regression estimates; red and pink: the
left tail; blue and green: the right tail.
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Figure 3.20 Pareto model for S&P 500 daily returns: Tail plots with maximum likelihood. Panel (a)
shows the left tail plots and panel (b) shows the right tail plots. The red and green points show
the observed data and the black curves show the fits with p = 0.5%, 1%, 5%, and 10%.

The Gamma Model The gamma densities are defined in (3.80). The maximum
likelihood estimators for the scale parameter f > 0 and for the shape param-
eter k > 0 of a gamma distribution do not have a closed form expression, but
the computation can be done by minimizing a univariate function. We get the
maximum likelihood estimates for the parameters of the left tail and the right
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Figure 3.21 Gamma model for S&P 500 daily returns: Parameter estimates. Panel (a) shows
estimates of 100 x f and panel (b) shows estimates of k, as a function of p. Red: the left tail;
blue: the right tail.

tail by applying the numerical procedure for the observations
{Qp_Yi . YtSQp}’ {Yi_QI—p . YiZQI—p}’ (392)

for the left and the right tails, respectively, where 0 < p < 0.5.

Figure 3.21(a) shows estimates of 1004 and panel (b) shows estimates of «.
The red curves show the estimates for the left tail, and the blue curves show the
estimates for the right tail. We see that the estimates for g are larger for the left
tail than for the right tail. The estimates become smaller when p increases.

Figure 3.22 shows tail plots. Panel (a) shows the left tail plots and panel (b)
shows the right tail plots. The red and green points show the observed data
and the black curves show the gamma distribution functions when parameters
are estimated with maximum likelihood. The four black curves show the cases
p = 0.5%, 1%, 5%, and 10%.

The Generalized Pareto Model The density of a generalized Pareto distribution
is given in (3.82). The maximum likelihood estimators for the scale parameter
p > 0and for the shape parameter £ > 0 of a generalized Pareto distribution do
not have a closed form expression, but the computation can be done by mini-
mizing a univariate function. We get the maximum likelihood estimates for the
parameters of the left tail and the right tail by applying the numerical procedure
for the observations in (3.92).

Figure 3.23(a) shows estimates of 1004, and panel (b) shows estimates of &.
The red curves show the estimates for the left tail, and the blue curves show the
estimates for the right tail. The estimates of § become smaller when p increases.
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Figure 3.22 Gamma model for S&P 500 daily returns: Tail plots with maximum likelihood.
Panel (a) shows the left tail plots and panel (b) shows the right tail plots. The red and green
points show the observed data and the black lines show the fits with p = 0.5%, 1%, 5%, and
10%.
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Figure 3.23 Generalized Pareto model for S&P 500 daily returns: Parameter estimates. Panel (a)
shows estimates of 100 x # and panel (b) shows estimates of &, as a function of p. Red shows
the estimates for the left tail, and blue shows them for the right tail.

Figure 3.24 shows tail plots. Panel (a) shows the left tail plots and panel (b)
shows the right tail plots. The red and green points show the observed data
and the black curves show the distribution functions when parameters are esti-
mated using maximum likelihood. The four black curves show the cases p =
0.5%, 1%, 5%, and 10%. The fitted curves do not change in a monotonic order
when p is decreased.



3.4 Tail Modeling

o 1 o 1

S IS

[re) re)

o | (=3

0 rel

o | =

0 - 0 -

i 1%'5% -5% 10% i A . i i 10% 1%0:5% 5%

-0.20 -0.15 -0.10 —-0.05 0.02 0.04 0.06 0.08 0.10 0.12

(a) (b)

Figure 3.24 Generalized Pareto model for S&P 500 daily returns: Tail plots with maximum
likelihood. Panel (a) shows the left tail plots and panel (b) shows the right tail plots. The red
and green points show the observed data and the black curves show the fits with p = 0.5%,
1%, 5%, and 10%.

The Weibull Model The Weibull densities are given in (3.86). The maximum like-
lihood estimators for the scale parameter § > 0 and for the shape parameter
x > of a Weibull distribution do not have a closed form expression, but the
computation can be done by minimizing a univariate function. We get the max-
imum likelihood estimates for the parameters of the left tail and the right tail
by applying the numerical procedure for the observations in (3.92).

Figure 3.25(a) shows estimates of 1004, and panel (b) shows estimates of .
The red curves show the estimates for the left tail, and the blue curves show the
estimates for the right tail. The estimates of f become smaller when p increases.

Figure 3.26 shows tail plots. Panel (a) shows the left tail plots and panel (b)
shows the right tail plots. The red and green points show the observed data
and the black curves show the distribution functions when parameters are esti-
mated using maximum likelihood. The four black curves show the cases p =
0.5%, 1%, 5%, and 10%.

3.4.3.2 Tail Index Estimation for S&P 500 Components
We study fitting of the Pareto model for the daily returns of stocks in S&P 500
index. S&P 500 components data is described in Section 2.4.5.

Figure 3.27 shows how &, and &, are distributed. The estimators are
defined in (3.89); these are Hill’s estimators for the left and right Pareto
indexes. Panel (a) shows the distribution of the estimates of the left tail index
and panel (b) shows the distribution of the estimates of the right tail index. We
have computed the estimates for each 312 stocks in the S&P 500 components
data set, and the kernel density estimator is applied for this data set of 312
observations. This is done for p = 0.05, 0.06, ..., 0.2. The smoothing parameter
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Figure 3.25 Weibull model for S&P 500 daily returns: Parameter estimates. Panel (a) shows
estimates of 100 x # and panel (b) shows estimates of &, as a function of p. Red shows the
estimates for the left tail, and blue shows them for the right tail.
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Figure 3.26 Weibull model for S&P 500 daily returns: Tail plots with maximum likelihood.
Panel (a) shows the left tail plots and panel (b) shows the right tail plots. The red and green
points show the observed data and the black curves show the fits with p = 0.5%, 1%, 5%, and
10%.

is chosen by the normal reference rule, and the standard Gaussian kernel
function is used. A smaller p gives a smaller estimate of a.

Figure 3.28 shows a scatter plot of points (&, @), when the estimates are
computed for each stock in the S&P 500 components data. We have used p =
0.1. There are about the same number of stocks for which the left tail index is
smaller than the right tail index
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Figure 3.27 Density estimates of the distribution of Hill’s estimates. (a) Distribution of the left
tail index; (b) the right tail index. Hill's estimates are calculated for the 312 stocks and kernel
estimates are calculated from 312 estimated values of a. There is an kernel estimate for each
p = 0.05,0.06,...,0.2.

Figure 3.28 A scatter plot of esti-
mates of a. We show a scatter plot
of points (&, &) for the stocksin =
the S&P 500 components data. The
red line shows the points withy = x. g
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3.5 Asymptotic Distributions

First we describe central limit theorems and second we describe limit theorems
for the excess distribution. The limit distributions of the central limit theorems
can be used to model the complete return distribution of a financial asset and
the limit distributions for the excess distribution can be used to model the tail
areas of the return distribution of a financial asset.
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3.5.1 The Central Limit Theorems

We applied a central limit theorem for sums in (3.46) and (3.49) to justify the
normal and the log-normal model for the stock prices. In a similar way we
can apply the central limit theorems to justify alternative models for the stock
prices. When the variance of the summands is finite the limit is a normal distri-
bution, but if the variance is not finite, the limit distributions can have heavier
tails than the normal distributions.

We describe first a central limit theorem for sums of independent but not nec-
essarily identically distributed random variables. The limit distributions belong
to the class of infinitely divisible distributions. Second we describe central limit
theorems for sums of independent and identically distributed random vari-
ables. Now the limit distributions belong to the class of stable distributions.
The class of stable distributions is a subset of the class of infinitely divisible dis-
tributions. The stable distributions include the normal distributions but they
include also heavy tailed distributions, which can be used to describe phenom-
ena where both very large and very small values can be observed, like the stock
returns.

Third we consider the case of sums of dependent random variables. When the
dependence is weak, then a convergence towards a normal distribution occurs,
but the asymptotic variance is affected by the dependence.

We do not apply stable distributions or infinitely divisible distributions to
model return distributions, but it is useful to note that heavy tailed distributions
arise already from central limit theorems, and not only from limit distributions
for the excess distribution.

3.5.1.1 Sums of Independent Random Variables

The Khintchine theorem states that for a distribution to be a limit distribution
of a sum of independent (but not necessarily identically distributed) random
variables it is necessary and sufficient that the distribution is infinitely divisible;
see Billingsley (2005, pp. 373—-374) and Breiman (1993, p. 191).

The infinitely divisible distributions are such that a random variable following
an infinitely divisible distribution can be represented as a sum of #i.i.d. random
variables for each natural number #. In other words, a distribution function F
is infinitely divisible if for each # there is a distribution function F, such that
F is the n-fold convolution F, * - - - x F,.® For example, the normal, Poisson,
and gamma distributions are infinitely divisible but the uniform distributions

28 The convolution of functions f : R » Rand g : R — Ris defined as f * g(x) = f_o;f(y)g(x -
y) dy.

The characteristic function of an infinitely divisible distribution is the nth power of some charac-
teristic function. The characteristic function ¢ of a probability distribution P on R is defined by

¢(t) = f_w e dP(x), where t € R. The characteristic function of an infinitely divisible distribution
can be found in Breiman (1993, p. 194). See also Billingsley (2005, p. 372).
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are not. See Billingsley (2005, Chapter 5) and Breiman (1993, Section 9.5) about
infinitely divisible distributions.

Let (Y, )iz1...o = 1,2,..., be a triangular array of row-wise independent
random variables which satisfy

k_nllax P(|Y,| >e)—0,

as n — oo, for every € > 0. Then Y;_, Y, can be normalized to converge to an
infinitely divisible distribution.

3.5.1.2 Sums of Independent and Identically Distributed Random Variables

For a distribution to be a limit distribution of a sum of independent and identi-
cally distributed random variables it is necessary and sufficient that the distri-
bution is stable.

Stable Distributions A random variable is said to have a stable distribution, if
for every natural number # and for X, ..., X,, independent and with the same
distribution as X, there are constants a, > 0 and b, such that

X=a,X +X,+ - -+X)+D,

holds in distribution; see Breiman (1993, p. 199). Stable distributions are
infinitely divisible distributions, because the distribution function of X is the
n-fold convolution of F,, where F, is the distribution function of ¢, X; + b,,/n.
In particular, the sum of two independent and identically distributed stable
random variables has also a stable distribution.

Density functions of stable distributions cannot be written in a closed form
in general. The characteristic function of a stable distribution is

w(t) = exp {iyt o <1 +ip ﬁ ‘I‘a(t)) } , teR,
where

_ [ tan(za/2), a#1,
Yo(6) = { % log,|t|, a=1.

Note that t/|¢] is the sign of £, and we can define 0/]0] = 0. Parameter 0 < a < 2
is the exponent of the distribution, which is related to the heaviness of the
tails, u € R is the location term, ¢ > 0 is the scale factor, and -1 < g <1 is
the asymmetry parameter (skewness parameter). When # = 0, then distribu-
tion is symmetric, when # > 0, then distribution is skewed to the right, and
when f < 0, the distribution is skewed to the left. See Breiman (1993, p. 204).

The analytical form of the density is known for @ = 2 (Gaussian), a = 1,
p =0 (Cauchy), and « =1/2, p =1 (Lévy—Smirnov or Lévy). The density of
the Cauchy distribution is given by

1 1
f(x)—E m, x €R.
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The Cauchy distribution is the Student distribution for the degrees of freedom
v = 1. The density of the Lévy—Smirnov distribution is given by

o \/? 1 c
o= (%) o = {-m T | =

Symmetric stable distributions are stable distributions with location param-
eter u = 0 and skewness parameter § = 0. The characteristic function of a sym-
metric stable distribution is

w(t) = exp{—|ot|*}, teER,

where 0 < @ < 2 and o > 0. The density of a symmetric stable distribution can
be written as a series expansion
0 (_1)k+1 ﬂk

i l—fk '+ ka) sin(zak/2), x€R, (3.93)
K xitka

Sx) =

k=1

where g, is defined through

al(a —1) 222 - ] <q <2,
A, =

(1—a)r(a)Wa O<a<l.

a’

Symmetric stable distributions have the power-law behavior of the tails:

f(x) ~ |x|C1a+ ~, X — oo (3.94)
Equation (3.94) gives the leading asymptotic term in (3.93). For the distribu-
tions with Pareto tails the kth moment does not exist if k > . This implies that
the variance of a symmetric stable distribution is always infinite, and the mean
is infinite when a < 1. The mode is used as the location parameter of the sym-
metric stable distributions (symmetric stable distributions are unimodal).

Convergence to a Stable Distribution The central limit theorems were presented
in Gnedenko and Kolmogorov (1954), Feller (1957), and Feller (1966). We fol-
low the exposition of Embrechts et al. (1997, Theorem 2.2.15). Assume that
Y}, ..., Y, are independent and identically distributed with the same distribu-
tionas Y.

1) Assume that EY? < 0. Then,
- d
w#%*(Zn—mo—»Mau
i=1
where y = EY and 62 = Var(Y).
2) Assume that

Lm=/'ﬁﬁw
[yl<x
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is slowly varying.? Let b,, be the solution of the equation
Q) =n", (3.95)

where

Q) = P(|Y] > x) + x72 / y*dF(y).

lyl<x

Then,
- d
b} (Z Y, - ny) — N(0, 1),
i=1
where u = EY. It holds that b, = n'/2L(n), for a slowly varying function L.
3) Assume that the distribution function F of Y satisfies
F(—x) =x7%(c; + o(1))L(x), 1—F(x)=x""(cy+ o(1))L(x),

asx — oo, where L is slowly varying, and ¢;, ¢, > 0, ¢; + ¢, > 0. Let b, be the
solution of (3.95). Then,

n
d
b;1 <Z Yz - an) - Ga’
i=1
where a,, = nflylsb y dF(y) and G, is a stable distribution with 0 < @ < 2.

3.5.1.3 Sums of Dependent Random Variables
We apply a limit theorem for dependent random variables in Sections 6.2.2
and 10.1.2.

Let (Y,),cz be astrictly stationary time series. We define the weak dependence
in terms of a condition on the a-mixing coefficients. Let F: denote the sigma

algebra generated by random variables Y}, ..., Y,. The a-mixing coefficient is
defined as
a,= sup |P(ANB)—PAPB),

A€F°_.BEF>

where n = 1,2, .... Now we can state the central limit theorem. Let E| Ytl‘S <
and Efil ajl_z/ ® < oo for some constant 6 > 2. Then,

- d
n'2 3 (Y, - EY,) — N(0.6?), (3.96)
i=1

where

o> = D r(D=r0)+2 ) y().
j=1

j=—o

29 We call function L : (0, 00) — (0, o0) slowly varying function at +oo if lim

oo L(AX)/L(x) =1
forall A > 0.
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r() = Cov(Y,, Y,,)), and we assume that ¢2 > 0. Ibragimov and Linnik (1971,
Theorem 18.4.1) gave necessary and sufficient conditions for a central limit
theorem under a-mixing conditions. A proof for our statement of the central
limit theorem in (3.96) can be found in Peligrad (1986); see also Fan and Yao
(2005, Theorem 2.21) and Billingsley (2005, Theorem 27.4).

3.5.2 The Limit Theorems for Maxima

Since we have modeled the excess distribution parametrically, it is of special
interest that the limit distribution of the excess distribution is a generalized
Pareto distribution; this limit theorem is stated in (3.102). The weak conver-
gence of maxima is related to the convergence of the excess distribution.

3.5.2.1 Weak Convergence of Maxima
Let the real valued random variables Y7, ..., Y, be independent and identically
distributed, and denote the maximum

M, = max{Y;,...,Y,}.

Sometimes convergence in distribution holds in the sense that there exists
sequences (c,) and (d,) where ¢, > 0 and d,, € R so that

M —d _
P<u §x> i>F<x b), (3.97)
c, a

for all x € R, as n — oo, where F is a distribution function, b € R, and a > 0.
The Fisher—Tippett—Gnedenko theorem states that if the convergence in (3.97)
holds, then F can only be a Fréchet, Weibull, or Gumbel distribution function.
See Fisher and Tippett (1928), Gnedenko (1943), and Embrechts et al. (1997,
p. 121).

To derive the result for the minimum we use the fact that for

m, = min{Y;,...,Y,}
we have m, = —max{-Y,,...,—Y,}. Let us denote
L, =max{-Y,,...,-Y,}

so that m,, = —L,. Now,
P(m, <x)=P(-L,<x)=PL,>-x)=1-PL, < —x). (3.98)

3.5.2.2 Extreme Value Distributions
The Fréchet distribution functions are

0, x <0,
P, (%) = { exp{—x7%}, x>0, (3.99)
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where a > 0. The Weibull distribution functions are

llja(x) — { ixp{_(_x)aL ; i ga

where @ > 0. The Gumbel distribution function is
Ax) = exp{—e*}, x€R

These distributions are called the extreme value distributions.
Define

D, ifE>0,
H, =4 A, if =0,
Y_ie ifE<0.
Then,
exp{—(1 +&x)™/¢}, &#0,
H.(x) = 1
5(x) { eXp{—e_"}, § = O’ (3 00)

where H, is defined on set {x:1+&x>0}. This is known as the
Jenkinson—-von Mises representation of the extreme value distributions,
or the generalized extreme value distribution; see Embrechts et al. (1997,
p- 152). We obtain the parametric class of possible limit distributions

x—H
H (<5)
¢ (o2

where € € R is the shape parameter, 4 € R, and ¢ > 0. The support of the dis-
tribution is {x : 1+ &(x — u)/o > 0}.

Using (3.98), we obtain the class of limit distribution functions for the min-
ima. The limit distribution functions are

L (X— U
(=)
‘\ o
where E€R, u € R, 6 > 0, and ]:Ig(x) = 1 — H.(—x). Distribution function 1':1Zj
is defined on set {x : 1 —&x > 0}.

3.5.2.3 Convergence to an Extreme Value Distribution

If the distribution that generated the observations Y, ..., Y, has polynomial
tails, then (3.97) holds and the limit distribution of the maximum belongs to
the Fréchet class. More precisely, if

1—F(x) =x"L(x)

for some slowly varying function L, then a normalized maximum converges to
a Fréchet distribution ¥ ; see Embrechts et al. (1997, p. 131).
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Letx, = sup{x : F(x) < 1} be the endpoint of the distribution of Y. Ifx < o0
and

1—F(xp —x") = x™L(x)
for some slowly varying function L, then a normalized maximum converges to
a Weibull distribution ¥,; see Embrechts ez al. (1997, p. 135). The equation

¥ (—xH=0,(x), x>0

explains the relation between the convergence to a Fréchet distribution and to
a Weibull distribution.

If the distribution which generated the observations is exponential, normal,
or log-normal, then (3.97) holds and the limit distribution of the maximum is
the Gumbel distribution. See Embrechts et al. (1997, p. 145).

3.5.2.4 Generalized Pareto Distributions
The distribution function of the generalized Pareto distribution is
_ 1= +&x/p7E g #0,
Ger) = { 1-expl-x/f).  E=0,
where f > 0. When & > 0, then 0 < x < c0. When £ <0, then 0 <x < —f/¢.
When & = 0, then the distributions are exponential distributions. Note that
G () =1 —log H(x/p),

where H, is the distribution function of a generalized extreme value distribu-
tion, as defined in (3.100). Parameter £ is a shape parameter and parameter f is
a scale parameter. The Pareto distributions were defined in (3.73) and (3.83).

(3.101)

3.5.2.5 Convergence to a Generalized Pareto Distribution
Let Y € R be a random variable and let F be the distribution function of Y.
We define the excess distribution with threshold u as the distribution with the
distribution function
F(x+u) — F(u)
1—F(u)

We can typically approximate the distribution function F, with the distri-
bution function of a generalized Pareto distribution. This follows from the
Gnedenko-Pickands—Balkema—de Haan theorem; see Embrechts et al. (1997,
p. 158). Let X, = sup{x : F(x) < 1}. The Gnedenko—Pickands—Balkema-de
Haan theorem states that

lim sup |F,(x) = Gg 0,y (%) =0 (3.102)

UDXp O<w<xp—u

Fx)=PY —u<x|Y>u)=

for some positive function f(«) if and only if F belongs to the maximum domain
of attraction of H,, where £ € R. To say that F belongs to the maximum domain
of attraction of H, means that (3.97) holds for some sequences {c,} and {d,,}.
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The basic idea of deriving the limit distribution of the excess distribution from
the limit distribution of the maximum comes from the Poisson approximation.
The Poisson approximation states that

limn(l-F(u,)) =1
and

lim P(M,, < u,) = exp{—7}

n—00

are equivalent, where 0 < 7 < o0, (1,)) is a sequence of real numbers, and M, =
max{Y,,..., Y,} is the maximum ofi.i.d. random variables; see Embrechts et al.
(1997, p. 116).2°

When the distribution function of the maximum M), can be approximated by

a=on{-fie(55)] "}

for some p, o > 0 and &, then F, can be approximated by the distribution func-

tion
-1/¢
Hx)=1- <1+§Ty>
I

defined on set {x : x > 0 and 1 + éx/6 > 0}, where

6=0+&u—u.

3.6 Univariate Stylized Facts

The heaviness of the tails is one of the main univariate stylized facts. There
are several questions related to the heaviness of the tails. We give a list of the
observations that can be obtained from the figures of this chapter, and give
some references to the literature.

1) How heavy are the tails of S&P 500 returns?
Figure 2.1(b) shows a time series of S&P 500 daily returns. To highlight the
heaviness of the tails we can compare the real time series with the simu-
lated time series in Figure 3.29. Panel (a) shows uncorrelated observations

30 Indeed,
PM, <u,)=F'(u,)=(1-(1~-F@u,))" — exp{-7},

n—="n

if lim n(1 — F(u,) = 7. Also, because —log(1 — x) ~ x,

n(l - F(u,)) ~ —nlog(1 — (1 - F(u,))) =logP(M, <u,) — ,

iflim,_  P(M, < u,) = exp{—7}. (We can argue that now 1 — F(x,) — 0.) We have assumed that
0<7<o00.
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Figure 3.29 Simulated i.i.d. time series. We have simulated 10,000 observations. (a) Student’s
t-distribution with degrees of freedom v = 3; (b) Student’s t-distribution with degrees of free-
dom v = 6; (c) Gaussian distribution. The mean of the observations is zero and the standard
deviation is equal to the standard deviation of the S&P 500 returns.

whose distribution is the ¢-distribution with three degrees of freedom, in
panel (b) the ¢-distribution has six degrees of freedom, and in panel (c) the
distribution of the observations is Gaussian.3!

31 The simulated data has mean zero and standard deviation equal to the sample standard devia-
tion of the S&P 500 returns. The variance of the ¢-distribution is v/(v — 2), where v is the degrees of
freedom, and thus we have multiplied the simulated data from the ¢-distribution with 1/(v — 2)/vé,
where 6 is the sample standard deviation of the S&P 500 returns.
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Figure 3.2 shows tail plots of S&P 500 daily returns: ¢-distribution with
degrees of freedom three and four gives reasonable fits both for the left tail
and the right tails.

Figure 3.4 shows exponential regression plots of S&P 500 daily returns: The
tails seem to be heavier than the exponential tails.

Figure 3.5 shows exponential regression plots of S&P 500 daily returns, and
fits both exponential and Pareto distributions: Pareto fits seem to be better.
Figure 3.6 shows Pareto regression plots of S&P 500 daily returns: The tails
seem to fit reasonably well for the Pareto model.

Figure 3.7 shows Pareto regression plots of S&P 500 daily returns, and fits
both exponential and Pareto distributions: Pareto fits seem to be better.
Figure 3.13 shows how estimates of parameters v and o of Student distri-
bution for S&P 500 components are distributed: The mode of ¥ is about 3.5
and the range of values of the estimates is about ¥ € [1.5,4.5].

Figure 3.27 shows kernel density estimates of the distribution of the esti-
mates of Pareto left tail index and Pareto right tail index for S&P 500 com-
ponents: The choice of parameter p has a significant influence on the value
of the estimate, but we are in the range & € [1.5,2.5].

How the heaviness of the tails varies across asset classes (stocks, bonds,
indexes)?

Figure 2.5(b) shows a times series of US 10-year bond monthly returns. The
time series can be compared to the times series of S&P 500 daily returns in
Figure 2.1(b), or to the simulated time series in Figure 3.29.

Figure 3.1 shows empirical distribution functions of S&P 500 and US
10-year bond monthly returns: S&P 500 seems to have heavier tails than
10-year bond.

Figure 3.3 shows smooth tail plots of the daily returns of S&P 500 com-
ponents and of S&P 500 index: The individual components seem to have
heavier tails than the index.

Figure 3.8 shows empirical quantile functions of S&P 500 and US
10-year bond monthly returns: S&P 500 seems to have heavier tails than
10-year bond.

Figure 3.10(a) shows kernel density estimates of S&P 500 and US 10-year
bond monthly returns: These estimates do not reveal information about the
tails, but in the central area 10-year bond seems to be more concentrated
around zero than S&P 500. Cont (2001) reports that returns of US Trea-
sury bonds are positively skewed, whereas the returns of stock indices are
negatively skewed.

Bouchaud (2002) reports that the tails of the stock returns have Pareto
(power-law) tails x™1=%, where « is approximately 3, but emerging markets
can have a smaller than 2. Cont (2001) notes that the tail index varies
between 2 and 5 that excludes the Gaussian and the stable laws with infinite
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4)

variance. The standard deviation of daily returns is 3% for stocks, 1% for
stock indices, and 0.03% for short term interest rates; see Bouchaud (2002).
What is the best model for the tails?

Figures 3.17-3.26 study fitting of parametric models to the tails of S&P 500
returns. In particular, tail plots are shown for the exponential distribution in
Figure 3.18, for the Pareto distribution in Figure 3.20, for the gamma distri-
bution in Figure 3.22, for the generalized Pareto distribution in Figure 3.24,
and for the Weibull distribution in Figure 3.26. Two-parameter families
give reasonable fits, in particular, the generalized Pareto distribution gives
a good fit.

Malevergne and Sornette (2005) give a review of fitting Pareto distributions,
stretched exponentials and log-Weibull distributions.

Are the left tail and the right equally heavy?

The parameter estimates for fitting models to the daily returns of S&P 500
indicate that the left tail is heavier than the right tail (see Figures 3.17, 3.19,
3.21, 3.23,and 3.25).

Figure 3.28 shows values of estimates of Pareto tail index a for S&P 500
components, both for the left and right tail: There seems to be equal amount
of stocks with a larger left tail index as there are stocks with a larger right
tail index.

Cont (2001) reports that gains and loss are asymmetric; large drawdowns
are observed but not equally large upward movements.

How the heaviness of the tails is affected by the return horizon?

Figure 3.12 shows values of estimates of parameters of t-distribution
(degrees of freedom v and scaling parameter o) for various return horizons
of S&P 500 returns: the estimates increase from v = 3 for daily returns to
vV =5, ...,9 for 2-month returns. Also 6 increases with the return horizon.
Figure 3.10(b) shows kernel density estimates of the S&P 500 return distri-
bution when the return horizon varies between one and five days.

Cont (2001) observes that the distribution of returns looks more and more
like a Gaussian distribution when the time scale is increased.
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Multivariate Data Analysis

Multivariate data analysis studies simultaneously several time series, but
the time series properties are ignored, and thus the analysis can be called
cross-sectional.

The copula is an important concept of multivariate data analysis. Copula
models are a convenient way to separate multivariate analysis to the purely
univariate and to the purely multivariate components. We compose a multi-
variate distribution into the part that describes the dependence and into the
parts that describe the marginal distributions. The marginal distributions can
be estimated efficiently using nonparametric methods, but it can be useful to
apply parametric models to estimate dependence, for a high-dimensional dis-
tribution. Combining nonparametric estimators of marginals and a parametric
estimator of the copula leads to a semiparametric estimator of the distribution.

Multivariate data can be described using such statistics as linear correlation,
Spearman’s rank correlation, and Kendall’s rank correlation. Linear correlation
is used in the Markowitz portfolio selection. Rank correlations are more natural
concepts to describe dependence, because they are determined by the copula,
whereas linear correlation is affected by marginal distributions. Coefficients of
tail dependence can capture whether the dependence of asset returns is larger
during the periods of high volatility.

Multivariate graphical tools include scatter plots, which can be combined
with multidimensional scaling and other dimension reduction methods.

Section 4.1 studies measures of dependence. Section 4.2 considers multivari-
ate graphical tools. Section 4.3 defines multivariate parametric distributions
such as multivariate normal, multivariate Student, and elliptical distributions.
Section 4.4 defines copulas and models for copulas.

4.1 Measures of Dependence

Random vectors X, Y € R? are said to be independent if
PXeA, YeB)=PXeA)- -P(Y €B),

Nonparametric Finance, First Edition. Jussi Klemela.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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for all measurable A, B C R?. This is equivalent to
PXeA|Y€EeB) =PX €A,

for all measurable A, B C R%, so knowledge of Y does not affect the probability
evaluations of X. The complete dependence between random vectors X and ¥
occurs when there is a bijection G : RY — R? so that

Y = G(X) (4.1)

holds almost everywhere. When the random vectors are not independent and
not completely dependent we may try to quantify the dependency between two
random vectors. We may say that two random vectors have the same depen-
dency when they have the same copula, and the copula is defined in Section 4.4.

Correlation coefficients are defined between two real valued random vari-
ables. We define three correlation coefficients: linear correlation p;, Spearman’s
rank correlation pg, and Kendall’s rank correlation p,. All of these correlation
coeflicients satisfy

p(Xsz) e[-1,1],

where X, and X, are real valued random variables. Furthermore, if X; and X,
are independent, then p(X;, X,) = 0 for any of the correlation coefficients. Con-
verse does not hold, so that correlation zero does not imply independence.

Complete dependence was defined by (4.1). Both for the Spearman’s rank
correlation and for the Kendall’s rank correlation we have that

|p(X,,X,)| = 1if and only if X, and X, are completely dependent, (4.2)

where p=ps or p=p.. In the case of real valued random variables the
complete dependency can be divided into comonotonicity and countermono-
tonicity. Real-valued random variables X; and X, are said to be comonotonic
if there is a strictly increasing function g : R — R so that X, = g(X;) almost
everywhere. Real-valued random variables X; and X, are said to be coun-
termonotonic if there is a strictly decreasing function g:R — R so that
X, = g(X;) almost everywhere. Both for the Spearman’s rank correlation and
for the Kendall’s rank correlation we have that p(X;,X,) =1 if and only if
X, and X, are comonotonic, and p(X;,X,) = —1 if and only if X; and X, are
countermonotonic, where p = psOrp=p.

The linear correlation coefficient p; does not satisfy (4.2). However, we have
that

lp (X1, X,)| =1 ifand only if X, = a + bX, for some a,b € R. 4.3)

If p;(X;,X,) =1,then b > 0.If p, (X}, X,) = —1,then b < 0.
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4.1.1 Correlation Coefficients

We define linear correlation p;, Spearman’s rank correlation pg, and Kendall’s
rank correlation p_.

4.1.1.1 Linear Correlation
The linear correlation coefficient between real valued random variables X; and
X, is defined as

Cov(X;, X,)
sd(X;) sd(X;)’
where the covariance is
Cov(X,, X,) = E[(X; — EX))(X, — EX,)],
and the standard deviation is sd(X}) = \/\W.

We noted in (4.3) that the linear correlation coefficient characterizes lin-
ear dependency. However, (4.2) does not hold for the linear correlation coef-
ficient. Even when X, and X, are completely dependent, it can happen that
|p(Xy, X;)| < 1. For example, let Z ~ N(0, 1), X, = €%, and X, = e°Z, where ¢ >
0. Then,

(X1, X)) =

pr(X,, X)) = (4.4)

e’ —1

Ve-De 1)
and p; (X;,X,) = 1 only for ¢ = 1, otherwise 0 < p, (X;,X,) < 1; the example is
from McNeil et al. (2005, p. 205).

Let us assume that X; and X, have continuous distributions and let us denote
with F the distribution function of (X;, X,) and with F, and F, the marginal
distribution functions. Then,

Cov(X,, X,) = [ (F(u,v) — Fy(w)F,(v))du dv (4.5)

R2

= / [C(u, v) — uvl dF; (u) dF; (v),
[0,1]%

where C(u, v) = F(Fl‘l(u), Fz‘l(v)), u,v € [0, 1], is the copula of the distribution
of (X}, X,), as defined in (4.29). Equation (4.5) is called Hoffding’s formula, and
its proof can be found in McNeil et al. (2005, p. 203). Thus, the linear corre-
lation is not solely a function of the copula, it depends also on the marginal
distributions F; and F,.

The linear correlation coefficient can be estimated with the sample correla-
tion. Let X, ;, ..., X, ; be a sample from the distribution of X; and X, ,, ..., X, 1
be a sample from the distribution of X,. The sample correlation coefficient is
defined as

T
Z(Xl,i - )_(1)(Xz,i - Xz), (4.6)
i=1

S

5, = 1
= — -
8152
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where X, = T™' Y X;,and sy=T7" YL, (X, — X)* Analternative estima-
tor is defined in (4.10).

4.1.1.2 Spearman’s Rank Correlation
Spearman’s rank correlation (Spearman’s rho) is defined by

ps(X1, Xy) = p(F (X)), F(X3)),

where F, is the distribution function of X, k = 1, 2. If X; and X, have continu-
ous distributions, then

2

ps(X,, X,) =12 / [F(u, v) — Fy(u)Fy(0)] dF, (1) dFy(v)
R

= 12/ [C(u, v) — uv] du dv,
[0,1]?

where C(u,v) = F(F{' (), F;'(v)), u,v € [0,1], is the copula as defined in
Section 4.4 (see McNeil et al., 2005, p. 207).! Thus, Spearman’s correlation
coeflicient is defined solely in terms of the copula.

We have still another way of writing Spearman’s rank correlation. Let X =
(X1,X,), Y =(Y,Y,), and Z = (Z,, Z,), let X, Y, Z have the same distribution,
and let X, Y, Z be independent. Then,

ps(X,, X,) = 2(P[(X; — )X, — Z,) > 0] = P[(X; — Y))(X, — Z,) <0]).

The sample Spearman’s rank correlation can be defined as the sample linear
correlation coefficient between the ranks. Let X |, ..., X, ; be a sample from
the distribution of X; and X, |, ..., X, ;- be a sample from the distribution of X,.
The rank of observation X, i=1,...,T, k= 1,2,is

['ank(Xk’i) == #{Xk,j :Xk,j S Xk,i’j == 1, ooy T}.

That is, rank(X; ;) is the number of observations of the kth variable smaller or
equal to X; ;.> Let us use the shorthand notation

1 (§) = rank(X} ),

sothatr, : {1,...,T} - {1,..., T}, k = 1, 2. Then the sample Spearman’s rank
correlation can be written as

ps = p({ri(D), ..., 1 (D)}, {ry(D), ... 1o (T)}),

1 We have also pg(X;, X,) = 12/, C(w, v) du dv = 3 =12 fi ,u - v dC(u, v) - 3.
2 Let Xk,(l) <--- < Xk,(T) be the ordered observations, k = 1, 2. The ranks can be defined as

1, when Xk.i = Xk.(l)’
rank(Xkyi) = 2, when X, = Xk.(z)’
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where p; is the sample linear correlation coefficient, defined in (4.6). Since
S i=(T+1)T/2and Y[, 2 = T(T + 1)(2T + 1)/6, we can write

T
.12 1 1
b= o= Z:, (n@-5T+D) (@ -5T+D).

4.1.1.3 Kendall’s Rank Correlation

Let X = (X}, X,) and Y = (Y7, Y,), let X and Y have the same distribution,

and let X and Y be independent. Kendall’s rank correlation (Kenadall’s tau) is
defined by

PT(Xsz)
= P[(X;, — Y))X, - Y5) > 0] - P[(X; — Y7)(X, — Y,) <O]. (4.7)

When X, and X, have continuous distributions, we have
P (X1, X,) = 2P[(X; - Y)D(X;, - Y,) > 0] - 1,

and we can write

p.(X1, X)) = 4/ F(u,v) dF(u,v) — 1

R2

= 4/ C(u,v) dC(u,v) — 1,
[0,1]%

where C(u,v) = F(F;'(u), F;'(v)), u,v € [0,1], is the copula as defined in
Section 4.4 (see McNeil et al., 2005, p. 207).

Let us define an estimator for p, (X}, X;). Let X, ;, ..., X; ; be a sample from
the distribution of X; and X, |, ..., X, ; be a sample from the distribution of X,.
Kendall’s rank correlation can be written as

E sign[(X; — Y)(X, — Y))],

where sign(¢) = 1, if £ > 0 and sign(¢) = —1, if £ < 0. This leads to the sample
version
. 2

=775 Z sign((X,; — X, )Xy — X)) (4.8)

1<i<<T
The computation takes longer than for the sample linear correlation and for the
sample Spearman’s correlation.

4.1.1.4 Relations between the Correlation Coefficients

We have a relation between the linear correlation and the Kendall’s rank cor-
relation for the elliptical distributions. Let X = (X;, X,) be a bivariate random
vector. For all elliptical distributions with P(X = 0) = 0,

2 .
0. (X1, X,) = - arcsin p; (X;, X,), (4.9)

29
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where p, is the Kendall’s rank correlation, as defined in (4.7), and p, is the linear
correlation, as defined in (4.4) (see McNeil et al., 2005, p. 217). This relation-
ship can be applied to get an alternative and a more robust estimator for the
estimator (4.6) of linear correlation. Define the estimator as

6, = sin (g ﬁT> , (4.10)

where j_ is the estimator (4.8).

For the distributions with a Gaussian copula, we also have a relation between
the Spearman’s rank correlation and the linear correlation. Let X = (X;, X,) be
a distribution with a Gaussian copula and continuous margins. Then,

6 (1
ps(X1, X,) = p arcsin <§pL(X1,X2)> ,

and (4.9) holds also (see McNeil ef al., 2005, p. 215).

Figure 4.1 studies linear correlation and Spearman’s rank correlation for S&P
500 and Nasdaq-100 daily data, described in Section 2.4.2. Panel (a) shows a
moving average estimate of linear correlation (blue) and Spearman’s rank cor-
relation (yellow). We use the one-sided moving average defined as

R 25:1 pi(t)Rl,iRZ,i
pL,t = B

\/Zf:lpi(t)Rii Z::l pi(t)Rg,i

where R, ; are the S&P 500 centered returns and R, ; are the Nasdaq-100 cen-
tered returns. The weights p,(¢) are one for the last 500 observations, and zero
for the other observations. See (6.5) for a more general moving average. The
moving average estimator jg, is the Spearman’s rho computed from the 500
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Figure 4.1 Linear and Spearman’s correlation, together with volatility. (a) Time series of moving
average estimates of correlation between S&P 500 and Nasdag-100 returns, with linear cor-
relation (blue) and Spearman’s rho (yellow); (b) we have added moving average estimates of
the standard deviation of S&P 500 (black solid) and Nasdag-100 (black dashed).
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previous observations. Panel (b) shows the correlation coefficients together
with the moving average estimates of the standard deviation of S&P 500 returns
(solid black line) and Nasdaq-100 returns (dashed black line). All time series are
scaled to take values in the interval [0, 1]. We see that there is some tendency
that the inter-stock correlations increase in volatile periods.

4.1.2 Coefficients of Tail Dependence

The coefficient of upper tail dependence is defined for random variables X; and
X, with distribution functions F; and F, as

4, = lim P (X, > F Y| X, > FT (@),
where F;!' and F;! are the generalized inverses. Similarly, the coefficient of
lower tail dependence is

A= 13&11) (X, <F Y |X, <F (@)
See McNeil et al. (2005, p. 209).

4.1.2.1 Tail Coefficients in Terms of the Copula
The coefficients of upper and lower tail dependence can be defined in terms of
the copula. Let F; and F, be continuous. We have that

P (X, > F;'(@).X, > F'(9))
= P(g < F,(Xp) < 1, < F(X,) < 1)
=C(1,1)-C(1,9) - Cg. 1) + Cq, q)
=1-29+C(q,9q).
Also,
P(X,>F'(@)=1-PFEX)<q=1-q.
Thus, the coefficient of upper tail dependence is

. 1-2g+C(q,9)
A, =lim ———.
q11 l1-¢g

We have that
p (X2 < Fgl(q),Xl < Fl_l(q)) = P(F|(X,) £ q,F,(X,) <q) = C(q,9).

(4.11)

Also,
P(X, S F'(@) =PEX) < =q.

Thus, the coefficient of lower tail dependence for continuous F; and F, is
equal to
C i
4y = lim S0,

4.12
im = (4.12)
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4.1.2.2 Estimation of Tail Coefficients
Equations (4.11) and (4.12) suggest estimators for the coefficients of tail depen-
dence. We can estimate the upper tail coefficient nonparametrically, using

5 _1-20+C@.q)
u 1 _ q
where C is the empirical copula, defined in (4.38), and g < 1 is close to 1. We
can take, for example,g =1 — k/T, where k = ﬁ . The coefficient of lower tail
dependence can be estimated by
i = (¢ q)’
q

]

where g > 01is close to zero. We can take, for example, g = k/T, where k = ﬁ .
These estimators have been studied in Dobric and Schmid (2005), Frahm et al.
(2005), and Schmidt and Stadtmiiller (2006).

Figure 4.2 studies tail coefficients for S&P 500 and Nasdaq-100 daily data,
described in Section 2.4.2. Panel (a) shows the tail coefficients as a function
of g for lower tail coefficients (red) and as a function of 1 — g for upper tail
coefficients (blue). Panel (b) shows a moving average estimate of the lower tail
coefficients. The tail coefficient is estimated using the window of the latest 1000
observations, for ¢ = 0.01.

4.1.2.3 Tail Coefficients for Parametric Families
The coefficients of lower and upper tail dependence for the Gaussian distri-
butions are zero. The coefficients of lower and upper tail dependence for the
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Figure 4.2 Tail coefficients for S&P 500 and Nasdag-100 returns. (a) Tail coefficients as a function
of g for lower tail coefficients (red) and as a function of 1 — g for upper tail coefficients (blue);
(b) time series of moving average estimates of lower tail coefficients.
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Student distributions with degrees of freedom v and correlation coefficient

p are
DA -
A=A =2t _‘/w ,
1+p

where t,,, is the distribution function of the univariate ¢-distribution with
v + 1 degrees of freedom, and we assume that p > —1; see McNeil et al. (2005,
p. 211).

4.2 Multivariate Graphical Tools

First, we describe scatter plots and smooth scatter plots. Second, we describe
visualization of correlation matrices with multidimensional scaling.

4.2.1 Scatter Plots

A two-dimensional scatter plot is a plot of points {X, ..., X;} C R%

Figure 4.3 shows scatter plots of daily net returns of S&P 500 and Nasdaq-100.
The data is described in Section 2.4.2. Panel (a) shows the original data and
panel (b) shows the corresponding scatter plot after copula preserving trans-
form with standard normal marginals, as defined in (4.36).

When the sample size is large, then the scatter plot is mostly black, so the
visuality of density of the points in different regions is obscured. In this case
it is possible to use histograms to obtain a smooth scatter plot. A multivariate
histogram is defined in (3.42). First we take square roots f; = \/n_l of the bin
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Figure 4.3 Scatter plots. Scatter plots of the net returns of S&P 500 and Nasdag-100.
(a) Original data; (b) copula transformed data with marginals being standard normal.
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Figure 4.4 Smooth scatter plots. Scatter plots of the net returns of S&P 500 and Nasdag-100.
(a) Original data; (b) copula transformed data with marginals being standard normal.

counts #; and then we define g; = 1 — (f; — min,(f;) + 0.5)/(max;(f;) — min,(f;) +
0.5). Now g; € [0, 1]. Values g; close to one are shown in light gray, and values
g; close to zero are shown in dark gray. See Carr et al. (1987) for a study of
histogram plotting.

Figure 4.4 shows smooth scatter plots of daily net returns of S&P 500 and
Nasdaq-100. The data is described in Section 2.4.2. Panel (a) shows a smooth
scatter plot of the original data and panel (b) shows the corresponding scat-
ter plot after copula preserving transform when the marginals are standard
Gaussian.

4.2.2 Correlation Matrix: Multidimensional Scaling

First, we define the correlation matrix. Second, we show how the correlation
matrix may be visualized using multidimensional scaling.

4.2.2.1 Correlation Matrix
The correlation matrix is the d X d matrix whose elements are the linear corre-
lation coefficients p; (X, X)) for i,j = 1, ..., d. The sample correlation matrix is
the matrix whose elements are the sample linear correlation coefficients.

The correlation matrix can be defined using matrix notation. The covariance
matrix of random vector X = (X;, ..., X,;)’ is defined by

Cov(X) = E[(X — EX)(X — EX)']. (4.13)

The covariance matrix is the d X d matrix whose elements are Cov(X;, X)) for
i,j =1,...,d, where we denote Cov(X,, X;) = Var(X,). Let

D = diag(1/sd(X)), ..., 1/sd(X,))
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be the diagonal matrix whose diagonal is the vector of the inverses of the stan-
dard deviations. Then the correlation matrix is
Cor(X) = D Cov(X)D.

The covariance matrix can be estimated by the sample covariance matrix

T
— 1 — —
Cov(X) = = X - X)X, - X), 4.14
ov()Tg;(l X =X (4.14)
where X;, ..., X; € R? are identically distributed observations whose distri-

bution is the same as the distribution of X, and X=T7"1 Z;T=1 X; is the arith-
metic mean.

4.2.2.2 Multidimensional Scaling

Multidimensional scaling makes a nonlinear mapping of data X, ..., X; € R?
to R%, or to any space Rf with 2 <k <d. We can define the mapping
Q:{Xj,...,X;} = R? of multidimensional scaling in two steps:

1) Compute the pairwise distances [|X; = X||, i # j.
2) Find points Q(X,), ..., QX;) € R? 50 that [[Q(X,) — Q)| = [IX; = X;|| for
i#].
In practice, we may not be able to find a mapping that preserves the distances

exactly, but we find a mapping Q:{X;, ..., X;} — R? so that the stress func-
tional

> UX = Xl = 110 — QX1
1<i<j<T
is minimized. Sammon’s mapping uses the stress functional
(IX; = X1 = 11QX) — QX))
1X; = Xl '

1<i<j<T

This stress functional emphasizes small distances. Numerical minimization is
needed to solve the minimization problems.

Multidimensional scaling can be used to visualize correlations between time
series. Let X; = (R, ... ,RiT) be the time series of returns of company i, where
i=1,...,d. When we normalize the time series of returns so that the vector
of returns has sample mean zero and sample variance one, then the Euclidean
distance is equivalent to using the correlation distance. Indeed, let

X - X,

sy

where X, = T-' ¥ X/ and $*(X,) = T $°, (X1 = X,. Now

1 ~
7 1Y = VI =201 = (X, X)),

105



106

4 Multivariate Data Analysis

where p;(X;, X)) is the sample linear correlation. Thus, we apply the multidi-
mensional scaling for the norm

T
1 1 N2
1Y, =Y, =5 Y-t =7 X (Y -Y])

=1

which is obtained by dividing the Euclidean norm by ﬁ . Since
-1 S ﬁL(Xi’)(j) S 15

we have that

0<lY; = Yll,r <2.

Zero correlation gives [|Y; = Yj|l, = /2, positive correlations give 0 < ||Y; —

Yillpr < \/5, and negative correlations give \/5 <|IY;=Yll,7 <2

Figure 4.5 studies correlations of the returns of the components of DAX
30. We have daily observations of the components of DAX 30 starting at
January 02, 2003 and ending at May 20, 2014, which makes 2892 observations.
Panel (a) shows the correlation matrix as an image. We have used R-function
“image.” Panel (b) shows the correlations with multidimensional scaling. We
have used R-function “cmdscale.” The image of the correlation matrix is not as
helpful as the multidimensional scaling. For example, we see that the return
time series of Volkswagen with the ticker symbol “VOW?” is an outlier. The
returns of Fresenius and Fresenius Medical Care (“FRE” and “FME”) are highly
correlated.
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Figure 4.5 Correlations of DAX 30. (a) An image of the correlation matrix for DAX 30;
(b) correlations for DAX 30 with multidimensional scaling.
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4.3 Multivariate Parametric Models

We give examples of multivariate parametric models. The examples include
Gaussian and Student distributions (¢-distributions). More general families are
normal variance mixture distributions and elliptical distributions.

4.3.1 Multivariate Gaussian Distributions

A d-dimensional Gaussian distribution can be parametrized with the expecta-
tion vector y € R% and the d X d covariance matrix . When random vector
X follows the Gaussian distribution with parameters y and X, then we write
X ~N(u,Z) or X ~ N,(u, 2). We say that a Gaussian distribution is the stan-
dard Gaussian distribution when y = 0 and £ = I,,. The density function of the
Gaussian distribution is

f@&) = @)y 7 exp {—%(x - WE x - /4)}, (4.15)

where x € R? and |Z| is the determinant of X. The characteristic function of the
Gaussian distribution is

w () = Eexp(it’ X) = exp {it’y - %t'Zt}, (4.16)
where t € R?,

A linear transformation of a Gaussian random vector follows a Gaussian dis-
tribution: When X ~ N,(u, X), A is k X d matrix, and « is a k vector, then

AX +a ~ N(Ap + a,ATA"). (4.17)
Also, when X ~ N(y;,%Z;) and Y ~ N(u,,2,) are independent, then
X+Y ~Ny + py, 2, +Zy).

Both of these facts can be proved using the characteristic function.?

4.3.2 Multivariate Student Distributions

A d-dimensional Student distribution (¢-distribution) is parametrized with
degrees of freedom v > 0, the expectation vector 4 € R?, and the d x d positive
definite symmetric matrix X. When random vector X follows the ¢-distribution

3 The characteristic function of AX + a is
Waxa(®) = Eexp(it (AX + a)) = e “E exp(i(At) X) = ¢ "y, (At)
= exp {it’(Ay ta)— %t’AZA’t} ,

where y, is the characteristic function of X.
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(a) (b)

Figure 4.6 Gaussian and Student densities. (a) Contour plot of the Gaussian density with
marginal standard deviations equal to one and correlation 0.5; (b) Student density with
degrees of freedom 2 and correlation 0.5.

with parameters v, y, and X, then we write X ~ t(v, u,Z) or X ~ t,(v, u, 2).
The density function of the multivariate ¢-distribution is

F@) =214 v — )= — ) (4.18)

where
T+ d)/2)
‘T @i’

The multivariate Student distributed random vector has the covariance
matrix

Cov(X) =

(4.19)

Vv

2,
v—2
when v > 2.

