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Preface

We study applications of nonparametric function estimation into risk manage-
ment, portfolio management, and option pricing.

The methods of nonparametric function estimation have not been commonly
used in risk management. The scarcity of data in the tails of a distribution makes
it difficult to utilize the methods of nonparametric function estimation. How-
ever, it has turned out that some semiparametric methods are able to improve
purely parametric methods.

Academic research has paid less attention to portfolio selection, as compared
to the attention that has been paid to risk management and option pricing. We
study applications of nonparametric prediction methods to portfolio selection.
The use of nonparametric function estimation to reach practical financial deci-
sions is an important part of machine learning.

Option pricing might be the most widely studied part of quantitative finance
in academic research. In fact, the birth of modern quantitative finance is often
dated to the 1973 publication of the Black–Scholes option pricing formula.
Option pricing has been dominated by parametric methods, and it is especially
interesting to provide some insights of nonparametric function estimation into
option pricing.

The book is suitable for mathematicians and statisticians who would like to
know about applications of mathematics and statistics into finance. In addi-
tion, the book is suitable for graduate students, researchers, and practitioners
of quantitative finance who would like to study some underlying mathematics
of finance, and would like to learn new methods. Some parts of the book require
fluency in mathematics.

Klemelä (2014) is a book that contains risk management (volatility prediction
and quantile estimation) and it describes methods of nonparametric regression,
which can be applied in portfolio selection. In this book, we cover those topics
and also include a part about option pricing.



xiv Preface

The chapters are rather independent studies of well-defined topics. It is
possible to read the individual chapters without a detailed study of the previous
material.

The research in the book is reproducible, because we provide R-code of the
computations. It is my hope, that this makes it easier for students to utilize
the book, and makes it easier for instructors to adapt the material into their
teaching.

The web page of the book is available in http://jussiklemela.com/statfina/.

Jussi KlemeläHelsinki, Finland
June 2017
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1

Introduction

Nonparametric function estimation has many useful applications in quantita-
tive finance. We study four areas of quantitative finance: statistical finance, risk
management, portfolio management, and pricing of securities.1

A main theme of the book is to study quantitative finance starting only with
few modeling assumptions. For example, we study the performance of non-
parametric prediction in portfolio selection, and we study the performance
of nonparametric quadratic hedging in option pricing, without constructing
detailed models for the markets. We use some classical parametric methods,
such as Black–Scholes pricing, as benchmarks to provide comparisons with
nonparametric methods.

A second theme of the book is to put emphasis on the study of economic
significance instead of statistical significance. For example, studying economic
significance in portfolio selection could mean that we study whether prediction
methods are able to produce portfolios with large Sharpe ratios. In contrast,
studying statistical significance in portfolio selection could mean that we study
whether asset returns are predictable in the sense of the mean squared pre-
diction error. Studying economic significance in option pricing could mean
that we study whether hedging methods are able to well approximate the pay-
off of the option. In contrast, studying statistical significance in option pricing
could mean that we study the goodness-of-fit of our underlying model for asset
prices. Studying statistical significance can be important for understanding the
underlying reasons for economic significance. However, the study of economic
significance is of primary importance, and the study of statistical significance
is of secondary importance.

1 The quantitative finance section of preprint archive “arxiv.org” contains four additional sections:
computational finance, general finance, mathematical finance, and trading and market microstruc-
ture. We cover some topics of computational finance that are useful in derivative pricing, such
as lattice methods and Monte Carlo methods. In addition, we cover some topics of mathematical
finance, such as the fundamental theorems of asset pricing.

Nonparametric Finance, First Edition. Jussi Klemelä.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.



2 1 Introduction

A third theme of the book is the connections between the various parts of
quantitative finance.

1) There are connections between risk management and portfolio selection: In
portfolio selection, it is important to consider not only the expected returns
but also the riskiness of the assets. In fact, the distinction between risk man-
agement and portfolio selection is not clear-cut.

2) There are connections between risk management and option pricing: The
prices of options are largely influenced by the riskiness of the underlying
assets.

3) There are connections between portfolio management and option pricing:
Options are important assets to be included in a portfolio. In addition, mul-
tiperiod portfolio selection and option hedging can both be casted in the
same mathematical framework.

Volatility prediction is useful in risk management, option pricing, and portfo-
lio selection. Thus, volatility prediction is a constant topic throughout the book.

1.1 Statistical Finance

Statistical finance makes statistical analysis of financial and economic data.
Chapter 2 contains a description of the basic financial instruments, and it

contains a description of the data sets that are analyzed in the book.
Chapter 3 studies univariate data analysis. We study univariate financial time

series, but ignore the time series properties of data. A decomposition of a uni-
variate distribution into the central part and into the tail parts is an important
theme of the chapter.

1) We use different estimators for the central part and for the tails. Non-
parametric density estimation is efficient at the center of a univariate
distribution, but in the tails of the distribution the scarcity of data makes
nonparametric estimation difficult. When we combine a nonparametric
estimator for the central part and a parametric estimator for the tails then
we obtain a semiparametric estimator for the distribution.

2) We use different visualization methods for the central part and for the tails.
We apply two basic visualization tools: (1) kernel density estimates and (2)
tail plots. Kernel density estimates can be used to visualize and to estimate
the central part of the distribution. Tail plots are an empirical distribution
based tool, and they can be used to visualize the tails of the distribution.

Chapter 4 studies multivariate data analysis. Multivariate data analysis con-
siders simultaneously several time series, but the time series properties are
ignored, and thus the analysis can be called cross-sectional. A basic concept
is the copula, which makes it possible to compose a multivariate distribution
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into the part that describes the dependence and into the parts that describe
the marginal distributions. We can estimate the marginal distributions using
nonparametric methods, but to estimate dependence for a high-dimensional
distribution it can be useful to apply parametric models. Combining nonpara-
metric estimators of marginals and a parametric estimator of the copula leads
to a semiparametric estimator of the distribution. Note that there is an analogy
between the decomposition of a multivariate distribution into the copula and
the marginals, and between the decomposition of a univariate distribution into
the tails and the central area.

Chapter 5 studies time series analysis. Time series analysis adds the elements
of dependence and time variation into the univariate and multivariate data anal-
ysis. Completely nonparametric time series modeling tends to become quite
multidimensional, because dependence over k consecutive time points leads
to the estimation of a k-dimensional distribution. However, a rather conve-
nient method for time series analysis is obtained by taking as a starting point
a univariate or a multivariate parametric model, and estimating the parameter
using time localized smoothing. For example, we can apply time localized least
squares or time localized maximum likelihood.

Chapter 6 studies prediction. Prediction is a central topic in time series
analysis. The previous observations are used to predict the future observations.
A distinction is made between moving average type of predictors and state
space type of predictors. Both types of predictors can arise from parametric
time series modeling: moving average and GARCH (1, 1) models lead to moving
average predictors, and autoregressive models lead to state space predictors. It
is easy to construct nonparametric moving average predictors, and nonpara-
metric regression analysis leads to nonparametric state space predictors.

1.2 Risk Management

Risk management studies measurement and management of financial risks. We
concentrate on the market risk, which means the risk of unfavorable moves of
asset prices.2

Chapter 7 studies volatility prediction. Prediction of volatility means in our
terminology that the square of the return of a financial asset is predicted. The
volatility prediction is extremely useful in almost every part of quantitative

2 Other relevant types of risk are credit risk, liquidity risk, and operational risk. Credit risk means
the risk of the default of a debtor and the risks resulting from downgrading the rating of a debtor.
Liquidity risk means the risk from additional cost of liquidating a position when buyers are rare.
Operational risk means the risk caused by natural disasters, failures of the physical plant and equip-
ment of a firm, failures in electronic trading, clearing or wire transfers, trading and legal liability
losses, internal and external theft and fraud, inappropriate contractual negotiations, criminal mis-
management, lawsuits, bad advice, and safety issues.
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finance: we can apply volatility prediction in quantile estimation, and volatility
prediction is an essential tool in option pricing and in portfolio selection.
In addition, volatility prediction is needed when trading with variance
products. We concentrate on the following three methods:
1) GARCH models are a classical and successful method to produce volatility

predictions.
2) Exponentially weighted moving averages of squared returns lead to volatility

predictions that are as good as GARCH (1, 1) predictions.
3) Nonparametric state space smoothing leads to improvements of GARCH

(1, 1) predictions. We apply kernel regression with two explanatory
variables: a moving average of squared returns and a moving average of
returns. The response variable is a future squared return. A moving average
of squared returns is in itself a good volatility predictor, but including a
kernel regression on top of moving averages improves the predictions. In
particular, we can take the leverage effect into account. The leverage effect
means that when past returns have been low, then the future volatility tends
to be higher, as compared to the future volatility when the past returns have
been high.

Chapter 8 studies estimation of quantiles. The term value-at-risk is used to
denote upper quantiles of a loss distribution of a financial asset. Value-at-risk
at level 0.5 < p < 1 has a direct interpretation in risk management: it is such
value that the probability of losing more has a smaller probability than 1 − p.
We concentrate on the following three main classes of quantile estimators:
1) The empirical quantile estimator is a quantile of the empirical distribution.

The empirical quantile estimator has many variants, since it can be used in
conditional quantile estimation and it can be modified by kernel smoothing.
In addition, empirical quantiles can be combined with volatility based and
excess distribution based methods, since empirical quantiles can be used to
estimate the quantiles of the residuals.

2) Volatility based quantile estimators apply a location-scale model. A volatil-
ity estimator leads directly to a quantile estimator, since estimation of the
location is less important. The performance of volatility based quantile esti-
mators depends on the choice of the base distribution, whose location and
scale is estimated. However, in a time series setting the use of the empirical
quantiles of the residuals provides a method that bypasses the problem of
the choice of the base distribution.

3) Excess distribution based quantile estimators model the tail parametrically.
These estimators ignore the central part of the distribution and model only
the tail part parametrically. The tail part of the distribution is called the
excess distribution. Extreme value theory can be used to justify the choice
of the generalized Pareto distribution as the model for the excess distribu-
tion. Empirical work has confirmed that the generalized Pareto distribution
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provides a good fit in many cases. In a time series setting the estimation can
be improved if the parameters of the excess distribution are taken to be time
changing. In addition, in a time series setting we can make the estimation
more robust to the choice of the parametric model by applying the empiri-
cal quantiles of the residuals. In this case, the definition of a residual is more
involved than in the case of volatility based quantile estimators.

1.3 Portfolio Management

Portfolio management studies optimal security selection and capital allocation.
In addition, portfolio management studies performance measurement.

Chapter 9 discusses some basic concepts of portfolio theory.

1) A major issue is to introduce concepts for the comparison of wealth dis-
tributions and return distributions. The comparison can be made by the
Markowitz mean–variance criterion or by the expected utility. We need to
define what it means that a return distribution is better than another return
distribution. This is needed both in portfolio selection and in performance
measurement.

2) A second major issue is the distinction between the one period portfolio
selection and multiperiod portfolio selection. We concentrate on the one
period portfolio selection, but it is instructive to discuss the differences
between the approaches.

Chapter 10 studies performance measurement.

1) The basic performance measures that we discuss are the Sharpe ratio, cer-
tainty equivalent, and the alpha of an asset.

2) Graphical tools are extremely helpful in performance measurement. The
performance measures are sensitive to the time period over which the per-
formance is measured. The graphical tools address the issue of the sensitivity
of the time period to the performance measures. The graphical tools help to
detect periods of good performance and the periods of bad performance,
and thus they give clues for searching explanations for good and bad perfor-
mance.

Chapter 11 studies Markowitz portfolio theory. Markowitz portfolios are
such portfolios that minimize the variance of the portfolio return, under a
minimal requirement for the expected return of the portfolio. Markowitz
portfolios can be utilized in dynamic portfolio selection by predicting the
future returns, future squared returns, and future products of returns of two
assets, as will be done in Chapter 12.

Chapter 12 studies dynamic portfolio selection. Dynamic portfolio selection
means in our terminology such trading where the weights of the portfolio are
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rebalanced at the beginning of each period using the available information.
Dynamic portfolio selection utilizes the fact that the expected returns, the
expected squared returns (variances), and the expected products of returns
(covariances) change in time. The classical insight of efficient markets has to be
modified to take into account the predictability of future returns and squared
returns.
1) First, we discuss how prediction can be used in portfolio selection. Time

series regression can be applied in portfolio selection both when we use
the maximization of the expected utility and when we use mean–variance
preferences. In the case of the maximization of the expected utility, we pre-
dict the future utility transformed returns with time series regression. In the
case of mean–variance preferences we predict, the future returns, squared
returns, and products of returns.

2) The Markowitz criterion can be seen as decomposing the expected utility
into the first two moments. The decomposition has the advantage that dif-
ferent methods can be used to predict the returns, squared returns, and
products of returns. The main issue is to study the different types of pre-
dictability of the mean and the variance. In fact, most of the predictability
comes from the variance part, whereas the expectation part has a much
weaker predictability.
a) We need to use different prediction horizons for the prediction of the

returns and for the prediction of the squared returns. For the prediction
of the returns we need to use a prediction horizon of 1 year or more. For
the prediction of squared returns we can use a prediction horizon of 1
month or less.

b) We need to use different prediction methods for the prediction of the
returns and for the prediction of the squared returns. For the prediction
of the returns, it is useful to apply such explanatory variables as dividend
yield and term spread. For the prediction of the squared returns we can
apply GARCH predictors or exponentially weighted moving averages.

1.4 Pricing of Securities

Pricing of securities considers valuation and hedging of financial securities and
their derivatives.

Chapter 13 studies principles of asset pricing. We start the chapter by a
heuristic introduction to pricing of securities, and discuss such concepts as
absolute pricing, relative pricing using arbitrage, and relative pricing using
“statistical arbitrage.”3

3 The term statistical arbitrage refers often to pairs trading and to the application of mean rever-
sion. We use term statistical arbitrage more generally, to refer to cases where two payoffs are close
to each other with high probability. Thus, also term probabilistic arbitrage could be used.
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1) The first main topic is to state and prove the first fundamental theorem of
asset pricing in discrete time models, and to state the second fundamental
theorem of asset pricing. These theorems provide the foundations on which
we build the development of statistical methods of asset pricing. We give a
constructive proof of the first fundamental theorem of asset pricing, instead
of using tools of abstract functional analysis. The constructive proof of the
first fundamental theorem of asset pricing turns out to be useful, because the
method can be applied in practise to price options in incomplete models.
The construction uses the Esscher martingale measure, and it is a special
case of using utility functions to price derivatives.

2) The second main topic is to discuss evaluation of pricing and hedging meth-
ods. The basic evaluation method will be to measure the hedging error. The
hedging error is the difference between the payoff of the derivative and the
terminal value of the hedging portfolio. By measuring the hedging error,
we simultaneously measure the modeling error and the estimation error.
Minimizing the hedging error has economic significance, whereas modeling
error and estimation error are underlying statistical concepts. Thus, empha-
sizing the hedging error is an example of emphasizing economic significance
instead of statistical significance.

Chapter 14 studies pricing by arbitrage. The principle of arbitrage-free pric-
ing combines two different topics: pricing of futures and pricing of options in
complete models, like binary models and the Black–Scholes model.

1) A main topic is pricing in multiperiod binary models. First, these models
introduce the idea of backward induction, which is an important numerical
tool to value options in the Black–Scholes model, and which is an important
tool in quadratic hedging. Second, these models lead asymptotically to the
Black–Scholes prices.

2) A second main topic is to study the properties of Black–Scholes hedging. We
illustrate how hedging frequency, strike price, expected return, and volatil-
ity influence the hedging error. These illustrations give insight into hedging
methods in general, and not only into Black–Scholes hedging.

3) A third main topic is to study how Black–Scholes pricing and hedging per-
forms with various volatility predictors. Black–Scholes pricing and hedging
provides a benchmark, against which we can measure the performance of
other pricing methods. Black–Scholes pricing and hedging assumes that
the stock prices have a log-normal distribution with a constant volatility.
However, when we combine Black–Scholes pricing and hedging with a time
changing GARCH (1, 1) volatility, then we obtain a method that is hard to
beat.

Chapter 15 gives an overview of several pricing methods in incomplete
models. Binary models and the Black–Scholes model are complete models,
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but we are interested in option pricing when the model makes only few
restrictions on the underlying distribution of the stock prices. Chapter 16 is
devoted to quadratic hedging, and in Chapter 15 we discuss pricing by utility
maximization, pricing by absolutely continuous changes of measures, pricing
in GARCH models, pricing by a nonparametric method, pricing by estimation
of the risk neutral density, and pricing by quantile hedging.
1) A main topic is to introduce two general approaches for pricing derivatives

in incomplete models: the method of utility functions and the method of
an absolutely continuous change of measure (Girsanov’s theorem). For
some Gaussian processes and for some utility functions these methods
coincide. The method of utility functions can be applied to construct a
nonparametric method of pricing options, whereas Girsanov’s theorem can
be applied in the case of some processes with Gaussian innovations, such
as some GARCH processes.

2) A second main topic is to discuss pricing in GARCH models. GARCH (1, 1)
model gives a reasonable fit to the distribution of stock prices. Girsanov’s
theorem can be used to find a natural pricing function when it is assumed
that the stock returns follow a GARCH (1, 1) process. Heston–Nandi mod-
ification of the standard GARCH (1, 1) model leads to a computationally
attractive pricing method. Heston–Nandi model has been rather popular,
and it can be considered as a discrete time version of continuous time
stochastic volatility models.

Chapter 16 studies quadratic hedging. In quadratic hedging the price and the
hedging coefficients are determined so that the mean squared hedging error is
minimized. The hedging error means the difference between the terminal value
of the hedging portfolio and the value of the option at the expiration.
1) A main aim of the chapter is to derive recursive formulas for quadratically

optimal prices and hedging coefficients. It is important to cover both the
global and the local quadratic hedging. Local quadratic hedging leads to
formulas that are easier to implement than the formulas of global quadratic
hedging. Quadratic hedging has some analogies with linear least squares
regression, but quadratic hedging is a version of sequential regression,
which is done in a time series setting. In addition, quadratic hedging
does not assume a linear model, but we are searching the best linear
approximation in the sense of the mean squared error.

2) A second main aim of the chapter is to implement quadratic hedging.
This will be done only for local quadratic hedging. We implement local
quadratic hedging nonparametrically, without assuming any model for the
underlying distribution of the stock prices. Although quadratic hedging
finds an optimal linear approximation for the payoff of the option, the
quadratically optimal price and hedging coefficients have a nonlinear
dependence on volatility, and thus nonparametric approach may lead to a
better fit for these nonlinear functions than a parametric modeling.
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Chapter 17 studies option strategies. Option strategies provide a large
number of return distributions to choose from, so that it is possible to create a
portfolio that is tailored to the expectations and the risk profile of each investor.
We discuss such option strategies as vertical spreads, strangles, straddles,
butterflies, condors, and calendar spreads. Options can be combined with
stocks to create covered calls and protective put. Options can be combined
with bonds to create capital guarantee products. We give insight into these
option strategies by estimating the return distributions of the strategies.

Chapter 18 describes interest rate derivatives. The market of interest rate
derivatives is even larger than the market of equity derivatives. Interest rate
forwards include forward zero-coupon bonds, forward rate agreements, and
swaps. Interest rate options include caps and floors.
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Statistical Finance
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2

Financial Instruments

The basic assets which are traded in financial markets include stocks and bonds.
A large part of financial markets consists of trading with derivative assets, like
futures and options, whose prices are derived from the prices of the basic assets.
Stock indexes can be considered as derivative assets, since the price of a stock
index is a linear combination of the prices of the underlying stocks. A stock
index is a more simple derivative asset than an option, whose terminal price is
a nonlinear function of the price of the underlying stock.

In addition, we describe in this section the data sets which are used through-
out the book to illustrate the methods.

2.1 Stocks

Stocks are securities representing an ownership in a corporation. The owner
of a stock has a limited liability. The limited liability implies that the price of a
stock is always nonnegative, so that the price St of a stock at time t satisfies

0 ≤ St <∞.

Stock issuing companies have a variety of legal forms depending on the country
of domicile of the company.1 Common stock typically gives voting rights in
company decisions, whereas preferred stock does not typically give voting
rights, but the owners of preferred stocks are entitled to receive a certain
amount of dividend payments before the owners of common stock can receive
any dividends.

1 Statistical data of stock prices is usually available only for the stocks that are publicly traded in
a stock exchange. In UK the companies whose stocks are publicly traded are called public lim-
ited companies (PLC), and in Germany they are called Aktiengesellschaften (AG). The companies
whose owners have a limited liability but whose stocks are not publicly traded are called private
companies limited by shares (Ltd), and Gesellschaft mit beschränkter Haftung (GmbH).

Nonparametric Finance, First Edition. Jussi Klemelä.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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2.1.1 Stock Indexes

We define a stock index, give examples of the uses of stock indexes, and give
examples of popular stock indexes.

2.1.1.1 Definition of a Stock Index
The price of a stock index is a weighted sum of stock prices. The value It of a
stock index at time t is calculated by formula

It = C
d∑

i=1
niSi

t , (2.1)

where C is a constant, d is the number of stocks in the index, ni is the number of
shares of stock i, and Si

t is a suitably adjusted price of stock i at time t, where i =
1,… , d. Note that niSi

t is the market capitalization of stock i. The definition of a
stock index involves three parameters: constant C, numbers ni, and values Si

t :

1) The constant C can be chosen, for example, to make the value of the index
equal to 100 at a given past day. When the constitution of the index is
changed, then the constant C is changed, to keep the index equal to 100 at
the chosen day.

2) The numbers ni can equal the total number of shares of stock i, but they can
also be equal to the number of freely floating stocks. Float market capital-
ization excludes stocks which are not freely floating (cannot be bought in
the open market).

3) The values Si
t are calculated differently depending on whether the index is a

price return index or a total return index. Price return indexes are calculated
without regard to cash dividends but total return indexes are calculated by
reinvesting cash dividends. The adjusted closing price of a stock is the clos-
ing price of a stock which is adjusted to cash dividends, stock dividends,
stock splits, and also to more complex corporate actions, such as rights
offerings. The calculation of the adjusted closing price is often made by data
providers.

2.1.1.2 Uses of Stock Indexes
Stock indexes can be used to summarize information about stock markets.
Stock indexes can also be used as a proxy for the market index when testing
and applying finance theories. The market index is the stock index which sums
the values of all companies worldwide. Stock indexes are traded in futures
markets and in exchanges as exchange traded funds (ETF). Furthermore,
investment banks provide financial instruments whose values depend on stock
indexes.
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2.1.1.3 Examples of Stock Indexes

Dow Jones Industrial Average Dow Jones Industrial Average is an index where
the prices are not weighted by the number of shares, and thus Dow Jones Indus-
trial Average is an exception of the rule (2.1). Dow Jones Industrial Average is
just a sum of the prices of the components, multiplied by a constant.

S&P 500 S&P 500 was created at March 4, 1957. It was calculated back until
1928 and the basis value was taken to be 10 from 1941 until 1943. The S&P 500
index is a price return index, but there exists also total return versions (divi-
dends are invested back) and net total return versions (dividends minus taxes
are invested back) of the S&P 500 index. The S&P 500 is a market value weighted
index: prices of stocks are weighted according to the market capitalizations of
the companies. Since 2005 the index is float weighted, so that the market capi-
talization is calculated using only stocks that are available for public trading.

Nasdaq-100 Nasdaq-100 is calculated since January 31, 1985. The basis value
was at that day 250. Nasdaq-100 is a price index, so that the dividends are not
included in the value of the index. Nasdaq-100 is a different index than Nasdaq
Composite, which is based on 3000 companies. Nasdaq-100 is calculated using
the 100 largest companies in Nasdaq Composite. Nasdaq-100 is a market value
weighted index, but the influence of the largest companies is capped (the weight
of any single company is not allowed to be larger than 24%).

DAX 30 DAX 30 (Deutscher AktienindeX) was created at July 1, 1988. The basis
value is 1000 at December 31, 1987. DAX 30 is a performance index (dividends
are reinvested in calculating the value of the index). DAX 30 stock index is a
market value weighted index of 30 largest German companies. Market value
is calculated using only free floating stocks (stocks that are not owned by an
owner which has more than 5% of stocks). The largeness of a company is mea-
sured by taking into account both the free floating market value and the transac-
tion volume (total value of the stocks that are exchanged in a given time period).
The weight of any single company is not allowed to be larger than 10%.

2.1.2 Stock Prices and Returns

Statistical analysis of stock markets is usually done from time series of returns.
Before defining a return time series we describe the initial price data in its raw
form, as it is evolving in a stock exchange, and we describe some methods of
sampling of prices.
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2.1.2.1 Initial Price Data
During the opening hours of an exchange the stocks are changing hands at
irregular time points. The stock exchange receives bid prices with volumes
(numbers of stocks one is willing to buy with the given bid price) from buyers,
and ask prices with volumes from the sellers. The exchange has an algorithm
which allocates the stocks from the sellers to the buyers. The allocation hap-
pens when there are bid prices and ask prices that meet each other (ask prices
that are smaller or equal to bid prices). The algorithms of stock allocation take
into account the arrival times of the orders, the volumes of the orders, and the
types of the orders.

The most common order types are the market order and the limit order.
A market order expresses the intention to buy the stock at the lowest ask
price, or the intention to sell the stock at the highest bid price. A limit order
expresses the intention to buy the stock at the lowest ask price, under the
condition that the ask price is lower than the given limit price, or the intention
to sell the stock at the highest bid price, under the condition that the bid price
is higher than the given limit price.

2.1.2.2 Sampling of Prices
The price changes at irregular time intervals in a stock exchange, but for the
purpose of a statistical analysis we typically sample price at equispaced inter-
vals.

To obtain a time series of daily prices, we can pick the closing price of each
trading day. The closing price can be considered as the consensus reached
between the sellers and the buyers about the fair price, taking into account all
information gathered during the day. An alternative method would choose the
opening price.

However, depending on the purpose of the analysis, we can sample data once
in a second, once in 10 days, or once in a month, for example. Note that when
the sampling interval is longer (monthly, quarterly, or yearly), the number of
observations in a return time series will be smaller, and thus the statistical con-
clusions may be more vague. Note also, that the distribution of the returns may
vary depending on the sampling frequency.

It is not obvious how to define equispaced sampling, since we can measure
the time as the physical time, trading time, or effective trading time:
1) The physical time is the usual time in calendar days. Assume that we want

to sample data once in 20 days. If we use the physical time, then we calculate
all calendar days.

2) The trading time or market time takes into account only the time when mar-
kets are open. For example, when we want to sample data once in 20 days and
we use trading time, then we calculate only the trading days (not all calendar
days). However, information is accumulating also during the weekends (and
during the night), which would be an argument in favor of physical time.
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3) The effective trading time takes into account that the market activity is not
uniform during market hours. To define the sampling interval, we could take
into account the number of transactions, or the volume of the transactions.
The effective trading time is interesting especially when we gather intraday
data, but it can be used also in the case of longer sampling intervals, to cor-
rect for diminishing market activity during summer or at the end of year.2

Sampling daily closing prices can be interpreted as using the trading time,
because weekends and holidays are ignored in the daily sampling. Since there
is roughly the same number of trading days in every week and every month, we
can interpret sampling the weekly and monthly closing prices both as using the
physical time and using the trading time. Discussion about scales in finance is
provided by Mantegna and Stanley (2000).

2.1.2.3 Stock Returns
Let us consider a time series S0,… , ST of stock prices, sampled at equispaced
time points. We can calculate gross returns, net returns, or logarithmic returns.

1) Gross returns (price relatives) are defined by
St+1

St
,

2) net returns (relative price differences) are defined by
St+1 − St

St
,

3) logarithmic returns (continuously compounded returns) are defined by

log
(St+1

St

)
,

where t = 0,… ,T − 1.
Gross returns are positive numbers like 1.02 (when the stock rose 2%) or 0.98

(when the stock fell 2%). Value zero for a gross return means bankruptcy. The
gross returns have a concrete interpretation: starting with wealth Wt and buy-
ing a stock with price St leads to the wealth Wt+1 = Wt × St+1∕St .

Net returns are obtained from gross returns by subtracting one, and thus net
returns are numbers larger than −1. Net returns are numbers like 0.02 (when
the stock rose 2%) or −0.02 (when the stock fell 2%). Value −1 for a net return
means bankruptcy.

2 Let Vu be the number or the volume of the transactions at time u. After sampling time ti is chosen,
we can determine the next sampling time ti+1 by

ti+1 = min
{

t ∶
∑

{Vu ∶ ti ≤ u ≤ t} ≥ C
}
,

where C > 0 is a constant.
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Logarithmic returns are obtained from gross returns by taking the loga-
rithm.3 A logarithmic return can take any real value, but typically logarithmic
returns are close to net returns, because log(x) ≈ x − 1 when x ≈ 1. Value −∞
for a logarithmic return means bankruptcy. The logarithmic function is an
example of a utility function, as discussed in Section 9.2.2. We will consider
taking the logarithm as an application of a utility function, and apply mainly
gross returns. However, there are some reasons for the use of logarithmic
returns. First, we can derive approximate distributions for the stock price by
applying limit theorems for the sum of the logarithmic returns, which makes
the study of logarithmic returns interesting. Indeed, we can write

ST = S0 exp

{T−1∑
t=0

log
(St+1

St

)}
. (2.2)

See (3.49) for a more detailed derivation of the log-normal model for stock
prices. Second, taking logarithms of returns transforms the original time series
of prices to a stationary time series, as explained in the connection of Figure 5.1.

For a statistical modeling we need typically a stationary time series. Station-
arity is defined in Section 5.1. For example, autoregressive moving average pro-
cesses (ARMA) and generalized autoregressive conditional heteroskedasticity
(GARCH) models, defined in Section 5.3, are stationary time series models. The
original time series of stock prices is not a stationary time series, but it can be
argued that a return time series is close to stationarity.4

Note that we can write, analogously to (2.2),

ST = S0 +
T−1∑
t=0

(St+1 − St).

Thus, we can derive approximate distributions for the stock price by apply-
ing limit theorems for the sum of the price differences. See (3.46) for a more
detailed derivation of the normal model for stock prices. The time series of
price differences is not a stationary time series, as discussed in the connection
of Figure 5.2. However, for short time periods a time series of price differences
can be approximately stationary. Thus, modeling price differences instead of
returns can be reasonable.

3 We take the logarithm to be the natural logarithm, with e (Euler’s number or Napier’s constant)
as the basis. The logarithmic functions with other bases could be used as well.
4 Time series {Yt} is called strictly stationary, if (Y1,… ,Yt) and (Y1+k ,… ,Yt+k) are identically dis-
tributed for all t, k ∈ {0,±1,±2,…}. Stationarity means, roughly speaking, that every subperiod of
the time series has similar statistical characteristics. For example, consider a stock whose price is
1$, which then rises to have a price of 100$. The change of 1$ is very large at the beginning of the
period but moderate at the end of the period. Thus, the time series of prices is not stationary.
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2.2 Fixed Income Instruments

One unit of currency today is better than one unit of currency tomorrow. Fixed
income research studies how much one should pay today, in order to receive a
cash payment at a future day.

Fixed income instruments are described in more detail in Chapter 18. Here
we give an overview of zero-coupon bonds, coupon paying bonds, interest
rates, and of calculation of bond returns.

2.2.1 Bonds

Bonds include zero-coupon bonds and coupon bearing bonds.

1) A zero-coupon bond, or a pure discount bond, is a certificate which gives
the owner a nominal amount P (principal) at the future maturity time T .
Typically we take P = 1.

2) Coupon bearing bonds make regular payments (coupons) before the final
payment at the maturity. A coupon bond can be defined as a series of
payments P1,… ,Pn at times T1,… ,Tn. The terminal payment contains the
principal and the final coupon payment.5

A zero-coupon bond is a more basic instrument than a coupon bond, because
a coupon bond can be defined as a portfolio of zero-coupon bonds. Let C(t0,Tn)
be the price of a coupon bond which starts at t0 and makes payments P1,… ,Pn
at times T1 < · · · < Tn, where T1 > t0. It holds that

C(t0,Tn) =
n∑

i=1
PiZ(t0,Ti),

where Z(t0,Ti) are the prices of zero-coupon bonds starting at t0 with maturity
Ti, and with principal P = 1.

The cash flow generated by a bond is determined when the bond is issued.
The bond can be traded before its maturity and its price can fluctuate before
the maturity. For example, the price of a zero-coupon bond with the nominal
amount P is equal to P at the maturity, but its price fluctuates until the maturity
is reached. The price fluctuates as a function of interest rate fluctuation. Thus,
bonds bear interest rate risk if they are not kept until maturity. If the bonds are
kept until maturity they bear the inflation risk and the risk of the default of the
issuer.

Bonds can be divided by the issuer. The main classes are government bonds,
municipal bonds, and corporate bonds. Credit rating services give credit ratings

5 For example, a 5 year 4% semi-annual coupon bond with 1000$ face value makes ten 20$ pay-
ments every 6 months and the final payment of 1000$. Thus Pi = 20$ for i = 1,… , n − 1 and the
last payment is Pn = 1020$, where n = 10.
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to the bond issuers. Credit ratings help the investors to evaluate the probability
of the payment default. Credit rating services include Standard & Poor’s and
Moody’s.

US Treasury securities are backed by the US government. US Treasury secu-
rities include Treasury bills, Treasury notes, and Treasury bonds.

1) Treasury bills are zero-coupon bonds with original time to maturity of 1
year or less.6

2) Treasury notes are coupon bonds with original time to maturity between 2
and 10 years.

3) Treasury bonds are coupon bonds with original time to maturity of more
than 10 years.

Widely traded German government bonds include Bundesschatzanweisun-
gen (Schätze), which are 2 year notes, Bundesobligationen (Bobls), which are
5 year notes, and Bundesanleihen (Bunds and Buxl), which are 10 and 30 year
bonds.

There are many types of fixed income securities. Callable bonds are such
bonds that allow the bond issuer to purchase the bond back from the bond-
holders. The callable bonds make it possible for the issuer to retire old high-rate
bonds and issue new low-rate bonds. Floating rate bonds (floaters) are such
bonds whose rates are adjusted periodically to match inflation rates. Treasury
STRIPS are such fixed income securities where the principal and the interest
component of US Treasury securities are traded as separate zero coupon secu-
rities. The acronym STRIPS means separate trading of registered interest and
principal securities.

2.2.2 Interest Rates

Interest rates are the basis for many financial contracts. We can separate
between the government rates and the interbank rates. The government rates
are deduced from the bonds issued by the governments and the interbank rates
are obtained from the rates at which deposits are exchanged between banks.

Libor (London interbank offered rate) and Euribor (Euro interbank offered
rate) are important interbank rates. Eonia (Euro overnight index average) is an
overnight interest rate within the eurozone, but unlike the Euribor and Libor
does not include term loans. Eonia is similar to the federal funds rate in the
US. Sonia (Sterling overnight index average) is the reference rate for overnight
unsecured transactions in the Sterling market.

Euribor and Libor are comparable base rates. Euribor rates are trimmed aver-
ages of interbank interest rates at which a collection of European banks are

6 The Treasury issues bills with times to maturity of 13 weeks, 26 weeks, and 52 weeks (3-month
bills, 6-month bills, and 1-year bills). 13-week bills and 26-week bills are auctioned once a week
and 52-week bills are auctioned once a month.



2.2 Fixed Income Instruments 21

prepared to lend to one another. Libor rates are trimmed averages of interbank
interest rates at which a collection of banks on the London money market are
prepared to lend to one another. Euribor and Libor rates come in different
maturities. In contrast to Euribor rates, the Libor rates come in different cur-
rencies. Euribor and Libor rates are not based on actual transactions, whereas
Eonia is based on actual transactions. A study published in May 2008 in The
Wall Street Journal suggested that the banks may have understated the bor-
rowing costs. This led to reform proposals concerning the calculation of the
Libor rates.

The Eonia rate is the rate at which banks provide unsecured loans to each
other with a duration of 1 day within the Euro area. The Eonia rate is a vol-
ume weighted average of transactions on a given day and it is computed by the
European Central Bank by the close of the real-time gross settlement on each
business day. Eonia can be considered as the 1 day Euribor rate or as the Euro
version of overnight index swaps (OIS). The Eonia panel consists of over 50
mostly European banks. The banks are chosen to the panel based on their pre-
mium credit rating and the high volume of their money market transactions
conducted within the Eurozone. Banks on the Eonia panel are the same banks
included in the Euribor panel.

Euribor rates are used as a reference rate for euro-denominated forward rate
agreements, short term interest rate futures contracts, and interest rate swaps.
Libor rates are used for Sterling and US dollar-denominated instruments.

2.2.2.1 Definitions of Interest Rates
The different definitions of interest rate are discussed in detail in Chapter 18.
As an example we can consider a loan where the interest is paid at the end
of a given period, and the interest is quoted in annual rate. Rate conventions
determine how the quoted annual rate relates to the actual payment. Maybe
the most common convention is to pay P × rT∕360, where P is the principal, r
is the annual rate, and T is the number of calendar days of the deposit or loan.
Note that loan rates are either rates that apply to a loan starting now until a
given expiry, or forward rates, that are rates applying to a loan starting in the
future for a given period of time.

Rates are quoted in percents but they are compared in basis points, where a
basis point is 0.01%, that is, 1% is 100 basis points.

2.2.2.2 The Risk Free Rate
The risk free rate is different depending on the investment horizon. For one day
horizon the risk free rate could be the Eonia rate or the rate of a bank account,
and for 1 month horizon the risk free rate could be the rate of 1 month govern-
ment bond.
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2.2.3 Bond Prices and Returns

A 10 year zero-coupon bond has the time to maturity of 10 years at the emission,
after 1 year the time to maturity is 9 years, after 2 years the time to maturity is 8
years, and so on. The price of the zero-coupon bond is fluctuating according to
the fluctuation of the interest rates, until the price equals the nominal value at
the maturity. Thus, the price of the 10 year zero-coupon bond gives information
about the 10 year interest rate at the emission, after 1 year the price of the bond
gives information about the 9 year interest rate, after 2 years the price of the
bond gives information about the 8 year interest rate, and so on.

Information of the bond markets is given by data providers in terms of the
yields. The yield of a zero-coupon bond is defined as

Y (t,T) = − 1
T − t

log Z(t,T), (2.3)

where T − t is the time to maturity in fractions of a year, and Z(t,T) is the bond
price with Z(T ,T) = 1. The price of a bond can be written in terms the yield as

Z(t,T) = exp{−(T − t)Y (t,T)}.

See Section 18.1.2 for a discussion of the yield of a zero-coupon bond.
Let s < t ≤ T , where T is the expiration day of the zero-coupon bond. The

prices are Z(s,T) and Z(t,T). The return of a bond trader is equal to

Z(t,T)
Z(s,T)

=
exp{−(T − t)Y (t,T)}
exp{−(T − s)Y (s,T)}

= exp{(T − s)[Y (s,T) − Y (t,T)] + (t − s)Y (t,T)}, (2.4)

where we used the fact T − t = T − s − (t − s).
Data providers give a time series Y0,… ,Yn of yields of a 𝜏 year bond, where

Yi = −1
𝜏

log Z(ti, ti + 𝜏),

where t0 < · · · < tn are the time points of sampling. How to obtain a time series
R0,… ,Rn of the returns of a bond investor? Let us denote ti = s, ti+1 = t, and
T − s = 𝜏 . Then Y (s,T) = Yi. Let us make approximation

Y (t,T) = Y (ti+1, ti + 𝜏) ≈ Y (ti+1, ti+1 + 𝜏) = Yi+1.

Then (2.4) implies

Ri ≈ exp{𝜏(Yi − Yi+1) + (ti+1 − ti)Yi+1}, (2.5)

where ti+1 − ti is the length of the sampling interval in fractions of a year. For
example, with monthly sampling ti+1 − ti = 1∕12.
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2.3 Derivatives

Derivatives are financial assets whose payoff is defined in terms of more basic
assets. We describe first forwards and futures, and after that we describe
options. For many assets trading with derivatives is more active than trading
with the basic assets. For example, exchange rates and commodities are traded
more actively in the future markets than in the spot markets.

Over-the-counter (OTC) derivatives are traded directly between two coun-
terparties. Exchange traded derivatives are traded in an exchange, which acts
as an intermediary party between the traders.

2.3.1 Forwards and Futures

First we define forwards and futures. After that we give examples of some
actively traded futures. Forwards are derivatives traded over the counter
whereas futures contracts are traded on exchanges. The underlyings of a for-
ward or a futures contract can be stocks (single-stock futures), commodities,
currencies, interest rates, or stock indexes, for example.

2.3.1.1 Forwards
A forward is a contract written at time t0, with a commitment to accept delivery
of (or to deliver) the specified number of units of the underlying asset at a future
date T , at forward price Ft0

, which is determined at t0.
At time t0 nothing changes hands, all exchanges will take place at time T . A

long position is a commitment to accept the delivery at time T . A short position
is a commitment to deliver the contracted amount. The current price of the
underlying is called the spot price.

2.3.1.2 Futures
A futures contract can be considered as a special case of a forward contract.
An instrument is called a futures contract if the trading is done in a futures
exchange, where the forward commitment is made through a homogenized
contract so that the size of the underlying asset, the quality of the underlying
asset, and the expiration date are preset. In addition, futures exchanges require
a daily mark-to-market of the positions.

A futures exchange acts as an intermediary between the participants of a
futures contract. The existence of the intermediary minimizes the risk of the
default of the participants of the contract. When a participant enters a futures
contract the exchange requires to put up an initial amount of liquid assets into
the margin account. Marking to market means that the daily futures price is
settled daily so that the exchange will draw money out of one party’s margin
account and put it into the others so that the daily loss or profit is taken into
account. If the margin account goes below a certain value, then a margin call
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is made and the account owner must add money to the margin account. In
contrast to futures contracts, forward contracts may not require any marking
to market until the expiration day.

A futures contract can be settled with cash or with the delivery of the under-
lying. For example, if the underlying of the futures contract is a stock index,
then the futures contract is usually settled with cash. A futures contract can
be closed before the expiration day by entering the opposite direction futures
contract.

On the delivery date, the amount exchanged is not the specified price on the
contract but the spot value (i.e., the original value agreed upon, since any gain
or loss has already been previously settled by marking to market).

The situation where the price of a commodity for future delivery is higher
than the spot price, or where a far future delivery price is higher than a nearer
future delivery, is known as contango. The reverse, where the price of a com-
modity for future delivery is lower than the spot price, or where a far future
delivery price is lower than a nearer future delivery, is known as backwardation.

2.3.2 Options

We describe calls and puts, applications of options, and some exotic options.

2.3.2.1 Calls and Puts
The buyer of a call option receives the right to buy the underlying instrument
and the buyer of a put option receives the right to sell the underlying instru-
ment.

An European call option gives the right to buy an asset at the given expiration
time T at the given strike price K . An European put option gives the right to sell
an asset at the given expiration time T at the given strike price K . Let us denote
with Ct the price of an European call option at time t and with St the price of
the asset. The value CT of the European call option at the expiration time T is
equal to

CT = max{ST − K , 0}.

Let us denote with Pt the price of a put option at time t. The value of the Euro-
pean put option at the expiration time T is equal to

PT = max{K − ST , 0}.

American options have a different mode concerning the right to exercise the
option than the European options. American call and put options can be exer-
cised at any time before the expiration date, whereas European options can be
exercised only at the expiration day. Thus an American option is more expen-
sive than the corresponding European option. When we use the term “option”
without a further qualification, then we refer to an European option.



2.3 Derivatives 25

The following terminology is used to describe options.

• A call option is out of the money if St < K . A call option is at the money if
St = K . A call option is in the money if St > K . A call option is deep out of
the money (deep in the money) if St ≪ K (St ≫ K ).
The moneyness of a call option is defined as St∕K . The moneyness of a put
option is defined as K∕St .7

• Before the expiration time T the price of a call option satisfies

Ct > (St − K)+;

see (14.10). The difference Ct − (St − K)+ is called the time value of the
option. The value (St − K)+ is called the intrinsic value. Thus,

Ct = time value + intrinsic value. (2.6)

2.3.2.2 Applications of Options
Options can serve at least the following purposes:

1) Options can be used to create a large number of different payoffs. Some
payoffs applied in option trading are described in Chapter 17. For example,
buying a call and a put with the same strike price and the same expira-
tion creates a straddle position which profits from large positive or negative
movements of the underlying.

2) Options can provide insurance. With options it is possible to create a payoff
which cuts the losses that could occur without using of the options. Buying
a put option gives an insurance in the case one has to sell in a future time an
asset one possesses. Buying a call option gives an insurance in the case when
one has to buy in a future time an asset one does not possess. Examples of
providing insurance with options include the following:
• Buying a put option on a stock gives an insurance policy for an investor. If

an investor owns a stock, buying a put option will cut the future possible
losses.

• Buying a put option on an exchange rate gives an insurance policy for a
company receiving payments on a foreign currency in future.

3) Call options can be used to give a compensation to managers, since the pay-
off of a call option is positive only when the stock price is larger than the
strike price.

4) Options make leveraging possible, since option trading requires a small ini-
tial capital as compared to stock trading.8

7 Sometimes moneyness is defined by St∕(Ke−r(T−t)) and Ke−r(T−t)∕St , where T − t is the time to
expiration in fractions of year and r is the annualized short term interest rate.
8 Suppose that the stock price is St = 100, the strike price is K = 105, and the call price is Ct = 5.
If the stock price rises to ST = 110 at the expiration time of the call option, then the owner of the
stock has the return of 10% but the owner of the call option has the return of (110 − 105)∕5 =
100%.
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2.3.2.3 Exotic Options
We say that an option is exotic if it is not an European or an American call or
put option.

Bermudan Options There exists three basic modes concerning the right to
exercise the option: European, American, and Bermudan. A Bermudan option
can be exercised at some times or time periods before the expiration. whereas
European options can be exercised only at the expiration date, and American
options can be exercised at any time before the expiration.

Asian Options The value of an Asian call option at the expiration is

CT = max{0,MT − K},

where

MT = 1
n

n∑
i=1

Sti

with t1 < · · · < tn ≤ T being a collection of predetermined time points. Asian
options are more resistant to manipulation than European options: The value
of an European option at the expiration depends on the value of the underlying
asset at one time point (the expiration date), whereas the value of an Asian
option depends on the values of the underlying asset at several time points.

Barrier Options Barrier options disappear if the underlying either exceeds, or
goes under the barrier. Alternatively, a barrier option could have value only if it
has exceeded, or went under the barrier. Knock-in options come into existence
if some barrier is hit and knock-out options cease to exist if some barrier is hit.
One speaks of up-and-out, down-and-out, up-and-in, down-and-in options.
For example, a knock-out option on stock St , written at time 0, with expiration
time T , has the payoff

BT =
{

0, when max0≤t≤T St ≥ H,
max{0, ST − K}, otherwise,

where K > 0 is the strike price, and H > K is the barrier. Barrier options are
cheaper than the corresponding European options, which makes them useful.

Multiasset Options Multiasset options involve many underlying assets and
many strike prices. We give some examples of multiasset options.

1) A call can be generalized to a multiasset option with payoff

max
{

S1
T − K1, S2

T − K2, 0
}
,
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where S1 and S2 are the underlying assets and K1,K2 > 0 are strike prices. A
payoff can have elements of a call and a put:

max
{

K1 − S1
T , S

2
T − K2, 0

}
.

2) The payoff of an option on a linear combination can be written as

f

( d∑
i=1
𝑤iSi

)
,

where f ∶ R → R is a payoff function, S1
,… , Sd are assets, and 𝑤1,… , 𝑤d

are weights. For example, an option on a linear combination can be an option
on an index or an option on a spread.

3) Outperformance options are calls on the maximum and puts on the mini-
mum. We have that

max
{

S1
, S2} = S1 + max

{
S2 − S1

, 0
}
.

Thus, the payoff of an outperformance option can be written as a payoff of a
linear combination of the underlying and an option on the spread between
the underlyings.

4) The payoff of a univariate digital option is I[K ,∞)(ST ), where K > 0 is the
strike price. The option pays one unit at the maturity time if the value of
the underlying exceeds the strike price. The bivariate digital option pays one
unit if both of the underlyings exceed the respective strike prices. The payoff
is

I[K1,∞)×[K2,∞)
(
S1

T , S
2
T
)
.

5) The payoff of an option written on a basket can be written as
G
(
𝜓
(
S1

T ,… , SN
T
))
,

where G is a univariate function and 𝜓 is a multivariate function.
For example, G(x) = (x − K)+ and 𝜓(S1

,… , Sd) = min(S1
,… , Sd), or

𝜓(S1
,… , Sd) =

∑d
i=1 𝑤iSi.

2.4 Data Sets

We describe the data sets which are used to illustrate the methods throughout
the book. Some additional data are described in Section 6.3.
2.4.1 Daily S&P 500 Data

The daily S&P 500 data consists of the daily closing prices starting at January 4,
1950 and ending at April 2, 2014, which gives 16,046 daily observations.9

Figure 2.1 shows (a) the daily closing prices St and (b) the returns Rt = St∕St−1
of S&P 500.

9 The data is obtained from Yahoo (http://finance.yahoo.com/) with ticker ̂GSPC.
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Figure 2.1 S&P 500 index. (a) Daily closing prices of S&P 500 and (b) daily returns.

2.4.2 Daily S&P 500 and Nasdaq-100 Data

The S&P 500 and Nasdaq-100 data consists of the daily closing prices starting
at October 1, 1985 and ending at May 21, 2014, which gives 7221 daily obser-
vations.10

Figure 2.2 shows (a) the normalized prices and (b) a scatter plot of the
returns of S&P 500 and Nasdaq-100. S&P 500 prices is shown with black and
the Nasdaq-100 prices is shown with red. The prices are normalized so that
they start with value one for both indexes. (Note that the normalized price is
the cumulative wealth when the initial wealth is one.)

2.4.3 Monthly S&P 500, Bond, and Bill Data

The data consists of the monthly returns of S&P 500 index, monthly returns of
US Treasury 10 year bond, and monthly rates of US Treasury 1 month bill. The
data starts at May 1953 and ends at December 2013, which gives 728 monthly
observations.11 The 10 year bond returns are calculated from the yields as
in (2.5).

Figure 2.3 shows (a) cumulative wealth and (b) a scatter plot of returns of S&P
500 and 10 year bond. The cumulative wealth is Wt =

∏t
i=1 Ri, where Ri are the

gross returns. The cumulative wealth of S&P 500 is shown with black, 10 year
bond with red, and 1 month bill with blue. Figure 2.4 shows (a) the treasury bill
rates (blue) and (b) the yields of 10 year Treasury bond (red).

10 The data is obtained from Yahoo (http://finance.yahoo.com/) with tickers ̂GSPC and ̂NDX.
11 The data is obtained from http://www.hec.unil.ch/agoyal/ (Amit Goyal).
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Figure 2.2 S&P 500 and Nasdaq-100 indexes. (a) The prices of S&P 500 (black) and Nasdaq-100
(red). The prices are normalized to start at value one. (b) A scatter plot of the daily returns of
S&P 500 and Nasdaq-100.

2.4.4 Daily US Treasury 10 Year Bond Data

The US Treasury 10 year bond data consists of the daily yields starting at Jan-
uary 2, 1962 and ending at March 3, 2014, which gives 13,006 daily observa-
tions.12 We have described the US 10 year Treasury bonds in Section 2.2.1.
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Figure 2.3 S&P 500, US Treasury 10 year bond, and 1 month bill. (a) The cumulative wealth of
S&P 500 (black), 10 year bond (red), and 1 month bill (blue). The cumulative wealths are nor-
malized to start at value one. (b) A scatter plot of monthly returns of S&P 500 and 10 year
bond.

12 The data is obtained from Federal Reserve Bank of St. Louis with ticker DGS10, see the web site
http://research.stlouisfed.org/. There were 13,590 days when the market is open but the data was
missing in 584 days.
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Figure 2.4 US Treasury bill rates and 10 year bond yields. (a) Treasury bill rates (blue).
(b) Yields of 10 year Treasury bond (red).
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Figure 2.5 10 year US Treasury bond. (a) Daily yields of the 10 year US Treasury bond and
(b) daily returns of the bond.

Figure 2.5 shows (a) the daily yields and (b) the daily returns of the US 10
year Treasury bond. The 10 year bond returns are calculated from the yields
as in (2.5).

2.4.5 Daily S&P 500 Components Data

The S&P 500 components data consists of daily closing prices of 312 stocks,
which were components of S&P 500 at May 23, 2014. The data starts September
30, 1991 and ends at May 23, 2014. There are 5707 daily observations.
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Figure 2.6 S&P 500 components. (a) Time series of the normalized prices of the components.
(b) A scatter plot of (qi, 𝜇i), where qi are the 95% empirical quantiles of the negative returns,
and 𝜇i are the annualized sample means of the returns.

Figure 2.6(a) shows the normalized prices of the stocks. The prices are nor-
malized to have value one at the beginning. Panel (b) shows a scatter plot of
points (qi, 𝜇i), where qi are the 95% empirical quantiles of the negative returns
of the ith stock, and 𝜇i are the annualized sample means of the returns of the
ith stock.13

13 That is, qi satisfies approximately P(Ri
t ≤ −qi) = 0.05, where Ri

t = St∕St−1 − 1 is the net return
of the ith stock, and 𝜇i is approximately 250 × ERi

t .
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3

Univariate Data Analysis

Univariate data analysis studies univariate financial time series, but ignor-
ing the time series properties of data. Univariate data analysis studies also
cross-sectional data. For example, returns at a fixed time point of a collection
of stocks is a cross-sectional univariate data set.

A univariate series of observations can be described using such statistics as
sample mean, median, variance, quantiles, and expected shortfalls. These are
covered in Section 3.1.

The graphical methods are explained in Section 3.2. Univariate graphical
tools include tail plots, regression plots of the tails, histograms, and kernel
density estimators. We use often tail plots to visualize the tail parts of the
distribution, and kernel density estimates to visualize the central part of the
distribution. The kernel density estimator is not only a visualization tool but
also a tool for estimation.

We define univariate parametric models like normal, log-normal, and
Student models in Section 3.3. These are parametric models, which are
alternatives to the use of the kernel density estimator.

For a univariate financial time series it is of interest to study the tail proper-
ties of the distribution. This is done in Section 3.4. Typically the distribution of a
financial time series has heavier tails than the normal distributions. The estima-
tion of the tails is done using the concept of the excess distribution. The excess
distribution is modeled with exponential, Pareto, gamma, generalized Pareto,
and Weibull distributions. The fitting of distributions can be done with a ver-
sion of maximum likelihood. These results prepare us to quantile estimation,
which is considered in Chapter 8.

Central limit theorems provide tools to construct confidence intervals
and confidence regions. The limit theorems for maxima provide insight into
the estimation of the tails of a distribution. Limit theorems are covered in
Section 3.5.

Section 3.6 summarizes the univariate stylized facts.

Nonparametric Finance, First Edition. Jussi Klemelä.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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3.1 Univariate Statistics

We define mean, median, and mode to characterize the center of a distribution.
The spread of a distribution can be measured by variance, other centered
moments, lower and upper partial moments, lower and upper conditional
moments, quantiles (value-at-risk), expected shortfall, shortfall, and absolute
shortfall.

We define both population and sample versions of the statistics. In addition,
we define both unconditional and conditional versions of the statistics.

3.1.1 The Center of a Distribution

The center of a distribution can be defined using the mean, the median, or the
mode. The center of a distribution is an unknown quantity that has to be esti-
mated using the sample mean, the sample median, or the sample mode. The
conditional versions of theses quantities take into account the available infor-
mation. For example, if we know that it is winter, then the expected temperature
is lower than the expected temperature when we know that it is summer.

3.1.1.1 The Mean and the Conditional Mean
The population mean is called the expectation. The population mean can be
estimated by the arithmetic mean. The conditional mean is estimated using
regression analysis.

The Population Mean The population mean (expectation) of random variable
Y ∈ R, whose distribution is continuous, is defined as

EY =
∫

∞

−∞
yfY (y) dy, (3.1)

where fY ∶ R → R is the density function of Y .1 Let X ∈ Rd be an explanatory
random variable (random vector). The conditional expectation of Y given X = x
can be defined by

E(Y |X = x) =
∫

∞

−∞
y fY |X=x(y) dy,

where fY |X=x(y) ∶ R → R is the conditional density.2

1 The density function fY ∶ R → R is a function which satisfies (1) fY (y) ≥ 0 for almost all y ∈ R,
and (2) P(Y ∈ A) = ∫A fY (y) dy for measurable A ⊂ R. Thus, we can express all probabilities as inte-
grals of fY .
2 The conditional density is defined as

fY |X=x(y) =
fX,Y (x, y)

fX (x)
, y ∈ R, x ∈ Rd

, (3.2)
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The population mean of random variable Y ∈ R, whose distribution is
discrete with the possible values y1,… , yN , is defined as

EY =
N∑

i=1
yiP(Y = yi). (3.3)

The conditional expectation can be defined as

E(Y |X = x) =
N∑

i=1
yiP(Y = yi |X = x).

The Sample Mean Given a sample Y1,… ,YT from the distribution of Y , the
mean EY can be estimated with the sample mean (the arithmetic mean):

Ȳ = 1
T

T∑
t=1

Yt. (3.4)

Regression analysis studies the estimation of the conditional expectation. In
regression analysis, we observe values X1,… ,XT of the explanatory random
variable (random vector), in addition to observing values Y1,… ,YT of the
response variable. Besides linear regression there exist various nonparametric
methods for the estimation of the conditional expectation. For example, in
kernel regression the arithmetic mean in (3.4) is replaced by a weighted mean

f̂ (x) =
T∑

t=1
pt(x)Yt,

where pt(x) is a weight that is large when Xt is close to x and small when Xt
is far away from x. Now f̂ (x) is an estimate of the conditional mean f (x) =
E(Y |X = x), for x ∈ Rd. Kernel regression and other regression methods are
described in Section 6.1.2.

The Annualized Mean The return of a portfolio is typically estimated using
the arithmetic mean and it is expressed as the annualized mean return. Let
St0
,… , Stn

be observed stock prices, sampled at equidistant time points.
Let Rti

= (Sti
− Sti−1

)∕Sti−1
, i = 1,… , n, be the net returns. Let the sampling

interval be Δt = ti − ti−1. The annualized mean return is

1
Δt

1
n

n∑
i=1

Rti
. (3.5)

when fX (x) > 0, where fX,Y ∶ Rd+1 → R is the joint density of (X,Y ), and fX ∶ Rd → R is the density
of X:

fX (x) = ∫R
fX,Y (x, y) dy, x ∈ Rd

.

If fX (x) = 0, then fY |X=x(y) = 0.
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For the monthly returns Δt = 1∕12. For the daily returns Δt = 1∕250, because
there are about 250 trading days in a year. Sampling of prices and several defi-
nitions of returns are discussed in Section 2.1.2.

The Geometric Mean Let S0,… , ST be the observed stock prices and let Rt =
St∕St−1, t = 1,… ,T , be the gross returns. The geometric mean is defined as( T∏

t=1
Rt

)1∕T

.

The logarithm of the geometric mean is equal to the arithmetic mean of the
logarithmic returns:

1
T

T∑
t=1

log Rt .

Note that Wt =
∏t

i=1 Ri is the cumulative wealth at time t when we start with
wealth 1. Thus,

1
T

log WT = 1
T

T∑
t=1

log Rt .

3.1.1.2 The Median and the Conditional Median
The median can be defined in the case of a continuous distribution function of
a random variable Y ∈ R as the number median(Y ) ∈ R satisfying

P(Y ≤ median(Y )) = 0.5.

Thus, the median is the point that divides the probability mass into two equal
parts. Let us define the distribution function F ∶ R → R by

F(y) = P(Y ≤ y).

When F is continuous, then

median(Y ) = F−1(0.5).

In general, covering also the case of discrete distributions, we can define the
median uniquely as the generalized inverse of the distribution function:

median(Y ) = inf{y ∶ F(y) ≥ 0.5}. (3.6)

The conditional median is defined using the conditional distribution function

FY |X=x(y) = P(Y ≤ y |X = x),

where X is a random vector taking values in Rd. Now we can define

median(Y |X = x) = inf{y ∶ FY |X=x(y) ≥ 0.5}, (3.7)

where x ∈ Rd.
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The sample median of observations Y1,… ,YT ∈ R can be defined as the
observation that has as many smaller observations as larger observations:

median(Y1,… ,YT ) = Y([T∕2]+1), (3.8)
where Y(1) ≤ · · · ≤ Y(T) is the ordered sample and [x] is the largest integer
smaller or equal to x. The sample median is a special case of an empirical
quantile. Empirical quantiles are defined in (8.21)–(8.23).

3.1.1.3 The Mode and the Conditional Mode
The mode is defined as an argument maximizing the density function of the
distribution of a random variable:

mode(Y ) = argmax
y∈R

fY (y), (3.9)

where fY ∶ R → R is the density function of the distribution of Y . The density
fY can have several local maxima, and the use of the mode seems to be
interesting only in cases where the density function is unimodal (has one local
maximum). The conditional mode is defined as an argument maximizing the
conditional density:

mode(Y |X = x) = argmax
y∈R

fY |X=x(y).

A mode can be estimated by finding a maximizer of a density estimate:

m̂ode(Y ) = argmax
y∈R

f̂Y (y),

where f̂Y ∶ R → R is an estimator of the density function fY . Histograms and
kernel density estimators are defined in Section 3.2.2.

3.1.2 The Variance and Moments

Variance and higher order moments characterize the dispersion of a univariate
distribution. To take into account only the left or the right tail we define upper
and lower partial moments and upper and lower conditional moments.

3.1.2.1 The Variance and the Conditional Variance
The variance of random variable Y is defined by

Var(Y ) = E(Y − EY )2 = EY 2 − (EY )2
. (3.10)

The standard deviation of Y is the square root of the variance of Y . The condi-
tional variance of random variable Y is equal to

Var(Y |X = x) = E{[Y − E(Y |X = x)]2 |X = x} (3.11)
= E(Y 2 |X = x) − [E(Y |X = x)]2

. (3.12)
The conditional standard deviation of Y is the square root of the conditional
variance.
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The Sample Variance The sample variance is defined by

V̂ar(Y ) = 1
T

T∑
i=1

(Yi − Ȳ )2 = 1
T

T∑
i=1

Y 2
i − Ȳ 2

, (3.13)

where Y1,… ,YT is a sample of random variables having identical distribution
with Y , and Ȳ is the sample mean.3

The Annualized Variance The sample variance and the standard deviation
of portfolio returns are typically annualized, analogously to the annualized
sample mean in (3.5). Let St0

,… , Stn
be the observed stock prices, sampled

at equidistant time points. Let Rti
= (Sti

− Sti−1
)∕Sti−1

, i = 1,… , n, be the net
returns. Let the sampling interval be Δt = ti − ti−1. The annualized sample
variance of the returns is

1
Δt

1
n

n∑
i=1

(Rti
− R̄)2

,

where R̄ = n−1 ∑n
i=1 Rti

. For the monthly returns Δt = 1∕12. For the daily
returns Δt = 1∕250, because there are about 250 trading days in a year.
Sampling of prices and several definitions of returns are discussed in
Section 2.1.2.

3.1.2.2 The Upper and Lower Partial Moments
The definition of the variance of random variable Y ∈ R can be generalized to
other centered moments

E|Y − EY |k ,
for k = 1, 2,…. The variance is obtained when k = 2. The centered moments
take a contribution both from the left and the right tail of the distribution. The
lower partial moments take a contribution only from the left tail and the upper
partial moments take a contribution only from the right tail. For example, if we
are interested only in the distribution of the losses, then we use the lower partial
moments of the return distribution, and if we are interested only in the distri-
bution of the gains, then we use the upper partial moments. The upper partial
moment is defined as

UPM
𝜏,k(Y ) = E(Y − 𝜏)k

+ = E[(Y − 𝜏)kI[𝜏,∞)(Y )], (3.14)

where k = 0, 1, 2,…, (x)+ = max{x, 0}, and 𝜏 ∈ R. The lower partial moment is
defined as

LPM
𝜏,k(Y ) = E(𝜏 − Y )k

+ = E[(𝜏 − Y )kI(−∞,𝜏](Y )]. (3.15)

3 The sample variance is often defined as (T − 1)−1 ∑T
i=1 (Yi − Ȳ )2, because this is an unbiased

estimator of the population variance. For large and moderate T it does not matter whether the
divisor is T or T − 1.
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When Y has density fY , we can write

UPM
𝜏,k(Y ) =

∫

∞

𝜏

(y − 𝜏)kfY (y) dy, LPM
𝜏,k(Y ) =

∫

𝜏

−∞
(𝜏 − y)kfY (y) dy.

For example, when k = 0, then

UPM
𝜏,0(Y ) = P(Y ≥ 𝜏), LPM

𝜏,0(Y ) = P(Y ≤ 𝜏),

so that the upper partial moment is equal to the probability that Y is greater
or equal to 𝜏 , and the lower partial moment is equal to the probability that Y
is smaller or equal to 𝜏 . For k = 2 and 𝜏 = EY the partial moments are called
the upper and lower semivariance of Y . For example, the lower semivariance is
defined as

E[(Y − EY )2I(−∞,EY ](Y )]. (3.16)

The square root of the lower semivariance can be used to replace the standard
deviation in the definition of the Sharpe ratio, or in the Markowitz criterion.

The sample centered moments are

1
T

T∑
t=1

|Yi − Ȳ |k ,
where Ȳ is the sample mean. The sample upper and the sample lower partial
moments are

ÛPM
𝜏,k(Y ) = 1

T

T∑
i=1

(Yi − 𝜏)k
+, L̂PM

𝜏,k(Y ) = 1
T

T∑
i=1

(𝜏 − Yi)k
+. (3.17)

For example, when k = 0 we have

L̂PM
𝜏,0(Y ) = N(𝜏)

T
,

where

N(𝜏) = #{Yi ∶ i = 1,… ,T , Yi ≤ 𝜏}. (3.18)

3.1.2.3 The Upper and Lower Conditional Moments
The upper conditional moments are the moments conditioned on the right tail
of the distribution and the lower conditional moments are the moments con-
ditioned on the left tail of the distribution. The upper conditional moment is
defined as

UCM
𝜏,k(Y ) = E[(Y − 𝜏)k | Y − 𝜏 ≥ 0]

and the lower conditional moment is defined as

LCM
𝜏,k(Y ) = E[(𝜏 − Y )k | 𝜏 − Y ≥ 0], (3.19)

where k = 0, 1, 2,… and 𝜏 ∈ R is a target rate.
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The sample lower conditional moment is

L̂CM
𝜏,k(Y ) = 1

N(𝜏)

T∑
i=1

(𝜏 − Yi)k
+, (3.20)

where N(𝜏) is defined in (3.18). Note that in (3.17) the sample size is the denom-
inator but in (3.20) we have divided with the number of observations in the
left tail.

We can condition also on an external variable X and define conditional on X
versions of both upper and lower moments, and upper and lower conditional
moments.

3.1.3 The Quantiles and the Expected Shortfalls

The quantiles are applied under the name value-at-risk in risk management to
characterize the probability of a tail event. The expected shortfall is a related
measure for a tail risk.

3.1.3.1 The Quantiles and the Conditional Quantiles
The pth quantile is defined as

Qp(Y ) = inf{y ∶ F(y) ≥ p}, (3.21)

where 0 < p < 1 and F(y) = P(Y ≤ y) is the distribution function of Y . The
value-at-risk is defined in (8.3) as a quantile of a loss distribution. For p = 1∕2,
Qp(Y ) is equal to median(Y ), defined in (3.6). In the case of a continuous
distribution function, we have

F(Qp(Y )) = p

and thus it holds that

Qp(Y ) = F−1(p),

where F−1 is the inverse of F . The pth conditional quantile is defined replacing
the distribution function of Y with the conditional distribution function of Y :

Qp(Y |X = x) = inf{y ∶ FY |X=x(y) ≥ p}, x ∈ Rd
, (3.22)

where 0 < p < 1 and FY |X=x(y) = P(Y ≤ y |X = x) is the conditional distribution
function of Y .

The empirical quantile is defined as

Q̂p = Y(⌈pT⌉), (3.23)
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where Y(1) ≤ Y(2) ≤ · · · ≤ Y(T) is the ordered sample and ⌈x⌉ is the smallest
integer ≥ x. We give equivalent definitions of the empirical quantile in Section
8.4.1. Chapter 8 discusses various estimators of quantiles and conditional
quantiles.

3.1.3.2 The Expected Shortfalls
The expected shortfall is a measure of risk that aggregates all quantiles in the
right tail (or in the left tail). When Y has a continuous distribution function,
then the expected shortfall for the right tail is

ESp(Y ) = E(Y |Y ≥ Qp(Y )) = 1
1 − p

E(Y I[Qp(Y ),∞)(Y )), (3.24)

where 0 < p < 1. Thus, the pth expected shortfall is the conditional expectation
under the condition that the random variable is larger than the pth quantile. The
term “tail conditional value-at-risk” is sometimes used to denote the expected
shortfall. In the general case, when the distribution of Y is not necessarily con-
tinuous, the expected shortfall for the right tail is defined as

ESp(Y ) = 1
1 − p ∫

1

p
Qu(Y ) du, 0 < p < 1. (3.25)

The equality of (3.24) and (3.25) for the continuous distributions is proved in
McNeil et al. (2005, lemma 2.16). In fact, denoting qp = Qp(Y ),

E[Y I(qp,∞)(Y )] = E[F−1(U)I[qp,∞)(F−1(U))]

= E[F−1(U)I[p,1)(U)]

=
∫

1

p
F−1(u) du,

where U ∼ Uniform([0, 1]) and we use the fact that F−1(U) ∼ Y .4 Finally, note
that P(Y ≥ Qp(Y )) = 1 − p for continuous distributions.

The expected shortfall for the left tail is

ESp(Y ) = 1
p ∫

p

0
Qu(Y ) du, 0 < p < 1.

When Y has a continuous distribution function, then the expected shortfall for
the left tail is

ESp(Y ) = E(Y |Y ≤ Qp(Y )) = 1
p

E(Y I(−∞,Qp(Y )](Y )). (3.26)

This expression shows that in the case of a continuous distribution function,
pESp(Y ) is equal to the expectation that is taken only over the left tail, when
the left tail is defined as the region that is on the left side of the pth quantile of

4 We have that P(F−1(U) ≤ x) = P(U ≤ F(x)) = F(x).
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the distribution. Note that the expected shortfall for the left tail is related to the
lower conditional moment of order k = 1 and target rate 𝜏 = Qp(Y ):

ESp(Y ) = Qp(Y ) − E(Qp(Y ) − Y |Y ≤ Qp(Y ))
= Qp(Y ) − LCMQp(Y ),1,

where the lower conditional moment LCMQp(Y ),1 is defined in (3.19).5
The expected shortfall for the right tail, as defined in (3.24), can be estimated

from the data Y1,… ,YT by

ÊSp(Y ) = 1
T − m + 1

T∑
i=m

Y(i), (3.27)

where Y(1) ≤ · · · ≤ Y(T) and m = ⌈pT⌉, with, for example, p = 0.95 or p = 0.99.
When the expected shortfall is for the left tail, as defined by (3.26), then we
define the estimator as

ÊSp(Y ) = 1
m

m∑
i=1

Y(i), (3.28)

where m = ⌈pT⌉ with, for example, p = 0.05 or p = 0.01.

3.2 Univariate Graphical Tools

We consider sequence Y1,… ,YT ∈ R of real numbers, and assume that the
sequence is a sample from a probability distribution. We want to visualize
the sequence in order to discover properties of the underlying distribution.
We divide the graphical tools to those that are based on the empirical distri-
bution function and the empirical quantiles, and to those that are based on

5 Analogously to the definition of lower partial moments in (3.15), we can define the absolute
shortfall as

ASp(Y ) = E(Y I(−∞,Qp(Y )](Y )).

The absolute shortfall for the left tail is related to the lower partial moment of order k = 1 and
target rate 𝜏 = Qp(Y ):

ASp(Y ) = pQp(Y ) − E((Qp(Y ) − Y )I(−∞,Qp(Y )](Y ))

= pQp(Y ) − LPMQp(Y ),1.

The absolute shortfall is estimated from observations Y1,… ,YT by

ÂSp(Y ) = 1
T

m∑
i=1

Y(i),

where Y(1) ≤ · · · ≤ Y(T) is the ordered sample and m = ⌈pT⌉. Here, we divide by T , but in the esti-
mator (3.28) of the expected shortfall we divide by m.
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the estimation of the underlying density function. The distribution function
and quantiles based tools give more insight about the tails of the distribution,
and the density based tools give more information about the center of the
distribution.

A two-variate data can be visualized using a scatter plot. For a univariate data
there is no such obvious method available. Thus, visualizing two-variate data
may seem easier than visualizing univariate data. However, we can consider
many of the tools to visualize univariate data to be scatter plots of points

(Yi, level(Yi)), i = 1,… ,T , (3.29)

where level ∶ {Y1,… ,YT} → R is a mapping that attaches a real value to each
data point Yi ∈ R. Thus, in a sense we visualize univariate data by transforming
it into a two-dimensional data.

3.2.1 Empirical Distribution Function Based Tools

The distribution function of the distribution of random variable Y ∈ R is

F(x) = P(Y ≤ x), x ∈ R.

The empirical distribution function can be considered as a starting point for
several visualizations: tail plots, regression plots of tails, and empirical quantile
functions. We use often tail plots. Regression plots of tails have two types: (1)
plots that look linear for an exponential tail and (2) plots that look linear for a
Pareto tail.

3.2.1.1 The Empirical Distribution Function
The empirical distribution function F̂ , based on data Y1,… ,YT , is defined as

F̂(x) = 1
T

#{Yi ∶ Yi ≤ x, i = 1,… ,T}, (3.30)

where x ∈ R, and #A means the cardinality of set A. Note that the empirical dis-
tribution function is defined in (8.20) using the indicator function. An empirical
distribution function is a piecewise constant function. Plotting a graph of an
empirical distribution function is for large samples practically the same as plot-
ting the points

(Y(i), i∕T), i = 1,… ,T , (3.31)

where Y(1) ≤ · · · ≤ Y(T) are the ordered observations. Thus, the empirical
distribution function fits the scheme of transforming univariate data to
two-dimensional data as in (3.29).

Figure 3.1 shows empirical distribution functions of S&P 500 net returns
(red) and 10-year bond net returns (blue). The monthly data of S&P 500 and
US Treasury 10-year bond returns is described in Section 2.4.3. Panel (a) plots
the points (3.31) and panel (b) zooms to the lower left corner, showing the
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Figure 3.1 Empirical distribution functions. (a) Empirical distribution functions of S&P 500
returns (red) and 10-year bond returns (blue); (b) zooming at the lower left corner.

empirical distribution function for the [T∕10] smallest observations; the empir-
ical distribution function is shown on the range x ∈ (−∞, q̂p), where q̂p is the
pth empirical quantile for p = 0.1. Neither of the estimated return distributions
dominates the other: The S&P 500 distribution function is higher at the left
tail but lower at the right tail. That is, S&P 500 is more risky than the 10-year
bond. Note that Section 9.2.3 discusses stochastic dominance: a first return dis-
tribution dominates stochastically a second return distribution when the first
distribution function takes smaller values everywhere than the second distri-
bution function.

3.2.1.2 The Tail Plots
The left and right tail plots can be used to visualize the heaviness of the tails of
the underlying distribution. A smooth tail plot can be used to visualize simul-
taneously a large number of samples. The tail plots are almost the same as the
empirical distribution function, but there are couple of differences:

1) In tail plots we divide the data into the left tail and the right tail, and we
visualize separately the two tails.

2) In tail plots the y-axis shows the number of observations and a logarithmic
scale is used for the y-axis.

Tail plots have been applied in Mandelbrot (1963), Bouchaud and Potters
(2003), and Sornette (2003).

The Left and the Right Tail Plots The observations in the left tail are

 = {Yi ∶ Yi < u, i = 1,… ,T},
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where u = q̂p is the pth empirical quantile for 0 < p < 1∕2. For the left tail plot
we choose the level

level(Yi) = #{Yj ∶ Yj ≤ Yi,Yj ∈ }, Yi ∈ . (3.32)

Thus, the smallest observation has level one, the second smallest observation
has level two, and so on. Note that level(Yi) is often called the rank of Yi. The left
tail plot is the two-dimensional scatter plot of the points (Yi, level(Yi)), Yi ∈ ,
when the logarithmic scale is used for the y-axis.

The observations in the right tail are

 = {Yi ∶ Yi > u, i = 1,… ,T},

where u = q̂p is the pth empirical quantile for 1∕2 < p < 1. We choose the level
of Yi as the number of observations larger or equal to Yi:

level(Yi) = #{Yj ∶ Yj ≥ Yi,Yj ∈ }, Yi ∈ . (3.33)

Thus, the largest observation has level one, the second largest observation has
level two, and so on. The right tail plot is the two-dimensional scatter plot of the
points (Yi, level(Yi)), Yi ∈ , when the logarithmic scale is used for the y-axis.

The left tail plot can be considered as an estimator of the function

L(x) = TF(x), (3.34)

where F is the underlying distribution function and x ∈ (−∞,u]. Indeed, for
the level in (3.32) we have that level(Yi) = TF̂(Yi). The right tail plot can be
considered as an estimator of the function

R(x) = T(1 − F(x)), (3.35)

where x ∈ [u,∞). For the level in (3.33) we have that level(Yi) ≈ T(1 − F̂(Yi)).
Figure 3.2 shows the left and right tail plots for the daily S&P 500 data,

described in Section 2.4.1. Panel (a) shows the left tail plot and panel (b) shows
the right tail plot. The black circles show the data points. The y-axis is loga-
rithmic. The colored curves show the population versions (3.34) and (3.35) for
the Gaussian distribution (red) and for the Student distributions with degrees
of freedom 𝜈 = 3, 4, 5, 6 (blue).6 We can see that for the left tail Student’s
distribution with degrees of freedom 𝜈 = 3 gives the best fit, but for the right
tail degrees of freedom 𝜈 = 4 gives the best fit.

6 The Gaussian curve in the left tail plot shows the function x → TΦ((x − 𝜇̂)∕𝜎̂), where Φ is the
distribution function of the standard Gaussian distribution, 𝜇̂ is the sample mean, and 𝜎̂ is the sam-
ple standard deviation. In the right tail plot the function is x → T(1 − Φ((x − 𝜇̂)∕𝜎̂)). The Student
curves in the left tail plot are x → TF

𝜈
((x − 𝜇̂)∕𝜎̂), where F

𝜈
is the distribution function of the Stu-

dent distribution with degrees of freedom 𝜈, and 𝜎̂ = ŝ∕
√
𝜈∕(𝜈 − 2), where ŝ is the sample standard

deviation. The Student distributions are defined in (3.53). Note that when Y ∼ N(𝜇, 𝜎2), then the
distribution function of Y is Φ((x − 𝜇)∕𝜎). When Y ∼ t(𝜈, 𝜇, 𝜎2), then the distribution function of
Y is F

𝜈
((x − 𝜇)∕𝜎).
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Figure 3.2 Left and right tail plots. (a) The left tail plot for S&P 500 returns; (b) the right tail plot.
The red curve shows the theoretical Gaussian curve and the blue curves show the Student
curves for the degrees of freedom 𝜈 = 3–6.

A left tail plot and a right tail plot can be combined into one figure, at least
when both the left and the right tails are defined by taking the threshold to be
the sample median u = q̂0.5 (see Figures 14.24(a) and 14.25(a)).

Smooth Tail Plots Figure 3.3 shows smooth tail plots for the S&P 500 com-
ponents data, described in Section 2.4.5. Panel (a) shows left tail plots and
panel (b) shows right tail plots. The gray scale image visualizes with one
picture all tail plots of the stocks in the S&P 500 components data. The red
points show the tail plots of S&P 500 index, which is also shown in Figure 3.2.
Note that the x-axes have the ranges [−0.1, 0] and [0, 0.1], so that the extreme
observations are not shown. Note that instead of the logarithmic scale of
y-values 1,… , [T∕2], we have used values log(1), log(2),… , log([T∕2]) on the
y-axis. We can see that the index has lighter tails than most of the individual
stocks.

In a smooth tail plot we make an image that simultaneously shows several tail
plots. Let us have m stocks and T returns for each stock. We draw a separate
left or right tail plot for each stock. Plotting these tail plots in the same figure
would cause overlapping, and we would see only a black image. That is why we
use smoothing. We divide the x-axis to 300 grid points, say. The y-axis has [T∕2]
grid points. Thus, we have 300 × [T∕2] pixels. For each x-value we compute the
value of a univariate kernel density estimator at that x-value. Each kernel esti-
mator is constructed using m observations. This is done for each [T∕2] rows, so
that we evaluate [T∕2] estimates at 300 points. See Section 3.2.2 about kernel
density estimation. We choose the smoothing parameter using the normal ref-
erence rule and use the standard Gaussian kernel. The values of the density
estimate are raised to the power of 21 before applying the gray scale.



3.2 Univariate Graphical Tools 47
0

2
4

6

0
2

4
6

(a)

Return Return

−0.08 −0.06 −0.04 −0.02 0.00 0.02 0.04 0.06 0.08

(b)

Figure 3.3 Smooth tail plots. The gray scale images show smooth tail plots of a collection of
stocks in the S&P 500 index. The red points show the tail plots of the S&P 500 index. (a) A
smooth left tail plot; (b) a smooth right tail plot.

3.2.1.3 Regression Plots of Tails
Regression plots are related to the empirical distribution function, just like tail
plots, but now the data is transformed so that it lies on [0,∞), both in the case
of the left tail and in the case of the right tail. We use the term “regression
plot” because these plots suggest fitting linear regression curves to the data.
We distinguish the plot for which exponential tails looks linear and the plot for
which Pareto tails look linear.

Plots which Look Linear for an Exponential Tail Let the original observations be
Y1,… ,YT . Let u ∈ R be a threshold. We choose u to be an empirical quantile
q̂p for some p ∈ (0, 1): q̂p = Y(m) for m = [pT], where Y(1) < · · · < Y(T) are the
ordered observations. Let l be the left tail and r be the right tail, transformed
so that the observations lie on [0,∞):

l = {u − Yi ∶ Yi ≤ u}, r = {Yi − u ∶ Yi ≥ u}.

For the left tail u = q̂p for p ∈ (0, 1∕2) and for the right tail u = q̂p for
p ∈ (1∕2, 1). Let us denote by  either the left tail or the right tail. Denote

n = # .

Let

F̂(z) = 1
n + 1

#{Zi ∈  ∶ Zi ≤ z}

be the empirical distribution function, based on data  . Note that in the usual
definition of the empirical distribution function we divide by n, but now we



48 3 Univariate Data Analysis

divide by n + 1 because we need that F̂(Zi) < 1, in order to take the logarithm
of 1 − F̂(Zi). Denote

 = {Z1,… ,Zn}.

Assume that the data is ordered:

Z1 < · · · < Zn.

We have that

F̂(Zi) =
i

n + 1
.

The regression plot that is linear for exponential tails is a scatter plot of the
points7

{(Zi, log(1 − F̂(Zi))) ∶ Zi ∈  }. (3.36)

Figure 3.4 shows scatter plots of points in (3.36). We use the S&P 500 daily
data, described in Section 2.4.1. Panel (a) plots data in the left tail with p = 10%
(black), p = 5% (red), and p = 1% (blue). Panel (b) plots data in the right tail
with p = 90% (black), p = 95% (red), and p = 99% (blue).

The data looks linear for exponential tails and convex for Pareto tails. The
exponential distribution function is F(x) = 1 − exp{−x∕𝛽} for x ≥ 0, where
𝛽 > 0. The exponential distribution function satisfies

log(1 − F(x)) = − x
𝛽

I(0,∞)(x).
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Figure 3.4 Regression plots which are linear for exponential tails: S&P 500 daily returns. (a) Left
tail with p = 10% (black), p = 5% (red), and p = 1% (blue); (b) right tail with p = 90% (black),
p = 95% (red), and p = 99% (blue).

7 Denote pi = F̂(Zi) and qpi
= Zi. Then we can write (3.36) as a plot of points (qpi

, log(1 − pi)). The
plot of points (− log(1 − pi), qpi

) is called the return level plot; see Coles (2004, pp. 49, 81).
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Plotting the curve

x → − x
𝛽

(3.37)

for x ≥ 0 and for various values of 𝛽 > 0 shows how well the exponential dis-
tributions fit the tail. The Pareto distribution function for the support [0,∞) is
F(x) = 1 − (u∕(x + u))𝛼 for x ≥ 0, where 𝛼 > 0; see (3.74). The Pareto distribu-
tion function satisfies

log(1 − F(x)) = −𝛼 log
(x + u

u

)
I(0,∞)(x).

Plotting the curve

x → −𝛼 log
(x + u

u

)
(3.38)

for x ≥ 0 and for various values of 𝛼 > 0 shows how well the Pareto distributions
fit the tail.8

Figure 3.5 shows how parametric models are fitted to the left tail, defined
by the pth empirical quantile with p = 5%. We use the S&P 500 daily data,
as described in Section 2.4.1. Panel (a) shows fitting of exponential tails: we
show functions (3.37) for three values of parameter 𝛽. Panel (a) shows fitting
of Pareto tails: we show functions (3.38) for three values of parameter 𝛼.
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Figure 3.5 Fitting of parametric families for data that is linear for exponential tails. The data
points are from left tail of S&P 500 daily returns, defined by the pth empirical quantile with
p = 0.05. (a) Fitting of exponential distributions; (b) fitting of Pareto distributions.

8 The generalized Pareto distribution is defined in (3.83). The distribution function F satisfies

log(1 − F(x)) =

{
− 1
𝜉

log
(

1 + 𝜉x
𝛽

)
I[0,∞)(x), 𝜉 > 0,

− x
𝛽

I[0,∞)(x), 𝜉 = 0,

where 𝛽 > 0.



50 3 Univariate Data Analysis

The middle values of the parameters are the maximum likelihood estimates,
defined in Section 3.4.2.

Plots which Look Linear for a Pareto Tail Let
l = {Yi∕u ∶ Yi ≤ u}, r = {Yi∕u ∶ Yi ≥ u}.

For the right tail we assume that u > 0 and for the left tail we assume that u < 0.
Let us denote by  either the left tail or the right tail. Denote

 = {Z1,… ,Zn}.
Assume that the data is ordered: Z1 < · · · < Zn.The regression plot that is linear
for Pareto tails is a scatter plots of the points{

(log Zi, log(1 − F̂(Zi))) ∶ Zi ∈ 
}
. (3.39)

Figure 3.6 shows scatter plots of points in (3.39). We use the S&P 500 daily
data, described in Section 2.4.1. Panel (a) plots data in the left tail with p = 10%
(black), p = 5% (red), and p = 1% (blue). Panel (b) plots data in the right tail
with p = 90% (black), p = 95% (red), and p = 99% (blue).

The data looks linear for Pareto tails and concave for exponential tails.
The exponential distribution function for the support [u,∞) is F(x) =
1 − exp{−(x − u)∕𝛽} for x ≥ u, where 𝛽 > 0. The exponential distribution
function satisfies

log(1 − F(x)) = −x − u
𝛽

I(u,∞)(x).

Plotting the curve

x → − |u|
𝛽

(ex − 1)
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Figure 3.6 Regression plots which are linear for Pareto tails: S&P 500 daily returns. (a) Left tail
with p = 10% (black), p = 5% (red), and p = 1% (blue); (b) right tail with p = 90% (black),
p = 95% (red), and p = 99% (blue).
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Figure 3.7 Fitting of parametric families for data that is linear for Pareto tails. The data points
are from left tail of S&P 500 daily returns, defined by the pth empirical quantile with p = 0.05.
(a) Fitting of exponential distributions; (b) fitting of Pareto distributions.

for x ≥ 0 and for various values of 𝛽 > 0 shows how well the exponential dis-
tributions fit the tail. The Pareto distribution function for the support [u,∞)
is F(x) = 1 − (u∕x)𝛼 for x ≥ u, where 𝛼 > 0. The Pareto distribution function
satisfies

log(1 − F(x)) = −𝛼 log
( x

u

)
I(u,∞)(x).

Plotting the curve
x → −𝛼x

for x ≥ 0 and for various values of 𝛼 > 0 shows how well the Pareto distributions
fit the tail.

Figure 3.7 shows how parametric models are fitted to the left tail, defined
by the pth empirical quantile with p = 5%. We use the S&P 500 daily data,
described in Section 2.4.1. Panel (a) shows fitting of exponential tails: we show
functions (3.37) for three values of parameter 𝛽. Panel (a) shows fitting of Pareto
tails: we show functions (3.38) for three values of parameter 𝛼. The middle
values of the parameters are the maximum likelihood estimates, defined in
Section 3.4.2.

3.2.1.4 The Empirical Quantile Function
The pth quantile of the distribution of the random variable Y ∈ R is defined in
(3.21) as

Qp = inf{y ∶ F(y) ≥ p},
where 0 < p < 1 and F(y) = P(Y ≤ y) is the distribution function of Y . The
empirical quantile can be defined as

Q̂p = inf{y ∶ F̂(y) ≥ p},
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where F̂ is the empirical distribution function, as defined in (3.30); see (8.21).
Section 8.4.1 contains equivalent definitions of the empirical quantile.

The quantile function is

p → Qp, p ∈ (0, 1).

For continuous distributions the quantile function is the same as the inverse of
the distribution function. The empirical quantile function is

p → Q̂p, p ∈ (0, 1), (3.40)

where Q̂p is the empirical quantile. A quantile function can be used to compare
return distributions. A first return distribution dominates a second return dis-
tribution when the first quantile function takes higher values everywhere than
the second quantile function. See Section 9.2.3 about stochastic dominance.

Plotting a graph of the empirical quantile function is close to plotting the
points(

i∕T ,Y(i)
)
, i = 1,… ,T , (3.41)

where Y(1) < · · · < Y(T) are the ordered observations.
Figure 3.8 shows empirical quantile functions of S&P 500 returns (red) and

10-year bond returns (blue). The monthly data of S&P 500 and US Treasury
10-year bond returns is described in Section 2.4.3. Panel (a) plots the points
(3.41) and panel (b) zooms at the lower left corner, showing the empirical quan-
tile on the range p ∈ (0, 0.1). Neither of the estimated return distributions dom-
inates the other: The S&P 500 returns have a higher median and higher upper
quantiles, but they have smaller lower quantiles. That is, S&P 500 is more risky
than 10-year bond.
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Figure 3.8 Empirical quantile functions. (a) Empirical quantile functions of S&P 500 returns
(red) and 10-year bond returns (blue); (b) zooming to the lower left corner.
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3.2.2 Density Estimation Based Tools

We describe both histograms and kernel density estimators.

3.2.2.1 The Histogram
A histogram estimator of the density of X ∈ Rd, based on identically distributed
observations X1,… ,XT , is defined as

f̂ (x) =
M∑

i=1

ni∕T
volume(Ri)

IRi
(x), x ∈ Rd

, (3.42)

where {R1,… ,RM} is a partition on Rd and

ni = #{i ∶ Xi ∈ R, i = 1,… ,T}

is the number of observations in Ri. The partition is a collection of sets
R1,… ,RM that are (almost surely) disjoint and they cover the space of the
observed values X1,… ,XT .9

Figure 3.9(a) shows a histogram estimate using S&P 500 returns. We use
the S&P 500 monthly data, described in Section 2.4.3. The histogram is
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Figure 3.9 Histogram estimates. (a) A histogram of historically simulated S&P 500 prices. A
graph of kernel density estimate is included. (b) A histogram of historically simulated call
option pay-offs.

9 In the univariate case the partition to the intervals of equal length can be defined by

Ri = [ai, bi], ai = X(1) + 𝛿(i − 1), bi = ai + 𝛿, 𝛿 = (X(T) − X(1))∕M,

where X(1) = min{Xi} and X(T) = max{Xi}. Then the histogram can be written as

f̂ (x) = 1
T𝛿

M∑
i=1

ni IRi
(x), x ∈ R.
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constructed from the data 100 × Rt , t = 1,… ,T , where Rt are the monthly
gross returns. Panel (b) shows a histogram constructed from the historically
simulated pay-offs of the call option with the strike price 100. The histogram
is constructed from the data max{100Rt − 100, 0}, t = 1,… ,T . Panel (a)
includes a graph of a kernel density estimate, defined in (3.43). The histogram
in panel (b) illustrates that a histogram is convenient to visualize the density of
data that is not from a continuous distribution; for this data the value 0 has a
probability about 0.5.

3.2.2.2 The Kernel Density Estimator
The kernel density estimator f̂ (x) of the density function f ∶ Rd → R of ran-
dom vector X ∈ Rd, based on identically distributed data X1,… ,XT ∈ Rd, is
defined by

f̂ (x) = 1
T

T∑
i=1

Kh(x − Xi), x ∈ Rd
, (3.43)

where K ∶ Rd → R is the kernel function, Kh(x) = K(x∕h)∕hd, and h > 0 is the
smoothing parameter.10

We can also take the vector smoothing parameter h = (h1,… , hd) and
Kh(x) = K(x1∕h1,… , xd∕hd)∕

∏d
i=1 hi. The smoothing parameter of the kernel

density estimator can be chosen using the normal reference rule:

hi =
( 4

d + 2

)1∕(d+4)
T−1∕(d+4)

𝜎̂i, (3.44)

for i = 1,… , d, where 𝜎̂i is the sample standard deviation for the ith variable;
see Silverman (1986, p. 45). Alternatively, the sample variances of the marginal
distributions can be normalized to one, so that 𝜎̂1 = · · · = 𝜎̂d = 1.

Figure 3.10(a) shows kernel estimates of the distribution of S&P 500 monthly
net returns (blue) and of the distribution of US 10-year bond monthly net
returns (red). The data set of monthly returns of S&P 500 and US 10-year bond
is described in Section 2.4.3. Panel (b) shows kernel density estimates of S&P

10 The definition of the kernel density estimator can be motivated in the following way. The density
a point x ∈ Rd can be approximated by

f (x) ≈
P(Bh(x))
𝜆(Bh(x))

,

where Bh(x) = {y ∈ Rd ∶ ||x − y|| ≤ h}, h > 0 is small, and 𝜆(Bh(x)) is the Lebesgue measure of
Bh(x). We have that

P(Bh(x))
𝜆(Bh(x))

≈ 1
𝜆(Bh(x))

1
T

T∑
i=1

IBh(x)
(Xi) =

1
T

T∑
i=1

Kh(x − Xi),

when K(x) = IB1(0)
(x). We arrive into (3.43) by allowing other kernel functions than only the indi-

cator function.
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Figure 3.10 Kernel density estimates of distributions of asset returns. (a) Estimates of the
distribution of S&P 500 monthly returns (blue) and of US 10-year bond monthly returns (red);
(b) estimates of S&P 500 net returns with periods of 1–5 trading days (colors black–green).

500 net returns with periods of 1–5 trading days (colors black–green). We
use S&P 500 daily data of Section 2.4.1 to construct returns for the different
horizons.

3.3 Univariate Parametric Models

We describe normal and log-normal distributions, Student distributions,
infinitely divisible distributions, Pareto distributions, and models that interpo-
late between exponential and polynomial tails. We consider also the estimation
of the parameters, in particular, the estimation of the tail index.

3.3.1 The Normal and Log-normal Models

After defining the normal and log-normal distributions, we discuss how the
central limit theorem can be used to justify that these distributions can be used
to model stock prices.

3.3.1.1 The Normal and Log-normal Distributions
A univariate normal distribution can be parameterized with the expectation
𝜇 ∈ R and the standard deviation 𝜎 > 0. When X is a random variable with a
normal distribution we write

X ∼ N(𝜇, 𝜎2).
The density of the normal distribution N(𝜇, 𝜎2) is

f (x) = 1
𝜎

√
2𝜋

exp
{

(x − 𝜇)2

2𝜎2

}
,



56 3 Univariate Data Analysis

where x ∈ R. The parameters 𝜇 and 𝜎 can be estimated by the sample mean and
sample standard deviation.

When log X ∼ N(𝜇, 𝜎2), then it is said that X has a log-normal distribution,
and we write

X ∼ lognorm(𝜇, 𝜎2).

The density function of a log-normal distribution is

f (x) = 1
x𝜎
√

2𝜋
exp

{
−
(log x − 𝜇)2

2𝜎2

}
, (3.45)

where x > 0. Thus, log-normally distributed random variables are positive
(almost surely). The expectation of a log-normally distributed random variable
X is

EX = e𝜇+𝜎2∕2
.

For k ≥ 1, EXk = ek𝜇+k2
𝜎

2∕2. Given observations X1,… ,Xn from a log-normal
distribution, the parameters 𝜇 and 𝜎 can be estimated using the sample
mean and sample standard deviation computed from the observations
log X1,… , log Xn.

Note that a linear combination of log-normal variables is not log-normally
distributed, but a product of log-normally distributed random variables is
log-normally distributed, because a linear combination of normal variables is
normally distributed.

3.3.1.2 Modeling Stock Prices
We can justify heuristically the normal distribution for the differences of stock
prices using the central limit theorem. The central limit theorem can also be
used to justify the log-normal model for the gross returns (which amounts to a
normal model for the logarithmic returns). Let us consider time interval [0,T]
and let ti = iT∕n for i = 0,… , n, so that St0

,… , Stn
is an equally spaced sample

of stock prices, where t0 = 0 and tn = T . The time interval between the sampled
prices is Δt = ti+1 − ti = T∕n.

1) Normal model. We may write the price at time ti, 1,… , n, as

Sti
= S0 +

i−1∑
j=0

(Stj+1
− Stj

). (3.46)

If the price increments Stj+1
− Stj

are i.i.d. with expectation m and variance s2,
then an application of the central limit theorem gives the approximation11

Sti
− S0 ∼ N(ti𝜇, ti𝜎

2), (3.47)

11 We have approximately that i−1∕2(Sti
− S0 − im)∕s ∼ N(0, 1). Thus, approximately Sti

− S0 ∼
N(im, is2). We can write im = tim∕Δt and is2 = tis2∕Δt.
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where 𝜇 = m∕Δt, and 𝜎
2 = s2∕Δt. Equation (3.47) defines the Gaussian

model for the asset prices. Under the normal model we have

Sti
= S0 + ti𝜇 +

√
ti 𝜎Z, (3.48)

where Z ∼ N(0, 1) is a random variable that has the standard normal distri-
bution.

2) Log-normal model. We may write the asset price at time ti, i = 1,… , n, as

Sti
= S0 ⋅

i−1∏
j=0

Stj+1

Stj

= S0 ⋅ exp

{ i−1∑
j=0

log

(
Stj+1

Stj

)}
. (3.49)

If log(Stj+1
∕Stj

) are i.i.d. with expectation m and variance s2, then an applica-
tion of the central limit theorem gives the approximation12

log
Sti

S0
∼ N(ti𝜇, ti𝜎

2), (3.50)

where

𝜇 = m∕Δt, 𝜎
2 = s2∕Δt. (3.51)

This is equivalent to saying that Sti
is log-normally distributed with param-

eters ti𝜇 + log S0 and
√

ti𝜎:
Sti

S0
∼ lognorm

(
ti𝜇, ti𝜎

2)
.

Equation (3.50) defines the log-normal model for the asset prices. Under the
log-normal model we have

Sti
= S0 exp

{
ti𝜇 +

√
ti 𝜎Z

}
, (3.52)

where Z ∼ N(0, 1) is a random variably that has the standard normal distri-
bution.

Parameter𝜇 in (3.51) is called the annualized mean of the logarithmic returns
and parameter 𝜎 is called the annualized volatility. For the daily data 1∕Δt =
250 and for the monthly data 1∕Δt = 12, when we take T = 1.

Figure 3.11 shows estimates of the densities of stock price ST using the data
of S&P 500 daily prices, described in Section 2.4.1. In panel (a) T = 20∕250,
which equals 20 trading days, and in panel (b) T = 2 years. The normal den-
sity is shown with black and the log-normal density is shown with red. We take
S0 = 100, and for the purpose of fitting a normal distribution for the price incre-
ments we change the price data to S̃ti

= 100 × Sti
∕Sti−1

. For the normal model the

12 We have approximately that i−1∕2(log Sti
− log S0 − im)∕s ∼ N(0, 1). Thus, approximately

log Sti
− log S0 ∼ N(im, is2). We can write im = tim∕Δt and is2 = tis2∕Δt.
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Figure 3.11 Normal and log-normal densities. Shown are a normal density (black) and a
log-normal density (red) of the distribution of the stock price ST , when S0 = 100. In panel (a)
T = 20∕250, which equals 20 trading days, and in panel (b) T = 2 years.

estimate m̂1 is the sample mean and ŝ1 is the sample standard deviation of the
daily increments. Then we arrive at the distribution

ST ∼ N
(

S0 +
Tm̂1

Δt
,

Tŝ2
1

Δt

)
,

where Δt = 1∕250. For the log-normal model the estimate m̂2 is the sample
mean and ŝ2 is the sample standard deviation of the logarithmic daily returns.
Then we arrive at the distribution

ST ∼ lognorm
(

log S0 +
Tm̂2

Δt
,

Tŝ2
2

Δt

)
.

The log-normal density is skewed to the left and the right tail is heavier than
the left tail. The normal density is symmetric with respect to the mean.

Log-normally distributed random variables take only positive values, but nor-
mal random variables can take negative values. Note, however, that the tail of
the normal distribution is so thin that the probability of negative values can
be very small. Thus, the positivity of log-normal distributions is not a strong
argument in favor of their use to model prices.

The Gaussian model for the increments of the stock prices was used by
Bachelier (1900). The continuous time limit of the log-normal model is the
Black–Scholes model, that is used in option pricing. The log-normal model
is applied in (14.49) to derive a price for options. A log-normal distribution
allows for greater upside price movements than downside price movements.
This leads to the fact that in the Black–Scholes model 105 call has more value
than 95 put when the stock is at 100. See Figure 14.4 for the illustration of the
asymmetry.
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3.3.2 The Student Distributions

The density of the standard Student distribution with degrees of freedom 𝜈 > 0
is given by

f (x) = c
(

1 + x2

𝜈

)−(𝜈+1)∕2

, (3.53)

for x ∈ R, where the normalization constant is equal to

c =
Γ((𝜈 + 1)∕2)
(𝜈𝜋)1∕2Γ(𝜈∕2)

,

and the gamma function is defined by Γ(u) = ∫
∞

0 xu−1e−x dx for u > 0. When
X follows the Student distribution with degrees of freedom 𝜈, then we write

X ∼ t(𝜈).

3.3.2.1 Properties of Student Distributions
Let X ∼ t(𝜈). If 𝜈 > 1 then E|X| <∞ and EX = 0. If 𝜈 > 2, then

Var(X) = 𝜈

𝜈 − 2
. (3.54)

We have that E|X|k < ∞ only when 0 < k < 𝜈. In fact, a Student density has
tails

f (x) ≍ |x|−1−𝜈
, (3.55)

as |x| → ∞.13 Thus, Student densities have Pareto tails, as defined in Section 3.4.
We can consider three-parameter location-scale Student families. When

X ∼ t(𝜈), then Y = 𝜇 + 𝜎X follows a location-scale Student distribution, and
we write14

Y ∼ t(𝜈, 𝜇, 𝜎2).

Note that for 𝜈 > 1, EY = 𝜇 but 𝜎2 is not the variance of Y . Instead,

Var(Y ) = 𝜈

𝜈 − 2
𝜎

2
,

due to (3.54).15

13 Notation ax ≍ bx means that 0 < lim infx→∞(ax∕bx) ≤ lim supx→∞(ax∕bx) < ∞.
14 Random variable Y has the density f ((x − 𝜇)∕𝜎)∕𝜎, where f is the density of t(𝜈) distribution.
The distribution function is F((x − 𝜇)∕𝜎), where F is the distribution function of t(𝜈) distribution.
15 Thus, an estimate of 𝜎2 is

𝜎̂
2 = 𝜈 − 2

𝜈
s2
,

where s2 is the sample variance, when we assume that 𝜈 is known. Analogously, in simulations we
have to note that when Y ∼ t(𝜈), then

𝜇 + 𝜎Y√
𝜈∕(𝜈 − 2)

has mean 𝜇 and variance 𝜎2.
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When 𝜈 → ∞, then the Student density approaches the Gaussian density.
Indeed, (1 + t2∕𝜈)−(𝜈+1)∕2 → exp{−t2∕2}, as 𝜈 → ∞, since (1 + a∕𝜈)𝜈 → ea,
when 𝜈 → ∞.

A student distributed random variable X ∼ t(𝜈) can be written as

X = Z√
W∕𝜈

,

where Z ∼ N(0, 1), and W has 𝜒2-distribution with degrees of freedom 𝜈. Thus,
Student distributions belong to the family of normal variance mixture distribu-
tions (scale-mixtures of normal distribution), as defined in Section 4.3.3.

3.3.2.2 Estimation of the Parameters of a Student Distribution
Let us observe Y1,… ,YT from a Student distribution t(𝜈, 𝜇, 𝜎2) with the den-
sity function f (x; 𝜈, 𝜇, 𝜎). The maximum likelihood estimates are maximizers
of the likelihood over 𝜈 > 0, 𝜇 ∈ R, and 𝜎 > 0. Equivalently, we can minimize
the negative log-likelihood. Assuming the independence of the observations,
the negative log-likelihood is equal to

l(𝜈, 𝜇, 𝜎) = −
T∑

i=1
log f (Yi; 𝜈, 𝜇, 𝜎).

We apply the restricted maximum likelihood estimator that minimizes

l(𝜈, 𝜇̂, 𝜎) (3.56)

over 𝜈 > 0 and 𝜎 > 0, where 𝜇̂ is the sample mean.
Figure 3.12 studies how the return horizon affects the maximum likelihood

estimates for the Student family. We consider the data of daily S&P 500 returns,
described in Section 2.4.1. The data is used to consider return horizons up to
40 days. Panel (a) shows the estimates of parameter 𝜈 as a function of return
horizon in trading days. Panel (b) shows the estimates of 𝜎 as a function of
the return horizon. We see that the estimates are larger for the longer return
horizons but there is fluctuation in the estimates.

Figure 3.13 shows the estimates of the degrees of freedom and the scale
parameter for each series of daily returns in the S&P 500 components data,
described in Section 2.4.5. We get an individual estimate of 𝜈 and 𝜎 for each
stock. Panel (a) shows a kernel density estimate and a histogram estimate of
the distribution of 𝜈̂. Panel (b) shows the estimates of the distribution of 𝜎̂.16

The maximizers of the kernel estimates (modes) are indicated by the blue lines.
The most stocks has 𝜈̂ ≈ 3.5, but the estimates vary as 𝜈̂ ∈ [1.5, 5].

16 The smoothing parameter is chosen using the normal reference rule, and the kernel function is
the standard normal density. In fact, we show the values

√
250 × 100 × 𝜎̂.
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Figure 3.12 Parameter estimates for various return horizons. The maximum likelihood
estimates of (a) 𝜈 and (b) 𝜎 as a function of the return horizon in trading days.
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Figure 3.13 Distribution of estimates 𝜈̂ and 𝜎̂. (a) A kernel density estimate and a histogram
of the distribution of 𝜈̂; (b) the estimates of the distribution of 𝜎̂. The maximizers of the kernel
estimates are indicated by the blue lines.

3.4 Tail Modeling

The normal, log-normal, and Student distributions provide models for the com-
plete return distribution. These models assume that the return distribution is
approximately symmetric. We consider an approach where the left tail, the right
tail, and the central area are modeled and estimated separately. There are at least
two advantages with this approach:
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1) We may better estimate distributions whose left tail is different from the
right tail. For example, it is possible that the distribution of losses is different
from the distribution of gains.

2) We may apply different estimation methods for different parts of the distri-
bution. For example, we may apply nonparametric methods for the estima-
tion of the central part of the distribution and parametric methods for the
estimation of the tails.

In risk management, we are mainly interested in the estimation of the left tail
(the probability of losses). In portfolio selection, we might be interested in the
complete distribution.

A semiparametric approach for the estimation of the complete return distri-
bution estimates the left and the right tails of the distribution using a parametric
model, but the central region of the distribution is estimated using a kernel
estimator, or some other nonparametric density estimator. It is a nontrivial
problem to make a good division of the support of the distribution into the
area of the left tail, into the area of the right tail, and into the central area.

3.4.1 Modeling and Estimating Excess Distributions

We model the left and the right tails of a return distribution parametrically. The
estimation of the parameters can be done using maximum likelihood, or by a
regression method, for example.

3.4.1.1 Modeling Excess Distributions
Let f (x; 𝜃) be a parameterized family of density functions whose support is
[0,∞). This family will be used to model the tails of the density g ∶ R → R of
the returns.

To estimate the right tail, we assume that the density function g ∶ R → R of
the returns satisfies

g(x)I[u,∞)(x) = (1 − p)f (x − u; 𝜃) (3.57)

for some 𝜃, where u is the pth quantile of the return density: 1 − p = ∫
∞

u g, and
the probability p satisfies 0.5 < p < 1.17 To estimate the left tail we assume that
the density function g ∶ R → R of the returns satisfies

g(x)I(−∞,u](x) = pf (u − x; 𝜃) (3.58)

for some 𝜃, where u is the pth quantile of the return density: p = ∫
u
−∞ g, and

0 < p < 0.5.
The assumptions can be expressed using the concept of the excess distribu-

tion with threshold u > 0. Let G ∶ R → R be the distribution function of the

17 The indicator function IA ∶ R → R is defined for any A ⊂ R by IA(x) = 1, when x ∈ A, and
IA(x) = 0, when x ∉ A.
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Figure 3.14 Excess distributions. (a) The density function of t-distribution with degrees of
freedom five. The green, blue, and red vectors indicate the location of quantiles qp for
p = 0.95, p = 0.99, and p = 0.999. (b) The right excess distributions for u = qp.

returns and let g ∶ R → R be the density function of the returns. Let X be the
return. Now P(X ≤ x) = G(x). The distribution function of the excess distribu-
tion with threshold u is

Gu(x) = P(X − u ≤ x |X > u) = G(x + u) − G(u)
1 − G(u)

. (3.59)

The density function of the excess distribution with threshold u is

gu(x) =
g(x + u)
1 − G(u)

I[0,∞)(x). (3.60)

Thus, the assumption in (3.57) says that

gu(x) = f (x; 𝜃)

for some 𝜃. Limit theorems for threshold exceedances are discussed in
Section 3.5.2.

Figure 3.14 illustrates the definition of an excess distribution. Panel (a)
shows the density function of t-distribution with degrees of freedom five. The
green, blue, and red vectors indicate the location of quantiles qp for p = 0.95,
p = 0.99, and p = 0.999. Panel (b) shows the right excess distributions for
u = qp. The choice of the threshold u affects the goodness-of-fit, and this issue
will be addressed in the following sections.

3.4.1.2 Estimation
Estimation is done by first identifying the data coming from the left tail, and the
data coming from the right tail. Second, the data is transformed onto [0,∞).
Third, we can apply any method of fitting parametric models.
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Identifying the Data in the Tails We choose threshold u of the excess distribution
to be an estimate of the pth quantile. For the estimation of the left tail we need
to estimate the pth quantile for 0 < p < 0.5, and for the estimation of the right
tail we need to estimate the pth quantile for 0.5 < p < 1. The data in the left tail
and the right tail are

 = {Yi ∶ Yi ≤ u},  = {Yi ∶ Yi ≥ u}, (3.61)
where u are estimates of a lower and an upper quantile, respectively. We use
the empirical quantile to estimate the population quantile. Let Y1,… ,YT
be the sample from the distribution of the returns, and let Y(1) ≤ · · · ≤ Y(T) be
the ordered sample. The empirical quantile is

q̂p = Y([pT]),

where [x] is the integer part of x ∈ R. See Section 3.1.3 and Chapter 8 for more
information about quantile estimation. Now the data in the left tail and the right
tail can be written as

 = {Y(1),… ,Y([pT])},  = {Y([pT]),… ,Y(T)}. (3.62)

The Basic Principle of Fitting Tail Models Assume that we have an estimation pro-
cedure for the estimation of the parameter 𝜃 of the family f (⋅; 𝜃), 𝜃 ∈ Θ. The
family consists of densities whose support is [0,∞), and it is used to model the
left or the right part of the density, as written in assumptions (3.58) and (3.57).
We need a procedure for the estimation of the parameter 𝜃 = 𝜃left in model
(3.58), or the parameter 𝜃 = 𝜃right in model (3.57). We apply the estimation pro-
cedure for estimating 𝜃 using data

{u − Yi ∶ Yi ≤ u}, {Yi − u ∶ Yi ≥ u}.

Maximum Likelihood in Tail Estimation We use the method of maximum likeli-
hood for the estimation of the tails under the assumptions (3.57) and (3.58).
We write the likelihood function under the assumption of independent and
identically distributed observations, but we apply the maximum likelihood esti-
mator for time series data. Thus, the method may be called pseudo maximum
likelihood. Time series properties will be taken into account in Chapter 8, where
quantile estimation is studied using tail modeling. The likelihood is maximized
separately using the data in the left tail and in the right tail.

The family f ( ⋅ , 𝜃), 𝜃 ∈ Θ, models the excess distribution. The maximum like-
lihood estimator for the parameter of the left tail is

𝜃̂left = argmax
𝜃

∏
Yi∈

f (u − Yi; 𝜃), (3.63)

where u = q̂p for 0 < p < 0.5 and f ( ⋅ , 𝜃) has support [0,∞). The maximum
likelihood estimator for the parameter of the right tail is

𝜃̂right = argmax
𝜃

∏
Yi∈

f (Yi − u; 𝜃), (3.64)

where u = q̂p for 0.5 < p < 1.
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3.4.2 Parametric Families for Excess Distributions

We describe the following one- and two-parameter families:
1) One-parameter families. The exponential and Pareto distributions.
2) Two-parameter families. The gamma, generalized Pareto, and Weibull dis-

tributions.
Furthermore, we describe a three parameter family which contains many one-
and two-parameter families as special cases.

The exponential distributions have a heavier tail than the normal distribu-
tions. The Pareto distributions have a heavier tail than the exponential distribu-
tions, but an equally heavy tail as the Student distributions. The Pareto densities
have polynomial tails, the exponential densities have exponential tails, and the
gamma densities have densities whose heaviness is between the Pareto and the
exponential densities.

3.4.2.1 The Exponential Distributions
The exponential densities are defined as

f (x) = 1
𝛽

exp
{
− x
𝛽

}
I[0,∞)(x), (3.65)

where 𝛽 > 0 is the scale parameter. The parameter 𝜆 = 1∕𝛽 > 0 is called the rate
parameter. The distribution function and the quantile function are

F(x) =
(

1 − exp
{
− x
𝛽

})
I[0,∞)(x), F−1(p) = −𝛽 log(1 − p)I[0,1)(p).

The expectation and the variance are
EX = 𝛽, Var(X) = 𝛽

2
, (3.66)

where X is a random variable following the exponential distribution.

Maximum Likelihood Estimation: Exponential Distribution When we observe
Y1,… ,YT , which are i.i.d. with exponential distribution, then the maximum
likelihood estimator is18

𝛽 = 1
T

T∑
i=1

Yi. (3.67)

18 The likelihood function is

L(𝛽) = 𝛽
−T exp

{
− 1
𝛽

T∑
i=1

Yi

}
.

The logarithmic likelihood is

log L(𝛽) = −T log 𝛽 − 1
𝛽

T∑
i=1

Yi.

Putting the derivative equal to zero and solving the equation gives the maximum likelihood esti-
mator.
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Regression Method: Exponential Distribution Regression plots were shown in
Figures 3.4 and 3.5. We study further the regression method for fitting an
exponential distribution.

For exponential distributions the logarithm of the survival function 1 − F
is a linear function, which can be used to visualize data and to estimate the
parameter of the exponential distribution (see Section 3.2.1). Let Y1,… ,YT be
a sample from an exponential distribution and assume Y1 < · · · < YT . Let F̂
be the empirical distribution function, based on the observations Y1,… ,YT ,
defined as F̂(x) = #{Yi ≤ x}∕(T + 1). The empirical distribution function is
defined in (3.30), but we modify the definition so that the divisor is T + 1
instead of T . We use the facts that (for the ordered data)

1 − F̂(Yi) = 1 − i∕(T + 1), 1 − F(Yi) = e−Yi∕𝛽 .

Thus,

−Yi ≈ 𝛽 log(1 − i∕(T + 1)).

The least squares estimator of 𝛽 is19

𝛽 = −
∑T

i=1 Yi log(1 − i∕(T + 1))∑T
i=1 (log(1 − i∕(T + 1)))2

. (3.69)

Now we can write

𝛽 =
T∑

i=1
𝑤iYi,

where

𝑤i =
log((T + 1)∕(T + 1 − i))∑T

i=1 (log((T + 1)∕(T + 1 − i)))2
. (3.70)

Thus, more weight is given to the observations in the extreme tails.20

Figure 3.15 shows the fitting of regression estimates for the S&P 500
daily returns, described in Section 2.4.1. Panel (a) considers the left tail and
panel (b) the right tail. The tails are defined by the pth empirical quantiles for

19 In the regression model Yi = 𝛽Xi + 𝜖i, i = 1,… ,T , the least squares estimator of 𝛽 is

𝛽 =
∑T

i=1 YiXi∑T
i=1 X2

i

. (3.68)

20 Note that, unlike in the case of the maximum likelihood estimator, we do not obtain an esti-
mator for the rate parameter 𝜆 = 1∕𝛽 by 1∕𝛽. Instead, an estimator for 𝜆 = 1∕𝛽 follows from
log(1 − i∕(T + 1)) ≈ −𝜆Yi. Thus, the least squares estimator of 𝜆 is

𝜆̂ = −
∑n

i=1 Yi log(1 − i∕(T + 1))∑T
i=1 Y 2

i

. (3.71)
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Figure 3.15 Exponential model for S&P 500 daily returns: Regression fits. Panel (a) considers the
left tail and panel (b) the right tail. We show the regression data and the fitted regression lines
for p = 10%/90% (blue), 5%/95% (green), and 1%/99% (red).

p = 10%/90% (blue), 5%/95% (green), and 1%/99% (red). We also show the
fitted linear regression lines.

3.4.2.2 The Pareto Distributions
We define first the class of Pareto distributions with the support [u,∞), where
u > 0. The class of Pareto distributions with support [0,∞) is obtained by trans-
lation.

The Pareto distributions are parameterized by the tail index 𝛼 > 0. Parameter
u > 0 is taken to be known, but in the practice of tail estimation u is used to
define the tail area and u chosen by a quantile estimator. The density function is

f (x) = 𝛼

u

( x
u

)−1−𝛼
I[u,∞)(x), (3.72)

where 𝛼 > 0 is the tail index. The distribution function and the quantile func-
tion are

F(x) =
[
1 −

(u
x

)𝛼]
I[u,∞)(x), F−1(p) = u(1 − p)−1∕𝛼I[0,1)(p). (3.73)

Pareto Distributions as Excess Distributions Assumption (3.57) says that the excess
distribution is modeled with a parametric distribution whose support is [0,∞).
The density function of a Pareto distribution can be moved by the translation
f (x) → f (x + u) to have the support [0,∞), which gives the density function21

f (x) = 𝛼

u

(x + u
u

)−1−𝛼
I[0,∞)(x). (3.74)

21 The distribution function and the quantile function are

F(x) =
[
1 −

( u
x + u

)𝛼]
I[0,∞)(x), F−1(p) = [u(1 − p)−1∕𝛼 − 1]I[0,1)(p).
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Now we could consider u > 0 as the scaling parameter, which leads to the
two-parameter Pareto distributions, which are called the generalized Pareto
distributions, and defined in (3.82) and (3.84).

Maximum Likelihood Estimation: Pareto Distribution When Y follows the Pareto
distribution with parameters 𝛼 > 0 and u > 0, then X = log(Y∕u) fol-
lows the exponential distribution with scale parameter 𝛽 = 1∕𝛼. Indeed,
P(Y > x) = (x∕u)−𝛼 and thus P(X > x) = P(Y > uex) = e−𝛼x. We observed in
(3.67) that scale parameter 𝛽 of the exponential distribution can be estimated
with 𝛽 = T−1 ∑T

i=1 Xi. Thus, the maximum likelihood estimator of 1∕𝛼 is

1̂∕𝛼 = 1∕𝛼̂ = 1
T

T∑
i=1

log(Yi∕u).

The maximum likelihood estimator of the shape parameter 𝛼 of the Pareto dis-
tribution is22

𝛼̂ =

(
1
T

T∑
i=1

log(Yi∕u)

)−1

. (3.75)

We are more interested in estimating 1∕𝛼, since it appears in the quantile func-
tion.

Regression Method: Pareto Distribution Regression plots were shown in
Figures 3.6 and 3.7. We study further the regression method for fitting a
Pareto distribution.

Let us consider the estimation of the tail index 𝛼 > 0 and the inverse
1∕𝛼. The basic idea is that the logarithm of the distribution function F or
the logarithm of the survival function 1 − F are linear in 𝛼: From (3.78)
we get that log(1 − F(x)) = log L(x) − 𝛼 log x, and from (3.79) we get that
log F(−x) = log L(x) − 𝛼 log x.

Let Y1,… ,YT be a sample from a Pareto distribution and assume

Y1 < · · · < YT .

22 The likelihood function is

L(𝛼) =
T∏

i=1

𝛼u𝛼

Y 𝛼+1
i

,

where it is assumed that Y1,… ,YT are i.i.d. Pareto distributed random variables. Taking logarithms
leads to

log L(𝛼) = T log(𝛼) + T𝛼 log u − (𝛼 + 1)
T∑

i=1
log Yi.

Differentiating with respect to 𝛼 and setting the derivative equal to zero gives the maximum likeli-
hood estimator.
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Let F̂ be the empirical distribution function, based on the observations
Y1,… ,YT , defined as F̂(x) = #{Yi ≤ x}∕(T + 1). The empirical distribution
function is defined in (3.30), but we modify the definition so that the divisor is
T + 1 instead of T . We use the facts that

1 − F̂(Yi) = 1 − i∕(T + 1), 1 − F(Yi) = (Yi∕u)−𝛼.
Thus,

− log(Yi∕u) ≈ (1∕𝛼) log(1 − i∕(T + 1)).
The least squares estimator of 1∕𝛼 is

1̂∕𝛼 = −
∑T

i=1[log(Yi∕u) ⋅ log(1 − i∕(T + 1))]∑T
i=1 (log(1 − i∕(T + 1)))2

; (3.76)

see (3.68) for the least squared formula. The estimator of 1∕𝛼 can be written as

1̂∕𝛼 =
T∑

i=1
𝑤i log(Yi∕u),

where 𝑤i is defined in (3.70). More weight is given to the observations in the
extreme tails.

To estimate 𝛼, instead of 1∕𝛼, we use
log(1 − i∕(T + 1)) ≈ −𝛼 log(Yi∕u).

The least squares estimator of 𝛼 is

𝛼̂ = −
∑T

i=1[log(Yi∕u) ⋅ log(1 − i∕(T + 1))]∑T
i=1 (log(Yi∕u))2

. (3.77)

Figure 3.16 shows the fitting of regression estimates for the S&P 500
daily returns, described in Section 2.4.1. Panel (a) considers the left tail and
panel (b) the right tail. The tails are defined by the pth empirical quantiles for
p = 10%/90% (blue), 5%/95% (green), and 1%/99% (red). We also show the
fitted linear regression lines. If the tails are Pareto tails, then the points should
be on a straight line whose slope is equal to 𝛼. We can see that the slopes
increase when we move to the more extreme parts of the tail (p decreases).

Pareto Tails The Student distributions have Pareto tails, as written in (3.55). The
Lévy distributions with 0 < 𝛼 < 2 have Pareto tails, as written in (3.94).

A distribution of random variable X ∈ R with distribution function F ∶ R →
[0, 1] is said to have a Pareto right tail when

P(X ≥ x) = 1 − F(x) = L(x) x−𝛼
, (3.78)

for x > 0, for some 𝛼 > 0, where L ∶ (0,∞) → (0,∞) is a slowly varying function
at +∞:

lim
x→∞

L(𝜆x)
L(x)

= 1,
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Figure 3.16 Pareto model for S&P 500 daily returns: Regression fits. Panel (a) considers the left
tail and panel (b) the right tail. We show the regression data and the fitted regression lines for
p = 10%/90% (blue), 5%/95% (green), and 1%/99% (red).

for all 𝜆 > 0.23 A distribution is said to have a Pareto left tail when

P(X ≤ −x) = F(−x) = L(x) x−𝛼
, (3.79)

for x > 0, for some 𝛼 > 0, where L ∶ (0,∞) → (0,∞) is a slowly varying func-
tion.

For example, if density function f ∶ R → R satisfies

f (x) = Cx−1−𝛼

for x ≥ u, where u ≥ 0, 𝛼 > 0, and C > 0, then the distribution has a Pareto
right tail. If

f (x) = C(−x)−1−𝛼

for x ≤ −u, where u ≥ 0, 𝛼 > 0, and C > 0, then the distribution has a Pareto
left tail.

3.4.2.3 The Gamma Distributions
For the gamma distributions the density functions have a closed form expres-
sion but the distribution functions and the maximum likelihood estimator can-
not be written in a closed form.

The gamma densities are defined as

f (x) = C(𝜅, 𝛽) ⋅ x𝜅−1 exp
{
− x
𝛽

}
I[0,∞)(x), (3.80)

23 If 0 < limx→∞L(𝜆x)∕L(x) < ∞ for all 𝜆, then L ∶ (0,∞) → (0,∞) is called regularly varying.
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where 𝜅 > 0, 𝛽 > 0 and the normalization constant is

C(𝜅, 𝛽) = 1
𝛽𝜅Γ(𝜅)

,

where Γ(x) = ∫
∞

0 tx−1e−t dt is the gamma function. The distribution function is

F(x) =
𝛾(𝜅, x∕𝛽)
Γ(𝜅)

I[0,∞)(x),

where the lower incomplete gamma function is defined as

𝛾(𝜅, x) =
∫

x

0
t𝜅−1e−t dt

for x ≥ 0 and 𝛾 > 0.
When 𝜅 = 1, then we obtain the family of exponential distributions. When

𝜅 > 1, then the gamma densities have a tail that is heavier than the exponen-
tial densities but lighter than the Pareto densities. When 0 < 𝜅 < 1, then the
gamma densities have a tail that is lighter than the exponential densities.

Assuming independent and identically distributed observations Y1,… ,YT
the logarithmic likelihood is

log L(𝜅, 𝛽) = −T𝜅 log 𝛽 − T logΓ(𝜅)

+(𝜅 − 1)
T∑

i=1
log Yi −

1
𝛽

T∑
i=1

Yi. (3.81)

The maximum likelihood estimator of parameter 𝛽, given 𝜅, is

𝛽(𝜅) = 1
𝜅T

T∑
i=1

Yi.

The maximum likelihood estimator of 𝜅 is the maximizer of log L(𝜅, 𝛽(𝜅)) over
𝜅 > 0. The maximum likelihood estimator of 𝛽 is 𝛽 = 𝛽(𝜅̂).

3.4.2.4 The Generalized Pareto Distributions
The one-parameter Pareto distributions were defined in (3.73) and (3.72). We
define the two-parameter generalized Pareto distributions, which contain the
exponential distributions as a limiting case.

The density functions, distribution functions, and quantile functions have a
closed form expression but the maximum likelihood estimator does not have a
closed form expression.

The density functions of the generalized Pareto distributions are

f (x) =
⎧⎪⎨⎪⎩

1
𝛽

(
1 + 𝜉x

𝛽

)−1∕𝜉−1
I[0,∞)(x), 𝜉 > 0,

1
𝛽

exp
{
− x
𝛽

}
I[0,∞)(x), 𝜉 = 0,

(3.82)
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where 𝛽 > 0 and 𝜉 ≥ 0. The distribution functions are

F(x) =
⎧⎪⎨⎪⎩

1 −
(

1 + 𝜉x
𝛽

)−1∕𝜉
I[0,∞)(x), 𝜉 > 0,

1 − exp
{
− x
𝛽

}
I[0,∞)(x), 𝜉 = 0.

(3.83)

The quantile functions are

F−1(p) =

{
𝛽

𝜉
[(1 − p)−𝜉 − 1] I[0,1)(x), 𝜉 > 0,

−𝛽 log(1 − p)I[0,1)(x), 𝜉 = 0.

When 𝜉 = 0, then the distributions are exponential distributions, defined in
(3.65).

The generalized Pareto distribution can be defined for the cases 𝜉 < 0. In this
case the support is [0,−𝛽∕𝜉]. See (3.101) for the distribution function and (8.65)
for the density function. The generalized Pareto distributions are obtained as
limit distributions for threshold exceedances (see Section 3.5.2).

For the calculation of the maximum likelihood estimation it is convenient to
use the following parameterization. We define the class of generalized Pareto
distributions using the tail index 𝛼 > 0 (shape parameter) and the scaling
parameter 𝜎 > 0 by defining the density function as

f (x) = 𝛼

𝜎

(
1 + x

𝜎

)−1−𝛼
I[0,∞)(x). (3.84)

The parameters of the generalized Pareto distribution (3.84) are related to the
parameterization in (3.83) by 𝛼 = 1∕𝜉 and 𝜎 = 𝛽∕𝜉. Note that the densities
(3.84) can be obtained heuristically from a translation of the one-parameter
Pareto distributions, as written in (3.74).

The maximum likelihood estimator cannot be expressed in a closed form
but we can reduce the numerical maximization of the two-variate likelihood
function to the numerical maximization of a univariate function. For the com-
putation of the maximum likelihood estimator, we use the parameterization of
the density as in (3.84).

The logarithmic likelihood function for i.i.d. observations Y1,… ,YT is

log L(𝛼, 𝜎) = T log
(
𝛼

𝜎

)
− (1 + 𝛼)

T∑
i=1

log
(

1 +
Yi

𝜎

)
. (3.85)

Setting the partial derivative equal to zero and solving for 𝛼 gives24

𝛼̂(𝜎) =

[
1
T

T∑
i=1

log
(

1 +
Yi

𝜎

)]−1

.

24 The partial derivative with respect to 𝛼 is

𝜕

𝜕𝛼
log L(𝛼, 𝜎) = T

𝛼
−

T∑
i=1

log
(

1 +
Yi

𝜎

)
.
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The maximum likelihood estimator 𝜎̂ for 𝜎 is the maximizer of the univariate
function log L(𝛼̂(𝜎), 𝜎) over 𝜎 > 0. The maximum likelihood estimator for 𝛼 is
𝛼̂ = 𝛼̂(𝜎̂). The maximum likelihood estimators for 𝜉 and 𝛽 are

𝜉 = 1∕𝛼̂, 𝛽 = 𝜉𝜎̂.

3.4.2.5 The Weibull Distributions
For the Weibull distributions the density functions, distribution functions, and
quantile functions have a closed form expression but the maximum likelihood
estimator cannot be written in a closed form.

The Weibull densities are defined as

f (x) = 𝜅

𝛽
⋅
(

x
𝛽

)𝜅−1

exp
{
−
(

x
𝛽

)𝜅}
I[0,∞)(x), (3.86)

where 𝜅 > 0 is the shape parameter and 𝛽 > 0 is the scale parameter. The dis-
tribution function is

F(x) =
(

1 − exp
{
−
(

x
𝛽

)𝜅})
I[0,∞)(x).

The quantile function is
F−1(p) = 𝛽(− log(1 − p))1∕𝜅I[0,1)(p).

For 𝜅 = 1 we obtain the exponential distribution. The Weibull distributions are
also called stretched exponential distributions because 1 − F(x) is a stretched
exponential function.

The maximum likelihood estimator cannot be expressed in a closed form but
we can reduce the numerical maximization of the two-variate likelihood func-
tion to the numerical maximization of a univariate function. The logarithmic
likelihood function for i.i.d. observations Y1,… ,YT is

log L(𝜅, 𝛽) = T log(𝜅∕𝛽) + (𝜅 − 1)
T∑

i=1
log(Yi∕𝛽) −

T∑
i=1

(Yi∕𝛽)𝜅. (3.87)

Setting the partial derivative equal to zero and solving for 𝛽 gives25

𝛽(𝜅) =

(
1
T

T∑
i=1

Y 𝜅

i

)1∕𝜅

.

The maximum likelihood estimator 𝜅̂ for 𝜅 is the maximizer of the univariate
function log L(𝛽(𝜅), 𝜅) over 𝜅 > 0. The maximum likelihood estimator for 𝛽 is
𝛽 = 𝛽(𝜅̂).

25 The partial derivative with respect to 𝛽 is

𝜕

𝜕𝛽
log L(𝜅, 𝛽) = 𝜅𝛽

−1

(
𝛽
−𝜅

T∑
i=1

Y 𝜅

i − T

)
.
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3.4.2.6 A Three Parameter Family
A flexible family for the modeling of the right tail is defined in Malevergne and
Sornette (2005, p. 57) by density functions

f (x) = C(a, b, c,u) ⋅ x−(a+1) exp{−(x∕c)b} I[u,∞)(x), (3.88)

where u > 0 is the starting point of the distribution, a ∈ R, and b, c ∈ [0,∞).
When b = 0, then a > 0. The normalization constant C(a, b, c,u) has the
expression

C(a, b, c,u) = cab
Γ(−a∕b, (u∕c)b)

,

where Γ(a, x) = ∫
∞

x ta−1e−t dt is the nonnormalized incomplete Gamma func-
tion.

The family contains several sub-families:

1) The exponential density is obtained when u = 0, a = −1, b = 1, and c > 0.
The exponential densities are f (x) = c−1 ⋅ exp{−x∕c}I[0,∞)(x), where c > 0.
We defined exponential densities in (3.65).

2) The Pareto density is obtained when a > 0 and b = 0. The Pareto densities
are f (x) = aua ⋅ x−(a+1) I[u,∞)(x), where a > 0 and u > 0. We defined Pareto
densities in (3.72).

3) The gamma density is obtained by choosing u = 0 and b = 1. The gamma
densities are f (x) = [ca∕Γ(−a)] x−(a+1) e−x∕cI[0,∞)(x), where a < 0 and c > 0.
The gamma densities were defined in (3.80).

4) The Weibull density is obtained when a = −b, b > 0, and c > 0:

f (x) = C(b, c,u) ⋅ xb−1 exp{−(x∕c)b}I[u,∞)(x),

where C(b, c,u) = b∕cb exp{(u∕c)b}. The Weibull densities were defined in
(3.86).

5) The incomplete gamma density is obtained when a = b = 1 and c > 0:

f (x) = C(c,u) ⋅ x−2 exp{−(x∕c)}I[u,∞)(x),

where C(c,u) = c∕Γ(−1,u∕c).

The Pareto density and the stretched exponential density can be interpolated
smoothly by the log-Weibull density

f (x) = C(a, b) ⋅ x−1[loge(x∕u)]b−1 exp{−a[loge(x∕u)]b} I[u,∞)(x),

where C(a, b,u) = ab.

3.4.3 Fitting the Models to Return Data

We fit models first to S&P 500 returns, and then to a collection of individual
stocks in S&P 500. Fitting of the distributions gives background for the quantile
estimation of Chapter 8.
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3.4.3.1 S&P 500 Daily Returns: Maximum Likelihood
We fit one-parameter models (exponential and Pareto) and two-parameter
models (gamma, generalized Pareto, and Weibull) to the tails of S&P 500 daily
returns. The S&P 500 daily data is described in Section 2.4.1.

We study maximum likelihood estimators (3.63) and (3.64). The estimates are
constructed using data

{q̂p − Yi ∶ Yi ≤ q̂p}, {Yi − q̂1−p ∶ Yi ≥ q̂1−p},

for the left and the right tails, respectively. Threshold q̂p is the pth empirical
quantile, and q̂1−p is the (1 − p)th empirical quantile, where 0 < p < 0.5. The
estimators 𝜃̂left and 𝜃̂right depend on the parameter p.

To show the sensitiveness of the estimates with respect the parameter p we
plot the values of the estimates as a function of p. These plots are related to
the Hill’s plot, which name is used in the case of estimating parameter 𝛼 of the
Pareto distribution.

To characterize the goodness of fit we show tail plots, as defined in
Section 3.2.1. The tail plots include both the observations and the fitted curves,
for several values of p.

The one-parameter models indicate that the left tail is heavier than the right
tail. However, the two-parameter families seem to give much better fits than
the one-parameter families.

The Exponential Model The maximum likelihood estimator of the parameter of
the exponential distribution is given in (3.67). The estimators for the parameters
of the left tail and the right tail are obtained from (3.63) and (3.64) as

𝛽left =
1
#

∑
Yi∈

(q̂p − Yi), 𝛽right =
1
#

∑
Yi∈

(Yi − q̂1−p),

where  and  are defined in (3.61) and (3.62). The estimates 𝛽left and 𝛽right are
related to the estimates of the expected shortfall in (3.28) and (3.27).

Figure 3.17 shows estimates of the parameter 𝛽 and 1∕𝛽 of the exponential
distribution. Panel (a) shows estimates of 100 × 𝛽 and panel (b) shows esti-
mates of 1∕𝛽, as a function of p. Parameter 𝛽 occurs in the quantile function,
and is more important in quantile estimation, but for the convenience of
the reader we also show the estimates of the rate parameter 1∕𝛽. The red
curves show the maximum likelihood estimates for the left tail, and the blue
curves show the maximum likelihood estimates for the right tail. In addition,
we show the values of the regression estimates (3.69) and (3.71). The pink
curves show the regression estimates for the left tail, and the green curves
show the regression estimates for the right tail. We see that the estimates for
𝛽 are larger for the left tail than for the right tail. This indicates that the left tail
is heavier than the right tail. The estimates become smaller when p increases.
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Figure 3.17 Exponential model for S&P 500 daily returns: Parameter estimates. Panel (a) shows
estimates of 100 × 𝛽 and panel (b) shows estimates of 1∕𝛽 , as a function of p. Red and blue:
the maximum likelihood estimates; pink and green: the regression estimates; red and pink:
the left tail; blue and green: the right tail.

The regression estimates are larger than the maximum likelihood estimates.
For the estimates of 1∕𝛽 the behavior is opposite.

Figure 3.18 shows tail plots, defined in Section 3.2.1. Panel (a) shows the left
tail plots and panel (b) shows the right tail plots. The red and green points show
the observed data and the black lines show the exponential distribution func-
tions when parameter 𝛽 is estimated with maximum likelihood. The four black
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Figure 3.18 Exponential model for S&P 500 daily returns: Tail plots with maximum likelihood.
Panel (a) shows the left tail plots and panel (b) shows the right tail plots. The red and green
points show the observed data and the black lines show the exponential fits with p = 0.5%,
1%, 5%, and 10%.
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curves show the cases p = 0.5%, 1%, 5%, and 10%. The tails are fitted better
with small values of p.

The Pareto Model The maximum likelihood estimator of the parameter of the
Pareto distribution is given in (3.75).26 The estimators for the parameters of the
left and the right tails are obtained from (3.63) and (3.64) as

𝛼̂left =

(
1
#

∑
Yi∈

log(Yi∕u)

)−1

, 𝛼̂right =

(
1
#

∑
Yi∈

log(Yi∕u)

)−1

, (3.89)

where  = {Yi ∶ Yi ≤ u} with u = q̂p for the left tail, and  = {Yi ∶ Yi ≥ u}
with u = q̂1−p for the right tail. Now 0 < p < 0.5. The maximum likelihood esti-
mators are called Hill’s estimators.27

Figure 3.19 shows estimates of the parameter 1∕𝛼 and 𝛼 of the Pareto distri-
bution. Panel (a) shows estimates of 100∕𝛼 and panel (b) shows estimates of 𝛼,
as a function of p. The plot in panel (b) is known as Hill’s plot. Parameter 1∕𝛼
occurs in the quantile function, and is more important in quantile estimation,
but for the convenience of the reader we also show the estimates of parame-
ter 𝛼. The red curves show the maximum likelihood estimates for the left tail
and the blue curves show the maximum likelihood estimates for the right tail.
In addition, we show the values of regression estimates of 100∕𝛼, defined in
(3.76), and the values of regression estimates of 𝛼, defined in (3.77). The pink
curves show the regression estimates for the left tail and the green curves show
the regression estimates for the right tail. We see that the estimates of 1∕𝛼 are
larger for the left tail than for the right tail, which means that the left tail is
estimated to be heavier than the right tail. The estimates of 1∕𝛼 become larger
when p increases. The regression estimates of 1∕𝛼 are smaller than the maxi-
mum likelihood estimates. For the estimates of 𝛼 the behavior is opposite.

Figure 3.20 shows tail plots. Panel (a) shows the left tail plots and panel (b)
shows the right tail plots. The red and green points show the observed data
and the black curves show the Pareto distribution functions when parameter
𝛼 is estimated with maximum likelihood. The four black curves show the cases
p = 0.5%, 1%, 5%, and 10%.