When v — oo, then the Student density approaches a Gaussian density.
Indeed, (1 + t/v)~@*/2  exp{—t/2},as v — oo, since (1 + a/v)" — e*, when
v — co. The Student density has tails f(x) < [|lx]| =@+, as ||x|| — oco.

Figure 4.6 compares multivariate Gaussian and Student densities. Panel (a)
shows the Gaussian density with marginal standard deviations equal to one and
correlation 0.5. Panel (b) shows the density of ¢-distribution with degrees of
freedom 2 and correlation 0.5. The density contours are in both cases ellipses
but the Student density has heavier tails.

4.3.3 Normal Variance Mixture Distributions

Random vector X € R? follows a Gaussian distribution with parameters y and
¥ when X = AA’ for a d X d matrix A and

X~u+Az,
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where Z ~ N,(0,1,) follows the standard Gaussian distribution. This leads to
the definition of a normal variance mixture distribution. We say that X € R?
follows a normal variance mixture distribution when

X~/4+\/WAZ,

where Z ~ N,(0,1,) follows the standard Gaussian distribution, and W > 0 is
a random variable independent of Z. It holds that

EX=u
and
Cov(X) =EW - %,

where X = AA’. When random vector X follows the normal variance mixture
distribution with parameters y, X, and Fy,, where F), is the distribution func-
tion on W, then we write X ~ M(u, 2, Fy,).

The density function can be calculated as

o) = / Frowl w) duw = / St for0) duo
0 0

= 2|7 g((x — w7 (x — w)), (4.20)

where fy ,, is the density of (X, W), fy, is the density of W, fy|y_,, is the density
of X conditional on W = w, and g : R — Riis defined by

gx) = (27[)_”1/2/ w2 exp {—i }fW(w) dw. (4.21)
0 2w
The characteristic function is obtained, using (4.16), as

Wy (6) = E exp(it’ X) = EE(exp(it’ X)| W)
= Eexp {it’,u - %Wt’Zt} = ey, (%t’Et) ,

where ¢, (t) = E exp(—tW).

The family of normal variance mixtures M(u, Z, F,) is closed under linear
transformations: When X ~ M, (u, %, Fy,), A is k X d matrix, and a is a k vector,
then

AX +a ~ M(Ap + a,AZA' Fy). (4.22)

This can be seen using the characteristic function, similarly as in (4.17).

Let W be such random variable that vW ! follows the y2-distribution with
degrees of freedom v > 0. Then the normal variance mixture distribution
is the multivariate ¢-distribution £,(v, u, %), where X = AA’, as defined in
Section 4.3.2.
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4.3.4 Elliptical Distributions

The density function of an elliptical distribution has the form
f@) =det®)| gl - w'T @~} xeR’, (4.23)

where g : [0, 00) — [0, 00) is called the density generator, X is a symmetric posi-
tive definite d X d matrix, and 4 € R?. Since X is positive definite, it has inverse
>~ that is positive definite, which means that for all z € RY, 2’27z > 0. Thus,
g needs to be defined only on the nonnegative real axis. Let g; : [0, o0) — [0, c0)
be such that [, #4/>~1g,(¢) dt < co. Then g = ¢ - g, is a density generator when
¢ is chosen by

= / & (lx]1*) dx = volume(S,) 27! / t% g (¢) dt, (4.24)
R4 0

where S, = {x € R? : ||x|| = 1}. We give examples of density generators.

1) From (4.15) we see that the Gaussian distributions are elliptical and the
Gaussian density generator is

gty =c-exp{-t/2}, teR, (4.25)

where ¢ = (27)~4/2.
2) From (4.20) we see that the normal variance mixture distributions are ellip-
tical and the normal variance mixture density generator is given in (4.21).
3) From (4.18) we see that the ¢-distributions are elliptical and the Student den-
sity generator is

gt)y=c- (A +t/v)y 2 teR, (4.26)

where v > 0is the degrees of freedom, and c is defined in (4.19). The Student
density generator has tails g(¢) < t~@*/2, as t — 0, and thus the density
function is integrable when v > 0, according to (4.24).

Let X = AA’, where A is a d X d matrix and let
X = u+ Ay,

where Y follows a spherical distribution with density f(x) = g(||x||*). Then X
follows an elliptical distribution with density (4.23). When random vector X fol-
lows the elliptical distribution with parameters y, %, and Fy, where F), is the dis-
tribution function on Y, then we write X ~ E,(u, %, Fy). The family of elliptical
distributions is closed under linear transformations: When X ~ E,;(u, X, Fy), A
is a k X d matrix, and a is a k vector, then

AX +a ~ E(Ap + a,ASA F,). (4.27)

This can be seen using the characteristic function, similarly as in (4.17).
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44 Copulas

We can decompose a multivariate distribution into a part that describes the
dependence and into parts that describe the marginal distributions. This
decomposition helps to estimate and analyze multivariate distributions, and it
helps to construct new parametric and semiparametric models for multivariate
distributions.

The distribution function F ;: R — R of random vector (Xy, ..., X,)isdefined
by

F(xy,....x5) =PX; <xq,...,X; <x,),

where (x;, ...,x,;) € R%. The distribution functions F, :R > R, ..., F,:R—> R
of the marginal distributions are defined by

Fy(x) = P(X, <x)),...,E,(x,) = P(X, < x,),

where %, ... ,x; € R.

A copula is a distribution function C : [0, 1]* — [0, 1] whose marginal distri-
butions are the uniform distributions on [0, 1]. Often it is convenient to define a
copula as a distribution function C : R? — [0, 1] whose marginal distributions
are the standard normal distributions. Any distribution function F : R — R
may be written as

F(xy,....5,) = CEy (%)), ... . Ey(x)),

]d

where F,,i =1, ..., d, are the marginal distribution functions and C is a copula.
In this sense we can decompose a distribution into a part that describes only
the dependence and into parts that describe the marginal distributions.

We show in (4.29) how to construct a copula of a multivariate distribution
and in (4.31) how to construct a multivariate distribution function from a cop-
ula and marginal distribution functions. We restrict ourselves to the case of
continuous marginal distribution functions. These constructions were given in
Sklar (1959), who considered also the case of noncontinuous margins. For nota-
tional convenience we give the formulas for the case d = 2. The generalization
to the cases d > 2 is straightforward.

4.4.1 Standard Copulas

We use the term “standard copula,” when the marginals of the copula have
the uniform distributions on [0, 1]. Otherwise, we use the term “nonstandard
copula.”

4.4.1.1 Finding the Copula of a Multivariate Distribution
Let X; and X, be real valued random variables with distribution functions
F,:R—[0,1] and F,:R— [0,1]. Let F:R?> - [0,1] be the distribution
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function of (X;, X,), and assume that F, and F, are continuous. Then,
F(x,,%,) =PX; <%, X, <x,)
= P(F| (X)) < Fi(x)), F5,(X3) < F5(%3))
= C(F (%), Fy(%,)), (4.28)
where
C(u,v) = P(F) (X)) < u,F,(X,) <v)
=F (F{'(w),F;'(v)), (4.29)
and u,v € [0,1]. We call C:[0,1]*> — [0,1] in (4.29) the copula of the joint
distribution of X; and X,. Copula C is the distribution function of the vec-
tor (F;(X;), F,(X,)), and F,(X;) and F,(X,) are uniformly distributed random

variables.
The copula density is

-1 -1
c(u,v) = f (Fl (. b (U)) (4.30)

K (EF @) - (B @)

because (0/0u)F; ' (u) = 1/f,(F; ' (u)), where f is the density of F and f;, and f,
are the densities of F; and F,, respectively.

4.4.1.2 Constructing a Multivariate Distribution from a Copula
Let C:[0,1]> - [0, 1] be a copula, that is, it is a distribution function whose
marginal distributions are uniform on [0,1]. Let F; : R — [0,1] and F, : R —
[0, 1] be univariate distribution functions of continuous distributions. Define
F:R? - [0,1] by

F(xy,%,) = C(F (%)), Fy(%,)). (4.31)
Then F is a distribution function whose marginal distributions are given by
distribution functions F; and F,. Indeed, Let (U;, U,) be a random vector with
distribution function C. Then,

C(Fy(x)), Fy(xy)) = P(U; < Fi(x7), U, < Fy(x,))

=P (F{'(Uy) < %, F, (U,) < x,)

and F;'(U;) ~ F, for i = 1,2, because U; ~ Uniform([0, 1]).?

4.4.2 Nonstandard Copulas

Typically a copula is defined as a distribution function with uniform marginals.
However, we can define a copula so that the marginal distributions of the copula

4 We have that P(F| (X)) <) = P(X,| < Fl‘l(t)) =F, (Fl‘l(t)) =t,for t € [0, 1], since F, is assumed
to be strictly increasing.
5 We have P(F~1(U)) < t) = P(U, < F(t)) = F(t), fort € R.

i="i
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is some other continuous distribution than the uniform distribution on [0, 1].
It turns out that we get simpler copulas by choosing the marginal distributions
of a copula to be the standard Gaussian distribution.

As in (4.28) we can write distribution function F : R = [0,1] as

F(x),2,) = C@(Fy (%)), @7 (Fy(x,))),

where @ : R — R is the distribution function of the standard Gaussian distri-
bution and

C(u,v) = P(@'(F)(X))) < u, D' (F)(X,)) < v)
=F (F/(@w), F; (@) , (4.32)
u,v € R. Now C: R? - [0, 1] is a distribution function whose marginals are
standard Gaussians, because F;(X,) follow the uniform distribution on [0, 1] and
thus ®~1(F,(X))) follow the standard Gaussian distribution.
Conversely, given a distribution function C : R* - [0, 1] with the standard
Gaussian marginals, and univariate distribution functions F, and F,, we can

define a distribution function F : R?> — [0, 1] with marginals F; and F, by the
formula

F(xlvxz) = C((D_I(F1(x1))» q)_l(Fz(xz)))~
The copula density is
c(u, v) =f (F(®w)), F; ((v)))

d()p(v)
X ,
S (FFH @) - f (F; (D))

where f is the density of F, f; and f, are the densities of F, and F,, respectively,
and ¢ is the density of the standard Gaussian distribution.

(4.33)

4.4.3 Sampling from a Copula

We do not have observations directly from the distribution of the copula but
we show how to transform the sample so that we get a pseudo sample from the
copula. Scatter plots of the pseudo sample can be used to visualize the copula.
The pseudo sample can also be used in the maximum likelihood estimation
of the copula. Before defining the pseudo sample, we show how to generate
random variables from a copula.

4.43.1 Simulation from a Copula
Let random vector X = (X;,X,) have a continuous distribution. Let F;(t) =
P(X, <t), k =1,2, be the distribution functions of the margins of X. Now

Z = (Fi(Xy), F,(X))) (4.34)
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is a random vector whose marginal distributions are uniform on [0, 1]. The dis-
tribution function of this random vector is the copula of the distribution of

X = (X1, X,). Thus, if we can generate a random vector X with distribution F,

we can use the rule (4.34) to generate a random vector Z whose distribution
is the copula of F. Often the copula with uniform marginals is inconvenient
due to boundary effects. We may get statistically more tractable distribution by
defining

Z = (@7 (F (X)), DT F,(X)),

where @ is the distribution function of the standard Gaussian distribution. The
components of Z have the standard Gaussian distribution.

4.4.3.2 Transforming the Sample
Let us have data Xj, ..., X; € R? and denote X, = (X,;, X;,). Let the rank of
observation X, i =1,...,T,k=1,2,be

rank(X,) = #HX Xy < Xyoj=1,...,ThH

That is, rank(X};) is the number of observations of the kth variable smaller or
equal to X;. We normalize the ranks to get observations on [0, 1]*:

7 = (rank(Xﬂ) ranl<(X2)> ’

. , 4.35
! T+1 T+1 (4:35)
fori=1,...,T.Now {Z,;,....Zp}={1/(T+1),..., T/(T+ 1)} fork =1,2.
In this sense we can consider the observations as a sample from a distribution
whose margins are uniform distributions on [0, 1]. Often the standard Gaussian
distribution is more convenient and we define

7 <q) L <ranl<( 1)) e (rank( 2))) ’ (4.36)
! T+1 T+1

fori=1,...,T.

4.4.3.3 Transforming the Sample by Estimating the Margins

We can transform the data X, ..., X; € R? using estimates of the marginal dis-
tributions. Let £, and F, be estimates of the marginal distribution functions F,
and F,, respectively. We define the pseudo sample as

Z; = (Pl(le) E (Xz)) (4.37)

where i =1,...,T. The estimates IA-"1 and IA-"2 can be parametric estimates.
For example, assuming that the kth marginal distribution is a normal dis-
tribution, we would take F;(t) = ®((x — fi;)/6;), where ® is the distribution
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function of the standard normal distribution, f, is the sample mean of

Xigs -+ » Xppo and &, is the sample standard deviation. If F, are the empirical
distribution functions

T
2 1
E® =7 2 lema )

then we get almost the same transformation as (4.35), but 7' + 1 is now replaced
by T:

Z = rank(X;;) rank(X,,)
a T T '
4.43.4 Empirical Copula
The empirical distribution function F : R? — [0, 1] is calculated using a sample
X, ..., X, € R? of identically distributed observations, and we define

T
2 1
F(xy,x,) = T ; o1 (Xi1) Lo ) (Xin)s
where we denote X; = (X, X))
The empirical copula is defined similarly as the empirical distribution func-
tion. Now,

T
A 1
Cluyuy) = ; Lo Zi) * Tipu) (Zin), (4.38)
where Z, are defined in (4.37).

4.4.3.5 Maximum Likelihood Estimation

Pseudo samples are needed in maximum likelihood estimation. In maximum
likelihood estimation we assume that the copula has a parametric form. For
example, the copula of the normal distribution, given in (4.39), is parametrized
with the correlation matrix, which contains d(d —1)/2 parameters. Let
C(uy,...,u,;0) be the copula with parameter # € ®. The corresponding
copula density is c(u, ..., u,;0), as given in (4.30). Let us have independent
and identically distributed observations X, ..., X from the distribution of F.
We calculate the pseudo sample Z,, ..., Z; using (4.35) or (4.37). A maximum
likelihood estimate is a value § maximizing

T

[0

i=1

over 0 € ©.
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444 Examples of Copulas

We give examples of parametric families of copulas. The examples include the
Gaussian copulas and the Student copulas.

4.44.1 The Gaussian Copulas
Let X ~ N(u,X) be a d-dimensional Gaussian random vector, as defined in
Section 4.3.1. The copula of X is

Cy, ... uy) = ©p(®@ ' (uy), ..., D (uy)), (4.39)
where @, is the distribution function of N(0, P) distribution, P is the correlation
matrix of X, and @ is the distribution function of N(0, 1) distribution.

Indeed, let us denote A = diag(o,, ..., 6,), where o, is the standard deviation
of X;. Then A~}(X — u) follows the distribution N(0, P).° Let F be the distribu-
tion function of X. Then, using the notation (X <x) = (X; <x,....X,; <x)),

Fx)=PX <x)=PA™'(X —p) <A™ (x — p)

= DA (x — )

X1 — M Xd — Hq
oy (i o)
1 d

where y = (y, ..., py). Also,’
F7Nw) = py + 0,07 (),
fori=1,...,d. Thus,
F(F{'uy), ... . F; (uy) = @p (@7 (uy), ..., @7 () -

Thus, (4.29) leads to (4.39).

Figure 4.7 shows perspective plots of the densities of the Gaussian copula.
The margins are uniform on [0, 1]. The correlation parameter is in panel (a) p =
0.1 and in panel (b) p = 0.8. Figure 4.7 shows that the perspective plots of the
copula densities are not intuitive, because the probability mass is concentrated
near the corners of the square [0, 1]%, especially when the correlation is high.
From now on we will show only pictures of copulas with standard Gaussian
margins, as defined in (4.32), because these give more intuitive representation
of the copula.

4.44.2 The Student Copulas
Let X ~ t(v, u, X) be a d-dimensional ¢-distributed random vector, as defined
in Section 4.3.2. The copula of X is

Cluy,...,uy) =T, p (6 ), ... . 1] (1))

6 Random vector A™}(X — p) has expectation zero and covariance matrix P = A~!Cov(X)A™1.
7 Ify, = F'(uy), then u; = F,(y,) = ©((y; — p;)/0,), which leads to y; = pi; + 0, @7 (us)).
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Figure 4.7 Gaussian copulas. Perspective plots of the densities of the Gaussian copula with

the correlation (a) 0.1 and (b) 0.8. The margins are uniform on [0, 1].

where T, is the distribution function of #(v,0,P) distribution, P is the
correlation matrix of X, and ¢, is the distribution function of the univariate
t-distribution with degrees of freedom v.

Indeed, the claim follows similarly as in the Gaussian case for

P=A"'ZAT,

where A = diag(o,, ..., 0,) and o; is the square root of the ith element in the
diagonal of Z. The matrix P is indeed the correlation matrix, since

Cor(X) = ' Cov(X)I"! = A~'zA™,
where I' = diag(sd(X)), ..., sd(X})), sd(X;) = y/Var(X}).

Figure 4.8 shows contour plots of the densities of the Student copula when
the margins are standard Gaussian. The correlation is p = 0.5. The degrees of
freedom are in panel (a) two and in panel (b) four. The Gaussian and Student
copulas are similar in the main part of the distribution but they differ in the
tails (in the corners of the unit square). The Gaussian copula has independent
extremes (asymptotic tail independence) but the Student copula generates con-
comitant extremes with a nonzero probability. The probability of concomitant
extremes is larger when the degrees of freedom is smaller and the correlation
coefficient is larger.

4.44.3 Other Copulas
We define Gumbel and Clayton copulas. These are examples of Archimedean
copulas. Gaussian and Student copulas are examples of elliptical copulas.

117



118

4 Multivariate Data Analysis

< A <

Al Al

O O

Al o

| |

< <

[ T T T T I T T T T T
-4 -2 0 2 4 4 -2 0 2 4

(a) (b)

Figure 4.8 Student copula with standard Gaussian margins. Contour plots of the densities of
the Student copula with degrees of freedom (a) 2 and (b) 4. The correlation is p = 0.5.

The Gumbel-Hougaard Copulas 'The Gumbel-Hougaard or the Gumbel family
of copulas is defined by

4 1/6
Cy(u;0) = expq — Z (~log,u;)’ , u€elo0,11%,
=1

where 6 € [1, 00) is the parameter. When 6 = 1, then C,,(s;6) = u; - - - u, and
when 6 — oo, then Cp,(u;0) — min{u,, ..., u,}.

Figure 4.9 shows contour plots of the densities with the Gumbel copula when
0 =1.5,0 = 2,and 0 = 4. The marginals are standard Gaussian.

0

2 1

-3

Figure 4.9 Gumbel copula. Contour plots of the densities of the Gumbel copula with § = 1.5,
0 = 2, and 6 = 4. The marginals are standard Gaussian.
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Figure 4.10 Clayton copula. Contour plots of the densities of the Clayton copula with 6 = 1,
6 = 2,and 0 = 4. The marginals are standard Gaussian.

The Clayton Copulas Clayton’s family of copulas is defined by
4 -1/6
C,(u;0) = <1 —-d+ Z u;”) , uelo,1%, (4.40)
i=1

where 6 > 0. When 0 = 0, we define C,(u; 0) = H7=1 u;. When the parameter
0 increases, then the dependence between coordinate variables increases. The
dependence is larger in the negative orthant. The Clayton family was discussed
in Clayton (1978).

Figure 4.10 shows contour plots of the densities with the Clayton copula when
0 =1, 6 = 2,and 0 = 4. The marginals are standard Gaussian.

Elliptical Copulas Elliptical distributions are defined in Section 4.3.4. An ellip-
tical copula is obtained from an elliptical distribution F by the construction
(4.29). The Gaussian copula and the Student copula are elliptical copulas.

Archimedean Copulas Archimedean copulas have the form
Cu) = ¢ (pluy) + -+ p(uy), u€[0,1],

where ¢ : [0, 1] — [0, o) is strictly decreasing, continuous, convex, and ¢(1) =
0. For C to be a copula, we need that (—1)'0'¢~1(¢)/dt! > 0,i=1,...,d. The
function ¢ is called the generator. The product copula, Gumbel copula, Clayton
copula, and Frank copula are all Archimedean copulas and we have:

product copula: ¢(¢) = log,t,

Gumbel copula: ¢(¢) = (=log,t)?,

Clayton copula: ¢p(¢) = t79 — 1,

Frank copula: ¢(¢) = —log,[(e™% — 1)/(e™® — 1)].
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The density of an Archimedean copula is

cw) = w(p(uy) +- - -+ pu )P () - - - ¢’ (),
where y is the second derivative of ¢!

_ " (@7 ()
YO = o
because (9/0x)¢~1(x) = 1/¢'(¢p~1(x)). We have:

e Gumbel copula: ¢'(¢) = -0t~ (—log, 1), ¢"(t) = 0t *(—log,t)’2(0 — 1 —
log ), p~1(¢) = exp(—t'/?),

e Clayton copula: ¢'(t) = —0t=071, ¢"'(t) = (0 + 1)t ~072, ¢ 1(t) = (t + 1)7/9,

e Frank copula: ¢'(t) = 0e7% /(e — 1), ¢"(t) = 0% /(e —1)%, ¢p71(t) =
—07og,[(e? — e~ +1].

4.44.4 Empirical Results

Research on testing the hypothesis of Gaussian copula and other copulas on
financial data has been done in Malevergne and Sornette (2003), and summa-
rized in Malevergne and Sornette (2005). They found that the Student copula is
a good model for foreign exchange rates but for the stock returns the situation
is not clear.

Patton (2005) takes into account the volatility clustering phenomenon. He
filters the marginal data by a GARCH process and shows that the conditional
dependence structure between Japanese Yen and Euro is better described by
Clayton’s copula than by the Gaussian copula. Note, however, that the copula
of the residuals is not the same as the copula of the raw returns and many fil-
ters can be used (ARCH, GARCH, and multifractal random walk). Using the
multivariate multifractal filter of Muzy et al. (2001) leads to a nearly Gaussian
copula.

Breymann et al. (2003) show that the daily returns of German Mark/Japanese
Yen are best described by a Student copula with about six degrees of freedom,
when the alternatives are the Gaussian, Clayton’s, Gumbel’s, and Frank’s copu-
las. The Student copula seems to provide an even better description for returns
at smaller time scales, when the time scale is larger than 2 h. The best degrees
of freedom is four for the 2-h scale.

Mashal and Zeevi (2002) claim that the dependence between stocks is bet-
ter described by a Student copula with 11-12 degrees of freedom than by a
Gaussian copula.
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Time Series Analysis

Time series analysis can be used to analyze both a univariate time series and
a vector time series. We are interested in estimating the dependence between
consecutive observations. In a vector time series there is both cross-sectional
dependence and time series dependence, which means that the components
of the vector depend on each other at any given point of time, and the future
values of the vectors depend on the past values of the vectors.

Model free time series analysis can estimate the joint distribution of

Y Yo pss Yo, (5.1)

for some k > 1. The estimation could be done using nonparametric multi-
variate density estimation. A different model free approach models at the
first step the distribution of (Y,,Y,_;,..., Y, ;) parametrically, using density
fC-,0): R*1 - R. At the second step, parameter 6 is taken to be time
dependent. This leads to a semiparametric time series analysis, because we
combine a cross-sectional parametric model with a time varying estimation
of the parameter. Time localized maximum likelihood or time localized least
squares can be used to estimate the parameter. Of particular interest is to
estimate a univariate excess distribution f( - , #) with a time varying 6, because
this leads to time varying quantile estimation.

Prediction is one of the most important applications of time series analysis.
In prediction it is useful to use regression models

}/t =f(}/t—19""Yt—k)+€p (5.2)

where k > 1 and ¢, is noise. For the estimation of f we can use nonparametric
regression. We study prediction with models (5.2) in Chapter 6.
Autoregressive moving average processes (ARMA) models are classical para-
metric models for time series analysis. It is of interest to find formulas of con-
ditional expectation in ARMA models, because these formulas for conditional
expectation can be used to construct predictors. The formulas for conditional
expectation in ARMA models give insight into different types of predictors:

Nonparametric Finance, First Edition. Jussi Klemela.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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AR models lead to state space prediction, and MA models lead to time space
prediction.

Prediction of future returns of a financial asset is difficult, but prediction
of future absolute returns and future squared returns is feasible. Generalized
autoregressive conditional heteroskedasticity (GARCH) models are applied in
the prediction of squared returns. Prediction of future squared returns is called
volatility prediction. Prediction of volatility is applied in Chapter 7.

We concentrate on time series analysis in discrete time, but we define also
some continuous time stochastic processes, like the geometric Brownian
motion, because it is a standard model in option pricing.

Section 5.1 discusses strict stationarity, covariance stationarity, and auto-
covariance function. Section 5.2 studies model free time series analysis.
Section 5.3 studies parametric time series models, in particular, ARMA
and GARCH processes. Section 5.4 considers models for vector time series.
Section 5.5 summarizes stylized facts of financial time series.

5.1 Stationarity and Autocorrelation

A time series (stochastic process) is a sequence of random variables, indexed
by time. We define time series models for double infinite sequences

(Y.}, teZ={0,+1,%2,...}.

A time series model can also be defined for a one-sided infinite sequence
{Y,}, where t € Ny ={0,1,...} or t € N' = {1,2,...}. A realization of a time
series is a finite sequence Y7, ..., Y, of observed values. We use the term “time
series” both to denote the underlying stochastic process and a realization of
the stochastic process. Besides a sequence of real valued random variables, we
can consider a vector time series, which is a sequence {X,} of random vectors
X, e RI!

5.1.1 Strict Stationarity

Time series {Y,} is called strictly stationary, if (¥7,...,Y,) and (Y1 4, ..., Y, )
are identically distributed for all £,k € {0,+1,+2,...}. This means that for a
strictly stationary time series all finite dimensional marginal distributions are
equal.

Figure 5.1(a) shows a time series of S&P 500 daily prices, using data described
in Section 2.4.1. The time series has an exponential trend and is not station-
ary. The exponential trend can be removed by taking logarithms, as shown in

1 Spatial statistics considers a collection of random variables Y,, indexed by a spatial location: ¢ €
R? or t € R®. We can also consider a collection of random elements indexed by a space of functions,
or indexed by an abstract space.
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Figure 5.1 Removing a trend: Differences of logarithms. (a) S&P 500 prices; (b) logarithms of
S&P 500 prices; (c) differences of the logarithmic prices.

panel (b), but after that we have a time series with a linear trend. The linear
trend can be removed by taking differences, as shown in panel (c), which leads
to the time series of logarithmic returns, which already seems to be a stationary
time series. Figure 2.1(b) shows that the gross returns seem to be stationary.

Figure 5.2(a) shows a time series of differences of S&P 500 prices, which is
not a stationary time series. Panels (b) and (c) show short time series of price
differences, which seem to be approximately stationary. Thus, we could also
define the concept of approximate stationarity.

Figure 5.3 studies a time series of squares of logarithmic returns, computed
from the daily S&P 500 data, which is described in Section 2.4.1. The squared
logarithmic returns are often modeled as a stationary GARCH(1, 1) time series.
However, we can also model the squared logarithmic returns with a signal plus
noise model

Y,=u +e,
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Figure 5.2 Removing a trend: Differencing. (a) Differences of S&P 500 prices over 65 years;
(b) differences over 4 years; (c) differences over 100 days.
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average of squared returns.
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where Y, = [log(S,/S,_1)1> u, is a deterministic trend, and ¢, is stationary white
noise. We can estimate the trend y, with a moving average fi,. Moving averages
are defined in Section 6.1.1. Panel (a) shows time series Y, (black circles) and
i, (red line). Panel (b) shows Y, — ji,. Panel (b) suggests that subtracting the
moving average could lead to stationarity. We use the one-sided exponential
moving average in (6.3) with smoothing parameter /1 = 40.

5.1.1.1 Random Walk
Random walk is a discrete time stochastic process {Y,} defined by

Y,=Y,  +e. =12 ...,

where Y|, is a random variable or a fixed value, and {e,} is distributed as
IID(p, 6%). We have that
t
Y,=Yo+ ) & t=12...
k=1

If Y, is a constant, then EY, = Y, + ut and Var(Y,) = t62. Thus, random walk
is not strictly stationary (and not covariance stationary). We obtain a Gaussian
random walk if {€,} is Gaussian white noise. If Y = 0, then a Gaussian random
walk satisfies ¥, ~ N(tu, tc?).

Figure 5.4(a) shows the time series of S&P 500 prices over a period of 100
days. Panel (b) shows a simulated Gaussian random walk of length 100, when
the initial value is 0. A random walk leads to a time series that has a stochastic
trend. A stochastic trend is difficult to distinguish from a deterministic trend.
A time series of stock prices resembles a random walk. Also a time series of a
dividend price ratio in Figure 6.7(a) resembles a random walk.

S&P 500
460 465 470 475 480

Random walk

-6

1993.8 1993.9 1994.0 1994.1 0O 20 40 60 80 100
(a) (b)

Figure 5.4 Stochastic trend. (a) Prices of S&P 500 over 100 days; (b) simulated random walk of
length 100, when the initial value is 0.
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Geometric random walk is a discrete time stochastic process defined by

t
Y=Y, [[ee t=1.2....
k=1

where €, €,, ... are ii.d and Y} is independent of ¢, €,, ....

5.1.2 Covariance Stationarity and Autocorrelation

We define autocovariance and autocorrelation first for scalar time series and
then for vector time series.

5.1.2.1 Autocovariance and Autocorrelation for Scalar Time Series

We say that a time series {Y,} is covariance stationary, if EY, is a constant, not
depending on ¢, and Cov(Y,, Y,,,) depends only on k but not on £. A covariance
stationary time series is called also second-order stationary.

If EY? < oo for all ¢, then strict stationary implies covariance stationarity.
There exists time series that are strictly stationary but for which covariance
is not defined.? Covariance stationarity does not imply strict stationarity. For a
Gaussian time series, strict stationarity and covariance stationarity are equiva-
lent. By a Gaussian time series, we mean a time series whose all finite dimen-
sional marginal distributions have a Gaussian distribution.

For a covariance stationary time series the autocovariance function is
defined by

Y(k) = COV(Yp Yt_k)y

where k = 1,2, .... The covariance stationarity implies that y(k) depends only
on k and not on t. The autocorrelation function is defined as

y (k)
pk) = Cor(Y,, Y, ) = 75,
wherek=1,2,....
The sample autocovariance with lag k, based on the observations Y7, ..., Yy,
is defined as
=
LOEE-DYCAED A ATED o)

t=1
where ¥ = T2 Y7 Y, The sample autocorrelation with lag k is defined as
¥ (k)

p(k) = .
p(k) 50)

(5.3)

2 Wehave E(Y,Y,_,) < [EY?EY? ]¥/* and E|Y,| < [EY}]*/? by Cauchy’s inequality, so that if EY? <
oo for all £, then Cov(Y,, Y,_,) is defined for all £ and k.

3 We have divided intentionally by 7" and not by T — k, although divisor T'— k would lead to an
unbiased estimator.
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Figure 5.5 S&P 500 autocorrelation. (a) The sample autocorrelation function k — j(k) of S&P
500 returns for k = 1, ..., 1000; (b) the sample autocorrelation function for absolute returns.
The red lines indicate the 95% confidence band for the null hypothesis of i.i.d process.

Figure 5.5 shows sample autocorrelation functions for the daily S&P 500
index data, described in Section 2.4.1. Panel (a) shows the sample autocorre-
lation function k — p(k) for the return time series ¥, = R, = (S, — S,_1)/S,.;
and panel (b) shows the sample autocorrelation function for the time series of
the absolute returns Y, = |R,|. The lags are on the range k = 1, ..., 1000.

IfY,,Y,, ... are ii.d. with mean zero, then

VT (). ...5K) SN (0.1,).

as T — oo; see Brockwell and Davis (1991). Thus, if Y7, Y5, ... areii.d. with mean
zero, then about 1 — « of the observed values Y7, ..., Y} should be inside the
band

~1/2
+2y_opn T 2,

where z, is the a-quantile for the standard normal distribution. Figure 5.5 has
the red lines at the heights +z,_,,, T~1/2, where we have chosen a = 0.05, so
thatz,_,,, ~ 1.96.

The Box—Ljung test can be used to test whether the autocorrelations are zero
for a stationary time series Y}, Y,, .... The null hypothesis is that p(k) = 0 for
k=1,...,h, where i > 1. Let us have observed time series Y7, ..., Y. The test
statistics is

(k)
T-k

h
Q) =T(T+2)
k=1

where (k) is defined in (5.3). The test rejects the null hypothesis of zero auto-
correlations if

Q) > X1
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where )(Zl_a is the 1 — a-quantile of the y2-distribution with degrees of
freedom 4. We can compute the observed p-values

Py =1-F,(Qh)),

forh = 1,2, ..., where F, is the distribution function of the y2-distribution with
degrees of freedom /4. Small observed p-values indicate that the observations
are not compatible with the null hypothesis.

5.1.2.2 Autocovariance for Vector Time Series

Let X; = (X, ,X,,)’ be a vector time series with two components. Vector time
series {X,} is covariance stationary when the components {X,; } and {X,,} are
covariance stationary and

Cov(X, 1, X, 5) = Cov(X,1» Xspo) (5.4)

for all ¢,s,h € Z. Thus, vector time series {X,} is covariance stationary when
EX, is a vector of constants, not depending on ¢, and the covariance

Cov(X, ;. X, Cov(X,,, X
Cov(X,, X;yy) = X1 Xpp) X1 Xisn2) ’
COV(thzy Xt+h,1) COV(th, Xt+h,2)

depends only on Zbut notont fort,h € Z.
For a covariance stationary time series the autocovariance function is
defined by

I'th) = Cov(X,, X, ;). (5.5)
For a scalar covariance stationary time series {Y,} we have

y(h) = Cov(Y,, Y,,,) = Cov(¥,_;,, Y,) = y(~h).
However, the autocovariance function of a vector time series satisfies*

T'(h) = T(=h)'. (5.6)

5.2 Model Free Estimation

Univariate and multivariate descriptive statistics and graphical tools can be
applied to get insight into a distribution of a time series. We can apply k-variate

4 Combining

COV(Xt,l’ Xt—h,l) COV(X[.Z’Xt—h.I)

I(-hy =
Cov(X, . X, }5) Cov(X,,, X, ;)

and (5.4) implies (5.6).
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descriptive statistics and graphical tools to the k-dimensional marginal distri-
butions of a time series. This is discussed in Section 5.2.1.

Univariate and multivariate density estimators and regression estimators
can be applied to time series data. We can apply k-variate estimators to
the k-dimensional marginal distributions of a time series. This is discussed
in Section 5.2.2, by assuming that the time series is a Markov process of
order k > 1.

Section 5.2.3 considers modeling time series with a combination of paramet-
ric and nonparametric methods. First a static parametric model is posed on
the observations and then the time dynamics is introduced with time space or
state space smoothing. The approach includes both local likelihood, covered
in Section 5.2.3.1, and local least squares method, covered in Section 5.2.3.2.
We apply local likelihood and local least squares to estimate time varying tail
index in Section 5.2.3.3.

5.2.1 Descriptive Statistics for Time Series

Univariate statistics, as defined in Section 3.1, can be used to describe time
series data Y}, ..., Y, € R. Using univariate statistics, like sample mean and
sample variance, is reasonable if Y, are identically distributed.

Multivariate statistics, as defined in Section 4.1, can be used to describe
vector time series data X, ..., X, € R<. Again, the use of multivariate statistics
like sample correlation is reasonable if X, are identically distributed.

Multivariate statistics can be used also for univariate time series data

Y],..., Yy € Rif we create a vector time series from the initial univariate time
series. We can create a two-dimensional vector time series by defining
X =Y 0 (5.7)

for some k > 1. Now we can compute a sample correlation coefficient, for
example, from data X,,;,...,X;. This is reasonable if X, are identically
distributed. The requirement that X, in (5.7) are identically distributed follows
from strict stationarity of {Y,}.

5.2.2 Markov Models

We have defined strict stationarity in Section 5.1.1. A strictly stationary time
series {Y,},.> can be defined by giving all finite dimensional marginal distribu-
tions. That is, to define the distribution of a strictly stationary time series we
need to define the distributions

Yy, ..., Y

for all k > 1. If the time series is IID(0,6%), then we need only to define the
distribution of Y;. We say that the time series is a Markov process, if

P(Y,€A|Y, .Y, ,...)=PY,€A|Y,).
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To define a Markov process we need to define the distribution of Y, and
(Y,,Y,,;). More generally, we say that the time series is a Markov process of
order k > 1, if

P(Y, €AY, .Y, 5...)=P(Y,€A|Y, 1.....Y, ).

To define a Markov process of order k we need to define the distributions of Y,
YY) oo Voo Vo).

To estimate nonparametrically the distribution of a Markov process of order
k > 1, we can estimate the distributions of Y,, (Y}, Y,,,), ..., (Y}, ..., Y,,;) non-
parametrically.

5.2.3 Time Varying Parameter

LetY,, ..., Y, € Rbeatimeseries. Let f, : R - Rbeadensity function, where
0 is a parameter, and § € ® C R”. We could ignore the time series properties
and assume that Y7, ..., Y, are independent and identically distributed with
density f,.

However, we can assume that parameter § = 6, changes in time. Then the
observations are not identically distributed, but Y, has density f, . In practice,
we do not specify any dynamics for 6,, but construct estimates 6, using non-
parametric smoothing.

Note that even when we would assume independent and identically dis-
tributed observations, with time series data the parameter estimate is changing
in time, because at time ¢ the estimate 9;5 is constructed using data Y7, ..., Y,.
This is called sequential estimation.

5.2.3.1 Local Likelihood
IfY,,..., Y, are independent with density f,, then the density of (Y, ..., Y7) is

T
fo v = [1400-
i=1

The maximum likelihood estimator of 6 is the value § maximizing

T
Y logfy(Y,)
i=1

over § € ©. We can find a time varying estimator 8, using either time space
or state space localization. The local likelihood approach has been studied in
Spokoiny (2010). The localization is discussed more in Sections 6.1.1 and 6.1.2.

Time Space Localization Let
K({(t-0/h)
Pi(t) =

=, (5.8)
2 K& =p/h
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where /& > 0 is the smoothing parameter and K : [0,00) - R is a kernel
function. For example, we can take K(x) = exp(—x) Iy .,,(%). Let 6, be the value
maximizing

t
Y. pi)log fy(Y) (5.9)

i=1
over f € ©.
For example, let us consider the model
Y, =y, +os,

where €, ~ N(0,1) are i.i.d. Denote 6 = (u, %) and fy(x) = ¢p((x — u)/0)/0,
where ¢(x) = (27)1/2 exp{—«?/2} is the density of the standard normal distri-
bution. Let ® = R X (0, 00). Now

Z pi(t)log f,(Y;) = log 2z)Y/* + logo™! — 2—(1’2 Z PO, — w?.
i=1

i=1

Then 8, = (4, 62), where

t t
fo= Y p®Y, 6= p®Y:-pk (5.10)
i=1 i=1
State Space Localization Let us observe the state variables X, ..., X; in addition
to observing time series Y, ..., Y. Let

K((X, - X)/h)
S KX, = X)/h)

where /2 > 0 is the smoothing parameter and K : R? — R is a kernel function.
We can take K = ¢ the density of the standard normal distribution. Let 8, be
the value maximizing (5.9) over 6 € ©.

For example, let us consider the model

Yt = M(Xt) + 6(Xt) €5
where €, ~ N(0, 1) are i.i.d. The model can be written as
Y|X =x ~ N(ux),o(x)).

Denote 0 = (u,62) and f,(y) = ¢((y — u)/c)/c, where ¢ is the density of the
standard normal distribution. Then 9t = ({1, 67), as defined in (5.10).

(5.11)

p,‘(t) =

5.2.3.2 Local Least Squares

Let us consider a linear model with time changing parameters. Let us observe
the explanatory variables Z,,...,Z; in addition to observing time series
Yi, ..., Y. Consider the model

Y, = at+ﬂt/zt+€t’
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where @, € R, f, € R? are time dependent constants, Z, € R? is the vector of
explanatory variables, and ¢, is an error term.

We define the estimates of the time varying regression coefficients as the
values &, and f, minimizing

t
> i—a-pZ) po).
i=1
where p,(¢) is the time space localized weight defined in (5.8). When we observe
in addition the state variables X, ..., X, then we can use the state space local-
ized weight p,(¢), defined in (5.11).

5.2.3.3 Time Varying Estimators for the Excess Distribution

We discussed tail modeling in Section 3.4. The idea in tail modeling is to fit
a parametric model only to the data in the left tail or to the data in the right
tail. We can add time space or state space localization to the tail modeling. As
before, Y, ..., Y is a time series.

Local Likelihood in Tail Estimation Let family f,, 6 € ®, model the excess distribu-
tion of a return distribution, where f; : [0, 00) — R. This means thatifg : R —
R is the density of the return distribution then we assume for the left tail that

W(_o,1y (%) = pfy(u — x)
for some 6, where 0 < p < 0.5, and u is the pth quantile of the return density:
p= f_uoo g. For the right tail the corresponding assumption is

8y, ) (x) = (1 — p)fp(x — 1)
for some 6, where 0.5 < p < 1, and u is the pth quantile of the return density:
1-p=/"g
The local maximum likelihood estimator for the parameter of the left tail is
obtained from (3.63) as

@leﬁ,t = argmax Z pi(t)log f; (u - YL) s (5.12)
0€0  iyer,
where u = g, is the empirical quantile computed from Y3, ..., Y, 0 < p < 0.5,

and
C,=1{Y,: Y, <u, i=1,...,t}.
The time space localized weights p,(¢) are modified from (5.8) as
Kt —-1i)/h)
Zj;,EEIK((t —N/h)’

pi(t) = (5.13)
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where /1 > 0 is the smoothing parameter and K : [0, ) — R is a kernel func-
tion. If there is available the state variables X, ..., X, then we can use the state
space localized weights, modified from (5.11) as

K(O% = X)/h)
K((X, = X))/’

pit) = (5.14)
Zj JJEL,

where /2 > 0 is the smoothing parameter and K : R? — R s a kernel function.

The local maximum likelihood estimator for the parameter of the right tail is

obtained from (3.64) as

éright,t = ar%égaxi:;e:&pi(t) log f,(Y; — u),

where u = g, is the empirical quantile, 0.5 < p < 1, and
R,={Y,:Y,>u i=1,..,th

The weights are obtained from (5.13) and (5.14) by replacing £, with R,.

For example, let us assume that the excess distribution is the Pareto distribu-
tion, as defined in (3.74) as

Jo&x) = g( >_1_a1[0,oo)(x),

where a > 0 is the shape parameter. The maximum likelihood estimator has the
closed form expression (3.75). The local maximum likelihood estimators are

-1
Uepr s = < D p® log(Y,-/u)> , (5.15)

YeL,

X+ u

and

-1
Ayignee = < Z i) log(Yi/u)) , (5.16)

YER,

where 0 < p < 0.5, and u = c}p. For the left tail we assume that # < 0, and for
the right tail we assume that & > 0. These are the time varying Hill’s estimators.

Figure 5.6 studies time varying Hill’s estimates for the S&P 500 daily data,
described in Section 2.4.1. Panel (a) shows the estimates for the left tail index
and panel (b) shows the estimates for the right tail index. Sequentially calcu-
lated Hill’s estimates are shown in black, time localized Hill’s estimates with
h = 500 are shown in blue, and the case with # = 100 is shown in yellow. The
exponential kernel function is used. The estimation is started after there are 4
years of data. The tails are defined by the empirical quantile # = g, with p =
10% and p = 90%.
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Figure 5.6 Time varying Hill's estimator. (a) Left tail index; (b) right tail index. The black curves
show sequentially calculated Hill's estimates, the blue curves show the time localized esti-
mates with h = 500 and the yellow curves have h = 100.

Time Varying Regression Estimator for Tail Index Let Y,,...,Y, be the observed
time series at time ¢. The regression estimator for the parameter @ > 0 of the
Pareto distribution is given in (3.77). Let

L,={Y,: Y, <u, i=1,..,t}.
The local regression estimator of the parameter of the left tail is

. v er, Po®llog(Yy /1) - log(i/(t + 1))]

T S vee, Po®og(Y /)

where u = g, is the empirical quantile and we assume u < 0. The weights p; (£)
are obtained from (5.13) and (5.14) by replacing index i with the index (i), so
that the weights correspond to the ordering Y;;) <--- < Y.

The local regression estimator of the parameter of the right tail is

) Ziver, PoOllog(Y,/u) -log(i/(t + 1))]
aright == >
2 Y,eR, o) og(Y, /u))
where Y;) > - - - > Y|, are the observations in reverse order,

R,={Y,:Y,>u i=1,...t},

b

)

u = g, is the empirical quantile, 0.5 < p < 1, and we assume u > 0.

Figure 5.7 studies time varying regression estimates for the tail index using
the S&P 500 daily data, described in Section 2.4.1. Panel (a) shows the estimates
for the left tail index and panel (b) shows the estimates for the right tail index.
Sequentially calculated regression estimates are shown in black, time localized
estimates with # = 500 are shown in blue, and the case with # = 100 is shown in
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Figure 5.7 Time varying regression estimator. Time series of estimates of the tail index are
shown. (a) Left tail index; (b) right tail index. The black curves show sequentially calculated
regression estimates, the blue curves show the time localized estimates with h = 500 and the
yellow curves have h = 100.

yellow. The standard Gaussian kernel function is used. The estimation is started
after there are 4 years of data. The tails are defined by the empirical quantile
u = g, with p = 10% and p = 90%.

5.3 Univariate Time Series Models

We discuss first ARMA (autoregressive moving average) processes and
after that we discuss conditional heteroskedasticity models. Conditional
heteroskedasticity models include ARCH (autoregressive conditional
heteroskedasticity) and GARCH (generalized autoregressive conditional
heteroskedasticity) models. The ARMA, ARCH, and GARCH processes are
discrete time stochastic processes. We discuss also continuous time stochastic
processes, because geometric Brownian motion and related continuous time
stochastic processes are widely used in option pricing.

Brockwell and Davis (1991) give a detailed presentation of linear time series
analysis, Fan and Yao (2005) give a short introduction to ARMA models and a
more detailed discussion of nonlinear models. Shiryaev (1999) presents results
of time series analysis that are useful for finance.

5.3.1 Prediction and Conditional Expectation

Our presentation of discrete time series analysis is directed towards giving
prediction formulas: these prediction formulas are used in Chapter 7 to
provide benchmarks for the evaluation of the methods of volatility prediction.
Chapter 6 studies nonparametric prediction.
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Let {Y,} be a time series with t =0+ 1,+2,.... We take the conditional
expectation
E@ YY) (5.17)

to be the best prediction of Y, given the observations Y,, Y,_;, ..., wheren > 1
is the prediction step. Using the conditional expectation as the best predictor
can be justified by the fact that the conditional expectation minimizes the mean
squared error. In fact, the function ¢ minimizing

E(Yy =8y Yy, )) (5.18)

is the conditional expectation: g(Y,,Y, ,,...) = E (Y, 1YY, ,,...)°

Besides predicting the value Y,,,, we consider also predicting the squared
value Y7, .

In the following text, we give expressions for E(Y,,,|Y,.Y, ;,...) in the
ARMA models and for E (Ytz_m |Y,,Y, {,...)in the ARCH and GARCH models.
These expressions depend on the unknown parameters of the models. In order
to apply the expressions we need to estimate the unknown parameters and
insert the estimates into the expressions.

The conditional expectation whose condition is the infinite past is a function
g(Y,, Y, ,,...) of the infinite past. Since we have available only a finite num-
ber of observations, we have to truncate these functions to obtain a function
&y, ..., Y}). It would be more useful to obtain formulas for

E(Yt+r] | Yts }/t—l’ oo Yl)
and
E (Ytz-l—nlyvp Yt—l’ ceey Yl) .

However, these formulas are more difficult to derive than the formulas where
the condition of the conditional expectation is the infinite past.

5.3.2 ARMA Processes

ARMA processes are defined in terms of an innovation process. After defining
innovation processes, we define MA (moving average) processes and AR
(autoregressive) processes. ARMA processes are obtained by combining
autoregressive and moving average processes.

5 Function g(x) = E(Y | X = x) minimizes E(Y — g(X))? over measurable g. Indeed,
E(gX) - Y)? = E(g(X) — E(Y | X)* + EEE(Y | X) - Y)?,

because E[(g(X) — E(Y | X))(E(Y | X) — Y)] = 0. Thus, E(g(X) — Y)? is minimized with respect to g
by choosing g(x) = E(Y | X = x). Note that the conditional expectation defined as g(x) = E(Y | X =
x) is a real-valued function of x, but E(Y | X) is a real-valued random variable, which can be defined
as E(Y | X) = g(X).
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5.3.2.1 Innovation Processes
Innovation processes are used to build more complex processes, like ARMA
and GARCH processes. We define two innovation processes: a white noise pro-
cess and an i.i.d. process.

We say that {¢,},c7 is a white noise process and write {€,},., ~ WN(O, 6?) if

1) Ee, =0,
2) Eet2 = o2,
3) Eee, =0fork #0,

where 0 < 6% < o is a constant. A white noise is a Gaussian white noise if
€, ~ N(0, o).
We say that {€,},c7 is an i.i.d. process and write {¢,},o; ~ 1ID(0, 6?) if

1) Ee, =0,
2) Ee? = o2,
3) ¢, and ¢, are independent for k # 0.

An ii.d. process is also a white noise process. A Gaussian white noise is also
an i.i.d. process.

5.3.2.2 Moving Average Processes
We define first a moving average process of a finite order, then we give predic-
tion formulas, and finally define a moving average process of infinite order.