26 For the Pareto distribution translated to have support [0,∞) the maximum likelihood estimator
is 𝛼̂ = (T−1 ∑T

i=1 log((Yi + u)∕u))−1.
27 The computation of the estimates can be done in the following way. Let 0 < p < 0.5 and m =
[pT]. Let Y(1) < · · · < Y(T) be the ordered sample. The Hill’s estimators are

𝛼̂right =
m∑T

i=T−m+1 log(Y(i)∕Y(T−m+1))
(3.90)

and

𝛼̂left =
m∑m

i=1 log(Y(i)∕Y(m))
. (3.91)
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Figure 3.19 Pareto model for S&P 500 daily returns: Parameter estimates. Panel (a) shows
estimates of 100∕𝛼 and panel (b) shows estimates of 𝛼 as a function of p. Red and blue: the
maximum likelihood estimates; pink and green: the regression estimates; red and pink: the
left tail; blue and green: the right tail.
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Figure 3.20 Pareto model for S&P 500 daily returns: Tail plots with maximum likelihood. Panel (a)
shows the left tail plots and panel (b) shows the right tail plots. The red and green points show
the observed data and the black curves show the fits with p = 0.5%, 1%, 5%, and 10%.

The Gamma Model The gamma densities are defined in (3.80). The maximum
likelihood estimators for the scale parameter 𝛽 > 0 and for the shape param-
eter 𝜅 > 0 of a gamma distribution do not have a closed form expression, but
the computation can be done by minimizing a univariate function. We get the
maximum likelihood estimates for the parameters of the left tail and the right
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Figure 3.21 Gamma model for S&P 500 daily returns: Parameter estimates. Panel (a) shows
estimates of 100 × 𝛽 and panel (b) shows estimates of 𝜅, as a function of p. Red: the left tail;
blue: the right tail.

tail by applying the numerical procedure for the observations

{q̂p − Yi ∶ Yi ≤ q̂p}, {Yi − q̂1−p ∶ Yi ≥ q̂1−p}, (3.92)

for the left and the right tails, respectively, where 0 < p < 0.5.
Figure 3.21(a) shows estimates of 100𝛽 and panel (b) shows estimates of 𝜅.

The red curves show the estimates for the left tail, and the blue curves show the
estimates for the right tail. We see that the estimates for 𝛽 are larger for the left
tail than for the right tail. The estimates become smaller when p increases.

Figure 3.22 shows tail plots. Panel (a) shows the left tail plots and panel (b)
shows the right tail plots. The red and green points show the observed data
and the black curves show the gamma distribution functions when parameters
are estimated with maximum likelihood. The four black curves show the cases
p = 0.5%, 1%, 5%, and 10%.

The Generalized Pareto Model The density of a generalized Pareto distribution
is given in (3.82). The maximum likelihood estimators for the scale parameter
𝛽 > 0 and for the shape parameter 𝜉 ≥ 0 of a generalized Pareto distribution do
not have a closed form expression, but the computation can be done by mini-
mizing a univariate function. We get the maximum likelihood estimates for the
parameters of the left tail and the right tail by applying the numerical procedure
for the observations in (3.92).

Figure 3.23(a) shows estimates of 100𝛽, and panel (b) shows estimates of 𝜉.
The red curves show the estimates for the left tail, and the blue curves show the
estimates for the right tail. The estimates of 𝛽 become smaller when p increases.
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Figure 3.22 Gamma model for S&P 500 daily returns: Tail plots with maximum likelihood.
Panel (a) shows the left tail plots and panel (b) shows the right tail plots. The red and green
points show the observed data and the black lines show the fits with p = 0.5%, 1%, 5%, and
10%.
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Figure 3.23 Generalized Pareto model for S&P 500 daily returns: Parameter estimates. Panel (a)
shows estimates of 100 × 𝛽 and panel (b) shows estimates of 𝜉, as a function of p. Red shows
the estimates for the left tail, and blue shows them for the right tail.

Figure 3.24 shows tail plots. Panel (a) shows the left tail plots and panel (b)
shows the right tail plots. The red and green points show the observed data
and the black curves show the distribution functions when parameters are esti-
mated using maximum likelihood. The four black curves show the cases p =
0.5%, 1%, 5%, and 10%. The fitted curves do not change in a monotonic order
when p is decreased.
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Figure 3.24 Generalized Pareto model for S&P 500 daily returns: Tail plots with maximum
likelihood. Panel (a) shows the left tail plots and panel (b) shows the right tail plots. The red
and green points show the observed data and the black curves show the fits with p = 0.5%,
1%, 5%, and 10%.

The Weibull Model The Weibull densities are given in (3.86). The maximum like-
lihood estimators for the scale parameter 𝛽 > 0 and for the shape parameter
𝜅 > of a Weibull distribution do not have a closed form expression, but the
computation can be done by minimizing a univariate function. We get the max-
imum likelihood estimates for the parameters of the left tail and the right tail
by applying the numerical procedure for the observations in (3.92).

Figure 3.25(a) shows estimates of 100𝛽, and panel (b) shows estimates of 𝜅.
The red curves show the estimates for the left tail, and the blue curves show the
estimates for the right tail. The estimates of 𝛽 become smaller when p increases.

Figure 3.26 shows tail plots. Panel (a) shows the left tail plots and panel (b)
shows the right tail plots. The red and green points show the observed data
and the black curves show the distribution functions when parameters are esti-
mated using maximum likelihood. The four black curves show the cases p =
0.5%, 1%, 5%, and 10%.

3.4.3.2 Tail Index Estimation for S&P 500 Components
We study fitting of the Pareto model for the daily returns of stocks in S&P 500
index. S&P 500 components data is described in Section 2.4.5.

Figure 3.27 shows how 𝛼̂left and 𝛼̂right are distributed. The estimators are
defined in (3.89); these are Hill’s estimators for the left and right Pareto
indexes. Panel (a) shows the distribution of the estimates of the left tail index
and panel (b) shows the distribution of the estimates of the right tail index. We
have computed the estimates for each 312 stocks in the S&P 500 components
data set, and the kernel density estimator is applied for this data set of 312
observations. This is done for p = 0.05, 0.06,… , 0.2. The smoothing parameter
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Figure 3.25 Weibull model for S&P 500 daily returns: Parameter estimates. Panel (a) shows
estimates of 100 × 𝛽 and panel (b) shows estimates of 𝜉, as a function of p. Red shows the
estimates for the left tail, and blue shows them for the right tail.

(a)

−0.20 −0.15 −0.10 −0.05 0.02 0.04 0.06 0.08 0.10 0.12

(b)

1
5

10
50

50
0

1
5

10
50

50
0

0.5% 1% 5% 10% 0.5%1%5%10%

Figure 3.26 Weibull model for S&P 500 daily returns: Tail plots with maximum likelihood.
Panel (a) shows the left tail plots and panel (b) shows the right tail plots. The red and green
points show the observed data and the black curves show the fits with p = 0.5%, 1%, 5%, and
10%.

is chosen by the normal reference rule, and the standard Gaussian kernel
function is used. A smaller p gives a smaller estimate of 𝛼.

Figure 3.28 shows a scatter plot of points (𝛼̂left , 𝛼̂right), when the estimates are
computed for each stock in the S&P 500 components data. We have used p =
0.1. There are about the same number of stocks for which the left tail index is
smaller than the right tail index
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Figure 3.27 Density estimates of the distribution of Hill’s estimates. (a) Distribution of the left
tail index; (b) the right tail index. Hill’s estimates are calculated for the 312 stocks and kernel
estimates are calculated from 312 estimated values of 𝛼. There is an kernel estimate for each
p = 0.05, 0.06,… , 0.2.

Figure 3.28 A scatter plot of esti-
mates of 𝛼. We show a scatter plot
of points (𝛼̂left , 𝛼̂right) for the stocks in
the S&P 500 components data. The
red line shows the points with y = x.
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3.5 Asymptotic Distributions

First we describe central limit theorems and second we describe limit theorems
for the excess distribution. The limit distributions of the central limit theorems
can be used to model the complete return distribution of a financial asset and
the limit distributions for the excess distribution can be used to model the tail
areas of the return distribution of a financial asset.
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3.5.1 The Central Limit Theorems

We applied a central limit theorem for sums in (3.46) and (3.49) to justify the
normal and the log-normal model for the stock prices. In a similar way we
can apply the central limit theorems to justify alternative models for the stock
prices. When the variance of the summands is finite the limit is a normal distri-
bution, but if the variance is not finite, the limit distributions can have heavier
tails than the normal distributions.

We describe first a central limit theorem for sums of independent but not nec-
essarily identically distributed random variables. The limit distributions belong
to the class of infinitely divisible distributions. Second we describe central limit
theorems for sums of independent and identically distributed random vari-
ables. Now the limit distributions belong to the class of stable distributions.
The class of stable distributions is a subset of the class of infinitely divisible dis-
tributions. The stable distributions include the normal distributions but they
include also heavy tailed distributions, which can be used to describe phenom-
ena where both very large and very small values can be observed, like the stock
returns.

Third we consider the case of sums of dependent random variables. When the
dependence is weak, then a convergence towards a normal distribution occurs,
but the asymptotic variance is affected by the dependence.

We do not apply stable distributions or infinitely divisible distributions to
model return distributions, but it is useful to note that heavy tailed distributions
arise already from central limit theorems, and not only from limit distributions
for the excess distribution.

3.5.1.1 Sums of Independent Random Variables
The Khintchine theorem states that for a distribution to be a limit distribution
of a sum of independent (but not necessarily identically distributed) random
variables it is necessary and sufficient that the distribution is infinitely divisible;
see Billingsley (2005, pp. 373–374) and Breiman (1993, p. 191).

The infinitely divisible distributions are such that a random variable following
an infinitely divisible distribution can be represented as a sum of n i.i.d. random
variables for each natural number n. In other words, a distribution function F
is infinitely divisible if for each n there is a distribution function Fn such that
F is the n-fold convolution Fn ∗ · · · ∗ Fn.28 For example, the normal, Poisson,
and gamma distributions are infinitely divisible but the uniform distributions

28 The convolution of functions f ∶ R → R and g ∶ R → R is defined as f ∗ g(x) = ∫
∞
−∞ f (y)g(x −

y) dy.
The characteristic function of an infinitely divisible distribution is the nth power of some charac-
teristic function. The characteristic function 𝜙 of a probability distribution P on R is defined by
𝜙(t) = ∫

∞
−∞ eitx dP(x), where t ∈ R. The characteristic function of an infinitely divisible distribution

can be found in Breiman (1993, p. 194). See also Billingsley (2005, p. 372).
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are not. See Billingsley (2005, Chapter 5) and Breiman (1993, Section 9.5) about
infinitely divisible distributions.

Let (Ynk)k=1,…,n, n = 1, 2,…, be a triangular array of row-wise independent
random variables which satisfy

max
k=1,…,n

P(|Ynk| > 𝜖) −−→ 0,

as n → ∞, for every 𝜖 > 0. Then
∑n

k=1 Ynk can be normalized to converge to an
infinitely divisible distribution.

3.5.1.2 Sums of Independent and Identically Distributed Random Variables
For a distribution to be a limit distribution of a sum of independent and identi-
cally distributed random variables it is necessary and sufficient that the distri-
bution is stable.

Stable Distributions A random variable is said to have a stable distribution, if
for every natural number n and for X1,… ,Xn independent and with the same
distribution as X, there are constants an > 0 and bn such that

X = an(X1 + X2 + · · · + Xn) + bn

holds in distribution; see Breiman (1993, p. 199). Stable distributions are
infinitely divisible distributions, because the distribution function of X is the
n-fold convolution of Fn, where Fn is the distribution function of anX1 + bn∕n.
In particular, the sum of two independent and identically distributed stable
random variables has also a stable distribution.

Density functions of stable distributions cannot be written in a closed form
in general. The characteristic function of a stable distribution is

𝜓(t) = exp
{

i𝜇t − |𝜎t|𝛼 (1 + i𝛽 t|t| Ψ𝛼
(t)
)}

, t ∈ R,

where

Ψ
𝛼
(t) =

{
tan(𝜋𝛼∕2), 𝛼 ≠ 1,
2
𝜋

loge|t|, 𝛼 = 1.

Note that t∕|t| is the sign of t, and we can define 0∕|0| = 0. Parameter 0 < 𝛼 ≤ 2
is the exponent of the distribution, which is related to the heaviness of the
tails, 𝜇 ∈ R is the location term, 𝜎 > 0 is the scale factor, and −1 ≤ 𝛽 ≤ 1 is
the asymmetry parameter (skewness parameter). When 𝛽 = 0, then distribu-
tion is symmetric, when 𝛽 > 0, then distribution is skewed to the right, and
when 𝛽 < 0, the distribution is skewed to the left. See Breiman (1993, p. 204).

The analytical form of the density is known for 𝛼 = 2 (Gaussian), 𝛼 = 1,
𝛽 = 0 (Cauchy), and 𝛼 = 1∕2, 𝛽 = 1 (Lévy–Smirnov or Lévy). The density of
the Cauchy distribution is given by

f (x) = 1
𝜋𝜎

1
1 + (x − 𝜇)2∕𝜎2 , x ∈ R.
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The Cauchy distribution is the Student distribution for the degrees of freedom
𝜈 = 1. The density of the Lévy–Smirnov distribution is given by

f (x) =
(
𝜎

2𝜋

)1∕2 1
(x − 𝜇)3∕2 exp

{
− 𝜎

2(x − 𝜇)

}
, x > 𝜇.

Symmetric stable distributions are stable distributions with location param-
eter 𝜇 = 0 and skewness parameter 𝛽 = 0. The characteristic function of a sym-
metric stable distribution is

𝜓(t) = exp{−|𝜎t|𝛼}, t ∈ R,

where 0 < 𝛼 < 2 and 𝜎 > 0. The density of a symmetric stable distribution can
be written as a series expansion

f (x) =
∞∑

k=1

(−1)k+1

𝜋k!
ak
𝛼

x1+k𝛼
Γ(1 + k𝛼) sin(𝜋𝛼k∕2), x ∈ R, (3.93)

where a
𝛼

is defined through

A
𝛼
=

{
𝛼Γ(𝛼 − 1) sin(𝜋𝛼∕2)

𝜋
a
𝛼
, 1 < 𝛼 < 2,

(1 − 𝛼)Γ(𝛼) sin(𝜋𝛼∕2)
𝜋𝛼

a
𝛼
, 0 < 𝛼 < 1.

Symmetric stable distributions have the power-law behavior of the tails:

f (x) ∼
C
𝛼|x|1+𝛼 , x → ±∞. (3.94)

Equation (3.94) gives the leading asymptotic term in (3.93). For the distribu-
tions with Pareto tails the kth moment does not exist if k ≥ 𝛼. This implies that
the variance of a symmetric stable distribution is always infinite, and the mean
is infinite when 𝛼 ≤ 1. The mode is used as the location parameter of the sym-
metric stable distributions (symmetric stable distributions are unimodal).

Convergence to a Stable Distribution The central limit theorems were presented
in Gnedenko and Kolmogorov (1954), Feller (1957), and Feller (1966). We fol-
low the exposition of Embrechts et al. (1997, Theorem 2.2.15). Assume that
Y1,… ,Yn are independent and identically distributed with the same distribu-
tion as Y .

1) Assume that EY 2
< ∞. Then,

(𝜎n1∕2)−1

( n∑
i=1

Yi − n𝜇

)
d
−−→N(0, 1),

where 𝜇 = EY and 𝜎2 = Var(Y ).
2) Assume that

L(x) =
∫|y|≤x

y2dF(y)
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is slowly varying.29 Let bn be the solution of the equation
Q(bn) = n−1

, (3.95)
where

Q(x) = P(|Y | > x) + x−2
∫|y|≤x

y2dF(y).

Then,

b−1
n

( n∑
i=1

Yi − n𝜇

)
d
−−→N(0, 1),

where 𝜇 = EY . It holds that bn = n1∕2L(n), for a slowly varying function L.
3) Assume that the distribution function F of Y satisfies

F(−x) = x−𝛼(c1 + o(1))L(x), 1 − F(x) = x−𝛼(c2 + o(1))L(x),
as x → ∞, where L is slowly varying, and c1, c2 ≥ 0, c1 + c2 > 0. Let bn be the
solution of (3.95). Then,

b−1
n

( n∑
i=1

Yi − an

)
d
−−→G

𝛼
,

where an = n∫|y|≤bn
y dF(y) and G

𝛼
is a stable distribution with 0 < 𝛼 < 2.

3.5.1.3 Sums of Dependent Random Variables
We apply a limit theorem for dependent random variables in Sections 6.2.2
and 10.1.2.

Let (Yt)t∈Z be a strictly stationary time series. We define the weak dependence
in terms of a condition on the 𝛼-mixing coefficients. Let  j

i denote the sigma
algebra generated by random variables Yi,… ,Yj. The 𝛼-mixing coefficient is
defined as

𝛼n = sup
A∈ 0

−∞,B∈∞
n

|P(A ∩ B) − P(A)P(B)|,
where n = 1, 2,…. Now we can state the central limit theorem. Let E|Yt|𝛿 < ∞
and

∑∞
j=1 𝛼

1−2∕𝛿
j < ∞ for some constant 𝛿 > 2. Then,

n−1∕2
n∑

i=1
(Yi − EYi)

d
−−→N(0, 𝜎2), (3.96)

where

𝜎
2 =

∞∑
j=−∞

𝛾(j) = 𝛾(0) + 2
∞∑

j=1
𝛾(j),

29 We call function L ∶ (0,∞) → (0,∞) slowly varying function at +∞ if limx→∞ L(𝜆x)∕L(x) = 1
for all 𝜆 > 0.
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𝛾(j) = Cov(Yt,Yt+j), and we assume that 𝜎2
> 0. Ibragimov and Linnik (1971,

Theorem 18.4.1) gave necessary and sufficient conditions for a central limit
theorem under 𝛼-mixing conditions. A proof for our statement of the central
limit theorem in (3.96) can be found in Peligrad (1986); see also Fan and Yao
(2005, Theorem 2.21) and Billingsley (2005, Theorem 27.4).

3.5.2 The Limit Theorems for Maxima

Since we have modeled the excess distribution parametrically, it is of special
interest that the limit distribution of the excess distribution is a generalized
Pareto distribution; this limit theorem is stated in (3.102). The weak conver-
gence of maxima is related to the convergence of the excess distribution.

3.5.2.1 Weak Convergence of Maxima
Let the real valued random variables Y1,… ,Yn be independent and identically
distributed, and denote the maximum

Mn = max{Y1,… ,Yn}.

Sometimes convergence in distribution holds in the sense that there exists
sequences (cn) and (dn) where cn > 0 and dn ∈ R so that

P
(Mn − dn

cn
≤ x

)
d
−−→ F

(
x − b

a

)
, (3.97)

for all x ∈ R, as n → ∞, where F is a distribution function, b ∈ R, and a > 0.
The Fisher–Tippett–Gnedenko theorem states that if the convergence in (3.97)
holds, then F can only be a Fréchet, Weibull, or Gumbel distribution function.
See Fisher and Tippett (1928), Gnedenko (1943), and Embrechts et al. (1997,
p. 121).

To derive the result for the minimum we use the fact that for

mn = min{Y1,… ,Yn}

we have mn = −max{−Y1,… ,−Yn}. Let us denote

Ln = max{−Y1,… ,−Yn}

so that mn = −Ln. Now,

P(mn ≤ x) = P(−Ln ≤ x) = P(Ln ≥ −x) = 1 − P(Ln < −x). (3.98)

3.5.2.2 Extreme Value Distributions
The Fréchet distribution functions are

Φ
𝛼
(x) =

{
0, x ≤ 0,
exp{−x−𝛼}, x > 0, (3.99)
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where 𝛼 > 0. The Weibull distribution functions are

Ψ
𝛼
(x) =

{
exp{−(−x)𝛼}, x ≤ 0,
1, x > 0,

where 𝛼 > 0. The Gumbel distribution function is

Λ(x) = exp{−e−x}, x ∈ R.

These distributions are called the extreme value distributions.
Define

H
𝜉
=
⎧⎪⎨⎪⎩
Φ1∕𝜉 , if 𝜉 > 0,
Λ, if 𝜉 = 0,
Ψ−1∕𝜉 , if 𝜉 < 0.

Then,

H
𝜉
(x) =

{
exp{−(1 + 𝜉x)−1∕𝜉}, 𝜉 ≠ 0,
exp{−e−x}, 𝜉 = 0, (3.100)

where H
𝜉

is defined on set {x ∶ 1 + 𝜉x > 0}. This is known as the
Jenkinson–von Mises representation of the extreme value distributions,
or the generalized extreme value distribution; see Embrechts et al. (1997,
p. 152). We obtain the parametric class of possible limit distributions

H
𝜉

(x − 𝜇
𝜎

)
,

where 𝜉 ∈ R is the shape parameter, 𝜇 ∈ R, and 𝜎 > 0. The support of the dis-
tribution is {x ∶ 1 + 𝜉(x − 𝜇)∕𝜎 > 0}.

Using (3.98), we obtain the class of limit distribution functions for the min-
ima. The limit distribution functions are

H̃
𝜉

(x − 𝜇
𝜎

)
,

where 𝜉 ∈ R, 𝜇 ∈ R, 𝜎 > 0, and H̃
𝜉
(x) = 1 − H

𝜉
(−x). Distribution function H̃

𝜉

is defined on set {x ∶ 1 − 𝜉x > 0}.

3.5.2.3 Convergence to an Extreme Value Distribution
If the distribution that generated the observations Y1,… ,Yn has polynomial
tails, then (3.97) holds and the limit distribution of the maximum belongs to
the Fréchet class. More precisely, if

1 − F(x) = x−𝛼L(x)

for some slowly varying function L, then a normalized maximum converges to
a Fréchet distribution Ψ

𝛼
; see Embrechts et al. (1997, p. 131).
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Let xF = sup{x ∶ F(x) < 1} be the endpoint of the distribution of Y . If xF < ∞
and

1 − F(xF − x−1) = x−𝛼L(x)

for some slowly varying function L, then a normalized maximum converges to
a Weibull distribution Ψ

𝛼
; see Embrechts et al. (1997, p. 135). The equation

Ψ
𝛼
(−x−1) = Φ

𝛼
(x), x > 0

explains the relation between the convergence to a Fréchet distribution and to
a Weibull distribution.

If the distribution which generated the observations is exponential, normal,
or log-normal, then (3.97) holds and the limit distribution of the maximum is
the Gumbel distribution. See Embrechts et al. (1997, p. 145).

3.5.2.4 Generalized Pareto Distributions
The distribution function of the generalized Pareto distribution is

G
𝜉,𝛽
(x) =

{
1 − (1 + 𝜉x∕𝛽)−1∕𝜉

, 𝜉 ≠ 0,
1 − exp{−x∕𝛽}, 𝜉 = 0, (3.101)

where 𝛽 > 0. When 𝜉 ≥ 0, then 0 ≤ x < ∞. When 𝜉 < 0, then 0 ≤ x ≤ −𝛽∕𝜉.
When 𝜉 = 0, then the distributions are exponential distributions. Note that

G
𝜉,𝛽
(x) = 1 − log H

𝜉
(x∕𝛽),

where H
𝜉

is the distribution function of a generalized extreme value distribu-
tion, as defined in (3.100). Parameter 𝜉 is a shape parameter and parameter 𝛽 is
a scale parameter. The Pareto distributions were defined in (3.73) and (3.83).

3.5.2.5 Convergence to a Generalized Pareto Distribution
Let Y ∈ R be a random variable and let F be the distribution function of Y .
We define the excess distribution with threshold u as the distribution with the
distribution function

Fu(x) = P(Y − u ≤ x |Y > u) = F(x + u) − F(u)
1 − F(u)

.

We can typically approximate the distribution function Fu with the distri-
bution function of a generalized Pareto distribution. This follows from the
Gnedenko–Pickands–Balkema–de Haan theorem; see Embrechts et al. (1997,
p. 158). Let XF = sup{x ∶ F(x) < 1}. The Gnedenko–Pickands–Balkema–de
Haan theorem states that

lim
u→xF

sup
0≤x<xF−u

|Fu(x) − G
𝜉,𝛽(u)(x)| = 0 (3.102)

for some positive function 𝛽(u) if and only if F belongs to the maximum domain
of attraction of H

𝜉
, where 𝜉 ∈ R. To say that F belongs to the maximum domain

of attraction of H
𝜉

means that (3.97) holds for some sequences {cn} and {dn}.
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The basic idea of deriving the limit distribution of the excess distribution from
the limit distribution of the maximum comes from the Poisson approximation.
The Poisson approximation states that

lim
n→∞

n(1 − F(un)) = 𝜏

and

lim
n→∞

P(Mn ≤ un) = exp{−𝜏}

are equivalent, where 0 ≤ 𝜏 ≤ ∞, (un) is a sequence of real numbers, and Mn =
max{Y1,… ,Yn} is the maximum of i.i.d. random variables; see Embrechts et al.
(1997, p. 116).30

When the distribution function of the maximum Mn can be approximated by

G(x) = exp
{
−
[
1 + 𝜉

(x − 𝜇
𝜎

)]−1∕𝜉
}

for some 𝜇, 𝜎 > 0 and 𝜉, then Fu can be approximated by the distribution func-
tion

H(x) = 1 −
(

1 +
𝜉y
𝜎̃

)−1∕𝜉

defined on set {x ∶ x > 0 and 1 + 𝜉x∕𝜎̃ > 0}, where

𝜎̃ = 𝜎 + 𝜉(u − 𝜇).

3.6 Univariate Stylized Facts

The heaviness of the tails is one of the main univariate stylized facts. There
are several questions related to the heaviness of the tails. We give a list of the
observations that can be obtained from the figures of this chapter, and give
some references to the literature.

1) How heavy are the tails of S&P 500 returns?
Figure 2.1(b) shows a time series of S&P 500 daily returns. To highlight the
heaviness of the tails we can compare the real time series with the simu-
lated time series in Figure 3.29. Panel (a) shows uncorrelated observations

30 Indeed,

P(Mn ≤ un) = Fn(un) = (1 − (1 − F(un)))
n → exp{−𝜏},

if limn→∞ n(1 − F(un) = 𝜏 . Also, because − log(1 − x) ∼ x,

n(1 − F(un)) ∼ −n log(1 − (1 − F(un))) = log P(Mn ≤ un) → 𝜏,

if limn→∞ P(Mn ≤ un) = exp{−𝜏}. (We can argue that now 1 − F(un) → 0.) We have assumed that
0 < 𝜏 <∞.
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Figure 3.29 Simulated i.i.d. time series. We have simulated 10,000 observations. (a) Student’s
t-distribution with degrees of freedom 𝜈 = 3; (b) Student’s t-distribution with degrees of free-
dom 𝜈 = 6; (c) Gaussian distribution. The mean of the observations is zero and the standard
deviation is equal to the standard deviation of the S&P 500 returns.

whose distribution is the t-distribution with three degrees of freedom, in
panel (b) the t-distribution has six degrees of freedom, and in panel (c) the
distribution of the observations is Gaussian.31

31 The simulated data has mean zero and standard deviation equal to the sample standard devia-
tion of the S&P 500 returns. The variance of the t-distribution is 𝜈∕(𝜈 − 2), where 𝜈 is the degrees of
freedom, and thus we have multiplied the simulated data from the t-distribution with

√
(𝜈 − 2)∕𝜈𝜎̂,

where 𝜎̂ is the sample standard deviation of the S&P 500 returns.
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Figure 3.2 shows tail plots of S&P 500 daily returns: t-distribution with
degrees of freedom three and four gives reasonable fits both for the left tail
and the right tails.
Figure 3.4 shows exponential regression plots of S&P 500 daily returns: The
tails seem to be heavier than the exponential tails.
Figure 3.5 shows exponential regression plots of S&P 500 daily returns, and
fits both exponential and Pareto distributions: Pareto fits seem to be better.
Figure 3.6 shows Pareto regression plots of S&P 500 daily returns: The tails
seem to fit reasonably well for the Pareto model.
Figure 3.7 shows Pareto regression plots of S&P 500 daily returns, and fits
both exponential and Pareto distributions: Pareto fits seem to be better.
Figure 3.13 shows how estimates of parameters 𝜈 and 𝜎 of Student distri-
bution for S&P 500 components are distributed: The mode of 𝜈̂ is about 3.5
and the range of values of the estimates is about 𝜈̂ ∈ [1.5, 4.5].
Figure 3.27 shows kernel density estimates of the distribution of the esti-
mates of Pareto left tail index and Pareto right tail index for S&P 500 com-
ponents: The choice of parameter p has a significant influence on the value
of the estimate, but we are in the range 𝛼̂ ∈ [1.5, 2.5].

2) How the heaviness of the tails varies across asset classes (stocks, bonds,
indexes)?
Figure 2.5(b) shows a times series of US 10-year bond monthly returns. The
time series can be compared to the times series of S&P 500 daily returns in
Figure 2.1(b), or to the simulated time series in Figure 3.29.
Figure 3.1 shows empirical distribution functions of S&P 500 and US
10-year bond monthly returns: S&P 500 seems to have heavier tails than
10-year bond.
Figure 3.3 shows smooth tail plots of the daily returns of S&P 500 com-
ponents and of S&P 500 index: The individual components seem to have
heavier tails than the index.
Figure 3.8 shows empirical quantile functions of S&P 500 and US
10-year bond monthly returns: S&P 500 seems to have heavier tails than
10-year bond.
Figure 3.10(a) shows kernel density estimates of S&P 500 and US 10-year
bond monthly returns: These estimates do not reveal information about the
tails, but in the central area 10-year bond seems to be more concentrated
around zero than S&P 500. Cont (2001) reports that returns of US Trea-
sury bonds are positively skewed, whereas the returns of stock indices are
negatively skewed.
Bouchaud (2002) reports that the tails of the stock returns have Pareto
(power-law) tails x−1−𝛼 , where 𝛼 is approximately 3, but emerging markets
can have 𝛼 smaller than 2. Cont (2001) notes that the tail index varies
between 2 and 5 that excludes the Gaussian and the stable laws with infinite
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variance. The standard deviation of daily returns is 3% for stocks, 1% for
stock indices, and 0.03% for short term interest rates; see Bouchaud (2002).

3) What is the best model for the tails?
Figures 3.17–3.26 study fitting of parametric models to the tails of S&P 500
returns. In particular, tail plots are shown for the exponential distribution in
Figure 3.18, for the Pareto distribution in Figure 3.20, for the gamma distri-
bution in Figure 3.22, for the generalized Pareto distribution in Figure 3.24,
and for the Weibull distribution in Figure 3.26. Two-parameter families
give reasonable fits, in particular, the generalized Pareto distribution gives
a good fit.
Malevergne and Sornette (2005) give a review of fitting Pareto distributions,
stretched exponentials and log-Weibull distributions.

4) Are the left tail and the right equally heavy?
The parameter estimates for fitting models to the daily returns of S&P 500
indicate that the left tail is heavier than the right tail (see Figures 3.17, 3.19,
3.21, 3.23, and 3.25).
Figure 3.28 shows values of estimates of Pareto tail index 𝛼 for S&P 500
components, both for the left and right tail: There seems to be equal amount
of stocks with a larger left tail index as there are stocks with a larger right
tail index.
Cont (2001) reports that gains and loss are asymmetric; large drawdowns
are observed but not equally large upward movements.

5) How the heaviness of the tails is affected by the return horizon?
Figure 3.12 shows values of estimates of parameters of t-distribution
(degrees of freedom 𝜈 and scaling parameter 𝜎) for various return horizons
of S&P 500 returns: the estimates increase from 𝜈̂ = 3 for daily returns to
𝜈̂ = 5,… , 9 for 2-month returns. Also 𝜎̂ increases with the return horizon.
Figure 3.10(b) shows kernel density estimates of the S&P 500 return distri-
bution when the return horizon varies between one and five days.
Cont (2001) observes that the distribution of returns looks more and more
like a Gaussian distribution when the time scale is increased.
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4

Multivariate Data Analysis

Multivariate data analysis studies simultaneously several time series, but
the time series properties are ignored, and thus the analysis can be called
cross-sectional.

The copula is an important concept of multivariate data analysis. Copula
models are a convenient way to separate multivariate analysis to the purely
univariate and to the purely multivariate components. We compose a multi-
variate distribution into the part that describes the dependence and into the
parts that describe the marginal distributions. The marginal distributions can
be estimated efficiently using nonparametric methods, but it can be useful to
apply parametric models to estimate dependence, for a high-dimensional dis-
tribution. Combining nonparametric estimators of marginals and a parametric
estimator of the copula leads to a semiparametric estimator of the distribution.

Multivariate data can be described using such statistics as linear correlation,
Spearman’s rank correlation, and Kendall’s rank correlation. Linear correlation
is used in the Markowitz portfolio selection. Rank correlations are more natural
concepts to describe dependence, because they are determined by the copula,
whereas linear correlation is affected by marginal distributions. Coefficients of
tail dependence can capture whether the dependence of asset returns is larger
during the periods of high volatility.

Multivariate graphical tools include scatter plots, which can be combined
with multidimensional scaling and other dimension reduction methods.

Section 4.1 studies measures of dependence. Section 4.2 considers multivari-
ate graphical tools. Section 4.3 defines multivariate parametric distributions
such as multivariate normal, multivariate Student, and elliptical distributions.
Section 4.4 defines copulas and models for copulas.

4.1 Measures of Dependence

Random vectors X,Y ∈ Rd are said to be independent if
P(X ∈ A, Y ∈ B) = P(X ∈ A) ⋅ P(Y ∈ B),

Nonparametric Finance, First Edition. Jussi Klemelä.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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for all measurable A,B ⊂ Rd. This is equivalent to

P(X ∈ A |Y ∈ B) = P(X ∈ A),

for all measurable A,B ⊂ Rd, so knowledge of Y does not affect the probability
evaluations of X. The complete dependence between random vectors X and Y
occurs when there is a bijection G∶Rd → Rd so that

Y = G(X) (4.1)

holds almost everywhere. When the random vectors are not independent and
not completely dependent we may try to quantify the dependency between two
random vectors. We may say that two random vectors have the same depen-
dency when they have the same copula, and the copula is defined in Section 4.4.

Correlation coefficients are defined between two real valued random vari-
ables. We define three correlation coefficients: linear correlation 𝜌L, Spearman’s
rank correlation 𝜌S, and Kendall’s rank correlation 𝜌

𝜏
. All of these correlation

coefficients satisfy

𝜌(X1,X2) ∈ [−1, 1],

where X1 and X2 are real valued random variables. Furthermore, if X1 and X2
are independent, then 𝜌(X1,X2) = 0 for any of the correlation coefficients. Con-
verse does not hold, so that correlation zero does not imply independence.

Complete dependence was defined by (4.1). Both for the Spearman’s rank
correlation and for the Kendall’s rank correlation we have that

|𝜌(X1,X2)| = 1 if and only if X1 and X2 are completely dependent, (4.2)

where 𝜌 = 𝜌S or 𝜌 = 𝜌
𝜏
. In the case of real valued random variables the

complete dependency can be divided into comonotonicity and countermono-
tonicity. Real-valued random variables X1 and X2 are said to be comonotonic
if there is a strictly increasing function g ∶R → R so that X2 = g(X1) almost
everywhere. Real-valued random variables X1 and X2 are said to be coun-
termonotonic if there is a strictly decreasing function g ∶R → R so that
X2 = g(X1) almost everywhere. Both for the Spearman’s rank correlation and
for the Kendall’s rank correlation we have that 𝜌(X1,X2) = 1 if and only if
X1 and X2 are comonotonic, and 𝜌(X1,X2) = −1 if and only if X1 and X2 are
countermonotonic, where 𝜌 = 𝜌S or 𝜌 = 𝜌

𝜏
.

The linear correlation coefficient 𝜌L does not satisfy (4.2). However, we have
that

|𝜌L(X1,X2)| = 1 if and only if X2 = a + bX1 for some a, b ∈ R. (4.3)

If 𝜌L(X1,X2) = 1, then b > 0. If 𝜌L(X1,X2) = −1, then b < 0.
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4.1.1 Correlation Coefficients

We define linear correlation 𝜌L, Spearman’s rank correlation 𝜌S, and Kendall’s
rank correlation 𝜌

𝜏
.

4.1.1.1 Linear Correlation
The linear correlation coefficient between real valued random variables X1 and
X2 is defined as

𝜌L(X1,X2) =
Cov(X1,X2)

sd(X1) sd(X2)
, (4.4)

where the covariance is
Cov(X1,X2) = E[(X1 − EX1)(X2 − EX2)],

and the standard deviation is sd(Xk) =
√

Var(Xk).
We noted in (4.3) that the linear correlation coefficient characterizes lin-

ear dependency. However, (4.2) does not hold for the linear correlation coef-
ficient. Even when X1 and X2 are completely dependent, it can happen that|𝜌(X1,X2)| < 1. For example, let Z ∼ N(0, 1), X1 = eZ , and X2 = e𝜎Z , where 𝜎 >
0. Then,

𝜌L(X1,X2) =
e𝜎 − 1√

(e − 1)(e𝜎2 − 1)
,

and 𝜌L(X1,X2) = 1 only for 𝜎 = 1, otherwise 0 < 𝜌L(X1,X2) < 1; the example is
from McNeil et al. (2005, p. 205).

Let us assume that X1 and X2 have continuous distributions and let us denote
with F the distribution function of (X1,X2) and with F1 and F2 the marginal
distribution functions. Then,

Cov(X1,X2) =
∫R2

(F(u, 𝑣) − F1(u)F2(𝑣))du d𝑣 (4.5)

=
∫[0,1]2

[C(u, 𝑣) − u𝑣] dF−1
1 (u) dF−1

2 (𝑣),

where C(u, 𝑣) = F(F−1
1 (u), F−1

2 (𝑣)), u, 𝑣 ∈ [0, 1], is the copula of the distribution
of (X1,X2), as defined in (4.29). Equation (4.5) is called Höffding’s formula, and
its proof can be found in McNeil et al. (2005, p. 203). Thus, the linear corre-
lation is not solely a function of the copula, it depends also on the marginal
distributions F1 and F2.

The linear correlation coefficient can be estimated with the sample correla-
tion. Let X1,1,… ,X1,T be a sample from the distribution of X1 and X2,1,… ,X2,T
be a sample from the distribution of X2. The sample correlation coefficient is
defined as

𝜌̂L = 1
s1s2

⋅
1
T

T∑
i=1

(X1,i − X1)(X2,i − X2), (4.6)
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where Xk = T−1 ∑T
i=1 Xk,i and s2

k = T−1 ∑T
i=1 (Xk,i − Xk)2. An alternative estima-

tor is defined in (4.10).

4.1.1.2 Spearman’s Rank Correlation
Spearman’s rank correlation (Spearman’s rho) is defined by

𝜌S(X1,X2) = 𝜌(F1(X1), F2(X2)),

where Fk is the distribution function of Xk , k = 1, 2. If X1 and X2 have continu-
ous distributions, then

𝜌S(X1,X2) = 12
∫R2

[F(u, 𝑣) − F1(u)F2(𝑣)]dF1(u) dF2(𝑣)

= 12
∫[0,1]2

[C(u, 𝑣) − u𝑣] du d𝑣,

where C(u, 𝑣) = F(F−1
1 (u), F−1

2 (𝑣)), u, 𝑣 ∈ [0, 1], is the copula as defined in
Section 4.4 (see McNeil et al., 2005, p. 207).1 Thus, Spearman’s correlation
coefficient is defined solely in terms of the copula.

We have still another way of writing Spearman’s rank correlation. Let X =
(X1,X2), Y = (Y1,Y2), and Z = (Z1,Z2), let X,Y ,Z have the same distribution,
and let X,Y ,Z be independent. Then,

𝜌S(X1,X2) = 2(P[(X1 − Y1)(X2 − Z2) > 0] − P[(X1 − Y1)(X2 − Z2) < 0]).

The sample Spearman’s rank correlation can be defined as the sample linear
correlation coefficient between the ranks. Let X1,1,… ,X1,T be a sample from
the distribution of X1 and X2,1,… ,X2,T be a sample from the distribution of X2.
The rank of observation Xi,k , i = 1,… ,T , k = 1, 2, is

rank(Xk,i) = #{Xk,j ∶Xk,j ≤ Xk,i, j = 1,… ,T}.

That is, rank(Xi,k) is the number of observations of the kth variable smaller or
equal to Xk,i.2 Let us use the shorthand notation

rk(i) = rank(Xk,i),

so that rk ∶{1,… ,T} → {1,… ,T}, k = 1, 2. Then the sample Spearman’s rank
correlation can be written as

𝜌̂S = 𝜌̂L({r1(1),… , r1(T)}, {r2(1),… , r2(T)}),

1 We have also 𝜌S(X1,X2) = 12∫[0,1]2 C(u, 𝑣) du d𝑣 − 3 = 12∫[0,1]2 u ⋅ 𝑣 dC(u, 𝑣) − 3.
2 Let Xk,(1) < · · · < Xk,(T) be the ordered observations, k = 1, 2. The ranks can be defined as

rank(Xk,i) =
⎧⎪⎨⎪⎩

1, when Xk,i = Xk,(1),

2, when Xk,i = Xk,(2),

⋮
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where 𝜌̂L is the sample linear correlation coefficient, defined in (4.6). Since∑T
i=1 i = (T + 1)T∕2 and

∑T
i=1 i2 = T(T + 1)(2T + 1)∕6, we can write

𝜌̂S = 12
T(T2 − 1)

T∑
i=1

(
r1(i) −

1
2
(T + 1)

)(
r2(i) −

1
2
(T + 1)

)
.

4.1.1.3 Kendall’s Rank Correlation
Let X = (X1,X2) and Y = (Y1,Y2), let X and Y have the same distribution,
and let X and Y be independent. Kendall’s rank correlation (Kenadall’s tau) is
defined by

𝜌
𝜏
(X1,X2)
= P[(X1 − Y1)(X2 − Y2) > 0] − P[(X1 − Y1)(X2 − Y2) < 0]. (4.7)

When X1 and X2 have continuous distributions, we have

𝜌
𝜏
(X1,X2) = 2P[(X1 − Y1)(X2 − Y2) > 0] − 1,

and we can write

𝜌
𝜏
(X1,X2) = 4

∫R2
F(u, 𝑣) dF(u, 𝑣) − 1

= 4
∫[0,1]2

C(u, 𝑣) dC(u, 𝑣) − 1,

where C(u, 𝑣) = F(F−1
1 (u), F−1

2 (𝑣)), u, 𝑣 ∈ [0, 1], is the copula as defined in
Section 4.4 (see McNeil et al., 2005, p. 207).

Let us define an estimator for 𝜌
𝜏
(X1,X2). Let X1,1,… ,X1,T be a sample from

the distribution of X1 and X2,1,… ,X2,T be a sample from the distribution of X2.
Kendall’s rank correlation can be written as

E sign[(X1 − Y1)(X2 − Y2)],

where sign(t) = 1, if t ≥ 0 and sign(t) = −1, if t < 0. This leads to the sample
version

𝜌̂
𝜏
= 2

T(T − 1)
∑

1≤i<j≤T
sign((X1,i − X1,j)(X2,i − X2,j)). (4.8)

The computation takes longer than for the sample linear correlation and for the
sample Spearman’s correlation.

4.1.1.4 Relations between the Correlation Coefficients
We have a relation between the linear correlation and the Kendall’s rank cor-
relation for the elliptical distributions. Let X = (X1,X2) be a bivariate random
vector. For all elliptical distributions with P(X = 0) = 0,

𝜌
𝜏
(X1,X2) =

2
𝜋

arcsin 𝜌L(X1,X2), (4.9)
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where 𝜌
𝜏

is the Kendall’s rank correlation, as defined in (4.7), and 𝜌L is the linear
correlation, as defined in (4.4) (see McNeil et al., 2005, p. 217). This relation-
ship can be applied to get an alternative and a more robust estimator for the
estimator (4.6) of linear correlation. Define the estimator as

𝜚̂L = sin
(
𝜋

2
𝜌̂
𝜏

)
, (4.10)

where 𝜌̂
𝜏

is the estimator (4.8).
For the distributions with a Gaussian copula, we also have a relation between

the Spearman’s rank correlation and the linear correlation. Let X = (X1,X2) be
a distribution with a Gaussian copula and continuous margins. Then,

𝜌S(X1,X2) =
6
𝜋

arcsin
(1

2
𝜌L(X1,X2)

)
,

and (4.9) holds also (see McNeil et al., 2005, p. 215).
Figure 4.1 studies linear correlation and Spearman’s rank correlation for S&P

500 and Nasdaq-100 daily data, described in Section 2.4.2. Panel (a) shows a
moving average estimate of linear correlation (blue) and Spearman’s rank cor-
relation (yellow). We use the one-sided moving average defined as

𝜌̂L,t =
∑t

i=1 pi(t)R1,iR2,i√∑t
i=1 pi(t)R2

1,i
∑t

i=1 pi(t)R2
2,i

,

where R1,i are the S&P 500 centered returns and R2,i are the Nasdaq-100 cen-
tered returns. The weights pi(t) are one for the last 500 observations, and zero
for the other observations. See (6.5) for a more general moving average. The
moving average estimator 𝜌̂S,t is the Spearman’s rho computed from the 500
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Figure 4.1 Linear and Spearman’s correlation, together with volatility. (a) Time series of moving
average estimates of correlation between S&P 500 and Nasdaq-100 returns, with linear cor-
relation (blue) and Spearman’s rho (yellow); (b) we have added moving average estimates of
the standard deviation of S&P 500 (black solid) and Nasdaq-100 (black dashed).
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previous observations. Panel (b) shows the correlation coefficients together
with the moving average estimates of the standard deviation of S&P 500 returns
(solid black line) and Nasdaq-100 returns (dashed black line). All time series are
scaled to take values in the interval [0, 1]. We see that there is some tendency
that the inter-stock correlations increase in volatile periods.

4.1.2 Coefficients of Tail Dependence

The coefficient of upper tail dependence is defined for random variables X1 and
X2 with distribution functions F1 and F2 as

𝜆u = lim
q↑1

P
(
X2 > F−1

2 (q) |X1 > F−1
1 (q)

)
,

where F−1
1 and F−1

2 are the generalized inverses. Similarly, the coefficient of
lower tail dependence is

𝜆l = lim
q↓0

P
(
X2 ≤ F−1

2 (q) |X1 ≤ F−1
1 (q)

)
.

See McNeil et al. (2005, p. 209).

4.1.2.1 Tail Coefficients in Terms of the Copula
The coefficients of upper and lower tail dependence can be defined in terms of
the copula. Let F1 and F2 be continuous. We have that

P
(
X2 > F−1

2 (q),X1 > F−1
1 (q)

)
= P(q < F1(X2) ≤ 1, q < F2(X2) ≤ 1)
= C(1, 1) − C(1, q) − C(q, 1) + C(q, q)
= 1 − 2q + C(q, q).

Also,
P
(
X1 > F−1

1 (q)
)
= 1 − P(F1(X1) ≤ q) = 1 − q.

Thus, the coefficient of upper tail dependence is

𝜆u = lim
q↑1

1 − 2q + C(q, q)
1 − q

. (4.11)

We have that
P
(
X2 ≤ F−1

2 (q),X1 ≤ F−1
1 (q)

)
= P(F1(X2) ≤ q, F2(X2) ≤ q) = C(q, q).

Also,
P
(
X1 ≤ F−1

1 (q)
)
= P(F1(X1) ≤ q) = q.

Thus, the coefficient of lower tail dependence for continuous F1 and F2 is
equal to

𝜆l = lim
q↓0

C(q, q)
q

. (4.12)
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4.1.2.2 Estimation of Tail Coefficients
Equations (4.11) and (4.12) suggest estimators for the coefficients of tail depen-
dence. We can estimate the upper tail coefficient nonparametrically, using

𝜆̂u =
1 − 2q + Ĉ(q, q)

1 − q
,

where Ĉ is the empirical copula, defined in (4.38), and q < 1 is close to 1. We
can take, for example, q = 1 − k∕T , where k =

√
T . The coefficient of lower tail

dependence can be estimated by

𝜆̂l =
Ĉ(q, q)

q
,

where q > 0 is close to zero. We can take, for example, q = k∕T , where k =
√

T .
These estimators have been studied in Dobric and Schmid (2005), Frahm et al.
(2005), and Schmidt and Stadtmüller (2006).

Figure 4.2 studies tail coefficients for S&P 500 and Nasdaq-100 daily data,
described in Section 2.4.2. Panel (a) shows the tail coefficients as a function
of q for lower tail coefficients (red) and as a function of 1 − q for upper tail
coefficients (blue). Panel (b) shows a moving average estimate of the lower tail
coefficients. The tail coefficient is estimated using the window of the latest 1000
observations, for q = 0.01.

4.1.2.3 Tail Coefficients for Parametric Families
The coefficients of lower and upper tail dependence for the Gaussian distri-
butions are zero. The coefficients of lower and upper tail dependence for the
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Figure 4.2 Tail coefficients for S&P 500 and Nasdaq-100 returns. (a) Tail coefficients as a function
of q for lower tail coefficients (red) and as a function of 1 − q for upper tail coefficients (blue);
(b) time series of moving average estimates of lower tail coefficients.
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Student distributions with degrees of freedom 𝜈 and correlation coefficient
𝜌 are

𝜆u = 𝜆l = 2t
𝜈+1

⎛⎜⎜⎝−
√

(𝜈 + 1)(1 − 𝜌)
1 + 𝜌

⎞⎟⎟⎠ ,
where t

𝜈+1 is the distribution function of the univariate t-distribution with
𝜈 + 1 degrees of freedom, and we assume that 𝜌 > −1; see McNeil et al. (2005,
p. 211).

4.2 Multivariate Graphical Tools

First, we describe scatter plots and smooth scatter plots. Second, we describe
visualization of correlation matrices with multidimensional scaling.

4.2.1 Scatter Plots

A two-dimensional scatter plot is a plot of points {X1,… ,XT} ⊂ R2.
Figure 4.3 shows scatter plots of daily net returns of S&P 500 and Nasdaq-100.

The data is described in Section 2.4.2. Panel (a) shows the original data and
panel (b) shows the corresponding scatter plot after copula preserving trans-
form with standard normal marginals, as defined in (4.36).

When the sample size is large, then the scatter plot is mostly black, so the
visuality of density of the points in different regions is obscured. In this case
it is possible to use histograms to obtain a smooth scatter plot. A multivariate
histogram is defined in (3.42). First we take square roots fi =

√
ni of the bin
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Figure 4.3 Scatter plots. Scatter plots of the net returns of S&P 500 and Nasdaq-100.
(a) Original data; (b) copula transformed data with marginals being standard normal.
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Figure 4.4 Smooth scatter plots. Scatter plots of the net returns of S&P 500 and Nasdaq-100.
(a) Original data; (b) copula transformed data with marginals being standard normal.

counts ni and then we define gi = 1 − (fi − mini(fi) + 0.5)∕(maxi(fi) − mini(fi) +
0.5). Now gi ∈ [0, 1]. Values gi close to one are shown in light gray, and values
gi close to zero are shown in dark gray. See Carr et al. (1987) for a study of
histogram plotting.

Figure 4.4 shows smooth scatter plots of daily net returns of S&P 500 and
Nasdaq-100. The data is described in Section 2.4.2. Panel (a) shows a smooth
scatter plot of the original data and panel (b) shows the corresponding scat-
ter plot after copula preserving transform when the marginals are standard
Gaussian.

4.2.2 Correlation Matrix: Multidimensional Scaling

First, we define the correlation matrix. Second, we show how the correlation
matrix may be visualized using multidimensional scaling.

4.2.2.1 Correlation Matrix
The correlation matrix is the d × d matrix whose elements are the linear corre-
lation coefficients 𝜌L(Xi,Xj) for i, j = 1,… , d. The sample correlation matrix is
the matrix whose elements are the sample linear correlation coefficients.

The correlation matrix can be defined using matrix notation. The covariance
matrix of random vector X = (X1,… ,Xd)′ is defined by

Cov(X) = E[(X − EX)(X − EX)′]. (4.13)

The covariance matrix is the d × d matrix whose elements are Cov(Xi,Xj) for
i, j = 1,… , d, where we denote Cov(Xi,Xi) = Var(Xi). Let

D = diag(1∕sd(X1),… , 1∕sd(Xd))
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be the diagonal matrix whose diagonal is the vector of the inverses of the stan-
dard deviations. Then the correlation matrix is

Cor(X) = D Cov(X)D.
The covariance matrix can be estimated by the sample covariance matrix

Ĉov(X) = 1
T

T∑
i=1

(Xi − X)(Xi − X)′, (4.14)

where X1,… ,XT ∈ Rd are identically distributed observations whose distri-
bution is the same as the distribution of X, and X = T−1 ∑T

i=1 Xi is the arith-
metic mean.

4.2.2.2 Multidimensional Scaling
Multidimensional scaling makes a nonlinear mapping of data X1,… ,XT ∈ Rd

to R2, or to any space Rk with 2 ≤ k < d. We can define the mapping
Q∶{X1,… ,XT} → R2 of multidimensional scaling in two steps:
1) Compute the pairwise distances ‖Xi − Xj‖, i ≠ j.
2) Find points Q(X1),… ,Q(XT ) ∈ R2 so that ‖Q(Xi) − Q(Xj)‖ = ‖Xi − Xj‖ for

i ≠ j.
In practice, we may not be able to find a mapping that preserves the distances

exactly, but we find a mapping Q∶{X1,… ,XT} → R2 so that the stress func-
tional ∑

1≤i<j≤T
(‖Xi − Xj‖ − ‖Q(Xi) − Q(Xj)‖)2

is minimized. Sammon’s mapping uses the stress functional
∑

1≤i<j≤T

(‖Xi − Xj‖ − ‖Q(Xi) − Q(Xj)‖)2

‖Xi − Xj‖ .

This stress functional emphasizes small distances. Numerical minimization is
needed to solve the minimization problems.

Multidimensional scaling can be used to visualize correlations between time
series. Let Xi = (Ri

1,… ,Ri
T ) be the time series of returns of company i, where

i = 1,… , d. When we normalize the time series of returns so that the vector
of returns has sample mean zero and sample variance one, then the Euclidean
distance is equivalent to using the correlation distance. Indeed, let

Yi =
Xi − Xi

s(Xi)
,

where Xi = T−1 ∑T
t=1 Xi

t and s2(Xi) = T−1 ∑T
t=1 (Xi

t)2 − X
2
i . Now

1
T
‖Yi − Yj‖2 = 2[1 − 𝜌̂L(Xi,Xj)],
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where 𝜌̂L(Xi,Xj) is the sample linear correlation. Thus, we apply the multidi-
mensional scaling for the norm

‖Yi − Yj‖2
2,T = 1

T
‖Yi − Yj‖2 = 1

T

T∑
t=1

(
Y i

t − Y j
t

)2
,

which is obtained by dividing the Euclidean norm by
√

T . Since

−1 ≤ 𝜌̂L(Xi,Xj) ≤ 1,

we have that

0 ≤ ‖Yi − Yj‖2,T ≤ 2.

Zero correlation gives ‖Yi − Yj‖2,T =
√

2, positive correlations give 0 ≤ ||Yi −
Yj||2,T <√2, and negative correlations give

√
2 < ‖Yi − Yj‖2,T ≤ 2.

Figure 4.5 studies correlations of the returns of the components of DAX
30. We have daily observations of the components of DAX 30 starting at
January 02, 2003 and ending at May 20, 2014, which makes 2892 observations.
Panel (a) shows the correlation matrix as an image. We have used R-function
“image.” Panel (b) shows the correlations with multidimensional scaling. We
have used R-function “cmdscale.” The image of the correlation matrix is not as
helpful as the multidimensional scaling. For example, we see that the return
time series of Volkswagen with the ticker symbol “VOW” is an outlier. The
returns of Fresenius and Fresenius Medical Care (“FRE” and “FME”) are highly
correlated.
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Figure 4.5 Correlations of DAX 30. (a) An image of the correlation matrix for DAX 30;
(b) correlations for DAX 30 with multidimensional scaling.
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4.3 Multivariate Parametric Models

We give examples of multivariate parametric models. The examples include
Gaussian and Student distributions (t-distributions). More general families are
normal variance mixture distributions and elliptical distributions.

4.3.1 Multivariate Gaussian Distributions

A d-dimensional Gaussian distribution can be parametrized with the expecta-
tion vector 𝜇 ∈ Rd and the d × d covariance matrix Σ. When random vector
X follows the Gaussian distribution with parameters 𝜇 and Σ, then we write
X ∼ N(𝜇,Σ) or X ∼ Nd(𝜇,Σ). We say that a Gaussian distribution is the stan-
dard Gaussian distribution when 𝜇 = 0 and Σ = Id. The density function of the
Gaussian distribution is

f (x) = (2𝜋)−d∕2|Σ|−1∕2 exp
{
−1

2
(x − 𝜇)′Σ−1(x − 𝜇)

}
, (4.15)

where x ∈ Rd and |Σ| is the determinant of Σ. The characteristic function of the
Gaussian distribution is

𝜓(t) = E exp(it′X) = exp
{

it′𝜇 − 1
2

t′Σt
}
, (4.16)

where t ∈ Rd.
A linear transformation of a Gaussian random vector follows a Gaussian dis-

tribution: When X ∼ Nd(𝜇,Σ), A is k × d matrix, and a is a k vector, then

AX + a ∼ Nk(A𝜇 + a,AΣA′). (4.17)

Also, when X ∼ N(𝜇1,Σ1) and Y ∼ N(𝜇2,Σ2) are independent, then

X + Y ∼ N(𝜇1 + 𝜇2,Σ1 + Σ2).

Both of these facts can be proved using the characteristic function.3

4.3.2 Multivariate Student Distributions

A d-dimensional Student distribution (t-distribution) is parametrized with
degrees of freedom 𝜈 > 0, the expectation vector 𝜇 ∈ Rd, and the d × d positive
definite symmetric matrix Σ. When random vector X follows the t-distribution

3 The characteristic function of AX + a is

𝜓AX+a(t) = E exp(it′(AX + a)) = eit′aE exp(i(At)′X) = eit′a
𝜓X (At)

= exp
{

it′(A𝜇 + a) − 1
2

t′AΣA′t
}
,

where 𝜓X is the characteristic function of X.
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Figure 4.6 Gaussian and Student densities. (a) Contour plot of the Gaussian density with
marginal standard deviations equal to one and correlation 0.5; (b) Student density with
degrees of freedom 2 and correlation 0.5.

with parameters 𝜈, 𝜇, and Σ, then we write X ∼ t(𝜈, 𝜇,Σ) or X ∼ td(𝜈, 𝜇,Σ).
The density function of the multivariate t-distribution is

f (x) = c|Σ|−1∕2(1 + 𝜈−1(x − 𝜇)′Σ−1(x − 𝜇)
)−(𝜈+d)∕2

, (4.18)

where

c =
Γ((𝜈 + d)∕2)
(𝜋𝜈)d∕2Γ(𝜈∕2)

. (4.19)

The multivariate Student distributed random vector has the covariance
matrix

Cov(X) = 𝜈

𝜈 − 2
Σ,

when 𝜈 > 2.
When 𝜈 → ∞, then the Student density approaches a Gaussian density.

Indeed, (1 + t∕𝜈)−(d+𝜈)∕2 → exp{−t∕2}, as 𝜈 → ∞, since (1 + a∕𝜈)𝜈 → ea, when
𝜈 → ∞. The Student density has tails f (x) ≍ ‖x‖−(d+𝜈), as ‖x‖→ ∞.

Figure 4.6 compares multivariate Gaussian and Student densities. Panel (a)
shows the Gaussian density with marginal standard deviations equal to one and
correlation 0.5. Panel (b) shows the density of t-distribution with degrees of
freedom 2 and correlation 0.5. The density contours are in both cases ellipses
but the Student density has heavier tails.

4.3.3 Normal Variance Mixture Distributions

Random vector X ∈ Rd follows a Gaussian distribution with parameters 𝜇 and
Σ when Σ = AA′ for a d × d matrix A and

X ∼ 𝜇 + AZ,
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where Z ∼ Nd(0, Id) follows the standard Gaussian distribution. This leads to
the definition of a normal variance mixture distribution. We say that X ∈ Rd

follows a normal variance mixture distribution when

X ∼ 𝜇 +
√

W AZ,

where Z ∼ Nd(0, Id) follows the standard Gaussian distribution, and W ≥ 0 is
a random variable independent of Z. It holds that

EX = 𝜇

and

Cov(X) = EW ⋅ Σ,

where Σ = AA′. When random vector X follows the normal variance mixture
distribution with parameters 𝜇, Σ, and FW , where FW is the distribution func-
tion on W , then we write X ∼ M(𝜇,Σ, FW ).

The density function can be calculated as

fX(x) =
∫

∞

0
fX,W (x, 𝑤) d𝑤 =

∫

∞

0
fX|W=𝑤(x) fW (𝑤) d𝑤

= |Σ|−1∕2g((x − 𝜇)′Σ−1(x − 𝜇)), (4.20)

where fX,W is the density of (X,W ), fW is the density of W , fX|W=𝑤 is the density
of X conditional on W = 𝑤, and g ∶R → R is defined by

g(x) = (2𝜋)−d∕2
∫

∞

0
𝑤

−d∕2 exp
{
− x

2𝑤

}
fW (𝑤) d𝑤. (4.21)

The characteristic function is obtained, using (4.16), as

𝜓X(t) = E exp(it′X) = EE(exp(it′X) |W )

= E exp
{

it′𝜇 − 1
2

W t′Σt
}
= eit′𝜇

𝜙W

(1
2

t′Σt
)
,

where 𝜙W (t) = E exp(−tW ).
The family of normal variance mixtures M(𝜇,Σ, FW ) is closed under linear

transformations: When X ∼ Md(𝜇,Σ, FW ), A is k × d matrix, and a is a k vector,
then

AX + a ∼ Mk(A𝜇 + a,AΣA′
, FW ). (4.22)

This can be seen using the characteristic function, similarly as in (4.17).
Let W be such random variable that 𝜈W−1 follows the 𝜒2-distribution with

degrees of freedom 𝜈 > 0. Then the normal variance mixture distribution
is the multivariate t-distribution td(𝜈, 𝜇,Σ), where Σ = AA′, as defined in
Section 4.3.2.
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4.3.4 Elliptical Distributions

The density function of an elliptical distribution has the form

f (x) = | det(Σ)|−1∕2g{(x − 𝜇)′Σ−1(x − 𝜇)}, x ∈ Rd
, (4.23)

where g ∶ [0,∞) → [0,∞) is called the density generator, Σ is a symmetric posi-
tive definite d × d matrix, and 𝜇 ∈ Rd. Since Σ is positive definite, it has inverse
Σ−1 that is positive definite, which means that for all z ∈ Rd, z′Σ−1z > 0. Thus,
g needs to be defined only on the nonnegative real axis. Let g1 ∶ [0,∞) → [0,∞)
be such that ∫ ∞

0 td∕2−1g1(t) dt < ∞. Then g = c ⋅ g1 is a density generator when
c is chosen by

c−1 =
∫Rd

g1(‖x‖2) dx = volume(Sd) 2−1
∫

∞

0
td∕2−1g1(t) dt, (4.24)

where Sd = {x ∈ Rd ∶‖x‖ = 1}. We give examples of density generators.

1) From (4.15) we see that the Gaussian distributions are elliptical and the
Gaussian density generator is

g(t) = c ⋅ exp{−t∕2}, t ∈ R, (4.25)

where c = (2𝜋)−d∕2.
2) From (4.20) we see that the normal variance mixture distributions are ellip-

tical and the normal variance mixture density generator is given in (4.21).
3) From (4.18) we see that the t-distributions are elliptical and the Student den-

sity generator is

g(t) = c ⋅ (1 + t∕𝜈)−(d+𝜈)∕2
, t ∈ R, (4.26)

where 𝜈 > 0 is the degrees of freedom, and c is defined in (4.19). The Student
density generator has tails g(t) ≍ t−(d+𝜈)∕2, as t → ∞, and thus the density
function is integrable when 𝜈 > 0, according to (4.24).

Let Σ = AA′, where A is a d × d matrix and let

X = 𝜇 + AY ,

where Y follows a spherical distribution with density f (x) = g(‖x‖2). Then X
follows an elliptical distribution with density (4.23). When random vector X fol-
lows the elliptical distribution with parameters𝜇,Σ, and FY , where FY is the dis-
tribution function on Y , then we write X ∼ Ed(𝜇,Σ, FY ). The family of elliptical
distributions is closed under linear transformations: When X ∼ Ed(𝜇,Σ, FY ), A
is a k × d matrix, and a is a k vector, then

AX + a ∼ Ek(A𝜇 + a,AΣA′
, FY ). (4.27)

This can be seen using the characteristic function, similarly as in (4.17).
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4.4 Copulas

We can decompose a multivariate distribution into a part that describes the
dependence and into parts that describe the marginal distributions. This
decomposition helps to estimate and analyze multivariate distributions, and it
helps to construct new parametric and semiparametric models for multivariate
distributions.

The distribution function F ∶Rd → R of random vector (X1,… ,Xd) is defined
by

F(x1,… , xd) = P(X1 ≤ x1,… ,Xd ≤ xd),

where (x1,… , xd) ∈ Rd. The distribution functions F1 ∶R → R, …, Fd ∶R → R
of the marginal distributions are defined by

F1(x1) = P(X1 ≤ x1),… , Fd(xd) = P(Xd ≤ xd),

where x1,… , xd ∈ R.
A copula is a distribution function C ∶ [0, 1]d → [0, 1] whose marginal distri-

butions are the uniform distributions on [0, 1]. Often it is convenient to define a
copula as a distribution function C ∶Rd → [0, 1] whose marginal distributions
are the standard normal distributions. Any distribution function F ∶Rd → R
may be written as

F(x1,… , xd) = C(F1(x1),… , Fd(xd)),

where Fi, i = 1,… , d, are the marginal distribution functions and C is a copula.
In this sense we can decompose a distribution into a part that describes only
the dependence and into parts that describe the marginal distributions.

We show in (4.29) how to construct a copula of a multivariate distribution
and in (4.31) how to construct a multivariate distribution function from a cop-
ula and marginal distribution functions. We restrict ourselves to the case of
continuous marginal distribution functions. These constructions were given in
Sklar (1959), who considered also the case of noncontinuous margins. For nota-
tional convenience we give the formulas for the case d = 2. The generalization
to the cases d > 2 is straightforward.

4.4.1 Standard Copulas

We use the term “standard copula,” when the marginals of the copula have
the uniform distributions on [0, 1]. Otherwise, we use the term “nonstandard
copula.”

4.4.1.1 Finding the Copula of a Multivariate Distribution
Let X1 and X2 be real valued random variables with distribution functions
F1 ∶R → [0, 1] and F2 ∶R → [0, 1]. Let F ∶R2 → [0, 1] be the distribution
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function of (X1,X2), and assume that F1 and F2 are continuous. Then,

F(x1, x2) = P(X1 ≤ x1,X2 ≤ x2)
= P(F1(X1) ≤ F1(x1), F2(X2) ≤ F2(x2))
= C(F1(x1), F2(x2)), (4.28)

where

C(u, 𝑣) = P(F1(X1) ≤ u, F2(X2) ≤ 𝑣)
= F

(
F−1

1 (u), F−1
2 (𝑣)

)
, (4.29)

and u, 𝑣 ∈ [0, 1]. We call C ∶ [0, 1]2 → [0, 1] in (4.29) the copula of the joint
distribution of X1 and X2. Copula C is the distribution function of the vec-
tor (F1(X1), F2(X2)), and F1(X1) and F2(X2) are uniformly distributed random
variables.4

The copula density is

c(u, 𝑣) =
f
(
F−1

1 (u), F−1
2 (𝑣)

)
f1
(
F−1

1 (u)
)
⋅ f2

(
F−1

2 (𝑣)
) (4.30)

because (𝜕∕𝜕u)F−1
i (u) = 1∕fi(F−1

i (u)), where f is the density of F and f1, and f2
are the densities of F1 and F2, respectively.

4.4.1.2 Constructing a Multivariate Distribution from a Copula
Let C ∶ [0, 1]2 → [0, 1] be a copula, that is, it is a distribution function whose
marginal distributions are uniform on [0, 1]. Let F1 ∶R → [0, 1] and F2 ∶R →
[0, 1] be univariate distribution functions of continuous distributions. Define
F ∶R2 → [0, 1] by

F(x1, x2) = C(F1(x1), F2(x2)). (4.31)

Then F is a distribution function whose marginal distributions are given by
distribution functions F1 and F2. Indeed, Let (U1,U2) be a random vector with
distribution function C. Then,

C(F1(x1), F2(x2)) = P(U1 ≤ F1(x1),U2 ≤ F2(x2))
= P

(
F−1

1 (U1) ≤ x1, F−1
2 (U2) ≤ x2

)
and F−1

i (Ui) ∼ Fi for i = 1, 2, because Ui ∼ Uniform([0, 1]).5

4.4.2 Nonstandard Copulas

Typically a copula is defined as a distribution function with uniform marginals.
However, we can define a copula so that the marginal distributions of the copula

4 We have that P(F1(X1) ≤ t) = P(X1 ≤ F−1
1 (t)) = F1(F−1

1 (t)) = t, for t ∈ [0, 1], since F1 is assumed
to be strictly increasing.
5 We have P(F−1(Ui) ≤ t) = P(Ui ≤ Fi(t)) = Fi(t), for t ∈ R.
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is some other continuous distribution than the uniform distribution on [0, 1].
It turns out that we get simpler copulas by choosing the marginal distributions
of a copula to be the standard Gaussian distribution.

As in (4.28) we can write distribution function F ∶R2 → [0, 1] as

F(x1, x2) = C(Φ−1(F1(x1)),Φ−1(F2(x2))),

where Φ∶R → R is the distribution function of the standard Gaussian distri-
bution and

C(u, 𝑣) = P(Φ−1(F1(X1)) ≤ u,Φ−1(F2(X2)) ≤ 𝑣)
= F

(
F−1

1 (Φ(u)), F−1
2 (Φ(𝑣))

)
, (4.32)

u, 𝑣 ∈ R. Now C ∶R2 → [0, 1] is a distribution function whose marginals are
standard Gaussians, because Fi(Xi) follow the uniform distribution on [0, 1] and
thus Φ−1(Fi(Xi)) follow the standard Gaussian distribution.

Conversely, given a distribution function C ∶R2 → [0, 1] with the standard
Gaussian marginals, and univariate distribution functions F1 and F2, we can
define a distribution function F ∶R2 → [0, 1] with marginals F1 and F2 by the
formula

F(x1, x2) = C(Φ−1(F1(x1)),Φ−1(F2(x2))).

The copula density is

c(u, 𝑣) = f
(
F−1

1 (Φ(u)), F−1
2 (Φ(𝑣))

)
× 𝜙(u)𝜙(𝑣)

f1
(
F−1

1 (Φ(u))
)
⋅ f2

(
F−1

2 (Φ(𝑣))
) , (4.33)

where f is the density of F , f1 and f2 are the densities of F1 and F2, respectively,
and 𝜙 is the density of the standard Gaussian distribution.

4.4.3 Sampling from a Copula

We do not have observations directly from the distribution of the copula but
we show how to transform the sample so that we get a pseudo sample from the
copula. Scatter plots of the pseudo sample can be used to visualize the copula.
The pseudo sample can also be used in the maximum likelihood estimation
of the copula. Before defining the pseudo sample, we show how to generate
random variables from a copula.

4.4.3.1 Simulation from a Copula
Let random vector X = (X1,X2) have a continuous distribution. Let Fk(t) =
P(Xk ≤ t), k = 1, 2, be the distribution functions of the margins of X. Now

Z = (F1(X1), F2(X2)) (4.34)
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is a random vector whose marginal distributions are uniform on [0, 1]. The dis-
tribution function of this random vector is the copula of the distribution of
X = (X1,X2). Thus, if we can generate a random vector X with distribution F ,
we can use the rule (4.34) to generate a random vector Z whose distribution
is the copula of F . Often the copula with uniform marginals is inconvenient
due to boundary effects. We may get statistically more tractable distribution by
defining

Z = (Φ−1(F1(X1)),Φ−1(F2(X2))),

where Φ is the distribution function of the standard Gaussian distribution. The
components of Z have the standard Gaussian distribution.

4.4.3.2 Transforming the Sample
Let us have data X1,… ,XT ∈ R2 and denote Xi = (Xi1,Xi2). Let the rank of
observation Xik , i = 1,… ,T , k = 1, 2, be

rank(Xik) = #{Xjk ∶Xjk ≤ Xik , j = 1,… ,T}.

That is, rank(Xik) is the number of observations of the kth variable smaller or
equal to Xik . We normalize the ranks to get observations on [0, 1]2:

Zi =
( rank(Xi1)

T + 1
,

rank(Xi2)
T + 1

)
, (4.35)

for i = 1,… ,T . Now {Z1k ,… ,ZTk} = {1∕(T + 1),… ,T∕(T + 1)} for k = 1, 2.
In this sense we can consider the observations as a sample from a distribution
whose margins are uniform distributions on [0, 1]. Often the standard Gaussian
distribution is more convenient and we define

Zi =
(
Φ−1

( rank(Xi1)
T + 1

)
,Φ−1

( rank(Xi2)
T + 1

))
, (4.36)

for i = 1,… ,T .

4.4.3.3 Transforming the Sample by Estimating the Margins
We can transform the data X1,… ,XT ∈ R2 using estimates of the marginal dis-
tributions. Let F̂1 and F̂2 be estimates of the marginal distribution functions F1
and F2, respectively. We define the pseudo sample as

Zi =
(
F̂1(Xi1), F̂2(Xi2)

)
, (4.37)

where i = 1,… ,T . The estimates F̂1 and F̂2 can be parametric estimates.
For example, assuming that the kth marginal distribution is a normal dis-
tribution, we would take F̂k(t) = Φ((x − 𝜇̂k)∕𝜎̂k), where Φ is the distribution
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function of the standard normal distribution, 𝜇̂k is the sample mean of
X1k ,… ,XTk , and 𝜎̂k is the sample standard deviation. If F̂k are the empirical
distribution functions

F̂k(t) =
1
T

T∑
i=1

I(−∞,t](Xik),

then we get almost the same transformation as (4.35), but T + 1 is now replaced
by T :

Zi =
( rank(Xi1)

T
,

rank(Xi2)
T

)
.

4.4.3.4 Empirical Copula
The empirical distribution function F̂ ∶R2 → [0, 1] is calculated using a sample
X1,… ,XT ∈ R2 of identically distributed observations, and we define

F̂(x1, x2) =
1
T

T∑
i=1

I(−∞,x1](Xi1) ⋅ I(−∞,x2](Xi2),

where we denote Xi = (Xi1,Xi2).
The empirical copula is defined similarly as the empirical distribution func-

tion. Now,

Ĉ(u1,u2) =
1
T

T∑
i=1

I[0,u1](Zi1) ⋅ I[0,u2](Zi2), (4.38)

where Zi are defined in (4.37).

4.4.3.5 Maximum Likelihood Estimation
Pseudo samples are needed in maximum likelihood estimation. In maximum
likelihood estimation we assume that the copula has a parametric form. For
example, the copula of the normal distribution, given in (4.39), is parametrized
with the correlation matrix, which contains d(d − 1)∕2 parameters. Let
C(u1,… ,ud; 𝜃) be the copula with parameter 𝜃 ∈ Θ. The corresponding
copula density is c(u1,… ,ud; 𝜃), as given in (4.30). Let us have independent
and identically distributed observations X1,… ,XT from the distribution of F .
We calculate the pseudo sample Z1,… ,ZT using (4.35) or (4.37). A maximum
likelihood estimate is a value 𝜃̂ maximizing

T∏
i=1

c
𝜃
(Zi; 𝜃)

over 𝜃 ∈ Θ.
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4.4.4 Examples of Copulas

We give examples of parametric families of copulas. The examples include the
Gaussian copulas and the Student copulas.

4.4.4.1 The Gaussian Copulas
Let X ∼ N(𝜇,Σ) be a d-dimensional Gaussian random vector, as defined in
Section 4.3.1. The copula of X is

C(u1,… ,ud) = ΦP(Φ−1(u1),… ,Φ−1(ud)), (4.39)

whereΦP is the distribution function of N(0,P) distribution, P is the correlation
matrix of X, and Φ is the distribution function of N(0, 1) distribution.

Indeed, let us denote Δ = diag(𝜎1,… , 𝜎d), where 𝜎i is the standard deviation
of Xi. Then Δ−1(X − 𝜇) follows the distribution N(0,P).6 Let F be the distribu-
tion function of X. Then, using the notation (X ≤ x) = (X1 ≤ x1,… ,Xd ≤ xd),

F(x) = P(X ≤ x) = P(Δ−1(X − 𝜇) ≤ Δ−1(x − 𝜇))
= ΦP(Δ−1(x − 𝜇))

= ΦP

(x1 − 𝜇1

𝜎1
,… ,

xd − 𝜇d

𝜎d

)
,

where 𝜇 = (𝜇1,… , 𝜇d). Also,7

F−1
i (ui) = 𝜇i + 𝜎iΦ−1(ui),

for i = 1,… , d. Thus,

F
(
F−1

1 (u1),… , F−1
d (ud)

)
= ΦP

(
Φ−1(u1),… ,Φ−1(ud)

)
.

Thus, (4.29) leads to (4.39).
Figure 4.7 shows perspective plots of the densities of the Gaussian copula.

The margins are uniform on [0, 1]. The correlation parameter is in panel (a) 𝜌 =
0.1 and in panel (b) 𝜌 = 0.8. Figure 4.7 shows that the perspective plots of the
copula densities are not intuitive, because the probability mass is concentrated
near the corners of the square [0, 1]2, especially when the correlation is high.
From now on we will show only pictures of copulas with standard Gaussian
margins, as defined in (4.32), because these give more intuitive representation
of the copula.

4.4.4.2 The Student Copulas
Let X ∼ t(𝜈, 𝜇,Σ) be a d-dimensional t-distributed random vector, as defined
in Section 4.3.2. The copula of X is

C(u1,… ,ud) = T
𝜈,P
(
t−1
𝜈
(u1),… , t−1

𝜈
(ud)

)
,

6 Random vector Δ−1(X − 𝜇) has expectation zero and covariance matrix P = Δ−1Cov(X)Δ−1.
7 If y1 = F−1

1 (u1), then u1 = F1(y1) = Φ((y1 − 𝜇1)∕𝜎1), which leads to y1 = 𝜇1 + 𝜎1Φ−1(u1).
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Figure 4.7 Gaussian copulas. Perspective plots of the densities of the Gaussian copula with
the correlation (a) 0.1 and (b) 0.8. The margins are uniform on [0, 1].

where T
𝜈,P is the distribution function of t(𝜈, 0,P) distribution, P is the

correlation matrix of X, and t
𝜈

is the distribution function of the univariate
t-distribution with degrees of freedom 𝜈.

Indeed, the claim follows similarly as in the Gaussian case for

P = Δ−1ΣΔ−1
,

where Δ = diag(𝜎1,… , 𝜎d) and 𝜎i is the square root of the ith element in the
diagonal of Σ. The matrix P is indeed the correlation matrix, since

Cor(X) = Γ−1Cov(X)Γ−1 = Δ−1ΣΔ−1
,

where Γ = diag(sd(X1),… , sd(Xd)), sd(Xk) =
√

Var(Xk).
Figure 4.8 shows contour plots of the densities of the Student copula when

the margins are standard Gaussian. The correlation is 𝜌 = 0.5. The degrees of
freedom are in panel (a) two and in panel (b) four. The Gaussian and Student
copulas are similar in the main part of the distribution but they differ in the
tails (in the corners of the unit square). The Gaussian copula has independent
extremes (asymptotic tail independence) but the Student copula generates con-
comitant extremes with a nonzero probability. The probability of concomitant
extremes is larger when the degrees of freedom is smaller and the correlation
coefficient is larger.

4.4.4.3 Other Copulas
We define Gumbel and Clayton copulas. These are examples of Archimedean
copulas. Gaussian and Student copulas are examples of elliptical copulas.
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Figure 4.8 Student copula with standard Gaussian margins. Contour plots of the densities of
the Student copula with degrees of freedom (a) 2 and (b) 4. The correlation is 𝜌 = 0.5.

The Gumbel–Hougaard Copulas The Gumbel–Hougaard or the Gumbel family
of copulas is defined by

Cgh(u; 𝜃) = exp
⎧⎪⎨⎪⎩
−

[ d∑
i=1

(−logeui)𝜃
]1∕𝜃⎫⎪⎬⎪⎭

, u ∈ [0, 1]d
,

where 𝜃 ∈ [1,∞) is the parameter. When 𝜃 = 1, then Cgh(u; 𝜃) = u1 · · ·ud and
when 𝜃 → ∞, then Cgh(u; 𝜃) → min{u1,… ,ud}.

Figure 4.9 shows contour plots of the densities with the Gumbel copula when
𝜃 = 1.5, 𝜃 = 2, and 𝜃 = 4. The marginals are standard Gaussian.
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Figure 4.9 Gumbel copula. Contour plots of the densities of the Gumbel copula with 𝜃 = 1.5,
𝜃 = 2, and 𝜃 = 4. The marginals are standard Gaussian.
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Figure 4.10 Clayton copula. Contour plots of the densities of the Clayton copula with 𝜃 = 1,
𝜃 = 2, and 𝜃 = 4. The marginals are standard Gaussian.

The Clayton Copulas Clayton’s family of copulas is defined by

Ccl(u; 𝜃) =

(
1 − d +

d∑
i=1

u−𝜃
i

)−1∕𝜃

, u ∈ [0, 1]d
, (4.40)

where 𝜃 > 0. When 𝜃 = 0, we define Ccl(u; 𝜃) =
∏d

i=1 ui. When the parameter
𝜃 increases, then the dependence between coordinate variables increases. The
dependence is larger in the negative orthant. The Clayton family was discussed
in Clayton (1978).

Figure 4.10 shows contour plots of the densities with the Clayton copula when
𝜃 = 1, 𝜃 = 2, and 𝜃 = 4. The marginals are standard Gaussian.

Elliptical Copulas Elliptical distributions are defined in Section 4.3.4. An ellip-
tical copula is obtained from an elliptical distribution F by the construction
(4.29). The Gaussian copula and the Student copula are elliptical copulas.

Archimedean Copulas Archimedean copulas have the form

C(u) = 𝜙
−1(𝜙(u1) + · · · + 𝜙(ud)), u ∈ [0, 1]d

,

where 𝜙∶ [0, 1] → [0,∞) is strictly decreasing, continuous, convex, and 𝜙(1) =
0. For C to be a copula, we need that (−1)i

𝜕
i
𝜙
−1(t)∕𝜕ti ≥ 0, i = 1,… , d. The

function𝜙 is called the generator. The product copula, Gumbel copula, Clayton
copula, and Frank copula are all Archimedean copulas and we have:

• product copula: 𝜙(t) = loget,
• Gumbel copula: 𝜙(t) = (−loget)𝜃 ,
• Clayton copula: 𝜙(t) = t−𝜃 − 1,
• Frank copula: 𝜙(t) = −loge[(e−𝜃t − 1)∕(e−𝜃 − 1)].
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The density of an Archimedean copula is

c(u) = 𝜓(𝜙(u1) + · · · + 𝜙(ud))𝜙′(u1) · · ·𝜙′(ud),

where 𝜓 is the second derivative of 𝜙−1:

𝜓(y) = −
𝜙
′′(𝜙−1(y))

(𝜙′(𝜙−1(y))3 ,

because (𝜕∕𝜕x)𝜙−1(x) = 1∕𝜙′(𝜙−1(x)). We have:

• Gumbel copula: 𝜙′(t) = −𝜃t−1(−loget)𝜃−1, 𝜙′′(t) = 𝜃t−2(−loget)𝜃−2(𝜃 − 1 −
loget), 𝜙−1(t) = exp(−t1∕𝜃),

• Clayton copula: 𝜙′(t) = −𝜃t−𝜃−1, 𝜙′′(t) = 𝜃(𝜃 + 1)t−𝜃−2, 𝜙−1(t) = (t + 1)−1∕𝜃 ,
• Frank copula: 𝜙′(t) = 𝜃e−𝜃t∕(e−𝜃t − 1), 𝜙′′(t) = 𝜃

2e−𝜃t∕(e−𝜃t − 1)2, 𝜙−1(t) =
−𝜃−1loge[(e−𝜃 − 1)e−t + 1].

4.4.4.4 Empirical Results
Research on testing the hypothesis of Gaussian copula and other copulas on
financial data has been done in Malevergne and Sornette (2003), and summa-
rized in Malevergne and Sornette (2005). They found that the Student copula is
a good model for foreign exchange rates but for the stock returns the situation
is not clear.

Patton (2005) takes into account the volatility clustering phenomenon. He
filters the marginal data by a GARCH process and shows that the conditional
dependence structure between Japanese Yen and Euro is better described by
Clayton’s copula than by the Gaussian copula. Note, however, that the copula
of the residuals is not the same as the copula of the raw returns and many fil-
ters can be used (ARCH, GARCH, and multifractal random walk). Using the
multivariate multifractal filter of Muzy et al. (2001) leads to a nearly Gaussian
copula.

Breymann et al. (2003) show that the daily returns of German Mark/Japanese
Yen are best described by a Student copula with about six degrees of freedom,
when the alternatives are the Gaussian, Clayton’s, Gumbel’s, and Frank’s copu-
las. The Student copula seems to provide an even better description for returns
at smaller time scales, when the time scale is larger than 2 h. The best degrees
of freedom is four for the 2-h scale.

Mashal and Zeevi (2002) claim that the dependence between stocks is bet-
ter described by a Student copula with 11–12 degrees of freedom than by a
Gaussian copula.
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Time Series Analysis

Time series analysis can be used to analyze both a univariate time series and
a vector time series. We are interested in estimating the dependence between
consecutive observations. In a vector time series there is both cross-sectional
dependence and time series dependence, which means that the components
of the vector depend on each other at any given point of time, and the future
values of the vectors depend on the past values of the vectors.

Model free time series analysis can estimate the joint distribution of

(Yt,Yt−1,… ,Yt−k), (5.1)

for some k ≥ 1. The estimation could be done using nonparametric multi-
variate density estimation. A different model free approach models at the
first step the distribution of (Yt,Yt−1,… ,Yt−k) parametrically, using density
f ( ⋅ , 𝜃) ∶ Rk+1 → R. At the second step, parameter 𝜃 is taken to be time
dependent. This leads to a semiparametric time series analysis, because we
combine a cross-sectional parametric model with a time varying estimation
of the parameter. Time localized maximum likelihood or time localized least
squares can be used to estimate the parameter. Of particular interest is to
estimate a univariate excess distribution f ( ⋅ , 𝜃) with a time varying 𝜃, because
this leads to time varying quantile estimation.

Prediction is one of the most important applications of time series analysis.
In prediction it is useful to use regression models

Yt = f (Yt−1,… ,Yt−k) + 𝜖t , (5.2)

where k ≥ 1 and 𝜖t is noise. For the estimation of f we can use nonparametric
regression. We study prediction with models (5.2) in Chapter 6.

Autoregressive moving average processes (ARMA) models are classical para-
metric models for time series analysis. It is of interest to find formulas of con-
ditional expectation in ARMA models, because these formulas for conditional
expectation can be used to construct predictors. The formulas for conditional
expectation in ARMA models give insight into different types of predictors:

Nonparametric Finance, First Edition. Jussi Klemelä.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.



122 5 Time Series Analysis

AR models lead to state space prediction, and MA models lead to time space
prediction.

Prediction of future returns of a financial asset is difficult, but prediction
of future absolute returns and future squared returns is feasible. Generalized
autoregressive conditional heteroskedasticity (GARCH) models are applied in
the prediction of squared returns. Prediction of future squared returns is called
volatility prediction. Prediction of volatility is applied in Chapter 7.

We concentrate on time series analysis in discrete time, but we define also
some continuous time stochastic processes, like the geometric Brownian
motion, because it is a standard model in option pricing.

Section 5.1 discusses strict stationarity, covariance stationarity, and auto-
covariance function. Section 5.2 studies model free time series analysis.
Section 5.3 studies parametric time series models, in particular, ARMA
and GARCH processes. Section 5.4 considers models for vector time series.
Section 5.5 summarizes stylized facts of financial time series.

5.1 Stationarity and Autocorrelation

A time series (stochastic process) is a sequence of random variables, indexed
by time. We define time series models for double infinite sequences

{Yt}, t ∈  = {0,±1,±2,…}.

A time series model can also be defined for a one-sided infinite sequence
{Yt}, where t ∈ 0 = {0, 1,…} or t ∈  = {1, 2,…}. A realization of a time
series is a finite sequence Y1,… ,YT of observed values. We use the term “time
series” both to denote the underlying stochastic process and a realization of
the stochastic process. Besides a sequence of real valued random variables, we
can consider a vector time series, which is a sequence {Xt} of random vectors
Xt ∈ Rd.1

5.1.1 Strict Stationarity

Time series {Yt} is called strictly stationary, if (Y1,… ,Yt) and (Y1+k ,… ,Yt+k)
are identically distributed for all t, k ∈ {0,±1,±2,…}. This means that for a
strictly stationary time series all finite dimensional marginal distributions are
equal.

Figure 5.1(a) shows a time series of S&P 500 daily prices, using data described
in Section 2.4.1. The time series has an exponential trend and is not station-
ary. The exponential trend can be removed by taking logarithms, as shown in

1 Spatial statistics considers a collection of random variables Yt , indexed by a spatial location: t ∈
R2 or t ∈ R3. We can also consider a collection of random elements indexed by a space of functions,
or indexed by an abstract space.
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Figure 5.1 Removing a trend: Differences of logarithms. (a) S&P 500 prices; (b) logarithms of
S&P 500 prices; (c) differences of the logarithmic prices.

panel (b), but after that we have a time series with a linear trend. The linear
trend can be removed by taking differences, as shown in panel (c), which leads
to the time series of logarithmic returns, which already seems to be a stationary
time series. Figure 2.1(b) shows that the gross returns seem to be stationary.

Figure 5.2(a) shows a time series of differences of S&P 500 prices, which is
not a stationary time series. Panels (b) and (c) show short time series of price
differences, which seem to be approximately stationary. Thus, we could also
define the concept of approximate stationarity.

Figure 5.3 studies a time series of squares of logarithmic returns, computed
from the daily S&P 500 data, which is described in Section 2.4.1. The squared
logarithmic returns are often modeled as a stationary GARCH(1, 1) time series.
However, we can also model the squared logarithmic returns with a signal plus
noise model

Yt = 𝜇t + 𝜖t ,
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where Yt = [log(St∕St−1)]2, 𝜇t is a deterministic trend, and 𝜖t is stationary white
noise. We can estimate the trend 𝜇t with a moving average 𝜇̂t . Moving averages
are defined in Section 6.1.1. Panel (a) shows time series Yt (black circles) and
𝜇̂t (red line). Panel (b) shows Yt − 𝜇̂t . Panel (b) suggests that subtracting the
moving average could lead to stationarity. We use the one-sided exponential
moving average in (6.3) with smoothing parameter h = 40.

5.1.1.1 Random Walk
Random walk is a discrete time stochastic process {Yt} defined by

Yt = Yt−1 + 𝜖t , t = 1, 2,… ,

where Y0 is a random variable or a fixed value, and {𝜖t} is distributed as
IID(𝜇, 𝜎2). We have that

Yt = Y0 +
t∑

k=1
𝜖k , t = 1, 2,… .

If Y0 is a constant, then EYt = Y0 + 𝜇t and Var(Yt) = t𝜎2. Thus, random walk
is not strictly stationary (and not covariance stationary). We obtain a Gaussian
random walk if {𝜖t} is Gaussian white noise. If Y0 = 0, then a Gaussian random
walk satisfies Yt ∼ N(t𝜇, t𝜎2).

Figure 5.4(a) shows the time series of S&P 500 prices over a period of 100
days. Panel (b) shows a simulated Gaussian random walk of length 100, when
the initial value is 0. A random walk leads to a time series that has a stochastic
trend. A stochastic trend is difficult to distinguish from a deterministic trend.
A time series of stock prices resembles a random walk. Also a time series of a
dividend price ratio in Figure 6.7(a) resembles a random walk.
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Figure 5.4 Stochastic trend. (a) Prices of S&P 500 over 100 days; (b) simulated random walk of
length 100, when the initial value is 0.
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Geometric random walk is a discrete time stochastic process defined by

Yt = Y0

t∏
k=1

𝜖k , t = 1, 2,… ,

where 𝜖1, 𝜖2,… are i.i.d and Y0 is independent of 𝜖1, 𝜖2,….

5.1.2 Covariance Stationarity and Autocorrelation

We define autocovariance and autocorrelation first for scalar time series and
then for vector time series.

5.1.2.1 Autocovariance and Autocorrelation for Scalar Time Series
We say that a time series {Yt} is covariance stationary, if EYt is a constant, not
depending on t, and Cov(Yt,Yt+k) depends only on k but not on t. A covariance
stationary time series is called also second-order stationary.

If EY 2
t < ∞ for all t, then strict stationary implies covariance stationarity.

There exists time series that are strictly stationary but for which covariance
is not defined.2 Covariance stationarity does not imply strict stationarity. For a
Gaussian time series, strict stationarity and covariance stationarity are equiva-
lent. By a Gaussian time series, we mean a time series whose all finite dimen-
sional marginal distributions have a Gaussian distribution.

For a covariance stationary time series the autocovariance function is
defined by

𝛾(k) = Cov(Yt,Yt−k),

where k = 1, 2,…. The covariance stationarity implies that 𝛾(k) depends only
on k and not on t. The autocorrelation function is defined as

𝜌(k) = Cor(Yt,Yt−k) =
𝛾(k)
𝛾(0)

,

where k = 1, 2,….
The sample autocovariance with lag k, based on the observations Y1,… ,YT ,

is defined as

𝛾̂(k) = 1
T

T−k∑
t=1

(Yt − Ȳ )(Yt+k − Ȳ ),

where Ȳ = T−1∑T
i=1 Yt .3 The sample autocorrelation with lag k is defined as

𝜌̂(k) = 𝛾̂(k)
𝛾̂(0)

. (5.3)

2 We have E(YtYt−k) ≤ [EY 2
t EY 2

t−k]
1∕2 and E|Yt| ≤ [EY 2

t ]1∕2 by Cauchy’s inequality, so that if EY 2
t <

∞ for all t, then Cov(Yt ,Yt−k) is defined for all t and k.
3 We have divided intentionally by T and not by T − k, although divisor T − k would lead to an
unbiased estimator.
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Figure 5.5 S&P 500 autocorrelation. (a) The sample autocorrelation function k → 𝜌̂(k) of S&P
500 returns for k = 1,… , 1000; (b) the sample autocorrelation function for absolute returns.
The red lines indicate the 95% confidence band for the null hypothesis of i.i.d process.

Figure 5.5 shows sample autocorrelation functions for the daily S&P 500
index data, described in Section 2.4.1. Panel (a) shows the sample autocorre-
lation function k → 𝜌̂(k) for the return time series Yt = Rt = (St − St−1)∕St−1
and panel (b) shows the sample autocorrelation function for the time series of
the absolute returns Yt = |Rt|. The lags are on the range k = 1,… , 1000.

If Y1,Y2,… are i.i.d. with mean zero, then√
T (𝜌̂(1),… , 𝜌̂(k))

d
−−→N

(
0, Ik
)
,

as T → ∞; see Brockwell and Davis (1991). Thus, if Y1,Y2,… are i.i.d. with mean
zero, then about 1 − 𝛼 of the observed values Y1,… ,YT should be inside the
band

±z1−𝛼∕2T−1∕2
,

where z
𝛼

is the 𝛼-quantile for the standard normal distribution. Figure 5.5 has
the red lines at the heights ±z1−𝛼∕2T−1∕2, where we have chosen 𝛼 = 0.05, so
that z1−𝛼∕2 ≈ 1.96.

The Box–Ljung test can be used to test whether the autocorrelations are zero
for a stationary time series Y1,Y2,…. The null hypothesis is that 𝜌(k) = 0 for
k = 1,… , h, where h ≥ 1. Let us have observed time series Y1,… ,YT . The test
statistics is

Q(h) = T(T + 2)
h∑

k=1

𝜌̂
2(k)

T − k
,

where 𝜌̂(k) is defined in (5.3). The test rejects the null hypothesis of zero auto-
correlations if

Q(h) > 𝜒2
h,1−𝛼,
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where 𝜒
2
h,1−𝛼 is the 1 − 𝛼-quantile of the 𝜒

2-distribution with degrees of
freedom h. We can compute the observed p-values

ph = 1 − Fh(Q(h)),

for h = 1, 2,…, where Fh is the distribution function of the 𝜒2-distribution with
degrees of freedom h. Small observed p-values indicate that the observations
are not compatible with the null hypothesis.

5.1.2.2 Autocovariance for Vector Time Series
Let Xt = (Xt,1,Xt,2)′ be a vector time series with two components. Vector time
series {Xt} is covariance stationary when the components {Xt,1} and {Xt,2} are
covariance stationary and

Cov(Xt,1,Xs,2) = Cov(Xt+h,1,Xs+h,2) (5.4)

for all t, s, h ∈ Z. Thus, vector time series {Xt} is covariance stationary when
EXt is a vector of constants, not depending on t, and the covariance

Cov(Xt,Xt+h) =

[
Cov(Xt,1,Xt+h,1) Cov(Xt,1,Xt+h,2)
Cov(Xt,2,Xt+h,1) Cov(Xt,2,Xt+h,2)

]
,

depends only on h but not on t for t, h ∈ Z.
For a covariance stationary time series the autocovariance function is

defined by

Γ(h) = Cov(Xt,Xt+h). (5.5)

For a scalar covariance stationary time series {Yt} we have

𝛾(h) = Cov(Yt,Yt+h) = Cov(Yt−h,Yt) = 𝛾(−h).

However, the autocovariance function of a vector time series satisfies4

Γ(h) = Γ(−h)′. (5.6)

5.2 Model Free Estimation

Univariate and multivariate descriptive statistics and graphical tools can be
applied to get insight into a distribution of a time series. We can apply k-variate

4 Combining

Γ(−h)′ =

[
Cov(Xt,1,Xt−h,1) Cov(Xt,2,Xt−h,1)
Cov(Xt,1,Xt−h,2) Cov(Xt,2,Xt−h,2)

]

and (5.4) implies (5.6).
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descriptive statistics and graphical tools to the k-dimensional marginal distri-
butions of a time series. This is discussed in Section 5.2.1.

Univariate and multivariate density estimators and regression estimators
can be applied to time series data. We can apply k-variate estimators to
the k-dimensional marginal distributions of a time series. This is discussed
in Section 5.2.2, by assuming that the time series is a Markov process of
order k ≥ 1.

Section 5.2.3 considers modeling time series with a combination of paramet-
ric and nonparametric methods. First a static parametric model is posed on
the observations and then the time dynamics is introduced with time space or
state space smoothing. The approach includes both local likelihood, covered
in Section 5.2.3.1, and local least squares method, covered in Section 5.2.3.2.
We apply local likelihood and local least squares to estimate time varying tail
index in Section 5.2.3.3.

5.2.1 Descriptive Statistics for Time Series

Univariate statistics, as defined in Section 3.1, can be used to describe time
series data Y1,… ,YT ∈ R. Using univariate statistics, like sample mean and
sample variance, is reasonable if Yt are identically distributed.

Multivariate statistics, as defined in Section 4.1, can be used to describe
vector time series data X1,… ,XT ∈ Rd. Again, the use of multivariate statistics
like sample correlation is reasonable if Xt are identically distributed.

Multivariate statistics can be used also for univariate time series data
Y1,… ,YT ∈ R if we create a vector time series from the initial univariate time
series. We can create a two-dimensional vector time series by defining

Xt = (Yt,Yt−k), (5.7)

for some k ≥ 1. Now we can compute a sample correlation coefficient, for
example, from data Xk+1,… ,XT . This is reasonable if Xt are identically
distributed. The requirement that Xt in (5.7) are identically distributed follows
from strict stationarity of {Yt}.

5.2.2 Markov Models

We have defined strict stationarity in Section 5.1.1. A strictly stationary time
series {Yt}t∈ can be defined by giving all finite dimensional marginal distribu-
tions. That is, to define the distribution of a strictly stationary time series we
need to define the distributions

(Y1,… ,Yk)

for all k ≥ 1. If the time series is IID(0,𝜎2), then we need only to define the
distribution of Y1. We say that the time series is a Markov process, if

P(Yt ∈ A |Yt−1,Yt−2,…) = P(Yt ∈ A |Yt−1).
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To define a Markov process we need to define the distribution of Yt and
(Yt,Yt+1). More generally, we say that the time series is a Markov process of
order k ≥ 1, if

P(Yt ∈ A |Yt−1,Yt−2,…) = P(Yt ∈ A |Yt−1,… ,Yt−k).

To define a Markov process of order k we need to define the distributions of Yt ,
(Yt,Yt+1), …, (Yt,… ,Yt+k).

To estimate nonparametrically the distribution of a Markov process of order
k ≥ 1, we can estimate the distributions of Yt , (Yt,Yt+1), …, (Yt,… ,Yt+k) non-
parametrically.

5.2.3 Time Varying Parameter

Let Y1,… ,YT ∈ R be a time series. Let f
𝜃
∶ R → R be a density function, where

𝜃 is a parameter, and 𝜃 ∈ Θ ⊂ Rp. We could ignore the time series properties
and assume that Y1,… ,YT are independent and identically distributed with
density f

𝜃
.

However, we can assume that parameter 𝜃 = 𝜃t changes in time. Then the
observations are not identically distributed, but Yt has density f

𝜃t
. In practice,

we do not specify any dynamics for 𝜃t , but construct estimates 𝜃̂t using non-
parametric smoothing.

Note that even when we would assume independent and identically dis-
tributed observations, with time series data the parameter estimate is changing
in time, because at time t the estimate 𝜃̂t is constructed using data Y1,… ,Yt .
This is called sequential estimation.

5.2.3.1 Local Likelihood
If Y1,… ,YT are independent with density f

𝜃
, then the density of (Y1,… ,YT ) is

f (y1,… , yT ) =
T∏

i=1
f
𝜃
(yi).

The maximum likelihood estimator of 𝜃 is the value 𝜃̂ maximizing
T∑

i=1
log f

𝜃
(Yi)

over 𝜃 ∈ Θ. We can find a time varying estimator 𝜃̂t using either time space
or state space localization. The local likelihood approach has been studied in
Spokoiny (2010). The localization is discussed more in Sections 6.1.1 and 6.1.2.

Time Space Localization Let

pi(t) =
K((t − i)∕h)∑t
j=1 K((t − j)∕h)

, (5.8)
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where h > 0 is the smoothing parameter and K ∶ [0,∞) → R is a kernel
function. For example, we can take K(x) = exp(−x) I[0,∞)(x). Let 𝜃̂t be the value
maximizing

t∑
i=1

pi(t) log f
𝜃
(Yi) (5.9)

over 𝜃 ∈ Θ.
For example, let us consider the model

Yt = 𝜇t + 𝜎t𝜖t,

where 𝜖t ∼ N(0, 1) are i.i.d. Denote 𝜃 = (𝜇, 𝜎2) and f
𝜃
(x) = 𝜙((x − 𝜇)∕𝜎)∕𝜎,

where 𝜙(x) = (2𝜋)−1∕2 exp{−x2∕2} is the density of the standard normal distri-
bution. Let Θ = R × (0,∞). Now

t∑
i=1

pi(t) log f
𝜃
(Yi) = log (2𝜋)−1∕2 + log 𝜎−1 − 1

2𝜎2

t∑
i=1

pi(t)(Yi − 𝜇)2
.

Then 𝜃̂t = (𝜇̂t, 𝜎̂
2
t ), where

𝜇̂t =
t∑

i=1
pi(t)Yi, 𝜎̂

2
t =

t∑
i=1

pi(t)Y 2
i − 𝜇̂2

t . (5.10)

State Space Localization Let us observe the state variables X1,… ,XT in addition
to observing time series Y1,… ,YT . Let

pi(t) =
K((Xt − Xi)∕h)∑t
j=1 K((Xt − Xj)∕h)

, (5.11)

where h > 0 is the smoothing parameter and K ∶Rd → R is a kernel function.
We can take K = 𝜙 the density of the standard normal distribution. Let 𝜃̂t be
the value maximizing (5.9) over 𝜃 ∈ Θ.

For example, let us consider the model
Yt = 𝜇(Xt) + 𝜎(Xt) 𝜖t ,

where 𝜖t ∼ N(0, 1) are i.i.d. The model can be written as
Y |X = x ∼ N(𝜇(x), 𝜎(x)).

Denote 𝜃 = (𝜇, 𝜎2) and f
𝜃
(y) = 𝜙((y − 𝜇)∕𝜎)∕𝜎, where 𝜙 is the density of the

standard normal distribution. Then 𝜃̂t = (𝜇̂t, 𝜎̂
2
t ), as defined in (5.10).

5.2.3.2 Local Least Squares
Let us consider a linear model with time changing parameters. Let us observe
the explanatory variables Z1,… ,ZT in addition to observing time series
Y1,… ,YT . Consider the model

Yt = 𝛼t + 𝛽′t Zt + 𝜖t ,
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where 𝛼t ∈ R, 𝛽t ∈ Rp are time dependent constants, Zt ∈ Rp is the vector of
explanatory variables, and 𝜖t is an error term.

We define the estimates of the time varying regression coefficients as the
values 𝛼̂t and 𝛽t minimizing

t∑
i=1

(Yi − 𝛼 − 𝛽′Zi)2 pi(t),

where pi(t) is the time space localized weight defined in (5.8). When we observe
in addition the state variables X1,… ,XT , then we can use the state space local-
ized weight pi(t), defined in (5.11).

5.2.3.3 Time Varying Estimators for the Excess Distribution
We discussed tail modeling in Section 3.4. The idea in tail modeling is to fit
a parametric model only to the data in the left tail or to the data in the right
tail. We can add time space or state space localization to the tail modeling. As
before, Y1,… ,YT is a time series.

Local Likelihood in Tail Estimation Let family f
𝜃
, 𝜃 ∈ Θ, model the excess distribu-

tion of a return distribution, where f
𝜃
∶ [0,∞) → R. This means that if g ∶ R →

R is the density of the return distribution then we assume for the left tail that

g(x)I(−∞,u](x) = pf
𝜃
(u − x)

for some 𝜃, where 0 < p < 0.5, and u is the pth quantile of the return density:
p = ∫

u
−∞ g. For the right tail the corresponding assumption is

g(x)I[u,∞)(x) = (1 − p)f
𝜃
(x − u)

for some 𝜃, where 0.5 < p < 1, and u is the pth quantile of the return density:
1 − p = ∫

∞
u g.

The local maximum likelihood estimator for the parameter of the left tail is
obtained from (3.63) as

𝜃̂left,t = argmax
𝜃∈𝜃

∑
i∶Yi∈t

pi(t) log f
𝜃

(
u − Yi

)
, (5.12)

where u = q̂p is the empirical quantile computed from Y1,… ,Yt , 0 < p < 0.5,
and

t = {Yi ∶ Yi ≤ u, i = 1,… , t}.

The time space localized weights pi(t) are modified from (5.8) as

pi(t) =
K((t − i)∕h)∑

j∶j∈t
K((t − j)∕h)

, (5.13)
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where h > 0 is the smoothing parameter and K ∶ [0,∞) → R is a kernel func-
tion. If there is available the state variables X1,… ,XT , then we can use the state
space localized weights, modified from (5.11) as

pi(t) =
K((Xt − Xi)∕h)∑

j∶j∈t
K((Xt − Xj)∕h)

, (5.14)

where h > 0 is the smoothing parameter and K ∶ Rd → R is a kernel function.
The local maximum likelihood estimator for the parameter of the right tail is

obtained from (3.64) as

𝜃̂right,t = argmax
𝜃∈Θ

∑
i∶Yi∈t

pi(t) log f
𝜃
(Yi − u),

where u = q̂p is the empirical quantile, 0.5 < p < 1, and

t = {Yi ∶ Yi ≥ u, i = 1,… , t}.

The weights are obtained from (5.13) and (5.14) by replacing t with t .
For example, let us assume that the excess distribution is the Pareto distribu-

tion, as defined in (3.74) as

f
𝛼
(x) = 𝛼

u

(x + u
u

)−1−𝛼
I[0,∞)(x),

where 𝛼 > 0 is the shape parameter. The maximum likelihood estimator has the
closed form expression (3.75). The local maximum likelihood estimators are

𝛼̂left,t =

(∑
Yi∈t

pi(t) log(Yi∕u)

)−1

, (5.15)

and

𝛼̂right,t =

(∑
Yi∈t

pi(t) log(Yi∕u)

)−1

, (5.16)

where 0 < p < 0.5, and u = q̂p. For the left tail we assume that u < 0, and for
the right tail we assume that u > 0. These are the time varying Hill’s estimators.

Figure 5.6 studies time varying Hill’s estimates for the S&P 500 daily data,
described in Section 2.4.1. Panel (a) shows the estimates for the left tail index
and panel (b) shows the estimates for the right tail index. Sequentially calcu-
lated Hill’s estimates are shown in black, time localized Hill’s estimates with
h = 500 are shown in blue, and the case with h = 100 is shown in yellow. The
exponential kernel function is used. The estimation is started after there are 4
years of data. The tails are defined by the empirical quantile u = q̂p with p =
10% and p = 90%.
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Figure 5.6 Time varying Hill’s estimator. (a) Left tail index; (b) right tail index. The black curves
show sequentially calculated Hill’s estimates, the blue curves show the time localized esti-
mates with h = 500 and the yellow curves have h = 100.

Time Varying Regression Estimator for Tail Index Let Y1,… ,Yt be the observed
time series at time t. The regression estimator for the parameter 𝛼 > 0 of the
Pareto distribution is given in (3.77). Let

t = {Yi ∶ Yi ≤ u, i = 1,… , t}.

The local regression estimator of the parameter of the left tail is

𝛼̂left = −
∑

i∶Yi∈t
p(i)(t)[log(Y(i)∕u) ⋅ log(i∕(t + 1))]∑

i∶Yi∈t
p(i)(t)(log(Y(i)∕u))2

,

where u = q̂p is the empirical quantile and we assume u < 0. The weights p(i)(t)
are obtained from (5.13) and (5.14) by replacing index i with the index (i), so
that the weights correspond to the ordering Y(1) ≤ · · · ≤ Y(t).

The local regression estimator of the parameter of the right tail is

𝛼̂right = −
∑

i∶Yi∈t
p(i)(t)[log(Y(i)∕u) ⋅ log(i∕(t + 1))]∑
i∶Yi∈t

p(i)(t)(log(Y(i)∕u))2
,

where Y(1) ≥ · · · ≥ Y(t) are the observations in reverse order,

t = {Yi ∶ Yi ≥ u, i = 1,… , t},

u = q̂p is the empirical quantile, 0.5 < p < 1, and we assume u > 0.
Figure 5.7 studies time varying regression estimates for the tail index using

the S&P 500 daily data, described in Section 2.4.1. Panel (a) shows the estimates
for the left tail index and panel (b) shows the estimates for the right tail index.
Sequentially calculated regression estimates are shown in black, time localized
estimates with h = 500 are shown in blue, and the case with h = 100 is shown in
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Figure 5.7 Time varying regression estimator. Time series of estimates of the tail index are
shown. (a) Left tail index; (b) right tail index. The black curves show sequentially calculated
regression estimates, the blue curves show the time localized estimates with h = 500 and the
yellow curves have h = 100.

yellow. The standard Gaussian kernel function is used. The estimation is started
after there are 4 years of data. The tails are defined by the empirical quantile
u = q̂p with p = 10% and p = 90%.

5.3 Univariate Time Series Models

We discuss first ARMA (autoregressive moving average) processes and
after that we discuss conditional heteroskedasticity models. Conditional
heteroskedasticity models include ARCH (autoregressive conditional
heteroskedasticity) and GARCH (generalized autoregressive conditional
heteroskedasticity) models. The ARMA, ARCH, and GARCH processes are
discrete time stochastic processes. We discuss also continuous time stochastic
processes, because geometric Brownian motion and related continuous time
stochastic processes are widely used in option pricing.

Brockwell and Davis (1991) give a detailed presentation of linear time series
analysis, Fan and Yao (2005) give a short introduction to ARMA models and a
more detailed discussion of nonlinear models. Shiryaev (1999) presents results
of time series analysis that are useful for finance.

5.3.1 Prediction and Conditional Expectation

Our presentation of discrete time series analysis is directed towards giving
prediction formulas: these prediction formulas are used in Chapter 7 to
provide benchmarks for the evaluation of the methods of volatility prediction.
Chapter 6 studies nonparametric prediction.
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Let {Yt} be a time series with t = 0 ± 1,±2,…. We take the conditional
expectation

E (Yt+𝜂 |Yt,Yt−1,…) (5.17)

to be the best prediction of Yt+𝜂 , given the observations Yt,Yt−1,…, where 𝜂 ≥ 1
is the prediction step. Using the conditional expectation as the best predictor
can be justified by the fact that the conditional expectation minimizes the mean
squared error. In fact, the function g minimizing

E (Yt+𝜂 − g(Yt,Yt−1,…))2 (5.18)

is the conditional expectation: g(Yt,Yt−1,…) = E (Yt+𝜂 |Yt ,Yt−1,…).5
Besides predicting the value Yt+𝜂 , we consider also predicting the squared

value Y 2
t+𝜂 .

In the following text, we give expressions for E (Yt+𝜂 |Yt,Yt−1,…) in the
ARMA models and for E (Y 2

t+𝜂 |Yt,Yt−1,…) in the ARCH and GARCH models.
These expressions depend on the unknown parameters of the models. In order
to apply the expressions we need to estimate the unknown parameters and
insert the estimates into the expressions.

The conditional expectation whose condition is the infinite past is a function
g(Yt,Yt−1,…) of the infinite past. Since we have available only a finite num-
ber of observations, we have to truncate these functions to obtain a function
g̃(Yt,… ,Y1). It would be more useful to obtain formulas for

E (Yt+𝜂 |Yt,Yt−1,… ,Y1)

and

E
(
Y 2

t+𝜂 |Yt,Yt−1,… ,Y1
)
.

However, these formulas are more difficult to derive than the formulas where
the condition of the conditional expectation is the infinite past.

5.3.2 ARMA Processes

ARMA processes are defined in terms of an innovation process. After defining
innovation processes, we define MA (moving average) processes and AR
(autoregressive) processes. ARMA processes are obtained by combining
autoregressive and moving average processes.

5 Function g(x) = E(Y |X = x) minimizes E(Y − g(X))2 over measurable g. Indeed,

E(g(X) − Y )2 = E(g(X) − E(Y |X))2 + E(E(Y |X) − Y )2
,

because E[(g(X) − E(Y |X))(E(Y |X) − Y )] = 0. Thus, E(g(X) − Y )2 is minimized with respect to g
by choosing g(x) = E(Y |X = x). Note that the conditional expectation defined as g(x) = E(Y |X =
x) is a real-valued function of x, but E(Y |X) is a real-valued random variable, which can be defined
as E(Y |X) = g(X).
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5.3.2.1 Innovation Processes
Innovation processes are used to build more complex processes, like ARMA
and GARCH processes. We define two innovation processes: a white noise pro-
cess and an i.i.d. process.

We say that {𝜖t}t∈Z is a white noise process and write {𝜖t}t∈Z ∼ WN(0, 𝜎2) if

1) E𝜖t = 0,
2) E𝜖2

t = 𝜎
2,

3) E𝜖t𝜖t+k = 0 for k ≠ 0,

where 0 < 𝜎2
<∞ is a constant. A white noise is a Gaussian white noise if

𝜖t ∼ N(0, 𝜎2).
We say that {𝜖t}t∈Z is an i.i.d. process and write {𝜖t}t∈Z ∼ IID(0, 𝜎2) if

1) E𝜖t = 0,
2) E𝜖2

t = 𝜎
2,

3) 𝜖t and 𝜖t+k are independent for k ≠ 0.

An i.i.d. process is also a white noise process. A Gaussian white noise is also
an i.i.d. process.

5.3.2.2 Moving Average Processes
We define first a moving average process of a finite order, then we give predic-
tion formulas, and finally define a moving average process of infinite order.

MA(q) Process We use MA(q) as a shorthand notation for a moving average
process of order q. A moving average process {Yt} of order q ≥ 0 is a process
satisfying

Yt = 𝜖t + b1𝜖t−1 + · · · + bq𝜖t−q,

where b1,… , bq ∈ R, {𝜖t} ∼ WN(0, 𝜎2) is a white noise process, and t =
0,±1,±2,….

Figure 5.8 illustrates the definition of MA(q) processes. In panel (a) q = 1
and in panel (b) q = 2. When q = 1, then Yt and Yt+1 have one common white
noise-term, but Yt and Yt+2 do not have common white noise-terms. When
q = 2, then Yt and Yt+1 have two common white noise-terms, Yt and Yt+2 have
one common white noise-term, and Yt and Yt+3 do not have common white
noise-terms.

We have that

EYt = 0, Var(Yt) = 𝜎
2 (1 + b2

1 + · · · + b2
q
)
, (5.19)

and

EYtYt+k =
{
𝜎

2∑q−k
j=0 bjbk+j, k = 1,… , q,

0, k > q,
(5.20)
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Figure 5.8 The definition of a MA(q) process. (a) MA(1) process; (b) MA(2) process.

where b0 = 1. Thus, MA(q) process is such that a correlation exists between Yt
and Yt+k only if |k| ≤ q. Equations (5.19) and (5.20) show that MA(q) process is
covariance stationary.

If we are given a covariance function 𝛾 ∶ {0, 1,…} → R, which is such that
𝛾(k) = 0 for k > q, we can construct a MA(q) process with this covariance func-
tion by solving 𝜎2 and b1,… , bq from the q + 1 equations

⎧⎪⎨⎪⎩
𝛾(0) = 𝜎

2 (1 + b2
1 + · · · + b2

q
)
,

𝛾(1) = 𝜎
2(b1 + b1b2 + · · · + bq−1bq),

⋮
𝛾(q) = 𝜎

2bq.

Prediction of MA Processes The conditional expectation E (Yt+𝜂 |t) is the best
prediction of Yt+𝜂 for 𝜂 ≥ 1, given the infinite past Yt,Yt−1,…, in the sense of the
mean squared prediction error, as we mentioned in Section 5.3.1. We denote
E (Yt+𝜂 |t) = E (Yt+𝜂 |Yt ,Yt−1,…). The best linear prediction in the sense of the
mean squared error is given in (6.19). We can use that formula when the covari-
ance function of the MA(q) process is first estimated.

A recursive prediction formula for the MA(q) process can be derived as
follows. We have that

E (Yt+𝜂 |t) =
{

b
𝜂
𝜖t + b

𝜂+1𝜖t−1 + · · · + bq𝜖t−q−𝜂, 1 ≤ 𝜂 ≤ q,
0, 𝜂 > q,

because E (𝜖t+k |t) = 0 for k = 1,… , 𝜂. The noise terms 𝜖t ,… , 𝜖t−q−𝜂 are not
observed, but we can write

𝜖t = Yt − b1𝜖t−1 − · · · − bq𝜖t−q,

𝜖t−1 = Yt−1 − b1𝜖t−2 − · · · bq𝜖t−q−1,

⋮
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This leads to a formula for E (Yt+𝜂 |t) in terms of the infinite past Yt,Yt−1,….
For example, for the MA(1) process Yt = 𝜖t + b𝜖t−1 we have

E (Yt+𝜂 |t) =
{

b
∑∞

k=0 (−1)kbkYt−k , 𝜂 = 1,
0, 𝜂 ≥ 2. (5.21)

The prediction formula for prediction step 𝜂 = 1 is a version of exponential
moving average, which is defined in (6.7).

We can obtain a recursive prediction for practical use in the following way.
Define 𝜖i = 0, when i ≤ 0 and

𝜖i = Yi − b1𝜖i−1 − · · · − bq𝜖i−q,

when i = 1,… , t. Finally we define the 𝜂-step prediction as

Ŷt+𝜂 =

{
b
𝜂
𝜖t + b

𝜂+1𝜖t−1 + · · · + bq𝜖t−q−𝜂, 1 ≤ 𝜂 ≤ q,
0, 𝜂 > q.

For example, for the MA(1) process Yt = 𝜖t + b𝜖t−1 we get the truncated for-
mulas

Ŷt+𝜂 =
{

b
∑t−1

k=0 (−1)kbkYt−k , 𝜂 = 1,
0, 𝜂 ≥ 2.

In the implementation the parameters b1,… , bq have to be replaced by their
estimates.

MA(∞) Process A moving average process of infinite order is defined as

Yt = 𝜇 +
∞∑

j=0
bj𝜖t−j.

The series converges in mean square if 6

∞∑
j=0

b2
j < ∞.

We have that

EYt = 𝜇, Var(Yt) = 𝜎
2

∞∑
j=0

b2
j , (5.22)

and

E (YtYt+k) = 𝜎
2

∞∑
j=0

bjbk+j, k ≥ 0. (5.23)

6 The convergence in mean square means that there is a random variable Y with EY 2
<∞ such

that E(Sn − Y )2 → 0, as n → ∞, where Sn =
∑n

j=0 bj𝜖t−j. We can check the convergence using the

Cauchy criterion: For all 𝛿 > 0 there is n
𝛿

so that E
(∑n+p

j=n+1 bj𝜖t−j

)2
≤ 𝛿, when n ≥ n

𝛿
, for all p ≥ 1.
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Equations (5.22) and (5.23) imply that MA(∞) process is covariance stationary.
MA(∞) process can be used to study the properties of AR processes. For
example, if we can write an AR process as a MA(∞) process, this shows that
the AR process is covariance stationary.

5.3.2.3 Autoregressive Processes
An autoregressive process {Yt} of order p ≥ 1 is a process satisfying

Yt = a1Yt−1 + a2Yt−2 + · · · + apYt−p + 𝜖t, (5.24)

where a1,… , ap ∈ R, {𝜖t} ∼ WN(0, 𝜎2) is a white noise process, and t =
0,±1,±2,…. We assume that 𝜖t is uncorrelated with Yt−1,Yt−2,…. We use
AR(p) as a shorthand notation for an autoregressive process of order p.

The autocovariance function of an AR(p) process can be computed recur-
sively. Multiply (5.24) by Yt−k from both sides and take expectations to get

𝛾(k) = a1𝛾(k − 1) + · · · + ap𝛾(k − p), (5.25)

where k ≥ 0. The first values 𝛾(0),… , 𝛾(p) can be solved from the p + 1
equations. After that, the values 𝛾(k) for k ≥ p + 1 can be computed recursively
from (5.25).

Prediction of AR Processes Let us consider the prediction of Yt+𝜂 for 𝜂 ≥ 1 when
the process is an AR(p) process. The best prediction of Yt+𝜂 , given the observa-
tions Yt,Yt−1,…, is denoted by

predt(𝜂) = E(Yt+𝜂 |t),

where we denote E(Yt+𝜂 |t) = E(Yt+𝜂 |Yt,Yt−1,…). We start with the one-step
prediction. The best prediction of Yt+1, given the observations Yt,Yt−1,…, is

predt(1) = E(Yt+1 |t) = a1Yt + a2Yt−1 + · · · + apYt−p+1, (5.26)

because E(𝜖t+1 |t) = 0. For the two-step prediction the best predictor is

predt(2) = E(Yt+2 |t)
= E[E(Yt+2 |t+1) |t]
= E[a1Yt+1 + a2Yt + · · · + apYt−p+2 |t]
= a1predt(1) + a2Yt + · · · + apYt−p+2.

The general prediction formula is

predt(𝜂) = a1predt(𝜂 − 1) + a2predt(𝜂 − 2) + · · · + appredt(𝜂 − p).

The best prediction is calculated recursively, using the value of predt(1) in
(5.26), and the fact that predt(𝜂) = Yt+𝜂 for 𝜂 ≤ 0.

For example, for the MA(1) process Yt = aYt−1 + 𝜖t we have

E (Yt+𝜂 |Yt,Yt−1,…) = E (Yt+𝜂 |Yt,… ,Y1) = a𝜂Yt. (5.27)



5.3 Univariate Time Series Models 141

5.3.2.4 ARMA Processes
We define an autoregressive moving average process {Yt, t = 0,±1,±2,…}, of
order (p, q), p, q ≥ 0, as a process satisfying

Yt = a1Yt−1 + a2Yt−2 + · · · + apYt−p + ut,

where a1,… , ap ∈ R and {ut}t∈Z is a MA(q) process. We use ARMA( p, q) as
a shorthand notation for an autoregressive moving average process of order
( p, q).

Stationarity, Causality, and Invertability of ARMA Processes Let {Yt} be an
ARMA( p, q) process with

Yt = a1Yt−1 + a2Yt−2 + · · · + apYt−p + ut,

ut = b0𝜖t + b1𝜖t−1 + · · · + bq𝜖t−q.

Denote
a(z) = 1 − a1z − a2z2 − · · · − apzp

,

b(z) = b0 + b1z + b2z2 + · · · + bqzq
,

where z ∈ , and  is the set of complex numbers. If a(z) ≠ 0 for all z ∈  such
that |z| = 1, then there exists the unique stationary solution

Yt =
∞∑

j=−∞
𝜓j𝜖t−j,

where the coefficients 𝜓j are obtained from the equation

b(z)
a(z)

=
∞∑

j=−∞
𝜓jzj

,

where r−1
< |z| < r for some r > 1; see Brockwell and Davis (1991, Theorem

3.1.3).
The condition for the covariance stationarity does not guarantee that the

ARMA(p, q) process would be suitable for modeling. Let us consider the AR(1)
model

Yt = aYt−1 + 𝜖t,

where {𝜖t} ∼ WN(0, 𝜎2). The AR(1) model is covariance stationary if and only
if |a| ≠ 1. This can be seen in the following way. Let us consider first the case|a| < 1. We can write recursively

Yt = aYt−1 + 𝜖t

= a2Yt−2 + a𝜖t−1 + 𝜖t

⋮

= ak+1Yt−k−1 + ak
𝜖t−k + · · · + a𝜖t−1 + 𝜖t ,
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where k ≥ 0. Since |a| < 1, we get the MA(∞) representation7

Yt =
∞∑

j=0
aj
𝜖t−j,

which implies that {Yt} is covariance stationary. Let us then consider the case|a| > 1. Since Yt+1 = aYt + 𝜖t+1, we can write recursively
Yt = a−1Yt+1 − a−1

𝜖t+1

= a−2Yt+2 − a−2
𝜖t+2 − a−1

𝜖t+1

⋮

= a−k−1Yt+k+1 − a−k−1
𝜖t+k+1 − · · · − a−1

𝜖t+1,

where k ≥ 0. Since |a| > 1, we get the MA(∞) representation8

Yt = −
∞∑

j=1
a−j
𝜖t+j,

which implies that {Yt} is covariance stationary. The latter case |a| > 1 is not
suitable for modeling because Yt is a function of future innovations 𝜖t+j with
j ≥ 1.

We define causality of the process to exclude examples like the AR(1) model
with |a| > 1. An ARMA(p, q) process is called causal if there exists constants
{𝜓j} such that

∑∞
j=0 |𝜓j| < ∞ and

Yt =
∞∑

j=0
𝜓j𝜖t−j, t = 0,±1,±2,…

Let the polynomials a(z) and b(z) have no common zeroes. Then {Yt} is causal
if and only if a(z) ≠ 0 for all z ∈  such that |z| ≤ 1.9 This has been proved
in Brockwell and Davis (1991, Theorem 3.1.1). The coefficients {𝜓j} are deter-
mined by

∞∑
j=0
𝜓jzj = b(z)

a(z)
.

Thus, under the conditions that a(z) and b(z) have no common zeroes and
a(z) ≠ 0 for all z ∈  such that |z| ≤ 1, we have expressed an ARMA(p, q) pro-
cess as an infinite order moving average process. Thus, an ARMA(p, q) process
is covariance stationary under these conditions.

7 For each k ≥ 0 we have Yt −
∑∞

j=0 aj
𝜖t−j = ak+1Yt−k−1 −

∑∞
j=k+1 aj

𝜖t−j, where ak+1Yt−k−1 → 0 and∑∞
j=k+1 aj

𝜖t−j → 0 in the mean square, as k → ∞, because |a| < 1.
8 For each k ≥ 0 we have Yt +

∑∞
j=1 a−j

𝜖t+j = a−k−1Yt+k+1 +
∑∞

j=k+2 a−j
𝜖t+j, where a−k−1Yt+k+1 → 0

and
∑∞

j=k+2 a−j
𝜖t+j → 0 in the mean square, as k → ∞, because |a| > 1.

9 The condition
∑∞

j=0 |𝜓j| <∞ implies that
∑∞

j=0 |𝜓j|2 < ∞, which implies, in turn, that
∑∞

j=0 𝜓j𝜖t−j
converges in mean square.
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An ARMA( p, q) process is called invertible if there exists constants {𝜋j} such
that

∑∞
j=0 |𝜋j| <∞ and

𝜖t =
∞∑

j=0
𝜋jYt−j, t = 0,±1,±2,…

Let the polynomials a(z) and b(z) have no common zeroes. Then {Yt} is invert-
ible if and only if b(z) ≠ 0 for all z ∈  such that |z| ≤ 1. This has been proved
in Brockwell and Davis (1991, Theorem 3.1.2). The coefficients {𝜋j} are deter-
mined by

∞∑
j=0
𝜋jzj = a(z)

b(z)
.

Prediction of ARMA Processes The prediction formulas for ARMA processes
given the infinite past can be found in Hamilton (1994, p. 77). For the
ARMA(1,1) process Yt = aYt−1 + 𝜖t + b𝜖t−1 we have

E (Yt+𝜂 |Yt,Yt−1,…) = a𝜂−1(a + b)
∞∑

k=0
(−1)kbkYt−k , (5.28)

where 𝜂 ≥ 1; see Shiryaev (1999, p. 151). Note that the prediction formula (5.21)
of the MA(1) process and the prediction formula (5.27) of the AR(1) process
follow from (5.28).

5.3.3 Conditional Heteroskedasticity Models

Time series {Yt} satisfies the conditional heteroskedasticity assumption if

Yt = 𝜎t𝜖t, t = 0,±1,±2,… , (5.29)

where {𝜖t} is an IID(0, 1) process and {𝜎t} is the volatility process. The volatility
process is a predictable random process, that is, 𝜎t is measurable with respect
to the sigma-field t−1 generated by the variables Yt−1,Yt−2,…. We also assume
that 𝜖t is independent of Yt−1,Yt−2,…. Then,

E
(
Y 2

t |t−1
)
= E
(
𝜎

2
t 𝜖

2
t |t−1

)
= 𝜎

2
t E
(
𝜖

2
t |t−1

)
= 𝜎2

t E
(
𝜖

2
t
)
= 𝜎

2
t . (5.30)

Thus, 𝜎2
t is the best prediction of Y 2

t in the mean squared error sense. Also,
for 𝜂 ≥ 1,

E
(
Y 2

t+𝜂 |t
)
= E
(
𝜎

2
t+𝜂𝜖

2
t+𝜂 |t

)
= E
[
E
(
𝜎

2
t+𝜂𝜖

2
t+𝜂 |t+𝜂−1

) |t
]

= E
[
𝜎

2
t+𝜂E

(
𝜖

2
t+𝜂 |t+𝜂−1

) |t
]

= E
[
𝜎

2
t+𝜂 |t

]
. (5.31)
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Thus, the best prediction of 𝜎2
t+𝜂 gives the best prediction of Y 2

t+𝜂 , in the mean
squared error sense.

ARCH and GARCH processes are examples of conditional heteroskedasticity
models.

5.3.3.1 ARCH Processes
Process {Yt} is an ARCH(p) process (autoregressive conditional heteroskedas-
ticity process of order p ≥ 0), if Yt = 𝜖t𝜎t , where {𝜖t} is an IID(0, 1) process
and

𝜎
2
t = 𝛼0 +

p∑
i=1
𝛼iY 2

t−i, (5.32)

where 𝛼0 > 0 and 𝛼1,… , 𝛼p ≥ 0. As a special case, the ARCH(1) process is
defined as

Yt = 𝜖t

√
𝛼0 + 𝛼1Y 2

t−1 .

The ARCH model was introduced in Engle (1982) for modeling UK inflation
rates. The ARCH(p) process is strictly stationary if

∑p
i=1 𝛼i < 1; see Fan and Yao

(2005, Theorem 4.3) and Giraitis et al. (2000).
Let us consider the prediction of Y 2

t+𝜂 for 𝜂 ≥ 1 when the process is
an ARCH(p) process. The best prediction of Y 2

t+𝜂 , given the observations
Yt,Yt−1,…, is denoted by

predt(𝜂) = E
(
Y 2

t+𝜂 |t
)
.

We start with the one-step prediction. The best prediction of Y 2
t+1, given the

observations Yt,Yt−1,…, using the inference in (5.30), is
predt(1) = E

(
Y 2

t+1 |t
)
= E
(
𝜎

2
t+1𝜖

2
t+1 |t

)
= 𝜎

2
t+1E

(
𝜖

2
t+1 |t

)
= 𝜎2

t+1 = 𝛼0 + 𝛼1Y 2
t + 𝛼2Y 2

t−1 + · · · + 𝛼pY 2
t−p+1, (5.33)

because E(𝜖2
t+1 |t) = 1. For the two-step prediction we use (5.30) to obtain the

best predictor
predt(2) = E

(
Y 2

t+2 |t
)
= E
(
𝜎

2
t+2 |t

)
= E
[
𝛼0 + 𝛼1Y 2

t+1 + 𝛼2Y 2
t + · · · + 𝛼pY 2

t−p+2 |t

]
= 𝛼0 + 𝛼1predt(1) + 𝛼2Y 2

t + · · · + 𝛼pY 2
t−p+2.

The general prediction formula is
predt(𝜂) = E

(
Y 2

t+𝜂 |t
)
= E
(
𝜎

2
t+𝜂 |t

)
= 𝛼0 + 𝛼1EtY 2

t+𝜂−1 + · · · + 𝛼pEtY 2
t+𝜂−p,

= 𝛼0 + 𝛼1predt(𝜂 − 1) + · · · + 𝛼ppredt(𝜂 − p), (5.34)
where we denote Et = E( ⋅ |t). The best prediction is calculated recursively,
using the value of predt(1) in (5.33), and the fact that predt(𝜂) = Y 2

t+𝜂 for 𝜂 ≤ 0.
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The best 𝜂-step prediction in the ARCH(1) model is

E
(
Y 2

t+𝜂 |t
)
= 𝜎̄

2 + 𝛼𝜂−1
1
(
𝜎

2
t+1 − 𝜎̄

2) = 𝛼0
1 − 𝛼𝜂1
1 − 𝛼1

+ 𝛼𝜂1Y 2
t , (5.35)

where we assumed condition 𝛼1 < 1, which guarantees stationarity, and we
denote 𝜎̄2 = EY 2

t = 𝛼0∕(1 − 𝛼1).10

5.3.3.2 GARCH Processes
Process {Yt} is a GARCH(p, q) process (generalized autoregressive conditional
heteroskedasticity process of order p ≥ 0 and q ≥ 0), if

Yt = 𝜖t𝜎t , (5.37)

where {𝜖t} is an IID(0, 1) process and

𝜎
2
t = 𝛼0 +

p∑
i=1
𝛼iY 2

t−i +
q∑

i=1
𝛽i𝜎

2
t−i,

where 𝛼0 > 0, 𝛼1,… , 𝛼p ≥ 0, and 𝛽1,… , 𝛽q ≥ 0. As a special case we get the
GARCH(1, 1) model, where

𝜎
2
t = 𝛼0 + 𝛼1Y 2

t−1 + 𝛽𝜎
2
t−1. (5.38)

The GARCH model was introduced in Bollerslev (1986). The GARCH(p, q)
process is strictly stationary if

q∑
i=1
𝛼i +

p∑
j=1
𝛽j < 1; (5.39)

see Fan and Yao (2005, Theorem 4.4) and Bougerol and Picard (1992).

10 The prediction formula of the ARCH(1) model follows from the prediction formula of the
GARCH(1, 1) model, which is given in (5.40). We can also use the calculation in Shiryaev (1999,
p. 59), which gives that

𝜎
2
t+𝜂 = 𝛼0 + 𝛼1𝜎

2
t+𝜂−1𝜖

2
t+𝜂−1

= 𝛼0 + 𝛼1

(
𝛼0 + 𝛼1𝜎t+𝜂−2𝜖

2
t+𝜂−2

)
𝜖

2
t+𝜂−1

⋮

= 𝛼0 + 𝛼0

𝜂−1∑
j=1

j∏
i=1

𝛼1𝜖
2
t+j−i+1 + 𝜎

2
t

𝜂∏
i=1

𝛼1𝜖
2
t+𝜂−i.

Thus,

E
(
𝜎

2
t+𝜂 |t

)
= 𝛼0 + 𝛼0

𝜂−1∑
j=1
𝛼

j
1 + 𝛼

𝜂

1 Y 2
t

= 𝛼0
1 − 𝛼𝜂1
1 − 𝛼1

+ 𝛼𝜂1 Y 2
t . (5.36)

Thus, the best 𝜂-step prediction of Y 2
t in ARCH(1) model is given in (5.34), where 𝜂 ≥ 1 and we

used (5.31) and (5.36).
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The best one-step prediction of the squared value is obtained from (5.30) as

E
(
Y 2

t+1 |t
)
= 𝜎

2
t+1.

In the GARCH(1, 1) model the best 𝜂-step prediction of the squared value, in
the mean squared error sense, is

E
(
Y 2

t+𝜂 |t
)
= 𝜎̄

2 + (𝛼1 + 𝛽)𝜂−1 (
𝜎

2
t+1 − 𝜎̄

2)
, 𝜂 ≥ 1, (5.40)

where we assumed condition 𝛼1 + 𝛽 < 1, which guarantees strict stationarity,
and we denote the unconditional variance by

𝜎̄
2 = EY 2

t =
𝛼0

1 − 𝛼1 − 𝛽
. (5.41)

Let us show (5.40) for 𝜂 ≥ 2. Let us denote E(⋅ |t) = Et . We have

𝜎
2
t+𝜂 = 𝛼0 + 𝛼1Y 2

t+𝜂−1 + 𝛽𝜎
2
t+𝜂−1

and 𝛼0 = (1 − 𝛼1 − 𝛽)𝜎̄2. Thus,

𝜎
2
t+𝜂 − 𝜎̄2 = 𝛼1

(
Y 2

t+𝜂−1 − 𝜎̄
2) + 𝛽 (𝜎2

t+𝜂−1 − 𝜎̄
2)
.

Thus, using (5.31),

Et
(
𝜎

2
t+𝜂 − 𝜎̄2) = (𝛼1 + 𝛽)Et

(
𝜎

2
t+𝜂−1 − 𝜎̄

2)
⋮

= (𝛼1 + 𝛽)𝜂−1Et
(
𝜎

2
t+1 − 𝜎̄

2)
= (𝛼1 + 𝛽)𝜂−1 (

𝜎
2
t+1 − 𝜎̄

2)
.

We have shown (5.40), since Et(𝜎2
t+𝜂) = Et(Y 2

t+𝜂), by (5.31). We can also write the
best prediction of Y 2

t+𝜂 in the GARCH(1, 1) model as

E
(
Y 2

t+𝜂 |t
)
= 𝛼0

1 − (𝛼1 + 𝛽1)𝜂

1 − 𝛼1 − 𝛽1
+ (𝛼1 + 𝛽1)𝜂−1 (

𝛼1Y 2
t + 𝛽1𝜎

2
t
)
, (5.42)

where 𝜂 ≥ 1.
The prediction formulas (5.40) and (5.42) are written in terms of 𝜎2

t+1. We
have the following formula for 𝜎2

t+1 in a strictly stationary GARCH(1, 1) model:

𝜎
2
t+1 =

𝛼0

1 − 𝛽
+ 𝛼1

∞∑
k=0

𝛽
kY 2

t−k , (5.43)

where we assume 𝛼1 + 𝛽 < 1 to ensure strict stationarity. More generally, for
the GARCH(p, q) model we have

𝜎
2
t =

𝛼0

1 −
∑p

j=1 𝛽j
+

∞∑
k=1

dkY 2
t−k , (5.44)
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where dk are obtained from the equation
∞∑

k=1
dkzi =

∑q
i=1 𝛼izi

1 −
∑p

j=1 𝛽jzj
,

for |z| ≤ 1; see Fan and Yao (2005, Theorem 4.4).