MA(q) Process We use MA(q) as a shorthand notation for a moving average
process of order g. A moving average process {Y,} of order g > 0 is a process
satisfying

Yy=¢,+Dbe_+ - -+be

where by, ... ,bq €R, {¢,} ~ WN(0,0?) is a white noise process, and ¢ =
0,£1,+2,....

Figure 5.8 illustrates the definition of MA(g) processes. In panel (a) g =1
and in panel (b) g = 2. When g = 1, then ¥, and Y,,; have one common white
noise-term, but Y, and Y,,, do not have common white noise-terms. When
q =2, then Y, and Y,,, have two common white noise-terms, Y, and Y,,, have
one common white noise-term, and Y, and Y,,,; do not have common white
noise-terms.

We have that

EY,=0, Var(Y)=o0>(1+bi+---+0b}), (5.19)

and

2 N4k —
(o2 Zj=0 blbk_H, k = 1, RN/ (5‘20)

EY)Y, =
tL etk {0 k>gq,
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Y, Ys Ys Ye

(a) (b)

Figure 5.8 The definition of a MA(q) process. (a) MA(1) process; (b) MA(2) process.

where b, = 1. Thus, MA(g) process is such that a correlation exists between Y,
and Y, onlyif |k| < g. Equations (5.19) and (5.20) show that MA(q) process is
covariance stationary.

If we are given a covariance function y : {0,1,...} — R, which is such that
y(k) = 0for k > g, we can construct a MA(g) process with this covariance func-

tion by solving 6> and b, ..., b, from the g + 1 equations
70 = o2(1+b1+---+b2),
y) = (b +bby+---+b, b)),
ri@ = o’b,

Prediction of MA Processes 'The conditional expectation E (Y,,, | F,) is the best
predictionof Y, forn > 1, given the infinite past Y, Y,_;, ..., in the sense of the
mean squared prediction error, as we mentioned in Section 5.3.1. We denote
E Yy | F) =E (Y4, 1Y, Y, 4, ...). The best linear prediction in the sense of the
mean squared error is given in (6.19). We can use that formula when the covari-
ance function of the MA(q) process is first estimated.

A recursive prediction formula for the MA(g) process can be derived as

follows. We have that
E(v. |F)={ Detbpet o tbe . 1<n<q.
t+n t O, n > q’

because E (¢, | F,) =0 for k =1,...,5. The noise terms ¢, .. are not

observed, but we can write

> €tgn

¢ =Y, —be - -—be

€1 Y, i —biey—-- 'bqet—q—p
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This leads to a formula for E (Y,,, | F,) in terms of the infinite past Y, Y, ,, ....
For example, for the MA(1) process Y, = ¢, + be,_; we have

bYy, (DY, n=1,
E,,|F) = { k=0 = "2 (5.21)
The prediction formula for prediction step # =1 is a version of exponential
moving average, which is defined in (6.7).
We can obtain a recursive prediction for practical use in the following way.
Define ¢, = 0, when i < 0 and

=Y, —bé_ - - bqéi—q’
when i =1, ..., t. Finally we define the 5-step prediction as
by +by 1€+ +bé . 1<n<gq,
0, n>q.

Yt+t1 =

For example, for the MA(1) process Y, = ¢, + be,_; we get the truncated for-
mulas

Vo= Zk o( l)kka:—k» n=1,
[+}1 ’1 Z 2.
In the implementation the parameters b, ..., b, have to be replaced by their
estimates.

MA(o0) Process A moving average process of infinite order is defined as

=u+ Z bl-et_j.
=0

The series converges in mean square if ®

[s9)
Z b}.2 < 00.
=0

‘We have that
EY,=pu, Var(Y) =o" i b].z, (5.22)
j=0
and
E(Y,Y, )=0" i bbby, k>0. (5.23)

j=0

6 The convergence in mean square means that there is a random variable Y with EY? < co such

that E(S, — Y)* > 0, as n — oo, where S, = Z =0 bj€,_;- We can check the convergence using the

Cauchy criterion: For all 6 > 0 there is 75 so thatE(E;ﬁf+1 be, ) < 6, whenn > ng, forallp > 1.
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Equations (5.22) and (5.23) imply that MA(co) process is covariance stationary.
MA(o0) process can be used to study the properties of AR processes. For
example, if we can write an AR process as a MA(o0) process, this shows that
the AR process is covariance stationary.

5.3.2.3 Autoregressive Processes
An autoregressive process {Y,} of order p > 1 is a process satisfying

Yy=a)Y, ,+aY, ,+ - +a,Y,_, +e, (5.24)
where a....a, €R, {e} ~ WN(O, 6?) is a white noise process, and t =
0,+1,+2,.... We assume that ¢, is uncorrelated with Y, ;,Y, ,,.... We use

AR(p) as a shorthand notation for an autoregressive process of order p.
The autocovariance function of an AR(p) process can be computed recur-
sively. Multiply (5.24) by Y,_, from both sides and take expectations to get

y) =ayyk=1D+---+a,yk—p), (5.25)

where k > 0. The first values y(0),...,y(p) can be solved from the p+1
equations. After that, the values y (k) for k > p + 1 can be computed recursively
from (5.25).

Prediction of AR Processes Let us consider the prediction of Y, for n > 1 when
the process is an AR(p) process. The best prediction of Y, , given the observa-
tions Y, Y, i, ..., is denoted by

pred,(n) = E(Y,,, | F)),

where we denote E(Y,,, | F,) = E(Y,,|Y,, Y, ;. ...). We start with the one-step

o

prediction. The best prediction of Y, ,, given the observations Y, Y,_;, ..., is
pred,(1) =E(Y,,1 | F) =aY, +aY, 1+ -+a,Y, .. (5.26)

because E(e,,; | F,) = 0. For the two-step prediction the best predictor is
pred,(2) =E(Y,,,| F,)
=E[E(Y 5| Fu) | 7]
=Ela, Y, +a Y, +-+a,Y,_,,|F]
=aypred, () +a,Y, +---+a,Y,_ .
The general prediction formula is
pred,(n) = a,pred,(n — 1) + a,pred,(n — 2) + - - - + a,pred,(n — p).

The best prediction is calculated recursively, using the value of pred,(1) in
(5.26), and the fact that pred,(n) = Y,,, forn < 0.
For example, for the MA(1) process Y, = aY,_; + ¢, we have

EYpy| Y Yoy, ) =EY,p | Y, ) = ay,. (5.27)

o
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5.3.2.4 ARMA Processes
We define an autoregressive moving average process {Y,,¢ = 0,+1,+2,...}, of
order (p,q), p,q = 0, as a process satisfying

Yi=a)Y, ,+aY, ,+---+a,Y,_, +u,

where a;,...,a, € Rand {4,},; is a MA(g) process. We use ARMA(p, q) as
a shorthand notation for an autoregressive moving average process of order

(p.9)
Stationarity, Causality, and Invertability of ARMA Processes Let {Y,} be an
ARMA(p, q) process with
Y=a)Y, +aY, ,+---+a,Y,_, +u,
u,=bye, +be,_ 1+ + bqet_q.
Denote
a=1-az—ayz - —a,
b(z) = by + bz + b2 +- - -+ b 2",

where z € C, and C is the set of complex numbers. If a(z) # 0 for all z € C such
that |z|] = 1, then there exists the unique stationary solution

Y=Y veop

j==eo

where the coefficients y; are obtained from the equation

b2
el }Z vz,

jE=eo

where r~! < |z| < r for some r > 1; see Brockwell and Davis (1991, Theorem
3.1.3).

The condition for the covariance stationarity does not guarantee that the
ARMA(p, q) process would be suitable for modeling. Let us consider the AR(1)
model

Y,=aY,_, +e,

where {¢€,} ~ WN(0, 62). The AR(1) model is covariance stationary if and only
if |a| # 1. This can be seen in the following way. Let us consider first the case
|a| < 1. We can write recursively

Yy=aY,_,+e¢

=a’Y, , +ae, | +e,

— k+1 k
=a Y, tae_+---+ae_;+e,
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where k > 0. Since |a| < 1, we get the MA(oco) representation’

o
= J
Y, = Z ae,_j
j=0

which implies that {Y,} is covariance stationary. Let us then consider the case
|a| > 1.Since Y,,, = aY, + ¢,,,, we can write recursively

_ - -1
Y,=a Yt+1_“ €41

_ 2 -2 -1
=a Y, —a e, a6y

=a" Y —a " e~ —aT e,

where k > 0. Since |a| > 1, we get the MA(oco) representation®

(o]

Y, =- “_j€t+j’

=1
which implies that {Y,} is covariance stationary. The latter case |a| > 1 is not
suitable for modeling because Y, is a function of future innovations €,,; with
j= L

We define causality of the process to exclude examples like the AR(1) model

with |a| > 1. An ARMA(p, q) process is called causal if there exists constants
{y;} such that Z,io lw;| < coand

Y, = Z viE,_, t= 0,+1,+2,...
=0
Let the polynomials a(z) and b(z) have no common zeroes. Then {Y,} is causal
if and only if a(z) # 0 for all z € C such that |z| < 1.° This has been proved
in Brockwell and Davis (1991, Theorem 3.1.1). The coefficients {y;} are deter-
mined by

2 v _bl®
/ a(z)
Thus, under the conditions that a(z) and b(z) have no common zeroes and
a(z) # 0 for all z € C such that |z| < 1, we have expressed an ARMA(p, g) pro-

cess as an infinite order moving average process. Thus, an ARMA (p, q) process
is covariance stationary under these conditions.

_\® — k+1 _ \® Jj k+1
7 For each k > 0 we have Y, Z,:o de,_;=a*lyY, Z,‘:kﬂ de, where a**1Y, , | — 0and
Z,ikﬂ a’eH — 0in the mean square, as k — oo, because || < 1.
o o _ k-1 o - —k-1
8 Foreachk > Owehave Y, + 32 a”e,,, =a*'Y,,,,, + X7, ,a7e, , wherea ™Y, >0
o0 _I .
and Z;’:k+2 a’e,; — 0in the mean square, as k — oo, because |a| > 1.
. ® N ® ) S ®
9 The condition ¥ 7, |w;| < co implies that 377, lw;|* < co, which implies, in turn, that 372, we, ;
converges in mean square.
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An ARMA(p, q) process is called invertible if there exists constants {z;} such
that Z;io |7;] < o0 and

&= mY¥,, t=0,%1,%2,..

Let the polynomials a(z) and b(z) have no common zeroes. Then {Y,} is invert-
ible if and only if b(z) # 0 for all z € C such that |z| < 1. This has been proved
in Brockwell and Davis (1991, Theorem 3.1.2). The coefficients {m;} are deter-
mined by

i,,zf_@
T b(z)

Jj=0

Prediction of ARMA Processes The prediction formulas for ARMA processes
given the infinite past can be found in Hamilton (1994, p. 77). For the
ARMA(1,1) process Y, = aY,_, + €, + be,_, we have

EW, Y Y, ) =a" 1(vt+b)2( 10'Y,_,, (5.28)

where s > 1; see Shiryaev (1999, p. 151). Note that the prediction formula (5.21)
of the MA(1) process and the prediction formula (5.27) of the AR(1) process
follow from (5.28).

5.3.3 Conditional Heteroskedasticity Models
Time series {Y,} satisfies the conditional heteroskedasticity assumption if
Y,=0,, t=0,%1,%2,..., (5.29)

where {¢,} isan IID(0, 1) process and {0, } is the volatility process. The volatility
process is a predictable random process, that is, o, is measurable with respect
to the sigma-field 7,_, generated by the variables Y,_;,Y,_,, .... We also assume
that ¢, is independent of Y,_,, Y,_,., .... Then,

E(Y!|Fy) =E (0/€]|F,y) = 0/E (&I Fiy)
=oE (e}) = o}. (5.30)

Thus, o7 is the best prediction of Y7 in the mean squared error sense. Also,
forn > 1,

E(Y;

il 72e) = E (07601, | F)
(o

E t+;1 t+r]|Ft+i1 1) |Ft]

[
lo
[

1:2+;1 ( t+n| t+n— 1) |Ft]
oy | Fu] - (5.31)

E
E
E
E
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Thus, the best prediction of wa gives the best prediction of Ytzﬂ, in the mean
squared error sense.

ARCH and GARCH processes are examples of conditional heteroskedasticity
models.

5.3.3.1 ARCH Processes

Process {Y,} is an ARCH(p) process (autoregressive conditional heteroskedas-
ticity process of order p > 0), if Y, = ¢,0,, where {¢,} is an 1ID(0, 1) process
and

p
o] =ay+ z “thz_i’ (5.32)
i1

where o >0 and a;, ..., a, > 0. As a special case, the ARCH(1) process is
defined as

—e/ 2
Y=e/ag+a Y, .

The ARCH model was introduced in Engle (1982) for modeling UK inflation
rates. The ARCH(p) process is strictly stationary if 377 a; < 1; see Fan and Yao
(2005, Theorem 4.3) and Giraitis et al. (2000).

Let us consider the prediction of Yﬁrn for n > 1 when the process is
an ARCH(p) process. The best prediction of YEM, given the observations
Y, Y, 4,...,is denoted by

pred,(n) = E (Y7, |F,) .

We start with the one-step prediction. The best prediction of Yt2+1, given the
observations Y,, Y,_,, ..., using the inference in (5.30), is

pred,(1)=E (Yt2+1 |Ft) =E (‘72 €t2+1 |Ft) =o;,E (€t2+1 |Ft)

t+1 t+1

_ 2 _ 2 2 L 2
=0, =0 +taY, +taY  + - +aY .,

(5.33)

because E(€t2+1 | F,) = 1. For the two-step prediction we use (5.30) to obtain the
best predictor

pred,(2)=E (Ytz+2 | Pt) =E (0}2+2 | Ft)

2 2 2
=E [a0+a1Yt+1 +a, Y +- -~+ath_p+2|7’t]

=ay+ a;pred,(1) + a, Y72 + -+ + apr_pﬂ.

The general prediction formula is

pred,(n) =E (YEM |F,) =E (c},,|F,)

t+n
=a,+ alEtYf_m_l +--+ (xpEthern_p,
= ay + a,pred,(n — 1) + - - - + a,pred,(n — p), (5.34)

where we denote E, = E( - |F,). The best prediction is calculated recursively,
using the value of pred,(1) in (5.33), and the fact that pred,(n) = Yﬁr” forn <O0.
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The best 5-step prediction in the ARCH(1) model is

l—a

IF) &+ al”

" t+a Yz, (5.35)

1( 2 _2\ _
(O't+1_°')_0‘0

E (Y,

where we assumed condition @; < 1, which guarantees stationarity, and we
denote 6% = EY? = a,/(1 — a;).1°

5.3.3.2 GARCH Processes
Process {Y,} isa GARCH(p, g) process (generalized autoregressive conditional
heteroskedasticity process of order p > 0 and g > 0), if

Yt = €t0-t’ (5.37)

where {¢,} is an IID(0, 1) process and

p q
2 _ 2 2
o, =ay+ Z oY+ 2 pio, .

i=1 i=1

where a, > 0, ay, ... L0, > 0, and f,, ... ,ﬂq > 0. As a special case we get the
GARCH(1, 1) model, where
ol=ay+a Yf_l + ﬂaf_l. (5.38)

The GARCH model was introduced in Bollerslev (1986). The GARCH(p, q)
process is strictly stationary if

q »
D+ B<I; (5.39)
i=1 =1

see Fan and Yao (2005, Theorem 4.4) and Bougerol and Picard (1992).

10 The prediction formula of the ARCH(1) model follows from the prediction formula of the
GARCH(1, 1) model, which is given in (5.40). We can also use the calculation in Shiryaev (1999,
p- 59), which gives that

2 2 2
Gl+ﬂ + a16£+rl 1 t+r1 1

_ 2
= +0‘1( + )04, 9€ m, 2) €rn-1

-1 j

n
— 2
= + L) I I aleH»] z+1 I I al€t+rl—i'
i=1

j=1 i=1

=

Thus,
n-1
E("zzm |Ft) =a,+a, Za’l +alY}
j=1
1-af o
=0, 1_— + o Yt . (5.36)
Thus, the best n-step prediction of Yf in ARCH(1) model is given in (5.34), where n > 1 and we
used (5.31) and (5.36).
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The best one-step prediction of the squared value is obtained from (5.30) as

( +1|F) t+1

In the GARCH(1, 1) model the best 5-step prediction of the squared value, in
the mean squared error sense, is

E(YZ,|F) ="+ +p)"" (¢}, —-6%), n=1, (5.40)

where we assumed condition a; + f < 1, which guarantees strict stationarity,
and we denote the unconditional variance by

_ %

l—a,—f

Let us show (5.40) for # > 2. Let us denote E(- | F,) = E,. We have

62 =EY}= (5.41)

2 _ 2 2
6t+n =& + @ Yt+r]—1 + ﬂ6t+n—1

and oy, = (1 — a; — f)5*. Thus,

o-t2+r,_&2=al(ytz+nl )+ﬂ(t+n1 52)'

Thus, using (5.31),
Et (O-t2+n ) - (al + ﬁ)E ( t+n 1 62)

—(“ +P)E, (0}~ 57)
=@ +p"" (04, -67)

We have shown (5. 40) since E (GH_") E( tw), by (5.31). We can also write the
best prediction of Y H” in the GARCH(1, 1) model as

1—(a; +B)

l—a, —f + (o, + )" (Y + Biop),  (542)

(t+nlr) %

where n > 1.
The prediction formulas (5.40) and (5.42) are written in terms of atzH. We
have the following formula for o7, , in a strictly stationary GARCH(1, 1) model:

(ZO i k
i =15 TR > Y2, (5.43)
k=0

where we assume a; + f < 1 to ensure strict stationarity. More generally, for
the GARCH(p, g) model we have

2 2
o = — , 1+dey s (5.44)
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where d,_are obtained from the equation

az

deZ i= 1 lﬂz]

for |z| < 1; see Fan and Yao (2005, Theorem 4.4).

5.3.3.3 ARCH(o0) Model
GARCH(1, 1) can be considered a special case of the ARCH(o0) model, since
(5.43) can be written as

(o]
2 _ 2
of =a+ ) BY2,
k=1

where f, = ;! and @ =a,/(1—p). We can obtain a more general
ARCH(o0) model by defining

o =a+ Y wOmY, ). (5.45)
k=1

where @ € R, 0 € R?, and m : R — Ris called a news impact curve. More gen-
erally, following Linton (2009), the news impact curve can be defined as the
relationship between o7 and y,_; = y holding past values 67 | constant at some
level 62. In the GARCH(1, 1) model the news impact curve is

m(y, 62) = o, + a1y2 + po’.

The ARCH(o0) model in (5.45) has been studied in Linton and Mammen
(2005), where it was noted that the estimated news impact curve is asymmetric
for S&P 500 return data. The asymmetric news impact curve can be addressed
by asymmetric GARCH processes.

5.3.3.4 Asymmetric GARCH Processes
Time series of asset returns show a leverage effect. Markets become more active
after a price drop: large negative returns are followed by a larger increase in
volatility than in the case of large positive returns. In fact, past price changes
and future volatilities are negatively correlated. This implies a negative skew to
the distribution of the price changes.

The leverage effect is taken into account in the model

ol =ay+aj(e,_, — yo,_1)* + fo’, (5.46)
2
(Yt—l - Vo'z_l)
=a,+ al+ + o’ |,

Gt—l
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where y € Ris the skewness parameter. The model was applied in Heston and
Nandi (2000) to price options.!! When log(S,/S,_;) = o,¢,, then under (5.46)

Cov,_4(0,,1,10gS,) = —2a,70,.

Wheny > 0, then negative values of ¢,_, lead to larger increase in volatility than
positive values of the same size of ¢,_,. Now the unconditional variance is

a, + o
&P =EY}=——1_. (5.49)
1-—ay>-p

5.3.3.5 The Moment Generating function

We need the moment generating function in order to compute the option prices
when the stock follows an asymmetric GARCH(1, 1) process. We follow Heston
and Nandi (2000). Let

Y, - Y, =r+Ac’ +o,,
wherer € R, 1 € R, (¢,) are i.i.d. N(0,1), and
o} = ay + ay(e,_; — yo,_1)* + fol . (5.50)

For example, when the logarithmic returns follow the asymmetric GARCH(1, 1)
process, then

logS, —logS,_; =+ Ac? + o,¢,,
so that Y, = log S,. We want to find the moment generating function
S, T,¢) = E, exp{¢Yr},

where t < T and E, = E( -|F,) is the conditional expectation at time ¢.
We have that

f(T,T,p) =exp{opY}. (5.51)
Also,
AT -1,T,¢) = exp {qs [Yy_y + 7+ Ac2] + %d;zag} (5.52)

because the moment generating function of z ~ N(0,1) is Eexp{¢z} =
exp{¢?/2}, and Eexp{¢p(u + 62)} = exp{pu + c*¢*/2}.

11 Engle and Ng (1993) define the nonlinear asymmetric GARCH model
O'tz =a,+ (7(10'52_1(62_1 -+ ﬂaf_l, (5.47)

which s for y = 0 equal to the GARCH(1, 1) model. Engle and Ng (1993) have defined the VGARCH
model

O'tz =a,+a,(e,_; — 7+ ﬁatz_l. (5.48)

Menn and Rachev (2009) propose the GARMAX model that can also cope with the leverage effect.
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For t < T we have
ST, ) =exp{@Y, + A, T.¢)+ Bt T.p)o7,, }. (5.53)
where A and B are defined by the recursive formulas
AT, T,¢)=B(T,T,¢) =0,
AL, T,p)=¢pr+A(t+1,T,¢)+B(t+1,T,p)a,
—% log[l — 2a,B(t + 1, T, ¢)],

B T.9) =0 +1) = 57° + BB+ 1. T, )
(p—7)*/2
1-2aB(t+1,T,¢)
The cases t = T and t = T — 1 were proved in (5.51) and (5.52). Let t < T — 2.

Let us make the induction assumption that the formulas hold at time ¢ + 1.
Now,

S@.T,¢)=E, exp{dYr}
=E,E, ., exp{¢Y7}
=Eft+1.T,¢) (5.54)
=E,exp{pY,,, +ACt+1,T,p)+ Bt +1,T,.¢d)os,,} .
Insert values
Y=Y, +r+ /16t2+1 + 041160405
Gt2+2 =g+ (€ — 75t+1)2 + ﬁ5t2+1
to get
ST, )

=E, exp{d}Yt +¢r+At+1,T,9)+Bt+1,T,p)a,

2
+B(t+1,T, (;b)al <€t+1 — Y0, + 2B(tﬁ+d))a> (555)
> 4, P)ag
2
+ <¢(,1+y)+B(t+ LT, $)f — m> af+1}.
> L5 Py

When € ~ N(0, 1), then

1-2a
Equating terms in (5.54) and (5.55) gives the result.!?

2
Eexp{a(€+b)2}:exp{—%log(l—Za)+ ab }

12 Denote for shortness B(t + 1) = B(t + 1, T, ¢p). We have

¢2
V=——— 2B(t+1 2
“ <4B(t+ Da, ¢r+r B+ Day o,
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Figure 5.9 Moment generating functions under GARCH. We show functions E, exp{¢log S;},
where (@) S, = 1and (b) S, = 1.001. The case T — t = 1is with black, T — t = 2/is with red, and
T —t = 3 is with blue.

Figure 5.9 shows moment generating functions ¢ — E,exp{¢logS;}.
In panel (a) the current stock price is S, =1, and in panel (b) S, = 1.001.
The one period moment generating function (7 — ¢ = 1) is with black, two
period (T — ¢ = 2) is with red, and three period (T — ¢t = 3) is with blue. The
parameters a,, a;, f, and y are estimated from the daily S&P 500 daily data of
Section 2.4.1, using model (5.46).

Note that under the usual GARCH(1, 1) model

ol =ay+ otlYtz_1 + ﬁof_l
functions A and B are defined by the recursive formulas
AT, T,¢)=B(T.T,$) =0,
AW, T,p)=At+1.T,¢)+Bt+1,T,d)a,

—% log [1 - 2a,B(t + 1, T, )2, .

Thus,
) 20.2 0.2

1a—b2a - 4B(ft +Hil)al 1o ZB([; 1+ Da, @*/2= ¢ +7*B+ Day),

because
1 A S

1-2B(t+ Da, 4Bt + Do,  4B(t+ Da, 1-2B(t+ Da,

Finally,
72B(t + Da, _ y2/2 lyz

1-2B(t+ )@, 1-2BG+Da, 2
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$*/2
1-2a,B(t+1,T,¢)c>

t+1

Bt,T,p)=i¢p+pBt+1,T,¢)+

This means that A(t, T, ¢) and B(t, T, ¢») depend on the unobserved sequence
64415 --- » 07, unlike in the case of model (5.50).

5.3.3.6 Parameter Estimation
We discuss first estimation of the ARCH processes, and then extend the dis-
cussion to the GARCH processes.

Parameter Estimation for ARCH Processes Estimation of the parameters of
ARCH(p) model can be done using the method of maximum likelihood, if we
make an assumption about the distribution of innovation ¢,. When we have
observed Y, =y, ..., Y; = y;, then the likelihood function is

T
L(ag, ..., a,) zfyl,m,yp(yl’ V) H f)/tu/t,]:yH ,,,,, Y=y, (V0)-

t=p+1

Let us ignore the term f,, v, 015 -5 9) and define the conditional likelihood

T
LP(aO’ e ap) = H sz | YL—1=J’L—1~~-~Y1=}’1(yt)'

t=p+1

Let us denote the density of €, by f. : R — R. Then the conditional density of
Y, =o0,,givenY, ;,...,Y,,is

1 )
Fitn o 00 =Fein o, 0= 24 (2).

t t
where

ol =ay+ alef_1 +---+ apr_p.
The parameters are estimated by maximizing the conditional likelihood, and
we get

(8gr ... &

,) = argmaxlogL,(ag, ..., a,),

TP
LAY

where the logarithm of the conditional likelihood is

T T
1 5 Vp
logL (a, ..., a,) = =3 E logo, + E log f. <°'_z) . (5.56)

t=p+1 t=p+1
If we assume that ¢, has the standard normal distribution €, ~ N(0, 1), then

f.(x) = exp{—42/2} /\/2x and

T 2
(&, ..., &) = argmin, Z <log ol + y—';) . (5.57)
t=p+1 Gt
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Parameter Estimation for GARCH Processes In the GARCH(p, qg) model we can
use, similarly to (5.57),

A ~

@0+ & Brs e B,)

T 2
= argmin, . 5 . ) <Iog &2 + y—‘2> : (5.58)
t=r+1 Gt
where r > max{p, g}. Unlike in the ARCH(p) model, 67 is a sum of infinitely
many terms, and we need to truncate the infinite sum in order to be able to
calculate the conditional likelihood. The value 67, can be chosen as the sam-
ple variance using Y, ..., Y,, and &7 for ¢ > r + 2 can be computed using the
recursive formula. Then &7 is a function of Y7, ..., Y2 | and of the parameters.

5.3.3.7 Fitting the GARCH(1, 1) Model
We fit the GARCHY(1, 1) model for S&P 500 index and for individual stocks of
S&P 500.

S&P 500 Daily Data Figure 5.10 shows tail plots of the residuals Y, /o,, where o,
is the estimated volatility in the GARCH(1, 1) model. Panel (a) shows the left
tail plot and panel (b) the right tail plot. The black points show the residuals,
the red curves show the standard normal distribution function, and the blue
curves show the Student distributions with degrees of freedom 3, 6, and 12.
Figure 3.2 shows the corresponding plots for the S&P 500 returns. We see that
the standard normal distribution fits well the central area of the distribution of
the residuals, but the tails may be better fitted with a Student distribution.

o o
S S
s QA
=) =)
- -
o o
S | S |
S S
- -
o o
S S
- -
o | o |
- -
— —

Figure 5.10 GARCH(1,1) residuals: Tail plots. (a) Left tail plot; (b) right tail plot. The red curves
show the standard normal distribution function, and the blue curves show the Student dis-
tributions with degrees of freedom 3, 6, and 12.
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S&P 500 Components Data We compute GARCH estimates for daily S&P 500
components data, described in Section 2.4.5. Estimates are computed both
for the GARCH(1, 1) model and for the Heston—Nandi modification of the
GARCH(1, 1) model, defined in (5.46).13 Both models have parameters ay, a;,
and f. The Heston—Nandi model has the additional skewness parameter y.

Figure 5.11(a) shows a scatter plot of (log &, log &é’"), where @, are esti-
mates of a, in the GARCH(1,1) model and & are estimates of «, in the
Heston—Nandi model. The red points show the estimates for daily S&P 500
data, described in Section 2.4.1. Panel (b) shows a scatter plot of (&, &{"‘). We
see that the estimates of a” are of the order 6%4;.

Figure 5.12(a) shows a scatter plot of (B, p"™), where f are estimates of # in
the GARCH(1, 1) model, and " are estimates of # in the Heston—Nandi model.
We leave out outliers with small estimates for f. Panel (b) shows a histogram
of estimates 7 of y in the Heston—Nandi model. The red points and the lines
show the estimates for daily S&P 500 data, described in Section 2.4.1. We see
that estimates of f are close to 1, and they are more linearly related in the two
models than the estimates of @, and «,. Also, we see that the estimates of the
skewness parameter y are positive for almost all S&P 500 components, with
the median value about 2.5. This indicates that high negative returns increase
volatility more than the positive returns.
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Figure 5.11 GARCH(1,1) estimates versus Heston-Nandi estimates: a, and a,. (a) A scatter
plot of (log &, log &g"); (b) a scatter plot of (&1,&7"), where &, and &, are estimates in the

GARCH(1, 1) model, and &g” and &f" are estimates in the Heston-Nandi model.

13 Maximum likelihood estimates for GARCH(1,1) model are computed using R-package
“tseries,” and the estimates for Heston—Nandi model are computed using R-package “fOptions.”

153



154

5 Time Series Analysis

3 | S -
Yo () [
D 2
o e —
1= ]
A 21
0 | o ° -
o .
o | o
8 | o ol [k
o Y T T T T T T T T T
0.80 0.85 0.90 0.95 1.00 0 2 4 6 8
B 7

() (b)

Figure 5.12 GARCH(1,1) estimates versus Heston-Nandi estimates: § and y. (a) A scatter plot
of (f, "), where § are estimates in the GARCH(1, 1) model, and A are estimates in the
Heston-Nandi model. Panel (b) shows a histogram of estimates # of y in the Heston-Nandi
model.

5.3.4 Continuous Time Processes

The geometric Brownian motion is used to model stock prices in the
Black-Scholes model. We do not go into details about continuous time mod-
els, but we think that it is useful to review some basic facts about continuous
time models. In particular, the geometric Brownian motion appears as the
limit of a discrete time binomial model.

5.3.4.1 The Brownian Motion
Stochastic process W,, 0 <t < T, is called the standard Brownian motion, or
the standard Wiener process, if it has the following properties:

1) W, = 0 with probability one,
2) W, ~N(0,1),
3) W, — W, isindependent of W for0 <s <t < T.

The Brownian motion leads to the process
X, =ut+oW,,

where p € Risdriftand ¢ > 0is volatility. We can use the notation of stochastic
differential equations:

dX, = pdt + ocdW,.
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5.3.4.2 Diffusion Processes and It6’s Lemma
The diffusion Markov process is defined as

t t
X, =X, + / a(u, X,)du + / b(u, X,)dW,, (5.59)
0 0

where 0 <t < T, X, is a random variable, and

T T
/ la(t, X,)| dt < oo, / b*(t,X,) dt < o
0

0
with probability one; see Shiryaev (1999, p. 237). A definition of the stochastic
integrals with respect to the Brownian motion can be found in Shiryaev (1999,
p. 252).1* The definition of the process can be written with the shorthand nota-
tion of the stochastic differential equations:

dX,=a(t,X,) dt +bt,X,)dW,, 0<t<T. (5.60)
For example, a mean reverting model is defined as
X, =AMu—-X,)dt+oX,dW, 0<t<T.

Let X, be a diffusion process as in (5.60), and let Y, = F(¢, X,), where F is
continuously differentiable with respect to the first argument and two times
continuously differentiable with respect to the second argument. Furthermore,
we assume that 0F /0x > 0. Then Y, is a diffusion Markov process with

dY, = a(t, Y,)dt + B(t, Y,)dW,, (5.61)
where
alt,y) = OF(t, x) +alt. %) ()F(t x) L1 bz(t ) 02 F(t x)7
oF
B(t.y) = b(t, %) (i L

14 For a simple function
[t @) = Yy(@),(t) + Z Y, ®

the stochastic integral is defined as

I = / fls,0)dB, = ZY(w)( e = W)

where Y, (@) are random variables, 0 < s; < r;, and we denote x A ¢ = min{x, }. The stochastic inte-
gral can be defined for “square integrable” random functions f(z, @) as the “limit” of integrals 7,(f,)
of simple functions f,, “approximating” function f.
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and ¢, x, and y are related by y = F(t, x). The expression for Y, follows from Itd’s
lemma; see Shiryaev (1999, p. 263).15

5.3.4.3 The Geometric Brownian Motion
The geometric Brownian motion is the stochastic process

St=SOexp{<y—%az)t+aW,}, 0<t<T, (5.62)
where W, is the standard Brownian motion, ¢ € R, and ¢ > 0. The stochastic
differential equation of the geometric Brownian motion is

dS, = uS, dt +cS,dW,, 0<t<T. (5.63)

The fact that the solution of the stochastic differential equation in (5.63)
is given in (5.62) follows from Itd’s formula. Indeed, we consider diffusion
process X, = log(S,), X, =log$S,, a(t,X,) = u—62/2, and b(t,X,) = 6. Then
[t6’s formula implies that S, = € is a diffusion process with a(t, S,) = uS, and
p(¢,S,) =oS,.

5.3.4.4 Girsanov’s Theorem

Let (Q, 7, (F,),50, P) be afiltered probability space and let (W,, F,) ., be a Brow-
nian motion. Let (a,, F,) ., be a stochastic process with P( fot a’ds < o0) = 1, for
0 <t < T < o0. We construct a process (Z;, ), by setting

t 1 t
Zt:exp{/ ade/S——/ aszds}.
0 2 Jo

IfE exp{% /Ot alds} < oo, then EZ; = 1. We can define a probability measure
P, on (Q,F;) by

Pp(A) = E(Z;1,),

15 Let us consider the case Y, = F(X,), so that we can write Itd’s lemma as
1 2
dY,=F, dX,+ 3 F, V(t.X,) dt.
where F,_and F_ are the first and the second derivatives. Taylor expansion gives
F(t. X, + AX,) — F(t.X,) ~ FAX, + % E_(AX,?,

where AX, = X, — X,. If the changes have zero mean, E(AXt)2 = b(t,Xl)zA. Thus, in the stochas-
tic case the second-order term is not of a smaller order than the first-order term, whereas in the
deterministic case the second-order term is of a smaller order than the first-order term. The It6’s
lemma holds for the class of It6 processes. An Itd process is defined as

¢ ¢
X, =X,+ / a(u, w)du + / b(u, 0)dW,.
0 0

It6 processes are more general than diffusion processes, because in diffusion processes dependence
on @ is through X, (w); see Shiryaev (1999, p. 257).



5.4 Multivariate Time Series Models

where A € F,. Let P, = P|F; be the restriction of P to F,. Measure P is
equivalent to P,. Girsanov’s theorem states that

t
W, =W, —/ ads, (5.64)
0

defines a Brownian motion (W,, F,, P;),.7; see Shiryaev (1999, p. 269). A proof
can be found in Shiryaev (1999, Chapter VII, Section 3b).

5.4 Multivariate Time Series Models

The multivariate GARCH model is defined for vector time series {Y,} that has
d components. It is assumed that {Y,} is strictly stationary and

Y, =%, t=0,+1,+2,..., (5.65)

where Z;/ ? is the square root of a positive definite covariance matrix X,, X, is
measurable with respect to the sigma-algebra generated by Y,_,,Y,_,, ..., and
€, is a d-dimensional i.i.d. process with Ee, = 0 and Var(e,) = I, where I, is the
d X d identity matrix.

The square root of Z, can be defined by writing the eigenvalue decomposition
X, = Q,A,Q), where A, is the diagonal matrix of the eigenvalues of X, and Q,
is the orthogonal matrix whose columns are the eigenvectors of X,. Then we
define Zi/ 2 QA, AL ', where A, /2 s the diagonal matrix obtained from A, by
taking square root of each element. We can define Z:/ *alsoasa Cholesky factor
of Z,.

Multivariate GARCH (MGARCH) processes are reviewed in McNeil
et al. (2005, Section 4.6), Bauwens et al. (2006), and Silvennoinen and
Terédsvirta (2009). Below we write the models only for the case d =2,
so that Y; = (¥;,,Y;,). The multivariate GARCH models are denoted with
MGARCH(p, q). We restrict ourselves to the first-order models withp = g = 1.
The multivariate GARCH models are based on (5.65) but differ in the definition
of the recursive formula for X,.

5.4.1 MGARCH Models

First we define the VEC model and two restrictions of it: the diagonal VEC
model and the Baba—Engle—Kraft—Kroner (BEKK) model. Then we define the
constant correlation model and the dynamic conditional correlation model.

Let us denote 67, = Var(Y,,), o7, = Var(Y,,), and 6, ;, = Cov(Y,,,Y,,). The
VEC model and the diagonal VEC model were introduced in Bollerslev et al.
(1988). The VEC model assumes that

—“o+“1Y 1+‘12Yt wtasY, 1Y,

+b O't ut b, 6%+ b30, 4 1,

t—1,2
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°'t2,2 =Cot ¢ Y12—1,1 + C2Yt2—1,2 +6Y 1Y,
+d10}2—1,1 + d26152—1,2 +d30, 112,

Ci1p =€ t+¢€ Ytzfl,l t+ e Ytzf1,2 +eY, 1Y 1,
+f16t2—1,1 +f25t2—1,2 + /304112

This model has 21 parameters 4, ..., f;. Since the model has a large number of
parameters, it is useful to consider models with less parameters. The diagonal
VEC model has only nine parameters and assumes that

O't2,1 =dagta Yt2—1,1 + bo—?—l,l’ (5.66)
O't2,2 =6t Yt2—1,2 + thZ—l,Z’ (5.67)
=6 +eY, 1Y, 1, +f°'t—1,12- (5.68)

Thus, in the diagonal VEC model the components of Y, follow univariate
GARCH models. The BEKK model was introduced in Engle and Kroner
(1995). The model has 11 parameters and it can be written more easily with
the matrix notation as

%, =Gy +GY, Y G+HE, H,

where G, is a symmetric 2 X 2 matrix and G and H are 2 X 2 matrices. The
BEKK model is obtained from the VEC model by restricting the parameters.
We can express the parameters a, ..., f; of the VEC model in terms of the
parameters of the BEKK model as follows:

ay=GYy.ay = Gy, a3 = 2Gy, Gy, by = H},, by = HY)y, by = 2H, H,
¢y =Gy = Gy, €3 = 2G Gy dy = Hyy,dy = Hyy dy = 2HyyH,),
e;=G1Gy1s 8 = GGy, 65 = Gy Gy + GGy
JSi=HyHy.fy = HyHy,, f = HyHyy + HypHyy,

where we denote the elements of G by G;; and the elements of H by H;;.

The recursive formula for X, can be written by using the correlation matrix P,.
Let A, be the diagonal matrix of the standard deviations of Z,. The correlation
matrix P,, corresponding to X, is such that Z, = A,P,A,.

The constant correlation MGARCH model, introduced in Bollerslev (1990), is
such that the components of Y, follow univariate GARCH models, and the cor-
relation matrix is constant. That is, £, = A,PA, and A, = diag(o,, 0, ,), where
P is the constant correlation matrix. The constant correlation GARCH model
assumes the univariate GARCH models for the components, as in (5.66) and
(5.67), and

Py =p.

The dynamic conditional correlation MGARCH model, introduced in Engle
(2002), is such that the components of Y, follow univariate GARCH models
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and
pe=ete Y Y 1 +fo (5.69)
where ¥, = A71Y,, ey, e;, f > 0,e, +f < 1. Engle (2002) suggests to estimate
=0-¢ _f)ﬁp
where 5, =t Y_ ,,7,, is the sample covariance with ¥;, = Y;,/6;, and
Y, =Y,,/6;, We do not typically have —1 < 5, < 1, and thus the conditional
correlation is estimated from

Py
9
01102

Oy

2 2
whereat —eo+elY 11+ftllarld0 _e0+e1Y 1z+f5:—1,2'

5.4.2 Covariance in MGARCH Models

The recursive equation (5.68) in the stationary diagonal VEC model implies that

Or12= 77 f+elz.f Y, k1 Yi ko

This follows similarly as in the case of GARCH(1, 1) model (see (5.43) and
(5.44)). The recursive equation (5.69) in the stationary dynamic conditional
correlation GARCH model implies similarly that

fk
t—k,1 t k2>

where ¥, = (Y:,l/o't,p :,2/Ut,2)~

Given the observations Y} = (Y} 1, Y ,), ..., Y7 = (Y7, Y7 ,), we estimate the
parameters, similarly to GARCH(p, q) estimation in (5.58), by maximizing the
conditional modified likelihood,

2

log, L,(ag, ay, ... e1,f) = —= Z log,|Z,| + Z log f. < $-12y )

t r+1 t=r+1

where r > 1, f, is the density of the standard normal bivariate distribution
N(0,1,), and £, is the truncated covariance, with elements 67 , 62,, 5, 1,, where

Ot12 = +el Zf Y, k1 Yk 2

and 6 o-t » 62, are defined 51m11ar1y
Given the data Y, ..., Y, ;, the MGARCHY(1, 1) estimator for the conditional
covariance is
-1

6t,12_1 f"‘elZszkn t—k-1,2> (5.70)
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where the parameter estimators &,, &,, and f are are calculated with the
maximum likelihood method.

5.5 Time Series Stylized Facts

Time series models of financial time series should be such that they are able to
capture stylized facts. We describe the stylized facts mainly using the daily S&P
500 index data, described in Section 2.4.1. Stylized facts of financial time series
are studied by Cont (2001) and Bouchaud (2002).

1)

Rt+1

Returns are uncorrelated.

Figure 5.5(a) shows the sample autocorrelation function for the S&P 500
returns. Sample autocorrelations are small, although they are not completely
inside the 95% confidence band.

When the time scale is shorter than tens of minutes, there can be consider-
able correlation; see Cont (2001) and Bouchaud (2002).

Absolute returns are correlated.

Figure 5.5(b) shows the sample autocorrelation function for the absolute
S&P 500 returns. The sample autocorrelation goes inside the 95% confidence
band after the lag of 500 days, but does not stay inside the band.

The decay of the autocorrelation of absolute returns has roughly a power
law with an exponent in range [0.2, 0.4]; see Cont (2001).

Since absolute returns are correlated, we can claim that the time series
of returns does not consist of independent observations, although they
are uncorrelated. The autocorrelation can also be seen in scatter plots.
Figure 5.13 shows scatter plots of absolute returns. Panel (a) shows the
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Figure 5.13 S&P 500 scatter plots of absolute returns. (a) Scatter plot of points
(log|R,].log IR, 1); (b) scatter plot of points (log |R,|,10g R, 400 )-
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Figure 5.14 Simulated GARCH(1, 1) returns and S&P 500 returns. (a) A time series of simulated
returns from a GARCH(1, 1) model; (b) the time series of S&P 500 returns.

scatter plot of points (log |R,|,log|R,,;|), t =1,..., T — 1. Panel (b) shows
the scatter plot of points (log |R,|,1og |R, 00D, t = 1,..., T — 400.
Volatility is clustered.

There are localized outbursts of volatility. The bursts of high volatility last
for some time, and then the volatility returns to more normal levels.

Figure 5.14 shows simulated GARCH(1,1) returns and real S&P 500
returns. Panel (a) shows a time series of returns that are simulated from
the GARCH(1, 1) model with parameters being equal to the estimates from
S&P 500 daily data. The first return is simulated from the distribution
NQ@©,a,/(1 — &, — £)). Panel (b) shows the time series of logarithmic S&P
500 returns. S&P 500 data is described in Section 2.4.1. Figure 3.29 shows
the corresponding simulated i.i.d. Gaussian returns.

The decay of volatility correlation is slow. The volatility correlation can be
defined as the autocorrelation of squared returns, and the autocorrelation
of the squared returns shows similar behavior as the autocorrelation of the
absolute returns. Volatility displays a positive autocorrelation over several
days; see Cont (2001) and Bouchaud (2002).

Extreme returns appear in clusters.

Figure 5.15 shows the 10 largest and the 10 smallest returns of S&P 500. The
largest returns are shown in blue and the smallest returns are shown in red.
We can see that the biggest losses and the biggest gains occur at the same
dates.

Leverage effect.

Markets become more active after a price drop; past price changes and
future volatilities are negatively correlated. This implies a negative skew to
the distribution of the price changes. The leverage effect has been taken
into account in the VGARCH model in Engle and Ng (1993) and in the

161



162

5 Time Series Analysis

-0.10 0.00 0.10

-0.20

1950 1960 1970 1980 1990 2000 2010

Figure 5.15 S&P 500 returns. The 10 smallest returns are shown in red and the 10 largest
returns are shown in green.

7)

VGARCH related option pricing in Heston and Nandi (2000). We study
asymmetric GARCH models in Section 5.3.3.

Figures 5.11 and 5.12 study parameter fitting in the basic GARCH(1,1)
model and in an asymmetric GARCH(L, 1). Figure 5.12(b) shows that the
skewness parameter tends to be positive for S&P 500 components.
Conditional heavy tails.

Even after correcting the returns for volatility clustering, the residual time
series still has heavy tails. The residuals may be calculated, for example, via
GARCH-type models.

Figure 5.10 shows the tails of the residuals when GARCH(1, 1) is fitted to
S&P 500 daily data.

The kurtosis has slow decay.

This means that the autocorrelation of the fourth power of the returns has
slow decay; see Bouchaud (2002).

Volatility and volume are correlated.

Volatility and the volume of the activity have long-ranged correlations; see
Cont (2001) and Bouchaud (2002).
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Prediction

We concentrate on prediction with nonparametric smoothing. Nonparametric
smoothing can be divided into time and state space smoothing. Time space
smoothing means that we use moving averages and state space smoothing
means that we use kernel regression with state variables (external explanatory
variables). The prediction formulas of ARMA and GARCH processes are
related to time and state space smoothing. These prediction formulas are given
in Section 5.3, where time series models are considered. Section 5.2 considers
the combination of time and state space smoothing with parametric models.

Our emphasis will be more on the economic significance than on the statisti-
cal significance. We say that a prediction method is economically significant if it
can produce portfolios with significantly higher Sharpe ratios than the Sharpe
ratios of the portfolios that are constructed without prediction methods. How-
ever, looking at the sum of squared prediction errors can give insights into the
underlying reasons for the economic significance.

The classical theory of efficient markets says that the asset returns are unpre-
dictable. If the asset returns were predictable, investors would buy the assets
whose predicted returns are high, and eventually this buying would increase
the prices and distort the predicted returns. However, it is possible that risk
aversion of investors makes the asset returns predictable. For example, in a
recession the expected returns could be high but investors are not able to fully
utilize the high expected returns, because they have to worry about bankruptcy
or unemployment. This could keep the expected returns high by preventing the
extensive buying of risky assets. Also, some investment methods require a level
of sophistication that is not available to many investors. For example, utiliz-
ing momentum effect or volatility trading are not available to many investors,
which can keep the expected returns high for some well-known investment
strategies.

Section 6.1 studies methods of prediction. Section 6.2 considers forecast eval-
uation. Section 6.3 reviews some typical predictive variables to be used in asset
return prediction. Section 6.4 studies the prediction of S&P 500 and 10-year
bond returns.

Nonparametric Finance, First Edition. Jussi Klemela.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

163



164

6 Prediction

6.1 Methods of Prediction

Time space smoothing is covered in Section 6.1.1 and state space smoothing is
covered in Section 6.1.2, where we also explain linear prediction under covari-
ance stationarity.

6.1.1 Moving Average Predictors

We give the prediction formula of MA(1) process (moving average process of
order one) in (5.21). This prediction formula is an exponentially weighted mov-
ing average of the previous values of the time series. Now we give a general
definition of a moving average.

6.1.1.1 One-Sided Moving Average
Let us observe the values Y7, ..., Y, of a time series. We define the moving aver-
age prediction of Y, forn > 1 as

t

()_T Z

i=t—

where 7 =0,1,2,.... More generally, a one-sided moving average can be
defined as
t
fo =Y pY. 6.1)
i=1

where the weights satisfy

t
. Spt, Zpl =1. (6.2)
i=1

To get a flexible class of moving averages we use a kernel function
K :[0,00) — R and smoothing parameter # > 0. We can take, for example,
Kx) = exp(—x)l[oyoo)(x).1 The one-sided moving average is

t
fo =Y poy, (6.3)
i=1
where

K@t —-1i)/h)
pi(t) = t—/ (6.4)
Zj:l I<((t _])/h)
Note that the prediction step # > 1 does not show up in the definition
of the one-sided moving average. The prediction step # can affect the

1 Note that Gijbels et al. (1999) use half-kernels, which are kernel functions that are zero in their
positive arguments, like K(x) = exp(x)] . o)
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choice of the smoothing parameter 4. It would be natural to choose a large
smoothing parameter # when the prediction step # is large. Then the pre-
dictor with a long prediction horizon would be close to the arithmetic mean

X Y

6.1.1.2 Exponential Moving Average

The exponential moving average is a one-sided moving average obtained by
taking K(x) = exp(—x) [}y ,)(¥) and 1 = —1/logy, where 0 < y < 1. That is, the
exponential moving average is defined as

t
fo =Y roy, (6.5)
i=1

exp((i — )/h)
> exp{G—t)/h}

where /1 > 0 is the smoothing parameter. Now the estimator (6.3) is equal to?