5.3.3.3 ARCH(∞) Model
GARCH(1, 1) can be considered a special case of the ARCH(∞) model, since
(5.43) can be written as

𝜎
2
t = 𝛼 +

∞∑
k=1

𝛽kY 2
t−k ,

where 𝛽k = 𝛼1𝛽
k−1 and 𝛼 = 𝛼0∕(1 − 𝛽). We can obtain a more general

ARCH(∞) model by defining

𝜎
2
t = 𝛼 +

∞∑
k=1

𝜓k(𝜃)m(Yt−k), (5.45)

where 𝛼 ∈ R, 𝜃 ∈ Rp, and m ∶ R → R is called a news impact curve. More gen-
erally, following Linton (2009), the news impact curve can be defined as the
relationship between 𝜎2

t and yt−1 = y holding past values 𝜎2
t−1 constant at some

level 𝜎2. In the GARCH(1, 1) model the news impact curve is

m( y, 𝜎2) = 𝛼0 + 𝛼1y2 + 𝛽𝜎2
.

The ARCH(∞) model in (5.45) has been studied in Linton and Mammen
(2005), where it was noted that the estimated news impact curve is asymmetric
for S&P 500 return data. The asymmetric news impact curve can be addressed
by asymmetric GARCH processes.

5.3.3.4 Asymmetric GARCH Processes
Time series of asset returns show a leverage effect. Markets become more active
after a price drop: large negative returns are followed by a larger increase in
volatility than in the case of large positive returns. In fact, past price changes
and future volatilities are negatively correlated. This implies a negative skew to
the distribution of the price changes.

The leverage effect is taken into account in the model

𝜎
2
t = 𝛼0 + 𝛼1(𝜖t−1 − 𝛾𝜎t−1)2 + 𝛽𝜎2

t−1 (5.46)

= 𝛼0 + 𝛼1

(
Yt−1 − 𝛾𝜎2

t−1
)2

𝜎
2
t−1

+ 𝛽𝜎2
t−1,
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where 𝛾 ∈ R is the skewness parameter. The model was applied in Heston and
Nandi (2000) to price options.11 When log(St∕St−1) = 𝜎t𝜖t , then under (5.46)

Covt−1(𝜎t+1, log St) = −2𝛼1𝛾𝜎t.

When 𝛾 > 0, then negative values of 𝜖t−1 lead to larger increase in volatility than
positive values of the same size of 𝜖t−1. Now the unconditional variance is

𝜎̄
2 = EY 2

t =
𝛼0 + 𝛼1

1 − 𝛼1𝛾
2 − 𝛽

. (5.49)

5.3.3.5 The Moment Generating function
We need the moment generating function in order to compute the option prices
when the stock follows an asymmetric GARCH(1, 1) process. We follow Heston
and Nandi (2000). Let

Yt − Yt−1 = r + 𝜆𝜎2
t + 𝜎t𝜖t,

where r ∈ R, 𝜆 ∈ R, (𝜖t) are i.i.d. N(0, 1), and

𝜎
2
t = 𝛼0 + 𝛼1(𝜖t−1 − 𝛾𝜎t−1)2 + 𝛽𝜎2

t−1. (5.50)

For example, when the logarithmic returns follow the asymmetric GARCH(1, 1)
process, then

log St − log St−1 = r + 𝜆𝜎2
t + 𝜎t𝜖t ,

so that Yt = log St . We want to find the moment generating function

f (t,T , 𝜙) = Et exp{𝜙YT},

where t ≤ T and Et = E( ⋅ |t) is the conditional expectation at time t.
We have that

f (T ,T , 𝜙) = exp{𝜙YT}. (5.51)

Also,

f (T − 1,T , 𝜙) = exp
{
𝜙
[
YT−1 + r + 𝜆𝜎2

T
]
+ 1

2
𝜙

2
𝜎

2
T

}
(5.52)

because the moment generating function of z ∼ N(0, 1) is E exp{𝜙z} =
exp{𝜙2∕2}, and E exp{𝜙(𝜇 + 𝜎z)} = exp{𝜙𝜇 + 𝜎2

𝜙
2∕2}.

11 Engle and Ng (1993) define the nonlinear asymmetric GARCH model

𝜎
2
t = 𝛼0 + 𝛼1𝜎

2
t−1(𝜖t−1 − 𝛾)

2 + 𝛽𝜎2
t−1, (5.47)

which is for 𝛾 = 0 equal to the GARCH(1, 1) model. Engle and Ng (1993) have defined the VGARCH
model

𝜎
2
t = 𝛼0 + 𝛼1(𝜖t−1 − 𝛾)

2 + 𝛽𝜎2
t−1. (5.48)

Menn and Rachev (2009) propose the GARMAX model that can also cope with the leverage effect.
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For t ≤ T we have
f (t,T , 𝜙) = exp

{
𝜙Yt + A(t,T , 𝜙) + B(t,T , 𝜙)𝜎2

t+1
}
, (5.53)

where A and B are defined by the recursive formulas
A(T ,T , 𝜙) = B(T ,T , 𝜙) = 0,
A(t,T , 𝜙) = 𝜙r + A(t + 1,T , 𝜙) + B(t + 1,T , 𝜙)𝛼0

−1
2

log[1 − 2𝛼1B(t + 1,T , 𝜙)],

B(t,T , 𝜙) = 𝜙(𝜆 + 𝛾) − 1
2
𝛾

2 + 𝛽B(t + 1,T , 𝜙)

+
(𝜙 − 𝛾)2∕2

1 − 2𝛼1B(t + 1,T , 𝜙)
.

The cases t = T and t = T − 1 were proved in (5.51) and (5.52). Let t ≤ T − 2.
Let us make the induction assumption that the formulas hold at time t + 1.
Now,

f (t,T , 𝜙) = Et exp{𝜙YT}
= Et Et+1 exp{𝜙YT}
= Et f (t + 1,T , 𝜙) (5.54)
= Et exp

{
𝜙Yt+1 + A(t + 1,T , 𝜙) + B(t + 1,T , 𝜙)𝜎2

t+2
}
.

Insert values
Yt+1 = Yt + r + 𝜆𝜎2

t+1 + 𝜎t+1𝜖t+1,

𝜎
2
t+2 = 𝛼0 + 𝛼1(𝜖t+1 − 𝛾𝜎t+1)2 + 𝛽𝜎2

t+1

to get
f (t,T , 𝜙)

= Et exp
{
𝜙Yt + 𝜙r + A(t + 1,T , 𝜙) + B(t + 1,T , 𝜙)𝛼0

+ B(t + 1,T , 𝜙)𝛼1

(
𝜖t+1 − 𝛾𝜎t+1 +

𝜙𝜎t+1

2B(t + 1,T , 𝜙)𝛼1

)2

(5.55)

+
(
𝜙(𝜆 + 𝛾) + B(t + 1,T , 𝜙)𝛽 − 𝜙

2

4B(t + 1,T , 𝜙)𝛼1

)
𝜎

2
t+1

}
.

When 𝜖 ∼ N(0, 1), then

E exp{a(𝜖 + b)2} = exp
{
−1

2
log(1 − 2a) + ab2

1 − 2a

}
.

Equating terms in (5.54) and (5.55) gives the result.12

12 Denote for shortness B(t + 1) = B(t + 1,T , 𝜙). We have

ab2 =
(

𝜙
2

4B(t + 1)𝛼1
− 𝜙𝛾 + 𝛾2B(t + 1)𝛼1

)
𝜎

2
t+1.
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Figure 5.9 Moment generating functions under GARCH. We show functions Et exp{𝜙 log ST},
where (a) St = 1 and (b) St = 1.001. The case T − t = 1 is with black, T − t = 2 is with red, and
T − t = 3 is with blue.

Figure 5.9 shows moment generating functions 𝜙→ Et exp{𝜙 log ST}.
In panel (a) the current stock price is St = 1, and in panel (b) St = 1.001.
The one period moment generating function (T − t = 1) is with black, two
period (T − t = 2) is with red, and three period (T − t = 3) is with blue. The
parameters 𝛼0, 𝛼1, 𝛽, and 𝛾 are estimated from the daily S&P 500 daily data of
Section 2.4.1, using model (5.46).

Note that under the usual GARCH(1, 1) model

𝜎
2
t = 𝛼0 + 𝛼1Y 2

t−1 + 𝛽𝜎
2
t−1

functions A and B are defined by the recursive formulas

A(T ,T , 𝜙) = B(T ,T , 𝜙) = 0,
A(t,T , 𝜙) = A(t + 1,T , 𝜙) + B(t + 1,T , 𝜙)𝛼0

−1
2

log
[
1 − 2𝛼1B(t + 1,T , 𝜙)𝜎2

t+1
]
,

Thus,

ab2

1 − 2a
−

𝜙
2
𝜎

2
t+1

4B(t + 1)𝛼1
=

𝜎
2
t+1

1 − 2B(t + 1)𝛼1
(𝜙2∕2 − 𝜙𝛾 + 𝛾2B(t + 1)𝛼1),

because
1

1 − 2B(t + 1)𝛼1

𝜙
2

4B(t + 1)𝛼1
− 𝜙

2

4B(t + 1)𝛼1
=

𝜙
2∕2

1 − 2B(t + 1)𝛼1
.

Finally,

𝛾
2B(t + 1)𝛼1

1 − 2B(t + 1)𝛼1
=

𝛾
2∕2

1 − 2B(t + 1)𝛼1
− 1

2
𝛾

2
.
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B(t,T , 𝜙) = 𝜆𝜙 + 𝛽B(t + 1,T , 𝜙) +
𝜙

2∕2
1 − 2𝛼1B(t + 1,T , 𝜙)𝜎2

t+1
.

This means that A(t,T , 𝜙) and B(t,T , 𝜙) depend on the unobserved sequence
𝜎t+1,… , 𝜎T , unlike in the case of model (5.50).

5.3.3.6 Parameter Estimation
We discuss first estimation of the ARCH processes, and then extend the dis-
cussion to the GARCH processes.

Parameter Estimation for ARCH Processes Estimation of the parameters of
ARCH(p) model can be done using the method of maximum likelihood, if we
make an assumption about the distribution of innovation 𝜖t . When we have
observed Y1 = y1,… ,YT = yT , then the likelihood function is

L(𝛼0,… , 𝛼p) = fY1,…,Yp
( y1,… , yp)

T∏
t=p+1

fYt |Yt−1=yt−1,…,Y1=y1
( yt).

Let us ignore the term fY1,…,Yp
(y1,… , yp) and define the conditional likelihood

Lp(𝛼0,… , 𝛼p) =
T∏

t=p+1
fYt |Yt−1=yt−1,…,Y1=y1

( yt).

Let us denote the density of 𝜖t by f
𝜖
∶ R → R. Then the conditional density of

Yt = 𝜎t𝜖t , given Yt−1,… ,Y1, is

fYt |Yt−1=yt−1,…,Y1=y1
(yt) = fYt |Yt−1,…,Yt−p

( y) = 1
𝜎t

f
𝜖

(
y
𝜎t

)
,

where
𝜎

2
t = 𝛼0 + 𝛼1Y 2

t−1 + · · · + 𝛼pY 2
t−p.

The parameters are estimated by maximizing the conditional likelihood, and
we get

(𝛼̂0,… , 𝛼̂p) = argmax
𝛼0,…,𝛼p

log Lp(𝛼0,… , 𝛼p),

where the logarithm of the conditional likelihood is

log Lp(𝛼0,… , 𝛼p) = −1
2

T∑
t=p+1

log 𝜎2
t +

T∑
t=p+1

log f
𝜖

( yt

𝜎t

)
. (5.56)

If we assume that 𝜖t has the standard normal distribution 𝜖t ∼ N(0, 1), then
f
𝜖
(x) = exp{−x2∕2}∕

√
2𝜋 and

(𝛼̂0,… , 𝛼̂p) = argmin
𝛼0,…,𝛼p

T∑
t=p+1

(
log 𝜎2

t +
y2

t

𝜎
2
t

)
. (5.57)
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Parameter Estimation for GARCH Processes In the GARCH( p, q) model we can
use, similarly to (5.57),

(𝛼̂0,… , 𝛼̂p, 𝛽1,… , 𝛽q)

= argmin
𝛼0,…,𝛼p,𝛽1,…,𝛽q

T∑
t=r+1

(
log 𝜎̃2

t +
y2

t

𝜎̃
2
t

)
, (5.58)

where r ≥ max{p, q}. Unlike in the ARCH(p) model, 𝜎2
t is a sum of infinitely

many terms, and we need to truncate the infinite sum in order to be able to
calculate the conditional likelihood. The value 𝜎̃2

r+1 can be chosen as the sam-
ple variance using Y1,… ,Yr , and 𝜎̃2

t for t ≥ r + 2 can be computed using the
recursive formula. Then 𝜎̃2

t is a function of Y 2
1 ,… ,Y 2

t−1 and of the parameters.

5.3.3.7 Fitting the GARCH(1, 1) Model
We fit the GARCH(1, 1) model for S&P 500 index and for individual stocks of
S&P 500.

S&P 500 Daily Data Figure 5.10 shows tail plots of the residuals Yt∕𝜎t , where 𝜎t
is the estimated volatility in the GARCH(1, 1) model. Panel (a) shows the left
tail plot and panel (b) the right tail plot. The black points show the residuals,
the red curves show the standard normal distribution function, and the blue
curves show the Student distributions with degrees of freedom 3, 6, and 12.
Figure 3.2 shows the corresponding plots for the S&P 500 returns. We see that
the standard normal distribution fits well the central area of the distribution of
the residuals, but the tails may be better fitted with a Student distribution.
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Figure 5.10 GARCH(1,1) residuals: Tail plots. (a) Left tail plot; (b) right tail plot. The red curves
show the standard normal distribution function, and the blue curves show the Student dis-
tributions with degrees of freedom 3, 6, and 12.
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S&P 500 Components Data We compute GARCH estimates for daily S&P 500
components data, described in Section 2.4.5. Estimates are computed both
for the GARCH(1, 1) model and for the Heston–Nandi modification of the
GARCH(1, 1) model, defined in (5.46).13 Both models have parameters 𝛼0, 𝛼1,
and 𝛽. The Heston–Nandi model has the additional skewness parameter 𝛾 .

Figure 5.11(a) shows a scatter plot of (log 𝛼̂0, log 𝛼̂hn
0 ), where 𝛼̂0 are esti-

mates of 𝛼0 in the GARCH(1, 1) model and 𝛼̂
hn
0 are estimates of 𝛼0 in the

Heston–Nandi model. The red points show the estimates for daily S&P 500
data, described in Section 2.4.1. Panel (b) shows a scatter plot of (𝛼̂1, 𝛼̂

hn
1 ). We

see that the estimates of 𝛼hn
1 are of the order 𝜎2

𝛼̂1.
Figure 5.12(a) shows a scatter plot of (𝛽, 𝛽hn), where 𝛽 are estimates of 𝛽 in

the GARCH(1, 1) model, and 𝛽hn are estimates of 𝛽 in the Heston–Nandi model.
We leave out outliers with small estimates for 𝛽. Panel (b) shows a histogram
of estimates 𝛾̂ of 𝛾 in the Heston–Nandi model. The red points and the lines
show the estimates for daily S&P 500 data, described in Section 2.4.1. We see
that estimates of 𝛽 are close to 1, and they are more linearly related in the two
models than the estimates of 𝛼1 and 𝛼0. Also, we see that the estimates of the
skewness parameter 𝛾 are positive for almost all S&P 500 components, with
the median value about 2.5. This indicates that high negative returns increase
volatility more than the positive returns.
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Figure 5.11 GARCH(1,1) estimates versus Heston–Nandi estimates: 𝛼0 and 𝛼1. (a) A scatter
plot of (log 𝛼̂0, log 𝛼̂hn

0 ); (b) a scatter plot of (𝛼̂1, 𝛼̂
hn
1 ), where 𝛼̂0 and 𝛼̂1 are estimates in the

GARCH(1, 1) model, and 𝛼̂hn
0 and 𝛼̂hn

1 are estimates in the Heston–Nandi model.

13 Maximum likelihood estimates for GARCH(1, 1) model are computed using R-package
“tseries,” and the estimates for Heston–Nandi model are computed using R-package “fOptions.”
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Figure 5.12 GARCH(1,1) estimates versus Heston–Nandi estimates: 𝛽 and 𝛾 . (a) A scatter plot
of (𝛽, 𝛽hn), where 𝛽 are estimates in the GARCH(1, 1) model, and 𝛽

hn are estimates in the
Heston–Nandi model. Panel (b) shows a histogram of estimates 𝛾̂ of 𝛾 in the Heston–Nandi
model.

5.3.4 Continuous Time Processes

The geometric Brownian motion is used to model stock prices in the
Black–Scholes model. We do not go into details about continuous time mod-
els, but we think that it is useful to review some basic facts about continuous
time models. In particular, the geometric Brownian motion appears as the
limit of a discrete time binomial model.

5.3.4.1 The Brownian Motion
Stochastic process Wt , 0 ≤ t ≤ T , is called the standard Brownian motion, or
the standard Wiener process, if it has the following properties:

1) W0 = 0 with probability one,
2) Wt ∼ N(0, t),
3) Wt − Ws is independent of Ws for 0 ≤ s < t ≤ T .

The Brownian motion leads to the process

Xt = 𝜇t + 𝜎Wt ,

where𝜇 ∈ R is drift and 𝜎 > 0 is volatility. We can use the notation of stochastic
differential equations:

dXt = 𝜇dt + 𝜎dWt .
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5.3.4.2 Diffusion Processes and Itô’s Lemma
The diffusion Markov process is defined as

Xt = X0 +
∫

t

0
a(u,Xu)du +

∫

t

0
b(u,Xu)dWu, (5.59)

where 0 ≤ t ≤ T , X0 is a random variable, and

∫

T

0
|a(t,Xt)| dt < ∞,

∫

T

0
b2(t,Xt) dt <∞

with probability one; see Shiryaev (1999, p. 237). A definition of the stochastic
integrals with respect to the Brownian motion can be found in Shiryaev (1999,
p. 252).14 The definition of the process can be written with the shorthand nota-
tion of the stochastic differential equations:

dXt = a(t,Xt) dt + b(t,Xt) dWt , 0 ≤ t ≤ T . (5.60)

For example, a mean reverting model is defined as

dXt = 𝜆(𝜇 − Xt) dt + 𝜎Xt dWt , 0 ≤ t ≤ T .

Let Xt be a diffusion process as in (5.60), and let Yt = F(t,Xt), where F is
continuously differentiable with respect to the first argument and two times
continuously differentiable with respect to the second argument. Furthermore,
we assume that 𝜕F∕𝜕x > 0. Then Yt is a diffusion Markov process with

dYt = 𝛼(t,Yt)dt + 𝛽(t,Yt)dWt, (5.61)

where

𝛼(t, y) = 𝜕F(t, x)
𝜕t

+ a(t, x) 𝜕F(t, x)
𝜕x

+ 1
2

b2(t, x) 𝜕
2F(t, x)

dx2 ,

𝛽(t, y) = b(t, x) 𝜕F(t, x)
𝜕x

,

14 For a simple function

f (t, 𝜔) = Y0(𝜔)I0(t) +
m∑

i=1
Yi(𝜔)I(ri ,si]

(t)

the stochastic integral is defined as

It(f ) = ∫

t

0
f (s, 𝜔)dBs =

m∑
i=1

Yi(𝜔)(Wsi∧t − Wri∧t),

where Yi(𝜔) are random variables, 0 ≤ si < ri, and we denote x ∧ t = min{x, t}. The stochastic inte-
gral can be defined for “square integrable” random functions f (t, 𝜔) as the “limit” of integrals It(fn)
of simple functions fn, “approximating” function f .
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and t, x, and y are related by y = F(t, x). The expression for Yt follows from Itô’s
lemma; see Shiryaev (1999, p. 263).15

5.3.4.3 The Geometric Brownian Motion
The geometric Brownian motion is the stochastic process

St = S0 exp
{(
𝜇 − 1

2
𝜎

2
)

t + 𝜎Wt

}
, 0 ≤ t ≤ T , (5.62)

where Wt is the standard Brownian motion, 𝜇 ∈ R, and 𝜎 > 0. The stochastic
differential equation of the geometric Brownian motion is

dSt = 𝜇St dt + 𝜎St dWt , 0 ≤ t ≤ T . (5.63)

The fact that the solution of the stochastic differential equation in (5.63)
is given in (5.62) follows from Itô’s formula. Indeed, we consider diffusion
process Xt = log(St), X0 = log S0, a(t,Xt) = 𝜇 − 𝜎2∕2, and b(t,Xt) = 𝜎. Then
Itô’s formula implies that St = eXt is a diffusion process with 𝛼(t, St) = 𝜇St and
𝛽(t, St) = 𝜎St .

5.3.4.4 Girsanov’s Theorem
Let (Ω, , (t)t≥0,P) be a filtered probability space and let (Wt,t)t≥0 be a Brow-
nian motion. Let (at,t)t≥0 be a stochastic process with P(∫ t

0 a2
s ds < ∞) = 1, for

0 ≤ t ≤ T < ∞. We construct a process (Zt,t)t≥0 by setting

Zt = exp
{
∫

t

0
asdWs −

1
2 ∫

t

0
a2

s ds
}
.

If E exp{ 1
2
∫

t
0 a2

s ds} <∞, then EZT = 1. We can define a probability measure
P̃T on (Ω,T ) by

P̃T (A) = E(ZT IA),

15 Let us consider the case Yt = F(Xt), so that we can write Itô’s lemma as

dYt = Fx dXt +
1
2

Fxx b2(t,Xt) dt,

where Fx and Fxx are the first and the second derivatives. Taylor expansion gives

F(t,X0 + ΔXt) − F(t,X0) ≈ FxΔXt +
1
2

Fxx(ΔXt)
2
,

where ΔXt = Xt − X0. If the changes have zero mean, E(ΔXt)2 ≍ b(t,Xt)2Δ. Thus, in the stochas-
tic case the second-order term is not of a smaller order than the first-order term, whereas in the
deterministic case the second-order term is of a smaller order than the first-order term. The Itô’s
lemma holds for the class of Itô processes. An Itô process is defined as

Xt = X0 + ∫

t

0
a(u, 𝜔)du +

∫

t

0
b(u, 𝜔)dWu.

Itô processes are more general than diffusion processes, because in diffusion processes dependence
on 𝜔 is through Xu(𝜔); see Shiryaev (1999, p. 257).
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where A ∈ T . Let PT = P |T be the restriction of P to T . Measure P̃T is
equivalent to PT . Girsanov’s theorem states that

W̃t = Wt −
∫

t

0
asds, (5.64)

defines a Brownian motion (W̃t,t , P̃T )t≤T ; see Shiryaev (1999, p. 269). A proof
can be found in Shiryaev (1999, Chapter VII, Section 3b).

5.4 Multivariate Time Series Models

The multivariate GARCH model is defined for vector time series {Yt} that has
d components. It is assumed that {Yt} is strictly stationary and

Yt = Σ1∕2
t 𝜖t, t = 0,±1,±2,… , (5.65)

where Σ1∕2
t is the square root of a positive definite covariance matrix Σt , Σt is

measurable with respect to the sigma-algebra generated by Yt−1,Yt−2,…, and
𝜖t is a d-dimensional i.i.d. process with E𝜖t = 0 and Var(𝜖t) = Id, where Id is the
d × d identity matrix.

The square root ofΣt can be defined by writing the eigenvalue decomposition
Σt = QtΛtQ′

t , where Λt is the diagonal matrix of the eigenvalues of Σt and Qt
is the orthogonal matrix whose columns are the eigenvectors of Σt . Then we
define Σ1∕2

t = QtΛ
1∕2
t Q′

t , where Λ1∕2
t is the diagonal matrix obtained from Λt by

taking square root of each element. We can define Σ1∕2
t also as a Cholesky factor

of Σt .
Multivariate GARCH (MGARCH) processes are reviewed in McNeil

et al. (2005, Section 4.6), Bauwens et al. (2006), and Silvennoinen and
Teräsvirta (2009). Below we write the models only for the case d = 2,
so that Yt = (Yt,1,Yt,2). The multivariate GARCH models are denoted with
MGARCH(p, q). We restrict ourselves to the first-order models with p = q = 1.
The multivariate GARCH models are based on (5.65) but differ in the definition
of the recursive formula for Σt .

5.4.1 MGARCH Models

First we define the VEC model and two restrictions of it: the diagonal VEC
model and the Baba–Engle–Kraft–Kroner (BEKK) model. Then we define the
constant correlation model and the dynamic conditional correlation model.

Let us denote 𝜎2
t,1 = Var(Yt,1), 𝜎2

t,2 = Var(Yt,2), and 𝜎t,12 = Cov(Yt,1,Yt,2). The
VEC model and the diagonal VEC model were introduced in Bollerslev et al.
(1988). The VEC model assumes that

𝜎
2
t,1 = a0 + a1Y 2

t−1,1 + a2Y 2
t−1,2 + a3Yt−1,1Yt−1,2

+b1𝜎
2
t−1,1 + b2𝜎

2
t−1,2 + b3𝜎t−1,12,
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𝜎
2
t,2 = c0 + c1Y 2

t−1,1 + c2Y 2
t−1,2 + c3Yt−1,1Yt−1,2

+d1𝜎
2
t−1,1 + d2𝜎

2
t−1,2 + d3𝜎t−1,12,

𝜎t,12 = e0 + e1Y 2
t−1,1 + e2Y 2

t−1,2 + e3Yt−1,1Yt−1,2

+f1𝜎
2
t−1,1 + f2𝜎

2
t−1,2 + f3𝜎t−1,12.

This model has 21 parameters a0,… , f3. Since the model has a large number of
parameters, it is useful to consider models with less parameters. The diagonal
VEC model has only nine parameters and assumes that

𝜎
2
t,1 = a0 + a1Y 2

t−1,1 + b𝜎2
t−1,1, (5.66)

𝜎
2
t,2 = c0 + c1Y 2

t−1,2 + d𝜎2
t−1,2, (5.67)

𝜎t,12 = e0 + e1Yt−1,1Yt−1,2 + f 𝜎t−1,12. (5.68)

Thus, in the diagonal VEC model the components of Yt follow univariate
GARCH models. The BEKK model was introduced in Engle and Kroner
(1995). The model has 11 parameters and it can be written more easily with
the matrix notation as

Σt = G0 + G′Yt−1Y ′
t−1G + H′Σt−1H,

where G0 is a symmetric 2 × 2 matrix and G and H are 2 × 2 matrices. The
BEKK model is obtained from the VEC model by restricting the parameters.
We can express the parameters a1,… , f3 of the VEC model in terms of the
parameters of the BEKK model as follows:

a1 = G2
11, a2 = G2

12, a3 = 2G11G12, b1 = H2
11, b2 = H2

12, b3 = 2H11H12,

c1 = G2
22, c2 = G2

21, c3 = 2G22G21, d1 = H2
22, d2 = H2

21, d3 = 2H22H21,

e1 = G11G21, e2 = G22G12, e3 = G11G22 + G12G21,

f1 = H11H21, f2 = H22H12, f3 = H11H22 + H12H21,

where we denote the elements of G by Gij and the elements of H by Hij.
The recursive formula forΣt can be written by using the correlation matrix Pt .

Let Δt be the diagonal matrix of the standard deviations of Σt . The correlation
matrix Pt , corresponding to Σt , is such that Σt = ΔtPtΔt .

The constant correlation MGARCH model, introduced in Bollerslev (1990), is
such that the components of Yt follow univariate GARCH models, and the cor-
relation matrix is constant. That is, Σt = ΔtPΔt and Δt = diag(𝜎t,1, 𝜎t,2), where
P is the constant correlation matrix. The constant correlation GARCH model
assumes the univariate GARCH models for the components, as in (5.66) and
(5.67), and

𝜌t = 𝜌.

The dynamic conditional correlation MGARCH model, introduced in Engle
(2002), is such that the components of Yt follow univariate GARCH models
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and
𝜌t = e0 + e1Ỹt−1,1Ỹt−1,2 + f 𝜌t−1, (5.69)

where Ỹt = Δ−1
t Yt, e0, e1, f ≥ 0, e1 + f < 1. Engle (2002) suggests to estimate

ê0 = (1 − ê1 − f̂ )𝜌̄t,

where 𝜌̄t = t−1∑t
i=1 Ỹi,1Ỹi,2 is the sample covariance with Ỹi,1 = Yi,1∕𝜎̂i,1 and

Ỹi,2 = Yi,2∕𝜎̂i,2. We do not typically have −1 ≤ 𝜌̂t ≤ 1, and thus the conditional
correlation is estimated from

𝜚t =
𝜌t

𝜎t,1𝜎t,2
,

where 𝜎2
t,1 = e0 + e1Ỹ 2

t−1,1 + f 𝜎2
t−1,1 and 𝜎2

t,2 = e0 + e1Ỹ 2
t−1,2 + f 𝜎2

t−1,2.

5.4.2 Covariance in MGARCH Models

The recursive equation (5.68) in the stationary diagonal VEC model implies that

𝜎t,12 =
e0

1 − f
+ e1

∞∑
k=1

f k−1Yt−k,1Yt−k,2.

This follows similarly as in the case of GARCH(1, 1) model (see (5.43) and
(5.44)). The recursive equation (5.69) in the stationary dynamic conditional
correlation GARCH model implies similarly that

𝜌t =
e0

1 − f
+ e1

∞∑
k=1

f k−1Ỹt−k,1Ỹt−k,2,

where Ỹt = (Yt,1∕𝜎t,1,Yt,2∕𝜎t,2).
Given the observations Y1 = (Y1,1,Y1,2),… ,YT = (YT ,1,YT ,2), we estimate the

parameters, similarly to GARCH(p, q) estimation in (5.58), by maximizing the
conditional modified likelihood,

loge L̃r(a0, a1,… , e1, f ) = −1
2

T∑
t=r+1

loge|Σ̃t| + T∑
t=r+1

log f
𝜖

(
Σ̃−1∕2

t Yt

)
,

where r ≥ 1, f
𝜖

is the density of the standard normal bivariate distribution
N(0, I2), and Σ̃t is the truncated covariance, with elements 𝜎̃2

t,1, 𝜎̃2
t,2, 𝜎̃t,12, where

𝜎̃t,12 =
e0

1 − f
+ e1

t∑
k=1

f k−1Yt−k,1Yt−k,2,

and 𝜎̃2
t,1, 𝜎̃2

t,2 are defined similarly.
Given the data Y0,… ,Yt−1, the MGARCH(1, 1) estimator for the conditional

covariance is

𝜎̂t,12 =
ê0

1 − f̂
+ ê1

t−1∑
k=0

f̂ kYt−k−1,1Yt−k−1,2, (5.70)
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where the parameter estimators ê0, ê1, and f̂ are are calculated with the
maximum likelihood method.

5.5 Time Series Stylized Facts

Time series models of financial time series should be such that they are able to
capture stylized facts. We describe the stylized facts mainly using the daily S&P
500 index data, described in Section 2.4.1. Stylized facts of financial time series
are studied by Cont (2001) and Bouchaud (2002).

1) Returns are uncorrelated.
Figure 5.5(a) shows the sample autocorrelation function for the S&P 500
returns. Sample autocorrelations are small, although they are not completely
inside the 95% confidence band.
When the time scale is shorter than tens of minutes, there can be consider-
able correlation; see Cont (2001) and Bouchaud (2002).

2) Absolute returns are correlated.
Figure 5.5(b) shows the sample autocorrelation function for the absolute
S&P 500 returns. The sample autocorrelation goes inside the 95% confidence
band after the lag of 500 days, but does not stay inside the band.
The decay of the autocorrelation of absolute returns has roughly a power
law with an exponent in range [0.2, 0.4]; see Cont (2001).
Since absolute returns are correlated, we can claim that the time series
of returns does not consist of independent observations, although they
are uncorrelated. The autocorrelation can also be seen in scatter plots.
Figure 5.13 shows scatter plots of absolute returns. Panel (a) shows the
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Figure 5.13 S&P 500 scatter plots of absolute returns. (a) Scatter plot of points(
log |Rt|, log |Rt+1|); (b) scatter plot of points

(
log |Rt|, log |Rt+400|).
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Figure 5.14 Simulated GARCH(1, 1) returns and S&P 500 returns. (a) A time series of simulated
returns from a GARCH(1, 1) model; (b) the time series of S&P 500 returns.

scatter plot of points (log |Rt|, log |Rt+1|), t = 1,… ,T − 1. Panel (b) shows
the scatter plot of points (log |Rt|, log |Rt+400|), t = 1,… ,T − 400.

3) Volatility is clustered.
There are localized outbursts of volatility. The bursts of high volatility last
for some time, and then the volatility returns to more normal levels.
Figure 5.14 shows simulated GARCH(1, 1) returns and real S&P 500
returns. Panel (a) shows a time series of returns that are simulated from
the GARCH(1, 1) model with parameters being equal to the estimates from
S&P 500 daily data. The first return is simulated from the distribution
N(0, 𝛼̂0∕(1 − 𝛼̂1 − 𝛽)). Panel (b) shows the time series of logarithmic S&P
500 returns. S&P 500 data is described in Section 2.4.1. Figure 3.29 shows
the corresponding simulated i.i.d. Gaussian returns.
The decay of volatility correlation is slow. The volatility correlation can be
defined as the autocorrelation of squared returns, and the autocorrelation
of the squared returns shows similar behavior as the autocorrelation of the
absolute returns. Volatility displays a positive autocorrelation over several
days; see Cont (2001) and Bouchaud (2002).

4) Extreme returns appear in clusters.
Figure 5.15 shows the 10 largest and the 10 smallest returns of S&P 500. The
largest returns are shown in blue and the smallest returns are shown in red.
We can see that the biggest losses and the biggest gains occur at the same
dates.

5) Leverage effect.
Markets become more active after a price drop; past price changes and
future volatilities are negatively correlated. This implies a negative skew to
the distribution of the price changes. The leverage effect has been taken
into account in the VGARCH model in Engle and Ng (1993) and in the
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Figure 5.15 S&P 500 returns. The 10 smallest returns are shown in red and the 10 largest
returns are shown in green.

VGARCH related option pricing in Heston and Nandi (2000). We study
asymmetric GARCH models in Section 5.3.3.
Figures 5.11 and 5.12 study parameter fitting in the basic GARCH(1, 1)
model and in an asymmetric GARCH(1, 1). Figure 5.12(b) shows that the
skewness parameter tends to be positive for S&P 500 components.

6) Conditional heavy tails.
Even after correcting the returns for volatility clustering, the residual time
series still has heavy tails. The residuals may be calculated, for example, via
GARCH-type models.
Figure 5.10 shows the tails of the residuals when GARCH(1, 1) is fitted to
S&P 500 daily data.

7) The kurtosis has slow decay.
This means that the autocorrelation of the fourth power of the returns has
slow decay; see Bouchaud (2002).

8) Volatility and volume are correlated.
Volatility and the volume of the activity have long-ranged correlations; see
Cont (2001) and Bouchaud (2002).
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6

Prediction

We concentrate on prediction with nonparametric smoothing. Nonparametric
smoothing can be divided into time and state space smoothing. Time space
smoothing means that we use moving averages and state space smoothing
means that we use kernel regression with state variables (external explanatory
variables). The prediction formulas of ARMA and GARCH processes are
related to time and state space smoothing. These prediction formulas are given
in Section 5.3, where time series models are considered. Section 5.2 considers
the combination of time and state space smoothing with parametric models.

Our emphasis will be more on the economic significance than on the statisti-
cal significance. We say that a prediction method is economically significant if it
can produce portfolios with significantly higher Sharpe ratios than the Sharpe
ratios of the portfolios that are constructed without prediction methods. How-
ever, looking at the sum of squared prediction errors can give insights into the
underlying reasons for the economic significance.

The classical theory of efficient markets says that the asset returns are unpre-
dictable. If the asset returns were predictable, investors would buy the assets
whose predicted returns are high, and eventually this buying would increase
the prices and distort the predicted returns. However, it is possible that risk
aversion of investors makes the asset returns predictable. For example, in a
recession the expected returns could be high but investors are not able to fully
utilize the high expected returns, because they have to worry about bankruptcy
or unemployment. This could keep the expected returns high by preventing the
extensive buying of risky assets. Also, some investment methods require a level
of sophistication that is not available to many investors. For example, utiliz-
ing momentum effect or volatility trading are not available to many investors,
which can keep the expected returns high for some well-known investment
strategies.

Section 6.1 studies methods of prediction. Section 6.2 considers forecast eval-
uation. Section 6.3 reviews some typical predictive variables to be used in asset
return prediction. Section 6.4 studies the prediction of S&P 500 and 10-year
bond returns.

Nonparametric Finance, First Edition. Jussi Klemelä.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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6.1 Methods of Prediction

Time space smoothing is covered in Section 6.1.1 and state space smoothing is
covered in Section 6.1.2, where we also explain linear prediction under covari-
ance stationarity.

6.1.1 Moving Average Predictors

We give the prediction formula of MA(1) process (moving average process of
order one) in (5.21). This prediction formula is an exponentially weighted mov-
ing average of the previous values of the time series. Now we give a general
definition of a moving average.

6.1.1.1 One-Sided Moving Average
Let us observe the values Y1,… ,Yt of a time series. We define the moving aver-
age prediction of Yt+𝜂 for 𝜂 ≥ 1 as

f̂ (t) = 1
h + 1

t∑
i=t−h

Yi,

where h = 0, 1, 2,…. More generally, a one-sided moving average can be
defined as

f̂ (t) =
t∑

i=1
piYi, (6.1)

where the weights satisfy

p1 ≤ · · · ≤ pt ,

t∑
i=1

pi = 1. (6.2)

To get a flexible class of moving averages we use a kernel function
K ∶ [0,∞) → R and smoothing parameter h > 0. We can take, for example,
K(x) = exp(−x)I[0,∞)(x).1 The one-sided moving average is

f̂ (t) =
t∑

i=1
pi(t)Yi, (6.3)

where

pi(t) =
K((t − i)∕h)∑t
j=1 K((t − j)∕h)

. (6.4)

Note that the prediction step 𝜂 ≥ 1 does not show up in the definition
of the one-sided moving average. The prediction step 𝜂 can affect the

1 Note that Gijbels et al. (1999) use half-kernels, which are kernel functions that are zero in their
positive arguments, like K(x) = exp(x)I(−∞,0](x).
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choice of the smoothing parameter h. It would be natural to choose a large
smoothing parameter h when the prediction step 𝜂 is large. Then the pre-
dictor with a long prediction horizon would be close to the arithmetic mean
t−1 ∑t

i=1 Yi.

6.1.1.2 Exponential Moving Average
The exponential moving average is a one-sided moving average obtained by
taking K(x) = exp(−x) I[0,∞)(x) and h = −1∕ log 𝛾,where 0 < 𝛾 < 1. That is, the
exponential moving average is defined as

f̂ (t) =
t∑

i=1
pi(t)Yi, (6.5)

pi(t) =
exp{(i − t)∕h}∑t
j=1 exp{(j − t)∕h}

, (6.6)

where h > 0 is the smoothing parameter. Now the estimator (6.3) is equal to2

f̂ (t) = 1 − 𝛾
1 − 𝛾 t

t∑
i=1
𝛾

t−iYi =
1 − 𝛾
1 − 𝛾 t

t−1∑
i=0
𝛾

iYt−i. (6.7)

We get a slightly different exponential moving average by making the recur-
sive definition

ma(t) = (1 − 𝛾)Yt + 𝛾ma(t − 1), (6.8)

where 0 ≤ 𝛾 ≤ 1. This leads to

ma(t) = (1 − 𝛾)
t∑

i=1
𝛾

t−iYi,

when the moving average is calculated from Yt,… ,Y1, and we choose the initial
value ma(1) = (1 − 𝛾)Y1. With infinite past the moving average is

ma(t) = (1 − 𝛾)
∞∑

i=0
𝛾

iYt−i.

Figure 6.1 compares the risk-free rate to the exponentially weighted mov-
ing averages of monthly returns of (a) S&P 500 monthly gross returns and
(b) US Treasury 10-year bond monthly gross returns. The data is described
in Section 2.4.3. The black time series shows the 1-month T-bill rate as a
gross return. The moving averages of S&P 500 returns have h = 30 (red) and
h = 1000 (blue). The moving averages of 10-year bond returns have h = 30
(red) and h = 60 (blue). In the case of 10-year bond, we can note that the

2 We have that 𝛾 = exp(−1∕h) and exp (−(T − i)∕h) = 𝛾
T−i
.Using the geometric series summation

formula
∑T−1

j=0 rj = (1 − rT )∕(1 − r), 0 < r < 1, we have
∑T

j=1 𝛾
T−i = (1 − 𝛾T )(1 − 𝛾).
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Figure 6.1 Risk-free rate and moving averages. (a) Moving averages of S&P 500 monthly gross
returns with small h (red) and large h (blue); (b) moving averages of 10-year bond monthly
gross returns with small h (red) and large h (blue). The black time series shows the 1-month
T-bill rate.

moving averages are almost always lower than the risk-free rate until about
1980, and after that the moving averages are almost always higher than the
risk-free rate. The moving averages of S&P 500 returns show a somewhat
similar pattern but less clearly. Note that the moving average with h = 1000 is
almost equal to the sequentially calculated sample mean.

6.1.2 State Space Predictors

A state space predictor is a predictor that is obtained from a regression func-
tion estimator. A regression function f ∶Rd → R is defined as the conditional
expectation

f (x) = E (Z |X = x),

where Z ∈ R is the response variable and X ∈ Rd is the explanatory variable.
A regression function estimator is a function f̂ ∶Rd → R, which is computed
from regression data (X1,Z1),… , (Xn,Zn), consisting of identically distributed
observations.

Let us observe vector time series

(X1,Y1),… , (Xt ,Yt),

where Yi ∈ R, and Xi ∈ Rd contains information that is available at time i. For
example, the state variable Xi can be a sequence of the previous observations
of Yi, so that

Xi = (Yi,… ,Yi−d+1), (6.9)

where d ≥ 1 and for d ≥ 2 we assume to have Y0,… ,Y2−d available.
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We use this data to make a prediction of Yt+𝜂 , where 𝜂 ≥ 1 is the prediction
horizon. We construct regression data

(X1,Y1+𝜂),… , (Xt−𝜂,Yt). (6.10)

Let us denote n = T − 𝜂 and Zt = Yt+𝜂 , so that the regression data in (6.10) can
be written as

(X1,Z1),… , (Xn,Zn), (6.11)

where Xt ∈ Rd are observations from d explanatory variables and Zt ∈ R are
observations from the response variable. If f̂ is a regression function estimator,
we predict the value Yt+𝜂 by

f̂ (Xt), (6.12)

using the value Xt of the state variable observed at time t.
We define the linear least squares regression function estimator and the ker-

nel regression estimator.

6.1.2.1 Linear Regression
Linear least squares regression function estimator is

f̂ (x) = 𝛼̂ + 𝛽′x, x ∈ Rd
,

where 𝛼̂ ∈ R and 𝛽 ∈ Rd are obtained as the minimizers of
n∑

i=1
(Zi − 𝛼 − 𝛽′Xi)2

.

Least Squares Solution The solution can be written as

𝛼̂ = Z̄ − 𝛽′X̄, (6.13)

and

𝛽 =

[ n∑
i=1

(Xi − X̄)(Xi − X̄)′
]−1 n∑

i=1
(Xi − X̄)(Zi − Z̄)′, (6.14)

where

X̄ = 1
n

n∑
i=1

Xi, Z̄ = 1
n

n∑
i=1

Zi.

In the case d = 1, we have

𝛼̂ = Z̄ − 𝛽X̄, 𝛽 =
∑n

i=1(Xi − X̄)(Zi − Z̄)∑n
i=1 (Xi − X̄)2

. (6.15)

There are more formulas for linear regression in Section 10.4.1.
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Linear Prediction Under Covariance Stationarity Let us discuss the idea of autore-
gression in (6.9) more carefully. Let {Yi} be a covariance stationary time series
with EYi = 0 and covariance function 𝛾(k) = EYiYi+k , where k ∈ Z. We want to
find the best linear prediction of Yt+𝜂 when data Y1,… ,Yt is available, where
𝜂 ≥ 1 is the prediction horizon. We define the best linear prediction of Yt+𝜂 to be

𝛽1Yt + · · · + 𝛽dYt−d+1, (6.16)

where 1 ≤ d ≤ t, and 𝛽1,… , 𝛽d ∈ R minimize

E (Yt+𝜂 − 𝛽1Yt − · · · − 𝛽dYt+d+1)2
. (6.17)

Let us denote X = (Yt,… ,Yt−d+1)′, Y = Yt+𝜂 , and 𝛽 = (𝛽1,… , 𝛽d)′. Then we can
write (6.17) in matrix notation as

E (Y − 𝛽′X)2
.

A minimizer satisfies E (XX′)𝛽 = E (XY ). If E (XX′) is invertible, then a mini-
mizer satisfies

𝛽 = [E (XX′)]−1E (XY ). (6.18)
We have that

E (XY ) = (𝛾(𝜂),… , 𝛾(𝜂 + d − 1))′

and matrix E (XX′) is the d × d matrix whose elements are

[𝛾(i − j)]i,j=1,…,d.

First, we can implement the predictor using the usual least squares estimator,
which replaces the expectations in (6.18) with the sample means, similarly as in
(6.14). Second, we can implement the predictor by estimating the autocovari-
ance function 𝛾 . Several parametric models for 𝛾 can be used. Let 𝛽1,… , 𝛽d be
the estimates of the coefficients 𝛽1,… , 𝛽d. The predictor can be written as

Ŷt+𝜂 = 𝛽1Yt + · · · + 𝛽tYt−d+1. (6.19)

Formula (6.18) involves the inverse of d × d matrix. This matrix is large when
d is big. We could take d = t. Brockwell and Davis (1991, Section 5.2) define
recursive algorithms for computing Ŷt+𝜂 in (6.16) which avoid the computation
of the inverse of E (XX′). These recursive algorithms are the Durbin–Levinson
algorithm and the innovations algorithm. Brockwell and Davis (1991, Propo-
sition 5.1.1) states that matrix EXX′ is nonsingular for every d, if 𝛾(0) > 0 and
𝛾(k) → 0 as k → ∞.

6.1.2.2 Kernel Regression
Let us define kernel regression estimator when regression data is given in (6.11)
as (X1,Z1),… , (Xn,Zn). Kernel regression estimator is

f̂ (x) =
n∑

i=1
pi(x)Zi, (6.20)
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where the weights are

pi(x) =
K((x − Zi)∕h)∑n
j=1 K((x − Zj)∕h)

, (6.21)

K ∶Rd → R is a kernel function and h > 0 is the smoothing parameter.
The weights pi(x) are normalized to sum to one, and when K ≥ 0, then the

weights satisfy pi(x) ≥ 0. The smoothing parameter may be chosen using the
normal reference rule in (3.44):

hi =
( 4

d + 2

)1∕(d+4)
n−1∕(d+4)

𝜎̂i,

for i = 1,… , d, where 𝜎̂i is the sample standard deviation for the ith variable.
The idea behind the kernel regression estimator is that the weight pi(x)

is large for those Zi for which Xi is close to x. Remember that the pre-
dictor was defined in (6.12) as f̂ (Xt), where Xt is the current value of the
predictive variable. This means that we search those time points i where
the state Xi is similar to the current state Xt , and give a large weight to the
corresponding Zi.

Figure 6.2 illustrates the idea of searching for time points whose state is sim-
ilar to the current state. The predictive variable Xt is the dividend price ratio,
defined in (6.31). The green bands indicate the time periods where the divi-
dend yield has been close to the last value of the dividend price ratio. That is,
those times where the dividend price ratio Xt is in the range [Xt − h,Xt + h] are
indicated, where Xt is the last value of the dividend price ratio. The black hor-
izontal line shows the value Xt , and the red horizontal lines show the interval
[Xt − h,Xt + h]. Panel (a) shows the case h = 0.003 and panel (b) shows the case
h = 0.001.
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Figure 6.2 Looking for times with similar states. The time periods similar to the current state
in terms of the dividend price ratio are shown with green. (a) h = 0.003; (b) h = 0.001.
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6.2 Forecast Evaluation

The sum of squared prediction errors can be used to evaluate the performance
of a predictor and to compare the performance of two predictors. Often the
question arises whether there exist predictability. For example, is it possible
to predict stock returns? To answer the question positively, we need to con-
struct a predictor that performs better than a simple benchmark, constructed
under the assumption of no predictability. The benchmark is usually the sample
average. We would like to test whether an observed smaller prediction error is
statistically significant.

6.2.1 The Sum of Squared Prediction Errors

First we define the out-of-sample sum of squared prediction errors and the
in-sample sum of squared prediction errors. Then we discuss visual tools to
study sums of squared prediction errors.

6.2.1.1 Out-of-Sample Sum of Squares
An out-of-sample sum of squared prediction errors can be defined as recursive,
fixed, or rolling.

The Recursive Out-of-Sample Sum of Squares The sequential (or recursive)
out-of-sample sum of squares of prediction errors is defined as

SSPE( f̂ ) =
T−𝜂∑
t=t0

(Yt+𝜂 − f̂t(Xt))2
, (6.22)

where 1 < t0 ≤ T − 𝜂, 𝜂 ≥ 1 is the prediction horizon, and f̂t is estimated using
the data (Xi,Yi+𝜂), i = 1,… , t − 𝜂. We can normalize the sum of squared predic-
tion errors to get a coefficient of determination. A coefficient of determination
compares the performance of a predictor to the performance of a sample mean.
The sequential out-of-sample coefficient of determination is defined as

R2 = 1 −
SSPE( f̂ )
SSPE(Ȳ )

, SSPE(Ȳ ) =
T−𝜂∑
t=t0

(Yt+𝜂 − Ȳt)2
, (6.23)

where Ȳt = t−1 ∑t
i=1 Yi is the arithmetic mean using the t first observations.

When R2
> 0, then the regression forecast is diagnosed to be more accurate

than the historical average. The inequality

R2
≤ 0

is equivalent to the inequality

SSPE(Ȳ ) ≤ SSPE( f̂ ).
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The Fixed Out-of-Sample Sum of Squares In the definition (6.22) of the sum of
squared prediction errors the estimate f̂t(Xt) is updated constantly. A compu-
tationally less expensive sum of squared prediction errors can be defined by
dividing the sample into an estimation set and into a test set. The predictor is
constructed using the estimation set and the sum of squared prediction errors
is computed using the test set:

SSPEtest( f̂ ) =
T−𝜂∑
t=t0

(Yt+𝜂 − f̂t0
(Xt))2

, (6.24)

where f̂t0
is computed using the estimation data (Xt,Yt+𝜂), t = 1,… , t0 − 𝜂. The

test data is (Xt ,Yt+𝜂), t = t0,… ,T − 𝜂.

The Rolling Out-of-Sample Sum of Squares The third version of the out-of-sample
sum of squared prediction errors is obtained when the predictor is updated
at every time point, but the predictor uses always the same number of past
observations. The predictor uses windows of observations that are rolled over
the available data. Let predictor f̂s,t be constructed using the data (Xi,Yi+𝜂),
i = s,… , t. Define

SSPEroll( f̂ ) =
T−𝜂∑
t=t0

(Yt+𝜂 − f̂t−t0+1,t(Xt))2
. (6.25)

Now the sum of squared prediction errors is computed for the estimator that
is constructed using exactly t0 observations at every time point.

The rolling out-of-sample sum of squared prediction errors can be used to
study whether a prediction method is better than another prediction method
uniformly over all sample sizes t0. It is possible that a prediction method is bet-
ter than another method for small sample sizes, and worse for large sample
sizes.

6.2.1.2 In-Sample Sum of Squares
We can distinguish between the in-sample and the out-of-sample sum of
squared prediction errors. The in-sample sum of squares of prediction errors
is defined as

SSPEin( f̂ ) =
T−𝜂∑
t=1

(Yt+𝜂 − f̂T (Xt))2
,

where f̂T is computed using the complete data (Xt,Yt+𝜂), t = 1,… ,T − 𝜂. Thus,
the predictor f̂T (Xt) is constructed using the same data as is used to measure
the accuracy of the predictor. The in-sample sum of squared prediction errors is
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sometimes used, although it could give a too optimistic view of the performance
of a predictor.3

6.2.1.3 Visual Diagnostics
We define time series

Dt = SSPE( f̂ )t − SSPE(Ȳ )t, t = t0,…T − 𝜂, (6.26)

where

SSPE( f̂ )t =
t∑

i=t0

(Yi+𝜂 − f̂i(Xi))2
, SSPE(Ȳ )t =

t∑
i=t0

(Yi+𝜂 − Ȳi)2
.

Time series {Dt} reveals useful information about the time periods where the
prediction is accurate and about the time periods where it is inaccurate. This
graphical diagnostics has been applied in Goyal and Welch (2003, 2008).

If Dt − Du < 0, then predictor f̂i performs better than the sequential sample
average Ȳi over time period [u, t], where t > u. If Dt − Du > 0, then the sequen-
tial average is better over time period [u, t]. Indeed,

Dt − Du =
t∑

i=u+1
(Yi+𝜂 − f̂i(Xi))2 −

t∑
i=u+1

(Yi+𝜂 − Ȳi)2
,

where t > u. Thus, we search for time periods [u, t]which are such that Dt < Du,
to find periods of good prediction performance.

6.2.2 Testing the Prediction Accuracy

We are interested in testing the null hypothesis that the sample average is a bet-
ter predictor than a more sophisticated predictor f̂ . Thus, the null hypothesis
is that the expected sum of squared prediction errors for the sample average is
less than the expected sum of squared prediction errors for predictor f̂ :

H0 ∶E(SSPE(Ȳ )) ≤ E(SSPE( f̂ )), (6.27)
H1 ∶E(SSPE(Ȳ )) > E(SSPE( f̂ )).

3 In regression analysis the in-sample sum of squares of prediction errors is sometimes called
the sum of the squared residuals. The number SStot =

∑T−𝜂
t=1 (Yt+𝜂 − Ȳ )2 is called the total sum of

squares. In linear regression we can write R2 = SSreg∕SStot , where SSreg =
∑T−𝜂

t=1 ( f̂ (Xt) − Ŷ )2 is the
explained sum of squares. Number R2 takes values in [0, 1] when the intercept is included in the
model, and it measures how well the linear model fits the data. In linear regression with a single
explanatory variable R2 is equal to the square of the correlation coefficient between the observations
Yt+𝜂 and the fitted values f̂ (Xt).
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6.2.2.1 Diebold–Mariano Test
The test statistic of Diebold and Mariano (1995) can be used in testing when
SSPEtest( f̂ ) is defined in (6.24). Let us denote the regression forecast of Yt+𝜂 by
Ŷt+𝜂 and the forecast based on historical average by Ȳ . Let us denote

et = Ŷt+h − Yt+h, 𝜖t = Ȳ − Yt+h. (6.28)

We get the time series of loss differentials

dt = 𝜖
2
t − e2

t .

The null hypothesis and the alternative hypothesis are

H0 ∶Edt ≤ 0, H1∶Edt > 0. (6.29)

Since we are using SSPEtest( f̂ ), defined in (6.24), then we can assume that dt
are identically distributed, and then the null and the alternative hypothesis are
equivalent to the hypotheses in (6.27).

We apply the central limit theorem for dependent random variables, as stated
in (3.96). Under the null hypothesis and under the assumptions of the central
limit theorem, we have

(T − 𝜂 − t0 + 1)−1∕2
T−𝜂∑
t=t0

dt
d
−−→N(0, 𝜎2),

as T → ∞, where

𝜎
2 =

∞∑
k=−∞

𝛾(k), 𝛾(k) = Ed0dk .

We can use the estimate

𝜎̂
2 = 𝛾̂(0) = (T − 𝜂 − t0 + 1)−1

T−𝜂∑
t=t0

(dt − d̄)2
,

where d̄ = (T − 𝜂 − t0 + 1)−1 ∑T−𝜂
t=t0

dt . We can also use an estimate that takes
the serial correlation into account:

𝜎̂
2 =

T−1∑
k=−(T−1)

𝑤(k)𝛾̂(k),

where 𝑤(k) = max{0, 1 − k∕h} and h > 0 is a suitable smoothing parameter.
Let us choose the test statistics

D = 𝜎̂
−1(T − t0 + 1)−1∕2

T∑
t=t0

dt .
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When we observe D = dobs, then the p-value is calculated by P(D > dobs) ≈
1 − Φ(dobs), where Φ is the distribution function of the standard normal
distribution.4

The asymptotics of the Diebold–Mariano test statistic is not as straightfor-
ward when SSPE( f̂ ) is the recursive sum of squared prediction errors as in
(6.22), because then the assumptions of the central limit theorem do not hold;
see West (1996). In fact, in the sequential case dt are not identically distributed
because the predictor is constructed using at each step one more observation
than in the previous step.

West (2006) reviews the alternative asymptotics. We have considered the
case where t0 is fixed, and T → ∞. We can consider the case where both
t0 → ∞ and T → ∞. Then we have to consider separately the cases where
(T − t0)∕t0 → 0 and (T − t0)∕t0 → ∞. When (T − t0)∕t0 → 0, then the esti-
mation error involved in the construction of the predictors is negligible, and
we can typically replace the predictor f̂t0

with its limit. The asymptotics of
the recursive sum of squared prediction errors in (6.22) can be derived by
separating the estimation error involved in the construction of the predictors
and the estimation error involved in estimating the performance of the limit of
the predictor.

6.2.2.2 Tests Using Sample Correlation and Covariance
Let Xt = 𝜖t + et and Zt = 𝜖t − et , where 𝜖t and et are defined in (6.28). Then,
Cov(Xt,Zt) = E𝜖2

t − Ee2
t , when E𝜖t = Eet = 0. Thus, the hypothesis in (6.29) are

equivalent to the hypotheses

H0 ∶Cov(Xt,Zt) ≤ 0, H1 ∶Cov(Xt ,Zt) > 0,

where the covariance can also be replaced by the correlation. This was noted
by Granger and Newbold (1977). We can derive the distribution, or the

4 Diebold and Mariano (1995) note that we could also test the hypothesis where the median
replaces the expectation:

H0∶median(dt) ≤ 0, H1∶median(dt) > 0.

In this case, we can use the sign test or the Wilcoxon’s signed-rank test; see Lehmann (1975).
Diebold and Mariano (1995) note also that when 𝜖t and et are zero mean, Gaussian, serially uncor-
related, and contemporaneously uncorrelated, then

Y =
∑T−𝜂

t=t0
𝜖

2
t∑T=𝜂

t=t0
e2

t

∼ F(n, n),

where F(n, n) is the F-distribution with degrees of freedom n = T − 𝜂 − t0 + 1. We can use test
statistics Y to test the null hypothesis H0∶E𝜖2

t ∕Ee2
t ≤ 1. Large values of Y lead to the rejection of

the null hypothesis.
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asymptotic distribution, of the sample covariance or the sample correlation
coefficient under various assumption. For example, when 𝜖t and et are zero
mean, Gaussian, and serially uncorrelated, then

𝜌̂xz√(
1 − 𝜌̂2

xz
)
∕(n − 1)

∼ tn−1,

where 𝜌̂xz is the sample correlation coefficient, n is the sample size used in the
calculation of the sample correlation coefficient, and tn−1 is the t-distribution
with n − 1 degrees of freedom; see Hogg and Craig (1978, p. 300). Meese and
Rogoff (1988) use the sample covariance as a test statistics and apply the asymp-
totic distribution of the sample covariance, as given in Priestley (1981, p. 692).
The asymptotic distribution of the sample correlation is given in Brockwell and
Davis (1991).

6.3 Predictive Variables

We describe macroeconomic indicators that can be used to predict asset
returns. The indicators are risk indicators (default spreads, credit spreads, and
volatility indexes), interest rate variables (term spreads and real yield), stock
market indicators (dividend price ratio, dividend yield, earnings, and valuation
metrics), and sentiment indicators.5

6.3.1 Risk Indicators

Risk indicators include default spreads, credit spreads, and volatility indexes.
The global financial stress index (GFSI), introduced by BofA Merrill Lynch, is
an example of a further risk indicator.

6.3.1.1 Default Spread
The default spread is defined as the difference

BAAt − AAAt ,

where BAAt is the yield of the BAA rated companies and AAAt is the yield of
the AAA rated companies.

Figure 6.3 shows (a) the monthly time series of default spread and (b) the
differenced time series.6

5 I wish to thank Kari Vatanen for helpful discussions concerning predictive variables.
6 We use the data provided by Amit Goyal in the web page http://www.hec.unil.ch/agoyal/.
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Figure 6.3 Default spread. (a) Time series of the default spread; (b) time series of the
differences.
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Figure 6.4 TED spread. (a) Time series of TED spread; (b) time series of the differences.

6.3.1.2 Credit Spreads
The short term financing expenses of banks are captured by the Treasury bill
Eurodollar difference (TED) spread. TED spread is defined as the difference
between the 3-month US Libor rate and the 3-month US T-bill rate.

Figure 6.4 shows (a) the time series of TED spread and (b) the differenced
time series of TED spread.7

The Libor-OIS spread is the difference between the 3-month Libor rate and
the OIS rate. OIS is an acronym for the overnight index swap rate, which shows
market expectations of future interest rates set by central banks.

7 The data is obtained from the St. Louis Fred site. The ticker symbol for the 3-month US Libor
rate is BBUSD3M and the ticker symbol for the 3-month US T-bill rate is FRTBW3M.
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Figure 6.5 VIX index. (a) Time series of the VIX index; (b) time series of the differences.

6.3.1.3 Volatility Indexes
Chicago board of options exchange (CBOE) created volatility index (VIX)
in 1993. The original VIX was constructed using the implied volatilities of
eight different S&P 100 (OEX) option series so that, at any given time, it
represented the implied volatility of a hypothetical at-the-money S&P 100
option with 30 days to expiration. The historical prices exist from 1986. Since
only at-the-money options were used, no information about the volatility skew
was incorporated.

The new VIX is based on S&P 500 index option prices and it incorporates
information from the volatility skew by using a wider range of strike prices
rather than just at-the-money series. See (14.66) for the formula of the new
CBOE VIX index. Other volatility indexes include the JPMorgan Forex (FX)
volatility index.

Figure 6.5 shows (a) the time series of VIX index from CBOE and (b) the
differenced time series of VIX index.

6.3.2 Interest Rate Variables

In this section, we describe the term spread and the real yield.

6.3.2.1 Term Spread
A term spread is the difference between the yield of a longer maturity bond and
a shorter maturity bond. The yield of a zero-coupon bond is defined in (2.3) and
in Section 18.1.2. The term spread can be defined as

Tbondt − Tbillt , (6.30)

where Tbondt is the yield of the US Treasury 10-year and Tbillt is the yield of
the US Treasury 1-month bill.



178 6 Prediction
T

er
m

 s
pr

ea
d

T
er

m
 s

pr
ea

d 
di

ffe
re

nc
e

−
0.

02
0.

00
0.

02
0.

04

−
0.

02
0.

00
0.

02
0.

04

(b)(a)

1960 1980 2000 1960 1980 2000

Figure 6.6 Term spread. (a) The time series of term spread; (b) the time series of the differences
of term spread.

Figure 6.6 shows in panel (a) the monthly time series of the term spread and
in panel (b) the differences of the term spread.8

The term spread could also be the difference between the yield of the 10-year
bond and the yield of the 2-year bond, or the difference between the yield of
the 10-year bond and the 3-month bond.

6.3.2.2 Real Yield
The real yield is the yield corrected with the expected inflation. The real yield
can be obtained from the US Government 10-year TIPS yield data, available
since about 1997.

6.3.3 Stock Market Indicators

Stock market indicators include the dividend price ratio, the dividend yield,
earnings, valuation, and relative valuation.

6.3.3.1 Dividend Price Ratio and Dividend Yield
The dividend price ratio of the S&P 500 index is defined as

DPt =
Dt

St
, (6.31)

where Dt is the dollar value of the dividends paid by the S&P 500 companies
during the last 12 months and St is the value of the S&P 500 index.9

8 We use the data provided by Amit Goyal in the web page http://www.hec.unil.ch/agoyal/. The
bond yield data can be obtained from the St. Louis Fred site with the ticker GS10. The St. Louis
yields have range about 1.53–15.32, so they have to be divided by 100 to get the yields in percent-
ages.
9 This terminology is used by Goyal and Welch (2003), who define the yearly dividend price ratio as
DPt = Dt∕St , where Dt and St are values at the end of the year. Note that sometimes the logarithmic
ratio log DPt is used.
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Figure 6.7 Dividend price ratio. (a) Time series of the dividend price ratio; (b) time series of the
differences.

Figure 6.7 shows (a) the time series of the dividend price ratio and (b) the
time series of differences.10

The dividend yield is defined as

DYt =
Dt

St−1
,

where Dt is the total amount of dividends paid by the companies of the index
during the year and St−1 is the value of the index at the beginning of the year.

The dividend price ratio and the dividend yield have lost importance as stock
market indicators, because many companies use stock buy backs instead of
paying dividends.

6.3.3.2 Valuation in Stock Markets
Earnings yield is earnings per share divided by the share price. Usually earnings
is taken to be the net income for the most recent 12-month period.

Earnings yield is reciprocal to the price earnings ratio (P/E ratio). The trailing
P/E is the price divided by the trailing 12 month earnings per share.

The price book ratio (P/B ratio) is the stock price divided by the book value
per share. The book value is taken to be the value of total assets minus the value
of intangible assets and liabilities.

6.3.3.3 Relative Valuation
We can compare prices of the large capital stocks versus small capital stocks.
This can be done by comparing S&P 500 and Russell 2000, because S&P 500
contains large capital stocks and Russell 2000 contains small capital stocks.

10 We use the data provided by Amit Goyal in the web page http://www.hec.unil.ch/agoyal/.
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Figure 6.8 Purchasing managers index. (a) Time series of the PMI; (b) time series of the
differences.

6.3.4 Sentiment Indicators

Sentiment indicators include purchasing managers indexes (PMI), and investor
and consumer sentiment indexes.

6.3.4.1 Purchasing Managers Index
PMI are obtained by surveying purchasing managers of private sector compa-
nies. There are several regional versions of PMI.

Figure 6.8 shows the time series of the US purchasing managers index and
the time series of differences.11

6.3.4.2 Investor and Consumer Sentiment
The investor sentiment can be measured with the Sentix index, which is avail-
able from http://www.sentix.de. Consumer sentiment indexes include Confer-
ence Board Consumer Confidence and University of Michigan Survey of Con-
sumer Confidence.

6.3.5 Technical Indicators

We define technical indicators for a time series S1,… , St of (monthly) closing
prices.

11 The data is obtained from the Institute for Supply Management (ISM) web page http://www
.ism.ws/ISMReport/content.cfm?ItemNumber=10752, but the page is not available anymore. The
purchasing managers index is a weighted average of five sub-indexes: production level, new orders
from customers, whether supplier deliveries are coming faster or slower, inventories, and employ-
ment level. The weights of the sub-indexes are 0.25, 0.3, 0.15, 0.1, and 0.2. The managers respond to
the survey either with “better,” “same,” or “worse.” The index values can be from 0 to 100. The index
values are obtained by taking the percentage of responses that reported better conditions than the
previous month and adding the half of the percentage of responses that reported no change in
conditions.
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Many of the technical indicators are based on moving averages, and the mov-
ing averages themselves can be used as technical indicators. Moving averages
are defined in Section 6.1.1. In statistical finance moving averages are typically
computed from returns or squared returns, but in technical analysis moving
averages of stock prices are used. The basic moving average is

Mt(k) =
1
k

k−i∑
i=0

St−i.

Often k = 3 or k = 6 months. The exponentially weighted moving average is
defined as

Et(k) = 𝜆

∞∑
i=0

(1 − 𝜆)iSt−i = 𝜆St + (1 − 𝜆)Et−1(k),

where 𝜆 = 2∕(k + 1).
The trend is defined as

log
St

Mt(12)
.

Figure 6.9 shows the time series of S&P 500 trend and the time series of
differences.

Moving average convergence divergence (MACD) is defined as

Ct(k1, k2) = Mt(k1) − Mt(k2),

where typically k1 = 26 and k2 = 12. This is a difference of two moving averages,
where we subtract from a slow period a fast period.
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Figure 6.9 S&P 500 trend. (a) Time series of the S&P 500 trend; (b) time series of the
differences.
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MACD signal line is defined as

Dt(k, k1, k2) =
1
k

k−i∑
i=0

Ct−i(k1, k2).

This is a moving average of MACD. Typically k = 9. A buy signal is generated
when MACD crosses above the MACD signal line.

MACD histogram is defined as

Ct(k1, k2) − Dt(k, k1, k2).

This is the difference between the MACD line and the MACD signal line. A buy
signal is generated when the MACD histogram crosses the zero line.

Stochastic oscillator is defined as

FASTt(k) =
St − mini=0,…,k−1St−i

maxi=0,…,k−1St−i − mini=0,…,k−1St−i
.

Typically k = 5. We can calculate the moving average of the stochastic oscil-
lator. A buy signal is generated when any oscillator crosses below a threshold
(say 20) and then crosses above the same threshold. In the minimum we can
use the daily lows, and in the maximum we can use the daily highs, instead of
the closing prices,

Relative strength index is defined as

RSIt(k) = 100 ×
⎛⎜⎜⎝1 −

(
1 +

k−1 ∑k−1
i=0 Sup

t−i

k−1 ∑k−1
i=0 Sdo𝑤n

t−i

)−1⎞⎟⎟⎠ ,
where

Sup
t =

{
St , if St > St−1,

0, otherwise, Sdo𝑤n
t =

{
St , if St ≤ St−1,

0, otherwise.
Typically, k = 9, k = 14, or k = 25. A buy signal is generated when the rela-
tive strength index crosses below a lower band of 30, for example, since this
situation is characterized as oversold.

Money flow index MFIt(k) is similar to the relative strength index RSIt(k),
but now volume weighted price is used, instead of the price. Define Styp

t = (Sh
t +

Sl
t + St)∕3 to be the typical price, where Sl

t is the daily low and Sh
t is the daily

high. Let MFt = Volt ⋅ Styp
t be the strength of the money flow. Money flow

index MFIt(k) is the moving average of MFt . Typically k = 15. When MFIt(k)
crosses below threshold 30, for example, then the market is oversold, and one
should buy.

6.4 Asset Return Prediction

We study the prediction of S&P 500 returns and US Treasury 10-year bond
returns using monthly data, described in Section 2.4.3. We use the predictive



6.4 Asset Return Prediction 183

variables, which are described in Section 6.3. The gross return of an asset is
defined as

Rt+1 =
St+1

St
,

where St is the price of the asset. The s period return is defined as

R(s)
t+s =

St+s

St
=

t+s∏
u=t+1

Ru, (6.32)

where s ≥ 1. Note that {R(s)
t } is a monthly time series, even when the return

horizon is longer than 1 month. The monthly time series {Rt} has typically only
a small autocorrelation, but using a prediction horizon s longer than 1 month
creates additional autocorrelation to the time series {R(s)

t } due to the overlap:
R(s)

t and R(s)
t+1 are products which have s − 1 common terms Rt−s+2,… ,Rt .12

We consider the prediction of R(s)
t+s at time t, where R(s)

t+s is the s period return,
defined in (6.32). To make the prediction, we use regression

R(s)
t+s = f (Xt) + 𝜖t+s, (6.33)

where Xt ∈ Rd is a vector of predicting variables, f ∶Rd → R is the unknown
regression function, and 𝜖t+s is random noise. For example, in linear regression
f (x) = 𝛼 + 𝛽′x, where 𝛼 ∈ R and 𝛽 ∈ Rd are unknown regression coefficients.

In portfolio selection the rebalancing of the portfolio weights is often done at
least monthly. Thus, we need a prediction of 1-month returns. The prediction of
1-month returns can be obtained from the regression in (6.33) by setting s = 1,
but it turns out that there are better alternatives to make the prediction.

The first alternative to obtain a prediction for 1-month returns is to use
regression model

(R(s)
t+s)

1∕s = f (Xt) + 𝜖t+s. (6.34)

The fitted value f̂ (Xt) gives the prediction

R̂t+1 = f̂ (Xt). (6.35)

The second alternative is to obtain the s period prediction R̂(s)
t+s = f̂ (Xt) from

(6.33), and define the one period prediction as13

R̂t+1 =
(

R̂(s)
t+s

)1∕s
. (6.36)

The two alternative prediction methods seem to give similar results in portfolio
selection, as studied in Chapter 12.

12 Note that it is a different thing to predict Rt+𝜂 = St+𝜂∕St at time t, and to predict R(s)
t+s at time

t. Thus, we use notation s instead of notation 𝜂, to differentiate between these two concepts of
prediction horizon.
13 Sometimes the prediction R̂(s)

t+s is negative, and in this case we take R̂t+1 = (max{0, R̂(s)
t+s})1∕s.
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6.4.1 Prediction of S&P 500 Returns

We consider the prediction of S&P 500 returns for various prediction horizons,
using dividend price ratio and term spread as predictors. Dividend price ratio
is defined in (6.31) and term spread is defined in (6.30). Predictor Xt in (6.33) is
either dividend price ratio, term spread, or the pair of dividend price ratio and
term spread.

6.4.1.1 S&P 500 Returns
Figure 6.10 shows S&P 500 1-month returns (black time series), 1-year returns
(red time series), and 5-year returns (green time series). All time series have
1-month frequency. Panel (a) shows the returns R(s)

t+s, defined in (6.32). Panel (b)
shows the times series (R(s)

t+s)1∕s. We see that the times series with longer return
horizons are smoother and have higher autocorrelation than the time series
with shorter return horizons.

Figure 6.11 shows autocorrelations for several lags and horizons. Panel (a)
shows autocorrelations for lags l = 1, 2, 3. The black curve has l = 1, the red
curve has l = 2, and the blue curve has l = 3. The x-axis shows the prediction
horizon s = 1, 2,… , 60, and the y-axis shows the autocorrelation Cor(R(s)

t ,R
(s)
t+l).

For horizons s = 1, 2 the autocorrelations are close to zero, but when horizon
increases, the autocorrelation starts to increase rapidly towards one, for all lags
l = 1, 2, 3.

6.4.1.2 Linear Regression for Predicting S&P 500 Returns
Figure 6.12 shows R2 for predicting S&P 500 returns using dividend price
ratio and term spread as predictors in linear regression. The out-of-sample
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Figure 6.10 S&P 500 returns for various horizons. Panel (a) shows the returns R(s)
t+s, defined in

(6.32). Panel (b) shows the times series (R(s)
t+s)1∕s. The black time series show 1-month returns,

the red time series show 1-year returns, and the green time series show 5-year returns.
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Figure 6.11 S&P 500 return autocorrelations for various horizons and lags. (a) We show
autocorrelations Cor(R(s)

t , R(s)
t+l), where lag is l = 1 (black), l = 2 (red), and l = 3 (blue). The x-axis

shows return horizon s = 1, 2,… , 60. (b) We show autocorrelations for lags l = 1, 2,… , 120,
for horizons s = 1 (black), s = 12 (red), and s = 60 (green).
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Figure 6.12 R2 of linear regression when predicting S&P 500 returns. Predictors are the dividend
price ratio (red), the term spread (green), and both the dividend price ratio and the term
spread (black). Panel (a) shows R2 from regression (6.33) when predicting s month returns,
and Panel (b) shows R2 from regression (6.34) when predicting 1-month returns.

coefficient of determination R2 is defined in (6.23). Panel (a) shows R2 from
regression (6.33), where R(s)

t+s is predicted, with x-axis showing the prediction
horizon s. Panel (b) computes R2 from regression (6.34), where (R(s)

t+s)1∕s is
the response variable, 1-month returns are predicted, and x-axis shows the
horizon s that is used in fitting the regression coefficients. The red curve shows
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Figure 6.13 Time series of predictions and realized values. (a) Prediction horizon of 1 year;
(b) prediction horizon of 5 years. The black time series show the realized values R(s)

t+s, the green
time series show the predictions when the predictor is dividend price ratio, the yellow time
series show the predictions when the predictor is term spread, and red time series show the
predictions when the predictors are both dividend price ratio and term spread.

R2 when dividend price ratio is predictor, The green curve shows R2 when term
spread is predictor, and the black curve shows R2 when both dividend price
ratio and term spread are predictors. Panel (a) shows that R2 is large when
returns with large horizon s are predicted. Panel (b) shows that when 1-month
returns are predicted, then R2 increases above zero when parameter s is about
10–20, and after that increasing s does not improve R2.

Figure 6.13 shows both the time series of realized values and the time series of
several predictions. In panel (a) the prediction horizon is 1 year and in panel (b)
the prediction horizon is 5 years. The time series of realized values R(s)

t+s is shown
as black curves. The time series of predicted values 𝛼̂ + 𝛽Xt is shown as a green
curve when the predictor is dividend price ratio and as a yellow curve when the
predictor is term spread. The time series of predicted values is red when the
predictors are both dividend price ratio and term spread.

Figure 6.14 shows the regression data and the fitted regression functions as
pink lines, when dividend price ratio is the predictor. Panel (a) shows the case of
the prediction horizon of 1 year and panel (b) shows the case of the prediction
horizon of 5 years. Since we are doing out-of-sample prediction, there are many
fitted regression functions, and we show them all. A new regression function
is fitted always when a new data point is added. The blue time series show the
regression function that is fitted using all the data.

Figure 6.15 shows the regression data and the fitted regression functions as
pink lines, when term spread is the predictor. Panel (a) shows the case of the
prediction horizon of 1 year and panel (b) shows the case of the prediction
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Figure 6.14 Dividend price ratio as a predictor: Scatter plots and regression functions.
(a) Prediction horizon of 1 year; (b) prediction horizon of 5 years. Scatter plots show the points
(Xt , R(s)

t+s). The pink lines show the fitted regression functions.
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Figure 6.15 Term spread as a predictor: Scatter plots and regression functions. (a) Prediction
horizon of 1 year; (b) prediction horizon of 5 years. Scatter plots show the points (Xt , R(s)

t+s).
The pink lines show the fitted regression functions.

horizon of 5 years. The blue time series show the regression function which is
fitted using all the data.

6.4.2 Prediction of 10-Year Bond Returns

We study linear regression when the explanatory variables are the dividend
price ratio and term spread (difference of the yield of the US Treasury 10-year
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bond and the US Treasury 1-month bill). The response variables are the gross
returns of the US Treasury 10-year bond for a given horizon, defined as

Yt+s = R(s)
t+s =

t+𝜂∏
i=t+1

exp(Rbond,i),

where Rbond,i is defined in (2.5). We fit the linear regression Yt+s = 𝛼 + 𝛽Xt + 𝜖t+s
using monthly data.

6.4.2.1 10-Year Bond Returns
Figure 6.16 shows US Treasury 10-year bond 1-month returns (black time
series), 1-year returns (red time series), and 5-year returns (green time series).
All time series have 1-month frequency. Panel (a) shows the returns R(s)

t+s,
defined in (6.32). Panel (b) shows the times series (R(s)

t+s)1∕s. We see that
the times series with longer return horizons are smoother and have higher
autocorrelation than the time series with shorter return horizons.

Figure 6.17 shows autocorrelations for several lags and horizons. Panel (a)
shows autocorrelations for lags l = 1, 2, 3. The black curve has l = 1, the red
curve has l = 2, and the blue curve has l = 3. The x-axis shows the prediction
horizon s = 1, 2,… , 60, and the y-axis shows the autocorrelation Cor(R(s)

t ,R
(s)
t+l).

For horizons s = 1, 2 the autocorrelations are close to zero, but when horizon
increases, the autocorrelation starts to increase rapidly towards one, for all lags
l = 1, 2, 3.

6.4.2.2 Linear Regression for Predicting 10-Year Bond Returns
Figure 6.18 shows R2 for predicting the US Treasury 10-year bond returns
using dividend price ratio and term spread as predictors in linear regression.
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Figure 6.16 Ten-year bond returns for various horizons. Panel (a) shows the returns R(s)
t+s,

defined in (6.32). Panel (b) shows the times series (R(s)
t+s)1∕s. The black time series show 1-month

returns, the red time series show 1-year returns, and the green time series show 5-year returns.
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Figure 6.17 Ten-year bond autocorrelations for various horizons and lags. (a) We show
autocorrelations Cor(R(s)

t , R(s)
t+l), where lag is l = 1 (black), l = 2 (red), and l = 3 (blue). The x-axis

shows return horizon s = 1, 2,… , 60. (b) We show autocorrelations for lags l = 1, 2,… , 120,
for horizons s = 1 (black), s = 12 (red), and s = 60 (green).
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Figure 6.18 R2 of linear regression when predicting 10-year bond returns. Predictors are the
dividend price ratio (red), the term spread (green), and both the dividend price ratio and
the term spread (black). Panel (a) shows R2 from regression (6.33) when predicting s-month
returns and Panel (b) shows R2 from regression (6.34) when predicting 1-month returns.

The coefficient of determination R2 is defined in (6.23). Panel (a) shows R2 from
regression (6.33) and x-axis is the prediction horizon. panel (b) calculates R2

from regression (6.34), when predicting 1-month returns, and x-axis shows the
horizon that is used in fitting the regression coefficients. The red curve shows
R2 when dividend price ratio is the predictor, The green curve shows R2 when
term spread is the predictor, and the black curve shows R2 when both dividend
price ratio and term spread are the predictors. Panel (a) shows that increasing
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Figure 6.19 Time series of predictions and realized values. (a) Prediction horizon of 1 year;
(b) prediction horizon of 5 years. The black time series show the realized values R(s)

t+s, the green
time series show the predictions when the predictor is dividend price ratio, the yellow time
series show the predictions when the predictor is term spread, and red time series show the
predictions when the predictors are both dividend price ratio and term spread.

prediction horizon s does not increase R2. Panel (b) shows that when predicting
1-month returns, then R2 is larger than zero for values about s = 10.

Figure 6.19 shows both the time series of realized values and the time series of
several predictions. In panel (a) the prediction horizon is 1 year and in panel (b)
the prediction horizon is 5 years. The time series of realized values R(s)

t+s is shown
as black curves. The time series of predicted values 𝛼̂ + 𝛽′Xt is shown as a green
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Figure 6.20 Dividend price ratio as a predictor: Scatter plots and regression functions.
(a) Prediction horizon of 1 year; (b) prediction horizon of 5 years. Scatter plots show the points
(Xt , R(s)

t+s). The pink lines show the fitted regression functions.
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Figure 6.21 Term spread as a predictor: Scatter plots and regression functions. (a) Prediction
horizon of 1 year; (b) prediction horizon of 5 years. Scatter plots show the points (Xt , R(s)

t+s).
The pink lines show the fitted regression functions.

curve when the predictor is dividend price ratio and as a yellow curve when the
predictor is term spread. The time series of predicted values is red when the
predictors are both dividend price ratio and term spread.

Figure 6.20 shows the regression data and the fitted regression functions as
pink lines, when dividend price ratio is the predictor. Panel (a) shows the case of
the prediction horizon of 1 year and panel (b) shows the case of the prediction
horizon of 5 years. Since we are doing out-of-sample prediction, there are many
fitted regression functions, and we show them all. A new regression function
is fitted always when a new data point is added. The blue time series show the
regression function that is fitted using all the data.

Figure 6.21 shows the regression data and the fitted regression functions as
pink lines, when term spread is the predictor. Panel (a) shows the case of the
prediction horizon of 1 year and panel (b) shows the case of the prediction
horizon of 5 years. The blue time series show the regression function that is
fitted using all the data.
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7

Volatility Prediction

We use the term volatility prediction to mean the prediction of the squared
return

R2
t+𝜂, (7.1)

where t is the current time, 𝜂 ≥ 1 is the prediction horizon, and

Ri =
Si

Si−1
− 1 or Ri = log

Si

Si−1
,

are either the net return or the log return of an asset with prices Si. A closely
related concept is the estimation of the conditional variance

Vart(Rt+𝜂) = Et
(
R2

t+𝜂
)
− (EtRt+𝜂)2

,

where Et(⋅) = E(⋅|t) is the conditional expectation. Since the squared con-
ditional expectation (EtRt+𝜂)2 is often negligible as compared to Et(R2

t+𝜂), the
estimation of the conditional variance is close to the estimation of the condi-
tional expectation of the squared return

Et
(
R2

t+𝜂
)
.

The conditional expectation of R2
t+𝜂 is the best prediction of R2

t+𝜂 in the mean
squared error sense, as explained in (5.17) and (5.18), and thus the estimation of
the conditional expectation of the squared return leads to a predictor of (7.1).

GARCH(1, 1) predictors and moving average predictors lead often to good
predictions of volatility, for short prediction horizons. This is in contrast
to the prediction of the returns, which are more difficult to predict, even
for short prediction horizons; see Section 6.4 about prediction of returns.1

1 Note that it is a different thing to predict Rt+𝜂 = St+𝜂∕St+𝜂−1 at time t, and to predict R(𝜂)
t+𝜂 =

St+𝜂∕St at time t. However, for the logarithmic returns we have

log R(𝜂)
t+𝜂 = log

St+𝜂

St
=

t+𝜂−1∑
i=t

log
Si+1

Si
=

t+𝜂−1∑
i=t

log Ri+1.

Nonparametric Finance, First Edition. Jussi Klemelä.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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GARCH(1, 1) predictors and moving average predictors use only historical
returns to predict future volatility. However, if a company or a central bank is
known to make an announcement in a near future, then this knowledge can be
made to predict higher volatility. This kind of additional information can be
utilized in state space predictors. We study state space predictors of volatility,
but use as states only statistics computed from the previous asset prices.

VIX index can be a useful predictor for future volatility, because it expresses
the expectations of the markets for the future volatility. VIX index is discussed
in Section 6.3.1 and in (14.66).

A main result of the chapter is to show that GARCH(1, 1) predictor can be
improved by a kernel regression predictor, which uses a moving average of the
squared returns and a moving average of the returns as predictive variables. The
moving average of the squared returns is in itself a predictor which performs
as well as the GARCH(1, 1) predictor, but adding information about the past
returns improves the prediction. We show that ARCH(p) and moving average
predictors perform better than GARCH(1, 1) predictor for moderate prediction
horizons (10 days), but the improved performance comes to a large extent from
a single event (autumn 1987). In contrast, the performance of the kernel regres-
sion predictor is better than GARCH(1, 1) predictor over all time periods. The
study is made using the daily S&P 500 data, described in Section 2.4.1.

When we study the performance of volatility predictors it will be seen that the
crash of October 1987 has a large influence on the performance. Many studies
remove one or more observations around October 1987 and consider these to
be outliers. We have not removed any observations for two reasons. (1) The
financial crisis of 2008 has almost as large influence on the performance as
October 1987, and we would need to remove other observations as outliers,
which would lead to a methodological discussion about the definition of an
outlier. (2) When we use the differences of cumulative sums of squared predic-
tion errors, then we can identify the influence of each time point, and obtain a
description of the performance which is not contaminated by any single finan-
cial crash.

Andersen et al. (2006) contains a review of volatility prediction, which
includes a comprehensive list of references.

Section 7.1 reviews applications of volatility prediction. Section 7.2 discusses
the measurement of performance of volatility predictors. Section 7.3 studies

Thus, if the logarithmic returns are conditionally uncorrelated,

Et

(
log R(𝜂)

t+𝜂

)2
=

t+𝜂−1∑
i=t

Et(log Ri+1)
2
.

Thus, a prediction of the squared long horizon logarithmic return can be constructed from pre-
dictions of squared one-step logarithmic returns. However, note that for longer horizons the net
returns and the logarithmic returns are not close to each other, because approximation log x ≈
x − 1 holds only for x close to one.
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generalized autoregressive conditional heteroscedasticity (GARCH) and
autoregressive conditional heteroscedasticity (ARCH) predictors of volatility.
Section 7.4 considers the use of moving averages in volatility prediction.
Section 7.5 considers the application of linear and kernel regression in
volatility prediction.

7.1 Applications of Volatility Prediction

Volatility prediction can be applied in variance and volatility trading, in covari-
ance trading, in portfolio selection, in quantile estimation, and in option pric-
ing. In addition, prediction of volatility can be applied by credit institutes to
measure risk and to set the risk premium.

7.1.1 Variance and Volatility Trading

Volatility can be traded with variance and volatility swaps. A variance swap is
a forward contract that pays

VT − K
at the expiration date T , where K is the delivery price, and VT is the realized
variance, defined by

VT =
T∑

t=t0+1
[log(St∕St−1)]2

,

where t0 is the starting day of the contract, and St are the prices of the under-
lying financial asset. A volatility swap pays at the expiration√

VT − L,
where L is the delivery price.

Variance and volatility swaps are traded over the counter (OTC), but Chicago
Board Options Exchange (CBOE) offers variance futures for the realized vari-
ance of the S&P 500 index, calculated with the daily returns of the index.

To make an investment decision for a variance or a volatility swap, we have to
estimate the distribution, or the conditional distribution, of the random vari-
ables VT − K or

√
VT − L. More simply, we can estimate the expectation, or the

conditional expectation, of the random variables VT − K or
√

VT − L.

7.1.2 Covariance Trading

Variance swaps open an opportunity to covariance trading if we have an access
to a variance swap of an index and to variance swaps of its constituents. Let us
consider an index whose net returns are

Rt = pR1
t + qR2

t ,
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where Ri
t are the net returns of the index constituents and p and q are the

weights of the constituents. Let us define the realized covariance as

CT =
T∑

t=t0+1
R1

t R2
t .

Then,

CT = 1
2pq

(
VT − p2V 1

T − q2V 2
T
)
,

where VT =
∑T

t=t0
R2

t is the realized variance of the index and V i
T =

∑T
t=t0

(Ri
t)2

the realized variances of the index constituents, i = 1, 2.
If we have three variance swaps which pay VT − K , V 1

T − K1, and V 2
T − K2

at the expiration, then we can compose a contract whose components are
the three contracts with the weights 1∕(2pq), −p∕(2q), and −q∕(2p). This
contract pays

CT − M

at the expiration, where M = (K − p2K1 − q2K2)∕(2pq). The portfolio can be
called a covariance swap. To make an investment decision for the portfolio, we
have to estimate the distribution, or the conditional distribution, of the ran-
dom variable CT − M. More simply, we can estimate the expectation, or the
conditional expectation, of the random variable CT − M.

7.1.3 Quantile Estimation

Volatility-based quantile estimation is considered in Section 8.5. Volatility esti-
mation can be applied in quantile estimation, because a standard deviation
estimate can be used to construct a quantile estimate. Namely, consider the
location-scale model

Y = 𝜇 + 𝜎 𝜖,

where 𝜇 ∈ R, 𝜎 > 0, and 𝜖 is a random variable with a continuous distribution.
Now

P(Y ≤ x) = P
(
𝜖 ≤

x − 𝜇
𝜎

)
= F

𝜖

(x − 𝜇
𝜎

)
,

where F
𝜖

is the distribution function of 𝜖. If 𝜖 has a continuous distribution, then
F
𝜖

is strictly increasing and the inverse function F−1
𝜖

exists. The pth quantile
Qp(Y ) of Y satisfies P(Y ≤ Qp(Y )) = p, and we can solve this equation to get

Qp(Y ) = 𝜇 + 𝜎 F−1
𝜖
(p). (7.2)

Thus, for a known F
𝜖
, we get from the estimates 𝜇̂ and 𝜎̂ the estimate

Q̂p(Y ) = 𝜇̂ + 𝜎̂ F−1
𝜖
(p).
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7.1.4 Portfolio Selection

Mean–variance preferences are considered in Section 9.2.1. Let Rp
t+1 be the

return of a portfolio for the time period [t, t + 1]. The portfolio weights can
be chosen to optimize the Markowitz criterion

EtR
p
t+1 −

𝛾

2
Vart

(
Rp

t+1
)
,

where 𝛾 ≥ 0 is the risk aversion parameter, and Et and Vart mean the condi-
tional expectation and conditional variance. To apply the Markowitz criterion,
we have to estimate both the expected mean EtR

p
t+1 and the variance Vart(R

p
t+1).

7.1.5 Option Pricing

The prediction of volatility can be applied in option pricing. For example, the
Black–Scholes price given in (14.58) depends on the distribution of the stock
only through its volatility. Although the Black–Scholes price is derived under
the assumption of constant volatility, we can insert a predicted volatility to the
Black–Scholes pricing function (see Section 14.5).

7.2 Performance Measures for Volatility Predictors

Let 𝜎̂2
t+𝜂 be the predictor of the squared return R2

t+𝜂 , estimated using the data
available at time t, where 𝜂 ≥ 1 is the prediction horizon. We use sometimes
notation

f̂ (t, 𝜂) = 𝜎̂
2
t+𝜂

for the predictor. When 𝜂 = 1, then we use sometimes the notation f̂ (t) = 𝜎̂
2
t+1.

When we have observed returns R1,… ,RT , then the mean of squared predic-
tion errors is defined as

MSPE = 1
T − t0 − 𝜂

T−𝜂∑
t=t0+1

|||𝜎̂2
t+𝜂 − R2

t+𝜂
|||2, (7.3)

where 1 ≤ t0 ≤ T − 1, and 𝜎̂2
t+𝜂 is computed using data R1,… ,Rt .

In order to compare two predictors, it is useful to plot the time series of dif-
ferences of cumulative sums of squared prediction errors of the two predictors.
The time series is defined as

Yt =
t∑

i=t0+1

||| f̂ 1(i, 𝜂) − R2
i+𝜂

|||2 −
t∑

i=t0+1

||| f̂ 2(i, 𝜂) − R2
i+𝜂

|||2, (7.4)

where t0 ≤ t ≤ T − 𝜂, and f̂ 1(i, 𝜂) and f̂ 2(i, 𝜂) are the two predictors. This allows
us to find whether a predictor is uniformly better than the other, or whether



200 7 Volatility Prediction

the first predictor is better in some periods and worse in others, as explained
in connection of (6.26).

Andersen et al. (2006, p. 830) writes that “realized volatility provides the nat-
ural benchmark for forecast evaluation purposes.” The realized volatility is the
sum

∑e
𝜂=1 R2

t+𝜂 of squared returns, for some e ≥ 1. However, we evaluate the
forecasts of individual squared returns R2

t+𝜂 , for several horizons 𝜂 ≥ 1. This is
done for two reasons. (1) The predictors of realized volatility are sums of pre-
dictors of individual squared returns R2

t+𝜂 . Thus, we obtain a good predictor
for the realized volatility from good predictors of R2

t+𝜂 . (2) We need to choose
the predictor differently for each different horizon 𝜂. When only the realized
volatility is used for evaluation, then we are not able as easily to analyze how
the performance of different predictors differs when the horizon is changed.

7.3 Conditional Heteroskedasticity Models

In Section 7.3.1, we recall the GARCH(1, 1) predictors of the squared returns
and realized volatility, and apply them for the S&P 500 daily data, described in
Section 2.4.1. In Section 7.3.2, we study ARCH predictors.

7.3.1 GARCH Predictor

We apply GARCH(1, 1) model for the logarithmic returns Rt = log(St∕St−1),
where St is an asset price. The GARCH(p, q) model is defined in (5.37), and
the GARCH(1, 1) model is defined as

Rt = 𝜎t𝜖t, 𝜎
2
t = 𝛼0 + 𝛼1R2

t−1 + 𝛽𝜎
2
t−1,

where {𝜖t} is an IID(0, 1) process. The parameters 𝛼0, 𝛼1, and 𝛽 of the GARCH
(1, 1) model are estimated using the maximum likelihood estimator, as defined
in (5.58). We denote the estimators by 𝛼̂0, 𝛼̂1, and 𝛽.

7.3.1.1 Predicting the Squared Returns
Let R1,… ,Rt be the observed logarithmic returns. Let us consider the predic-
tion of R2

t+𝜂 , where t is the current time and 𝜂 ≥ 1 is the prediction horizon. We
use as the predictor an estimator of the conditional expectation

EtR2
t+𝜂,

where Et means the conditional expectation, conditional on the information
available at time t. The conditional expectation is the best prediction in the
sense of the mean squared error, as explained in (5.17) and (5.18).

In the GARCH(1, 1) model with 𝛼1 + 𝛽 < 1, the conditional expectation
EtR2

t+𝜂 is obtained from (5.40). We define the GARCH(1, 1) predictor of R2
t+𝜂 by
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replacing the unknown population parameters with their estimates and obtain
the predictor

f̂ (t, 𝜂) = ̂̄𝜎
2 + (𝛼̂1 + 𝛽)𝜂−1

(
𝜎̂

2
t+1 − ̂̄𝜎

2
)
, (7.5)

where

̂̄𝜎
2 =

𝛼̂0

1 − 𝛼̂1 − 𝛽

and the formula for 𝜎̂2
t+1 is obtained from (5.43): formula for 𝜎̂2

t+1 is obtained by
truncating the infinite sum and replacing the unknown population parameters
with their estimates, which gives

𝜎̂
2
t+1 =

𝛼̂0

1 − 𝛽
+ 𝛼̂1

t−1∑
k=0

𝛽
kR2

t−k . (7.6)

In particular, the one-step predictor is

f̂ (t, 1) = 𝜎̂
2
t+1. (7.7)

7.3.1.2 Predicting the Realized Volatility
Let us consider the prediction of the 𝜂-step realized volatility

Vt,𝜂
def
= R2

t+1 + · · · + R2
t+𝜂,

where t is the current time and 𝜂 ≥ 1. An estimator of the conditional expec-
tation of the realized volatility is used to predict the realized volatility. Let us
denote2

𝜎
2
t,𝜂

def
= EtVt,𝜂 =

𝜂∑
k=1

Et
(
R2

t+k
)
.

Using (5.40), we have the expression

𝜎
2
t,𝜂 = 𝜂𝜎̄

2 +
(
𝜎

2
t+1 − 𝜎̄

2) 𝜂∑
k=1

(𝛼1 + 𝛽)k−1
.

We can write
∑𝜂

k=1 (𝛼1 + 𝛽)k−1 = (1 − (𝛼1 + 𝛽)𝜂)∕(1 − 𝛼1 − 𝛽). The estimator for
the expected realized variance EtVt,𝜂 is obtained by replacing the unknown pop-
ulation parameters with estimators:

𝜎̂
2
t,𝜂 = 𝜂 ̂̄𝜎

2 +
1 − (𝛼̂1 + 𝛽)𝜂

1 − 𝛼̂1 − 𝛽

(
𝜎̂

2
t+1 − ̂̄𝜎

2
)
.

2 In the GARCH(1, 1) model, the Rt are conditionally uncorrelated and thus it holds also that 𝜎2
t,𝜂 =

Et
(∑𝜂

k=1 Rt+k
)2.
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Figure 7.1 S&P 500 volatility process. The time series of estimated volatility
√

250𝜎̂t in the
GARCH(1, 1) model.

7.3.1.3 S&P 500 Volatility Prediction with GARCH(1, 1)
We consider the daily S&P 500 data, described in Section 2.4.1.

Figure 7.1 shows the time series
√

250𝜎̂t of the estimated annualized volatil-
ity, where 𝜎̂t is calculated sequentially with the formula (7.6).

Figure 7.2 studies the distribution of
√

250𝜎̂t , where 𝜎̂t is calculated
sequentially with the formula (7.6). Panel (a) shows a tail plot, as defined in
Section 3.2.1, and panel (b) shows a kernel density estimate, as defined in
Section 3.2.2. The blue lines show the annualized sample standard deviation,
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Figure 7.2 Distribution of S&P 500 volatility predictions. (a) A tail plot and (b) a kernel density

estimate computed from
√

250𝜎̂t . The blue lines show the annualized sample standard devi-
ation, and the red lines show the annualized unconditional standard deviation.
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Figure 7.3 Error criterion. Function q →
G(q) is shown for q ∈ [0.1, 3].

q
G
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and the red lines show the annualized unconditional standard deviation, as
defined by (5.41).

Figure 7.3 shows the function q → G(q), where

G(q) =
∑T

t=1
||𝜎̂2

t − R2
t
||1∕q

∑T
t=1

||Rt
||2∕q ,

where q > 0. The values of q where G(q) is larger than one are such that the zero
estimator 𝜎̂t ≡ 0 has smaller error than the GARCH(1, 1) estimator. Thus, it is
reasonable to choose q so that G(q) is smaller than one. We will choose the value
q = 0.5 and measure the performance of volatility prediction by calculating the
mean of the squared prediction errors, as defined in (7.3).

7.3.2 ARCH Predictor

We apply ARCH(p) model for the logarithmic returns Rt = log(St∕St−1), where
St is an asset price. The ARCH(p) model is defined in (5.32) as

Rt = 𝜎t𝜖t, 𝜎
2
t = 𝛼0 + 𝛼1R2

t−1 + · · · + 𝛼pR2
t−p,

where {𝜖t} is an IID(0, 1) process. The parameters 𝛼0,… 𝛼p are estimated with
the maximum likelihood estimator, as defined in (5.57). We denote the estima-
tors by 𝛼̂0,… , 𝛼̂p.

7.3.2.1 Predicting the Squared Returns
The best one-step prediction for the ARCH(p) model was given in (5.33). We
use the predictor

f̂p(t) = 𝛼̂0 + 𝛼̂1R2
t + · · · + 𝛼̂pR2

t−p+1. (7.8)

The parameter estimates 𝛼̂0,… , 𝛼̂p are computed from observations Rt ,Rt−1,…
using maximum likelihood.
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A recursive formula for the best 𝜂-step prediction for ARCH(p) model was
given in (5.34). We use the predictor

f̂p(t, 𝜂) = 𝛼̂0 + 𝛼̂1predt(𝜂 − 1) + · · · + 𝛼̂ppredt(𝜂 − p),

where predt(1) is given in (7.8) and predt(𝜂) = Y 2
t+𝜂 for 𝜂 ≤ 0. Now f̂p(t, 𝜂)

predicts R2
t+𝜂 .

7.3.2.2 S&P 500 Volatility Prediction with ARCH(p)
We consider the daily S&P 500 data, described in Section 2.4.1.

Figure 7.43 compares ARCH(p) predictions to GARCH(1, 1) predictions.
Panel (a) shows functions

p →
MSPEarch(𝜂, p)
MSPEgarch(𝜂)

,

where

MSPEarch(𝜂, p) = 1
T − t0 − 𝜂

T−𝜂∑
t=t0+1

||| f̂p(t, 𝜂) − R2
t+𝜂

|||2,
and MSPEgarch(𝜂) is the mean of the squared prediction errors of the
GARCH(1, 1) estimate, when GARCH(1, 1) estimate is defined in (7.5).
Panel (b) shows the time series of differences

CSPEarch(𝜂)t − CSPEgarch(𝜂)t
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Figure 7.4 Comparison of ARCH(p) and GARCH(1,1). (a) Function p → MSPEarch(𝜂, p)∕
MSPEgarch(𝜂). (b) Time series CSPEarch(𝜂)t − CSPEgarch(𝜂)t . The prediction horizons are 𝜂 = 1
(black with “a”) and 𝜂 = 10 (red with “b”).

3 The green horizontal line is in the following figures a reference line to help the orientation, drawn
either at height zero or at height one.
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between the cumulative sums of the squared prediction errors of ARCH(p) and
GARCH(1, 1) predictor (see (7.4) for the formula). The ARCH predictor has
p = 6. The prediction horizons are 𝜂 = 1 (black with “a”) and 𝜂 = 10 (red
with “b”). Panel (a) shows that for prediction horizon 𝜂 = 1 the GARCH(1, 1)
predictor has a better mean squared prediction error, but for prediction
horizon 𝜂 = 10 ARCH(p) predictor seems better, for p about six. However,
panel (b) shows that the better performance of ARCH for 𝜂 = 10 comes from
a single event: the market crush of October 1987.

7.4 Moving Average Methods

Let R1,… ,Rt be the observed time series of financial returns. We consider the
prediction of R2

t+𝜂, where 𝜂 ≥ 1 is the prediction horizon. A moving average
prediction of R2

t+𝜂 is a weighted arithmetic mean of the squares of the previous
returns. We have defined the moving average predictors in Section 6.1.1. In the
data analyzes, we use the daily S&P 500 data, described in Section 2.4.1.

7.4.1 Sequential Sample Variance

Before giving results for the exponential moving average, we study the predic-
tion of the 𝜂-step ahead squared return by using the sequentially computed
sample variance. At time t the prediction of R2

t+𝜂 is the sample variance, com-
puted from the observations R1,… ,Rt . The sample variance can be considered
as the limit of a moving average when the window width h → ∞ (or 𝛾 ↑ 1). The
sequentially computed standard deviation is defined as(

1
t

t∑
i=1

R2
t − R̄2

t

)1∕2

, R̄t = t−1
t∑

i=1
Ri.

Figure 7.5 compares the time series of the sequentially computed standard
deviation and the GARCH(1, 1) stationary standard deviation. The black curve
shows the time series of annualized sequentially computed standard deviations.
The blue curve shows the GARCH(1, 1) annualized stationary volatility. The
stationary volatility is defined in (5.41) as(

𝛼̂0,t

1 − 𝛼̂t,1 − 𝛽t

)1∕2

,

where 𝛼̂0,t , 𝛼̂t,1, and 𝛽t are the GARCH(1, 1) estimates, computed from the
returns R1,… ,Rt .

Figure 7.6 compares prediction errors between the sequentially computed
standard deviation and the GARCH(1, 1) predictor. Panel (a) shows the
function

𝜂 →
MSPEseq(𝜂)

MSPEgarch(𝜂)
,
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Figure 7.6 Comparison of the sequential sample variance and GARCH(1,1) predictors.
(a) Shown is the function 𝜂 → MSPEseq(𝜂)∕MSPEgarch(𝜂). (b) Shown are the time series
CSPEseq

t (𝜂) − CSPEgarch
t (𝜂) of the differences of the cumulative sums of prediction errors. We

show the cases 𝜂 = 1 (black), 𝜂 = 10 (red), 𝜂 = 15 (green), and 𝜂 = 20 (blue).

where MSPEseq(𝜂) and MSPEgarch(𝜂) are the means of squared prediction errors
when prediction horizon is 𝜂 (see (7.3) for the formula). The GARCH(1, 1) pre-
dictor is defined in (7.5). The parameters of GARCH(1, 1) model are estimated
sequentially. Panel (b) shows the difference between the sum of the cumula-
tive squared prediction errors of the sequential standard deviation and the sum
of the cumulative squared prediction errors of GARCH(1, 1) (see (7.4) for the
formula). We show the cases 𝜂 = 1 (black), 𝜂 = 10 (red), 𝜂 = 15 (green), and
𝜂 = 20 (blue). We see from panel (a) that the GARCH(1, 1) prediction is better
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when 𝜂 ≤ 15. The sample variance is better when 𝜂 ≥ 15. In fact, GARCH(1, 1)
becomes exponentially worse when 𝜂 increases, but sequential sample variance
becomes linearly worse when 𝜂 increases. We see from panel (b) that the longer
horizons have a singular performance loss at end of 1980s.

7.4.2 Exponentially Weighted Moving Average

The one-sided moving average predictor was defined in (6.3). In volatility pre-
diction, the one-sided moving average is equal to

f̂ (t) =
t∑

i=1
pi(t)R2

i , (7.9)

where the weights are

pi(t) =
K((t − i)∕h)∑t
j=1 K((t − j)∕h)

, (7.10)

where K ∶ [0,∞) → R is the kernel function and h > 0 is the smoothing
parameter.

The exponential moving average was defined in (6.7). The exponential
moving average is a one-sided moving average obtained by taking K(x) =
exp(−x) I[0,∞)(x) and h = −1∕ log 𝛾, where 0 < 𝛾 < 1. In volatility prediction
the exponential moving average is equal to

f̂ (t) = 1 − 𝛾
1 − 𝛾 t

t∑
i=1
𝛾

t−iR2
i . (7.11)

The prediction step 𝜂 influences the choice of the smoothing parameter h. It
is natural to choose a large smoothing parameter h when the prediction step 𝜂
is large. Then a long horizon predictor is almost equal to the arithmetic mean
t−1 ∑t

i=1 R2
i .

Figure 7.7 compares volatility prediction with exponentially weighted mov-
ing averages to the GARCH(1, 1) prediction. We use the daily S&P 500 data,
described in Section 2.4.1. Panel (a) shows functions

h →
MSPEe𝑤ma(𝜂, h)

MSPEgarch(𝜂)
,

where MSPEe𝑤ma(𝜂, h) and MSPEgarch(𝜂, h) are the means of squared prediction
errors when prediction horizon is 𝜂 (see (7.3) for the formula). The h-axis
is logarithmic. The exponentially weighted moving average is defined in
(7.11), using smoothing parameter h = −1∕ log 𝛾 . The symbols “a,” “b,” and “c”
correspond to prediction horizons 𝜂 = 1, 𝜂 = 10, and 𝜂 = 20. We can note that
for the horizon 𝜂 = 1, the GARCH(1, 1) predictions are better, whereas for
the horizons 𝜂 = 10 and 𝜂 = 20, the exponentially weighted moving average is
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Figure 7.7 Comparison of EWMA and GARCH(1,1) using MSPE. Shown are the ratios
MSPEe𝑤ma(𝜂, h)∕MSPEgarch(𝜂). (a) The x-axis shows values of smoothing parameter h. The
symbols “a,” “b,” and “c” correspond to 𝜂 = 1, 𝜂 = 10, and 𝜂 = 20. (b) The x-axis shows values
of prediction horizon 𝜂. The symbols “1,” “2,” “3,” and “4” correspond to the smoothing
parameters h = 10, h = 40, h = 100, and h = 200.

better, when the smoothing parameter is sufficiently large. When the horizon
increases, then the optimal smoothing parameter of the EWMA estimator
becomes larger. Using the Gaussian kernel gives almost similar results, but the
results are slightly worse. Panel (b) shows functions

𝜂 →
MSPEe𝑤ma(𝜂, h)

MSPEgarch(𝜂)
.

The symbols “1,”,…,“4” correspond to the smoothing parameters h = 10,
h = 40, h = 100, and h = 200. The smoothing parameter h = 200 gives the best
results, except for 𝜂 = 1.

Figure 7.8 shows the time series of differences

CSPEe𝑤ma
t (𝜂) − CSPEgarch

t (𝜂)

between the sum of the cumulative squared prediction errors of a moving aver-
age predictor and GARCH(1, 1) predictor (see (7.4) for the formula). Panel (a)
shows the complete time series and panel (b) shows the beginning of the time
series. We show the cases 𝜂 = 1 (black), 𝜂 = 10 (red), and 𝜂 = 20 (blue). The
corresponding smoothing parameters are h = 20, h = 80, and h = 80. We see
that the crash of October 1987 makes GARCH(1, 1) worse than the moving
average, but in more typical periods GARCH(1, 1) tends to perform better.

Figure 7.9 shows the time series of differences

CSPEe𝑤ma
t − CSPEseq

t
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part of the time series; (b) the second part of the time series. The smoothing parameter takes
values h = 5 (black), h = 20 (red), h = 40 (blue), h = 80 (dark green), h = 120 (turquoise), and
h = 200 (pink).

between the sum of the cumulative squared prediction errors of a moving
average predictor and the predictor based on sequentially computed sample
variances (see (7.4) for the formula). Panel (a) shows the first part of the time
series and panel (b) shows the second part of the time series. The smoothing
parameter takes values h = 5 (black), h = 20 (red), h = 40 (blue), h = 80
(dark green), h = 120 (turquoise),and h = 200 (pink). The prediction horizon



210 7 Volatility Prediction

is one day. The smoothing parameter h = 20 gives overall best results. The
cumulative prediction error and smoothing parameter are moving in tandem.

7.4.2.1 Asymmetric Exponentially Weighted Moving Average
We get a slightly different moving average than (7.11) by making a similar to
(6.8) recursive definition

f̂ (t) = (1 − 𝛾)R2
t + 𝛾 f̂ (t − 1)

where 0 ≤ 𝛾 ≤ 1. The recursive definition can be modified to take the leverage
effect into account:

f̂ (t) = (1 − 𝛾)f̂ (t − 1)
⎛⎜⎜⎜⎝

Rt√
f̂ (t − 1)

− 𝜆
⎞⎟⎟⎟⎠

2

+ 𝛾 f̂ (t − 1), (7.12)

where 𝜆 ∈ R is the skewness parameter. This is analogous to the GARCH-type
model in (5.47). The smoothing parameters h and 𝛾 are related by

h = −1∕ log 𝛾.

Figure 7.10 compares volatility prediction with asymmetric exponentially
weighted moving averages to the GARCH(1, 1) prediction. We use the daily
S&P 500 data, described in Section 2.4.1. We show functions

h →
MSPEe𝑤ma(𝜂, h, 𝜆)

MSPEgarch(𝜂)
,
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Figure 7.10 Comparison of asymmetric EWMA and GARCH(1,1) using MSPE. Shown are the
ratios MSPEe𝑤ma(𝜂, h, 𝜆)∕MSPEgarch(𝜂). (a) 𝜂 = 1; (b) 𝜂 = 10. The skewness parameter 𝜆 takes
values 𝜆 = 0 (black with “a”), 𝜆 = 0.1 (red with “b”), and 𝜆 = 0.4 (blue with “c”).
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where MSPEe𝑤ma(𝜂, h, 𝜆) and MSPEgarch(𝜂) are the means of squared predic-
tion errors when prediction horizon is 𝜂 (see (7.3) for the formula). Panel (a)
has 𝜂 = 1 and panel (b) has 𝜂 = 10. The h-axis is logarithmic. The skewness
parameter 𝜆 takes values 𝜆 = 0 (black with “a”), 𝜆 = 0.1 (red with “b”), and
𝜆 = 0.4 (blue with “c”). We can see that there is some improvement from using
the asymmetric moving average when 𝜂 = 1, but in the case 𝜂 = 10 there is no
improvement.

7.5 State Space Predictors

Let R1,… ,Rt be the observed time series of financial returns. We consider the
prediction of R2

t+𝜂 , where 𝜂 ≥ 1 is the prediction horizon. The prediction of the
squared return can be interpreted as the estimation of EtR2

t+𝜂 , where Et is the
conditional expectation, conditionally on the information available at time t.
Thus, regression function estimators can be used to construct predictors.

Let us denote the response variable as

Yi = R2
i+𝜂. (7.13)

The predictive variables are the components of vector Xi ∈ Rd, where d ≥ 1.
Vector Xi is computed from returns Ri,… ,Ri−p+1, where p ≥ 1 is the lag
parameter. The initial observed time series R1,… ,Rt leads to regression data

(Xi,Yi), i = p,… , t − 𝜂,

which is used to compute a regression function estimate. We transform the
observations Xi by (4.36), which makes the marginals of Xi approximately stan-
dard normal, but keeps the copula of Xi the same as the original copula.

The information available at time t is defined by the vector Xt of predictive
variables. We apply two types of state variables. First, we choose the state vari-
able as the vector of exponentially weighted moving average of past squared
returns and past returns, as defined in (7.9) and (6.5):

Xt =

( t∑
i=1

pi(t)R2
i ,

t∑
i=1

pi(t)Ri

)
. (7.14)

Second, we choose the state variable as the vector of past squared returns:

Xt =
(

R2
t ,… ,R2

t−p+1

)
, (7.15)

where p ≥ 1.
We compute the means of prediction errors

MSPEstsp(𝜂) = 1
T − t0 − 𝜂 + 1

T−𝜂∑
t=t0

||| f̂ (t) − R2
t+𝜂

|||2
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for various predictors f̂ (t), and compare this to the MSPEgarch(𝜂), which is the
corresponding mean of the squared prediction errors of the GARCH(1, 1)
predictor, as written in (7.3). We compute also the time series of cumulative
sum of squared prediction errors

CSPEstsp(𝜂)t =
t−𝜂∑
i=t0

||| f̂ (i) − R2
i+𝜂

|||2
for various predictors f̂ (i), and compare this to the time series CSPEgarch(𝜂)t ,
which is the corresponding cumulative sum of the squared prediction errors of
the GARCH(1, 1) predictor.

7.5.1 Linear Regression Predictor

The linear predictor is defined by

f̂ (t) = 𝛼̂t + 𝛽′t Xt ,

where 𝛼̂t ∈ R, 𝛽t ∈ Rd, and Xt ∈ Rd. In (7.14), d = 2 and in (7.15), d = p. The
statistics 𝛼̂t and 𝛽t minimize the least squares criterion

t−𝜂∑
i=t0

(Yi − 𝛼 − 𝛽′Xi)2
,

over 𝛼 ∈ R and 𝛽 ∈ Rd, where t0 ≥ d. The least squares solutions are given in
(6.13)–(6.15).

7.5.1.1 Prediction with Volatility and Mean
We choose the state variable to be the vector with two elements. The elements
are an exponentially weighted moving average of past squared returns and an
exponentially weighted moving average of past returns, as defined in (7.14). The
weights pi(t) involve the smoothing parameter h. We study the effect of h > 0
and the prediction horizon 𝜂 ≥ 1 to the sum of the squared prediction errors.

Figure 7.11 compares the means of squared prediction errors of the linear
predictor to the GARCH(1, 1) predictor. Panel (a) shows functions

h →
MSPEstsp(𝜂, h)
MSPEgarch(𝜂)

. (7.16)

Panel (b) shows time series

CSPEstsp(𝜂, h)t − CSPEgarch(𝜂)t (7.17)

for smoothing parameter h = 10. The prediction horizon is 𝜂 = 1 (black with
“a”) and 𝜂 = 10 (red with “b”). We see that for prediction horizon 𝜂 = 1 the
GACRH(1, 1) predictor is better, but for prediction horizon 𝜂 = 10 the linear
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Figure 7.11 Linear prediction with moving averages. (a) Shown are functions h →
MSPEstsp(𝜂, h)∕MSPEgarch(𝜂). (b) Shown are time series CSPEstsp(𝜂, h)t − CSPEgarch(𝜂)t for
smoothing parameter h = 10. The prediction horizon is 𝜂 = 1 (black with “a”) and 𝜂 = 10
(red with “b”).

predictor performs better. Panel (b) shows that autumns 1987 and 2008 give
the most contribution to the means of squared prediction errors.

Figure 7.12 shows time series (7.17) for smoothing parameter h = 10.
Panel (a) shows the beginning of the period and panel (b) shows the end of
the period. The prediction horizon is 𝜂 = 1 (black) and 𝜂 = 10 (red). We see
that the GARCH(1, 1) predictor performs better during other periods, but at
autumn 1987 the linear predictor performs better.
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Figure 7.12 Linear prediction with moving averages. Shown are time series CSPEstsp(𝜂, h)t −
CSPEgarch(𝜂)t . Panel (a) shows the beginning of the period and panel (b) shows the end of the
period. The prediction horizon is 𝜂 = 1 (black) and 𝜂 = 10 (red).
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Figure 7.13 Linear prediction with past squared returns. (a) Shown are functions p →
MSPEstsp(𝜂, p)∕MSPEgarch(𝜂). (b) Shown are time series CSPEstsp(𝜂, p)t − CSPEgarch(𝜂)t for
smoothing parameter h = 18. The prediction horizon is 𝜂 = 1 (black with “a”) and 𝜂 = 10 (red
with “b”).

We conclude that the linear predictor does not improve significantly
GARCH(1, 1) predictor. We show in Section 7.5.2 that a corresponding kernel
predictor improves GARCH(1, 1) predictor.

7.5.1.2 Prediction with Past Squared Returns
We choose the state variable to be the vector of the past squared returns, as
defined in (7.15):

Xt =
(

R2
t ,… ,R2

t−p+1

)
.

There are two differences to the ARCH(p) predictor: (1) The linear function
is fitted using least squares and not maximum likelihood. (2) Predictions with
horizon 𝜂 > 1 are done fitting the response variable Yi = R2

i+𝜂 , as explained
in (7.13).

Figure 7.13 compares the performance of the linear predictor to the
GARCH(1, 1) predictor. Panel (a) shows ratios MSPEstsp(𝜂, p)∕MSPEgarch(𝜂).
Panel (b) shows time series CSPEstsp(𝜂, p)t − CSPEgarch(𝜂)t for the lag param-
eter p = 18. The prediction horizon is 𝜂 = 1 (black with “a”) and 𝜂 = 10 (red
with “b”). We see that for a longer prediction horizon the linear predictor
outperforms GARCH(1, 1) predictor, but the outperformance comes from a
single time point: Autumn 1987.

7.5.2 Kernel Regression Predictor

We want to predict the squared return Yi = R2
i+𝜂 , where 𝜂 ≥ 1 is the prediction

horizon. The prediction is based on the vector Xi ∈ Rd, where d ≥ 1. Vector
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Xi is computed from returns Ri,Ri−1,…. We apply the kernel regression
estimator

f̂ (t) =
t−𝜂∑
i=k

pi(t)R2
i+𝜂,

where

pi(t) =
Kh(Xt − Xi)∑t−𝜂

j=k Kh(Xt − Xj)
, (7.18)

Kh(x) = K(x∕h)∕hd is the scaled kernel function, K ∶Rd → R is the kernel func-
tion, and h > 0 is the smoothing parameter. The kernel predictor was discussed
in Section 6.1.2.

We choose the state variable as the vector of exponentially weighted moving
average of past squared returns and past returns:

Xt =

( t∑
i=1

qi(t)R2
i ,

t∑
i=1

qi(t)Ri

)
. (7.19)

The exponentially weighted moving averages are defined in (7.9) and (6.5) for
the squared returns and returns. Now we use the notation

qi(t) =
K((t − i)∕g)∑t
j=1 K((t − j)∕g)

,

where K(x) = exp(−x)I[0,∞)(x) is the kernel function and g > 0 is the smoothing
parameter. The notation qi(t) and g is used to make a difference to the notation
pi(t) and h in (7.18). Below we apply smoothing parameter g = 40.

Figure 7.14 compares the means of squared prediction errors of the kernel
predictor to the GARCH(1, 1) predictor. Panel (a) shows functions

h →
MSPEstsp(𝜂, h)
MSPEgarch(𝜂)

.

Panel (b) shows time series

CSPEstsp(𝜂, h)t − CSPEgarch(𝜂)t (7.20)

for smoothing parameter h = 0.5. The prediction horizon is 𝜂 = 1 (black with
“a”) and 𝜂 = 10 (red with “b”). We see that for prediction horizon 𝜂 = 1, there
is no big difference between the overall means of squared prediction errors,
but for prediction horizon 𝜂 = 10 the kernel predictor performs better, when
smoothing parameter is suitably chosen. Panel (b) shows that autumns 1987
and 2008 give the most contribution to the means of squared prediction errors.

Figure 7.15 shows time series (7.20) for smoothing parameter h = 0.5.
Panel (a) shows the beginning of the period and panel (b) shows the end
of the period. The prediction horizon is 𝜂 = 1 (black) and 𝜂 = 10 (red).
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Figure 7.14 Kernel prediction. (a) Shown are functions h → MSPEstsp(𝜂, h)∕MSPEgarch(𝜂).
(b) Shown are time series CSPEstsp(𝜂, h)t − CSPEgarch(𝜂)t for smoothing parameter h = 0.5. The
prediction horizon is 𝜂 = 1 (black with “a”) and 𝜂 = 10 (red with “b”).
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Figure 7.15 Kernel prediction. Shown are the time series CSPEstsp(𝜂, h)t − CSPEgarch(𝜂)t for
smoothing parameter h = 0.5. Panel (a) shows the beginning of the period and panel
(b) shows the end of the period. The prediction horizon is 𝜂 = 1 (black) and 𝜂 = 10 (red).

We see that the kernel predictor performs better during most periods until
autumn 1987. At autumn 1987, the kernel predictor performs significantly
better. After that the performance is about equal, until at autumn 2008 the
GARCH(1, 1) predictor performs better.

Figure 7.16 shows the regression function, estimated using the complete data.
Panel (a) shows a contour plot. The observations Xi are plotted as yellow points.
Panel (b) shows a perspective plot. We see that the highest volatility is predicted
when the moving average of squared returns is high and the moving average of
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Figure 7.16 Kernel prediction: Leverage effect. The estimated regression function is visualized
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Figure 7.17 Kernel prediction: Leverage effect. (a) Slices x1 → f̂ (x1, x2) for several values of x2.
(b) Slices x2 → f̂ (x1, x2) for several values of x1.

returns is low. This is called the leverage effect. Section 5.5 discusses the lever-
age effect as a stylized time series fact. The leverage effect is taken into account
in the asymmetric GARCH model, defined in (5.46), and in the asymmetric
moving average in (7.12).

Figure 7.17 shows slices of the estimated regression function f̂ (x1, x2).
Panel (a) shows slices x1 → f̂ (x1, x2) for several values of x2, where x1 is the
moving average of squared returns and x2 is the moving average of returns.
Panel (b) shows slices x2 → f̂ (x1, x2) for several values of x1.
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8

Quantiles and Value-at-Risk

In quantile estimation, we study such questions as:

1) How much liquid capital a bank must possess in order that the probability
of running out of cash during the next month is smaller than 1/10,000?

2) How much cash must be deposited in a margin account in order that the
probability that cash does not cover the losses of a futures position during
the next day is smaller than 1/10,000?

These questions can be formulated using the concepts of probability theory.
Let Y be a real valued random variable. Let 0 < p < 1 be a probability. The
pth quantile is the smallest number x ∈ R so that P(Y > x) ≤ 1 − p. In the first
example random variable Y is the monthly loss of the investment portfolio of
a bank. In the second example random variable Y is the daily loss of a futures
position.

We want to estimate the pth quantile using previously observed data. In the
first example, we do not have observations of the past losses (because the invest-
ment portfolio has changed), but we have observed the past returns of the
components of the portfolio, and the probability distribution of the loss of the
current portfolio can be deduced from an estimate of the joint distribution of
its components. In the second example, we have observed the previous daily
losses of the asset underlying the futures position.

The pth quantile is also called the quantile with confidence level p. The term
value-at-risk (VaR) is used for the upper quantiles of the distribution of a loss
of a portfolio.

What is special about quantile estimation? Quantiles can be defined as the
values of the inverse of the distribution function, and thus quantile estima-
tion is related to the estimation of the distribution function. For example, the
population median is the pth quantile for p = 0.5: The population median is
such x ∈ R that P(Y ≤ x) = 0.5 = P(Y ≥ x). However, in quantile estimation
we are interested in the cases where p is close to 0 or close to 1. For example,
p = 0.0001 or p = 0.9999. By definition, there are few observations in the tail
areas. This makes estimation of tail areas difficult. In order to estimate quantiles

Nonparametric Finance, First Edition. Jussi Klemelä.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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when confidence level p is close to 0 or close to 1 we make special models for
the tails of the distribution, and ignore the central area of the distribution.

One may question whether is reasonable even to try to estimate the extreme
quantiles. Embrechts et al. (1997, p. VI) make the following comment: “What-
ever theory can or cannot predict about extremal events, in practice the prob-
lems are there! As scientists, we cannot duck the question of the height of a
sea dyke to be built in Holland, claiming that this is an inadmissible problem
because, to solve it, we would have to extrapolate beyond the available data.”

Section 8.1 discusses definitions of quantiles. Note that quantiles were
defined already in Section 3.1.3. Section 8.2 discusses applications of quantile
estimation. Section 8.3 discusses the measurement of the performance of
quantile estimators.

Sections 8.4–8.7 study different types of quantile estimators. Section 8.4
studies nonparametric quantile estimators: empirical quantiles and kernel
quantile estimators. Section 8.5 studies quantile estimators that are based
on a volatility estimator. These estimators utilize a location–scale model,
and can be considered as semiparametric quantile estimators. Section 8.6
studies quantile estimators which are based on fitting a parametric model
to the excess distribution. We apply two techniques to make the fitting of
the excess distribution useful in a time series setting. First, we apply a time
localized parameter estimation. Second, we apply a quantile transformation to
obtain residuals which are approximately uniformly distributed, and apply the
empirical quantile estimator to the residuals. Section 8.7 uses some results of
extreme value theory to derive quantile estimators.

Section 8.8 discusses the expected shortfall. Quantiles can be used as a risk
measure, but the expected shortfall may be preferred as a risk measure. In fact,
a quantile takes the number of exceedances of a threshold into account, but not
the largeness of the exceedances, whereas an expected shortfall takes also the
largeness of the exceedances into account.

There are many useful books related to quantile estimation. Embrechts et al.
(1997) study quantile estimation with the emphasis on extreme value theory.
The book by McNeil et al. (2005) is more practically oriented than Embrechts
et al. (1997), but considers mostly purely parametric models. Malevergne and
Sornette (2005) have analyzed financial data with nonparametric methods.
Coles (2004) gives an introduction to statistical modeling of extreme values,
describing classical asymptotic extreme value theory and models, threshold
models, and a point process characterization of extremes.

8.1 Definitions of Quantiles

We have defined the pth quantile Qp of the distribution of random variable
Y as the smallest number x ∈ R such that P(Y > x) ≤ 1 − p, where 0 < p < 1.
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The definition can be written as
Qp = inf{x ∈ R∶P(Y > x) ≤ 1 − p}. (8.1)

We use both the capital letter and the small letter to denote a quantile, and
sometimes we include the random variable in the notation:

Qp = Qp(Y ) = qp.

Since P(Y > x) = 1 − F(x), where F(x) = P(Y ≤ x) is the distribution func-
tion of Y , we can write

Qp = inf{x ∈ R∶F(x) ≥ p}.
The generalized inverse of F is defined as F←(p) = inf{x ∈ R∶F(x) ≥ p}; see
McNeil et al. (2005, p. 39). Thus, a quantile function is the generalized inverse
of the distribution function. The distribution functions of discrete distributions
are not monotonically increasing, and do not have a usual inverse. For example,
the empirical distribution function does not have a usual inverse.

For practical purposes the returns and prices of stocks can be considered to
have a continuous distribution: gross returns and prices can take almost any
nonnegative value. Also, the loss of an investment portfolio can be considered
for practical purposes to have a continuous distribution.1 When Y has a con-
tinuous distribution, then there exists such x ∈ R that

P(Y > x) = 1 − p.
Thus,

P(Y ≤ x) = p.
The distribution function is F(x) = P(Y ≤ x), so that the pth quantile x satisfies
F(x) = p, and the pth quantile is

Qp = F−1(p),

where F−1∶(0, 1) → R is the inverse of the distribution function.2
Figure 8.1 illustrates the definition of a quantile. Panel (a) shows a distribu-

tion function. The red vectors illustrate the inverting of the distribution func-
tion at level p = 0.05. The blue vectors illustrate the inverting at level p = 0.99.
Panel (b) shows a density function corresponding to the distribution function.
The red area has probability mass 5%. The right boundary of the red area indi-
cates the location of the pth quantile for p = 0.05. The blue area has probability
mass 1%. The left boundary of the blue area indicates the location of the pth
quantile for p = 0.99.

1 Note, however, that the loss of a bond can be a discrete random variable. The value of a
zero-coupon bond takes only two values at the maturity: the value is 0 in the case of the default
and the value is 1 when the default does not happen.
2 We leave 0 and 1 out of the domain, because for the distributions with support R we have sym-
bolically that Q(0) = −∞ and Q(1) = ∞.
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Figure 8.1 Definition of quantiles. (a) Definition by distribution function; (b) definition by
density function.

In a time series setting, we can consider the estimation of conditional quan-
tiles. Let Yt , t ∈ {… ,−1, 0, 1,…}, be a time series. Let

FYt |Yt−1 ,Yt−2,…(x) = P(Yt ≤ x|Yt−1,Yt−2,…)

be the conditional distribution function of Yt , given Yt−1,Yt−2,…. Then the con-
ditional pth quantile can be defined as

Qp(Yt|Yt−1,Yt−2,…) = F−1
Yt |Yt−1 ,Yt−2,…

(p)

for continuous distributions.
Sometimes it is convenient to use the concepts of return level.

1) We call m-observation return level such level xm which satisfies

P(Y > xm) = 1∕m.

Level xm is exceeded on average once every m observations. It is convenient
to express return levels on an annual scale. The N-year return level is the
level expected to be exceeded once every N years. If there are n observations
every year, then the N-year return level is the m-observation return level
with m = Nn; see Coles (2004, p. 81).

2) We call return level xp associated with return period 1∕p the number
satisfying

P(Y > xp) = p.

Now xp is expected to be exceeded on average once every 1∕p years.
Level xp is exceeded by the annual maximum in any particular year with
probability p.
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8.2 Applications of Quantiles

Regulatory officials want to ensure that systemic financial institutions do not
fall into a liquidity crisis. The companies want to control the probability of
bankruptcy. Also, futures exchanges want to ensure that clients are able to meet
the obligations of the derivatives they possess. For these purposes, estimation of
quantiles is useful. Quantiles can also be used as a risk measure to characterize
intuitively the riskiness of a portfolio.

8.2.1 Reserve Capital

Regulatory officials impose capital requirements on systemic financial institu-
tions, such as large banks and large insurance companies. Regulatory officials
want to ensure that systemic financial institutions do not fall into a liquidity
crisis, because such crisis could have a negative impact on the whole economy.
The regulators require that a bank has enough liquid reserves to cover the losses
caused by adverse movements of the markets. See Rebonato (2007, Chapter 9)
for more about a description of economic capital.

8.2.1.1 Value-at-Risk of a Portfolio
Value-at-risk can be used to determine the reserve capital of a bank or an enter-
prise. The term “value-at-risk” is used to denote upper quantiles of the loss dis-
tribution of a financial asset. Value-at-risk at level 0.5 < p < 1 is such value that
the probability of losing more during a given period has a smaller probability
than 1 − p. Thus, value-at-risk can be directly related to the amount of reserves.

The loss of a portfolio at time t + 1, over one period, is defined as
Lt+1 = −(Vt+1 − Vt), (8.2)

where Vt is the value of the portfolio at time t. The value-at-risk at the confi-
dence level p ∈ (0, 1) of the portfolio is defined as the smallest value x such that
the probability that the loss Lt+1 exceeds x is smaller or equal to 1 − p: This is
the p-quantile of the loss, when the p-quantile is defined in (8.1). We use both
of the following notations:

VaRp(Lt+1) = Qp(Lt+1). (8.3)
Typically p takes such values as 0.95 or 0.99. A larger value of value-at-risk indi-
cates that the portfolio is more risky. The loss over 𝜂 ≥ 1 periods is

L(𝜂)
t+𝜂 = −(Vt+𝜂 − Vt),

and the value-at-risk over the horizon of 𝜂 ≥ 1 periods is

VaRp

(
L(𝜂)

t+𝜂

)
.

Thus, the value-at-risk has two parameters: the risk horizon (daily, weekly, and
20-day horizon) and the confidence level p.
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8.2.1.2 Decomposition of the Loss of a Portfolio
We can write the loss of a portfolio, as defined in (8.2), as

Lt+1 = −VtRt+1,

where Rt+1 is the net return of the portfolio:

Rt+1 =
Vt+1 − Vt

Vt
.

Thus, the value-at-risk is obtained from the quantile Qp(Rt+1) of the return dis-
tribution by the formula

VaRp(Lt+1) = −Vt Qp(Rt+1). (8.4)

When the portfolio has initial value zero, then we cannot compute the return,
and (8.4) cannot be used.

For example, the portfolio of stocks has the value

Vt =
d∑

i=1
𝜉

iSi
t ,

where d is the number of stocks in the portfolio, Si
t is the value of the ith stock

at time t, and 𝜉i is the quantity of the ith stock in the portfolio. Thus, for the
portfolio of stocks the loss is

Lt+1 = −(Vt+1 − Vt) = −
d∑

i=1
𝜉

iSi
tRi

t+1,

where

Ri
t+1 =

Si
t+1 − Si

t

Si
t

is the net return of the ith stock. Thus, the calculation of the value-at-risk
requires knowledge of the distribution of a linear combination of the returns
of the portfolio components.

8.2.1.3 Losses over Several Periods
We estimate the value-at-risk for the risk horizon, which is the same as the sam-
pling frequency. However, often it is needed to estimate the value-at-risk for a
longer risk horizon than the sampling period. For example, we might want to
estimate the value-at-risk for the risk horizon of 10 days using daily observa-
tions. The loss over 𝜂 ≥ 1 periods is defined as

L(𝜂)
t+𝜂 = −(Vt+𝜂 − Vt).

We show in (8.30) that

Qp

(
L(𝜂)

t+𝜂

)
= 𝜇 + 𝜎 Qp(𝜖),
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where

𝜇 = EtL
(𝜂)
t+𝜂, 𝜎

2 = Vart

(
L(𝜂)

t+𝜂

)
, 𝜖 =

(
L(𝜂)

t+𝜂 − 𝜇
)
∕𝜎.

We can write

L(𝜂)
t+𝜂 = −Vt

Vt+𝜂 − Vt

Vt
≈ −Vt log

Vt+𝜂

Vt
= −Vt

𝜂−1∑
i=0

log
Vt+i+1

Vt+i
. (8.5)

The approximation

𝜎
2 ≈ V 2

t

𝜂−1∑
i=0

EtR2
t+i+1, Rt+i+1 = log

Vt+i+1

Vt+i

could be used, and the techniques of volatility prediction of Chapter 7 lead to
a quantile estimate.

Assuming that Rt are i.i.d., leads to

Qp

(
L(𝜂)

t+𝜂

)
= −Vt𝜂m + Vt

√
𝜂s Qp(𝜖),

where m = ERi, s2 = Var(Ri). Assume that the logarithmic returns Rt+i+1 =
log(Vt+i+1∕Vt+i) are i.i.d. with the normal distribution N(m, s2). Then,
𝜖 ∼ N(0, 1), and Qp(𝜖) = Φ−1(p), where Φ is the distribution function of the
N(0, 1) distribution.

8.2.2 Margin Requirements

Value-at-risk can be applied to determine the safety deposit (margin) that a
holder of a futures position or a writer of an option has to hold. The exchanges
and brokers require that the investors save a deposit in the margin account. The
amount of the deposit can be determined by the value-at-risk of the futures or
option position.

Let us assume that the margin account earns the yearly rate r > 0. The gross
return of a portfolio whose components are the risk-free rate and a risky
asset is

Rt+1 = (1 − b)(1 + rΔt) + b
St+1

St
,

where b ∈ R is the weight of the risky asset, St is the price of the risky asset, and
Δt is the length of the period in fractions of a year. The gross return Rt+1 ≤ 0
means that bankruptcy occurs. We want to choose b so that

P(Rt+1 ≤ 0) ≈ p,
where 0 < p < 0.5 is small. We have that

Rt+1 ≤ 0 ⇔ b
( St+1

1 + rΔt
− St

)
≤ −St .

Let us consider separately the case b > 0 and b < 0.
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1) When b > 0, then we are buying the risky asset, and

Rt+1 ≤ 0 ⇔
St+1

1 + rΔt
− St ≤ −

St

b
.

Let Q̂p be an estimate of the pth quantile of
St+1

1 + rΔt
− St .

When Q̂p < 0, we can choose

b = −
St

Q̂p

,

because St > 0.
2) When b > 0, then we are selling the risky asset, and

Rt+1 ≤ 0 ⇔
St+1

1 + rΔt
− St ≥ −

St

b
.

Let Q̂1−p be an estimate of the (1 − p)th quantile of
St+1

1 + rΔt
− St .

When Q̂1−p > 0, we can choose

b = −
St

Q̂1−p

.

8.2.3 Quantiles as a Risk Measure

Quantiles can be used as a risk measure. For example, if the 1% quantile of a
monthly loss of S&P 500 returns is 20%, then an investor who owns S&P 500
index could expect to suffer 20% monthly loss once in every 8 years, roughly
speaking, since 100 × 1∕12 ≈ 8. This kind of statement gives an investor some
understanding of the riskiness of the position.

It can be argued that a reasonable risk measure satisfies the axioms of a coher-
ent risk measure. Coherent risk measures were defined by Artzner et al. (1999).
Coherent risk measures 𝜌 satisfy the following properties, where X and Y are
random variables interpreted as portfolio losses.

1) Monotonicity: if X ≤ Y , then 𝜌(X) ≤ 𝜌(Y ). If the outcome of an investment
dominates the outcome of an other investment, then the risk must be
greater.

2) Subadditivity: 𝜌(X + Y ) ≤ 𝜌(X) + 𝜌(Y ). Diversification reduces risk.
3) Positive homogeneity: 𝜌(𝜆Y ) = 𝜆𝜌(Y ) for 𝜆 ≥ 0. If the investor doubles his

position for every asset, then he doubles also the risk.
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4) Translation invariance: 𝜌(Y + a) = 𝜌(Y ) − a for a ∈ R. If the amount a is
added to the portfolio, then the capital requirement is reduced by the same
amount.

The value-at-risk (an upper quantile of the loss) is not a coherent risk mea-
sure, but the expected shortfall is a coherent risk measure. Quantiles do not
satisfy the subadditivity like the expected shortfall.3

Föllmer and Schied (2002, Section 4.1) define a monetary measure of
risk as satisfying the condition of monotonicity and translation invariance.
A monetary measure of risk is called a convex measure of risk if it satisfies
convexity:

𝜌(𝜆X + (1 − 𝜆)Y ) ≤ 𝜆𝜌(x) + (1 − 𝜆)𝜌(Y ),

for 0 ≤ 𝜆 ≤ 1. A convex measure or risk is called a coherent risk measure if it
satisfies the condition of positive homogeneity. Under the assumption of pos-
itive homogeneity, convexity is equivalent to subadditivity. However, Föllmer
and Schied (2002, p. 155) note that risk may grow in a nonlinear ways as the size
of the position increases, and thus it makes sense to study convex measures of
risk, instead of coherent measures of risk.

To learn more about risk measures, see McNeil et al. (2005, Section 6.1) and
Föllmer and Schied (2002, Section 4.1).

8.3 Performance Measures for Quantile Estimators

We can measure the performance of a quantile estimator by studying how well
the quantile estimator captures the probability of an exceedance. Secondly, we
can measure the performance by using a suitable loss function.

In this section, we only define the performance measures, and they are illus-
trated in Section 8.5.1.

3 Let X and Y be independent and identically distributed with the distribution P(Y = 1) = 0.95 and
P(Y = 0) = 0.05. Random variables Y and X can be interpreted as pay-offs of zero-coupon bonds
paying one at the maturity when there is no default, and the probability of default being 0.05. The
quantiles of X and Y are

Qp(Y ) = Qp(X) =

{
0, 0 < p ≤ 0.95,
1, 0.95 < p ≤ 1.

Let p1 = 0.952 and p2 = 2 ⋅ 0.95 ⋅ 0.05. The quantiles of X + Y are

Qp(X + Y ) =
⎧⎪⎨⎪⎩

0, 0 < p ≤ p1,

1, p1 < p ≤ p1 + p2,

2, p1 + p2 < p ≤ 1.

Thus, Qp(X + Y ) > Qp(X) + Qp(Y ) when p1 < p ≤ 0.95.
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8.3.1 Measuring the Probability of Exceedances

To measure the performance of a quantile estimator for continuous distribu-
tions, we use the fact that the pth quantile qp satisfies

P(Y ≤ qp) = p.

Let quantile estimator q̂p be constructed using observations Y1,… ,YT . If the
estimator is good, then

#{Yi∶Yi ≤ q̂p}
T

≈ p.

However, we should not use the same data both for constructing the estima-
tor and for evaluating the estimator, because this would give a too optimistic
impression of the performance of the estimator.

8.3.1.1 Cross-Validation
We consider the case of time series observations and estimation of the
conditional quantiles. There are many ways to choose the conditioning
information. Let us observe time series Y1,… ,YT . Let the conditional quantile
estimator be

q̂t = Q̂p(Yt|Yt−1,Yt−2,…),

which is constructed using data Y1,… ,Yt−1. The cross-validation quantity is

p̂ = 1
T − t0

T∑
t=t0+1

I(−∞,q̂t](Yt), (8.6)

where 1 ≤ t0 ≤ T − 1. We start to evaluate the performance of the estimator
after t0 observations are available, because any estimator can behave erratically
when it is constructed using only a couple of observations.

We might also observe vector time series (X1,Y1),… , (XT ,YT ) and use the
conditional quantile estimator

q̂t = Q̂p(Yt | (Xt−1,Yt−1),…).

The same cross-validation estimate as in (8.6) can be used.4

4 Let us observe i.i.d. data Y1,… ,YT . Let q̂i be a quantile estimator, constructed using the other
data but not the ith observation. The cross-validation quantity is

p̂ = 1
T − 1

T∑
j=1, j≠i

I(−∞,q̂i]
(Yj).

Note that the estimator could also be an estimator of a conditional quantile. In this case we observe
(Y1,X1),… , (YT ,XT ) and want to estimate Qp(Y |X = x). Then the estimator without the ith obser-
vation is q̂i(x) and the cross-validation quantity is

p̂ = 1
T − 1

T∑
j=1, j≠i

I(−∞,q̂i(Xj)]
(Yj).
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8.3.1.2 Probability Differences
Finally, the performance is measured using the difference

p − p̂. (8.7)
If p̂ > p, this means that the quantile estimates were in average larger than the
true quantiles. When we are estimating the left tail, so that p is close to 0, then
the relation p̂ > p means that the true distribution has a heavier left tail than
the quantile estimates would indicate. When we are estimating the right tail, so
that p is close to 1, then this relation reverses, and the relation p̂ > p means that
the true distribution has a lighter right tail than the quantile estimates would
indicate.

We will show the performance of quantile estimators by plotting the
difference

R(p, p̂) =
{

p − p̂, when p < 0.5,
p̂ − p, when p > 0.5. (8.8)

Thus, the difference R(p, p̂) being negative means that the true distribution has
a heavier tail than the quantile estimates would indicate. The difference R(p, p̂)
being positive means that the true distribution has a lighter tail than the quan-
tile estimates would indicate.

An alternative definition replaces the differences with the ratios, so that

Rr(p, p̂) =
{

p∕p̂, when p < 0.5,
p̂∕p, when p > 0.5. (8.9)

The ratios are more informative for p very close to 0 or to 1.
Note that the absolute difference |p − p̂| is not as good performance measure

as p − p̂ or p̂ − p, because the absolute difference looses the information about
the sign. Information about the sign of p − p̂ is useful because it tells whether
the quantile estimator tends to be too small or too large.

8.3.1.3 Confidence of the Performance Measure
Even when we would know the true quantiles, there is random fluctuation in
the numbers p̂. The random variables

Zt = I(−∞,qp](Yt+1), t = t0,… ,T − 1,

are Bernoulli random variables with P(Zt = 1) = p, where qp is the true quan-
tile. If random variables Yt are independent, then random variables Zt are inde-
pendent, and

M =
T−1∑
t=t0

Zt

is a binomial random variable with the distribution Bin(n, p), where n = T − t0.
The probability mass function of M is

P(M = i) =
(n

i

)
pi(1 − p)n−i

, for i = 0,… , n.
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Difference We want to bound the difference p − p̃, where p̃ = M∕n. We choose
numbers c0 and c1 so that

P(c0 ≤ p − p̃ ≤ c1) ≥ 1 − 𝛼, (8.10)

where 0 < 𝛼 < 1. We have

c0 = p − n−1z1−𝛼∕2, c1 = p − n−1z
𝛼∕2, (8.11)

where z
𝛼∕2 and z1−𝛼∕2 are such that P(z

𝛼∕2 ≤ M ≤ z1−𝛼∕2) ≥ 1 − 𝛼.

Ratio We can also use analogous bounds for the ratio p∕p̃, where p̃ = M∕n. We
choose numbers d0 and d1 so that

P(d0 ≤ p∕p̃ ≤ d1) ≥ 1 − 𝛼,

where 0 < 𝛼 < 1. We have

d0 =
np

z1−𝛼∕2
, d1 =

np
z
𝛼∕2
,

where z
𝛼∕2 and z1−𝛼∕2 are such that P(z

𝛼∕2 ≤ M ≤ z1−𝛼∕2) ≥ 1 − 𝛼.

8.3.1.4 Probability Differences Over All Time Intervals
The estimate p̂ in (8.6) is computed over time interval [t0,T]. It is of interest
to compute the estimate over a large collection of subintervals [t1, t2], where
t0 ≤ t1 < t2 ≤ T . We denote

p̂(t1, t2) =
1

t2 − t1

t2∑
t=t1+1

I(−∞,q̂t](Yt).

When we study a large collection of time intervals, then we can find whether
a quantile estimator is uniformly better than another quantile estimator, or
whether there are time periods where the first estimator is better and time peri-
ods where the second estimator is better.

We can plot the two-variate function (t1, t2) → R(p, p̂(t1, t2)). This two-variate
function is rather unsmooth, so that perspective plots and contour plots are
difficult to interpret. It can be easier to look at the slices

t1 → R(p, p̂(t1, t2)) (8.12)

for a fixed t2, and the slices

t2 → R(p, p̂(t1, t2)) (8.13)

for a fixed t1.
It is intuitive to plot the vectors joining the points p1, p2 ∈ R2, where

p1 = (t1,R(p, p̂(t1, t2))), p2 = (t2,R(p, p̂(t1, t2))), (8.14)

for a collection of pairs (t1, t2). These vectors are intuitive because they visualize
the interval [t1, t2] together with the value R(p, p̂(t1, t2)). We divide time interval
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[t0,T] into K subintervals of equal length, where K = 1, 2,…. That is, we choose
the collection of pairs (t1, t2), where

t1 = t0 + (k − 1)𝛿, t2 = t0 + k𝛿, 𝛿 = [(T − t0)∕K], (8.15)

for k = 1,… ,K .

8.3.2 A Loss Function for Quantile Estimation

A quantile can be characterized as a minimizer of

R(𝜃) = E𝜌p(Y − 𝜃),

over 𝜃 ∈ R, where

𝜌p(x) = x [p − I(−∞,0)(x)] =
{

x(p − 1), if x < 0,
xp, if x ≥ 0, (8.16)

for 0 < p < 1. That is,

Qp(Y ) = argmin
𝜃∈RE𝜌p(Y − 𝜃). (8.17)

The same holds for the conditional quantiles:

Qp(Y |X = x) = argming∈E𝜌p(Y − g(X)),

where  is the class of measurable functions Rd → R.5 Figure 8.2 shows the
loss function in (8.16) with p = 0.5 (black solid line) and with p = 0.1 (red
dashed line).

8.3.2.1 Cross-Validation
We can measure the quality of a quantile estimator q̂p by estimating

R(q̂p) = E𝜌p(Y − q̂p).

The estimation can be done using a sample mean, but we have to be careful not
to use the same observations in the estimation of R(q̂p) that were used in the
construction of q̂p.

Let Y1,… ,YT be time series data. Let the conditional quantile estimator be

q̂t = Q̂p(Yt|Yt−1,…),

5 We show that if the distribution function FY is strictly monotonic, then (8.17) holds. Note that

E𝜌p(Y − 𝜃) = (p − 1)
∫

𝜃

−∞
(y − 𝜃) dFY (y) + p

∫

∞

𝜃

(y − 𝜃) dFY (y)

and thus

𝜕

𝜕𝜃
E𝜌p(Y − 𝜃) = (1 − p)

∫

𝜃

−∞
dFY (y) − p

∫

∞

𝜃

dFY (y) = FY (𝜃) − p.

Setting 𝜕E𝜌p(Y − 𝜃)∕𝜕𝜃 = 0, we get (8.17), when FY is strictly monotonic.
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Figure 8.2 Loss functions for quantile estima-
tion. Loss function in (8.16) with p = 0.5 (black
solid line) and with p = 0.1 (red dashed line).

which is constructed using data Y1,… ,Yt−1, and calculate

R̂ = 1
T − t0

T∑
t=t0+1

𝜌p(Yt − q̂t), (8.18)

where 1 ≤ t0 ≤ T − 1. We begin to evaluate the performance of the estimator
after t0 observations are available, because any estimator can behave erratically
when only a couple of observations are used for its construction.6

8.3.2.2 Performance Over All Time Intervals
We can compare the performance of two conditional quantile estimators in a
time series setting using the cumulative sums of the losses. This is similar to the
use of cumulative sums of squared prediction errors to compare two predictors,
in (6.26).

Let Y1,… ,YT be time series data. Let q̂1
i and q̂2

i be two conditional quantile
estimators, which are constructed using data Y1,… ,Yi−1, and define

Ct =
t∑

i=t0+1
𝜌p
(
Yi − q̂1

i
)
−

t∑
i=t0+1

𝜌p
(
Yi − q̂2

i
)
, (8.19)

where 1 ≤ t0 ≤ T − 1. When Ct1
< Ct2

, then estimator q̂1
i performs better on

time period [t1, t2] than estimator q̂2
i . Thus, a single time series plot of Ct reveals

6 Let Y1,… ,YT be i.i.d. data. Let q̂i be a quantile estimate constructed using the other data but not
the ith observation. The cross-validation quantity is

R̂ = 1
T − 1

T∑
j=1, j≠i

𝜌p(Yj − q̂i).

Note that the quantile estimator could also be an estimator of the conditional quantile if we observe
(Y1,X1),… , (YT ,XT ), and want to estimate the conditional quantile Qp(Y |X = x).
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all time periods where the first estimator is better than the second estimator, as
explained in the connection of (6.26).

8.3.2.3 A Comparison to Probability Differences
Note that there is some resemblance to the performance measure p − p̂ of (8.7).
We can write

p − p̂ = 1
T − t0

T∑
t=t0+1

[p − I(−∞,0)(Yt − q̂t)].

On the other hand,

R̂ = 1
T − t0

T∑
t=t0+1

(Yt − q̂t)[p − I(−∞,0)(Yt − q̂t)].

The probability difference p − p̂ takes into account only whether there is an
exceedance. The mean loss R̂ takes also the largeness of the exceedance into
account. Thus, R̂ punishes more from the outliers in the values of q̂.

8.3.2.4 Empirical Risk Minimization
Loss function 𝜌p can be used in empirical risk minimization. Let us have regres-
sion data (X1,Y1),… , (XT ,YT ). We can use function 𝜌p to construct an estima-
tor for the conditional quantile. The estimator is defined as the minimizer of the
empirical risk. The estimator of the conditional quantile f (x) = Qp(Y |X = x) is

f̂ = argming∈

n∑
i=1
𝜌p(Yi − g(Xi)),

where  is a suitable subset of the class of all measurable functions g∶Rd → R.

8.4 Nonparametric Estimators of Quantiles

For continuous distributions the quantile can be defined as the inverse of the
distribution function:

Qp(Y ) = F−1(p),

where Y is a random variable with a continuous distribution, F(x) = P(Y ≤ x) is
the distribution function, and p ∈ (0, 1). We obtain an estimate of the quantile
by inverting the empirical distribution function.

Section 8.4.1 defines the empirical quantiles, which are obtained by inverting
the empirical distribution function. Also, we define modifications of empirical
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quantiles that apply smoothing. Section 8.4.2 defines empirical conditional
quantile estimators. The empirical quantile can be combined with time space
or state space smoothing to obtain an estimator for a conditional quantile.

8.4.1 Empirical Quantiles

The basic empirical quantiles are obtained by inverting the empirical distribu-
tion function. The basic empirical quantiles can be modified by kernel smooth-
ing methods.

8.4.1.1 Basic Empirical Quantile Estimator
We give three equivalent definitions for the empirical quantiles. The empiri-
cal distribution function, based on the observations Y1,… ,YT , is defined in
(3.30) as

F̂(x) = 1
T

T∑
i=1

I(−∞,x](Yi), x ∈ R. (8.20)

The empirical distribution is the discrete distribution with the probability mass
function P({Yi}) = 1∕T for i = 1,… ,T . Now we can define an estimate of the
quantile by

Q̂p = inf{x∶F̂(x) ≥ p}, (8.21)

where 0 < p < 1. It holds that

Q̂p =

⎧⎪⎪⎨⎪⎪⎩

Y(1), 0 < p ≤ 1∕T ,
Y(2), 1∕T < p ≤ 2∕T ,
⋮
Y(T−1), 1 − 2∕T < p ≤ 1 − 1∕T ,
Y(T), 1 − 1∕T < p < 1,

(8.22)

where the ordered sample is denoted by Y(1) ≤ Y(2) ≤ · · · ≤ Y(T). A third way of
writing the empirical quantile was given in (3.23):

Q̂p = Y(⌈pT⌉), (8.23)

where we denote by ⌈x⌉ the smallest integer ≥ x. We can write equivalently
Q̂p = Y([pT]+1), where [x] is the largest integer ≤ x.

Figure 8.3 illustrates the empirical quantiles. We use monthly S&P 500 data,
described in Section 2.4.3. Panel (a) shows the empirical distribution function.
Panel (b) shows the first half of the function, indicated by the black vectors in
panel (a). The red vectors indicate the location of the pth empirical quantile for
p = 0.01. The location is determined by the seventh largest observation.

When p < 1∕T , then the quantile estimator based on the empirical distri-
bution is equal to the smallest observation, no matter how small p is. When
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Figure 8.3 Definition of empirical quantiles. (a) The empirical distribution function; (b) the first
half of the function, indicated by the black vectors in panel (a). The red vectors indicate the
location of the pth empirical quantile for p = 0.01.

p < 1∕T , we have to extrapolate outside the range of observations in order to
estimate the quantile at level p. This can be done with parametric or semipara-
metric methods.

8.4.1.2 Smooth Empirical Quantiles
The smooth empirical quantiles apply kernel weights to modify the basic
empirical quantiles. The distribution function can be estimated smoothly,
or the quantiles can be directly estimated by a weighted sum of ordered
observations.

Kernel Estimation of the Distribution Function The kernel density estimator f̂
is defined in Section 3.2.2. The corresponding estimator of the distribution
function is

F̂(x) =
∫

x

−∞
f̂ (y) dy = 1

T

T∑
i=1

∫

x

−∞
Kh(y − Yi) dy, (8.24)

where x ∈ R, K ∶R → R is the kernel function, Kh(x) = K(x∕h)∕h, and h > 0 is
the smoothing parameter. The corresponding quantile estimator is

Q̂p = F̂−1(p),

where p ∈ (0, 1). Azzalini (1981) has studied this quantile estimator.
Figure 8.4 illustrates the extrapolation outside the range of data and inter-

polation between the data points. We use monthly S&P 500 data, described in
Section 2.4.3.

In Figure 8.4(a) our purpose is to estimate the pth quantile for p = 0.1%. We
have less than 1000 observations, and the pth empirical quantile is the smallest
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Figure 8.4 Extrapolating and interpolating the empirical distribution. (a) The black vertical line
shows the empirical pth quantile for p = 0.1%. The red vertical line shows the Pareto quantile,
and the red curve shows the fitted Pareto distribution. (b) Kernel distribution function esti-
mates. The blue curve has smoothing parameter h chosen by the normal reference rule. The
black curve is oversmoothing and the green curve is undersmoothing.

observation, indicated by the black vertical line. The extrapolation can be done
by fitting the Pareto model to the data, and taking the quantile estimate to be
the pth quantile of the fitted Pareto distribution. The fitted Pareto distribution
is shown by the red curve, and the pth quantile of the Pareto distribution is
indicated by the red vertical line. Fitting of Pareto distributions is discussed in
Section 3.4.2.

In Figure 8.4(b) we show distribution function estimates (8.24). The blue
curve has smoothing parameter h chosen by the normal reference rule. The
black curve is oversmoothing and the green curve is undersmoothing. We see
that extrapolation outside the range of data is not possible with kernel distri-
bution function estimator, but interpolation between the extreme observations
is possible.

Kernel Quantile Estimators We have defined the empirical quantile in
(8.21)–(8.23). Equation (8.23) shows that the empirical quantile depends
on a single order statistics. L-estimators of quantiles are weighted averages of
several order statistics. The use of several order statistics in the estimation of
a quantile can improve the efficiency. A kernel quantile estimator is a special
case of L-estimators of quantiles. A kernel quantile estimator can be defined
for 0 < p < 1 as

Q̂K
p =
∑T

i=1 Kh(i∕T − p) Y(i)∑T
i=1 Kh(i∕T − p)

, (8.25)
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Figure 8.5 Kernel quantile estimator. (a) The implied distribution function estimates. The
smoothing parameter is h = 0.05 (red), h = 0.005 (blue), and h = 0.001 (green). (b) The quan-
tile estimates as a function of smoothing parameter. We estimate the pth quantile for p = 0.05
(purple), p = 0.01 (violet), and p = 0.001 (black).

where Kh(x) = K(x∕h)∕h is the scaled kernel function, K ∶R → R is the kernel
function, and h > 0 is the smoothing parameter. The estimator is a weighted
average of order statistics Y(i) for which i∕T is close to p.7 Sheather and Marron
(1990) studies the asymptotic mean squared error of (8.25) and show that the
kernel quantile estimator has the same first-order asymptotics as the empirical
quantile, but the higher order asymptotics reveal improvement.8

Figure 8.5 studies the kernel quantile estimator in (8.25). Panel (a) shows the
implied distribution function estimates. The smoothing parameter is h = 0.05

7 Alternative definitions for the kernel quantile estimator are T−1∑T
i=1 Kh(i∕T − p) Y(i),

T−1∑T
i=1 Kh((i − 0.5)∕T − p) Y(i), and T−1∑T

i=1 Kh(i∕(T + 1) − p) Y(i). Unlike (8.25), these estima-
tors are not normalized so that the weights sum up to 1. An additional form of a kernel quantile
estimator can be defined as

∑T
i=1

(
∫

i∕T
i−1∕T Kh(t − p) dt

)
Y(i), where the kernel function K is a density

function. Sheather and Marron (1990) shows that these estimators are asymptotically equivalent
with (8.25), under certain conditions.
8 The asymptotic variance of the empirical quantile is T−1p(1 − p)[Q′(p)]2, where Q′(p) is the
derivative of the quantile function. The asymptotic mean squared error of the kernel quantile esti-
mator is under certain assumption

T−1p(1 − p)[Q′(p)]2 − 2T−1h[Q′(p)]2
∫

∞

−∞
uK(u)K (−1)(u) du

+ 4−1h4[Q′′(p)]2
[
∫

∞

−∞
u2K(u) du

]2
+ o(T−1h) + o(h4),

where K (−1) is the antiderivative of K . We have that ∫ ∞
−∞ uK(u)K (−1)(u) du > 0, which shows that the

higher order asymptotics is better for the kernel quantile estimator than for the empirical quantile,
because it reasonable to choose h = o(T−1∕4).
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(red), h = 0.005 (blue), and h = 0.001 (green). Panel (b) shows the quantile esti-
mates as a function of smoothing parameter. We estimate the pth quantile for
p = 0.05 (purple), p = 0.01 (violet), and p = 0.001 (black). The vertical lines
indicate the smoothing parameters that are used in panel (a). We see that when
the smoothing parameter approaches zero, then the estimates approach the
basic empirical quantiles.

8.4.2 Conditional Empirical Quantiles

The conditional empirical quantiles can be defined both for time space smooth-
ing and state space smoothing.

8.4.2.1 Time Space Smoothing
Let Y1,… ,YT be stationary time series data. We can define one-sided moving
average estimator of the conditional quantile by inverting the one-sided moving
average estimator F̂Yt

of the distribution function, defined by

F̂Yt
(y) =

t∑
i=1

pi(t) I(−∞,y](Yi), t = 1,… ,T ,

where the weights pi(t) are defined in (6.4). This gives

Q̂p(Yt|Yt−1,…) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Y(1), 0 < p ≤ p1(t),
Y(2), p1(t) < p ≤ p1(t) + p2(t),
⋮

Y(t−1),
∑t−2

i=1 pi(t) < p ≤
∑t−1

i=1 pi(t),

Y(t),
∑t−1

i=1 pi(t) < p < 1,

(8.26)

where the ordered sample is denoted by Y(1) ≤ Y(2) ≤ · · · ≤ Y(t).

8.4.2.2 State Space Smoothing
Let (X1,Y1),… , (XT ,YT ) be identically distributed regression data, where
Xi ∈ Rd is a predictive variable. An estimator of a conditional quantile of Y
can be defined with the help of the estimator of the conditional distribution
function F̂Y |X=x(y), defined by

F̂Y |X=x(y) =
T∑

i=1
pi(x)I(−∞,y](Yi), (8.27)

where the kernel weights pi(x) are defined in (6.21). We get the conditional
quantile estimator by taking the generalized inverse of the estimator of the
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Figure 8.6 Kernel estimates of conditional quantiles. (a) Conditional quantile estimates for the
levels p = 0, 1, 0, 2,… , 0.9, when the smoothing parameter is h = 0.7; (b) estimates for the
level p = 0.1 when the smoothing parameters are h = 0.3, 0.5, 0.7, 0.9. A contour plot of a
kernel estimate of the density of (Xt , Yt) is also shown.

conditional distribution function:

Q̂p(Y |X = x) = inf{y∶F̂Y |X=x(y) ≥ p}. (8.28)

The estimator can be written as

Q̂p(Y |X = x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Y(1), 0 < p ≤ p1(x),
Y(2), p1(x) < p ≤ p1(x) + p2(x),
⋮

Y(T−1),
∑T−2

i=1 pi(x) < p ≤
∑T−1

i=1 pi(x),
Y(T),

∑T−1
i=1 pi(x) < p < 1,

(8.29)

where the ordered sample is denoted by Y(1) ≤ Y(2) ≤ · · · ≤ Y(T).
Figure 8.6 shows conditional quantile estimates when kernel weights are

used. We apply the daily S&P 500 data of Section 2.4.1. Panel (a) shows
estimates for the levels p = 0, 1, 0, 2,… , 0.9, when the smoothing parameter
is h = 0.7. Panel (b) shows estimates for the level p = 0.1 when the smoothing
parameters are h = 0.3, 0.5, 0.7, 0.9. The standard normal kernel is used in both
panels. The explanatory and the response variables as

Xt = loge

√√√√1
k

k∑
i=1

R2
t−i , Yt = loge|Rt|,
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where k = 10, and Rt = (St − St−1)∕St−1 are the net returns. We show also a con-
tour plot of a kernel estimate of the density of (Xt,Yt).

8.5 Volatility Based Quantile Estimation

Volatility based quantile estimators are build on a location–scale model.
The location and the scale parameters are estimated, and the corresponding
quantile estimate is derived. The scale parameter can be estimated using the
sample standard deviation. Conditional quantile estimators are obtained from
estimators of the conditional mean and the conditional standard deviation.

8.5.1 Location–Scale Model

Consider a location–scale model

Y = 𝜇 + 𝜎 𝜖,

where 𝜇 ∈ R, 𝜎 > 0, and 𝜖 is a real valued random variable. The quantile of Y
is obtained from the quantile of 𝜖 by

Qp(Y ) = 𝜇 + 𝜎 Qp(𝜖). (8.30)

Indeed, for x ∈ R,

P(Y ≤ x) = P
(
𝜖 ≤

x − 𝜇
𝜎

)
= F

𝜖

(x − 𝜇
𝜎

)
,

where F
𝜖

is the distribution function of 𝜖. If 𝜖 has a continuous distribution, then
F
𝜖

is strictly increasing and the inverse function F−1
𝜖

exists. The pth quantile
Qp(Y ) of Y satisfies P(Y ≤ Qp(Y )) = p, and we can solve this equation to get
Qp(Y ) = 𝜇 + 𝜎 F−1

𝜖
(p), which implies (8.30).

For a known F
𝜖
, we get from estimators 𝜇̂ and 𝜎̂ the quantile estimator

Q̂p(Y ) = 𝜇̂ + 𝜎̂ F−1
𝜖
(p). (8.31)

8.5.1.1 Examples of Location–Scale Quantile Estimators
For example, the Gaussian quantile estimator is

Q̂p(Y ) = 𝜇̂ + 𝜎̂Φ−1(p), (8.32)

where 𝜇̂ is the sample mean, 𝜎̂ is the sample standard deviation, and Φ is the
distribution function of the standard normal distribution. The Student quantile
estimator is9

Q̂p(Y ) = 𝜇̂ +
√
𝜈 − 2
𝜈

𝜎̂t−1
𝜈
(p), (8.33)

9 If X ∼ t
𝜈
, then Var(X) = 𝜈∕(𝜈 − 2), so that

√
(𝜈 − 2)∕𝜈 t−1

𝜈
(p) is the p-quantile of such

t-distribution which is standardized to have unit variance.
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where 𝜈 > 2 is the degrees of freedom and t
𝜈

is the distribution function of the
Student distribution with degrees of freedom 𝜈.

In practice the estimators are conditional in the sense that they are calculated
sequentially: estimator computed at time t uses data Y1,… ,Yt . That is, 𝜇̂ = 𝜇̂t
is the sample mean and 𝜎̂ = 𝜎̂t is the sample standard deviation computed from
Y1,… ,Yt ,

8.5.1.2 Estimation of S&P 500 Quantiles
We estimate quantiles of the S&P 500 returns Yt using S&P 500 daily data,
described in Section 2.4.1. We estimate the quantiles using three estimators:

1) Empirical quantile

Q̂p(Y ) = Y(pt), (8.34)

where Y(1) ≤ · · · ≤ Y(t) is the ordered sample. Note that the sequential
empirical quantiles are a special case of (8.26), when we take pi(t) = 1∕t,
i = 1,… , t.

2) The Gaussian quantile estimator, as defined in (8.32).
3) The Student quantile estimator, as defined in (8.33). We use 𝜈 = 6 degrees

of freedom.

We apply the performance measures that are defined in Section 8.3.

Probability Differences Figure 8.7 plots the probability differences p → R(p, p̂),
defined in (8.8). Panel (a) plots p − p̂ for p close to 0, and panel (b) plots p̂ − p for
p close to 1. The performance of empirical quantiles is shown in red, that of the
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Figure 8.7 Quantile estimator performance. We plot function p → R(p, p̂), as defined in (8.8).
Empirical quantiles (red), Gaussian quantiles (black), and Student quantiles (blue). The green
lines show level 𝛼 = 0.05 fluctuation bands. (a) Level p is close to zero; (b) p is close to one.
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Figure 8.8 Quantile estimator performance: Logarithmic x-axis. We plot function p → R(p, p̂),
as defined in (8.8). Empirical quantiles (red), Gaussian quantiles (black), and Student quantiles
(blue). The green lines show level 𝛼 = 0.05 fluctuation bands. (a) Level p is close to zero; (b) p
is close to one.

Gaussian quantiles is shown in black, and that of the t-distribution quantiles
is in blue. A green line is drawn at level 0, and it is accompanied by the level
𝛼 = 0.05 fluctuation bands, defined in (8.10) and (8.11).

Figure 8.8 plots the probability differences when the x-axes have a logarithmic
scale, and in panel (b) x-axis takes values 1 − p.

Figures 8.7 and 8.8 indicate that the true distribution has heavier tails than
the quantile estimates would indicate. The empirical quantiles have the best
performance when p ≤ 4% or p ≥ 96%, but the Student quantiles are almost as
good as empirical quantiles in this range. The Gaussian quantiles have the best
performance when 4% ≤ p ≤ 96%.

Figure 8.9 shows slices of two-variate probability differences when p = 1%.
Panel (a) shows slices in (8.12) for t2 = T and for t2 = 1979. Panel (b) shows
slices in (8.13) for t1 = t0 and for t1 = 1979. The red curves show p − p̂ for the
empirical quantiles and the black curves show p − p̂ for the Gaussian quantile
estimates. We see that the empirical quantiles are better for all shown time
intervals. The performance becomes worse for the time periods close to the
end. The fluctuation is large when the time periods are short.

Figure 8.10 shows vectors joining points p1 and p2, as defined in (8.14), when
the time intervals [t1, t2] are defined in (8.15). We take the number K = 4 of
intervals and p = 1%. Panel (a) shows the case of empirical quantiles (red) and
the case of Gaussian quantiles (black). Panel (b) shows the case of empirical
quantiles (red) and the case of Student quantiles (blue). The green lines indicate
the fluctuation bands for confidence 95%. The empirical quantiles seem to be
uniformly better than Gaussian or Student quantiles.
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Figure 8.9 Quantile estimator performance: Slices of probability differences. We show p − p̂
when p = 1% for the empirical quantiles (red) and for the Gaussian quantile estimates (black).
Panel (a) shows slices in (8.12) for t2 = T and for t2 = 1979. Panel (b) shows slices in (8.13) for
t1 = t0 and for t1 = 1979.
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Figure 8.10 Quantile estimator performance: Vectors over time intervals. We show vectors join-
ing points p1 and p2, as defined in (8.14), when the time intervals ([t1, t2] are defined in (8.15)
for K = 4 and p = 1%. (a) Empirical quantiles (red) and Gaussian quantiles (black); (b) empirical
quantiles (red) and Student quantiles (blue).

The Loss Function We illustrate performance measurement using the three
estimators defined in (8.32)–(8.34): the Gaussian quantile estimator, Student
quantile estimator, and empirical quantile estimator. These estimators are
conditional in the sense that they are computed sequentially: estimator q̂t uses
data Y1,… ,Yt .
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Figure 8.11 Performance of quantile estimators: Expected loss. We show functions p →
R̂(q̂emp) − R̂(q̂gau) (black) and p → R̂(q̂emp) − R̂(q̂stu) (blue). (a) Range p ∈ [0.001, 0.075] and (b)
p ∈ [0.925, 0.999].

Figure 8.11 compares the estimated expected losses of the three estimators.
We show functions

p → R̂(q̂emp) − R̂(q̂gau) (black), p → R̂(q̂emp) − R̂(q̂stu) (blue),

where R̂(q̂) is defined in (8.18) when the estimator is q̂. We denote by q̂emp the
empirical quantile estimator, by q̂gau the Gaussian quantile estimator, and by
q̂stu the Student quantile estimator. Panel (a) shows range p ∈ [0.001, 0.075].
Panel (b) shows range p ∈ [0.925, 0.999].

We obtain partially the same message as in Figures 8.7 and 8.8: The empirical
quantiles are best in the far away tails but the Gaussian quantile estimator is best
when we are closer to the center. Furthermore, the Student quantile estimator
is better than the Gaussian quantile estimator in the far away tails. Note that
we obtain less information than in Figures 8.7 and 8.8: We do not see whether
the estimators overestimate or underestimate the true quantiles.

Figure 8.12 shows the time series of differences

Ct =
t∑

i=t0+1
𝜌p
(
Yi − q̂emp

i

)
−

t∑
i=t0+1

𝜌p(Yi − q̂i) (8.35)

of cumulative sums, where q̂emp
i is the empirical quantile estimator, and q̂i is the

Gaussian quantile estimator (black) or the Student quantile estimator (blue).
Panel (a) considers pth quantiles for p = 0.1%. Panel (b) considers pth quan-
tiles for p = 5%. We see that for p = 0.1% the empirical quantile estimator is
better than the Gaussian quantile estimator, but the empirical quantile estima-
tor is worse than the Student estimator at the beginning of the time period. For
p = 5% the empirical quantile estimator is equally good as the Gaussian and
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Figure 8.12 Performance of quantile estimators: Cumulative losses. We show time series Ct in
(8.35). (a) p = 0.1% and (b) p = 5%.

Student quantile estimator at the beginning of the period, but better at the end
of the period.

8.5.2 Conditional Location–Scale Model

The conditional heteroskedasticity model

Yt = 𝜇t + 𝜎t𝜖t,

was defined in (5.29) for 𝜇t ≡ 0. For the financial returns the signal (the
expected return) is typically of a lower order than the noise, and thus in
quantile estimation the location 𝜇t can usually be ignored. We do not ignore
𝜇t but use only the sample mean to estimate 𝜇t , instead of using any more
sophisticated methods.

We use the conditional quantile estimator

Q̂p(Yt|t−1) = 𝜇̂t + 𝜎̂t Q̂p(𝜖t), (8.36)

where 𝜇̂t is the prediction of Yt+1, 𝜎̂t is the predicted volatility (an estimator of
the conditional standard deviation of Yt+1), and Q̂p(𝜖t) is an estimator of the pth
quantile of the distribution of 𝜖t = (Yt − 𝜇t)∕𝜎t .

8.5.2.1 Examples of Conditional Location–Scale Quantile Estimators
We choose 𝜇̂t to be the sequential sample mean. We choose the estimator 𝜎̂t of
the conditional standard deviation to be either the GARCH(1, 1) predictor, the
square root of an exponentially weighted moving average of squared returns,
or a state space kernel predictor of volatility. These predictors are discussed in
Chapter 7.

We choose the estimator Q̂p(𝜖t) of the quantile of the residuals to be either
a fixed quantile function, or the empirical quantile of the residuals. We can
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choose Q̂p(𝜖t) = Φ−1(p), where Φ is the distribution function of the standard
normal distribution. This leads to the estimator

Q̂p(Yt|t−1) = 𝜇̂t + 𝜎̂t Φ−1(p). (8.37)

Second, we can choose Q̂p(𝜖t) =
√
(𝜈 − 2)∕𝜈 t−1

𝜈
(p), where t

𝜈
is the distribution

function of the t-distribution with 𝜈 degrees of freedom, 𝜈 > 2. This leads to
the quantile estimator

Q̂p(Yt|t−1) = 𝜇̂t +
√
𝜈 − 2
𝜈

𝜎̂t t−1
𝜈
(p). (8.38)

We can choose Q̂p(𝜖t) to be the empirical quantile of the residuals Yt∕𝜎̂t . This
leads to the quantile estimator

Q̂p(Yt|t−1) = 𝜇̂ + 𝜎̂t Q̂res(p), (8.39)

where Q̂res(p) is the pth empirical quantile, computed from

(Y1 − 𝜇̂1)∕𝜎̂1,… , (Yt − 𝜇̂t)∕𝜎̂t .

Empirical quantiles are defined in (8.21). Note that when 𝜎1 = · · · = 𝜎t , then
𝜎̂t Q̂res(p) is the empirical quantile computed from Y1,… ,Yt . Thus, the use of
an empirical quantile of residuals makes sense only in the conditional quantile
estimation. The method of using empirical quantiles of residuals was suggested
in Fan and Gu (2003).

The distribution of the GARCH(1, 1) residuals Yt∕𝜎̂t is studied in Figure 5.10,
which shows the tail plots of the residuals. The maximum likelihood estimator
of the GARCH(1, 1) model is defined with the assumption of standard normal
innovations, but Figure 5.10 indicates that the tails of the residuals are better
fitted with the t-distribution and thus it makes sense to try to use quantiles
from the t-distribution.

8.5.2.2 Estimation of S&P 500 Quantiles
We study the performance of the GARCH(1, 1) volatility estimator in
quantile estimation and compare its performance to the performance of
moving average estimators. We use the daily S&P 500 data, described in
Section 2.4.1.

The sequential GARCH(1, 1) volatility predictor 𝜎̂garch
t is defined in (7.7),

where a different notation is used (here we use subindex t instead of t + 1).
Exponentially weighted moving average 𝜎̂e𝑤ma

t for the estimation of conditional
variance was defined in (7.9). We also use the name “EWMA(h) estimator” to
refer to the exponentially weighted moving average estimator with smoothing
parameter h.

The performance of the exponentially weighted moving average and
GARCH(1, 1) volatility estimator is compared in Section 7.4.2.
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Figure 8.13 GARCH(1, 1) quantiles. The figure shows the time series of estimated pth quantiles
with p = 0.05 for the S&P 500 returns data. The quantiles are estimated with the GARCH(1, 1)
method with the residual distribution being the standard normal.

GARCH(1, 1)-Based Quantile Estimators GARCH(1, 1)-based quantile estimator is
defined by (8.36), when 𝜎̂t is estimated with the GARCH(1, 1) method. The
residual quantile is determined with one of the three methods in (8.37)–(8.39).

Figure 8.13 shows the time series of estimated conditional quantiles with the
level p = 0.05. The distribution of the residuals is the standard normal distri-
bution: we use the method (8.37).

Figure 8.14 compares the three methods in (8.37)–(8.39). Panel (a) plots
the function p → p − p̂ in the range p ∈ [0.001, 0.075] and panel (b) plots the
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Figure 8.14 Performance of GARCH(1, 1) quantile estimators: Probability differences. (a) Func-
tions p → p − p̂ are shown for p ∈ [0.001, 0.075]. (b) Functions p → p̂ − p are shown for
p ∈ [0.925, 0.999]. The residuals are the standard normal (black) and the t-distribution with
degrees of freedom 12 (blue), degrees of freedom 5 (red), and the empirical distribution (pur-
ple).
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function p → p̂ − p in the range p ∈ [0.925, 0.999]. Four cases are shown:
the residual distribution is the standard normal distribution (black), the
standardized t-distribution with degrees of freedom 5 (red) and 12 (blue), and
the empirical distribution (purple). The green lines show the level 𝛼 = 0.05
fluctuation bands, defined in (8.10) and (8.11).

We see from Figure 8.14(a) that the Gaussian residuals perform well for level
p = 0.05, but for level p = 0.01 using a t-distribution or the empirical distribu-
tion gives better estimates. The GARCH(1, 1)-based quantile estimates are esti-
mating the left tail of the S&P 500 return distribution too light, except when the
residuals are from the t-distribution with degrees of freedom 5, in which case
the tail is estimated too heavy for levels p < 0.01. We see from Figure 8.14(b)
that for the right tail the quantile estimates are more accurate than for the left
tail. The standard t-distribution with degrees of freedom 12 gives a good overall
performance.

Figure 8.15 shows slices of two-variate probability differences when p = 0.1%.
Panel (a) shows slices in (8.12) for t2 = T and for t2 = 1979. Panel (b) shows
slices in (8.13) for t1 = t0 and for t1 = 1979. The purple curves show p − p̂ when
the quantiles of the residuals are the empirical quantiles and the black curves
show p − p̂ when the quantiles of the residuals are from the standard normal
distribution. We see that the empirical quantiles are better for all shown time
intervals. The performance becomes worse for the time periods close to the
end. The fluctuation is large when the time periods are short.

Figure 8.16 shows functions

p → R̂(q̂eres) − R̂(q̂),
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Figure 8.15 Performance of GARCH(1, 1) quantile estimators: Slices of probability differences. We
show p − p̂ when p = 0.1% for the empirical residuals (purple) and for the Gaussian residuals
(black). Panel (a) shows slices in (8.12) for t2 = T and for t2 = 1979. Panel (b) shows slices in
(8.13) for t1 = t0 and for t1 = 1979.
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Figure 8.16 Performance of GARCH(1, 1) quantile estimators: Loss function. Functions p →
R̂(q̂eres) − R̂(q̂) (a) p ∈ [0.001, 0.075]: (b) p ∈ [0.925, 0.999]. The residuals in q̂ are the standard
normal (black) and the t-distribution with degrees of freedom 12 (blue) and degrees of free-
dom 5 (red).

where R̂(q̂) is the mean loss, defined in (8.18). Panel (a) shows range
p ∈ [0.001, 0.075]. Panel (b) shows range p ∈ [0.925, 0.999]. We denote by
q̂eres the quantile estimator when the residual distribution is the empirical
distribution. The estimator q̂ is the quantile estimator with the standard
normal distribution (black), the standardized t-distribution with degrees of
freedom 5 (red) and 12 (blue). We see that for p close to 0, the t-distribution
with degrees of freedom 5 gives the best result. When p is close to 1, the
t-distribution with degrees of freedom 12 gives the best result.

Figure 8.17 shows time series of differences

Ct =
t∑

i=t0+1
𝜌p
(
Yi − q̂eres

i
)
−

t∑
i=t0+1

𝜌p(Yi − q̂i) (8.40)

of cumulative sums, where q̂eres
i is the quantile estimator with empirical residu-

als, and q̂i has the Gaussian residuals (black), the Student residuals with degrees
of freedom 5 (red), and degrees of freedom 12 (blue). Panel (a) considers pth
conditional quantiles for p = 0.1%. Panel (b) considers pth conditional quan-
tiles for p = 5%. We see that for p = 0.1% the Student distribution with five
degrees of freedom leads to best results, for almost all time intervals. For p =
1% the Student distribution with 5 degrees of freedom and 12 degrees of free-
dom leads to almost equal performance, for almost all time intervals.

EWMA-Based Quantile Estimators Exponentially weighted moving average
(EWMA) based quantile estimators are defined by (8.36), where 𝜎̂t is
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Figure 8.17 Performance of GARCH(1, 1) quantile estimators: Cumulative losses. We show time
series Ct in (8.40). (a) p = 0.1%; (b) p = 1%. The residuals of q̂i are the standard normal (black)
and the t-distribution with degrees of freedom 12 (blue) and degrees of freedom 5 (red).

calculated with the EWMA method, and the residual quantile is determined
with one of the three methods in (8.37)–(8.39).

Figure 8.18 shows functions

h → R̂(q̂h),

where R̂(q̂) is the mean loss, defined in (8.18), and h is the smoothing parameter
of the EWMA estimator of 𝜎̂t . Panel (a) estimates pth conditional quantiles for
p = 0.1%. Panel (b) has p = 1%. The quantile estimators q̂h have the Gaussian
residuals (black with “2”), the Student residuals with degrees of freedom 5 (red
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Figure 8.18 EWMA(h) quantile estimator: Mean losses. The mean loss is shown as a function of
smoothing parameter h. (a) p = 0.1%; (b) p = 1%. The residual distributions are the standard
Gaussian (black with “2”), the Student with degrees of freedom 5 (red with “3”), degrees of
freedom 12 (blue with “4”), and the empirical (purple with “1”).
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with “3”), degrees of freedom 12 (blue with “4”), and the empirical residuals
(purple with “1”). We see that the Student residual with degrees of freedom 5
gives the best results, for smoothing parameter h = 5 for p = 0.1% and h = 10
for 1%. The optimal smoothing parameter is larger in the case of empirical
residuals than the optimal smoothing parameter in the case of Gaussian or Stu-
dent residuals.

Figure 8.19 shows functions

h → R̂(q̂h),

where R̂(q̂) is the mean loss, defined in (8.18), and h is the smoothing parame-
ter of the EWMA estimator of 𝜎̂t . Panel (a) estimates pth conditional quantiles
for p = 0.1%. Panel (b) has p = 1%. The quantile estimators q̂h have the Stu-
dent residuals with degrees of freedom 4 (black with “1”), 5 (red with “2”),
and 6 (blue with “3”). The horizontal lines show the mean losses when 𝜎̂t is
the GARCH(1, 1) volatility. We see that for p = 0.1% the EWMA can perform
better than GARCH(1, 1), but for p = 1% GARCH(1, 1) is better.

Figure 8.20 shows the performance of exponentially weighted moving
average for four smoothing parameters: h = 2 (black), h = 5 (red), h = 20
(blue), and h = 40 (purple). Panel (a) plots the function p → p − p̂ in the range
p ∈ [0.001, 0.075], and panel (b) plots the function p → p̂ − p in the range
p ∈ [0.925, 0.999]. The distribution of the residuals is Student with degrees
of freedom equal to 4. The green horizontal line is drawn at level zero, and
it is accompanied with the level 𝛼 = 0.05 fluctuation bands. The smoothing
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Figure 8.19 EWMA(h) quantile estimator: Mean losses for Student residuals. The mean loss is
shown as a function of smoothing parameter h. (a) p = 0.1% and (b) p = 1%. The residual
distributions are the Student distributions with degrees of freedom 4 (black with “1”), 5 (red
with “2”), and 6 (blue with “3”). The horizontal lines show the mean losses for GARCH(1, 1)
volatility.
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Figure 8.20 EWMA(h) quantile estimator: Smoothing parameter selection for Student residuals.
Panel (a) shows the curves p → p − p̂ for p ∈ [0.001, 0.075] and panel (b) shows the curves
p → p̂ − p for the cases p ∈ [0.925, 0.999]. The distribution of the residuals is Student with
degrees of freedom equal to 4. The smoothing parameters h = 2, 5, 20, 40 are shown with
the colors black, red, blue, and purple.

parameters h = 10 and h = 30 give the best results for large p. However, for
small p the smoothing parameter h = 100 gives the best results.

Figure 8.21 shows the performance of exponentially weighted moving
average for four smoothing parameters: h = 5 (black), h = 10 (red), h = 30
(blue), and h = 100 (purple). Panel (a) plots the function p → p − p̂ in the range
p ∈ [0.001, 0.075], and panel (b) plots the function p → p̂ − p in the range
p ∈ [0.925, 0.999]. The distribution of the residuals is the standard normal.
The green horizontal line is drawn at level zero, and it is accompanied with
the level 𝛼 = 0.05 fluctuation bands. The smoothing parameters h = 10 and
h = 30 give the best results for large p. However, for small p the smoothing
parameter h = 100 gives the best results.

Figure 8.22 shows the performance of the exponentially weighted moving
average estimator with the smoothing parameter h = 30 for four residual
distributions. Panel (a) shows the curves p → p − p̂ for p ∈ [0.001, 0.075] and
panel (b) shows the curves p → p̂ − p for the cases p ∈ [0.925, 0.999]. The blue
curve shows the standard normal residual distribution, the black curve shows
the standard t-distribution with degrees of freedom 12, the red curve shows
degrees of freedom 5, and the purple curve shows the case of using empirical
distribution. For the left tail the empirical residuals give the best result, except
when p ≥ 0.05, when the Gaussian residual give the best result. For the right
tail the empirical residuals and the standard t-distribution with degrees of
freedom 12 give the best results.
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Figure 8.21 EWMA(h) quantile estimator: Smoothing parameter selection for Gaussian residu-
als. Panel (a) shows the curves p → p − p̂ for p ∈ [0.001, 0.075] and panel (b) shows the curves
p → p̂ − p for the cases p ∈ [0.925, 0.999]. The distribution of the residuals is the standard
normal. The smoothing parameters h = 5, 10, 30,100 are shown with the colors black, red,
blue, and purple.
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Figure 8.22 EWMA(h) quantile estimator: Selection of residual distribution using probability
differences. (a) The curves p → p − p̂ for p ∈ [0.001, 0.075]. (b) The curves p → p̂ − p for
p ∈ [0.925, 0.999]. The residual distributions standard normal, standard t-distribution with
degrees of freedom 12, degrees of freedom 5, and the empirical distribution are shown with
the colors blue, red, black, and green.
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Figure 8.23 Performance of EWMA(h) quantile estimators: Selection of residual distribution
using loss function. Functions p → R̂(q̂eres) − R̂(q̂) for (a) p ∈ [0.001, 0.075] and (b) p ∈
[0.925, 0.999]. The residuals in q̂ are the standard normal (black) and the t-distribution with
degrees of freedom 12 (blue) and degrees of freedom 5 (red).

Figure 8.23 shows functions

p → R̂(q̂eres) − R̂(q̂)

where R̂(q̂) is the mean loss, defined in (8.18). Panel (a) shows range
p ∈ [0.001, 0.075]. Panel (b) shows range p ∈ [0.925, 0.999]. We denote by
q̂eres the quantile estimator when the residual distribution is the empirical
distribution. The estimator q̂ is the quantile estimator with the the standard
normal distribution (black), the standardized t-distribution with degrees
of freedom 5 (red) and 12 (blue). We see that for p close to 0, the Student
distribution with degrees of freedom 5 gives the best result. When p is close
to 1, the Student distribution with degrees of freedom 12 gives the best result.

Figure 8.24 shows time series of differences

Ct =
t∑

i=t0+1
𝜌p
(
Yi − q̂emp

i

)
−

t∑
i=t0+1

𝜌p(Yi − q̂i) (8.41)

of cumulative sums, where q̂emp
i is the empirical quantile estimator, and q̂i is the

Gaussian quantile estimator (black) or the Student quantile estimator (blue).
Panel (a) considers pth conditional quantiles for p = 0.1%. Panel (b) considers
pth conditional quantiles for p = 5%. We see that for p = 0.1% the empirical
quantile estimator is better than the Gaussian quantile estimator, but the empir-
ical quantile estimator is worse than the Student estimator at the beginning of
the time period. For p = 5% the empirical quantile estimator is equally good as
the Gaussian and Student quantile estimators at the beginning of the period,
but better at the end of the period.
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Figure 8.24 Performance of EWMA quantile estimators: Cumulative losses. We show time series
Ct in (8.41). (a) p = 0.1% and (b) p = 5%. The residuals are the standard normal (black) and the
t-distribution with degrees of freedom 12 (blue), degrees of freedom 5 (red), and the empirical
distribution (purple).

Kernel Smoothing-Based Quantile Estimators We define in Section 7.5.2 a kernel
estimator 𝜎̂ker

t for the conditional standard deviation, which uses as predictors
the exponentially weighted moving averages of past squared returns and past
returns, as defined in (7.19). The smoothing parameter g involved in the defi-
nition of the predictors is taken to be g = 40. Estimator 𝜎̂ker

t is now applied to
quantile estimation.

Section 7.5.2 shows that the kernel estimator is better than GARCH(1, 1)
for volatility estimation, when the performance is measured in the terms of
the sum of squared prediction errors. In this section we see that the kernel
estimator leads to a better quantile estimator than GARCH(1, 1). Looking at
the aggregated mean loss it seems that the GARCH(1, 1) would perform better
for the estimation of the pth conditional quantiles when p is close to 0. However,
looking at the cumulative losses in Figure 8.29 reveals that kernel estimator is
better for all other time periods, but autumn 1987 makes the aggregate mean
loss better for GARCH(1, 1), when p is close to 0.

Figure 8.25 shows functions

h → R̂(q̂h),

where R̂(q̂h) is the mean loss, defined in (8.18), and h is the smoothing parame-
ter of the kernel estimator 𝜎̂ker

t . Panel (a) estimates the pth conditional quantiles
for p = 0.1%. Panel (b) has p = 1%. The quantile estimators q̂h have the Gaus-
sian residuals (black with “2”), the Student residuals with degrees of freedom 5
(red with “3”), degrees of freedom 12 (blue with “4”), and the empirical residu-
als (purple with “1”). We see that the Student residuals with degrees of freedom
5 give the best results.
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Figure 8.25 Kernel quantile estimator: Mean losses. The mean loss is shown as a function of
smoothing parameter h. (a) p = 0.1% and (b) p = 1%. The residual distributions are the stan-
dard Gaussian (black with “2”), the Student with degrees of freedom 5 (red with “3”), degrees
of freedom 12 (blue with “4”), and the empirical (purple with “1”).
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Figure 8.26 Kernel quantile estimator: Mean losses for Student residuals when p is close to 0. The
mean loss is shown as a function of smoothing parameter h. (a) p = 0.1% and (b) p = 1%. The
residual distributions are the Student distributions with degrees of freedom 4 (black with “1”),
5 (red with “2”), and 6 (blue with “3”). The horizontal lines show the mean losses for GARCH(1,
1) volatility.

Figure 8.26 shows functions h → R̂(q̂h),where R̂(q̂h) is the mean loss, defined
in (8.18), and h is the smoothing parameter of the kernel estimator 𝜎̂ker

t . Panel (a)
estimates pth conditional quantiles for p = 0.1%. Panel (b) has p = 1%. The
quantile estimators q̂h have the Student residuals with degrees of freedom 4
(black with “1”), 5 (red with “2”), and 6 (blue with “3”). The horizontal lines show
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Figure 8.27 Kernel quantile estimator: Mean losses for Student residuals when p is close to 1. The
mean loss is shown as a function of smoothing parameter h. (a) p = 0.999 and (b) p = 0.99. The
residual distributions are the Student distributions with degrees of freedom 4 (black with “1”),
5 (red with “2”), and 6 (blue with “3”). The horizontal lines show the mean losses for GARCH(1,
1) volatility.

the mean losses when 𝜎̂t is the GARCH(1, 1) volatility. We see that GARCH(1,
1) gives better results than the kernel estimator, and the degrees of freedom 4
gives the best results.

Figure 8.27 shows functions h → R̂(q̂h),where R̂(q̂h) is the mean loss, defined
in (8.18), and h is the smoothing parameter of the kernel estimator 𝜎̂ker

t . Panel (a)
estimates pth conditional quantiles for p = 0.999. Panel (b) has p = 99. The
quantile estimators q̂h have the Student residuals with degrees of freedom 4
(black with “1”), 5 (red with “2”), and 6 (blue with “3”). The horizontal lines
show the mean losses when 𝜎̂t is the GARCH(1, 1) volatility. We see that kernel
estimator gives better results than GARCH(1, 1), and the degrees of freedom 6
gives the best results.

Figure 8.28 shows the performance of the kernel estimator for the
empirical residual distribution. Panel (a) shows the curves p → p − p̂ for
p ∈ [0.001, 0.075], and panel (b) shows the curves p → p̂ − p for the cases
p ∈ [0.925, 0.999]. The smoothing parameter of the kernel estimator is h = 0.2
(black), h = 0.5 (red), and h = 1 (blue).

Figure 8.29 shows time series of differences

Ct =
t∑

i=t0+1
𝜌p

(
Yi − q̂garch

i

)
−

t∑
i=t0+1

𝜌p
(
Yi − q̂ker

i
)

(8.42)

of cumulative sums, where q̂garch
i uses the GARCH(1, 1) volatility and q̂ker

i uses
the kernel estimator of volatility. Panel (a) considers pth conditional quantiles
for p = 0.1%. Panel (b) considers pth conditional quantiles for p = 5%. The dis-
tribution of the residuals is the Student distribution with degrees of freedom 5.
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Figure 8.29 Kernel versus GARCH quantile estimator: Cumulative losses. We show time series Ct
in (8.42). (a) p = 0.1% and (b) p = 0.999.

The smoothing parameter of the kernel estimator is h = 0.4. We see that for
p = 0.1% the kernel estimator is better or equally good as GARCH estimator,
expect at autumn 1987. For p = 0.999 the kernel estimator is better for almost
all time periods.

8.6 Excess Distributions in Quantile Estimation

Let Y ∈ R be a random variable with a continuous distribution, let
F(x) = P(Y ≤ x) be the distribution function of Y , and f the density function.
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8.6.1 The Excess Distributions

We define the upper excess distribution and the lower excess distribution. We
can use the term “excess distribution” without a further qualification when
it is clear from the context whether we mean the upper or the lower excess
distribution.

8.6.1.1 The Upper Excess Distribution
The distribution function of the excess distribution with threshold u ∈ R is

Fu(x) = P(Y − u ≤ x|Y > u) = F(x + u) − F(u)
1 − F(u)

, (8.43)

where x ≥ 0. The density function is

fu(x) =
f (x + u)
1 − F(u)

I[0,∞)(x). (8.44)

Now it holds that
f (x)I[u,∞)(x) = (1 − F(u))fu(x).

This implies that we can model the right tail of f by giving a parametric model
for fu. These definitions were given in (3.59) and (3.60) and the estimation of
the excess distribution is studied in Section 3.4.

The quantiles can be written in terms of the excess distribution. If the quantile
satisfies Qp(Y ) > u, then

Qp(Y ) = u + F−1
u

(
1 −

1 − p
1 − F(u)

)
. (8.45)

Indeed, let x > u. Now

P(Y > x|Y > u) = P(Y > x)
P(Y > u)

.

Thus,
P(Y > x) = P(Y > u) P(Y > x|Y > u)

= P(Y > u) P(Y − u > x − u|Y > u)
= P(Y > u) [1 − Fu(x − u)].

Thus,

Fu(x − u) = 1 − P(Y > x)
P(Y > u)

and

x = u + F−1
u

(
1 − P(Y > x)

P(Y > u)

)
.

Now we choose x = Qp(Y ) and use the fact that if the distribution of Y is con-
tinuous, then P(Y > Qp(Y )) = 1 − p to get (8.45).
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8.6.1.2 The Lower Excess Distribution
The distribution function of the lower excess distribution with threshold
u ∈ R is

Fu(x) = P(u − Y ≤ x|Y < u) = F(u) − F(u − x)
F(u)

, (8.46)

where x ≥ 0. The density function is

fu(x) =
f (u − x)

F(u)
I[0,∞)(x).

Now it holds that

f (x)I(−∞,u](x) = F(u)fu(x).

This implies that we can model the left tail of f by giving a parametric model
for fu. The quantiles can be written in terms of the lower excess distribution.
We have that

Qp(Y ) = u − F−1
u

(
1 −

p
F(u)

)
, (8.47)

when the quantile satisfies Qp(Y ) < u.10

8.6.1.3 Quantile Estimators Using Excess Distributions
Now we obtain semiparametric estimators of the quantiles. Let 0 < p <
p0 < 0.5, or 0.5 < p0 < p < 1. First we estimate the p0th quantile using empir-
ical quantiles. Let the estimate be u = Q̂p0

. Then we model Fu parametrically,

10 Indeed, let x < u. Now

P(Y < x|Y < u) = P(Y < x)
P(Y < u)

.

Thus,

P(Y < x) = P(Y < u) P(Y < x|Y < u)

= P(Y < u) P(Y − u < x − u|Y < u)

= P(Y < u) P(u − Y > u − x|Y < u)

= P(Y < u) [1 − Fu(u − x)].

Thus,

Fu(u − x) = 1 − P(Y < x)
P(Y < u)

and

x = u − F−1
u

(
1 − P(Y < x)

P(Y < u)

)
.

Now we choose x = Qp(Y ) and use the fact that if the distribution of Y is continuous, then P(Y <

Qp(Y )) = p to get (8.47).
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estimate the parameters, and use (8.45) and (8.47) to estimate the pth quantile.
This is reasonable because estimation of the p0th quantile is easier than the
estimation of the pth quantile.

8.6.1.4 A Connection to Location–Scale Model
We can obtain the formula

Qp(Y ) = 𝜇 + 𝜎 F−1
𝜖
(p). (8.48)

of location–scale modeling as a special case of the excess distribution modeling.
Formula (8.48) was given in (8.30).

Let the distribution of 𝜖 be symmetric around zero. Then the density function
of 𝜖 satisfies f

𝜖
(x) = f

𝜖
(−x). Define

fu(x) =
2
𝜎

f
𝜖

( x
𝜎

)
I[0,∞)(x), Fu(x) = 2

(
F
𝜖

( x
𝜎

)
− 1∕2
)

I[0,∞)(x).

We have that

F−1
u (p) = 𝜎F−1

𝜖

(
p + 1

2

)
.

Choose u = 𝜇 and F(u) = 1∕2. Then for 1∕2 < p < 1

Qp(Y ) = u + F−1
u

(
1 −

1 − p
1 − F(u)

)
= 𝜇 + 𝜎F−1

𝜖
(p).

For 0 < p < 1∕2

Qp(Y ) = u − F−1
u

(
1 −

p
F(u)

)
= 𝜇 − 𝜎F−1

𝜖
(−p) = 𝜇 + 𝜎F−1

𝜖
(p).

8.6.2 Unconditional Quantile Estimation

We study the estimation of the lower quantiles using formula

Qp(Y ) = u − F−1
u

(
1 −

p
F(u)

)
, (8.49)

as derived in (8.47), where 0 < p < F(u) < 0.5. We choose

u = F̂−1(p0), (8.50)

where F̂ is the empirical distribution function, F̂−1 means the general-
ized inverse, and 0 < p < p0 < 0.5. The excess distribution Fu is modeled
parametrically, and the parameters of Fu are estimated.

The study is made using the daily S&P 500 data, described in Section 2.4.1.
The quantile estimator is unconditional, but the performance is measured
sequentially: the estimator is updated at each time t using the previous data.

Section 3.4.2 describes the one-parameter exponential and Pareto distribu-
tions, and the two-parameter gamma, generalized Pareto, and Weibull distri-
butions. We apply these distributions to model excess distributions.
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We study the performance of quantile estimators for various values of p0∕p.
Since p0 = p means that the estimator is the empirical quantile estimator, we
are comparing the estimators to the empirical quantile estimator.

8.6.2.1 Exponential Excess Distribution
Let Fu be the excess distribution of Y . When Fu is an exponential distribution,
then F−1

u (p) = −𝛽 log(1 − p), where 𝛽 > 0 is the parameter of the exponential
distribution. When 0 < p < F(u) < 0.5,

Qp(Y ) = u + 𝛽 log
(

p
F(u)

)
, (8.51)

and the maximum likelihood estimator of parameter 𝛽 is

𝛽left =
1
#
∑
Yi∈

(u − Yi),  = {Yi∶Yi ≤ u}. (8.52)

When 0.5 < F(u) < p < 1, then analogous formulas hold.11

Figures 8.30 and 8.31 show that the exponential excess distribution leads
to a better quantile estimator than the empirical quantile estimator. The ratio
p0∕p ≈ 3 leads to best estimates, for small p.

Figure 8.30 studies the performance of the exponential quantile estimator as
a function of p0∕p, for several values of p. We estimate quantiles with levels
p = 0.1% (black), p = 1% (red), and p = 5% (blue). Panel (a) shows the ratios
p∕p̂ as a function of the ratio p0∕p, where p̂ is the implied estimate of the
probability p, as defined in (8.6), and p0 is the probability in (8.50). Panel (b)
shows the estimates of the expected loss as a function of ratio p0∕p: we show
functions

k →
R̂(k) − minkR̂(k)

maxkR̂(k) − minkR̂(k)
, (8.53)

where k = p0∕p ≥ 1 is the multiplier and the estimated expected loss R̂ is
defined in (8.18). The value of R̂ depends on p and p0 through the quantile esti-
mates. We indicate by vertical lines the values p0∕p (a) minimizing |p∕p̂ − 1|
(b) minimizing R̂. We see that the ratio p0∕p ≈ 3 gives the best results for
all values of p. Note that the ratio p0∕p = 1 implies that the estimator is the
empirical quantile.

11 The pth quantile of Y is

Qp(Y ) = u − 𝛽 log
(

1 − p
1 − F(u)

)
,

and the parameter estimate is

𝛽right =
1
#
∑

Yi∈
(Yi − u),  = {Yi∶Yi ≥ u}.
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Figure 8.30 Exponential model. (a) Ratios p∕p̂ as a function of the multiplier k = p0∕p. (b) The
expected loss R̂ as a function of multiplier k. The quantile level p takes values p = 0.1% (black),
p = 1% (red), and p = 5% (blue).
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Figure 8.31 Exponential model. (a) Function p → p∕p̂, where p̂ is the estimate of the
exceedance probability. (b) Function p → R̂(k) − R̂(1), where R̂ is the estimated loss when the
multiplier of the quantile estimator is k = p0∕p. The multiplier is k = 1 (violet), k = 2 (purple),
k = 3 (dark green), k = 4 (pink), and k = 5 (yellow).

Figure 8.31 studies the performance of the exponential quantile estimator as a
function of p, for several values of k = p0∕p. We consider values k = 1 (violet),
k = 2 (purple), k = 3 (dark green), k = 4 (pink), and k = 5 (yellow). Panel (a)
shows functions p → p∕p̂, where p̂ is the implied estimate of the probability
p, as defined in (8.6). The green lines show the fluctuation bands for 𝛼 = 5%.
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Panel (b) shows functions

p → R̂(k) − R̂(1),

where the estimated expected loss R̂ is defined in (8.18), and R̂ depends on
k = p0∕p through the quantile estimates. Note that the multiplier k = 1 implies
that the quantile estimator is the empirical quantile, because then Qp(Y ) = u.
Thus, negative values of R̂(k) − R̂(1) imply that the quantile estimator with mul-
tiplier k is better than the empirical quantile. We see from panels (a) and (b) that
the exponential quantiles are better than the empirical quantiles. We see from
panel (a) that the true distribution seems to have a heavier tail than the expo-
nential quantiles indicate, and that multiplier k = 2 leads to best results, at least
for small p. We see from panel (b) that multiplier k = 3 leads to best results.

8.6.2.2 Pareto Excess Distribution
When the excess distribution Fu of Y is a Pareto distribution, then F−1

u (p) =
u(1 − p)−1∕𝛼 − u for u > 0 and F−1

u (p) = −u(1 − p)−1∕𝛼 + u for u < 0, where
𝛼 > 0 is the parameter of the Pareto distribution. Here, we use the Pareto distri-
bution with the support [0,∞), as defined in (3.74). When 0 < p < F(u) < 0.5,
then

Qp(Y ) = u
(

F(u)
p

)1∕𝛼

. (8.54)

Note that when u < 0, then Qp(Y ) < u, because 𝛼 > 0 and F(u)∕p > 1. The
maximum likelihood estimator of parameter 𝛼 is

𝛼̂left =

(
1
#
∑
Yi∈

log(Yi∕u)

)−1

,  = {Yi∶Yi ≤ u}.

Analogous formulas hold when 0.5 < F(u) < p < 1.12

Figures 8.32 and 8.33 show that the Pareto excess distribution leads to better
quantile estimates than the empirical quantiles, and ratio p0∕p can be even 6–10
for p = 1–5%. For p = 0.1% modeling with the Pareto excess distribution does
not lead to a better performance than the performance of the empirical quantile
estimator.

12 When p and u are such that 0.5 < F(u) < p < 1, then the pth quantile of the distribution of Y is

Qp(Y ) = u
(

1 − F(u)
1 − p

)1∕𝛼

.

Note that when u > 0, then Qp(Y ) > u, because 𝛼 > 0 and (1 − F(u))∕(1 − p) > 1. The maximum
likelihood estimator of parameter 𝛼 is

𝛼̂right =

(
1
#
∑

Yi∈
log(Yi∕u)

)−1

,  = {Yi∶Yi ≥ u}.
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Figure 8.32 Pareto model. (a) Ratios p∕p̂ as a function of the multiplier k = p0∕p. (b) The
expected loss R̂ as a function of multiplier k. The quantile level p takes values p = 0.1% (black),
p = 1% (red), and p = 5% (blue).
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Figure 8.33 Pareto model. (a) Function p → p∕p̂, where p̂ is the estimate of the exceedance
probability. (b) Function p → R̂(k) − R̂(1), where R̂ is the estimated loss when the multiplier of
the quantile estimator is k = p0∕p. The multiplier is k = 1 (violet), k = 3 (purple), k = 6 (dark
green), and k = 8 (pink).

Figure 8.32 studies the performance of the Pareto quantile estimator as a
function of p0∕p, for several values of p. We estimate quantiles with levels
p = 0.1% (black), p = 1% (red), and p = 5% (blue). The setting is the same as in
Figure 8.30. We see that the threshold u = 2.5 × p is close to optimum, and the
expected loss does not change much when u is larger than that.
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Figure 8.34 Gamma model. (a) Ratios p∕p̂ as a function of the multiplier k = p0∕p. (b) The
expected loss R̂ as a function of multiplier k. The quantile level p takes values p = 0.1% (black),
p = 1% (red), and p = 5% (blue).

Figure 8.33 studies the performance of the Pareto quantile estimator as a
function of p, for several values of k = p0∕p. We consider values k = 1 (violet),
k = 3 (purple), k = 6 (dark green), and k = 8 (pink). The setting is the same as
in Figure 8.31.

8.6.2.3 The Gamma Excess Distribution
Le the excess distribution Fu be a gamma distribution. The gamma distribution
has parameters 𝜅 > 0 and 𝛽 > 0. The quantile function F−1

u (p) cannot be given
in a closed form, and the maximum likelihood estimators of the parameters do
not have a closed-form expression.

Figures 8.34 and 8.35 show that the gamma excess distribution leads to worse
quantile estimates than the empirical quantiles, for p = 0.1–5%.

Figure 8.34 studies the performance of the gamma quantile estimator as a
function of p0∕p, for several values of p. We estimate quantiles with levels p =
0.1% (black), p = 1% (red), and p = 5% (blue). The setting is the same as in
Figure 8.30.

Figure 8.35 studies the performance of the gamma quantile estimator as
a function of p, for several values of k = p0∕p. We consider values k = 1
(violet), k = 2 (purple), and k = 3 (dark green). The setting is the same as in
Figure 8.31.

8.6.2.4 The Generalized Pareto Excess Distribution
The parameters of the generalized Pareto distributions are 𝜉 ≥ 0 and 𝛽 > 0.
For 𝜉 = 0 the distributions are exponential. When the excess distribution is a
generalized Pareto distribution, then for 𝜉 > 0, F−1

u (p) = (𝛽∕𝜉)[(1 − p)−𝜉 − 1].
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Figure 8.35 Gamma model. (a) Function p → p∕p̂, where p̂ is the estimate of the exceedance
probability. (b) Function p → R̂(k) − R̂(1), where R̂ is the estimated loss when the multiplier
of the quantile estimator is k = p0∕p. The multiplier is k = 1 (violet), k = 2 (purple), and k = 3
(dark green).

For 𝜉 = 0, F−1
u (p) = −𝛽 log(1 − p). For 0 < p < F(u) < 0.5 the pth quantile is

Qp(Y ) = u − (𝛽∕𝜉)

[(
p

F(u)

)−𝜉
− 1

]
.

For 0 < p < F(u) < 0.5 we have analogous expressions.13 The maximum likeli-
hood estimators of parameters do not have a closed-form expression.

Figures 8.36 and 8.37 show that the generalized Pareto excess distribution
leads to better quantile estimates than the empirical quantiles: for p = 5% we
can have p0∕p = 10, and for p = 1% we can have p0∕p = 20. For p = 0.1% mod-
eling with the generalized Pareto excess distribution does not lead to a better
performance than the performance of the empirical quantile estimator.

Figure 8.36 studies the performance of the generalized Pareto quantile esti-
mator as a function of p0∕p, for several values of p. We estimate quantiles with
levels p = 0.1% (black), p = 1% (red), and p = 5% (blue). The setting is the same
as in Figure 8.30.

Figure 8.37 studies the performance of the generalized Pareto quantile esti-
mator as a function of p, for several values of k = p0∕p. We consider values
k = 1 (violet), k = 2 (purple), and k = 10 (dark green). The setting is the same
as in Figure 8.31.

13 The pth quantile with 0.5 < F(u) < p < 1 is

Qp(Y ) = u + (𝛽∕𝜉)

[(
1 − p

1 − F(u)

)−𝜉
− 1

]
.
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Figure 8.36 Generalized Pareto model. (a) Ratios p∕p̂ as a function of the multiplier k = p0∕p.
(b) The expected loss R̂ as a function of multiplier k. The quantile level p takes values p = 0.1%
(black), p = 1% (red), and p = 5% (blue).
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Figure 8.37 Generalized Pareto model. (a) Function p → p∕p̂, where p̂ is the estimate of the
exceedance probability. (b) Function p → R̂(k) − R̂(1), where R̂ is the estimated loss when the
multiplier of the quantile estimator is k = p0∕p. The multiplier is k = 1 (violet), k = 2 (purple),
and k = 10 (dark green).

8.6.2.5 The Weibull Excess Distribution
The parameters of the Weibull distributions are 𝜉 ≥ 0 and 𝛽 > 0. For 𝜉 = 0 the
distributions are exponential. When the excess distribution is a generalized
Pareto distribution, then for 𝜉 > 0, F−1

u (p) = (𝛽∕𝜉)[(1 − p)−𝜉 − 1]. For 𝜉 = 0,
F−1

u (p) = −𝛽 log(1 − p). For 0 < p < F(u) < 0.5 the pth quantile is

Qp(Y ) = u − (𝛽∕𝜉)

[(
p

F(u)

)−𝜉
− 1

]
.
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Figure 8.38 Weibull model. (a) Ratios p∕p̂ as a function of the multiplier k = p0∕p. (b) The
expected loss R̂ as a function of multiplier k. The quantile level p takes values p = 0.1% (black),
p = 1% (red), and p = 5% (blue).

For 0 < p < F(u) < 0.5 we have analogous expressions.14 The maximum likeli-
hood estimators of parameters do not have a closed-form expression.

Figures 8.38 and 8.39 show that the Weibull excess distribution leads to worse
quantile estimates than the empirical quantiles, for p = 0.1–5%.

Figure 8.38 studies the performance of the Weibull quantile estimator as
a function of p0∕p, for several values of p. We estimate quantiles with levels
p = 0.1% (black), p = 1% (red), and p = 5% (blue). The setting is the same as in
Figure 8.30.

Figure 8.39 studies the performance of the Weibull quantile estimator as a
function of p, for several values of k = p0∕p. We consider values k = 1 (violet),
k = 2 (purple), and k = 3 (dark green). The setting is the same as in Figure 8.31.

8.6.3 Conditional Quantile Estimators

First we study time varying parameter of the excess distribution, and then we
study the use of the empirical quantiles of the residual distribution.

We apply exponential, gamma, generalized Pareto, and Weibull excess distri-
butions. The Pareto distribution is not studied because it is a special case of the
generalized Pareto distribution.

First, we see that the generalized Pareto distribution leads to the best results
when the time varying parameter is used. Second, we see that when the
empirical quantiles of the residual distribution are used, then the performance
is rather similar for all models.

14 The pth quantile with 0.5 < F(u) < p < 1 is

Qp(Y ) = u + (𝛽∕𝜉)

[(
1 − p

1 − F(u)

)−𝜉
− 1

]
.
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Figure 8.39 Weibull model. (a) Function p → p∕p̂, where p̂ is the estimate of the exceedance
probability. (b) Function p → R̂(k) − R̂(1), where R̂ is the estimated loss when the multiplier
of the quantile estimator is k = p0∕p. The multiplier is k = 1 (violet), k = 2 (purple), and k = 3
(dark green).

8.6.3.1 Time Varying Parameter of the Excess Distribution
We have discussed time varying estimators for the excess distribution in
Section 5.2.3. We apply the local likelihood estimator defined in (5.12) for the
left tail as

𝜃̂left,t = argmax
𝜃∈𝜃

∑
i∶Yi∈t

pi(t) log fu(u − Yi, 𝜃),

where u = q̂p0
is the empirical quantile computed from Y1,… ,Yt , 0 < p <

p0 < 0.5,
t = {Yi∶Yi ≤ u, i = 1,… , t}, (8.55)

and the time space localized weights are defined in (5.13) as

pi(t) =
K((t − i)∕h)∑

j∶Yj∈t
K((t − j)∕h)

, (8.56)

where h > 0 is the smoothing parameter and K ∶[0,∞) → R is a kernel
function.

Then we obtain the quantile estimator from (8.49) by inserting the parameter
estimate:

q̂t = u − F−1
u

(
1 −

p
p0
, 𝜃̂left,t

)
.

It turns out that the generalized Pareto distribution leads to the best results.
The exponential model leads to almost as good results. The gamma model leads
to worse results, and the Weibull model leads to the worst results.
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Exponential Excess Distribution The time varying estimator for the left tail index
is obtained from (8.52) as

𝛽left,t =
∑

i∶Yi∈t

pi(t)(u − Yi),

wheret is the set of observations in the left tail, as defined in (8.55), and pi(t) is
the time space localized weight, as in (8.56). The conditional quantile estimator
is obtained from (8.51) as

q̂t = u + 𝛽left,t log
(

p
p0

)
,

where u is the p0th empirical quantile and 0 < p < p0 < 0.5.
Figures 8.40–8.42 show that the exponential quantiles are better than the

empirical quantiles. The smoothing parameter h = 100 leads to the best results.
Figure 8.40 studies the performance as a function of smoothing parameter h

in estimating the pth quantile for p = 1%. Panel (a) shows functions h → p∕p̂
and panel (b) shows functions h → R̂, where p̂ is the implied estimate of the
probability p as defined in (8.6), and R̂ is the estimated expected loss as defined
in (8.18). The value of R̂ depends on p and p0 through the quantile estimates. The
values of p0 are p0 = 5% (black with “1”), p0 = 10% (blue with “2”), p0 = 15%
(violet with “3”), and p0 = 20% (dark green with “4”). The red horizontal lines
show the performance of the empirical quantile.

Figure 8.41 considers estimation of the pth quantile for p = 0.1%, but other-
wise the setting is similar to Figure 8.40.
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Figure 8.40 Exponential model: p = 1%. (a) Function h → p∕p̂, where p̂ is the estimate of the
exceedance probability. (b) Function h → R̂, where R̂ is the estimated loss. The values of p0 are
p0 = 5% (black with “1”), p0 = 10% (blue with “2”), p0 = 15% (violet with “3”), and p0 = 20%
(dark green with “4”).
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Figure 8.41 Exponential model: p = 0.1%. (a) Function h → p∕p̂, where p̂ is the estimate of the
exceedance probability. (b) Function h → R̂, where R̂ is the estimated loss. The values of p0 are
p0 = 5% (black with “1”), p0 = 10% (blue with “2”), p0 = 15% (violet with “3”), and p0 = 20%
(dark green with “4”).
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Figure 8.42 Exponential model. (a) Function p → p∕p̂, where p̂ is the estimate of the
exceedance probability. (b) Function p → R̂(k) − R̂(1), where R̂(k) is the estimated loss when
the multiplier of the quantile estimator is k = p0∕p, and k = 1 corresponds to the empirical
quantile. The smoothing parameter is h = 10 (orange), h = 100 (purple), and h = 500 (dark
green). In panel (a) the red curve corresponds to the empirical quantile.

Figure 8.42 studies the performance of the exponential quantile estimator
as a function of p, for several values of smoothing parameter h. We take
p0 = 15%. We consider values h = 10 (orange), h = 100 (purple), and h = 500
(dark green). Furthermore, we show the empirical quantiles (red). Panel (a)
shows functions p → p∕p̂, where p̂ is the implied estimate of the probability p,
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as defined in (8.6). The green lines show the fluctuation bands for 𝛼 = 5%.
Panel (b) shows functions

p → R̂(k) − R̂(1),

where the estimated expected loss R̂ is defined in (8.18), and R̂ depends on k =
p0∕p through the quantile estimates. Note that the multiplier k = 1 implies that
the quantile estimator is the empirical quantile, because then Qp(Y ) = u. Thus,
negative values of R̂(k) − R̂(1) imply that the quantile estimator with multiplier
k is better than the empirical quantile.

Gamma Excess Distribution The gamma densities are defined in (3.80). Param-
eter 𝜅 > 0 is the shape parameter, and 𝛽 > 0 is the scale parameter. The log-
arithmic likelihood is written in (3.81). The time varying estimators for the
parameters are maximizers of

lloc(𝜅, 𝛽) = −𝜅 log 𝛽 − logΓ(𝜅) + (𝜅 − 1)
∑

i∶Yi∈t

pi(t) log Yi

− 1
𝛽

∑
i∶Yi∈t

pi(t)Yi,

where t is the set of observations in the left tail, as defined in (8.55), and pi(t)
is the time space localized weight, as in (8.56). When 𝜅 > 0 is given, the time
varying estimator of parameter 𝛽 is

𝛽t(𝜅) =
1
𝜅

∑
i∶Yi∈t

pi(t)Yi.

The localized maximum likelihood estimators are

𝜅̂t = argmax
𝜅>0 lloc(𝜅, 𝛽t(𝜅)), 𝛽t = 𝛽t(𝜅̂t).

We can write

𝜅̂t = argmax
𝜅>0

[
−𝜅(1 + log 𝛽) − logΓ(𝜅) + (𝜅 − 1)

∑
i∶Yi∈t

pi(t) log Yi

]
.

Figures 8.43–8.45 show that the gamma quantiles are better than the
empirical quantiles for the estimation of the pth quantile with p = 1%. When
p = 0.1%, then the gamma quantiles hardly beat the empirical quantiles. The
smoothing parameter h = 100 leads to the best results.

Figure 8.43 studies the performance as a function of smoothing parameter h
in estimating the pth quantile for p = 1%. Panel (a) shows functions h → p∕p̂
and panel (b) shows functions h → R̂, where p̂ is the implied estimate of the
probability p and R̂ is the estimated expected loss. The setting is the same as in
Figure 8.40.

Figure 8.44 studies the estimation of the pth quantile for p = 0.1%. Otherwise
the setting is the same as in Figure 8.43.
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Figure 8.43 Gamma model: p = 1%. (a) Function h → p∕p̂, where p̂ is the estimate of the
exceedance probability; (b) function h → R̂, where R̂ is the estimated loss. The values of p0
are p0 = 5% (black with “1”), p0 = 10% (blue with “2”), p0 = 15% (violet with “3”), and 20%
(dark green with “4”). The red horizontal lines show the performance of empirical quantiles.
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Figure 8.44 Gamma model: p = 0.1%. (a) Function h → p∕p̂, where p̂ is the estimate of the
exceedance probability. (b) Function h → R̂, where R̂ is the estimated loss. The values of p0
are 5% (black with “1”), 10% (blue with “2”), 15% (violet with “3”), and 20% (dark green with
“4”). The red horizontal lines show the performance of empirical quantiles.

Figure 8.45 studies the performance of the exponential quantile estimator
as a function of p, for several values of smoothing parameter h. We take
p0 = 15%. We consider values h = 10 (orange), h = 100 (purple), and h = 500
(dark green). Furthermore, we show the empirical quantiles (red). The setting
is the same as in Figure 8.42.
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Figure 8.45 Gamma model. (a) Function p → p∕p̂, where p̂ is the estimate of the exceedance
probability. (b) Function p → R̂(k) − R̂(1), where R̂(k) is the estimated loss when the multi-
plier of the quantile estimator is k = p0∕p, and k = 1 corresponds to the empirical quantile.
The smoothing parameter is h = 10 (orange), h = 100 (purple), and h = 500 (dark green). In
panel (a) the red curve corresponds to the empirical quantile.

Generalized Pareto Excess Distribution The generalized Pareto densities are
defined in (3.82). Parameter 𝜉 > 0 is the shape parameter, and 𝛽 > 0 is the scale
parameter. The generalized Pareto densities are written in (3.84) using the
shape parameter 𝛼 = 1∕𝜉 and the scale parameter 𝜎 = 𝛽∕𝜉. The logarithmic
likelihood is written in (3.85). The time varying estimators for the parameters
are maximizers of

lloc(𝛼, 𝜎) = log
(
𝛼

𝜎

)
− (1 + 𝛼)

∑
i∶Yi∈t

pi(t) log
(

1 +
Yi

𝜎

)
,

where t is the set of observations in the left tail, as defined in (8.55), and pi(t)
is the time space localized weight, as in (8.56). When 𝜎 > 0 is given, the time
varying estimator of parameter 𝛼 is

𝛼t(𝜎) =

[∑
i∶Yi∈t

pi(t) log
(

1 +
Yi

𝜎

)]−1

.

The localized maximum likelihood estimators are

𝜎̂t = argmax
𝜎>0 lloc(𝛼t(𝜎), 𝜎), 𝛼̂t = 𝛼t(𝜎̂t).

We can write

𝜎̂t = argmax
𝜎>0

[
log
(
𝛼t(𝜎)
𝜎

)
−
(

1 + 1
𝛼t(𝜎)

)]
.
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Figure 8.46 Generalized Pareto model: p = 1%. (a) Function h → p∕p̂, where p̂ is the estimate
of the exceedance probability. (b) Function h → R̂, where R̂ is the estimated loss. The val-
ues of p0 are p0 = 5% (black with “1”), p0 = 10% (blue with “2”), p0 = 15% (violet with “3”),
and 20% (dark green with “4”). The red horizontal lines show the performance of empirical
quantiles.

The localized maximum likelihood estimators for 𝜉 and 𝛽 are

𝜉t = 1∕𝛼̂t , 𝛽t = 𝜉t𝜎̂t .

Figures 8.46–8.48 show that the generalized Pareto quantiles are better than
the empirical quantiles. The smoothing parameter h = 100 leads to the best
results.

Figure 8.46 studies the performance as a function of smoothing parameter h
in estimating the pth quantile for p = 1%. Panel (a) shows functions h → p∕p̂
and panel (b) shows functions h → R̂, where p̂ is the implied estimate of the
probability p and R̂ is the estimated expected loss. The setting is the same as in
Figure 8.40.

Figure 8.47 studies the estimation of the pth quantile for p = 0.1%. Otherwise
the setting is the same as in Figure 8.46.

Figure 8.48 studies the performance of the exponential quantile estimator
as a function of p, for several values of smoothing parameter h. We take p0 =
15%. We consider values h = 10 (orange), h = 100 (purple), and h = 500 (dark
green). Furthermore, we show the empirical quantiles (red). The setting is the
same as in Figure 8.42.
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Figure 8.47 Generalized Pareto model: p = 0.1%. (a) Function h → p∕p̂, where p̂ is the esti-
mate of the exceedance probability. (b) Function h → R̂, where R̂ is the estimated loss. The
values of p0 are 5% (black with “1”), 10% (blue with “2”), 15% (violet with “3”), and 20% (dark
green with “4”). The red horizontal lines show the performance of empirical quantiles.
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Figure 8.48 Generalized Pareto model. (a) Function p → p∕p̂, where p̂ is the estimate of the
exceedance probability. (b) Function p → R̂(k) − R̂(1), where R̂(k) is the estimated loss when
the multiplier of the quantile estimator is k = p0∕p, and k = 1 corresponds to the empirical
quantile. The smoothing parameter is h = 10 (orange), h = 100 (purple), and h = 500 (dark
green). In panel (a) the red curve corresponds to the empirical quantile.

Weibull Excess Distribution The Weibull densities are defined in (3.86).
Parameter 𝜅 > 0 is the shape parameter and 𝛽 > 0 is the scale parameter.
The logarithmic likelihood is written in (3.87). The time varying estimators for
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the parameters are maximizers of

lloc(𝜅, 𝛽) = log(𝜅∕𝛽) + (𝜅 − 1)
∑

i∶Yi∈t

pi(t) log(Yi∕𝛽)

−
∑

i∶Yi∈t

pi(t)(Yi∕𝛽)𝜅,

where t is the set of observations in the left tail, as defined in (8.55), and pi(t)
is the time space localized weight, as in (8.56). When 𝜅 > 0 is given, the time
varying estimator of parameter 𝛽 is

𝛽t(𝜅) =

(∑
i∶Yi∈t

pi(t)Y 𝜅

i

)1∕𝜅

.

The localized maximum likelihood estimators are

𝜅̂t = argmax
𝜅>0 lloc(𝜅, 𝛽t(𝜅)), 𝛽t = 𝛽t(𝜅̂t).

Figures 8.49–8.51 show that the Weibull quantiles are better than the empir-
ical quantiles for the estimation of the pth quantile with p = 1%, but when p =
0.1%, then the empirical quantile is better. The smoothing parameter h = 100
leads to the best results.

Figure 8.49 studies the performance as a function of smoothing parameter h
in estimating the pth quantile for p = 1%. Panel (a) shows functions h → p∕p̂
and panel (b) shows functions h → R̂, where p̂ is the implied estimate of the
probability p and R̂ is the estimated expected loss. The setting is the same as in
Figure 8.40.
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Figure 8.49 Weibull model: p = 1%. (a) Function h → p∕p̂, where p̂ is the estimate of the
exceedance probability. (b) Function h → R̂, where R̂ is the estimated loss. The values of p0
are p0 = 5% (black with “1”), p0 = 10% (blue with “2”), p0 = 15% (violet with “3”), and 20%
(dark green with “4”). The red horizontal lines show the performance of empirical quantiles.
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Figure 8.50 Weibull model: p = 0.1%. (a) Function h → p∕p̂, where p̂ is the estimate of the
exceedance probability. (b) Function h → R̂, where R̂ is the estimated loss. The values of p0
are 5% (black with “1”), 10% (blue with “2”), 15% (violet with “3”), and 20% (dark green with
“4”). The red horizontal lines show the performance of empirical quantiles.
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Figure 8.51 Weibull model. (a) Function p → p∕p̂, where p̂ is the estimate of the exceedance
probability. (b) Function p → R̂(k) − R̂(1), where R̂(k) is the estimated loss when the multi-
plier of the quantile estimator is k = p0∕p, and k = 1 corresponds to the empirical quantile.
The smoothing parameter is h = 10 (orange), h = 100 (purple), and h = 500 (dark green). In
panel (a) the red curve corresponds to the empirical quantile.

Figure 8.50 studies the estimation of the pth quantile for p = 0.1%. Otherwise
the setting is the same as in Figure 8.49.

Figure 8.51 studies the performance of the Weibull quantile estimator
as a function of p, for several values of smoothing parameter h. We take
p0 = 15%. We consider values h = 10 (orange), h = 100 (purple), and h = 500
(dark green). Furthermore, we show the empirical quantiles (red). The setting
is the same as in Figure 8.42.
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8.6.3.2 The Empirical Residuals
We apply the idea of using the empirical quantiles of the residuals, as in (8.39).
Let F ∶R → R be the continuous distribution function of the returns, and Fu∶
[0,∞) → R the lower excess distribution, as defined in (8.46) for u ∈ R. At time
t we observe returns Y1,… ,Yt . The left tail is

t = {Yi∶Yi ≤ ut, i = 1,… , t},

where ut = q̂p0
is the empirical quantile from Y1,… ,Yt , and 0 < p < p0 < 0.5.

Let nt = #t be the number of observations in t . Let us apply notation

t =
{

Y t
t1,1

< · · · < Y t
tnt ,nt

}
,

where Y t
ti,i

is observed at time ti ∈ {1,… , t}. The residuals are defined as

Ui = Fut

(
ut − Y t

ti,i
, 𝜃̂ti

)
, i = 1,… , nt .

The residuals are approximately uniformly distributed, if the distribution
Fu(⋅, 𝜃̂t) provides a good approximation of the true excess distribution Fu(⋅, 𝜃).
Let us assume for notational convenience that the residuals are ordered:

U1 < · · · < Unt
.

Let ê1−p∕p0
be the empirical quantile with level 1 − p∕p0. That is,

ê1−p∕p0
= U[nt(1−p∕p0)].

The estimator of the conditional quantile is given by

q̂t = ut − F−1
u (ê1−p∕p0

, 𝜃̂t).

Note that when the estimator 𝜃t would not depend on t, then the quantile
estimator would be the empirical quantile. In our definition the ith residual is
defined using the ith estimate 𝜃̂i, but the quantile estimator q̂t is defined using
the current parameter estimate 𝜃̂tnt

.
It turns out that with the empirical residuals the results are robust with

respect to the choice of the excess distribution. On the other hand, we are
not able to improve the results which were obtained using the time varying
generalized Pareto distribution.

The empirical quantiles of the residuals are better than the empirical
quantiles. The smoothing parameter h = 100 leads to the best results.

Exponential Excess Function Figure 8.52 studies the performance as a function
of smoothing parameter h in estimating the pth quantile for p = 1%. Panel (a)
shows functions h → p∕p̂ and panel (b) shows functions h → R̂, where p̂ is the
implied estimate of the probability p as defined in (8.6), and R̂ is the estimated
expected loss as defined in (8.18). The value of R̂ depends on p and p0 through
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Figure 8.52 Exponential model: p = 1%. (a) Function h → p∕p̂, where p̂ is the estimate of the
exceedance probability. (b) Function h → R̂, where R̂ is the estimated loss. The values of p0 are
p0 = 5% (black with “1”), p0 = 10% (blue with “2”), p0 = 15% (violet with “3”), and 20% (dark
green with “4”). The red horizontal lines show the performance of empirical quantiles.

the quantile estimates. The values of p0 are p0 = 5% (black with “1”), p0 = 10%
(blue with “2”), p0 = 15% (violet with “3”), and p0 = 20% (dark green with “4”).
The red horizontal lines show the performance of the empirical quantile.

Figure 8.53 considers estimation of the pth quantile for p = 0.1%, but other-
wise the setting is similar to Figure 8.52.
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Figure 8.53 Exponential model: p = 0.1%. (a) Function h → p∕p̂, where p̂ is the estimate of
the exceedance probability. (b) Function h → R̂, where R̂ is the estimated loss. The val-
ues of p0 are p0 = 5% (black with “1”), p0 = 10% (blue with “2”), p0 = 15% (violet with “3”),
and 20% (dark green with “4”). The red horizontal lines show the performance of empirical
quantiles.
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Figure 8.54 Exponential model. (a) Function p → p∕p̂, where p̂ is the estimate of the
exceedance probability. (b) Function p → R̂(k) − R̂(1), where R̂(k) is the estimated loss when
the multiplier of the quantile estimator is k = p0∕p, and k = 1 corresponds to the empirical
quantile. The smoothing parameter is h = 10 (orange), h = 100 (purple), and h = 500 (dark
green). In panel (a) the red curve corresponds to the empirical quantile.

Figure 8.54 studies the performance of the exponential quantile estimator
as a function of p, for several values of smoothing parameter h. We take p0 =
15%. We consider values h = 10 (orange), h = 100 (purple), and h = 500 (dark
green). Panel (a) shows functions p → p∕p̂, where p̂ is the implied estimate of
the probability p, as defined in (8.6). We also show the performance of empirical
quantiles (red). The green lines show the fluctuation bands for 𝛼 = 5%. Panel (b)
shows functions

p → R̂(k) − R̂(1),

where the estimated expected loss R̂ is defined in (8.18), and R̂ depends on
k = p0∕p through the quantile estimates. Note that the multiplier k = 1 implies
that the quantile estimator is the empirical quantile. Thus, negative values of
R̂(k) − R̂(1) imply that the quantile estimator with multiplier k is better than
the empirical quantile.

Gamma Excess Function Figure 8.55 studies the performance as a function of
smoothing parameter h in estimating the pth quantile for p = 1%. Panel (a)
shows functions h → p∕p̂ and panel (b) shows functions h → R̂, where p̂ is the
implied estimate of the probability p and R̂ is the estimated expected loss. The
setting is the same as in Figure 8.52.

Figure 8.56 considers estimation of the pth quantile for p = 0.1%, but other-
wise the setting is similar to Figure 8.55.

Figure 8.57 studies the performance of the Weibull quantile estimator as a
function of p, for several values of smoothing parameter h. We take p0 = 15%.
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Figure 8.55 Gamma model: p = 1%. (a) Function h → p∕p̂, where p̂ is the estimate of the
exceedance probability. (b) Function h → R̂, where R̂ is the estimated loss. The values of p0
are p0 = 5% (black with “1”), p0 = 10% (blue with “2”), p0 = 15% (violet with “3”), and 20%
(dark green with “4”). The red horizontal lines show the performance of empirical quantiles.
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Figure 8.56 Gamma model: p = 0.1%. (a) Function h → p∕p̂, where p̂ is the estimate of the
exceedance probability. (b) Function h → R̂, where R̂ is the estimated loss. The values of p0
are p0 = 5% (black with “1”), p0 = 10% (blue with “2”), p0 = 15% (violet with “3”), and 20%
(dark green with “4”). The red horizontal lines show the performance of empirical quantiles.

We consider values h = 10 (orange), h = 100 (purple), and h = 500 (dark
green). Furthermore, we show the empirical quantiles (red). The setting is the
same as in Figure 8.54

Generalized Pareto Excess Function Figure 8.58 studies the performance as a
function of smoothing parameter h in estimating the pth quantile for p = 1%.



284 8 Quantiles and Value-at-Risk
p

/p̂

h = 10

h = 100

h = 500

p

(b)

h = 10

h = 100

h = 500

Emp

p

(a)

0.000 0.005 0.010 0.015 0.020 0.025 0.030

−
1e

−
04

−
6e

−
05

−
2e

−
05

2e
−

05

0.001 0.002 0.005 0.010 0.020

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

M
ea

n 
lo

ss

Figure 8.57 Gamma model. (a) Function p → p∕p̂, where p̂ is the estimate of the exceedance
probability. (b) Function p → R̂(k) − R̂(1), where R̂(k) is the estimated loss when the multi-
plier of the quantile estimator is k = p0∕p, and k = 1 corresponds to the empirical quantile.
The smoothing parameter is h = 10 (orange), h = 100 (purple), and h = 500 (dark green). In
panel (a) the red curve corresponds to the empirical quantile.
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Figure 8.58 Generalized Pareto model: p = 1%. (a) Function h → p∕p̂, where p̂ is the estimate
of the exceedance probability. (b) Function h → R̂, where R̂ is the estimated loss. The values of
p0 are p0 = 5% (black with “1”), p0 = 10% (blue with “2”), p0 = 15% (violet with “3”), and 20%
(dark green with “4”). The red horizontal lines show the performance of empirical quantiles.
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Figure 8.59 Generalized Pareto model: p = 0.1%. Gamma model: p = 0.1%. (a) Function h →
p∕p̂, where p̂ is the estimate of the exceedance probability. (b) Function h → R̂, where R̂ is
the estimated loss. The values of p0 are p0 = 5% (black with “1”), p0 = 10% (blue with “2”),
p0 = 15% (violet with “3”), and 20% (dark green with “4”). The red horizontal lines show the
performance of empirical quantiles.

Panel (a) shows functions h → p∕p̂ and panel (b) shows functions h → R̂,
where p̂ is the implied estimate of the probability p and R̂ is the estimated
expected loss. The setting is the same as in Figure 8.52.

Figure 8.59 considers estimation of the pth quantile for p = 0.1%, but other-
wise the setting is similar to Figure 8.58.

Figure 8.60 studies the performance of the generalized Pareto quantile esti-
mator as a function of p, for several values of smoothing parameter h. We take
p0 = 15%. We consider values h = 10 (orange), h = 100 (purple), and h = 500
(dark green). Furthermore, we show the empirical quantiles (red). The setting
is the same as in Figure 8.54.

Weibull Excess Function Figure 8.61 studies the performance as a function of
smoothing parameter h in estimating the pth quantile for p = 1%. Panel (a)
shows functions h → p∕p̂ and panel (b) shows functions h → R̂, where p̂ is the
implied estimate of the probability p and R̂ is the estimated expected loss. The
setting is the same as in Figure 8.52.

Figure 8.62 considers estimation of the pth quantile for p = 0.1%, but other-
wise the setting is similar to Figure 8.61.

Figure 8.63 studies the performance of the Weibull quantile estimator as a
function of p, for several values of smoothing parameter h. We take p0 = 15%.
We consider values h = 10 (violet), h = 100 (purple), and h = 500 (dark green).
Furthermore, we show the empirical quantiles (red). The setting is the same as
in Figure 8.54.
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Figure 8.60 Generalized Pareto model. (a) Function p → p∕p̂, where p̂ is the estimate of the
exceedance probability. (b) Function p → R̂(k) − R̂(1), where R̂(k) is the estimated loss when
the multiplier of the quantile estimator is k = p0∕p, and k = 1 corresponds to the empirical
quantile. The smoothing parameter is h = 10 (orange), h = 100 (purple), and h = 500 (dark
green). In panel (a) the red curve corresponds to the empirical quantile.
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Figure 8.61 Weibull model: p = 1%. (a) Function h → p∕p̂, where p̂ is the estimate of the
exceedance probability. (b) Function h → R̂, where R̂ is the estimated loss. The values of p0
are p0 = 5% (black with “1”), p0 = 10% (blue with “2”), p0 = 15% (violet with “3”), and 20%
(dark green with “4”). The red horizontal lines show the performance of empirical quantiles.
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Figure 8.62 Weibull model: p = 0.1%. (a) Function h → p∕p̂, where p̂ is the estimate of the
exceedance probability. (b) Function h → R̂, where R̂ is the estimated loss. The values of p0
are p0 = 5% (black with “1”), p0 = 10% (blue with “2”), p0 = 15% (violet with “3”), and 20%
(dark green with “4”). The red horizontal lines show the performance of empirical quantiles.
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Figure 8.63 Weibull model. (a) Function p → p∕p̂, where p̂ is the estimate of the exceedance
probability. (b) Function p → R̂(k) − R̂(1), where R̂(k) is the estimated loss when the multi-
plier of the quantile estimator is k = p0∕p, and k = 1 corresponds to the empirical quantile.
The smoothing parameter is h = 10 (violet), h = 100 (purple), and h = 500 (dark green). In
panel (a) the red curve corresponds to the empirical quantile.
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8.7 Extreme Value Theory in Quantile Estimation

First, we describe the block maxima method and then the method of threshold
exceedances. We consider now the estimation of the quantiles in the right tail,
so that the level of the estimated quantile is 0.5 < p < 1.

8.7.1 The Block Maxima Method

Let the real valued random variables X1,… ,Xn ∈ R be independent and iden-
tically distributed. We use now the notation X1,… ,Xn instead of Y1,… ,YT ,
because later the observations Y1,… ,YT will be divided into blocks of size n.
Denote the maximum

Mn = max{X1,… ,Xn}.

We make the assumption that weak convergence holds for the maximum of the
observations. This assumption was discussed in Section 3.5.2; see (3.97). We
assume that

P
(Mn − dn

cn
≤ x
)

d
−−→H

𝜉
(x), (8.57)

as n → ∞, for all x, where dn ∈ R, cn > 0, and H
𝜉

is the distribution function
of a generalized extreme value distribution with parameter 𝜉 ∈ R, defined in
(3.100).

8.7.1.1 An Expression for the Quantiles
The convergence in (8.57) suggests that we have for large n the approximation

P
(Mn − dn

cn
≤ x
)

= H
𝜉
(x),

for all x. Then,

P(Mn ≤ x) = H
𝜉

(x − dn

cn

)
. (8.58)

Since X1,… ,Xn is an i.i.d. sample from the distribution of X,

P(Mn ≤ x) = P(X1 ≤ x,… ,Xn ≤ x)
= P(X1 ≤ x) · · ·P(Xn ≤ x)
= [P(X ≤ x)]n

. (8.59)

Let qp = Qp(X) be the pth quantile. Then,

P(X ≤ qp) = p, (8.60)

when X has a continuous distribution. Thus, combining (8.59) and (8.60),

P(Mn ≤ qp) = [P(X ≤ qp)]n = pn
. (8.61)
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Thus, combining (8.58) and (8.61),

H
𝜉

(qp − dn

cn

)
= pn

and we get

Qp(X) = dn + cnH−1
𝜉
(pn). (8.62)

8.7.1.2 Estimation of the Parameters
The expression (8.62) for a quantile contains unknown parameters 𝜉, dn, and cn,
which we have to estimate. Let us denote

H
𝜉,𝜇,𝜎

(x) = H
𝜉

(x − 𝜇
𝜎

)
.

We consider the family of distributions H
𝜉,𝜇,𝜎

, where 𝜉 is the shape parameter,
𝜇 is the location parameter, and 𝜎 is the scale parameter. The parameters can be
estimated using the block maxima method. Let Y1,… ,YT be i.i.d. observations.
Since (8.58) holds, we could estimate the parameters if we would have several
observations of the maxima. This can be achieved when we divide the observa-
tions into m blocks of size n, assuming for simplicity that T = nm. Denote by
Mni, i = 1,… ,m, the maximum of the ith block:

Mni = max{Y(i−1)n+1,… ,Yin}, i = 1,… ,m.

The maxima Mn1,… ,Mnm are independent15 and we define the likelihood
function

L(𝜉, 𝜇, 𝜎;Mn1,… ,Mnm) =
m∏

i=1
h
𝜉,𝜇,𝜎

(Mni),

where h
𝜉,𝜇,𝜎

is the density function corresponding to the distribution function
H
𝜉,𝜇,𝜎

. We define the estimators 𝜉, 𝜇̂, and 𝜎̂ to be maximizers of the likelihood
function. From (8.62) we get the estimator for a quantile

Q̂p(Y ) = 𝜇̂ + 𝜎̂H−1
𝜉
(pn). (8.63)

Note that in (8.63) the sample size is T and n is the block size.

8.7.2 Threshold Exceedances

Section 8.6 is devoted to the quantile estimation on the basis of excess dis-
tributions. We summarize this approach and point out the connection to the
asymptotics of threshold exceedances.

The excess distribution Fu with threshold u > 0 of random variable Y is
defined in (8.43). It is stated in (3.102) that the limit distribution of the excess

15 Even when the original observations are not independent, the block maxima are approximately
independent, for large block sizes.
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distribution is a generalized Pareto distribution:

lim
u→xF

sup
0≤x<xF−u

|Fu(x) − G
𝜉,𝛽(u)(x)| = 0 (8.64)

for some positive function 𝛽(u) if and only if F belongs to the maximum domain
of attraction of H

𝜉
, where 𝜉 ∈ R. We denote XF = sup{x∶F(x) < 1} and G

𝜉,𝛽

is the distribution function of the generalized Pareto distribution. The density
functions are

g
𝜉,𝛽
(x) =

{ 1
𝛽
(1 + 𝜉x∕𝛽)−1∕𝜉−1

, 𝜉 ≠ 0,
1
𝛽

exp{−x∕𝛽}, 𝜉 = 0,
(8.65)

where 𝛽 > 0, x ≥ 0, when 𝜉 ≥ 0, and 0 ≤ x ≤ −𝛽∕𝜉, when 𝜉 < 0.

8.7.2.1 An Expression for the Quantiles
The convergence in (8.64) suggests the approximation

Fu(x) = G
𝜉,𝛽
(x). (8.66)

The pth quantile of Y was expressed in (8.45) as

Qp(Y ) = u + F−1
u

(
1 −

1 − p
1 − F(u)

)
. (8.67)

The inverse of the generalized Pareto distribution function is

G−1
𝜉,𝛽
(p) =

{
𝛽

𝜉
[(1 − p)−𝜉 − 1], 𝜉 ≠ 0,

−𝛽 log(1 − p), 𝜉 = 0.

8.7.2.2 Choosing and Estimating the Parameters
The expression (8.67) for the pth quantile contains the unknown probability
P(Y > u) = 1 − F(u), and the unknown parameters of the excess distribution
Fu = G

𝜉,𝛽
. Let Y1,… ,YT be an i.i.d. sample from the distribution of Y .

Choosing Threshold Threshold u is the parameter which is chosen by the user.
Threshold u has to be sufficiently large so that approximation in (8.66) holds.
On the other hand, when u is large then estimators of the parameters have a
large variance. We can look at choosing of threshold u in two ways.

1) Choose first u and then estimate P(Y > u).
For example, we can use the estimate.

P(Y > u) =
Nu

T
, (8.68)

where Nu = #{Yi > u} is the number of observations larger than u.
2) Choose first such p0 that 0.5 < p0 < p < 1, and then choose u as an estimate

of the p0th quantile. Estimation of the p0th quantile is easier than estimating
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the pth quantile. For example, let
u = F̂−1(p0),

where F̂ is the empirical distribution function, and we take the generalized
inverse. Now u is such that Nu∕T = 1 − p0, and we end up to the same esti-
mate as in (8.68).

There are several ways to choose threshold u (or the level p0 of the preliminary
quantile estimator).
1) We can study the performance measures of quantile estimation, and choose

u so that the performance measures are optimized. This was done in
Section 8.6, where the probability of exceedances and the loss function for
quantile estimation were used to measure performance.

2) We can choose the threshold u by studying the stability of parameter
estimates. The shape parameter 𝜉 is the same for all thresholds u > u0 when
the excesses over threshold u0 follow a generalized Pareto distribution. Let
𝜎 = 𝛽∕𝜉. The scale parameter 𝜎 depends on u > u0. Furthermore, if the
excesses over threshold u0 follow a generalized Pareto distribution and
u > u0, then

𝜎u = 𝜎u0
− 𝜉u; (8.69)

see Coles (2004, p. 79). We can define
𝜎
∗ = 𝜎u − 𝜉u.

When u1,u2 > u0, then 𝜎u1
− 𝜉u1 = 𝜎u0

= 𝜎u2
− 𝜉u2. Thus, 𝜎∗ does not

depend on u. Then, estimates of 𝜉 and 𝜎∗ should be constant above u0, if u0
is a sufficiently large threshold so that the excesses follow the generalized
Pareto distribution.

3) We can choose the threshold by studying the linearity of the mean resid-
ual plot. For a generalized Pareto distribution EY = 𝜎∕(1 − 𝜉), when 𝜉 < 1.
When 𝜉 ≥ 1, then the expectation does not exist. Thus, if the excesses over
threshold u follow a generalized Pareto distribution, then

E(Y − u|Y > u) =
𝜎u

1 − 𝜉
,

when 𝜉 < 1; see Coles (2004, p. 79). Furthermore, if the excesses over thresh-
old u0 follow a generalized Pareto distribution and u > u0, then (8.69) holds
and u → E(Y − u|Y > u) is a linear function. The mean residual life plot is
the plot of points(

u, 1
Nu

Nu∑
i=1

(Xi − u)

)

for u < max{Y1,… ,YT}, where {X1,… ,XNu
} = {Yi > u} are the observa-

tions that exceed u. The level should be such that the points in the plot over
level u can be approximately fitted by a linear function.
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Estimating the Parameters We estimate the parameters 𝜉 and 𝛽 of the general-
ized Pareto distribution with the maximum likelihood method. Let us denote

{X1,… ,XNu
} = {Yi∶Yi > u}.

Now X1,… ,XNu
is a sample from the distribution Fu. Since Fu ≈ G

𝜉,𝛽
, we define

the likelihood function

L(𝜉, 𝛽;X1,… ,XNu
) =

Nu∏
i=1

g
𝛽,𝜉
(Xi),

where g
𝛽,𝜉

= G′
𝛽,𝜉

is the density function of the generalized Pareto distribution.
Define 𝜉 and 𝛽 as the maximizers of the likelihood function.

Finally, the quantile estimator is

Q̂p(Y ) = u + G−1
𝜉,𝛽

(
1 −

1 − p
Nu∕n

)
.

8.8 Expected Shortfall

The expected shortfall for the right tail is defined as

ESp(Y ) = E(Y |Y ≥ Qp(Y )),

where Y is a random variable with a continuous distribution, Qp(Y ) is the
pth quantile, and p ∈ (0, 1). The expected shortfall for the left tail and the
expected shortfall for noncontinous distributions are defined in Section 3.1.3.
Section 8.2.3 discusses the use of expected shortfall as a risk measure.

8.8.1 Performance of Estimators of the Expected Shortfall

In measuring the performance of quantile estimators in Section 8.3.1, we used
the fact the for continuous distributions

P(Y > Qp(Y )) = 1 − p,

which implies that

1
T

T∑
i=1

I(Qp(Y ),∞)(Yi) ≈ 1 − p.

Similarly, in the case of measuring the performance of estimators of the
expected shortfall we use the fact that for continuous distributions

ESp(Y ) = 1
1 − p

E[Y I(Qp(Y ),∞)(Y )],

which implies that

1
T

T∑
i=1

YiI(Qp(Y ),∞)(Yi) ≈ (1 − p)ESp(Y ).
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In measuring the performance, we have to be careful not to use the same data
for estimation and for measuring the performance. Let us observe time series
Y1,… ,YT . Let q̂t the estimator of the quantile Qp(Y ) (or the estimator of the
conditional quantile) at time t, and let êt be the estimator of the expected short-
fall ESp(Y ) (or the estimator of the conditional expected shortfall) at time t.
The estimators at time t use data Y1,… ,Yt . To measure the performance, we
look closeness to zero of the difference

1
T − t0

T−1∑
t=t0

[Yt+1I(q̂t ,∞)(Yt+1) − (1 − p)êt],

where 1 < t0 < T is the time point which starts the measuring period.

8.8.2 Estimation of the Expected Shortfall

Estimation is done using identically distributed random variables Y1,… ,YT .
The different types of quantile estimators of Sections 8.4–8.6 lead to the corre-
sponding estimators of the expected shortfall.

8.8.2.1 Empirical Expected Shortfall
Empirical quantiles are discussed in Section 8.4. The empirical expected short-
fall can be derived from formula

ESp(Y ) = 1
1 − p

E[Y I(Qp(Y ),∞)(Y )], (8.70)

where it is assumed that the distribution of Y is continuous. In this formula the
expectation can be estimated by the sample mean:

E[Y I(Qp(Y ),∞)(Y )] ≈ 1
T

T∑
i=1

[Yi I(Qp(Y ),∞)(Yi)],

and (1 − p)T ≈ T − m, where m = pT .
Thus, the empirical expected shortfall for the right tail is

ÊSp(Y ) = 1
T − m + 1

T∑
i=m

Y(i),

where Y(1) ≤ · · · ≤ Y(T) and m = ⌈pT⌉, with 0.5 < p < 1. Note that Y(m) is the
empirical quantile, as defined in (8.21)–(8.23).

8.8.2.2 Expected Shortfall in a Location–Scale Model
The volatility based quantile estimators are discussed in Section 8.5. These esti-
mators are based on a location–scale model. Let us consider the location–scale
model

Y = 𝜇 + 𝜎𝜖,
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where 𝜇 ∈ R, 𝜎 > 0, and 𝜖 is a random variable with a continuous distribution.
Now,

ESp(Y ) = 𝜇 + 𝜎ESp(𝜖).

In fact,

ESp(Y ) = E(Y |Y ≥ Qp(Y ))

= 𝜇 + 𝜎E
(

Y − 𝜇
𝜎

|||| Y − 𝜇
𝜎

≥ Qp(𝜖)
)

= 𝜇 + 𝜎E(𝜖|𝜖 ≥ Qp(𝜖)),

where we used the fact Qp(Y ) = 𝜇 + 𝜎Qp(𝜖), noted in (8.30), so that

Y ≥ Qp(Y ) ⇔ Y − 𝜇
𝜎

≥ Qp(𝜖).

Thus, the estimate for the expected shortfall can be obtained as

ÊSp(Y ) = 𝜇̂ + 𝜎̂ESp(𝜖),

where 𝜇̂ is an estimate of 𝜇 and 𝜎̂ is an estimate of 𝜎.
For example, if 𝜖 ∼ N(0, 1) then the expected shortfall for the right tail is

ESp(𝜖) =
𝜙(Φ−1(p))

1 − p
,

where 𝜙 is the density function of the standard normal distribution and Φ is
the distribution function of the standard normal distribution.16 If 𝜖 ∼ t

𝜈
, where

t
𝜈

is the t-distribution with 𝜈 degrees of freedom, then

ESp(𝜖) =
g
𝜈

(
t−1
𝜈
(p)
)

1 − p
𝜈 +
(
t−1
𝜈
(p)
)2

𝑣 − 1
,

where g
𝜈

is the density function of the t-distribution with 𝜈 degrees of free-
dom and t

𝜈
is the distribution function of the t-distribution with 𝜈 degrees of

freedom; see McNeil et al. (2005, p. 46).

8.8.2.3 Excess Distributions in Expected Shortfall Estimation
Section 8.6 discusses estimation of quantiles when the excess distribution
is modeled parametrically. The distribution function of the (upper) excess
distribution is given in (8.43). The density function of the excess distribution
is given in (8.44) as

fu(x) =
f (x + u)
1 − F(u)

I[0,∞)(x),

16 We have that ESp(𝜖) = (1 − p)−1 ∫
∞

qp
x𝜙(x)dx = (1 − p)−1

𝜙(qp), where qp = Qp(𝜖) and we use
the fact that 𝜙′(x) = −x𝜙(x).
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where f and F are the density and distribution function of the original distri-
bution.

Let Y be the random variable whose density and distribution functions are
f ∶R → R and F ∶R → R. Let X be the random variable distributed as the excess
distribution, whose density and distribution functions are fu∶[0,∞) → R and
Fu∶[0,∞) → R. Then,

ESp(Y ) = u + 1 − F(u)
1 − p

ESq−u(X), (8.71)

where q = Qp(Y ) ≥ u. Note that when u = Qp(u), then

ESp(Y ) = Qp(Y ) + EX, (8.72)

because ES0(X) = EX.
Let us prove (8.71). We have for r ≥ 0 that

E[X I(r,∞)(X)] =
∫

∞

r
xfu(x) dx

= 1
1 − F(u) ∫

∞

r
xf (x + u) dx

= 1
1 − F(u)

(
∫

∞

r+u
yf (y) dy − u(1 − F(r + u))

)
.

Thus,

∫

∞

r+u
yf (y) dy = (1 − F(u))

∫

∞

r
xfu(x) dx + u(1 − F(r + u)).

Choose r = q − u, multiply both sides of the equation by 1∕(1 − p), apply
F(q) = p, and apply (8.70) to obtain (8.71).

Let us explain the difference between (8.71) and (8.72) in the case when
Qp(Y ) is estimated using the estimation of the excess distribution Fu, where
u < Qp(Y ). In the case of (8.71), we can use the same fitted Fu to estimate the
expected shortfall ESq−u(X), where X ∼ Fu. In the case of (8.72) we have to
choose a second threshold u′

> u, estimate Fu′ , and estimate EX for X ∼ Fu′ .
When u is large, it can happen that Fu and Fu′ are close. In fact, the limit
theorem in (3.102) says that the excess distribution is a generalized Pareto
distribution for large u.

There exist closed-form expressions for ESq−u(X) in some cases. These
expressions are convenient to give in terms of the mean excess function

e(𝑣) = E(X − 𝑣|X > 𝑣).

We can write

ESq−u(X) = e(𝑣) + 𝑣, 𝑣 = Qq−u(X).
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1) The exponential distribution is defined in (3.65). Let X ∼ exp(𝛽), where
𝛽 > 0 is the scale parameter. Then

e(𝑣) = 𝛽.

The quantile is Qp(X) = −𝛽 log(1 − p).
2) The gamma distribution is defined in (3.80). Let X follow the gamma dis-

tribution with parameters 𝜅 and 𝛽, where 𝜅 > 1 is the shape parameter and
𝛽 > 0 is the scale parameter. Then

e(𝑣) = 𝛽

(
1 + 𝛽(𝜅 − 1)

𝑣
+ o
(1
𝑣

))
,

as 𝑣→ ∞. The quantile does not have a closed-form expression.
3) The generalized Pareto distribution is defined in (3.82). Let X follow the gen-

eralized Pareto distribution with parameters 𝜉 and 𝛽, where 0 < 𝜉 < 1 is the
shape parameter, and 𝛽 > 0 is the scale parameter. Then

e(𝑣) = 𝛽 + 𝜉𝑣
1 − 𝜉

.

The quantile is Qp(X) = 𝛽

𝜉
[(1 − p)−𝜉 − 1].

4) The Weibull distribution is defined in (3.86). Let X ∼ Weibull(𝜅, 𝛽), where
where 𝜅 > 0 is the shape parameter and 𝛽 > 0 is the scale parameter. Then

e(𝑣) = 𝑣
1−𝜅
𝛽
𝜅

𝜅
(1 + o(1)),

as 𝑣→ ∞. The quantile is Qp(X) = 𝛽(− log(1 − p))1∕𝜅 .

The formulas for the mean excess function can be found in Embrechts et al.
(1997, Table 3.4.7, p. 161).
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9

Some Basic Concepts of Portfolio Theory

Portfolio theory studies two related problems: (1) how to construct a port-
folio with desirable properties and (2) how to evaluate the performance of a
portfolio. In this chapter, we concentrate on the concepts related to the con-
struction of portfolios. A portfolio is constructed by allocating the available
wealth among some basic assets. The return of a portfolio is a weighted aver-
age of the returns of the basic assets, the weights expressing the proportion of
wealth allocated to each basic assets. There exist also portfolios that require
zero initial wealth. Such portfolios are constructed using borrowing or option
writing.

A main topic of the chapter is to introduce concepts related to the compari-
son of return and wealth distributions, and this topic is addressed in Section 9.2.
In order to study portfolio construction we need to define what it means that a
wealth distribution or a return distribution is better than another such distri-
bution. (Here wealth distribution means the probability distribution of wealth,
when wealth is considered as a random variable, and we do not mean the dis-
tribution of wealth in the sense of allocation of wealth among different people.)
In portfolio selection we try to select the weights of basic assets so that the
distribution of the return of the portfolio is in some sense optimal.

The optimal distribution of the return is such that the expected return is high
but the risk of negative returns is small. The expected return of a portfolio is
determined by the expected returns of the basic assets, but the risk of the return
distribution depends on the joint distribution of the returns of the basic assets.
The two main ways to compare returns is the use of the mean–variance crite-
rion and the use of the expected utility.

The issue of multiperiod portfolio selection is an important and interesting
research topic. However, we do not address this topic in any depth, but only in
Section 9.3. The bypassing of multiperiod portfolio selection can be justified by
the fact that for the logarithmic utility function there is no difference between
the one period and multiperiod portfolio selection. Thus, when we ignore the
effect of varying risk aversion and restrict ourselves to the logarithmic utility,
then we can ignore the issues related to multiperiod portfolio selection. Note

Nonparametric Finance, First Edition. Jussi Klemelä.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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that we discuss certain aspects of multiperiod portfolio in the connection of
pricing of options, because prices of options are related to the initial wealth of
a trading strategy, which approximately replicates the payoff of the option.

Section 9.1 discusses some basic concepts related to portfolios and their
returns. These concepts include the concept of a trading strategy, wealth
process, self-financing, portfolio weight, shorting, and leveraging. Section 9.2
discusses the comparison of return and wealth distributions. Section 9.3
discusses issues related to multiperiod portfolio selection.

9.1 Portfolios and Their Returns

The components of a portfolio can be stocks, bonds, commodities, currencies,
or other financial assets. The risk-free bond (bank account) can also be included
in the portfolio. The price of the risk-free bond is denoted by Bt . Let us have d
risky portfolio components and let

St =
(
S1

t ,… , Sd
t
)

be the vector of the prices of the risky portfolio components at time t. Prices sat-
isfy 0 < Bt < ∞ and 0 ≤ Si

t < ∞. The price vector which includes the risk-free
bond is denoted by

S̄t = (Bt, St) =
(
Bt, S1

t ,… , Sd
t
)
.

Sometimes it is convenient to denote

Bt = S0
t .

The time series of the prices of the riskless bond, the vector time series of the
prices of the risky assets, and the combined time series are denoted by

B = (Bt)t=0,…,T , S = (St)t=0,…,T , S̄ = (S̄t)t=0,…,T .

As an example, the bond price could be defined as Bt = (1 + r)t , where r > −1
is the risk-free rate. To take changing rates into account we could define B0 = 1
and Bt =

∏t
k=1(1 + rk) for t ≥ 1, where rk > −1 are the risk-free rates for one

period. The risk-free rate rk is different depending on the length of the period.
For the 1-day period the risk-free rate could be the Eonia rate. For the 1-month
period the risk-free rate could be the rate of a 1-month government bond.

9.1.1 Trading Strategies

A trading strategy is vector time series 𝜉 = (𝜉)t=1,…,T , where

𝜉t = (𝛽t, 𝜉t), 𝜉t =
(
𝜉

1
t ,… , 𝜉

d
t
)
, t = 1,… ,T .

The value 𝛽t expresses the number of bonds held between t − 1 and t. The value
𝜉

i
t expresses the number of shares of the ith risky asset held between t − 1 and
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t. Vector 𝜉t is chosen at time t − 1, using information which is available at time
t − 1. Since the values 𝜉t are known (chosen) at time t − 1, it is said that 𝜉t is
a predictable random vector. In our setting, components of 𝜉t can be any real
numbers and not just integers.

A portfolio is typically chosen using available relevant information. We
assume that the relevant information is expressed with the state vector
Zt ∈ Rm, where m ≥ 1 is the length of Zt . The vector 𝜉t ∈ Rd+1 is obtained with
a function

𝑤 ∶ Rm → Rd+1

and we have

𝜉t = 𝑤(Zt−1).

More generally, the function 𝑤 may be time dependent, and the definition of
the relevant information Zt may be time dependent. In the time dependent case,
we define Zt ∈ Rm(t) and

𝑤t ∶ Rm(t) → Rd+1
, t = 0,… ,T − 1,

which maps at each time t − 1 the relevant information to a portfolio vector.
Now

𝜉t = 𝑤t−1(Zt−1).

The relevant information for portfolio selection may include the following
constituents:

1) The relevant information used in choosing the portfolio vector 𝜉t can
include the vector time series of the previous gross returns: Zt = (R̄1,… , R̄t),
where R̄t = (Bt∕Bt−1, S1

t ∕S1
t−1,… , Sd

t ∕Sd
t−1). Since R̄t ∈ Rd+1, we have that

Zt ∈ Rt(d+1).
According to a version of efficient market hypothesis, the historical stock
prices contain all relevant information. In this case, we use only the infor-
mation in the past asset prices to choose the portfolio.

2) The relevant information can include information about the state of the
economy, or about the state of individual companies. For example, Zt can
contain macroeconomic information like default spreads and term spreads.
Also, Zt can contain information about the individual companies like divi-
dend yields and earnings.

9.1.2 The Wealth and Return in the One- Period Model

The one-period model has a special interest for portfolio selection, whereas for
option pricing the multiperiod model is more interesting. In particular, for the
logarithmic utility function the multiperiod portfolio selection reduces to the
one-period portfolio selection (see Section 9.3).
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We use the following notation for the inner product:

𝜉t ⋅ S̄t = 𝛽tBt + 𝜉t ⋅ St = 𝛽tBt +
d∑

i=1
𝜉

i
tSi

t .

Sometimes it is convenient to use the notation

𝜉
′
t S̄t

for the inner product, where A′ denotes the transpose of matrix A, and the
vectors are taken as column vectors.

9.1.2.1 The Wealth and Self-financing
The wealth at time t is

Wt = 𝜉t+1 ⋅ S̄t . (9.1)

At time t + 1 the wealth is equal to

Wt+1 = 𝜉t+1 ⋅ S̄t+1.

We interpret (9.1) in the following way. We take Wt > 0 to be the total wealth
available for investment at time t. The total wealth is allocated among the port-
folio components. This self-financing condition states that no wealth is reserved
for consumption and no wealth is inserted from outside into the portfolio. We
could also interpret (9.1) to be the definition of the initial wealth, but in the
multiperiod model the self-financing condition is applied at the beginning of
each period.

9.1.2.2 Portfolio Weights
Let us assume Wt > 0. The portfolio weights are defined as

b0
t =

𝛽t+1Bt

Wt
, bi

t =
𝜉

i
t+1Si

t

Wt
, i = 1,… , d.

Note that we use time index t for the portfolio weights bi
t but time index t + 1

for the portfolio quantities 𝜉i
t+1, to follow the typical practice in the literature.

We define the weight vector by

b̄t =
(
b0

t , bt
)
, bt =

(
b1

t ,… , bd
t
)
.

The weight vector satisfies
d∑

i=0
bi

t = 1. (9.2)

The number bi
t determines the proportion of the total wealth invested in asset

i at time t. The self-financing condition (9.1) leads to (9.2), when Wt > 0.
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9.1.2.3 Portfolio Returns
The gross return of the portfolio is obtained as a weighted average of the gross
returns of the portfolio components. Indeed, the gross return of the portfolio
is equal to

Rp
t+1 =

Wt+1

Wt
=
𝛽t+1Bt

Wt

Bt+1

Bt
+

d∑
i=0

𝜉
i
t+1Si

t

Wt

Si
t+1

Si
t

=
d∑

i=0
bi

tRi
t+1 = b̄t ⋅ R̄t+1, (9.3)

where

R̄t+1 =
(
R0

t+1,Rt+1
)
, Rt+1 =

(
R1

t+1,… ,Rd
t+1
)

is the vector of the gross returns of the portfolio components. The gross returns
of the portfolio components are defined by

R0
t+1 =

Bt+1

Bt
, Ri

t+1 =
Si

t+1

Si
t
, i = 1,… , d.

9.1.2.4 The Product and Additive Forms of Wealth
The wealth can be written either in the product form or in the additive form.
These two ways of writing the wealth will be applied in Section 9.1.3 to write
the wealth process.

Wealth in the Product Form We can write the wealth at time t + 1 as

Wt+1 = Wtb̄t ⋅ R̄t+1, (9.4)

where b̄t satisfies restriction (9.2), which can be written as

b̄t ⋅ 1d+1 = 1, (9.5)

where 1d+1 is the vector of length d + 1 whose components are ones. Second,
the wealth can be written using only the unrestricted weight vector bt . Indeed,
the restriction can be written as

b0
t = 1 − 1d ⋅ bt .

Thus,

b̄t ⋅ R̄t+1 = (1 − 1d ⋅ bt)R0
t+1 + bt ⋅ Rt+1

= R0
t+1 + bt ⋅

(
Rt+1 − R0

t+1
)
, (9.6)

where

Rt+1 − R0
t+1



304 9 Some Basic Concepts of Portfolio Theory

is called the excess return. We arrive at

Wt+1 = Wt
[
R0

t+1 + bt ⋅
(
Rt+1 − R0

t+1
)]
, (9.7)

which expresses the wealth at time t + 1 in terms of the unrestricted weight
vector bt .

Wealth in the Additive Form We can write the wealth at time t + 1 as

Wt+1 = Wt + 𝜉t+1 ⋅ (S̄t+1 − S̄t), (9.8)

where 𝜉t+1 satisfies restriction (9.1) :

𝜉t+1 ⋅ S̄t = Wt.

Second, the wealth can be written using only the unrestricted vector 𝜉t+1.
Indeed, the restriction can be written as

𝛽t+1 =
Wt

Bt
− 𝜉t+1 ⋅

St

Bt
.

Thus,

Wt+1 = Wt +
Wt

Bt
(Bt+1 − Bt) + 𝜉t+1 ⋅

(
St+1 − St −

St

Bt
(Bt+1 − Bt)

)

= Bt+1
Wt

Bt
+ 𝜉t+1 ⋅ Bt+1

( St+1

Bt+1
−

St

Bt

)
.

We arrive at

Wt+1 = Bt+1Vt+1, (9.9)

where

Vt+1 = Vt + 𝜉t+1 ⋅ (Xt+1 − Xt),

and

Vt =
Wt

Bt
, Xt =

St

Bt
, Xt+1 =

St+1

Bt+1
.

We have expressed the wealth at time t + 1 in terms of the unrestricted vec-
tor 𝜉t+1.

9.1.3 The Wealth Process in the Multiperiod Model

The wealth process W = (Wt)t=0,…,T can be written either multiplicatively or
additively. Furthermore, we can write the wealth either so that the self-financing
restrictions are implicitly assumed, or so that the self-financing conditions are
eliminated by moving from the gross returns to the excess returns (product
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form) or by moving from the prices to the discounted prices (additive form). In
the case of the product form the elimination of the self-financing restrictions
does not bring essential simplifications but in the case of the additive form the
elimination of the self-financing conditions simplifies the dynamic optimiza-
tion algorithm for the maximization of the expected wealth.

9.1.3.1 The Wealth in the Product Form
We assume that W0 > 0 and self-financing holds at each of the T periods
(wealth Wt+1 is obtained from wealth Wt only through the changes in asset
prices and through the changes in wealth allocation). We can write

WT = W0

T−1∏
t=0

Wt+1

Wt
.

We get from (9.4) that

WT = W0

T−1∏
t=0

b̄t ⋅ R̄t+1, (9.10)

where b̄t ∈ Rd+1 satisfies restriction

b̄t ⋅ 1d+1 = 1.

The wealth process can be written in terms of only the weights bt of the risky
assets. We obtain from (9.7) that

WT = W0

T−1∏
t=0

[
R0

t+1 + bt ⋅
(
Rt+1 − R0

t+1
)]
, (9.11)

where bt ∈ Rd is unrestricted.
When the sequence b = (bt)t=0,…,T−1 of portfolio vectors is constant, not

changing with t, then we call the portfolios “constant weight portfolios.” Note
that when using a constant weight portfolio strategy there is a need to make
a rebalancing at each period because the prices of the portfolio components
are changing, and to keep the weights constant we have to decrease the weight
of those assets whose price has increased and to increase the weights of those
assets whose price has declined. In this sense a constant weight portfolio
strategy is a counter trend strategy.

9.1.3.2 The Wealth in the Additive Form
The additive wealth process is applied more in option pricing than in portfolio
management, but it is useful also in the portfolio selection, especially when the
exponential utility is used. We summarize the definitions related to the additive
wealth process, but the detailed explanations are given in Section 13.2.2, where
option pricing is studied.
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We can write

WT = W0 +
T−1∑
t=0

(Wt+1 − Wt).

We get from (9.8) that

WT = W0 +
T−1∑
t=0

𝜉t+1 ⋅ (S̄t+1 − S̄t),

where 𝜉t+1 satisfy restrictions

𝜉t ⋅ S̄t = 𝜉t+1 ⋅ S̄t , t = 1,… ,T − 1. (9.12)

We say that a trading strategy 𝜉 is self-financing if (9.12) holds.
We define the value process, which is useful because it involves only the num-

bers 𝜉t+1 of risky assets. The discounted price process is defined by

Xi
t =

Si
t

Bt
, t = 0,… ,T , i = 1,… , d.

We denote

Xt =
(
X1

t ,… ,Xd
t
)
, X̄t = (1,Xt).

The value process is defined as

Vt =
Wt

Bt
, t = 0,… ,T .

We obtain from (9.9) that

WT = BT VT , (9.13)

where

VT = V0 +
T−1∑
t=0

𝜉t+1 ⋅ (Xt+1 − Xt).

9.1.4 Examples of Portfolios

The collection of possible portfolios is determined by the collection of possible
portfolio weights. The most general collection of portfolio weights consists of
all weights satisfying the constraint (9.2):

B =

{(
b0

t ,… , bd
t
)
∶

d∑
i=0

bi
t = 1

}
.

We can impose various restrictions on portfolio weights and obtain smaller
collections of weights. For example, we can allow leveraging but forbid shorting
of stocks, or we can restrict ourselves to long only portfolios.
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9.1.4.1 Shorting
A portfolio is described by giving weights for the portfolio components. The
weights are such that they sum to one, as stated in (9.2). Without any further
constraints, borrowing and short selling are allowed. When shorting is allowed,
then the elements of portfolio vectors can take negative values. Borrowing is
interpreted as selling short the risk-free rate. Thus, when borrowing is allowed,
the weight of the risk-free rate can take negative values. When short selling or
borrowing occurs, then some weights are larger than one.

Selling a stock short means that we sell a stock that we do not own. Typ-
ically the stock that is sold short is first borrowed from somebody who owns
the stock. If the stock is sold without first borrowing it, the short selling is called
naked short selling. Short selling a stock changes the character of the portfolio:
a short position on a stock has an unlimited downside risk, but only a lim-
ited upside potential. In contrast, a long position on a stock can lose only the
invested capital but has an unlimited upside potential.

A return that is obtained when being short a stock is

(1 − b)rt+1 + bRt+1, (9.14)

where b < 0, Rt+1 = St+1∕St is the gross return of the stock to be shorted, and
rt+1 is the gross return of another asset. For example, rt+1 can be the return of the
risk-free investment. The return 2rt+1 − Rt+1 arises when the available wealth is
invested in the risk-free rate, the stock is shorted with the amount of the total
wealth, and the proceedings obtained from shorting the stock are invested in
the risk-free rate.

It can happen that (1 − b)rt+1 + bRt+1 < 0, because Rt+1 is not bounded from
above. Gross returns less or equal to zero can be interpreted as leading to
bankruptcy, but they can also be interpreted as leading to debt.

Figure 9.1 shows functions St+1 → Rt+1 = (1 − b) + bSt+1∕s, where s = St is
the previous value of the stock. The case b = 1 (black) means that we are long
the stock (we have bought the stock). The case b = 2 (blue) means that we

Figure 9.1 Being long and short a stock.
The blue lines show the gross return
of being long a stock for b = 1 and
b = 2 as a function of the stock price. The
red line shows the gross return of being
short a stock. Shown are the functions
St+1 → Rt+1 = (1 − b) + bSt+1∕s, where
s = St is the previous value of the stock.
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are leveraged. The case b = −1 (red) means that we are short the stock. We
have taken the gross return of the risk-free investment as rt+1 = 1.

9.1.4.2 Long Only Portfolios
In a long only portfolio borrowing and short selling are excluded. In the case
of long only portfolios the portfolio weights are nonnegative. Thus, the weights
satisfy

bj
t ≥ 0

for j = 0,… , d.
The nonnegativity constraint together with the condition

∑d
j=0 bj

t = 1
imply that

0 ≤ bj
t ≤ 1

for j = 0,… , d.

9.1.4.3 Leveraged Portfolios
A portfolio allowing leveraging but forbidding short selling is such that the
weight of the risk-free rate can be negative but the weights of the other assets
are nonnegative. In a leveraged portfolio it is allowed to borrow money and
invest the borrowed money to stocks or other assets. Borrowing money is
interpreted as shorting the risk-free rate. Let Bt = S0

t be the bank account. The
portfolio vectors of a leveraged portfolio satisfy, in addition to the constraint∑d

j=0 bj
t = 1, the additional constraint

bj
t ≥ 0

for j = 1,… , d.
We allow negative values for the portfolio weight b0

t of the bank account, but
the other portfolio weights bj

t , j = 1,… , d, are nonnegative.

9.1.4.4 Restrictions on Short Selling
In practice investors have a constraint on the amount of short selling. It is nat-
ural to make a constraint on the amount of short selling by requiring that the
portfolio weights satisfy

d∑
j=0
|bj

t| ≤ L, (9.15)

where L ≥ 1. Under the constraint
∑d

j=0 bj
t = 1, the constraint (9.15) is equiva-

lent to any of the following two constraints:
d∑

j=0

(
bj

t

)
−
≤

L − 1
2

,

d∑
j=0

(
bj

t

)
+
≤

L + 1
2

,
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where we denote by (b)+ = max{0, b} the positive part of b ∈ R and by (b)− =
−min{0, b} the negative part of b.1 Thus, C = (L − 1)∕2 is such factor that we
are allowed to short sell C times the current wealth.

9.1.4.5 Portfolios Used in Trading
There are several reasons to define very restricted finite collections of the
allowed portfolio weights. The use of restricted collections of weights brings
computational advantages, and restricted collections are often used in such
trading strategies as market timing and stock selection.

1) Computational advantages. For computational reasons, we might prefer to
search the portfolio vector from a rather small collection of the allowed port-
folio weights. When the collection of the allowed portfolio weights is small,
we do not have to use involved optimization techniques to find the portfolio
weights.

2) Market timing. Some market timing strategies require only the choice
between two different assets. These market timing strategies might be such
that we have two available assets, and at the beginning of every month we
choose to invest everything into the one asset and nothing into the other
asset, or we might go long the one asset and go short the other asset. The
two assets might both be risky assets, or the one asset might be the risk-free
rate and only the other asset would be risky. Market timing strategies are
often trend following strategies, which are discussed in Section 12.1.1.

3) Stock selection. Sometimes a mutual fund uses a strategy where a search is
made for an optimal subset of the stocks in the index that is the benchmark
for the performance. For example, a mutual fund whose aim is to beat the
performance of S&P 500 index might try to select a subset of the stocks in
S&P 500 index, invest equal weights to this subset, and allocate zero weights
to the remaining stocks of S&P 500 index. For instance, the mutual fund
might look for a subset of 20 companies whose price to earnings ratio is
the smallest, and to invest 5% to each of the companies with the smallest
P/E ratios. More involved stock selection methods might use regression on
economic indicators to estimate the expected returns or the expected utility,
as discussed in Sections 12.1.1 and 12.1.3.

1 We have b = (b)+ − (b)− and |b| = (b)+ + (b)−. Thus,
d∑

j=0
bj

t = 1 ⇔
d∑

j=0

(
bj

t

)
+
= 1 +

d∑
j=0

(
bj

t

)
−
.

Then,
d∑

j=0
|bj

t| =
d∑

j=0

(
bj

t

)
+
+

d∑
j=0

(
bj

t

)
−
≤ L ⇔

d∑
j=0

(
bj

t

)
−
≤

L − 1
2

.
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Let us have basis assets S0
,… , Sd and predictions m(S0),… ,m(Sd) for the

performance of the basis assets. The performance predictions might be esti-
mates for the expected return, estimates for the expected utility, estimates for
the Markowitz criterion, or the price to earnings ratio (which could be consid-
ered as an estimate for the expected return) . These performance predictions
are discussed in Section 12.1.