<t)— —L Z iy, =

We get a shghtly different exponential moving average by making the recur-
sive definition

ma(t) = (1 —y)Y, + yma(t — 1), (6.8)

P = (6.6)

__yyt PRR A 6.7)

i=0

where 0 < y < 1. This leads to

ma(t) = (1 —y)ny Y,

when the moving average is calculated from Y, ..., ¥}, and we choose the initial
value ma(1) = (1 — y)Y;. With infinite past the moving average is

ma() = (1-7) ), r'Y,.
i=0

Figure 6.1 compares the risk-free rate to the exponentially weighted mov-
ing averages of monthly returns of (a) S&P 500 monthly gross returns and
(b) US Treasury 10-year bond monthly gross returns. The data is described
in Section 2.4.3. The black time series shows the 1-month T-bill rate as a
gross return. The moving averages of S&P 500 returns have s = 30 (red) and
h = 1000 (blue). The moving averages of 10-year bond returns have 4 = 30
(red) and / = 60 (blue). In the case of 10-year bond, we can note that the

2 We have that y = exp(—1/k)and exp (—(T — i)/h) = yT~. Using the geometric series summation

formula Z/TOI ¥=0-r")/(1-r),0<r<1,wehave ZIT:I yIHi=1-yHa-y.
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Figure 6.1 Risk-free rate and moving averages. (a) Moving averages of S&P 500 monthly gross
returns with small h (red) and large h (blue); (b) moving averages of 10-year bond monthly
gross returns with small h (red) and large h (blue). The black time series shows the 1-month
T-bill rate.

moving averages are almost always lower than the risk-free rate until about
1980, and after that the moving averages are almost always higher than the
risk-free rate. The moving averages of S&P 500 returns show a somewhat
similar pattern but less clearly. Note that the moving average with # = 1000 is
almost equal to the sequentially calculated sample mean.

6.1.2 State Space Predictors

A state space predictor is a predictor that is obtained from a regression func-
tion estimator. A regression function f : R? — R is defined as the conditional
expectation

S =EZ|X =x%),

where Z € R is the response variable and X € R? is the explanatory variable.
A regression function estimator is a function f : R? — R, which is computed
from regression data (X;, Z,), ..., (X, Z,), consisting of identically distributed
observations.

Let us observe vector time series

(X17 Yl)s LR (Xp Y}),

where Y, € R, and X; € R? contains information that is available at time i. For
example, the state variable X, can be a sequence of the previous observations
of Y}, so that

Xl’ = (}/p ey }/i—d+l)’ (6.9)

where d > 1 and for d > 2 we assume to have Y, ..., Y,_, available.
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We use this data to make a prediction of Y;,,, where > 1 is the prediction
horizon. We construct regression data

X1, Yiay)s oo s KXy Yo (6.10)

_}1’
Letusdenoten =T —nand Z, = Y,,,, so that the regression data in (6.10) can
be written as

(Xl’Zl)’ 7(XnaZn)’ (6.11)

where X, € R? are observations from d explanatory variables and Z, € R are
observations from the response variable. If f is a regression function estimator,
we predict the value Y, by

F&X, 6.12)

using the value X, of the state variable observed at time ¢.
We define the linear least squares regression function estimator and the ker-
nel regression estimator.

6.1.2.1 Linear Regression
Linear least squares regression function estimator is

fx)y=a+f'x, xeR%

where @ € Rand § € R are obtained as the minimizers of

Zn: (Z,—a—pX)

i=1

Least Squares Solution The solution can be written as

@=Z-pX, (6.13)
and
n -1,
B = [Z(Xi - X)X, - X)’] Y X -X)Z -2y, (6.14)
=1 i=1
where
X = l Xl" Z = l Zi'
= i3

In the case d = 1, we have

O "X —-X\NZ. -7
4=2-jx, j= 2K RE&-2)

2;1:1 (Xt - )_()2

There are more formulas for linear regression in Section 10.4.1.

(6.15)
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Linear Prediction Under Covariance Stationarity Let us discuss the idea of autore-
gression in (6.9) more carefully. Let {Y;} be a covariance stationary time series
with EY; = 0 and covariance function y (k) = EY;Y,,,, where k € Z. We want to

find the best linear prediction of Y,,, when data Y3, ..., Y, is available, where
n > listhe prediction horizon. We define the best linear predictionof Y, tobe
BY 4+ BiY s (6.16)
where1 <d <t ,and f;, ..., f; € R minimize
Epy = BYi = = Ba¥isan)’ (6.17)

Letusdenote X = (Y,,..., Y, 4,.,), Y =Y, ,and f = (f,, ..., ;). Then we can
write (6.17) in matrix notation as

E(Y - ' X)>.
A minimizer satisfies E(XX")f = E (XY). If E(XX’) is invertible, then a mini-
mizer satisfies

p = [EXXH]EXY). (6.18)
We have that

EXY)= (@), ....y(n+d—-1))
and matrix E (XX') is the d X d matrix whose elements are

(yG=Plijer,

First, we can implement the predictor using the usual least squares estimator,
which replaces the expectations in (6.18) with the sample means, similarly as in
(6.14). Second, we can implement the predictor by estimating the autocovari-

ance function y. Several parametric models for y can be used. Let ﬁl, ey ﬁd be
the estimates of the coefficients f, ..., ;. The predictor can be written as
Yt+n =‘BA1Yt+"'+ﬁAth—d+1- (6.19)

Formula (6.18) involves the inverse of d X d matrix. This matrix is large when
d is big. We could take d = t. Brockwell and Davis (1991, Section 5.2) define
recursive algorithms for computing ¥,,, in (6.16) which avoid the computation
of the inverse of E (XX"). These recursive algorithms are the Durbin—Levinson
algorithm and the innovations algorithm. Brockwell and Davis (1991, Propo-
sition 5.1.1) states that matrix EXX’ is nonsingular for every d, if y(0) > 0 and
y(k) > 0as k — oo.

6.1.2.2 Kernel Regression
Let us define kernel regression estimator when regression data is given in (6.11)
as (X;,2Z,), ..., (X,, Z,). Kernel regression estimator is

f@ =Y p®Zz, (6.20)
i=1
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where the weights are
_ K(@=2)/W
Y K(x=2Z)/hy’

K :R? - Ris a kernel function and / > 0 is the smoothing parameter.

The weights p,(x) are normalized to sum to one, and when K > 0, then the
weights satisfy p;(x) > 0. The smoothing parameter may be chosen using the
normal reference rule in (3.44):

= ()t
! d+2 v

fori=1,...,d, where 6, is the sample standard deviation for the ith variable.

The idea behind the kernel regression estimator is that the weight p,(x)
is large for those Z; for which X; is close to x. Remember that the pre-
dictor was defined in (6.12) as f (X,), where X, is the current value of the
predictive variable. This means that we search those time points i where
the state X; is similar to the current state X,, and give a large weight to the
corresponding Z,.

Figure 6.2 illustrates the idea of searching for time points whose state is sim-
ilar to the current state. The predictive variable X, is the dividend price ratio,
defined in (6.31). The green bands indicate the time periods where the divi-
dend yield has been close to the last value of the dividend price ratio. That is,
those times where the dividend price ratio X, is in the range [X, — &, X, + K] are
indicated, where X, is the last value of the dividend price ratio. The black hor-
izontal line shows the value X, and the red horizontal lines show the interval
[X, — h, X, + h]. Panel (a) shows the case # = 0.003 and panel (b) shows the case
h =0.001.

pi(x) (6.21)
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Figure 6.2 Looking for times with similar states. The time periods similar to the current state
in terms of the dividend price ratio are shown with green. (a) h = 0.003; (b) h = 0.001.
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6.2 Forecast Evaluation

The sum of squared prediction errors can be used to evaluate the performance
of a predictor and to compare the performance of two predictors. Often the
question arises whether there exist predictability. For example, is it possible
to predict stock returns? To answer the question positively, we need to con-
struct a predictor that performs better than a simple benchmark, constructed
under the assumption of no predictability. The benchmark is usually the sample
average. We would like to test whether an observed smaller prediction error is
statistically significant.

6.2.1 The Sum of Squared Prediction Errors

First we define the out-of-sample sum of squared prediction errors and the
in-sample sum of squared prediction errors. Then we discuss visual tools to
study sums of squared prediction errors.

6.2.1.1 Out-of-Sample Sum of Squares
An out-of-sample sum of squared prediction errors can be defined as recursive,
fixed, or rolling.

The Recursive Out-of-Sample Sum of Squares The sequential (or recursive)
out-of-sample sum of squares of prediction errors is defined as
T—-n

SSPE(f) = ) (Y, = (X)), (6.22)

t=t,

where 1 < t, < T — 7,5 > 1is the prediction horizon, and f, is estimated using
the data (X;, Y )i=1,....t —n Wecan normalize the sum of squared predic-
tion errors to get a coefficient of determination. A coefficient of determination
compares the performance of a predictor to the performance of a sample mean.
The sequential out-of-sample coefficient of determination is defined as

RP=1- —SSPE(J_( ),
SSPE(Y)

T—-n
SSPE(Y) = ) (¥, - V)%, (6.23)

t=t,

where ¥, = t1 Y'_, Y, is the arithmetic mean using the ¢ first observations.

When R? > 0, then the regression forecast is diagnosed to be more accurate
than the historical average. The inequality

R*<0
is equivalent to the inequality

SSPE(Y) < SSPE(f).
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The Fixed Out-of-Sample Sum of Squares In the definition (6.22) of the sum of
squared prediction errors the estimate f’t(Xt) is updated constantly. A compu-
tationally less expensive sum of squared prediction errors can be defined by
dividing the sample into an estimation set and into a test set. The predictor is
constructed using the estimation set and the sum of squared prediction errors
is computed using the test set:

T-n
SSPEtest(f) = z (Yt+n _ﬁo(Xt))27 (624)

t=t,

where ﬁo is computed using the estimation data (X, Y,,,), £ = 1,..., £ — 1. The
test data is (X, Y,,,), t =g, ..., T — 1.

The Rolling Out-of-Sample Sum of Squares The third version of the out-of-sample
sum of squared prediction errors is obtained when the predictor is updated
at every time point, but the predictor uses always the same number of past
observations. The predictor uses windows of observations that are rolled over
the available data. Let predictor f’s’t be constructed using the data (X, Y},,),
i=s,...,t. Define

T—-n
SSPE,y(f) = D" (Y, = frry i1 (XD (6.25)

t=t,

Now the sum of squared prediction errors is computed for the estimator that
is constructed using exactly ¢, observations at every time point.

The rolling out-of-sample sum of squared prediction errors can be used to
study whether a prediction method is better than another prediction method
uniformly over all sample sizes . It is possible that a prediction method is bet-
ter than another method for small sample sizes, and worse for large sample
sizes.

6.2.1.2 In-Sample Sum of Squares

We can distinguish between the in-sample and the out-of-sample sum of
squared prediction errors. The in-sample sum of squares of prediction errors
is defined as

T-n
SSPE,, (/) = D\ (Y, —Fr (X)),
t=1
WherefT is computed using the complete data (X,, Y,,,), t = 1,..., T — . Thus,

the predictor f;(X,) is constructed using the same data as is used to measure
the accuracy of the predictor. The in-sample sum of squared prediction errors is
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sometimes used, although it could give a too optimistic view of the performance
of a predictor.?

6.2.1.3 Visual Diagnostics
We define time series

D, = SSPE(f), — SSPE(Y),, t=t,...T —1n, (6.26)

where

t t
SSPE(f), = ) (Yiy, —fi(X)%  SSPE(Y), = ). (¥, — V.
i=t, i=t,

Time series {D,} reveals useful information about the time periods where the
prediction is accurate and about the time periods where it is inaccurate. This
graphical diagnostics has been applied in Goyal and Welch (2003, 2008).

If D, — D, < 0, then predictor fl performs better than the sequential sample
average Y; over time period [, t], where ¢ > u.If D, — D, > 0, then the sequen-
tial average is better over time period [, ¢]. Indeed,

t t
D,=D,= Y iy =fX)P = Y (Y, - T

i=u+1 i=u+1

wheret > u. Thus, we search for time periods [«, £] which are such that D, < D,
to find periods of good prediction performance.

6.2.2 Testing the Prediction Accuracy

We are interested in testing the null hypothesis that the sample average is a bet-
ter predictor than a more sophisticated predictor . Thus, the null hypothesis
is that the expected sum of squared prediction errors for the sample average is
less than the expected sum of squared prediction errors for predictor f‘ :

H, : E(SSPE(Y)) < E(SSPE(f)), (6.27)
H, : E(SSPE(Y)) > E(SSPE(f)).

3 In regression analysis the in-sample sum of squares of prediction errors is sometimes called
the sum of the squared residuals. The number SS,, = Z;T:Y’ Yy — Y)? is called the total sum of
squares. In linear regression we can write R?> = SS,eg /SS,,;» where S, = ZtT;l" ( f X, - ¥)? is the
explained sum of squares. Number R? takes values in [0, 1] when the intercept is included in the
model, and it measures how well the linear model fits the data. In linear regression with a single
explanatory variable R? is equal to the square of the correlation coefficient between the observations
Yo and the fitted values f (X).
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6.2.2.1 Diebold-Mariano Test
The test statistic of Diebold and Mariano (1995) can be used in testing when
SSPE,,,(f) is defined in (6.24). Let us denote the regression forecast of Y, by

Y,,, and the forecast based on historical average by Y. Let us denote

t+n
€ = At+h Y €=Y-Y,, (6.28)

We get the time series of loss differentials

_ 22
d,=¢€; —e¢;.

The null hypothesis and the alternative hypothesis are
Hy,:Ed, <0, H, :Ed,>0. (6.29)

Since we are using SSPE,,,(f), defined in (6.24), then we can assume that d,
are identically distributed, and then the null and the alternative hypothesis are
equivalent to the hypotheses in (6.27).

We apply the central limit theorem for dependent random variables, as stated
in (3.96). Under the null hypothesis and under the assumptions of the central
limit theorem, we have

T—-n
d
(T—=n—t,+1)72 ) d,— N, 6",

t=t,

as T — oo, where

o= Y y(k), y(k)=Edyd,.
k=—o0
We can use the estimate
T-n
=70 =(T—n—ty+ 17" Y @, —ay,
t=t,
where d = (T —n—t, + 1) Zt:;’ d,. We can also use an estimate that takes
the serial correlation into account:
T-1
2= Y whipk,

k=—(T-1)

where w(k) = max{0,1 —k/h} and % > 0 is a suitable smoothing parameter.
Let us choose the test statistics

T
D=6 T-ty+ 1)) d,.

t=t,
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When we observe D =d,,, then the p-value is calculated by P(D > d,,,) =
1-®(d,,), where @ is the distribution function of the standard normal
distribution.*

The asymptotics of the Diebold—Mariano test statistic is not as straightfor-
ward when SSPE(f) is the recursive sum of squared prediction errors as in
(6.22), because then the assumptions of the central limit theorem do not hold;
see West (1996). In fact, in the sequential case d, are not identically distributed
because the predictor is constructed using at each step one more observation
than in the previous step.

West (2006) reviews the alternative asymptotics. We have considered the
case where £, is fixed, and T — oo. We can consider the case where both
t, » o and T — oo. Then we have to consider separately the cases where
(T —ty)/t, — 0 and (T —t,)/t, = o0. When (T —¢t;)/t, — 0, then the esti-
mation error involved in the construction of the predictors is negligible, and
we can typically replace the predictor ftu with its limit. The asymptotics of
the recursive sum of squared prediction errors in (6.22) can be derived by
separating the estimation error involved in the construction of the predictors
and the estimation error involved in estimating the performance of the limit of
the predictor.

6.2.2.2 Tests Using Sample Correlation and Covariance

Let X, = ¢, +¢, and Z, = ¢, — e,, where ¢, and e, are defined in (6.28). Then,
Cov(X,,Z,) = Ee? — Ee?, when E¢, = Ee, = 0. Thus, the hypothesis in (6.29) are
equivalent to the hypotheses

Hy:Cov(X,.Z,) <0, H,:Cov(X,,Z,) >0,

where the covariance can also be replaced by the correlation. This was noted
by Granger and Newbold (1977). We can derive the distribution, or the

4 Diebold and Mariano (1995) note that we could also test the hypothesis where the median
replaces the expectation:

H, : median(d,) <0, H, : median(d,) > 0.

In this case, we can use the sign test or the Wilcoxon’s signed-rank test; see Lehmann (1975).
Diebold and Mariano (1995) note also that when ¢, and e, are zero mean, Gaussian, serially uncor-
related, and contemporaneously uncorrelated, then

T-n 2

t=t, €t

T=n
t=t, “t

Y =

~ F(n,n),

where F(n,n) is the F-distribution with degrees of freedom n =T —#n —t, + 1. We can use test
statistics Y to test the null hypothesis H, : Ee?/Ee? < 1. Large values of Y lead to the rejection of
the null hypothesis.
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asymptotic distribution, of the sample covariance or the sample correlation
coefficient under various assumption. For example, when ¢, and e, are zero
mean, Gaussian, and serially uncorrelated, then

prZ
V(1= 3%) /=1

where j,, is the sample correlation coefficient, # is the sample size used in the
calculation of the sample correlation coefficient, and ¢,_, is the ¢-distribution
with # — 1 degrees of freedom; see Hogg and Craig (1978, p. 300). Meese and
Rogoff (1988) use the sample covariance as a test statistics and apply the asymp-
totic distribution of the sample covariance, as given in Priestley (1981, p. 692).
The asymptotic distribution of the sample correlation is given in Brockwell and
Davis (1991).

~ tn—l’

6.3 Predictive Variables

We describe macroeconomic indicators that can be used to predict asset
returns. The indicators are risk indicators (default spreads, credit spreads, and
volatility indexes), interest rate variables (term spreads and real yield), stock
market indicators (dividend price ratio, dividend yield, earnings, and valuation
metrics), and sentiment indicators.”

6.3.1 RiskIndicators

Risk indicators include default spreads, credit spreads, and volatility indexes.
The global financial stress index (GFSI), introduced by BofA Merrill Lynch, is
an example of a further risk indicator.

6.3.1.1 Default Spread
The default spread is defined as the difference

BAA, — AAA,,

where BAA, is the yield of the BAA rated companies and AAA, is the yield of
the AAA rated companies.

Figure 6.3 shows (a) the monthly time series of default spread and (b) the
differenced time series.®

5 I'wish to thank Kari Vatanen for helpful discussions concerning predictive variables.
6 We use the data provided by Amit Goyal in the web page http://www.hec.unil.ch/agoyal/.
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Figure 6.3 Default spread. (a) Time series of the default spread; (b) time series of the
differences.
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Figure 6.4 TED spread. (a) Time series of TED spread; (b) time series of the differences.

6.3.1.2 Credit Spreads
The short term financing expenses of banks are captured by the Treasury bill
Eurodollar difference (TED) spread. TED spread is defined as the difference
between the 3-month US Libor rate and the 3-month US T-bill rate.

Figure 6.4 shows (a) the time series of TED spread and (b) the differenced
time series of TED spread.”

The Libor-OIS spread is the difference between the 3-month Libor rate and
the OIS rate. OIS is an acronym for the overnight index swap rate, which shows
market expectations of future interest rates set by central banks.

7 The data is obtained from the St. Louis Fred site. The ticker symbol for the 3-month US Libor
rate is BBUSD3M and the ticker symbol for the 3-month US T-bill rate is FRTBW3M.
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Figure 6.5 VIXindex. (a) Time series of the VIX index; (b) time series of the differences.

6.3.1.3 Volatility Indexes

Chicago board of options exchange (CBOE) created volatility index (VIX)
in 1993. The original VIX was constructed using the implied volatilities of
eight different S&P 100 (OEX) option series so that, at any given time, it
represented the implied volatility of a hypothetical at-the-money S&P 100
option with 30 days to expiration. The historical prices exist from 1986. Since
only at-the-money options were used, no information about the volatility skew
was incorporated.

The new VIX is based on S&P 500 index option prices and it incorporates
information from the volatility skew by using a wider range of strike prices
rather than just at-the-money series. See (14.66) for the formula of the new
CBOE VIX index. Other volatility indexes include the JPMorgan Forex (FX)
volatility index.

Figure 6.5 shows (a) the time series of VIX index from CBOE and (b) the
differenced time series of VIX index.

6.3.2 Interest Rate Variables

In this section, we describe the term spread and the real yield.

6.3.2.1 Term Spread

A term spread is the difference between the yield of a longer maturity bond and

a shorter maturity bond. The yield of a zero-coupon bond is defined in (2.3) and
in Section 18.1.2. The term spread can be defined as

Tbond, — Thill,, (6.30)

where Tbond, is the yield of the US Treasury 10-year and Tbill, is the yield of
the US Treasury 1-month bill.
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Figure 6.6 Termspread.(a) The time series of term spread; (b) the time series of the differences
of term spread.

Figure 6.6 shows in panel (a) the monthly time series of the term spread and
in panel (b) the differences of the term spread.®

The term spread could also be the difference between the yield of the 10-year
bond and the yield of the 2-year bond, or the difference between the yield of
the 10-year bond and the 3-month bond.

6.3.2.2 Real Yield
The real yield is the yield corrected with the expected inflation. The real yield
can be obtained from the US Government 10-year TIPS yield data, available
since about 1997.

6.3.3 Stock Market Indicators

Stock market indicators include the dividend price ratio, the dividend yield,
earnings, valuation, and relative valuation.

6.3.3.1 Dividend Price Ratio and Dividend Yield
The dividend price ratio of the S&P 500 index is defined as

DP, = —, (6.31)

where D, is the dollar value of the dividends paid by the S&P 500 companies
during the last 12 months and S, is the value of the S&P 500 index.’

8 We use the data provided by Amit Goyal in the web page http://www.hec.unil.ch/agoyal/. The
bond yield data can be obtained from the St. Louis Fred site with the ticker GS10. The St. Louis
yields have range about 1.53-15.32, so they have to be divided by 100 to get the yields in percent-
ages.

9 This terminology is used by Goyal and Welch (2003), who define the yearly dividend price ratio as
DP, = D,/S,, where D, and S, are values at the end of the year. Note that sometimes the logarithmic
ratio log DP, is used.
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Figure 6.7 Dividend price ratio. (a) Time series of the dividend price ratio; (b) time series of the
differences.

Figure 6.7 shows (a) the time series of the dividend price ratio and (b) the
time series of differences.!”
The dividend yield is defined as
Dt
DY, = —,
S
where D, is the total amount of dividends paid by the companies of the index
during the year and S,_, is the value of the index at the beginning of the year.
The dividend price ratio and the dividend yield have lost importance as stock
market indicators, because many companies use stock buy backs instead of
paying dividends.

6.3.3.2 Valuation in Stock Markets
Earnings yield is earnings per share divided by the share price. Usually earnings
is taken to be the net income for the most recent 12-month period.

Earnings yield is reciprocal to the price earnings ratio (P/E ratio). The trailing
P/E is the price divided by the trailing 12 month earnings per share.

The price book ratio (P/B ratio) is the stock price divided by the book value
per share. The book value is taken to be the value of total assets minus the value
of intangible assets and liabilities.

6.3.3.3 Relative Valuation

We can compare prices of the large capital stocks versus small capital stocks.
This can be done by comparing S&P 500 and Russell 2000, because S&P 500
contains large capital stocks and Russell 2000 contains small capital stocks.

10 We use the data provided by Amit Goyal in the web page http://www.hec.unil.ch/agoyal/.
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Figure 6.8 Purchasing managers index. (a) Time series of the PMI; (b) time series of the
differences.

6.3.4 Sentiment Indicators

Sentiment indicators include purchasing managers indexes (PMI), and investor
and consumer sentiment indexes.

6.3.4.1 Purchasing Managers Index
PMI are obtained by surveying purchasing managers of private sector compa-
nies. There are several regional versions of PMI.

Figure 6.8 shows the time series of the US purchasing managers index and
the time series of differences.!!

6.3.4.2 Investor and Consumer Sentiment

The investor sentiment can be measured with the Sentix index, which is avail-
able from http://www.sentix.de. Consumer sentiment indexes include Confer-
ence Board Consumer Confidence and University of Michigan Survey of Con-
sumer Confidence.

6.3.5 Technical Indicators

We define technical indicators for a time series S, ..., S, of (monthly) closing
prices.

11 The data is obtained from the Institute for Supply Management (ISM) web page http://www
.ism.ws/ISMReport/content.cfm?ItemNumber=10752, but the page is not available anymore. The
purchasing managers index is a weighted average of five sub-indexes: production level, new orders
from customers, whether supplier deliveries are coming faster or slower, inventories, and employ-
ment level. The weights of the sub-indexes are 0.25, 0.3, 0.15, 0.1, and 0.2. The managers respond to
the survey either with “better,” “same,” or “worse.” The index values can be from 0 to 100. The index
values are obtained by taking the percentage of responses that reported better conditions than the
previous month and adding the half of the percentage of responses that reported no change in
conditions.
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Many of the technical indicators are based on moving averages, and the mov-
ing averages themselves can be used as technical indicators. Moving averages
are defined in Section 6.1.1. In statistical finance moving averages are typically
computed from returns or squared returns, but in technical analysis moving
averages of stock prices are used. The basic moving average is

k—i
1
M,k =7 > S
i=0

Often k = 3 or k = 6 months. The exponentially weighted moving average is
defined as

E() =2 (1= A)S, ;= S, + (1 - DE, (k).

i=0

where 4 =2/(k + 1).
The trend is defined as

S

M,(12)

log

Figure 6.9 shows the time series of S&P 500 trend and the time series of
differences.
Moving average convergence divergence (MACD) is defined as

Ct(kl’kZ) = Mt(kl) - M;(kz)’

where typically k; = 26 and k, = 12. This is a difference of two moving averages,
where we subtract from a slow period a fast period.

1
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-0.4
1

T T T T T T
1980 2000 1960 1980 2000

(a) (b)

T
1960

Figure 6.9 S&P 500 trend. (a) Time series of the S&P 500 trend; (b) time series of the
differences.
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MACD signal line is defined as

k—i
1
Dk, ki ky) = D Coilky k).
i=0

This is a moving average of MACD. Typically k = 9. A buy signal is generated
when MACD crosses above the MACD signal line.
MACD histogram is defined as

C,(ky,ky) — D,(k, ky, k).

This is the difference between the MACD line and the MACD signal line. A buy
signal is generated when the MACD histogram crosses the zero line.
Stochastic oscillator is defined as
S;—min_y ;1S

FAST(0 = MaX;_g -1Se—; —MiNig_ 4 1Se;
Typically k = 5. We can calculate the moving average of the stochastic oscil-
lator. A buy signal is generated when any oscillator crosses below a threshold
(say 20) and then crosses above the same threshold. In the minimum we can
use the daily lows, and in the maximum we can use the daily highs, instead of
the closing prices,

Relative strength index is defined as

kLyktgw \T
RSL(k)=100x|1—( 1+ # |
kT, s

where

S”P — St’ lf St > St—l’ Sdawn - St’ lf St S St—l’
¢ 0, otherwise, ¢ 0, otherwise.

Typically, k =9, k = 14, or k = 25. A buy signal is generated when the rela-
tive strength index crosses below a lower band of 30, for example, since this
situation is characterized as oversold.

Money flow index MFI, (k) is similar to the relative strength index RSI,(k),
but now volume weighted price is used, instead of the price. Define S;y P =(SI+
S! +8,)/3 to be the typical price, where S! is the daily low and S” is the daily
high. Let MF, = Vol, -Sﬁyp be the strength of the money flow. Money flow
index MFI, (k) is the moving average of MF,. Typically k = 15. When MFI, (k)
crosses below threshold 30, for example, then the market is oversold, and one
should buy.

6.4 Asset Return Prediction

We study the prediction of S&P 500 returns and US Treasury 10-year bond
returns using monthly data, described in Section 2.4.3. We use the predictive
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variables, which are described in Section 6.3. The gross return of an asset is
defined as

S

+1
Ry = S
where S, is the price of the asset. The s period return is defined as
S t+s
(s) __ “t+s _
Rti—s - St - _r[ Ru’ (632)
u=t+1

where s > 1. Note that {Rf)} is a monthly time series, even when the return
horizon is longer than 1 month. The monthly time series { R, } has typically only
a small autocorrelation, but using a prediction horizon s longer than 1 month
creates additional autocorrelation to the time series {RES)} due to the overlap:

RY and Rgl are products which have s — 1 common terms R,__,,, ..., R,.}?
We consider the prediction of Ri?s at time ¢, where Rgs is the s period return,
defined in (6.32). To make the prediction, we use regression
RY =f(X,)+ €y (6.33)

where X, € R? is a vector of predicting variables, f : R — R is the unknown
regression function, and ¢, is random noise. For example, in linear regression
f(x) = a + p'x, where @ € R and € R? are unknown regression coefficients.

In portfolio selection the rebalancing of the portfolio weights is often done at
least monthly. Thus, we need a prediction of 1-month returns. The prediction of
1-month returns can be obtained from the regression in (6.33) by setting s = 1,
but it turns out that there are better alternatives to make the prediction.

The first alternative to obtain a prediction for 1-month returns is to use
regression model

(Rii)—s)l/s =f(Xt) + Crise (634)
The fitted value f(X,) gives the prediction
R,y =fX). (6.35)

The second alternative is to obtain the s period prediction f?ﬁ:s = f (X,) from
(6.33), and define the one period prediction as'?

. N1
Rt+1=<R§2s> . (6.36)

The two alternative prediction methods seem to give similar results in portfolio
selection, as studied in Chapter 12.

12 Note that it is a different thing to predict R,, =S, /S, at time £, and to predict Rﬁis at time

t. Thus, we use notation s instead of notation #, to differentiate between these two concepts of
prediction horizon.
13 Sometimes the prediction IA?E:S is negative, and in this case we take Rz+1 = (max{0, f?gg D,

183



184

6 Prediction

6.4.1 Prediction of S&P 500 Returns

We consider the prediction of S&P 500 returns for various prediction horizons,
using dividend price ratio and term spread as predictors. Dividend price ratio
is defined in (6.31) and term spread is defined in (6.30). Predictor X, in (6.33) is
either dividend price ratio, term spread, or the pair of dividend price ratio and
term spread.

6.4.1.1 S&P 500 Returns

Figure 6.10 shows S&P 500 1-month returns (black time series), 1-year returns
(red time series), and 5-year returns (green time series). All time series have
1-month frequency. Panel (a) shows the returns RE : , defined in (6.32). Panel (b)
shows the times series (Rgs)l/ *. We see that the times series with longer return
horizons are smoother and have higher autocorrelation than the time series
with shorter return horizons.

Figure 6.11 shows autocorrelations for several lags and horizons. Panel (a)
shows autocorrelations for lags / = 1,2, 3. The black curve has [ = 1, the red
curve has / = 2, and the blue curve has / = 3. The x-axis shows the prediction
horizons = 1,2, ..., 60, and the y-axis shows the autocorrelation Cor(R(S) R(S) V).
For horizons s = 1, 2 the autocorrelations are close to zero, but when horlzon
increases, the autocorrelation starts to increase rapidly towards one, for all lags
[=1,2,3.

6.4.1.2 Linear Regression for Predicting S&P 500 Returns
Figure 6.12 shows R? for predicting S&P 500 returns using dividend price
ratio and term spread as predictors in linear regression. The out-of-sample
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Figure 6.10 S&P 500 returns for various horizons. Panel (a) shows the returns R(ti)s, defined in

(6.32). Panel (b) shows the times series (Rgs)”s. The black time series show 1-month returns,
the red time series show 1-year returns, and the green time series show 5-year returns.
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Figure 6.11 S&P 500 return autocorrelations for various horizons and lags. (@) We show
autocorrelations Cor(RES), Rgl),where lagis/ = 1 (black),/ = 2 (red),and/ = 3 (blue). The x-axis
shows return horizon s = 1,2, ..., 60. (b) We show autocorrelations for lags = 1,2, ..., 120,

for horizons s = 1 (black), s = 12 (red), and s = 60 (green).
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Figure 6.12 R? oflinear regression when predicting S&P 500 returns. Predictors are the dividend
price ratio (red), the term spread (green), and both the dividend price ratio and the term
spread (black). Panel (a) shows R? from regression (6.33) when predicting s month returns,
and Panel (b) shows R? from regression (6.34) when predicting 1-month returns.

coefficient of determination R? is defined in (6.23). Panel (a) shows R? from
regression (6.33), where Rg , is predicted, with x-axis showing the prediction
horizon s. Panel (b) computes R? from regression (6.34), where (RE?S)I/S is
the response variable, 1-month returns are predicted, and x-axis shows the

horizon s that is used in fitting the regression coefficients. The red curve shows
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Figure 6.13 Time series of predictions and realized values. (a) Prediction horizon of 1 year;

(b) prediction horizon of 5 years. The black time series show the realized values R(ti)s, the green

time series show the predictions when the predictor is dividend price ratio, the yellow time
series show the predictions when the predictor is term spread, and red time series show the
predictions when the predictors are both dividend price ratio and term spread.

R? when dividend price ratio is predictor, The green curve shows R? when term
spread is predictor, and the black curve shows R? when both dividend price
ratio and term spread are predictors. Panel (a) shows that R? is large when
returns with large horizon s are predicted. Panel (b) shows that when 1-month
returns are predicted, then R? increases above zero when parameter s is about
10-20, and after that increasing s does not improve R>.

Figure 6.13 shows both the time series of realized values and the time series of
several predictions. In panel (a) the prediction horizon is 1 year and in panel (b)
the prediction horizon is 5 years. The time series of realized values Rﬁi)s is shown
as black curves. The time series of predicted values & + fX, is shown as a green
curve when the predictor is dividend price ratio and as a yellow curve when the
predictor is term spread. The time series of predicted values is red when the
predictors are both dividend price ratio and term spread.

Figure 6.14 shows the regression data and the fitted regression functions as
pink lines, when dividend price ratio is the predictor. Panel (a) shows the case of
the prediction horizon of 1 year and panel (b) shows the case of the prediction
horizon of 5 years. Since we are doing out-of-sample prediction, there are many
fitted regression functions, and we show them all. A new regression function
is fitted always when a new data point is added. The blue time series show the
regression function that is fitted using all the data.

Figure 6.15 shows the regression data and the fitted regression functions as
pink lines, when term spread is the predictor. Panel (a) shows the case of the
prediction horizon of 1 year and panel (b) shows the case of the prediction
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Figure 6.14 Dividend price ratio as a predictor: Scatter plots and regression functions.
(a) Prediction horizon of 1 year; (b) prediction horizon of 5 years. Scatter plots show the points

(X,, RE).). The pink lines show the fitted regression functions.
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Figure 6.15 Term spread as a predictor: Scatter plots and regression functions. (a) Prediction
horizon of 1 year; (b) prediction horizon of 5 years. Scatter plots show the points (X,, Rgs).
The pink lines show the fitted regression functions.

horizon of 5 years. The blue time series show the regression function which is
fitted using all the data.

6.4.2 Prediction of 10-Year Bond Returns

We study linear regression when the explanatory variables are the dividend
price ratio and term spread (difference of the yield of the US Treasury 10-year
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bond and the US Treasury 1-month bill). The response variables are the gross
returns of the US Treasury 10-year bond for a given horizon, defined as

t+n
Yt+s = RS:S = H eXp(Rband,i)’
i=t+1
where R, ,;is defined in (2.5). We fit the linear regression Y, = a + X, + €,
using monthly data.

6.4.2.1 10-Year Bond Returns

Figure 6.16 shows US Treasury 10-year bond 1-month returns (black time
series), 1-year returns (red time series), and 5-year returns (green time series).
All time series have 1-month frequency. Panel (a) shows the returns Rii)s,
defined in (6.32). Panel (b) shows the times series (R(ti) 5)1/ 5. We see that
the times series with longer return horizons are smoother and have higher
autocorrelation than the time series with shorter return horizons.

Figure 6.17 shows autocorrelations for several lags and horizons. Panel (a)
shows autocorrelations for lags / = 1,2, 3. The black curve has [ = 1, the red
curve has [ = 2, and the blue curve has [ = 3. The x-axis shows the prediction
horizons = 1,2, ..., 60, and the y-axis shows the autocorrelation Cor(R(ts), Rf:: 1)'
For horizons s = 1,2 the autocorrelations are close to zero, but when horizon
increases, the autocorrelation starts to increase rapidly towards one, for all lags

1=1,2,3.

6.4.2.2 Linear Regression for Predicting 10-Year Bond Returns
Figure 6.18 shows R? for predicting the US Treasury 10-year bond returns
using dividend price ratio and term spread as predictors in linear regression.
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Figure 6.16 Ten-year bond returns for various horizons. Panel (a) shows the returns Rﬁfs,

defined in (6.32). Panel (b) shows the times series (Rﬁfs)‘/‘.The black time series show 1-month
returns, the red time series show 1-year returns, and the green time series show 5-year returns.
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Figure 6.17 Ten-year bond autocorrelations for various horizons and lags. (@) We show
autocorrelations Cor(R®, Rg)l),where lagis/ = 1 (black),/ = 2 (red),and/ = 3 (blue). The x-axis
shows return horizons = 1,2, ..., 60. (b) We show autocorrelations for lags | = 1,2, ..., 120,

for horizons s = 1 (black), s = 12 (red), and s = 60 (green).
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Figure 6.18 R? of linear regression when predicting 10-year bond returns. Predictors are the
dividend price ratio (red), the term spread (green), and both the dividend price ratio and
the term spread (black). Panel (a) shows R? from regression (6.33) when predicting s-month
returns and Panel (b) shows R? from regression (6.34) when predicting 1-month returns.

The coefficient of determination R? is defined in (6.23). Panel (a) shows R? from
regression (6.33) and x-axis is the prediction horizon. panel (b) calculates R?
from regression (6.34), when predicting 1-month returns, and x-axis shows the
horizon that is used in fitting the regression coefficients. The red curve shows
R? when dividend price ratio is the predictor, The green curve shows R? when
term spread is the predictor, and the black curve shows R?> when both dividend
price ratio and term spread are the predictors. Panel (a) shows that increasing
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Figure 6.19 Time series of predictions and realized values. (a) Prediction horizon of 1 year;
(b) prediction horizon of 5 years. The black time series show the realized values R(ti)s, the green
time series show the predictions when the predictor is dividend price ratio, the yellow time
series show the predictions when the predictor is term spread, and red time series show the

predictions when the predictors are both dividend price ratio and term spread.

prediction horizon s does not increase R?. Panel (b) shows that when predicting
1-month returns, then R? is larger than zero for values about s = 10.

Figure 6.19 shows both the time series of realized values and the time series of
several predictions. In panel (a) the prediction horizon is 1 year and in panel (b)
the prediction horizon is 5 years. The time series of realized values RE?S is shown
as black curves. The time series of predicted values & + /X, is shown as a green
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Figure 6.20 Dividend price ratio as a predictor: Scatter plots and regression functions.
(a) Prediction horizon of 1 year; (b) prediction horizon of 5 years. Scatter plots show the points

X Rﬁfs). The pink lines show the fitted regression functions.
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Figure 6.21 Term spread as a predictor: Scatter plots and regression functions. (a) Prediction
horizon of 1 year; (b) prediction horizon of 5 years. Scatter plots show the points (X,, Rgs).
The pink lines show the fitted regression functions.

curve when the predictor is dividend price ratio and as a yellow curve when the
predictor is term spread. The time series of predicted values is red when the
predictors are both dividend price ratio and term spread.

Figure 6.20 shows the regression data and the fitted regression functions as
pink lines, when dividend price ratio is the predictor. Panel (a) shows the case of
the prediction horizon of 1 year and panel (b) shows the case of the prediction
horizon of 5 years. Since we are doing out-of-sample prediction, there are many
fitted regression functions, and we show them all. A new regression function
is fitted always when a new data point is added. The blue time series show the
regression function that is fitted using all the data.

Figure 6.21 shows the regression data and the fitted regression functions as
pink lines, when term spread is the predictor. Panel (a) shows the case of the
prediction horizon of 1 year and panel (b) shows the case of the prediction
horizon of 5 years. The blue time series show the regression function that is
fitted using all the data.
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Volatility Prediction

We use the term volatility prediction to mean the prediction of the squared
return

R? (7.1)

t+n’

where ¢ is the current time, # > 1 is the prediction horizon, and

R=ot -1 R, = log =
, E —— or .= 10 -,
i Si—l i g S<_
are either the net return or the log return of an asset with prices S;. A closely
related concept is the estimation of the conditional variance

Var,(R,,,) = E, ( t+n) (E Rt+n)2

where E,(-) = E(-|F,) is the conditional expectation. Since the squared con-
ditional expectation (E,R,,, )? is often negligible as compared to E (Rt ) the
estimation of the conditional variance is close to the estimation of the condi-
tional expectation of the squared return

E, (RZ,,) -

The conditional expectation of R?, is the best prediction of R?, in the mean
squared error sense, as explained in (5.17) and (5.18), and thus the estimation of
the conditional expectation of the squared return leads to a predictor of (7.1).
GARCH(1, 1) predictors and moving average predictors lead often to good
predictions of volatility, for short prediction horizons. This is in contrast
to the prediction of the returns, which are more difficult to predict, even
for short prediction horizons; see Section 6.4 about prediction of returns.!

() _

1 Note that it is a different thing to predict R oy =

i = Sten/ Sty at time £, and to predict R

S, o /S, at time t. However, for the logarithmic returns we have

t+n-1 t+n—1

logRE'fﬂ = Z log 'H Z logR,, ;.

Nonparametric Finance, First Edition. Jussi Klemela.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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GARCH(1, 1) predictors and moving average predictors use only historical
returns to predict future volatility. However, if a company or a central bank is
known to make an announcement in a near future, then this knowledge can be
made to predict higher volatility. This kind of additional information can be
utilized in state space predictors. We study state space predictors of volatility,
but use as states only statistics computed from the previous asset prices.

VIX index can be a useful predictor for future volatility, because it expresses
the expectations of the markets for the future volatility. VIX index is discussed
in Section 6.3.1 and in (14.66).

A main result of the chapter is to show that GARCH(1, 1) predictor can be
improved by a kernel regression predictor, which uses a moving average of the
squared returns and a moving average of the returns as predictive variables. The
moving average of the squared returns is in itself a predictor which performs
as well as the GARCH(1, 1) predictor, but adding information about the past
returns improves the prediction. We show that ARCH(p) and moving average
predictors perform better than GARCH(1, 1) predictor for moderate prediction
horizons (10 days), but the improved performance comes to a large extent from
asingle event (autumn 1987). In contrast, the performance of the kernel regres-
sion predictor is better than GARCH(1, 1) predictor over all time periods. The
study is made using the daily S&P 500 data, described in Section 2.4.1.

When we study the performance of volatility predictors it will be seen that the
crash of October 1987 has a large influence on the performance. Many studies
remove one or more observations around October 1987 and consider these to
be outliers. We have not removed any observations for two reasons. (1) The
financial crisis of 2008 has almost as large influence on the performance as
October 1987, and we would need to remove other observations as outliers,
which would lead to a methodological discussion about the definition of an
outlier. (2) When we use the differences of cumulative sums of squared predic-
tion errors, then we can identify the influence of each time point, and obtain a
description of the performance which is not contaminated by any single finan-
cial crash.

Andersen et al. (2006) contains a review of volatility prediction, which
includes a comprehensive list of references.

Section 7.1 reviews applications of volatility prediction. Section 7.2 discusses
the measurement of performance of volatility predictors. Section 7.3 studies

Thus, if the logarithmic returns are conditionally uncorrelated,

t+n—1

Et(logzeﬁfq)z = Y E(ogR, )"
i=t

Thus, a prediction of the squared long horizon logarithmic return can be constructed from pre-
dictions of squared one-step logarithmic returns. However, note that for longer horizons the net
returns and the logarithmic returns are not close to each other, because approximation logx ~
x — 1 holds only for x close to one.



7.1 Applications of Volatility Prediction

generalized autoregressive conditional heteroscedasticity (GARCH) and
autoregressive conditional heteroscedasticity (ARCH) predictors of volatility.
Section 7.4 considers the use of moving averages in volatility prediction.
Section 7.5 considers the application of linear and kernel regression in
volatility prediction.

7.1 Applications of Volatility Prediction

Volatility prediction can be applied in variance and volatility trading, in covari-
ance trading, in portfolio selection, in quantile estimation, and in option pric-
ing. In addition, prediction of volatility can be applied by credit institutes to
measure risk and to set the risk premium.

7.1.1 Variance and Volatility Trading

Volatility can be traded with variance and volatility swaps. A variance swap is
a forward contract that pays

Vi—K
at the expiration date 7, where K is the delivery price, and V; is the realized
variance, defined by

T
Vp= ), llog(s,/S, I,
t=ty+1

where ¢, is the starting day of the contract, and S, are the prices of the under-
lying financial asset. A volatility swap pays at the expiration

VVi-L,

where L is the delivery price.

Variance and volatility swaps are traded over the counter (OTC), but Chicago
Board Options Exchange (CBOE) offers variance futures for the realized vari-
ance of the S&P 500 index, calculated with the daily returns of the index.

To make an investment decision for a variance or a volatility swap, we have to
estimate the distribution, or the conditional distribution, of the random vari-
ables V;, — K or \/VT — L. More simply, we can estimate the expectation, or the
conditional expectation, of the random variables V;, — K or 4/ V. — L.

7.1.2 Covariance Trading

Variance swaps open an opportunity to covariance trading if we have an access
to a variance swap of an index and to variance swaps of its constituents. Let us
consider an index whose net returns are

R, = pR} +qR;},
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where R! are the net returns of the index constituents and p and g are the
weights of the constituents. Let us define the realized covariance as

T
Cr= ) RR:.
t=ty+1

Then,
-1
2pq
where V. = 2;0 R? is the realized variance of the index and V. = 2;0 (R}

the realized variances of the index constituents, i = 1, 2.

If we have three variance swaps which pay V. — K, V. — K}, and V2 - K,
at the expiration, then we can compose a contract whose components are
the three contracts with the weights 1/(2pq), —p/(2g), and —q/(2p). This
contract pays

Cp—M

T (Ve =PV —q*V3),

at the expiration, where M = (K — p*K; — ¢°K,)/(2pq). The portfolio can be
called a covariance swap. To make an investment decision for the portfolio, we
have to estimate the distribution, or the conditional distribution, of the ran-
dom variable C; — M. More simply, we can estimate the expectation, or the
conditional expectation, of the random variable C, — M.

7.1.3 Quantile Estimation

Volatility-based quantile estimation is considered in Section 8.5. Volatility esti-
mation can be applied in quantile estimation, because a standard deviation
estimate can be used to construct a quantile estimate. Namely, consider the
location-scale model

Y=u+oe,

where i € R, 6 > 0, and ¢ is a random variable with a continuous distribution.
Now
P(Ygx)=1>(eg x_’“‘) —F (x_”),

c ¢ c

where F. is the distribution function of . If € has a continuous distribution, then
F. is strictly increasing and the inverse function F-! exists. The pth quantile
Q,(Y) ot Y satisfies P(Y < Q,(Y)) = p, and we can solve this equation to get

Q,(Y)=u+0 F\(p). (7.2)

Thus, for a known F,, we get from the estimates /i and 6 the estimate

Q) =ja+6F(p).



7.2 Performance Measures for Volatility Predictors

7.1.4 Portfolio Selection

Mean-variance preferences are considered in Section 9.2.1. Let R/ ., be the
return of a portfolio for the time period [z, ¢ + 1]. The portfolio weights can
be chosen to optimize the Markowitz criterion

ER Vart (R

t+1 t+l) ’

where y > 0 is the risk aversion parameter, and E, and Var, mean the condi-
tional expectation and conditional variance. To apply the Markowitz criterion,
we have to estimate both the expected mean E, R” , and the variance Var, (R )

7.1.5 Option Pricing

The prediction of volatility can be applied in option pricing. For example, the
Black—Scholes price given in (14.58) depends on the distribution of the stock
only through its volatility. Although the Black—Scholes price is derived under
the assumption of constant volatility, we can insert a predicted volatility to the
Black—Scholes pricing function (see Section 14.5).

7.2 Performance Measures for Volatility Predictors

Let 67, , be the predictor of the squared return RZ, ,» estimated using the data
available at time ¢, where 5 > 1 is the prediction horizon. We use sometimes
notation

f t.n) = t+rl
for the predictor. When n = 1, then we use sometimes the notation f ) = o-t e
When we have observed returns R, ..., Ry, then the mean of squared predic-
tion errors is defined as
- 2
MSPE = —— Z 62, — H,,] , (7.3)
(U

wherel1 <t, < T -1, and &Hn is computed using data R;, ..., R,.

In order to compare two predictors, it is useful to plot the time series of dif-
ferences of cumulative sums of squared prediction errors of the two predictors.
The time series is defined as

=3 [Pan-r - 3 [Pan-,[ (7.4)
=+l i=ty+1

wheret, <t < T -1, andf”(i, ) andfz(i, n) are the two predictors. This allows
us to find whether a predictor is uniformly better than the other, or whether
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the first predictor is better in some periods and worse in others, as explained
in connection of (6.26).

Andersen et al. (2006, p. 830) writes that “realized volatility provides the nat-
ural benchmark for forecast evaluation purposes.” The realized volatility is the
sum Y, _, R, of squared returns, for some e > 1. However, we evaluate the
forecasts of individual squared returns Rt2+n, for several horizons # > 1. This is
done for two reasons. (1) The predictors of realized volatility are sums of pre-
dictors of individual squared returns R?+rz' Thus, we obtain a good predictor
for the realized volatility from good predictors of R?w' (2) We need to choose
the predictor differently for each different horizon 7. When only the realized
volatility is used for evaluation, then we are not able as easily to analyze how
the performance of different predictors differs when the horizon is changed.

7.3 Conditional Heteroskedasticity Models

In Section 7.3.1, we recall the GARCH(1, 1) predictors of the squared returns
and realized volatility, and apply them for the S&P 500 daily data, described in
Section 2.4.1. In Section 7.3.2, we study ARCH predictors.

7.3.1 GARCH Predictor

We apply GARCH(1, 1) model for the logarithmic returns R, = log(S,/S,_;),
where S, is an asset price. The GARCH(p, g) model is defined in (5.37), and
the GARCH(1, 1) model is defined as

_ 2 _ 2 2
R, =oc.¢,, o0, =ay+a R, + fo, |,

where {¢,} is an IID(0, 1) process. The parameters @, a;, and f of the GARCH
(1,1) model are estimated using the maximum likelihood estimator, as defined
in (5.58). We denote the estimators by &, &,, and f.

7.3.1.1 Predicting the Squared Returns

Let R, ..., R, be the observed logarithmic returns. Let us consider the predic-
tion of Rf - where ¢ is the current time and > 1 is the prediction horizon. We
use as the predictor an estimator of the conditional expectation

E,R

t+n>

where E, means the conditional expectation, conditional on the information
available at time ¢. The conditional expectation is the best prediction in the
sense of the mean squared error, as explained in (5.17) and (5.18).

In the GARCH(1, 1) model with @; + f < 1, the conditional expectation
E,R?_ is obtained from (5.40). We define the GARCH(1, 1) predictor of R?_ by

t+n t+n
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replacing the unknown population parameters with their estimates and obtain
the predictor

faem=6"+@ +pr (6?+1 - 82) , (7.5)
where
go_ b
l—t,—p

and the formula for &7, is obtained from (5.43): formula for &7, is obtained by
truncating the infinite sum and replacing the unknown population parameters
with their estimates, which gives

N -1
& N
bl = — =+ ) PR, (7.6)
1- k=0
In particular, the one-step predictor is
fe. =62, (7.7)

7.3.1.2 Predicting the Realized Volatility
Let us consider the prediction of the #-step realized volatility

def

— P2 2
Vt,n - Rt+1 t+-t Rt+r]’

where ¢ is the current time and # > 1. An estimator of the conditional expec-

tation of the realized volatility is used to predict the realized volatility. Let us
denote?

n
def
"tz,n =EV,,= ZEt (R?+k) .
k=1

Using (5.40), we have the expression
n
GZW = 1162 + (atzﬂ - 5'2) Z (o + ﬂ)k_l.
k=1

We can write Y7/_, (a; + /)X = (1 — (a; + p)")/(1 — a; — B). The estimator for
the expected realized variance E,V, , is obtained by replacing the unknown pop-
ulation parameters with estimators:

2 L=(a +py .
o 82, (@, +p) (Az _52>.

Ott1

P

t, N
g 1—a,-p

2 Inthe GARCH(1, 1) model, the R, are conditionally uncorrelated and thus it holds also that af =

Ez( Z:l Rt+k)2'
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Figure 7.1 S&P 500 volatility process. The time series of estimated volatility 1/2506, in the
GARCH(1, 1) model.

7.3.1.3 S&P 500 Volatility Prediction with GARCH(1, 1)
We consider the daily S&P 500 data, described in Section 2.4.1.

Figure 7.1 shows the time series 1/2506, of the estimated annualized volatil-
ity, where 6, is calculated sequentially with the formula (7.6).

Figure 7.2 studies the distribution of 1/2506,, where &, is calculated
sequentially with the formula (7.6). Panel (a) shows a tail plot, as defined in
Section 3.2.1, and panel (b) shows a kernel density estimate, as defined in
Section 3.2.2. The blue lines show the annualized sample standard deviation,
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T
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Volatility Volatility

(a) (b)

Figure 7.2 Distribution of S&P 500 volatility predictions. (a) A tail plot and (b) a kernel density

estimate computed from 1/2506,. The blue lines show the annualized sample standard devi-
ation, and the red lines show the annualized unconditional standard deviation.
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7.3 Conditional Heteroskedasticity Models

Figure 7.3 Error criterion. Function q+— °
G(q) is shown for g € [0.1, 3]. S
o
@ 4
o
Q
o
(o)
<)

and the red lines show the annualized unconditional standard deviation, as
defined by (5.41).
Figure 7.3 shows the function g = G(gq), where

A 1
_Xle R

SR

where g > 0. The values of g where G(g) is larger than one are such that the zero
estimator 6, = 0 has smaller error than the GARCH(1, 1) estimator. Thus, it is
reasonable to choose g so that G(g) is smaller than one. We will choose the value
q = 0.5 and measure the performance of volatility prediction by calculating the
mean of the squared prediction errors, as defined in (7.3).

G(g)

7.3.2 ARCH Predictor

We apply ARCH(p) model for the logarithmic returns R, = log(S,/S,_,), where
S, is an asset price. The ARCH(p) model is defined in (5.32) as

2

- 2 _ 2
R, =0, oy =0g+uR_j+ - -+a,R_,

where {¢,} is an IID(0, 1) process. The parameters a, ... a, are estimated with

the maximum likelihood estimator, as defined in (5.57). We denote the estima-
tors by &, ..., &p.

7.3.2.1 Predicting the Squared Returns
The best one-step prediction for the ARCH(p) model was given in (5.33). We
use the predictor

L) =g+, R+ + &pRﬁ_pH. (7.8)
The parameter estimates @, ... , &p are computed from observations R,, R,_;, ...

using maximum likelihood.
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A recursive formula for the best 5-step prediction for ARCH(p) model was
given in (5.34). We use the predictor
f;(t, n) = &, + &, pred,(n — 1) + - - - + &,pred,(n — p),

where pred,(1) is given in (7.8) and pred,(y) =
predicts R? o

Ytz_m for n < 0. Now f;(t, n)

7.3.2.2 S&P 500 Volatility Prediction with ARCH(p)
We consider the daily S&P 500 data, described in Section 2.4.1.
Figure 7.4° compares ARCH(p) predictions to GARCH(1,1) predictions.
Panel (a) shows functions
MSPE"" (1, p)
l_) —7
MsPEgﬂrCh(f])

where

MSPE“" (1, p) = 2 |7 em - &,

t—t +1

and MSPE“*"(yy) is the mean of the squared prediction errors of the
GARCH(1,1) estimate, when GARCH(1,1) estimate is defined in (7.5).
Panel (b) shows the time series of differences

CSPEamh(I’])t _ CSPEgamh(ﬂ)t

a
o
& 5
- > |
) =1
W g w J
a 2 N3
n - a-a o <
e
= / 3 o
Ty a o ©
o < _a-a-@~a_,-3-B=B| &
© a-a-a~ b~ o
o o b-b, b ~D=
E \o\ 3 THe
y: .
b. b o
& Sb-p-b" N
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p (b)
(a)

Figure 7.4 Comparison of ARCH(p) and GARCH(1,1). (a) Function p > MSPE“" (4, p)/
MSPEY™ (). (b) Time series CSPE‘"‘h(n)r - CSPEg"’Ch(n)[. The prediction horizons are n = 1
(black with “a”) and = 10 (red with “b").

3 The green horizontal line is in the following figures a reference line to help the orientation, drawn
either at height zero or at height one.
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between the cumulative sums of the squared prediction errors of ARCH(p) and
GARCH(1, 1) predictor (see (7.4) for the formula). The ARCH predictor has
p = 6. The prediction horizons are n =1 (black with “a”) and 5 =10 (red
with “b”). Panel (a) shows that for prediction horizon # = 1 the GARCH(1, 1)
predictor has a better mean squared prediction error, but for prediction
horizon n = 10 ARCH(p) predictor seems better, for p about six. However,
panel (b) shows that the better performance of ARCH for # = 10 comes from
a single event: the market crush of October 1987.

7.4 Moving Average Methods

LetR,, ..., R, be the observed time series of financial returns. We consider the
prediction of R?M, where n > 1 is the prediction horizon. A moving average
prediction of wa is a weighted arithmetic mean of the squares of the previous
returns. We have defined the moving average predictors in Section 6.1.1. In the
data analyzes, we use the daily S&P 500 data, described in Section 2.4.1.

7.4.1 Sequential Sample Variance

Before giving results for the exponential moving average, we study the predic-
tion of the #-step ahead squared return by using the sequentially computed
sample variance. At time ¢ the prediction of wa is the sample variance, com-
puted from the observations R, ..., R,. The sample variance can be considered
as the limit of a moving average when the window width 7 — oo (ory 1 1). The
sequentially computed standard deviation is defined as

1 t 1/2 t
2 D2 D — +1
<;;Rt—Rt) . R =t ;Ri.

Figure 7.5 compares the time series of the sequentially computed standard
deviation and the GARCH(1, 1) stationary standard deviation. The black curve
shows the time series of annualized sequentially computed standard deviations.
The blue curve shows the GARCH(1, 1) annualized stationary volatility. The
stationary volatility is defined in (5.41) as

R 1/2
Aoz
1- &t,l - Bx

where &, &, and f, are the GARCH(1,1) estimates, computed from the
returns Ry, ..., R,.

Figure 7.6 compares prediction errors between the sequentially computed
standard deviation and the GARCH(1,1) predictor. Panel (a) shows the
function

MSPE*(s)
—

MSPEgarCh("]) i
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Figure 7.5 Sequential and GARCH(1,1) standard deviations. The black curve shows the
sequentially computed sample standard deviations and the blue curve shows the sequen-
tially computed GARCH(1, 1) stationary standard deviations.
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Figure 7.6 Comparison of the sequential sample variance and GARCH(1,1) predictors.
(@) Shown is the function 5 MSPE®I()/MSPE?(5). (b) Shown are the time series
CSPE;* (1) — CSPE‘,’”’Ch(n) of the differences of the cumulative sums of prediction errors. We
show the cases # = 1 (black), = 10 (red), n = 15 (green), and n = 20 (blue).

where MSPE*(5) and MSPE*“" (57 are the means of squared prediction errors
when prediction horizon is # (see (7.3) for the formula). The GARCH(1, 1) pre-
dictor is defined in (7.5). The parameters of GARCH(1, 1) model are estimated
sequentially. Panel (b) shows the difference between the sum of the cumula-
tive squared prediction errors of the sequential standard deviation and the sum
of the cumulative squared prediction errors of GARCH(1, 1) (see (7.4) for the
formula). We show the cases # = 1 (black), # = 10 (red), # = 15 (green), and
n = 20 (blue). We see from panel (a) that the GARCH(1, 1) prediction is better
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when 5 < 15. The sample variance is better when # > 15. In fact, GARCH(1, 1)
becomes exponentially worse when 7 increases, but sequential sample variance
becomes linearly worse when 7 increases. We see from panel (b) that the longer
horizons have a singular performance loss at end of 1980s.

7.4.2 Exponentially Weighted Moving Average

The one-sided moving average predictor was defined in (6.3). In volatility pre-
diction, the one-sided moving average is equal to

t
fo =Y p®r:, (7.9)

i=1
where the weights are
K({t-i/h)
pit) = DD
Zj:l K¢ = )/h)
where K : [0,00) — R is the kernel function and /% > 0 is the smoothing
parameter.
The exponential moving average was defined in (6.7). The exponential
moving average is a one-sided moving average obtained by taking K(x) =

exp(—x) Ijg.y(*) and & = —1/logy, where 0 <y < 1. In volatility prediction
the exponential moving average is equal to

(7.10)

t
~ l—y fin2
t) = ‘R:. 7.11
J@® 1—Vt,-=§1y ; (7.11)

The prediction step # influences the choice of the smoothing parameter 4. It
is natural to choose a large smoothing parameter /7 when the prediction step #
is large. Then a long horizon predictor is almost equal to the arithmetic mean
CYR.

Figure 7.7 compares volatility prediction with exponentially weighted mov-
ing averages to the GARCH(1, 1) prediction. We use the daily S&P 500 data,
described in Section 2.4.1. Panel (a) shows functions

N MSPEewma(’,” ]’l)
MSPEngh(I’]) ’

where MSPE®“"(y, ) and MSPE®““" (, 1) are the means of squared prediction
errors when prediction horizon is 7 (see (7.3) for the formula). The h-axis
is logarithmic. The exponentially weighted moving average is defined in
(7.11), using smoothing parameter # = —1/logy. The symbols “a,” “b,” and “c”
correspond to prediction horizons # = 1, # = 10, and # = 20. We can note that
for the horizon n = 1, the GARCH(1, 1) predictions are better, whereas for
the horizons # = 10 and 5 = 20, the exponentially weighted moving average is

h
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Figure 7.7 Comparison of EWMA and GARCH(1,1) using MSPE. Shown are the ratios
MSPE®“™ (57, h)/MSPEI™(17). (a) The x-axis shows values of smoothing parameter h. The
symbols “a,” “b,” and “c” correspond to 7 = 1, = 10, and = 20. (b) The x-axis shows values
of prediction horizon 7. The symbols “1,”“2,"“3,” and “4” correspond to the smoothing
parameters h = 10, h = 40, h = 100, and h = 200.

better, when the smoothing parameter is sufficiently large. When the horizon
increases, then the optimal smoothing parameter of the EWMA estimator
becomes larger. Using the Gaussian kernel gives almost similar results, but the
results are slightly worse. Panel (b) shows functions

_, MSPE“"(1. )
MSPEgarch (’1)

u

The symbols “1,]...,“4” correspond to the smoothing parameters 4 = 10,
h =40, h =100, and h 200. The smoothing parameter /7 = 200 gives the best
results, except for 7 = 1.

Figure 7.8 shows the time series of differences

CSPE?wma(n) _ CSPEfarCh(l’])

between the sum of the cumulative squared prediction errors of a moving aver-
age predictor and GARCH(1, 1) predictor (see (7.4) for the formula). Panel (a)
shows the complete time series and panel (b) shows the beginning of the time
series. We show the cases = 1 (black), # = 10 (red), and # = 20 (blue). The
corresponding smoothing parameters are # = 20, & = 80, and / = 80. We see
that the crash of October 1987 makes GARCH(1, 1) worse than the moving
average, but in more typical periods GARCH(1, 1) tends to perform better.
Figure 7.9 shows the time series of differences

CSPE{“”* — CSPE“
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Figure 7.8 Comparison of EWMA and GARCH(1,1) using CSPE. Shown are the time series
CSPEE“™(17) — CSPEY”" (1)) of the differences of the cumulative sums of prediction errors.
(a) The complete time series; (b) the beginning of the time series. We show the cases n = 1
(black), # = 10 (red), and = 20 (blue).
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Figure 7.9 Comparison of smoothing parameters of EWMA. Shown are the time series
CSPE;“™ — CSPE;* of the differences of the cumulative sums of prediction errors. (a) The first
part of the time series; (b) the second part of the time series. The smoothing parameter takes
values h = 5 (black), h = 20 (red), h = 40 (blue), h = 80 (dark green), h = 120 (turquoise), and
h = 200 (pink).

between the sum of the cumulative squared prediction errors of a moving
average predictor and the predictor based on sequentially computed sample
variances (see (7.4) for the formula). Panel (a) shows the first part of the time
series and panel (b) shows the second part of the time series. The smoothing
parameter takes values 4 =5 (black), # =20 (red), # =40 (blue), & =80
(dark green), & = 120 (turquoise),and /# = 200 (pink). The prediction horizon
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is one day. The smoothing parameter /# = 20 gives overall best results. The
cumulative prediction error and smoothing parameter are moving in tandem.

7.4.2.1 Asymmetric Exponentially Weighted Moving Average
We get a slightly different moving average than (7.11) by making a similar to
(6.8) recursive definition

fO=0-pR +yft-1)

where 0 < y < 1. The recursive definition can be modified to take the leverage
effect into account:
2

N N R o
fO=A-yf-1 —t - A +yfe-1), (7.12)
fE-1)

where 4 € R is the skewness parameter. This is analogous to the GARCH-type
model in (5.47). The smoothing parameters / and y are related by

h=-1/logy.

Figure 7.10 compares volatility prediction with asymmetric exponentially
weighted moving averages to the GARCH(1, 1) prediction. We use the daily
S&P 500 data, described in Section 2.4.1. We show functions

MSPE*““"™(n, h, 1)
[

h h
MSPE& (i)

Ratios of MSPE
1
1
o0
\O\
\ o,

Ratios of MSPE
1

1.00a
1.00
Qr

T T T T
5 10 20 50 100 200 5 10 20 50 100 200

Figure 7.10 Comparison of asymmetric EWMA and GARCH(1,1) using MSPE. Shown are the
ratios MSPE®“™ (5, h, 1) /MSPEY® (7). (@) = 1; (b) = 10. The skewness parameter A takes
values A = 0 (black with “a”), A = 0.1 (red with “b"), and 4 = 0.4 (blue with “c”).
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where MSPE®“" (5, h, ) and MSPES“"(1) are the means of squared predic-
tion errors when prediction horizon is # (see (7.3) for the formula). Panel (a)
has # = 1 and panel (b) has # = 10. The h-axis is logarithmic. The skewness
parameter A takes values 4 =0 (black with “a”), 4 = 0.1 (red with “b”), and
A = 0.4 (blue with “c”). We can see that there is some improvement from using
the asymmetric moving average when n = 1, but in the case # = 10 there is no
improvement.

7.5 State Space Predictors

LetR,, ..., R, be the observed time series of financial returns. We consider the
prediction of R? ,,» where n > 1is the prediction horizon. The prediction of the
squared return can be interpreted as the estimation of E,R}, , where E, is the
conditional expectation, conditionally on the information available at time ¢.
Thus, regression function estimators can be used to construct predictors.

Let us denote the response variable as

Y, = R? (7.13)

i+n’
The predictive variables are the components of vector X, € R?, where d > 1.

Vector X; is computed from returns R;,...,R,_,;, where p>1 is the lag
parameter. The initial observed time series R, ..., R, leads to regression data

(Xj’Yi), i=[9,...,t—n,

which is used to compute a regression function estimate. We transform the
observations X; by (4.36), which makes the marginals of X, approximately stan-
dard normal, but keeps the copula of X, the same as the original copula.

The information available at time ¢ is defined by the vector X, of predictive
variables. We apply two types of state variables. First, we choose the state vari-
able as the vector of exponentially weighted moving average of past squared
returns and past returns, as defined in (7.9) and (6.5):

X, = (Z PORL Y pi(t)Ri) : (7.14)
=1 i=1

Second, we choose the state variable as the vector of past squared returns:

X= (R R, ), (7.15)

—p+1
where p > 1.
We compute the means of prediction errors

T—-n

1 N 2
AdSPI?“P = — t _.R2
@) T_to_’7+1t=§to |f() t+n|
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for various predictors f (t), and compare this to the MSPE*"(17), which is the
corresponding mean of the squared prediction errors of the GARCH(1, 1)
predictor, as written in (7.3). We compute also the time series of cumulative
sum of squared prediction errors

t—n
" 2
CSPE™ (), = Z 'f(l) - R?w'
i=t,
for various predictors f (i), and compare this to the time series CSPEg“”h(n)t,

which is the corresponding cumulative sum of the squared prediction errors of
the GARCH(1, 1) predictor.

7.5.1 Linear Regression Predictor

The linear predictor is defined by
f®=a,+pX,

where @, € R, f, € R%, and X, € R%. In (7.14), d = 2 and in (7.15), d = p. The
statistics &, and f, minimize the least squares criterion

t-n

> Y —a— X,

i=t,
over @ € R and # € R?, where t, > d. The least squares solutions are given in
(6.13)—(6.15).

7.5.1.1 Prediction with Volatility and Mean
We choose the state variable to be the vector with two elements. The elements
are an exponentially weighted moving average of past squared returns and an
exponentially weighted moving average of past returns, as defined in (7.14). The
weights p;(¢) involve the smoothing parameter /. We study the effect of # > 0
and the prediction horizon # > 1 to the sum of the squared prediction errors.
Figure 7.11 compares the means of squared prediction errors of the linear
predictor to the GARCH(1, 1) predictor. Panel (a) shows functions

MSPES?(y, )
s —— 00

. (7.16)
MSPEgarch(n)
Panel (b) shows time series
CSPE*(n, h), — CSPES (1), (7.17)

for smoothing parameter # = 10. The prediction horizon is # = 1 (black with
“a”) and 5 = 10 (red with “b”). We see that for prediction horizon # = 1 the
GACRH(1, 1) predictor is better, but for prediction horizon # = 10 the linear
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Figure 7.11 Linear prediction with moving averages. (a) Shown are functions h—
MSPE* (7, h)/MSPEY"“ (17). (b) Shown are time series CSPE‘“"(n,h)t—CSPEQ""”(n)r for
smoothing parameter h = 10. The prediction horizon is # = 1 (black with “a”) and n = 10
(red with “b").

predictor performs better. Panel (b) shows that autumns 1987 and 2008 give
the most contribution to the means of squared prediction errors.

Figure 7.12 shows time series (7.17) for smoothing parameter 4 = 10.
Panel (a) shows the beginning of the period and panel (b) shows the end of
the period. The prediction horizon is # = 1 (black) and # = 10 (red). We see
that the GARCH(1, 1) predictor performs better during other periods, but at
autumn 1987 the linear predictor performs better.
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Figure 7.12 Linear prediction with moving averages. Shown are time series CSPE™*(n, h), —

CSPEYM(37),. Panel (a) shows the beginning of the period and panel (b) shows the end of the
period. The prediction horizon is n = 1 (black) and n = 10 (red).
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Figure 7.13 Linear prediction with past squared returns. (a) Shown are functions p —
MSPE**P (17, p)/MSPEI™" (7). (b) Shown are time series CSPESU"(n,p)r—CSPEga’Ch(n)t for
smoothing parameter h = 18. The prediction horizon is 7 = 1 (black with “a”) and # = 10 (red
with “b").

We conclude that the linear predictor does not improve significantly
GARCH(1, 1) predictor. We show in Section 7.5.2 that a corresponding kernel
predictor improves GARCH(1, 1) predictor.

7.5.1.2 Prediction with Past Squared Returns
We choose the state variable to be the vector of the past squared returns, as
defined in (7.15):

X= (R R, ).

t—p+1

There are two differences to the ARCH(p) predictor: (1) The linear function
is fitted using least squares and not maximum likelihood. (2) Predictions with
horizon # > 1 are done fitting the response variable Y, = wa, as explained
in (7.13).

Figure 7.13 compares the performance of the linear predictor to the
GARCH(1,1) predictor. Panel (a) shows ratios MSPE*?(y7, p)/MSPE*" ().
Panel (b) shows time series CSPE**(, p), — CSPEg“”h(n)t for the lag param-
eter p = 18. The prediction horizon is # = 1 (black with “a”) and # = 10 (red
with “b”). We see that for a longer prediction horizon the linear predictor
outperforms GARCH(1, 1) predictor, but the outperformance comes from a
single time point: Autumn 1987.

7.5.2 Kernel Regression Predictor

We want to predict the squared return Y; = Rin, where > 1 is the prediction
horizon. The prediction is based on the vector X; € R?, where d > 1. Vector
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X, is computed from returns R;,R;_;,.... We apply the kernel regression
estimator

-n
fo =Y por,,
i=k

where
I<h (Xt B Xi)

T X) o
j=k TSh\t J

pi) =

K, (x) = K(x/h)/h* is the scaled kernel function, K : R? — R is the kernel func-
tion, and / > 0 is the smoothing parameter. The kernel predictor was discussed
in Section 6.1.2.

We choose the state variable as the vector of exponentially weighted moving
average of past squared returns and past returns:

¢ ¢
X, = (Z qi(t)R?’ Z ‘L'(t)Rl) . (7.19)
i=1 i=1

The exponentially weighted moving averages are defined in (7.9) and (6.5) for
the squared returns and returns. Now we use the notation

_ K(t-i/g)

> K- )/g)
where K(x) = exp(—x)Ij . (%) is the kernel function and g > 0 is the smoothing
parameter. The notation ¢,(¢) and g is used to make a difference to the notation
p;(t) and /1 in (7.18). Below we apply smoothing parameter g = 40.

Figure 7.14 compares the means of squared prediction errors of the kernel
predictor to the GARCH(1, 1) predictor. Panel (a) shows functions

_, MSPE™(n. )
MSPEgarch(n) ’

Panel (b) shows time series

CSPE*?(n, ), — CSPES (1), (7.20)

q,(%)

h

for smoothing parameter /2 = 0.5. The prediction horizon is # = 1 (black with
“a”) and n = 10 (red with “b”). We see that for prediction horizon 5 = 1, there
is no big difference between the overall means of squared prediction errors,
but for prediction horizon 5 = 10 the kernel predictor performs better, when
smoothing parameter is suitably chosen. Panel (b) shows that autumns 1987
and 2008 give the most contribution to the means of squared prediction errors.

Figure 7.15 shows time series (7.20) for smoothing parameter /4 = 0.5.
Panel (a) shows the beginning of the period and panel (b) shows the end
of the period. The prediction horizon is # =1 (black) and # =10 (red).
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Figure 7.14 Kernel prediction. (a) Shown are functions h > MSPE™(y, h)/MSPEI"" ().
(b) Shown are time series CSPE**?(y, h), — CSPEg"""(n)r for smoothing parameter h = 0.5.The
prediction horizon is 7 = 1 (black with “a”) and # = 10 (red with “b").
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Figure 7.15 Kernel prediction. Shown are the time series CSPE**?(y, h), — CSPEg‘”"’(n)t for
smoothing parameter h = 0.5. Panel (a) shows the beginning of the period and panel
(b) shows the end of the period. The prediction horizon is 7 = 1 (black) and = 10 (red).

We see that the kernel predictor performs better during most periods until
autumn 1987. At autumn 1987, the kernel predictor performs significantly
better. After that the performance is about equal, until at autumn 2008 the
GARCH(1, 1) predictor performs better.

Figure 7.16 shows the regression function, estimated using the complete data.
Panel (a) shows a contour plot. The observations X; are plotted as yellow points.
Panel (b) shows a perspective plot. We see that the highest volatility is predicted
when the moving average of squared returns is high and the moving average of
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Figure 7.16 Kernel prediction: Leverage effect. The estimated regression function is visualized
using (a) a contour plot and (b) a perspective plot.
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Figure 7.17 Kernel prediction: Leverage effect. () Slices x, + f(x,,x,) for several values of x,.
(b) Slices x, — f(x,,x,) for several values of x;.

returns is low. This is called the leverage effect. Section 5.5 discusses the lever-
age effect as a stylized time series fact. The leverage effect is taken into account
in the asymmetric GARCH model, defined in (5.46), and in the asymmetric
moving average in (7.12).

Figure 7.17 shows slices of the estimated regression function f(x,,,).
Panel (a) shows slices x, - f(x,,,) for several values of x,, where x, is the
moving average of squared returns and x, is the moving average of returns.
Panel (b) shows slices x, — f(x,,%,) for several values of x,.
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Quantiles and Value-at-Risk

In quantile estimation, we study such questions as:

1) How much liquid capital a bank must possess in order that the probability
of running out of cash during the next month is smaller than 1/10,000?

2) How much cash must be deposited in a margin account in order that the
probability that cash does not cover the losses of a futures position during
the next day is smaller than 1/10,000?

These questions can be formulated using the concepts of probability theory.
Let Y be a real valued random variable. Let 0 < p < 1 be a probability. The
pth quantile is the smallest number x € R so that P(Y > x) < 1 — p. In the first
example random variable Y is the monthly loss of the investment portfolio of
a bank. In the second example random variable Y is the daily loss of a futures
position.

We want to estimate the pth quantile using previously observed data. In the
first example, we do not have observations of the past losses (because the invest-
ment portfolio has changed), but we have observed the past returns of the
components of the portfolio, and the probability distribution of the loss of the
current portfolio can be deduced from an estimate of the joint distribution of
its components. In the second example, we have observed the previous daily
losses of the asset underlying the futures position.

The pth quantile is also called the quantile with confidence level p. The term
value-at-risk (VaR) is used for the upper quantiles of the distribution of a loss
of a portfolio.

What is special about quantile estimation? Quantiles can be defined as the
values of the inverse of the distribution function, and thus quantile estima-
tion is related to the estimation of the distribution function. For example, the
population median is the pth quantile for p = 0.5: The population median is
such x € R that P(Y <x) = 0.5 = P(Y > x). However, in quantile estimation
we are interested in the cases where p is close to 0 or close to 1. For example,
p = 0.0001 or p = 0.9999. By definition, there are few observations in the tail
areas. This makes estimation of tail areas difficult. In order to estimate quantiles

Nonparametric Finance, First Edition. Jussi Klemela.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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when confidence level p is close to 0 or close to 1 we make special models for
the tails of the distribution, and ignore the central area of the distribution.

One may question whether is reasonable even to try to estimate the extreme
quantiles. Embrechts et al. (1997, p. VI) make the following comment: “What-
ever theory can or cannot predict about extremal events, in practice the prob-
lems are there! As scientists, we cannot duck the question of the height of a
sea dyke to be built in Holland, claiming that this is an inadmissible problem
because, to solve it, we would have to extrapolate beyond the available data.”

Section 8.1 discusses definitions of quantiles. Note that quantiles were
defined already in Section 3.1.3. Section 8.2 discusses applications of quantile
estimation. Section 8.3 discusses the measurement of the performance of
quantile estimators.

Sections 8.4—8.7 study different types of quantile estimators. Section 8.4
studies nonparametric quantile estimators: empirical quantiles and kernel
quantile estimators. Section 8.5 studies quantile estimators that are based
on a volatility estimator. These estimators utilize a location—scale model,
and can be considered as semiparametric quantile estimators. Section 8.6
studies quantile estimators which are based on fitting a parametric model
to the excess distribution. We apply two techniques to make the fitting of
the excess distribution useful in a time series setting. First, we apply a time
localized parameter estimation. Second, we apply a quantile transformation to
obtain residuals which are approximately uniformly distributed, and apply the
empirical quantile estimator to the residuals. Section 8.7 uses some results of
extreme value theory to derive quantile estimators.

Section 8.8 discusses the expected shortfall. Quantiles can be used as a risk
measure, but the expected shortfall may be preferred as a risk measure. In fact,
a quantile takes the number of exceedances of a threshold into account, but not
the largeness of the exceedances, whereas an expected shortfall takes also the
largeness of the exceedances into account.

There are many useful books related to quantile estimation. Embrechts et al.
(1997) study quantile estimation with the emphasis on extreme value theory.
The book by McNeil ez al. (2005) is more practically oriented than Embrechts
et al. (1997), but considers mostly purely parametric models. Malevergne and
Sornette (2005) have analyzed financial data with nonparametric methods.
Coles (2004) gives an introduction to statistical modeling of extreme values,
describing classical asymptotic extreme value theory and models, threshold
models, and a point process characterization of extremes.

8.1 Definitions of Quantiles

We have defined the pth quantile Q, of the distribution of random variable
Y as the smallest number x € R such that P(Y > x) <1 —p, where 0 < p < 1.



8.1 Definitions of Quantiles

The definition can be written as
Q,=inf{x eR:P(Y >x) <1-p}. (8.1)

We use both the capital letter and the small letter to denote a quantile, and
sometimes we include the random variable in the notation:

Q,=Q,() =g,
Since P(Y > x) = 1 — F(x), where F(x) = P(Y < x) is the distribution func-
tion of Y, we can write

Q, = inf{x € R:F(x) > p}.

The generalized inverse of F is defined as F<(p) = inf{x € R: F(x) > p}; see
McNeil et al. (2005, p. 39). Thus, a quantile function is the generalized inverse
of the distribution function. The distribution functions of discrete distributions
are not monotonically increasing, and do not have a usual inverse. For example,
the empirical distribution function does not have a usual inverse.

For practical purposes the returns and prices of stocks can be considered to
have a continuous distribution: gross returns and prices can take almost any
nonnegative value. Also, the loss of an investment portfolio can be considered
for practical purposes to have a continuous distribution.! When Y has a con-
tinuous distribution, then there exists such x € R that

P(Y >x)=1-p.
Thus,
P(Y <x)=p.

The distribution function is F(x) = P(Y < x), so that the pth quantile x satisfies
F(x) = p, and the pth quantile is

Q,=F ().

where F71:(0,1) — R is the inverse of the distribution function.?

Figure 8.1 illustrates the definition of a quantile. Panel (a) shows a distribu-
tion function. The red vectors illustrate the inverting of the distribution func-
tion at level p = 0.05. The blue vectors illustrate the inverting at level p = 0.99.
Panel (b) shows a density function corresponding to the distribution function.
The red area has probability mass 5%. The right boundary of the red area indi-
cates the location of the pth quantile for p = 0.05. The blue area has probability
mass 1%. The left boundary of the blue area indicates the location of the pth
quantile for p = 0.99.

1 Note, however, that the loss of a bond can be a discrete random variable. The value of a
zero-coupon bond takes only two values at the maturity: the value is 0 in the case of the default
and the value is 1 when the default does not happen.

2 We leave 0 and 1 out of the domain, because for the distributions with support R we have sym-
bolically that Q(0) = —co and Q(1) = 0.
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Figure 8.1 Definition of quantiles. (a) Definition by distribution function; (b) definition by
density function.

In a time series setting, we can consider the estimation of conditional quan-
tiles. Let Y,,t € {...,—1,0,1, ...}, be a time series. Let

Fyyy v, . ®)=PY, < XY, .Y 5,

be the conditional distribution function of Y, given Y,_;, Y,_,, .... Then the con-
ditional pth quantile can be defined as

Qp(Yt|Yt—1’ Y, 5, ) = F}Z})@_I,Yl_z,...(p)

for continuous distributions.
Sometimes it is convenient to use the concepts of return level.

1) We call m-observation return level such level x,, which satisfies
P(Y >«x,)=1/m.

Level x,, is exceeded on average once every m observations. It is convenient
to express return levels on an annual scale. The N-year return level is the
level expected to be exceeded once every N years. If there are n observations
every year, then the N-year return level is the m-observation return level
with m = Nu; see Coles (2004, p. 81).

2) We call return level x, associated with return period 1/p the number
satisfying

P(Y > xp) =p.

Now x, is expected to be exceeded on average once every 1/p years.

Level x, is exceeded by the annual maximum in any particular year with
probability p.



8.2 Applications of Quantiles
8.2 Applications of Quantiles

Regulatory officials want to ensure that systemic financial institutions do not
fall into a liquidity crisis. The companies want to control the probability of
bankruptcy. Also, futures exchanges want to ensure that clients are able to meet
the obligations of the derivatives they possess. For these purposes, estimation of
quantiles is useful. Quantiles can also be used as a risk measure to characterize
intuitively the riskiness of a portfolio.

8.2.1 Reserve Capital

Regulatory officials impose capital requirements on systemic financial institu-
tions, such as large banks and large insurance companies. Regulatory officials
want to ensure that systemic financial institutions do not fall into a liquidity
crisis, because such crisis could have a negative impact on the whole economy.
The regulators require that a bank has enough liquid reserves to cover the losses
caused by adverse movements of the markets. See Rebonato (2007, Chapter 9)
for more about a description of economic capital.

8.2.1.1 Value-at-Risk of a Portfolio

Value-at-risk can be used to determine the reserve capital of a bank or an enter-

prise. The term “value-at-risk” is used to denote upper quantiles of the loss dis-

tribution of a financial asset. Value-at-risk at level 0.5 < p < 1is such value that

the probability of losing more during a given period has a smaller probability

than 1 — p. Thus, value-at-risk can be directly related to the amount of reserves.
The loss of a portfolio at time £ + 1, over one period, is defined as

Lt+1 = _(Vt+1 - Vt), (8.2)

where V, is the value of the portfolio at time ¢. The value-at-risk at the confi-
dence level p € (0, 1) of the portfolio is defined as the smallest value x such that
the probability that the loss L,,; exceeds x is smaller or equal to 1 — p: This is
the p-quantile of the loss, when the p-quantile is defined in (8.1). We use both
of the following notations:

VaR,(Ly,;) = Q,(L,,y)- (8.3)

Typically p takes such values as 0.95 or 0.99. A larger value of value-at-risk indi-
cates that the portfolio is more risky. The loss over # > 1 periods is

L(VI) — —(V _ Vt)’

t+n — t+n

and the value-at-risk over the horizon of # > 1 periods is

vaR, (L2, )

t+n

Thus, the value-at-risk has two parameters: the risk horizon (daily, weekly, and
20-day horizon) and the confidence level p.
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8.2.1.2 Decomposition of the Loss of a Portfolio
We can write the loss of a portfolio, as defined in (8.2), as

Ly =-ViR,,,
where R, is the net return of the portfolio:
Vin =V,
Ry = =
Thus, the value-at-risk is obtained from the quantile Q,(R,,,) of the return dis-
tribution by the formula

VaR,(L,,;) = =V, Q,(R,,y). (8.4)

When the portfolio has initial value zero, then we cannot compute the return,
and (8.4) cannot be used.
For example, the portfolio of stocks has the value

d
V.= &S,
i=1

where d is the number of stocks in the portfolio, S! is the value of the ith stock
at time ¢, and &' is the quantity of the ith stock in the portfolio. Thus, for the
portfolio of stocks the loss is

d
Lyy=-(Vy —V)==) &SR,
i=1

where
Rl‘ _ S;+1 - S;
t+1 — i
St
is the net return of the ith stock. Thus, the calculation of the value-at-risk
requires knowledge of the distribution of a linear combination of the returns
of the portfolio components.

8.2.1.3 Losses over Several Periods

We estimate the value-at-risk for the risk horizon, which is the same as the sam-
pling frequency. However, often it is needed to estimate the value-at-risk for a
longer risk horizon than the sampling period. For example, we might want to
estimate the value-at-risk for the risk horizon of 10 days using daily observa-
tions. The loss over 7 > 1 periods is defined as

(m
Ltin ==V = V).
We show in (8.30) that

Q, (LY, ) = n+0 Qe
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where
p=ELY, ob=Var,(L0,). e= (LD~ n)/o.
We can write
Vin — v, S VA
LY =-V, L a-V, log—2 =V, Z log 21 (8.5)
‘/t t i=0 t+i
The approximation
n—1 V »
t+i+
o %V2ZERH_H_1, Rt+i+1=10gv—
i=0 t+i

could be used, and the techniques of volatility prediction of Chapter 7 lead to
a quantile estimate.
Assuming that R, are i.i.d., leads to

Q, (L) = =Vinm + V,/ns Qy ),

where m = ER,, s* = Var(R;). Assume that the logarithmic returns R,,,,; =
log(V,i11/ Vi) are iid. with the normal distribution N(m,s*). Then,
€ ~N(0,1), and Q,(¢) = ®~1(p), where @ is the distribution function of the
N(0, 1) distribution.

8.2.2 Margin Requirements

Value-at-risk can be applied to determine the safety deposit (margin) that a
holder of a futures position or a writer of an option has to hold. The exchanges
and brokers require that the investors save a deposit in the margin account. The
amount of the deposit can be determined by the value-at-risk of the futures or
option position.

Let us assume that the margin account earns the yearly rate r > 0. The gross
return of a portfolio whose components are the risk-free rate and a risky
asset is

R, =1 —b)(1+rAt)+b ;“
t
where b € Ris the weight of the risky asset, S, is the price of the risky asset, and

At is the length of the period in fractions of a year. The gross return R,,; <0
means that bankruptcy occurs. We want to choose b so that

PR, <0)~p,
where 0 < p < 0.5 is small. We have that

Sea1
R, Z0sb 1T AL =S, ] <-S,.

Let us consider separately the case » > 0 and b < 0.
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1) When b > 0, then we are buying the risky asset, and
SH—I St
R0 ——-§ < ——.
= 1+rAt '7 b
Let Qp be an estimate of the pth quantile of

S
1+rAt F
When Qp < 0, we can choose
I
P

because S, > 0.
2) When b > 0, then we are selling the risky asset, and

&H§0©I%%Q—&2—%.

Let Ql_p be an estimate of the (1 — p)th quantile of
S
1+rAt %

When Ql_p > 0, we can choose

St

h=-—"
Ql—p

8.2.3 Quantiles as a Risk Measure

Quantiles can be used as a risk measure. For example, if the 1% quantile of a
monthly loss of S&P 500 returns is 20%, then an investor who owns S&P 500
index could expect to suffer 20% monthly loss once in every 8 years, roughly
speaking, since 100 X 1/12 =~ 8. This kind of statement gives an investor some

understanding of the riskiness of the position.

It can be argued that a reasonable risk measure satisfies the axioms of a coher-
ent risk measure. Coherent risk measures were defined by Artzner et al. (1999).
Coherent risk measures p satisfy the following properties, where X and Y are

random variables interpreted as portfolio losses.

1) Monotonicity: if X < Y, then p(X) < p(Y). If the outcome of an investment
dominates the outcome of an other investment, then the risk must be

greater.

2) Subadditivity: p(X + Y) < p(X) + p(Y). Diversification reduces risk.
3) Positive homogeneity: p(1Y) = Ap(Y) for A > 0. If the investor doubles his

position for every asset, then he doubles also the risk.
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4) Translation invariance: p(Y + a) = p(Y) — a for a € R. If the amount a is
added to the portfolio, then the capital requirement is reduced by the same
amount.

The value-at-risk (an upper quantile of the loss) is not a coherent risk mea-
sure, but the expected shortfall is a coherent risk measure. Quantiles do not
satisfy the subadditivity like the expected shortfall.?

Follmer and Schied (2002, Section 4.1) define a monetary measure of
risk as satisfying the condition of monotonicity and translation invariance.
A monetary measure of risk is called a convex measure of risk if it satisfies
convexity:

p(AX + (1 = DY) < Ap(x) + (1 = Hp(Y),

for 0 < 4 < 1. A convex measure or risk is called a coherent risk measure if it
satisfies the condition of positive homogeneity. Under the assumption of pos-
itive homogeneity, convexity is equivalent to subadditivity. However, Follmer
and Schied (2002, p. 155) note that risk may grow in a nonlinear ways as the size
of the position increases, and thus it makes sense to study convex measures of
risk, instead of coherent measures of risk.

To learn more about risk measures, see McNeil et al. (2005, Section 6.1) and
Follmer and Schied (2002, Section 4.1).

8.3 Performance Measures for Quantile Estimators

We can measure the performance of a quantile estimator by studying how well
the quantile estimator captures the probability of an exceedance. Secondly, we
can measure the performance by using a suitable loss function.

In this section, we only define the performance measures, and they are illus-
trated in Section 8.5.1.

3 LetXand Y beindependent and identically distributed with the distribution P(Y = 1) = 0.95 and
P(Y = 0) = 0.05. Random variables Y and X can be interpreted as pay-offs of zero-coupon bonds
paying one at the maturity when there is no default, and the probability of default being 0.05. The
quantiles of X and Y are

0, 0<p<0.95,

Q) =Q,X)= {1, 095 <p <1

Letp, = 0.95% and P, =2-0.95-0.05. The quantiles of X + Y are

0, 0<p<p,.
QX+Y)=1q1L p <p<p, +p,
2, pptp,<p=<1l

Thus, Qp(X +Y)> Qp(X) + Qp(Y) when p, < p <0.95.
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8.3.1 Measuring the Probability of Exceedances

To measure the performance of a quantile estimator for continuous distribu-
tions, we use the fact that the pth quantile g, satisfies
P(Y <q,) =p.
Let quantile estimator g, be constructed using observations Y;, ..., Y;. If the
estimator is good, then
#(Y,1Y,<q,)
T

However, we should not use the same data both for constructing the estima-
tor and for evaluating the estimator, because this would give a too optimistic
impression of the performance of the estimator.

& p.

8.3.1.1 Cross-Validation

We consider the case of time series observations and estimation of the
conditional quantiles. There are many ways to choose the conditioning
information. Let us observe time series Y, ..., Y. Let the conditional quantile
estimator be

4, =Q V1Y, .Y, 5. ..,

which is constructed using data Y7, ..., Y,_;. The cross-validation quantity is
1 T
= = Z I (Y), (8.6)
—l t=ty+1

where 1 < ¢, < T — 1. We start to evaluate the performance of the estimator
after ¢, observations are available, because any estimator can behave erratically
when it is constructed using only a couple of observations.

We might also observe vector time series (X;, YY), ..., (X, Y;) and use the
conditional quantile estimator

Qt = QP(Y[ | (Xt717 )/tfl)’ )

The same cross-validation estimate as in (8.6) can be used.*

4 Let us observe i.i.d. data Y}, ..., Y;. Let g, be a quantile estimator, constructed using the other
data but not the ith observation. The cross-validation quantity is

T
A 1
=77 2z T gn -
J=L j#i
Note that the estimator could also be an estimator of a conditional quantile. In this case we observe
(Y}.X)), ..., (Y, X;) and want to estimate QP(Y|X = x). Then the estimator without the ith obser-
vation is ,(x) and the cross-validation quantity is

T
A 1
=77 ,_Z Tcoo gy ()-

J=L j#i
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8.3.1.2 Probability Differences
Finally, the performance is measured using the difference

p—b. (8.7)

If p > p, this means that the quantile estimates were in average larger than the
true quantiles. When we are estimating the left tail, so that p is close to 0, then
the relation p > p means that the true distribution has a heavier left tail than
the quantile estimates would indicate. When we are estimating the right tail, so
that p is close to 1, then this relation reverses, and the relation p > p means that
the true distribution has a lighter right tail than the quantile estimates would
indicate.

We will show the performance of quantile estimators by plotting the
difference

Rp.p) = {

Thus, the difference R(p, p) being negative means that the true distribution has
a heavier tail than the quantile estimates would indicate. The difference R(p, p)
being positive means that the true distribution has a lighter tail than the quan-
tile estimates would indicate.

An alternative definition replaces the differences with the ratios, so that

Rr(p’ﬁ) = {

The ratios are more informative for p very close to 0 or to 1.

Note that the absolute difference |p — p| is not as good performance measure
as p — p or p — p, because the absolute difference looses the information about
the sign. Information about the sign of p — p is useful because it tells whether
the quantile estimator tends to be too small or too large.

p—p, when p <0.5,

p—p, when p>0.5. (88)

p/p, when p <0.5,

p/p, when p > 0.5. (8.9)

8.3.1.3 Confidence of the Performance Measure
Even when we would know the true quantiles, there is random fluctuation in
the numbers p. The random variables

Zy =Ty (Yo)s t=to.... T—1,

are Bernoulli random variables with P(Z, = 1) = p, where g,, is the true quan-
tile. If random variables Y, are independent, then random variables Z, are inde-
pendent, and

T-1
M=)z,
t=t,

is a binomial random variable with the distribution Bin(n, p), where n = T — t,,.
The probability mass function of M is

P(M = i) = (’;’) PA—pyi, fori=0,...,n
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Difference We want to bound the difference p — p, where p = M /n. We choose
numbers ¢, and ¢, so that

Plcy<p-p<c)>21—a, (8.10)
where 0 < a < 1. We have

CO=P—N Zigp € =p—H Zyp, (8.11)
where z, , and z,_, , are such that P(z, ), <M <z;_,p) 21— a.
Ratio 'We can also use analogous bounds for the ratio p/p, where p = M /n. We
choose numbers d,, and d,; so that

Pd,<p/p<d)>1-a,
where 0 < @ < 1. We have

d, = np’ d1=ﬁ’

Z1-a)2 Zq /2

where z, , and z,_, , are such that P(z, ), <M <z;_,p) 21— a.

8.3.1.4 Probability Differences Over All Time Intervals

The estimate p in (8.6) is computed over time interval [£,, T]. It is of interest
to compute the estimate over a large collection of subintervals [¢,,,], where
t, <t <t, <T.Wedenote

|2

D L (Y.

=t,+1

A 1
t,ty) = ——

by, 1) -1t
When we study a large collection of time intervals, then we can find whether
a quantile estimator is uniformly better than another quantile estimator, or
whether there are time periods where the first estimator is better and time peri-
ods where the second estimator is better.

We can plot the two-variate function (¢,, £,) = R(p, p(t,, t,)). This two-variate

function is rather unsmooth, so that perspective plots and contour plots are
difficult to interpret. It can be easier to look at the slices

t, = R(p, p(ty, t)) (8.12)
for a fixed ¢,, and the slices
ty = R(p, p(t, 1)) (8.13)
for a fixed ¢;.
It is intuitive to plot the vectors joining the points p,, p, € R?, where
p1 = LR, p, 1)), py = (6, R, p(t1, 1)), (8.14)

for a collection of pairs (¢,, ¢,). These vectors are intuitive because they visualize
the interval [£,, ¢,] together with the value R(p, p(¢,, £,)). We divide time interval
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[ty, T1into K subintervals of equal length, where K = 1, 2, ... That s, we choose
the collection of pairs (¢,, t,), where

L=ty+ k=196, t,=t,+ké, 6=[T—1ty)/K], (8.15)
fork=1,...,K.

8.3.2 A Loss Function for Quantile Estimation
A quantile can be characterized as a minimizer of
R(®) = Ep,(Y - 0),

over 0 € R, where

_ B _ Jxp-1), ifx <0,
pp(x) =X [p [(—W,O)(x)] - {xp’ ifx Z 0’ (8‘16)
for 0 < p < 1. That s,
Q,(Y) = argmin, g Ep,(Y — 0). (8.17)

The same holds for the conditional quantiles:
Q,(Y1X = x) = argmin,,Ep,(Y — g(X)),

where G is the class of measurable functions R? — R.> Figure 8.2 shows the
loss function in (8.16) with p = 0.5 (black solid line) and with p = 0.1 (red
dashed line).

8.3.2.1 Cross-Validation
We can measure the quality of a quantile estimator g, by estimating

R@,) = Ep,(Y — ).

The estimation can be done using a sample mean, but we have to be careful not
to use the same observations in the estimation of R(,) that were used in the
construction of g,,.

Let Y}, ..., Y, be time series data. Let the conditional quantile estimator be

4, = Q1Y ...,

5 We show that if the distribution function F,, is strictly monotonic, then (8.17) holds. Note that
2 o0
Ep,(Y-0)=(— 1)/ -6 dFYO’)-i-P/ (= 0) dFy(y)
—0o 6
and thus
9 4 o
% Ep,(Y-0)=(1 —P)/ ary(y) —P/ dFy(y) = F,(0) — p.
—o0 4

Setting 0Epp(Y —0)/00 = 0, we get (8.17), when F|, is strictly monotonic.
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Figure 8.2 Loss functions for quantile estima-
tion. Loss function in (8.16) with p = 0.5 (black
solid line) and with p = 0.1 (red dashed line).

Z (Y, = 4,), (8.18)

where 1 < £, < T — 1. We begin to evaluate the performance of the estimator
after ¢, observations are available, because any estimator can behave erratically
when only a couple of observations are used for its construction.®

8.3.2.2 Performance Over All Time Intervals
We can compare the performance of two conditional quantile estimators in a
time series setting using the cumulative sums of the losses. This is similar to the
use of cumulative sums of squared prediction errors to compare two predictors,
in (6.26).