1) Let us consider the case d = 1, so that we have two basis assets S0 and S1. A
possible strategy is to put weight one to the first asset and to put weight zero
to the second asset, when m(S0) > m(S1). Otherwise, when m(S0) ≤ m(S1),
then we put weight zero to the first asset and weight one to the second asset.
Now the set of the allowed portfolio vectors is

B = {(1, 0), (0, 1)}. (9.16)

2) Let us secondly consider the case d = 2, so that we have three basis assets.
As examples, we consider two strategies.
a) We put weight one to the asset with the highest value for the performance

measure m(Si), i = 0, 1, 2, and zero weight to the two other assets. Now
the set of the allowed portfolio vectors is

B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. (9.17)

b) We put the equal weight 1∕2 to the two assets with the highest value for
the performance measure m(Si), i = 0, 1, 2, and the zero weight to the
remaining asset. Now the set of the allowed portfolio vectors is

B = {(1∕2, 1∕2, 0), (1∕2, 0, 1∕2), (0, 1∕2, 1∕2)}. (9.18)

3) Let us thirdly consider the general case of d ≥ 1. We consider the strategy
where we choose from d + 1 = N basis assets a subset of M < N assets with
the highest values for the performance measure m(Si), i = 0,… , d, and put
equal weights to the M selected assets. Now the set of the allowed portfolio
vectors is

B =
{( 1

M
IJ (j)
)

j=0,…,d
∶ J ⊂ {0,… , d}, #J = M

}
, (9.19)

where IJ (j) = 1 if j ∈ J and otherwise IJ (j) = 0, we use the notation (b0,… ,

bd) = (bj)j=0,…,d, and #J means the number of elements in set J . We get (9.17)
as a special case by choosing d + 1 = N = 3 and M = 1. We get (9.18) as a
special case by choosing d + 1 = N = 3 and M = 2.

The previous collections of portfolio weights defined long only portfolios.
We can define in an analogous way collections of portfolio weights that allow
shorting.

1) Let us consider the case d = 1, so that we have two basis assets, and we
assume that the first basis asset is the risk-free rate and the second asset is
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a risky asset. Let the risky asset have return Rt+1 and let the risk-free rate be
rt+1. Taking

B = {(0, 1), (2,−1)} (9.20)

means that we are either long of the stock, which gives return Rt+1, or we
are short of the stock, which gives return 2rt+1 − Rt+1. Taking

B = {(1, 0), (−1, 2)} (9.21)

means that we are either not invested, which gives return rt+1, or we are
leveraged, which gives return 2Rt+1 − rt+1.

2) When the number d + 1 = N of the basis assets increases, the cardinality of
the set of possible and reasonable portfolio vectors increases rapidly. As an
example, let us consider the case N = 3, where the first asset is the risk-free
rate and two basis assets are risky. Now,

B = {(0, 1, 0), (2,−1, 0), (0, 0, 1), (2, 0,−1), (1, 0, 0)} (9.22)

describes the choices of being long of one of the stocks, being short of one
of the stocks, and staying out of the market.

9.1.4.6 Pairs Trading
In pairs trading we have two risky assets and typically two alternatives are con-
sidered: (1) go long of the first asset and short of the second asset or (2) go short
of the first asset and long of the second asset. Then the return of the portfolio is

Rp
t+1 = (1 − b)

S1
t+1

S1
t

+ b
S2

t+1

S2
t
, (9.23)

where (1) b = −1, or (2) b = 2. More generally, we can consider pairs trading
with other values for b. Choosing the weights from set

B = {(1 + a,−a), (−a, 1 + a)}, (9.24)

where a > 0, means that we are leveraged of the first asset and short of the
second asset. We can include the risk-free rate and consider returns

(1 − b1 − b2)(1 + r) + b1
S1

t+1

S1
t

+ b2
S2

t+1

S2
t
. (9.25)

Sometimes a strategy for pairs trading is defined in terms of asset prices. The
strategy could be such that coefficients c1, c2 ∈ R are determined so that the
linear combination

c1S1
t + c2S2

t

of prices satisfies certain conditions. For example the aim could be to choose
c1 and c2 so that the linear combination is stationary. This is possible when the
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prices S1
t and S2

t are colinear. When c1S1
t + c2S2

t > 0, the return of the portfolio is

Rp
t+1 =

c1S1
t+1 + c2S2

t+1

c1S1
t + c2S2

t
,

and the weight in (9.23) is

b =
c2S2

t

c1S1
t + c2S2

t
.

9.2 Comparison of Return and Wealth Distributions

In order to study portfolio selection and performance measurement we need
to define what it means that a wealth distribution or a return distribution is
better than another such distribution. Let the initial wealth be W0 and the
wealth at time T be WT . Terminal wealth WT is a random variable. When
W0 > 0 then we can define the gross return RT = WT∕W0. The gross return
RT is a random variable. We can use either the distribution of WT or the distri-
bution of RT to study portfolio selection and performance measurement.

In portfolio selection, we need to choose the portfolio weights so that the
return RT or the terminal wealth WT of the portfolio is optimized. To mea-
sure the performance of asset managers we need to define what it means that a
return distribution (or the distribution of the terminal wealth) generated by
an asset manager is better than the distribution generated by another asset
manager.2

To compare return and wealth distributions, we make a mapping from a class
of distributions to the set of real numbers. This mapping assigns to each distri-
bution a number that can be used to rank the distributions.

It might seem reasonable to compare return and wealth distributions using
only the expected returns and expected wealths: we would prefer always the
distribution with the highest (estimated) expectation. However, this would lead
to the preference of investment strategies with extremely high risk. Thus, the
comparison of distributions has to take into account not only the expectation
but also the risk associated with the distribution.

A classical idea to rank the return distributions is to use the variance penal-
ized expected return. This idea is discussed in Section 9.2.1, and it is related to
the Markowitz portfolio selection.

2 Note that in portfolio selection there is the additional problem that the distributions of the
returns of the individual assets, their cross-sectional dependencies, and their time series properties
are unknown and have to be estimated using historical data. Similarly, to measure the performance
of fund managers we have to collect information of the past returns obtained by the fund managers.
Then we estimate the return distributions and compare the estimated return distributions.
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Figure 9.2 Comparison of distributions.
Shown are two return densities, where the
red distribution has a higher risk and a higher
return than the black distribution. It is not
obvious which return distribution should be
preferred.
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The expected utility is discussed in Section 9.2.2. The Markowitz criterion
uses only the first two moments of the distribution; it uses only the mean
and the variance. However, the expected utility takes into account the higher
order moments of the distribution. A Taylor expansion of the expected utility
shows that all the moments make a contribution to the expected utility.
Conversely, a Taylor expansion of the expected utility can be used to justify the
mean–variance criterion, and various other criteria that involve a collection of
moments of various degrees, such as the third and the fourth-order moments.

Figure 9.2 shows densities of two gross return distributions whose compar-
ison is not obvious. The distributions are Gaussian, and the expected return
of the red distribution is higher, but also the variance of the red distribution
is higher.3 Thus, the red return distribution has a higher risk and a higher
expected return. There exists no universal or objective way to compare these
two distributions. Instead, the comparison depends on the risk aversion of the
investor. An investor with a high-risk aversion would prefer the black distribu-
tion, but an investor with a low-risk aversion would prefer the red distribution.

9.2.1 Mean–Variance Preferences

Portfolio choice with mean–variance preferences was proposed by Markowitz
(1952, 1959). This method ranks the distributions of the portfolio return Rp

t+1

3 Strictly speaking, Gaussian distributions cannot be return distributions, because a Gaussian ran-
dom variable can take negative values, whereas a gross return is larger or equal to zero, and a net
return is larger or equal to −1. However, since Gaussian distributions have light tails, the probabil-
ity of a negative value can be negligible, and we can use them to model return distributions well,
although a log-normal distribution would be more appropriate, for example. In fact, to model a
return distribution, distributions with unbounded support are typically used, like t-distributions
(see Section 3.3).
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according to

EtR
p
t+1 −

𝛾

2
Vart

(
Rp

t+1
)
, (9.26)

where 𝛾 ≥ 0 is the risk aversion parameter, and Et and Vart mean the condi-
tional expectation and conditional variance, respectively. The expected return
is penalized by subtracting the variance of the return. Parameter 𝛾 measures
the investor’s risk aversion, or more precisely, absolute risk aversion, as defined
in (9.30).

We consider now basically one-period model, with time points t and t + 1.
We could apply the notations used in Section 9.1, and denote T = 1, and replace
(9.26) by E0Rp

1 −
𝛾

2
Var0(R

p
1). However, it is convenient to denote the time points

by t and t + 1, because in practice we will use the sequence of one-period mod-
els with t = 0,… ,T − 1.

Remember that the gross return of a portfolio was written in (9.3) as

Rp
t+1 =

d∑
i=0

bi
tRi

t+1 = b̄′
tR̄t+1,

where R̄t+1 = (R0
t+1,… ,Rd

t+1)
′ is the column vector of the gross returns of

the portfolio components, the gross return of a single portfolio component
is Ri

t+1 = Si
t+1∕Si

t , and b̄t = (b0
t ,… , bd

t )′ is the vector of the portfolio weights.
Here S0

t = Bt is the risk-free bond and R0
t+1 is the risk-free gross return.

In order to calculate the conditional variance of Rp
t+1 it is convenient to sep-

arate the risk-free rate. This was done in (9.6), where we wrote

b̄′
tR̄t+1 =

(
1 − 1′

dbt
)

R0
t+1 + b′

tRt+1 = R0
t+1 + b′

t
(
Rt+1 − R0

t+1
)
,

where bt = (b1
t ,… , bd

t )′ and Rt+1 = (R1
t+1,… ,Rd

t+1)
′ are the weights and the

returns of the risky assets.
We can write

EtR
p
t+1 = R0

t+1 + b′
t
(
EtRt+1 − R0

t+1
)
,

and

Vart
(
Rp

t+1
)
= b′

tVart(Rt+1)bt,

where EtRt+1 is the d-vector of the expected returns of the risky assets and
Vart(Rt+1) is the d × d covariance matrix of Rt+1. Note that the risk-free rate R0

t+1
is known at time t, and therefore it does not affect the conditional variance.4

Section 9.2.2 discusses the use of the expected utility to rank the
distributions. The Markowitz ranking is related to the use of the quadratic

4 The unconditional variance can be written as Var(Rp
t+1) = b̄′

tVar(R̄t+1)b̄t , because the risk-free
rate R0

t+1 is a random variable.
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utility function

U(x) = x − 1 − 1
2
(x − 1)2

,

because the Markowitz criterion (9.26) with 𝛾 = 1 is approximately equal to
EU(Rp

t+1), the difference being due to the the fact that the expected quadratic
utility involves the squared return but the Markowitz criterion in (9.26) involves
variance.

Chapter 11 discusses portfolio selection when the Markowitz criterion
is used. Next, we give two examples that illustrate how the variance of the
portfolio can be decreased by a skillful choice of the portfolio weights. The first
example considers uncorrelated basis assets and the second example considers
correlated assets. In practice, it is difficult to find uncorrelated basis assets and
it is even more difficult to find anticorrelated basis assets. However, even when
the basis assets are correlated it is possible to decrease the risk of the portfolio
by allocating the portfolio weights skillfully among the basis assets.

9.2.1.1 A Large Number of Uncorrelated Assets
The variance of the portfolio return can be close to zero, when we have a
large number of uncorrelated basis assets. Consider d risky assets S1

,… , Sd,
whose gross returns are Ri

t+1 = Si
t+1∕Si

t , i = 1,… , d. We denote EtRi
t+1 = 𝜇,

Vart(Ri
t+1) = 𝜎

2, and we assume that the returns are uncorrelated. Let the
portfolio vector be b = (1∕d,… , 1∕d) ∈ Rd. Then,

Et(b′Rt+1) = 𝜇, Vart(b′Rt+1) =
𝜎

2

d
.

Thus, when the number d of assets in the portfolio is large, the variance of the
portfolio return is close to zero.

9.2.1.2 Two Correlated Assets
In the case of two risky basis assets, the variance of the portfolio return can
be close to zero when the two assets are anticorrelated. Let R1

t+1 and R2
t+1

be the gross returns of two basis assets. Let us assume that the Vart(R1
t+1) =

Vart(R2
t+1) = 𝜎

2 and Cort(R1
t+1,R

2
t+1) = 𝜌. Then the variance of the portfolio

return is
Vart

(
bR1

t+1 + (1 − b)R2
t+1
)
= b2

𝜎
2 + (1 − b)2

𝜎
2 + 2b(1 − b)𝜎2

𝜌,

where b ∈ R is the weight of the first asset. Figure 9.3 shows the function
(𝜌, b) → b2 + (1 − b)2 + 2b(1 − b)𝜌, where we have chosen the variance of the
portfolio components to be 𝜎2 = 1. The variance of the portfolio becomes
smaller when 𝜌→ −1. When 0 ≤ b ≤ 1, then variance of the portfolio is
smaller than one, otherwise it is larger than one. Thus, the variance of the
portfolio is smaller than the variance of the components when 0 ≤ b ≤ 1,
and the reduction in the variance is greatest when portfolio components are
anticorrelated.
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Figure 9.3 Two correlated assets. A
contour plot of function (𝜌, b) →
b2 + (1 − b)2 + 2b(1 − b)𝜌 is shown.
The function is equal to the variance
of the portfolio when the portfo-
lio components have variance one,
correlation 𝜌, and the weight of
the portfolio components are b
and 1 − b.

9.2.2 Expected Utility

We can order distributions according to the value of the expected utility. Intro-
ducing the utility function U and ranking the distributions according to the
expected utility E0U(RT ) brings in the element of risk aversion, whereas rank-
ing the return distributions solely according to the expected returns E0RT does
not take risk into account.

The expected utility can be calculated either from the wealth or from the
return. The expected utility calculated from the wealth is

E0U(WT ),

where WT is the wealth (in Euros, Dollars, etc.), and U ∶ R → R is a utility
function. The negative wealth means that more is borrowed than owned. The
expected utility calculated from the gross returns is

E0U(RT ),

where U ∶ (0,∞) → R is a utility function and RT = WT∕W0 is the gross return.
The gross return RT is always nonnegative. It is natural to define U(0) = −∞,
because the gross return of zero means bankruptcy.

Sometimes it is equivalent to calculate the expected utility from the wealth
and calculate it from the return. Consider the logarithmic utility U(x) = log x.
Now E0 log WT = E log W0 + E log RT . This issue is discussed in Section 9.3.

Figure 9.4 illustrates the ranking of distributions according to the expected
utility, when the densities have the same shape but different locations. Panel (a)
shows four densities of gross return distributions. The distribution with the
black density is the best because its expectation is the largest, and the distribu-
tion with the red density is the worst, because its expectation is the smallest.
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Figure 9.4 Ranking distributions with the expected utility: Different means. (a) Four density
functions of gross return RT ; (b) the four density functions of U(RT ). The expectations E0U(RT )
are marked with vertical vectors.

Panel (b) shows the densities of U(RT ), where U is the power utility function
with risk aversion 𝛾 = 5 and RT is the return.5 The power utility functions are
defined in (9.28). The expectations E0U(RT ) are marked with vertical lines. We
can see that although the densities of returns RT are symmetrical, the densities
of U(RT ) are skewed to the left, so that the expectations EU(RT ) are smaller
than the modes of the distributions.

Figure 9.5 illustrates the ranking of distributions according to the expected
utility, when the densities have the same location but different variances. The
utility function is the power utility function with risk aversion 𝛾 = 5. The power
utility functions are defined in (9.28). Panel (a) shows four densities of return
distributions. The distribution with the black density is the best because its
spread is the smallest, and the distribution with the red density is the worst,
because its spread is the largest. Panel (b) shows the densities of U(RT ), where
U is the utility function and RT is the return. The expectations E0U(RT ) are
marked with vertical lines. We can see that although the mode of the red den-
sity is located furthest to the right, its expected value is furthest to the left.

5 The density function of U(R) is fU(R)(x) = fR(U−1(x))∕|U ′(U−1(x))|, where fR is the density func-
tion of return R. In fact, let X ∈ R be a random variable and A ∶ R → R be a monotonic function.
Denote with fX the density of X and with fA(X) the density of A(X). We have

fA(X)(x) =
𝜕

𝜕x
P(A(X) ≤ x) = 𝜕

𝜕x
P(X ≤ A−1(x))

= fX (A
−1(x)) ⋅

|||| 𝜕𝜕x
A−1(x)

|||| = fX (A
−1(x)) ⋅ 1|A′(A−1(x))| ,

where A′(x) = 𝜕

𝜕x
A(x).
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Figure 9.5 Ranking of distributions with expected utility: Different variances. (a) Four density
functions of return RT ; (b) the density functions of U(RT ). The expectations E0U(RT ) are marked
with vertical vectors.

9.2.2.1 Basic Properties of Utility Functions
In our examples a utility function can have as its domain either the positive real
axis or the real line. When the argument is a gross return, then utility function
U ∶ (0,∞) → R is defined on the positive real axis.6 When the argument is
the wealth which can take negative values, then utility function U ∶ R → R is
defined on the real line.

It is natural to require that a utility function is strictly increasing and strictly
concave.
1) A strictly increasing function U ∶ R → R satisfies U ′(x) > 0 for all x ∈ R,

when the function is differentiable. A function is strictly increasing if
U(x2) > U(x1) for all x2 > x1.
A utility function should be increasing because investors prefer a larger
wealth to a lesser wealth.

2) A strictly concave function U ∶ R → R satisfies U ′′(x) < 0 for all x ∈ R,
when the function is two times differentiable. A concave function is such
that the rate of increase decreases.
A utility function should be concave since increasing the wealth makes the
value of additional wealth decline: The marginal value of additional con-
sumption is declining. The concavity of a utility function is a consequence
of risk aversion: The curvature of the utility function captures the subjective
aversion to risk.

Concavity can also be defined in the case where the function is not two times
differentiable. A function U ∶ R → R is strictly concave, when

pU(x1) + (1 − p)U(x2) < U(px1 + (1 − p)x2) (9.27)
for all 0 ≤ p ≤ 1 and for all x1, x2 ∈ R.

6 When we use a net return, then the utility function should have domain (−1,∞).
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In addition, sometimes it is assumed that utility function U ∶ (0,∞) → R is
continuously differentiability with limx→∞U ′(x) = 0, limx→0U ′(x) = ∞.

9.2.2.2 Power and Exponential Utility Functions
The power utility functions are defined as

U(x) =
⎧⎪⎨⎪⎩

x1−𝛾

1 − 𝛾
, if 𝛾 > 0, 𝛾 ≠ 1,

log x , if 𝛾 = 1,
x > 0, (9.28)

where 𝛾 > 0 is the risk aversion parameter. Note that U ′(x) = x−𝛾 for 𝛾 > 0,
𝛾 ≠ 1 and 𝜕∕𝜕x log x = x−1, which can be used to explain why the logarithmic
function is obtained as the limit when 𝛾 → 1. The power utility functions are
constant relative risk aversion (CRRA) utility functions, as defined in (9.31).

The exponential utility functions are defined as

U(x) = 1 − e−𝛼x
, x ∈ R, (9.29)

where 𝛼 > 0 is the risk aversion parameter. The exponential utility functions are
constant absolute risk aversion (CARA) utility functions, as defined in (9.30).

The power utility functions are defined on (0,∞), but the exponential util-
ity functions are defined on the whole real line. Thus, the exponential utility
functions can be applied in the case of negative wealth. The exponential util-
ity functions are useful when we consider portfolios of derivatives (selling of
options), because in these cases the wealth can become negative. There exists
also other than power and exponential utility functions.7

Figure 9.6 plots normalized utility functions with different risk aversion
parameters. Panel (a) shows power utility functions (9.28) and panel (b) shows
exponential utility functions (9.29). The normalized utility functions are
defined by

u(x) = U(x) − U(1)
U(2) − U(1)

.

The normalization is such that u(1) = 0 and u(2) = 1. Note that the ordering
of the distributions according to the expected utility is not affected by linear
transformations aU(x) + c, a > 0, c ∈ R, because

E[aU(Rt+1) + c] = aEU(Rt+1) + c.

Figure 9.6 shows that larger values of 𝛾 or 𝛼 are used when one is more risk
averse, because the curvature of the utility functions increases when 𝛾 or 𝛼 are
increased.

7 The utility functions U(x) = I[a,∞)(x), x ∈ R, where a > 0, are used when one wants to choose a
portfolio maximizing the probability of reaching the given amount of capital. Note that these utility
functions are not concave.
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Figure 9.6 Utility functions. (a) Power utility functions (9.28) for risk aversion values 𝛾 = 1,
𝛾 = 2, and 𝛾 = 3; (b) exponential utility functions (9.29) for risk aversion values 𝛼 = 0.3, 𝛼 = 1,
and 𝛼 = 2.
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Figure 9.7 Expected utility as a function of mean and standard deviation. We show
contour plots of functions (𝜎, 𝜇) → EU(R), where R follows a normal distribution N(𝜇, 𝜎2).
(a) U(x) = log x; (b) U(x) = x1−𝛾∕(1 − 𝛾) with 𝛾 = 5.

Figure 9.7 shows contour plots of functions (𝜎, 𝜇) → EU(R), where R follows
distribution R ∼ 1 + r, where r ∼ N(𝜇0, 𝜎

2
0 ), where 𝜇0 = 𝜇∕250, 𝜎0 = 𝜎∕

√
250.

In panel (a) the utility function is logarithmic U(x) = log x and in panel (b)
U(x) = x1−𝛾∕(1 − 𝛾) with 𝛾 = 5.8 The expected utility is maximized when the
mean is high and the standard deviation is low, which happens in the upper left
corner. We see that for the logarithmic utility the expected utility is determined

8 In panel (a) we have multiplied the values of E(U(R)) with 1000 and in panel (b) with 10.
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by the expectation, but increasing the risk aversion to 𝛾 = 5 makes the expected
utility sensitive both to mean and to standard deviation. When risk aversion is
increased more, then the expected utility becomes sensitive only to standard
deviation.

9.2.2.3 Taylor Expansion of the Utility
A Taylor expansion of a utility function can be used to gain insight into the dif-
ferences between the use of the mean–variance criterion and the use of the
expected utility, because the use of the mean–variance criterion is approxi-
mately equal to the use of the second-order Taylor expansion to approximate
the utility function. Also, we can use a Taylor expansion to replace the expected
utility with a series containing higher than the second-order moment, which
leads to a useful tool in portfolio selection.

We restrict ourselves to the fourth-order Taylor expansion, because the
extension to higher order expansions is obvious. For a utility function U ∶
R → R that has fourth-order continuous derivatives we have the approximation

U(x + h) ≈ U(x) + hU ′(x) + 1
2

h2U ′′(x) + 1
6

h3U (3)(x) + 1
24

h4U (4)(x),

where x, h ∈ R. This approximation holds for a power utility function
U ∶ (0,∞) → R, when x > 0 and x + h > 0. We can write

b′
tRt+1 = b′

tRe
t+1 + R0

t+1,

where R0
t+1 is the risk-free rate and

Re
t+1 = Rt+1 − R0

t+1

is the vector of the excess gross returns. We can choose also R0
t+1 = 1, so that

Re
t+1 is the net return instead of the excess return. When we take x = R0

t+1 and
h = b′

tRe
t+1, then we obtain the approximation

U
(
b′

tRt+1
)
≈ a0 + a1b′

tRe
t+1 +

a2

2
(
b′

tRe
t+1
)2 +

a3

6
(
b′

tRe
t+1
)3 +

a4

24
(
b′

tRe
t+1
)4
,

where a0 = U(R0
t+1), a1 = U ′(R0

t+1), a2 = U ′′(R0
t+1), a3 = U (3)(R0

t+1), and a4 =
U (4)(R0

t+1).
9 As a special case, when U(x) = log(x), then the fourth-order Taylor

expansion leads to the approximation

log
(
b′

tRt+1
)
≈ b′

tRe
t+1 −

1
2
(
b′

tRe
t+1
)2 + 1

3
(
b′

tRe
t+1
)3 − 1

4
(
b′

tRe
t+1
)4
.

Figure 9.8 shows the first four Taylor approximations to the logarithmic
utility. The black curve shows log-utility x → log x, the blue curve shows

9 For example, when U is a power utility function with 𝛾 ≠ 1 and R0
t+1 = 1, then a0 = U(1) =

1∕(1 − 𝛾), a1 = U ′(1) = 1, a2 = U ′′(1) = −𝛾 , a3 = U (3)(1) = 𝛾(𝛾 + 1), and a4 = U (4)(1) =
−𝛾(𝛾 + 1)(𝛾 + 2).
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Figure 9.8 Approximation of logarithmic
utility. The black curve shows log-utility
x → log x, the blue curve shows the linear
approximation, the red curve shows the
quadratic approximation, the green curve
shows the third-order approximation, and
the yellow curve shows the fourth-order
approximation.

the linear function x → x − 1, the red curve shows the quadratic function
x → x − 1 − (x − 1)2∕2, the green curve shows the third-order polyno-
mial x → x − 1 − (x − 1)2∕2 + (x − 1)3∕3, and the yellow curve shows the
fourth-order polynomial x → x − 1 − (x − 1)2∕2 + (x − 1)3∕3 − (x − 1)4∕4.
The approximations are accurate when the gross return is close to one. A gross
return close to one means that the asset price has not changed much. However,
when the gross return is close to zero or much larger than one, then even
the fourth-order approximation is not accurate. Thus, using the logarithmic
utility in portfolio selection leads to taking large fluctuations into account, and
in particular, the logarithmic utility is better than any finite approximation
when we consider portfolios with extreme tail risk: the logarithmic utility
approaches −∞ when the gross return approaches zero.

9.2.2.4 Risk Aversion
We can classify utility functions using measures of risk aversion.

CARA Utility Functions The coefficient of absolute risk aversion of utility function
U at point x is defined as

−U ′′(x)
U ′(x)

. (9.30)

Utility functions with constant absolute risk aversion are called CARA util-
ity functions. For example, the exponential utility functions, defined in (9.29),
are CARA utility functions and have the coefficient of absolute risk aversion
𝛼, whereas the power utility functions, defined in (9.28), are not CARA util-
ity functions because they have the coefficient of absolute risk aversion 𝛾x−1.
When an investor whose wealth is 100 is willing to risk 50, and after reaching
wealth 1000, is still willing to risk 50, then the investor has constant absolute
risk aversion. Most investors have decreasing absolute risk aversion (so that
after reaching wealth 1000, the investor is willing to risk more than 50).
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CRRA Utility Functions The coefficient of relative risk aversion of utility function
U at point x is defined as

−x U ′′(x)
U ′(x)

. (9.31)

Utility functions with constant relative risk aversion are called CRRA utility
functions. For example, the power utility functions are CRRA utility functions
and have the coefficient of relative risk aversion 𝛾 , whereas the exponential util-
ity functions are not CRRA utility functions because they have the coefficient
of relative risk aversion 𝛼x. When an investor whose wealth is 100 is willing to
risk 50, and after reaching wealth 1000, is willing to risk 500, then the investor
has constant relative risk aversion.

Expected Utility and Portfolio Weights It is helpful to plot a curve that shows
estimates of the expected utility for a scale of risk aversion parameters. The
expected utility curve is the function

𝛾 → Eu
𝛾
(Rt+1), 𝛾 > 0, (9.32)

where

u
𝛾
(x) =

U
𝛾
(x) − U

𝛾
(1)

U
𝛾
(e) − U

𝛾
(1)
,

and U
𝛾

is the power utility function, defined in (9.28). Since the expected value
is unknown, we have to estimate it using a sample average of historical values.

In the case of two basis assets, it is helpful to look at functions

b → Eu
𝛾

(
(1 − b)R1

t+1 + bR2
t+1
)

(9.33)

for various values of b, where R1
t+1 and R2

t+1 are the gross returns of the two basis
assets.

Figure 9.9 considers daily S&P 500 and Nasdaq-100 data, described in
Section 2.4.2. Panel (a) shows functions (9.32) for S&P 500 (black) and
Nasdaq-100 (red). We see that Nasdaq-100 is better for a risky investor but
S&P 500 is better for a risk averse investor. Panel (b) shows functions (9.33)
for 𝛾 = 1 (blue) and 𝛾 = 2 (green). Here R1

t+1 is the return of S&P 500 and R2
t+1

is the return of Nasdaq-100. The optimal value of weight b is indicated by
vertical lines. We see that when risk aversion 𝛾 increases, then the weight b of
Nasdaq-100 decreases.

Figure 9.10 considers monthly S&P 500 data, described in Section 2.4.3.
Panel (a) shows functions

𝛾 → Eu
𝛾
((1 − b) + bRt+1), 𝛾 > 0, (9.34)

where Rt+1 is the gross return of S&P 500. Thus, (1 − b) + bRt+1 is the gross
return of a portfolio whose components are the risk-free rate with gross return
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Figure 9.9 Portfolio selection: S&P 500 and Nasdaq-100. (a) Functions (9.32) for S&P 500 (black)
and Nasdaq-100 (red); (b) functions (9.33) for 𝛾 = 1 (blue) and 𝛾 = 2 (green).
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Figure 9.10 Portfolio selection: Risk-free rate and S&P 500. (a) Functions (9.34) for b = −1
(black), b = 0 (red), b = 1 (blue), and b = 2 (green); (b) functions (9.35) for 𝛾 = 1 (purple) and
𝛾 = 2 (dark green).

one and the S&P 500. We show cases b = −1 (black), b = 0 (red), b = 1 (blue),
and b = 2 (green). Panel (b) shows functions

b → Eu
𝛾
((1 − b) + bRt+1), b ∈ R (9.35)

for 𝛾 = 1 (purple) and 𝛾 = 2 (dark green). The optimal value of weight b is indi-
cated by vertical lines.



9.2 Comparison of Return and Wealth Distributions 325

9.2.3 Stochastic Dominance

Sometimes a return distribution stochastically dominates another return distri-
bution, so that it is preferred regardless of the chosen utility function. However,
stochastic dominance occurs rarely in practice.

The distribution of X ∈ R stochastically dominates the distribution of
Y ∈ R, if

FX(t) ≤ FY (t) (9.36)

for all t ∈ R, where FX(t) = P(X ≤ t) and FY (t) ≤ P(Y ≤ t) are the distribution
functions. Inequality (9.36) is equivalent to

P(X ≥ t) ≥ P(Y ≥ t) (9.37)

for all t ∈ R.
Stochastic dominance is also called first-order stochastic dominance to

distinguish it from second-order stochastic dominance. The distribution of
X ∈ R second-order dominates stochastically the distribution of Y ∈ R, if

∫

x

−∞
FX(t) dt ≤

∫

x

−∞
FY (t) dt

for all x ∈ R.
Figure 9.11 shows an example of first-order stochastic dominance. Panel (a)

shows the densities of two distributions, and the distribution of the black den-
sity stochastically dominates the distribution of the red density. The densities
have the same shape but the black density is located to the right of the red
density. Panel (b) shows the distribution functions.
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Figure 9.11 First-order stochastic dominance. The black distribution dominates the red distri-
bution. (a) Density functions; (b) distribution functions.
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Figure 9.12 Second-order stochastic dominance. The black distribution dominates the
red distribution. (a) Density functions; (b) distribution functions; (c) functions GX (x) =
∫

x
−∞ FX (t) dt, GY (x) = ∫

x
−∞ FY (t) dt, where FX and FY are the distribution functions.

Figure 3.8(b) shows two empirical distribution functions, which are such that
neither of the distribution functions dominates the other.

Figure 9.12 shows an example of second-order stochastic dominance. The
distribution of the black density dominates the distribution of the red density.
Panel (a) shows the densities of the two distributions, panel (b) shows the dis-
tribution functions, and panel (c) shows the functions GX(x) = ∫

x
−∞ FX(t) dt,

GY (x) = ∫
x
−∞ FY (t) dt, where FX and FY are the distribution functions. The black

and the red densities have the same location, but the red distribution has a
larger variance than the black distribution.

When a return distribution second-order dominates stochastically another
return distribution, then it is preferred, regardless of risk aversion. In fact, it
holds that the distribution of X second-order dominates the distribution of Y
if and only if

EU(X) ≥ EU(Y )

for every increasing and concave utility function U ∶ R → R, which is two times
continuously differentiable. First-order stochastic dominance occurs if and only
if the dominant distribution has a higher expected utility for all increasing and
continuously differentiable utility functions.

9.3 Multiperiod Portfolio Selection

In the multiperiod model the wealth of the portfolio is obtained from (9.10) as

WT = W0

T−1∏
t=0

b̄t ⋅ R̄t+1, (9.38)
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where W0 > 0 is the initial wealth at time 0, b̄t ∈ Rd+1 is the vector of the portfo-
lio weights, and R̄t+1 ∈ Rd+1 is the vector of gross returns of the d + 1 portfolio
components. We write

b̄t =
(
b0

t ,… , bd
t
)
, R̄t+1 =

(
R0

t+1,… ,Rd
t+1
)
,

where Ri
t+1 = Si

t+1∕Si
t , i = 0,… , d. The portfolio weights satisfy

d∑
i=0

bi
t = 1 ⇔ b̄t ⋅ 1d+1 = 1. (9.39)

Now b̄t ⋅ R̄t+1 = Wt+1∕Wt is the one period gross return. We can write

b̄t ⋅ R̄t+1 = R0
t+1 + bt ⋅

(
Rt+1 − R0

t+1
)
, (9.40)

bt ∈ Rd. In this way we do not have to worry about the restriction (9.39).
The wealth of the portfolio is obtained in additive form from (9.13) as

WT = S0
T VT , (9.41)

where

VT = V0 +
T−1∑
t=0

𝜉t+1 ⋅ (Xt+1 − Xt).

Here

Vt =
Wt

S0
t
, Xt =

St

S0
t
, St =

(
S1

t ,… , Sd
t
)
.

The vector 𝜉t+1 = (𝜉1
t+1,… , 𝜉

d
t+1) gives the numbers of risky assets in the port-

folio. Vector 𝜉t+1 ∈ Rd is unrestricted. Note that the time indexing is such that
𝜉t+1 and bt both describe the portfolio for the period [t, t + 1]. Note that we have
assumed in (9.41) that S0

t > 0 almost surely. This holds when S0 is a risk-free
investment.

The multiplicative way of writing the wealth presupposes a positive wealth,
whereas the additive way of writing the wealth allows for a nonpositive wealth.
The multiplicative way of writing the wealth is convenient for the power utility
functions, whereas the additive way of writing the wealth is convenient for the
exponential utility functions, because factoring the wealth as a product makes
the writing of the backward induction convenient.

At time t = 0 we want to find the portfolio vector b0 or 𝜉1 so that

E0U(WT ) (9.42)

is maximized, where the rebalancing of the portfolio will be made at times
1,… ,T − 1. The maximization of (9.42) is over the sequence of weights
b0,… , bT−1 or over the sequence of numbers 𝜉1,… , 𝜉T , although at time t = 0
we need to choose only b0 or 𝜉1.
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We can summarize the results in the following way:

1) For the logarithmic utility function the multiperiod portfolio selection
reduces to the one-period portfolio selection.

2) For the power utility functions (which include the logarithmic utility) and
for the exponential utility functions the optimal portfolio vector does not
depend on the initial wealth.

The power utility functions need a positive wealth as the argument, and they
can be applied when the wealth process is written in the product form. The
exponential utility functions can take a negative wealth as the argument, and
they lead to tractable dynamic programming when the wealth process is written
additively.

We describe first the one-period optimization in Section 9.3.1, and then
the multiperiod optimization in Section 9.3.2. The understanding of the
multiperiod optimization is easier when it is contrasted with the single period
optimization. We describe first the case of the logarithmic utility function.
After that we describe the solution for the power utility functions. Third, we
describe the case of the exponential utility functions. In the multiperiod model
we give also the formulas for arbitrary utility functions.

9.3.1 One-Period Optimization

We want to maximize at time 0 the expected utility of the wealth at time 1:

E0U(W1).

We discuss the cases where U is the logarithmic utility function, a power utility
function, and an exponential utility function.

9.3.1.1 The Logarithmic Utility Function
The logarithmic utility function is U(x) = log x. We have

U(W0b̄0 ⋅ R̄1) = log W0 + log(b̄0 ⋅ R̄1).

Thus, we need to maximize

E0 log(b̄0 ⋅ R̄1)

over b̄0, under restriction b̄0 ⋅ 1d+1 = 1. Thus, the optimal b̄0 does not depend
on the initial wealth W0.

The maximization can be done unrestricted when we apply (9.40), so that we
need to maximize

E0 log
[
R0

1 + b0 ⋅
(
R1 − R0

1
)]

over b0 ∈ Rd.
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9.3.1.2 The Power Utility Functions
The power utility functions are U(x) = x1−𝛾∕(1 − 𝛾) for x > 0, where 𝛾 > 0,
𝛾 ≠ 1. We have

U(W0b̄0 ⋅ R̄1) =
W 1−𝛾

0

1 − 𝛾
(b̄0 ⋅ R̄1)1−𝛾

.

Thus, we need to maximize

E0
[
(b̄0 ⋅ R̄1)1−𝛾] (9.43)

over b̄0, under restriction b̄0 ⋅ 1d+1 = 1. Thus, the optimal b̄0 does not depend
on the initial wealth W0.

The maximization can be done unrestricted when we apply (9.40), so that we
need to maximize

E0

[(
R0

1 + b0 ⋅
(
R1 − R0

1
))1−𝛾

]
over b0 ∈ Rd.

9.3.1.3 The Exponential Utility Functions
The exponential utility functions are U(x) = 1 − e−𝛼x for x ∈ R, where 𝛼 > 0.
The maximization of E0U(W1) is equivalent to the minimization of

E0 exp{−𝛼W1}.

We apply the additive form in (9.41) to obtain

exp
{
−𝛼W1

}
= exp

{
−𝛼S0

1(V0 + 𝜉1 ⋅ (X1 − X0))
}

= exp
{
−𝛼S0

1V0
}

exp
{
−𝛼S0

1𝜉1 ⋅ (X1 − X0)
}
.

Thus, we need to minimize

E0 exp
{
−𝛼S0

1𝜉1 ⋅ (X1 − X0)
}

over 𝜉1 ∈ Rd. This is unrestricted minimization. The optimal 𝜉1 does not
depend on the initial wealth W0.

9.3.2 The Multiperiod Optimization

We want to maximize at time 0 the expected utility of the wealth at time T :

E0U(WT ).

We discuss the cases where U is the logarithmic utility function, a power utility
function, an exponential utility function, and a general utility function.
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9.3.2.1 The Logarithmic Utility Function
For the logarithmic utility U(x) = log x we have from (9.38) that

log(WT ) = log(W0) +
T−1∑
t=0

log(b̄t ⋅ R̄t+1),

where

b̄t ⋅ 1d+1 = 1.

We want to find portfolio vector b̄0 maximizing

E0 log(WT ),

under restriction b̄0 ⋅ 1d+1 = 1. We see that for the logarithmic utility the opti-
mal portfolio vector at time t = 0 is the maximizer over b̄0 of the single period
expected logarithmic return

E0 log(b̄0 ⋅ R̄1),

when the maximization is done under restriction b̄0 ⋅ 1d+1 = 1. In particular,
the initial wealth W0 does not affect the solution.

We can use (9.40) to note that the maximization can be done without the
restriction: we need to maximize

E0 log
[
R0

1 + b0 ⋅
(
R1 − R0

1
)]

over b0 ∈ Rd.
We have shown that in the case of the logarithmic utility the multiperiod

optimization reduces to the single period optimization, since b0 can be found
by ignoring the time points t = 1,… ,T − 1.

9.3.2.2 The Power Utility Functions
Let U ∶ (0,∞) → R be the power utility function

U(x) = x1−𝛾

1 − 𝛾
,

where 𝛾 > 0 is the risk aversion parameter. For 𝛾 = 1 we define U(x) = log x.
For 𝛾 ≠ 1 we get from (9.38) that

U(WT ) =
W 1−𝛾

0

1 − 𝛾

T−1∏
t=0

(b̄t ⋅ R̄t+1)1−𝛾
.

Thus, for 𝛾 ≠ 1 we need to maximize

E0

T−1∏
t=0

u(b̄t ⋅ R̄t+1) (9.44)
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under restrictions

b̄t ⋅ 1d+1 = 1, t = 0,… ,T − 1,

where

u(x) = x1−𝛾
.

Thus, the optimal portfolio vector b̄t does not depend on the initial wealth W0.
Using (9.40) we see that we can maximize

E0

T−1∏
t=0

u
(
R0

t+1 + bt ⋅
(
Rt+1 − R0

t
))

over bt ∈ Rd, t = 0,… ,T − 1.

The Case T = 2 Let us consider the maximization of (9.44) for the case T = 2.
We present first the case T = 2 because the structure of the argument is visible
already in the two period case but this case is notationally more transparent
than the general case T ≥ 2. Define function

F(b̄0) = max
b̄1∈B

E0
[
u
(
b̄0 ⋅ R̄1

)
u
(
b̄1 ⋅ R̄2

)]
,

where

B =
{

b̄ ∈ Rd+1 ∶ b̄ ⋅ 1d+1 = 1
}
.

The optimal portfolio vector at time t = 0 is the maximizer of function F : Our
purpose is to find

argmax
b̄0∈B

F(b̄0).

We can write, using the law of the iterated expectations,

E0
[
u
(
b̄0 ⋅ R̄1

)
u
(
b̄1 ⋅ R̄2

)]
= E0E1

[
u
(
b̄0 ⋅ R̄1

)
u
(
b̄1 ⋅ R̄2

)]
= E0

[
u
(
b̄0 ⋅ R̄1

)
E1u

(
b̄1 ⋅ R̄2

)]
.

Thus,

F(b̄0) = E0

[
u(b̄0 ⋅ R̄1)max

b̄1∈B
E1u(b̄1 ⋅ R̄2)

]
.

Comparing to (9.43) we see the difference between the one- and two-period
portfolio selections: In the two-period case, we have the additional multiplier
maxb̄1∈BE1u(b̄1 ⋅ R̄2).

We can use (9.40) to note that the maximization can be done without the
restrictions. Write

b̄0 ⋅ R̄1 = R0
1 + b0 ⋅

(
R1 − R0

1
)
, b̄1 ⋅ R̄2 = R0

2 + b1 ⋅
(
R2 − R0

2
)
,

where b0 ∈ Rd and b1 ∈ Rd are unrestricted.
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The Case T ≥ 2 Let us consider the maximization of (9.44). Define

F(b̄0) = max
(b̄1,…,b̄T−1)∈C

E0

T−1∏
t=0

u(b̄t ⋅ R̄t+1),

where , u(x) = x1−𝛾 ,

C = BT−1
, B =

{
b̄ ∈ Rd+1 ∶ b̄ ⋅ 1d+1 = 1

}
.

Here BT−1 means the T − 1 fold product B × · · · × B. The optimal portfolio vec-
tor a time t = 0 is the maximizer of function F : Our purpose is to find

b̂0 = argmax
b̄0∈B

F(b̄0).

We give a recursive formula for b̂0.

1) Denote

FT−1(b̄T−1) = ET−1u(b̄T−1 ⋅ R̄T )

and let b̂T−1 be the maximizer of FT−1(b̄T−1) over b̄T−1 ∈ B.
2) For t = T − 2,… , 0, define

Ft(b̄t) = Et

[
u(b̄t ⋅ R̄t+1)Ft+1(b̂t+1)

]
and let b̂t be the maximizer of Ft(b̄t) over b̄t ∈ B.

We can use (9.40) to note that the maximization can be done without the
restrictions: we can define the functions to be maximized as

FT−1(bT−1) = ET−1u
(
R0

T + bT ⋅
(
RT − R0

T
))

and

Ft(bt) = Et

[
U
(
R0

t+1 + bt ⋅
(
Rt+1 − R0

t+1
))

Ft+1(b̂t+1)
]
,

t = T − 2,… , 0. The maximization is done over bT−1 ∈ Rd in the one before the
previous function, and over bt ∈ Rd in the previous function.

9.3.2.3 The Exponential Utility Functions
Let U ∶ (0,∞) → R be the exponential utility function

U(x) = 1 − exp{−𝛼x},

where 𝛼 > 0 is the risk aversion parameter. Maximizing EU(WT ) is equivalent
to minimizing E exp{−𝛼WT}. We get from (9.41) that

exp{−𝛼WT} = exp
{
−𝛼S0

T V0
} T−1∏

t=0
exp

{
−𝛼S0

T𝜉t+1 ⋅ (Xt+1 − Xt)
}
.
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Thus, we need to minimize

E0

T−1∏
t=0

u(𝜉t+1 ⋅ (Xt+1 − Xt))

over 𝜉1,… , 𝜉T ∈ Rd, where
u(x) = exp

{
−𝛼S0

T
}
.

Thus, the optimal portfolio vector 𝜉1 does not depend on the initial wealth W0.
Define

F(𝜉1) = min
𝜉2,…,𝜉T∈Rd

E0

T−1∏
t=0

u(𝜉t+1 ⋅ (Xt+1 − Xt)).

The optimal portfolio vector a time t = 0 is the minimizer of function F : Our
purpose is to find

𝜉1 = argmin
𝜉1∈Rd

F(𝜉1).

We give a recursive formula for 𝜉1.
1) Denote

FT−1(𝜉T ) = ET−1u(𝜉T ⋅ (XT − XT−1))

and let 𝜉T be the minimizer of FT−1(𝜉T ) over 𝜉T ∈ Rd.
2) For t = T − 2,… , 0, define

Ft(𝜉t+1) = Et
[
u(𝜉t+1 ⋅ (Xt+1 − Xt))Ft+1(𝜉t+2)

]
and let 𝜉t+1 be the minimizer of Ft(𝜉t+1) over 𝜉t+1 ∈ Rd.

9.3.2.4 General Utility Functions
When the utility function is not the logarithmic function, of a power form, or of
an exponential form, then the maximizer of the expected wealth can depend on
the initial wealth. Also, for the general utility functions we do not obtain such
factorization as for the logarithmic and power utility functions (when the prod-
uct form is used) or such factorization as for the exponential utility functions
(when the additive form is used). However, we can obtain recursive formulas
for the maximization of the expected wealth.

The Product Form The optimal portfolio vector at time t = 0 is defined as the
maximizer of the expected utility EU(WT ). Thus, the optimal portfolio vector
maximizes function F , defined as

F(b̄0) = max
(b̄1,…,b̄T−1)∈C

E0U

(
W0

T−1∏
t=0

b̄t ⋅ R̄t+1

)
,
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where

C = BT−1
, B = {b̄ ∈ Rd+1 ∶ b̄ ⋅ 1d+1}.

We can define the optimal portfolio vector recursively as follows:

1) Define

FT−1(b̄0,… , b̄T−1) = ET−1U

(
W0

T−1∏
t=0

b̄t ⋅ R̄t+1

)

and let b̂T−1 = b̂T−1(b̄0,… , b̄T−2) be the maximizer of FT−1(b̄0,… , b̄T−1) over
b̄T−1 ∈ B.

2) For t = T − 2,… , 0, define

Ft(b̄0,… , b̄t) = EtU

(
W0

t∏
i=0

b̄i ⋅ R̄i+1

T−1∏
i=t+1

b̂i ⋅ R̄i+1

)
,

where

b̂i = b̂i(b̄0,… , b̄t , b̂t+1,… , b̂i−1).

Let b̂t = b̂t(b̄0,… , b̄t−1) be the maximizer of Ft(b̄0,… , b̄t) over b̄t ∈ B.

This gives a recursive definition of b̂0.10

The Additive Form The optimal portfolio vector at time t = 0 is defined as the
maximizer of the expected utility EU(WT ). Thus, the optimal portfolio vector
maximizes function F , defined as

F(𝜉1) = max
𝜉2,…,𝜉T−1∈Rd

E0U

(
W0 + BT

T−1∑
t=0

𝜉t+1 ⋅ (Xt+1 − Xt)

)
.

10 For example, in the two-period case

F(bt) = max
bt+1

EtU
(
Wt ⋅ b′

tRt+1 ⋅ b′
t+1Rt+2

)
.

We can write, using the law of the iterated expectations,

EtU
(
Wt ⋅ b′

tRt+1 ⋅ b′
t+1Rt+2

)
= EtEt+1U

(
Wt ⋅ b′

tRt+1 ⋅ b′
t+1Rt+2

)
.

Thus, in the two-period case,

F(bt) = Et

[
max
bt+1

Et+1U
(
Wt ⋅ b′

tRt+1 ⋅ b′
t+1Rt+2

)]
.
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We can define the optimal portfolio vector recursively as follows:

1) Define

FT−1(𝜉1,… , 𝜉T ) = ET−1U

(
W0 + BT

T−1∑
t=0

𝜉t+1 ⋅ (Xt+1 − Xt)

)

and let 𝜉T = 𝜉T (𝜉1,… , 𝜉T−1) be the maximizer of FT−1(𝜉1,… , 𝜉T ) over
𝜉T ∈ Rd.

2) For t = T − 2,… , 0, define

Ft(𝜉1,… , 𝜉t) = EtU

(
W0 + BT

t∑
i=0
𝜉i+1 ⋅ (Xi+1 − Xi)

+
T−1∑

i=t+1
𝜉i+1 ⋅ (Xi+1 − Xi)

)
,

where

𝜉i+1 = 𝜉i+1(𝜉1,… , 𝜉t+1, 𝜉t+2,… , 𝜉i).

Let 𝜉t+1 = 𝜉t+1(𝜉1,… , 𝜉t) be the maximizer of Ft(𝜉1,… , 𝜉t+1) over 𝜉t+1 ∈ Rd.

This gives a recursive definition of 𝜉1.





337

10

Performance Measurement

When the performance of a fund is measured, there is a temptation to look only
at the past return on the investment. However, it is important to measure the
performance by taking the risk into account. An investor can increase both the
expected return and the risk by leveraging, so that it is of interest to find the
inherent quality of the fund, and leave the choice of the leveraging factor to the
investor. The Sharpe ratio is defined as the ratio of the expected excess return to
the standard deviation of the excess return. This is an example of a performance
measure that penalizes the expected return with the risk.

The measures of performance are usually single numbers, but we cannot hope
to completely reduce the characteristics of a fund into a single number. For
example, the Sharpe ratio is a single number, but we obtain more information
by giving separately the expected excess return and the standard deviation of
the excess return, instead of giving only their ratio.

Section 9.2 discussed the ranking of return distributions from the point of
view of portfolio selection. This discussion is relevant for the performance
measurement. For example, in portfolio selection we could be interested in the
conditional expected utility

E[U(Rt+1) | Xt = x], (10.1)

where U is a utility function, Rt+1 is a return, and the expectation is taken con-
ditionally on the state variable Xt having value x. If we would have information
about the conditional expected utility of all portfolios, then we could choose
an optimal portfolio. When Rt+1 is the return of a fund, then the conditional
expected utility characterizes the properties of the fund. However, since the
conditional expected utility is a function of x, this is a very complicated way to
describe the properties of a fund. We can summarize the performance using a
single number, and the unconditional expected utility

EU(Rt+1)

Nonparametric Finance, First Edition. Jussi Klemelä.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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is a single number summarizing the performance. The unconditional expected
utility averages over all states x.

Has the past performance of a fund been due to a luck or to a skill? This
question could be answered by testing the null hypothesis, which states that the
long-time performance of a fund is equal to the performance of a market index.
Testing is related to the construction of confidence bands to a performance
measure. Hypothesis testing and confidence bands can be used to try to answer
the question whether the better performance of a fund, as compared to the
performance of another fund, is due to a luck or skill. We address the issue
of hypothesis testing and confidence bands only when the Sharpe ratio is the
performance measure. We note that the confidence bands tend to be quite wide.

Performance measures are computed using a time period [t0, t1] of histori-
cal returns. One has to address the issue whether the choice of the time period
of historical returns affects the performance measures. This question is con-
sidered in Section 10.5, where we provide tools to simultaneously look at the
all possible time intervals contained in [t0, t1]. These tools are an alternative to
looking at the conditional expectation in (10.1). A problem with the conditional
expectations in (10.1) is that we have to choose the conditioning state vari-
ables Xt , which is a difficult task, as there is a huge number of potentially useful
conditioning variables. When we look at the performance of a fund over all
subintervals of [t0, t1], then we get clues about which conditioning variables are
relevant for the performance of the fund. For example, we could find answers
to the questions: Does this fund perform well only in the bull markets? Does
this fund perform well only when the inflation is high?

Section 10.1 considers Sharpe ratio. Section 10.2 considers certainty
equivalent. Section 10.3 discusses drawdown. Section 10.4 discusses alpha.
Section 10.5 presents graphical tools to help the performance measurement.

10.1 The Sharpe Ratio

First, we give the definition of the Sharpe ratio. Then, we derive confidence
intervals for the Sharpe ratio and test the equality of two Sharpe ratios. Finally,
we give examples of some other measures of risk-adjusted return.

10.1.1 Definition of the Sharpe Ratio

The Sharpe ratio of a financial asset is defined as the expected excess return
divided by the standard deviation of the excess return:1

Sh =
E
(
Rt+1 − R0

t+1
)

sd
(
Rt+1 − R0

t+1
) , (10.2)

1 The returns of the risky asset and the risk-free returns can be either gross returns or net returns.
The gross return is Rt+1 = St+1∕St and the net return is Rt+1 − 1, but the subtractions in the defini-
tion of the Sharpe ratio cancel the term −1. Sometimes logarithmic returns are used.
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where Rt+1 is the return of the asset, and R0
t+1 is the return of a risk-free

investment.
Note that we have not defined the Sharpe ratio as Et(Rt+1 − R0

t+1)∕sdt(Rt+1 −
R0

t+1), where the conditional expectation and the conditional standard devi-
ation are used. Under this definition, we could write the Sharpe ratio as
(EtRt+1 − R0

t+1)∕sdt(Rt+1), since the risk-free rate for the period t → t + 1 is not
a random variable at time t, and thus it can be dropped from the conditional
standard deviation. Instead, we have defined the Sharpe ratio in (10.2) using
the unconditional expectation and the unconditional standard deviation, so
that the risk-free rate is a random variable.

The return period can be, for example, 1 day, 1 month, or 1 year. The annual-
ized Sharpe ratio is defined as

(Δt)−1∕2 E
(
Rt+1 − R0

t+1
)

sd
(
Rt+1 − R0

t+1
) ,

where Δt is the return horizon: Δt = 1∕250 for daily returns, Δt = 1∕12 for
monthly returns, and so on.2 The Sharpe ratio was defined by Sharpe (1966).

An estimator of the Sharpe ratio is obtained from historical returns R1,… ,RT
and from historical risk-free rates R0

1,… ,R0
T by replacing the population mean

and the population standard deviation by the sample mean and the sample stan-
dard deviation:

Ŝh = X̄
s
, (10.3)

where

X̄ = 1
T

T∑
t=1

Xt , s =

(
1
T

T∑
t=1

X2
t − X̄2

)1∕2

,

where Xt = Rt − R0
t is the excess return.

We can increase as much as we like the expected return of a given asset
by leveraging. However, leveraging increases also the risk. The Sharpe ratio is
invariant with respect to leveraging. Consider an asset with the expected excess
return 𝜇 and the variance of the excess return 𝜎2

> 0:

E
(
Rt+1 − R0

t+1
)
= 𝜇, Var

(
Rt+1 − R0

t+1
)
= 𝜎

2
,

where Rt+1 is the time t + 1 return of the risky asset and R0
t+1 is the risk-free rate.

Consider a portfolio of the risky asset and the risk-free rate, where the weight of
the original asset is b and the weight of the risk-free asset is 1 − b, where b ∈ R.
The return of the portfolio is

Rp
t+1 = bRt+1 + (1 − b)R0

t+1.

2 The annualized mean is (Δt)−1 × E(Rt+1 − R0
t+1) and the annualized standard deviation is

(Δt)−1∕2 sd(Rt+1 − R0
t+1). The ratio of the annualized mean and the annualized standard deviation

gives the annualized Sharpe ratio.
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The excess return of the portfolio is

Rp
t+1 − R0

t+1 = bRt+1 + (1 − b)R0
t+1 − R0

t+1 = b
(
Rt+1 − R0

t+1
)
.

Thus, E(Rp
t+1 − R0

t+1) = b𝜇 and Var(Rp
t+1 − R0

t+1) = b2
𝜎

2. Thus,

E
(
Rp

t+1 − R0
t+1

)
sd

(
Rp

t+1 − R0
t+1

) =
{

sign(b)𝜇∕𝜎, b ≠ 0,
0, b = 0.

10.1.2 Confidence Intervals for the Sharpe Ratio

Assume we observe historical excess returns Xt = Rt − R0
t for t = 1,… ,T . The

estimator (10.3) of the Sharpe ratio, when multiplied by the annualizing factor,
can be written as

Ŝh = h(ST ),

where

h(x1, x2) = (Δt)−1∕2 x1(
x2 − x2

1
)1∕2 ,

ST =

(
X̄,T−1

T∑
t=1

X2
t

)′

, (10.4)

and X̄ = T−1 ∑T
t=1 Xt . Let us assume that

T1∕2(ST − 𝜃)
d
−−→N(0,Ψ), (10.5)

as T → ∞, where 𝜃 = (EX,EX2)′ and Ψ is a 2 × 2 covariance matrix. The cen-
tral limit theorem (10.5) holds at least when the observed excess returns are
independent and identically distributed, and the fourth moment of the excess
returns is finite. Independence does not hold for financial returns, but the cen-
tral limit theorem holds when the returns are weakly dependent, as discussed
in Section 3.5.1. An application of the delta-method gives3

T1∕2(h(ST ) − h(𝜃))
d
−−→N(0,∇h(𝜃)′Ψ∇h(𝜃)),

as T → ∞, where ∇h(x) = (𝜕h(x)∕𝜕x1, 𝜕h(x)∕𝜕x2)′ is the gradient, and h(𝜃) is
the Sharpe ratio. We have that

∇h(x) = (Δt)−1∕2

(
x2(

x2 − x2
1
)3∕2 ,−

1
2

x1(
x2 − x2

1
)3∕2

)
.

3 The multivariate delta-method for statistics Tn ∈ Rd assumes that (1) function h ∶ Rd → R has

a gradient ∇h that is continuous at 𝜇 ∈ Rd , (2) statistics Tn satisfies n1∕2(Tn − 𝜇)
d
−−→N(0,Σ), as

n → ∞. Then, n1∕2(h(Tn) − h(𝜇))
d
−−→N(0,∇h(𝜇)′Σ∇h(𝜇)) when n → ∞.



10.1 The Sharpe Ratio 341

The boundaries of the confidence interval for the Sharpe ratio Sh = h(𝜃) with
the confidence level 0 < 𝛼 < 1 are

Ŝh ± z1−𝛼∕2T−1∕2
𝜎̂,

where z1−𝛼∕2 is the 1 − 𝛼∕2-quantile of the standard normal distribution,

𝜎̂ =
√

∇h(ST )′Ψ̂∇h(ST ), (10.6)

and Ψ̂ is an estimator of Ψ. Indeed, P(|Sh − Ŝh| ≤ z1−𝛼∕2T−1∕2
𝜎̂) ≈ P(|Z| ≤

z1−𝛼∕2) = 1 − 𝛼, where Z ∼ N(0, 1).

10.1.2.1 Independent Returns
The central limit theorem (10.5) holds when the observed excess returns are
independent and identically distributed, and the fourth moment of the excess
returns is finite. In this case the asymptotic covariance matrix is

Ψ =
[

Var(X) Cov(X,X2)
Cov(X,X2) Var(X2)

]
,

and estimator Ψ̂ is obtained by using the sample variances and the sample
covariance. We can write

Ψ̂ = T−1
T∑

t=1
(Zt − Z̄)(Zt − Z̄)′, (10.7)

where Zt = (Xt,X2
t )′ and Z̄ = ST is defined in (10.4).

10.1.2.2 Dependent Returns
A central limit theorem holds when the dependence is weak. Let (Zt)t∈Z be a
vector time series, where Zt ∈ Rd. A central limit theorem states that

T−1∕2
T∑

t=1
(Zt − EZt)

d
−−→N(0,Σ), (10.8)

where

Σ =
∞∑

j=−∞
Γ( j) = Γ(0) +

∞∑
j=1

(Γ( j) + Γ( j)′),

and the autocovariance matrix Γ( j) is defined as

Γ( j) = Cov(Zt,Zt+j).

Note that we used the property Γ( j) = Γ(−j)′. Weak dependence can be defined
in terms of mixing coefficients.4

4 If the time series (a′Zt)t∈Z satisfies the conditions for the univariate central limit theorem for all
a ∈ Rd , then the multivariate central limit theorem holds.
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To estimate Σ in (10.8) we use

Σ̂ = Γ̂(0) +
T−1∑
j=1
𝑤( j)(Γ̂( j) + Γ̂( j)′), (10.9)

where

Γ̂( j) = 1
T

T−j∑
t=1

(Zt − Z̄)(Zt+j − Z̄)′,

for j = 0,… ,T − 1, and the weights are defined as

𝑤( j) = K( j∕h), (10.10)

where K ∶ [0,∞) → [0, 1] is a kernel function satisfying K(0) = 1 and |K(x)| ≤ 1
for all x > 0. We get the estimator (10.7) by choosing K(x) = I[0,1)(x) and h = 1.
We get the estimator

Ψ̂ = 1
T

T∑
t=1

T∑
s=1

(Zt − Z̄)(Zs − Z̄)′,

by choosing K(x) = I[0,1)(x) and h = T . A further example is K(x) = max{1 −
x, 0} and 1 ≤ h ≤ T . The idea of using weights in asymptotic covariance esti-
mation can be found in Newey and West (1987).

10.1.2.3 Confidence Intervals for the S&P 500 Sharpe Ratio
Figure 10.1(a) shows the confidence intervals for the Sharpe ratio of S&P 500
index, when the coverage probability is in the range [0.01, 0.99]. The S&P
500 monthly data is described in Section 2.4.3. We have used the estimator
(10.7) of the asymptotic covariance matrix. The x-axis shows the range of
possible values of the Sharpe ratio and the y-axis shows the coverage probabil-
ities of the confidence intervals. The yellow vector shows the point estimate
of the Sharpe ratio and the red vectors show the confidence interval with
0.95 coverage.

Figure 10.1(b) studies how the confidence intervals change when we use the
autocorrelation robust estimator (10.9) of the asymptotic covariance matrix.
We show the ratios 𝜎̂1∕𝜎̂0 as a function of smoothing parameter, where 𝜎̂0
is defined by (10.6) and by the estimator (10.7) for the covariance matrix,
whereas 𝜎̂1 is defined by (10.6) and by the estimator (10.9) for the covariance
matrix. These ratios are equal to the ratios of the lengths of the corresponding
confidence intervals. We use the kernel function K = I[0,1) and try values
h = 1, 6, 11,… , 216. For h = 1 the ratio is equal to one, because the estimators
for the covariance matrix are equal. We see that taking the autocorrelation
into account makes the confidence bands eventually shorter, but for moderate
h the confidence intervals can be longer, too.
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Figure 10.1 Confidence intervals for the S&P 500 Sharpe ratio. (a) Confidence intervals corre-
sponding to a coverage probability in [0.01, 0.99]. The x-axis shows the range of possible
values of the Sharpe ratio and the y-axis shows the coverage probabilities of the confidence
intervals. The yellow vertical vector indicates the point estimate of the Sharpe ratio and the
red vertical vectors show the confidence interval with 0.95 coverage. (b) The ratios 𝜎̂1∕𝜎̂0 as a
function of smoothing parameter, where 𝜎̂0 is the estimator assuming zero autocorrelation,
whereas 𝜎̂1 assumes autocorrelation.

10.1.3 Testing the Sharpe Ratio

Let us have two portfolios a and b with excess returns X and Y . We want to test
the equality of the Sharpe ratios, so that the null hypothesis is

H0 ∶ Sha = Shb,

where Sha = (Δt)−1∕2EX∕sd(X) and Shb = (Δt)−1∕2EY∕sd(Y ). Portfolio a could
typically be an actively managed portfolio and portfolio b could be the bench-
mark index.

Let us have historical returns X1,… ,XT of portfolio a and historical returns
Y1,… ,YT of portfolio b. We use the test statistics

UT = Ŝha − Ŝhb,

where Ŝha = (Δt)−1∕2X̄∕(T−1 ∑T
t=1 X2

t − X̄2)1∕2 is the estimate of the Sharpe
ratio of portfolio a, and Ŝhb is the estimate of the Sharpe ratio of portfolio b.
The test statistics can be written as

UT = h(ST ),

where

h(x1, x2, x3, x4) = (Δt)−1∕2

(
x1(

x2 − x2
1
)1∕2 −

x3(
x4 − x2

3
)1∕2

)
,
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and

ST =

(
X̄,T−1

T∑
t=1

X2
t , Ȳ ,T−1

T∑
t=1

Y 2
t

)′

. (10.11)

Let us assume that

T1∕2(ST − 𝜃)
d
−−→N(0,Ψ), (10.12)

as T → ∞, where 𝜃 = (EX,EX2
,EY ,EY 2)′ and Ψ is a 4 × 4 covariance matrix.

An application of the delta-method gives

T1∕2(h(ST ) − h(𝜃))
d
−−→N(0,∇h(𝜃)′Ψ∇h(𝜃)),

as T → ∞, where ∇h(x) is the gradient, and h(𝜃) is the difference of the Sharpe
ratios. We have that

∇h(x) = (Δt)−1∕2

×

(
x2(

x2−x2
1
)3∕2 ,−

1
2

x1(
x2−x2

1
)3∕2 ,−

x4(
x4−x2

3
)3∕2 ,

1
2

x3(
x4−x2

3
)3∕2

)
.

When the alternative hypothesis is

H1 ∶ Sha > Shb,

then the null hypothesis is rejected for large values of the test statistics UT , and
thus the p-value for the one-sided test is

1 − Φ(T1∕2
𝜎̂
−1UT ),

where Φ is the distribution function of the standard normal distribution and

𝜎̂ =
√

∇h(ST )′Ψ̂∇h(ST ).

The estimator Ψ̂ of Ψ can be defined similarly as in (10.7) or (10.9). Indeed,
under the null hypothesis P(T1∕2

𝜎̂
−1U > u0) ≈ P(Z > u0) = 1 − Φ(u0), where

Z ∼ N(0, 1). When the alternative hypothesis is

H1 ∶ Sha ≠ Shb,

then the null hypothesis is rejected for large values of the absolute values
of test statistics UT , and thus the p-value for the two-sided test is 2(1 −
Φ(T1∕2

𝜎̂
−1|UT |)). Indeed, under the null hypothesis P(T1∕2

𝜎̂
−1|U| > u0) ≈

P(|Z| > u0) = 2(1 − Φ(u0)). These tests were defined in Ledoit and Wolf (2008).

10.1.3.1 A Test Under Normality
A test for the equality of Sharpe ratios is presented in Jobson and Korkie (1981),
with the corrected formula in Memmel (2003). They use the test statistics

UT = 𝜃
−1∕2T1∕2(𝜇̂a𝜎̂b − 𝜇̂b𝜎̂a),
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where 𝜇̂a is the sample mean calculated from X1,… ,XT , 𝜎̂a is the correspond-
ing sample standard deviation, 𝜇̂b and 𝜎̂b are the sample mean and standard
deviation calculated from Y1,… ,YT , and

𝜃 = 2𝜎̂2
a 𝜎̂

2
b − 2𝜎̂a𝜎̂b𝜎̂ab +

1
2
𝜇̂

2
a𝜎̂

2
b +

1
2
𝜇̂

2
b𝜎̂

2
a −

𝜇̂a𝜇̂b

𝜎̂a𝜎̂b
𝜎̂

2
ab,

where 𝜎̂ab is the sample covariance. Under the assumption that the returns
are normally distributed, the distribution of the test statistics under the
null hypothesis can be approximated by the standard normal distribution:
UT ∼ N(0, 1). For the one sided alternative, the null hypothesis is rejected for
the large values of the test statistics UT and thus the p-value for the one-sided
test is 1 − Φ(UT ), where Φ is the distribution function of the standard normal
distribution.

10.1.4 Other Measures of Risk-Adjusted Return

There exist several performance measures that resemble the Sharpe ratio. These
performance measures are defined by dividing a measure for the expected
return by a measure for the risk.

10.1.4.1 Information Ratio
The information ratio is defined as

E
(
Rt+1 − Rb

t+1
)

sd
(
Rt+1 − Rb

t+1
) ,

where Rt+1 is the return of the portfolio and Rb
t+1 is the return of a benchmark

portfolio. Thus, the information ratio is like the Sharpe ratio, but the risk-free
rate in the Sharpe ratio is replaced by the return of a benchmark.

The benchmark return is the return of an asset that is chosen as the bench-
mark for the asset manager. S&P 500 could be chosen as a benchmark for a
US equity fund and MSCI World could be chosen as a benchmark for a global
equity fund investing in developed markets. (MSCI is an acronym for Morgan
Stanley Capital International.)

10.1.4.2 Sortino ratio
The Sortino ratio is otherwise similar to Sharpe ratio but the standard deviation
is replaced by a lower partial moment, and the risk-free rate is replaced by a
constant r > 0. The Sortino ratio is defined as

ERt+1 − r
LPMr,2(Rt+1)

,

where the lower partial moment of order 2 is defined in (3.15) as

LPMr,2 = E(r − Rt+1)2
+.



346 10 Performance Measurement

Another version of the Sortino ratio is defined as
E
(
Rt+1 − R0

t+1
)

E
(
R0

t+1 − Rt+1
)2
+

,

where R0
t+1 is a risk-free rate.

10.1.4.3 Omega Ratio
The Omega ratio is the ratio of the upper partial moment of order one to the
lower partial moment of order one:

Ω(r) =
E(Rt+1 − r)+
E(r − Rt+1)+

,

where r is the chosen threshold (the target rate). We have defined the upper
and lower partial moments in (3.14) and (3.15). The definition was made in
Shadwick and Keating (2002). Note that the Omega ratio is written often using
the expressions

E(Rt+1 − r)+ =
∫

∞

r
(1 − F(y)) dy

and

E(r − Rt+1)+ =
∫

r

−∞
F(y) dy,

where F ∶ R → R is the distribution function of Rt+1. The sample Omega ratio is∑T
i=1 (Ri − r)+∑T
i=1 (r − Ri)+

.

Another version of the Omega ratio is defined as

E
(
Rt+1 − R0

t+1
)

E
(
R0

t+1 − Rt+1
)
+

,

where R0
t+1 is a risk-free rate. Note that E(Rt+1 − R0

t+1) and E(Rt+1 − R0
t+1)+ are

close to each other, because probability P(Rt+1 − R0
t+1 < 0) is small.

10.2 Certainty Equivalent

The certainty equivalent of a return distribution is defined as

U−1(EU(Rt)),

where Rt is a gross return and U ∶ (0,∞) → R is a utility function. The certainty
equivalent is the minimal risk-free rate that is preferred to the rate Rt .
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As an example, let us consider return Rt that takes only two values. The
distribution of the return is defined by

P(Rt = 1 + 𝛼) = p, P(Rt = 1 − 𝛼) = 1 − p

for some 0 < 𝛼 < 1 and for some probability 0 ≤ p ≤ 1. Then, for a concave
utility function U ∶ (0,∞) → R, using (9.27),

EU(Rt) = pU(1 + 𝛼) + (1 − p)U(1 − 𝛼)
<U[p(1 + 𝛼) + (1 − p)(1 − 𝛼)]
= U(1 + 𝛼(2p − 1)).

Thus, one would prefer always the certainly received amount 1 + 𝛼(2p − 1) to
the lottery. In particular, in the case p = 1∕2, one would prefer to preserve the
current wealth to the lottery with equal probabilities 1∕2 of winning and losing
the amount 𝛼. Thus, the number U−1(EU(Rt)) is called the certainty equivalent,
since this is the minimal risk-free rate which is preferred to the rate Rt. Similarly,
U−1(EU(Wt)) is the minimum amount of wealth, guaranteed preservation of
which allows the investor to decline the proposed game.

The certainty equivalent can be estimated using a time series of historical
returns R1,… ,RT . The sample certainty equivalent is

U−1

(
1
T

T∑
t=1

U(Rt)

)
. (10.13)

For example, when U(x) = x1−𝛾∕(1 − 𝛾) is the power utility, then U−1(x) =
[(1 − 𝛾)x]1∕(1−𝛾), where 𝛾 ≥ 0, 𝛾 ≠ 1. For 𝛾 = 1, U(x) = log x and U−1(x) =
exp(x).

10.3 Drawdown

Drawdown is a new time series constructed from the time series S0,… , ST of
asset prices. Define the return for the period u → t as

Ru,t =
St

Su
,

where 0 ≤ u ≤ t ≤ T . The drawdown at time t is

Dt = 1 − min
u=0,…,t

Ru,t ,

where t = 0,… ,T . Thus, drawdown at time t is one minus the minimum gross
return. We can write

Dt = 1 −
St

maxu=0,…,t Su
,
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Figure 10.2 Drawdown. (a) Drawdown time series Dt for S&P 500 (red) and 10-year bond
(blue); (b) time series 1 − Dt (red) and the cumulative wealth (orange) for S&P 500.

because
St

Su0

= Ru0,t,

where
u0 = argmin

u=0,…,t
Ru,t = argmax

u=0,…,t
Su.

Large values of drawdown indicate that the asset has a high level of riskiness,
just like a high value of variance indicates a high level of riskiness. Also, when
ru,t = St∕Su − 1 is the net return, then

Dt = − min
u=0,…,t

ru,t.

Sometimes drawdown is defined as maxu=0,…,t Su − St , but this definition is
not in terms of returns.

Interesting statistics are the maximum drawdown, the mean drawdown, and
the variance of drawdowns.

Figure 10.2 shows drawdown time series for the monthly S&P 500 and 10-year
bond data, described in Section 2.4.3. Panel (a) shows drawdown time series
for S&P 500 (red) and 10-year bond (blue). Panel (b) shows time series 1 − Dt
(red) and the cumulative wealth (orange) for S&P 500. The original time series
of cumulative wealth starts with value one, but we have normalized the time
series to take values on [0, 1].

10.4 Alpha and Conditional Alpha

Linear regression can be used to describe assets and portfolios. A beta of an
asset describes the exposure of a portfolio to a risk factor and the alpha of
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a portfolio can be used to measure the performance of the portfolio. The beta
is the coefficient of the linear regression and the alpha is the intercept of the
linear regression.

The alpha as a performance measure was proposed in Jensen (1968), and
therefore the term Jensen’s alpha is sometimes used. The alpha has been used to
evaluate portfolio performance, for example, in Carhart (1997), Kosowski et al.
(2006), and Fama and French (2010).

10.4.1 Alpha

First, we consider the case of a single risk factor. The single risk factor is usu-
ally the return of a market index. Second, we consider the case of several risk
factors. The arbitrage pricing model is an example of using several risk factors.

10.4.1.1 A Single Risk Factor

Efficient Markets In the framework of Markowitz theory of portfolio selec-
tion, it can be shown that the optimal portfolios in the Markowitz sense
are a combination of the market portfolio and the risk-free investment; see
Section 11.3, where the concepts of the efficient frontier and the tangency
portfolio are explained.5 Thus, the returns of the optimal portfolios for the
period t → t + 1 are

Rt+1 = (1 − 𝛽)R0
t+1 + 𝛽RM

t+1, (10.14)

where R0
t+1 is the return of the risk-free investment and RM

t+1 is the return of the
market portfolio, both returns being for the investment period ending at time
t + 1. The coefficient 𝛽 ≥ 0 is the proportion invested in the market portfolio.
When 0 ≤ 𝛽 ≤ 1, then the portfolio is investing available wealth; but if 𝛽 > 1,
then amount (𝛽 − 1)Wt is borrowed and amount (𝛽 + 1)Wt is invested in the
market portfolio, where Wt is the investment wealth at the beginning of the
period.

The coefficient 𝛽 is determined by the risk aversion of the investor. For an
investor whose portfolio returns are Rt+1 we do not know the coefficient 𝛽, but
we obtain from (10.14) that

Rt+1 − R0
t+1 = 𝛽

(
RM

t+1 − R0
t+1

)
.

We can collect past returns Rt+1, t = 0,… ,T − 1, and use these, together with
the past returns R0

t+1 of the risk-free return and the past returns RM
t+1 of the

5 The Markowitz theory of portfolio selection defines the optimal stock portfolios as portfolios
maximizing expected return for a given upper bound on the standard deviation of the portfolio
return or, equivalently, as portfolios minimizing the standard deviation of the portfolio return for
a given lower bound on the expected return of the portfolio. This defines single period portfolio
choice, for a given investment period.
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market portfolio, to estimate the coefficient 𝛽 in the linear model

Rt+1 − R0
t+1 = 𝛽

(
RM

t+1 − R0
t+1

)
+ 𝜖t+1, (10.15)

where 𝜖t+1 is an error term. Now Rt+1 − R0
t+1 is the response variable and RM

t+1 −
R0

t+1 is the explanatory variable. The returns RM
t+1 of the market portfolio are

approximated with the returns of a wide market index, like S&P 500 index,
Wilshire 5000 index, or DAX 30 index. The risk-free rate R0

t+1 can be taken
to be the rate of return of a government bond. This model is called the capital
asset pricing model, or CAP model.

Alpha of a Portfolio In (10.15), we have a regression model without a constant
term. The exclusion of the intercept can be justified by arguments based on effi-
cient markets. However, we can include the intercept, in order to study whether
it is positive in some cases.

We extend model (10.15) to the model

Rt+1 − R0
t+1 = 𝛼 + 𝛽

(
RM

t+1 − R0
t+1

)
+ 𝜖t+1, (10.16)

where Rt+1 is the return of the actively managed portfolio, RM
t+1 is the return of

the market portfolio, R0
t+1 is the risk-free rate, and 𝜖t+1 is an error term. The

excess return of a market index is chosen as the explanatory variable, and the
excess return of the actively managed portfolio is chosen as the response vari-
able. The estimated constant 𝛼̂ is taken as the measure of the performance, so
that larger values of 𝛼̂ indicate a better performance of the portfolio.

Denote the response variable Yt = Rt − R0
t and the explanatory variable Xt =

RM
t − R0

t . We have that

𝛼 = EY − 𝛽EX, 𝛽 = Cov(X,Y )
Var(X)

, (10.17)

when E𝜖t = 0 and E(Xt𝜖t) = 0. This follows from (10.22) and (10.23), by special-
izing to the one-dimensional case d = 1. Note that

𝛽 = sd(Y )
sd(X)

Cor(X,Y ),

where sd(Y ) and sd(X) are the standard deviations, and Cor(X,Y ) is the
correlation.

Given a sample (Xt ,Yt), t = 1,… ,T , the estimators are

𝛼̂ = Ȳ − 𝛽X̄, 𝛽 =
∑T

i=1(Xi − X̄)(Yi − Ȳ )∑T
i=1 (Xi − X̄)2

, (10.18)

where X̄ and Ȳ are the sample means. The formulas are special cases of (10.25)
and (10.26), for the case d = 1.

The beta of an asset gives information about the volatility of the stock in rela-
tion to the volatility of the benchmark. If 𝛽 < 0, the asset tends to move in the
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opposite direction as the benchmark; if 𝛽 = 0, the asset is uncorrelated with the
benchmark; if 0 < 𝛽 < 1, the asset tends to move in the same direction as the
benchmark but it tends to move less; and if 𝛽 > 1, the asset tends to move in
the same direction as the benchmark but it tends to move more.

We see from (10.18) that the alpha of an asset is not equal to the sample mean
of the excess returns Yt = Rt − R0

t , but we have subtracted term 𝛽X̄. Thus, the
assets that are negatively correlated with the market index have alpha larger
than the sample mean of the excess returns, whereas the assets that are pos-
itively correlated with the market index have alpha smaller than the sample
mean of the excess returns, when we assume that the sample mean X̄ is positive.

Figure 10.3 shows alphas and betas for the S&P 500 components. S&P 500
components daily data is defined in Section 2.4.5. Panel (a) shows a scatter plot
of (𝛼̂i, 𝛽i), when i runs over the S&P 500 components which are included in the
data. Panel (b) shows the linear functions x → 𝛼̂i + 𝛽ix, when x-axis is the S&P
500 excess return, and the y-axis shows the excess returns of S&P 500 compo-
nents. We see that almost all alphas are positive, and betas range between 0.2
and 0.8.

10.4.1.2 Several Risk Factors
Instead of one risk factor, we can consider several risk factors whose returns
are R1

t+1,… ,Rd
t+1. These risk factors should ideally be such that the returns Rt+1

of all reasonable portfolios can be represented as

Rt+1 =

(
1 −

d∑
i=1
𝛽i

)
R0

t+1 + 𝛽1R1
t+1 + · · · + 𝛽dRd

t+1. (10.19)

Since this relation can hold only approximately we need an error term 𝜖t+1.
Since we want to allow for the possibility of abnormal returns we need the
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Figure 10.3 Alphas and betas of S&P 500 components. (a) A scatter plot of (𝛼̂i, 𝛽i); (b) linear
functions x → 𝛼̂i + 𝛽ix.
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intercept 𝛼. This leads to the extension of the one-dimensional model (10.16)
into the model

Rt+1 − R0
t+1 = 𝛼 +

d∑
i=1
𝛽i
(
Ri

t+1 − R0
t+1

)
+ 𝜖t+1, (10.20)

where Rt+1 is the return of the actively managed portfolio, Ri
t+1, i = 1,… , d, are

the returns of the risk factors, R0
t+1 is the risk-free rate, and 𝜖t+1 is an error term.

Note that in (10.19) we have ensured that the weights of the assets sum to
one with the help of a risk-free rate. There are other ways to make the portfolio
weights sum to one. For example, we could have

Rt+1 = (1 − 𝛽1)R0
t+1 + 𝛽1R1

t+1 + 𝛽2
(
R2

t+1 − R3
t+1

)
. (10.21)

This kind of construction is used in the Fama–French model (see (10.34)).

Least Squares Formulas Denote Y = Rt+1 − R0
t+1 and Xi = Ri

t+1 − R0
t+1. Now we

can write the model (10.20) as

Y = 𝛼 + 𝛽′X + 𝜖,

where 𝛼 ∈ R, 𝛽 ∈ Rd, and X = (X1
,… ,Xd)′. Note that in the case of construc-

tion (10.21) we would choose X1 = R1
t+1 − R0

t+1 and X2 = R2
t+1 − R3

t+1.
If E(X𝜖) = 0, then

𝛼 = EY − 𝛽′EX (10.22)

and

𝛽 = Cov(X)−1 E[(X − EX)(Y − EY )], (10.23)

where

Cov(X) = E[(X − EX)(X − EX)′],

and we assume additionally that Cov(X) is invertible.6
In the two-dimensional case d = 2 we have 𝛼 = EY − 𝛽′1EX1 − 𝛽2EX2,

𝛽1 = 1
𝜎

2
1𝜎

2
2 − 𝜎

2
12

(
𝜎

2
2 Cov(X1,Y ) − 𝜎12 Cov(X2,Y )

)
,

and

𝛽2 = 1
𝜎

2
1𝜎

2
2 − 𝜎

2
12

(
𝜎

2
1 Cov(X2,Y ) − 𝜎12 Cov(X1,Y )

)
,

where 𝜎2
1 = Var(X1), 𝜎2

2 = Var(X2), and 𝜎12 = Cov(X1,X2).

6 We get the same solution by minimizing E(𝛼 + 𝛽′X − Y )2. Derivation with respect to 𝛼

and setting the derivative equal to zero gives 𝛼 = EY − 𝛽′EX. Then we find 𝛽 by minimizing
E(𝛽′(X − EX) − (Y − EY ))2

. Derivation with respect to elements of 𝛽 and setting these derivatives
to zero gives E(X − EX)(X − EX)′𝛽 = E(X − EX)(Y − EY ), which leads to (10.23).



10.4 Alpha and Conditional Alpha 353

The least squares estimates are 𝛼̂ ∈ R and 𝛽 ∈ Rd are defined as the minimiz-
ers of the least squares criterion

n∑
i=1

(Yi − 𝛼 − 𝛽′Xi)2
. (10.24)

The solution can be written as

𝛼̂ = Ȳ − 𝛽′X̄, (10.25)

𝛽 =

[ n∑
i=1

(Xi − X̄)(Xi − X̄)′
]−1 n∑

i=1
(Xi − X̄)(Yi − Ȳ )′, (10.26)

where X̄ = n−1 ∑n
i=1 Xi and Ȳ = n−1 ∑n

i=1 Yi.

Further Least Squares Formulas It is often convenient to use notation where the
intercept is included in the vector 𝛽. This can be done by choosing the first
component of the vector of explanatory variables as the constant one. Denote

X = (1,X2,… ,Xd+1) ∈ Rd+1
.

We use below the notation

K = d + 1. (10.27)

Write the regression model as

Y = 𝛽
′X + 𝜖, (10.28)

where 𝛽 ∈ RK , X = (X1,… ,XK )′, Y ∈ R, and 𝜖 ∈ R is the scalar error term.
Multiplying (10.28) with vector X, we get

XY = XX′
𝛽 + X𝜖.

If E(X𝜖) = 0, then

E(XY ) = E(XX′)𝛽. (10.29)

If E(XX′) is invertible, then

𝛽 = [E(XX′)]−1E(XY ). (10.30)

Let us observe

(Xi,Yi), Xi = (1,Xi,2,,… ,Xi,d+1) ∈ Rd+1
, Yi ∈ R, (10.31)

where i = 1,… ,T . We assume that (X1,Y1),… , (XT ,YT ) are identically dis-
tributed and have the same distribution as (X,Y ). The least squares estimator
of parameter 𝛽 can be written as

𝛽 = (X′X)−1X′y, (10.32)
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where X = (X1,… ,XT )′ is the T × K matrix whose rows are X′
i , and

y = (Y1,… ,YT )′ is the T × 1 vector. The estimator can be written as

𝛽 =

(
1
n

n∑
i=1

XiX′
i

)−1
1
n

n∑
i=1

XiYi. (10.33)

This estimator is the same as the least squares estimator in (10.32), as can be
seen by noting that

X′X =
n∑

i=1
XiX′

i , X′y =
n∑

i=1
XiYi.

Note that (10.33) is obtained from (10.30) by replacing the expectations with
the sample means.7

A Three-Factor Model Fama and French (1993) proposes a three-factor model,
where the factors are the market return, size, and value versus growth. The
model is related to the arbitrage pricing theory. Let RS

t+1 be the return of a
diversified portfolio of small stocks, and let RL

t+1 be the return of a diversi-
fied portfolio of large stocks, where largeness and smallness is measured by the
market capitalization. Let RV

t+1 be the return of a diversified portfolio of value
stocks, and let RG

t+1 be the return of a diversified portfolio of growth stocks,
where a value stock has a high book-to-market ratio, and a growth stock has a
low book-to-market ratio.

Fama and French (1993, 2012) formulate the model as8

Rt+1 − R0
t+1 = 𝛼 + 𝛽1

(
R1

t+1 − R0
t+1

)
+𝛽2

(
RS

t+1 − RB
t+1

)
+ 𝛽3

(
RV

t+1 − RG
t+1

)
+ 𝜖t+1. (10.34)

Factors of Smart Alpha It can happen that a hedge fund achieves a large positive
alpha, when the alpha is measured in the capital asset pricing model (10.20) or
in the arbitrage pricing model (10.34). However, we can introduce models with

7 The solution (10.32) can be found by writing the least squares criterion (10.24) with the matrix
notation as

(y − X𝛽)′(y − X𝛽) = y′y − 2𝛽′X′y + 𝛽′X′X𝛽.

Derivation of this with respect to 𝛽, and setting the gradient to zero, gives the equations

X′X𝛽 = X′y,

which leads to the solution (10.32).
8 Note that an alternative model would be

Rt+1 − R0
t+1 = 𝛼 +

3∑
i=1
𝛽i
(
Ri

t+1 − R0
t+1

)
+ 𝜖t+1,

where R1
t+1 is the return of a market index, R1

t+1 is the return of the risk-free rate, R2
t+1 = 2RS

t+1 −
RL

t+1, and R3
t+1 = 2RV

t+1 − RG
t+1.
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additional factors. The alpha defined by a model with some additional factors
can be called smart alpha.

The momentum factor has been proposed to be an additional factor, which
generates positive returns. Carhart (1997) defines the momentum factor for
monthly returns as the difference

RW
t+1 − RL

t+1,

where RW
t+1 is the return of a diversified portfolio of the winners of the past year,

and RL
t+1 is the return of a diversified portfolio of losers of the past year.

Fung and Hsieh (2004) define seven risk factors: three trend-following
risk factors, two equity-oriented risk factors, and two bond-oriented risk
factors. The trend-following risk factors are a bond trend-following factor, a
currency trend-following factor, and a commodity trend-following factor. The
equity-oriented risk factors are the equity market factor, which is the S&P 500
index monthly total return, and the size spread factor, which can be defined
as the Wilshire Small Cap 1750 minus the Wilshire Large Cap 750 monthly
return or Russell 2000 index monthly total return minus the S&P 500 monthly
total return. The bond-oriented risk factors are the bond market factor, which
is the monthly change in the 10-year treasury constant maturity yield (month
end-to-month end), and the credit spread factor, which is the monthly change
in the Moody’s Baa yield minus the 10-year treasury constant maturity yield
(month end-to-month end).

Eurex provides futures on six factor indexes. The six factors include the size
and value factors from the three-factor model, and the momentum factor. Addi-
tional factors are the low-risk factor (stocks with volatility below average), qual-
ity factor (stocks with solid financial background based on debt coverage, earn-
ings and other metrics), and carry factor (stocks with high-growth potential
based on earnings and dividends).9

10.4.2 Conditional Alpha

We have applied a linear model to the evaluation of portfolio performance. The
performance was measured by the estimate 𝛼̂ of the constant term 𝛼 of linear
regression. We can use varying coefficient regression to estimate conditional
alpha. It has been argued that the conditional alpha measures better hedge fund
performance, since hedge funds do not use long only strategies but apply short
selling, buying of options, and writing of options.

We choose a collection of risk factors X1
t ,… ,Xd

t and make a linear regression
of hedge fund return Yt on these risk factors, where t = 1,… ,T . The uncondi-
tional alpha is defined as

𝛼̂ = argmin
𝛼
min
𝛽1,…,𝛽d

T∑
t=1

(
Yt − 𝛼 − 𝛽1X1

t − · · · − 𝛽dXd
t
)2
.

9 http://www.eurexchange.com/exchange-en/products/idx/istoxx/.
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The conditional alpha, conditionally on the information Zt ∈ Rp at time t, is
defined as

𝛼̂(Zt) = argmin
𝛼
min
𝛽1,…,𝛽d

t∑
i=1

(
Yi − 𝛼 − 𝛽1X1

i − · · · − 𝛽dXd
i
)2pi(Zt),

where

pi(Zt) = Kh(Zi − Zt),

where Kh(x) = K(x∕h)∕hp is the scaled-kernel function, K ∶ Rp → R is the ker-
nel function, and h > 0 is the smoothing parameter.

10.5 Graphical Tools of Performance Measurement

We describe how cumulative wealth, Sharpe ratios, and certainty equivalents
can be used to evaluate a given return time series using graphical tools.

A central idea is to find the periods of good performance and the periods of
bad performance. It occurs seldom that a return series would indicate good per-
formance for every time period. Instead, a typical series of returns of a financial
asset has some periods of good performance and some periods of bad perfor-
mance. It is useful to to find during which periods the performance is good and
during which it is bad, instead of looking only at the aggregate performance. It
is also of interest to find characteristics of the type: “the return series is good in
recession,” or “the return series is good when the commodity prices are rising.”

We describe methods to evaluate a return time series. The methods can be
used to study the properties of any return time series, but it is of particular
interest to study a time series created by historical simulation, as described in
Section 12.2. We can study also a time series of historical returns of an asset
manager. In this section, we use the monthly data of S&P 500, US Treasury
10-year bond, And US Treasury 1-month bill, described in Section 2.4.3.

Section 10.5.1 describes the use of wealth in evaluation, Section 10.5.2
describes the use of Sharpe ratio in evaluation, and Section 10.5.3 describes
the use of certainty equivalent in evaluation.

10.5.1 Using Wealth in Evaluation

Given a time series of gross returns R1,… ,RT ∈ (0,∞), we can construct the
time series of cumulative wealth by

W0 = 1, Wt+1 = Wt × Rt , t = 0,… ,T − 1.

Now,

Wt = W0

t∏
i=1

Rt .
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Time series {Wt} of wealth can be more instructive to find periods of good
returns than looking at the original return time series. Plotting the logarithmic
wealth log Wt can be helpful in cases where Wt increases exponentially.

Figure 10.4 shows cumulative wealths of monthly time series of S&P 500
(red), 10-year US Treasury bond (blue), and 1-month US Treasury bill (black).
Panel (a) has wealth at the y-axis, and panel (b) has a logarithmic scale at the
y-axis. Time series in Figure 10.4 have a concrete interpretation as the cumu-
lative wealth, but they do not reveal the periods of relative outperformance
and underperformance in such a detail than we are able to see in Figures 10.5
and 10.6.

To compare two return time series, we can use the relative cumulative wealth.
Let us consider two return time series R1

1,… ,R1
T and R2

1,… ,R2
T . The corre-

sponding time series of cumulative wealths are W 1
0 ,… ,W 1

T and W 2
0 ,… ,W 2

T .
The time series

Zt = W 2
t ∕W 1

t , t = 0,… ,T , (10.35)

can be used to compare the two return series. Indeed, for u < t,

Zt

Zu
=

W 2
t ∕W 1

t

W 2
u∕W 1

u
=

W 2
t ∕W 2

u

W 1
t ∕W 1

u
=

∏t
i=u+1 R2

i∏t
i=u+1 R1

i

.

Thus, when Zt > Zu, then asset 2 is performing better than asset 1 over time
period [u, t]. Conversely, when Zt < Zu, then asset 1 is performing better than
asset 2 over time period [u, t].

Time series

log Zt = log
(
W 2

t ∕W 1
t
)
, t = 0,… ,T ,
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Figure 10.4 Time series of cumulative wealths. (a) The y-axis shows the cumulative wealth; (b)
the y-axis has a logarithmic scale. We show the cumulative wealth of S&P 500 (red), 10-year
bond (blue), and 1-month bill (black).
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Figure 10.5 Time series of relative cumulative wealth of 10-year bond. We compare 10-year
bond to S&P 500 and to 1-month bill. (a) The wealth ratio Zt = W2

t ∕W1
t , where W2

t is the wealth
of the 10-year bond, W1

t is the wealth of S&P 500 (green), and W1
t is the wealth of 1-month bill

(purple). Panel (b) shows time series log Zt .
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Figure 10.6 Time series of relative cumulative wealth of S&P 500. We compare S&P 500 to
10-year bond and to 1-month bill. (a) The wealth ratio Zt = W2

t ∕W1
t , where W2

t is the wealth
of S&P 500, W1

t is the wealth of 10-year bond (green), and W1
t is the wealth of 1-month bill

(purple). Panel (b) shows time series log Zt .

can sometimes be more illustrative in comparing the two return series. Again,
when log Zt > log Zu, then asset 2 is performing better than asset 1 over period
[u, t], where u < t. Conversely, when log Zt < log Zu, then asset 1 is performing
better than asset 2 over period [u, t].

Note that this graphical method is analogous to the looking at the time series
(6.26), which shows the periods of good prediction performance, in terms of
the sum of squared prediction errors.

Figure 10.5 compares monthly time series of US Treasury 10-year bond
returns to the S&P 500 returns, and to 1-month US Treasury bill rates. Panel (a)
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shows the wealth ratio Zt = W 2
t ∕W 1

t , when asset 2 is 10-year bond and asset
1 is S&P 500 (green), or asset 1 is 1-month bill (purple). Panel (b) shows time
series log Zt . We can see a clear pattern in the purple curves (ratio of 10-year
bond to 1-month bill): it is near to monotonically decreasing until about 1985,
after that it is near to monotonically increasing. This means that 10-year bond
performs worse than 1-month bill in practically all time periods before 1985,
and better in practically all time periods after 1985. Such a clear pattern cannot
be seen in the green curves (ratio of 10-year bond to S&P 500). However, look-
ing at the details, we can detect the time periods where 10-year bond has better
returns than S&P 500, unlike in Figure 10.4, where such details cannot be seen.

Figure 10.6 compares monthly time series of S&P 500 returns to US Treasury
10-year bond returns, and to US Treasury 1-month bill rates. Panel (a) shows
the wealth ratio Zt = W 2

t ∕W 1
t , where asset 2 is S&P 500. Asset 1 is 10-year bond

(green), or asset 1 is 1-month bill (purple). Panel (b) shows time series log Zt .
The green curves are mirror images of the green curves in Figure 10.5. The
purple curve (ratio of S&P 500 to 1-month bill) does not express such a clear
pattern as the purple curve in Figure 10.5 (ratio of 10-year bond to 1-month
bill). However, we can see that the purple curves increase almost monotonically
from 1953 until about 1970, and from about 1985 until about 2000. The pur-
ple curves decrease almost monotonically from about 1970 until about 1985.
After 2000 there are several periods of increase and decrease. Purple and green
curves have somewhat similar periods of increase and decrease, but the moves
in the purple curves are more profound.

10.5.2 Using the Sharpe Ratio in Evaluation

It is not enough to compute the Sharpe ratio of a return time series R1,… ,RT ,
but it is important to study the Sharpe ratios for any time periods [u, t], where
1 ≤ u < t ≤ T , instead of just computing the Sharpe ratio for the complete time
period [1,T].

10.5.2.1 Sharpe Ratios over All Possible Time Periods
We were able to compare graphically two return time series over all possible
time periods by looking at the single time series of wealth ratios, defined in
(10.35). However, when we want to compare the Sharpe ratios of two return
time series over all time periods, such a simple tool does not seem to be avail-
able. Instead, we define function S(u, t) of two variables whose value is the
annualized Sharpe ratio of the return series Ru,Ru+1,… ,Rt , where u < t. Given
a time series R1,… ,RT , we define

S(u, t) = 1√
Δt

𝜇̂
t
u

𝜎̂
t
u
, 1 ≤ u + 𝛿 < t ≤ T , (10.36)

where Δt is equal to the time step between two observations of the time series
(for monthly data Δt = 1∕12), 𝜇̂t

u is the sample mean over time period [u, t] of
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the excess return, and 𝜎̂t
u is the sample standard deviation over time period [u, t]

of the excess return.10 In addition, we have introduced parameter 0 < 𝛿 < T
to guarantee that there are at least two observations to calculate the Sharpe
ratio. In fact, we need several observations to guarantee that the estimate of
the Sharpe ratio has some accuracy.

To compare two return time series, we calculate function S for both of these
time series: call these functions S1 and S2. Then we can study difference

Z(u, t) = S2(u, t) − S1(u, t).

Note that ratio S2(u, t)∕S1(u, t) is useful only when S2(u, t) > 0 and S1(u, t) > 0,
but this is not always the case, because a return time series of a risky asset can
have a smaller mean than the mean of the returns of the risk-free rate.

Figure 10.7 shows a contour plot of function S. In panel (a) function S is cal-
culated from the monthly returns of of S&P 500. In panel (b) the returns are
of US Treasury 10-year bond. Parameter 𝛿 in the definition of the domain of
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Figure 10.7 Sharpe ratios for every period: Contour plots. We show contour plots of function
S(u, t), defined in (10.36). (a) Sharpe ratios of S&P 500; (b) Sharpe ratios of US Treasury 10-year
bond.

10 Let Xi = Ri − ri be the excess return, where ri is the risk-free rate. Then,

𝜇̂
t
u = (t − u + 1)−1

t∑
i=u

Xi, (10.37)

and

𝜎̂
t
u =

(
(t − u + 1)−1

t∑
i=u

X2
i −

(
𝜇̂

t
u
)2
)1∕2

. (10.38)

Note that the sample Sharpe ratio is defined in (10.3).
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S is equal to 36 months, and furthermore, function S is evaluated only at the
points {(u, t) ∶ u, t ∈ {1, 𝛿, 2𝛿,… ,T}, 1 ≤ u + 𝛿 < t ≤ T}. Function has lots of
fluctuation near the diagonal, because near the diagonal u and t are close to
each other, and thus the Sharpe ratio is computed over a short time period.

Figure 10.8 shows an image plot corresponding to the contour plot in
Figure 10.7. The bright yellow shows the time periods where the Sharpe ratio
is high and the red color shows the time periods where the Sharpe ratio is low.
The image plot can be useful in showing more details than the contour plot.
Parameter 𝛿 in the definition of the domain of S is equal to 12 months.

Functions S(u, t) and Z(u, t) are often quite unsmooth, which makes contour
plots, perspective plots, or image plots inconvenient to interpret. However, we
can plot few individual level sets of these functions. This shows for which time
periods the performance, or the relative performance, is good. A level set of
S(u, t), for level 𝜆 ∈ R, is defined by

Λ(S, 𝜆) = {(u, t) ∈  ∶ S(u, t) ≥ 𝜆}, (10.39)

where the domain is

 = {(u, t) ∶ u, t ∈ {1,… ,T}, 1 ≤ u + 𝛿 < t ≤ T},

where 𝛿 > 0.
Figure 10.9 shows a level set Λ(S, 𝜆) with blue color. The blue and red regions

together show the domain of the function S. In panel (a) function S is calculated
from the monthly returns of of S&P 500. In panel (b) the returns are of US
Treasury 10-year bond. The level 𝜆 is the Sharpe ratio over the complete period.
Parameter 𝛿 in the definition of the domain of S is equal to 36 months. Thus,
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Figure 10.8 Sharpe ratios for every period: Image plots. The bright yellow shows the time peri-
ods where the Sharpe ratio is high and the red color shows the time periods where the Sharpe
ratio is low. (a) S&P 500; (b) 10-year bond.
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Figure 10.9 Sharpe ratios for every period: Level sets. We show a level set Λ(S, 𝜆) in (10.39)
with blue color. (a) Function S is the Sharpe ratio of S&P 500; (b) function S is the Sharpe ratio of
US Treasury 10-year bond. The blue regions show the time periods [u, t] for which the Sharpe
ratio is above the usual value, and the red color shows when it is below the usual value.

the blue region shows the time periods [u, t] for which the Sharpe ratio is above
the usual value, and the red region shows the time periods [u, t] for which the
Sharpe ratio is below the usual value.

10.5.2.2 Sharpe Ratios Over a Sequence of Intervals
A useful way to visualize function S, defined in (10.36), is to draw slices of this
function. Slices are univariate functions

t → S(u0, t), u → S(u, t0),

where u0 and t0 are fixed. When u0 is fixed, then we are looking at Sharpe ratios
over periods with a fixed starting point u0. When t0 is fixed, then we are looking
at Sharpe ratios over periods with a fixed end point t0. For function t → S(u0, t)
we choose u0 so that 1 ≤ u0 ≤ T − 𝛿, and then t satisfies u0 + 𝛿 ≤ t ≤ T . For
function u → S(u, t0) we choose t0 so that 𝛿 ≤ t0 ≤ T , and then u satisfies 1 ≤

u ≤ t − 𝛿.
Figure 10.10 shows slices of function S. Panel (a) shows slices u → S(u, t0),

where t0 = 1953 (red), t0 = 1986 (blue), t0 = 1995 (green), and t0 = 2014
(black). Panel (b) shows slices t → S(u0, t), where u0 = 1954 (black), u0 = 1986
(red), u0 = 1995 (blue), and u0 = 2014 (green).

Figure 10.11 shows function u → S(u,T) as black curves. In panel (a) we use
S&P 500 monthly returns and in panel (b) we use monthly returns of US Trea-
sury 10-year bond. Parameter 𝛿 is equal to 120 months. The green curves show
time series of means: u → 10 × 12 × 𝜇̂T

u , and the blue curves show time series of
standard deviations: u → 4 ×

√
12 × 𝜎̂T

u , where 𝜇̂t
u is defined in (10.37) and 𝜎̂t

u
is defined in (10.38). Note that the upper borders of the level sets in Figure 10.9
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Figure 10.10 Time series of Sharpe ratios: Slices. (a) A slice at time u shows the Sharpe ratio
computed with the data starting at u and ending t0, where t0 = 1953 (red), t0 = 1986 (blue),
t0 = 1995 (green), and t0 = 2014 (black). (b) A slice at time t shows the Sharpe ratio computed
with the data starting at u0 and ending t, where u0 = 1954 (black), u0 = 1986 (red), u0 = 1995
(blue), and u0 = 2014 (green).
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Figure 10.11 Time series of Sharpe ratios. (a) Sharpe ratios of S&P 500; (b) Sharpe ratios of US
10-year bond. The black curves show the Sharpe ratios, the green curves show the means of
the excess returns, and the blue curves show the standard deviations of the excess returns.
The time series at time t show Sharpe ratios computed with the data starting at t and ending T .
The violet horizontal lines show the Sharpe ratios over the complete time period.

show the level sets of black functions in Figure 10.11. The violet horizontal lines
show the Sharpe ratios over the complete time period.

Both time series of Sharpe ratios of S&P 500 and 10-year bond show a similar
pattern: The Sharpe ratios make a jump at the end of 1970s. This pattern is more
profound for 10-year bond than for S&P 500. We can see that the changes in
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the time series of Sharpe ratios are caused mainly by the changes in the time
series of the arithmetic means of the returns.

Note that the Sharpe ratios in Figure 10.11 are relevant in the case when
we choose time point t0 to divide the historical data to the estimation part
and to the testing part. After that we calculate the Sharpe ratio from the his-
torically simulated returns Rt0+1,… ,RT , and compare the Sharpe ratio to the
Sharpe ratio of a benchmark (S&P 500 or 10-year bond). The choice of time
point t0 affects the Sharpe ratio of the benchmark, as shown by the black curve
in Figure 10.11, and in a sense, we study the robustness of the performance
measures of the benchmarks to the choice of the time point t0, which sets the
beginning of the testing period.

10.5.3 Using the Certainty Equivalent in Evaluation

The certainty equivalent can be used in much the same way as the Sharpe ratio.
Sample certainty equivalent is defined in (10.13). Given a time series R1,… ,RT
of gross returns, we define the sample certainty equivalent over interval [u, t] as

C(u, t) = U−1

(
1

t − u + 1

t∑
i=u

U(Ri)

)
, 1 ≤ u + 𝛿 < t ≤ T ,

where U ∶ (0,∞) → R is a utility function. Parameter 0 < 𝛿 < T guarantees
that there are at least two observations to calculate the certainty equivalent.
The slices of function C are often more informative than contour plots or per-
spective plots. Slices are univariate functions

t → C(u0, t), u → C(u, t0),

where u0 and t0 are fixed. For function t → S(u0, t) we choose u0 so that 1 ≤

u0 ≤ T − 𝛿, and then t satisfies u0 + 𝛿 ≤ t ≤ T . For function u → S(u, t0) we
choose t0 so that 𝛿 ≤ t0 ≤ T , and then u satisfies 1 ≤ u ≤ t − 𝛿.

Figure 10.12 shows function u → C(u,T): the sample mean is taken only
over the last part of the original return time series. We have chosen 𝛿 = 120.
In panel (a) the returns Ri are monthly gross returns of S&P 500 index, and
in panel (b) the returns Ri are monthly gross returns of US Treasury 10-year
bond. The utility function U ∶ (0,∞) → R is the power utility function, defined
in (9.28). The green curve shows certainty equivalents when the risk aversion
parameter of the utility function is 𝛾 = 0 (plain gross returns), the red curve
shows the case 𝛾 = 1 (logarithmic utility), and the purple curve shows the
case 𝛾 = 5. Note that the green curves in Figure 10.11 show the means of the
excess returns, whereas the green curves in Figure 10.12 show the means of
the gross returns.
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Figure 10.12 Time series of certainty equivalents. (a) Certainty equivalents of S&P 500;
(b) certainty equivalents of US Treasury 10-year bond. The green curves show the case of risk
aversion 𝛾 = 0, the red curves have 𝛾 = 1, and the purple curves have 𝛾 = 5. Time series at
time t show certainty equivalents computed with the data starting at t and ending T .

We can see that the certainty equivalents of S&P 500 are rather stable
when the testing period starts before the mid-1990s, whereas the certainty
equivalents of 10-year bond are rather unstable even when the testing period
starts early. The risk aversion parameter 𝛾 does not change qualitatively time
series but affects only the level: a lower risk aversion leads to a larger certainty
equivalent.
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11

Markowitz Portfolios

Portfolio choice with mean–variance preferences was proposed by Markowitz
(1952, 1959). The approach introduced the idea of balancing risk and return to
find an optimal portfolio.

Markowitz approach can be used in the single period portfolio selection. Let
Rp

t+1 be the portfolio return. In the Markowitz approach there exists three ways
to choose the portfolio:

1) Maximize the variance penalized expected return

EtR
p
t+1 −

𝛾

2
Vart

(
Rp

t+1
)
,

where 𝛾 ≥ 0 is the risk aversion coefficient. Parameter 𝛾 measures the
investor’s relative risk aversion, as defined in (9.31).

2) Minimize the variance Vart(R
p
t+1) under a minimal requirement for the

expected return: EtR
p
t+1 ≥ 𝜇0, where 𝜇0 ∈ R is the minimal requirement for

the expected return.
3) Maximize the expected return EtR

p
t+1 under a condition that the variance is

not too large: Vart(R
p
t+1) ≤ 𝜎

2
0 , where 𝜎0 > 0 is the largest allowed standard

deviation for the return.

Here Et and Vart mean the conditional expectation and the conditional vari-
ance, conditional on the information available at time t.

The variance penalized expected return was already discussed in Section
9.2.1. The variance penalized expected return is convenient because it involves
explicitly the risk aversion parameter 𝛾 , which makes it possible to find
a connection to the maximization of an expected utility. The other two
approaches involve risk aversion more implicitly. When variance is minimized
under a minimal requirement 𝜇0 for the expected return, then the minimal
requirement 𝜇0 is a risk aversion parameter, because smaller values of 𝜇0 are
associated with more risk aversion. When the expected return is maximized
under a condition that the variance is less than or equal to 𝜎2

0 , then 𝜎0 is a risk
aversion parameter, because smaller values of 𝜎0 indicate more risk aversion.

Nonparametric Finance, First Edition. Jussi Klemelä.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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We explain with the help of Markowitz bullets the concepts of the minimum
variance portfolio, the tangency portfolio, and the efficient frontier. This is done
in Section 11.3.

The method of Lagrange multipliers appears in Section 11.1.2 and in Section
11.2. The method of Lagrange multipliers is a useful general method of opti-
mization. The method of Lagrange multipliers helps to cope with the restriction
that the sum of portfolio weights have to be equal to one. Further complications
appear when we want to restrict ourselves to long-only portfolios, or to make
some other additional restrictions on the portfolio weights. We do not consider
these additional complications.

We use the notations of Section 9.1. The portfolio return was defined in
(9.3) as

Rp
t+1 = b̄′

tR̄t+1 =
d∑

i=0
bi

tRi
t+1,

where

b̄t =
(
b0

t , bt
)
, bt =

(
b1

t ,… , bd
t
)

is the vector of the portfolio weights, b̄′
t is the transpose of the column vector

b̄t , and

R̄t+1 =
(
R0

t+1,Rt+1
)
, Rt+1 =

(
R1

t+1,… ,Rd
t+1

)
is the vector of the gross returns of the portfolio components. The portfolio
weights satisfy the constraint

b̄′
t1d+1 =

d∑
i=0

bi
t = 1.

Thus, b0
t = 1 − 1′

dbt . and

Rp
t+1 =

(
1 − 1′

dbt
)

R0
t+1 + b′

tRt+1 = R0
t+1 + b′

t
(
Rt+1 − R0

t+1
)
,

where Rt+1 − R0
t+1 is called the excess return. Since we consider only single

period portfolio selection, we do not need the time subscript in the notation.
Thus, we denote the portfolio vector of risky assets by

b = bt .

Also, since the expectations and variances are conditional on t, the risk-free
rate is a constant (known at time t). We will denote the risk-free rate by

r = R0
t+1.

The vector of means and the covariance matrix of the risky assets is denoted by

𝜇 = E Rt+1, Var(Rt+1) = Σ,
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where 𝜇 = (𝜇1,… , 𝜇d)′ and Σ is the d × d matrix with elements 𝜎ij. Now,

E(b′Rt+1) = b′
𝜇, Var(b′Rt+1) = b′Σb.

Section 11.1 considers the maximization of the variance penalized expected
return. Section 11.2 considers minimization of the variance under a minimal
requirement for the expected return. Section 11.3 considers concepts related
to the Markowitz portfolio theory, such as the minimum variance portfolio
and the tangency portfolio. Section 11.4 considers further topics related to
Markowitz portfolio theory. Section 11.5 applies Markowitz formulas to port-
folio selection.

11.1 Variance Penalized Expected Return

We consider the maximization of the variance penalized expected return.
Section 11.1.1 considers portfolios where the risk-free rate is included.
Section 11.1.2 considers portfolios without the risk-free rate.

11.1.1 Variance Penalization with the Risk-Free Rate

Let us consider the maximization of the variance penalized expected return
when the risk-free rate is included. We consider first the general case of d risky
asset and then the special cases of one risky asset and two risky assets.

11.1.1.1 Several Risky Assets and the Risk-Free Rate
The portfolio components are d risky assets and the risk-free rate. Let the return
of the risk-free investment be r. We allocate the proportion 1 − b′1d into the
risk-free investment. Then the portfolio return is

Rp
t+1 = b′Rt+1 + (1 − b′1d)r.

We choose the weight vector b as maximizing

b′
𝜇 + (1 − b′1d)r −

𝛾

2
b′Σb. (11.1)

Derivating with respect to b and setting the partial derivatives to zero gives

𝜇 − 1dr − 𝛾Σb = 0.

Thus,

b = 𝛾
−1Σ−1(𝜇 − r1d).

11.1.1.2 One Risky Asset and the Risk-Free Rate
Let us invest the proportion b to a stock and 1 − b to the risk-free rate whose
gross return is r > 0. Now the gross return of the portfolio is

Rp
t+1 = bRt+1 + (1 − b)r,
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where Rt+1 is the return of the stock. Let the expected return of the stock be
EtRt+1 = 𝜇 and the variance Vart(Rt+1) = 𝜎

2. Then,

EtR
p
t+1 −

𝛾

2
Vart

(
Rp

t+1
)
= r + b(𝜇 − r) − 𝛾

2
b2
𝜎

2
. (11.2)

Setting the derivative with respect to b to zero and solving for b gives the max-
imizer of (11.2) as

b = 1
𝛾

𝜇 − r
𝜎2 . (11.3)

Let brest be the optimal weight of the long-only portfolio. The maximizer brest
of (11.2) under the restriction that b ∈ [0, 1] is obtained by projecting the unre-
stricted solution on [0, 1]. Thus,

brest =
⎧⎪⎨⎪⎩

0, when b ≤ 0,
b, when 0 ≤ b ≤ 1,
1, when b ≥ 1,

(11.4)

where b is given in (11.3).

11.1.1.3 Two Risky Assets and the Risk-Free Rate
Let us have two stocks and the risk-free rate and let us invest the proportion b1
in the first stock, proportion b2 in the second stock, and proportion 1 − b1 − b2
in the risk-free rate. Now the portfolio return is

Rp
t+1 = b1R1

t+1 + b2R2
t+1 + (1 − b1 − b2)r,

where R1
t+1 is the return of the first stock and R2

t+1 is the return of the second
stock. Let the expected returns of the stocks be EtR1

t+1 = 𝜇1, EtR2
t+1 = 𝜇2 and

let the variances of the returns be Vart(R1
t+1) = 𝜎

2
1 , Vart(R2

t+1) = 𝜎
2
2 . Denote the

covariance of the returns by Covt(R1
t+1,R

2
t+1) = 𝜎12. We have

EtR
p
t+1 −

𝛾

2
Vart

(
Rp

t+1
)

= b1𝜇1 + b2𝜇2 + (1 − b1 − b2)r −
𝛾

2
(
b2

1𝜎
2
1 + b2

2𝜎
2
2 + 2b1b2𝜎12

)
.

Setting derivatives with respect to b1 and b2 to zero gives{
𝜇1 − r − 𝛾𝜎2

1 b1 − 𝛾𝜎12b2 = 0,

𝜇2 − r − 𝛾𝜎2
2 b2 − 𝛾𝜎12b1 = 0.

Thus,1

b1 = 1
𝛾

(𝜇1 − r)𝜎2
2 − 𝜎12(𝜇2 − r)

𝜎
2
1𝜎

2
2 − 𝜎

2
12

1 Solving b2 gives

b2 =
𝜇2 − r − 𝛾𝜎12b1

𝛾𝜎
2
2

.
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and

b2 = 1
𝛾

(𝜇2 − r)𝜎2
1 − 𝜎12(𝜇1 − r)

𝜎
2
1𝜎

2
2 − 𝜎

2
12

.

11.1.2 Variance Penalization without the Risk-Free Rate

Let us consider the maximization of the variance penalized expected return
when the risk-free rate is excluded. We solve first the case of d risky assets and
then the case of two risky assets.

11.1.2.1 Several Risky Assets
The maximization of the variance penalized expected return chooses the
weight vector b as maximizing

b′
𝜇 − 𝛾

2
b′Σb under b′1d = 1, (11.5)

where 1d is the vector of length d whose all elements are equal to one, so that
the constraint is

b′1d =
d∑

i=1
bi = 1.

Let us maximize

b′
𝜇 − 𝛾

2
b′Σb

under the constraint b′1d = 1. We use the method of Lagrange multipliers and
maximize the Lagrange function

b′
𝜇 − 𝛾

2
b′Σb + 𝜆(b′1d − 1),

where 𝜆 ∈ R is the Lagrange multiplier. Derivating with respect to b and 𝜆 and
setting the partial derivatives to zero we get{

𝜇 − 𝛾Σb + 𝜆1d = 0,
b′1d − 1 = 0.

Thus,

b = 𝛾
−1Σ−1(𝜇 + 𝜆1d).

Let us solve 𝜆 from b′1d = 1, which leads to

𝛾
−11′

dΣ
−1
𝜇 + 𝜆𝛾−11′

dΣ
−11d = 1,

This leads to

𝜇1 − r −
𝜎12

𝜎
2
2

(𝜇2 − r) + b1𝛾

(
𝜎

2
12

𝜎
2
2
− 𝜎2

1

)
= 0.
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and finally

𝜆 =
1 − 𝛾−11′

dΣ
−1
𝜇

𝛾−11′
dΣ−11d

.

11.1.2.2 Two Risky Assets
Let us have two stocks and put the proportion 1 − b to the first stock and pro-
portion b to the second stock. Now,

Rp
t+1 = (1 − b)R1

t+1 + bR2
t+1.

Let the expected returns of the stocks be EtR1
t+1 = 𝜇1, EtR2

t+1 = 𝜇2 and let the
variances of the returns be Vart(R1

t+1) = 𝜎
2
1 , Vart(R2

t+1) = 𝜎
2
2 . Denote the covari-

ance of the returns by Covt(R1
t+1,R

2
t+1) = 𝜎12. We have

EtR
p
t+1 −

𝛾

2
Vart

(
Rp

t+1
)

= 𝜇1 + b(𝜇2 − 𝜇1) −
𝛾

2
[
(1 − b)2

𝜎
2
1 + b2

𝜎
2
2 + 2(1 − b)b𝜎12

]
= 𝜇1 −

𝛾

2
𝜎

2
1 + b

[
𝜇2 − 𝜇1 − 𝛾

(
𝜎12 − 𝜎2

1
)]

− b2 𝛾

2
(
𝜎

2
1 + 𝜎

2
2 − 2𝜎12

)
.

Setting the derivative with respect to b to zero and solving for b gives

b = 1
𝛾

𝜇2 − 𝜇1 − 𝛾
(
𝜎12 − 𝜎2

1
)

𝜎
2
1 + 𝜎

2
2 − 2𝜎12

. (11.6)

Note that the maximizer brest under the restriction that b ∈ [0, 1] is obtained
by projecting the unrestricted solution:

brest = min{max{0, b}, 1}, (11.7)

where b is given in (11.6).

11.2 Minimizing Variance under a Sufficient Expected
Return

We consider the minimization of the variance under a condition that the
expected return should be sufficiently large. Section 11.2.1 considers portfolios
where the risk-free rate is included. Section 11.2.2 considers portfolios without
the risk-free rate.

11.2.1 Minimizing Variance with the Risk-Free Rate

We consider first the case of d risky assets and the risk-free investment, and
then the case of one risky assets and the risk-free investment.



11.2 Minimizing Variance under a Sufficient Expected Return 373

11.2.1.1 Several Risky Assets and the Risk-Free Rate
Let us consider the case of d risky assets and a risk-free investment. We want
to find the weight vector minimizing

b′Σb under b′
𝜇 + (1 − b′1d)r = 𝜇0, (11.8)

where 𝜇0 ∈ R. We should choose 𝜇0 ≥ r, so that the required expected return
is not smaller than the risk-free return.

The return vector of the risky investments is denoted by Rt+1, the expectation
vector is 𝜇, the covariance matrix is Σ, and the risk-free return is r. The propor-
tion 1 − b′1d is invested in the risk-free asset. The return of the portfolio is

Rp
t+1 = b′Rt+1 + (1 − b′1d)r.

The expected return of the portfolio is
b′
𝜇 + (1 − b′1d)r.

Let us find b minimizing
1
2

b′Σb

under the constraint
b′
𝜇 + (1 − b′1d)r = 𝜇0,

where 𝜇0 ∈ R is a constant. Define the Lagrange function

L(b, 𝜆) = 1
2

b′Σb + 𝜆[𝜇0 − b′
𝜇 − (1 − b′1d)r],

where 𝜆 ∈ R is the Lagrange multiplier. We solve the equation

0 = 𝜕

𝜕b
L(b, 𝜆) = Σb + 𝜆(1dr − 𝜇)

to get
b = 𝜆Σ−1(𝜇 − 1dr).

The constraint can be written as
b′(𝜇 − r1d) = 𝜇0 − r,

which implies
𝜆(𝜇 − r1d)′Σ−1(𝜇 − r1d) = 𝜇0 − r

and

𝜆 =
𝜇0 − r

(𝜇 − r1d)′Σ−1(𝜇 − r1d)
.

Thus, the vector of the weights of the risky investments is

b =
𝜇0 − r

(𝜇 − r1d)′Σ−1(𝜇 − r1d)
Σ−1(𝜇 − r1d).
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11.2.1.2 One Risky Asset and the Risk-Free Rate
Let us consider the case where we have one risky asset with return Rt+1 and a
risk-free investment with return r. Let the expected return of the risky asset be
EtRt+1 = 𝜇 and the variance Vart(Rt+1) = 𝜎

2. Let us invest the proportion b to
the risky asset and the proportion 1 − b to the risk-free asset. The return of the
portfolio is

Rp
t+1 = bRt+1 + (1 − b)r.

The expected return of the portfolio is
EtR

p
t+1 = b𝜇 + (1 − b)r = r + b(𝜇 − r)

and the variance of the portfolio is
Vart

(
Rp

t+1
)
= b2

𝜎
2
.

We want that the expected return should be at least 𝜇0 ∈ R and we minimize
the variance under this condition. Thus, we want to find b minimizing

1
2

b2
𝜎

2

under the constraint
r + b(𝜇 − r) = 𝜇0.

Define the Lagrange function

L(b, 𝜆) = 1
2

b2
𝜎

2 + 𝜆[𝜇0 − r − b(𝜇 − r)],

where 𝜆 ∈ R is the Lagrange multiplier. The solution of the equation

0 = 𝜕

𝜕b
L(b, 𝜆) = 𝜎

2b − 𝜆(𝜇 − r)

is
b = 𝜆

𝜇 − r
𝜎2 .

The constraint b(𝜇 − r) = 𝜇0 − r implies 𝜆 = 𝜎
2(𝜇0 − r)∕(𝜇 − r)2

. Thus, the
weight of the risky investment is

b =
𝜇0 − r
𝜇 − r

.

When r ≤ 𝜇0 ≤ 𝜇, then 0 ≤ b ≤ 1.

11.2.2 Minimizing Variance without the Risk-Free Rate

We want to choose the weight vector b minimizing
b′Σb under b′

𝜇 = 𝜇0, b′1d = 1, (11.9)
where 𝜇0 ∈ R, and we should choose 𝜇0 ≥ r, so that the required expected
return is not smaller than the risk-free return.
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Let us consider portfolios of d risky assets and exclude the risk-free invest-
ment. The return vector of the risky investments is denoted by Rt+1. Let us
denote 𝜇 = EtRt+1 and Σ = Covt(Rt+1). Then,

Et(b′Rt+1) = b′
𝜇, Vart(b′Rt+1) = b′Σb.

We minimize
1
2

b′Σb

under the constraints
b′
𝜇 = 𝜇0, b′1d = 1,

where 1d is the column vector of length d whose elements are equal to 1, and
𝜇0 ∈ R is a constant. The Lagrange function is

L(b, 𝜆1, 𝜆2) =
1
2

b′Σb + 𝜆1(𝜇0 − b′
𝜇) + 𝜆2(1 − b′1d),

where 𝜆1, 𝜆2 ∈ R are the Lagrange multipliers. The solution of the equation2

0 = 𝜕

𝜕b
L(b, 𝜆1, 𝜆2) = Σb − 𝜆1𝜇 − 𝜆21d

is
b = Σ−1(𝜆1𝜇 + 𝜆21d).

To get 𝜆1 and 𝜆2 we need to solve the equations{
𝜇0 = b′

𝜇 = 𝜆1𝜇
′Σ−1

𝜇 + 𝜆2𝜇
′Σ−11d,

1 = b′1d = 𝜆11′
dΣ

−1
𝜇 + 𝜆21′

dΣ
−11d.

Denoting 𝛼 = 𝜇
′Σ−1

𝜇, 𝛽 = 1′
dΣ

−11d, and 𝛿 = 1′
dΣ

−1
𝜇, we get

𝜆1 =
𝛽𝜇0 − 𝛿
𝛼𝛽 − 𝛿2 , 𝜆2 =

𝛼 − 𝛿𝜇0

𝛼𝛽 − 𝛿2 .

Then, the vector of the portfolio weights is

b = 1
e
Σ−1[(𝛼1d − 𝛾𝜇) + 𝜇0 (𝛽𝜇 − 𝛾1d)],

where e = 𝛼𝛽 − 𝛿2.

11.3 Markowitz Bullets

A Markowitz bullet is a scatter plot of points, where each point corresponds to
a portfolio, the x-coordinate of a point is the standard deviation of the return
of the portfolio, and the y-coordinate of a point is the expected return of the

2 We have that 𝜕

𝜕b
b′Σb = (Σ + Σ′)b, and for symmetric matrices (Σ + Σ′)b = 2Σb.



376 11 Markowitz Portfolios

(a)

M
ea

n

Standard deviation
(b)

M
ea

n
Standard deviation

0.0 0.5 1.0 1.5 2.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Figure 11.1 Markowitz bullets: Portfolios of two risky assets when correlation varies. (a) Shown
are long-only portfolios that can be obtained from two risky assets when correlation between
the risky assets varies between −1 and 1. (b) Shorting is allowed.

portfolio. The scatter plot is called a bullet because the boundary of the scatter
plot is a part of a hyperbola, and thus its shape resembles the shape of a bullet.3

Figure 11.1 plots a collection of portfolios which are obtained from two
risky assets. The expected net returns of the assets are 1 and 0.5. The standard
deviations are 2 and 1. The correlation between the returns of the risky assets
varies from −1 to 1. Panel (a) shows long-only portfolios. The blue wedge on
the left shows all portfolios that can be obtained when correlation is −1. The
orange vector on the right shows all portfolios that can be obtained when
correlation is 1. When correlation is −1, then there exists a portfolio with
zero variance. The portfolio with zero variance should have the same return as
the risk-free rate, to exclude arbitrage. Panel (b) shows portfolios that can be
obtained from the two risky assets when shorting is allowed. The weight of an
asset varies between −0.5 and 1.5.

Figure 11.2 shows portfolios obtained from three risky assets as a blue area.
The three risky assets are shown as orange points. The correlations between
the risky assets are 0.2, 0.5, and 0.6. Panel (a) shows all long-only portfolios
and panel (b) shows portfolios when shorting is allowed with restrictions.
The shapes of the blue areas are irregular but the left boundaries are parts of
hyperbolas.

Figure 11.3 shows a Markowitz bullet of long-only portfolios, when the
risk-free rate is included and the borrowing is allowed. Panel (a) shows as a
blue curve long-only portfolios whose components are two risky assets with

3 A hyperbola should not be confused with a parabola, which can be obtained as a graph of a
polynomial of degree two. For example, the graph of x → 1∕x is a hyperbola, and the points (x, y)
which satisfy x2∕a2 − y2∕b2 = 1 constitute a hyperbola, when a, b > 0 are constants.
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Figure 11.2 Markowitz bullets: Portfolios of three risky assets. (a) Long-only portfolios that can
be obtained from three risky assets. (b) Portfolios when shorting is allowed.
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Figure 11.3 Markowitz bullet: Long-only portfolios and leveraging. Panel (a) shows long-only
portfolios for two risky assets and the risk-free investment. Panel (b) shows portfolios for
two risky assets and the risk-free investment when the weight of the risk-free investment is
allowed to be negative, which means the borrowing is allowed.

correlation −0.4. The green point shows the minimum variance portfolio.
The black point shows the risk-free investment whose net return is 0.1 and
the variance is zero. The red point shows the tangency portfolio. The red line
joining the risk-free investment and the tangency portfolio corresponds to the
long-only portfolios whose components are the risk-free investment and the
tangency portfolio. The yellow area corresponds to the long-only portfolios
whose components are the risk-free investment and one of the portfolios on
the blue curve; these are all possible long-only portfolios. Panel (b) shows
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portfolios from two risky assets and the risk-free investment when the weight
of the risk-free investment is allowed to be negative, which amounts to
allowing leveraging by borrowing.

We can use Figure 11.3 to define the concepts of the minimum variance port-
folio, the tangency portfolio, and the efficient frontier.

1) The minimum variance portfolio is the portfolio of risky assets whose vari-
ance is the smallest among all portfolios of risky assets. When the risk-free
rate is included, then the risk-free investment has the minimum variance
zero.

2) Efficient frontier is the collection of those portfolio vectors that have the
expected return greater than or equal to the expected return of the mini-
mum variance portfolio:
In Figure 11.3(a) the efficient frontier without the risk-free rate is the part of
the blue curve going upward from the red point, but when the risk-free rate
is included, then the red vector from the risk-free asset to the tangency port-
folio, followed by the blue curve shows the efficient frontier. The efficient
frontier consists of possible portfolios a rational investor should consider,
because these portfolios have a higher expected return with the same vari-
ance than other portfolios. Adding the risk-free rate gives the possibility to
get portfolios with a smaller standard deviation than any of the pure stock
portfolios: some of the portfolios on the red vector are such that the stan-
dard error is smaller than the standard deviation of any of the pure stock
portfolios.
In Figure 11.3(b) borrowing is allowed. The borrowed money is invested
in the stocks. Now the efficient frontier is the red half line starting from the
risk-free investment and passing the tangency portfolio. We see that a ratio-
nal investor chooses only portfolios that are a combination of the risk-free
investment and the tangency portfolio. The other portfolios have a smaller
expected return for the same variance.

3) The tangency portfolio is a portfolio which has the largest Sharpe ratio.
Indeed, the tangency portfolio maximizes the slope of the vector drawn
from the risk-free asset to a pure stock portfolio. The slope of the vector
from the point (0,Rf ) to the point (sd(Rp

t ),ERp
t ) is equal to the Sharpe ratio

(ERp
t − Rf )∕sd(Rp

t ), where Rf is the return of the risk-free asset and Rp
t is the

return of a portfolio.
4) It can be argued that the tangency portfolio, shown as the red point in the

blue curve, is in fact the market portfolio, because the rational investor buys
only a combination of the tangency portfolio and the risk-free asset, and
thus the price of the tangency portfolio is in the equilibrium equal to the
price of the market portfolio.

Figure 11.4 plots standard deviations and means for a collection of portfolios
when shorting of a stock is allowed. Panel (a) shows portfolios from two risky
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Figure 11.4 Markowitz bullet: Shorting and leveraging. Panel (a) shows portfolios from two
risky assets, and from two risky assets and the risk-free investment. Panel (b) shows portfolios
from two risky assets and a risk-free investment when the weight of the risk-free investment
is allowed to be negative, so that borrowing is possible.

assets. The blue part shows the long-only portfolios, the orange part shows the
portfolios where the less risky stock is shorted, and the purple part shows the
portfolios where the more risky stock is shorted. The green bullet shows the
minimum variance portfolio, the black bullet shows the risk-free investment,
and the red bullet shows the tangency portfolio. Panel (b) shows portfolios of
two risky assets and a risk-free investment when the weight of the risk-free
investment is allowed to be negative, which amounts to allowing leveraging by
borrowing.

Figure 11.5 shows how increasing the number of basis assets makes the
Markowitz bullet larger. The blue hyperbola shows portfolios that can be
obtained from two risky assets, the green area shows portfolios that can be

Figure 11.5 Markowitz bullet: Uncorre-
lated assets. Markowitz bullets are shown
for an increasing number of assets: blue
curve shows portfolios from two risky
assets, the green area portfolios from
three risky assets, and the yellow area
portfolios from four risky assets, when the
risky assets are uncorrelated.
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Figure 11.6 Markowitz bullet: S&P 500 components. (a) A scatter plot of annualized sample
standard deviations and means of excess returns of a collection of stocks in the S&P 500 index.
(b) A kernel density estimate of the distribution of the Sharpe ratios.

obtained from three risky assets, and the yellow area shows portfolios that can
be obtained from four risky assets. The orange points show the risky assets.
The covariances between the returns of the risky assets are zero.

Figure 11.6 studies a Markowitz bullet of the daily returns of S&P 500 com-
ponents. The data is described in Section 2.4.5. Panel (a) shows a scatter plot
of the annualized sample standard deviations and annualized sample means of
the excess returns of the stocks included in the S&P 500 components data. The
red bullet shows the location of the S&P 500 index. The blue bullet is at the
origin: we take the risk-free rate equal to zero because the Markowitz bullet is
computed from the excess returns.4 Panel (b) shows a kernel density estimate
of the distribution of the Sharpe ratios of the stocks included in S&P 500 com-
ponents data. The red vertical line indicates the Sharpe ratio of the S&P 500
index. We see that the S&P 500 is not a tangent portfolio, since its Sharpe ratio
is smaller than the most Sharpe ratios of the individual stocks.

11.4 Further Topics in Markowitz Portfolio Selection

11.4.1 Estimation

In order to apply Markowitz formulas, we have to estimate the vector 𝜇 of
expected returns and the covariance matrix Σ of the returns of the risky assets.

4 The risk-free rate is computed form the yields of the US 1-month bill: the monthly yield is
divided by 22 to obtain a risk-free rate for the one day period. The 1-month bill data is described
in Section 2.4.3.
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The sample means, sample variances, and sample covariances could be
applied. However, we have discussed many other methods. Chapter 6 dis-
cusses various prediction methods that could be applied to estimate (predict)
𝜇 = EtRt+1. Chapter 7 discusses various methods for volatility prediction that
could be used to estimate 𝜎2

i = Vart(Ri
t+1), i = 1,… , d. Analogous methods

can be used to estimate the covariances 𝜎ij = Covt(Ri
t+1,R

j
t+1), i, j = 1,… , d,

i ≠ j. For example, Section 5.4 considers multivariate time series models which
are relevant for covariance prediction.

In the estimation of the covariance matrix Σ we have to take the curse
of dimensionality into account, since the number d of risky assets can be
high relative to the sample size. Note that the covariance matrix involves
only the pairwise covariances, so that high dimensionality does not make it
difficult to estimate any single component of the matrix Σ. However, there are
d(d − 1)∕2 covariances, and a simultaneous estimation of such a large number
of parameters is difficult.

11.4.2 Penalizing Techniques

Let us consider minimization of the variance of the portfolio return under a
minimal requirement for the expected return. Let Rt+1 be the return vector of
risky assets with EtRt+1 = 𝜇 and Vart(Rt+1) = Σ. Then the expected return of
the portfolio is b′

𝜇 and the variance is b′Σb, where b is the vector of portfolio
weights. We want to find weights b such that

b′Σb

is minimized under the constraints

b′
𝜇 = 𝜇0, b′1d = 1,

where 𝜇0 ∈ R is the requirement for the expected return of the portfolio. The
minimization problem is equivalent to finding b such that

Et(b′Rt+1 − 𝜇0)2

is minimized under the same constraints. Let us assume to have observed
historical returns R1,… ,RT of the basis assets. The empirical version of the
minimization problem is to find b such that

T−1∑
t=0

(b′Rt+1 − 𝜇0)2

is minimized under the constraints

b′
𝜇̂ = 𝜇0, b′1d = 1,
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where 𝜇̂ = T−1 ∑T−1
t=0 Rt+1. Brodie et al. (2009) proposed to add a penalization

term and find b minimizing
T−1∑
t=0

(b′Rt+1 − 𝜇0)2 + 𝜏
d∑

i=1
|bi|,

under the same constraints, where 𝜏 > 0 is the regularizing parameter. The
approach is similar to the approach in Lasso regression of Tibshirani (1996).

DeMiguel et al. (2009) showed that it is difficult to significantly or consistently
outperform the naive strategy in which each available asset is given an equal
weight in the portfolio.

11.4.3 Principal Components Analysis

Let 𝜇 be the d vector of the expected returns of the d risky assets. Given the
d vector of portfolio weights b, the return of the portfolio is b′Rt+1. Let Σ be
the d × d covariance matrix of the returns of the risky assets. We can make the
principal component analysis of the covariance matrix and write

Σ = UΛU ′
,

where U is the d × d matrix whose columns are the eigenvectors of Σ and Λ
is the d × d diagonal matrix, whose diagonal elements are the eigenvalues of
Σ. We get d uncorrelated principal portfolios whose return vector is U ′Rt+1.
We can think of these principal portfolios as new basic assets and write any
portfolio in terms of the principal components. If the original weights are b,
then the new weights are b̃ = U ′b. Now we can calculate the variance of the
portfolio as

Var(b′Rt+1) = b′Σb =
d∑

i=1
b̃2

i 𝜆i,

where 𝜆1,… , 𝜆d are the eigenvalues of Σ. We can define the diversification dis-
tribution

pi =
b̃2

i 𝜆i

Vart(b′Rt+1)
,

where i = 1,… , d. We can say that a portfolio is better diversified, if the diversi-
fication distribution is closer to the uniform distribution. This can be measured
by

exp

{
−

d∑
i=1

piloge pi

}
.

Partovi and Caputo (2004) used principal portfolios in their discussion of
efficient frontier, and Meucci (2009) presented the idea of the diversification
distribution.
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11.5 Examples of Markowitz Portfolio Selection

We illustrate Markowitz portfolio selection using as the basic assets the S&P
500 and Nasdaq-100 indexes. The daily data set of S&P 500 and Nasdaq-100 is
described in Section 2.4.2.

We consider portfolio selection without the risk-free rate. We maximize the
variance penalized expected return (11.5) both without restrictions and with
the restriction to the long-only weights.

Figure 11.7 shows the time series of the Markowitz weights of S&P 500.
Panel (a) shows the unrestricted Markowitz weights and panel (b) shows
the long-only Markowitz weights. The risk aversion parameter takes values
𝛾 = 2, 5, 10, 50,100 (black, red, blue, green, and orange). When the weight of
S&P 500 is denoted by b, then the weight of Nasdaq-100 is 1 − b. We have
estimated the mean vector and the covariance matrix sequentially, using the
sample means and the sample covariance matrices. We start when there are
1000 observations (4 years of data). The weight of S&P 500 increases when the
risk aversion parameter 𝛾 increases. After year 2000, the weight of S&P 500
jumps higher.

Figure 11.8 shows the Sharpe ratios, annualized means and annualized stan-
dard deviations, as a function of risk aversion parameter 𝛾 = 2, 5, 10, 50,100.
Panel (a) shows the Sharpe ratios. The black line with labels “1” is obtained
when the unrestricted weights are used and the green line with labels “2” is
obtained when the long-only weights are used. The horizontal lines show the
Sharpe ratios for S&P 500 (blue) and Nasdaq-100 (red). The risk-free rate is
deduced from the 1-month US bill rates, described in Section 2.4.3. The high-
est value of the Sharpe ratio is obtained for small risk aversion. When the risk
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Figure 11.7 S&P 500 and Nasdaq-100: Markowitz weights. The time series of the weights for
the S&P 500. (a) The unrestricted weights and (b) the long-only weights. The risk aversion
parameter takes values 𝛾 = 2, 5, 10, 50,100 (black, red, blue, green, and orange).
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Figure 11.8 S&P 500 and Nasdaq-100: Sharpe ratios, means, and standard deviations. (a) The
Sharpe ratios as a function of 𝛾 ; (b) the annualized means; (c) the annualized standard devi-
ations. The black line with labels “1” is obtained when the unrestricted weights are used and
the green line with labels “2” is obtained when the long-only weights are used.

aversion increases, the Sharpe ratios of the Markowitz portfolio approach the
Sharpe ratio of S&P 500. Panel (b) shows the annualized means as a function
of the risk aversion and panel (c) shows the annualized standard deviations.
Both means and standard deviations increase sharply when the risk aversion
parameter decreases.
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12

Dynamic Portfolio Selection

Dynamic portfolio selection means here such portfolio selection in a multi-
period model where the portfolio weights are repeatedly rebalanced at the
beginning of every period, using information available at the beginning of
each period. We apply the methods of Chapter 6, where prediction of asset
returns is studied, and the methods of Chapter 7, where prediction of volatility
is studied.

The return of a portfolio is a linear combination of the returns of the portfolio
components. Let us exclude the risk-free rate for a moment, so that the return
of the portfolio is given by

Rp
t+1 = b′

tRt+1,

where Rp
t+1 is the gross return the portfolio, bt = (b1

t ,… , bd
t ) is the vector of

portfolio weights, and Rt+1 = (R1
t+1,… ,Rd

t+1) is the vector of the gross returns
of the risky assets. We can consider the following approaches to choose the
portfolio weights bt .

1) Maximize the expected return

EtR
p
t+1 = b′

t𝜇t, (12.1)

where 𝜇t = EtRt+1.
2) Maximize the variance penalized expected returns

EtR
p
t+1 −

𝛾

2
Vart

(
Rp

t+1
)
= b′

t𝜇t −
𝛾

2
b′

tΣtbt, (12.2)

where 𝛾 ≥ 0 is the risk-aversion parameter, 𝜇t = EtRt+1, and Σt = Covt(Rt+1)
is the covariance matrix.

3) Maximize the expected utility

EtU
(
Rp

t+1
)
= EtU

(
b′

tRt+1
)
, (12.3)

where U is a utility function.

Nonparametric Finance, First Edition. Jussi Klemelä.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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The use of solely the expected returns in portfolio selection is contrary
to the intuition that both risk and the expected return should play a role in
portfolio selection. However, it turns out that we obtain useful benchmarks
using strategies that are based solely on the expected returns. The strategies
that are based solely on the expected returns are often “trend following” or
“momentum” strategies. A partial explanation for the success of the trend
following and related strategies comes from the fact that even when the risk is
not explicitly involved, these strategies make severe restrictions on the allowed
portfolio weights. On the other hand, trend following strategies often provide
“derived assets” or “factors,” which are included as an asset into an otherwise
diversified portfolio.

An important message of the chapter is that a two asset trend following brings
better results than a one asset trend following. In a two asset trend following
we follow the trend of the better asset, whereas in a one asset trend following
we move to the risk-free rate, or short the asset, in those times where the trend
is downwards. Thus, the better success of the two asset trend following can be
explained by the fact that in the two asset trend following we do not have to
exit the market, or short the market, but we can always stay invested.

A second important message of the chapter is that we can obtain almost as
good results with return prediction as using trend following. Our return pre-
diction model is not optimized, since we use only the dividend yield and term
spread as the predicting variables of the linear regression. It is known that the
dividend yield has lost some of its predicting power, since companies have sub-
stantially increased stock buy backs, instead of paying dividends. Thus, the
approach of return prediction can be considered as as a fundamentally vali-
dated approach, although it is nontrivial to beat trend following with a return
prediction model.

In (12.2) and (12.3) the risk aversion is incorporated in the maximization
problem. In (12.1) we have a linear objective function, whereas in (12.2) we
have a quadratic objective function. Section 11.1 describes how the maximiza-
tion of (12.2) can be done. The maximization of (12.3) seems to be very difficult,
since the portfolio vector bt is inside the utility function, and we have to predict
U(b′

tRt+1) separately for each portfolio vector. However, the set of the allowed
portfolio vectors can be chosen to be quite small, so that the maximization
problem is tractable. Also, the numerical methods of convex optimization can
be used, as is done in Györfi et al. (2006).

In our examples, we concentrate on the cases with one risky asset and two
risky assets. Studying only these simplest cases gives insight into the structure
of the problem.

Section 12.1 reviews prediction methods related to the utility maximization
and Markowitz criterion. Section 12.2 explains how backtesting is used to eval-
uate trading strategies. Section 12.3 reviews trading strategies using one risky
asset. Section 12.4 reviews trading strategies using two risky assets.
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12.1 Prediction in Dynamic Portfolio Selection

We consider single period portfolio selection with d risky assets. We describe
how the portfolio weights can be chosen by maximizing the expected returns,
by maximizing the expected utility, or by maximizing the Markowitz criterion.
The examples are studied in Sections 12.3 and 12.4, but in these examples we
study only the maximization of the expected returns and the maximization of
the Markowitz criterion. Examples of the maximization of the expected utility
are studied in Klemelä (2014, Section 3.12.1).

12.1.1 Expected Returns in Dynamic Portfolio Selection

A portfolio can be selected using return forecasting. Tactical return forecast-
ing approaches are timing approaches that can be divided into two categories:
(1) single asset approaches that choose an exposure to a single asset at each time
point and (2) cross-asset selection approaches that select portfolio weights for a
collection of assets at each time point. Note that single asset approaches include
trading with a single asset pair, like the yield spread between corporate credits
and government bonds.

In timing approaches the decision is made based on indicators. For example,
we can consider a single asset approach that goes long one unit of Trea-
suries, if equity markets have performed poorly, otherwise goes short one
unit of Treasuries. Multiple indicators can be aggregated in several ways.
For example, one can take an average of ±1 trading signals. Another way
to aggregate multiple indicators is to use regression analysis, for example,
linear regression. The return of the asset, or the excess return of the asset, is
predicted with a regression method and the size of the position is decided by
the predicted value.

In cross-asset selection approaches, we can rank each asset based on a crite-
rion or an aggregation of criterions. Then we buy the top-ranked assets and sell
the bottom-ranked assets.

See Ilmanen (2011, Chapter 24) about tactical return forecasting approaches.
We describe strategies where the portfolio weights are chosen solely on the

basis of the estimated expected returns. The expected returns can be estimated
using moving averages and using regression on economic indicators.

12.1.1.1 Trend Following
We call trend following such strategies where moving averages are used to esti-
mate the expected returns. Trend following strategies are also called momen-
tum strategies. Momentum strategies are mentioned in Section 10.4, where
they appear as factors to define the alpha of a portfolio. There are many variants
of trend following and momentum strategies; see Ilmanen (2011, Chapter 14),
where the focus is on the commodity trend following strategies.
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In the simplest trend following strategy the expected return is estimated
solely by the previous period return. The simplest trend following can be
generalized to the use of moving averages to estimate the expected returns.

One Step Trend Following We define one step trend following so that if the pre-
vious period return of the risky asset is larger than the risk-free rate, then the
weight of the risky asset is one and the weight of the risk-free rate is zero. Oth-
erwise, the weight of the risky asset is zero and the weight of the risk-free rate
is one.

More formally, the set of the allowed portfolio vectors is

{(1, 0), (0, 1)}, (12.4)

the first asset is the risk-free rate, and the second asset is the risky asset. The
prediction of the next period return of the risky asset is f̂ (t) = Rt , where Rt is
the current return of the risky asset. Let rt+1 be the risk-free rate for the period
t → t + 1. The weight of the risky asset is

b̂t =
{

1, if f̂ (t) > rt+1,

0, if f̂ (t) ≤ rt+1.
(12.5)

Trend Following with Moving Averages We choose the allowed portfolio vectors
as in (12.4) and the portfolio selection rule as in (12.5), but the prediction of
f̂ (t) is now a moving average estimator.

Moving averages were discussed in Section 6.1.1. A moving average estimator
of the expected return of a risky asset is

f̂ (t) =
t∑

i=1
piRi, (12.6)

where R1,… ,Rt are the historical returns and p1,… , pt are weights satisfying
p1 ≤ · · · ≤ pt and

∑t
i=1 pi = 1, as in (6.2).

One step trend following can be obtained as a special case of using weighted
averages. When the weights are such that pt = 1 and p1,… , pt−1 = 0, then
f̂ (t) = Rt .

12.1.1.2 Regression to Estimate the Expected Returns
The first generalization of the trend following consists of replacing a moving
average with a regression function estimate. We can choose the allowed port-
folio vectors as in (12.4), and the portfolio selection rule as in (12.5), but the
prediction f̂ (t) is now given by a regression estimator.

We use regression data (Xi,Yi), where Yi = Ri+1, and Xi is a vector of eco-
nomic or technical indicators, for i = 1,… , t − 1. Linear and kernel estimators
are defined in Section 6.1.2, but we give in the following section a summary of
the definitions, specialized for the current setting.
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Linear Regression A linear regression function estimator is

ĝt(x) = 𝛼̂ + 𝛽′x, (12.7)

where 𝛼̂ and 𝛽 are the least squares estimates, calculated from the regression
data (Xi,Yi), where Yi = Ri+1, i = 1,… , t − 1. Now ĝt(x) is the prediction for the
time t + 1 return, when Xt = x is observed. We choose the prediction

f̂ (t) = ĝt(Xt). (12.8)

Kernel Regression In kernel regression the regression function estimate is

ĝt(x) =
t−1∑
i=1

pt(x) Yi, (12.9)

where

pt(x) =
Kh(Xt − x)∑t−1

u=1 Kh(Xu − x)
,

Kh(x) = K(x∕h) is the scaled kernel function, K ∶ Rd → R is the kernel func-
tion, and h > 0 is the smoothing parameter. We choose the prediction

f̂ (t) = ĝt(Xt). (12.10)

12.1.1.3 A General Setting of Trend Following and Related Strategies
The second generalization of the trend following consists of replacing the col-
lection of the allowed portfolio vectors (12.4) with a more general collection.
We allow now more than two basic assets. However, the portfolio weights are
chosen solely on the basis of the estimated expected returns,

Let us have d + 1 basic assets, with expected one period returns

𝜇0 = EtR0
t+1,… , 𝜇d = EtRd

t+1,

and their estimates

𝜇̂0,… , 𝜇̂d.

Note that if R0
t+1 is the risk-free rate, then the return of this asset is already

known at time t. We choose the portfolio weight

b̂t = argmax
b̄∈B

b̄′
𝜇̂, (12.11)

where 𝜇̂ = (𝜇̂0,… , 𝜇̂d)′ and B is the set of the allowed portfolio vectors.
Various sets of the allowed portfolio vectors are described in (9.16)–(9.22).

For example, in the case of three basic assets the set of all long-only weights is
given by

B = {(1 − b1 − b2
, b1
, b2) ∶ (b1

, b2) ∈ [0, 1]2}.
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Note that since we are maximizing a linear functional in (12.11), the optimal
solution lies in the corners of the simplex, and the same solution is obtained
when we choose

B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

In both cases everything is invested into the asset with the best predicted
return. To get different solutions, we can choose, for example,

B = {(0.5, 0.5, 0), (0.5, 0, 0.5), (0, 0.5, 0.5)}.

Now equal weights 0.5 are put into the two assets with the highest predicted
returns.

12.1.2 Markowitz Criterion in Dynamic Portfolio Selection

The Markowitz criterion is defined as the variance penalized expected return.
We want to maximize

EtR
p
t+1 −

𝛾

2
Vart

(
Rp

t+1
)

over the portfolio vectors, where 𝛾 ≥ 0 is the risk-aversion parameter. The nota-
tions Et and Vart mean that we take the expectation and the variance condition-
ally on the information available at time t. Section 11.1 considered this problem.

The return of a portfolio is a linear combination of the returns of the portfolio
components:

Rp
t+1 =

(
1 − 1′

dbt
)

R0
t+1 + b′

tRt+1,

where Rp
t+1 is the gross return of the portfolio, bt = (b1

t ,… , bd
t ) is the vector

of portfolio weights, R0
t+1 is the risk-free rate, and Rt+1 = (R1

t+1,… ,Rd
t+1) is the

vector of the gross returns of the risky assets. We can write

EtR
p
t+1 −

𝛾

2
Vart

(
Rp

t+1
)
=
(
1 − 1′

dbt
)

R0
t+1 + b′

t𝜇t −
𝛾

2
b′

tΣtbt,

where 𝜇t = EtRt+1 and Σt = Covt(Rt+1) is the covariance matrix.
The expected returns 𝜇t can be estimated using moving averages as in (12.6),

linear regression as in (12.8), or kernel regression as in (12.10).
The diagonal of Σt contains the conditional variances. Estimation of the con-

ditional variances can be made using the methods of Chapter 7.
The off-diagonal elements of Σt are the conditional covariances. The condi-

tional covariances can be estimated analogously as conditional variances. The
moving average estimate of the covariance matrix Σt is defined by

Σ̂t = ĝ(t) − f̂ (t)f̂ (t)′,

where

ĝ(t) =
t∑

i=1
pi RiR′

i , f̂ (t) =
t∑

i=1
pi Ri,
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R1,… ,Rt are the historical returns and p1,… , pt are weights satisfying p1 ≤

· · · ≤ pt and
∑t

i=1 pi = 1, as in (6.2).

12.1.3 Expected Utility in Dynamic Portfolio Selection

Our purpose is to find a good approximation to the portfolio vector bo
t that

maximizes the expected utility:

bo
t = argmax

bt∈B
EtU

(
b′

tRt+1
)
, (12.12)

where U ∶ R → R is a utility function and Rt+1 = (R0
t+1,… ,Rd

t+1)
′ is the vector

of the single period returns of the basis assets. Collection B is the set of the
allowed portfolio vectors. Set B is a subset of the collection of all vectors whose
components sum to one:

B ⊂

{
(b0
,… , bd) ∶

d∑
i=0

bi = 1

}
. (12.13)

Utility functions are discussed in Section 9.2.2. The notation Et means that we
take the expectation conditionally on the information available at time t.

In order to approximate bo
t in (12.12), we have to estimate the expected util-

ity transformed return EtU(b′
tRt+1) for each portfolio vector bt ∈ B. Estimation

of the conditional expectation EtU(b′
tRt+1) is equivalent to the prediction of

U(b′
tRt+1), when the best prediction is defined as the minimizer of the mean

squared prediction error (see Section 5.3.1).

12.1.3.1 Time Space Prediction
The formula for the weighted average in (6.1) gives an estimator for EtU(b′Rt+1).
The estimator is

f̂b(t) =
t∑

i=1
piU(b′Ri), (12.14)

where p1,… , pt are the weights summing to one and we have historical data
R1,… ,Rt of the returns of the portfolio components. The portfolio vector at
time t is

b̂t = argmax
b∈B

f̂b(t).

12.1.3.2 State Space Prediction
Let the available information be described by the vector Xt at time t. Possible
choices for Xt are discussed in Section 6.3. The expectation Et can be taken as
the conditional expectation

EtU(b′
tRt+1) = E

[
U(b′

tRt+1) |Xt
]
.
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Define, for a fixed portfolio vector b ∈ RN with
∑N

i=1 bi = 1, the response
variable

Yb,t = U(b′Rt+1).

We assume that (Yb,i,Xi), i = 1,… , t − 1, are identically distributed, and denote
by (Yb,X) a random vector that has the same distribution as (Yb,i,Xi). Define the
regression function

fb(x) = E(Yb |X = x), x ∈ Rp
.

The regression function is estimated by

f̂b,t ∶ Rp → R, (12.15)
using data (Yb,i,Xi), i = 1,… , t − 1. The function

b̂t(x) = argmax
b∈B

f̂b,t(x)

can be considered as an estimate of the theoretical weight function b ∶ Rp → B,
defined by

b(x) = argmax
b∈B

fb(x).

At time t we choose the portfolio vector

b̂t(Xt).

The regression function estimator in (12.15) can be a linear estimator or
a kernel estimator, for example. Linear and kernel estimators are defined in
Section 6.1.2, but a summary of the definitions, specialized for the current
setting, is given in the following sections.

Linear Regression A linear regression function estimator is

f̂b,t(x) = 𝛼̂ + 𝛽′x, (12.16)

where 𝛼̂ and 𝛽 are the least squares estimates, calculated with the regression
data (Xi,Yb,i), where Yb,i = U(b′Ri+1), i = 1,… , t − 1. Now f̂b,t(x) is the pre-
diction for time t + 1 utility transformed return, when Xt = x is observed.
We choose the portfolio weights bt = argmaxbf̂b,t(Xt).

Kernel Regression In kernel regression the regression function estimate is

f̂b,t(x) =
t−1∑
i=1

pt(x) Yb,i, (12.17)

where

pt(x) =
Kh(Xt − x)∑t−1

u=1 Kh(Xu − x)
,

Kh(x) = K(x∕h) is the scaled kernel function, K ∶ Rd → R is the kernel func-
tion, and h > 0 is the smoothing parameter.
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12.2 Backtesting Trading Strategies

Backtesting uses historical data to answer the question: what would have the
performance of a trading strategy been, if it would have been applied in the
past. Backtesting is called sometimes historical simulation, to highlight the fact
that we could measure the performance of a trading strategy by a Monte-Carlo
experiment, where the data is simulated from a model of the asset price dynam-
ics, instead of using historical data. We describe how historical data can be used
to create a return time series of a trading strategy.

Typically historical data is divided into two periods. The first period is the
estimation period, and data covering the estimation period is used solely for
choosing the parameters of the trading strategy. The second period is the testing
period, where the performance of the trading strategy is measured. Note, how-
ever, that the parameters of the trading strategy are typically updated during the
testing period, analogously as in the definition of the sequential out-of-sample
sum of squares of prediction errors in (6.22).

Let us have historical data over time points 1,… ,T , and let us consider a
trading strategy where rebalancing is done at the beginning of each period (e.g.,
daily or monthly). Time point 1 < t0 < T divides the data to the estimation part
and to the testing part. At time points t = t0,… ,T − 1 we make the trading
decisions, using data over time points 1,… , t to determine the parameters of
the trading strategy. Note that the estimation is sequential in the sense that
the parameters of the trading strategy are constantly updated at time points
t = t0,… ,T − 1. The decision at time point t leads to the return Rt+1 =
Wt+1∕Wt , where Wt is the wealth generated by the trading strategy. Thus, we
get time series Rt0+1,… ,RT of historically simulated returns. This time series is
used to evaluate the trading strategy. For example, we calculate a performance
measure (Sharpe ratio and certainty equivalent), and compare the performance
measure of the trading strategy to the performance measure of a benchmark.

For example, consider the following strategy, introduced in Section 12.1.1.
We have historical data (Xt,R1

t ,R2
t ), t = 1,… ,T , where Xt is a vector of

economic indicators (dividend yield, term spread), R1
t is the return of S&P 500

index, and R2
t is the return of US Treasury 10-year bond. We use economic

indicators Xt as predicting variables for the S&P 500 return and for the 10-year
bond return. We use the data (X1,R1

2),… , (Xt−1,R1
t ) to fit a linear regression,

obtaining the coefficients (𝛼̂1
t , 𝛽

1
t ). Return R1

t+1 is predicted by R̂1
t+1 = 𝛼̂

1
t + X′

t𝛽
1
t .

Return R2
t+1 is predicted similarly. We invest everything in S&P 500, when

R̂1
t+1 > R̂2

t+1. Otherwise, everything is invested in the bond. Thus, the return of
the trading strategy is

Rt+1 =

{
R1

t+1, when R̂1
t+1 > R̂2

t+1,

R2
t+1, otherwise.

This is done at times t = t0,… ,T − 1, to obtain historically simulated returns
Rt0+1,… ,RT . We compute the Sharpe ratio and certainty equivalents using
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historically simulated returns, and compare these to the Sharpe ratios of S&P
500 and 10-year bond.

12.3 One Risky Asset

We study portfolio selection when the portfolio components are one risky asset
and the risk-free rate. We consider both the case when the risky asset is S&P 500
index and the case when the risky asset is US Treasury 10-year bond. The rebal-
ancing will be done monthly, and thus the risk-free rate is 1-month Treasury
bill. The data is described in Section 2.4.3.

12.3.1 Using Expected Returns with One Risky Asset

We consider portfolio strategies where the portfolio weight is chosen solely on
the basis of expected returns. We call trend following strategies such strate-
gies, where the expected return is estimated by guessing that the near future is
similar to the near past. The guessing is done by using some type of a moving
average. However, expected returns can also be estimated by using regression
on economic indicators, and by using regression on previous returns. Regres-
sion based approaches search for more complicated patterns that relate the
past observations to the expected returns, instead of just guessing that the near
future is similar to the near past.

12.3.1.1 One Step Trend Following
One step trend following is described in (12.4)–(12.5), where one step trend
following is defined so that if the previous period return of the risky asset is
larger than the risk-free rate, then the weight of the risky asset is one and the
weight of the risk-free rate is zero. Otherwise, the weight of the risky asset is
zero and the weight of the risk-free rate is one.

Figure 12.1 shows the cumulative wealth of the trend following portfolios.
Panel (a) shows the wealth on the y-axis and panel (b) uses logarithmic scale on
the y-axis. The purple curves show the portfolio using 10-year bond as the risky
asset, and the black curves show the portfolio using S&P 500 as the risky asset.
The red curves show the cumulative wealth of S&P 500 and the blue curves
show the cumulative wealth of 10-year bond, when the initial wealth is equal to
one. We can note that the trend following brings some increase into the cumu-
lative wealth, when compared to S&P 500 index or 10-year bond.

Figure 12.2 shows time series of wealth ratios Zt = W 2
t ∕W 1

t , as defined in
(10.35). Panel (a) compares the wealth of a trend following to the wealth of
its benchmark. Panel (b) compares 10-year bond trend following to the S&P
500 trend following. In panel (a) the black curve shows the ratio, where the
numerator W 2

t is the wealth of trend following with S&P 500 as the risky asset,
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Figure 12.1 Trend following with the previous 1-month return: Cumulative wealth. (a) The
cumulative wealth of the trend following portfolio with 10-year bond (purple) and S&P 500
(black); (b) logarithmic scale. The red curves show the cumulative wealth of S&P 500 and the
blue curves show the cumulative wealth of 10-year bond.
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Figure 12.2 Trend following with the previous 1-month return: Wealth ratios. We show wealth
ratios Zt = W2

t ∕W1
t . (a) The ratio Zt compares S&P 500 trend following to the benchmark

(black) and 10-year bond trend following to the benchmark (purple); (b) the ratio Zt compares
10-year bond trend following to the S&P 500 trend following.

and the denominator W 1
t is the wealth of S&P 500. The purple curve shows

the ratio, where the numerator W 2
t is the wealth of trend following with US

Treasury 10-year bond as the risky asset, and the denominator W 1
t is the wealth

of US Treasury 10-year bond. In panel (b) the numerator W 2
t is the wealth of

trend following with 10-year bond as the risky asset, and the denominator W 1
t

is the wealth of trend following with S&P 500 as the risky asset.
Figure 12.2(a) shows that trend following with 10-year bond performs bet-

ter than trend following with S&P 500, relative to their benchmarks. The time
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series behave qualitatively similarly until the beginning of 1990s, when trend
following with 10-year bond starts outperforming its benchmark, but trend fol-
lowing with S&P 500 is underperforming its benchmark. Figure 12.2(b) shows
that trend following with 10-year bond outperforms trend following with S&P
500 significantly at the beginning of 1990s, but during other time periods the
outperformance and underperformance are alternating.

Figure 12.3 studies Sharpe ratios of trend following with the previous
1-month return. In panel (a) we use S&P 500 monthly returns and in panel (b)
we use monthly returns of US Treasury 10-year bond. Function u → S(u,T)
are shown as a black curve (S&P 500) and as a purple curve (10-year bond),
where S(u,T) is the Sharpe ratio computed from the returns on period [u,T],
and T is the time of the last observation. Note that Figure 10.11 shows the
corresponding time series for the benchmarks. Parameter 𝛿 is equal to 120
months. The yellow curves show time series of means: u → 10 × 12 × 𝜇̂T

u , and
the pink curves show time series of standard deviations: u → 4 ×

√
12 × 𝜎̂T

u ,
where 𝜇̂t

u is defined in (10.37) and 𝜎̂t
u is defined in (10.38). Note that the upper

borders of the level sets in Figure 12.4 correspond to the level sets of black
and purple functions in Figure 12.3. The black (S&P 500 trend) and the purple
(10-year bond trend) horizontal lines show the Sharpe ratios over the complete
time period. The Sharpe ratios of the indexes are shown as a red line (S&P 500)
and as a blue line (10-year bond).

Figure 12.4 shows with the blue region the time periods [u, t] for which the
Sharpe ratio is above the benchmark, and with the red region the time periods
[u, t] for which the Sharpe ratio is below the benchmark. Panel (a) considers the
monthly returns of S&P 500 and panel (b) considers the returns of US Treasury
10-year bond. The blue regions show the sets {(u, t) ∶ S(u, t) ≥ 𝜆}, where 𝜆 is
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Figure 12.3 Trend following with the previous 1-month return: Times series of Sharpe ratios.
(a) S&P 500 and (b) 10-year bond.
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Figure 12.4 Trend following with the previous 1-month return: Level sets of Sharpe ratios. We
show with blue the time periods where the Sharpe ratio of trend following was better than
the Sharpe ratio of the benchmark. (a) S&P 500 and (b) 10-year bond.

equal to the Sharpe ratio of S&P 500 (panel (a)) and the Sharpe ratio of 10-year
bond (panel (b)). Parameter 𝛿 in the definition of the domain of S is equal to 36
months (see (10.36)).

12.3.1.2 Trend Following with Moving Averages
Trend following with a moving average means that if a moving average of the
returns of the risky asset is larger than the moving average of the risk-free rate,
then the weight of the risky asset is one and the weight of the risk-free rate
is zero. Otherwise, the weight of the risky asset is zero and the weight of the
risk-free rate is one. We use the exponential moving average, defined in (6.7)
(see also (12.6)). The 1-month trend following strategy of Figures 12.1–12.4 is
obtained as a special case by choosing the window of the moving average so
small that the moving average is equal to the previous 1-month return.

Figure 12.5 shows (a) the Sharpe ratios and (b) the certainty equivalents1 of
the moving average strategy, as a function of the smoothing parameter h. The
black curve shows the performance when the risky asset is S&P 500 and the
purple curve has 10-year bond as the risky asset. We can see that the per-
formance measures of trend following with S&P 500 are highest for smaller
smoothing parameters, whereas the performance measures of trend following
with 10-year bond have a high level for all smoothing parameters. When the
smoothing parameter becomes larger, then the Sharpe ratio of trend following
with S&P 500 converges to the Sharpe ratio of S&P 500 index. This is due to

1 The sample certainty equivalent is defined in (10.13). Here, we use the logarithmic utility
U(x) = log x and multiply by 100, so that the sample certainty equivalent is defined by 100 ×
(exp[T−1 ∑T

t=1 log(Rt)] − 1).
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Figure 12.5 Trend following with moving averages. (a) Sharpe ratios of trend following strate-
gies with S&P 500 (black curve) and 10-year bond (purple curve); (b) certainty equivalent is
shown for the same portfolios as in panel (a). The x-axis shows the smoothing parameter of
the moving average. The red horizontal line shows the Sharpe ratio of S&P 500 and the blue
horizontal line shows the Sharpe ratio of 10-year bond.

the fact that when the smoothing parameter is large, then trend following with
S&P 500 chooses often to invest everything to S&P 500, and seldom to the
risk-free rate (see Figure 6.1(a)). For trend following with 10-year bond the con-
vergence toward the performance measure of the underlying 10-year bond does
not happen, because before 1980s a moving average with even a large smooth-
ing parameter is smaller than the risk-free rate (see Figure 6.1(b)).

Figure 12.6 shows the time series of the ratios of the cumulative wealth of a
trend following strategy to the cumulative wealth of the benchmark. In panel (a)
we follow the trend of S&P 500 and the benchmark is S&P 500. In panel (b) we
follow the trend of US Treasury 10-year bond and the benchmark is US Trea-
sury 10-year bond. The smoothing parameters of moving averages are h = 0.1
(black), h = 1 (red), h = 10 (blue), and h = 100 (green). For S&P 500 the small-
est smoothing parameter gives the best result, but for 10-year bond a larger
smoothing parameter gives the best result.

12.3.1.3 Regression on Economic Indicators
We consider a portfolio strategy where the expected return of the risky asset
is estimated,2 and if the estimated expected return is larger than the risk-free
rate, then the weight of the risky asset is one, and the weight of the risk-free rate
is zero. Otherwise, the weight of the risky asset is zero and the weight of the
risk-free rate is one. The expected returns are estimated using linear regression

2 The expression “estimating the expected return” means the same as “predicting the next period
return,” because the theoretically optimal prediction (in the mean squared error sense) is equal to
the expected return (see Section 5.3.1).
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Figure 12.6 Trend following with moving averages: Wealth ratios. (a) Following the trend of
S&P 500 and (b) following the trend of 10-year bond. We show the ratios of the cumulative
wealth to cumulative wealth of the benchmark. The smoothing parameters of moving aver-
ages are h = 0.1 (black), h = 1 (red), h = 10 (blue), and h = 100 (green).
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Figure 12.7 Expected returns determined by economic indicators: Sharpe ratios. Sharpe ratios
of portfolios with S&P 500 (black curve) and 10-year bond (purple curve). (a) The prediction
method of (6.35) and (b) the prediction method of (6.36). The x-axis shows the prediction
horizon. The red horizontal line shows the Sharpe ratio of S&P 500 and the blue horizontal
line shows the Sharpe ratio of 10 year bond.

on economic indicators, as explained in Section 6.4. Both dividend yield and
term spread are used as predicting variables.

Figure 12.7 shows the Sharpe ratios as a function of the prediction horizon s.
Note that we predict 1-month returns, but the 1-month return predictions are
deduced from a prediction with horizon s. Panel (a) uses the prediction method
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Figure 12.8 Expected returns determined by economic indicators: Cumulative wealth. (a) The
cumulative wealth of the portfolio whose weights are chosen according to the expected
returns, when the risky asset is 10-year bond (purple) and S&P 500 (black); (b) logarithmic
scale. The red curves show the cumulative wealth of S&P 500 and the blue curves show the
wealth of 10-year bond.

of (6.35), and panel (b) uses the prediction method of (6.36). We can see that the
Sharpe ratios of portfolios with 10-year bond are highest for short prediction
horizons, whereas the Sharpe ratios of portfolios with S&P 500 are highest for
the long prediction horizons.

Figure 12.8 shows the cumulative wealth of the portfolios whose weights
are chosen according to the expected returns. We use 12-month prediction
horizon, so that s = 12 in (6.34). Panel (a) shows the wealth on the y-axis and
panel (b) uses logarithmic scale on the y-axis. The purple curves show the
portfolio using 10-year bond as the risky asset, and the black curves show the
portfolio using S&P 500 as the risky asset. The red curves show the cumulative
wealth of S&P 500 and the blue curves show the cumulative wealth of 10-year
bond. The wealth is normalized to have value one at the beginning. We can
note that trend following increases the cumulative wealth, when compared to
S&P 500 index and to 10-year bond. The linear segments in the black curves
indicate that during these periods the risk-free investment is chosen.

Figure 12.9 considers the same strategies as in Figure 12.8 but now we show
wealth ratios. Panel (a) shows the ratio of the wealth of trend following with S&P
500 to the wealth of S&P 500 (black) and the ratio of the wealth of trend follow-
ing with 10-year bond to the wealth of 10-year bond (purple). Panel (b) shows
the ratio of the wealth of trend following with S&P 500 to the wealth of trend
following with 10-year bond. Figure 12.2 shows the corresponding time series
for 1-month trend following. We see that using economic indicators improves
the trading with S&P 500, whereas 1-month trend following works better when
trading with 10-year bond.



12.3 One Risky Asset 401

(a)

W
ea

lth
 r

at
io

(b)
W

ea
lth

 r
at

io

1960 1970 1980 1990 2000 2010 1960 1970 1980 1990 2000 2010

1.
0

1.
5

2.
0

2.
5

3.
0

1.
0

1.
5

2.
0

2.
5

Figure 12.9 Expected returns determined by economic indicators: Wealth ratios. (a) The ratio of
the wealth of trend following with S&P 500 to the wealth of S&P 500 (black), and the ratio
of the wealth of trend following with 10-year bond to the wealth of 10-year bond (purple);
(b) The ratio of the wealth of trend following with S&P 500 to the wealth of trend following
with 10-year bond.

12.3.2 Markowitz Portfolios with One Risky Asset

Variance penalization with the risk-free rate was discussed in Section 11.1.1.
Using this approach, when there is one risky asset and the risk aversion is 𝛾 = 1,
we maximize

b(𝜇 − r) − 1
2

b2
𝜎

2 (12.18)

over b ∈ R, where 𝜇 is the expected gross return of the risky asset, r is the
risk-free rate, and 𝜎2 is the variance of the return of the risky asset. The maxi-
mizer was given in (11.3) as

b0 = 𝜇 − r
𝜎2 . (12.19)

When the maximization is restricted to b ∈ [0, 1], then the solution was given
in (11.4) as

b =
⎧⎪⎨⎪⎩

0, when b0 ≤ 0,
b0, when 0 ≤ b0 ≤ 1,
1, when b0 ≥ 1.

(12.20)

We estimate the expected return using either moving averages or regression
on economic indicators. The variance is estimated always using moving aver-
ages, which contains the sequentially computed sample variance as a special
case. Variance estimation with moving averages is studied in Section 7.4.



402 12 Dynamic Portfolio Selection

12.3.2.1 Using Moving Averages
Figure 12.10 extends the approach of Figure 12.5. The expected return is again
estimated using an exponentially weighted moving average, but now the weight
of the risky asset is chosen as in (12.20). Variance 𝜎2 is the additional parameter
to be estimated. Panel (a) shows the Sharpe ratios as a function of the smoothing
parameter h of the moving average, which estimates the expected return. The
variance is estimated by the sequentially calculated sample variance. We can see
that the Sharpe ratio of the portfolio with S&P 500 as the risky asset is highest
for smaller smoothing parameters, whereas the Sharpe ratio of the strategy with
10-year bond as the risky asset has a high level for all smoothing parameters.
Panel (b) shows a contour plot: we show Sharpe ratio both as a function of the
smoothing parameter of the moving average for the estimation of the expected
return 𝜇 (x-axis), and as a function of the moving average for the estimation of
volatility 𝜎2 (y-axis), when the portfolio has S&P 500 index as the risky asset.3
We can see that the smoothing parameter of the volatility estimate has hardly
any influence on the Sharpe ratio, and only the smoothing parameter of the
estimate of the expected return has an influence.

Figure 12.11 shows wealth ratios of Markowitz strategies when the expected
returns are estimated using moving averages and the variances are estimated
using sequential sample variances. Panel (a) shows trading with S&P 500 and
panel (b) shows trading with 10-year bond. The wealth of Markowitz strategies
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Figure 12.10 Markowitz portfolios with moving averages: Sharpe ratios. (a) Sharpe ratios of
trend following strategies with S&P 500 (black curve) and 10-year bond (purple curve). The
x-axis shows the smoothing parameter of the moving average. The red horizontal line shows
the Sharpe ratio of S&P 500 and the blue horizontal line shows the Sharpe ratio of 10 year
bond. (b) Sharpe ratios of trend following strategies with S&P 500 when both expected returns
and volatility are estimated using moving averages.

3 The x-axis has values 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80 and the
y-axis has values 1, 5, 10, 20, 30, 40.
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Figure 12.11 Markowitz portfolios with moving averages: Wealth ratios. (a) Trading with S&P
500 and (b) trading with 10-year bond. We show the ratios of the cumulative wealth to cumu-
lative wealth of the benchmark. The smoothing parameters of moving averages are h = 0.1
(black), h = 1 (red), h = 10 (blue), and h = 100 (green).

is divided by the benchmark (S&P 500 index in (a) and 10-year bond in (b)).
The smoothing parameters of moving averages are h = 0.1 (black), h = 1 (red),
h = 10 (blue), and h = 100 (green). Note that Figure 12.6 shows the correspond-
ing time series for the case where the variance is ignored. The Markowitz crite-
rion does not seem to improve the wealth ratios, when compared to the simple
trend following.

Figure 12.12 studies the effect of relaxing the restrictions on short selling
and leveraging. Figure 12.10 studies the case where short selling and leveraging
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Figure 12.12 Markowitz portfolios with moving averages: Sharpe ratios when short selling
and leveraging are allowed. Sharpe ratios of trend following strategies as a function of smooth-
ing parameter h when the risky asset is (a) S&P 500; (b) 10-year bond. The red horizontal line
show the Sharpe ratio of S&P 500 and the blue horizontal line show the Sharpe ratio of 10
year bond.
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are not allowed. More generally, we can restrict the maximization in (12.18) to
b ∈ [−c, 1 + c], where c > 0. The weight that maximizes the Markowitz crite-
rion is given by

b =
⎧⎪⎨⎪⎩
−c, when b0 ≤ −c,
b, when − c ≤ b0 ≤ 1 + c,
1 + c, when b0 ≥ 1 + c,

where b0 is defined in (12.19). Figure 12.12 shows Sharpe ratios of the portfolio
as a function of smoothing parameter h when (a) the risky asset is S&P 500
index and (b) the risky asset is 10-year bond. The lines with label “1” show the
case when c = 0 (these are the same lines as in Figure 12.10(a)). The lines with
label “2” show the case when c = 1, and the lines with label “3” show the case
when c = 2. We can see that the Sharpe ratios are decreasing when more short
selling and leveraging are allowed.

12.3.2.2 Using Economic Indicators
Figure 12.13 shows the Sharpe ratios as a function of the prediction horizon s
(in months). Note that we predict 1-month returns, and use the prediction hori-
zon s in the construction of 1-month predictions. We use the Markowitz weight
(12.20), estimate the expected return using linear regression on dividend yield
and term spread, and estimate the variance with the sequential standard devi-
ation. Panel (a) uses the prediction method of (6.35) and and panel (b) uses the
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Figure 12.13 Sharpe ratios as a function of prediction horizon when the expected returns are
determined by economic indicators: Markowitz criterion. Sharpe ratios of portfolios with S&P
500 (black curve) and 10-year bond (purple curve). (a) The prediction method of (6.35) and (b)
the prediction method of (6.36). The x-axis shows the prediction horizon. The red horizontal
line shows the Sharpe ratio of S&P 500 and the blue horizontal line shows the Sharpe ratio of
10 year bond.
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prediction method of (6.36). The black curves show the cases where the risky
asset is S&P 500 and the purple curves show the cases where the risky asset is
the US 10-year bond. The blue horizontal lines show the Sharpe ratio of S&P
500 and the red horizontal lines show the Sharpe ratio of 10-year bond. Simi-
lar to Figure 12.7, we can see that the Sharpe ratios of portfolios with 10-year
bond are highest for short prediction horizons, whereas the Sharpe ratios of
portfolios with S&P 500 are highest for the long prediction horizons.

12.4 Two Risky Assets

Section 12.4.1 studies portfolio selection using only prediction of the returns
and Section 12.4.2 studies the use of the Markowitz mean–variance criterion.

12.4.1 Using Expected Returns with Two Risky Assets

We study portfolio selection that uses only the expected returns to choose the
weights (risk aversion is zero). This means that when the expected return of the
bond is larger than the expected return of the stock, then everything is invested
in the bond, and conversely.

We consider portfolio strategies where the portfolio weight is chosen solely
on the basis of expected returns. We call trend following strategies such strate-
gies, where the expected return is estimated solely on the basis of previous
returns, by guessing that the near future is similar to the near past. However,
expected returns can also be estimated by using regression on economic indi-
cators and by using regression on previous returns.

12.4.1.1 One Step Trend Following
We have two risky assets and consider the decision rule that invests everything
in the first asset if the previous period return of the first asset was bigger than
the previous period return of the second asset. Otherwise, the second asset is
chosen. Let us denote

f̂1(t) = R1
t , f̂2(t) = R2

t ,

where R1
t and R2

t are the gross returns of assets 1 and 2. Let the weight of the
first asset be b̂t = 1 if f̂1(t) > f̂2(t) and otherwise b̂t = 0.

Figure 12.14 shows the cumulative wealth of the trend following portfolios.
Panel (a) shows the wealth on the y-axis and panel (b) uses logarithmic scale
on the y-axis. The black curves show the actively managed portfolio. The red
curves show the cumulative wealth of S&P 500 and the blue curves show the
wealth of 10-year bond. The wealth is normalized to be one at the beginning.
We can note that the trend following increases the cumulative wealth, when
compared to S&P 500 index or 10-year bond.
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Figure 12.14 Trend following with the previous 1-month return and two risky assets: Cumulative
wealth. (a) The cumulative wealth of the trend following portfolio (black); (b) logarithmic scale.
The red curves show the cumulative wealth of S&P 500 and the blue curves show the wealth
of 10-year bond.
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Figure 12.15 Trend following with the previous 1-month return and two risky assets: Wealth
ratios. (a) The wealth of the two asset trend following is divided by the S&P 500 wealth (dark
green) and 10-year bond wealth (orange); (b) the wealth of the two asset trend following is
divided by the wealth of S&P 500 trend following (dark green) and the wealth of 10-year bond
trend following (orange).

Figure 12.15 shows the ratios of cumulative wealth of the trend following
portfolio. Panel (a) compares the trend following to the two benchmarks and
panel (b) compares the two asset trend following to the two possible one
asset trend following strategies. The one asset trend following is studied in
Figures 12.1–12.4. In panel (a) the wealth of the two asset trend following is
divided by the S&P 500 wealth (dark green) and 10-year bond wealth (orange).
In panel (b) the wealth of the two asset trend following is divided by the wealth
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of S&P 500 trend following (dark green) and the wealth of 10-year bond trend
following (orange). Panel (a) shows that the two asset trend following performs
better than the two benchmarks in the most time periods. Panel (b) shows that
the one asset trend following is better until 1980, but after that the two asset
trend following is better.

12.4.1.2 Trend Following with Moving Averages
Figure 12.16 considers generalization of the simple 1-month trend following
shown in Figure 12.1. We define trend following with a moving average so that
if a moving average of the returns of the first risky asset is larger than the moving
average of the second risky asset, then the weight of the first risky asset is one
and the weight of the second risky asset is zero. Otherwise, the weight of the
first risky asset is zero and the weight of the second risky asset is one. We use
the exponential moving average, defined in (6.7). The 1-month trend following
strategy of Figure 12.14 is obtained as a special case by choosing the window of
the moving average so small that the moving average is equal to the previous
1-month return.

Figure 12.16 shows (a) the Sharpe ratios and (b) the certainty equivalents4 of
the moving average strategy as a function of the smoothing parameter h of the
moving average. We can see that the performance measures of trend following
with moving averages are highest for smaller smoothing parameters. When the

S
ha

rp
e 

ra
tio

h
(a)

C
er

ta
in

ty
 e

qu
iv

al
en

t

h
(b)

1e − 01 1e + 00 1e + 01 1e + 02 1e + 03

0.
15

0.
20

0.
25

0.
30

1e − 01 1e + 00 1e + 01 1e + 02 1e + 03

0.
50

0.
55

0.
60

0.
65

0.
70

Figure 12.16 Trend following with moving averages. (a) Sharpe ratios of trend following strate-
gies (black curve); (b) certainty equivalent is shown for the same portfolios as in panel (a). The
x-axis shows the smoothing parameter of the moving average. The red horizontal line shows
the Sharpe ratio of S&P 500 and the blue horizontal line shows the Sharpe ratio of 10 year
bond.

4 The sample certainty equivalent is defined in (10.13). Here we use the logarithmic utility U(x) =
log x and the normalization 100 × (U−1[T−1 ∑T

t=1 U(Rt)] − 1).
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smoothing parameter becomes larger, then the Sharpe ratio of trend following
with S&P 500 converges to the Sharpe ratio of S&P 500 index. This is because
trend following with S&P 500 and with a large smoothing parameter chooses
always to invest to S&P 500 and never to the risk-free rate. For the trend fol-
lowing with 10-year bond the convergence toward the performance measure of
the underlying 10-year bond does not happen, because a moving average even
with a large smoothing parameter is smaller than the risk-free rate during time
periods before 1980s.

12.4.1.3 Regression on Economic Indicators
We consider a portfolio strategy where the expected returns of the risky assets
are estimated, and if the estimated expected return of the first asset is larger
than the estimated expected return of the second asset, then the weight of the
first asset is one, and the weight of the second asset is zero. Otherwise, the
weight of the first asset is zero, and the weight of the second asset is one. The
expected returns are estimated using linear regression on economic indicators,
as explained in Section 6.4. Both dividend yield and term spread are used as the
predicting variables.

Figure 12.17 shows the Sharpe ratios as a function of the prediction horizon.
Panel (a) uses the prediction method of (6.35) and and panel (b) uses the
prediction method of (6.36). The two prediction methods seem to lead similar
performances. The prediction horizon about s = 12 gives the best results.
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Figure 12.17 Expected returns determined by economic indicators: Sharpe ratios. Sharpe ratios
of managed portfolios. (a) The prediction method of (6.35) and (b) the prediction method of
(6.36). The x-axis shows the prediction horizon. The red horizontal line shows the Sharpe ratio
of S&P 500 and the blue horizontal line shows the Sharpe ratio of 10 year bond.
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Figure 12.18 Expected returns determined by economic indicators: Cumulative wealth. (a) The
cumulative wealth of the portfolio whose weights are chosen according to the expected
return (black); (b) logarithmic scale. The red curves show the cumulative wealth of S&P 500
and the blue curves show the wealth of 10-year bond. The wealth is normalized to have value
one at the beginning.

Note that we are making predictions of 1-month returns, but the predictions
are constructed with the help of predictions with horizon s.

Figure 12.18 shows the cumulative wealth of the portfolio whose weights
are chosen according to the expected returns. Panel (a) shows the wealth on
the y-axis and panel (b) uses logarithmic scale on the y-axis. The prediction
horizon is s = 12 months. The prediction method of (6.35) is used. The black
curves show the actively managed portfolio. The red curves show the cumu-
lative wealth of S&P 500 and the blue curves show the cumulative wealth of
10-year bond.

12.4.2 Markowitz Portfolios with Two Risky Assets

Variance penalization without a risk-free rate is discussed in Section 11.1.2.
In this approach, when there are two risky assets and the risk aversion is 𝛾 = 1,
we maximize

(1 − b)𝜇1 + b𝜇2 −
1
2
[
(1 − b)2

𝜎
2
1 + b2

𝜎
2
2 + 2(1 − b)b𝜎12

]
(12.21)

over b ∈ R, where 𝜇1 and 𝜇2 are the expected gross returns of the risky assets,
𝜎

2
1 and 𝜎2

2 are the variances of the returns of the risky assets, and 𝜎12 is the
covariance between the returns of the risky assets. The maximizer was given in
(11.6) as

b0 =
𝜇2 − 𝜇1 + 𝜎2

1 − 𝜎12

𝜎
2
1 + 𝜎

2
2 − 2𝜎12

. (12.22)
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When the maximization is restricted to b ∈ [0, 1], then the solution was given
in (11.7) as

b =
⎧⎪⎨⎪⎩

0, when b0 ≤ 0,
b0, when 0 ≤ b0 ≤ 1,
1, when b0 ≥ 1.

(12.23)

12.4.2.1 Moving Averages
The means, variances, and the covariance in (12.22) are estimated using the
exponentially weighted moving averages. The smoothing parameter h = ∞ is
interpreted as the sequential sample mean, variance, or covariance. Thus, we
have up to five smoothing parameters to choose. However, we use always the
same smoothing parameter for the two means, and the same smoothing param-
eter for the two variances. So, we have three smoothing parameters to choose.

Figure 12.19 shows Sharpe ratios as a function of smoothing parameters.
The weight of the second risky asset is chosen as in (12.23). The means and
variances are estimated with the exponentially weighted moving averages, and
the covariance is the sequential sample covariance. Panel (a) shows the Sharpe
ratios as a function of the smoothing parameter of the means 𝜇1 and 𝜇2, for
the smoothing parameters of the variance in the range 1–1000. Panel (b) shows
the Sharpe ratios as a function of the smoothing parameter of the variances
𝜎

2
1 and 𝜎2

2 , for the smoothing parameters of the means in the range 0.1–1000.
The labels “1”–“6” and “1”–“5” correspond to the smoothing parameters in the
increasing order. We can see that the Sharpe ratio of the portfolio is highest for
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Figure 12.19 Markowitz portfolios with two risky assets and moving averages: Sharpe ratios.
(a) Sharpe ratios as a function of the smoothing parameter of the means 𝜇1 and 𝜇2, for the
smoothing parameter of the variances in the range 1–1000; (b) Sharpe ratios as a function
of the smoothing parameter of the variances 𝜎2

1 and 𝜎2
2 , for the smoothing parameter of the

means in the range 0.1–1000.



12.4 Two Risky Assets 411

the smallest smoothing parameters of the estimator of the expected return, but
the variances require a large smoothing parameter.

Figure 12.20 shows Sharpe ratios as a function of smoothing parameters. The
weight of the second risky asset is chosen as in (12.23). The means, variances,
and the covariances are estimated with the exponentially weighted moving
averages. The smoothing parameter of the estimator of the means is h = 0.1.
Panel (a) shows the Sharpe ratios as a function of the smoothing parameter
of the variances 𝜎2

1 and 𝜎
2
2 , for the smoothing parameters of the covariance

in the range 1–1000. Panel (b) shows the Sharpe ratios as a function of the
smoothing parameter of the covariance 𝜎12, for the smoothing parameters
of the variances in the range 1–1000. The labels “1”–“5” correspond to the
smoothing parameters in the increasing order. The Sharpe ratio of S&P 500 is
shown with a red horizontal line, and the Sharpe ratio of 10 year bond is shown
with a blue horizontal line. We can see that a large Sharpe ratio is obtained
when the both smoothing parameters are about h = 500.

Figure 12.21 studies the effect of relaxing the restrictions on short selling and
leveraging, whereas in Figure 12.19 short selling and leveraging are not allowed.
Now, we restrict the maximization in (12.21) to b ∈ [−c, 1 + c], where c > 0.
The maximizing weight is

b =
⎧⎪⎨⎪⎩
−c, when b0 ≤ −c,
b0, when − c ≤ b0 ≤ 1 + c,
1 + c, when b0 ≥ 1 + c,
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Figure 12.20 Markowitz portfolios with two risky assets and moving averages: Sharpe ratios. (a)
Sharpe ratios as a function of the smoothing parameter of the variances 𝜎2

1 and 𝜎2
2 , for the

smoothing parameter of the covariance in the range 1–1000; (b) Sharpe ratios as a function of
the smoothing parameter of the covariance𝜎12, for the smoothing parameter of the variances
in the range 1–1000.
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Figure 12.21 Markowitz portfolios with two risky assets: Moving averages when short selling
and leveraging are allowed. (a) Sharpe ratios as a function of the smoothing parameter of the
means 𝜇1 and 𝜇2; (b) Sharpe ratios as a function of the smoothing parameter of the variances
𝜎

2
1 and 𝜎2

2 . The curve with labels “1” c = 0 leverage, labels “2” indicate leverage c = 1, and
labels “3” indicate leverage c = 2. The red horizontal line shows the Sharpe ratio of S&P 500
and the blue horizontal line shows the Sharpe ratio of 10-year bond.

where b0 is defined in (12.22). Figure 12.21 shows Sharpe ratios as a function of
smoothing parameters. The means and variances are estimated with the expo-
nentially weighted moving averages, and the covariance is the sequential sam-
ple covariance. Panel (a) shows the Sharpe ratios as a function of the smoothing
parameter of the means𝜇1 and𝜇2, for the smoothing parameter of the variances
equal to 1000. Panel (b) shows the Sharpe ratios as a function of the smooth-
ing parameter of the variances 𝜎2

1 and 𝜎2
2 , for the smoothing parameter of the

means equal to 0.1. The lines with label “1” show the case when c = 0 (these are
the same lines as in Figure 12.19). The lines with label “2” show the case when
c = 1 and the lines with label “3” show the case when c = 2. The red horizon-
tal line shows the Sharpe ratio of S&P 500 and the blue horizontal line shows
the Sharpe ratio of 10-year bond. We can see that the Sharpe ratios are smaller
when more short selling and leveraging are allowed.

Figure 12.22 shows wealth and relative wealth. The smoothing parameter of
the estimators of the expected returns is h = 0.1, for the variances and the
covariance h = 500. Panel (a) shows the cumulative wealth of the Markowitz
portfolio (black), S&P 500 (red), and 10-year bond (blue). Panel (b) shows the
ratios of the wealth of the Markowitz portfolio to the wealth of S&P 500 (pur-
ple) and to the wealth of 10-year bond (orange). The wealth is normalized to
have value one at the beginning. Panel (a) shows that the Markowitz portfolio
beats the benchmarks. Panel (b) shows that the Markowitz portfolio beats the
benchmarks during the most time periods.
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Figure 12.22 Markowitz portfolios with two risky assets and moving averages: Wealth. (a) The
cumulative wealth of the Markowitz portfolio (black), S&P 500 (red), and 10-year bond (blue);
(b) the ratios of the wealth of the Markowitz portfolio to the wealth of S&P 500 (purple) and
to the wealth of 10-year bond (orange).

12.4.2.2 Using Economic Indicators
We use the Markowitz weight (12.23). The means are estimated using linear
regression on dividend yield and term spread. The two methods of linear
regression are defined in (6.35) and (6.36). The variances and the covariance
are estimated with exponentially weighted moving averages. The smoothing
parameter h = ∞ is interpreted as the sequential sample variance or covari-
ance. Thus, we have up to five parameters to choose: two horizon parameters
s for the estimation of the two means, two smoothing parameters h for the
two variances, and one smoothing parameter h to estimate the covariance.
However, we use always the same horizon parameter for the two means,
and the same smoothing parameter for the two variances. So, we have three
parameters to choose.

Figure 12.23 shows the Sharpe ratios of the Markowitz portfolios. The pre-
diction method of (6.35) is used. The covariance is estimated by the sequen-
tial sample covariance. Panel (a) shows the Sharpe ratios as a function of the
parameter s of the prediction horizon, for values h = 5–1000 of the smoothing
parameter of the estimator of the variances. The symbols “1”–“4” correspond
to the smoothing parameters of the variances in the increasing order. Panel (b)
shows the Sharpe ratios as a function of the smoothing parameter of the esti-
mator of the variances, for prediction horizons s = 1–120. Panel (a) shows that
the prediction horizon around s = 12 gives the largest Sharpe ratio. Panel (b)
shows that the smoothing parameter of the estimator of the variances should
not be too small.

Figure 12.24 compares the two methods (6.35) and (6.36) of linear regression.
The Sharpe ratios of (6.35) are divided by the Sharpe ratios of (6.36). Panel (a)
shows the ratios of the Sharpe ratios as a function of the parameter s of the
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Figure 12.23 Regression on economic indicators: Sharpe ratios. (a) Sharpe ratios as a function
of the prediction horizon, for values h = 5–1000 of the smoothing parameter of the variances;
(b) Sharpe ratios as a function of the smoothing parameter of the variances, for prediction
horizons s = 1–120.
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Figure 12.24 Regression on economic indicators: Ratios of the Sharpe ratios. The Sharpe ratios
of (6.35) are divided by the Sharpe ratios of (6.36). (a) The ratios as a function of the prediction
horizon, for values h = 1–1000 of the smoothing parameter of the variances; (b) the ratios as
a function of the smoothing parameter of the variances, for prediction horizons s = 1–120.

prediction horizon, for values h = 1–1000 of the smoothing parameter of the
estimator of the variances. Panel (b) shows the ratios of the Sharpe ratios as
a function of the smoothing parameter of the estimator of the variances, for
prediction horizons s = 1–120. We see that the ratios of the Sharpe ratios are
smaller than one: the Sharpe ratios of (6.36) are larger than the Sharpe ratios
of (6.35).
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Figure 12.25 Regression on economic indicators: Sharpe ratios. (a) The Sharpe ratios as a func-
tion of the smoothing parameter of the estimator of the variances, for values h = 5–1000 of
the smoothing parameter of the covariance; (b) the Sharpe ratios as a function of the smooth-
ing parameter of the estimator of the covariance, for values h = 5–1000 of the smoothing
parameter of the variances.

Figure 12.25 shows the Sharpe ratios of the Markowitz portfolios. The predic-
tion method of (6.35) is used. The prediction horizon of the expected returns is
s = 12. Panel (a) shows the Sharpe ratios as a function of the smoothing param-
eter of the estimator of the variances, for values h = 5–1000 of the smooth-
ing parameter of the covariance. Panel (b) shows the Sharpe ratios as a func-
tion of the smoothing parameter of the estimator of the covariance, for values
h = 5–1000 of the smoothing parameter of the variances. The symbols “1”–“4”
correspond the smoothing parameters in the increasing order. The red horizon-
tal lines show the Sharpe ratio of S&P 500 and the blue horizontal lines show
the Sharpe ratio of 10-year bond. Panel (a) shows that the smoothing parameter
of the variances should be large, especially when the smoothing parameter of
the covariance is small. Panel (b) shows that when the smoothing parameter of
the variances is large, then the smoothing parameter of the covariance should
be small.

Figure 12.26 is otherwise similar to Figure 12.25, but now the the prediction
method of (6.36) is used, instead of the prediction method of (6.35).

Figure 12.27 shows wealth and relative wealth. The prediction horizon of the
estimator of the expected return is s = 12. The prediction method of (6.35) is
used. The smoothing parameter of the variances is h = 20, and the smoothing
parameter of the covariance is h = 1. Panel (a) shows the cumulative wealth
of the Markowitz portfolio (black), S&P 500 (red), and 10-year bond (blue).
Panel (b) shows the ratios of the wealth of the Markowitz portfolio to the
wealth of S&P 500 (purple) and to the wealth of 10-year bond (orange). The
wealth is normalized to have value one at the beginning. Panel (a) shows
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Figure 12.26 Regression on economic indicators: Sharpe ratios of method (6.36). (a) The Sharpe
ratios as a function of the smoothing parameter of the estimator of the variances, for values
h = 5–1000 of the smoothing parameter of the covariance; (b) the Sharpe ratios as a function
of the smoothing parameter of the estimator of the covariance, for values h = 5–1000 of the
smoothing parameter of the variances.
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Figure 12.27 Regression on economic indicators: Wealth. (a) The cumulative wealth of the
Markowitz portfolio (black), S&P 500 (red), and 10-year bond (blue); (b) the ratios of the wealth
of the Markowitz portfolio to the wealth of S&P 500 (purple) and to the wealth of 10-year bond
(orange).

that the Markowitz portfolio beats the benchmarks. Panel (b) shows that the
Markowitz portfolio beats the benchmarks during the most time periods, and
the performance of the Markowitz portfolio is close to the performance of the
10-year bond after about 1985.

Figure 12.28 shows wealth and relative wealth. The prediction horizon of the
estimator of the expected return is s = 12. The prediction method of (6.36) is
used. The smoothing parameter of the variances is h = 40, and the smoothing
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Figure 12.28 Regression on economic indicators with the method (6.36): Wealth. (a) The cumu-
lative wealth of the Markowitz portfolio (black), S&P 500 (red), and 10-year bond (blue); (b)
the ratios of the wealth of the Markowitz portfolio to the wealth of S&P 500 (purple) and to
the wealth of 10-year bond (orange).
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Figure 12.29 Conditional versus unconditional estimation. (a) Time series of the portfolio
wealth when the first and second moments are estimated conditionally (black), first moments
sequentially and second moments conditionally (green), first moments conditionally and sec-
ond moments sequentially (yellow), and first and second moments are estimated sequentially
(purple); (b) relative wealths with respect to the wealth of S&P 500.

parameter of the covariance is h = 1. Panel (a) shows the cumulative wealth
of the Markowitz portfolio (black), S&P 500 (red), and 10-year bond (blue).
Panel (b) shows the ratios of the wealth of the Markowitz portfolio to the
wealth of S&P 500 (purple) and to the wealth of 10-year bond (orange). The
wealth is normalized to have value one at the beginning. Panel (a) shows
that the Markowitz portfolio beats the benchmarks, and the Markowitz
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portfolio of Figure 12.27. Panel (b) shows that the Markowitz portfolio beats
the benchmarks during the most time periods.

Figure 12.29 studies the importance of conditional prediction of second
moments. Panel (a) shows the wealths and panel (b) shows the relative wealths
with respect to the wealth of S&P 500. The black curve is the same as in
Figure 12.28, so that both the expectations and the second moments are
estimated conditionally. The green curve corresponds to the case where only
the second moments are estimated conditionally but the returns are predicted
sequentially. The yellow curve corresponds to the case where only the returns
are predicted conditionally but the second moments are predicted sequentially.
The purple curve corresponds to the case where both the expectations and the
second moments are estimated sequentially. The wealth is normalized to have
value one at the beginning. We see that the black and green curves are much
better, so that the conditional expectation of the second moments is more
important than the conditional estimation of the expectations.
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13

Principles of Asset Pricing

Asset pricing can be studied in two different settings: absolute pricing and rela-
tive pricing. Absolute pricing tries to explain the prices in terms of fundamental
macroeconomic variables, applying utility functions and preferences. Relative
pricing tries to explain the prices of a group of assets given the prices of a more
fundamental group of assets.

We concentrate on relative pricing. Derivatives are assets whose payoffs are
defined in terms of the payoffs of some basis assets. For example, an European
call option gives the right to buy the underlying asset at the given expiration
time T at the given strike price K . Thus, the payoff of the call option at time T
is equal to

CT = max{ST − K , 0},

where ST is the value of the underlying asset. We want to find a “fair price” Ct
for the call option, when t < T is a previous time.

Derivatives are traded in exchanges just like stocks, and the price of a deriva-
tive is determined in an exchange by supply and demand. It can be argued that
the pricing of the market is typically efficient. However, it is of interest to try to
find fair prices by statistical and probabilistic methods at least for the following
two reasons. (1) Sometimes options are bought and sold over the counter and
not in exchanges. In this case, there is no information provided by the markets.
(2) It is possible that the market prices are irrational. This can certainly hap-
pen in illiquid markets. In this case, a market participant can profit from the
knowledge of scientific methods of pricing.

Besides pricing of options, it is of equal importance to hedge options. In
fact, our main emphasis will be on the pricing by quadratic hedging. In this
approach, the price of an option will be the initial investment of a trading strat-
egy, which minimizes the quadratic error

E(WT − CT )2
,

Nonparametric Finance, First Edition. Jussi Klemelä.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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where WT is the wealth obtained by the hedging strategy, and CT is the value of
the derivative at the expiration. This approach will be developed more in detail
in Chapter 16.

Section 13.1 studies general principles of pricing heuristically, discussing
such concepts as absolute and relative pricing, arbitrage, the law of one price,
and completeness of models. In addition, we introduce the idea of quadratic
hedging.

Section 13.2 presents basics of mathematical asset pricing in discrete time.
We describe the first and the second fundamental theorems of asset pricing
(Theorems 13.1 and 13.3). The first fundamental theorem says that a market
is arbitrage-free if and only if there exists an equivalent martingale measure.
The second fundamental theorem says that every derivative can be replicated
if and only if the martingale measure is unique. If every derivative can be repli-
cated, then it is said that the market is complete. Theorem 13.2 states that the
arbitrage-free prices of European options are expectations with respect to an
equivalent martingale measure.

We give a proof of the first fundamental theorem of asset pricing. The
proof is constructive: we construct an equivalent martingale measure for an
arbitrage-free market. The most proofs of the first fundamental theorem of
asset pricing found in the literature are not constructive, but apply abstract
functional analysis. However, the construction of suitable equivalent mar-
tingale measures is useful for practical applications, because these measures
lead to the collections of arbitrage-free prices. We do not give a proof of the
second fundamental theorem of asset pricing. This is due to the fact that
the general theory of complete markets seems to be less relevant from the
practical point of view than the theory of incomplete markets, although the
Black–Scholes model is useful in applications. Chapter 14 describes the theory
of Black–Scholes pricing and Chapter 15 is devoted to incomplete models.

Section 13.3 discusses methods for the comparison of different pricing and
hedging methods. The main method for the comparison is to use historical
simulation to generate trajectories of prices, hedge the derivative through the
trajectories, and then compute the sample mean of the squared hedging errors.

13.1 Introduction to Asset Pricing

Section 13.1.1 discusses absolute pricing with the help of coin tossing games.
These examples show that utility functions can be useful in determining rea-
sonable prices. Section 13.1.2 discusses how the principle of excluding arbitrage
and the law of one price can be applied in relative pricing. The one period binary
model is introduced. This model will be used to derive the Black–Scholes prices
in Chapter 14. Section 13.1.3 discusses relative pricing in cases where arbitrage
cannot be applied. The one period ternary model is an example of such case. In
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these cases, a fair price can be defined by minimizing the mean squared hedging
error, for example.

13.1.1 Absolute Pricing

Let us consider a coin tossing game where a participant receives 1 € when heads
occur and 0 € when tails occurs. The probability of getting heads is 1/2 and the
probability of obtaining tails is 1/2. What is the fair price to participate in this
game? It can be argued that the fair price is the expected gain:

0.5 ⋅ 1 € + 0.5 ⋅ 0 € = 0.5 €.

The fairness of the price can be justified by the law of large numbers. The law
of large numbers implies that the gain from repeated independent repetitions
of the game with price 0.5 € converges to zero with probability 1. A larger price
than 0.5 € would give an almost sure profit to the organizer of the game in the
long run and a smaller price than 0.5 € would give an almost sure profit to the
player of the game in the long run.

It does not seem as clear what the price should be if we change the game
so that a participant receives 1 million € when heads occur and 0 € when tails
occur. Only few people would be willing to invest half a million € in order to
participate in this game. The law of large numbers cannot be applied to justify
a price because the probability of a bankruptcy is quite large when a player
repeats the game.1

It can be argued that the price of the game should be equal to the expected
utility: Let S be the random variable with P(S = s) = 0.5 and P(S = 0) = 0.5,
where s = 1 million €. Then the expected utility is EU(S ), where U is a utility
function.

The St. Petersburg paradox can be used to suggest that a utility function
should be used. In the St. Petersburg paradox, the banker flips the coin until
the heads come out the first time. The player receives 2k−1 coins when there are
k tosses of the coin (1 coin if the heads come out in the first toss, 2 coins if the
heads come out in the second toss, 4 coins if the heads come out in the third
toss, and so on). What is the fair entrance fee to the game? We can calculate
the expected gain. The probability that there are k tosses is pk = 2−k . Thus the
expected payoff is

∞∑
k=1

pk2k−1 =
∞∑

k=1

1
2
= ∞.

Thus, it would seem that the entrance fee could be arbitrarily high. However,
applying common sense, it does not seem reasonable to pay a high entrance fee.

1 Note also that a doubling strategy gives an almost sure win. A player who follows the classical
doubling strategy doubles his bet until the first time he wins. If he starts with 1 €, his final gain is 1
€ almost surely.
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The paradox can be solved by using a utility function to measure the utility of
the wealth. For example, the logarithmic utility function x → loge(x) gives the
expected utility of the game

∞∑
k=1

pk loge(2k−1) = loge2,

which would give the price of two coins for the game.2
The St Petersburg paradox suggests that we could use the expected utility

instead of the expected monetary payoff to determine fair prices. Utility maxi-
mization will be discussed in Section 15.2.5, as a method for derivative pricing,
but otherwise we do not study further this approach.

13.1.2 Relative Pricing Using Arbitrage

Sometimes relative pricing can be done solely by applying the principle of
excluding arbitrage. We illustrate this type of relative pricing using a coin
tossing example.3 After that, arbitrage and the law of one price are discussed
more generally.

2 The usefulness of utility functions can also argued by considering a lottery. Consider a lottery
where the player chooses seven numbers from the numbers 1,… , 39. Then seven numbers are
drawn randomly from the numbers 1,… , 39 without replacement. If the player has chosen exactly
the same numbers that were drawn, the player wins 2 million €. What is the fair price entrance
price for the lottery? The probability of winning is( 39

7

)−1
= 1

15, 380, 937
,

and thus the expected gain is
1

15, 380, 937
⋅ 2, 000, 000€ ≈ 0.13 €.

However, a typical price for a Finnish lottery of this type is 0.8 € and playing the game with this
entrance price results in the expected loss of 0.67 €. Using the logarithmic utility gives a positive
utility

1
15, 380, 937

⋅ loge(2, 000, 000) −
(

1 − 1
15, 380, 937

)
⋅ loge(0.8) ≈ 0.22,

which would give the price of e0.22 ≈ 1.25 €. Thus, the market price of a lottery can be justified
by pointing out that the market price is equal to the expected utility, for some utility function.
Intuitively, a lottery is attractive because it provides an opportunity to a dramatic improvement of
wealth, with a negligible price.
3 There are at least three differences in the setting of option pricing, as compared to the pric-
ing of coin flipping games. (1) In the coin flipping games the payment is made and the payoff is
received almost simultaneously, whereas the expiration time of the option can be several months
or even years ahead. Thus, one has to take into account the cost of money in option pricing. (2)
The probabilities of the outcomes are known in the coin flipping, whereas the distribution of stock
prices is unknown and has to be estimated with statistical techniques. Arbitrage is based on “known
knowns,” statistical arbitrage in the coin flipping is based on “known unknowns,” whereas statisti-
cal arbitrage in option pricing has to deal with “unknown unknowns.” (3) In the coin flipping, we
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13.1.2.1 Pricing in a One Period Binary Model
Let us consider two games related to the same tossing of a coin. The first game
is such that the player receives u € when heads occur and d € when tails occurs,
where u > d ≥ 0. The participation to this game can be compared to buying a
stock. We denote with S the random variable with P(S = u) = 0.5 and P(S =
d) = 0.5.

The second game is such that the player receives 1 € when heads occur and 0
€ when tails occurs. The participation to this game can be compared to buying
a derivative. Indeed, the second game can be considered as a derivative because
the payoff in the second game is random variable C = f (S ) for f ∶ {u, d} → R,
where f (u) = 1 and f (d) = 0. Random variable C has the distribution P(C =
1) = 0.5 and P(C = 0) = 0.5. The third asset is a bond with value B = 1. The
price of bond is 1 and the price of stock is denoted with 𝜋(S ). We want to find
the price of the derivative.

The derivative can be replicated with the bond and the stock: Consider the
portfolio with 𝛽 bonds and 𝜉 stocks. We choose

𝛽 = −d
u − d

, 𝜉 = 1
u − d

.

The replicating portfolio is W = 𝛽B + 𝜉S. Indeed, we have that P(W = C ) = 1,
because

𝛽 + 𝜉d = 0,
𝛽 + 𝜉u = 1.

By the law of one price, to exclude the possibility of arbitrage, the price of the
derivative has to be equal to the price of the portfolio:4

𝜋(C ) = 𝜋(W ).

The price of the portfolio is

𝜋(W ) = 𝛽 + 𝜉𝜋(S ).

Thus, the price of the derivative is

𝜋(C ) = 𝜋(S ) − d
u − d

. (13.1)

The price of the derivative is in general not equal to 0.5. If 𝜋(S ) = (u + d)∕2,
then the price of the derivative is 𝜋(C ) = 0.5. If 𝜋(S ) < (u + d)∕2, then the price
of the derivative satisfies 𝜋(C ) < 0.5.5

cannot usually invest in any games whose outcome is related to the game we are pricing, whereas
in the case of options we can make transactions with the underlying stock.
4 If 𝜋(C ) < 𝜋(V ), then buying C and selling V would give an almost sure profit. If 𝜋(C ) > 𝜋(V ),
then selling C and buying V would give an almost sure profit.
5 Exercise: Does the possibility for hedging always decrease the price of the derivative to a lower
value than the expected value?
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We have given the price of the derivative in (13.1) in terms of the price of the
stock. This is an example of relative pricing: a price of an asset is expressed in
terms of the prices of another asset.

13.1.2.2 Arbitrage
Arbitrage is both a term of everyday language and a technical term used in
mathematical finance.

Arbitrage is used in everyday language to denote a financial operation where
one obtains a profit with probability one by a simultaneous selling and buying
of assets. We give two examples of this type of arbitrage.

1) The stock of Daimler is listed both in Frankfurt and Stuttgart stock
exchanges. If the stock can be bought in Frankfurt with the price of 10 €
and sold in Stuttgart with the price of 11 €, we obtain a risk free profit of
1 € (minus the transaction costs).

2) Suppose the price of a stock is 10 € and a call option with strike price K = 8 €
with the expiration time in 1 week can be bought with the price of 1 €. Then,
we can sell the stock short and buy the call option. The profit of the operation
will be −1 + 10 − 8 = 1 € (buying the call costs 1 €, selling the stock short
gives 10 €, and exercising the option costs 8 €).
In general, we have a lower bound St − K for the price of a call option, where
St is the price of the stock at the time of buying the option, and K is the strike
price. See (14.9) for a more precise lower bound.

In mathematical finance, an arbitrage is a financial operation whose payoff is
always nonnegative and sometimes positive, that is, the probability of a non-
negative payoff is one and the probability of a positive payoff is greater than
zero. More formally, arbitrage portfolio Wt is such that its value at time t sat-
isfies Wt ≤ 0 but its value WT at a later time T satisfies Pt(WT ≥ 0) = 1 and
Pt(WT > 0) > 0. A reasonable system of prices should be such that arbitrage is
excluded, so that there does not exist an arbitrage portfolio.

The absence of arbitrage implies the law of one price.

13.1.2.3 The Law of One Price and the Monotonicity Theorem
The law of one price states that if two financial assets have the same payoffs
then they have the same price: If two portfolios satisfy

Pt

(
W (a)

T = W (b)
T

)
= 1,

then their prices are equal at a previous time t:

W (a)
t = W (b)

t .

The absence of arbitrage implies that the law of one price holds. Indeed, con-
sider the case where the law of one price does not hold. Then we have two assets
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with different prices at time t, say W (a)
t < W (b)

t , and the prices of the assets are
the same with probability 1 at a later time T : Pt(W

(a)
T = W (b)

T ) = 1. Then we
can by the cheaper asset at time t and sell the more expensive asset at time
t to obtain the amount W (b)

t − W (a)
t > 0. This amount can be put into a bank

account. At time T the two assets have the same price, and thus we have locked
the profit of time t. We have shown that there exists an arbitrage opportunity.
Thus we have shown that the absence of arbitrage implies that the law of one
price holds.

The monotonicity theorem states that if two financial assets satisfy

Pt

(
W (a)

T ≤ W (b)
T

)
= 1,

then their prices satisfy

W (a)
t ≤ W (b)

t

at time t. Furthermore, if Pt(W
(a)
T < W (b)

T ) = 1, then their prices satisfy W (a)
t <

W (b)
t at time t. This formulation of the monotonicity theorem is similar to the

formulation of Blyth (2014, p. 48).
The law of one price implies the linearity of the pricing function. Let

W = 𝜉
1S1 + · · · + 𝜉dSd

be a portfolio, and let S1
t ,… , Sd

t be the prices of the basis assets at time t. Then
the price of the portfolio at time t is

Wt = 𝜉
1S1

t + · · · + 𝜉dSd
t . (13.2)

13.1.2.4 Pricing using The Law of One Price
The law of one price can be used to price linear assets by replication.6 Further-
more, the law of one price can be used to price all assets in complete markets.
By a market we mean a collections of tradable assets together with assump-
tions about the probability distributions of the asset values. A complete market
is such that any possible payoff can be obtained by a portfolio of assets. That is,
assume that the market has tradable assets S1

,… , Sd. Assume that an arbitrary
payoff CT can be obtained, so that Pt(𝜉1S1

T + · · · + 𝜉dSd
T = CT ) = 1. The law of

one price implies that price of this payoff is

Ct = 𝜉
1S1

t + · · · + 𝜉dSd
t ,

where we applied the linearity in (13.2).
Futures are linear derivatives, and thus the law of one price can be used to

price futures; see Section 14.1. Futures can be priced by the law of one price
because futures can be defined as a portfolio of the underlying asset and a bond:

6 We can use the arbitrage argument directly, but we have noted that the absence of arbitrage
implies the law of one price and thus we use below the pricing with the replication.
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the payoff of a futures contract is a linear combination of the payoffs of the
underlying asset and a bond.

The payoff of an option is not a linear function of the payoff of the underlying.
Thus options cannot be priced as easily as futures. The law of one price can be
used to price options in the Black–Scholes model, because the Black–Scholes
model is a complete model for the markets, so that all derivatives can be repli-
cated (linearly).

The law of one price can be used to derive the put-call parity, which says
that the prices of two options satisfy an equation. The law of one price can also
be used to give bounds to option prices without assuming the Black–Scholes
model, or any other market model. See Section 14.1.2 for the derivation of the
put-call parity.

13.1.3 Relative Pricing Using Statistical Arbitrage

We have derived the price of the derivative in (13.1) using the replication of
the derivative with a stock and a bond. The exact replication is possible only
under special circumstances. It suffices to move from the binary model to a
ternary model to make exact replication impossible, so that only approximate
replication is possible. We use the term “statistical arbitrage” to mean quadratic
hedging (variance optimal hedging), quantile hedging, and other similar meth-
ods for approximate replication.

13.1.3.1 Pricing in a One Period Ternary Model
Let us have two games related to the same tossing of a dice. The first game is
such that the player receives d € when the dice shows 1 or 2, c € when the dice
shows 3 or 4, and u € when the dice shows 5 or 6, where 0 ≤ d < c < u. The
participation to this game is an analogy to buying a stock and we denote with S
the random variable with P(S = d) = P(S = c) = P(S = u) = 1∕3.

The second game is such that the player receives 0 € when the dice shows 1,
2, 3, or 4 and 1 € when the dice shows 5 or 6. The participation to this game is
an analogy to buying a derivative and we denote with C the random variable
C = f (S ), where f ∶ {1,… , 6} → R is defined by f (x) = 0 when x ∈ {1,… , 4}
and f (x) = 1 when x ∈ {5, 6}. Now P(C = 0) = 2∕3 and P(C = 1) = 1∕3. The
third asset is a bond with value B = 1. The price of the bond is 1 and the price of
the stock is denoted with 𝜋(S ). We want to find the price 𝜋(C ) of the derivative.

The derivative cannot be replicated with the bond and the stock: Consider
the portfolio with 𝛽 bonds and 𝜉 stocks. The portfolio is W = 𝛽B + 𝜉S. We have
P(W = C ) = 1 when 𝛽 and 𝜉 satisfy

𝛽 + 𝜉d = 0,
𝛽 + 𝜉c = 0,
𝛽 + 𝜉u = 1.
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We can typically not find such 𝛽 and 𝜉 because, in general, two parameters
cannot satisfy three equations simultaneously. To obtain an approximate repli-
cation we could choose 𝛽 and 𝜉 so that E(W − C )2 is minimized. We have that

E(W − C )2 = P(S = d)(𝛽 + 𝜉d)2 + P(S = c)(𝛽 + 𝜉c)2

+P(S = u)(𝛽 + 𝜉u − 1)2
.

Since the probabilities are all equal to 1∕3, we get the least squares solution for
𝜉 = (𝛽, 𝜉)′:

𝜉 = ( ′
)−1


′
 ,

where

 =
⎡⎢⎢⎣

1 d
1 c
1 u

⎤⎥⎥⎦ , 𝜉 =
[
𝛽

𝜉

]
,  =

⎡⎢⎢⎣
0
0
1

⎤⎥⎥⎦ .
The solution is

𝛽 = 1
3
− 1

3
(d + c + u)𝜉, 𝜉 =

u − (d + c + u)∕3
d2 + c2 + u2 − (d + c + u)2∕3

.

We set the price of the derivative to be equal to the price of the approximately
replicating portfolio:

𝜋(C ) = 𝜋(W ) = 𝛽 + 𝜉𝜋(S ).

If 𝜋(S ) = ES = (d + c + u)∕3, then 𝜋(C ) = EC = 1∕3.

13.1.3.2 Statistical Arbitrage and the Law of Approximate Price
Statistical arbitrage is a financial operation where a profit is obtained with a high
probability. The principle of excluding statistical arbitrage is a pricing principle,
which can be used when the principle of excluding arbitrage does not apply.
However, the concept of statistical arbitrage can be defined in many ways. Let us
compare the principle of excluding arbitrage to the idea of excluding statistical
arbitrage.

1) Excluding arbitrage. The value of a derivative is CT at time T . Let us have
another asset whose value is WT at time T . Assume that the values are equal
with probability 1: Pt(CT = WT ) = 1. Then it should hold that the value of
the derivative and the other asset are equal at all previous times: Ct = Wt for
all previous times t. Otherwise, there would be an arbitrage opportunity: sell
the more expensive instrument and buy the cheaper instrument to obtain a
risk free profit at time T .

2) Excluding statistical arbitrage. The value of a derivative is CT at time T . Let
us have an other asset whose value is WT at time T . If the random variables
CT and WT are “close,” then the prices Ct and Wt should be close at all pre-
vious times t. The closeness of random variables can be defined in many
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ways. For example, we can say that two random variables CT and WT are
close when Et(CT − WT )2 is small. A derivative can be priced with statisti-
cal arbitrage if we can construct an asset, which replicates the payoff of the
derivative with high probability.

Pricing with statistical arbitrage requires that we define the best approx-
imation WT to a random payoff CT . As an example, we can consider a call
option written at time t, with the strike price K and with the expiration time
T . The payout of the option at the expiration time is CT = max{ST − K , 0},
where ST is the price of the underlying instrument at time T . The best constant
approximation of random variable CT in the sense of mean squared error is its
expectation:7

argmin
P∈R

Et(CT − P)2 = EtCT ,

where the minimization is taken with respect to all real numbers. Thus, expec-
tation EtCT can give a first approximation to the price of CT . We can use the
underlying asset to provide a better approximation. The best approximation of
CT with a function f (S ) of S is the conditional expectation:

argmin
f

Et(CT − f (S ))2 = Et(CT |S ),
where the minimization is taken with respect to functions f ∶ R → R, and
function f = Et(CT |S ) takes values f (s) = Et(CT |S = s). Thus, the conditional
expectation Et(CT |S = s) could be a candidate for the fair price. However, the
conditional expectation is typically not a tradable asset, and we will make a
further restriction to find such function f (S ), which is tradable, which leads to
linear approximations.

13.2 Fundamental Theorems of Asset Pricing

Our intention is to describe the basic mathematical terminology and funda-
mental theorems of asset pricing in discrete time models. Our presentation
follows Shiryaev (1999) and Föllmer and Schied (2002). The mathematics of
asset pricing is a fascinating topic with elegant results and we hope that the
presentation will inspire readers to study the subject in a greater detail.

The first fundamental theorem of asset pricing says that a market is
arbitrage-free if and only if there exists an equivalent martingale measure.
Furthermore, these martingale measures define the collection of arbitrage-free
prices for a derivative. In a complete model, there is exactly one equivalent
martingale measure, but in an incomplete model there are many equivalent
martingale measures. Thus, the main problem will be to choose the martingale
measure for pricing from a collection of available martingale measures. Our
emphasis will be in incomplete models.

7 This follows from Et(CT − P)2 = Et(CT − EtCT )2 + (EtCT − P)2.
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13.2.1 Discrete Time Markets

Let B = (Bt)t=0,…,T be the time series of prices of a riskless bond (bank account).
Let S = (St)t=0,…,T be the vector time series of prices of risky assets, where St =
(S1

t ,… , Sd
t ). The price vector that contains both the bond and the risky assets is

denoted by

S̄t = (Bt, St) =
(
Bt, S1

t ,… , Sd
t
)
, t = 0, 1,… ,T .

13.2.1.1 Filtered Probability Spaces
The underlying probability space (Ω, ,P) is accompanied with a filtration of
sigma-algebras 0 ⊂ 1 ⊂ · · · ⊂ T .8 The price process of stocks is adapted
with respect to the filtration: St is measurable with respect to t .9 The price
process of the bond is predictable with respect to the filtration: Bt is measurable
with respect to t−1, t = 1,… ,T , and B0 is measurable with respect to 0.
Thus, the value of Bt is known at time t − 1, which makes B locally riskless.
The prices are assumed to be nonnegative. We assume that10

0 = {∅,Ω}, T =  .

Thus, B0 and elements of S0 are constants (with probability 1).

13.2.1.2 Trading Strategies
A trading strategy is

𝜉t = (𝛽t, 𝜉t) =
(
𝛽t , 𝜉

1
t ,… , 𝜉

d
t
)
, t = 1,… ,T .

The values 𝛽t and 𝜉i
t express the quantity of the bond and the ith asset held

between t − 1 and t. The trading strategy is predictable: 𝛽t and 𝜉i
t are measurable

with respect to t−1. This means that 𝛽t and 𝜉i
t are determined at time t − 1,

using the information available at time t − 1.

13.2.1.3 Examples
Let us give examples of the locally riskless bond B. We can take Bt = (1 + r)t ,
where r > −1 is a constant, or Bt = exp{rt}, where r ∈ R. In addition, we can
take B0 = 1, and

Bt =
t∏

k=1
(1 + rk)

8 A sigma-algebra  is a set of subsets of Ω, which satisfies axioms (1) Ω ∈  , (2) if A ∈  , then
Ac ∈  , and (3) if A1,A2,… ∈  , then ∪∞

i=1Ai ∈  .
9 Measurability of St with respect to t means that {𝜔 ∈ Ω ∶ St(𝜔) ∈ A} ∈ t for each Borel set
A ⊂ R.
10 The case where T ⊂  and T ≠  might arise in the following way. It might be known that
in the near future an earnings report will be given. This knowledge increases implied volatility, and
it increases the prices of the options, but the knowledge might not affect the price or the volatility
of the underlying.
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for t ≥ 1, where rt > −1 is predictable. We can also take B0 = 1 and
Bt =
∏t

k=1 exp{rk}, where rt ∈ R is predictable.
Consider the two period binary model as an example of adaptability and pre-

dictability. Now T = 2 and d = 1. The initial stock price is S0 = s0 = 1. The
next price is S1 = s0(1 +𝑤1) and the final price is S2 = S1(1 +𝑤2), where 𝑤1
and 𝑤2 are random variables. Random variable 𝑤1 satisfies P(𝑤1 = 𝜖) = p and
P(𝑤1 = −𝜖) = 1 − p for 0 < p < 1, where 𝜖 > 0 is a fixed constant. Random
variable 𝑤2 has the same distribution as 𝑤1, and is independent of 𝑤1. Choose

Ω = {(d, d), (d,u), (u, d), (u,u)},
where u and d refer to the upwards and downwards movements of the stock.
Set Ω describes all possible trajectories of the process. Now,

S1 =
{

1 − 𝜖, when 𝜔 ∈ {(d, d), (d,u)},
1 + 𝜖, when 𝜔 ∈ {(u, d), (u,u)}.

Let A ⊂ R. It follows that

S−1
1 (A) =

⎧⎪⎨⎪⎩
∅, when 1 − 𝜖 ∉ A and 1 + 𝜖 ∉ A,
{(d, d), (d,u)}, when 1 − 𝜖 ∈ A and 1 + 𝜖 ∉ A,
{(u, d), (u,u)}, when 1 − 𝜖 ∉ A and 1 + 𝜖 ∈ A,
Ω, when 1 − 𝜖 ∈ A and 1 + 𝜖 ∈ A.

In order for the stock prices to be adapted to the filtration we need
{{(d, d), (d,u)}, {(u, d), (u,u)}} ⊂ 1.

We have that

S2 =
⎧⎪⎨⎪⎩
(1 − 𝜖)2

, when 𝜔 ∈ {(d, d)},
(1 − 𝜖)(1 + 𝜖), when 𝜔 ∈ {(d,u), (u, d)},
(1 + 𝜖)2

, when 𝜔 ∈ {(u,u)}.

It follows that in order for the stock prices to be adapted to the filtration we
need

{{(d, d)}, {(d,u), (u, d)}, {(u,u)}} ⊂ 2.

Let the initial bond price be B0 = b0. Let the next bond price be B1 = b0(1 + r1),
where r1 > −1 is a constant. Let the final bond price be B2 = B1(1 + r2), where
r2 = 𝑤1∕2. Now bond prices are predictable with respect to the filtration. Bond
price at time t = 2 depends only on the stock price at time t = 1. Thus, the bond
price at time t = 2 is a random variable which is known at time t = 1.

13.2.2 Wealth and Value Processes

We define the wealth and value processes. The value process is obtained
from the wealth process by dividing with the bond price. After that we derive
an expression for the wealth and value processes under the assumption of
self-financing.
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13.2.2.1 The Wealth and Value Processes
We use the following notation for the inner product:

𝜉t ⋅ S̄t = 𝛽tBt + 𝜉t ⋅ St = 𝛽tBt +
d∑

i=1
𝜉

i
tSi

t .

At time 0 the initial wealth is W0 ∈ R and after that,

Wt = 𝜉t ⋅ S̄t , t = 1,… ,T .

Indeed, the portfolio vector 𝜉t is chosen at time t − 1 and hold during the period
t − 1 → t.

We assume that P(Bt > 0) = 1 for all t and choose the bond as a numéraire.
The discounted price process is defined by

Xi
t =

Si
t

Bt
, t = 0,… ,T , i = 1,… , d.

We denote

Xt =
(
X1

t ,… ,Xd
t
)
, X̄t = (1,Xt). (13.3)

The value process is defined as V0 = W0∕B0 and

Vt =
Wt

Bt
= 𝜉t ⋅ X̄t, t = 1,… ,T .

13.2.2.2 The Wealth Process under Self-financing
We assume in most cases that the trading strategy is self-financing. The local
quadratic hedging without self-financing in Section 16.2.3 is a case where
self-financing is not assumed.

Let us describe trading under the condition of self-financing. At time 0 the
initial wealth is W0 ∈ R. The wealth is allocated among the available assets: the
quantities 𝜉1 are chosen so that

W0 = 𝜉1 ⋅ S̄0.

The prices change from S̄0 to S̄1, and the wealth changes accordingly from W0
to W1. After that, wealth W1 is allocated among the available assets. We obtain

W1 = 𝜉1 ⋅ S̄1 = 𝜉2 ⋅ S̄1.

We continue in this way to obtain

Wt = 𝜉t ⋅ S̄t = 𝜉t+1 ⋅ S̄t , t = 1,… ,T − 1.

The final wealth is

WT = 𝜉T ⋅ S̄T .

At time T we need not do the reallocation, because it is the last time instance.
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We have described a process of trading, which is self-financing. We say that
a trading strategy 𝜉 is self-financing if

𝜉t ⋅ S̄t = 𝜉t+1 ⋅ S̄t , t = 1,… ,T − 1. (13.4)
When the trading strategy is self-financing, then no external funds are received,
and no funds are reserved for consumption.

Under the assumption (13.4) of self-financing, the change of wealth can be
written as

Wt − Wt−1 = 𝜉t ⋅ S̄t − 𝜉t−1 ⋅ S̄t−1 = 𝜉t ⋅ (S̄t − S̄t−1),

for t = 2,… ,T . Thus, the wealth at time t can be written as11

Wt = W0 +
t∑

k=1
(Wk − Wk−1)

= 𝜉1 ⋅ S̄0 +
t∑

k=1
𝜉k ⋅ (S̄k − S̄k−1), (13.5)

where 0 ≤ t ≤ T .

13.2.2.3 The Value Process Under Self-Financing
Let us assume that the rebalancing is made respecting the condition of
self-financing: 𝜉t+1 is chosen so that the wealth Wt is allocated among the
assets. Equation Wt = 𝜉t+1 ⋅ S̄t sets a linear constraint on the vector 𝜉t+1. It
is convenient to write the wealth process so that the quantity 𝛽t of bonds is
eliminated, and this can be done using the value process.

The self-financing condition in (13.4) implies that the discounted price pro-
cess Xt in (13.3) satisfies

𝜉t ⋅ X̄t = 𝜉t+1 ⋅ X̄t , t = 1,… ,T − 1. (13.6)
Similarly as for the wealth process, it holds that

V0 = 𝜉1 ⋅ X̄0,

Vt = 𝜉t ⋅ X̄t = 𝜉t+1 ⋅ X̄t , t = 1,… ,T − 1,
VT = 𝜉T ⋅ X̄T . (13.7)

Under the condition (13.6) of self-financing, an increment of the value process
can be written as

Vt − Vt−1 = 𝜉t ⋅ X̄t − 𝜉t−1 ⋅ X̄t−1 = 𝜉t ⋅ (X̄t − X̄t−1) = 𝜉t ⋅ (Xt − Xt−1),

11 We can write the wealth process both in a multiplicative way and in an additive way. We have
written the multiplicative wealth process in (9.10). This expression is valid for the cases where we
have a positive initial wealth W0 > 0. Now we write the wealth process Wt in an additive way. This
way of writing the wealth process does not presuppose a positive initial wealth. For example, the
writer of an option can start with zero initial wealth, when the hedging is done by borrowing the
funds needed in hedging.
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where the last equality follows because the first element of X̄t is 1 for all t. Thus,
the value at time t can be written as

Vt = V0 +
t∑

k=1
(Vk − Vk−1)

= V0 +
t∑

k=1
𝜉k ⋅ (Xk − Xk−1). (13.8)

Note that the value process is written in terms of the quantity 𝜉t of stocks.
The quantity 𝛽t of bonds is obtained from the equations

𝛽1 = V0 − 𝜉1 ⋅ X0,

𝛽t+1 = 𝛽t + (𝜉t − 𝜉t+1) ⋅ Xt , t = 1,… ,T − 1, (13.9)

which follow from self-financing equations (13.7).
The gains process is defined as

G0 = 0, Gt =
t∑

k=1
𝜉k ⋅ (Xk − Xk−1), t = 1,… ,T .

For a self-financing strategy

Vt = V0 + Gt . (13.10)

The gains process is a discrete stochastic integral. The gains process is a trans-
formation of Xt by means of 𝜉t .12

The value process can be used to derive some expressions for the wealth. For
example, when Bt = (1 + r)t , then13

Wt = (1 + r)tW0 +
t∑

k=1
(1 + r)t−k

𝜉k ⋅ [Sk − (1 + r)Sk−1].

12 When X = (Xt ,t) is a stochastic sequence and 𝜉 = (𝜉t ,t−1) is a predictable sequence, then the
stochastic sequence (𝜉 ⋅ X) = ((𝜉 ⋅ X)t ,t) is called the transformation of X by means of 𝜉, where
we denote

(𝜉 ⋅ X)t = 𝜉0 ⋅ X0 +
t∑

k=1
𝜉k ⋅ (Xk − Xk−1). (13.11)

If X is a martingale, then 𝜉 ⋅ X is called a martingale transformation. In our case 𝜉0 = 0.
13 We have that BtXk = Bt−kSk and BtXk−1 = Bt−k+1(1 + r)Sk−1. Thus,

Wt = BtV0 +
t∑

k=1
Bt𝜉k ⋅ (Xk − Xk−1)

= BtW0 +
t∑

k=1
Bt−k𝜉k ⋅ [Sk − (1 + r)Sk−1].
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13.2.3 Arbitrage and Martingale Measures

An arbitrage opportunity is a self-financing trading strategy 𝜉 so that its value
process satisfies

V0 = 0, P(VT ≥ 0) = 1, P(VT > 0) > 0.

This means that with an initial investment of zero it is possible to get a final
wealth, which is always nonnegative and sometimes positive.

A martingale is a stochastic process M = (Mt)t=0,…,T on a filtered probability
space (Ω, , (t),Q) if14

1) Mt it is adapted (Mt is t measurable),
2) EQ|Mt| <∞ for 0 ≤ t ≤ T ,
3) EQ(Mt|t−1) = Mt−1 for 1 ≤ t ≤ T .

A martingale difference satisfies conditions 1 and 2, but condition 3 takes the
form EQ(Mt|t−1) = 0 for 1 ≤ t ≤ T . Thus, a martingale difference is a martin-
gale if P(M0 = 0) = 1.

A probability measure Q on (Ω, , (t)) is called a martingale measure, or
a risk neutral measure, if the discounted price process Xt is a d-dimensional
martingale. Then,

EQ

|||||
Si

t

Bt

||||| < ∞

for t = 0,… ,T , and

EQ

(
Si

t

Bt

|||||t−1

)
=

Si
t−1

Bt−1

Q-almost surely for t = 1,… ,T , where i = 1,… , d.
An equivalent martingale measure is a martingale measure, which is equiva-

lent to the original measure P. Measures P and Q are equivalent, if P(A) = 0 if
and only if Q(A) = 0. The equivalence of measures is denoted by P ≈ Q. Let 
be the set of equivalent martingale measures:

 = {Q ∶ Q is a martingale measure with Q ≈ P},

where P is the underlying probability measure of the market model.
The first fundamental theorem of asset pricing states that a market model is

arbitrage-free if and only if there exists an equivalent martingale measure.

14 If E|Mt| < ∞, then the conditional expectation E(Mt|t−1) is a t−1-measurable random vari-
able such that

∫A
E(Mt|t−1)dP =

∫A
MtdP

for each A ∈ t−1.
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Theorem 13.1 The market model is arbitrage-free if and only if  ≠ ∅.

Theorem 13.1 was proved in Harrison and Kreps (1979) and Harrison
and Kreps (1981) in the case of finite Ω. Dalang et al. (1990) proved it for
arbitrary Ω. A proof of Theorem 13.1 can be found in Föllmer and Schied
(2002, Theorem 5.17) and in Shiryaev (1999, p. 413). We proof Theorem 13.1
by first showing that the existence of an equivalent martingale measure implies
no-arbitrage. After that, an equivalent martingale measure is constructed for
an arbitrage-free model.

13.2.3.1 The Existence of a Risk Neutral Measure Implies No-Arbitrage
We think that it is instructive to prove the result first for the case T = 1, and
after that for the general case T ≥ 1.

A Proof in the One Period Model Assume that there exists an equivalent martin-
gale measure Q ∈  . The martingale measure satisfies

Si
0 = EQ

(
Si

1

B1

)

for i = 1,… , d. The value process is

V0 =
𝜉1 ⋅ S̄0

B0
, V1 =

𝜉1 ⋅ S̄1

B1
.

Take a portfolio such that 𝜉1 ⋅ S̄0 = 0. Then,

0 = 𝜉1 ⋅ S̄0 = 𝛽1B0 +
d∑

i=1
𝜉

i
1Si

0 = 𝛽1B0 +
d∑

i=1
EQ

(
𝜉

i
1Si

1

B1

)
= EQ

(
𝜉1 ⋅ S̄1

B1

)
.

Thus, we cannot have EQ(𝜉1 ⋅ S̄1) > 0. Thus, we cannot have EP(𝜉1 ⋅ S̄1) > 0, and
we cannot have P(𝜉1 ⋅ S̄1 > 0) > 0, and 𝜉1 cannot be an arbitrage opportunity.

A Proof in the Multiperiod Model A proof can be found in Shiryaev (1999, p. 417).
We assume that there exists a martingale measure Q, which is equivalent to P
and such that (Xt)t=0,…,T is a d-dimensional martingale with respect to Q, where
Xt = St∕Bt . We noted in (13.10) that the value process satisfies

Vt = V0 + Gt ,

where

G0 = 0, Gt =
t∑

k=1
𝜉k ⋅ (Xk − Xk−1), t = 1,… ,T .
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Note that since X is a martingale with respect to Q, then sequence
G = (Gt)t=0,…,T is a martingale transformation with respect to Q, when a
martingale transformation is defined by (13.11).

Let 𝜉t be a strategy with V0 = 0, and P(VT ≥ 0) = 1, so that P(GT ≥ 0) = 1,
and Q(GT ≥ 0) = 1. Let us assume that |𝜉t| ≤ C < ∞ for t = 1,… ,T , where
C > 0 is a constant. Then G is a martingale, and EQGT = G0 = 0. Since Q(GT ≥

0) = 1, then Q(GT = 0) = 1, which implies P(GT = 0) = 1, and P(VT = 0) = 1.
The case of unbounded 𝜉t is handled in Shiryaev (1999, p. 98, Chapter II §1c)15

and in Föllmer and Schied (2002, Theorem 5.15, p. 229).

13.2.3.2 A Construction of an Equivalent Martingale Measure
We have taken the proof from Shiryaev (1999, p. 413), which follows the ideas
of Rogers (1994). The construction of equivalent martingale measures is based
on the Esscher conditional transformations. The Esscher transforms were used
also in Gerber and Shiu (1994) to construct an equivalent martingale measure.
Note that the most proofs found in literature are not constructive, but apply
a separation theorem in finite-dimensional Euclidean spaces, for example.16 It
is instructive to first consider the case of the one period model with one risky
asset, second consider the case of the multiperiod model with one risky asset,
and third consider the general case.

A Martingale Measure in the One Period Model with One Risky Asset Let us consider
the one period model (T = 1) with one risky asset (d = 1). We assume for sim-
plicity that B0 = B1 = 1. Let

ΔX = S1 − S0.

The absence of arbitrage implies that17

P(ΔX > 0) > 0, P(ΔX < 0) > 0.

We need to construct measure Q so that

Q ≈ P, EQ|ΔX| < ∞, EQ(ΔX) = 0.

Let

Za(x) =
eax

𝜙(a)
,

15 A theorem is proved in Shiryaev (1999, p. 98, Chapter II §1c) which states that the properties of
being (1) a local martingale, (2) a generalized martingale, and (3) a martingale transformation are
equivalent.
16 A separating hyperplane theorem can be stated as follows. Suppose that  ⊂ Rd is a convex set
with 0 ∉ . Then there exists 𝜂 ∈ Rd with 𝜂 ⋅ x ≥ 0 for all x ∈ , and with 𝜂 ⋅ x0 > 0 for at least one
x0 ∈ ; see Föllmer and Schied (2002, Proposition A.1).
17 If P(ΔX ≥ 0) = 1, then we know for sure that the stock price does not fall, and we should buy
the stock as much as possible to induce arbitrage. If P(ΔX ≤ 0) = 1, then we know for sure that the
stock price does not rise, and we should sell short the stock as much as possible to induce arbitrage.
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for a ∈ R, where

𝜙(a) = EPeaΔX
.

We can assume that 𝜙(a) < ∞ for each a such that 𝜙(a) > 0.18 In addition,
Za(x) > 0 and EPZa(ΔX) = 1. We define the probability measure

Qa(dx) = Za(x)P(dx).

Now Qa ≈ P. We have that 𝜙′′(x) > 0, and thus 𝜙 is strictly convex on R. Let

𝜙
∗ = inf{𝜙(a) ∶ a ∈ R}.

We have to prove that

there exists such a∗ that 𝜙(a∗) = 𝜙
∗
. (13.12)

If (13.12) holds, then we define

Q = Qa∗ .

Now Q is the required measure because 𝜙′(a∗) = 0 and

EQa∗
(ΔX) = EP

(
ΔXea∗ΔX

𝜙(a∗)

)
= 𝜙

′(a∗)
𝜙(a∗)

= 0.

Let us prove (13.12). Let us assume that (13.12) does not hold and derive a
contradiction. Let {an} be a sequence such that

𝜙(an) > 𝜙∗
, 𝜙(an) ↓ 𝜙∗

. (13.13)

Then an → ∞ or an → −∞. Otherwise, we can choose a convergent subse-
quence, the minimum is attained at a finite point, and (13.12) holds. Let

un =
an|an| , u = lim

n→∞
un(= ±1).

We have that

Q(uΔX > 0) > 0.

Thus there exists 𝛿 > 0 such that

Q(uΔX > 𝛿) = 𝜖 > 0, Q(uΔX = 𝛿) = 0.

Thus,

Q(anΔX > 𝛿|an|) = Q(unΔX > 𝛿) → 𝜖,

18 Otherwise, we can move from P to measure

P̃(dx) = e−x2 P(dx)
EPe−ΔX2 , x ∈ R.
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as n → ∞. For sufficiently large n we have

𝜙(an) = EQeanΔX
≥ EQ
(
eanΔXI(anΔX>𝛿|an|)

)
≥

1
2
𝜖e𝛿|an| → ∞,

which contradicts (13.13).

A Martingale Measure in the Multiperiod Model with One Risky Asset Let us consider
the multiperiod model (T ≥ 1) with one risky asset (d = 1). We assume for sim-
plicity that B0 = · · · = BT = 1. Let

ΔXt = St − St−1,

where t = 1,… ,T . The absence of arbitrage implies that19

P(ΔXt > 0|t−1) > 0, P(ΔXt < 0|t−1) > 0 (13.14)

P-almost surely, for t = 1,… ,T . We need to construct measure Q so that

Q ≈ P,
EQ|ΔXt| < ∞ for t = 1,… ,T ,
EQ(ΔXt|t−1) = 0 for t = 1,… ,T .

Then ΔX1,… ,ΔXT is a martingale difference with respect to Q, and S0,… , ST
is a martingale with respect to Q. Let

𝜙t(a, 𝜔) = EP(eaΔXt |t−1)(𝜔)

for a ∈ R, We can assume that 𝜙(a) is finite.20 For a fixed 𝜔 function 𝜙t(a, 𝜔) is
strictly convex, as follows from (13.14). There exists a unique finite

a∗
t = a∗

t (𝜔)

such that infa 𝜙t(a, 𝜔) is attained at a∗
t , which can be shown similarly as (13.12).

We can show that a∗
t (𝜔) is t−1-measurable.21 Let Z0 = 1 and

Zt(𝜔) = Zt−1(𝜔)
exp
{

a∗
t (𝜔)ΔXt(𝜔)

}
EP
(
exp
{

a∗
t ΔXt
} |t−1

)
(𝜔)

,

19 If P(ΔXt ≥ 0) = 1, then we know for sure that the stock price does not fall for the period t − 1 →
t, and we should buy the stock as much as possible at time t − 1 to obtain arbitrage. If P(ΔXt ≤

0) = 1, then we know for sure that the stock price does not rise during the period t − 1 → t, and
we should sell short the stock as much as possible at time t − 1 to obtain arbitrage.
20 Otherwise, we can move from P to measure P̃(d𝜔) = c exp{−

∑T
i=0 ΔX2

i (𝜔)}P(d𝜔),where c−1 =
EP exp{−

∑T
t=0 ΔX2

i } is the normalizing constant.
21 In fact, for a closed interval [A,B],

{
𝜔 ∶ a∗

t (𝜔) ∈ [A,B]
}
=

∞⋂
m=1

⋃
a∈Q∩[A,B]

{
𝜔 ∶ 𝜙t(a, 𝜔) < 𝜙

∗
t (𝜔) +

1
m

}
∈ t−1,

where Q is the set of rational numbers and 𝜙∗
t (𝜔) = 𝜙t(a∗

, 𝜔).
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for t = 1,… ,T . Now Zt(𝜔) > 0, Zt(𝜔) are t-measurable, and they form a mar-
tingale:

EP(Zt|t−1) = Zt−1

P-almost surely. We define the probability measure

Q(d𝜔) = ZT (𝜔)P(d𝜔).

Now Q ≈ P, EQ|ΔXt| <∞, and EQ(ΔXt|t−1) = 0, for t = 1,… ,T .

A Martingale Measure in the Multiperiod Model with Several Risky Assets Let T ≥ 1
and d ≥ 1. We assume for simplicity that B0 = · · · = BT = 1. Let

ΔXt = St − St−1,

where t = 1,… ,T . Now ΔXt are vectors of length d. The portfolio vector 𝜉t is a
d-dimensional t−1-measurable vector. The components are bounded, so that|𝜉i

t(𝜔)| ≤ C <∞ for 𝜔 ∈ Ω and i = 1,… , d. The absence of arbitrage implies
that

P(𝜉t ⋅ ΔXt > 0|t−1) > 0, P(𝜉t ⋅ ΔXt < 0|t−1) > 0

P-almost surely, for t = 1,… ,T . We need to construct measure Q so that

Q ≈ P,
EQ|ΔXi

t| < ∞ for t = 1,… ,T , i = 1,… , d,
EQ
(
ΔXi

t|t−1
)
= 0 for t = 1,… ,T , i = 1,… , d.

Then ΔX1,… ,ΔXT is a martingale difference with respect to Q, and S0,… , ST
is a martingale with respect to Q. Let

𝜙t(a, 𝜔) = EP(ea⋅ΔXt |t−1)(𝜔)

for a ∈ Rd. There exists a unique finite a∗
t = a∗

t (𝜔) such that infa𝜙t(a, 𝜔) is
attained at a∗

t , and a∗
t is t−1-measurable.22 Let Z0 = 1 and

Zt(𝜔) = Zt−1(𝜔)
exp
{

a∗
t (𝜔) ⋅ ΔXt(𝜔)

}
EP
(
exp
{

a∗
t ⋅ ΔXt

} |t−1
)
(𝜔)

,

for t = 1,… ,T . We define the probability measure

Q(d𝜔) = ZT (𝜔)P(d𝜔),

and Q is the required equivalent martingale measure.

22 If the support of P(ΔXt|t−1)(𝜔) does not lie in a proper subspace of Rd , then 𝜙n(a) are strictly
convex, and we can find the unique minimizer. It the support is concentrated on a proper subspace
of Rd , then the proof is more complicated, but can be found in Rogers (1994).
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13.2.3.3 Estimation of an Equivalent Martingale Measure
We estimate the Esscher martingale measures using S&P 500 daily data,
described in Section 2.4.1. We consider both a one period model and a two
period model.

A Martingale Measure for S&P 500: One Period We consider the one period model
where the period consists of 20 days. Let

ΔX = St − St−20

be the price increment. Our S&P 500 data provides a sample of identically dis-
tributed observations of ΔX: we use data ΔXi = S0Ri − S0, where S0 = 100 and
Ri = Si∕Si−20 is the gross return over the period of 20 days. We use nonoverlap-
ping increments. The risk free rate is r = 0.

The density dQ∕dP of the Esscher martingale measure with respect to under-
lying physical measure of ΔX can be estimated as

Za∗ (x), x ∈ R,

where Za(x) = eax∕𝜙̂(a), 𝜙̂(a) is the sample average of eaΔX , and a∗ is the mini-
mizer of 𝜙̂(a) over a ∈ R. The underlying physical density f of ΔX with respect
to the Lebesgue measure can be estimated using the kernel estimator f̂ . The
kernel density estimator is defined in (3.43). The density q of the martingale
measure with respect to the Lebesgue measure can be estimated as

q̂(x) = Za∗ (x)f̂ (x), x ∈ R.

Figure 13.1(a) shows the estimate Za∗ of the density of the martingale measure
with respect to the physical measure (red). The blue curve shows the density
of the risk neutral log-normal density with respect to the estimated physical
measure. We see that the measures put more probability mass on the negative
increments than the physical measure. Fitting of a log-normal distribution is
discussed in the connection of Figure 3.11.23 Panel (b) shows the kernel estimate
f̂ of the density of the physical measure as a red curve, and the estimate q̂ of the
density of the Esscher martingale measure with respect to the Lebesgue mea-
sure as a red dashed curve. We apply the standard normal kernel and the normal
reference rule to choose the smoothing parameter. The blue curves show the
corresponding densities in the log-normal model.

Figure 13.2 shows density ratios. Panel (a) shows the ratio
Za∗ (y)

Zlog n(y)
,

23 The physical measure is estimated as ST ∼ lognorm (log S0 + m̂, ŝ2) , where m̂ is the sample
mean and ŝ2 is the sample variance of log(St∕St−20). The risk neutral measure is estimated as
ST ∼ lognorm (log S0, ŝ2).
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Figure 13.1 Esscher martingale measure: One Period. (a) The density of the Esscher martingale
measure (red) and the density of the risk neutral log-normal measure (blue). The densities are
with respect to the physical measure. (b) The kernel density estimate of the physical mea-
sure (red), and the corresponding Esscher martingale measure (red dashed). The log-normal
physical measure (blue), and the corresponding risk neutral log-normal density (dashed blue).
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Figure 13.2 Esscher martingale measure: Density ratios in one period. (a) The density estimate
of the Esscher martingale measure divided by the density estimate of the log-normal mar-
tingale measure. (b) The density estimate of the physical measure divided by the estimate
log-normal physical measure (solid). The dashed line shows the ratio of the corresponding
risk neutral densities.
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and panel (b) shows the ratios

f̂ (y)
f̂ log n(y)

(solid),
q̂(y)

q̂log n(y)
(dashed),

where f̂ log n(y) is an estimate of the log-normal physical measure, q̂log n(y) is
an estimate of the log-normal risk neutral measure, and Zlog n(y) = q̂log n(y)∕
f̂ log n(y).

A Martingale Measure for S&P 500: Two Periods Let us estimate the Esscher mar-
tingale measure for the two period model with two periods of 10 days. Let

ΔX1 = St−10 − St−20, ΔX2 = St − St−10

be the price increments. Our S&P 500 data provides a sample of identically
distributed observations of ΔX = (ΔX1,ΔX2). The observations are

(ΔX1i,ΔX2i),

where

ΔX1i = S0(Si−10∕Si−20 − 1), ΔX2i = S0(Si − Si−10)∕Si−20,

where S0 = 100. We use nonoverlapping increments. Let

Z1(x1) =
ea∗

1x1

𝜙̂
(
a∗

1
) ,

where 𝜙̂(a) is the sample average of eaΔX1 , and a∗
1 is the minimizer of 𝜙̂(a) over

a ∈ R. Let

Z2(x1, x2) = Z1(x1)
exp
{

a∗
2(x1)x2

}
𝜙̂2
(
a∗

2(x1), x1
) ,

where a∗
2(x1) is the minimizer of 𝜙̂2(a, x1) over a ∈ R, and 𝜙̂2(a, x1) is a

regression estimate evaluated at x1, when the response variable is eaΔX2 and the
explanatory variable is ΔX1. We apply a kernel regression estimate of (6.20)
and (6.21) to define

𝜙̂2(a, x1) =
n∑

i=1
pi(x1) eaΔX2i ,

where ΔX1i, i = 1,… , n, are the observation of ΔX1,

pi(x1) =
K((x1 − ΔX1i)∕h)∑n
j=1 K((x1 − ΔX1j)∕h)

are the kernel weights, K ∶ R → R is the Gaussian kernel function and h > 0 is
the smoothing parameter, chosen by the normal reference rule.
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Figure 13.3 Esscher martingale measure: Two Periods. Estimates of the density of the Esscher
measure with respect to the physical measure. (a) Increments are assumed to be dependent.
(b) Increments are assumed to be independent.

The density dQ∕dP of the martingale measure with respect to the underlying
physical measure of (ΔX1,ΔX2) can be estimated as

Z2(x1, x2), (x1, x2) ∈ R2
. (13.15)

We can also assume the independence of the increments and estimate dQ∕dP
by

Z1(x1)Z1(x2), (x1, x2) ∈ R2
. (13.16)

Figure 13.3 shows estimates of the density of the Esscher measure with
respect to the physical measure. In panel (a) we show estimate (13.15), which
does not assume independence, and in panel (b) we show estimate (13.16),
which assumes independence.

13.2.3.4 Examples of Equivalent Martingale Measures
We calculate the class of equivalent martingale measures in the one period
binary model, in the one period ternary model, and in the one period model
with a finite amount of states, which generalizes the two previous models.

The One Period Binary Model Let us have two assets: bond B and stock S. The
value of the bond at time 1 is 1 + r, where r > −1. The value of the stock at
time 1 is u with probability p and d with probability 1 − p, where u > d and
0 < p < 1. That is,

P(S = u) = p, P(S = d) = 1 − p.
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Let the price of the bond be 𝜋0 = 1 and the price of the stock be 𝜋1. Let us
consider probability measure Q which is defined by

Q(S = u) = q, Q(S = d) = 1 − q,

where 0 ≤ q ≤ 1. If Q is a martingale measure, then it satisfies

EQS = qu + (1 − q)d = 𝜋
1(1 + r).

This holds if

q = 𝜋
1(1 + r) − d

u − d
. (13.17)

Thus, there exists an equivalent martingale measure if and only if

d < 𝜋1(1 + r) < u. (13.18)

Thus, the market is arbitrage-free if and only if (13.18) holds. The martingale
measure is unique. The calculation will be repeated in (14.18), where derivative
pricing is discussed.24 Note that the pricing in the binary model was already
studied in (13.1).

The One Period Ternary Model Let us have two assets: bond B and stock S. The
value of the bond at time 1 is 1 + r, where r > −1. The value of the stock at
time 1 is u with probability p1, c with probability p2, and d with probability
p3 = 1 − p1 − p2, where d < c < u, and 0 < p1, p2, p3 < 1. That is,

P(S = u) = p1, P(S = c) = p2, P(S = d) = 1 − p1 − p2.

Let the price of the bond be 𝜋0 = 1 and the price of the stock be 𝜋1. Let us
consider probability measure Q, which is defined by

Q(S = u) = q1, Q(S = c) = q2, Q(S = d) = q3,

where 0 ≤ q1, q2, q3 ≤ 1 and q3 = 1 − q1 − q2. If Q is a martingale measure, then
it satisfies

EQS = q1u + q2c + (1 − q1 − q2)d = 𝜋
1(1 + r).

This holds if (q1, q2) ∈ A, where

A = {(q1, q2) ∈ [0, 1]2 ∶ q1(u − d) + q2(c − d) = 𝜋
1(1 + r) − d}.

24 Let

 = {EQY ∶ Q ∈ }, (13.19)

where  is the convex set of probability measures equivalent to P and Y = S∕(1 + r) − 𝜋. Now  =
(d∕(1 + r) − 𝜋1

,u∕(1 + r) − 𝜋1). If 0 ∉ , then there is arbitrage. If d ≥ 𝜋
1(1 + r), then arbitrage

is obtained by borrowing with the risk-free rate and buying the stock. If u ≤ (1 + r)𝜋1, then the
arbitrage is obtained by selling the stock short and investing in the risk-free rate.
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We can write

A =
{(

q1,−
u − d
c − d

q1 +
𝜋

1(1 + r) − d
c − d

)

∶ 𝜋
1(1 + r) − c

u − d
≤ q1 ≤

𝜋
1(1 + r) − d

u − d

}
.

Thus, there exists an equivalent martingale measure if and only if

d < 𝜋1(1 + r) < u + c − d. (13.20)

Thus, the market is arbitrage-free if and only if (13.20) holds. There are several
martingale measures.25

A Finite Amount of States Let us consider the one period model with a finite
amount of states. Now the probability space Ω has a finite number of elements.
We have n = d + 1 basic securities and m possible states. In the binary model
n = m = 2. In the ternary model n = 2 and m = 3.

The jth risky asset S j takes m values, corresponding to the m different states.
Let A be the m × d matrix whose elements are aij = S j(𝜔i), where 𝜔i is the ith
state and S j is the jth risky asset.

Let p = (p1,… , pm)′ be the m × 1 vector of the probabilities of the m states.
Let 𝜋 = (𝜋1

,… , 𝜋
d)′ be the d × 1 vector of the prices of the risky assets at time

0. Let S = (S1
,… , Sd)′ be the vector of the risky assets.

Let q = (q1,… , qm)′ be a m × 1 vector of probabilities of the m states. Vector
q is a martingale measure if

𝜋 = 1
1 + r

EQS = 1
1 + r

A′q. (13.21)

We can assume that rank(A) = d and m ≥ d, because the redundant basic
assets can be removed. A redundant asset would correspond to a column of A
which could be expressed as a linear combination of the other columns.

When m = d, then there exists a unique equivalent martingale measure, and
this is the solution to (13.21):

q = (1 + r)(A′)−1
𝜋. (13.22)

When m > d, then the system (13.21) of d linear equations with m variables has
many solutions.

25 Let  be defined in (13.19). Now  = (d∕(1 + r) − 𝜋1
, (u + c − d)∕(1 + r) − 𝜋1). If 0 ∉ , then

there is arbitrage. If d ≥ 𝜋
1(1 + r), then arbitrage is obtained by borrowing with the risk-free rate

and buying the stock. If u + c − d ≤ (1 + r)𝜋1, then the arbitrage is obtained by selling the stock
short and investing in the risk-free rate.
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13.2.4 European Contingent Claims

13.2.4.1 The Definition of an European Continent Claim
We use the terms “contingent claim” and “derivative” interchangeably. How-
ever, these terms can have a different meaning.

1) A European contingent claim is a nonnegative random variable C defined
on the probability space (Ω, ,P).

2) A derivative of the underlying assets S̄ = (S0
,… , Sd) is a European contin-

gent claim, which is measurable with respect to the 𝜎-algebra T generated
by the price process S̄t , t = 0,… ,T .

We assume that T =  , and thus in our case the two definitions lead to
the same concept. Time T is called the maturity, or the expiration date.26 The
examples of European contingent claims include the following.

1) A call and a put on the ith asset are defined by

Ccall =
(
Si

T − K
)
+, Cput =

(
K − Si

T
)
+,

where K > 0 is the strike price and (x)+ = max{0, x}.
2) An Asian call and put option are defined by

Ca−call =
(
Si

a𝑣 − K
)
+, Ca−put =

(
K − Si

a𝑣
)
+,

where

Si
a𝑣 =

1| |
∑
t∈

Si
t ,

 ⊂ {0,… ,T}, and | | is the cardinality of  .
3) A knock-out option on the ith asset is defined by

Cbarrier =
{

0, when max0≤t≤T Si
t ≥ B,(

Si
T − K
)
+, otherwise,

where K > 0 is the strike price, and B > K is the barrier.

13.2.4.2 Arbitrage-Free Prices of European Continent Claims
A European contingent claim C is attainable (replicable, redundant), if there
exists a self-financing trading strategy 𝜉 whose terminal portfolio value is equal
to C:

P(C = 𝜉T ⋅ S̄T ) = 1.

26 The value of an European option is determined at the time T of the expiration, and in this
respect an European option resembles bonds, because the price of a bond is fixed at the expiration,
although the price of a bond at the expiration is not a random variable.
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The trading strategy 𝜉 is called a replicating strategy for C. A contingent claim
is attainable if and only if the discounted claim

H = C
BT

has the form

H = 𝜉T ⋅ X̄T = VT = V0 +
T∑

t=1
𝜉t ⋅ (Xt − Xt−1),

for a self-financing trading strategy 𝜉 = (𝛽, 𝜉) with value process V . Now it is
natural to take the initial value

V0 = 𝜉1 ⋅ X̄0

to be the fair price of H , because a different price would lead to an arbitrage
opportunity. The corresponding arbitrage-free price of the contingent claim C
is

B0V0 = 𝜉1 ⋅ S̄0.

We need to define an arbitrage-free price also for those contingent claims
which are not attainable. In fact, in typical market models a contingent claim
cannot be replicated. Föllmer and Schied (2002, p. 238) formulate the following
definition. An arbitrage-free price of a discounted claim H is a real number 𝜋H ,
if there exists an adapted stochastic process Xd+1 such that

1) Xd+1
0 = 𝜋

H ,
2) Xd+1

t ≥ 0 for t = 1,… ,T − 1,
3) Xd+1

T = H , and
4) the enlarged market model with price process (1,X1

,… ,Xd+1) is arbitrage-
free.

According to this definition, an arbitrage-free price of a contingent claim is such
that trading with this price at time 0 does not allow an arbitrage opportunity.
A corresponding arbitrage-free price of the continent claim C is then

𝜋
C = B0𝜋

H
.

We can express the class of arbitrage-free prices with the help of equivalent
martingale measures. Föllmer and Schied (2002, Theorem 5.30, p. 239) formu-
late the following theorem.

Theorem 13.2 Set Π(H) of arbitrage-free prices is nonempty and given by

Π(H) = {EQH ∶ Q ∈  and EQH < ∞}.
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Proof . Let us prove that Π(H) is nonempty. We can find Q̃ ≈ P such that
EQ̃H < ∞. For example, we can take dQ̃ = c(1 + H)−1dP, where c is the
normalizing constant. Under Q̃ the market model is arbitrage-free. Thus,
Theorem 13.1 implies the existence of Q ∈  . In addition, this Q can be chosen
such that EQH <∞. Thus EQH ∈ Π(H).

Let us first prove that inclusion ⊂ holds. Let Xd+1 satisfy the requirements.
Theorem 13.1 implies that there exists an equivalent martingale measure Q for
the extended market model. Measure Q satisfies

Xi
t = EQ

(
Xi

T |t
)
,

for t = 0,… ,T and i = 1,… , d + 1. In particular, Q ∈  and 𝜋H = EQH .
To prove inclusion ⊃, let 𝜋H = EQH for some Q ∈  . Let

Xd+1
t = EQ(H|t)

for t = 0,… ,T . Process Xd+1 satisfies the requirements and Q is an equiv-
alent martingale measure for the extended market model, which is thus
arbitrage-free, by Theorem 13.1. Thus 𝜋H ∈ Π(H). ◽

The price of contingent claim C can now be written as

𝜋
C = B0EQ

(
C
BT

)
. (13.23)

In the Black–Scholes model we use continuous compounding, where B0 = 1,
and BT = erT , so that for a call option 𝜋

C = e−rT EQ(ST − K)+; see (14.47). In
many cases we denote by t the time of writing the option and then B0 = ert , so
that 𝜋C = e−r(T−t)EQ(ST − K)+.

13.2.4.3 Pricing Kernel
The pricing kernel (discount factor) z, related to the martingale measure Q, is
defined as the discounted density of Q with respect to the physical measure P:

z =
B0

BT

dQ
dP

.

The price of C is given in (13.23) as 𝜋C = B0EQ(C∕BT ). Now the price of deriva-
tive C can be written as

𝜋
C = EQ

( B0

BT
C
)

= EP(zC ).

The One Period Binary Model In the one period binary model, the martingale
measure was defined as the measure

Q(S = u) = q, Q(S = d) = 1 − q,
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where the probability q is defined in (13.17). The pricing kernel is function z ∶
{d,u} → R, defined by

z(d) = 1
1 + r

1 − q
1 − p

, z(u) = 1
1 + r

q
p
.

Let C = f (S ) be a derivative, where f ∶ R → [0,∞). The price of C is

EQ f (S ) = EP[z(S )f (S )].

A Finite Amount of States Let us continue to study the one period model with a
finite amount of states. Let p = (p1,… , pm)′ be the m × 1 vector of the proba-
bilities of the m states. Let 𝜋 = (𝜋1

,… , 𝜋
d)′ be the d × 1 vector of the prices of

the risky assets at time 0. Let S = (S1
,… , Sd)′ be the vector of the risky assets.

Let A be the m × d matrix whose elements are the values aij = S j(𝜔i) of the jth
asset at the ith state.

Let q = (q1,… , qm)′ be an equivalent martingale measure, which is a solution
to the equation in (13.21). In the case m = d we may obtain q from (13.22) as
q = (1 + r)(A′)−1

𝜋. Let

z(𝜔i) =
1

1 + r
qi

pi

for i = 1,… ,m. Let C = f (S ) = f (S1
,… , Sd) be a derivative. The price of C is

EQ f (S ) =
m∑

i=1
qi f (ai1,… , aid) =

m∑
i=1

piz(𝜔i) f (ai1,… , aid) = EP(zf (S )).

The Arrow–Debreu securities take value 1 in one state and value 0 in other
states: for the jth Arrow–Debreu security S j it holds that S j(𝜔j) = 1, and
S j(𝜔i) = 0 for i ≠ j. Then A = Id is the d × d identity matrix. Then q = (1 + r)𝜋
and z(𝜔i) = 𝜋i∕pi.27

13.2.5 Completeness

The second fundamental theorem of asset pricing says that every European
contingent claim can be attained (replicated) if and only if there exists a unique
equivalent martingale measure. If every contingent claim can be attained, then
every contingent claim has a unique arbitrage-free price and every contingent
claim can be hedged perfectly. The case that there is only one equivalent mar-
tingale measure occurs never in practice, but it is possible to be close to this
situation.

27 Let z = 𝜋
′[EPSS′]−1S. We can see that z works as a pricing kernel for linear assets. Let C = 𝜉

′S
be a linear asset. Now C is a derivative with price 𝜉′𝜋. We have that

EP(zC ) = EP(𝜋
′[EPSS′]−1SS′

𝜉) = 𝜋
′
𝜉.

Let d = m and let S be the vector of d Arrow–Debreu securities Then, EPSS′ = diag(p1,… , pd),
and z(𝜔i) = 𝜋i∕pi, where 𝜔i is the ith state, i = 1,… ,m.
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An arbitrage-free market model is called complete if every European contin-
gent claim is attainable. Now we state the second fundamental theorem of asset
pricing.

Theorem 13.3 An arbitrage-free market model is complete if and only if there
exists exactly one equivalent martingale measure: || = 1.

A proof can be found in Föllmer and Schied (2002, Theorem 5.38, p. 245),
where an additional statement is proved: In a complete market, the number of
atoms in (Ω,T ,P) is bounded above by (d + 1)T .28

Let us give examples related to completeness.

13.2.5.1 The One Period Binary Model
In the one period binary model, we have two assets: bond B and stock S. The
bond satisfies P(B = 1 + r) = 1, where r > −1. The stock satisfies

P(S = u) = p, P(S = d) = 1 − p,

where u > d and 0 < p < 1. Let the price of the bond be 𝜋0 = 1 and the price
of the stock be 𝜋1. The space of attainable payoffs is

 = {𝛽(1 + r) + 𝜉S ∶ 𝛽, 𝜉 ∈ R}.

Let us consider contingent claim C = f (S ), where f ∶ {u, d} → [0,∞). To repli-
cate the contingent claim, we need to choose 𝛽 and 𝜉 so that

P(f (S ) = 𝛽B + 𝜉S) = 1.

This leads to equations

𝛽(1 + r) + 𝜉d = f (d),
𝛽(1 + r) + 𝜉u = f (u).

We have two equations and two free variables. The model is complete.

13.2.5.2 The One Period Ternary Model
Let us have two assets: bond B and stock S. The bond satisfies P(B = 1 + r) = 1,
where r > −1. The stock satisfies

P(S = u) = p1, P(S = c) = p2, P(S = d) = 1 − p1 − p2,

where d < c < u, and 0 < p1, p2, p3 < 1. Let the price of the bond be 𝜋0 = 1 and
the price of the stock be 𝜋1. The space of attainable payoffs is

 = {𝛽(1 + r) + 𝜉S ∶ 𝛽, 𝜉 ∈ R}.

28 Set A ∈  is an atom of probability space (Ω, ,P), if P(A) > 0 and if each B ∈  with B ⊂ A
satisfies either P(B) = 0 or P(B) = P(A).
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Let us consider contingent claim C = f (S ), where f ∶ {u, c, d} → [0,∞). To
replicate the contingent claim, we need to choose 𝛽 and 𝜉 so that

P(f (S ) = 𝛽B + 𝜉S) = 1.

This leads to equations

𝛽(1 + r) + 𝜉d = f (d),
𝛽(1 + r) + 𝜉c = f (c),
𝛽(1 + r) + 𝜉u = f (u).

We have three equations and two free variables. The model is not complete.

13.2.5.3 A Finite Amount of States
Let us continue to study the one period model with a finite amount of states.
Let p = (p1,… , pm)′ be the m × 1 vector of the probabilities of the m states. Let
𝜋 = (𝜋1

,… , 𝜋
d)′ be the d × 1 vector of the prices of the risky assets at time 0.

Let S = (S1
,… , Sd)′ be the vector of the risky assets. Let A be the m × d matrix

whose elements are the values aij = S j(𝜔i) of the jth asset at the ith state.
We can assume that rank(A) = d and m ≥ d, because the redundant basic

assets can be removed. A redundant asset would correspond to a column of
A which could be expressed as a linear combination of the other columns. A
redundant basic asset could be considered as a derivative.

A derivative security is random variable C which takes m possible values. Let
those values be in m × 1 vector c. To replicate C, we need to find d × 1 vector 𝜉
so that P(C = 𝜉 ⋅ S ) = 1. This leads to the matrix equation

c = A𝜉.

When m = d, then

𝜉 = A−1c.

When m > d, then we do not always have a solution, because there are d free
variables and m equations.

We can choose an approximate replication by minimizing the sum of squared
replication errors. Let the replication error be

||A𝜉 − c||,
where || ⋅ || is the Euclidean norm in Rm. The minimizer is

x = (A′A)−1A′c,

which is the same formula as the formula for the least squares coefficients in
the linear regression c = A𝜉 + 𝜖. Note that d × d matrix A′A has rank d, when
A has rank d, and thus A′A is invertible.

The Arrow–Debreu securities provide an example of derivatives. An
Arrow–Debreu security has price 1 in one state and 0 in the other states. There
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are as many Arrow–Debreu securities as there are states. When m = d, the
columns of A−1 give the portfolio weights for replicating the Arrow–Debreu
securities.

13.2.6 American Contingent Claims

An American contingent claim is defined as a non-negative adapted process
C = (Ct)t=0,…,T ,

on the filtered space (Ω, (t)t=0,…,T ). The random variable Ct is the payoff if the
American option is exercised at time t. For example, in the case of the American
call option with strike price K , Ct = max{0, St − K}, where St is the price of the
underlying asset at time t.

The buyer of an American contingent claim has the right to choose the
exercise time 𝜏 ∈ {0,… ,T}. The buyer receives the amount C

𝜏
at time 𝜏 .

A stopping time is a random variable 𝜏 taking values in {0,… ,T} ∪ {+∞}
such that {𝜏 = t} ∈ t for t = 0,… ,T . An exercise strategy is a stopping time
taking values in {0,… ,T}. The payoff obtained by using 𝜏 is equal to C

𝜏(𝜔)(𝜔).
We denote with  the set of exercise strategies.

13.2.6.1 European and Bermudan Options
An European contingent claim is obtained as a special case of an American
contingent claim, when we choose Ct = 0 for t = 0,… ,T − 1. The value of the
American option is larger or equal to the value of the corresponding European
option.

A Bermudan option can be exercised at times T ⊂ {0,… ,T}. Formally we
can define a Bermudan contingent claim as a non-negative adapted process
C = (Ct), t ∈ T ⊂ {0,… ,T}, on the filtered space (Ω, (t)t=0,…,T ). A Bermudan
option can be obtained as an American option with Ct = 0 for t ∉ T.

On the other hand, an American option can be considered as a special case
of a Bermudan option with T = {0,… ,T}. Also, from the point of view of the
continuous time model with time space [0,T], an American option in a discrete
time model could be considered as a Bermudan option whose possible exercise
times are {0,… ,T}.

13.2.6.2 The Set of Arbitrage-Free Prices
Let H be a discounted American claim and let H

𝜏
be the payoff which is

obtained for a fixed exercise strategy 𝜏 ∈  . Now H
𝜏

can be considered as a
discounted European contingent claim, whose set of arbitrage-free prices is
given in Theorem 13.2 as

Π(H
𝜏
) = {EQH

𝜏
∶ Q ∈  , EQH

𝜏
< ∞}.

Föllmer and Schied (2002, Definition 6.31) give the following definition for
an arbitrage-free price. A number 𝜋 ∈ R is called an arbitrage-free price of a
discounted American claim H if
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1) There exists some 𝜏 ∈  and 𝜋′ ∈ Π(H
𝜏
) such that 𝜋 ≤ 𝜋

′.
(The price 𝜋 is not too high.)

2) There does not exist 𝜏 ′ ∈  such that 𝜋 < 𝜋′ for all 𝜋′ ∈ Π(H
𝜏 ′ ).

(The price 𝜋 is not too low.)
The set of arbitrage-free prices is characterized in Föllmer and Schied (2002,

Theorem 6.33). It is assumed that Ht ∈ 1(Q) for all Q ∈  and t = 0,… ,T .
The set Π(H) of arbitrage-free prices is an interval with endpoints 𝜋inf (H) and
𝜋sup(H), where

𝜋inf (H) = inf
Q∈

sup
𝜏∈

EQH
𝜏
= sup

𝜏∈
inf
Q∈

EQH
𝜏
,

𝜋sup(H) = sup
Q∈

sup
𝜏∈

EQH
𝜏
= sup

𝜏∈
sup
Q∈

EQH
𝜏
.

The interval can be a single point, open, or half open.

13.2.6.3 Exercise Strategies for the Buyer
Let us call an exercise strategy 𝜏∗ optimal if

EH
𝜏∗ = sup

𝜏∈
EH

𝜏
, (13.24)

where

Ht =
Ct

Bt
, t = 0,… ,T .

Thus, an exercise strategy is defined to be optimal, if it maximizes the expecta-
tion among the class {H

𝜏
∶ 𝜏 ∈  } of the payoffs. Note that the definition can

be generalized so that we maximize EQU(H
𝜏
), where U is a utility function, and

Q is a probability measure, possibly different from the physical measure P.
Föllmer and Schied (2002, Theorem 6.20) shows that the exercise strategy

𝜏min is optimal, when we define
𝜏min = min{t ≥ 0 ∶ Ut = Ht},

where
UT = HT ,

Ut = max{Ht ,E[Ut+1|t]}, for t = T − 1,… , 0. (13.25)
It is assumed that Ht ∈ (Ω,t,P) for t = 0,… ,T . Process Ut is called a Snell
envelope of Ht with respect to the measure P. Föllmer and Schied (2002, Propo-
sition 6.22) notes that any optimal exercise strategy 𝜏 satisfies 𝜏 ≥ 𝜏min, so that
𝜏min is the minimal optimal exercise strategy.

Föllmer and Schied (2002, Theorem 6.23) shows that 𝜏max is also an optimal
exercise strategy, when we define

𝜏max = inf{t ≥ 0 ∶ E[Ut+1 − Ut|t] ≠ 0} ∧ T ,
where a ∧ b means min{a, b}. In addition, 𝜏max is the largest optimal exercise
strategy in the sense that any optimal exercise strategy 𝜏 satisfies 𝜏 ≤ 𝜏max.
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13.2.6.4 American Options in Complete Models
Let us assume that the market model is complete, so that there exists the
unique equivalent martingale measure Q. We defined the optimal exercise time
in (13.24) using the physical measure P, and the construction of the optimal
exercise time was made in (13.25) using the physical measure P. Let us define
the Snell envelope (UQ

t )t=0,…,T using the equivalent martingale measure Q. The
value UQ

0 can be considered as the unique arbitrage-free price, because

H
𝜏
= UQ

0 +
𝜏∑

k=1
𝜉k(Xk − Xk−1)

holds Q-almost surely, when 𝜏 is optimal with respect to Q; see Föllmer and
Schied (2002, Corollary 6.24).

13.3 Evaluation of Pricing and Hedging Methods

The evaluation of option pricing and hedging can be done either from the point
of view of the writer or from the point of view of the buyer. The writer’s point
of view is to minimize the hedging error, or to optimize the return of the hedg-
ing portfolio. The buyer’s point of view is to find fair prices for options. For
example, the buyer could be interested whether the buying of the options leads
to abnormal returns, as compared to the returns of the underlying.

13.3.1 The Wealth of the Seller

We assume that the seller (writer) of the option hedges the position, and thus
the wealth of the seller of the option at the expiration is equal to the hedging
error. The writer receives the option premium, makes self-financed trading to
replicate the option, and pays the terminal value of the option. We consider
the pricing to be fair and the hedging to be effective if the distribution of the
hedging error (replication error) is as concentrated around zero as possible.
However, we have to study separately the negative hedging errors (losses) and
the positive hedging errors (gains).

13.3.1.1 Hedging Error
The hedging error eT of the writer of the option is obtained from (13.10) as

eT = C0 + GT (𝜉) − CT ,

where

GT (𝜉) =
T∑

k=1
𝜉k(Sk − Sk−1).
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Here the risk free rate is r = 0, C0 is the price of the option, CT is the terminal
value of the option, 𝜉 = (𝜉k)k=1,…,T are the hedging coefficients, Sk are the stock
prices, the current time is denoted by 0, the time to expiration is T days, and
hedging is done daily.

13.3.1.2 Historical Simulation
We denote the time series of observed historical daily prices by S0,… , SN . We
construct N − T sequences of prices:

i = (Si,i,… , Si,i+T ), i = 1,… ,N − T ,

where

Si,i+j = 100 ⋅ Si+j∕Si,

for j = 0,… ,T . Each sequence has length T + 1 and the initial price in each
sequence is Si,i = 100. We estimate the distribution of the hedging error eT from
the observations

e1
T ,… , eN−T

T ,

where ei
T is computed from the prices i.

An example of a computation of hedging errors is given in (14.81), where
Black-Scholes hedging is applied with sequential sample standard deviations as
the volatility estimates. See also (14.80), where Black-Scholes hedging is applied
with non-sequential sample standard deviations as the volatility estimates.

13.3.1.3 Comparison of the Error Distributions
We estimate the distribution of the hedging error eT using data e1

T ,… , eN−T
T . A

graphical summary of the error distribution is obtained by using tail plots and
kernel density estimation, for example.

The Mean of Squared Hedging Errors In quadratic hedging the purpose is to min-
imize the mean squared hedging errors Ee2

T ; see Section 15.1 and Chapter 16.
Thus it is natural to estimate the quality of a hedging strategy by the sample
mean of squared hedging errors

1
N − T

N−T∑
i=1

(
ei

T
)2
.