Let Y7, ..., Y be time series data. Let c}ll and €]l2 be two conditional quantile
estimators, which are constructed using data Y, ..., Y,_;, and define

Y oo, (V=)= D o, (vi-32), (8.19)

i=t,+1 i=ty+1

where 1 < £, < T —1. When C, < C,, then estimator §; performs better on
time period [£,, t,] than estimator . Thus asingle time series plot of C, reveals

6 LetY),...,Y, beiid. data. Let g, be a quantile estimate constructed using the other data but not
the ith observation. The cross-validation quantity is

ie=— Z (Y, = ).
/1/#

Note that the quantile estimator could also be an estimator of the conditional quantile if we observe
(Y}, X)), ..., (Y, X;), and want to estimate the conditional quantile Qp(YlX =Xx).
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all time periods where the first estimator is better than the second estimator, as
explained in the connection of (6.26).

8.3.2.3 A Comparison to Probability Differences
Note that there is some resemblance to the performance measure p — p of (8.7).
We can write

T
X 1 n
p—p= T—1 Z (£ = L0y (Y: = @]
0 =41
On the other hand,
1 T
R= o X =@~ LY, = 2.
0 t=t,+1

The probability difference p — p takes into account only whether there is an
exceedance. The mean loss R takes also the largeness of the exceedance into
account. Thus, R punishes more from the outliers in the values of .

8.3.2.4 Empirical Risk Minimization

Loss function p, can be used in empirical risk minimization. Let us have regres-
sion data (X3, Y}), ..., (Xy, Y;). We can use function p, to construct an estima-
tor for the conditional quantile. The estimator is defined as the minimizer of the
empirical risk. The estimator of the conditional quantile f(x) = QY |X =x)is

A

n
f=argmin,; Y p,(¥; - g(X),
i=1

where G is a suitable subset of the class of all measurable functions g : RY — R.

8.4 Nonparametric Estimators of Quantiles

For continuous distributions the quantile can be defined as the inverse of the
distribution function:

Q) = F\(p),

where Y is a random variable with a continuous distribution, F(x) = P(Y < x)is
the distribution function, and p € (0, 1). We obtain an estimate of the quantile
by inverting the empirical distribution function.

Section 8.4.1 defines the empirical quantiles, which are obtained by inverting
the empirical distribution function. Also, we define modifications of empirical
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quantiles that apply smoothing. Section 8.4.2 defines empirical conditional
quantile estimators. The empirical quantile can be combined with time space
or state space smoothing to obtain an estimator for a conditional quantile.

8.4.1 Empirical Quantiles

The basic empirical quantiles are obtained by inverting the empirical distribu-
tion function. The basic empirical quantiles can be modified by kernel smooth-
ing methods.

8.4.1.1 Basic Empirical Quantile Estimator
We give three equivalent definitions for the empirical quantiles. The empiri-

cal distribution function, based on the observations Y, ..., Y, is defined in
(3.30) as
) T
Fo= 2 Z,I(_m,x](lc), xER (8.20)

The empirical distribution is the discrete distribution with the probability mass
function P({Y;}) =1/T fori =1, ..., T. Now we can define an estimate of the
quantile by

Q, = inf{x: F(x) > p}, (8.21)
where 0 < p < 1. It holds that

Yy, O0<p<1/T,
Yo, 1/T<p<2/T,

Q, =1 (8.22)
Yo, 1-2/T<p<1-1/T,
Yo 1-1/T<p<1,

where the ordered sample is denoted by Y{;) < Y, <--- < Y. A third way of
writing the empirical quantile was given in (3.23):

Q, = Y (8.23)

where we denote by [x] the smallest integer > x. We can write equivalently
ép = Ypr1+1)» Where [x] is the largest integer < x.

Figure 8.3 illustrates the empirical quantiles. We use monthly S&P 500 data,
described in Section 2.4.3. Panel (a) shows the empirical distribution function.
Panel (b) shows the first half of the function, indicated by the black vectors in
panel (a). The red vectors indicate the location of the pth empirical quantile for
p = 0.01. The location is determined by the seventh largest observation.

When p < 1/T, then the quantile estimator based on the empirical distri-
bution is equal to the smallest observation, no matter how small p is. When
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Figure 8.3 Definition ofempirical quantiles. (a) The empirical distribution function; (b) the first
half of the function, indicated by the black vectors in panel (a). The red vectors indicate the
location of the pth empirical quantile for p = 0.01.

p < 1/T, we have to extrapolate outside the range of observations in order to
estimate the quantile at level p. This can be done with parametric or semipara-
metric methods.

8.4.1.2 Smooth Empirical Quantiles

The smooth empirical quantiles apply kernel weights to modify the basic
empirical quantiles. The distribution function can be estimated smoothly,
or the quantiles can be directly estimated by a weighted sum of ordered
observations.

Kernel Estimation of the Distribution Function The kernel density estimator f
is defined in Section 3.2.2. The corresponding estimator of the distribution
function is

X T X
o= [ joa=-1Y [ Ko-na. (3:29)
~co0 i=1 J —o0

where x € R, K: R — Ris the kernel function, Kj,(x) = K(x/h)/h, and h > 0 is
the smoothing parameter. The corresponding quantile estimator is

Q,=F" ),
where p € (0,1). Azzalini (1981) has studied this quantile estimator.
Figure 8.4 illustrates the extrapolation outside the range of data and inter-
polation between the data points. We use monthly S&P 500 data, described in
Section 2.4.3.

In Figure 8.4(a) our purpose is to estimate the pth quantile for p = 0.1%. We
have less than 1000 observations, and the pth empirical quantile is the smallest
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Figure 8.4 Extrapolating and interpolating the empirical distribution. (a) The black vertical line
shows the empirical pth quantile for p = 0.1%. The red vertical line shows the Pareto quantile,
and the red curve shows the fitted Pareto distribution. (b) Kernel distribution function esti-
mates. The blue curve has smoothing parameter h chosen by the normal reference rule. The
black curve is oversmoothing and the green curve is undersmoothing.

observation, indicated by the black vertical line. The extrapolation can be done
by fitting the Pareto model to the data, and taking the quantile estimate to be
the pth quantile of the fitted Pareto distribution. The fitted Pareto distribution
is shown by the red curve, and the pth quantile of the Pareto distribution is
indicated by the red vertical line. Fitting of Pareto distributions is discussed in
Section 3.4.2.

In Figure 8.4(b) we show distribution function estimates (8.24). The blue
curve has smoothing parameter / chosen by the normal reference rule. The
black curve is oversmoothing and the green curve is undersmoothing. We see
that extrapolation outside the range of data is not possible with kernel distri-
bution function estimator, but interpolation between the extreme observations
is possible.

Kernel Quantile Estimators We have defined the empirical quantile in
(8.21)—(8.23). Equation (8.23) shows that the empirical quantile depends
on a single order statistics. L-estimators of quantiles are weighted averages of
several order statistics. The use of several order statistics in the estimation of
a quantile can improve the efficiency. A kernel quantile estimator is a special
case of L-estimators of quantiles. A kernel quantile estimator can be defined
for0O<p<1las

K ZLT=1 K,@i/T -p) Y,
Y X K,G/T - p)

(8.25)
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Figure 8.5 Kernel quantile estimator. (a) The implied distribution function estimates. The
smoothing parameter is h = 0.05 (red), h = 0.005 (blue), and h = 0.001 (green). (b) The quan-
tile estimates as a function of smoothing parameter. We estimate the pth quantile for p = 0.05
(purple), p = 0.01 (violet), and p = 0.001 (black).

where K, (x) = K(x/h)/h is the scaled kernel function, K : R — R is the kernel
function, and 4 > 0 is the smoothing parameter. The estimator is a weighted
average of order statistics Y[, for which i/ T is close to p.” Sheather and Marron
(1990) studies the asymptotic mean squared error of (8.25) and show that the
kernel quantile estimator has the same first-order asymptotics as the empirical
quantile, but the higher order asymptotics reveal improvement.?

Figure 8.5 studies the kernel quantile estimator in (8.25). Panel (a) shows the
implied distribution function estimates. The smoothing parameter is # = 0.05

7 Alternative definitions for the kernel quantile estimator are 77! ZL K,(i/T - p) Yy,

T Y K,((i—0.5)/T —p) Y, and T ¥ L, K, (i/(T + 1) — p) Y, Unlike (8.25), these estima-
tors are not normalized so that the weights sum up to 1. An additional form of a kernel quantile
i/T

estimator can be defined as Zszl ( L4 K (E=p) a't) Y, where the kernel function K is a density

(U
function. Sheather and Marron (1990) shows that these estimators are asymptotically equivalent
with (8.25), under certain conditions.

8 The asymptotic variance of the empirical quantile is 77! p(1 — p)[Q'(p)]?, where Q'(p) is the
derivative of the quantile function. The asymptotic mean squared error of the kernel quantile esti-

mator is under certain assumption

T'p(1 - plQ @) - 2T'HQ ()] / B uK )K"V W) du

—00

o 2
+47 Q" ())? [ / W K (1) du] + o(T 7 h) + o(hh),
where K-V is the antiderivative of K. We have that /. uK(u)KV(x) du > 0, which shows that the
higher order asymptotics is better for the kernel quantile estimator than for the empirical quantile,
because it reasonable to choose # = o(T~1/4).
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(red), & = 0.005 (blue), and # = 0.001 (green). Panel (b) shows the quantile esti-
mates as a function of smoothing parameter. We estimate the pth quantile for
p = 0.05 (purple), p = 0.01 (violet), and p = 0.001 (black). The vertical lines
indicate the smoothing parameters that are used in panel (a). We see that when
the smoothing parameter approaches zero, then the estimates approach the
basic empirical quantiles.

8.4.2 Conditional Empirical Quantiles

The conditional empirical quantiles can be defined both for time space smooth-
ing and state space smoothing.

8.4.2.1 Time Space Smoothing

Let Y}, ..., Y be stationary time series data. We can define one-sided moving
average estimator of the conditional quantile by inverting the one-sided moving
average estimator I/Eyt of the distribution function, defined by

t
B,y =Y p®O I oy(Y), t=1,....T,

i=1
where the weights p,(¢) are defined in (6.4). This gives

(Yo, 0<ppo)

Yo, pi@®) <p<pi@)+p,0),

QY 4...) =1 (8.26)
Yoo Xici pi0) <p < X2 P,

Yoo Ximap®O<p<l,

where the ordered sample is denoted by Y;, < Y5, <+ < Y.

8.4.2.2 State Space Smoothing
Let (X}, Y7),....(Xp, Yy) be identically distributed regression data, where
X; € R? is a predictive variable. An estimator of a conditional quantile of ¥
can be defined with the help of the estimator of the conditional distribution
function IA-"Y‘ x=x(9), defined by

T
By o) = Zp,-(x)l(_w,yj(Y,-), (8.27)

i=1
where the kernel weights p,(x) are defined in (6.21). We get the conditional
quantile estimator by taking the generalized inverse of the estimator of the
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Figure 8.6 Kernel estimates of conditional quantiles. (a) Conditional quantile estimates for the
levels p=0,1,0,2,...,0.9, when the smoothing parameter is h = 0.7; (b) estimates for the
level p = 0.1 when the smoothing parameters are h = 0.3,0.5,0.7,0.9. A contour plot of a
kernel estimate of the density of (X,, Y,) is also shown.

conditional distribution function:

Q,(Y|X =x) = inf{y: Fy_,(») > p}. (8.28)

The estimator can be written as

Yy, 0<p<p®),

Yo, P <p<pi®)+p,),

QY IX=x)=1" (8.29)
Yy, EiT:_lzpi(x) <p< ZiTz_llpi(x),

T-1
Yir), Yo px) <p<1,

where the ordered sample is denoted by Y;) < Y(;) <--- < Y.

Figure 8.6 shows conditional quantile estimates when kernel weights are
used. We apply the daily S&P 500 data of Section 2.4.1. Panel (a) shows
estimates for the levels p = 0,1,0,2,...,0.9, when the smoothing parameter
is 1 = 0.7. Panel (b) shows estimates for the level p = 0.1 when the smoothing
parameters are = 0.3,0.5, 0.7, 0.9. The standard normal kernel is used in both
panels. The explanatory and the response variables as

k
1
X, =log, T ZRf_i , Y, =log,|R,],
P
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where k = 10,and R, = (S, — S,_,)/S,_; are the net returns. We show also a con-
tour plot of a kernel estimate of the density of (X,, Y,).

8.5 Volatility Based Quantile Estimation

Volatility based quantile estimators are build on a location—scale model.
The location and the scale parameters are estimated, and the corresponding
quantile estimate is derived. The scale parameter can be estimated using the
sample standard deviation. Conditional quantile estimators are obtained from
estimators of the conditional mean and the conditional standard deviation.

8.5.1 Location-Scale Model
Consider a location—scale model
Y=pu+oe,

where y € R, 6 > 0, and ¢ is a real valued random variable. The quantile of ¥’
is obtained from the quantile of € by

Q,(Y) = pu+0c Qye). (8.30)
Indeed, for x € R,

P(YSx)=P(eg’%)=F (x_”),

¢ c

where F, is the distribution function of e. If € has a continuous distribution, then
F. is strictly increasing and the inverse function F-! exists. The pth quantile
Q,(Y) of Y satisfies P(Y < Q,(Y)) =p, and we can solve this equation to get
Q,(Y) = p + ¢ F.'(p), which implies (8.30).

For a known F,, we get from estimators /i and 6 the quantile estimator

Q) =ja+6F (). (8.31)

8.5.1.1 Examples of Location-Scale Quantile Estimators
For example, the Gaussian quantile estimator is

Q) =a+607 (), (8.32)

where /I is the sample mean, 6 is the sample standard deviation, and @ is the
distribution function of the standard normal distribution. The Student quantile
estimator is’

Q) =i+ L2 66, (8.33)

9 If X~¢, then Var(X) =v/(v—2), so that \/(v—2)/v £ (p) is the p-quantile of such
t-distribution which is standardized to have unit variance.
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where v > 2 is the degrees of freedom and ¢, is the distribution function of the
Student distribution with degrees of freedom v.

In practice the estimators are conditional in the sense that they are calculated
sequentially: estimator computed at time ¢ uses data Y, ..., Y,. Thatis, g = i,
is the sample mean and 6 = 6, is the sample standard deviation computed from
Y,.....Y,

8.5.1.2 Estimation of S&P 500 Quantiles
We estimate quantiles of the S&P 500 returns Y, using S&P 500 daily data,
described in Section 2.4.1. We estimate the quantiles using three estimators:

1) Empirical quantile

Q,(Y) =Y. (8.34)

where Y, <--- <Y, is the ordered sample. Note that the sequential
empirical quantiles are a special case of (8.26), when we take p;(¢) = 1/t,
i=1,..,¢

2) The Gaussian quantile estimator, as defined in (8.32).

3) The Student quantile estimator, as defined in (8.33). We use v = 6 degrees
of freedom.

We apply the performance measures that are defined in Section 8.3.
Probability Differences Figure 8.7 plots the probability differences p — R(p, p),

defined in (8.8). Panel (a) plots p — p for p close to 0, and panel (b) plots p — p for
p close to 1. The performance of empirical quantiles is shown in red, that of the

0.005
0.005

\

Student

0.94 0.96 0.98 1.00

0.00 0.02 0.04 0.06
p P
(a (b)

Figure 8.7 Quantile estimator performance. We plot function p — R(p, p), as defined in (8.8).
Empirical quantiles (red), Gaussian quantiles (black), and Student quantiles (blue). The green
lines show level a = 0.05 fluctuation bands. (a) Level p is close to zero; (b) p is close to one.
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Figure 8.8 Quantile estimator performance: Logarithmic x-axis. We plot function p — R(p, p),
as defined in (8.8). Empirical quantiles (red), Gaussian quantiles (black), and Student quantiles
(blue). The green lines show level a = 0.05 fluctuation bands. (a) Level p is close to zero; (b) p
is close to one.

Gaussian quantiles is shown in black, and that of the ¢-distribution quantiles
is in blue. A green line is drawn at level 0, and it is accompanied by the level
a = 0.05 fluctuation bands, defined in (8.10) and (8.11).

Figure 8.8 plots the probability differences when the x-axes have a logarithmic
scale, and in panel (b) x-axis takes values 1 — p.

Figures 8.7 and 8.8 indicate that the true distribution has heavier tails than
the quantile estimates would indicate. The empirical quantiles have the best
performance when p < 4% or p > 96%, but the Student quantiles are almost as
good as empirical quantiles in this range. The Gaussian quantiles have the best
performance when 4% < p < 96%.

Figure 8.9 shows slices of two-variate probability differences when p = 1%.
Panel (a) shows slices in (8.12) for £, = T and for £, = 1979. Panel (b) shows
slices in (8.13) for ¢, = £, and for ¢, = 1979. The red curves show p — p for the
empirical quantiles and the black curves show p — p for the Gaussian quantile
estimates. We see that the empirical quantiles are better for all shown time
intervals. The performance becomes worse for the time periods close to the
end. The fluctuation is large when the time periods are short.

Figure 8.10 shows vectors joining points p; and p,, as defined in (8.14), when
the time intervals [t,,t,] are defined in (8.15). We take the number K = 4 of
intervals and p = 1%. Panel (a) shows the case of empirical quantiles (red) and
the case of Gaussian quantiles (black). Panel (b) shows the case of empirical
quantiles (red) and the case of Student quantiles (blue). The green lines indicate
the fluctuation bands for confidence 95%. The empirical quantiles seem to be
uniformly better than Gaussian or Student quantiles.
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Figure 8.9 Quantile estimator performance: Slices of probability differences. We show p — p
when p = 1% for the empirical quantiles (red) and for the Gaussian quantile estimates (black).
Panel (a) shows slices in (8.12) for t, = T and for t, = 1979. Panel (b) shows slices in (8.13) for
t, = tyandfort, = 1979.
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Figure 8.10 Quantile estimator performance: Vectors over time intervals. We show vectors join-
ing points p, and p,, as defined in (8.14), when the time intervals ([t,, t,] are defined in (8.15)
forK = 4and p = 1%. (a) Empirical quantiles (red) and Gaussian quantiles (black); (b) empirical
quantiles (red) and Student quantiles (blue).

The Loss Function We illustrate performance measurement using the three
estimators defined in (8.32)—(8.34): the Gaussian quantile estimator, Student
quantile estimator, and empirical quantile estimator. These estimators are
conditional in the sense that they are computed sequentially: estimator g, uses
data Y7, ..., 7Y,
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Figure 8.11 Performance of quantile estimators: Expected loss. We show functions p —
R(gemPy — R(g97) (black) and p — R(Ge™) — R(g"“) (blue). (a) Range p € [0.001,0.075] and (b)
p € [0.925,0.999].

Figure 8.11 compares the estimated expected losses of the three estimators.
We show functions

p = R@G™) — R@G@™) (black), p+— R@G™) - R@G™) (blue),

where IA?(f]) is defined in (8.18) when the estimator is . We denote by g the
empirical quantile estimator, by % the Gaussian quantile estimator, and by
4™ the Student quantile estimator. Panel (a) shows range p € [0.001, 0.075].
Panel (b) shows range p € [0.925,0.999].

We obtain partially the same message as in Figures 8.7 and 8.8: The empirical
quantiles are best in the far away tails but the Gaussian quantile estimator is best
when we are closer to the center. Furthermore, the Student quantile estimator
is better than the Gaussian quantile estimator in the far away tails. Note that
we obtain less information than in Figures 8.7 and 8.8: We do not see whether
the estimators overestimate or underestimate the true quantiles.

Figure 8.12 shows the time series of differences

t t
C= Y o, (Yi=8")= D p,(¥,— ) (8.35)
i=ty+1 i=ty+1

of cumulative sums, where g;" is the empirical quantile estimator, and g is the
Gaussian quantile estimator (black) or the Student quantile estimator (blue).
Panel (a) considers pth quantiles for p = 0.1%. Panel (b) considers pth quan-
tiles for p = 5%. We see that for p = 0.1% the empirical quantile estimator is
better than the Gaussian quantile estimator, but the empirical quantile estima-
tor is worse than the Student estimator at the beginning of the time period. For
p = 5% the empirical quantile estimator is equally good as the Gaussian and
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Figure 8.12 Performance of quantile estimators: Cumulative losses. We show time series C, in
(8.35). (@) p =0.1% and (b) p = 5%.
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Student quantile estimator at the beginning of the period, but better at the end
of the period.

8.5.2 Conditional Location-Scale Model
The conditional heteroskedasticity model
Y, = p, + o6,

was defined in (5.29) for u, = 0. For the financial returns the signal (the
expected return) is typically of a lower order than the noise, and thus in
quantile estimation the location p, can usually be ignored. We do not ignore
U, but use only the sample mean to estimate y,, instead of using any more
sophisticated methods.

We use the conditional quantile estimator

QYIF_) = h,+8, Qye), (8.36)

where /i, is the prediction of Y, ,, 6, is the predicted volatility (an estimator of
the conditional standard deviation of Y, ; ), and Q,(€,) is an estimator of the pth
quantile of the distribution of ¢, = (Y, — u,)/0,.

8.5.2.1 Examples of Conditional Location-Scale Quantile Estimators
We choose f1, to be the sequential sample mean. We choose the estimator 6, of
the conditional standard deviation to be either the GARCH(1, 1) predictor, the
square root of an exponentially weighted moving average of squared returns,
or a state space kernel predictor of volatility. These predictors are discussed in
Chapter 7.

We choose the estimator Qp(et) of the quantile of the residuals to be either
a fixed quantile function, or the empirical quantile of the residuals. We can
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choose Qp(et) = ®~Y(p), where @ is the distribution function of the standard
normal distribution. This leads to the estimator

QY IF,_) = p, +6, @7\ (p). (8.37)

Second, we can choose Qp(et) =/(v —2)/v t;1(p), where ¢, is the distribution
function of the ¢-distribution with v degrees of freedom, v > 2. This leads to
the quantile estimator

QT = f+1*2 6,670 (839)

We can choose Qp(et) to be the empirical quantile of the residuals Y,/6,. This
leads to the quantile estimator

QIF. ) =a+6, Q4P (8.39)
where Q’*(p) is the pth empirical quantile, computed from
Yy = A)/64, ..., (Y, — )/ 6,

Empirical quantiles are defined in (8.21). Note that when ¢, = - - - = ¢,, then
6, Q' (p) is the empirical quantile computed from Y, ..., Y,. Thus, the use of
an empirical quantile of residuals makes sense only in the conditional quantile
estimation. The method of using empirical quantiles of residuals was suggested
in Fan and Gu (2003).

The distribution of the GARCH(1, 1) residuals Y, /6, is studied in Figure 5.10,
which shows the tail plots of the residuals. The maximum likelihood estimator
of the GARCH(1, 1) model is defined with the assumption of standard normal
innovations, but Figure 5.10 indicates that the tails of the residuals are better
fitted with the z-distribution and thus it makes sense to try to use quantiles
from the ¢-distribution.

8.5.2.2 Estimation of S&P 500 Quantiles

We study the performance of the GARCH(1, 1) volatility estimator in
quantile estimation and compare its performance to the performance of
moving average estimators. We use the daily S&P 500 data, described in
Section 2.4.1.

The sequential GARCH(1, 1) volatility predictor é'farCh is defined in (7.7),
where a different notation is used (here we use subindex ¢ instead of ¢ + 1).
Exponentially weighted moving average 6;"" for the estimation of conditional
variance was defined in (7.9). We also use the name “EWMA (%) estimator” to
refer to the exponentially weighted moving average estimator with smoothing
parameter /.

The performance of the exponentially weighted moving average and
GARCH(1, 1) volatility estimator is compared in Section 7.4.2.
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Figure 8.13 GARCH(1, 1) quantiles. The figure shows the time series of estimated pth quantiles
with p = 0.05 for the S&P 500 returns data. The quantiles are estimated with the GARCH(1, 1)
method with the residual distribution being the standard normal.

GARCH(1, 1)-Based Quantile Estimators GARCH(1, 1)-based quantile estimator is
defined by (8.36), when 6, is estimated with the GARCH(1, 1) method. The
residual quantile is determined with one of the three methods in (8.37)—(8.39).

Figure 8.13 shows the time series of estimated conditional quantiles with the
level p = 0.05. The distribution of the residuals is the standard normal distri-
bution: we use the method (8.37).

Figure 8.14 compares the three methods in (8.37)—(8.39). Panel (a) plots
the function p = p — p in the range p € [0.001,0.075] and panel (b) plots the
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Figure 8.14 Performance of GARCH(1, 1) quantile estimators: Probability differences. (a) Func-
tions p — p — p are shown for p € [0.001,0.075]. (b) Functions p — p — p are shown for
p € [0.925,0.999]. The residuals are the standard normal (black) and the t-distribution with
degrees of freedom 12 (blue), degrees of freedom 5 (red), and the empirical distribution (pur-
ple).
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function p — p —p in the range p € [0.925,0.999]. Four cases are shown:
the residual distribution is the standard normal distribution (black), the
standardized ¢-distribution with degrees of freedom 5 (red) and 12 (blue), and
the empirical distribution (purple). The green lines show the level a = 0.05
fluctuation bands, defined in (8.10) and (8.11).

We see from Figure 8.14(a) that the Gaussian residuals perform well for level
p = 0.05, but for level p = 0.01 using a ¢-distribution or the empirical distribu-
tion gives better estimates. The GARCH(1, 1)-based quantile estimates are esti-
mating the left tail of the S&P 500 return distribution too light, except when the
residuals are from the ¢-distribution with degrees of freedom 5, in which case
the tail is estimated too heavy for levels p < 0.01. We see from Figure 8.14(b)
that for the right tail the quantile estimates are more accurate than for the left
tail. The standard ¢-distribution with degrees of freedom 12 gives a good overall
performance.

Figure 8.15 shows slices of two-variate probability differences when p = 0.1%.
Panel (a) shows slices in (8.12) for ¢, = T and for ¢, = 1979. Panel (b) shows
slices in (8.13) for ¢; = ¢, and for ¢, = 1979. The purple curves show p — p when
the quantiles of the residuals are the empirical quantiles and the black curves
show p — p when the quantiles of the residuals are from the standard normal
distribution. We see that the empirical quantiles are better for all shown time
intervals. The performance becomes worse for the time periods close to the
end. The fluctuation is large when the time periods are short.

Figure 8.16 shows functions
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Figure 8.15 Performance of GARCH(1, 1) quantile estimators: Slices of probability differences. We
show p — p when p = 0.1% for the empirical residuals (purple) and for the Gaussian residuals
(black). Panel (a) shows slices in (8.12) for t, = T and for t, = 1979. Panel (b) shows slices in
(8.13)fort, = t, and for t; = 1979.
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Figure 8.16 Performance of GARCH(1, 1) quantile estimators: Loss function. Functions p —
R(@®*) — R(@) (a) p € [0.001,0.075]: (b) p € [0.925,0.999]. The residuals in § are the standard
normal (black) and the t-distribution with degrees of freedom 12 (blue) and degrees of free-
dom 5 (red).

where IAQ(LA]) is the mean loss, defined in (8.18). Panel (a) shows range
p € [0.001,0.075]. Panel (b) shows range p € [0.925,0.999]. We denote by
g°® the quantile estimator when the residual distribution is the empirical
distribution. The estimator § is the quantile estimator with the standard
normal distribution (black), the standardized ¢-distribution with degrees of
freedom 5 (red) and 12 (blue). We see that for p close to 0, the ¢-distribution
with degrees of freedom 5 gives the best result. When p is close to 1, the
t-distribution with degrees of freedom 12 gives the best result.
Figure 8.17 shows time series of differences

t t
C= 2 p(Yi=&) = Y, o (Y- @) (8.40)

i=ty+1 i=ty+1

of cumulative sums, where g is the quantile estimator with empirical residu-
als, and g, has the Gaussian residuals (black), the Student residuals with degrees
of freedom 5 (red), and degrees of freedom 12 (blue). Panel (a) considers pth
conditional quantiles for p = 0.1%. Panel (b) considers pth conditional quan-
tiles for p = 5%. We see that for p = 0.1% the Student distribution with five
degrees of freedom leads to best results, for almost all time intervals. For p =
1% the Student distribution with 5 degrees of freedom and 12 degrees of free-
dom leads to almost equal performance, for almost all time intervals.

EWMA-Based Quantile Estimators Exponentially weighted moving average
(EWMA) based quantile estimators are defined by (8.36), where 6, is
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Figure 8.17 Performance of GARCH(1, 1) quantile estimators: Cumulative losses. We show time
series C, in (8.40). (a) p = 0.1%; (b) p = 1%. The residuals of g; are the standard normal (black)
and the t-distribution with degrees of freedom 12 (blue) and degrees of freedom 5 (red).

calculated with the EWMA method, and the residual quantile is determined
with one of the three methods in (8.37)—(8.39).
Figure 8.18 shows functions

he R(g,),

where f?(@]) is the mean loss, defined in (8.18), and % is the smoothing parameter
of the EWMA estimator of 6,. Panel (a) estimates pth conditional quantiles for
p = 0.1%. Panel (b) has p = 1%. The quantile estimators g, have the Gaussian
residuals (black with “2”), the Student residuals with degrees of freedom 5 (red

©
2 o |1 Eres
S 4 1 Eres Q
o S
[} =
- o
1] T 1] T
8 3 <
S g S
§ 387 § 8|
2 o 25
s ° , \ =3
., Gauss 2 12 Gauss 2
94 2R o— 27 4.gf> A ’/3
8_3\4M§;%/7—g~7 3 3\2 §2/
=8 M S df=5 g:i/
T T T T T o. T T T T T
5 10 20 50 100 © 5 10 20 50 100
h h

(a) (b)

Figure 8.18 EWMA(h) quantile estimator: Mean losses. The mean loss is shown as a function of
smoothing parameter h. (a) p = 0.1%; (b) p = 1%. The residual distributions are the standard
Gaussian (black with “2”), the Student with degrees of freedom 5 (red with “3"), degrees of
freedom 12 (blue with “4”), and the empirical (purple with “1").
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with “3”), degrees of freedom 12 (blue with “4”), and the empirical residuals
(purple with “1”). We see that the Student residual with degrees of freedom 5
gives the best results, for smoothing parameter 7 = 5 for p = 0.1% and 4 = 10
for 1%. The optimal smoothing parameter is larger in the case of empirical
residuals than the optimal smoothing parameter in the case of Gaussian or Stu-
dent residuals.

Figure 8.19 shows functions

h = ie(éh)»

where f?(?]) is the mean loss, defined in (8.18), and / is the smoothing parame-
ter of the EWMA estimator of 6,. Panel (a) estimates pth conditional quantiles
for p = 0.1%. Panel (b) has p = 1%. The quantile estimators g, have the Stu-
dent residuals with degrees of freedom 4 (black with “1”), 5 (red with “27),
and 6 (blue with “3”). The horizontal lines show the mean losses when 6, is
the GARCH(1, 1) volatility. We see that for p = 0.1% the EWMA can perform
better than GARCH(1, 1), but for p = 1% GARCH(1, 1) is better.

Figure 8.20 shows the performance of exponentially weighted moving
average for four smoothing parameters: 7 =2 (black), # =5 (red), & =20
(blue), and / = 40 (purple). Panel (a) plots the function p — p — p in the range
p € [0.001,0.075], and panel (b) plots the function p +— p — p in the range
p €[0.925,0.999]. The distribution of the residuals is Student with degrees
of freedom equal to 4. The green horizontal line is drawn at level zero, and
it is accompanied with the level @ = 0.05 fluctuation bands. The smoothing
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Figure 8.19 EWMA(h) quantile estimator: Mean losses for Student residuals. The mean loss is
shown as a function of smoothing parameter h. (@) p = 0.1% and (b) p = 1%. The residual
distributions are the Student distributions with degrees of freedom 4 (black with “1”), 5 (red
with “2"), and 6 (blue with “3”). The horizontal lines show the mean losses for GARCH(1, 1)
volatility.
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Figure 8.20 EWMA(h) quantile estimator: Smoothing parameter selection for Student residuals.
Panel (a) shows the curves p — p — p for p € [0.001,0.075] and panel (b) shows the curves
p+— p —p for the cases p € [0.925,0.999]. The distribution of the residuals is Student with
degrees of freedom equal to 4. The smoothing parameters h = 2,5, 20, 40 are shown with
the colors black, red, blue, and purple.

parameters /2 = 10 and /% = 30 give the best results for large p. However, for
small p the smoothing parameter # = 100 gives the best results.

Figure 8.21 shows the performance of exponentially weighted moving
average for four smoothing parameters: # =5 (black), # =10 (red), # = 30
(blue), and & = 100 (purple). Panel (a) plots the function p — p — p in the range
p €[0.001,0.075], and panel (b) plots the function p +— p — p in the range
p €10.925,0.999]. The distribution of the residuals is the standard normal.
The green horizontal line is drawn at level zero, and it is accompanied with
the level a = 0.05 fluctuation bands. The smoothing parameters # = 10 and
h = 30 give the best results for large p. However, for small p the smoothing
parameter /7 = 100 gives the best results.

Figure 8.22 shows the performance of the exponentially weighted moving
average estimator with the smoothing parameter s = 30 for four residual
distributions. Panel (a) shows the curves p — p — p for p € [0.001, 0.075] and
panel (b) shows the curves p — p — p for the cases p € [0.925,0.999]. The blue
curve shows the standard normal residual distribution, the black curve shows
the standard ¢-distribution with degrees of freedom 12, the red curve shows
degrees of freedom 5, and the purple curve shows the case of using empirical
distribution. For the left tail the empirical residuals give the best result, except
when p > 0.05, when the Gaussian residual give the best result. For the right
tail the empirical residuals and the standard ¢-distribution with degrees of
freedom 12 give the best results.
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Figure 8.21 EWMA(h) quantile estimator: Smoothing parameter selection for Gaussian residu-
als. Panel (a) shows the curves p — p — pforp € [0.001, 0.075] and panel (b) shows the curves
p +— p —p for the cases p € [0.925,0.999]. The distribution of the residuals is the standard
normal. The smoothing parameters h = 5,10, 30,100 are shown with the colors black, red,
blue, and purple.
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Figure 8.22 EWMA(h) quantile estimator: Selection of residual distribution using probability
differences. (a) The curves p — p —p for p € [0.001,0.075]. (b) The curves p+— p —p for
p € [0.925,0.999]. The residual distributions standard normal, standard t-distribution with
degrees of freedom 12, degrees of freedom 5, and the empirical distribution are shown with
the colors blue, red, black, and green.
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Figure 8.23 Performance of EWMA(h) quantile estimators: Selection of residual distribution
using loss function. Functions p — R(G%®) — R(@) for (a) p € [0.001,0.075] and (b) p €
[0.925,0.999]. The residuals in g are the standard normal (black) and the t-distribution with
degrees of freedom 12 (blue) and degrees of freedom 5 (red).

Figure 8.23 shows functions
P R@) - R@)
where f?(ﬁ]) is the mean loss, defined in (8.18). Panel (a) shows range
p €10.001,0.075]. Panel (b) shows range p € [0.925,0.999]. We denote by
gG°* the quantile estimator when the residual distribution is the empirical
distribution. The estimator ¢ is the quantile estimator with the the standard
normal distribution (black), the standardized z-distribution with degrees
of freedom 5 (red) and 12 (blue). We see that for p close to 0, the Student
distribution with degrees of freedom 5 gives the best result. When p is close

to 1, the Student distribution with degrees of freedom 12 gives the best result.
Figure 8.24 shows time series of differences

t t
C= Y p,(Yi=8")= D p¥,—- ) (8.41)
i=ty+1 i=ty+1

of cumulative sums, where qj’"” is the empirical quantile estimator, and g, is the
Gaussian quantile estimator (black) or the Student quantile estimator (blue).
Panel (a) considers pth conditional quantiles for p = 0.1%. Panel (b) considers
pth conditional quantiles for p = 5%. We see that for p = 0.1% the empirical
quantile estimator is better than the Gaussian quantile estimator, but the empir-
ical quantile estimator is worse than the Student estimator at the beginning of
the time period. For p = 5% the empirical quantile estimator is equally good as
the Gaussian and Student quantile estimators at the beginning of the period,
but better at the end of the period.
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Figure 8.24 Performance of EWMA quantile estimators: Cumulative losses. We show time series
C,in(8.41).(a) p = 0.1% and (b) p = 5%. The residuals are the standard normal (black) and the
t-distribution with degrees of freedom 12 (blue), degrees of freedom 5 (red), and the empirical
distribution (purple).

Kernel Smoothing-Based Quantile Estimators We define in Section 7.5.2 a kernel
estimator 6'?” for the conditional standard deviation, which uses as predictors
the exponentially weighted moving averages of past squared returns and past
returns, as defined in (7.19). The smoothing parameter g involved in the defi-
nition of the predictors is taken to be g = 40. Estimator 6" is now applied to
quantile estimation.

Section 7.5.2 shows that the kernel estimator is better than GARCH(1, 1)
for volatility estimation, when the performance is measured in the terms of
the sum of squared prediction errors. In this section we see that the kernel
estimator leads to a better quantile estimator than GARCH(1, 1). Looking at
the aggregated mean loss it seems that the GARCH(1, 1) would perform better
for the estimation of the pth conditional quantiles when p is close to 0. However,
looking at the cumulative losses in Figure 8.29 reveals that kernel estimator is
better for all other time periods, but autumn 1987 makes the aggregate mean
loss better for GARCH(1, 1), when p is close to 0.

Figure 8.25 shows functions

he R(g,),

where f?(?]h) is the mean loss, defined in (8.18), and / is the smoothing parame-
ter of the kernel estimator 6;‘". Panel (a) estimates the pth conditional quantiles
for p = 0.1%. Panel (b) has p = 1%. The quantile estimators g, have the Gaus-
sian residuals (black with “2”), the Student residuals with degrees of freedom 5
(red with “3”), degrees of freedom 12 (blue with “4”), and the empirical residu-
als (purple with “1”). We see that the Student residuals with degrees of freedom
5 give the best results.
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Figure 8.25 Kernel quantile estimator: Mean losses. The mean loss is shown as a function of
smoothing parameter h. (a) p = 0.1% and (b) p = 1%. The residual distributions are the stan-
dard Gaussian (black with “2"), the Student with degrees of freedom 5 (red with “3"), degrees
of freedom 12 (blue with “4"), and the empirical (purple with “1").
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Figure 8.26 Kernel quantile estimator: Mean losses for Student residuals when p is close to 0. The
mean loss is shown as a function of smoothing parameter h. (@) p = 0.1% and (b) p = 1%. The
residual distributions are the Student distributions with degrees of freedom 4 (black with “1”),
5 (red with “2"), and 6 (blue with “3"). The horizontal lines show the mean losses for GARCH(1,
1) volatility.

Figure 8.26 shows functions / — R(§,), where R(3,,) is the mean loss, defined
in (8.18), and / is the smoothing parameter of the kernel estimator 6. Panel (a)
estimates pth conditional quantiles for p = 0.1%. Panel (b) has p = 1%. The
quantile estimators g, have the Student residuals with degrees of freedom 4
(black with “1”), 5 (red with “2”), and 6 (blue with “3”). The horizontal lines show
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Figure 8.27 Kernel quantile estimator: Mean losses for Student residuals when p is close to 1. The
mean loss is shown as a function of smoothing parameter h. (a) p = 0.999and (b) p = 0.99.The
residual distributions are the Student distributions with degrees of freedom 4 (black with “1”),
5 (red with “2"), and 6 (blue with “3"). The horizontal lines show the mean losses for GARCH(1,
1) volatility.

the mean losses when 6, is the GARCH(1, 1) volatility. We see that GARCH(1,
1) gives better results than the kernel estimator, and the degrees of freedom 4
gives the best results.

Figure 8.27 shows functions / — f?(i]h), where IAQ(E[,,) is the mean loss, defined
in (8.18), and % is the smoothing parameter of the kernel estimator &f‘”. Panel (a)
estimates pth conditional quantiles for p = 0.999. Panel (b) has p = 99. The
quantile estimators g, have the Student residuals with degrees of freedom 4
(black with “1”), 5 (red with “2”), and 6 (blue with “3”). The horizontal lines
show the mean losses when 6, is the GARCH(1, 1) volatility. We see that kernel
estimator gives better results than GARCH(1, 1), and the degrees of freedom 6
gives the best results.

Figure 8.28 shows the performance of the kernel estimator for the
empirical residual distribution. Panel (a) shows the curves p+— p —p for
p € [0.001,0.075], and panel (b) shows the curves p — p —p for the cases
p € [0.925,0.999]. The smoothing parameter of the kernel estimator is # = 0.2
(black), # = 0.5 (red), and # = 1 (blue).

Figure 8.29 shows time series of differences

t t
C= 2 % <Yi - qfwh) - 2 2 (%-a) (8.42)

i=t,+1 i=ty+1

of cumulative sums, where c}fm;' uses the GARCH(1, 1) volatility and 41" uses
the kernel estimator of volatility. Panel (a) considers pth conditional quantiles
for p = 0.1%. Panel (b) considers pth conditional quantiles for p = 5%. The dis-
tribution of the residuals is the Student distribution with degrees of freedom 5.
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Figure 8.28 Kernel quantile estimator: Empirical residual for many h. (@) The curvesp +— p — p
for p € [0.001,0.075]. (b) The curves p — p — p for p € [0.925,0.999]. The smoothing param-
eter of the kernel estimator is h = 0.2 (black), h = 0.5 (red), and h = 1 (blue).
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Figure 8.29 Kernel versus GARCH quantile estimator: Cumulative losses. We show time series C,
in (8.42). (@) p = 0.1% and (b) p = 0.999.

The smoothing parameter of the kernel estimator is # = 0.4. We see that for
p = 0.1% the kernel estimator is better or equally good as GARCH estimator,
expect at autumn 1987. For p = 0.999 the kernel estimator is better for almost
all time periods.

8.6 Excess Distributions in Quantile Estimation

Let Y €R be a random variable with a continuous distribution, let
F(x) = P(Y < x) be the distribution function of Y, and f the density function.
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8.6.1 The Excess Distributions

We define the upper excess distribution and the lower excess distribution. We
can use the term “excess distribution” without a further qualification when
it is clear from the context whether we mean the upper or the lower excess
distribution.

8.6.1.1 The Upper Excess Distribution
The distribution function of the excess distribution with threshold z € R is
F(x +u) — F(u)

= —u < = .
F,x)=P(Y —u<x|Y >u T—Fw) (8.43)
where x > 0. The density function is
flx+u)
=—7] . 44
Ju®) 1-F) [0,00) (%) (8.44)
Now it holds that

SO ) (%) = (1 = F@))f, (%)

This implies that we can model the right tail of f by giving a parametric model
for f,. These definitions were given in (3.59) and (3.60) and the estimation of
the excess distribution is studied in Section 3.4.

The quantiles can be written in terms of the excess distribution. If the quantile
satisfies Q,(Y) > u, then

— o,  1-p

Q,(Y)=u+F, <1 —1—F(u)>' (8.45)

Indeed, let x > u. Now
_P(Y >x)
PY >x|Y >u) = P—(Y >0
Thus,

P(Y >x) =P > u) P(Y > x|Y > u)
=PY>u)P(Y—u>x—ulY >u)
=P >u)[1-F,(x—ul

Thus,
_,_ PO>x

e )

and

x=u+F! <1—M>.

P(Y > u)

Now we choose x = Q,(Y) and use the fact that if the distribution of Y is con-
tinuous, then P(Y > Q,(Y)) = 1 — p to get (8.45).
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8.6.1.2 The Lower Excess Distribution
The distribution function of the lower excess distribution with threshold
u € Ris

F(u) — F(u —x)

Fj) = Pu—Y <xlY <uw)= =2

, (8.46)

where x > 0. The density function is

 fu—x)
18 ="

Now it holds that
S @ q(x) = Fu)f, (x).

This implies that we can model the left tail of f by giving a parametric model
for f,. The quantiles can be written in terms of the lower excess distribution.
We have that

1 __P_
QY)=u-F, <1 F(u)>, (8.47)

when the quantile satisfies Q,(Y) < u."

19 o))

8.6.1.3 Quantile Estimators Using Excess Distributions

Now we obtain semiparametric estimators of the quantiles. Let 0 < p <
Po <0.5,0r 0.5 < p, < p < 1. First we estimate the p,th quantile using empir-
ical quantiles. Let the estimate be u = Qpn‘ Then we model F, parametrically,

10 Indeed, let x < u. Now
P(Y < %)

P(Y <x|Y <u)= Y <)

Thus,

P(Y <x)=PY <u) P(Y <x|Y <u)
=PY<u)P(Y—u<x—ulY <u)
=PY<u)Pu-Y >u—x|Y <u)
=P(Y < u) [1—F,(u—x)]

Thus,

P(Y < x)
P(Y < u)

F(u-x)=1-

and

x=u—F! <1—P(Y<x)>.

P(Y < u)

Now we choose x = QP(Y) and use the fact that if the distribution of Y is continuous, then P(Y <
Q,(Y)) = p to get (8.47).
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estimate the parameters, and use (8.45) and (8.47) to estimate the pth quantile.
This is reasonable because estimation of the p,th quantile is easier than the
estimation of the pth quantile.

8.6.1.4 A Connection to Location-Scale Model
We can obtain the formula

Q,(Y) = u+o F'(p). (8.48)

of location—scale modeling as a special case of the excess distribution modeling.
Formula (8.48) was given in (8.30).

Let the distribution of € be symmetric around zero. Then the density function
of e satisfies f.(x) = f.(—x). Define

X

f@) = %fe (g) L@,  Fyx) =2 (Fe <;) —1 /2) L0 (®).
We have that

F'(p) = oF! <‘”—+1> .

2
Choose u = pand F(u) = 1/2. Thenfor1/2 <p <1
l-p
_ 11 _ _ -1
Q,(Y)=u+F, <1 1—F(u)> U+ oF.(p).
ForO<p<1/2
_ p _ _
VN=u-F'(1-=— ) =u—-0oF'(-p) = F1(p).
QY)=u ,,< F(u)> u—oF, (-p)=pu+oF, (p)

8.6.2 Unconditional Quantile Estimation

We study the estimation of the lower quantiles using formula

- 14
V£N=u-F'(1-="—), 8.49
QY)=u-F, < F(u)> (8.49)
as derived in (8.47), where 0 < p < F(u) < 0.5. We choose
U= j:—l(po)’ (8.50)

where F is the empirical distribution function, £~' means the general-
ized inverse, and 0 < p < p, < 0.5. The excess distribution F, is modeled
parametrically, and the parameters of F, are estimated.

The study is made using the daily S&P 500 data, described in Section 2.4.1.
The quantile estimator is unconditional, but the performance is measured
sequentially: the estimator is updated at each time ¢ using the previous data.

Section 3.4.2 describes the one-parameter exponential and Pareto distribu-
tions, and the two-parameter gamma, generalized Pareto, and Weibull distri-
butions. We apply these distributions to model excess distributions.
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We study the performance of quantile estimators for various values of p, /p.
Since p, = p means that the estimator is the empirical quantile estimator, we
are comparing the estimators to the empirical quantile estimator.

8.6.2.1 Exponential Excess Distribution

Let F, be the excess distribution of Y. When F, is an exponential distribution,
then F;(p) = —flog(1 — p), where f > 0 is the parameter of the exponential
distribution. When 0 < p < F(u) < 0.5,

p
Y)= 1 — ], 8.51
QY)=u+p 0g<F(u)> (8.51)
and the maximum likelihood estimator of parameter f is
A 1
z_z -Y), L={Y.:Y <u}. 8.52
ﬂleft # Yeﬁ(u l) { i i M} ( )

When 0.5 < F(x) < p < 1, then analogous formulas hold.!!

Figures 8.30 and 8.31 show that the exponential excess distribution leads
to a better quantile estimator than the empirical quantile estimator. The ratio
Po/p = 3 leads to best estimates, for small p.

Figure 8.30 studies the performance of the exponential quantile estimator as
a function of p,/p, for several values of p. We estimate quantiles with levels
p =0.1% (black), p = 1% (red), and p = 5% (blue). Panel (a) shows the ratios
p/p as a function of the ratio p,/p, where p is the implied estimate of the
probability p, as defined in (8.6), and p, is the probability in (8.50). Panel (b)
shows the estimates of the expected loss as a function of ratio p,/p: we show
functions

R(k) — min, R(k)

k— - —,
max; R(k) — min, R(k)

(8.53)

where k =p,/p > 1 is the multiplier and the estimated expected loss R is
defined in (8.18). The value of R depends on p and p, through the quantile esti-
mates. We indicate by vertical lines the values p,/p (a) minimizing [p/p — 1|
(b) minimizing R. We see that the ratio Po/p =~ 3 gives the best results for
all values of p. Note that the ratio p,/p = 1 implies that the estimator is the
empirical quantile.

11 The pth quantile of Y is

1-—
Qp(Y>=u—ﬁlog(1_Ffu)),

and the parameter estimate is
A 1 .
Bige = 377 2, Mimw. R={Y2Y,>u}.

Y,er
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Figure 8.30 Exponential model. (a) Ratios p/p as a function of the multiplier k = p, /p. (b) The
expected loss R as a function of multiplier k. The quantile level p takes values p = 0.1% (black),
p = 1% (red), and p = 5% (blue).
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Figure 8.31 Exponential model. (a) Function p — p/p, where p is the estimate of the
exceedance probability. (b) Function p — R(k) — R(1), where R is the estimated loss when the
multiplier of the quantile estimator is k = p,,/p. The multiplier is k = 1 (violet), k = 2 (purple),
k = 3 (dark green), k = 4 (pink), and k = 5 (yellow).

Figure 8.31 studies the performance of the exponential quantile estimator as a
function of p, for several values of k = p,/p. We consider values k = 1 (violet),
k =2 (purple), k = 3 (dark green), k = 4 (pink), and k =5 (yellow). Panel (a)
shows functions p — p/p, where p is the implied estimate of the probability
p; as defined in (8.6). The green lines show the fluctuation bands for a = 5%.
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Panel (b) shows functions
p RO = R,

where the estimated expected loss R is defined in (8.18), and R depends on
k = p,/p through the quantile estimates. Note that the multiplier k = 1 implies
that the quantile estimator is the empirical quantile, because then Q,(Y) = u.
Thus, negative values of R(k) = R(1) imply that the quantile estimator with mul-
tiplier & is better than the empirical quantile. We see from panels (a) and (b) that
the exponential quantiles are better than the empirical quantiles. We see from
panel (a) that the true distribution seems to have a heavier tail than the expo-
nential quantiles indicate, and that multiplier k = 2 leads to best results, at least
for small p. We see from panel (b) that multiplier k = 3 leads to best results.