We can decompose the mean into the mean over negative hedging errors and
over positive hedging errors:

1
N − T

(∑
i∈−

(
ei

T
)2 +∑

i∈+

(
ei

T
)2)

,
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where

− =
{

i ∶ ei
T < 0
}
, + =

{
i ∶ ei

T ≥ 0
}
.

This composition is reasonable because the negative hedging errors are losses
for the writer of the option and the positive hedging errors are gains for the
writer of the option.

The Expected Utility of the Error Distribution Even when the purpose of the hedging
is typically to minimize the hedging error and not to maximize the wealth of
the hedger, it is of interest to study the properties of the wealth distribution
from the point of view of portfolio theory. This can be done by estimating the
expected utility of the error distribution. We can use the exponential utility
function U(x) = 1 − e−𝛼x, where 𝛼 > 0 is the risk aversion parameter. Note that
the hedging errors eT can take any real value, and thus we cannot apply the
power utility functions. The expected utility is estimated by

1
N − T

N−T∑
i=1

U
(
ei

T
)
.

See Section 9.2.2 for a discussion about expected utility.

13.3.2 The Wealth of the Buyer

We can ignore the hedging of the options and try to evaluate solely the fairness
of the price. This approach can be considered to be the approach of the buyer
of the option. We have at least the following possibilities.

1) Comparison with the market prices. The success of a pricing approach can
be evaluated by testing whether the prices of the approach provide a good
fit to the observed market prices of the derivatives.
The comparison with the market prices is possible for liquid options. Note
that a pricing method for illiquid options can be obtained by calibrating
the parameters of the pricing method using liquid options. For example,
the implied volatility of Black–Scholes pricing can be obtained from liquid
options and then used as the volatility of the Black–Scholes formula to price
illiquid options.

2) Sharpe ratios. We can estimate the Sharpe ratios of option strategies. The
Sharpe ratios obtained by option buying should not be too far away from the
Sharpe ratios of the underlying assets. This is illustrated in Section 17.2.3.
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Pricing by Arbitrage

Pricing by arbitrage means that an asset is priced with the unique arbitrage-free
price. Pricing by arbitrage can be applied in two different settings: (1) We can
price by arbitrage linear securities, like forwards and futures, in any markets.
(2) We can price by arbitrage nonlinear securities, like options, in complete
markets. We discuss both of these cases in this chapter.

If two assets have the same terminal value with probability one, then the
assets should have the same price. Otherwise, we could obtain a risk-free profit
by selling the more expensive asset and by buying the cheaper asset. Linear
assets, like futures, can be defined as a linear function of the underlying assets.
Thus, they can be replicated, and their price is the initial value of the replicating
portfolio. Nonlinear assets, like options, can be replicated only under restric-
tive assumptions on the markets (under the assumption of complete markets).
However, the restrictive assumptions are often not too far away from the real
properties of the markets.

The concepts of an arbitrage-free market and a complete market were
studied in Chapter 13. The results of Chapter 13 imply that if the market is
arbitrage-free and complete, then there is only one arbitrage-free price. In fact,
Theorem 13.2 states that the arbitrage-free prices are obtained as expected
values with respect to the equivalent martingale measures, and Theorem 13.3
(the second fundamental theorem of asset pricing) states that if the market
is arbitrage-free and complete, then there is only one equivalent martingale
measure.

Section 14.1 discusses pricing of futures, the put–call parity, and the Ameri-
can call options.

Section 14.2 studies binary models. In these models the price of a stock can at
any time move only one step up, or one step down. The binary models are com-
plete models, thus a derivative has a unique arbitrage-free price. These prices
can be easily computed. The prices are called the Cox–Ross–Rubinstein prices,
and they were introduced in Cox et al. (1979).

Section 14.2.3 studies asymptotics of multiperiod binary models, as the num-
ber of periods increases, and the length of the periods decreases. A multiperiod

Nonparametric Finance, First Edition. Jussi Klemelä.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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binary model converges to a log-normal model. In the log-normal model the
stock price follows a geometric Brownian motion. The geometric Brownian
motion is a market model that does not exactly describe the actual markets
but it can be rather close to the actual markets. The Black–Scholes prices are
obtained as the limits of the Cox–Ross–Rubinstein prices. The derivation of the
Black–Scholes prices from the Cox–Ross–Rubinstein prices is both elegant and
it leads to efficient numerical recipes, although there are many other derivations
of the Black–Scholes price (see Section 14.3.3).

Section 14.3 studies the properties of the Black–Scholes prices. Section 14.4
studies Black–Scholes hedging. Section 14.5 studies combining the Black–
Scholes hedging with time changing volatility estimates. This method of
option pricing provides a benchmark against which we can evaluate competing
pricing and hedging methods.

14.1 Futures and the Put–Call Parity

Futures can be priced by arbitrage regardless whether the market is complete
or not. The payoff of a futures contract is a linear function of the underlying,
and thus a futures contract can be replicated even in an incomplete market. The
put–call parity provides a related example of pricing by arbitrage, which works
whether the market is complete or not: the payoff of a put subtracted from the
payoff of a call is a linear function of the underlying.

14.1.1 Futures

We consider pricing of stock futures, currency forwards, forward zero-coupon
bonds, and forward rate agreements.

14.1.1.1 Stock Futures
A futures contract on a stock is made at time t0. The contract specifies that the
buyer of the contract has to buy the stock at a later time T with price K . We
assume that the stock does not pay dividends during the time period from t0
to T . Let us denote with St the price of the stock at time t. The value of the
futures contract at the expiration time T is

FT = ST − K ,

because the buyer of the futures contract gives away K and receives ST .
The price of a zero-coupon bond is taken as e−r(T−t), where t ∈ [t0,T], r is the

annualized risk-free rate, and T − t is the time between t and T in fractions of
a year. This is the method of continuous compounding.1

1 Assume that there are n payments of interest. Every payment increases the savings by the factor
1 + r(T − t)∕n. Then the total compounded savings at time T is (1 + r(T − t)∕n)nP → er(T−t)P as
n → ∞, where P > 0 is the initial savings.
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What is the fair value Ft of the futures contract for t0 ≤ t < T? We may
replicate the futures contract buy buying the stock and borrowing the amount
e−r(T−t0)K . At time t ∈ [t0,T] the value of this portfolio is

St − e−r(T−t)K

with probability one. At time T the value of this portfolio is FT = ST − K with
probability one. Thus,

Ft = St − e−r(T−t)K , (14.1)

for t ∈ [t0,T], by the law of one price, to exclude arbitrage.
When an investor enters a futures contract in a futures exchange, this does

not imply any cash flows, although the exchange requires from the investor a
liquid collateral in order to secure a possible future payment. The fair forward
price is called such value of K that makes the value Ft of the futures contract
zero. To get Ft = 0 we need that

K = Kt = er(T−t)St. (14.2)

The future prices that are quoted in a futures exchange are the values Kt (which
are determined by the supply and demand). Numbers Kt are called futures
prices or forward prices.

A buyer of a stock future or a stock index future saves the carrying costs
but looses the possible stock dividends. When the annualized dividend rate is
known to be d, then the fair future price is

Kt = e(r−d)(T−t)St .

14.1.1.2 Currency Forwards
A currency forward is made at time t0. We denote with et the exchange rate
USD/euro at time t. Let K > 0 be an exchange rate. The contract stipulates
that the buyer will buy V US dollars with euros at time T , using the USD/euro
exchange rate K . The value of the contract for the buyer at time T is

FT = V (eT − K) euros. (14.3)

Indeed, the buyer uses KV euros to buy V dollars. Then the buyer exchanges
the dollars to euros to obtain eT V euros. The profit of the buyer is eT V − KV .

What is the price Ft of the currency forward for t0 ≤ t < T? We can repli-
cate the currency forward using zero-coupon bonds. Let Zf (t,T) be the USD
price of the US zero-coupon bond and let Zd(t,T) be the euro price of an Euro-
pean zero-coupon bond. The zero-coupon bonds are such that Zf (T ,T) = 1
USD and Zd(T ,T) = 1 euro. Let us consider the portfolio with 𝜆1 units of US
zero-coupon bonds and with 𝜆2 units of European zero-coupon bonds. The
value of the portfolio at time t is

Pt = 𝜆1Zf (t,T) USD + 𝜆2Zd(t,T) euro.
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We choose

𝜆1 = V , 𝜆2 = −KV .

The value of the portfolio a time T is

PT = 𝜆1 × 1 USD + 𝜆2 × 1 euro
= (𝜆1eT + 𝜆2) euro
= V (eT − K) euro. (14.4)

Since (14.3) and (14.4) are equal, the portfolio replicates the currency forward,
and the price Ft of the currency forward is equal to Pt at time t.

The price is in euros

Ft = V
(
etZf (t,T) − KZd(t,T)

)
euro.

To make Ft = 0 we need to choose the exchange rate

K =
etZf (t,T)
Zd(t,T)

.

14.1.1.3 Forward Zero-Coupon Bonds
A time t0 two parties make an agreement to exchange at a future time T1 a
zero-coupon bond whose maturity is at T2, with a cash payment K . At time
t0 only the agreement is made, and at time T1 the cash payment is made and
the zero-coupon bond is received. This is called a forward zero-coupon bond.
Forward zero-coupon bonds are considered in Section 18.2.1.

Let Ft be the price of the forward zero-coupon bond. Let Z(t0,T1) and
Z(t0,T2) be the prices of zero-coupon bonds with maturities T1 and T2. Then,

FT1
= Z(T1,T2) − K .

Consider a portfolio with one unit of Z(t,T2) and short of K units of Z(t,T1).
The portfolio has value

Vt = Z(t,T2) − KZ(t,T1)

for t ∈ [t0,T1]. Thus, VT1
= FT1

and we have replicated the forward zero-
coupon bond. Thus, at time t0 the prices are equal:

Ft0
= Z(t0,T2) − KZ(t0,T1).

To make Ft0
= 0, we need to choose the cash payment K as

K = P(t0,T1,T2) =
Z(t0,T2)
Z(t0,T1)

. (14.5)

14.1.1.4 Forward Rate Agreements
A forward rate agreement allows to change a floating Libor rate against a fixed
rate. The contract is made at time t0. The reset time of the Libor is T1 > t0.
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At this time the Libor rate is settled to be L(T1,T2), where T2 > T1 is the
maturity of the Libor. The agreement stipulates that the buyer of the contract
pays the payment with the fixed rate K , and receives the payment with the
Libor rate L(T1,T2). Thus, the payoff for the buyer at time T2 is

P(L(T1,T2) − K)𝜏, (14.6)

where P is the notional, and 𝜏 is the time between T1 and T2. Forward rate
agreements are considered in Section 18.2.2.

Let Z(t,T1) and Z(t,T2) be zero-coupon bonds. The forward rate agreement
can be replicated by the trading strategy

P[V (t) − Z(t,T2) − KZ(t,T2)𝜏],

where V (t) is the strategy of buying Z(t,T1) and reinvesting the payoff at time
T1 with the prevailing 𝜏-period Libor rate. Thus, the payoff of V (t) at time T2
is equal to 1 + L(T1,T2)𝜏 . Thus, the trading strategy gives the payoff (14.6). The
present value of the forward rate agreement is equal to

Ft = P[Z(t,T1) − Z(t,T2) − KZ(t,T2)𝜏]. (14.7)

To make Ft = 0, we need to choose

K = 1
𝜏

(
1 −

Z(t,T1)
Z(t,T2)

)
.

14.1.1.5 Backwardation and Contango
Backwardation refers to the price relation where the spot price is higher than
the forward price and contango refers to the case where the spot price is lower
than the forward price:

backwardation ↔ Kt < St ,

contango ↔ Kt > St .

At the expiration, the spot price and the futures price should be equal (to pre-
vent arbitrage). Thus, the contango relationship means that distant delivery
months trade at a greater price than near-term delivery months (the term struc-
ture is upward-sloping). Depending on the type of the underlying, either the
contango or the backwardation is typical.

In the case of stock futures, or stock index futures, the theoretically fair price
of a futures contract is greater than the spot price, according to (14.2). Thus,
contango is typical for stock futures. However, futures prices Kt can differ
from the theoretically fair price, and thus both contango and backwardation
are possible. In the case of stock futures we can change the terminology in the
following way:

backwardation ↔ Kt < er(T−t)St ,

contango ↔ Kt > er(T−t)St .
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According to this terminology we do not compare futures prices to the spot
prices but to the theoretically fair prices.2

When the underlying is a commodity, then there are borrowing costs for
the seller of the futures contract, similarly as in the case of stock futures. In
addition, there are costs for storing the commodity, for the seller of the futures
contract. Thus, contango is typical for futures on commodities, and contango
is typically more profound than for stock futures.

The buyer of a treasury bond future saves carrying costs (determined by the
short-term rate) but looses the interest received by the bond owners (deter-
mined by the long-term rate). If the short-term rate is significantly less than
the long-term rate, then the distant delivery months may trade at a lesser price
than the near-term delivery months: this is backwardation.

14.1.2 The Put–Call Parity

The price of a put can always be expressed in terms of the price of a call, and
conversely. We have the put–call parity:

Ct − Pt = St − Ke−r(T−t)
, (14.8)

where K > 0 is the common strike price of the call and put, r is the annualized
interest rate, T is the expiration time, and T − t is the time from t to T in frac-
tions of a year. It is clear that at the expiration we have CT − PT = ST − K . The
put–call parity extends this relation for times t before the expiration time T .
Thus, we do not need to know fair values for Ct and Pt in order to have an
expression for their difference.3

14.1.2.1 A Derivation of the Put–Call Parity
Consider portfolio Vt obtained by buying the call and writing the put:

Vt = Ct − Pt .

At the expiration, we have VT = CT − PT = ST − K . Indeed,

CT − PT = max{0, ST − K} − max{0,K − ST}

=

{
ST − K − 0, when ST ≥ K ,
0 − (K − ST ), when ST < K .

Let Ft be the forward contract to buy stock at time T with price K . This forward
contract was valued in (14.1), where we showed that

Ft = St − Ke−r(T−t)
.

2 Exercise: Discuss what happens to a rolling strategy when the prices are in contango. What prob-
lems are induced to the indexes whose underlying is a futures contract?
3 We can derive the Black–Scholes prices for the calls and puts using the put–call parity. This
derivation is described in Section 14.3.3.
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The replication was obtained by buying the stock and borrowing the amount
Ke−r(T−t). At the expiration, we have FT = ST − K . Since VT = FT with proba-
bility one, we have

Vt = Ft

for all times t before T , to exclude arbitrage. This is the statement (14.8) that
we wanted to prove.

14.1.2.2 Bounds for the Call Price
We have bounds for the call price Ct :

max
{

St − e−r(T−t)K , 0
}
≤ Ct ≤ St . (14.9)

The upper bound Ct ≤ St is obvious, since the right to buy a stock must be less
valuable than the stock itself. To prove the lower bound, we can note that Ct ≥ 0
is obvious, since the right to buy a stock involves no obligations.4 The put–call
parity and the fact that Pt ≥ 0 gives

St − Ke−r(T−t) = Ct − Pt ≤ Ct.

We have proved the lower bound.5
The lower bound in (14.9) implies that

max{0, St − K} < Ct , (14.10)

for t < T . This follows because e−r(T−t)
< 1 when t < T . The inequality (14.10)

leads to the definition of the time value of the option; see (2.6). The lower bound
says that the value of the option is larger than the intrinsic value max{St − K , 0}.
The difference of the price of the option and its intrinsic value is called the time
value of the European option. For an European put option the lower bound
fails unless r = 0. As a consequence of the put–call parity, the time-value of a
put option whose intrinsic value is large (the option is in the money), is usually
negative.

14.1.3 American Call Options

An American call option has the same price as the corresponding European
call option, when the stock does not pay dividends. On the other hand, an

4 The claims follow from the monotonicity theorem stated in Section 13.1.2. Since CT =
(ST − K)+ ≤ ST , we have Ct ≤ St . Since CT = (ST − K)+ ≥ 0, we have Ct ≥ 0.
5 The lower bound can be deduced also by using Theorem 13.2, where the prices were expressed
as expectations with respect to the risk-neutral measure. Let the numéraire be the riskless bond
Bu = er(u−t), where t ≤ u ≤ T . By the convexity of x → (x)+ = max{0, x}, the arbitrage-free price of
an European call option is given for any risk-neutral measure Q ∈  by

Ct = EQ

[ (ST − K)+
BT

]
≥

(
EQ

[ ST − K
BT

])
+
=
(

St −
K
BT

)
+
,

since EQ(ST∕BT ) = St for the risk-neutral measure Q.
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American put option has a different price than the corresponding European
put option.

The put–call parity was derived for European options. However, this parity
can be used to show that

CA
t = CE

t , (14.11)

when the stock does not pay dividends, where CA
t is the price of an Ameri-

can call option and CE
t is the price of the corresponding European call option.

We know that CA
t ≥ CE

t , because an American option has more rights than the
corresponding European option. The lower bound in (14.9) implies

St − K ≤ St − Ke−r(T−t)
≤ CE

t ≤ CA
t ,

where St − K is the cash flow generated by the exercise of the American call
option. Since CA

t ≥ St − K , an early exercise is always suboptimal and one
should sell the American call option and not exercise it. Since it is not optimal
to exercise the option, the possibility for the early exercise is not worth of
anything, and the American call option has the same value as the European
call option.6

However, an American put option is in general worth more than the corre-
sponding European put option. For the American options we have

CA
t − PA

t < St − Ke−r(T−t)
.

The difference between the put and call options comes from the fact that the
value of a put option increases as the price of the stock decreases. When the
value of the stock decreases, then the absolute price changes become smaller.
We can reach the point where the stock takes so small values that further
decreases in the stock price would not give a better rate of return to the put
option than the risk-free rate. At that point it is better to exercise the option
and invest in the risk-free rate. With calls the situation reverses because as the
stock price increases, absolute price changes increase. Pricing of American
put options in the multiperiod binary model is discussed in Section 14.2.4.

14.2 Pricing in Binary Models

We consider pricing and hedging of derivatives in binary models. In a binary
model the stock can at any given time go only one step higher or one step
lower. Section 14.2.1 studies one-period binary models. Section 14.2.2 uses

6 We can use an arbitrage argument to show that CA
t ≤ CE

t . Assume that CA
t > CE

t . Then buy the
European option and sell the American option. We receive CA

t − CE
t , which can be put in the bank

account. If the owner of the American option does not exercise the option, we receive er(T−t)(CA
t −

CE
t ) > 0 at the maturity, because CA

T = CE
T . If the owner of the American option exercises the option

at time t1, then we sell the European option and receive CE
t1
− (St1

− K) ≥ 0. In this case we receive
at the maturity er(T−t)(CA

t − CE
t ) + er(T−t)(CE

t1
− (St1

− K)) > 0.
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one-period binary models as building blocks for multiperiod binary models. A
multiperiod binary model approximates the Black–Scholes model, as is shown
in Section 14.2.3.

14.2.1 The One-Period Binary Model

First, we describe the one-period binary model. Second, we find the fair price
and the optimal hedging coefficient. Third, we find the equivalent martingale
measure. Fourth, we provide additional pricing and hedging formulas.

14.2.1.1 A Description of the One-Period Binary Model
In the single period model, there are time points t = 0 and t = 1. The market
consist of stock S, bond B, and contingent claim C.

The bond takes value 1 at t = 0 and value 1 + r at t = 1:

B0 = 1, B1 = 1 + r,

where r > −1 is the risk-free rate.
The initial value of the stock is s0. The stock can take only two values at time 1.

At t = 1 the value is s1,0 with probability 1 − p and the value is s1,1 with proba-
bility p:

P(S0 = s0) = 1, P(S1 = s1,0) = 1 − p, P(S1 = s1,1) = p,

where 0 < p < 1. We assume that

s1,0 < s0(1 + r) < s1.1. (14.12)

Note that if s1,0 ≥ s0(1 + r), then it would not be rational to invest in the bond,
and if s1,1 ≤ s0(1 + r), then it would not be rational to invest in the stock. The
“rationality” can be formalized as the absence of arbitrage.

The contingent claim C takes two possible values c1,0 and c1,1 at t = 1:

P(C1 = c1,0) = 1 − p, P(C1 = c1,1) = p.

For example, in the case of a call option we have C1 = (S1 − K)+ for some strike
price K > 0. Then c1,0 = (s1,0 − K)+ and c1,1 = (s1,1 − K)+.

We want to find a fair value C0 ∈ R for the derivative at t = 0. Also, we want to
find the optimal hedging coefficient 𝜉 ∈ R, which is used to hedge the position
of the writer of the option.

14.2.1.2 Pricing and Hedging in the One-Period Binary Model
We replicate the contingent claim C with a portfolio

W = 𝛽B + 𝜉S.

The portfolio consists of 𝛽 units of the bond and 𝜉 units of the stock. The port-
folio takes values

W0 = 𝛽 + 𝜉s0,

W1 = 𝛽(1 + r) + 𝜉S1.
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To obtain P(W1 = C1) we need to choose 𝛽 and 𝜉 so that

𝛽(1 + r) + 𝜉s1,0 = c1,0,

𝛽(1 + r) + 𝜉s1,1 = c1,1.

The first equation leads to

𝛽 = (1 + r)−1(c1,0 − 𝜉s1,0). (14.13)

Inserting this value of 𝛽 to the second equation gives

𝜉 =
c1,1 − c1,0

s1,1 − s1,0
. (14.14)

The law of one price implies that the arbitrage-free price C0 of the contingent
claim equals the value W0 of the replicating portfolio at time t = 0: C0 = W0,
and thus

C0 = 𝛽 + 𝜉s0, (14.15)

where 𝛽 and 𝜉 are defined in (14.13) and (14.14).
The number 𝛽 of bonds can be written as 𝛽 = C0 − 𝜉s0. Since W = 𝛽B + 𝜉S,

we can write

P(C0 + 𝜉(S1 − S0) = C1) = 1. (14.16)

We can interpret the replicating portfolio from the point of view of the writer
of the option as the portfolio where the writer receives the option premium C0,
invests C0 in the bank account, borrows the amount 𝜉s0 from the bank, and
invests 𝜉s0 in the stock.

14.2.1.3 The Equivalent Martingale Measure
Price C0 can be written as the expectation with respect to the equivalent mar-
tingale measure. We have

C0 = (1 + r)−1 [c1,0 − 𝜉s1,0 + 𝜉(1 + r)s0
]

= (1 + r)−1
[ s1,1 − s0(1 + r)

s1,1 − s1,0
c1,0 +

s0(1 + r) − s1,0

s1,1 − s1,0
c1,1

]
= (1 + r)−1 [(1 − q)c1,0 + qc1,1

]
= (1 + r)−1EQC1, (14.17)

where

q =
s0(1 + r) − s1,0

s1,1 − s1,0
, (14.18)

and EQ means the expectation with respect to the probability measure Q with

Q(S1 = s1,0) = 1 − q, Q(S1 = s1,1) = q.
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Probability measure Q is called a risk-neutral measure because

EQS1 = s0(1 + r),

and it is called a martingale measure because

EQ

( S1

1 + r

)
= s0.

Note that condition (14.12) guarantees that 0 < q < 1, so that Q is equivalent
to P.

14.2.1.4 Further Pricing and Hedging Formulas
It is of interest that the price can be written as

C0 = (1 + r)−1 [EC1 − 𝜉E(S1 − (1 + r)s0)
]

= EH1 − 𝜉EΔX1, (14.19)

where

H1 =
C1

1 + r
, ΔX1 =

S1

1 + r
− s0.

Indeed, similarly to (14.13), we get

𝛽 = (1 + r)−1(c1,1 − 𝜉s1,1),

which can be combined with (14.13) to get

𝜉 = p𝛽 + (1 − p)𝛽 = (1 + r)−1 [EC1 − 𝜉ES1
]
.

Combining this formula for 𝛽 with the formula C0 = 𝛽 + 𝜉s0 shows (14.19). In
(14.19), we have written the derivative price as a discounted expectation of the
derivative price, with an additional correction term.

The hedging coefficient can be written as

𝜉 =
Cov(C1, S1)

Var(S1)
. (14.20)

To derive (14.20), note that

Cov(C1, S1) = p(1 − p)(s1,1 − s1,0)(c1,1 − c1,0),
Var(S1) = p(1 − p)(s1,1 − s1,0)2

.

Thus, (14.20) is equal to (14.14). We can also write

𝜉 =
Cov(H1,ΔX1)

Var(ΔX1)
=

Cov(C1,R1)
s0Var(R1)

, (14.21)

where R1 = S1∕s0 is the gross return. This way of writing the hedging coefficient
appears in (16.10), where quadratic hedging is considered.
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14.2.2 The Multiperiod Binary Model

We start with a description of the multiperiod binary model, and then pro-
ceed to the pricing formulas, derive the equivalent martingale measure, and
give hedging formulas.

14.2.2.1 A Description of the Multiperiod Binary Model
The market consists of stock S, bond B, and contingent claim C. We define the
discrete time processes

S = (Sk)k=0,…,n, B = (Bk)k=0,…,n. (14.22)

Note that in Section 13.2 we denoted the time steps of the discrete time mar-
kets by t = 0,… ,T . We have changed the notation, because we construct a
time series that approximates the geometric Brownian motion on [0,T]. The
approximation is done by dividing interval [0,T] to n periods of equal lengths
and letting n → ∞.

The bond takes value Bk = (1 + rΔt)k at step k, where r > −1 is the annualized
interest rate, and Δt is the time between two periods in fractions of a year.

At step k = 0,… , n, the stock can take k + 1 values

sk, j = ujdk−js0, j = 0,… , k, (14.23)

where

0 < d < 1 + rΔt < u.

The stock price Sk is a random variable with

P(Sk = sk, j) =
(

k
j

)
pj(1 − p)k−j

, j = 0,… , k, (14.24)

where 0 < p < 1,
The stochastic process of stock prices can be described by a recombining

binary tree, as in Figure 14.1, where n = 3. At step k = 0, the stock takes value
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Figure 14.1 A recombining binary
tree. There are n = 3 periods and
the initial value is s0 = 1.
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s0 (in the figure s0 = 1). If the value of the stock at time k − 1 is s, then at step k
the stock can take values ds and us, so that

sk,j = dsk−1,j, sk,j+1 = usk−1,j,

The probabilities of the up and down movements are p and 1 − p:

P(Sk = su | Sk−1 = s) = p, P(Sk = sd | Sk−1 = s) = 1 − p.

The derivative can take at the expiration n + 1 values cn,j, j = 0,… , n. The
random variable Cn takes the value Cn = cn,j, when Sn = sn,j. For example, when
the contingent claim is the call option with Cn = max{0, Sn − K}, where K > 0
is the strike price, then cn,j = max{0, sn,j − K}. We have

P(Cn = cn,j) =
(

n
j

)
pj(1 − p)n−j

, j = 0,… , n. (14.25)

We want to find the arbitrage-free price C0 of the derivative at time k = 0.

14.2.2.2 Pricing in the Multiperiod Binary Model
The evolution of the stock price in a multiperiod binary model has been
described using a recombining binary tree. The price in a multiperiod binary
model can be found by backward induction. We know the price at the expira-
tion, when k = n. We can use the single period model to calculate the price at
step k = n − 1, and go backwards step by step to obtain the price at step k = 0.
The price C0 of the derivative is calculated using the backwards induction with
the following steps.

1) At the expiration step k = n, the prices of the derivative are given by cn,j,
j = 0,… , n.

2) Let the current step be k − 1 and the current node sk−1,j. Then the two pos-
sible prices for the derivative are ck,j and ck,j+1. We can use the single period
model to calculate the price at step k − 1. We get the price from (14.17) as

ck−1,j = (1 + rΔt)−1 [(1 − q)ck,j + qck,j+1
]
, (14.26)

where

q =
sk−1,j(1 + rΔt) − sk,j

sk,j+1 − sk,j
= (1 + rΔt) − d

u − d
,

and the second equality follows from sk,j+1 = sk−1,ju and sk,j = sk−1,jd.

We have described a recursive algorithm for the computation of the price,
but we can also obtain the following explicit expression for the price.

Theorem 14.1 The arbitrage-free price of the derivative at step k = 0 is

C0 = (1 + rΔt)−n
n∑

j=0

(
n
j

)
qj(1 − q)n−jcn,j. (14.27)
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Proof . Let us make the induction hypothesis that the formula (14.27) holds
for binary trees with n − 1 levels. Then we can price the derivative at step
k = 1. The price is different depending on whether we are at node s1,0 or at
node s1,1:

c1,0 = (1 + rΔt)−n+1
n−1∑
j=0

(
n − 1

j

)
qj(1 − q)n−j−1cn,j,

c1,1 = (1 + rΔt)−n+1
n−1∑
j=0

(
n − 1

j

)
qj(1 − q)n−j−1cn,j+1.

Applying the one-step binomial model we get the price at step k = 0:

C0 = (1 + rΔt)−1 [(1 − q)c1,0 + qc1,1
]

= (1 + rΔt)−n
[(n − 1

0

)
q0(1 − q)ncn,0

+
n−1∑
j=1

[(
n − 1

j

)
+
(

n − 1
j − 1

)]
qj(1 − q)n−jcn,j

+
(n − 1

n − 1

)
qn(1 − q)0cn,n

]

= (1 + rΔt)−n
n∑

j=0

(
n
j

)
qj(1 − q)n−jcn,j,

where we used the fact(
n − 1

j

)
+
(

n − 1
j − 1

)
=
(

n
j

)
.

We have proved Theorem 14.1. ◽

The arbitrage-free price of the derivative is obtained not only at step k = 0,
but the price is obtained at all steps k = 0,… , n − 1. In fact, the price of the
derivative, under the condition that the stock price at step k is Sk = sk,j, is given
by the formula

ck,j = (1 + rΔt)−(n−k)
n−k∑
i=0

(
n − k

i

)
qi(1 − q)n−k−icn,j+i. (14.28)

14.2.2.3 The Equivalent Martingale Measure
Let us define probability measure Q by

Q(Sk = sk,j) =
(

k
j

)
qj(1 − q)k−j

, j = 0,… , k,
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where k = 0,… , n. Measure Q is obtained from the physical measure P, defined
in (14.24), by replacing the probability p of an up-movement by probability q.
The price in (14.27) can be written as the expectation

C0 = (1 + rΔt)−nEQCn, (14.29)

where Cn is the random variable taking value cn,j, when Sn takes value sn,j. The
measure Q is called the equivalent martingale measure, or the risk-neutral
measure.

The price ck,j of the derivative given in (14.28), under the condition that the
stock price at step k is Sk = sk,j, can be written as

ck,j = (1 + rΔt)−(n−k)EQ(Cn | Sk = sk,j) (14.30)

Accordingly, we can define random variables

Ck = (1 + rΔt)−(n−k)EQ(Cn | Sk).

Defining

Hk =
Ck

(1 + rΔt)k
.

we obtain a more elegant formula

Hk = EQ(Hn | Sk). (14.31)

14.2.2.4 Hedging in the Multiperiod Binary Model
The following theorem gives the hedging coefficients of the replicating portfo-
lio. The replication means that the wealth process of the trading strategy obtains
the value of the derivative with probability one, or equivalently, the value pro-
cess of the trading strategy obtains the discounted value of the derivative with
probability one. The value process of a self-financing trading strategy is given
in (13.8).

Theorem 14.2 Define the hedging coefficient for step k = 0,… , n − 1 by

𝜉k+1 =
ck+1,j+1 − ck+1,j

sk+1,j+1 − sk+1,j
, when Sk = sk,j, (14.32)

where j = 0,… , k, and ck+1,j and ck+1,j+1 are the arbitrage-free prices of the
derivative at step k + 1, given by (14.30). Then the derivative Cn is replicated:
the hedging coefficients (14.32) satisfy

P

(
Hn = H0 +

n−1∑
k=0

𝜉k+1(Xk+1 − Xk)

)
= 1,

where Hn = Cn∕(1 + rΔt)n and Xk = Sk∕(1 + rΔt)k.
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Proof . Let us make the induction hypothesis that the claim holds for the
multiperiod binary models with n − 1 periods. According to the induction
hypothesis

P

(
Hn = H1 +

n−1∑
k=1

𝜉k+1(Xk+1 − Xk)
|||||| S1 = s1,0

)
= 1,

P

(
Hn = H1 +

n−1∑
k=1

𝜉k+1(Xk+1 − Xk)
|||||| S1 = s1,1

)
= 1,

where Hk are defined by (14.31). We can apply the replication (14.16) in the
one-period model to obtain

P(H1 = H0 + 𝜉1(X1 − X0)) = 1,

where

𝜉1 =
c1,1 − c1,0

s1,1 − s1,0
,

as given in (14.14). ◽

There are other ways to write the hedging coefficient. We have from the for-
mula (14.21) of the one-period model that

𝜉k+1 =
Covk(Hk+1,ΔXk+1)

Vark(ΔXk+1)
,

where ΔXk+1 = Xk+1 − Xk , Xk = Sk∕(1 + rΔt)k , and Hk = Ck∕(1 + rΔt)k . Here
Vark and Covk mean conditional variance and covariance, conditional on Sk ,
and under probability measure Q, which is the equivalent martingale measure.

We can also write the hedging coefficient as

𝜉k+1 =
Covk(Hn,ΔXk+1)

Vark(ΔXk+1)
. (14.33)

Let us prove (14.33). We have from (14.31) that

Hk+1 = Ek+1Hn.

Thus,

Covk(Hk+1,ΔXk+1) = Covk(Ek+1(Hn),ΔXk+1)
= Covk(Hn,ΔXk+1).

We have shown (14.33).
An additional formula for the hedging coefficient is

𝜉k+1 =
Covk(Hn,Xn)

(n − k)Vark(ΔXk+1)
. (14.34)
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In fact, Xn = Xk +
∑n

i=k+1(Xi − Xi−1). Thus,

Covk(Hn,Xn) =
n∑

i=k+1
Covk(Hn,ΔXi)

=
n∑

i=k+1
Covk(Hi,ΔXi)

= (n − k) Covk(Hk+1,ΔXk+1).

14.2.3 Asymptotics of the Multiperiod Binary Model

We start with the asymptotic normality of the logarithmic returns in the mul-
tiperiod binary model, then show the convergence of the arbitrage-free prices
in the multiperiod binary model to the Black–Scholes prices, and finally show
the convergence of the hedging coefficients in the multiperiod binary model to
the Black–Scholes hedging coefficients.

14.2.3.1 Choice of the Parameters
Let

Δt = T
n
.

We consider asymptotics when n → ∞. We choose the up and down factors as

u = 1 + 𝜎
√
Δt, d = 2 − u = 1 − 𝜎

√
Δt, (14.35)

where 𝜎 > 0. We choose the probabilities of the up and down movements as

p = 1
2
+
𝜇0

√
Δt

2𝜎
, 1 − p = 1

2
−
𝜇0

√
Δt

2𝜎
,

where 𝜇0 ∈ R. With these choices the logarithmic return log(Sn∕s0) converges
in distribution to the normal distribution N(𝜇T , 𝜎2T), where 𝜇 = 𝜇0 − 𝜎2∕2.
Note that when we choose d and u as in (14.35), then the probability q of the
up movement in the risk-neutral distribution is

q = 1
2
+

r
√
Δt

2𝜎
. (14.36)

14.2.3.2 Asymptotic Normality in the Multiperiod Binary Model
We show that the distribution of the stock price in the multiperiod binary
model converges in distribution to a log-normal distribution, as the number of
steps increases.

In the n-period binary model the stock price Sk , k = 0,… , n, can be written as

Sk = s0

k∏
i=1

(
1 +𝑤i𝜎

√
Δt

)
, (14.37)
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where𝑤1, 𝑤2,… are such i.i.d. random variables that𝑤i = 1 when Si is a result
of an up-movement and 𝑤i = −1 when Si is a result of a down-movement,
so that

P(𝑤i = 1) = 1
2
+
𝜇0

√
Δt

2𝜎
, P(𝑤i = −1) = 1

2
−
𝜇0

√
Δt

2𝜎
.

It holds that

loge

(Sn

s0

)
d
−−→N(𝜇T , 𝜎2T), (14.38)

as n → ∞, where

𝜇 = 𝜇0 −
1
2
𝜎

2
.

We show a slightly more general result: For 0 < t ≤ T

loge

(Skn

s0

)
d
−−→N(𝜇t, 𝜎2t), (14.39)

as n → ∞, where kn is such that knΔt → t, as n → ∞. In particular, we can
choose kn = [t∕Δt]. Now (14.38) follows as a special case when we choose
kn = n and t = T .

We denote below k = kn. Let us denote Xi = 𝑤i𝜎
√
Δt. We can write

loge

(Sk

s0

)
=

k∑
i=1

loge(1 + Xi) = Qn −
1
2

Rn + Sn,

where

Qn =
k∑

i=1
Xi, Rn =

k∑
i=1

X2
i , Sn =

k∑
i=1

X2
i r(Xi),

with r(x) = x−2[log(1 + x) − x − x2∕2]. Now it holds that limx→0r(x) = 0. We
have that

1) Qn
d
−−→N(t𝜇0, t𝜎2),

2) Rn
p
−−→ t𝜎2,

3) Sn
p
−−→ 0,

as n → ∞. Because 𝜇0 = 𝜇 + 𝜎2∕2, the claim (14.39) follows from items 1–3.
To prove item 1, we note that

E𝑤i =
𝜇0

√
Δt

𝜎
, E𝑤2

i = 1, Var(𝑤i) = 1 −

(
𝜇0

√
Δt

𝜎

)2

.

Thus,

EXi = 𝜇0Δt, Var(Xi) = 𝜎
2Δt

[
1 −

(
𝜇0Δt
𝜎

)2
]
.
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By the choice of k = kn, it holds knΔt → t as n → ∞, and thus
kEXi → t𝜇0, kVar(Xi) → t𝜎2

,

as n → ∞. Thus, item 1 follows by the central limit theorem.
To prove item 2, we use the fact that EX2

i = 𝜎
2Δt, which implies that

kEX2
i → t𝜎2 as n → ∞. Thus, the weak law of the large numbers implies item 2.

To prove item 3, we note that
|Sn| ≤ Rn max

i=1,…,k
|r(Xi)| ≤ Rnmax{r(𝜎Δt), r(−𝜎Δt)}.

Item 2 implies that Rn = Op(1) and since limx→0r(x) = 0, we have that
max{r(𝜎Δt), r(−𝜎Δt)} = o(1), so that Sn = op(1).

14.2.3.3 Convergence of the Price
The arbitrage-free prices (14.27) in the multiperiod binomial model are called
the Cox–Ross–Rubinstein prices. We show that the Cox–Ross–Rubinstein put
and call prices converge to the Black–Scholes put and call prices, as n → ∞.
This is done in two steps. First, we show that the put and call prices in the mul-
tiperiod binary model converge to the expected values of the option pay-offs,
when the expectation is taken with respect to a log-normal distribution. Sec-
ond, we calculate closed-form expressions for the expected values.

Bounded Continuous Payoff Functions A fundamental theorem about weak con-
vergence states that if

1) Xn
d
−−→X,

2) f ∶ R → R is bounded and continuous,
then

Ef (Xn) → Ef (X),

as n → ∞; see Billingsley (2005, Theorem 25.8, p. 335).
1) First, we apply the weak convergence in (14.38) to obtain

Sn
d
−−→ s0 exp

{
(r − 𝜎2∕2)T + 𝜎

√
T Z

}
, (14.40)

where the stock price Sn is a random variable taking values sn,j with
probabilities

P(Sn = sn,j) =
(

n
j

)
qj(1 − q)j

, j = 0,… , n,

and Z ∼ N(0, 1).
2) Second, we have noted in (14.29) that a Cox–Ross–Rubinstein price satisfies

C0 = (1 + rΔt)−nEQCn, (14.41)
where the expectation is with respect to the risk-neutral measure Q, and Cn
is a random variable taking values ck,j, defined by (14.25).
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Let f ∶ R → R be such function that f (sk,j) = ck,j Then the option payoff can be
written as

Cn = f (Sn).

If function f is continuous and bounded, then (14.40) and (14.41) imply that

lim
n→∞

C0 = e−rT Ef (ST ), (14.42)

where the distribution of ST is defined by

loge

(ST

s0

)
∼ N

(
T
(

r − 𝜎
2

2

)
,T𝜎2

)
, (14.43)

and we used the fact that (1 + rΔt)−n → e−rT , because Δt = T∕n.

Unbounded Continuous Payoff Functions The fundamental theorem about weak
convergence applies for any sequence converging weakly. However, in our
case we are interested in the special case of the convergence of a binomial
distribution toward a log-normal distribution. In this special case Föllmer and
Schied (2002, Proposition 5.39, p. 265) notes that the convergence of expecta-
tions can be proved also when we relax the condition of the boundedness. Let
f ∶ (0,∞) → R be measurable, almost everywhere continuous, and

| f (x)| ≤ C(1 + x)q for some C ≥ 0 and 0 ≤ q < 2. (14.44)

Then,

Ef (Sn) → Ef (ST )

as n → ∞, where Sn satisfies (14.40) and ST is distributed as (14.43).

Put Prices The payoff function of a put option is

x → (K − x)+,

where K > 0 is the strike price. Function x → (K − x)+, x ≥ 0, is bounded
and continuous. Thus, the Cox–Ross–Rubinstein price P0 of an European put
option converges to the expectation:

lim
n→∞

P0 = e−rT E(K − ST )+. (14.45)

The right hand side is equal to the Black–Scholes put price, as shown in (14.54).

Call Prices The payoff function of a call option is

x → (x − K)+,

where K > 0 is the strike price. Function x → (x − K)+, x ≥ 0, is continuous
but not bounded. Thus, the convergence of the Cox–Ross–Rubinstein price to
the expected value cannot be inferred similarly as in the case of put options.
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However, we can apply the put-call parity in (14.8) to conclude that the
Cox–Ross–Rubinstein prices have to satisfy

C0 − P0 = s0 − K(1 − rΔt)−n
,

where C0 is the Cox–Ross–Rubinstein call price, and P0 the put price. Since we
have shown (14.45), it holds that

lim
n→∞

C0 = e−rT E(K − ST )+ + s0 − Ke−rT = e−rT E(ST − K)+. (14.46)

The right hand side is equal to the Black–Scholes call price, as shown in (14.52).

Calculation of the Expectations We have proved in (14.45) and (14.46) that the
arbitrage-free put and call prices in the multiperiod binary model approach the
expected values of the option payoffs, when the expectations are with respect
to the equivalent martingale measure (the risk neutral log-normal model).
Thus, we want to calculate the expected values of the put and call payoffs. The
expected values are the Black–Scholes prices, which we denote

Cbs
0 = e−rT E(ST − K)+ (14.47)

and

Pbs
0 = e−rT E(K − ST )+, (14.48)

where the expectations are taken with respect to the distribution of ST
defined by

ST = s0 exp
{
𝜇T + 𝜎

√
T Z

}
, (14.49)

where Z ∼ N(0, 1) and

𝜇 = r − 1
2
𝜎

2
.

Note that we have discussed the log-normal distribution in (3.50).
The density of the standard normal distribution is 𝜙(z) = (2𝜋)−1∕2e−z2∕2,

where z ∈ R. Then,

E(ST − K)+ =
∫

∞

𝑤

(
s0 exp{z𝜎

√
T + 𝜇T} − K

)
𝜙(z) dz,

where

𝑤 =
loge(K∕s0) − 𝜇T

𝜎

√
T

.

By writing z𝜎
√

T − z2∕2 = −1∕2(z − 𝜎
√

T)2 + 𝜎2T∕2 we have

exp
{

z𝜎
√

T
}
𝜙(z) = exp

{1
2
𝜎

2T
}
𝜙

(
z − 𝜎

√
T
)
.
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Thus,

E(ST − K)+ = s0e𝜇T
∫

∞

𝑤

ez𝜎
√

T
𝜙(z) dz − K

∫

∞

𝑤

𝜙(z) dz

= s0e𝜇T+𝜎2T∕2
∫

∞

𝑤−𝜎
√

T
𝜙(z) dz − K

∫

∞

𝑤

𝜙(z) dz

= s0e𝜇T+𝜎2T∕2Φ(𝜎
√

T −𝑤) − KΦ(−𝑤), (14.50)

where Φ(x) = ∫
x
−∞ 𝜙(t)dt is the distribution function of the standard normal

distribution. Since 𝜇 = r − 𝜎2∕2,

E(ST − K)+ = s0erTΦ(z+) − KΦ(z−), (14.51)

where

z± =
loge(s0∕K) + (r ± 𝜎2∕2)T

𝜎

√
T

,

because 𝜎
√

T −𝑤 = z+ and −𝑤 = z−. This leads to the call price

Cbs
0 = s0Φ(z+) − Ke−rTΦ(z−). (14.52)

Similarly,

E(K − ST )+ =
∫

𝑤

−∞

(
K − s0 exp{z𝜎

√
T + 𝜇T}

)
𝜙(z) dz

= KΦ(𝑤) − s0e𝜇T+𝜎2T∕2Φ(𝑤 − 𝜎
√

T), (14.53)

which leads to the put price

Pbs
0 = Ke−rTΦ(−z−) − s0Φ(−z+). (14.54)

We have calculated explicit expressions for the call and put prices at time
t = 0, when the stock price is S0 = s0. The Black–Scholes call and put prices at
time t ∈ [0,T), when the stock price is St = s, are given by

Ct(s) = e−r(T−t)E(ST − K)+ (14.55)

and

Pt(s) = e−r(T−t)E(K − ST )+, (14.56)

where the expectations are taken with respect to the distribution of ST
defined by

ST = s exp
{
𝜇(T − t) + 𝜎

√
T − t Z

}
,

where Z ∼ N(0, 1) and 𝜇 = r − 1
2
𝜎

2. The corresponding explicit expressions
are given in (14.58) and (14.59), and the Black–Scholes prices are discussed in
Section 14.3.1.
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14.2.3.4 Convergence of the Hedging Coefficient
We show that the hedging coefficients of puts and calls in the multiperiod
binary model converge to the Black–Scholes hedging coefficients. The Black–
Scholes hedging coefficients are called deltas, and they are obtained by
differentiating the Black–Scholes prices with respect to the stock price.

Let the initial time and the initial stock price be

t ∈ [0,T), s > 0.

Let Ct(s) be either the Black–Scholes call price or the put price at time
t ∈ [0,T), when the stock price at time t is St = s, and the expiration is at time
T . These prices are written as expectations in (14.55) and (14.56), and in a
more explicit form in (14.58) and (14.59).

Let us consider step k = 0,… , n − 1 of the multiperiod binary model. Let
sk,j = ujdk−js0 be one of the possible stock prices at step k, where j = 0,… , k.
These prices were defined in (14.23). Let k = kn be such that

knΔt → t,

as n → ∞. In particular, we can choose kn = [t∕Δt], where [x] is the largest
integer ≤ x. Choose

j = jn =
[ log(s∕s0) − k log d

log(u∕d)

]
.

Then

sk,j → s,

as n → ∞.
The hedging coefficient of the multiperiod binary model was written in

(14.32) as

𝜉k+1(sk,j) =
ck+1,j+1 − ck+1,j

sk+1,j+1 − sk+1,j
,

where ck+1,j+1 and ck+1,j are the two possible prices of the derivative at step k + 1,
when the value of the stock at step k is Sk = sk,j.7 Now it holds that

lim
n→∞

𝜉k+1(sk,j) = C′
t (s), (14.57)

where C′
t (s) is the derivative of the Black–Scholes price with respect to stock

price.

7 These values are given in (14.28) and (14.30) as

ck+1,j+1 = (1 + rΔt)−(n−k−1)EQ(Cn | Sk+1 = sk+1,j+1),

ck+1,j = (1 + rΔt)−(n−k−1)EQ(Cn | Sk+1 = sk+1,j).
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To show (14.57), note that from (14.46) and (14.45), and the continuity of the
functions s → Ct(s) we have that

ck+1,j+1 ≍ Ct(sk+1,j+1), ck+1,j ≍ Ct(sk+1,j),

where an ≍ bn means that limn→∞(an∕bn) = 1. Thus,

𝜉k+1 ≍
Ct(sk+1,j+1) − Ct(sk+1,j)

sk+1,j+1 − sk+1,j
.

Also, sk+1,j+1 = sk,ju = sk,j(1 + 𝜎
√
Δt) → s, sk+1,j = sk,jd = sk,j(1 − 𝜎

√
Δt) → s,

and sk+1,j+1 − sk+1,j = sk,j(u − d) = 2sk,j𝜎
√
Δt → 0, as n → ∞.

14.2.3.5 Rate of Convergence
Figure 14.2 illustrates the convergence of (a) the ratio of the Cox–Ross–
Rubinstein call price to the Black–Scholes call price, and (b) the ratio of
the Cox–Ross–Rubinstein call hedging coefficient to the Black–Scholes call
hedging coefficient. The ratios are plotted as a function of the number n of
the steps in the multiperiod binary model, where n = 100,… , 1000. The mon-
eyness S∕K is 0.9 (green), 0.95 (black), and 1 (red). The annualized volatility
is 𝜎 = 10%, the interest rate is r = 0, and the time to maturity is 1 month:
T − t = 1∕12. We see that the convergence of the at-the-money options is
faster than the convergence of the out-of-the-money options.
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Figure 14.2 Convergence of the Cox–Ross–Rubinstein price and hedging coefficient. Plotted are
(a) the ratios of the Cox–Ross–Rubinstein call price to the Black–Scholes price and (b) the ratios
of the Cox–Ross–Rubinstein call hedging coefficient to the Black–Scholes hedging coefficient
as a function of n. The three curves show the cases where the moneyness is 0.9 (green), 0.95
(black), and 1 (red).
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14.2.3.6 Asian and Knock-Out-Options
We have proved the weak convergence at one point: Let t ∈ (0,T] and tk,n =
knΔt → t. Then

Skn

d
−−→ St ,

where Skn
is the price of the stock at step kn in the multiperiod binomial model,

and St is the price of the stock at time t in the geometric Brownian motion
model. If the option payoff is f (Skn

), then the price in the multiperiod binomial
model converges to the price of the option whose payoff is f (St) in the geomet-
ric Brownian motion model. Asian options and knock-out options depend on
values of stocks in more than one point.

Asian Options In the case of Asian options, the option payoffs can be written as
f (Sk1

,… , Skm
), f (St1

,… , Stm
),

where 0 ≤ k1 < · · · kn ≤ n are steps, and 0 ≤ t1 < · · · < tm ≤ T are fixed time
points. For example, in the case of an Asian call option

f (x1,… , xm) =

(
1
m

m∑
i=1

xi − K

)
+

.

The corresponding prices converge for a suitable f , when

(Sk1
,… , Skm

)
d
−−→ (St1

,… , Stm
).

Knock-Out Options The payoffs of knock-out options depend on the trajectory
of the prices through

max
k=0,…,n

Sk , sup
t∈[0,T]

St .

Let us divide the time interval [0,T] into n subintervals. Denote the n + 1
boundaries of the intervals by

tk,n = kΔt, k = 0,… , n.
Points tk,n fill the interval [0,T] asymptotically. We can define a continuous time
process Wt,n, t ∈ [0,T], by linearly interpolating Sk : define

Wt,n = Sk−1,n +
Sk,n − Sk−1,n

Δt
(t − tk−1,n),

when t ∈ [tk−1,n, tk,n]. Geometric Brownian motion St is defined in (5.62).
We can show that process Wt,n converges weakly to the geometric Brownian
motion

St = S0 exp
{(
𝜇0 −

1
2
𝜎

2
)

t + 𝜎Bt

}
, 0 ≤ t ≤ T ,
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where Bt is the standard Brownian motion. The weak convergence

(Wt,n)t∈[0,T]
d
−−→ (St)t∈[0,T],

as n → ∞, happens in the metric space C([0,T]) of the continuous functions
on [0,T]. The prices of the options whose payoffs are

f ((Wt,n)t∈[0,T]), f ((St)t∈[0,T]),

converge for suitable f ∶ C[0,T] → R.

14.2.4 American Put Options

An American put option has a different price than the corresponding Euro-
pean put option, and the price of an American put option does not have a
closed-form expression in the multiperiod binary model. However, an Ameri-
can call option has the same price as the corresponding European call option,
when the stock does not pay dividends (see Section 14.1.3). Thus, the Ameri-
can call options can be priced similarly as the European call options using the
Black–Scholes prices or the recombining binary trees.

The American put options have to be priced by taking into account the pos-
sibility of an early exercise. We can use the recombining binary tree to price
the American put options. At every node of the tree we consider whether it is
better to exercise or to keep the option for a future exercise. We are not able
to obtain a closed-form formula for the price of the American put options, but
we obtain an algorithm for the computation of the price. First, the single period
binary model is studied. Second, the multiperiod binary model leads to the final
algorithm.

14.2.4.1 American Put Options in the One-Period Binary Model
In the one-period binary model, the American put option can be exercised at
time t = 0 or at time t = 1. Let us denote with PA

0 the value of the American put
option at time t = 0 and let us denote with PE

0 the value of the European put
option at time t = 0. An arbitrage argument shows that

PA
0 = max

{
K − s0,PE

0
}
.

The value of an European put option can be obtained from (14.17) as

PE
0 = (1 + rΔt)−1EQ(K − S1)+,

where

EQ(K − S1)+ = (1 − q)(K − s1,0)+ + q(K − s1,1)+
with

q =
s0(1 + rΔt) − s1,0

s1,1 − s1,0
.
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14.2.4.2 American Put Options in the Multiperiod Binary Model
The price of an American put option is determined in the n-step binomial
model by recursion. Remember that in the n-step binomial model the possible
prices at step k, k = 0,… , n, are

sk,j = uj(2 − u)k−js0, j = 0,… , k

with

u = 1 + 𝜎
√
Δt.

The recursive steps are the following.

1) At time T = tn,n the prices of the American put option are given by

HT (sn,j) = max{K − sn,j, 0},

j = 0,… , n.
2) At time tk−1,n, k = 1,… , n, when the stock has price sk−1,j, we know from the

previous steps of the algorithm that the two possible prices for the derivative
at time tk,n are Htk,n

(sk,j) and Htk,n
(sk,j+1). We can use the single period model

to calculate the price at time tk−1,n. We get the price from the one-step binary
model as

Htk−1,n
(sk−1,j) = max{K − sk−1,j,EqHtk,n

(Stk,n
)},

where

EqHtk,n
(Stk,n

) = (1 + rΔt)−1[(1 − q)Htk,n
(sk,j) + qHtk,n

(sk,j+1)]

and

q =
sk−1,j(1 + rΔt) − sk,j

sk,j+1 − sk,j
= 1

2
+

r
√
Δt

2𝜎
,

with Δt = (T − t)∕n.

14.3 Black–Scholes Pricing

First we describe the properties of Black–Scholes call and put prices, second
we discuss implied volatility, third we describe various ways to derive the
Black–Scholes prices, and fourth we give Black–Scholes formulas for options
on forwards, for fixed income options, and for currency options.

14.3.1 Call and Put Prices

The Black–Scholes price of the call option at time t, with strike price K , and
with the maturity date T , is equal to

Ct(St ,K ,T) = StΦ(z+) − Ke−r(T−t)Φ(z−), (14.58)
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where St is the stock price at time t, r > 0 is the annualized risk-free rate,

z± =
loge(St∕K) + (r ± 𝜎2∕2)(T − t)

𝜎

√
T − t

,

and Φ is the distribution function of the standard Gaussian distribution. The
time T − t to expiration is expressed in fractions of a year. The put price is
equal to

Pt(St ,K ,T) = −StΦ(−z+) + Ke−r(T−t)Φ(−z−). (14.59)
Note that it can be convenient to write

z± =
loge

(
Ster(T−t)∕K

)
± (T − t) 𝜎2∕2

𝜎

√
T − t

.

The Black–Scholes price is derived under the assumption of a log-normal
distribution of the stock price: It is assumed that at time t < T

ST ∼ St exp
{
𝜇(T − t) + 𝜎

√
T − t Z

}
,

where Z ∼ N(0, 1), 𝜇 ∈ R is the drift, and 𝜎 > 0 is the volatility. Note that
under the risk-neutral measure 𝜇 = r − 𝜎2∕2. The volatility 𝜎 is the only
unknown parameter that need to be estimated, since 𝜇 does not appear in the
price formula.

14.3.1.1 Computation of Black–Scholes Prices
For the application of the Black–Scholes formula the time T − t is taken as the
time in fractions of year. For example, when the time to expiration is 20 trading
days, then T − t = 20∕252. Alternatively, when time to expiration is 20 calendar
days, then T − t = 20∕365.

The risk-free rate r is expressed as the annualized rate.
The only unknown parameter 𝜎 has to be estimated. Let St0

,… , Stn
be an

equally spaced sample of stock prices and let us denote Δt = ti − ti−1, for
i = 1,… , n. We assume that Yi = log(Sti

∕Sti−1
), i = 1,… , n, are i.i.d. N(m, s2), so

that the stock prices satisfy (3.50). We can estimate s2 with the sample variance

ŝ2 = 1
n

n∑
i=1

(Yi − Ȳ )2
,

where Ȳ = n−1 ∑n
i=1 Yi. Then an estimator of 𝜎 = s(Δt)−1∕2 is

𝜎̂ = ŝ (Δt)−1∕2
. (14.60)

For example, if we sample stock prices daily, thenΔt = 1∕250 and 𝜎̂ = ŝ
√

250.8

If we sample stock prices monthly, then Δt = 1∕12 and 𝜎̂ = ŝ
√

12.

8 The actual number of trading days in a year is between 250 and 252. There are 365 days in a year,
but if we ignore the days, when there are no trading, then Δt = 1∕250. Sampling of price data is
discussed in Section 2.1.2.
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The normalized sample standard deviation in (14.60) is called the annualized
sample standard deviation.

14.3.1.2 Characteristics of Black–Scholes Prices
We study the qualitative behavior of the Black–Scholes prices as a function of
five parameters 𝜎, T − t, r, St , and K .

The prices of calls and puts increase as 𝜎 increases. We have

lim
𝜎→∞

Ct(St ,K ,T) = St

and

lim
𝜎→0

Ct(St ,K ,T) =
(
St − e−r(T−t)K

)
+,

which are the bounds derived from the put–call parity in (14.9). The prices of
calls and puts increase as the time to maturity T − t increases. The price of a
call increases as St increases and the price of a call decreases as K increases, but
for puts the relations reverse. The price of a call increases as the interest rate r
increases but the price of a put decreases as the interest rate r increases.

Figure 14.3 shows Black–Scholes prices for calls and puts as a function of the
call moneyness S∕K . The call prices increase and the put prices decrease as a
function of moneyness. Panel (a) shows the cases of annualized volatility 5%
(black), 10% (red), and 20% (green). The time to maturity is 20 trading days and
the interest rate is r = 0. Panel (b) shows the cases of interest rates r = 0 (black),
r = 10% (red), and r = 20% (green). The time to maturity is 20 trading days and
the annualized volatility is 10%. We see from panel (a) that increasing volatility
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Figure 14.3 Call and put prices as a function of call moneyness S∕K . The call prices increase and
the put prices decrease as a function of moneyness. (a) The annualized volatility is 5% (black),
10% (red), and 20% (green); (b) the interest rate is r = 0 (black), r = 10% (red), and r = 20%
(green).
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increases the prices, both for call and puts. The effect of increasing time to
maturity is similar. We see from panel (b) that for calls increasing interest rates
increases prices, but for puts increasing interest rates decreases prices.

Figure 14.4 shows that the call and put prices are not symmetric. The ratios
of call prices to put prices are shown as a function of the call moneyness S∕K :
We show the functions

S∕K →
Ct(S,K)

Pt(S, 2S − K)
,

where S = 100 is the current stock price. The strike prices for the calls take
values 105, 104,… , 95, and the corresponding strike prices for the puts are
95, 96,… , 105. Panel (a) shows the cases of annualized volatility 5% (black),
10% (red), and 20% (green). The interest rate is r = 0. Panel (b) shows the cases
of interest rates r = 0 (black), r = 10% (red), and r = 20% (green). The annu-
alized volatility is 10%. The time to maturity is 20 trading days in both panels.
We see that the call prices are higher than the put prices for out-of-the-money
options. This is related to the asymmetry of the log-normal distribution (see
Figure 3.11). For at-the-money options the difference between the call and the
put prices is not large. Increasing the volatility makes the ratios of the call and
put prices closer to one, and decreasing the interest rate makes the ratios of the
call and put prices closer to one.

14.3.1.3 Black–Scholes Prices and Volatility
To apply Black–Scholes prices we need to estimate the volatility. We study how
the Black–Scholes prices change when the volatility estimate changes. We apply
the data of S&P 500 daily prices, described in Section 2.4.1.
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Figure 14.4 Ratios of call prices to put prices as a function of moneyness S∕K . (a) Annualized
volatility is 5% (black), 10% (red), and 20% (green); (b) interest rate is r = 0 (black), r = 10%
(red), and r = 20% (green).
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Figure 14.5 shows time series of Black–Scholes call prices. The volatility
is equal to the sequential annualized sample standard deviation. Panel (a)
shows call prices with moneyness S∕K = 1 and panel (b) shows call prices with
moneyness S∕K = 0.95. The time to expiration is either 20 trading days (black
curves) or 30 trading days (red curves). The risk-free rates are deduced from
1-month Treasury bill rates. We can see that the time series of Black–Scholes
prices follow closely to the time series of sequential standard deviations in
Figure 7.5.

Figure 14.6 studies Black–Scholes prices when the volatility is equal to the
sequentially estimated GARCH(1, 1) volatility. Panel (a) shows time series of
call prices with moneyness S∕K = 1 (black) and S∕K = 0.95 (green). The time
to expiration is 20 trading days. Panel (b) shows kernel density estimates of
the distributions of the prices. The horizontal and the vertical lines show the
Black–Scholes prices when the volatility is the annualized sample standard
deviation computed from the complete sample. The risk-free rate is zero.

14.3.1.4 The Greeks
The greeks are defined by differentiating the option price with respect to the
price of the underlying, the time to the expiration, the interest rate, or the
volatility. In this section, we denote the Black–Scholes call and put prices by

Ct(S,K ,T , 𝜎, r), Pt(S,K ,T , 𝜎, r),

where t is the current time, S is the current price of the underlying, K is the
strike price, T is the time of the expiration, 𝜎 is the volatility, and r is the interest
rate. Sometimes we leave out some of the arguments and denote, for example,
Ct(S) = Ct(S,K ,T , 𝜎, r).
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Figure 14.5 Time series of Black–Scholes call prices. (a) Moneyness S∕K = 1 and (b) moneyness
S∕K = 0.95. Call prices are computed using the sequential sample standard deviation. The
time to expiration is 20 trading days (black) or 30 trading days (red).
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Figure 14.6 Black–Scholes prices with GARCH-volatility. (a) Time series of prices; (b) kernel
estimates of the density of the collection of prices. The moneyness is S∕K = 1 (black) and
S∕K = 0.95 (green).

The Delta The delta is the derivative of the price function with respect to the
underlying. The delta is the hedging coefficient in the Black–Scholes hedging,
as discussed in Section 14.4. The call and put delta are

Cs =
𝜕Ct(S)
𝜕S

, Ps =
𝜕Pt(S)
𝜕S

. (14.61)

We have that

0 < Cs < 1, −1 < Ps < 0.

In fact, if S increases, then the price of the call increases and the price of the put
decreases: Cs > 0 and Ps < 0. The absolute value of the change in the value of a
call or a put cannot exceed the absolute value of the change in the underlying:|Cs| < 1 and |Ps| < 1.

The call delta is equal to

Cs = Φ(z+), (14.62)

and the put delta equal to

Ps = −Φ(−z+). (14.63)

Let us calculate the call delta. The delta of a call is given in (14.62) because

𝜕C(S)
𝜕S

=Φ(z+) + e−r(T−t)
[

Ser(T−t) 𝜕Φ(z+)
𝜕S

− K
𝜕Φ(z−)
𝜕S

]
,

𝜕Φ(z+)
𝜕S

= 𝜙(z+) ⋅
𝜕z+
𝜕S

= 𝜙(z+) ⋅
1

𝜎

√
T − t

⋅
1
S
,

𝜕Φ(z−)
𝜕S

= 𝜙(z−) ⋅
1

𝜎

√
T − t

⋅
1
S
,
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Figure 14.7 Call deltas. Call deltas are shown as a function of moneyness S∕K . (a) The
annualized volatility is 10% (black) and 20% (red) with time to expiration 1 month; (b) the
time to expiration is 1 month (black) and 3 months (red) with volatility 10%. The interest rate
is r = 0 (solid lines) and r = 0.05 (dashed lines).

and finally9

er(T−t)
𝜙(z+) =

K
S
𝜙(z−).

Figure 14.7 shows the call delta as a function of moneyness S∕K . In panel (a)
the annualized volatility is 10% (black) and 20% (red) with time to expiration
1 month. In panel (b) the time to expiration is 1 month (black) and 3 months
(red) with volatility 10%. The solid lines show the case of interest rate r = 0 and
the dashed lines show the case of interest rates r = 5%. The more interesting
part is the moneyness ≤ 1. In this region the deltas are ≤ 0.5 in both panels.
Panel (a) shows that when moneyness is ≤ 1, then a larger volatility leads to
a larger delta. Panel (b) shows that increasing time to maturity has a similar
qualitative effect as increasing volatility.

Figure 14.8 shows a time series of Black–Scholes deltas using the data of S&P
500 daily prices, described in Section 2.4.1. The daily prices are used to create
a time series with the sampling frequency of 20 and 30 trading days. Panel (a)
shows call prices with moneyness S∕K = 1 and panel (b) shows call prices when
moneyness S∕K = 0.95. The time to expiration is either 20 trading days (black
curves) or 30 trading days (red curves). The volatility is equal to the sequen-
tial sample standard deviation. The risk-free rates are deduced from 1-month

9 We have that z+𝜎
√

T − t − (T − t)𝜎2∕2 = log(S∕K) + r(T − t) and thus

𝜙(z−) = 𝜙(z+ − 𝜎
√

T − t) = 𝜙(z+) exp
{

z+𝜎
√

T − t − 1
2
𝜎

2(T − t)
}

= 𝜙(z+)e
r(T−t) S

K
.
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Figure 14.8 Time series of Black–Scholes call deltas. (a) Moneyness S∕K = 1 and (b) moneyness
S∕K = 0.95. Call deltas are computed using the sequential sample standard deviation. The
time to expiration is 20 trading days (black) or 30 trading days (red).

Treasury bill rates. The corresponding time series of Black–Scholes prices is
given in Figure 14.5.

The Gamma The gamma is the second derivative of the price function with
respect to the underlying:

Css =
𝜕

2Ct(S)
𝜕S2 , Pss =

𝜕
2Pt(S)
𝜕S2 .

The price functions are convex with respect to S and thus

Css > 0, Pss > 0.

The call gamma and the put gamma are given by

Css = Pss =
Φ′(z+)

S𝜎
√

T − t
.

Figure 14.9 shows the call gamma as a function of moneyness S∕K . In
panel (a) the annualized volatility is 10% (black) and 20% (red) with time to
expiration 1 month. In panel (b) the time to expiration is 1 month (black) and
3 months (red) with volatility 10%. The solid lines show the case of interest
rate r = 0 and the dashed lines show the case of interest rates r = 5%.

Theta The theta is the derivative of the price function with respect to time:

C
𝜃
=
𝜕Ct(S,K ,T)

𝜕t
, P

𝜃
=
𝜕Pt(S,K ,T)

𝜕t
.

As t increases the value of the option decreases (everything else being equal)
and thus

C
𝜃
< 0, P

𝜃
< 0.
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Figure 14.9 Call gammas. Call gammas are shown as a function of moneyness S∕K . (a) The
annualized volatility is 10% (black) and 20% (red) with the time to expiration 1 month; (b) the
time to expiration is 1 month (black) and 3 months (red) with volatility 10%. The interest rate
is r = 0 (solid lines) and r = 0.05 (dashed lines).

The call theta is equal to

C
𝜃
= −

S𝜎Φ′(z+)

2
√

T − t
− rKe−r(T−t)Φ(z−),

and the put theta is equal to

P
𝜃
= −

S𝜎Φ′(z+)

2
√

T − t
+ rKe−r(T−t)Φ(−z−).

Figure 14.10 shows the call theta as a function of moneyness S∕K . In panel (a)
the annualized volatility is 10% (black) and 20% (red) with time to expiration
1 month. In panel (b) the time to expiration is 1 month (black) and 3 months
(red) with volatility 10%. The solid lines show the case of interest rate r = 0 and
the dashed lines show the case of interest rates r = 1%.

Vega The vega is the derivative of the price function with respect to volatility:

C
𝜎
=
𝜕Ct(S,K ,T , 𝜎)

𝜕𝜎
, P

𝜎
=
𝜕Pt(S,K ,T , 𝜎)

𝜕𝜎
.

The call vega and the put vega are equal to

C
𝜎
= P

𝜎
= S

√
T − tΦ′(z+).

Figure 14.11 shows the call vega as a function of moneyness S∕K . In panel (a)
the annualized volatility is 10% (black) and 20% (red) with time to expiration
1 month. In panel (b) the time to expiration is 1 month (black) and 3 months
(red) with volatility 10%. The solid lines show the case of interest rate r = 0 and
the dashed lines show the case of interest rates r = 5%.
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Figure 14.10 Call thetas. Call thetas are shown as a function of moneyness S∕K . (a) The
annualized volatility is 10% (black) and 20% (red) with the time to expiration 1 month; (b)
the time to expiration is 1 month (black) and 3 months (red) with volatility 10%. The interest
rate is r = 0 (solid lines) and r = 0.01 (dashed lines).

v= 10%

v = 20%

Moneyness

V
eg

a

(a)

T = 1/12

T = 3/12

Moneyness

V
eg

a

(b)

0.90 0.95 1.00 1.05 1.10

0
2

4
6

8
10

0.90 0.95 1.00 1.05 1.10

0
5

10
15

20

Figure 14.11 Call vega. Call vegas are shown as a function of moneyness S∕K . (a) The
annualized volatility is 10% (black) and 20% (red) with the time to expiration 1 month; (b)
the time to expiration is 1 month (black) and 3 months (red) with volatility 10%. The interest
rate is r = 0 (solid lines) and r = 0.05 (dashed lines).

Rho The rho is the derivative of the price function with respect to interest rate:

Cr =
𝜕Ct(S,K ,T , 𝜎, r)

𝜕r
, Pr =

𝜕Pt(S,K ,T , 𝜎, r)
𝜕r

.

The call rho is equal to

Cr = (T − t)Ke−r(T−t)Φ(z−),
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Figure 14.12 Call rho. Call rhos are shown as a function of moneyness S∕K . (a) The annualized
volatility is 10% (black) and 20% (red) with the time to expiration 1 month; (b) the time to
expiration is 1 month (black) and 3 months (red) with volatility 10%. The interest rate is r = 0
(solid lines) and r = 0.05 (dashed lines).

and the put rho is equal to

Pr = −(T − t)Ke−r(T−t)Φ(−z−).

Figure 14.12 shows the call rho as a function of moneyness S∕K . In panel (a)
the annualized volatility is 10% (black) and 20% (red) with time to expiration
1 month. In panel (b) the time to expiration is 1 month (black) and 3 months
(red) with volatility 10%. The solid lines show the case of interest rate r = 0 and
the dashed lines show the case of interest rates r = 5%.

14.3.2 Implied Volatilities

Implied volatilities can be derived both from call prices or from put prices. Let
Ct(S,K ,T , 𝜎, r) be a Black–Scholes call price. The mapping

𝜎 → Ct(S,K ,T , 𝜎, r). (14.64)

is bijective and can be inverted. Let us denote by IV the inverse of mapping
(14.64). When we observe a market price c for a call option, then

𝜎 = IV(c)

is the implied volatility of the option. The implied volatility of a put option can
be defined similarly.

14.3.2.1 Quoting Option Prices
It is helpful to quote option prices using implied volatilities. Option prices and
implied volatilities are in a bijective correspondence, but it is easier to com-
pare the prices of options with different maturities and strike prices using the
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implied volatilities than using the market prices. This is analogous to expressing
the bond prices with annualized rates instead of quoted prices.10 The implied
volatilities can be used to quote prices even when we do not think that the
Black–Scholes prices are fair prices, similarly as the bond rates can be defined
using various conventions.

14.3.2.2 The Volatility Surface
If the Black–Scholes model describes the true distribution of the asset
prices, and if the market prices coincide with the Black–Scholes prices,
then the implied volatilities of options with different strike prices and with
different maturities are all equal. However, in practice the implied volatilities
are different for the options with different strike prices and with different
maturities.

The volatility surface gives for each strike price and for each maturity the
corresponding implied volatility. Let cij be the market prices of call (put) options
with strike prices Ki and expiration dates Tj, where i = 1,… ,m, j = 1,… , n. The
options are otherwise similar. The volatility surface is the function

VS(Ki,Ti − t) = IV(cij),

where Ti − t is the time to the expiration.
The volatility surface is typically not a constant function. Instead, for a fixed

maturity T − t, function

K → VS(K ,T − t)

is typically u-shaped (smile) or skew (one sided smile). Instead of the strike K
one may take as the argument the moneyness S∕K (or S∕Ke−r(T−t)), or the delta
of the options.

Options written on equity indices yield often skews. This might be due to the
fact that a crash in stock markets leads to increased volatility, whereas a rise in
stock markets is not usually involved with an increased volatility. Options on
various interest rates yield more monotonous one sided smiles than the equity
indices.

Currency markets yield often symmetric smiles. Currency markets are more
symmetric than stock markets because a big movement in either direction
results in an increased volatility (it is always a crash for one of the currencies).

The smile tends to flatten out with maturity. This might be due to the better
Gaussian approximation when the maturity is longer.

14.3.2.3 Pricing of Options Using Implied Volatilities
Out-of-the-money options can be priced in the following way. (1) Find the
implied volatility of at-the-money options. (2) Adjust the implied volatility

10 For example, let P be the present value of $100 received in 3 months time. We define the Libor
rate L as the solution of P = 100∕(1 + L∕4), or as the solution L∗ of P = 100∕(1 + L∗)1∕4.
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(using experience) to get a new volatility. (3) Calculate the price of the
out-of-the-money option using the new volatility.

14.3.2.4 VIX Index
The VIX index of CBOE (Chicago Board Options Exchange) uses prices of
options to derive the volatility that is expected by the markets. Section 6.3.1
contains a discussion of the VIX index and Figure 6.5 shows a time series of the
VIX index. Let us derive the formula of the VIX index.

It is assumed that the stock price follows a geometric Brownian motion, as
defined in (5.62). That is,

St = S0 exp
{(
𝜇 − 1

2
𝜎

2
)

t + 𝜎Wt

}
, 0 ≤ t ≤ T ,

where Wt is the standard Brownian motion, 𝜇 ∈ R, and 𝜎 > 0. Under the equiv-
alent martingale measure 𝜇 = r, where r is the yearly risk-free interest rate.
Thus, for the equivalent martingale measure we have

E log
ST

S0
= T

(
r − 1

2
𝜎

2
)
.

We can solve for 𝜎2 to get

𝜎
2 = 2

T

(
rT − E log

ST

S0

)
.

A Taylor expansion gives

log
ST

K0
=

ST − K0

K0
−
∫

∞

K0

1
K2 (ST − K)+dK −

∫

K0

0

1
K2 (K − ST )+dK ,

where 0 < K0 < ∞. Thus,

log
ST

S0
= log

K0

S0
+

ST − K0

K0

−
∫

∞

K0

1
K2 (ST − K)+dK −

∫

K0

0

1
K2 (K − ST )+dK .

Theorem 13.2 implies that when the expectation is taken with respect to a
risk-neutral measure, then

E(ST − K)+ = erT C0(K), E(K − ST )+ = erT P0(K),

where C0(K) and P0(K) are the arbitrage-free prices of the call and the put.
Under the risk-neutral measure

E
ST − K0

K0
=

erT S0

K0
− 1 =

F0

K0
− 1,
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where F0 = erT S0 is the futures price, as given in (14.2). Thus,

E log
ST

S0
= log

K0

S0
+

F0

K0
− 1

−erT
∫

∞

K0

1
K2 C0(K)dK − erT

∫

K0

0

1
K2 P0(K)dK .

We arrive at the variance formula

𝜎
2 = 2

T

(
rT −

( F0

K0
− 1

)
− log

K0

S0

+ erT
∫

∞

K0

1
K2 C0(K)dK + erT

∫

K0

0

1
K2 P0(K)dK

)
. (14.65)

The variance formula (14.65) was derived in Demeterfi et al. (1999). CBOE uses
the approximation

rT −
( F0

K0
− 1

)
− log

K0

S0
= log

F0

K0
−
( F0

K0
− 1

)
≈ −1

2

( F0

K0
− 1

)2

.

CBOE:s VIX index is defined as11

VIX2 = 2erT

T
∑

i

1
K2

i
Q(Ki)ΔKi −

1
T

( F0

K0
− 1

)2

, (14.66)

where Q(Ki) is the midpoint of the bid-ask spread for the option, and ΔKi =
(Ki+1 − Ki−1)∕2. The calculation is done for two expiration dates, and the final
index value is a weighted average of these. Note that the put–call parity (14.8)
gives the equality F0 = KA + erT (C0(KA) − P0(KA)).

14.3.3 Derivations of the Black–Scholes Prices

We have derived the Black–Scholes prices as the limits of the prices in the mul-
tiperiod binary model. Now we describe shortly the martingale derivation of
the Black–Scholes prices, derivation of the prices using the Black–Scholes dif-
ferential equation, and the derivation of the prices using the put–call parity.

14.3.3.1 Martingale Derivation
The second fundamental theorem of asset pricing says that an arbitrage-free
market model is complete if and only if there exists exactly one equivalent mar-
tingale measure. We have stated this theorem for the discrete time model in
Theorem 13.3.

The Black–Scholes prices can be derived as a corollary of the second
fundamental theorem of asset pricing: If the Black–Scholes market model is

11 See http://www.cboe.com/micro/volatility/introduction.aspx.
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arbitrage-free and complete, then the Black–Scholes prices are the discounted
expectations with respect to the equivalent martingale measure.

Shiryaev (1999, p. 710) states in a continuous time framework that if there
exists a unique equivalent martingale measure, then the unique arbitrage-free
price of the option is the discounted expected value of the payoff with respect
to the unique equivalent martingale measure.

We give a sketch of some elements of the derivation of the Black–Scholes
prices directly from the second fundamental theorem of asset pricing. Details
can be found in Shiryaev (1999, p. 739).

The Black–Scholes model assumes that the stock price follows the geometric
Brownian motion, as defined in (5.62). The stock price satisfies

dSt = 𝜇Stdt + 𝜎StdWt , (14.67)

and the bank account satisfies

dBt = rBtdt,

where 0 ≤ t ≤ T .12 Thus,

St = S0 exp
{(
𝜇 − 1

2
𝜎

2
)

t + 𝜎Wt

}
, Bt = B0ert

.

The Girsanov’s theorem was stated in (5.64). We apply Girsanov’s theorem with
the constant function as(𝜔, t) = (𝜇 − r)∕𝜎. Then,

W̃t = Wt −
𝜇 − r
𝜎

t, 0 ≤ t ≤ T , (14.68)

is a Brownian motion with respect to measure QT , defined by dQT = ZT dPT ,
where

ZT = exp
{
−𝜇 − r

𝜎
WT − 1

2

(
𝜇 − r
𝜎

)2
T
}
.

Measure QT is the unique martingale measure that is equivalent to PT ; see
Shiryaev (1999, p. 708). Thus, the price of the call option CT = (ST − C)+ is

C0 = e−rT EQT
CT .

We need to find the distribution of ST under QT . From (14.68) we obtain that

Law(𝜇T + 𝜎WT | QT ) = Law(rT + 𝜎W̃T | QT )
= Law(rT + 𝜎WT | PT ).

12 The Black–Scholes model assumes that the market is idealized in the following sense. (1) There
are no arbitrage opportunities, (2) selling of securities is possible at any time, (3) there are no trans-
action costs, (4) the market interest rate is constant, (5) there are no dividends during the life time
of the option, (6) security trading is continuous, and (7) the stock price follows the log-normal
Brownian motion.
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Thus,

Law(ST | QT ) = Law(S0e(𝜇−𝜎2∕2)T+𝜎WT | QT )
= Law(S0e(r−𝜎2∕2)T+𝜎WT | PT ).

14.3.3.2 The Black–Scholes Differential Equation
Black and Scholes (1973) and Merton (1973) derived the Black–Scholes
price by solving a differential equation. The Black–Scholes partial differential
equation is

1
2

Css𝜎
2S2

t + rCsSt − rCt + C
𝜃
= 0, (14.69)

where Ct = C(t, St) is the value of the option at time t, C
𝜃
= 𝜕C(t, St)∕𝜕dt is

the theta of the option, Cs = 𝜕C(t, St)∕𝜕dSt is the delta of the option, Css =
𝜕

2C(t, St)∕𝜕dS2
t is the gamma of the option, and 0 ≤ t ≤ T . When C(t, St) is the

value of a call option, then the solution is found under the boundary condition

C(T , ST ) = (ST − K)+.

The price of the option is C0 = C(0, S0). The differential equation is solved, for
example, in Shiryaev (1999, p. 746).

The Black–Scholes partial differential equation can be derived heuristically
in the following way. Itô’s lemma (5.61) applied to the function Ct = C(t, St)
gives

dCt =
(

C
𝜃
+ 𝜇StCs +

1
2
𝜎

2S2
t Css

)
dt + 𝜎StCs dWt . (14.70)

Assume that value Ct of the option is replicated by the portfolio

Vt = 𝜉tSt + 𝛽tBt ,

that is,

dVt = 𝜉t dSt + 𝛽t dBt.

The assumptions dSt = St𝜇dt + St𝜎dWt and dBt = rBtdt imply

dVt = (𝛽trBt + 𝜉t𝜇St) dt + 𝜉t𝜎St dWt

=
[
r(Vt − 𝜉tSt) + 𝜉t𝜇St

]
dt + 𝜉t𝜎St dWt. (14.71)

Equating (14.70) and (14.71) gives Ct − Vt = 0, that is,

0 =
[
C
𝜃
− r(Vt − 𝜉tSt) + 𝜇St(Cs − 𝜉t) +

1
2
𝜎

2S2
t Css

]
dt

+𝜎St(Cs − 𝜉t)dWt .

This means that we want a perfect replication of Ct . Choose 𝜉t = Cs, which is
called delta hedging. This makes dWt to disappear and leads to the differen-
tial equation (14.69). Delta hedging has removed all uncertainty, and we have
obtained a perfect hedge.
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14.3.3.3 Derivation of the Prices Using the Put–Call parity
We can derive the Black–Scholes prices for the calls and puts using the put–call
parity given in Section 14.1.2. The basic idea is that if we are willing to assume
that the prices are expectations with respect to a log-normal distribution,
then the put–call parity implies that the log-normal distribution should be the
risk-neutral log-normal distribution.

We assume that the distribution of the stock price ST is defined by (14.49).
Let us denote by Ct the price of the call option at time t. We assume that the
price of the call option is equal to

Ct = e−r(T−t)EtCT = e−r(T−t)Et(ST − K)+
and the value of the put option is equal to

Pt = e−r(T−t)EtPT = e−r(T−t)Et(K − ST )+.

Thus, using (14.50) and (14.53),

Ct − Pt = Ste(𝜇+𝜎
2∕2−r)(T−t) − e−r(T−t)K ,

because Φ(x) + Φ(−x) = 1 for all x ∈ R. The put–call parity (14.8) implies that
we have to take

𝜇 = r − 1
2
𝜎

2
. (14.72)

Inserting (14.72) to (14.50) and (14.53) leads to (14.58) and (14.59). This deriva-
tion was noted in Derman and Taleb (2005).

14.3.4 Examples of Pricing Using the Black–Scholes Model

We give some examples of Black–Scholes prices. The examples include pric-
ing functions of options on a forward, caplets, swaptions, options on a foreign
currency, and barrier options.

14.3.4.1 Options on a Forward
Let the underlying be a futures contract Ft with the maturity T ′. Consider a call
option with the expiration time T ≤ T ′. The payoff is (FT − K)+, where K > 0
is the strike price. The price of the call option is obtained by replacing St in the
Black–Scholes formula (14.58) by e−r(T−t)Ft . This gives the price

Ct(Ft,K ,T) = e−r(T−t)[FtΦ(z+) − KΦ(z−)], (14.73)

where

z± =
loge(Ft∕K) ± (T − t)𝜎2∕2

𝜎

√
T − t

.

The volatility 𝜎 is the volatility of the stock. This is called Black’s formula, and
it was introduced in Black (1976).
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Why have we replaced St with e−r(T−t)Ft? This is due to the fact that under the
risk-neutral measure the stock price has the distribution

dSt = rdt + 𝜎StdWt .

The pricing formula of the futures contract in (14.2) gives Ft = er(T−t)St . Thus,
the distribution of Ft under the risk-neutral measure is

dFt = 𝜎StdWt .

The distribution of FT is

FT ∼ Ft exp
{
−1

2
𝜎

2(T − t) + 𝜎
√

T − t Z
}
,

where Z ∼ N(0, 1). The price of the call option is

Ct(Ft,K ,T) = e−r(T−t)E(FT − K)+,

and this expectation is calculated similarly as in (14.51).
The formula (14.73) holds when the option is subject to the stock type settle-

ment. If the option is subject to the futures type settlement, then set r = 0 in
(14.73). The futures type settlement means that the gains and losses are realized
daily, whereas in the stock type settlement the gain or loss is realized at the time
of liquidation.

14.3.4.2 Caplets
Caplets are discussed in Section 18.3.1. A caplet is a call option on the Libor
rate L(T1,T2). The payoff of a caplet at time T1 is

CPLT1
= P ⋅ (L(T1,T2) − K)+(T2 − T1),

where P is the principal, and K > 0 is the strike. We assume that under the
risk-neutral measure

L(T1,T2) = f (t,T1,T2) exp
{
−1

2
𝜎

2(T1 − 1) + 𝜎
√

T1 − tZ
}
, (14.74)

where Z ∼ N(0, 1) and f (t,T1,T2) is the forward rate, defined in (18.14).
Note that at time T1 the forward Libor rate is equal to the spot Libor rate:
f (T1,T1,T2) = L(T1,T2). The Black’s formula for the price of the caplet is

Ct(K ,T1,T2)
= P

[
f (t,T1,T2)Φ(z+) − KΦ(z−)

]
Z(t,T2)(T2 − T1), (14.75)

where

z± =
log( f (t,T1,T2)∕K) ± 𝜎2(T1 − t)∕2

𝜎
√

T1 − t
.

The caplet price can be written as the expectation

Ct(K ,T1,T2) = Z(t,T2)E(CPLT1
),
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where the expectation is with respect to the risk-neutral distribution in
(14.74). The expectation is calculated similarly as in (14.51). The caplet price
Ct(K ,T1,T2) is obtained from the Black–Scholes price of a call option on a
stock when St is replaced by f (t,T1,T2)Z(t,T2) and Ke−r(T−t) is replaced by
KZ(t,T2).

Caps are defined in Section 18.3.2. Let T0 < · · · < Tm be the time points for
the caplets on the Libor rates L(Ti−1,Ti), where i = 1,… ,m. A cap is priced by

P
m∑

i=1
Ct(K ,Ti−1,Ti),

where Ct(K ,Ti−1,Ti) are the prices of the caplets.

14.3.4.3 Swaptions
Swaptions are discussed in Section 18.3.3. Let t be the current time, T0 be the
expiry time, and Tm be the maturity time of the swaption. The payoff of an
European call option on a swap is given in (18.27) as

SWPT0
= (SR(T0,T0,Tm) − K)+A(T0,T0,Tm),

where SR(t,T0,Tm) is the equilibrium swap rate, K is the strike,

A(t,T0,Tm) = P
m∑

i=1
(Ti − Ti−1)Z(t,Ti),

P is the principal, and Z(t,T) is a zero-coupon bond. We assume that under the
risk-neutral measure

SR(T0,T0,Tm) ∼ SR(t,T0,Tm) exp
{
−1

2
𝜎

2(T0 − t) + 𝜎
√

T0 − t Z
}
,

where Z ∼ N(0, 1). The Black’s formula for the price of the swaption is
Ct(K ,T0,Tm) = [SR(t,T0,Tm)Φ(z+) − KΦ(z−)] ⋅ A(t,T0,Tm),

where

z± =
log(SR(t,T0,Tm)∕K) ± 𝜎2(T0 − t)∕2

𝜎
√

T0 − t
.

The swaption price can be written as the expectation
Ct(K ,T0,Tm) = Z(t,T0)E(SWPT0

),
where the expectation is with respect to the risk-neutral distribution in
(14.74). The expectation is calculated similarly as in (14.51). The caplet price
Ct(K ,T0,Tm) is obtained from the Black–Scholes price of a call option on a
stock when St is replaced by SR(t,T0,Tm)A(t,T0,Tm) and Ke−r(T−t) is replaced
by KA(t,T0,Tm).

Note that the simultaneous log-normality for all caplets and all swaptions is
not consistent because a swap rate is a linear combination of forward rates and
cannot be log-normal if the underlying forward rates are.
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14.3.4.4 Options on a Foreign Currency
Let S be the price of a foreign currency in the domestic currency units. The
payoff of an European call option on a foreign currency is given by

CT = (ST − K)+,

where K is the strike, and T is the expiration time. According the Garman–
Kohlhagen model, under the risk-neutral measure,

ST ∼ St exp
{

rd − rf −
1
2
𝜎

2(T − t) + 𝜎
√

T − t Z
}
,

where Z ∼ N(0, 1). Then the price of the call option is

Ct(St ,K ,T) = e−rf (T−t)StΦ(z+) − e−rd(T−t)KΦ(z−),

where

z± =
log(St∕K) + (rd − rf ± 𝜎2∕2)(T − t)

𝜎

√
T − t

,

where rf is the risk-free rate in the foreign currency and rd is the risk-free rate
in the domestic currency. The put price is

Pt(St ,K ,T) = −erf (T−t)StΦ(−z+) + e−rd(T−t)KΦ(−z−).

The price of the call option can be written as

Ct(St ,K ,T) = e−rd(T−t)E(ST − K)+,

where the expectation is with respect to the risk-neutral measure. The expec-
tation is calculated similarly as in (14.51).

The call price Ct(St,K ,T) on the exchange rate is obtained from the
Black–Scholes price of a call option on a stock when St is replaced by the
exchange rate St and Ke−r(T−t) is replaced by Ke−(rd−rf )(T−t).

14.3.4.5 Down-and-Out Call
A down-and-out call on stock S has the payoff

CT =
{

0, when min0≤t≤T St ≤ H,
max{0, ST − K}, otherwise,

where K > 0 is the strike price and H > 0 is the barrier. We assume that the
stock price has a log-normal distribution

ST ∼ St exp
{

r − 1
2
𝜎

2(T − t) + 𝜎
√

T − t Z
}
,

under the risk-neutral measure, where Z ∼ N(0, 1). The price of the down-
and-out call is

Ct(St ,K ,T ,H) = Ct(St,K ,T) − Jt ,
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where Ct(St ,K ,T) is the Black–Scholes price of the vanilla call and

Jt = St

(
H
St

)2(r−𝜎2∕2)∕𝜎2+2

Φ
(
zb
+
)

−Ke−r(T−t)
(

H
St

)2(r−𝜎2∕2)∕𝜎2+2

Φ
(
zb
−
)
,

where

zb
± =

log(H2∕(StK)) + (r ± 𝜎2∕2)(T − t)

𝜎

√
T − t

.

14.4 Black–Scholes Hedging

The hedging coefficients of calls and puts are given in (14.61). The Black–
Scholes hedging coefficients are equal to the deltas of options. A delta is the
derivative of the price of the option with respect to the price of the underlying:
the call and put deltas are

Cs =
𝜕Ct(S)
𝜕S

, Ps =
𝜕Pt(S)
𝜕S

.

This is shown in Section 14.2.3; see (14.57).13 For the Black–Scholes pricing
functions the call delta and the put delta are shown in (14.62) and (14.63) to be
equal to

Cs = Φ(z+) (14.76)

and

Ps = −Φ(−z+). (14.77)

13 Let us explain informally the relation of an option delta to the hedging coefficient. We consider
the wealth of the writer of the option at time t + Δt, when the option is written at time t. The wealth
of the writer of the option is equal to the hedging error. We have

et+Δt = erΔtCt(St) + 𝜉t+Δt(St+Δt − erΔtSt) − Ct+Δt(St+Δt),

where 𝜉t+Δt is the number of stocks that are bought at time t to hedge the position until t + Δt. The
amount 𝜉t+ΔtSt is borrowed with the risk-free rate at time t. If the hedging gives a position without
risk, we should have et+Δt = 0, which gives

𝜉t+Δt =
Ct+Δt(St+Δt) − erΔtCt(St)

St+Δt − erΔtSt
≈

Ct+Δt(St+Δt) − Ct(St)
St+Δt − St

≈ C′
t (St),

when Δt → 0. This gives the instantaneous optimal hedging coefficient as

𝜉t =
𝜕Ct(S)
𝜕S

|||||S=St

.
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In this section, our purpose is to illustrate how hedging can be used
to approximately replicate options, and to study how hedging frequency,
expected stock returns, and the volatility of stock returns affect the replication.
The study is made using Black–Scholes hedging, since Black–Scholes hedging
provides a benchmark for comparing various hedging methods.

We take the purpose of hedging to be to make the probability distribution
of the hedging error of the writer of the option as concentrated around zero
as possible. We consider S&P 500 options and estimate the distribution of the
hedging error of the writer using the S&P 500 daily data of Section 2.4.1.

Section 14.4.1 reviews historical simulation for the estimation of the distri-
bution of the hedging error. Section 14.4.2 studies the effect of hedging fre-
quency to the distribution of the terminal wealth. Section 14.4.3 studies the
effect of the strike price, Section 14.4.4 studies the effect of the mean return,
and Section 14.4.5 studies the effect of the return volatility.

14.4.1 Hedging Errors: Nonsequential Volatility Estimation

We have discussed the estimation of the hedging error using historical simu-
lation in Section 13.3.1. Let us write the formulas for hedging error again, this
time taking into account the varying hedging frequencies.

14.4.1.1 Hedging Errors
The hedging error eT of the writer of the option is obtained from (13.10) by the
formula

eT = Ct + GT (𝜉) − CT , (14.78)

where

GT (𝜉) =
T∑

k=t+1
𝜉k(Sk − Sk−1),

when we take the risk-free rate r = 0. Here Ct is the price of the option, CT is
the terminal value of the option, 𝜉k are the hedging coefficients, and Sk are the
stock prices. In (14.78) the current time is denoted by t, the time to expiration
is T − t days, and hedging is done daily. The hedging can be done with a lesser
frequency. When hedging is done n times during the period [t,T], then

GT (𝜉) =
n∑

k=1
𝜉tk,n

(Stk,n
− Stk−1,n

), (14.79)

where

tk,n = t + kΔt, Δt = T − t
n

.
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14.4.1.2 Historical Simulation
Let us denote the time series of observed historical daily prices by S0,… , SN .
Let us denote the time to the expiration by

U = T − t.
(The interpretation is that the last observation SN is made at time t, and we
are interested to write an option whose expiration time is T > t.) We construct
N − U sequences of prices:

i = (Si,i,… , Si,i+U), i = 1,… ,N − U,
where

Si,i+j = 100 ⋅ Si+j∕Si,

for j = 0,… ,U . Each sequence has length U + 1 and the initial prices are always
Si,i = 100. We estimate the distribution of the hedging error eT from the obser-
vations

e1
T ,… , eN−U

T ,

where ei
T is computed from the prices i. For the estimation of the density we

use both the histogram estimator and the kernel density estimator, defined in
Section 3.2.2.

We consider hedging of call options. The Black–Scholes prices are given
in (14.58) and the hedging coefficients are given in (14.62). The volatility 𝜎 is
estimated using the annualized sample standard deviation, computed from
the complete data. We study the effect of volatility estimation to hedging in
Section 14.5, where sequential (out-of-sample) volatility estimation is studied.
In this section, we use in-sample volatility estimation.

More precisely, the ith hedging error is

ei
T = C0 +

i+U∑
k=i+1

𝜉i,k(Si,k − Si,k−1) − Ci,U , (14.80)

where C0 is the Black–Scholes price from (14.58), computed with the stock
price S = 100, time to expiration U , and volatility 𝜎 = 𝜎̂. Here 𝜎̂ is the annu-
alized sample standard deviation computed from return data

R1,… ,RN ,

where

Ri =
Si

Si−1
,

i = 1,… ,N . Thus, the volatility is estimated in-sample. The hedging coeffi-
cient 𝜉i,k is the Black–Scholes delta from (14.62), computed with the stock price
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S = Si,k−1, time to expiration U + i − k + 1, and volatility 𝜎 = 𝜎̂. The terminal
value is Ci,U = (Si,i+U − K)+.

14.4.2 Hedging Frequency

In this section, we illustrate how a change in the hedging frequency changes
the distribution of the hedging error. We study hedging of S&P 500 call options,
using daily data of Section 2.4.1. The time to expiration is 20 days. The volatility
in the Black–Scholes formula is the non-sequential annualized sample standard
deviation.

14.4.2.1 Moneyness S∕K = 1
Figure 14.13 shows time series of hedging errors. Panel (a) shows the case when
there is no hedging, so that ei

T = C0 − Ci,U . Panel (b) shows the case when the
hedging is done daily. Moneyness is S∕K = 1.

Figure 14.14 shows tails plots of the hedging errors. Panel (a) shows the left
tail plots and panel (b) shows the right tail plots. We show cases of no hedging
(red), hedging once (black), hedging twice (blue), and hedging 20 times (green).

Figure 14.15 shows (a) histograms of hedging errors and (b) kernel density
estimates of the distribution of hedging errors. Panel (a) shows cases of no
hedging (red) and daily hedging (green). Panel (b) shows additionally the cases
of hedging once (black) and hedging twice (blue). Note that the red kernel den-
sity estimate is very inaccurate, because the underlying distribution is such that
a large part of the probability mass is concentrated at one point.

14.4.2.2 Moneyness S∕K = 0.95
Figure 14.16 shows tails plots of the hedging errors. Panel (a) shows the left tail
plots and panel (b) shows the right tail plots. We show cases of no hedging (red),
hedging once (black), hedging twice (blue), and hedging 20 times (green).
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Figure 14.13 Hedging frequency: Time series of hedging errors. (a) There is no hedging; (b)
hedging is done daily.



14.4 Black–Scholes Hedging 509

Hedging error
(a)

Hedging error
(b)

−15 −10 −5 0

1
2

5
10

20
50

10
0

0.5 1.0 1.5
1

2
5

10
20

50
10

0

Figure 14.14 Hedging frequency: Tail plots. (a) Left tail plots and (b) right tail plots. We show
cases of no hedging (red), hedging once (black), hedging twice (blue), and hedging 20 times
(green).
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Figure 14.15 Hedging frequency: Density estimates of hedging errors. (a) Histograms; (b) kernel
density estimates. Panel (a) shows cases of no hedging (red) and hedging 20 times (green).
Panel (b) shows additionally the cases of hedging once (black) and hedging twice (blue).

Figure 14.17 shows (a) histograms of hedging errors and (b) kernel den-
sity estimates of the distribution of hedging errors when the moneyness is
S∕K = 0.95. Panel (a) shows cases of no hedging (red) and daily hedging
(green). Panel (b) shows additionally the cases of hedging once (black) and
hedging twice (blue). The red kernel density estimate is very inaccurate,
because the underlying distribution is such that a large part of the probability
mass is concentrated at one point.
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Figure 14.16 Hedging frequency: Tail plots with moneyness S∕K = 0.95. (a) Left tail plots;
(b) right tail plots. We show cases of no hedging (red), hedging once (black), hedging twice
(blue), and hedging 20 times (green).
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Figure 14.17 Hedging frequency: Density estimates of hedging errors with moneyness
S∕K = 0.95. (a) Histograms; (b) kernel density estimates. Panel (a) shows cases of no hedging
(red) and hedging 20 times (green). Panel (b) shows additionally the cases of hedging once
(black) and hedging twice (blue).

14.4.2.3 Expected Utility
Figure 14.18 shows the estimated expected utility as a function of the hedging
frequency. In panel (a) the moneyness is S∕K = 1. In panel (b) S∕K = 0.95. We
apply the exponential utility function U(x) = 1 − e𝛼x, where the risk-aversion
parameter takes values 𝛼 = 0.001 (black), 𝛼 = 0.005 (red), and 𝛼 = 0.01 (blue).
The expected utilities are estimated using the sample averages. Increasing
hedging frequency clearly increases the expected utility. We can see that when
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Figure 14.18 Expected utility as
a function of hedging frequency.
(a) The moneyness is S∕K = 1;
(b) S∕K = 0.95. The risk aversion
parameter takes values 𝛼 = 0.001
(black), 𝛼 = 0.005 (red), and
𝛼 = 0.01 (blue). 1
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the risk aversion is small, then the increase in the expected utility as a function
of hedging frequency is much smaller than the increase when the risk aversion
is large.

14.4.3 Hedging and Strike Price

In this section, we illustrate how a change in the strike price changes the distri-
bution of the hedging error. We study hedging of S&P 500 call options, using
daily data of Section 2.4.1. The time to expiration is 20 days and hedging is done
daily. The volatility in the Black–Scholes formula is the nonsequential annual-
ized sample standard deviation.
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Figure 14.19 Several strike prices. (a) Tail plots; (b) kernel density estimates. The strike prices
are K = 100 (red), K = 105 (black), and K = 110 (blue), when the stock price is S = 100.

Figure 14.19(a) shows tail plots of hedging errors and panel (b) shows kernel
density estimates of the distribution of the hedging error. The strikes prices
of calls are K = 100 (red), K = 105 (black), and K = 110 (blue), when the
stock price is S = 100. For in-the-money options the distributions have a
larger spread than for out-of-the-money options. Also, the distributions for
at-the-money options have a center that is located to the right from the centers
for out-of-the-money options.

14.4.4 Hedging and Expected Return

We study the effect of the mean return to the distribution of the hedging error.
This is done by manipulating the S&P 500 data. We change observations so that
the new net returns are

r̃i = ri − r̄ + 𝜇,

where ri = Si∕Si−1 − 1 are the observed net returns, r̄ is the sample mean of ri,
and 𝜇 is a value for the expected return that we choose. The new prices are
obtained from the net returns by

S̃i =
i∏

j=1
(r̃j + 1).

For the S&P 500 returns the annualized mean return is about 8%. We try
the annualized expected returns 50% and −8%. Thus, 𝜇 = 0.5∕250 and
𝜇 = −0.08∕250.

Figure 14.20 shows histogram estimates of the distribution of the hedging
error when the expected annualized return is 50%. In panel (a) there is no
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Figure 14.20 No hedging versus daily hedging with a large positive drift. (a) No hedging: A
histogram from realizations of C0 − CT . (b) Daily hedging: A histogram from realizations of
C0 + GT (𝜉) − CT .

hedging and in panel (b) there is daily hedging. That is, panel (a) shows a
histogram made from realizations of the random variable C0 − CT , where
CT = (ST − K)+, and C0 is the Black–Scholes price. Panel (b) shows a histogram
made from realizations of the random variable C0 + GT (𝜉) − CT . The time to
the expiration of the call option is T = 61 days, and the strike price is K = 105
with the initial stock price St = 100. Since 𝜇 is large the call option gives a profit
to its owner with a large probability, as can be seen from panel (a). However,
large 𝜇 does not change much the distribution of the hedging error when
hedging is done daily, as can be seen from panel (b). In fact, the corresponding
distribution of the hedging error when the expected return is moderate is
shown in Figure 14.15.

Figure 14.21 shows the setting of Figure 14.20 when the annualized expected
return is −8%, instead of 50%. Panel (a) shows the distribution of the hedging
error of the writer when no hedging is done and panel (b) shows the hedging
error when delta hedging is done daily. Since the expected return is negative,
the writer of the call option gets a profit with a large probability, but this does
not affect much the hedging error when the hedging is done daily, as can be
seen from panel (b).

(1) When the drift is larger than the risk-free rate, then the Black–Scholes
price C0 is smaller than the expectation e−r(T−t)E(ST − K)+. The possibility of
hedging makes C0 smaller than e−r(T−t)E(ST − K)+. The expectation E(ST − K)+
increases when the drift increases but the possibility of hedging makes the price
independent of the drift. (2) When the drift is equal to the risk-free rate, then
e−r(T−t)E(ST − K)+ is close to C0, but hedging reduces the risk of the writer of the
option, because it changes the wealth distribution of the writer of the option.
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Figure 14.21 No hedging versus daily hedging with a negative drift. (a) No hedging: A
histogram from realizations of C0 − CT . (b) Daily hedging: A histogram from realizations of
C0 + GT (𝜉) − CT .

(3) When the drift is negative, then e−r(T−t)E(ST − K)+ is smaller than C0, and
hedging reduces the expected profit of the writer of the option. However, the
hedging reduces also the risk of the writer of the option, and thus hedging is
reasonable even in the case of negative drift.

14.4.5 Hedging and Volatility

We study the effect of the return volatility to the distribution of the hedging
error. We manipulate the S&P 500 data by changing observations so that the
new net returns are

r̃i =
𝜎

𝜎̂
(ri − r̄) + r̄,

where ri = Si∕Si−1 − 1 are the observed net returns, 𝜎̂ is the sample standard
deviation of ri, r̄ is the sample mean of ri, and 𝜎 is a value of our choice for the
volatility. The new prices are obtained from the net returns by

S̃i =
i∏

j=1
(r̃j + 1).

For the S&P 500 returns the annualized sample standard deviation is about 15%.
We try the annualized standard deviation 50%. Thus, 𝜎 = 0.5∕

√
250.

Figure 14.22 shows histogram estimates of the distribution of the hedging
error when the annualized volatility is 50%. In panel (a) there is no hedging, and
in panel (b) there is daily hedging. That is, panel (a) shows a histogram made
from realizations of the random variable C0 − CT , where CT = (ST − K)+,
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Figure 14.22 Large volatility. (a) No hedging: A histogram of realizations of C0 − CT . (b) Daily
hedging: A histogram of realizations of C0 + GT (𝜉) − CT .

and C0 is the Black–Scholes price. Panel (b) shows a histogram made from
realizations of the random variable C0 + GT (𝜉) − CT . The time to the expiration
is T = 61 days, and the strike price is K = 105 with the initial stock price
St = 100. We see that the larger volatility makes the dispersion of the
probability distribution of the hedging error larger.

14.5 Black–Scholes Hedging and Volatility Estimation

We continue to study the distribution of the hedging error eT , as in Section 14.4.
In this section, our aim is to study how the volatility estimation affects the
distribution of the hedging error. The Black–Scholes prices and the hedging
coefficients depend on the annualized volatility 𝜎. We compare the perfor-
mance of GARCH(1, 1) and exponentially weighted moving averages for the
estimation of 𝜎. The performance of Black–Scholes hedging will be used as a
benchmark.

14.5.1 Hedging Errors: Sequential Volatility Estimation

We have discussed in Section 13.3.1 the estimation of the distribution of the
hedging error using historical simulation. We write again the formulas for the
hedging error and historical simulation, adapting to the current setting.

14.5.1.1 Hedging Errors
The hedging error eT of the writer of the option is obtained from (13.10) as

eT = C0 + GT (𝜉) − CT ,
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where

GT (𝜉) =
T∑

k=1
𝜉k(Sk − Sk−1).

Here the risk-free rate is r = 0, C0 is the price of the option, CT is the terminal
value of the option, 𝜉k are the hedging coefficients, Sk are the stock prices, the
current time is denoted by 0, the time to expiration is T days, and hedging is
done daily.

14.5.1.2 Historical Simulation
We denote the time series of observed historical daily prices by S0,… , SN . We
construct N − T sequences of prices:

i = (Si,i,… , Si,i+T ), i = 1,… ,N − T ,

where

Si,i+j = 100 ⋅ Si+j∕Si,

for j = 0,… ,T . Each sequence has length T + 1 and the initial price in each
sequence is Si,i = 100. We estimate the distribution of the hedging error eT from
the observations

e1
T ,… , eN−T

T ,

where ei
T is computed from the prices i.

More precisely, the ith hedging error is

ei
T = Ci,0 +

T∑
k=i+1

𝜉i,k(Si,k − Si,k−1) − Ci,T , (14.81)

where Ci,0 is the Black–Scholes price from (14.58), computed with the stock
price S = 100, time to expiration T , and volatility 𝜎 = 𝜎̂i. Here 𝜎̂i is the annual-
ized volatility estimate computed using return data

R1,… ,Ri,

where

Ri =
Si

Si−1
, i = 1,… ,N − T .

Thus, the volatility estimation is done sequentially (out-of-sample). The hedg-
ing coefficient 𝜉i,k is the Black–Scholes delta from (14.62), computed with the
stock price S = Si,k−1, time to expiration T − k, and volatility 𝜎 = 𝜎̂i+k−1. The
terminal value is Ci,T = (Si,T − K)+.

For the estimation of the density we use both the histogram estimator and
the kernel density estimator, defined in Section 3.2.2.
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14.5.2 Distribution of Hedging Errors

In the following examples the time to expiration is T = 20 trading days. We
start pricing and hedging after 4 years of data has been collected. The risk-free
rate is equal to zero. We consider S&P 500 call options and use the daily S&P
500 data, described in Section 2.4.1.

As a summary of the results, we can note that the GARCH(1, 1) and the expo-
nential moving average (with a suitable smoothing parameter) improve the dis-
tribution of the hedging error from the point of view of the writer of the option,
when compared to the sequential sample standard deviation. GARCH(1, 1) and
the exponential moving average lead to a distribution whose left tail is lighter:
with these volatility estimators the losses of the writer of the option are smaller.
On the other hand, GARCH(1, 1) and the exponential moving average lead to
larger positive hedging errors. The positive hedging errors are gains for the
writer of the option.

Figure 14.23 shows (a) the means of negative hedging errors and (b) the
means of positive hedging errors as a function of the moneyness S∕K . The
arithmetic means of positive and negative hedging errors are defined as

ē+ = mean
(
max

{
ei

T , 0
})
, ē− = −mean

(
min

{
ei

T , 0
})
,

where the hedging errors ei
T are defined in (14.81). The hedging is done with

sequentially computed sample standard deviation (red with “s”), GARCH(1, 1)
volatility (blue with “g”), the exponential moving average with h = 1 (yellow
with “1”), and with smoothing parameter h = 40 (green with “2”). We see that
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Figure 14.23 Means of hedging errors. The figure shows the means of (a) negative hedging
errors as a function of moneyness and (b) positive hedging errors. The volatility is estimated
by the sequentially computed sample standard deviation (red with “s”), GARCH(1,1) (blue with
“g”), the exponential moving average with h = 1 (yellow with “1”), and with h = 40 (green with
“2”).
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Figure 14.24 Distribution of hedging errors. The figure shows (a) tail plots of hedging errors
and (b) kernel density estimates of the distribution of the hedging error. The volatility is esti-
mated by the sequentially computed sample standard deviation (red), GARCH(1, 1) (blue),
and the exponential moving average with h = 40 (green).
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Figure 14.25 Distribution of hedging errors: Moving averages. The figure shows (a) tail plots
of hedging errors and (b) kernel density estimates of the distribution of the hedging error.
The volatility is estimated by the sequentially computed standard deviation (red), and by
the exponentially weighted moving average with h = 1000 (purple), h = 100 (green), h = 40
(blue), and h = 5 (black).
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the sample standard deviation is the best for the positive hedging errors and
the worst for the negative hedging errors. The performance of GARCH(1, 1)
and the exponentially weighted moving average with h = 40 are close to each
other. The exponentially weighted moving average with h = 1 has the perfor-
mance between the sample standard deviation and the GARCH(1, 1). We can
see that hedging errors are larger for the at-the-money options than for the
out-of-the-money options.

Figure 14.24 shows (a) tail plots of hedging errors and (b) kernel density esti-
mates of the distribution of the hedging error. The moneyness of call options
is S∕K = 1. The volatility is estimated by the sequentially computed standard
deviation (red), by GARCH(1, 1) (blue), and by the exponentially weighted
moving average with h = 40 (green). Tail plots are defined in Section 3.2.1 and
the kernel density estimator is defined in Section 3.2.2. We apply the standard
normal kernel function and the smoothing parameter is chosen by the normal
reference rule.

Figure 14.25 shows (a) tail plots of hedging errors and (b) kernel density
estimates of the hedging error. The volatility is estimated by the sequentially
computed standard deviation (red), and by the exponentially weighted mov-
ing average with h = 1000 (purple), h = 100 (green), h = 40 (blue), and h = 5
(black).
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15

Pricing in Incomplete Models

We give an overview of various approaches to price derivatives in incomplete
markets. In an incomplete market, there exists derivatives which cannot
be exactly replicated. The second fundamental theorem of asset pricing
(Theorem 13.3) states that if the market is arbitrage-free and complete, then
there is only one equivalent martingale measure, and thus there is only one
arbitrage-free price. When the arbitrage-free market is not complete, then
there are many equivalent martingale measures, and thus there are many
arbitrage-free prices.

In this chapter, we describe some approaches for choosing the equivalent
martingale measure from a set of available equivalent martingale measures,
in the case of an incomplete market. Chapter 16 is devoted to the study of
quadratic hedging and pricing. In this chapter, we give only a short description
of quadratic pricing, and concentrate to describe other methods.

Utility maximization provides a general method for the construction of an
equivalent martingale measure. We show that the Esscher measure, which was
used to prove the first fundamental theorem of asset pricing (Theorem 13.1),
is related to the maximization of the expected utility, when the utility function
is the exponential utility function. The concept of marginal rate of substitution
provides a heuristic way to connect the utility maximization to the pricing of
options. Minimizing the relative entropy between a martingale measure and
the physical measure provides an equally natural way to construct an equivalent
martingale measure. Again, we can show that minimizing the relative entropy
is related to the maximizing the expected utility with the exponential utility
function. It is of interest to compare the Esscher prices to the Black–Scholes
prices: we see that the Esscher prices are close to the Black–Scholes prices for
at-the-money calls, whereas for out-of-the-money calls the Esscher prices are
lower.

We describe formulas for constructing an equivalent martingale measure
by an absolutely continuous change of measure. These formulas are given for
conditionally Gaussian returns, and for conditionally Gaussian logarithmic

Nonparametric Finance, First Edition. Jussi Klemelä.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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returns. An absolutely continuous change of measure shifts the market
measure so that it becomes risk-neutral.

GARCH models provide good volatility predictions, and it is natural to ask
whether GARCH models could be suitable for pricing options. We can apply
the absolutely continuous change of measure to obtain an equivalent martin-
gale measure in the GARCH market model. The standard GARCH(1, 1) model
can be modified so that we obtain a model where the prices can be expressed
almost in a closed form. We still need a numerical integration to compute the
prices, but Monte Carlo simulation of price trajectories is not needed. The mod-
ified GARCH(1, 1) model was presented in Heston and Nandi (2000).

It is on interest to construct a nonparametric pricing method, and compare its
properties to other methods. We construct a method which combines historical
simulation, the Esscher measure, and conditioning on the current volatility.

An equivalent martingale measure can be deduced from the market prices
of the options. This martingale measure could be called the implied martingale
measure, because there is an analogy to the implied volatility. When the implied
martingale measure is used, we have to assume that the market prices of the
options are rational. This requires that we use option prices of liquid markets
to estimate the implied martingale measure. The implied martingale measure
which is deduced from the prices of liquid options can be used to price illiquid
options.

Section 15.1 describes quadratic hedging and pricing. Section 15.2 describes
pricing with the help of utility maximization. Section 15.3 considers pricing
with the help of absolutely continuous changes of measures (Girsanov’s
theorem). Section 15.4 describes the use of a GARCH model in option
pricing. Section 15.5 describes a method of nonparametric pricing which uses
historical simulation. Section 15.6 discusses pricing with the help of estimating
the risk-neutral density. Section 15.7 mentions quantile hedging.

Pricing in incomplete markets is studied in Duffie and Skiadas (1994), El
Karoui and Quenez (1995), Karatzas (1996), and Gourioux et al. (1998). Bing-
ham and Kiesel (2004, Chapter 7) discuss pricing in incomplete models, includ-
ing mean–variance hedging and models driven by Lévy processes. Pricing of
derivatives in the context of general econometric theory is presented in Magill
and Quinzii (1996). Further references include Karatzas and Kou (1996).

15.1 Quadratic Hedging and Pricing

Quadratic hedging and pricing is discussed in detail in Chapter 16 (see also
Föllmer and Schied, 2002, Definition 10.36, p. 393). At this point, we give a
brief summary of the method.

Let us explain the idea of quadratic hedging using the case with one risky
asset (d = 1) and two periods (T = 2). The initial wealth is W0 and the wealth
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obtained by trading with a bond and a stock is

Wt = 𝛽tBt + 𝜉tSt , t = 1, 2,

where Bt is the price of the bond, St is the price of the stock, 𝛽t is the number
of bonds in the portfolio, and 𝜉t is the number of stocks in the portfolio. Our
aim is to replicate the terminal value C2 of the contingent claim. We measure
the quality of the approximation by the quadratic hedging error

E(C2 − W2)2
.

The minimization is done over self-financing trading strategies and over the
initial wealth W0. The self-financing means that (𝛽1, 𝜉1) and (𝛽2, 𝜉2) satisfy

𝛽1B0 + 𝜉1S0 = W0, 𝛽2B1 + 𝜉2S1 = W1.

The self-financing restriction connects the initial wealth W0 to the final wealth
W2. The quadratic price is the initial wealth W0 that minimizes the quadratic
hedging error.

The minimization is done easier when we use the value process, instead of
the wealth process. Our final formulation for the general case d ≥ 1 and T ≥ 1
will be the following. In quadratic hedging, the quadratic hedging error

E(HT − V0 − GT (𝜉))2

is minimized among strategies 𝜉 = (𝜉t)t=1,…,T
1 and among the initial investment

V0 ∈ R, where HT = CT∕BT is the discounted contingent claim. The terminal
value of the gains process is defined by

GT (𝜉) =
T∑

t=1
𝜉t ⋅ (Xt − Xt−1),

where Xt = St∕Bt is the discounted price vector.

15.2 Utility Maximization

It turns out that an equivalent martingale measure can be found by looking at
the portfolios which maximize the expected utility. Section 15.2.1 shows that
the Esscher martingale measure is related to the maximization of the expected
utility with the exponential utility function. Section 15.2.2 considers other util-
ity functions. Section 15.2.3 shows that the Esscher measure is the equiva-
lent martingale measure which minimizes the relative entropy with respect

1 The minimizing is done over 𝜉 = (𝜉t)t=1,…,T ∈  , where

 = {𝜉 ∶ 𝜉 is predictable and Gt(𝜉) ∈ 
2(P) for all t},

where 2(P) is the set of square integrable random variables.



524 15 Pricing in Incomplete Models

to the physical measure. Section 15.2.4 computes examples of Esscher prices.
Section 15.2.5 discusses the heuristics of the marginal rate of substitution.

The use of Esscher transform and more general methods of utility maximiza-
tion has to be combined with the estimation of the underlying distribution of
the stock price process. This issue has been addressed in Bühlmann et al. (1996),
Siu et al. (2004), Christoffersen et al. (2006), and Chorro et al. (2012), where
parametric modeling was used. We address the issue in Section 15.5, where a
nonparametric estimation is applied (see also Section 15.2.4).

15.2.1 The Exponential Utility

The Esscher transformation was applied in the proof of Theorem 13.1 (the first
fundamental theorem of asset pricing) to construct an equivalent martingale
measure in an arbitrage-free market. Let us recall the definition of the Esscher
measure for the case of one risky asset. Let Xt = St∕Bt be the discounted stock
price, where t = 0,… ,T . Let

ΔXt = Xt − Xt−1, t = 1,… ,T .

Let

𝜙t(a, 𝜔) = EP
(
eaΔXt |t−1

)
(𝜔),

where a ∈ R. Let

a∗
t = a∗

t (𝜔) (15.1)

be the unique finite minimizer of 𝜙t(a, 𝜔) over a ∈ R. Let Z0 = 1 and

Zt(𝜔) =
t∏

i=1
zi(𝜔), zt(𝜔) =

exp
{

a∗
t (𝜔)ΔXt(𝜔)

}
EP

(
exp

{
a∗

t ΔXt
} |t−1

)
(𝜔)

for t = 1,… ,T . We define the probability measure

Q(d𝜔) = ZT (𝜔)P(d𝜔). (15.2)

Now Q ≈ P, EQ|ΔXt| <∞, and EQ(ΔXt |t−1) = 0 for t = 1,… ,T . Hence
ΔX1,… ,ΔXT is a martingale difference and X = (Xt)t=0,…,T is a martingale
with respect to Q.

The Esscher martingale measure is related to the maximization of the
expected utility with the exponential utility function. The exponential utility
function is defined as

U(x) = 1 − e−𝛼x
, x ∈ R,

where 𝛼 > 0 is the parameter of risk aversion. We want to maximize

EPU(VT )
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over self-financing trading strategies 𝜉 = (𝜉1,… , 𝜉T ), where

VT = V0 + GT , GT =
T∑

t=1
𝜉tΔXt .

The maximization is equivalent to the minimization of

E exp{−𝛼GT}.

We can write

E exp{−𝛼GT}
= E exp{−𝛼𝜉1ΔX1} × E1 exp{−𝛼𝜉2ΔX2} × · · · × ET−1 exp{−𝛼𝜉TΔXT},

where Et = EP( ⋅ |t). Minimization of

Et−1 exp{−𝛼𝜉tΔXt}

over t−1-measurable 𝜉t is equivalent to the minimization of

𝜙t(a) = Et−1 exp{−aΔXt}

over a ∈ R. Thus, we arrive at the minimizer a∗
t in (15.1), and we can define an

equivalent martingale measure (15.2) with the help of these minimizers.

15.2.2 Other Utility Functions

The construction of the Esscher martingale measure can be generalized to cover
other utility functions. For example, consider the one period model with d risky
assets and let ΔX = (ΔX1

,… ,ΔXd) be the vector of discounted net gains:

ΔXi =
Si

1

1 + r
− Si

0, i = 1,… , d,

where S1
0,… , Sd

0 are the prices of the risky assets at time t = 0. Föllmer and
Schied (2002, Corollary 3.10) states that if the market is arbitrage-free, and the
utility function U and a maximizer 𝜉∗ of EU(𝜉 ⋅ ΔX) satisfy certain assump-
tions,2 then

dQ
dP

= U ′(𝜉∗ ⋅ ΔX)
EU ′(𝜉∗ ⋅ ΔX)

(15.3)

defines an equivalent martingale measure Q.
The proof is based on the fact that a martingale measure has to satisfy

EQΔX = 0, and this follows for the measure defined in (15.3) because the
maximizer satisfies the first-order condition E[U ′(𝜉∗ ⋅ ΔX)ΔX] = 0. Note

2 It is assumed that U ∶D → R is a continuously differentiable utility function. Let (D) = {𝜉 ∈
Rd ∶P(𝜉 ⋅ ΔX ∈ D) = 1}. It is assumed that EU(𝜉 ⋅ ΔX) <∞ for all 𝜉 ∈ (D). Let 𝜉∗ be a maximizer
of EU(𝜉 ⋅ ΔX). It is assumed that either (1) D = R and U is bounded from above, or (2) D = [a,∞)
for some a < 0, and 𝜉∗ is an interior point of (D).
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that the existence of a maximizer is implied by Föllmer and Schied (2002,
Theorem 3.3).

The Esscher density
dQ
dP

= ea∗⋅ΔX

Eea∗⋅ΔX (15.4)

is a special case of (15.3). Indeed, when the utility function is the exponential
utility function U(x) = 1 − e−𝛼x, where x ∈ R and 𝛼 > 0 is the risk aversion, then
(15.3) gives the density

dQ
dP

= e−𝛼𝜉∗⋅ΔX

Ee−𝛼𝜉∗⋅ΔX .

Portfolio 𝜉∗ maximizes the expected utility 1 − Ee−𝛼𝜉⋅ΔX if and only if a∗ = −𝛼𝜉∗
minimizes the moment generating function Eea⋅ΔX . Thus, we obtain the density
in (15.4), and the martingale measure Q is independent of the risk aversion 𝛼.

Note that we have maximized EU(𝜉 ⋅ ΔX) over 𝜉, which is not the same as
maximizing the expected utility of the wealth. However, in the one-period case
the wealth is written in (9.9) as

W1 = (1 + r)(W0 + 𝜉 ⋅ ΔX).

Let u be a strictly increasing, strictly concave, and continuous utility function.
We want to find 𝜉 which maximizes Eu(W1) over all 𝜉 ∈ Rd such that W1 is
P-almost surely in the domain of u. Define

U(x) = u((1 + r)(W0 + x)).

The original utility maximization is equivalent to the maximization of

EU(𝜉 ⋅ ΔX),

among all 𝜉 ∈ Rd such that 𝜉 ⋅ ΔX ∈ D, where D is the domain of U .

15.2.3 Relative Entropy

The Esscher martingale measure was shown to be related to the maximization
of the expected utility with the exponential utility function. We can also show
that the Esscher measure can be obtained by minimizing the Kullback–Leibler
distance to the physical market measure.

The closeness of probability distributions can be measured by the relative
entropy (the Kullback–Leibler distance). The relative entropy of a probability
measure Q with respect to a probability measure P is defined as

H(Q |P) = E
(

dQ
dP

log dQ
dP

)
,

when P dominates Q. When P does not dominate Q, then we define H(Q |P) =
∞.
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Föllmer and Schied (2002, Corollary 3.25) states the following result for the
one-period model with d risky assets: When the market model is arbitrage-free,
then there exists a unique equivalent martingale measure Q ∈  , which mini-
mizes the relative entropy H(P′ |P) over all P′ ∈  , where  is the set of equiva-
lent martingale measures. Furthermore, the density of Q is the Esscher density

dQ
dP

= ea∗⋅ΔX

Eea∗⋅ΔX ,

where a∗ is the minimizer of the moment generating function Eea⋅ΔX , and
ΔX is the vector of discounted net gains: ΔX = S1∕(1 + r) − S0, where
S1 = (S1

1,… , Sd
1 ) is the vector of prices at time t = 1, and S0 = (S1

0,… , Sd
0 ) is the

vector of prices at time t = 0.

15.2.4 Examples of Esscher Prices

We apply the data of S&P 500 daily prices, described in Section 2.4.1. We esti-
mate the Esscher call prices when the time to expiration is T = 20 trading days.
The estimation is done for the T-period model. We apply nonsequential esti-
mation: the Esscher measure is estimated using the complete time series, and
then the prices are estimated using the complete time series together with the
estimated Esscher measure. We take the risk-free rate r = 0.

We denote the observed historical prices by S0,… , SN . We construct M =
N − T sequences of prices:

i = (Si,0,… , Si,T ), i = 1,… ,M,

where

Si,j = 100
Si+j

Si
, j = 0,… ,T .

Each sequence has length T + 1, and the initial prices are Si,0 = 100. We apply
nonoverlapping sequences, and restrict ourselves to the values i = (l − 1)T + 1,
l = 1,… , [N∕T].

Let us compute differences
Yi,k = Si,k − Si,k−1 (15.5)

for i = 1,… ,M and k = 1,… ,T . These differences are a sample of identi-
cally distributed observations of price increments St − St−1. Note that price
increments are not a stationary time series when the time period is long; see
Figure 5.2(a). However, in our construction we have made M sequences of
prices, each price sequence starts at 100, and thus the price differences make
an approximately stationary sequence; see Figure 5.2(b) and (c).

Let us assume that the price increments are independent. Let 𝜙̂(a) be the
sample average of eaYi,k . Let a∗ be the minimizer of 𝜙̂(a) over a ∈ R. Let

z(y) = ea∗y

𝜙̂(a∗)
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and

ẐT (y1,… , yT ) =
T∏

i=1
z(yi).

The density of the martingale measure Q with respect to underlying physical
measure P of the price increments (ΔS1,… ,ΔST ) is estimated by

Q(dy)
P(dy)

≈ ẐT (y1,… , yT ), (y1,… , yT ) ∈ RT
.

Let CT be the payoff of a contingent claim. The price implied by the measure
Q is

C0 = EQCT ≈ E(CT ẐT ). (15.6)

We have constructed nonoverlapping price increments. The Esscher martin-
gale measure was estimated using these price increments. Next we estimate
the price (15.6) using a sample average. Let the contingent claim be f (ST ). The
estimate of price C0 is

Ĉ0 = 1
M

M∑
i=1

( f (Si,T )ẐT (Yi,1,… ,Yi,T )),

where Yi,k are the price differences in (15.5).
Figure 15.1 compares the Esscher call prices to the Black–Scholes prices.

The time to maturity is 20 trading days. Panel (a) shows the call prices as a
function of moneyness S∕K . The Esscher prices are shown with a red curve.
The Black–Scholes prices are shown with a black curve. The volatility of the

S/K

C
al

l p
ric

e

(a)

BS

Esscher

S/K

C
al

l p
ric

e 
ra

tio

(b)

Esscher/BS

0.95 0.97 0.99 1.01

1.
0

1.
5

2.
0

2.
5

3.
0

0.95 0.97 0.99 1.01

0.
85

0.
95

0.
5

0.
75

Figure 15.1 Esscher call prices compared to Black–Scholes prices. (a) Esscher prices (red) and
Black–Scholes prices (black) as a function of S∕K . (b) The ratio of Black–Scholes prices to Ess-
cher prices.
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Black–Scholes prices is taken as the annualized sample standard deviation over
the complete sample. Panel (b) shows the ratio of Black–Scholes prices to Ess-
cher prices as a function of S∕K . We see that the Black–Scholes prices are less
than the Esscher prices, except for the in-the-money calls. The result confirms
with Figure 13.2(a), which shows that the Esscher density takes smaller values
than the density of the Black–Scholes martingale measure for large increments.

15.2.5 Marginal Rate of Substitution

A martingale measure can be derived by using an argument based on marginal
rate of substitution, as presented in Davis (1997) or in Cochrane (2001).

The value at time T , obtained by a self-financing trading, is written in (13.8)
as

VT = V0 +
T∑

t=1
𝜉t ⋅ (Xt − Xt−1).

Let us denote by

VT (x, 𝜉)

the value which is obtained when the initial value is V0 = x, and the
self-financing trading strategy is 𝜉 = (𝜉t)t=1,…,T . The objective is to maximize

EU(VT (x, 𝜉))

over self-financing trading strategies 𝜉, where U ∶R → R is a utility function.
Utility functions are discussed in Section 9.2.2. The fair price of a derivative
could be defined to be such that diverting a little of funds into the derivative
has a neutral effect on the investor’s achievable utility. Let HT be a discounted
contingent claim. Let us denote

(𝛿, x, p) = sup
𝜉

EU
(

VT (x − 𝛿, 𝜉) + 𝛿

p
HT

)
,

where p is the price of HT . We define the fair price of HT at time t = 0 to be the
solution p(x) of the equation

𝜕

𝜕𝛿
(𝛿, x, p)

||||𝛿=0
= 0.

It can be proved that

p(x) =
E[U ′(VT (x, 𝜉∗))HT ]

Ũ ′(x)
,

where 𝜉∗ is the maximizer of E[U(VT (x, 𝜉)], and

Ũ(x) = E[U(VT (x, 𝜉∗))] = sup
𝜉

E[U(VT (x, 𝜉))].
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Here we assume that Ũ is differentiable at each x ∈ (0,∞) and that Ũ ′(x) > 0.
Now

U ′(VT (x, 𝜉∗))
Ũ ′(x)

is called the stochastic discount factor (pricing kernel, change of measure,
state-price density). We have a single discount factor which is pricing each
different asset. The price reflects riskiness and the riskiness depends on the
covariance of HT with the pricing kernel, and not the variance. An asset that
does badly in recession is less desirable than an asset that does badly in boom,
when the assets are otherwise similar.

15.3 Absolutely Continuous Changes of Measures

Girsanov’s theorem gives a formula for changing the physical market measure
to an equivalent martingale measure. First, we describe formulas for changing
the measure when the returns are conditionally Gaussian. Second, we consider
conditionally Gaussian logarithmic returns. Note that a version of Girsanov’s
theorem in continuous time is given in (5.64).

15.3.1 Conditionally Gaussian Returns

Let us assume that the excess returns

Rt =
St

St−1
−

Bt

Bt−1

are conditionally Gaussian. We assume that they satisfy
Rt = 𝜇t + 𝜎t𝜖t

for t = 1,… ,T , where
(𝜖t |t−1;P) = N(0, 1), (15.7)

𝜖t is t-measurable, and 𝜇t and 𝜎t are predictable. The notation in (15.7)
means that the conditional distribution of 𝜖t , conditional on t−1, under
probability measure P, is the standard normal distribution. Here we assume
that 0 = {∅,Ω}, and T =  . We assume that 𝜎t > 0. The assumption on
𝜖 = (𝜖1,… , 𝜖T ) implies that 𝜖 is a sequence of independent random variables
with 𝜖t ∼ N(0, 1).

15.3.1.1 The Martingale Measure
The equivalent martingale measure Q is such that under Q, the excess returns
satisfy

Rt = 𝜎t𝜖t, (15.8)
where 𝜖 = (𝜖t)t=1,…,T are i.i.d. with N(0, 1).
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15.3.1.2 Construction of the Martingale Measure
Let

Zt = exp

{
−

t∑
k=1

𝜇k

𝜎k
𝜖k −

1
2

t∑
k=1

(
𝜇k

𝜎k

)2
}

for t = 1,… ,T . Now Zt > 0 and EZT = 1. We define the probability measure
Q on (Ω, ) by

Q(d𝜔) = ZT (𝜔)P(d𝜔). (15.9)

Measure Q is an equivalent martingale measure: the process X of discounted
prices is a martingale.

The fact that Q is a martingale measure follows from

(Rt |t−1;Q) = N(0, 𝜎2
t ), (15.10)

which is equivalent to

(ΔXt |t−1;Q) = N

(
0,
(St−1

Bt

)2

𝜎
2
t

)
.

The proof can be found in Shiryaev (1999, p. 443). Let us give the main steps of
the proof. Let 𝜆 ∈ R and i be the imaginary unit. Then,3

EQ(ei𝜆Rt |t−1) =
1

Zt−1
EP(Ztei𝜆Rt |t−1)

= EP

(
exp

{
i𝜆Rt −

𝜇t

𝜎t
𝜖t −

1
2

(
𝜇t

𝜎t

)2
} |||||| t−1

)

= exp
{
−1

2
𝜆

2
𝜎

2
t

}
, (15.11)

3 Let us justify the first equality. Denote Y = ei𝜆Rt . For A ∈ t−1,

EQ(IAY ) = E(IAY Zt) = E(IAE(Y Zt |t−1)) = EQ

(
IA

1
Zt−1

EP(Y Zt |t−1)
)
,

Q-almost surely. Thus, the first equality follows from the definition of the conditional expecta-
tion. For more details, see Föllmer and Schied (2002, Proposition A.12, p. 405) and Shiryaev (1999,
p. 438), where terms “conversion lemma” and “generalized Bayes’ formula” are used for this equality.
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Q-almost surely, since

i𝜆Rt −
𝜇t

𝜎t
𝜖t −

1
2

(
𝜇t

𝜎t

)2

=
(

i𝜆𝜎t −
𝜇t

𝜎t

)
𝜖t + i𝜆𝜇t −

1
2

(
𝜇t

𝜎t

)2

=
(

i𝜆𝜎t −
𝜇t

𝜎t

)
𝜖t −

1
2

(
i𝜆𝜎t −

𝜇t

𝜎t

)2

+ 1
2

(
i𝜆𝜎t −

𝜇t

𝜎t

)2

+ i𝜆𝜇t −
1
2

(
𝜇t

𝜎t

)2

=
(

i𝜆𝜎t −
𝜇t

𝜎t

)
𝜖t −

1
2

(
i𝜆𝜎t −

𝜇t

𝜎t

)2

− 1
2
𝜆

2
𝜎

2
t ,

and

EP

(
exp

[(
i𝜆𝜎t −

𝜇t

𝜎t

)
𝜖t −

1
2

(
i𝜆𝜎t −

𝜇t

𝜎t

)2
] |||||| t−1

)
= 1.

Equation (15.11) shows that the characteristic function of Rt |t−1 under Q is
the characteristic function of N(0, 𝜎2

t ), which leads to (15.10).

15.3.1.3 The Relation to the Esscher Measure
The Esscher transformation leads to the same equivalent martingale measure
as the absolutely continuous change of measure, in the special case of Gaussian
returns with unit variance. We consider the case of one risky asset. Let

ΔXt = 𝜇t + 𝜖t , t = 0,… ,T ,

where Xt = St∕Bt is the discounted stock price, ΔXt = Xt − Xt−1, and
𝜖t ∼ N(0, 1). Now

𝜙t(a) = E(eaΔXt |t−1) = exp
{1

2
a2 + a𝜇t

}
,

where a ∈ R. Then a∗
t = −𝜇t minimizes 𝜙t(a) over a ∈ R. We have

zt =
exp

{
a∗

t ΔXt
}

𝜙
(
a∗

t
) = exp

{
−𝜇tΔXt +

1
2
𝜇

2
t

}
= exp

{
−𝜇t𝜖t −

1
2
𝜇

2
t

}
.

The Esscher martingale measure is Q(d𝜔) = ZT (𝜔)P(d𝜔), where ZT =
∏T

i=1 zi,
which is the same measure as (15.9) for 𝜎t ≡ 1.

15.3.2 Conditionally Gaussian Logarithmic Returns

Let us assume that the excess logarithmic returns are conditionally Gaussian:

ht = log
Xt

Xt−1
= 𝜇t + 𝜎t𝜖t ,
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where 𝜇t , 𝜎t , and 𝜖t satisfy the same assumptions as in the case of conditionally
Gaussian excess returns. This implies that 𝜖 is a sequence of independent ran-
dom variables with 𝜖t ∼ N(0, 1). Here Xt = St∕Bt is the discounted stock price,
so that ht is the excess logarithmic return:

ht = log
St

St−1
− log

Bt

Bt−1
.

15.3.2.1 The Martingale Measure
The equivalent martingale measure Q is such that under this measure the excess
logarithmic returns satisfy

ht = −1
2
𝜎

2
t + 𝜎t𝜖t , (15.12)

where 𝜖 = (𝜖t)t=1,…,T are i.i.d. with N(0, 1).

15.3.2.2 Construction of the Martingale Measure
Let

Zt = exp

{
−

t∑
k=1

(
𝜇k

𝜎k
+
𝜎k

2

)
𝜖k −

1
2

t∑
k=1

(
𝜇k

𝜎k
+
𝜎k

2

)2
}

for t = 1,… ,T . Let us define measure Q by

Q(d𝜔) = ZT (𝜔)P(d𝜔).

It can be proved that Q is an equivalent martingale measure.
We derive measure Q using the approach of Shiryaev (1999, p. 449). Let us

assume that

ZT =
T∏

t=1
zt,

where zt has the form

zt =
eatht

E(eatht |t−1)
,

and at are t−1-measurable. Let us choose at so that the discounted price
(Xt)t=1,…,T is a martingale, where

Xt = X0 exp{Ht}, Ht =
t∑

i=1
ht.

Variables at must be such that

E
(
e(at+1)ht |t−1

)
= E

(
eatht |t−1

)
. (15.13)

Indeed, we need to have

EQ(Xt |t−1) = Xt−1.
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We have

EQ(Xt |t−1) = X0eHt−1 EQ(eht |t−1)
= X0eHt−1 E(eht zt |t−1)

=
X0eHt−1

E(eatht |t−1)
E(eht eat ht |t−1).

Equality in (15.13) is equivalent to

exp
{1

2
(at + 1)2

𝜎
2
t + (at + 1)𝜇t

}
= exp

{1
2

a2
t 𝜎

2
t + at𝜇t

}
,

which is equivalent to

a2
t 𝜎

2
t +

1
2
𝜎

2
t + 𝜇t = 0 ⇔ at = −

𝜇t

𝜎
2
t
− 1

2
.

Thus,

E(eatht |t−1) = exp
{
−
𝜇

2
t

2𝜎2
t
+
𝜎

2
t

8

}
and

zt = exp

{
−
(
𝜇t

𝜎t
+
𝜎t

2

)
𝜖t −

1
2

(
𝜇t

𝜎t
+
𝜎t

2

)2
}
.

15.4 GARCH Market Models

When the market model is a GARCH model, then we can apply the absolutely
continuous changes of measures of Section 15.3 to derive an equivalent
martingale measure. We consider first the Heston–Nandi method, which
applies numerical integration to compute the expectation with respect to the
equivalent martingale measure. Second, we consider the method of Monte
Carlo simulation for the computation of the expectation. Third, we compare
the risk-neutral densities of the Heston–Nandi model and GARCH(1, 1)
model.

The GARCH(1, 1) model is defined in (5.38). Pricing under GARCH models
was considered in Duan (1995). The Heston–Nandi model was presented in
Heston and Nandi (2000).