8.6.2.2 Pareto Excess Distribution

When the excess distribution F, of Y is a Pareto distribution, then F,'(p) =
u(l —p)™V% —y for u>0 and F;'(p) = —u(l — p) /% + u for u < 0, where
a > 0is the parameter of the Pareto distribution. Here, we use the Pareto distri-
bution with the support [0, o), as defined in (3.74). When 0 < p < F(u) < 0.5,

then
1/a
Q,(Y) = u<?> . (8.54)

Note that when u < 0, then Q,(Y) <u, because a > 0 and F(u)/p > 1. The
maximum likelihood estimator of parameter «a is

-1
Yo = (i D 10g(Yi/M)> s L={Y; Y, <uj.
Yer

Analogous formulas hold when 0.5 < F(u) < p < 1.12

Figures 8.32 and 8.33 show that the Pareto excess distribution leads to better
quantile estimates than the empirical quantiles, and ratio p,/p can be even 6-10
for p = 1-5%. For p = 0.1% modeling with the Pareto excess distribution does
not lead to a better performance than the performance of the empirical quantile
estimator.

12 When p and u are such that 0.5 < F(u) < p < 1, then the pth quantile of the distribution of Y is

1-Fw\ "
Qp(Y)=u<T> .

Note that when u > 0, then Qp(Y) > u, because @ > 0 and (1 — F(x))/(1 — p) > 1. The maximum
likelihood estimator of parameter a is

-1
N 1
arighz=<ﬁzlog(yi/u)> . R=A{Y;1Y, >u}.

Y,erR
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Figure 8.32 Pareto model. (a) Ratios p/p as a function of the multiplier k = p,/p. (b) The
expected loss R as a function of multiplier k. The quantile level p takes values p = 0.1% (black),
p = 1% (red), and p = 5% (blue).
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Figure 8.33 Pareto model. (a) Function p — p/p, where p is the estimate of the exceedance
probability. (b) Function p — R(k) — R(1), where Ris the estimated loss when the multiplier of
the quantile estimator is k = p,/p. The multiplier is k = 1 (violet), k = 3 (purple), k = 6 (dark
green), and k = 8 (pink).

Figure 8.32 studies the performance of the Pareto quantile estimator as a
function of p,/p, for several values of p. We estimate quantiles with levels
p = 0.1% (black), p = 1% (red), and p = 5% (blue). The setting is the same as in
Figure 8.30. We see that the threshold # = 2.5 X p is close to optimum, and the
expected loss does not change much when u is larger than that.
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Figure 8.34 Gamma model. (a) Ratios p/p as a function of the multiplier k = p,/p. (b) The
expected loss R as a function of multiplier k. The quantile level p takes values p = 0.1% (black),
p = 1% (red), and p = 5% (blue).

Figure 8.33 studies the performance of the Pareto quantile estimator as a
function of p, for several values of k = p,/p. We consider values k = 1 (violet),
k = 3 (purple), k = 6 (dark green), and k = 8 (pink). The setting is the same as
in Figure 8.31.

8.6.2.3 The Gamma Excess Distribution

Le the excess distribution F,, be a gamma distribution. The gamma distribution
has parameters k > 0 and > 0. The quantile function F,!(p) cannot be given
in a closed form, and the maximum likelihood estimators of the parameters do
not have a closed-form expression.

Figures 8.34 and 8.35 show that the gamma excess distribution leads to worse
quantile estimates than the empirical quantiles, for p = 0.1-5%.

Figure 8.34 studies the performance of the gamma quantile estimator as a
function of p,/p, for several values of p. We estimate quantiles with levels p =
0.1% (black), p = 1% (red), and p = 5% (blue). The setting is the same as in
Figure 8.30.

Figure 8.35 studies the performance of the gamma quantile estimator as
a function of p, for several values of k = p,/p. We consider values k =1
(violet), k = 2 (purple), and k = 3 (dark green). The setting is the same as in
Figure 8.31.

8.6.2.4 The Generalized Pareto Excess Distribution

The parameters of the generalized Pareto distributions are £ > 0 and § > 0.
For £ = 0 the distributions are exponential. When the excess distribution is a
generalized Pareto distribution, then for & > 0, F,;'(p) = (8/&)[(1 — p)~¢ —1].
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Figure 8.35 Gamma model. (a) Function p — p/p, where p is the estimate of the exceedance
probability. (b) Function p — R(k) — R(1), where R is the estimated loss when the multiplier
of the quantile estimator is k = p, /p. The multiplier is k = 1 (violet), k = 2 (purple),and k = 3
(dark green).

For & =0, F;1(p) = —Blog(1 — p). For 0 < p < F(u) < 0.5 the pth quantile is

p =<
Q,Y)=u-(B/%) l(@) - 1] .

For 0 < p < F(u) < 0.5 we have analogous expressions.!* The maximum likeli-
hood estimators of parameters do not have a closed-form expression.

Figures 8.36 and 8.37 show that the generalized Pareto excess distribution
leads to better quantile estimates than the empirical quantiles: for p = 5% we
can have p,,/p = 10, and for p = 1% we can have p,/p = 20. For p = 0.1% mod-
eling with the generalized Pareto excess distribution does not lead to a better
performance than the performance of the empirical quantile estimator.

Figure 8.36 studies the performance of the generalized Pareto quantile esti-
mator as a function of p, /p, for several values of p. We estimate quantiles with
levels p = 0.1% (black), p = 1% (red), and p = 5% (blue). The setting is the same
as in Figure 8.30.

Figure 8.37 studies the performance of the generalized Pareto quantile esti-
mator as a function of p, for several values of k = p,/p. We consider values
k =1 (violet), k = 2 (purple), and k = 10 (dark green). The setting is the same
as in Figure 8.31.

13 The pth quantile with 0.5 < F(u) <p < 1is

1 ¢
Q) = u+ (/o) [(1_—;,4)) - 1] :
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Figure 8.36 Generalized Pareto model. (a) Ratios p/p as a function of the multiplier k = p,/p.
(b) The expected loss R as a function of multiplier k. The quantile level p takes values p = 0.1%
(black), p = 1% (red), and p = 5% (blue).
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Figure 8.37 Generalized Pareto model. (a) Function p — p/p, where p is the estimate of the
exceedance probability. (b) Function p - R(k) — R(1), where R is the estimated loss when the
multiplier of the quantile estimator is k = p,/p. The multiplier is k = 1 (violet), k = 2 (purple),
and k = 10 (dark green).

8.6.2.5 The Weibull Excess Distribution

The parameters of the Weibull distributions are £ > 0 and g > 0. For & = 0 the
distributions are exponential. When the excess distribution is a generalized
Pareto distribution, then for & > 0, F,(p) = (8/&)[(1 —p)~¢ —1]. For £ =0,
F;Y(p) = —flog(1 — p). For 0 < p < F(u) < 0.5 the pth quantile is

p —£
QY)=u-(B/%) <%> -1
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Figure 8.38 Weibull model. (a) Ratios p/p as a function of the multiplier k = p,/p. (b) The

expected loss R as a function of multiplier k. The quantile level p takes values p = 0.1% (black),
p = 1% (red), and p = 5% (blue).

For 0 < p < F(u) < 0.5 we have analogous expressions.!* The maximum likeli-
hood estimators of parameters do not have a closed-form expression.

Figures 8.38 and 8.39 show that the Weibull excess distribution leads to worse
quantile estimates than the empirical quantiles, for p = 0.1-5%.

Figure 8.38 studies the performance of the Weibull quantile estimator as
a function of p,/p, for several values of p. We estimate quantiles with levels
p = 0.1% (black), p = 1% (red), and p = 5% (blue). The setting is the same as in
Figure 8.30.

Figure 8.39 studies the performance of the Weibull quantile estimator as a
function of p, for several values of k = p,/p. We consider values k = 1 (violet),
k = 2 (purple), and k = 3 (dark green). The setting is the same as in Figure 8.31.

8.6.3 Conditional Quantile Estimators

First we study time varying parameter of the excess distribution, and then we
study the use of the empirical quantiles of the residual distribution.

We apply exponential, gamma, generalized Pareto, and Weibull excess distri-
butions. The Pareto distribution is not studied because it is a special case of the
generalized Pareto distribution.

First, we see that the generalized Pareto distribution leads to the best results
when the time varying parameter is used. Second, we see that when the
empirical quantiles of the residual distribution are used, then the performance
is rather similar for all models.

14 The pth quantile with 0.5 < F(u) <p < 1is

1— £
Q) =u+ (/&) [(1—Ffu)> - 1] .
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Figure 8.39 Weibull model. (a) Function p — p/p, where p is the estimate of the exceedance
probability. (b) Function p — R(k) — R(1), where R is the estimated loss when the multiplier
of the quantile estimator is k = p, /p. The multiplier is k = 1 (violet), k = 2 (purple), and k = 3
(dark green).

8.6.3.1 Time Varying Parameter of the Excess Distribution
We have discussed time varying estimators for the excess distribution in
Section 5.2.3. We apply the local likelihood estimator defined in (5.12) for the

left tail as
9@“ = argmax,., Z pi(Ologf,(u—Y,0),
i:Yec,
where u =g, is the empirical quantile computed from Y;,...,Y,, 0<p<
Py <0.5,
L,={Y:Y,<u, i=1,...,t}, (8.55)

and the time space localized weights are defined in (5.13) as
K({(t—1i)/h)

%oy ee K@= p/h)

where /> 0 is the smoothing parameter and K:[0,00) — R is a kernel

function.

Then we obtain the quantile estimator from (8.49) by inserting the parameter
estimate:

N - P 5
q :u—Fu1<1——,96 )
t PRACL

It turns out that the generalized Pareto distribution leads to the best results.
The exponential model leads to almost as good results. The gamma model leads
to worse results, and the Weibull model leads to the worst results.

pi(t) = (8.56)
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Exponential Excess Distribution 'The time varying estimator for the left tail index
is obtained from (8.52) as

B =, ptY@—=Y),
itYeL,
where L, is the set of observations in the left tail, as defined in (8.55), and p;(¢) is
the time space localized weight, as in (8.56). The conditional quantile estimator
is obtained from (8.51) as

N A p
G, =u+p, log(—),
t left t »

0

where u is the p,th empirical quantile and 0 < p < p, < 0.5.

Figures 8.40—8.42 show that the exponential quantiles are better than the
empirical quantiles. The smoothing parameter # = 100 leads to the best results.

Figure 8.40 studies the performance as a function of smoothing parameter 4
in estimating the pth quantile for p = 1%. Panel (a) shows functions /# — p/p
and panel (b) shows functions / — R, where p is the implied estimate of the
probability p as defined in (8.6), and R is the estimated expected loss as defined
in (8.18). The value of R depends on p and P, through the quantile estimates. The
values of p, are p, = 5% (black with “1”), p, = 10% (blue with “2”), p, = 15%
(violet with “3”), and p, = 20% (dark green with “4”). The red horizontal lines
show the performance of the empirical quantile.

Figure 8.41 considers estimation of the pth quantile for p = 0.1%, but other-
wise the setting is similar to Figure 8.40.
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Figure 8.40 Exponential model: p = 1%. (a) Function h — p/p, where p is the estimate of the
exceedance probability. (b) Function h — R, where Ris the estimated loss. The values of p, are
p, = 5% (black with “1”), p, = 10% (blue with “2"), p, = 15% (violet with “3”), and p, = 20%
(dark green with “4").
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Figure 8.41 Exponential model:p = 0.1%.(a) Function h — p/p, where p is the estimate of the
exceedance probability. (b) Function h — R, where Ris the estimated loss. The values of p, are
Py = 5% (black with “1”), p; = 10% (blue with “2"), p, = 15% (violet with “3"), and p, = 20%
(dark green with “4").
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Figure 8.42 Exponential model. (a) Function p+— p/p, where p is the estimate of the
exceedance probability. (b) Function p — R(k) — R(1), where R(k) is the estimated loss when
the multiplier of the quantile estimator is k = p,/p, and k = 1 corresponds to the empirical
quantile. The smoothing parameter is h = 10 (orange), h = 100 (purple), and h = 500 (dark
green). In panel (a) the red curve corresponds to the empirical quantile.

Figure 8.42 studies the performance of the exponential quantile estimator
as a function of p, for several values of smoothing parameter 4. We take
Po = 15%. We consider values /1 = 10 (orange), # = 100 (purple), and /# = 500
(dark green). Furthermore, we show the empirical quantiles (red). Panel (a)
shows functions p — p/p, where p is the implied estimate of the probability p,
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as defined in (8.6). The green lines show the fluctuation bands for a = 5%.
Panel (b) shows functions

p = R - RQ),

where the estimated expected loss R is defined in (8.18), and R depends on k =
Po/p through the quantile estimates. Note that the multiplier k = 1 implies that
the quantile estimator is the empirical quantile, because then Q,(Y) = . Thus,
negative values of R(k) — R(1) imply that the quantile estimator with multiplier
k is better than the empirical quantile.

Gamma Excess Distribution The gamma densities are defined in (3.80). Param-
eter k > 0 is the shape parameter, and f > 0 is the scale parameter. The log-
arithmic likelihood is written in (3.81). The time varying estimators for the
parameters are maximizers of

Lok, p) = —x log p —logT'(x) + (x — 1) 2 pi(t)log?,

e,

1
-2 D pyY,
b e,
where L, is the set of observations in the left tail, as defined in (8.55), and p,(¢)
is the time space localized weight, as in (8.56). When x > 0 is given, the time
varying estimator of parameter f is

1
k) == ¥ P,

e,

The localized maximum likelihood estimators are

k, = argmax, . lloc(K’ B,(x)), ﬁAt = p(k,).

We can write

R, = argmax, ., | —x(1 +log f) —logI'(x) + (x — 1) Z pit)logY; | .
wer,

Figures 8.43-8.45 show that the gamma quantiles are better than the
empirical quantiles for the estimation of the pth quantile with p = 1%. When
p = 0.1%, then the gamma quantiles hardly beat the empirical quantiles. The
smoothing parameter /7 = 100 leads to the best results.

Figure 8.43 studies the performance as a function of smoothing parameter /
in estimating the pth quantile for p = 1%. Panel (a) shows functions # — p/p
and panel (b) shows functions / — R, where p is the implied estimate of the
probability p and R is the estimated expected loss. The setting is the same as in
Figure 8.40.

Figure 8.44 studies the estimation of the pth quantile for p = 0.1%. Otherwise
the setting is the same as in Figure 8.43.
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Figure 8.43 Gamma model: p = 1%. (a) Function h — p/p, where p is the estimate of the
exceedance probability; (b) function h — R, where R is the estimated loss. The values of Po
are p, = 5% (black with “1”), p, = 10% (blue with “2"), p; = 15% (violet with “3"), and 20%
(dark green with “4"). The red horizontal lines show the performance of empirical quantiles.
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Figure 8.44 Gamma model: p = 0.1%. (a) Function h — p/p, where p is the estimate of the
exceedance probability. (b) Function h — R, where R is the estimated loss. The values of Po
are 5% (black with “1”), 10% (blue with “2"), 15% (violet with “3"), and 20% (dark green with
“4"). The red horizontal lines show the performance of empirical quantiles.

Figure 8.45 studies the performance of the exponential quantile estimator
as a function of p, for several values of smoothing parameter 4. We take
Po = 15%. We consider values /2 = 10 (orange), # = 100 (purple), and /# = 500
(dark green). Furthermore, we show the empirical quantiles (red). The setting
is the same as in Figure 8.42.
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Figure 8.45 Gamma model. (a) Function p — p/p, where p is the estimate of the exceedance
probability. (b) Function p — R(k) — R(1), where R(k) is the estimated loss when the multi-
plier of the quantile estimator is k = p,/p, and k = 1 corresponds to the empirical quantile.
The smoothing parameter is h = 10 (orange), h = 100 (purple), and h = 500 (dark green). In
panel (a) the red curve corresponds to the empirical quantile.

Generalized Pareto Excess Distribution The generalized Pareto densities are
defined in (3.82). Parameter £ > 0 is the shape parameter, and # > 0 is the scale
parameter. The generalized Pareto densities are written in (3.84) using the
shape parameter « = 1/¢ and the scale parameter o = f/£. The logarithmic
likelihood is written in (3.85). The time varying estimators for the parameters
are maximizers of

Y.
Loc(@, 0) = log (g) —(1+a) ) p(®)log <1 + ;> ,
wec,

where L, is the set of observations in the left tail, as defined in (8.55), and p,(¢)
is the time space localized weight, as in (8.56). When ¢ > 0 is given, the time
varying estimator of parameter « is

Yi
a)=| ) pt)log (1 + ;>

weL,

The localized maximum likelihood estimators are
6, = argmax,., [, (a,(0),0), @&, = a,6,).

We can write

8, = argmax,_, [log <at((,6)> - <1 T 26))] '
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Figure 8.46 Generalized Pareto model: p = 1%. (a) Function h — p/p, where p is the estimate
of the exceedance probability. (b) Function h — R, where R is the estimated loss. The val-
ues of p, are p, = 5% (black with “1"), p, = 10% (blue with “2"), p, = 15% (violet with “3"),
and 20% (dark green with “4”). The red horizontal lines show the performance of empirical
quantiles.

The localized maximum likelihood estimators for £ and f are
ét =1/a,, ﬁt = éz&t'

Figures 8.46—8.48 show that the generalized Pareto quantiles are better than
the empirical quantiles. The smoothing parameter # = 100 leads to the best
results.

Figure 8.46 studies the performance as a function of smoothing parameter /
in estimating the pth quantile for p = 1%. Panel (a) shows functions # — p/p
and panel (b) shows functions /1 — R, where p is the implied estimate of the
probability p and R is the estimated expected loss. The setting is the same as in
Figure 8.40.

Figure 8.47 studies the estimation of the pth quantile for p = 0.1%. Otherwise
the setting is the same as in Figure 8.46.

Figure 8.48 studies the performance of the exponential quantile estimator
as a function of p, for several values of smoothing parameter 4. We take p, =
15%. We consider values # = 10 (orange), # = 100 (purple), and & = 500 (dark
green). Furthermore, we show the empirical quantiles (red). The setting is the
same as in Figure 8.42.
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Figure 8.47 Generalized Pareto model: p = 0.1%. (a) Function h — p/p, where p is the esti-
mate of the exceedance probability. (b) Function h - R, where R is the estimated loss. The
values of p, are 5% (black with “1”), 10% (blue with “2"), 15% (violet with “3"), and 20% (dark
green with “4”). The red horizontal lines show the performance of empirical quantiles.
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Figure 8.48 Generalized Pareto model. (a) Function p — p/p, where p is the estimate of the
exceedance probability. (b) Function p — R(k) — R(1), where R(k) is the estimated loss when
the multiplier of the quantile estimator is k = p,/p, and k = 1 corresponds to the empirical
quantile. The smoothing parameter is h = 10 (orange), h = 100 (purple), and h = 500 (dark
green). In panel (a) the red curve corresponds to the empirical quantile.

Weibull Excess Distribution The Weibull densities are defined in (3.86).
Parameter k¥ > 0 is the shape parameter and f > 0 is the scale parameter.
The logarithmic likelihood is written in (3.87). The time varying estimators for
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the parameters are maximizers of

Loo(x, ) = log(ic/B) + (= 1) Y p,(t)1og(Y,/B)
wer,
- Y pO/P)
e,
where L, is the set of observations in the left tail, as defined in (8.55), and p,(t)
is the time space localized weight, as in (8.56). When x > 0 is given, the time
varying estimator of parameter f is

1/x
mm=<zpmw>.

eL,

The localized maximum likelihood estimators are

= B(Ky).

Figures 8.49-8.51 show that the Weibull quantiles are better than the empir-
ical quantiles for the estimation of the pth quantile with p = 1%, but when p =
0.1%, then the empirical quantile is better. The smoothing parameter # = 100
leads to the best results.

Figure 8.49 studies the performance as a function of smoothing parameter %
in estimating the pth quantile for p = 1%. Panel (a) shows functions 4 — p/p
and panel (b) shows functions / — R, where p is the implied estimate of the
probability p and R is the estimated expected loss. The setting is the same as in

&, = argmax, ., L,.(k, B,(x)), B,

Figure 8.40.
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Figure 8.49 Weibull model: p = 1%. (a) Function h — p/p, where p is the estimate of the
exceedance probability. (b) Function h R, where R is the estimated loss. The values of Po
are p, = 5% (black with “1”), p, = 10% (blue with “2"), p, = 15% (violet with “3"), and 20%
(dark green with “4"). The red horizontal lines show the performance of empirical quantiles.



8.6 Excess Distributions in Quantile Estimation
0 | i
o 4 ©
A Gg 4= S
< D 3 =
o / 4 o
1 83
™ | 3835
o ©
g i = o 1
o
=y 4
g T ° | =
1 © N:a;a/
q 8 ==
T T T T T 8 T T T T T
1 10 100 1000 10,000 s 1 10 100 1000 10,000

h h
(a) (b)

Figure 8.50 Weibull model: p = 0.1%. (a) Function h — p/p, where p is the estimate of the
exceedance probability. (b) Function h — R, where R is the estimated loss. The values of P
are 5% (black with “1”), 10% (blue with “2"), 15% (violet with “3"), and 20% (dark green with
“4"). The red horizontal lines show the performance of empirical quantiles.
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Figure 8.51 Weibull model. (a) Function p — p/p, where p is the estimate of the exceedance
probability. (b) Function p — R(k) — R(1), where R(k) is the estimated loss when the multi-
plier of the quantile estimator is k = p,/p, and k = 1 corresponds to the empirical quantile.
The smoothing parameter is h = 10 (orange), h = 100 (purple), and h = 500 (dark green). In
panel (a) the red curve corresponds to the empirical quantile.

Figure 8.50 studies the estimation of the pth quantile for p = 0.1%. Otherwise
the setting is the same as in Figure 8.49.

Figure 8.51 studies the performance of the Weibull quantile estimator
as a function of p, for several values of smoothing parameter 4. We take
Po = 15%. We consider values # = 10 (orange), # = 100 (purple), and # = 500
(dark green). Furthermore, we show the empirical quantiles (red). The setting
is the same as in Figure 8.42.
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8.6.3.2 The Empirical Residuals

We apply the idea of using the empirical quantiles of the residuals, as in (8.39).
Let F:R — R be the continuous distribution function of the returns, and F,, :
[0, ) — R the lower excess distribution, as defined in (8.46) for u € R. At time
t we observe returns Y, ..., Y,. The left tail is

L,={Y,:Y,<u, i=1,...t},

where u, = g, is the empirical quantile from Y;,...,Y,, and 0 < p < p, < 0.5.
Let n, = #L, be the number of observations in L,. Let us apply notation

— t t
L, = {Ytl’l << thnt},
where Y;i is observed at time ¢; € {1, ..., t}. The residuals are defined as
e

U=r, (n-Y0,), i=1...m

The residuals are approximately uniformly distributed, if the distribution
F,(-,6,) provides a good approximation of the true excess distribution F,(-, 6).
Let us assume for notational convenience that the residuals are ordered:

u<---<u,.
Leté,_,,, be the empirical quantile with level 1 — p/p,. That is,
€1/, = Uin,a-p/oy1-

The estimator of the conditional quantile is given by

g, =u, — Fu_l(él—p/pu’ 0,).

Note that when the estimator 6, would not depend on ¢, then the quantile
estimator would be the empirical quantile. In our definition the ith residual is
defined using the ith estimate 6,, but the quantile estimator §, is defined using
the current parameter estimate étﬂf

It turns out that with the empirical residuals the results are robust with
respect to the choice of the excess distribution. On the other hand, we are
not able to improve the results which were obtained using the time varying
generalized Pareto distribution.

The empirical quantiles of the residuals are better than the empirical
quantiles. The smoothing parameter # = 100 leads to the best results.

Exponential Excess Function Figure 8.52 studies the performance as a function
of smoothing parameter / in estimating the pth quantile for p = 1%. Panel (a)
shows functions / +— p/p and panel (b) shows functions / ~— R, where p is the
implied estimate of the probability p as defined in (8.6), and R is the estimated
expected loss as defined in (8.18). The value of R depends on p and p, through
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Figure 8.52 Exponential model: p = 1%. (a) Function h — p/p, where p is the estimate of the
exceedance probability. (b) Function h — R, where Ris the estimated loss. The values of p, are
Py = 5% (black with “1"), p, = 10% (blue with “2"), p, = 15% (violet with “3"), and 20% (dark
green with “4”). The red horizontal lines show the performance of empirical quantiles.

the quantile estimates. The values of p, are p, = 5% (black with “1”), p, = 10%
(blue with “2”), p, = 15% (violet with “3”), and p, = 20% (dark green with “4”).
The red horizontal lines show the performance of the empirical quantile.

Figure 8.53 considers estimation of the pth quantile for p = 0.1%, but other-
wise the setting is similar to Figure 8.52.
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Figure 8.53 Exponential model: p = 0.1%. (a) Function h — p/p, where p is the estimate of
the exceedance probability. (b) Function h — R, where R is the estimated loss. The val-
ues of p, are p, = 5% (black with “1”), p, = 10% (blue with “2"), p, = 15% (violet with “3"),
and 20% (dark green with “4"). The red horizontal lines show the performance of empirical
quantiles.
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Figure 8.54 Exponential model. (a) Function p+— p/p, where p is the estimate of the
exceedance probability. (b) Function p — R(k) — R(1), where R(k) is the estimated loss when
the multiplier of the quantile estimator is k = p,/p, and k = 1 corresponds to the empirical
quantile. The smoothing parameter is h = 10 (orange), h = 100 (purple), and h = 500 (dark
green). In panel (a) the red curve corresponds to the empirical quantile.

Figure 8.54 studies the performance of the exponential quantile estimator
as a function of p, for several values of smoothing parameter 4. We take p, =
15%. We consider values # = 10 (orange), # = 100 (purple), and & = 500 (dark
green). Panel (a) shows functions p — p/p, where p is the implied estimate of
the probability p, as defined in (8.6). We also show the performance of empirical
quantiles (red). The green lines show the fluctuation bands for « = 5%. Panel (b)
shows functions

p = R - R,

where the estimated expected loss R is defined in (8.18), and R depends on
k = p,/p through the quantile estimates. Note that the multiplier k = 1 implies
that the quantile estimator is the empirical quantile. Thus, negative values of
R(k) = R(1) imply that the quantile estimator with multiplier k is better than
the empirical quantile.

Gamma Excess Function Figure 8.55 studies the performance as a function of
smoothing parameter / in estimating the pth quantile for p = 1%. Panel (a)
shows functions / — p/p and panel (b) shows functions / — R, where p is the
implied estimate of the probability p and R is the estimated expected loss. The
setting is the same as in Figure 8.52.

Figure 8.56 considers estimation of the pth quantile for p = 0.1%, but other-
wise the setting is similar to Figure 8.55.

Figure 8.57 studies the performance of the Weibull quantile estimator as a
function of p, for several values of smoothing parameter /. We take p, = 15%.
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Figure 8.55 Gamma model: p = 1%. (a) Function h — p/p, where p is the estimate of the
exceedance probability. (b) Function h — R, where R is the estimated loss. The values of Py
are p, = 5% (black with “1”), p, = 10% (blue with “2"), p, = 15% (violet with “3"), and 20%
(dark green with “4"). The red horizontal lines show the performance of empirical quantiles.
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Figure 8.56 Gamma model: p = 0.1%. (a) Function h — p/p, where p is the estimate of the
exceedance probability. (b) Function h — R, where R is the estimated loss. The values of Py
are p, = 5% (black with “1”), p, = 10% (blue with “2"), p, = 15% (violet with “3"), and 20%
(dark green with “4"). The red horizontal lines show the performance of empirical quantiles.

We consider values % =10 (orange), # = 100 (purple), and % =500 (dark
green). Furthermore, we show the empirical quantiles (red). The setting is the
same as in Figure 8.54

Generalized Pareto Excess Function Figure 8.58 studies the performance as a
function of smoothing parameter % in estimating the pth quantile for p = 1%.
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Figure 8.57 Gamma model. (a) Function p — p/p, where p is the estimate of the exceedance
probability. (b) Function p — R(k) — R(1), where R(k) is the estimated loss when the multi-
plier of the quantile estimator is k = p,/p, and k = 1 corresponds to the empirical quantile.
The smoothing parameter is h = 10 (orange), h = 100 (purple), and h = 500 (dark green). In

panel (a) the red curve corresponds to the empirical quantile.
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Figure 8.58 Generalized Pareto model: p = 1%. (a) Function h — p/p, where p is the estimate
of the exceedance probability. (b) Function h — R, where Ris the estimated loss. The values of
p, are py = 5% (black with “1"), p; = 10% (blue with “2"), p, = 15% (violet with “3"), and 20%
(dark green with “4"). The red horizontal lines show the performance of empirical quantiles.
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Figure 8.59 Generalized Pareto model: p = 0.1%. Gamma model: p = 0.1%. (a) Function h —
p/p, where p is the estimate of the exceedance probability. (b) Function h — R, where R is
the estimated loss. The values of p, are p, = 5% (black with “1”), p; = 10% (blue with “2"),
P, = 15% (violet with “3"), and 20% (dark green with “4”). The red horizontal lines show the
performance of empirical quantiles.

Panel (a) shows functions /% — p/p and panel (b) shows functions 4+ R,
where p is the implied estimate of the probability p and R is the estimated
expected loss. The setting is the same as in Figure 8.52.

Figure 8.59 considers estimation of the pth quantile for p = 0.1%, but other-
wise the setting is similar to Figure 8.58.

Figure 8.60 studies the performance of the generalized Pareto quantile esti-
mator as a function of p, for several values of smoothing parameter /1. We take
Po = 15%. We consider values /1 = 10 (orange), # = 100 (purple), and /& = 500
(dark green). Furthermore, we show the empirical quantiles (red). The setting
is the same as in Figure 8.54.

Weibull Excess Function Figure 8.61 studies the performance as a function of
smoothing parameter / in estimating the pth quantile for p = 1%. Panel (a)
shows functions / — p/p and panel (b) shows functions / — R, where p is the
implied estimate of the probability p and R is the estimated expected loss. The
setting is the same as in Figure 8.52.

Figure 8.62 considers estimation of the pth quantile for p = 0.1%, but other-
wise the setting is similar to Figure 8.61.

Figure 8.63 studies the performance of the Weibull quantile estimator as a
function of p, for several values of smoothing parameter /. We take p, = 15%.
We consider values /7 = 10 (violet), # = 100 (purple), and # = 500 (dark green).
Furthermore, we show the empirical quantiles (red). The setting is the same as
in Figure 8.54.
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Figure 8.60 Generalized Pareto model. (a) Function p — p/p, where p is the estimate of the
exceedance probability. (b) Function p — R(k) — R(1), where R(k) is the estimated loss when
the multiplier of the quantile estimator is k = p,/p, and k = 1 corresponds to the empirical
quantile. The smoothing parameter is h = 10 (orange), h = 100 (purple), and h = 500 (dark
green). In panel (a) the red curve corresponds to the empirical quantile.
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Figure 8.61 Weibull model: p = 1%. (a) Function h — p/p, where p is the estimate of the
exceedance probability. (b) Function h — R, where R is the estimated loss. The values of Po
are p, = 5% (black with “1”), p, = 10% (blue with “2"), p; = 15% (violet with “3"), and 20%
(dark green with “4"). The red horizontal lines show the performance of empirical quantiles.
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Figure 8.62 Weibull model: p = 0.1%. (a) Function h — p/p, where p is the estimate of the
exceedance probability. (b) Function h — R, where R is the estimated loss. The values of Po
are p, = 5% (black with “1”), p, = 10% (blue with “2"), p, = 15% (violet with “3"), and 20%
(dark green with “4"). The red horizontal lines show the performance of empirical quantiles.
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Figure 8.63 Weibull model. (a) Function p — p/p, where p is the estimate of the exceedance
probability. (b) Function p — R(k) — R(1), where R(k) is the estimated loss when the multi-
plier of the quantile estimator is k = p,/p, and k = 1 corresponds to the empirical quantile.
The smoothing parameter is h = 10 (violet), h = 100 (purple), and h = 500 (dark green). In
panel (a) the red curve corresponds to the empirical quantile.
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8.7 Extreme Value Theory in Quantile Estimation

First, we describe the block maxima method and then the method of threshold
exceedances. We consider now the estimation of the quantiles in the right tail,
so that the level of the estimated quantile is 0.5 < p < 1.

8.7.1 The Block Maxima Method

Let the real valued random variables X, ..., X,, € R be independent and iden-
tically distributed. We use now the notation X, ..., X, instead of Y7, ..., Y7,
because later the observations Y, ..., Y, will be divided into blocks of size .
Denote the maximum

M, = max{X,,...,X,}.

We make the assumption that weak convergence holds for the maximum of the
observations. This assumption was discussed in Section 3.5.2; see (3.97). We
assume that

M,—d, d

n

as n — oo, for all x, where d, € R, ¢, > 0, and H, ¢ is the distribution function
of a generalized extreme value distribution with parameter £ € R, defined in
(3.100).

8.7.1.1 An Expression for the Quantiles
The convergence in (8.57) suggests that we have for large # the approximation

Mn - dn

P2 <x) = H@),
C}’l

for all x. Then,

P(M,, < x)=H, <x : d") . (8.58)

n

Since X, ..., X, is an i.i.d. sample from the distribution of X,
PM, <x)=P(X, <%,....X, <x)
= P(X, <%)---P(X, <)
= [P(X < x)]". (8.59)
Let g, = Q,(X) be the pth quantile. Then,
P(X <q,)=p. (8.60)
when X has a continuous distribution. Thus, combining (8.59) and (8.60),

PM, < q,)=[PX <q,)]"=p" (8.61)
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Thus, combining (8.58) and (8.61),

qp_dn "
()=

n

and we get

Q,(X)=d, +c,H; (" (8.62)

8.7.1.2 Estimation of the Parameters
The expression (8.62) for a quantile contains unknown parameters &, d,,, and ¢,
which we have to estimate. Let us denote

x—p
He, o0 = He (2.

We consider the family of distributions H, , ,, where ¢ is the shape parameter,
4 is the location parameter, and o is the scale parameter. The parameters can be
estimated using the block maxima method. Let Y, ..., Y beii.d. observations.
Since (8.58) holds, we could estimate the parameters if we would have several
observations of the maxima. This can be achieved when we divide the observa-
tions into m blocks of size #, assuming for simplicity that 7' = nm. Denote by
M,;,i=1,...,m, the maximum of the ith block:

M, = max{Y; jq5---5 Y}y i=1.,m.

The maxima M,,, ..., M
function

. are independent’® and we define the likelihood

m

L& u, 05 My, .. M,,) = [ e M),
i=1

where 4, , _ is the density function corresponding to the distribution function

S0
H. , .. We define the estimators &, /I, and 6 to be maximizers of the likelihood

function. From (8.62) we get the estimator for a quantile
Q) =i+ 8Hg_l(p”). (8.63)

Note that in (8.63) the sample size is T and # is the block size.

8.7.2 Threshold Exceedances

Section 8.6 is devoted to the quantile estimation on the basis of excess dis-
tributions. We summarize this approach and point out the connection to the
asymptotics of threshold exceedances.

The excess distribution F, with threshold # > 0 of random variable Y is
defined in (8.43). It is stated in (3.102) that the limit distribution of the excess

15 Even when the original observations are not independent, the block maxima are approximately
independent, for large block sizes.
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distribution is a generalized Pareto distribution:

lim sup |F,(x) = Ggy,(¥)| =0 (8.64)

UDXp 0<w<xp—u

for some positive function f(u) if and only if F belongs to the maximum domain
of attraction of H,, where § € R. We denote X = sup{x:F(x) <1} and G,
is the distribution function of the generalized Pareto distribution. The density
functions are

S+ &x/p) g #0,
SO Deple/p).  £=0,
where f > 0,x > 0, when &£ > 0,and 0 < x < —f/& when £ < 0.

(8.65)

8.7.2.1 An Expression for the Quantiles
The convergence in (8.64) suggests the approximation

F,(x) = G, 5(x). (8.66)
The pth quantile of Y was expressed in (8.45) as

1_
Q(Y) = u+F;! <1 - 1_—Ffu)> . (8.67)

The inverse of the generalized Pareto distribution function is

Lla-p-11, 0,
G { Pl e
’ —plogl-p), ¢=0.

8.7.2.2 Choosing and Estimating the Parameters

The expression (8.67) for the pth quantile contains the unknown probability
P(Y > u) = 1 — F(u), and the unknown parameters of the excess distribution
F,= G, LetY),..., Yy beaniid. sample from the distribution of Y.

Choosing Threshold Threshold u is the parameter which is chosen by the user.
Threshold u has to be sufficiently large so that approximation in (8.66) holds.
On the other hand, when u is large then estimators of the parameters have a
large variance. We can look at choosing of threshold « in two ways.

1) Choose first u and then estimate P(Y > u).
For example, we can use the estimate.

NM
P(Y > u) = =, (8.68)

where N, = #{Y, > u} is the number of observations larger than u.
2) Choose first such p, that 0.5 < p, < p < 1, and then choose u as an estimate
of the p,th quantile. Estimation of the p,th quantile is easier than estimating
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the pth quantile. For example, let
u=F"(p,),

where F is the empirical distribution function, and we take the generalized
inverse. Now u is such that N,/ T = 1 — p,,, and we end up to the same esti-
mate as in (8.68).

There are several ways to choose threshold « (or the level p, of the preliminary

quantile estimator).

1)

We can study the performance measures of quantile estimation, and choose
u so that the performance measures are optimized. This was done in
Section 8.6, where the probability of exceedances and the loss function for
quantile estimation were used to measure performance.

We can choose the threshold # by studying the stability of parameter
estimates. The shape parameter ¢ is the same for all thresholds # > 1, when
the excesses over threshold u, follow a generalized Pareto distribution. Let
o = p/&. The scale parameter ¢ depends on u > u,. Furthermore, if the
excesses over threshold u, follow a generalized Pareto distribution and
u > uy, then

o, =0, —¢u; (8.69)
see Coles (2004, p. 79). We can define
6" =o0,—¢u.

When u;,u, > uy, then o, —Su; =0, =0, —&u,. Thus, c* does not
depend on u. Then, estimates of £ and 6* should be constant above u, if
is a sufficiently large threshold so that the excesses follow the generalized
Pareto distribution.

We can choose the threshold by studying the linearity of the mean resid-
ual plot. For a generalized Pareto distribution £Y = ¢ /(1 — &), when & < 1.
When & > 1, then the expectation does not exist. Thus, if the excesses over
threshold u follow a generalized Pareto distribution, then

c

EY —ulY >u) = —=,

O —ulY > ) = 77

when € < 1; see Coles (2004, p. 79). Furthermore, if the excesses over thresh-

old u, follow a generalized Pareto distribution and # > #,, then (8.69) holds

and u — E(Y — ulY > u) is a linear function. The mean residual life plot is
the plot of points

1 3
<u, A >, - u))

u =1
for u < max{Yi,...,Y;}, where {X, ... Xy} ={Y; > u} are the observa-

tions that exceed u. The level should be such that the points in the plot over
level u can be approximately fitted by a linear function.
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Estimating the Parameters We estimate the parameters & and f of the general-
ized Pareto distribution with the maximum likelihood method. Let us denote

(X, Xy P =Y 1Y > u).

Now X, ..., X N, is a sample from the distribution F,,. Since F, = G o We define
the likelihood function

Nu
LE B Xy, - Xy) = [ [ 5%,
i=1

where g; . = G}, is the density function of the generalized Pareto distribution.

Define & and § as the maximizers of the likelihood function.
Finally, the quantile estimator is

A _ _ 1-p
Qp(Y)—u+G§j§ (1——>.

8.8 Expected Shortfall

The expected shortfall for the right tail is defined as
ES,(Y) = E(Y]Y > Q,(Y)),

where Y is a random variable with a continuous distribution, Q,(Y) is the
pth quantile, and p € (0,1). The expected shortfall for the left tail and the
expected shortfall for noncontinous distributions are defined in Section 3.1.3.
Section 8.2.3 discusses the use of expected shortfall as a risk measure.

8.8.1 Performance of Estimators of the Expected Shortfall

In measuring the performance of quantile estimators in Section 8.3.1, we used
the fact the for continuous distributions

P(Y > Q,(Y)=1-p,
which implies that

T

1

T ZI<Q,,<Y>,00)(Y,-) ~1-p.
i=1

Similarly, in the case of measuring the performance of estimators of the

expected shortfall we use the fact that for continuous distributions
1
ES,(Y) = i ELY I (v).00 (Y],

which implies that
T

1
T ; Yilig,00.e0(Y) & (1 = PES,(Y).
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In measuring the performance, we have to be careful not to use the same data
for estimation and for measuring the performance. Let us observe time series
Y}, ..., Y7. Let g, the estimator of the quantile Q,(Y) (or the estimator of the
conditional quantile) at time ¢, and let &, be the estimator of the expected short-
fall ES,(Y) (or the estimator of the conditional expected shortfall) at time ¢.
The estimators at time ¢ use data Y3, ..., Y,. To measure the performance, we
look closeness to zero of the difference

T-1
1

T-z t=tﬂ[Yt+ll@”w)(Yt+l) -1 -pel,

where 1 < ¢, < T is the time point which starts the measuring period.

8.8.2 Estimation of the Expected Shortfall

Estimation is done using identically distributed random variables Y7, ..., Y.
The different types of quantile estimators of Sections 8.4—8.6 lead to the corre-
sponding estimators of the expected shortfall.

8.8.2.1 Empirical Expected Shortfall
Empirical quantiles are discussed in Section 8.4. The empirical expected short-
fall can be derived from formula

1

where it is assumed that the distribution of Y is continuous. In this formula the
expectation can be estimated by the sample mean:

T
1
ElY I(Q”(Y),oo)(Y)] ~ T ;[Yl I(Qp(Y),oo)()/i)]a
and (1 —p)T =~ T — m, where m = pT.
Thus, the empirical expected shortfall for the right tail is

= 1
ES(Y)= ——
»(Y) T—-m+1 -

T
i=m

Y(i)’
where Y;) <--- <Yy and m = [pT], with 0.5 < p < 1. Note that Y|, is the
empirical quantile, as defined in (8.21)—(8.23).

8.8.2.2 Expected Shortfall in a Location-Scale Model

The volatility based quantile estimators are discussed in Section 8.5. These esti-
mators are based on a location—scale model. Let us consider the location—scale
model

Y =u+oe,
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where i € R, o > 0, and ¢ is a random variable with a continuous distribution.
Now,

ES,(Y) = u+ 6ES,(e).
In fact,

ES,(Y) =EY|Y 2 Q,(Y))
Y—p

o

=u+oE < Y —u
= pu+oE(ele 2 Q,(€)),
where we used the fact Q,(Y) = u + cQ,(¢), noted in (8.30), so that

2 Qp(€)>

Y2 Qe K

> Q,©).
Thus, the estimate for the expected shortfall can be obtained as
ES (Y) i+ 6ES (e)

where /i is an estimate of 4 and 6 is an estimate of o.
For example, if € ~ N(0, 1) then the expected shortfall for the right tail is
(-I)—l
B (o = $@7P)
p 1 -p

where ¢ is the density function of the standard normal distribution and @ is
the distribution function of the standard normal distribution.!® If € ~ £, where
t, is the t-distribution with v degrees of freedom, then

g (&'®) v+ (5'®)’

ES,(6) = = ,
(€) 1-p v—1

where g, is the density function of the ¢-distribution with v degrees of free-
dom and ¢, is the distribution function of the ¢-distribution with v degrees of
freedom; see McNeil et al. (2005, p. 46).

8.8.2.3 Excess Distributions in Expected Shortfall Estimation

Section 8.6 discusses estimation of quantiles when the excess distribution
is modeled parametrically. The distribution function of the (upper) excess
distribution is given in (8.43). The density function of the excess distribution
is given in (8.44) as

flx+u)
1.0 = T p o ®:

16 We have that ES (¢) = (1 -p) [T

. xpx)dx = (1 —p)"q.’)(qp), where q, = Qp(e) and we use
the fact that ¢’ (x) = —xp(x).



8.8 Expected Shortfall

where f and F are the density and distribution function of the original distri-
bution.

Let Y be the random variable whose density and distribution functions are
f:R—> Rand F:R — R. Let X be the random variable distributed as the excess
distribution, whose density and distribution functions are f, : [0, ) — R and
F,:[0,00) — R. Then,

ES,(Y) =u+ 1-F@) g 0, (8.71)
1-p 1
where g = Q,(Y) = u. Note that when u = Q,(w), then
ES,(Y) = Q,(Y) + EX, (8.72)

because ES,(X) = EX.
Let us prove (8.71). We have for r > 0 that

E[X I, /(X)] = / ) xf,(x) dx

_—l—F(u)/, xf (x + u) dx

1 [s4]
“1-Fw (/Wyf(y) dy—u(l—F(r+u))>.

Thus,

/ yly)dy=(>1- F(u))/ xf, (%) dx + u(l — F(r + u)).
r+u r

Choose r = g — u, multiply both sides of the equation by 1/(1 — p), apply
F(q) = p, and apply (8.70) to obtain (8.71).

Let us explain the difference between (8.71) and (8.72) in the case when
Q,(Y) is estimated using the estimation of the excess distribution F,, where
u < Q,(Y). In the case of (8.71), we can use the same fitted F, to estimate the
expected shortfall ES,_,(X), where X ~ F,. In the case of (8.72) we have to
choose a second threshold u’ > u, estimate F,,, and estimate EX for X ~ F,,.
When u is large, it can happen that F, and F,, are close. In fact, the limit
theorem in (3.102) says that the excess distribution is a generalized Pareto
distribution for large u.

There exist closed-form expressions for ES,_,(X) in some cases. These
expressions are convenient to give in terms of the mean excess function

e(v) =EX —v|X > v).
We can write

ES,_.(X)=e()+v, v=0Q,,X).
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1) The exponential distribution is defined in (3.65). Let X ~ exp(f}), where
B > 0 is the scale parameter. Then

e(v) = B.

The quantile is Q,(X) = —flog(1 — p).

2) The gamma distribution is defined in (3.80). Let X follow the gamma dis-
tribution with parameters k and f, where k > 1 is the shape parameter and
f > 0 is the scale parameter. Then

e@)=ﬂ<1+ﬁ“54)+o<l>>’

v

as v > 0. The quantile does not have a closed-form expression.

3) The generalized Pareto distribution is defined in (3.82). Let X follow the gen-
eralized Pareto distribution with parameters & and f§, where 0 < & < 1 is the
shape parameter, and f > 0 is the scale parameter. Then

p+év
1-¢°
The quantile is Q,(X) = £[(1 — p)~* — 1.
4) The Weibull distribution is defined in (3.86). Let X ~ Weibull(x, #), where
where k > 0 is the shape parameter and f > 0 is the scale parameter. Then
Ul—xﬁx
K
as v — oco. The quantile is Q,(X) = f(-log(1 —p)V~,

e(v) =

e(v) = (I +o(1)),

The formulas for the mean excess function can be found in Embrechts et al.
(1997, Table 3.4.7, p. 161).
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Some Basic Concepts of Portfolio Theory

Portfolio theory studies two related problems: (1) how to construct a port-
folio with desirable properties and (2) how to evaluate the performance of a
portfolio. In this chapter, we concentrate on the concepts related to the con-
struction of portfolios. A portfolio is constructed by allocating the available
wealth among some basic assets. The return of a portfolio is a weighted aver-
age of the returns of the basic assets, the weights expressing the proportion of
wealth allocated to each basic assets. There exist also portfolios that require
zero initial wealth. Such portfolios are constructed using borrowing or option
writing.

A main topic of the chapter is to introduce concepts related to the compari-
son of return and wealth distributions, and this topic is addressed in Section 9.2.
In order to study portfolio construction we need to define what it means that a
wealth distribution or a return distribution is better than another such distri-
bution. (Here wealth distribution means the probability distribution of wealth,
when wealth is considered as a random variable, and we do not mean the dis-
tribution of wealth in the sense of allocation of wealth among different people.)
In portfolio selection we try to select the weights of basic assets so that the
distribution of the return of the portfolio is in some sense optimal.

The optimal distribution of the return is such that the expected return is high
but the risk of negative returns is small. The expected return of a portfolio is
determined by the expected returns of the basic assets, but the risk of the return
distribution depends on the joint distribution of the returns of the basic assets.
The two main ways to compare returns is the use of the mean—variance crite-
rion and the use of the expected utility.

The issue of multiperiod portfolio selection is an important and interesting
research topic. However, we do not address this topic in any depth, but only in
Section 9.3. The bypassing of multiperiod portfolio selection can be justified by
the fact that for the logarithmic utility function there is no difference between
the one period and multiperiod portfolio selection. Thus, when we ignore the
effect of varying risk aversion and restrict ourselves to the logarithmic utility,
then we can ignore the issues related to multiperiod portfolio selection. Note

Nonparametric Finance, First Edition. Jussi Klemela.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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that we discuss certain aspects of multiperiod portfolio in the connection of
pricing of options, because prices of options are related to the initial wealth of
a trading strategy, which approximately replicates the payoft of the option.

Section 9.1 discusses some basic concepts related to portfolios and their
returns. These concepts include the concept of a trading strategy, wealth
process, self-financing, portfolio weight, shorting, and leveraging. Section 9.2
discusses the comparison of return and wealth distributions. Section 9.3
discusses issues related to multiperiod portfolio selection.

9.1 Portfolios and Their Returns

The components of a portfolio can be stocks, bonds, commodities, currencies,
or other financial assets. The risk-free bond (bank account) can also be included
in the portfolio. The price of the risk-free bond is denoted by B,. Let us have d
risky portfolio components and let

S, =(S},....5%)

be the vector of the prices of the risky portfolio components at time t. Prices sat-
isfy 0 < B, < o0 and 0 < S} < oo. The price vector which includes the risk-free
bond is denoted by

S,=B.S,) = (B.S;,....5%).
Sometimes it is convenient to denote
B, = S?.

The time series of the prices of the riskless bond, the vector time series of the
prices of the risky assets, and the combined time series are denoted by

B = (Bt)t=0,...,T’ S§=(S)i=0, .15 S= (gt)t=o T

As an example, the bond price could be defined as B, = (1 + r)", wherer > —1
is the risk-free rate. To take changing rates into account we could define B, = 1
and B, = [[,_,(1 +r,) for ¢ > 1, where r, > —1 are the risk-free rates for one
period. The risk-free rate r; is different depending on the length of the period.
For the 1-day period the risk-free rate could be the Eonia rate. For the 1-month
period the risk-free rate could be the rate of a 1-month government bond.

9.1.1 Trading Strategies

A trading strategy is vector time series & = (§),_, ;, where

étz(ﬂpét)s é:(é},...,ftd), t=1,...,T.

The value f, expresses the number of bonds held between ¢ — 1 and ¢. The value
& expresses the number of shares of the ith risky asset held between ¢ — 1 and
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t. Vector ¢, is chosen at time ¢ — 1, using information which is available at time
t — 1. Since the values &, are known (chosen) at time ¢ — 1, it is said that &, is
a predictable random vector. In our setting, components of &, can be any real
numbers and not just integers.

A portfolio is typically chosen using available relevant information. We
assume that the relevant information is expressed with the state vector
Z, € R™, where m > 1is the length of Z,. The vector &, € R%*! is obtained with
a function

w : R" - R
and we have
E =wZ,_).

More generally, the function w may be time dependent, and the definition of
the relevant information Z, may be time dependent. In the time dependent case,
we define Z, € R™? and

w, : R™ S R t=0,..,T-1,

which maps at each time ¢ — 1 the relevant information to a portfolio vector.
Now

Et =w,1(Z,_y).

The relevant information for portfolio selection may include the following
constituents:

1) The relevant information used in choosing the portfolio vector & can
include the vector time series of the previous gross returns: Z, = (R, ..., R,),
where R, = (B,/B,_,,S}/S!,,....5?/8% ). Since R, € R**!, we have that
Zt I= Rt(d+1).

According to a version of efficient market hypothesis, the historical stock
prices contain all relevant information. In this case, we use only the infor-
mation in the past asset prices to choose the portfolio.

2) The relevant information can include information about the state of the
economy, or about the state of individual companies. For example, Z, can
contain macroeconomic information like default spreads and term spreads.
Also, Z, can contain information about the individual companies like divi-
dend yields and earnings.

9.1.2 The Wealth and Return in the One- Period Model

The one-period model has a special interest for portfolio selection, whereas for
option pricing the multiperiod model is more interesting. In particular, for the
logarithmic utility function the multiperiod portfolio selection reduces to the
one-period portfolio selection (see Section 9.3).
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We use the following notation for the inner product:

d
&S, =hB,+& S, =hB, + Z E;S;

i=1
Sometimes it is convenient to use the notation

&S,
for the inner product, where A’ denotes the transpose of matrix A, and the
vectors are taken as column vectors.

9.1.2.1 The Wealth and Self-financing
The wealth at time ¢ is

W,=&,, -5, (9.1)
At time t + 1 the wealth is equal to
VVt+1 = §t+1 : §t+1'

We interpret (9.1) in the following way. We take W, > 0 to be the total wealth
available for investment at time ¢. The total wealth is allocated among the port-
folio components. This self-financing condition states that no wealth is reserved
for consumption and no wealth is inserted from outside into the portfolio. We
could also interpret (9.1) to be the definition of the initial wealth, but in the
multiperiod model the self-financing condition is applied at the beginning of
each period.

9.1.2.2 Portfolio Weights
Let us assume W, > 0. The portfolio weights are defined as

bgz%, b;=;+7152, i=1,...d.
t t

Note that we use time index ¢ for the portfolio weights 4! but time index ¢ + 1

for the portfolio quantities & 1o to follow the typical practice in the literature.

We define the weight vector by
Bo=(0.b). b =(bh....b).

The weight vector satisfies

d
Y b=1. 9.2)
i=0

The number b’ determines the proportion of the total wealth invested in asset
i at time ¢. The self-financing condition (9.1) leads to (9.2), when W, > 0.
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9.1.2.3 Portfolio Returns

The gross return of the portfolio is obtained as a weighted average of the gross
returns of the portfolio components. Indeed, the gross return of the portfolio
is equal to

d
R = Wi ﬁt+1B Bt+1 Z t+1S; S;+1

W, W, B = W
d
= Z bR, = b, - Ry (9.3)
i=0

where

Ry = (R?+1’Rt+1) ’ Ry = (Riyyo - R?+1)

is the vector of the gross returns of the portfolio components. The gross returns
of the portfolio components are defined by
B A St

0 i+1 i _t+l .
R, = 5, R =~ i=1,...d.

9.1.2.4 The Product and Additive Forms of Wealth

The wealth can be written either in the product form or in the additive form.
These two ways of writing the wealth will be applied in Section 9.1.3 to write
the wealth process.

Wealth in the Product Form We can write the wealth at time ¢ + 1 as

W, = W,b, - R,,,, (9.4)
where b, satisfies restriction (9.2), which can be written as

b, 14, =1, (9.5)

where 1,,, is the vector of length 4 + 1 whose components are ones. Second,
the wealth can be written using only the unrestricted weight vector b,. Indeed,
the restriction can be written as

B)=1-1,-b,
Thus,
bR, =1-1, bR, +b, R,
= R?+1 + bz : ( t+1 R?+1) (9.6)
where
R, —R°

t+1 t+1
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is called the excess return. We arrive at
Wi =W, [R?+1 +b,- (Rt+1 - R?+1)] ’ (9.7)

which expresses the wealth at time ¢ + 1 in terms of the unrestricted weight
vector b,.

Wealth in the Additive Form We can write the wealth at time £ + 1 as
Win=W,+ §t+1 : (§t+l - St)’ (9.8)
where &, , satisfies restriction (9.1) :
§t+1 : St =W,
Second, the wealth can be written using only the unrestricted vector &,,;.
Indeed, the restriction can be written as
Wt St
ﬂt+1 = B_t - §t+1 : BTt
Thus,
Wt St
Win=W,+ B_(Bt+1 —B)+& (S — S — §(3t+1 - B)
t t
W, S S
_p Wi, . g <L1__t>,
t+1 Bt t+1 t+1 Bt+1 Bt

We arrive at

Wi =B Vi 9.9
where

Vt+1 =V, + §t+1 : (Xt+1 _Xt)’

and

W S S
V,= - X, = BTt’ X1 = Bi
t

t+1
We have expressed the wealth at time ¢ + 1 in terms of the unrestricted vec-
tor &, ;.

9.1.3 The Wealth Process in the Multiperiod Model

The wealth process W = (W,),_,_ 1 can be written either multiplicatively or
additively. Furthermore, we can write the wealth either so that the self-financing
restrictions are implicitly assumed, or so that the self-financing conditions are
eliminated by moving from the gross returns to the excess returns (product
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form) or by moving from the prices to the discounted prices (additive form). In
the case of the product form the elimination of the self-financing restrictions
does not bring essential simplifications but in the case of the additive form the
elimination of the self-financing conditions simplifies the dynamic optimiza-
tion algorithm for the maximization of the expected wealth.

9.1.3.1 The Wealth in the Product Form

We assume that W, > 0 and self-financing holds at each of the T periods
(wealth W, is obtained from wealth W, only through the changes in asset
prices and through the changes in wealth allocation). We can write

Wt+1
W, = W, g W
We get from (9.4) that
T-1
W, =W, |5, R, (9.10)
t=0

where b, € R**! satisfies restriction
by -1, =1

The wealth process can be written in terms of only the weights b, of the risky
assets. We obtain from (9.7) that

T-1
Wr =W, [T R+, (R = R,)] (9.11)
t=0

where b, € R? is unrestricted.

When the sequence b = (b)), r_; of portfolio vectors is constant, not
changing with ¢, then we call the portfolios “constant weight portfolios.” Note
that when using a constant weight portfolio strategy there is a need to make
a rebalancing at each period because the prices of the portfolio components
are changing, and to keep the weights constant we have to decrease the weight
of those assets whose price has increased and to increase the weights of those
assets whose price has declined. In this sense a constant weight portfolio
strategy is a counter trend strategy.

9.1.3.2 The Wealth in the Additive Form

The additive wealth process is applied more in option pricing than in portfolio
management, but it is useful also in the portfolio selection, especially when the
exponential utility is used. We summarize the definitions related to the additive
wealth process, but the detailed explanations are given in Section 13.2.2, where
option pricing is studied.
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We can write
T-1
W =Wo+ Y (W, = W),

=0
We get from (9.8) that
T-1

Wr =W, + 2 i1 (S — S,

=0
where &,,, satisfy restrictions
E-S,=&.,.-S, t=1,...,T—1. (9.12)

We say that a trading strategy & is self-financing if (9.12) holds.
We define the value process, which is useful because it involves only the num-
bers ¢, of risky assets. The discounted price process is defined by

We denote
X, = (X}, ....x8), X, =@1X).

The value process is defined as

Wt
V==L, t=0,..,T.
Bt
We obtain from (9.9) that
W, =BV, (9.13)
where
T-1
V=V, + Z Srr1 - (K = X))
=0

9.1.4 Examples of Portfolios

The collection of possible portfolios is determined by the collection of possible
portfolio weights. The most general collection of portfolio weights consists of
all weights satisfying the constraint (9.2):

d
B= {(bf,...,bf) : Zbgzl}.
i=0

We can impose various restrictions on portfolio weights and obtain smaller
collections of weights. For example, we can allow leveraging but forbid shorting
of stocks, or we can restrict ourselves to long only portfolios.



9.1 Portfolios and Their Returns

9.1.4.1 Shorting

A portfolio is described by giving weights for the portfolio components. The
weights are such that they sum to one, as stated in (9.2). Without any further
constraints, borrowing and short selling are allowed. When shorting is allowed,
then the elements of portfolio vectors can take negative values. Borrowing is
interpreted as selling short the risk-free rate. Thus, when borrowing is allowed,
the weight of the risk-free rate can take negative values. When short selling or
borrowing occurs, then some weights are larger than one.

Selling a stock short means that we sell a stock that we do not own. Typ-
ically the stock that is sold short is first borrowed from somebody who owns
the stock. If the stock is sold without first borrowing it, the short selling is called
naked short selling. Short selling a stock changes the character of the portfolio:
a short position on a stock has an unlimited downside risk, but only a lim-
ited upside potential. In contrast, a long position on a stock can lose only the
invested capital but has an unlimited upside potential.

A return that is obtained when being short a stock is

(1-byr,,, +bR,,,. (9.14)

where b < 0, R,,; =S,,,/S, is the gross return of the stock to be shorted, and
r,,1 is the gross return of another asset. For example, r,; can be the return of the
risk-free investment. The return 2r,,, — R,,, arises when the available wealth is
invested in the risk-free rate, the stock is shorted with the amount of the total
wealth, and the proceedings obtained from shorting the stock are invested in
the risk-free rate.

It can happen that (1 — b)r,,; + bR,,; < 0, because R, ,; is not bounded from
above. Gross returns less or equal to zero can be interpreted as leading to
bankruptcy, but they can also be interpreted as leading to debt.

Figure 9.1 shows functions S,,; = R,,; = (1 —b) + bS,,, /s, where s = S, is
the previous value of the stock. The case b = 1 (black) means that we are long
the stock (we have bought the stock). The case b = 2 (blue) means that we

Figure 9.1 Being long and short a stock. ® -
The blue lines show the gross return bh=2
of being long a stock for b=1 and
b = 2 as a function of the stock price. The e
red line shows the gross return of being
short a stock. Shown are the functions
S P Ry = =b)+bS,,,/s, where
s =S, is the previous value of the stock.

Gross return

Stock price
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are leveraged. The case b = —1 (red) means that we are short the stock. We
have taken the gross return of the risk-free investmentasr,,; = 1.

9.1.4.2 Long Only Portfolios

In a long only portfolio borrowing and short selling are excluded. In the case
of long only portfolios the portfolio weights are nonnegative. Thus, the weights
satisfy

b, >0
forj=0,...,d.

The nonnegativity constraint together with the condition Zliobi =1
imply that

0<b, <1
forj=0,....,d.

9.1.4.3 Leveraged Portfolios

A portfolio allowing leveraging but forbidding short selling is such that the
weight of the risk-free rate can be negative but the weights of the other assets
are nonnegative. In a leveraged portfolio it is allowed to borrow money and
invest the borrowed money to stocks or other assets. Borrowing money is
interpreted as shorting the risk-free rate. Let B, = S? be the bank account. The
portfolio vectors of a leveraged portfolio satisfy, in addition to the constraint
2;1:0 b/t = 1, the additional constraint

b, >0

forj=1,....d.
We allow negative values for the portfolio weight b? of the bank account, but

the other portfolio weights &), j = 1, ..., d, are nonnegative.

9.1.4.4 Restrictions on Short Selling

In practice investors have a constraint on the amount of short selling. It is nat-
ural to make a constraint on the amount of short selling by requiring that the
portfolio weights satisfy

d
Q<L (9.15)
j=0

where L > 1. Under the constraint Z}io b/: = 1, the constraint (9.15) is equiva-

lent to any of the following two constraints:

S (n) <55t R(n) <4t

j=0
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where we denote by (b), = max{0, b} the positive part of b € R and by (b)_ =
—min{0, b} the negative part of 5.! Thus, C = (L — 1)/2 is such factor that we
are allowed to short sell C times the current wealth.

9.1.4.5 Portfolios Used in Trading

There are several reasons to define very restricted finite collections of the
allowed portfolio weights. The use of restricted collections of weights brings
computational advantages, and restricted collections are often used in such
trading strategies as market timing and stock selection.

1)

2)

Computational advantages. For computational reasons, we might prefer to
search the portfolio vector from a rather small collection of the allowed port-
folio weights. When the collection of the allowed portfolio weights is small,
we do not have to use involved optimization techniques to find the portfolio
weights.

Market timing. Some market timing strategies require only the choice
between two different assets. These market timing strategies might be such
that we have two available assets, and at the beginning of every month we
choose to invest everything into the one asset and nothing into the other
asset, or we might go long the one asset and go short the other asset. The
two assets might both be risky assets, or the one asset might be the risk-free
rate and only the other asset would be risky. Market timing strategies are
often trend following strategies, which are discussed in Section 12.1.1.
Stock selection. Sometimes a mutual fund uses a strategy where a search is
made for an optimal subset of the stocks in the index that is the benchmark
for the performance. For example, a mutual fund whose aim is to beat the
performance of S&P 500 index might try to select a subset of the stocks in
S&P 500 index, invest equal weights to this subset, and allocate zero weights
to the remaining stocks of S&P 500 index. For instance, the mutual fund
might look for a subset of 20 companies whose price to earnings ratio is
the smallest, and to invest 5% to each of the companies with the smallest
P/E ratios. More involved stock selection methods might use regression on
economic indicators to estimate the expected returns or the expected utility,
as discussed in Sections 12.1.1 and 12.1.3.

1 We have b = (b), — (b)_and |b| = (b), + (b)_. Thus,

gﬂgmg(a)flé(@)

Then,

d d d

S =3 (0), + B (0) <1 % () <55

j=0 j=0 j=0
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Let us have basis assets S°, ..., 5% and predictions m(S°), ..., m(S?%) for the

performance of the basis assets. The performance predictions might be esti-
mates for the expected return, estimates for the expected utility, estimates for
the Markowitz criterion, or the price to earnings ratio (which could be consid-
ered as an estimate for the expected return) . These performance predictions
are discussed in Section 12.1.

1)

Let us consider the case d = 1, so that we have two basis assets S and S'. A
possible strategy is to put weight one to the first asset and to put weight zero
to the second asset, when m(S%) > m(S'). Otherwise, when m(5°) < m(S?),
then we put weight zero to the first asset and weight one to the second asset.
Now the set of the allowed portfolio vectors is

B={(1,0),(0,1)}. (9.16)

Let us secondly consider the case d = 2, so that we have three basis assets.

As examples, we consider two strategies.

a) We put weight one to the asset with the highest value for the performance
measure m(S%), i = 0, 1,2, and zero weight to the two other assets. Now
the set of the allowed portfolio vectors is

B ={(1,0,0),(0,1,0),(0,0,1)}. (9.17)

b) We put the equal weight 1/2 to the two assets with the highest value for
the performance measure m(S’), i = 0, 1,2, and the zero weight to the
remaining asset. Now the set of the allowed portfolio vectors is

B ={(1/2,1/2,0),(1/2,0,1/2),(0,1/2,1/2)}. (9.18)

Let us thirdly consider the general case of d > 1. We consider the strategy
where we choose from d + 1 = N basis assets a subset of M < N assets with
the highest values for the performance measure m(S%),i =0, ..., d, and put
equal weights to the M selected assets. Now the set of the allowed portfolio
vectors is

_J(1,; ) _
B= {(MI,(;)LOW# T CH{O,....d)H = M} , (9.19)

where [;(j) = 1 if j € ] and otherwise /;(j) = 0, we use the notation (b, ...,
b;) = (b)), 4 and #] means the number of elements in set J. We get (9.17)
as a special case by choosingd +1 =N =3 and M = 1. We get (9.18) as a
special case by choosingd +1 =N =3 and M = 2.

The previous collections of portfolio weights defined long only portfolios.

We can define in an analogous way collections of portfolio weights that allow
shorting.

1)

Let us consider the case d = 1, so that we have two basis assets, and we
assume that the first basis asset is the risk-free rate and the second asset is
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arisky asset. Let the risky asset have return R, ; and let the risk-free rate be
r,,;- Taking

B=1{(0,1),(2,-1)} (9.20)

means that we are either long of the stock, which gives return R, ,, or we
are short of the stock, which gives return 2r,; — R, ;. Taking

B={(@1,0),(-1,2)} (9.21)

means that we are either not invested, which gives return r,,;, or we are
leveraged, which gives return 2R, ;, — 7.

2) When the number d + 1 = N of the basis assets increases, the cardinality of
the set of possible and reasonable portfolio vectors increases rapidly. As an
example, let us consider the case N = 3, where the first asset is the risk-free
rate and two basis assets are risky. Now,

B =1{(0,1,0),(2,-1,0),(0,0,1),(2,0,-1),(1,0,0)} (9.22)

describes the choices of being long of one of the stocks, being short of one
of the stocks, and staying out of the market.

9.1.4.6 Pairs Trading

In pairs trading we have two risky assets and typically two alternatives are con-
sidered: (1) go long of the first asset and short of the second asset or (2) go short
of the first asset and long of the second asset. Then the return of the portfolio is

Sl s? 1
t+ t+
t t
where (1) b = —1, or (2) b = 2. More generally, we can consider pairs trading

with other values for b. Choosing the weights from set
B= {(1 +a, —ﬂ), (_ﬂ’ 1+ ['l)}7 (924)

where a4 > 0, means that we are leveraged of the first asset and short of the
second asset. We can include the risk-free rate and consider returns

Sl 2
(1-b, —bz)(1+r)+b1%11 +b2%21. (9.25)

t
Sometimes a strategy for pairs trading is defined in terms of asset prices. The
strategy could be such that coefficients c;, ¢, € R are determined so that the
linear combination
S} +¢,S?

of prices satisfies certain conditions. For example the aim could be to choose
¢; and ¢, so that the linear combination is stationary. This is possible when the
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prices S} and S? are colinear. When ¢, S} + ¢,S? > 0, the return of the portfolio is

1 2
0 clSt+1 + C25t+1

+1

b}

S} +¢,S?
and the weight in (9.23) is
€, S?

1S+ ¢, S

9.2 Comparison of Return and Wealth Distributions

In order to study portfolio selection and performance measurement we need
to define what it means that a wealth distribution or a return distribution is
better than another such distribution. Let the initial wealth be W, and the
wealth at time T be W,. Terminal wealth W is a random variable. When
W, > 0 then we can define the gross return R, = W;/W,. The gross return
R is arandom variable. We can use either the distribution of W or the distri-
bution of R; to study portfolio selection and performance measurement.

In portfolio selection, we need to choose the portfolio weights so that the
return R, or the terminal wealth W7 of the portfolio is optimized. To mea-
sure the performance of asset managers we need to define what it means that a
return distribution (or the distribution of the terminal wealth) generated by
an asset manager is better than the distribution generated by another asset
manager.?

To compare return and wealth distributions, we make a mapping from a class
of distributions to the set of real numbers. This mapping assigns to each distri-
bution a number that can be used to rank the distributions.

It might seem reasonable to compare return and wealth distributions using
only the expected returns and expected wealths: we would prefer always the
distribution with the highest (estimated) expectation. However, this would lead
to the preference of investment strategies with extremely high risk. Thus, the
comparison of distributions has to take into account not only the expectation
but also the risk associated with the distribution.

A classical idea to rank the return distributions is to use the variance penal-
ized expected return. This idea is discussed in Section 9.2.1, and it is related to
the Markowitz portfolio selection.

2 Note that in portfolio selection there is the additional problem that the distributions of the
returns of the individual assets, their cross-sectional dependencies, and their time series properties
are unknown and have to be estimated using historical data. Similarly, to measure the performance
of fund managers we have to collect information of the past returns obtained by the fund managers.
Then we estimate the return distributions and compare the estimated return distributions.
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Figure 9.2 Comparison  of  distributions. g ]
Shown are two return densities, where the

red distribution has a higher risk and a higher
return than the black distribution. It is not f .
obvious which return distribution should be
preferred.

0.0 0.5 1.0 1.5 2.0 2.5
Gross return

The expected utility is discussed in Section 9.2.2. The Markowitz criterion
uses only the first two moments of the distribution; it uses only the mean
and the variance. However, the expected utility takes into account the higher
order moments of the distribution. A Taylor expansion of the expected utility
shows that all the moments make a contribution to the expected utility.
Conversely, a Taylor expansion of the expected utility can be used to justify the
mean—variance criterion, and various other criteria that involve a collection of
moments of various degrees, such as the third and the fourth-order moments.

Figure 9.2 shows densities of two gross return distributions whose compar-
ison is not obvious. The distributions are Gaussian, and the expected return
of the red distribution is higher, but also the variance of the red distribution
is higher.? Thus, the red return distribution has a higher risk and a higher
expected return. There exists no universal or objective way to compare these
two distributions. Instead, the comparison depends on the risk aversion of the
investor. An investor with a high-risk aversion would prefer the black distribu-
tion, but an investor with a low-risk aversion would prefer the red distribution.

9.2.1 Mean-Variance Preferences

Portfolio choice with mean—variance preferences was proposed by Markowitz
(1952, 1959). This method ranks the distributions of the portfolio return R”

t+1

3 Strictly speaking, Gaussian distributions cannot be return distributions, because a Gaussian ran-
dom variable can take negative values, whereas a gross return is larger or equal to zero, and a net
return is larger or equal to —1. However, since Gaussian distributions have light tails, the probabil-
ity of a negative value can be negligible, and we can use them to model return distributions well,
although a log-normal distribution would be more appropriate, for example. In fact, to model a
return distribution, distributions with unbounded support are typically used, like ¢-distributions
(see Section 3.3).
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according to

ER

+1

Vart (R

t+1)

(9.26)

where y > 0 is the risk aversion parameter, and E, and Var, mean the condi-
tional expectation and conditional variance, respectively. The expected return
is penalized by subtracting the variance of the return. Parameter y measures
the investor’s risk aversion, or more precisely, absolute risk aversion, as defined
in (9.30).

We consider now basically one-period model, with time points ¢ and ¢ + 1.
We could apply the notations used in Section 9.1, and denote T' = 1, and replace
(9.26) by EOR’f - g VarO(R’; ). However, it is convenient to denote the time points
by ¢ and ¢ + 1, because in practice we will use the sequence of one-period mod-
elswitht¢=0,...,T — 1.

Remember that the gross return of a portfolio was written in (9.3) as

t+1 Z by Rt+1 Riprs

where R,,; = (R%,,...,R% ) is the column vector of the gross returns of
the portfolio components, the gross return of a single portfolio component
is R;+1 = Sl 1/S’ and b (b?, ,bf)’ is the vector of the portfolio weights.
Here S = B is the risk- free bond and R?H is the risk-free gross return.

In order to calculate the conditional variance of R 4 it is convenient to sep-

arate the risk-free rate. This was done in (9.6), where we wrote
bR, =(1-1b)R,, +bR, =R +b (R, —R,),

where b, = (b}, ..., b%) and R,,; = (R, . ...
returns of the risky assets.
We can write

ER =R

t+1 t+1

t+1

,R?, ) are the weights and the

+ b, (ERypy — R},,) s
and

Var, (R

? 1) =bVar,(R,, )b,

where E,R,,; is the d-vector of the expected returns of the risky assets and

Var,(R,,,) is the d X d covariance matrix of R, ;. Note that the risk-free rate R?, |

is known at time ¢, and therefore it does not affect the conditional variance.*
Section 9.2.2 discusses the use of the expected utility to rank the

distributions. The Markowitz ranking is related to the use of the quadratic

4 The unconditional variance can be written as Var(Rp )= v Var(R 1)l_at, because the risk-free
rate R?, | is a random variable.
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utility function
UG =x=1-2 (=17,

because the Markowitz criterion (9.26) with y = 1 is approximately equal to
EU (Rf 1) the difference being due to the the fact that the expected quadratic
utility involves the squared return but the Markowitz criterion in (9.26) involves
variance.

Chapter 11 discusses portfolio selection when the Markowitz criterion
is used. Next, we give two examples that illustrate how the variance of the
portfolio can be decreased by a skillful choice of the portfolio weights. The first
example considers uncorrelated basis assets and the second example considers
correlated assets. In practice, it is difficult to find uncorrelated basis assets and
it is even more difficult to find anticorrelated basis assets. However, even when
the basis assets are correlated it is possible to decrease the risk of the portfolio
by allocating the portfolio weights skillfully among the basis assets.

9.2.1.1 A Large Number of Uncorrelated Assets
The variance of the portfolio return can be close to zero, when we have a
large number of uncorrelated basis assets. Consider d risky assets S, ... , 84,

whose gross returns are R, =S' /S, i=1,...,d. We denote E,R =y,

Vart(Ri )= o2, and we assume that the returns are uncorrelated. Let the

portfolio vector be b = (1/d, ..., 1/d) € R%. Then,
o2
E .
Thus, when the number d of assets in the portfolio is large, the variance of the
portfolio return is close to zero.

Et(b,Rt+l) =K, Vart(b/Rt+l) =

9.2.1.2 Two Correlated Assets
In the case of two risky basis assets, the variance of the portfolio return can
be close to zero when the two assets are anticorrelated. Let R}, and R?

be the gross returns of two basis assets. Let us assume that the Var,(R},,) =
Var,(R?, ) = 0® and Cor,(R},,.R?, ) = p. Then the variance of the portfolio

t+1°
return is

Var, (bR}

t+1

+ (1 =DR:,)) = b*c® + (1 - b)’c* + 2b(1 — b)o>p,

t+1

where b € R is the weight of the first asset. Figure 9.3 shows the function
(p,b) = b> + (1 — b)> + 2b(1 — b)p, where we have chosen the variance of the
portfolio components to be ¢ = 1. The variance of the portfolio becomes
smaller when p — —1. When 0 < b <1, then variance of the portfolio is
smaller than one, otherwise it is larger than one. Thus, the variance of the
portfolio is smaller than the variance of the components when 0 < b <1,
and the reduction in the variance is greatest when portfolio components are
anticorrelated.
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Figure 9.3 Two correlated assets. A
contour plot of function (p,b)
b2 + (1 — b)? +2b(1 — b)pis shown.
The function is equal to the variance
of the portfolio when the portfo-
lio components have variance one,
correlation p, and the weight of
the portfolio components are b
and 1 —b.

9.2.2 Expected Utility

We can order distributions according to the value of the expected utility. Intro-
ducing the utility function U and ranking the distributions according to the
expected utility E,U(R;) brings in the element of risk aversion, whereas rank-
ing the return distributions solely according to the expected returns E,R; does
not take risk into account.

The expected utility can be calculated either from the wealth or from the
return. The expected utility calculated from the wealth is

EUWp),

where W7, is the wealth (in Euros, Dollars, etc.), and U : R — R is a utility
function. The negative wealth means that more is borrowed than owned. The
expected utility calculated from the gross returns is

E,U(R;),

where U : (0, 00) — Risautility function and R, = W,/ W, is the gross return.
The gross return Ry is always nonnegative. It is natural to define U(0) = —oo,
because the gross return of zero means bankruptcy.

Sometimes it is equivalent to calculate the expected utility from the wealth
and calculate it from the return. Consider the logarithmic utility U(x) = logx.
Now E,log W, = Elog W, + Elog R;. This issue is discussed in Section 9.3.

Figure 9.4 illustrates the ranking of distributions according to the expected
utility, when the densities have the same shape but different locations. Panel (a)
shows four densities of gross return distributions. The distribution with the
black density is the best because its expectation is the largest, and the distribu-
tion with the red density is the worst, because its expectation is the smallest.
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Figure 9.4 Ranking distributions with the expected utility: Different means. (a) Four density
functions of gross return R;; (b) the four density functions of U(R;). The expectations E,U(R;)
are marked with vertical vectors.

Panel (b) shows the densities of U(R}), where U is the power utility function
with risk aversion y = 5 and R; is the return.> The power utility functions are
defined in (9.28). The expectations E,U(R) are marked with vertical lines. We
can see that although the densities of returns R are symmetrical, the densities
of U(R;) are skewed to the left, so that the expectations EU(R;) are smaller
than the modes of the distributions.

Figure 9.5 illustrates the ranking of distributions according to the expected
utility, when the densities have the same location but different variances. The
utility function is the power utility function with risk aversion y = 5. The power
utility functions are defined in (9.28). Panel (a) shows four densities of return
distributions. The distribution with the black density is the best because its
spread is the smallest, and the distribution with the red density is the worst,
because its spread is the largest. Panel (b) shows the densities of U(R}), where
U is the utility function and R; is the return. The expectations E,U(R;) are
marked with vertical lines. We can see that although the mode of the red den-
sity is located furthest to the right, its expected value is furthest to the left.

5 The density function of U(R) is f;, () = fo(U' () /|U' (U (x))|, where f; is the density func-
tion of return R. In fact, let X € R be a random variable and A : R — R be a monotonic function.
Denote with fy the density of X and with f, , the density of A(X). We have

9

PX < A7'(x))
ox

2]
Saoo®) = 7 PAX) <x) =

1

_ L)) - | 2471 TACA=-L (N
=f (A7 ) | 54 ® |A/(A- @)

=f (A7 ) -

where A’ (x) = %A(x).
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Figure 9.5 Ranking of distributions with expected utility: Different variances. (a) Four density
functions of return R;; (b) the density functions of U(R;). The expectations E,U(R;) are marked
with vertical vectors.

9.2.2.1 Basic Properties of Utility Functions
In our examples a utility function can have as its domain either the positive real
axis or the real line. When the argument is a gross return, then utility function
U : (0,00) = R is defined on the positive real axis.® When the argument is
the wealth which can take negative values, then utility function I/ : R — Ris
defined on the real line.

It is natural to require that a utility function is strictly increasing and strictly
concave.

1) A strictly increasing function U : R — R satisfies U’(x) > 0 for all x € R,
when the function is differentiable. A function is strictly increasing if
U(x,) > U(x,) for all x, > x4.

A utility function should be increasing because investors prefer a larger
wealth to a lesser wealth.

2) A strictly concave function U : R — R satisfies U"(x) < 0 for all x € R,

when the function is two times differentiable. A concave function is such
that the rate of increase decreases.
A utility function should be concave since increasing the wealth makes the
value of additional wealth decline: The marginal value of additional con-
sumption is declining. The concavity of a utility function is a consequence
of risk aversion: The curvature of the utility function captures the subjective
aversion to risk.

Concavity can also be defined in the case where the function is not two times
differentiable. A function U : R — R is strictly concave, when

pUx) + (1 - pU(x,) < Upx, + (1 — p)xy) (9.27)
forall0 < p <1andforall x;,x, € R.

6 When we use a net return, then the utility function should have domain (-1, o).
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In addition, sometimes it is assumed that utility function U : (0,0) — Ris

continuously differentiability with lim_, U’ (x) = 0, lim,_, U’ (x) = oo.

9.2.2.2 Power and Exponential Utility Functions
The power utility functions are defined as

1-y

,ify >0, y#1,
Ux)={ 1-v x>0, (9.28)

logx, ify=1,

where y > 0 is the risk aversion parameter. Note that U'(x) = x7" for y > 0,

y # 1 and 0/0xlogx = x~!, which can be used to explain why the logarithmic

function is obtained as the limit when y — 1. The power utility functions are

constant relative risk aversion (CRRA) utility functions, as defined in (9.31).
The exponential utility functions are defined as

Ux)=1-e", x €ER, (9.29)

where a > 0is the risk aversion parameter. The exponential utility functions are
constant absolute risk aversion (CARA) utility functions, as defined in (9.30).

The power utility functions are defined on (0, o), but the exponential util-
ity functions are defined on the whole real line. Thus, the exponential utility
functions can be applied in the case of negative wealth. The exponential util-
ity functions are useful when we consider portfolios of derivatives (selling of
options), because in these cases the wealth can become negative. There exists
also other than power and exponential utility functions.”

Figure 9.6 plots normalized utility functions with different risk aversion
parameters. Panel (a) shows power utility functions (9.28) and panel (b) shows
exponential utility functions (9.29). The normalized utility functions are
defined by

_ Uw) — U
T uE) -uQy’

The normalization is such that (1) = 0 and #(2) = 1. Note that the ordering
of the distributions according to the expected utility is not affected by linear
transformations all(x) + ¢, a > 0, ¢ € R, because

E[aU(R,,,) +c] = aEU(R,,,) +c.

u(x)

Figure 9.6 shows that larger values of y or a are used when one is more risk
averse, because the curvature of the utility functions increases when y or « are
increased.

7 The utility functions U(x) = ], la w)(x), x € R, where a > 0, are used when one wants to choose a
portfolio maximizing the probability of reaching the given amount of capital. Note that these utility
functions are not concave.
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Figure 9.6 Utility functions. (a) Power utility functions (9.28) for risk aversion values y =1,
y = 2,and y = 3; (b) exponential utility functions (9.29) for risk aversion valuesa = 0.3,a = 1,
and @ = 2.
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Figure 9.7 Expected utility as a function of mean and standard deviation. We show
contour plots of functions (o, i) = EU(R), where R follows a normal distribution N(u, ¢?).
(@) Ux) = log x; (b) Ux) = x"7 /(1 — y) withy = 5.

Figure 9.7 shows contour plots of functions (o, u) — EU(R), where R follows
distribution R ~ 1 + r, where r ~ N (4, ag), where p, = /250, 6, = 6/\/%.
In panel (a) the utility function is logarithmic U(x) = logx and in panel (b)
U(x) = x77 /(1 — y) with y = 5.8 The expected utility is maximized when the
mean is high and the standard deviation is low, which happens in the upper left
corner. We see that for the logarithmic utility the expected utility is determined

8 In panel (a) we have multiplied the values of E(L(R)) with 1000 and in panel (b) with 10.
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by the expectation, but increasing the risk aversion to y = 5 makes the expected
utility sensitive both to mean and to standard deviation. When risk aversion is
increased more, then the expected utility becomes sensitive only to standard
deviation.

9.2.2.3 Taylor Expansion of the Utility
A Taylor expansion of a utility function can be used to gain insight into the dif-
ferences between the use of the mean—variance criterion and the use of the
expected utility, because the use of the mean—variance criterion is approxi-
mately equal to the use of the second-order Taylor expansion to approximate
the utility function. Also, we can use a Taylor expansion to replace the expected
utility with a series containing higher than the second-order moment, which
leads to a useful tool in portfolio selection.

We restrict ourselves to the fourth-order Taylor expansion, because the
extension to higher order expansions is obvious. For a utility function U :
R — Rthat has fourth-order continuous derivatives we have the approximation

Ux +h) ~ Ux) + hU' (x) + %hzu”(x) + %h3U(3)(x) + 2i4h4u<4>(x),

where x,h € R. This approximation holds for a power utility function
U : (0,0) - R,whenx > 0and x + /& > 0. We can write

/ 0

bR, = bR, + R,

where R?+1 is the risk-free rate and
0

R§+1 - Rt+1 Rt+1
is the vector of the excess gross returns. We can choose also R, = 1, so that
R}, is the net return instead of the excess return. When we take x = R?H and
h = bR |, then we obtain the approximation

(b, t+1) R dy+ dlb/ 1t (b R(te+1) (b R§+1) (b/R‘teH) >

where a, = U(R),,), a; = U'(RY,)), a, = U"(RY, ), as = UP(R) 1) and a, =
UDRY, ) Asa spec1al case, when Ux) = log(x), then the fourth order Taylor
expansion leads to the approximation

log (b;RM) ~ bR, - (b R,

) (b R

t+1

) - (blRiﬂ)'

Figure 9.8 shows the first four Taylor approximations to the logarithmic
utility. The black curve shows log-utility x — logx, the blue curve shows

9 For example, when U is a power utlhty function with y #1 and R?,, =1, then a, = U(1) =
1/A=y), a=UM=1 a=U'D=-y, a=U"Q)=yF+1), and a,=UPQ1Q)=
-y + Dy +2).
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~ Figure 9.8 Approximation of logarithmic

/ utility. The black curve shows log-utility

== x — log x, the blue curve shows the linear

o - ’ approximation, the red curve shows the

- quadratic approximation, the green curve

/ shows the third-order approximation, and

N the yellow curve shows the fourth-order
approximation.

Utility
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the linear function x — x — 1, the red curve shows the quadratic function
x> x—1—(x—1)%/2, the green curve shows the third-order polyno-
mial x> x—1—(x—1)2/2+ (x—1)3/3, and the yellow curve shows the
fourth-order polynomial x> x—1—(x—1)2/2+ (x — 1)3/3 — (x — 1)*/4.
The approximations are accurate when the gross return is close to one. A gross
return close to one means that the asset price has not changed much. However,
when the gross return is close to zero or much larger than one, then even
the fourth-order approximation is not accurate. Thus, using the logarithmic
utility in portfolio selection leads to taking large fluctuations into account, and
in particular, the logarithmic utility is better than any finite approximation
when we consider portfolios with extreme tail risk: the logarithmic utility
approaches —oo when the gross return approaches zero.

9.2.2.4 Risk Aversion
We can classify utility functions using measures of risk aversion.

CARA Utility Functions 'The coefficient of absolute risk aversion of utility function
U at point x is defined as

u/,(x)

u'x)
Utility functions with constant absolute risk aversion are called CARA util-
ity functions. For example, the exponential utility functions, defined in (9.29),
are CARA utility functions and have the coefficient of absolute risk aversion
a, whereas the power utility functions, defined in (9.28), are not CARA util-
ity functions because they have the coefficient of absolute risk aversion yx™'.
When an investor whose wealth is 100 is willing to risk 50, and after reaching
wealth 1000, is still willing to risk 50, then the investor has constant absolute
risk aversion. Most investors have decreasing absolute risk aversion (so that
after reaching wealth 1000, the investor is willing to risk more than 50).

(9.30)
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CRRA Utility Functions 'The coefficient of relative risk aversion of utility function
U at point x is defined as
u// (x)

u'x)

Utility functions with constant relative risk aversion are called CRRA utility
functions. For example, the power utility functions are CRRA utility functions
and have the coefficient of relative risk aversion y, whereas the exponential util-
ity functions are not CRRA utility functions because they have the coefficient
of relative risk aversion ax. When an investor whose wealth is 100 is willing to

risk 50, and after reaching wealth 1000, is willing to risk 500, then the investor
has constant relative risk aversion.

x (9.31)

Expected Utility and Portfolio Weights It is helpful to plot a curve that shows
estimates of the expected utility for a scale of risk aversion parameters. The
expected utility curve is the function

y = Eu,(R,,,), y >0, (9.32)

where
U, @) - U, (1)

u,(x) = m,

and U, is the power utility function, defined in (9.28). Since the expected value
is unknown, we have to estimate it using a sample average of historical values.
In the case of two basis assets, it is helpful to look at functions

b+ Eu, ((1- bR}, +bR,)) (9.33)

t+1

for various values of b, where R} )
assets.

Figure 9.9 considers daily S&P 500 and Nasdaq-100 data, described in
Section 2.4.2. Panel (a) shows functions (9.32) for S&P 500 (black) and
Nasdag-100 (red). We see that Nasdaq-100 is better for a risky investor but
S&P 500 is better for a risk averse investor. Panel (b) shows functions (9.33)
for y = 1 (blue) and y = 2 (green). Here R}, , is the return of S&P 500 and R?
is the return of Nasdaq-100. The optimal value of weight b is indicated by
vertical lines. We see that when risk aversion y increases, then the weight b of
Nasdaq-100 decreases.

Figure 9.10 considers monthly S&P 500 data, described in Section 2.4.3.
Panel (a) shows functions

v+ Eu((1—-b)+bR,),  7>0, (9.34)

and R?, | are the gross returns of the two basis

where R,,; is the gross return of S&P 500. Thus, (1 — b) + bR, is the gross
return of a portfolio whose components are the risk-free rate with gross return
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Figure 9.9 Portfolio selection: S&P 500 and Nasdag-100. (a) Functions (9.32) for S&P 500 (black)

and Nasdag-100 (red); (b) functions (9.33) for y = 1 (blue) and y = 2 (green).
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Figure 9.10 Portfolio selection: Risk-free rate and S&P 500. (a) Functions (9.34) for b = —1
(black), b =0 (red), b = 1 (blue), and b = 2 (green); (b) functions (9.35) for y = 1 (purple) and
y = 2 (dark green).

one and the S&P 500. We show cases b = —1 (black), b = 0 (red), b = 1 (blue),
and b = 2 (green). Panel (b) shows functions

b Eu((1-b)+bR,), beR (9.35)

for y = 1 (purple) and y = 2 (dark green). The optimal value of weight b is indi-
cated by vertical lines.
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9.2.3 Stochastic Dominance

Sometimes a return distribution stochastically dominates another return distri-
bution, so that it is preferred regardless of the chosen utility function. However,
stochastic dominance occurs rarely in practice.

The distribution of X € R stochastically dominates the distribution of
Y eR,if

Fy(t) < Fy(2) (9.36)

for all £ € R, where Fy(¢) = P(X < t) and F,(¢) < P(Y < ¢t) are the distribution
functions. Inequality (9.36) is equivalent to

PX>8)>PY >0 (9.37)

forallt € R.

Stochastic dominance is also called first-order stochastic dominance to
distinguish it from second-order stochastic dominance. The distribution of
X € R second-order dominates stochastically the distribution of Y € R, if

/x Fy(t) dt < / Fy(t) dt

forallx € R.

Figure 9.11 shows an example of first-order stochastic dominance. Panel (a)
shows the densities of two distributions, and the distribution of the black den-
sity stochastically dominates the distribution of the red density. The densities
have the same shape but the black density is located to the right of the red
density. Panel (b) shows the distribution functions.
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Figure 9.11 First-order stochastic dominance. The black distribution dominates the red distri-
bution. (a) Density functions; (b) distribution functions.
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Figure 9.12 Second-order stochastic dominance. The black distribution dominates the
red distribution. (a) Density functions; (b) distribution functions; (c) functions G,(x) =
L2 F() dt, G, (x) = [ F,(t) dt, where F, and F, are the distribution functions.

Figure 3.8(b) shows two empirical distribution functions, which are such that
neither of the distribution functions dominates the other.

Figure 9.12 shows an example of second-order stochastic dominance. The
distribution of the black density dominates the distribution of the red density.
Panel (a) shows the densities of the two distributions, panel (b) shows the dis-
tribution functions, and panel (c) shows the functions Gy(x) = /_xoo Fy(t) dt,
Gy(x) = f_xoc F,(t) dt, where F, and F, are the distribution functions. The black
and the red densities have the same location, but the red distribution has a
larger variance than the black distribution.

When a return distribution second-order dominates stochastically another
return distribution, then it is preferred, regardless of risk aversion. In fact, it
holds that the distribution of X second-order dominates the distribution of ¥
if and only if

EU(X) > EU(Y)

for everyincreasing and concave utility function I/ : R — R, which is two times
continuously differentiable. First-order stochastic dominance occurs if and only
if the dominant distribution has a higher expected utility for all increasing and
continuously differentiable utility functions.

9.3 Multiperiod Portfolio Selection

In the multiperiod model the wealth of the portfolio is obtained from (9.10) as
T-1

W =W, [[ 5 Riss» (9.38)

t=0



9.3 Multiperiod Portfolio Selection

where W, > 0is the initial wealth at time 0, b, € R%*! is the vector of the portfo-
lio weights, and R,,; € R%*! is the vector of gross returns of the d + 1 portfolio
components. We write

b= (B0 bY). Ry = (R

t+1°

LR,

t+1

where R, = S!  /SI,i=0,...,d. The portfolio weights satisfy
d
Ybi=1 e bl =1L (9.39)
i=0

Now b, - R,,, = W,,,/W, is the one period gross return. We can write

bR, =R, +b,- (R, —R),,), (9.40)

t+1

b, € R%. In this way we do not have to worry about the restriction (9.39).
The wealth of the portfolio is obtained in additive form from (9.13) as

Wy =SV, (9.41)
where
T-1
V=V, + Z Srr1 - Xy = X))
t=0
Here
W, S
V,=—, X,=—=, S,=(S......5%).
S Sy
The vector &, = (£}, ..., fH) gives the numbers of risky assets in the port-

folio. Vector &,,, € R? is unrestricted. Note that the time indexing is such that
&,,1 and b, both describe the portfolio for the period [£, £ 4+ 1]. Note that we have
assumed in (9.41) that S? > 0 almost surely. This holds when §° is a risk-free
investment.

The multiplicative way of writing the wealth presupposes a positive wealth,
whereas the additive way of writing the wealth allows for a nonpositive wealth.
The multiplicative way of writing the wealth is convenient for the power utility
functions, whereas the additive way of writing the wealth is convenient for the
exponential utility functions, because factoring the wealth as a product makes
the writing of the backward induction convenient.

At time t = 0 we want to find the portfolio vector b, or &; so that

E (W) (9.42)
is maximized, where the rebalancing of the portfolio will be made at times
1,..., T — 1. The maximization of (9.42) is over the sequence of weights
by, ..., by_, or over the sequence of numbers &, ..., &, although at time ¢t = 0

we need to choose only b, or &,.
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We can summarize the results in the following way:

1) For the logarithmic utility function the multiperiod portfolio selection
reduces to the one-period portfolio selection.

2) For the power utility functions (which include the logarithmic utility) and
for the exponential utility functions the optimal portfolio vector does not
depend on the initial wealth.

The power utility functions need a positive wealth as the argument, and they
can be applied when the wealth process is written in the product form. The
exponential utility functions can take a negative wealth as the argument, and
they lead to tractable dynamic programming when the wealth process is written
additively.

We describe first the one-period optimization in Section 9.3.1, and then
the multiperiod optimization in Section 9.3.2. The understanding of the
multiperiod optimization is easier when it is contrasted with the single period
optimization. We describe first the case of the logarithmic utility function.
After that we describe the solution for the power utility functions. Third, we
describe the case of the exponential utility functions. In the multiperiod model
we give also the formulas for arbitrary utility functions.

9.3.1 One-Period Optimization
We want to maximize at time 0 the expected utility of the wealth at time 1:
E,U(W)).
We discuss the cases where U is the logarithmic utility function, a power utility
function, and an exponential utility function.
9.3.1.1 The Logarithmic Utility Function
The logarithmic utility function is U(x) = logx. We have
U(W,b, - R,) = log W, + log(b, - R,).
Thus, we need to maximize
E,log(b, - R,)

over b, under restriction b, - 1,,, = 1. Thus, the optimal b, does not depend
on the initial wealth W,

The maximization can be done unrestricted when we apply (9.40), so that we
need to maximize

E,log [R(l) + by - (Rl - R(l))]

over b, € R%.
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9.3.1.2 The Power Utility Functions
The power utility functions are U(x) = x"7 /(1 —y) for x > 0, where y > 0,
y # 1. We have

Wi
0 (b, -R)".

U(Wyb, - R)) = T

Thus, we need to maximize
Ey [(By - R)'™] (9.43)

over by, under restriction b, - 1,,, = 1. Thus, the optimal b, does not depend
on the initial wealth W,

The maximization can be done unrestricted when we apply (9.40), so that we
need to maximize

1—
Ey [ (R + by (R, - )]
over b, € R%.
9.3.1.3 The Exponential Utility Functions

The exponential utility functions are U(x) = 1 — e™** for x € R, where a > 0.
The maximization of E,l/(W,) is equivalent to the minimization of

E,exp{—aW,}.
We apply the additive form in (9.41) to obtain
exp {—aW,} =exp {—aS}(V, + & - (X, — X))}
= exp {—aS?VO} exp {—angl (X - Xo)} .
Thus, we need to minimize
Eyexp {—aS)¢, - (X; — Xp)}
over & € R?. This is unrestricted minimization. The optimal & does not

depend on the initial wealth W,.

9.3.2 The Multiperiod Optimization
We want to maximize at time 0 the expected utility of the wealth at time T
E,U(W7).

We discuss the cases where U is the logarithmic utility function, a power utility
function, an exponential utility function, and a general utility function.
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9.3.2.1 The Logarithmic Utility Function
For the logarithmic utility U(x) = logx we have from (9.38) that

T-1
log(W7y) = log(Wy) + Y log(b, - R,.,),

t=0

where

by - 15, =1
We want to find portfolio vector b, maximizing
E,log(Wy),

under restriction b, - 1,,, = 1. We see that for the logarithmic utility the opti-
mal portfolio vector at time ¢ = 0 is the maximizer over b, of the single period
expected logarithmic return

E,log(b, - R,),

when the maximization is done under restriction b, - 1,,, = 1. In particular,