A related approach was followed in Aït-Sahalia et al. (2001), where a com-
plete continuous time diffusion model was postulated for the stock price, the
volatility was estimated, and the Girsanov’s theorem was applied to obtain the
risk-neutral measure, which can be used for pricing.

Chorro et al. (2012) consider GARCH models where the innovations follow
a generalized hyperbolic distribution, instead of the standard normal distribu-
tion. They construct the equivalent martingale measure as in Gerber and Shiu
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(1994), by choosing the density of the martingale measure (with respect to the
physical measure) to have an exponential affine parametrization.

15.4.1 Heston–Nandi Method

We follow Heston and Nandi (2000) and consider model (5.50). We assume that
the logarithmic returns satisfy

log St − log St−1 = r + 𝜇t + 𝜎t𝜖t,

where r = log(Bt∕Bt−1) is the constant risk-free rate, 𝜇t is predictable, 𝜖t are
i.i.d. N(0, 1), and

𝜎
2
t = 𝛼0 + 𝛼1(𝜖t−1 − 𝛾𝜎t−1)2 + 𝛽𝜎2

t−1,

where 𝛾 ∈ R is the skewness parameter. Because we assume conditionally
Gaussian logarithmic returns, then (15.12) implies that there exists an
equivalent martingale measure Q which is such that under Q

log St − log St−1 = r − 1
2
𝜎

2
t + 𝜎t𝜖t.

15.4.1.1 Prices of Call Options
The prices of call options have an expression which can be computed using
numerical integration. Let

CT = max{ST − K , 0}

be the payoff of a call option, and

HT = e−rT max{ST − K , 0}

be the discounted payoff of the call option. It follows from Theorem 13.2 that
an arbitrage-free price of the call option is

EQHT .

The expectation EQHT can be written in terms of the characteristic function.
Let f (i𝜙) be the characteristic function of log ST , under the condition that the
stock price at time 0 is S0, where

f (𝜙) = EQ

(
S𝜙T

)
= EQ exp{𝜙 log ST}

is the moment generating function, as defined in (5.53). The formula of f
involves the stock price S0, the interest rate r, and time T to expiration. Then

EQHT = S0

(
1
2
+ 1
𝜋 ∫

∞

0
Re

[
K−i𝜙f (i𝜙 + 1)

i𝜙f (1)

]
d𝜙

)

−e−rT K
(

1
2
+ 1
𝜋 ∫

∞

0
Re

[
K−i𝜙f (i𝜙)

i𝜙

]
d𝜙

)
, (15.14)
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where Re(z) denotes the real part of a complex number z. The expression in
(15.14) is not a closed form expression, but we need numerical integration
to compute the values. Also the values of the moment generating function
are computed using a recursive formula. The price (15.14) is analogous to the
Black–Scholes price in (14.58), where the cumulative distribution function Φ
of the standard normal distribution does not have a closed form expression.

Let us prove (15.14). Let q be the density of Q with respect to Lebesgue mea-
sure. Let

q∗(x) =
exp(x)q(x)

f (1)
.

Now q∗ is a density function because q∗(x) ≥ 0 and ∫
∞
−∞ q∗(x)dx = 1. Note that

f (1) = EQ exp{log ST} = erT S0.

The moment generating function of q∗ is

∫

∞

−∞
exp(𝜙x)q∗(x) dx = 1

f (1) ∫

∞

−∞
exp((𝜙 + 1)x)q(x) dx =

f (𝜙 + 1)
f (1)

.

Now,

EQCT =
∫

∞

−∞
max{exp(x) − K , 0}q(x) dx

=
∫

∞

log K
exp(x)q(x) dx − K

∫

∞

log K
q(x) dx

= f (1)
∫

∞

log K
q∗(x) dx − K

∫

∞

log K
q(x) dx.

The characteristic function of q is f (i𝜙). Thus,

∫

∞

log K
q(x) = 1

2
+ 1
𝜋 ∫

∞

0
Re

[
e−i𝜙 log K f (i𝜙)

i𝜙

]
d𝜙;

see Billingsley (2005, Theorem 26.2, p. 346). The characteristic function of q∗

is f (i𝜙 + 1)∕f (1), and a similar formula is obtained for ∫ ∞
log K q∗(x) dx. We have

proved (15.14).
Figure 15.2 shows Heston–Nandi GARCH(1, 1) call prices divided by the

Black–Scholes call prices as a function of the moneyness. Parameters 𝛼0, 𝛼1,
𝛽, and 𝛾 are estimated from S&P 500 daily data, described in Section 2.4.1. In
panel (a), time to expiration is 20 trading days, and the annualized volatility
takes values 10% (black), 15% (red), and 20% (blue). The solid lines have 𝛾 = 7,
which is about equal to the value estimated from the S&P 500 data. The dashed
lines have 𝛾 = 0. In panel (b), the annualized volatility is 15%, and the expiration
time takes values 5 days (black), 20 days (red), and 40 days (blue). The risk-free
rate is r = 0.
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Figure 15.2 The ratios of Heston–Nandi to Black–Scholes prices. Shown are the Heston–Nandi
call prices divided by the Black–Scholes prices as a function of moneyness S∕K . (a) Time to
expiration is 20 trading days. The annualized volatility takes values 10% (black), 15% (red),
and 20% (blue). (b) The annualized volatility is 15%. The time to expiration takes values 5 days
(black), 20 days (red), and 40 days (blue). The solid lines have 𝛾 = 7 and the dashed lines have
𝛾 = 0.

Panel (a) shows that the Heston–Nandi prices are lower than the
Black–Scholes prices when the volatility is high, but when the volatility
is low, then the Heston–Nandi prices are higher than the Black–Scholes
prices. When the moneyness increases then the ratio of prices approaches
one. Panel (b) shows that when the time to expiration becomes shorter, then
the ratio of Heston–Nandi prices to the Black–Scholes prices increases. The
skewness parameter 𝛾 has a smaller influence than the volatility and the time
to expiration.

15.4.1.2 Hedging Coefficients of Call Options
The hedging coefficient of a call option is

𝜉 = 1
2
+ 1
𝜋 ∫

∞

0
Re

[
K−i𝜙f (i𝜙 + 1)

i𝜙f (1)

]
d𝜙,

where K > 0 is the strike price and f (𝜙) = EQ(exp{𝜙 log ST} |S0) is the moment
generating function of log ST , as defined in (5.53). The formula of f involves the
stock price S0, the interest rate r, and time T to expiration. Here T is the number
of trading days to the expiration.

Figure 15.3 plots the ratios of Heston–Nandi GARCH(1, 1) call hedging
coefficients to Black–Scholes call hedging coefficients as a function of the
moneyness. We have the same setting as in Figure 15.2. We see from panel (a)
that for a moderate and large volatility the Heston–Nandi deltas are smaller
for out-of-the-money options, and larger for in-the-money options, than the
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Figure 15.3 Ratios of Heston–Nandi deltas to Black–Scholes deltas. Shown are Heston–Nandi
call hedging coefficients divided by the Black–Scholes hedging coefficients as a function of
moneyness S∕K . (a) Time to expiration is 20 trading days. The annualized volatility takes val-
ues 10% (black), 15% (red), and 20% (blue). (b) The annualized volatility is 15%. The time to
expiration takes values 5 days (black), 20 days (red), and 40 days (blue). The solid lines have
𝛾 = 7 and the dashed lines have 𝛾 = 0.

Black–Scholes deltas. For small volatility, the behavior is opposite. We see
from panel (b) that the time to expiration has a similar kind of effect as the
volatility.

15.4.1.3 Hedging Errors of Call Options
Figure 15.4 shows hedging errors for hedging a call option with moneyness
S∕K = 1.4 We use S&P 500 daily data, described in Section 2.4.1. Panel (a)
shows tail plots and panel (b) shows kernel density estimates. We consider three
cases: (1) The red plots show the case where the volatility in the Heston–Nandi
formula is taken to be the current GARCH volatility in the Heston–Nandi
model. (2) The green plots show the case where the volatility is the stationary
volatility in (5.49). (3) The blue plots show the case of Black–Scholes hedging

4 The hedging error eT of the writer of the option is obtained from (13.10) as

eT = C0 + GT (𝜉) − CT ,

where

GT (𝜉) =
T∑

k=1
𝜉k(Sk − Sk−1),

the risk-free rate is r = 0, C0 is the price of the option, CT is the terminal value of the option, 𝜉k
are the hedging coefficients, Sk are the stock prices, the current time is denoted by 0, the time to
expiration is T days, and hedging is done daily. When hedging is done with a lesser frequency, then
we use formula (14.79) for GT (𝜉).
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Figure 15.4 Heston–Nandi hedging errors. (a) Tail plots; (b) kernel density estimates of hedg-
ing errors. We show cases (1) the Heston–Nandi hedging with Heston–Nandi volatility (red),
(2) the Heston–Nandi hedging with stationary volatility (green), and (3) the Black–Scholes
hedging with GARCH(1, 1) volatility (blue).

with GARCH(1, 1) volatility. The parameters are estimated sequentially. Time
to expiration is 20 days. The hedging is done twice: at the beginning and at
the 10th day. The data is divided into 20 days periods using nonoverlapping
sequences. The risk-free rate is r = 0. The hedging is started after obtaining
8 years (2000 days) of observations. We see that the Black–Scholes hedging
leads to a better tail distribution of the hedging errors: the losses are smaller
and the gains are larger. Note that the hedging errors of Black–Scholes hedging
look different than in Figure 14.24, because in Figure 14.24 the hedging is done
daily, and overlapping sequences are used.

15.4.2 The Monte Carlo Method

We assume that the excess returns follow a shifted GARCH(1, 1) model. The
assumption that the excess logarithmic returns ht = log(Xt∕Xt−1) follow a
shifted GARCH(1, 1) model leads to similar prices, and we do not show results
for this case.

It is assumed that

Rt =
St

St−1
−

Bt

Bt−1
= 𝜇t + 𝜎t𝜖t ,

where

𝜎
2
t = 𝛼0 + 𝛼1R2

t−1 + 𝛽𝜎
2
t−1,

𝛼0 > 0, 𝛼0, 𝛽 ≥ 0, and {𝜖t} are i.i.d. with the standard normal distribu-
tion N(0, 1). Under the martingale measure Q, obtained by an absolutely



540 15 Pricing in Incomplete Models

continuous change of measure, the excess returns can be written as

Rt = 𝜎t𝜖t. (15.15)

Pricing under measure Q can be done by estimating

H0 = EQHT ,

where HT is the discounted contingent claim. We simulate n sequences

i =
(

S(i)
0 ,… , S(i)

T

)
, i = 1,… , n, (15.16)

and use the estimate

Ĥ0 = 1
n

n∑
i=1

HT (i),

where HT (i) is the value of the discounted contingent claim for the trajectory
i. We consider call options, so that HT (i) = max{0, S(i)

T − K}.
We need to simulate trajectories S0,… , ST under the dynamics in (15.15).

This can be done by simulating sequences R1,… ,RT of excess returns and
sequences r1,… , rT of risk-free returns. The sequence of stock prices is
obtained as

S0, S1 = S0(R1 + r1),… , ST = ST−1(RT + rT ).

In our simulation, we assume that the risk-free rates are zero, so that the
risk-free gross returns are ri = 1. To start the simulation we choose 𝜎1 to be
the current GARCH(1, 1) volatility, and R1 = 𝜎1𝜖1.

Figure 15.5 shows Monte Carlo approximations of call prices divided by the
Black–Scholes price as a function of the number n of Monte Carlo samples.
In panel (a), the moneyness is S∕K = 1, and in panel (b), the moneyness is
S∕K = 0.95. The black curves show the GARCH(1, 1) prices, and the red curves
show the Heston–Nandi GARCH(1, 1) prices. The red horizontal line shows
the Heston–Nandi prices computed using the closed form expression (15.14).
Time to expiration is 20 trading days. We have applied data of S&P 500 daily
prices, described in Section 2.4.1. The initial standard deviation is the sam-
ple standard deviation of S&P 500 returns, and the GARCH(1, 1) parameters
are estimated using S&P 500 data. The Black–Scholes volatility is the annu-
alized sample standard deviation. The risk-free rate is r = 0. We see that the
GARCH(1, 1) price is lower than the Black–Scholes price when the moneyness
is one, and the GARCH(1, 1) price is higher than the Black–Scholes price when
the moneyness is 0.95. The Heston–Nandi prices are lower than the prices in
the standard GARCH(1, 1) model.

Figure 15.6 shows standard GARCH(1, 1) call prices divided by the
Black–Scholes call prices as a function of the moneyness. Parameters 𝛼0, 𝛼1,
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Figure 15.5 Monte Carlo approximation of GARCH prices. Approximations of call prices divided
by the Black–Scholes price as a function of the number of Monte Carlo samples. (a) Money-
ness is S∕K = 1. (b) Moneyness is S∕K = 0.95. We show the GARCH(1, 1) price ratios (black)
and the Heston–Nandi GARCH(1, 1) price ratios (red), and the red horizontal line shows the
Heston–Nandi price ratio computed using (15.14).

and 𝛽 are estimated from S&P 500 daily data, described in Section 2.4.1. In
panel (a), time to expiration is 20 trading days, and the annualized volatility
takes values 10% (black), 15% (red), and 20% (blue). In panel (b), the annualized
volatility is 15%, and the expiration time takes values 5 days (black), 20 days
(red), and 40 days (blue). The risk-free rate is r = 0.

Panel (a) shows that the standard GARCH(1, 1) prices are lower than the
Black–Scholes prices when the volatility is high, but when the volatility is
low, then the standard GARCH(1, 1) prices are higher than the Black–Scholes
prices. When the moneyness increases then the ratio of prices approaches
one. Panel (b) shows that when the time to expiration becomes shorter, then
the ratio of the standard GARCH(1, 1) prices to the Black–Scholes prices
increases.

Figure 15.7 shows standard GARCH(1, 1) call prices divided by the
Heston–Nandi call prices as a function of the moneyness. The setting is the
same as in Figure 15.6.

15.4.3 Comparison of Risk-Neutral Densities

We study the risk-neutral distributions of the Heston–Nandi model when
the parameters change. Also, we compare the risk-neutral distributions of
the Heston–Nandi model to the risk-neutral distributions of the standard
GARCH(1, 1) model.

In the GARCH models, the physical distribution of stock prices is given by

log St = log St−1 + r + 𝜇t + 𝜎t𝜖t,
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Figure 15.6 The ratios of stan-
dard GARCH(1, 1) prices to
Black–Scholes prices. Shown
are the standard GARCH(1, 1)
call prices divided by the
Black–Scholes price as a
function of moneyness S∕K .
(a) Time to expiration is 20
trading days. The annualized
volatility takes values 10%
(black), 15% (red), and 20%
(blue). (b) The annualized
volatility is 15%. The time to
expiration takes values 5 days
(black), 20 days (red), and 40
days (blue).

where t = 1,… ,T . The volatility 𝜎t is defined differently in the standard
GARCH(1, 1) model and in the Heston–Nandi model. A risk-neutral
distribution of stock prices is given by

log St = log St−1 + r − 1
2
𝜎

2
t + 𝜎t𝜖t,

where t = 1,… ,T . We can estimate the distribution of ST by first estimating the
parameters of the model, second generating M Monte Carlo trajectories which
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Figure 15.7 The ratios of standard GARCH(1, 1) prices to Heston–Nandi prices. Shown are the
standard GARCH(1, 1) call prices divided by the Heston–Nandi prices as a function of money-
ness S∕K . (a) Time to expiration is 20 trading days. The annualized volatility takes values 10%
(black), 15% (red), and 20% (blue). (b) The annualized volatility is 15%. The time to expiration
takes values 5 days (black), 20 days (red), and 40 days (blue).

give M observations S1
T ,… , SM

T , and finally using a kernel density estimator. We
use S&P 500 daily data, described in Section 2.4.1.5

Figure 15.8 shows the estimated risk-neutral densities. Panel (a) compares
the Heston–Nandi model with the standard GARCH(1, 1) model. The red
curve shows the risk-neutral distribution of the Heston–Nandi model, the
black curve shows the risk-neutral distribution of the standard GARCH(1, 1)
model, and the green curve shows the risk-neutral distribution of the
Black–Scholes model.6 Panel (b) studies the effect of the skewness parameter
𝛾 . The red curve shows the case 𝛾 about seven, which is the value estimated
from data. The orange curve shows the case 𝛾 = 0, but it is very close to the
case 𝛾 = 7. The blue curve shows the case 𝛾 = 50. We see that the green density

5 Note that in Section 13.2.3, we estimated the risk-neutral distribution of ST − S0 (one-period
model) and the risk-neutral distribution of (ST − ST∕2, ST∕2 − S0) (two-period model).
Estimation of the risk-neutral distribution of ST is enough for the pricing of European call
and put options.
6 In the Black–Scholes model the physical and the risk-neutral distributions of ST are given by

log St = log St−1 + r + 𝜇 + 𝜎𝜖t , log St = log St−1 + r − 1
2
𝜎

2 + 𝜎𝜖t ,

where 𝜖t ∼ N(0, 1) are i.i.d. Thus, the risk-neutral distribution is the log-normal distribution

ST ∼ lognorm
(

log S0 + T
(

r − 1
2
𝜎

2
)
,T𝜎2

)
,

where T is the number of trading days to the expiration. Parameter 𝜎 is estimated by the sample
standard deviation from the daily logarithmic returns.
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Figure 15.8 Risk-neutral densities. (a) Heston–Nandi model (red), standard GARCH(1, 1)
model (black), and the Black–Scholes model (green). (b) Heston–Nandi risk-neutral densities
for 𝛾 = 7 (red), 𝛾 = 0 (orange), and 𝛾 = 50 (blue).
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Figure 15.9 Risk-neutral densities: Ratios. (a) Heston–Nandi (red) and standard GARCH(1, 1)
(black) risk-neutral density ratios. (b) Heston–Nandi risk-neutral density ratios for 𝛾 = 7 (red),
𝛾 = 0 (orange), and 𝛾 = 50 (blue).

is skewed so that large negative returns and moderate positive return are more
probable than in the case of 𝛾 = 0.

Figure 15.9 shows the risk-neutral densities of Figure 15.8 divided by the
Black–Scholes risk-neutral density, which is shown with green in Figure 15.8(a).
Panel (a) shows the Heston–Nandi (red) and standard GARCH(1, 1) (black)
risk-neutral densities divided by the Black–Scholes risk-neutral density.
Panel (b) shows the Heston–Nandi risk-neutral densities for 𝛾 = 7 (red),
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𝛾 = 0 (orange), and 𝛾 = 50 (blue), divided by the Black–Scholes risk-neutral
density. Panel (a) shows that the risk-neutral densities in the GARCH models
take higher values at the center than the Black–Scholes risk-neutral density,
and the ratio has a hat shape. Panel (b) shows that the densities are close
to each other for 𝛾 = 0 and 𝛾 = 7, but when 𝛾 = 50, then the skewness
is visible.

15.5 Nonparametric Pricing Using Historical
Simulation

It is interesting to compare nonparametric pricing to the Black–Scholes pricing
and to the GARCH pricing methods. We define nonparametric pricing com-
bining three elements: (1) historical simulation, (2) Esscher transformation, (3)
conditioning with the current volatility, which is taken to be the GARCH(1, 1)
volatility.

We have used Monte Carlo simulation to create sequences of prices in (15.16).
Analogously, historical prices can be used to create sequences of prices. The
Esscher transformation was applied in the proof of Theorem 13.1 (the first
fundamental theorem of asset pricing) to construct an equivalent martingale
measure in an arbitrage-free market. In Section 15.2, the Esscher transforma-
tion was shown to be related to utility maximization.

We consider T-period model, with time to expiration being T trading days.
Our price data is S0,… , SN . We construct M = N − T sequences of prices:

i = (Si,0,… , Si,T ), i = 1,… ,M,

where

Si,j = 100
Si+j

Si
.

Each sequence has length T + 1, and the initial prices are Si,0 = 100.

15.5.1 Prices

We define first the unconditional price and then the price which conditions on
the current volatility.

The unconditional price is computed by

Ĥ0 = 1
M

M∑
i=1

HT (i) f (i),
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where HT (i) is the value of the discounted contingent claim for the trajec-
tory i, and f is the estimated Esscher density. For example, in the case of a
call option, HT (i) = (Si,T − K)+. The estimated Esscher density is f ∶RT+1 → R
with

f (s0,… , sT ) =
T∏

i=1
g(Δsi),

where Δsi = si − si−1 and

g(Δsi) =
exp{a∗Δsi}
𝜙(a∗)

.

Value a∗ is the minimizer of

𝜙(a) = 1
MT

M∑
i=1

T∑
j=1

exp{a(Si,j − Si,j−1)}

over a ∈ R.
Next we define the conditional price. Let 𝜎 be the current estimated

GARCH(1, 1) volatility. The price is estimated as

Ĥ0 =
M∑

i=1
pi(𝜎)HT (i)f (i),

where HT (i) is the value of the discounted contingent claim for the trajectory
i, and f is the Esscher density. The weight is defined as

pi(𝜎) =
Kh(log(𝜎) − log(𝜎i))∑M
j=1 Kh(log(𝜎) − log(𝜎j))

,

where 𝜎i is the estimated GARCH(1, 1) volatility at day i. Furthermore, Kh is
the scaled kernel

Kh(x) = K
(x

h

)
,

where K ∶R → R is a kernel function. We choose

K(x) = I[−1,1](x).

We apply the S&P 500 daily data, described in Section 2.4.1.
Figure 15.10 shows nonparametric call prices divided by the Black–Scholes

call price as a function of the smoothing parameter. In panel (a) moneyness
S∕K = 1, and in panel (b) S∕K = 0.95. The annualized volatility takes values
10% (black), 15% (red), and 20% (blue). Time to expiration is T = 20 trading
days, risk-free rate is r = 0. The volatility is the sample standard deviation. We
see that the price ratios are higher for small volatility. The prices stabilize when
h ≥ 1.
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Figure 15.10 Nonparametric
prices. Ratios of nonpara-
metric call prices to the
Black–Scholes price as a
function of the smoothing
parameter. (a) Moneyness
is S∕K = 1. (b) Moneyness
is S∕K = 0.95. The annual-
ized volatility takes values
10% (black), 15% (red), and
20% (blue).
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Figure 15.11 shows nonparametric call prices divided by the Black–Scholes
call prices as a function of the moneyness S∕K . In panel (a), time to expiration
is 20 trading days, and the annualized volatility takes values 10% (black), 15%
(red), and 20% (blue). In panel (b), the annualized volatility is 15%, and the
expiration time takes values 5 days (black), 20 days (red), and 40 days (blue).
The risk-free rate is r = 0.
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Figure 15.11 The ratios of nonparametric prices to Black–Scholes prices. Shown are the non-
parametric call prices divided by the Black–Scholes prices as a function of moneyness S∕K . (a)
Time to expiration is 20 trading days. The annualized volatility takes values 10% (black), 15%
(red), and 20% (blue). (b) The annualized volatility is 15%. The time to expiration takes values
5 days (black), 20 days (red), and 40 days (blue).

15.5.2 Hedging Coefficients

We compute the nonparametric hedging coefficients by approximating the
derivative of the price numerically. The numerical approximation is done by
the difference quotient. The price is computed at the stock price S and S + 𝛿,
and the hedging coefficient is taken as

H0(S + 𝛿) − H0(S)
𝛿

, (15.17)

where 𝛿 > 0 is small.
Figure 15.12 shows nonparametric hedging coefficients divided by the

Black–Scholes delta as a function of the smoothing parameter. In panel (a)
moneyness S∕K = 1, and in panel (b) S∕K = 0.95. Time to expiration is T = 20
trading days, risk-free rate is r = 0. The volatility is the sample standard
deviation. Parameter 𝛿 in (15.17) is taken as 𝛿 = 0.005, 0.01, 0.05 (black, red,
and blue). We see that when S∕K = 1, then the nonparametric deltas are larger
than the Black–Scholes deltas; when S∕K = 0.95, then the nonparametric
deltas are smaller than the Black–Scholes deltas.

Figure 15.13 shows nonparametric call deltas divided by the Black–Scholes
call deltas as a function of the moneyness S∕K . In panel (a), time to expiration
is 20 trading days, and the annualized volatility takes values 10% (black), 15%
(red), and 20% (blue). In panel (b), the annualized volatility is 15%, and the
expiration time takes values 5 days (black), 20 days (red), and 40 days (blue).
The risk-free rate is r = 0.



15.5 Nonparametric Pricing Using Historical Simulation 549

Smoothing parameter

de
lta

 r
at

io

(a)

Smoothing parameter
de

lta
 r

at
io

(b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

1.
00

1.
05

1.
10

1.
15

1.
20

0.0 0.5 1.0 1.5 2.0

0.
35

0.
40

0.
45

0.
50

Figure 15.12 Nonparametric deltas. Ratios of nonparametric call deltas to the Black–Scholes
delta as a function of the smoothing parameter. (a) Moneyness is S∕K = 1. (b) Moneyness is
S∕K = 0.95. Parameter 𝛿 in (15.17) is taken as 𝛿 = 0.005, 0.01, 0.05 (black, red, and blue).
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Figure 15.13 The ratios of nonparametric deltas to Black–Scholes deltas. Shown are the non-
parametric call deltas divided by the Black–Scholes deltas as a function of moneyness S∕K .
(a) Time to expiration is 20 trading days. The annualized volatility takes values 10% (black),
15% (red), and 20% (blue). (b) The annualized volatility is 15%. The time to expiration takes
values 5 days (black), 20 days (red), and 40 days (blue).

Figure 15.14 shows hedging errors of nonparametric hedging. Panel (a)
shows tail plots of the empirical distribution function and panel (b) shows
kernel density estimates. Time to expiration is T = 20 trading days. The
blue curves show the case where hedging is done once, and the red curves
show the case where hedging is done twice. We show also Black–Scholes
hedging errors: in the green curves, hedging is done once and in the violet
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Figure 15.14 Nonparametric
hedging errors. (a) Tail plots;
(b) kernel density estimates.
Nonparametric hedging is
done once (blue) and twice
(red). The Black–Scholes
hedging is done once
(green) and twice (violet).

curves, the hedging is done twice. The risk-free rate is r = 0. The volatil-
ity is the sample standard deviation. The smoothing parameter is h = 0.5.
Panel (a) shows that the Black–Scholes hedging performs better in the tails,
but panel (b) shows that the nonparametric hedging performs better in the
central area.
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15.6 Estimation of the Risk-Neutral Density

Let us consider an European call option

H = max{ST − K , 0},

where ST is the price of the stock at the expiration, and K > 0 is the strike
price. We assume that the risk-free rate is r = 0. Theorem 13.2 states that
arbitrage-free prices of an European option H can be written as

EQH,

where the expectation is with respect to an equivalent martingale measure Q.
We assume that the distribution of ST under Q has density f ∶ [0,∞) → [0,∞)
with respect to the Lebesgue measure. The density depends on the initial stock
price S0. The price of the call option can be written as

EQH =
∫

∞

K
f (s)(s − K) ds. (15.18)

Differentiating with respect to K , we get

𝜕

𝜕K
EQH = −

∫

∞

K
f (s) ds,

where we used the fact (𝜕∕𝜕K) ∫ ∞
K g(s) ds = −g(K). Differentiating second

time, we get

𝜕
2

𝜕K2 EQH = f (K). (15.19)

We can apply (15.19) to compute an approximation to the density f , when
prices are observed for several strike prices K . Note that (15.18) shows that
the problem can be considered as deconvolution problem, where the pricing
function

K → EQH

should be inverted in order to obtain f .7

7 Hobson (1998, Lemma 2.3) proves that price functions and probability measures are in a one–one
correspondence. It is assumed that there is a price function K → h(K) for call options with strike
price K , the interest rate is zero, h is decreasing and convex, h(0) = S0, limK→∞h(K) = 0, and at time
0 ≤ t < T the European call can be sold for at least (St − K)+. Then there is a probability measure Q
with EQST = S0, and whose support is (0,∞). The probability measure is obtained by Q((K ,∞)) =
−h′(K), where h′ is the right derivative. Also, h(K) = ∫

∞
0 (s − K)+Q(ds). Probability measure Q is a

martingale distribution of ST . The formula for Q is sometimes called Breeden–Lizenberger formula,
since it can be found from Breeden and Lizenberger (1978).
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The density f is a risk-neutral distribution for ST . Similarly, we can consider
estimating the risk-neutral distribution of ST ′ for 0 < T ′

< T . Thus, we are able
to estimate all marginal distributions of the prices process S = (St)t=0,…,T , but
not the complete risk-neutral distribution Q.

15.6.1 Deducing the Risk-Neutral Density from Market Prices

Let us denote by h(K) = EQH the option price when the strike price is K . The
market prices provide values h(K1),… , h(Kn) for strike prices 0 < K1 < · · · <
Kn. These observations can be used to deduce the risk-neutral density of ST ,
implied by the market prices. The implied risk-neutral density can be estimated
using liquid options, and the estimated density can be used to price illiquid
options. It is possible that the market prices are not fair. On the other hand,
market prices can incorporate information which is difficult to obtain by sta-
tistical procedures. For example, market prices can incorporate information
about event risks, like information about the elections in the near future.

Aït-Sahalia and Lo (1998) considered the observations h(K1),… , h(Kn) as
coming from a regression model

h(Ki) = p(Ki) + 𝜖i, i = 1,… , n,

where p(Ki) is the true pricing function and 𝜖i is random noise. They used semi-
parametric regression to estimate the true pricing function, and then took the
second derivative to obtain the risk-neutral density. They considered the pric-
ing function to have five arguments:

p(K) = p(K , S, 𝜏, r, 𝛿),

where S is the stock price, 𝜏 is the time to expiration, r is the risk-free rate for
that maturity, and 𝛿 is the dividend yield for the asset. They used two dimen-
sional kernel regression to estimate the implied volatility, as a function of mon-
eyness and time to maturity. Then they applied the Black–Scholes formula to
obtain the pricing function.

Aït-Sahalia and Duarte (2003) estimated the pricing function using a combi-
nation of constrained univariate least squares regression and smoothing. The
constrained regression is useful because the pricing function is increasing and
convex as a function of the strike price. The convexity follows from (15.19),
because f (K) ≥ 0 implies that the second derivative of the pricing function is
nonnegative, which implies convexity.

15.6.2 Examples of Estimation of the Risk-Neutral Density

We can use risk-neutral densities to give insight about a pricing method. Some
pricing methods are such that the risk-neutral density can be expressed in a
closed form (Black–Scholes model), or we can simulate observations from the
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risk-neutral density and estimate the risk-neutral density based on the sim-
ulated observations (Heston–Nandi and the standard GARCH(1, 1) model).
See Figures 15.8 and 15.9 for risk-neutral densities in the Black–Scholes,
Heston–Nandi and the standard GARCH(1, 1) model. The nonparametric
pricing using historical simulation is described in Section 15.5. The nonpara-
metric pricing is such that the risk-neutral density is not easy to find directly,
but it can be deduced from the prices, by inverting the information in the
prices.

We compute the risk-neutral densities for four methods: (1) the
Heston–Nandi pricing described in Section 15.4.1, (2) the GARCH(1, 1)
pricing described in Section 15.4.2, (3) the nonparametric pricing using
historical simulation described in Section 15.5, and (4) the Black–Scholes
pricing.

Let us denote by h(K) = EQH the price when the strike price is K . Let us
observe prices h(K1),… , h(Kn) for strike prices 0 < K1 < · · · < Kn. The first
derivative is approximated by

ĥ′(Ki) =
h(Ki) − h(Ki−1)

Ki − Ki−1

for i = 2,… , n. The approximations of the second derivative give estimates of
the density:

f̂ (Ki) =
ĥ′(Ki) − ĥ′(Ki−1)

Ki − Ki−1
(15.20)

for i = 3,… , n.
The numerical differentiation which leads to the density in (15.20) can lead

to a unsmooth density. We can smooth the density by using two-sided mov-
ing averages. The smoothing is done below in the case of the nonparametric
pricing. We apply below the S&P 500 daily data of Section 2.4.1.

Figure 15.15 shows the price functions. Panel (a) shows pricing functions as
a function of strike price and panel (b) shows the ratios of the prices to the
Black–Scholes prices. In panel (a), the prices are for the standard GARCH(1, 1)
pricing (black), for nonparametric pricing (orange), for Heston–Nandi version
of GARCH(1, 1) pricing (red), and for the Black–Scholes pricing (dark green).
In panel (b), the prices are divided by the Black–Scholes prices. The number of
Monte Carlo samples in GARCH pricing is n = 10,000. The smoothing param-
eter of nonparametric GARCH pricing is h = 1. The volatility is the sample
standard deviation in all three cases.

Figure 15.16 shows densities of ST under risk-neutral measures. Panel (a)
shows densities with respect to the Lebesgue measure and panel (b) shows the
ratios of the densities to the Black–Scholes density. In panel (a), the densities
are for the standard GARCH(1, 1) pricing (black), for nonparametric pricing
(orange), for Heston–Nandi version of GARCH(1, 1) pricing (red), and for the
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Figure 15.15 Price functions. (a) The standard GARCH(1, 1) pricing (black), nonparametric
pricing (orange), Heston–Nandi pricing (red), and Black–Scholes pricing (dark green). (b) The
prices divided by the Black–Scholes prices.

Black–Scholes pricing (dark green). In panel (b), the densities are divided by
the Black–Scholes density.

15.7 Quantile Hedging

Let HT be a discounted European contingent claim. A fair price of HT could be
considered as the initial investment V0 such that there exists a trading strategy
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Figure 15.16 Risk-neutral densities. (a) The standard GARCH(1, 1) pricing (black), nonpara-
metric pricing (orange), Heston–Nandi pricing (red), and the Black–Scholes pricing (dark
green). (b) The densities are divided by the Black–Scholes density.



15.7 Quantile Hedging 555

which leads to value VT which is close to HT . This is the basic idea of quadratic
hedging, which minimizes E(VT − HT )2 (see Section 15.1). However, from the
point of view of the writer of the option it is desirable that VT ≥ HT . This leads
to the definition of quantile hedging, where the probability of VT ≥ HT is max-
imized.

Let 𝑣 be a bound for the initial investment. We want to find a self-financing
trading strategy whose value process maximizes the probability

P(VT ≥ HT ),

among all those strategies which satisfy

1) V0 ≤ 𝑣,
2) Vt ≥ 0 for t = 0,… ,T .

We have to assume that 𝑣 is not too large, since letting 𝑣 to be large would
allow very expensive strategies. We assume that 𝑣 ≤ supΠ(H), where Π(H) is
the set of arbitrage-free prices, as characterized in Theorem 13.2. Föllmer and
Schied (2002, Section 8.1, p. 245) studies quantile hedging; see also Föllmer and
Leukert (1999).
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16

Quadratic and Local Quadratic Hedging

Quadratic hedging was introduced in Sections 13.1.3 and 15.1. In quadratic
hedging we find the best approximation of the option in the sense of the
mean-squared error. Quadratic hedging is related to the idea of statistical
arbitrage: The fair price is defined as such price that makes the probability of
gains and losses small for the writer of the option.

Quadratic hedging makes it possible to price and hedge options in a com-
pletely nonparametric way. In quadratic hedging we can derive prices and
hedging coefficients without any modeling assumptions, making only some
rather weak assumptions about square integrability and about a bounded
mean–variance trade-off. There are many ways to implement quadratic
hedging nonparametrically. We use kernel estimation in our implementation.

Let HT be the discounted payoff of an European option. For example, for a
call option HT = (1 + r)−T (ST − K)+. In quadratic hedging the mean-squared
hedging error

E(HT − V0 − GT (𝜉))2

is minimized among strategies 𝜉 = (𝜉t)t=1,…,T and among the initial investment
V0 ∈ R. The terminal value of the gains process is defined by

GT (𝜉) =
T∑

t=1
𝜉t ⋅ (Xt − Xt−1),

where Xt = St∕(1 + r)t is the discounted price vector. The problem resem-
bles least-squares linear regression, where HT is the response variable,
ΔXt = Xt − Xt−1 are the explanatory variables, V0 is the intercept, and 𝜉t are
the regression coefficients. However, now we have a time series setting, where
the “explanatory” variable ΔXt is observed at time t. We can use the knowledge
of the observed values of ΔX1,… ,ΔXt−1 in choosing 𝜉t . In the usual linear
regression all regression coefficients are chosen at the same time: t = T .

Quadratic hedging in discrete time is explained in monographs Föllmer and
Schied (2002, p. 393), Bouchaud and Potters (2003), and Černý (2004b). Earlier

Nonparametric Finance, First Edition. Jussi Klemelä.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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studies include Föllmer and Schweizer (1989), Bouchaud and Sornette (1994),
Schweizer (1994), and Schäl (1994). Early continuous time studies include
Föllmer and Sondermann (1986) and Duffie and Richardson (1991).

We study quadratic hedging and pricing in three steps: first for the one period
model, then for the two period model, and finally the formulas are given for the
general multiperiod model. The multiperiod model contains as special cases
the one and two period models, but we think that it is helpful to study the one
and two period models separately, because in these models the formulas are
more transparent and notationally more convenient than in the multiperiod
model. The generalization from the two period model to the multiperiod model
is straightforward.

Local quadratic hedging simplifies the minimization problem of quadratic
hedging, and it can achieve easier computations. In the one period model
quadratic hedging and local quadratic hedging are equivalent, but in the
multiperiod models they are different.

The price and the hedging coefficients of quadratic hedging do not have a
closed-form expression, but only a recursive definition. This recursive defini-
tion can be used in computations, but the implementation is not trivial. We
implement only the local quadratic hedging and pricing. We need to estimate
various conditional expectations. We estimate the conditional expectations
using historical simulation: The time series of previous returns is used to
construct a large number of price sequences, and conditional expectations are
estimated as sample means over price sequences. The observed volatility is
used as the conditioning variable. Separate methods are used for the case of
independent and dependent increments.

We evaluate quadratic hedging by studying the distribution of the hedging
errors. The distribution should be concentrated around zero as well as possi-
ble. The main observation is that even the simplest setting of local quadratic
hedging with independent increments leads to a distribution of the hedging
errors that is better concentrated around zero than the distribution of the
hedging errors when Black–Scholes hedging with GARCH(1, 1) volatility
is used.

Section 16.1 studies global quadratic hedging and pricing. Section 16.2 stud-
ies local quadratic hedging and pricing. Section 16.3 studies implementations
of local quadratic hedging.

16.1 Quadratic Hedging

The exact solution for quadratic hedging can be given using backward induc-
tion. We present the solution in three steps: first for the one period model,
second for the two period model, and third for the general model.
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16.1.1 Definitions and Assumptions

We recall the notation from Section 13.2, and in particular from Section 13.2.2.
We assume that there is only one risky asset: d = 1. The price process of the
riskless bond is denoted by B = (Bt)t=0,…,T . We choose

Bt = (1 + r)t
,

where r > −1. The notation is a short hand for Bt = (1 + rΔt)t , where Δt
is the time between two steps, expressed in fractions of a year, and r is the
annual interest rate. The time series of prices of the risky asset is denoted by
S = (St)t=0,…,T . The complete price vector is denoted by

S̄t = (Bt, St). t = 0,… ,T .

A trading strategy is

𝜉t = (𝛽t, 𝜉t), t = 1,… ,T ,

where the values 𝛽t and 𝜉t express the quantity of the bond and the risky asset
held between t − 1 and t.

16.1.1.1 Wealth and Value Processes
The wealth at time 0 is W0, and after that

Wt = 𝛽tBt + 𝜉tSt = 𝜉t ⋅ S̄t , t = 1,… ,T .

Under the condition of self-financing the wealth at time t was written in
(13.5) as

Wt = W0 +
t∑

k=1
𝜉k ⋅ (S̄k − S̄k−1),

where W0 = 𝜉1 ⋅ S̄0.
The discounted price process is defined by

Xt =
St

Bt
, t = 0,… ,T .

We denote X̄t = (1,Xt). The value process was defined in (13.8) as

Vt =
Wt

Bt
, t = 0,… ,T .

Under the condition of self-financing the value at time t can be written as

Vt = V0 +
t∑

k=1
𝜉k(Xk − Xk−1), (16.1)

where V0 = 𝜉1 ⋅ X̄0.
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The gains process is defined as

G0 = 0, Gt =
t∑

k=1
𝜉k(Xk − Xk−1), t = 1,… ,T .

For a self-financing strategy

Vt = V0 + Gt . (16.2)

16.1.1.2 Quadratic Hedging
We use the terms “quadratic hedging” and “global quadratic hedging” to mean
the same thing. The term “global quadratic hedging” is used when a distinction
to “local quadratic hedging” is emphasized. We use the term “quadratic price”
to mean the price that is implied by quadratic hedging.

Let CT be the value of an European option. For example, CT = (ST − K)+. Let
HT = CT∕BT . A quadratic strategy (V0, 𝜉) is a minimizer of

E(HT − V0 − GT (𝜉))2

over V0 ∈ R and over self-financing strategies 𝜉 = (𝜉t)t=1,…,T . We obtain the
quadratic price

C0 = V0.

In the general case the quadratic price is B0V0, but in our case B0 = 1. The bond
coefficients 𝛽t are determined from the equations

𝛽1 = V0 − 𝜉1X0,

𝛽t+1 = 𝛽t + (𝜉t − 𝜉t+1)Xt, t = 1,… ,T − 1, (16.3)

as noted in (13.9). The complete quadratic hedging strategy, which includes
both the quantities of bond and stock, is given by

𝜉t = (𝛽t, 𝜉t), t = 1,… ,T .

16.1.1.3 Mean Self-Financing
We have defined quadratic hedging as a hedging strategy that minimizes the
mean-squared error among self-financing strategies. It is also possible to define
a version of quadratic hedging where the mean-squared error is minimized
among so-called mean self-financing strategies. We consider this approach only
in Section 16.2.3, where local quadratic hedging without self-financing is dis-
cussed.

The self-financing condition in (13.4) states that

𝜉tSt + 𝛽tBt = 𝜉t+1St + 𝛽t+1Bt, t = 1,… ,T − 1. (16.4)

We can dispose the restriction to the self-financing strategies, and assume only
that the strategies are mean self-financing. Assumption

Et−1(𝜉t+1St + 𝛽t+1Bt − 𝜉tSt − 𝛽tBt) = 0
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is equivalent with

Et−1(𝜉t+1Xt + 𝛽t+1 − 𝜉tXt − 𝛽t) = 0.

Let us make the mean self-financing assumption

Et−1Dt = 0, t = 1,… ,T , (16.5)

where

Dt = 𝜉t+1Xt + 𝛽t+1 − (𝜉tXt + 𝛽t), t = 1,… ,T − 1,
DT = HT − (𝜉T XT + 𝛽T ).

Note that if we define the cumulative cost process by

0 = U0,

t = Ut − Gt, t = 1,… ,T − 1,
T = HT − GT ,

where

Ut = 𝜉t+1Xt + 𝛽t+1, Gt =
t∑

i=1
𝜉t(Xt − Xt−1),

then

Dt = Δt = t − t−1.

Schäl (1994) considers quadratic hedging in discrete time with mean
self-financing strategies. The definition of mean self-financing in continuous
time was given in Föllmer and Sondermann (1986).1

We noted that the equality VT = V0 + GT in (16.2) holds only for self-
financing strategies. Nevertheless, it is possible to minimize the mean-squared
error

E0(HT − V0 − GT )2
,

over strategies 𝜉, which are not necessarily self-financing. Note that V0 = U0.
We have that

HT − V0 − GT = T − 0.

Under the condition (16.5) of mean self-financing we have that

E(T − 0) = E

( T∑
t=1

Δt

)
= 0.

1 Note that Schäl (1994) defines self-financing so that not only conditions (16.4) are required, but
also the condition that the final wealth equals the terminal value of the option: CT = 𝜉T ST + 𝛽T BT ,
which is equivalent to HT = 𝜉T XT + 𝛽T . According to this terminology, self-financing requires
replication.
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Thus,

E(HT − V0 − GT )2 = Var(HT − V0 − GT ).

Thus, the term “variance optimal hedging” can be used in this case. Also,

V0 = E(T ) = E(HT − GT ),

and it is natural to call V0 the fair price.

16.1.1.4 Assumptions
We have to assume the square integrability of the relevant terms:

EH2
T < ∞, EX2

t <∞, t = 0,… ,T .

The assumptions can be written as HT ∈ 2(Ω,T ,P) and Xt ∈ 2(Ω,t,P). In
addition, we have to restrict ourselves to the square integrable trading strate-
gies. That is, the value and the gains processes are assumed to satisfy

EV 2
t < ∞, EG2

t < ∞, t = 0,… ,T . (16.6)

We say that the bounded mean–variance trade-off holds if

[E(Xt − Xt−1 |t−1)]2
≤ C ⋅ Var(Xt − Xt−1 |t−1) (16.7)

P-almost surely, for t = 1,… ,T , where C is a constant. Föllmer and Schied
(2002, Theorem 10.39, p. 395) consider the existence and uniqueness of a
quadratic hedging strategy. They show that with d = 1 risky assets the
bounded mean–variance trade-off guarantees the existence of a quadratic
strategy (which they call a variance-optimal strategy). The strategy is unique
up to modifications in the set {Var(Xt − Xt−1 |t−1) = 0}.

16.1.2 The One Period Model

We consider the pricing of an European option in the single period model. In
the single period model the underlying security has value S0 at the beginning
of the period and value S1 at the expiration of the option. The price S0 is a fixed
number and S1 is a random variable. At time zero the option price is C0. The
value of the European option at the expiration is denoted by C1. For example,
in the case of a call option C1 = max{S1 − K , 0}, where K is the strike price. In
the single period model the option is hedged only once (at time 0).

16.1.2.1 Pricing in the One Period Model
In the one period model

V1 = V0 + 𝜉ΔX1,

ΔX1 = X1 − X0 = (1 + r)−1S1 − S0, (16.8)
H1 = (1 + r)−1C1.
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We want to find V0 and 𝜉 minimizing

E(V0 + 𝜉ΔX1 − H1)2
.

This is the population version of a linear least-squares regression with the
explanatory variable ΔX1 and the response variable H1. We obtain the
solutions2

𝜉 =
Cov(ΔX1,H1)

Var(ΔX1)
(16.10)

and

V0 = EH1 − 𝜉EΔX1. (16.11)

The hedging coefficient can be written as

𝜉 =
Cov(S1,C1)

Var(S1)
(16.12)

because constant S0 can be removed from the covariance and the variance, and
the discounting factors of the nominator and denominator cancel each other.
Note that for a call option 𝜉 ∈ [0, 1] and for a put option 𝜉 ∈ [−1, 0].3

We see that the quadratic price

V0 = EH1 − 𝜉EΔX1 = (1 + r)−1[EC1 − 𝜉E(S1 − (1 + r)S0)] (16.13)

is obtained by subtracting a correction term from the expected value of the
payoff of the option.

2 Derivating with respect to V0 and 𝜉 we get the equations{
E(V0 + 𝜉ΔX1 − H1) = 0,
E[(V0 + 𝜉ΔX1 − H1) ΔX1] = 0.

From the second equation we get

𝜉 =
E[(H1 − V0)ΔX1]

EΔX2
1

. (16.9)

From the first equation we get V0 = EH1 − 𝜉EΔX1. Inserting this to (16.9) gives

𝜉

(
1 −

(EΔX1)2

EΔX2
1

)
=

E[(H1 − EH1)ΔX1]
EΔX2

1
.

It holds that

1 −
(EΔX1)2

EΔX2
1

=
Var(ΔX1)

EΔX2
1

, E[(H1 − EH1)ΔX1] = Cov(ΔX1,H1).

3 By the Cauchy–Schwarz inequality |Cov(S1,C1)| ≤ √
Var(S1)Var(C1). For the call option

Var(C1) ≤ Var(S1 − K) = Var(S1) and for the put option Var(C1) ≤ Var(K − S1) = Var(S1). For the
call option Cov(S1,C1) ≥ 0 and for the put option Cov(S1,C1) ≤ 0.
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The value process is useful in the multiperiod model, but in the single period
model we can use the wealth process as well. We can use the following equiva-
lent formulation. The initial wealth is W0. This amount is invested in the bank
account. The amount 𝜉S0 is borrowed at the risk-free rate and this money is
invested in stock, so that there are 𝜉 stocks in the portfolio. The value of the
portfolio at time 1 is

W1 = (1 + r)W0 + 𝜉(S1 − (1 + r)S0).

We want to find values of W0 and 𝜉 that minimize

E(W1 − C1)2
. (16.14)

16.1.2.2 Scatter Plots of Stock Price Differences and Option Payoffs
Figure 16.1 shows a scatter plot of points (S1 − S0, (S1 − K)+) together with lin-
ear fits. We use the daily data of S&P 500 prices, described in Section 2.4.1.

We take S0 = 100 and S1 = 100R, where R are the gross returns of S&P 500
over 10 trading days. Values (S1 − K)+ are the payoffs of call options with strike
price K , and the expiration time 10 trading days. In panel (a) K = 100, and in
panel (b) K = 105. The green lines show the least-squares linear fit ΔS1 → V0 +
𝜉ΔS1, where ΔS1 = S1 − S0 and

𝜉 =
Ĉov(ΔS1,C1)

V̂ar(ΔS1)
, V0 = ÊC1 − 𝜉 ⋅ ÊΔS1,

where we use the sample means, variances, and covariances. The red lines
show the linear fit ΔS1 → a + bΔS1, where a is the Black–Scholes price, and b
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Figure 16.1 Linear approximations of call payoffs. We show scatter plots of (ΔS1, (S1 − K)+) for
(a) K = 100 and (b) K = 105. The green curves show the least-squares fit and the red curves
show the Black–Scholes fit.
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is the Black–Scholes delta. The volatility is estimated by the sample standard
deviation. We see that when K = 100, there is hardly any difference between
the least-squares fit and the Black–Scholes fit. When K = 105, then the
least-squares hedging coefficient is higher than the Black–Scholes delta.

16.1.2.3 Pricing in the One Period Model Continued
We derive the solution (16.10)–(16.11) in a different way. The different way of
deriving the solution is such that it can be generalized to multiperiod mod-
els. Furthermore, it helps us to find the equivalent martingale measure and the
hedging error.

We need to find V0 and 𝜉 minimizing

E(V1 − H1)2 = E(V0 + 𝜉ΔX1 − H1)2
,

where ΔX1 = (1 + r)−1S1 − S0 and H1 = (1 + r)−1C1. We can write

E(V1 − H1)2 = E(V0 − H1)2 + 2𝜉E[(V0 − H1)ΔX1] + 𝜉2EΔX2
1 . (16.15)

For a fixed V0 the minimizer over 𝜉 ∈ R is

𝜉 =
E[(H1 − V0)ΔX1]

EΔX2
1

. (16.16)

We have that

min
𝜉

E(V1 − H1)2

= E(V0 − H1)2 −
(E[(H1 − V0)ΔX1])2

EΔX2
1

= k0V 2
0 − 2V0k0H0 + k0H2

0 − k0H2
0 + EH2

1 −
[E(H1ΔX1)]2

EΔX2
1

= k0(V0 − H0)2 + 𝜖2
0 , (16.17)

where we denote

H0 = 1
k0

[
EH1 −

E(ΔX1)E(ΔX1H1)
EΔX2

1

]
(16.18)

and

k0 = 1 −
[E(ΔX1)]2

EΔX2
1

, 𝜖
2
0 = EH2

1 − k0H2
0 −

[E(H1ΔX1)]2

EΔX2
1

.

We see from (16.17) that the mean-squared error is minimized by choosing
V0 = H0. Equation (16.16) implies that the optimal hedging coefficient is

𝜉 =
E[(H1 − H0)ΔX1]

EΔX2
1

, (16.19)
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where H0 is defined in (16.18). The formulas (16.18) and (16.19) are equivalent
with the formulas (16.10) and (16.11).4 Note that formulas (16.18) and (16.19)
define 𝜉 in terms of H0, whereas (16.10) and (16.11) define H0 in terms of 𝜉.

16.1.2.4 The Martingale Measure in the One Period Model
Let us assume that our one period model is arbitrage-free. Theorem 13.1 implies
that there exists an equivalent martingale measure. Theorem 13.2 implies that
any arbitrage-free price can be written as an expected value EQH for some
equivalent martingale measure Q. Let us find the martingale measure Q, which
is implied by the quadratic hedging.

The density of Q with respect to the underlying physical measure is obtained
from (16.18) as

dQ
dP

(𝜔) = 1
k0

[
1 −

E(ΔX1)
E
(
ΔX2

1
)ΔX1(𝜔)

]
= a − bΔX1(𝜔), (16.20)

where

k0 = 1 −
[E(ΔX1)]2

EΔX2
1

=
Var(ΔX1)

EΔX2
1
,

and

a =
EΔX2

1

Var(ΔX1)
, b =

EΔX1

Var(ΔX1)
. (16.21)

Now, we have found a measure Q such that

C0 = H0 = EP

(
dQ
dP

H1

)
= EQH1 = 1

1 + r
EQC1.

Note that in our notation E = EP.

The Martingale Measure for S&P 500 in the One Period Model Let us estimate the
equivalent martingale measure associated with quadratic hedging using S&P
500 daily data of Section 2.4.1.

4 We can write

H0 = 1
k0

[
EH1 −

E(ΔX1(H1 − EH1))
EΔX2

1
EΔX1 −

(EΔX1)2EH1

EΔX2
1

]

= EH1 −
Cov(H1,ΔX1)

Var(ΔX1)
EΔX1.

Inserting this to (16.19) gives

𝜉 =
Cov(H1,ΔX1)

Var(ΔX1)
.
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A time series of increments ΔX1 = S1∕(1 + r) − S0 is not approximately sta-
tionary when the time series covers a long time period; see Figure 5.2. The time
series of gross returns is nearly stationary, even when the time series extends
over a long time period; see Figure 2.1(b). Thus, we can use historical simulation
to create a time series of increments from the excess gross returns.

We take the interest rate r = 0. We consider a one-step model with the step
of 20 days. The excess gross return is equal to the net return

Rt − 1 =
St

St−20
− 1.

Now,

ΔXt = St − St−20 = St−20(Rt − 1).

Let

ΔXt = 100
( St

St−20
− 1

)

be the increment. Our S&P 500 data provides a sample of identically distributed
observations ΔXt from the distribution of ΔX1. We use non-overlapping incre-
ments.

Let us estimate the density

Z = dQ
dP

of the martingale measure with respect to underlying physical measure of ΔX1.
The estimate is

Ẑ(x) = â − b̂x, x ∈ R,

where â and b̂ are estimates of a and b in (16.21), obtained by replacing the
expectations and variances by sample averages and sample variances.

The underlying physical density of ΔX1 with respect to the Lebesgue
measure can be estimated using the kernel estimate f̂ (x) of (3.43). The density
of the martingale measure with respect to the Lebesgue measure can be
estimated as

q̂(x) = Ẑ(x)f̂ (x), x ∈ R.

Figure 16.2(a) shows the estimate Ẑ of the density of the martingale measure
with respect to the physical measure (dark green). The red curve shows the
case of the Esscher measure and the blue curve the case of the Black–Scholes
measure. The blue curve shows the density of the risk-neutral log-normal
density with respect to the estimated physical measure. These are taken
from Figure 13.1. Panel (b) shows the density q̂ (dashed dark green) and f̂
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Figure 16.2 Martingale measure in the one period model. (a) The density of the quadratic mar-
tingale measure with respect to the physical measure (dark green), Esscher measure (red),
and Black–Scholes measure (blue). (b) The kernel density estimate of the physical measure
(solid dark green), and the corresponding quadratic martingale measure (dashed dark green).
The log-normal physical measure and the corresponding risk-neutral log-normal density are
depicted as solid blue and dashed blue curves, respectively.

(solid dark green). We show also the physical density (solid blue) and the
risk-neutral density (dashed blue) in the Black–Scholes model.

The Martingale Measure in the One Period Binomial Model Let us study the one
period binomial model, as defined in Section 14.2.1. In this model at time 0
the stock has value s0, and at time 1 the stock can take values s1,0 and s1,1,
where s1,0 < (1 + r)s0 < s1,1. The probability of the up movement is p and the
probability of the down movement is 1 − p with 0 < p < 1. Let us denote

D = s1,0∕(1 + r) − s0, U = s1,1∕(1 + r) − s0.

We have that

P(ΔX1 = D) = 1 − p, P(ΔX1 = U) = p.

From (16.20) we obtain that the martingale measure Q satisfies

Q(ΔX1 = x) =
(
𝜎

2 + 𝜇2

𝜎2 − 𝜇

𝜎2 x
)

P(ΔX1 = x),

where 𝜇 = EΔX1, 𝜎2 = Var(ΔX1), and x = U or x = D. We have that

𝜇 = pU + (1 − p)D, 𝜎
2 = p(1 − p)(U − D)2

,

and

𝜎
2 + 𝜇2 = pU2 + (1 − p)D2

.
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Thus,

Q(ΔX1 = U) = D
D − U

=
(1 + r)s0 − s1,0

s1,1 − s1,0
,

Q(ΔX1 = D) =
s1,1 − (1 + r)s0

s1,1 − s1,0
,

which is equal to the martingale measure already derived in (14.18). In fact, the
binomial model is a complete model and there is only one equivalent martingale
measure.

16.1.3 The Two Period Model

We consider pricing and hedging of an European option in the two period
model. The general multiperiod model is considered in Section 16.1.4, and this
presentation includes the two period model as a special case. However, we think
that it is easier to read the presentation of the multiperiod model when the two
period model is presented first.

In the two period model the underlying security takes values S0, S1, and S2.
The price S0 is a fixed number and S1 and S2 are random variables. The option
is written at time 0, and it expires at time 2. Hedging is done at times 0 and 1 by
choosing the hedging coefficients 𝜉1 and 𝜉2. The value of the European option
at the expiration is denoted by C2. For example, in the case of a call option
C2 = max{S2 − K , 0}, where K is the strike price.

16.1.3.1 An Introduction to the Minimization Problem
The minimization problem can be solved either using the value process or by
using the wealth process. The use of the value process is more convenient.

The Minimization Using the Value Process In the two period model the value pro-
cess and the discounted contingent claim are defined as

V0 = W0 = initial wealth,
V1 = V0 + 𝜉1ΔX1,

V2 = V0 + 𝜉1ΔX1 + 𝜉2ΔX2,

H2 = (1 + r)−2C2,

where ΔX1 = X1 − X0, ΔX2 = X2 − X1, X1 = (1 + r)−1S1, and X2 = (1 + r)−2S2.
We want to find V0, 𝜉1, 𝜉2 ∈ R minimizing

E0(V2 − H2)2
. (16.22)

Notation E0 means the unconditional expectation with respect to the underly-
ing measure P, and we denote by E1, the conditional expectation, with respect
to sigma-algebra 1:

E1( ⋅ ) = E( ⋅ |1).
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Unlike in the one period model this minimization problem cannot be con-
sidered as a usual population version of a linear least squares regression. We
can consider ΔX1 and ΔX2 as explanatory variables and H2 as the response
variables, but now intercept V0 and coefficient 𝜉1 are chosen at time 0, and coef-
ficient 𝜉2 is chosen at time 1. In the usual regression problem all parameters are
chosen at time 0.

The minimization problem can be solved in the following way. First, we find
𝜉2 ∈ R minimizing

E1(V1 + 𝜉2ΔX2 − H2)2
.

Let the minimizer be 𝜉2(V0, 𝜉1). The notation indicates that the minimizer
depends on V0 and 𝜉1. Second, we find V0 ∈ R and 𝜉1 ∈ R minimizing

E(V0 + 𝜉1ΔX1 + 𝜉2(V0, 𝜉1)ΔX2 − H2)2
.

The Minimization Using the Wealth Process The wealths at times 0, 1, and 2 are

W0 = 𝜉1 ⋅ S̄0,

W1 = W0 + 𝜉1 ⋅ ΔS̄1,

W2 = W0 + 𝜉1 ⋅ ΔS̄1 + 𝜉2 ⋅ ΔS̄2,

where ΔS̄1 = S̄1 − S̄0, ΔS̄2 = S̄2 − S̄1, S̄1 = (B1, S1), S̄2 = (B2, S2), 𝜉1 = (𝛽1, 𝜉1),
and 𝜉2 = (𝛽2, 𝜉2). We want to find 𝜉1, 𝜉2 ∈ R2 so that

E0(W2 − C2)2

is minimized, under the self-financing constraints. The minimization problem
can be solved in the following way. First, we find 𝜉2 minimizing

E1(W1 + 𝜉2 ⋅ ΔS̄2 − C2)2
,

under the self-financing constraint

𝜉2 ⋅ S̄1 = 𝜉1 ⋅ S̄1.

Let the minimizer be 𝜉2(𝜉1). The notation indicates that the minimizer depends
on 𝜉1. Second, we find 𝜉1 minimizing

E(W0 + 𝜉1 ⋅ ΔS̄1 + 𝜉2(𝜉1) ⋅ ΔS̄2 − C2)2
.

We can now see why it is easier to solve the problem using the value process: It
is possible to apply unconstrained minimization when the value process is used.

16.1.3.2 Solving the Minimization Problem
Let us solve the problem of minimizing (16.22). We have that

min
V0,𝜉1,𝜉2

E0(V2 − H2)2 = min
V0,𝜉1

E0 min
𝜉2

E1(V2 − H2)2
.
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Since

E1(V2 − H2)2 = E1(V1 − H2)2 + 2𝜉2E1[(V1 − H2)ΔX2] + 𝜉2
2 E1ΔX2

2 ,

the minimizer over 𝜉2 ∈ R is

𝜉2 =
E1[(H2 − V1)ΔX2]

E1ΔX2
2

. (16.23)

We have that

min
𝜉2

E1(V2 − H2)2

= E1(V1 − H2)2 −
(E1[(H2 − V1)ΔX2])2

E1ΔX2
2

= k1V 2
1 − 2V1k1H1 + k1H2

1 − k1H2
1 + E1H2

2 −
[E1(H2ΔX2)]2

E1ΔX2
2

= k1(V1 − H1)2 + 𝜖2
1 , (16.24)

where we denote

k1 = 1 −
[E1(ΔX2)]2

E1
(
ΔX2

2
) ,

H1 = 1
k1

[
E1H2 −

E1(ΔX2)E1(ΔX2H2)
E1

(
ΔX2

2
)

]
, (16.25)

and

𝜖
2
1 = E1H2

2 − k1H2
1 −

[E1(H2ΔX2)]2

E1ΔX2
2

.

It holds that

min
𝜉1,𝜉2

E0(V2 − H2)2 = min
𝜉1

E0[k1(V1 − H1)2] + 𝜖2
1 .

Similar calculations which lead to (16.23) show that the minimizer over
𝜉1 ∈ R is

𝜉1 =
E0[(H1 − V0)k1ΔX1]

E0
(
k1ΔX2

1
) . (16.26)

Finally, we have to find V0 minimizing

min
𝜉1

E0[k1(V1 − H1)2].

The minimizer over V0 ∈ R is

H0 = 1
k0

[
E0(k1H1) −

E0(k1ΔX1)E0(k1ΔX1H1)
E0

(
k1ΔX2

1
)

]
, (16.27)
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where

k0 = E0k1 −
[E0(k1ΔX1)]2

E0
(
k1ΔX2

1
) .

Indeed, similar calculations which lead to (16.24) show that

min
𝜉1

E0[k1(V1 − H1)2] = k0(V0 − H0)2 + 𝜖2
0 ,

where

𝜖
2
0 = E0

(
k1H2

1
)
− k0H2

0 −
[E0(k1H1ΔX1)]2

E0
(
k1ΔX2

1
) .

We can summarize the results in the following proposition.

Proposition 16.1 In the two period model the fair price at time 0 is H0 given in
(16.27) and the optimal hedging coefficient is 𝜉1 given in (16.26), when we define
the fair price and the optimality of the hedging coefficient by the mean-squared
error criterion.

Note that hedging at time 1 is not done by coefficient 𝜉2 in (16.23). Instead,
at time 1 we consider the one period model between times 1 and 2, and choose
the hedging coefficient of the one period model, as in (16.16).

16.1.3.3 The Martingale Measure in the Two Period Model
Let us find the martingale measure Q, which is implied by the quadratic hedg-
ing. We have to find such measure Q that the option price is the discounted
expectation with respect to the measure Q:

C0 = H0 = EQH2 = 1
(1 + r)2 EQC2.

We obtain from (16.25) and (16.27) that the density of Q with respect to the
underlying physical measure P is

dQ
dP

= f1|0 ⋅ f2|1,
where

f1|0(𝜔) = k1(𝜔)
k0

[
1 −

E0(k1ΔX1)
E0

(
k1ΔX2

1
)ΔX1(𝜔)

]
,

f2|1(𝜔) = 1
k1(𝜔)

[
1 −

E1(ΔX2)(𝜔)
E1

(
ΔX2

2
)
(𝜔)

ΔX2(𝜔)

]
,
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k0 = E0k1 −
[E0(k1ΔX1)]2

E0
(
k1ΔX2

1
) , k1(𝜔) = 1 −

[E1(ΔX2)(𝜔)]2

E1
(
ΔX2

2
)
(𝜔)

.

In fact,

H0 = E0(H1 f1|0), H1 = E1(H2 f2|1),
which can be written as

H0 = E0 f1|0E1 f2|1H2 = EP

(
dQ
dP

H2

)
= EQH2,

where we use the notation E0 = EP.
When the increments are independent, then the martingale measure Q is

defined by the density
dQ
dP

(𝜔) = f1 ⋅ f2,

where

fi = a − bΔXi,

and

a =
E(ΔX1)2

Var(ΔX1)
, b =

E(ΔX1)
Var(ΔX1)

;

compare this to a and b as defined in (16.21).
A Martingale Measure for S&P 500 in the Two Period Model Let us estimate the
equivalent martingale measure associated with quadratic hedging using S&P
500 daily data of Section 2.4.1. Let us consider a two-step model with two steps
of 10 days. We take interest rate r = 0. Let

ΔX1 = St − St−10, ΔX2 = St−10 − St−20

be the increments. Our S&P 500 data provides a sample of identically dis-
tributed observations from the distribution of ΔX = (ΔX1,ΔX2). We use non-
overlapping increments.

Let us estimate the density

Z(x1, x2) =
dQ
dP

(x1, x2) = f1|0(x1) f2|1(x2, x1)

of martingale measure Q with respect to the physical measure P.
First, we have to estimate E1ΔX2 and E1ΔX2

2 using nonparametric regression.
Let us denote

g(x1) = E(ΔX2 |ΔX1 = x1), h(x1) = E((ΔX2)2 |ΔX1 = x1).
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Let ĝ and ĥ be the kernel regression estimates.5 Then, we obtain the estimate of
k1 as

k̂1(x1) = 1 −
ĝ2(x1)
ĥ(x1)

.

The estimate of f2|1 is

f̂2|1(x2, x1) =
1

k̂1(x1)

(
1 −

ĝ(x1)
ĥ(x1)

x2

)
.

Second, we have to estimate 𝛼 = E0(k1ΔX1), 𝛽 = E0(k1(ΔX1)2), and 𝛾 = E0k1.
The estimates 𝛼̂, 𝛽, and 𝛾̂ are the sample averages. Then, we obtain the estimate
of k0 as

k̂0 = 𝛾̂ − 𝛼̂
2

𝛽

.

The estimate of f1|0 is

f̂1|0(x1) =
k̂1(x1)

k̂0

(
𝛾̂ − 𝛼̂

𝛽

x1

)
.

Now, we have obtained the estimate

Ẑ(x1, x2) = f̂1|0(x1)f̂2|1(x2, x1). (16.28)

The density of the martingale measure with respect to the Lebesgue measure
can be estimated as

q̂(x1, x2) = Ẑ(x1, x2)f̂ (x1, x2), (x1, x2) ∈ R2
,

where f̂ (y1, y2) is a two-dimensional kernel density estimate of the underly-
ing physical measure of (ΔX1,ΔX2). The kernel density estimator is defined in
(3.43).

When the returns are assumed to be independent, then we use the estimate

Ẑ(x1, x2) = f̂ (x1) ⋅ f̂ (x2), (16.29)

5 We apply the kernel regression estimator of (6.20)–(6.21) to define

ĝ(x1) =
n∑

i=1
pi(x1)ΔX2i, ĥ(x1) =

n∑
i=1

pi(x1)(ΔX2i)
2
,

where (ΔX1i,ΔX2i), i = 1,… , n, are the observations from the distribution of (ΔX1,ΔX2),

pi(x1) =
K((x1 − ΔX1i)∕h)∑n
j=1 K((x1 − ΔX1j)∕h)

,

K ∶ R → R is a kernel function and h > 0 is a smoothing parameter.
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Figure 16.3 The quadratic martingale measure: Two period model. Estimates of the density of
the quadratic martingale measure with respect to the physical measure. (a) Increments are
not assumed independent. (b) Increments are assumed to be independent.

where

f̂ (xi) = â − b̂xi,

and â and b̂ are the sample versions of

a =
E(ΔX1)2

Var(ΔX1)
, b =

E(ΔX1)
Var(ΔX1)

.

In the sample versions we replace the means and variances with the sample
means and sample variances.

Figure 16.3 shows estimates of the density of the quadratic martingale
measure with respect to the physical measure. In panel (a) we show estimate
(16.28), which does not assume independence, and in panel (b) we show
estimate (16.29), which assumes independence. In our setting regression
estimation is difficult, and assuming independence leads to a more stable
result. It is clear that the regression estimation could be improved by applying
separate methods for the prediction of the first moment g(x1) and for the
second moment h(x1).

16.1.4 The Multiperiod Model

We have derived the optimal hedging coefficient and the fair price in the
mean-squared error sense for the two period model in Section 16.1.3. It is
straightforward to generalize the results from the two period model to a
general multiperiod model. The hedging coefficients and the fair price are
derived using dynamic programming (backward induction).
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16.1.4.1 Pricing in the Multiperiod Model
Let V = (Vt)t=0,…,T be the value process of a self-financing portfolio:

Vt = V0 +
t∑

k=1
𝜉kΔXk , (16.30)

where

ΔXk = Xk − Xk−1,

and Xk = (1 + r)−kSk . We want to find V0, 𝜉1,… , 𝜉T minimizing

E(VT − HT )2
, (16.31)

where HT = (1 + r)−T CT is the discounted value of the derivative at the expira-
tion.6

When V0, 𝜉1,… , 𝜉T minimize (16.31), then we say that V0 is the fair price in
the mean-squared error sense and 𝜉1 is the optimal hedging coefficient in the
mean squared error sense. The coefficients 𝜉2,… , 𝜉T are needed to derive 𝜉1 in
our backward induction, but they do not equal the optimal hedging coefficients
at times t = 2,… ,T . Instead, at time t = 2 we need to make a new calculation
of coefficients, say 𝜉1,… , 𝜉T−1, where 𝜉1 is the optimal hedging coefficient at
time t = 2.

The following theorem is proved in Černý (2004b, Section 13.4), where d ≥ 1,
so that the number of risky assets is allowed to be larger than one. Černý (2004a)
is an article with the same result, and Bertsimas et al. (2001) contains a simi-
lar kind of result. A similar kind of proof can be found in Schäl (1994), who
considers the case of mean self-financing strategies. The case of independent
increments was considered by Wolczyńska (1998) and Hammarlid (1998).

Theorem 16.2 Let HT = (1 + r)−T CT and let Ht be defined recursively for t =
0,… ,T − 1 by

Ht =
1
kt

[
Et(kt+1Ht+1) −

Et(kt+1ΔXt+1Ht+1)
Et

[
kt+1ΔX2

t+1
] Et(kt+1ΔXt+1)

]
, (16.32)

where kT = 1 and

kt = Etkt+1 −
(Et[kt+1ΔXt+1])2

Et
[
kt+1ΔX2

t+1
] . (16.33)

6 Equivalently, we want to find W0, 𝜉1,… , 𝜉T minimizing

E(WT − CT )
2
,

where WT = (1 + r)T VT is the wealth, and CT = (1 + r)T HT is the value of the option at the expi-
ration.
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Then, the fair price in the mean-squared error sense is H0 and the optimal hedg-
ing coefficient is

𝜉1 =
E0[k1(H1 − H0)ΔX1]

E0
[
k1ΔX2

1
] . (16.34)

Proof . Define JT = (VT − HT )2 and

Jt = min
𝜉t+1

EtJt+1, t = 0,… ,T − 1.

Then,

min
V0,𝜉1,…,𝜉T

E(VT − HT )2 = min
V0

J0 (16.35)

and

𝜉t+1 = argmin
𝜉t+1

EtJt+1.

Indeed,

min
V0,𝜉1,…,𝜉T

E(VT − HT )2 = min
V0,𝜉1,…,𝜉T

EET−1JT

= min
V0,𝜉1,…,𝜉T−1

E min
𝜉T

ET−1JT

= min
V0,𝜉1,…,𝜉T−1

EJT−1,

and we may continue recursively to obtain (16.35). Define 𝜖T = 0 and

𝜖
2
t = Et

[
𝜖

2
t+1

]
+ Et

[
kt+1H2

t+1
]
− ktH2

t −
(Et[kt+1Ht+1ΔXt+1])2

Et
[
kt+1ΔX2

t+1
] , (16.36)

for t = 0,… ,T − 1. We will prove that

Jt = kt(Vt − Ht)2 + 𝜖2
t . (16.37)

This holds for t = T (with kT = 1 and 𝜖T = 0). Make the induction hypothesis
(for backward induction) that

Jt+1 = kt+1(Vt+1 − Ht+1)2 + 𝜖2
t+1.

Write

Vt+1 = Vt + 𝜉t+1ΔXt+1.

Then,

Jt+1 = kt+1
[
(Vt − Ht+1)2 + 2𝜉t+1(Vt − Ht+1)ΔXt+1 + 𝜉2

t+1ΔX2
t+1

]
+ 𝜖2

t+1.

The solution 𝜉t+1 for min
𝜉t+1

EtJt+1 satisfies

Et[kt+1(Vt − Ht+1)ΔXt+1] + 𝜉t+1Et
[
kt+1ΔX2

t+1
]
= 0,
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which gives

𝜉t+1 =
Et[kt+1(Ht+1 − Vt)ΔXt+1]

Et
[
kt+1ΔX2

t+1
] .

Then, we get

Jt =min
𝜉t+1

EtJt+1

= Et[kt+1(Vt − Ht+1)2] −
(Et[kt+1(Ht+1 − Vt)ΔXt+1])2

Et
[
kt+1ΔX2

t+1
] + Et𝜖

2
t+1,

which leads to (16.37). ◽

The Minimal Hedging Error The proof implies that the minimal hedging error is
given by 𝜖2

0 , defined recursively in (16.36). Indeed, from (16.35) and (16.37), we
obtain that

min
W0,𝜉1,…,𝜉T

E(VT − HT )2 = min
W0

J0 = min
W0

(
k0(W0 − H0)2 + 𝜖2

0
)
= 𝜖

2
0 .

The Hedging Coefficients The proof implies that the sequence of quadratic hedg-
ing coefficients is given by

𝜉t+1 =
Et[kt+1(Ht+1 − Ht)ΔXt+1]

Et
[
kt+1ΔX2

t+1
] ,

where t = 0,… ,T − 1. The coefficient 𝜉1 is applied at time 0, and the coeffi-
cients 𝜉2,… , 𝜉T will not be applied, because at time t = 2, we need to construct
a model of T − 1 periods.

Excess Gross Returns and Quadratic Hedging The formulas for the price and the
hedging coefficient are written using the increment

ΔXt+1 = Xt+1 − Xt =
1

(1 + r)t+1 (St+1 − (1 + r)St).

We can write the formulas as well using the excess gross return

Rt+1 =
St+1

St
− (1 + r).

The formulas (16.32) and (16.34) can be written as

Ht =
1
kt

[
Et(kt+1Ht+1) −

Et(kt+1Rt+1)Et(kt+1Rt+1Ht+1)
Et

[
kt+1R2

t+1
]

]
, (16.38)

where kT = 1 and

kt = Etkt+1 −
(Et[kt+1Rt+1])2

Et
[
kt+1R2

t+1
] .
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The fair price in the mean-squared error sense is H0 and the optimal hedging
coefficient at time t = 0 is

𝜉1 =
E0[k1(H1 − H0)R1]

S0E0
[
k1R2

1
] . (16.39)

Indeed, we can multiply by (1 + r)t+1 and divide by St both the nominators and
the denominators, and these terms can be moved inside the conditional expec-
tations Et( ⋅ ), because they are t-measurable.

16.1.4.2 The Martingale Measure
Let us assume that the model is arbitrage-free. Theorem 13.1 says that there
exists an equivalent martingale measure. Let us find the martingale measure Q
associated with quadratic hedging. According to Theorem 13.2 the martingale
measure is such that the option price is the discounted expectation with respect
to the measure:

C0 = H0 = EQHT = 1
(1 + r)T EQCT .

The density of Q with respect to the underlying physical measure is

dQ
dP

=
T−1∏
t=0

ft+1|t,

where

ft+1|t = kt+1

kt

[
1 −

Et(kt+1ΔXt+1)
Et

[
kt+1ΔX2

t+1
]ΔXt+1

]
.

In fact, (16.32) in Theorem 16.2 implies that

H0 = E0(H1 f1|0),
H1 = E1(H2 f2|1),

⋮

HT−1 = ET−1(HT fT|T−1),

which can be written as

H0 = E0 f1|0E1 f2|1 · · ·ET−1 fT|T−1HT = EP

(
dQ
dP

HT

)
= EQHT ,

where we use the notation E0 = EP. We can derive a similar expression for the
density using the excess gross returns Rt+1 instead of increments ΔXt+1: we can
apply (16.38).
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16.1.4.3 Simplifying Assumptions
We can simplify the price formula (16.32) and the hedging formula (16.34)
making restrictive assumptions on the increments ΔX1,… ,ΔXT . These
assumptions are the martingale assumption, the assumption of a deterministic
mean–variance ratio, the assumption of independence, and the assumption of
independence and identical distribution.

Similar simplifications can be made to the formulas (16.38) and (16.39) when
the assumptions are made on the process R1,… ,RT of the gross returns.7

Quadratic Hedging Under the Martingale Assumption Let us assume that X =
(Xt)t=0,…,T is a martingale with respect to the underlying physical measure P.
Then,

EtXt+1 = Xt , t = 0,… ,T − 1,

P-almost surely. Thus,

EtΔXt+1 = 0, t = 0,… ,T − 1.

Now, we have that kt = 1, and

Ht = EtHt+1.

This implies that the option price is the expected value:

C0 = H0 = EHT = 1
(1 + r)T ECT .

The first hedging coefficient is

𝜉1 =
E[(H1 − H0)ΔX1]

E
(
ΔX2

1
) =

Cov(H1,ΔX1)
Var(ΔX1)

=
Cov(C1, S1)

Var(S1)
,

where H1 = E1HT , and H0 = EH1. The expression for 𝜉1 is the same as in the
one period model; see (16.19), (16.10), and (16.12). Using the rule of iterated
expectations we can also write

𝜉1 =
Cov(HT ,ΔX1)

Var(ΔX1)
.

We can derive the result easily without using Theorem 16.2. Indeed,

E(V0 + GT (𝜉) − HT )2 = E(V0 − HT )2 + 2E[(V0 − HT )GT (𝜉)] + EGT (𝜉)2
,

7 For example, the assumption about independence of the increments and independence of gross
returns are not equivalent. Consider the random walk model for the stock price: St = S0 +

∑t
i=1 𝜖i,

where S0 > 0 is a constant, and 𝜖i are independent. Now, St+1 − St = 𝜖t+1, and thus the increments
are independent. However, the gross returns St+1∕St are not independent. Consider the geometric
random walk model for the stock price: St = S0 exp

{∑t
i=1 𝜖i

}
.Now, St+1∕St = exp{𝜖t+1}, and thus

the gross returns are independent. However, the increments St+1 − St are not independent.
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where GT (𝜉) =
∑T

t=1 𝜉tΔXt . Under the martingale assumption,

EGT (𝜉)2 = E
T∑

t=1
𝜉tEt−1(ΔXt)2

.

Also,

E[(V0 − HT )GT (𝜉)] = E
T∑

t=1
𝜉tEt−1[(V0 − Ht)ΔXt].

Thus, we obtain a sum of similar one period optimizations as in (16.15).

Deterministic Mean–Variance Ratio Let us denote

𝜇t = Et−1ΔXt , 𝜎
2
t = Vart−1(ΔXt).

Let us assume that the ratio
𝜇

2
t

𝜎
2
t

is deterministic for t = 1,… ,T . This assumption is made in Föllmer and Schied
(2002, Proposition 10.40, p. 396) to derive an expression for the variance-
optimal hedging strategy. Note that the mean–variance ratio was used in (16.7)
to formulate a sufficient condition for the existence and uniqueness of the
variance-optimal hedging strategy (the bounded mean–variance trade-off).
Under the assumption of a deterministic mean–variance ratio it holds that kt
in (16.33) is deterministic. In fact, now kT = 1, and

kt = kt+1

(
1 −

(Et[ΔXt+1])2

Et
[
ΔX2

t+1
]
)

= kt+1
𝜎

2
t+1

𝜇
2
t+1 + 𝜎

2
t+1
, t = T − 1,… , 0.

That is,

kt =
T−1∏
i=t

𝜎
2
i+1

𝜇
2
i+1 + 𝜎

2
i+1
, t = 0,… ,T − 1.

Values Ht are defined recursively for t = 0,… ,T − 1 by

Ht =
kt+1

kt

[
Et(Ht+1) −

Et(ΔXt+1Ht+1)
Et

[
ΔX2

t+1
] Et(ΔXt+1)

]
, (16.40)

where we start at HT = (1 + r)−T CT . The fair price in the mean-squared error
sense is H0 and the optimal hedging coefficient is

𝜉1 =
E[(H1 − H0)ΔX1]

E
[
ΔX2

1
] . (16.41)
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Independent Increments Let us assume that the increments of discounted prices

ΔXt = Xt − Xt−1 = 1
(1 + r)t (St − (1 + r)St−1), t = 1,… ,T ,

are independent. Assume that the sigma-algebras are generated by the
price process: t = 𝜎(S1,… , St) = 𝜎(X1,… ,Xt). Then, the independence of
increments implies that the conditional expectations reduce to unconditional
expectations, and

𝜇t = Et−1ΔXt , 𝜎
2
t = Vart−1(ΔXt)

are deterministic. Thus, the ratio𝜇2
t ∕𝜎2

t is deterministic, and we obtain the price
and hedging formulas (16.40) and (16.41).

i.i.d. Increments Let us assume that the increments of discounted pricesΔXt are
independent and identically distributed. Let us denote

EtΔXt+1 = 𝜇, Vart(ΔXt+1) = 𝜎
2
.

We have that

kt+1

kt
=

Et
[
ΔX2

t+1
]

Vart(ΔXt+1)
= 𝜎

2 + 𝜇2

𝜎2 .

The price and hedging formulas are obtained from (16.40) and (16.41). Values
Ht are defined recursively for t = 0,… ,T − 1 by

Ht =
𝜎

2 + 𝜇2

𝜎2 E
[

Ht+1

(
1 − 𝜇

𝜎2 + 𝜇2 ΔXt+1

)]
,

where we start at HT = (1 + r)−T CT . The fair price in the mean-squared error
sense is H0 and the optimal hedging coefficient is

𝜉1 =
E[(H1 − H0)ΔX1]

E
[
ΔX2

1
] .

The density of the martingale measure Q with respect to the underlying phys-
ical measure is

dQ
dP

=
T∏

t=1
ft,

where

ft =
𝜎

2 + 𝜇2

𝜎2

[
1 − 𝜇

𝜎2 + 𝜇2 ΔXt

]
.
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16.2 Local Quadratic Hedging

Local quadratic hedging applies a much simpler recursive scheme for minimiz-
ing the quadratic hedging error than global quadratic hedging of Section 16.1.
Local quadratic hedging solves the minimization only approximately. This
numerical error could be compensated if a more accurate statistical estimation
is possible.

Local quadratic hedging reduces the minimization of quadratic hedging
error to a series of minimizations in one period models. Thus, in the one
period model global and local quadratic hedging are identical. We introduce
local quadratic hedging using the two period model, and after that cover the
multiperiod model.

16.2.1 The Two Period Model

We introduce local quadratic hedging using the two period model. In the
two period model the value process and the discounted contingent claim are
defined as

V0 = W0 = initial wealth,
V1 = V0 + 𝜉1ΔX1,

V2 = V0 + 𝜉1ΔX1 + 𝜉2ΔX2,

H2 = (1 + r)−2C2,

where ΔX1 = X1 − X0, ΔX2 = X2 − X1, X1 = (1 + r)−1S1, and X2 = (1 + r)−2S2.
In local quadratic hedging the minimization is done in two steps.

1) First, we find H1 ∈ R and 𝜉2 ∈ R minimizing

E1(H1 + 𝜉2ΔX2 − H2)2
.

This is the population version of a linear least-squares regression with the
response variable H2 and the explanatory variable ΔX2. The minimizers are

𝜉2 =
Cov1(H2,ΔX2)

Var1(ΔX2)
, H1 = E1H2 − 𝜉2E1ΔX2.

2) Second, we find H0 ∈ R and 𝜉1 ∈ R minimizing

E(H0 + 𝜉1ΔX1 − H1)2
.

This is the population version of a linear least-squares regression with the
response variable H1 and the explanatory variable ΔX1. The minimizers are

𝜉1 =
Cov0(H1,ΔX1)

Var0(ΔX1)
, H0 = E0H1 − 𝜉1E0ΔX1.
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The minimization problems are easier to solve than in the case of global
quadratic hedging. However, we are not able to minimize

E(V2 − H2)2
,

but only to minimize it approximately.
We can write the price of the discounted contingent claim obtained by local

quadratic hedging as

H0 = E0H2 − E0(𝜉2E1ΔX2) − 𝜉1E0ΔX1. (16.42)

The first hedging coefficient 𝜉1 can be written as

𝜉1 =
Cov0(H2,ΔX1)

Var0(ΔX1)
−

Cov0(𝜉2ΔX2,ΔX1)
Var0(ΔX1)

. (16.43)

The hedging coefficients 𝜉1 and 𝜉2 give the number of stocks in the hedging
portfolio. The number of bonds 𝛽1 and 𝛽2 are obtained from the self-financing
restrictions as in (16.3):

𝛽1 = H0 − 𝜉1X0

= E0H2 − E0(𝜉2E1ΔX2) − 𝜉1E0X1,

𝛽2 = 𝛽1 + (𝜉1 − 𝜉2)X1 (16.44)
= E0H2 − E0(𝜉2E1X2) + E0(𝜉2X1) − 𝜉2X1 + 𝜉1(X1 − E0X1).

16.2.1.1 A Comparison to the Global Quadratic Hedging
To highlight the difference between the local and the global quadratic hedging,
let us recall the global quadratic hedging of Section 16.1. In the global quadratic
hedging we want to find V0, 𝜉1, 𝜉2 ∈ R minimizing

E0(V2 − H2)2
. (16.45)

The minimization problem can be solved in two steps. First, we find 𝜉2 ∈ R
minimizing

E1(V1 + 𝜉2ΔX2 − H2)2
.

Let the minimizer be 𝜉2(V0, 𝜉1). The minimizer depends on V0 and 𝜉1. Second,
we find V0 ∈ R and 𝜉1 ∈ R minimizing

E0(V0 + 𝜉1ΔX1 + 𝜉2(V0, 𝜉1)ΔX2 − H2)2
.

The quadratic price is V0.

16.2.1.2 The Martingale Measure
Let us study the martingale measure Q implied by the local hedging. The density
of the martingale measure with respect to the physical measure P is

dQ
dP

= f1|0f2|1,
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where

ft|t−1 = at−1 − bt−1ΔXt ,

with

at−1 =
Et−1ΔX2

t

Vart−1(ΔXt)
, bt−1 =

Et−1ΔXt

Vart−1(ΔXt)
,

for t = 1, 2. The derivation of the martingale measure is given in (16.55) for the
multiperiod model.

We can write the density in terms of the excess gross return. Namely,

ft|t−1 = at−1 − bt−1Rt ,

where

Rt =
St

St−1
− (1 + r),

and

at−1 =
Et−1R2

t

Vart−1(Rt)
, bt−1 =

Et−1Rt

Vart−1(Rt)
,

for t = 1, 2. This is possible, because the denominator and nominator can be
multiplied by the square of (1 + r)∕St−1, which is t−1-measurable, and can be
placed inside Et−1.

A Martingale Measure for S&P 500: Two Steps Let us estimate the equivalent mar-
tingale measure associated with quadratic hedging using S&P 500 daily data of
Section 2.4.1. Let us consider a two-step model with two steps of 10 days. We
choose interest rate r = 0. Let

ΔX1 = St − St−10, ΔX2 = St−10 − St−20

be the price increments, where t − 20 is the current time. When t runs through
a long time period the observations are not stationary, but we can use our S&P
500 data to provide a sample of identically distributed observations of ΔX =
(ΔX1,ΔX2). We use non-overlapping increments. The observations are

ΔX1t = 100
( St

St−10
− 1

)
, ΔX2t = 100

(St−10

St−20
− 1

)
.

Let us estimate the density

Z(y1, y2) =
dQ
dP

(y1, y2) = f1|0(y1)f2|1(y2, y1)

of martingale measure Q with respect to the physical measure P.
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First, we have to estimate E1ΔX2 and E1(ΔX2)2 using nonparametric regres-
sion. Let us denote

g(y1) = E(ΔX2 |ΔX1 = y1), h(y1) = E((ΔX2)2 |ΔX1 = y1).

Let ĝ and ĥ be the kernel regression estimates.8 Then, we obtain the estimates
of a1 and b1 as

â1(y1) =
ĥ(y1)

ĥ(y1) + ĝ2(y1)
, b̂1(y1) =

ĝ(y1)
ĥ(y1) + ĝ2(y1)

,

The estimate of f2|1 is

f̂2|1(y2, y1) = â1(y1) + b̂1(y1)y2.

Second, we have to estimate 𝛼 = E0(ΔX1) and 𝛽 = E0(ΔX2
1 ). The estimates 𝛼̂

and 𝛽 are the sample averages. Then, we obtain the estimates of a0 and b0 as

â0 = 𝛽

𝛽 + 𝛼̂2
, b̂0 = 𝛼̂

𝛽 + 𝛼̂2
.

The estimate of f1|0 is

f̂1|0(y1) = â0 + b̂0y1.

Now, we have obtained the estimate

Ẑ(y1, y2) = f̂1|0(y1)f̂2|1(y2, y1).

The density of the martingale measure with respect to the Lebesgue measure
can be estimated as

q̂(y1, y1) = Ẑ(y1, y2)f̂ (y1, y2), (y1, y2) ∈ R2
,

where f̂ (y1, y2) is a two-dimensional kernel density estimate of the underly-
ing physical measure of (ΔX1,ΔX2). The kernel density estimator is defined
in (3.43).

Figure 16.4 shows estimates of the density of the local quadratic martingale
measure with respect to the physical measure. Panel (a) shows a contour plot
and panel (b) shows a perspective plot.

8 We apply the kernel regression estimator of (6.20) and (6.21) to define

ĝ(y1) =
n∑

i=1
pi(y1)Y2i, ĥ(y1) =

n∑
i=1

pi(y1)Y
2
2i,

pi(y1) =
K((y1 − Y1i)∕h)∑n
j=1 K((y1 − Y1j)∕h)

,

where (Y1i,Y2i), i = 1,… , n, are the observations of (ΔX1,ΔX2), K ∶ R → R is a kernel function and
h > 0 is a smoothing parameter.
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Figure 16.4 A local quadratic martingale measure: Two period model. (a) A contour plot; (b)
a perspective plot. Estimates of the density of the local quadratic martingale measure with
respect to the physical measure.

16.2.2 The Multiperiod Model

Let

HT = 1
(1 + r)T CT

be the discounted value of the derivative at the expiration. We define recursively
values Ht−1 and 𝜉t , t = T ,… , 1, starting with the value HT . Let Ht−1 and 𝜉t be
the minimizers of

Et−1(Ht−1 + 𝜉tΔXt − Ht)2
,

for t = T ,… , 1, over Ht−1, 𝜉t ∈ R, where

ΔXt = Xt − Xt−1, Xt =
St

(1 + r)t .

This is a conditional population least-squares linear regression problem with
the response variable Ht and the explanatory variable ΔXt . The problem is sim-
ilar to the minimization problem in the one period model of Section 16.1.2, but
now we are conditioning on t−1. The solutions are

𝜉t =
Covt−1(ΔXt ,Ht)

Vart−1(ΔXt)
and

Ht−1 = Et−1Ht − 𝜉tEt−1ΔXt .

Value H0 is the price suggested by local quadratic hedging and 𝜉1 is the hedging
coefficient at time 0, which is suggested by local quadratic hedging.
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We can write 𝜉t using the undiscounted prices St and Ct as

𝜉t =
Covt−1(St ,Ct)

Vart−1(St)
, (16.46)

where

Ct−1 = (1 + r)−1Et−1Ct + 𝜉t
(
St−1 − (1 + r)−1Et−1St

)
. (16.47)

The price can be written as:9

H0 = E0HT −
T−1∑
t=0

E0(𝜉t+1ΔXt+1). (16.48)

The hedging coefficients can be written as10

𝜉t =
1

Vart−1(ΔXt)

(
Covt−1(HT ,ΔXt) −

T−1∑
u=t

Covt−1(𝜉u+1ΔXu+1,ΔXt)

)
.

When t are independent, then

𝜉t =
Covt−1(HT ,ΔXt)

Vart−1(ΔXt)
, (16.49)

where t = 1,… ,T , and the price is

H0 = E0HT −
T−1∑
t=0

𝜉t+1E0(ΔXt+1). (16.50)

Also, similarly as in (14.34), when t are independent,

𝜉t =
Covt−1(HT ,XT )

(T − t + 1)Vart−1(ΔXt)
,

where t = 1,… ,T .

9 In fact, let us make the induction assumption that the formula holds for the T − 1 period models.
Then,

H1 = E1HT −
T−1∑
t=1

E1(𝜉t+1ΔXt+1).

On the other hand, H0 = E0H1 − 𝜉1E0ΔX1.

10 We combine

𝜉t =
Covt−1(ΔXt ,Ht)

Vart−1(ΔXt)

and the generalization of (16.48) to 0 ≤ t ≤ T − 1:

Ht = EtHT −
T−1∑
u=t

Et(𝜉u+1ΔXu+1).
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16.2.2.1 A Comparison to Black–Scholes
We compare the quadratic prices and hedging coefficients to the Black–Scholes
prices and hedging coefficients. We assume the independence of increments
and use formulas (16.49) and (16.50). We apply S&P 500 daily data of
Section 2.4.1. The Black–Scholes prices and deltas are computed using the
annualized standard deviation as the volatility.

Figure 16.5 compares quadratically optimal prices to Black–Scholes prices.
Panel (a) shows the quadratically optimal prices (black) and the Black–Scholes
prices (red) as a function of moneyness S∕K . Time to expiration is 20 trading
days. Panel (b) shows the ratios of the quadratically optimal prices to the
Black–Scholes prices as a function of moneyness. Time to expiration is 20
days (black), 40 days (red), 60 days (blue), and 80 days (green). We see from
panel (b) that when the moneyness is less than one, then the quadratic prices
are less than the Black–Scholes prices. When the moneyness is about 0.95,
then increasing the time to expiration makes the ratio of the quadratic prices
to the Black–Scholes prices increase.

Figure 16.6 compares quadratic hedging coefficients to Black–Scholes hedg-
ing coefficients. Panel (a) shows the quadratic hedging coefficients (black) and
the Black–Scholes hedging coefficients (red) as a function of moneyness S∕K .
Time to expiration is 20 trading days. Panel (b) shows the ratios of the quadratic
hedging coefficients to the Black–Scholes hedging coefficients as a function of
moneyness. Time to expiration is 20 days (black), 40 days (red), 60 days (blue),
and 80 days (green). We see from panel (b) that when the moneyness is about
one, then increasing the time to expiration makes the ratio of the quadratic
hedging coefficient to the Black–Scholes hedging coefficient increase. When
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Figure 16.5 Call prices. (a) The quadratic prices (black) and the Black–Scholes prices (red) as a
function of moneyness S∕K . (b) The ratios of the quadratic prices to the Black–Scholes prices.
Time to expiration is 20 days (black), 40 days (red), 60 days (blue), and 80 days (green).
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Figure 16.6 Hedging coefficients. (a) The quadratic hedging coefficients (black) and the
Black–Scholes hedging coefficients (red) as a function of moneyness S∕K . (b) The ratios of the
quadratic hedging coefficients to the Black–Scholes hedging coefficients. Time to expiration
is 20 days (black), 40 days (red), 60 days (blue), and 80 days (green).

the moneyness is less than 0.95 and the time to expiration is 20 days, then the
quadratic hedging coefficient is much larger than the Black–Scholes hedging
coefficient.

16.2.2.2 Square Integrability
The local quadratic trading strategy needs to be square integrable, in the sense
of assumption (16.6). The square integrability is studied in Föllmer and Schied
(2002, Proposition 10.10, p. 377). In fact, in order to guarantee the satisfaction
of (16.6), it is enough to assume

(
Et−1ΔXt

)2
≤ C Vart−1(ΔXt) (16.51)

P-almost surely, for t = 1,… ,T , for a constant C. Condition (16.51) of the
bounded mean–variance trade-off appeared already in (16.7), where it was
stated to guarantee the existence of a global quadratic trading strategy. Denote
𝜎

2
t = Vart−1(ΔXt). Assumption (16.51) implies that Et−1(ΔXt)2 ≤ (1 + C)𝜎2

t .

Thus we have for the local quadratic hedging coefficients 𝜉t that

E(𝜉tΔXt)2 = E
[

I{𝜎2
t ≠0}

Covt−1(Ht,ΔXt)2

𝜎
4
t

Et−1(ΔXt)2
]

≤ (1 + C)E
[Covt−1(Ht,ΔXt)2

𝜎
2
t

]
≤ (1 + C)EVart−1(Ht),
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where we used for the first equality the law of the iterated expectations, and for
the third inequality the Cauchy–Schwarz inequality. Thus, the square integra-
bility of HT implies the square integrability of 𝜉TΔXT , which implies the square
integrability of HT−1. The backward induction shows that the square integra-
bility of HT implies the square integrability of 𝜉tΔXt for t = T ,… , 1, under
assumption (16.51).

16.2.2.3 The Equivalent Martingale Measure
Let us find the equivalent martingale measure Q implied by the local quadratic
hedging. The density of the martingale measure with respect to the physical
measure P is

dQ
dP

=
T∏

t=1
ft|t−1, (16.52)

where

ft|t−1 = at − btΔXt ,

with

at =
Et−1ΔX2

t

Vart−1(ΔXt)
, bt =

Et−1ΔXt

Vart−1(ΔXt)
. (16.53)

In order that density dQ∕dP is positive we have to assume that

ΔXtEt−1(ΔXt) < Et−1ΔX2
t (16.54)

P-almost surely on {Vart−1(ΔXt) ≠ 0}. Otherwise, Q would be a signed measure
and not a probability measure.

A Derivation of the Equivalent Martingale Measure Let us show that

H0 = EQHT .

This follows because we can write

Ht−1 = Et−1Ht −
Covt−1(Ht,ΔXt)

Vart−1(ΔXt)
Et−1ΔXt

=
( Et−1ΔX2

1

Vart−1(ΔX1)
+

(Et−1ΔXt)2

Vart−1(ΔXt)

)
Et−1Ht

−
Et−1(ΔXt(Ht − Et−1Ht))

Vart−1(ΔXt)
Et−1ΔXt

=
Et−1ΔX2

1

Vart−1(ΔX1)
Et−1Ht −

Et−1(ΔXtHt)
Vart−1(ΔXt)

Et−1ΔXt

= atEt−1Ht − btEt−1(ΔXtHt)
= Et−1[Ht(at − btΔXt)]. (16.55)



592 16 Quadratic and Local Quadratic Hedging

Now, we have

H0 = E0(H1 f1|0)
H1 = E1(H2 f2|1)

⋮ (16.56)
HT−1 = ET−1(HT fT|T−1),

which can be written as

H0 = E0 f1|0E1 f2|1 · · ·ET−1 fT|T−1HT = EP

(
dQ
dP

HT

)
= EQHT ,

where we use the notation E0 = E = EP. Note that (16.56) implies that

Ht = Et ft+1|t · · ·ET−1 fT|T−1HT = EQ(HT |t). (16.57)

Characterizations of the Equivalent Martingale Measure Measure Q in (16.52)
can be characterized as a minimal martingale measure. Föllmer and Schied
(2002, Definition 10.21, p. 382) define a minimal martingale measure to be
such measure Q which is equivalent to P, E(dQ∕dP)2

< ∞, and such that every
square integrable P-martingale M which is strongly orthogonal to X is also a
Q-martingale. The strong orthogonality of M and X means that

Covt(Mt+1 − Mt,Xt+1 − Xt) = 0

P-almost surely, for t = 0,… ,T − 1.
Föllmer and Schied (2002, Theorem 10.22, p. 383) states that if Q is a minimal

martingale measure, then (16.57) holds. Föllmer and Schied (2002, Corollary
10.28, p. 388) states that there exists at most one minimal martingale measure.

Föllmer and Schied (2002, Theorem 10.30, p. 390) proves the existence and
the uniqueness of a minimal martingale measure, and gives formula (16.58) for
the density of the minimal martingale measure. Let us assume the condition
(16.54) of positivity and the condition (16.51) of the bounded mean–variance
trade-off. Then there exists a unique minimal martingale measure Q with
density

dQ
dP

= ZT , (16.58)

where Z0 = 1 and

Zt =
t∏

i=1
(1 + Λi − Λi−1), t = 1,… ,T ,

with Λ0 = 1 and

Λt = 1 −
t∑

i=1
bi(Yi − Yi−1), t = 1,… ,T .
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where bi is defined in (16.53), and Y is the martingale part of the Doob decom-
position of X. The Doob decomposition of X is

X = Y + B,

where Y is a martingale and B is predictable. The Doob decomposition is
defined as

Yt = X0 +
t∑

i=1
(Xi − Ei−1Xi), Bt =

t∑
i=1

(Ei−1Xi − Xi−1),

where t = 1,… ,T , Y0 = X0, and B0 = 0; see Föllmer and Schied (2002, Propo-
sition 6.1, p. 277).

Now we can show that the measure in (16.52) is the same as the minimal
martingale measure in (16.58). Indeed,

1 + Λt − Λt−1 = 1 − bt(Yt − Yt−1) = 1 − bt(Xt − Et−1Xt)

and

ft|t−1 = at − btΔXt

= 1 − bt

(1 − at

bt
+ ΔXt

)
= 1 − bt(ΔXt − Et−1ΔXt)
= 1 − bt(Xt − Et−1Xt).

16.2.3 Local Quadratic Hedging without Self-Financing

It is of interest to note that when we define a local quadratic hedging without
self-financing, then the price will be the same, the hedging coefficients of the
stocks will be the same, and only the hedging coefficients of the bonds will be
different. A local quadratic hedging without self-financing can be defined in a
similar way as the local quadratic hedging with self-financing, but we replace
the value process with the wealth process.

16.2.3.1 Backward Induction
Let us consider the two period model with T = 2. Let us describe local
quadratic hedging when the wealth process is used. The wealth at times 0, 1,
and 2 is equal to

W0 = 𝜉1 ⋅ S̄0 = 𝛽1 + 𝜉1S0,

W1 = 𝜉1 ⋅ S̄1 = 𝛽1(1 + r) + 𝜉1S1,

W2 = 𝜉2 ⋅ S̄2 = 𝛽2(1 + r)2 + 𝜉2S2.

The self-financing condition would state that 𝛽2 and 𝜉2 should be chosen so that

𝛽2(1 + r) + 𝜉2S1 = 𝛽1(1 + r) + 𝜉1S1.
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In local quadratic hedging without self-financing we first find 𝛽2 ∈ R and
𝜉2 ∈ R minimizing

E1(W2 − C2)2 = E1
(
𝛽2(1 + r)2 + 𝜉2S2 − C2

)2
.

This is the population version of a linear least-squares regression with the
response variable C2 and the explanatory variable S2. The minimizers are

𝜉2 =
Cov1(C2, S2)

Var1(S2)
, 𝛽2 = (1 + r)−2(E1C2 − 𝜉2E1S2).

Let us denote

C1 = 𝛽2(1 + r) + 𝜉2S1.

Term C1 is obtained by “discounting” term 𝛽2(1 + r)2 + 𝜉2S2. Second, we find
𝛽1 ∈ R and 𝜉1 ∈ R minimizing

E0(W1 − C1)2 = E0
(
𝛽1(1 + r) + 𝜉1S1 − C1

)2
.

This is the population version of a linear least-squares regression with the
response variable C1 and the explanatory variable S1. The minimizers are

𝜉1 =
Cov0(C1, S1)

Var0(S1)
, 𝛽1 = (1 + r)−1(E0C1 − 𝜉1E0S1).

The optimal price in the local quadratic sense is

C0 = 𝛽1 + 𝜉1S0.

Term C0 is obtained by “discounting” term 𝛽1(1 + r) + 𝜉1S1. The price can be
written as

C0 = E0H2 − E0(𝜉2E1ΔX2) − 𝜉1E0ΔX1.

The price is equal to the price which is obtained with the self-financing condi-
tion, as can be seen from (16.42). The first hedging coefficient can be written as

𝜉1 =
Cov0(C2, S1)

Var0(S1)
−

Cov0(𝜉2((1 + r)−1S2 − S1), S1)
Var0(S1)

.

The hedging coefficient is equal to the hedging coefficient in (16.43), which is
obtained with the self-financing restriction.

16.2.3.2 A Comparison with the Case of Self-Financing
We have seen that the price C0 and the hedging coefficients 𝜉1 and 𝜉2 are the
same whether the self-financing restriction is imposed or not. What about the
coefficients 𝛽1 and 𝛽2? The quantities of the bonds are given by

𝛽1 = E0H2 − E0(𝜉2E1ΔX2) − 𝜉1E0X1,

𝛽2 = E1H2 − 𝜉2E1X2.
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The quantities can be compared to the quantities when the self-financing con-
dition holds, given in (16.44) as

𝛽1 = E0H2 − E0(𝜉2E1ΔX2) − 𝜉1E0X1,

𝛽2 = E0H2 − E0(𝜉2E1X2) + E0(𝜉2X1) − 𝜉2X1 + 𝜉1(X1 − E0X1).

We see that 𝛽1 are equal, but 𝛽2 are different.11

16.2.3.3 Mean Self-Financing
We have obtained a hedging strategy that is not self-financing, but it is mean
self-financing, as defined in (16.5). Indeed,

E1(𝛽2(1 + r)2 + 𝜉2S2 − C2) = 0,
E0(𝛽1(1 + r) + 𝜉1S1 − C1) = 0,

because E1(𝜉2S2) = 𝜉2E1S2 and E0(𝜉1S1) = 𝜉1E0S1 since 𝜉2 is 1-measurable and
𝜉1 is 0-measurable.

16.3 Implementations of Local Quadratic Hedging

We have derived formulas for the quadratic price and the quadratic hedging
coefficient. The formulas are not in a closed form but their application requires
numerical methods. In addition, the formulas depend on the knowledge of the
unknown data generating mechanism, and we need to use statistical methods
to estimate the data generating mechanism.

We implement only the local quadratic hedging, both for the case when the
increments are assumed to be independent, and for the case when the incre-
ments are assumed to be dependent.

Section 16.3.1 describes the basic setting of historical simulation.
Section 16.3.2 describes numerical and statistical methods for the case
of independent increments. Section 16.3.3 considers the case of dependent

11 We can obtain a modification of the local quadratic hedging without self-financing by changing
the optimization problem to be such that the additional cost is minimized. Let us define the expense
process (cost process) by

E0 = C0 = 𝛽1 + 𝜉1S0,

E1 = C1 − W1 = 𝛽2(1 + r) + 𝜉2S1 − (𝛽1(1 + r) + 𝜉1S1),
E2 = C2 − W2 = C2 − 𝛽2(1 + r)2 + 𝜉2S2.

Let us define the objective function

E(C1 − W1)
2 + E(C2 − W2)

2
,

which is to be minimized with respect to 𝜉1, 𝜉2, 𝛽1, and 𝛽2. However, this optimization problem is
not easier to solve than the global quadratic optimization.
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increments. Section 16.3.4 compares the implementations of quadratic pricing
and hedging to some benchmarks.

16.3.1 Historical Simulation

To implement quadratic hedging we use historical simulation. Analogously,
Monte Carlo simulation could be applied. In Monte Carlo simulation a statis-
tical model is imposed, and sequences of observations are generated from the
model. In historical simulation only the previous observations are used.

A similar type of implementation has been described in Potters et al. (2001),
where price functions Ht(s) and hedging functions 𝜉t+1(s) are estimated using
an expansion with basis functions, whereas we use kernel estimation. Also, we
implement a method where the price function and the hedging function depend
on volatility, so that they have the form Ht(s, 𝜎) and 𝜉t+1(s, 𝜎).

16.3.1.1 Generating Sequences of Observations
We denote the time series of observed historical daily prices by S0,… , SN . The
price SN is the current price. We construct N − T sequences of prices:

i = (Si,i,… , Si,i+T ), i = 1,… ,N − T , (16.59)

where

Si,i+j = SN ⋅ Si+j∕Si, j = 0,… ,T .

Each sequence consists of T + 1 values, and the initial price in each sequence
is Si,i = SN .

We may choose to use less than N − T sequences, to make computation
faster. Note that N − T sequences are overlapping, so that the use of the all
possible N − T sequences may not increase statistical accuracy much, as com-
pared for using a lesser number of sequences. We may construct M ≤ N − T
sequences of prices, and to get non-overlapping sequences we may choose
M = [(N − T)∕T], and choose index i to take the values i = 1 + (l − 1)T , for
l = 1,… ,M.

16.3.1.2 The State Variable
With sequence S0,… , SN of prices there is an associated sequence Z0,… ,ZN
of state variables. Each Zi can be a vector. We have constructed sequences i,
which all start at the current stock price SN . The values of the state variables
that correspond to sequence i are

Zi,… ,Zi+T .
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To utilize the information in the state variables, we use only those sequences
i that are such that at time i the value of the vector Zi of state variables is close
to the current value ZN of the state variables. Let  be the collection of those
times:

 = {i = 1,… ,N − T ∶∥ ZN − Zi ∥≤ h},

where h > 0 is the radius of the window, and ∥ ⋅ ∥ is the Euclidean distance.
For example, we can choose the state variable to be the logarithm of the cur-

rent prediction of volatility:

Zi = log 𝜎̂i+1,

where 𝜎̂i+1 is estimated using the observed prices S0,… , Si. For instance, we
can apply the GARCH(1, 1) volatility estimate.12 Then  is defined as

 = {i = 1,… ,N − T ∶ | log(𝜎̂N+1) − log(𝜎i+1)| ≤ h},

where h > 0 is the radius of the window. This is similar to the nonparametric
GARCH-pricing in Section 15.3.

16.3.1.3 Heuristic Discussion
We want to solve a series of linear regression problems

Ht+1 = Ht + 𝜉t+1ΔXt+1 + errort+1, (16.60)

for t = T − 1,… , 0, where ΔXt+1 = Xt+1 − Xt . These regression problems are
conditional on Xt = x and Zt = z. The solutions are functions Ĥt = Ĥt(x, z) and
𝜉t+1 = 𝜉t+1(x, z), where x is the discounted value of the stock and z is the value
of the state variable. The sample version of the regression problem is

Ht+1(Xi,t+1,Zi+t+1) = Ht(Xi,t,Zi+t) + 𝜉t+1(Xi,t,Zi+t)ΔXi,t+1 + errori,t+1,

where i = 1,… ,N − T , and t = T − 1,… , 0.
In analogy, consider first the standard linear regression model

Y = 𝛼 + 𝛽X + error.

12 We obtain GARCH(1, 1) volatility estimates recursively by

𝜎̂
2
i+1 = 𝛼̂0,i + 𝛼̂1,iR

2
i + 𝛽i𝜎̂

2
i ,

where Ri = Si∕Si−1 − 1, i = 1,… ,N . Prediction 𝜎̂2
i+1 is made at time i, and it predicts the volatility

at time i + 1. In order to obtain initial estimates of parameters 𝛼0, 𝛼1, 𝛽, and an initial value 𝜎0 for
the volatility, we assume that there are available observations S−n, S−n+1,… , S−1. It is reasonable to
update the estimates 𝛼̂0,i, 𝛼̂1,i, and 𝛽i sequentially, using data S−n, S−n+1,… , Si.
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Assume we observe (Xi,Yi), i = 1,… , n, from this model. Then,

Yi = 𝛼 + 𝛽Xi + errori, i = 1,… n,

and we can estimate the constants 𝛼 and 𝛽. Our setting resembles the model

Y = 𝛼(Z) + 𝛽(Z)X + error,

where Z is an additional random variable, and 𝛼 ∶ R → R and 𝛽 ∶ R → R are
functions. Assume that we observe (Xi,Yi,Zi), i = 1,… , n, from this model.
Then

Yi = 𝛼(Zi) + 𝛽(Zi)Xi + errori, i = 1,… , n.

In order to estimate values 𝛼(z) and 𝛽(z) for a fixed z we cannot use the standard
linear regression, because there are no observations from model Y = 𝛼(z) +
𝛽(z)X + error. Instead, we can estimate the functions 𝛼 and 𝛽 by localizing
into the neighborhood of z. Let  = {i ∶∥ Zi − z ∥≤ h}. Now, we can use linear
regression for the observations

Yi = 𝛼(Zi) + 𝛽(Zi)Xi + errori, i ∈ .

Note that we need to estimate functions Ht(s, z) and 𝜉t+1(s, z) only at the
points s = Si,t and z = Zi+t , i = 1,… ,N − T .

We need to estimate functions Ht(x, z) and 𝜉t+1(x, z) of two arguments (where
z may be a vector). This can be done in two ways.

1) We can localize with respect to both x = Xt and z = Zt .
2) We can estimate function

ht(x, z) =
Ht(x, z)

x
. (16.61)

Now, it is possible to avoid localization with respect to x = Xt , make the
localization only with respect to z = Zt , and have available more observa-
tions to make the estimation. This is possible for certain ht(x, z).

Estimation of (16.61) is done by changing model (16.60) to model

ht+1 = ht + 𝜉t+1Rt+1 + errort+1, (16.62)

where

Rt+1 =
Xt+1

Xt
− 1.

An estimate ĥt(x, z) leads to estimate

Ĥ(x, z) = xĥt(x, z).
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Now the localization with respect to Xt is not necessary when HT (XT ,ZT ) =
((1 + r)T XT − K)+ = (ST − K)+, since ht(XT ,ZT ) = (1 + r)T (1 − K∕ST )+. In
this case we can ignore the current level of the trajectory of the stock price.

16.3.2 Local Quadratic Hedging Under Independence

We apply the local quadratic hedging and assume independence of the incre-
ments. The hedging coefficients are given by the formula (16.49) as

𝜉t+1 =
Covt(HT ,ΔXt+1)

Vart(ΔXt+1)
,

where t = 0,… ,T − 1. The price is given by the formula (16.50) as

H0 = E0HT −
T−1∑
t=0

𝜉t+1E0(ΔXt+1).

Here HT is the discounted payoff of the derivative, ΔXt−1 = Xt+1 − Xt , and Xt
are the discounted prices of the risky asset.

Let us assume for notational simplicity that the risk-free rate is zero, so that

Xt = St .

The price H0 involves only unconditional expectations, whereas hedging
coefficients 𝜉t+1 involve conditional expectations. In our implementation of
the case of independent increments we make two simplifications, as compared
to the previous heuristic discussion. First, the conditioning with respect to the
state variable is done only at the time t = 0 of writing the option. Second, we
do not need to move to the model (16.62), but we can handle the conditioning
on the stock price St = s by renormalizing the tails of sequences i so that
they start with value s. This is possible because in the case of independent
increments the intermediate values Ht for t = 1,… ,T − 1 do not appear.

16.3.2.1 Unconditional Expectations
To estimate the unconditional expectations E0( ⋅ ) we apply sequences i in
(16.59), where i ∈ . These sequences give us the differences and the terminal
values

ΔXi,t+1 = Si,i+t+1 − Si,i+t, Hi,T = (Si,i+T − K)+,

where t = 0,… ,T − 1. We estimate the unconditional expectations by

E0(ΔXt+1) ≈
1
#

∑
i∈

ΔXi,t+1, E0HT ≈ 1
#

∑
i∈

Hi,T .
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16.3.2.2 Conditional Expectations
To estimate the hedging coefficients 𝜉t+1, when the stock price is St = s, we
renormalize the tails of the sequences. We define sequences such that the initial
price is s, and the number of observations in each sequence is T − t + 1, where
t ∈ {0,… ,T − 1}, that is, the length of the sequences is T − t. We define

i(s, t) = (S̃i,i+t,… , S̃i,i+T ), i = 1,… ,N − T , (16.63)

where

S̃i,i+j = s ⋅ Si+j∕Si+t,

for j = t,… ,T . Now the initial price in each sequence is S̃i,i+t = s.
We estimate the conditional expectations Et(⋅) = E(⋅ |St) by applying

sequences i(s, t) in (16.63), where t = 1,… ,T − 1, i ∈ , and s = Si,i+t ∈ i.
Each such sequence gives the differences and the terminal values

ΔXi,t+1(s, t) = S̃i,i+t+1 − S̃i,i+t,

Hi,T (s, t) = (S̃i,i+T − K)+.

The conditional expectations Et(⋅) = E(⋅ |St) are estimated by

E(HT |St = s) ≈ 1
#

∑
i∈

Hi,T (s, t),

E(ΔXt+1 |St = s) ≈ 1
#

∑
i∈

ΔXi,t+1(s, t),

E(HTΔXt+1 |St = s) ≈ 1
#

∑
i∈

[Hi,T (s, t) ΔXi,t+1(s, t)],

E((ΔXt+1)2 |St = s) ≈ 1
#

∑
i∈

[ΔXi,t+1(s, t)]2
.

These estimates lead to the estimates of covariances and variances,13 and we
obtain estimates of 𝜉t+1, which are used to produce an estimate of H0.

16.3.2.3 Comparison to Black–Scholes
We compare prices and hedging coefficients of local quadratic hedging
(with independence assumption) to the Black–Scholes prices and hedging
coefficients.

Comparison to Black–Scholes Prices Figure 16.7 shows the ratios of the locally
quadratic prices (under independence) to the Black–Scholes prices as a
function of the annualized volatility. In panel (a) moneyness is S∕K = 1 and
in panel (b) S∕K = 100∕105. The smoothing parameter is h = 0.05 (black),
h = 0.1 (red), and h = 0.2 (blue). The time to expiration is 20 trading days.

13 We apply formulas Cov(X,Y ) = E(XY ) − EXEY and Var(X) = EX2 − (EX)2.
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Figure 16.7 Call price ratios as a function of volatility. The ratios of the locally quadratic prices
under independence to the Black–Scholes prices as a function of the annualized volatility.
(a) Moneyness is S∕K = 1; (b) S∕K = 100∕105. The smoothing parameter is h = 0.05 (black),
h = 0.1 (red), and h = 0.2 (blue).
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Figure 16.8 Call price ratios as a function of moneyness. The ratios of the locally quadratic
prices under independence to the Black–Scholes prices as a function of moneyness S∕K .
(a) T = 20; (b) T = 60. The annualized volatility is 0.1 (black), 0.2 (red), and 0.3 (blue).

Figure 16.8 shows the ratios of the locally quadratic prices to the Black–
Scholes prices as a function of the moneyness S∕K . In panel (a) the time to expi-
ration is T = 20 trading days, and in panel (b) T = 60. The annualized volatility
is 0.1 (black), 0.2 (red), and 0.3 (blue). The smoothing parameter is h = 0.1.

Figure 16.9 shows the ratios of the locally quadratic prices to the Black–
Scholes prices as a function of the smoothing parameter h. In panel (a)
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Figure 16.9 Call price ratios as a
function of the smoothing param-
eter. The ratios of the locally
quadratic prices under indepen-
dence to the Black–Scholes prices
as a function of smoothing param-
eter h. (a) Moneyness is S∕K = 1;
(b) S∕K = 100∕105. The annualized
volatility is 0.1 (black), 0.2 (red), and
0.3 (blue).

moneyness is S∕K = 1 and in panel (b) S∕K = 100∕105. The annualized
volatility is 0.1 (black), 0.2 (red), and 0.3 (blue). Time to expiration is T = 20
trading days.

Comparison to Black–Scholes Deltas Figure 16.10 shows the ratios of the locally
quadratic hedging coefficients (under independence) to the Black–Scholes
deltas as a function of the annualized volatility. In panel (a) moneyness
is S∕K = 1 and in panel (b) S∕K = 100∕105. The smoothing parameter is



16.3 Implementations of Local Quadratic Hedging 603

Figure 16.10 Call hedging coefficient
ratios as a function of volatility. The
ratios of the locally quadratic hedging
coefficients under independence to
the Black–Scholes deltas as a function
of the annualized volatility. (a) Mon-
eyness is S∕K = 1; (b) S∕K = 100∕105.
The smoothing parameter is h = 0.05
(black), h = 0.1 (red), and h = 0.2
(blue).
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h = 0.05 (black), h = 0.1 (red), and h = 0.2 (blue). The time to expiration is 20
trading days.

Figure 16.11 shows the ratios of the locally quadratic prices to the
Black–Scholes prices as a function of the moneyness S∕K . In panel (a) time
to expiration is T = 20 trading days, and in panel (b) T = 60. The annualized
volatility is 0.1 (black), 0.2 (red), and 0.3 (blue). The smoothing parameter is
h = 0.1.

Figure 16.12 shows the ratios of the locally quadratic hedging coefficients
to the Black–Scholes deltas as a function of the smoothing parameter h.
In panel (a) moneyness is S∕K = 1 and in panel (b) S∕K = 100∕105. The
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Figure 16.11 Call hedging coefficient ratios as a function of moneyness. The ratios of the locally
quadratic prices under independence to the Black–Scholes prices as a function of moneyness
S∕K . (a) T = 20; (b) T = 60. The annualized volatility is 0.1 (black), 0.2 (red), and 0.3 (blue).

annualized volatility is 0.1 (black), 0.2 (red), and 0.3 (blue). Time to expiration
is T = 20 trading days.

16.3.3 Local Quadratic Hedging under Dependence

We apply local quadratic hedging without assuming independence of incre-
ments. We need to estimate the sequences

𝜉t+1 =
Covt(ΔXt+1,Ht+1)

Vart(ΔXt+1)
, Ht = EtHt+1 − 𝜉t+1EtΔXt+1, (16.64)

where t = 0,… ,T − 1. The recursion starts with the known value HT .
Let us assume for notational simplicity that the risk-free rate is zero, so that

Xt = St .

Let us denote by s0,… , sN the observed values of the stock S, and let us denote
by z0,… , zN the observed values of the state variable Z. The values in sequence
i, defined in (16.59), are denoted by

i = (si,i,… , si,i+T ),

where i = 1,… ,N − T . The corresponding sequence of the values of the state
variables is

zi,… , zi+T .

In the case of local quadratic hedging under independence the formulas did
not involve the intermediate values Ht for t = 1,… ,T − 1. This simplified the
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Figure 16.12 Call hedging coefficient
ratios as a function of smoothing
parameter. The ratios of the locally
quadratic hedging coefficients under
independence to the Black–Scholes
deltas as a function of smoothing
parameter h. (a) Moneyness is S∕K = 1;
(b) S∕K = 100∕105. The annualized
volatility is 0.1 (black), 0.2 (red), and
0.3 (blue).
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computations, and we needed only to renormalize the tails of the price trajec-
tories. Now we use a technique where we move from the increments ΔSt+1 to
the net returns Rt+1 of stock prices, and from the values Ht to the values ht ,
where

Rt+1 =
St+1

St
− 1, ht =

Ht

St
.

We can write

𝜉t+1 =
Covt(Rt+1, ht+1)

Vart(Rt+1)
, ht = Etht+1 − 𝜉t+1EtRt+1.

We need to estimate the conditional expectations

EtRt+1, Etht+1, Et(Rt+1ht+1), EtR2
t+1.
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The conditional expectations are interpreted as

Et( ⋅ ) = E( ⋅ |Xt ,Zt).

16.3.3.1 The Steps of Backward Induction
Consider step t ∈ 0,… ,T − 1. Assume that we have produced estimates

ht+1(s, z), (s, z) ∈ t+1,

where

t+1 = {(si,i+t+1, zi+t+1) ∶ i ∈ }.

Step t = T − 1 is the first step of the backward induction. When t = T − 1, then
in the case of a call option

ht+1(s, z) =
(

1 − K
s

)
+
,

where s = si,i+T , i ∈ , are the terminal values of sequences i.
We estimate the conditional expectations first with local averaging, and then

generalize to kernel estimation.

Local Averaging Let

t(z) = {j ∈  ∶∥ zj+t − z ∥≤ h}.

Set t(z) contains those indexes j ∈  for which the tth element zj+t is close to
z, where t = 0,… ,T − 1. Note that 0(zN ) = . Let

t(z) = {(si,i+t+1, zi+t+1) ∶ i ∈ t(z)}.

We estimate for each (s, z) ∈ t = {(si,i+t, zi+t) ∶ i ∈ } the conditional expec-
tations by14

E(ht+1 |St = s,Zt = z) ≈ 1
#t(z)

∑
(s1,z1)∈t(z)

ht+1(s1, z1),

E(Rt+1 |St = s,Zt = z) ≈ 1
#t(z)

∑
(s1,z1)∈t(z)

( s1

s
− 1

)
,

E
(
R2

t+1 |St = s,Zt = z
)
≈ 1

#t(z)
∑

(s1,z1)∈t(z)

( s1

s
− 1

)2
,

E(ht+1Rt+1 |St = s,Zt = z)

≈ 1
#t(z)

∑
(s1,z1)∈t(z)

[
ht+1(s1, z1)

( s1

s
− 1

)]
,

14 Note that the estimate of E(ht+1 |St = s,Zt = z) does not depend on s.
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These estimates lead to the estimates of covariances and variances, and we
obtain an estimate of 𝜉t+1(s, z). An estimate for ht(s, z) is obtained by

ht(s, z) (16.65)

=
s1

s
[E(ht+1 |St = s,Zt = z) − 𝜉t+1(s, z)E(Rt+1 |St = s,Zt = z)]

for (s, z) = (si+t, zi+t) and s1 = si+t+1, where i ∈ t(z). Note that at step t = 0 set
t is a singleton:

0 = {(SN ,ZN )}.

The price is obtained as

SN h0(SN ,ZN ),

and the first hedging coefficient is

𝜉1(SN ,ZN ).

Kernel Estimation The estimation of the conditional expectations can be done by
using kernel estimation. We estimate for each (s, z) ∈ t = {(si,i+t, zi+t)∶ i ∈ }
the conditional expectations using the estimators

E(ht+1 |St = s,Zt = z) ≈
∑
i∈

pi(z) ht+1(si,i+t+1, zi+t+1),

E(Rt+1 |St = s,Zt = z) ≈
∑
i∈

pi(z)
( si,i+t+1

s
− 1

)
,

E
(
R2

t+1 |St = s,Zt = z
)
≈
∑
i∈

pi(z)
( si,i+t+1

s
− 1

)2

,

E(ht+1Rt+1 |St = s,Zt = z)

≈
∑
i∈

pi(z)
[

ht+1(si,i+t+1, zi+t+1)
( si,i+t+1

s
− 1

)]
,

where the weights are defined as

pi(z) =
Kh(z − zi+t)∑
j∈Kh(z − zt+j)

,

Kh is the scaled kernel Kh(x) = K(x∕h), K ∶ Rp → R is a kernel function, where
p is the dimension of vector Z. The previous method of local averaging is
obtained as a special case when the kernel function is chosen as

K(x) = I{y∶∥y∥≤1}(x).

These estimates lead to the estimates of covariances and variances, and we
obtain an estimate of 𝜉t+1(s, z). An estimate of ht(s, z) is obtained using the for-
mula (16.65).
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16.3.3.2 Comparison to Black–Scholes
We compare both prices and hedging coefficients of local quadratic hedging to
the Black–Scholes prices and hedging coefficients.

Comparison to Black–Scholes Prices Figure 16.13 shows the ratios of the locally
quadratic prices to the Black–Scholes prices as a function of the annualized
volatility. In panel (a) moneyness is S∕K = 1 and in panel (b) S∕K = 100∕105.
The smoothing parameter is h = 0.05 (black), h = 0.1 (red), and h = 0.2 (blue).
Time to expiration is 20 trading days.
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Figure 16.13 Call price ratios
as a function of volatility under
dependence. The ratios of the
locally quadratic prices to the
Black–Scholes prices as a func-
tion of the annualized volatility.
(a) Moneyness is S∕K = 1;
(b) S∕K = 100∕105. The smooth-
ing parameter is h = 0.05 (black),
h = 0.1 (red), and h = 0.2 (blue).
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Figure 16.14 Call price ratios as a function of moneyness: Dependence. The ratios of the locally
quadratic prices under dependence to the Black–Scholes prices as a function of moneyness
S∕K . (a) T = 20; (b) T = 60. The annualized volatility is 0.1 (black), 0.2 (red), and 0.3 (blue).

Figure 16.14 shows the ratios of the locally quadratic prices to the
Black–Scholes prices as a function of the moneyness S∕K . In panel (a) time
to expiration is T = 20 trading days, and in panel (b) T = 60. The annualized
volatility is 0.1 (black), 0.2 (red), and 0.3 (blue). The smoothing parameter is
h = 0.1.

Figure 16.15 shows the ratios of the locally quadratic prices to the
Black–Scholes prices as a function of the smoothing parameter h. In panel (a)
moneyness is S∕K = 1 and in panel (b) S∕K = 100∕105. The annualized
volatility is 0.1 (black), 0.2 (red), and 0.3 (blue). Time to expiration is T = 20
trading days.

Comparison to Black–Scholes Deltas Figure 16.16 shows the ratios of the locally
quadratic hedging coefficients (under dependence) to the Black–Scholes deltas
as a function of the annualized volatility. In panel (a) moneyness is S∕K = 1
and in panel (b) S∕K = 100∕105. The smoothing parameter is h = 0.05 (black),
h = 0.1 (red), and h = 0.2 (blue). Time to expiration is 20 trading days.

Figure 16.17 shows the ratios of the locally quadratic prices to the
Black–Scholes prices as a function of the moneyness S∕K . In panel (a) time
to expiration is T = 20 trading days, and in panel (b) T = 60. The annualized
volatility is 0.1 (black), 0.2 (red), and 0.3 (blue). The smoothing parameter is
h = 0.1.

Figure 16.18 shows the ratios of the locally quadratic hedging coefficients
to the Black–Scholes deltas as a function of the smoothing parameter h. In
panel (a) moneyness is S∕K = 1 and in panel (b) S∕K = 100∕105. The annu-
alized volatility is 0.1 (black), 0.2 (red), and 0.3 (blue). Time to expiration is
T = 20 trading days.
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Figure 16.15 Call price ratios as a
function of the smoothing param-
eter: Dependence. The ratios of
the locally quadratic prices under
dependence to the Black–Scholes
prices as a function of smoothing
parameter h. (a) Moneyness is
S∕K = 1; (b) S∕K = 100∕105. The
annualized volatility is 0.1 (black),
0.2 (red), and 0.3 (blue).

16.3.4 Evaluation of Quadratic Hedging

Figure 16.19 shows (a) tail plots and (b) kernel density estimates of hedging
errors for call options.15 The blue curves show the case of Black–Scholes
hedging. The local quadratic hedging is done assuming independence and the

15 The hedging error eT of the writer of the option is obtained from (13.10) as eT = C0 + GT (𝜉) −
CT ,where GT (𝜉) =

∑T
k=1 𝜉k(Sk − Sk−1), the risk-free rate is r = 0, C0 is the price of the option, CT is

the terminal value of the option, 𝜉k are the hedging coefficients, Sk are the stock prices, the current
time is denoted by 0, the time to expiration is T days, and hedging is done daily. When hedging is
done with a lesser frequency, then we use formula (14.79) for GT (𝜉).
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Figure 16.16 Call hedging coefficient ratios as a function of volatility: Dependence. The ratios
of the locally quadratic hedging coefficients under dependence to the Black–Scholes deltas
as a function of the annualized volatility. (a) Moneyness is S∕K = 1; (b) S∕K = 100∕105. The
smoothing parameter is h = 0.05 (black), h = 0.1 (red), and h = 0.2 (blue).
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Figure 16.17 Call hedging coefficient ratios as a function of moneyness: Dependence. The ratios
of the locally quadratic prices under dependence to the Black–Scholes prices as a function of
moneyness S∕K . (a) T = 20; (b) T = 60. The annualized volatility is 0.1 (black), 0.2 (red), and
0.3 (blue).

smoothing parameter is h = 0.1 (red), h = 0.5 (dark green), h = 1 (purple), and
h = 10 (orange). The volatility is in all cases the GARCH(1, 1) volatility. The
moneyness of call options is S∕K = 1. Time to maturity is 20 days and hedging
is done every day. Tail plots are defined in Section 3.2.1 and the kernel density
estimator is defined in Section 3.2.2. We apply the standard normal kernel
function and the smoothing parameter of the density estimator is chosen by
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Figure 16.18 Call hedging coefficient
ratios as a function of smoothing
parameter: Dependence. The ratios
of the locally quadratic hedging
coefficients under dependence
to the Black–Scholes deltas as a
function of smoothing parame-
ter h. (a) Moneyness is S∕K = 1;
(b) S∕K = 100∕105. The annualized
volatility is 0.1 (black), 0.2 (red), and
0.3 (blue).

the normal reference rule. We see from panel (b) that smoothing parameters
h = 0.5 − 1 lead to similar results, but smoothing parameter h = 0.1 leads
to a more dispersed distribution. Black–Scholes hedging leads to a more
concentrated distribution than the quadratic hedging with independence
assumption, but the quadratic hedging leads to a distribution which is skewed
to the right in the central area of the distribution, which means that there are
more gains than losses for the hedger of the option.

Figure 16.20 considers the case of hedging only once. Panel (a) shows tail
plots and panel (b) shows kernel density estimates of hedging errors. The mon-
eyness of call options is S∕K = 1. Time to maturity is 20 days. The blue curves
show the case of Black–Scholes hedging. The red curves show the case of local
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Figure 16.19 Distribution of hedging errors: Local quadratic with independence. Shown are
(a) tail plots and (b) kernel density estimates of hedging errors. Black–Scholes hedging (blue),
local quadratic hedging with independence using the smoothing parameter h = 0.1 (red),
h = 0.5 (dark green), h = 1 (purple), and h = 10 (orange).
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Figure 16.20 Distribution of hedging errors when hedging is done once: Local quadratic under
independence and dependence. Shown are (a) tail plots and (b) kernel density estimates of
hedging errors. Black–Scholes hedging (blue), local quadratic hedging with independence
(green), and local quadratic hedging with dependence (red).

quadratic hedging assuming dependence. The green curves show the case of
local quadratic hedging assuming independence. The smoothing parameter is
in both cases h = 0.1. The volatility is in all cases the GARCH(1, 1) volatility.

Figure 16.21 shows (a) tail plots and (b) kernel density estimates of hedging
errors. The moneyness of call options is S∕K = 1. Time to maturity is 20 days
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Figure 16.21 Distribution of hedging errors with daily hedging: Local quadratic under indepen-
dence and dependence. Shown are (a) tail plots and (b) kernel density estimates of hedging
errors. Black–Scholes hedging (blue), local quadratic hedging with independence (green),
and local quadratic hedging with dependence (red).

and hedging is done every day. The blue curves show the case of Black–Scholes
hedging. The red curves show the case of local quadratic hedging assuming
dependence. The green curves show the case of local quadratic hedging
assuming independence. The smoothing parameter is in both cases h = 0.1.
The volatility is in all cases the GARCH(1, 1) volatility.
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17

Option Strategies

Options can be used to create almost any type of a profit function. Trading with
stocks allows the possibility of short selling and leveraging, but options open up
a huge number of possibilities for creating a payoff that suits the expectations
and the risk profile of an investor. For example, a protective put can be used
to protect a portfolio of stocks from negative returns, and a straddle can be
used to profit simultaneously from large positive and large negative returns of
the stock.

We describe option strategies in three ways: the profit function, the return
function, and the return distribution. The profit function shows the profit of the
option strategy at the expiration, as a function of the value of the underlying.
For example, the profit function of a long call strategy is equal to

ST → max{ST − K , 0} − (1 + r)C0, (17.1)

where ST is the stock price at the expiration, K > 0 is the strike price, C0 is the
premium of the call, and r > −1 is the interest rate.1 The return function shows
the gross return of the option strategy. For example, the return function of a
long call strategy is given by

ST →
max{ST − K , 0}

(1 + r)C0
. (17.2)

The return distribution means the probability distribution of the return of the
option strategy. For example, the return distribution of a long call strategy is the
probability distribution of the random variable max{ST − K , 0}∕[(1 + r)C0].
The probability distribution can be described by the distribution function,
which in this case is

x → P0

(max{ST − K , 0}
(1 + r)C0

≤ x
)
, (17.3)

1 A payout function does not take the premium into account, so that the payout function of a long
call strategy is ST → max{ST − K , 0}.

Nonparametric Finance, First Edition. Jussi Klemelä.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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where x ∈ R, and P0 is the conditional probability, conditional on the infor-
mation available at time 0. The probability distribution of the option return
depends on the conditional probability distribution of the underlying ST , and
this probability distribution is unknown. We use both the histogram estimator
and the tail plot of the empirical distribution function to estimate the unknown
return distribution of the option.

The method of using the return distribution (17.3) is the most intuitive and
useful to describe an option strategy, from the three methods (17.1)–(17.3). In
fact, the return distribution of the option is directly relevant for the investor
who considers including options into the portfolio. On the other hand, the use
of the return distribution involves both the problem of estimating the proba-
bility distribution and the problem of visualizing the probability distribution.

Option strategies provide an instructive case study for the performance mea-
surement. We get more insight into such concepts as Sharpe ratio, cumulative
wealth, and risk aversion by studying the performance measurement of option
strategies, instead of just studying the performance measurement of portfolios
of stocks.

Section 17.1 shows profit functions of option strategies, which include verti-
cal spreads, strangles, straddles, butterflies, condors, calendar spreads, covered
calls, and protective puts. Section 17.2 shows return functions and return dis-
tributions of the option strategies, and measures the performance of the option
strategies.

17.1 Option Strategies

It is possible to create a large number of profit functions by combining calls
and puts with different strike prices and expiration dates. Our examples include
vertical spreads, strangles, straddles, butterflies, condors, and calendar spreads.
In addition, we discuss how to combine options with the underlying to create
protective puts and covered calls.

17.1.1 Calls, Puts, and Vertical Spreads

Calls and puts are the basic building blocks for creating profit functions. Ver-
tical spreads are combinations of calls and puts that limit the downside risk of
selling pure calls and puts.

17.1.1.1 Calls and Puts
Figure 17.1(a)–(d) shows profit functions of a long call, long put, short call, and
short put. For a call, the profit function is

ST → max{ST − K , 0} − (1 + r)C0,
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Figure 17.1 Profit functions. (a) Long call; (b) long put; (c) short call; (d) short put; (e) short call
spread; (f ) short put spread; (g) long call spread; (h) long put spread; (i) long 2 × 1 ratio call
spread; (j) long 2 × 1 ratio put spread; (k) long call ladder; and (l) long put ladder.
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where ST is the stock price at the expiration, K > 0 is the strike price, C0 is
the premium of the call, and r > −1 is the interest rate. For the put, the profit
function is

ST → max{K − ST , 0} − (1 + r)P0,

where P0 is the premium of the put. When a call is bought, the maximum profit
is unlimited. When a put is bought, the maximum profit is equal to the strike
price minus the premium. The losses are limited both when a call is bought and
when a put is bought.2

17.1.1.2 Vertical Spreads
Figure 17.1(e)–(h) shows profit functions of a short call spread, short put
spread, long call spread. and long put spread. Let the strike prices satisfy
0 < K1 < K2. Vertical spreads are the following trades:

1) Short call spread. Short K1 call, long K2 call.
2) Short put spread. Long K1 put, short K2 put.
3) Long call spread. Long K1 call, short K2 call.
4) Long put spread. Short K1 put, long K2 put.

A short call spread has a special importance, because this trade allows us
to sell a call option but it makes the maximum possible loss limited, because
a call with a higher strike price is bought simultaneously. Selling a put has a
limited loss but a short put spread makes the maximum possible loss smaller;
see (17.13).

Figure 17.1(i)–(l) shows profit functions of a long 2 × 1 ratio call spread, long
2 × 1 ratio put spread, long call ladder, and long put ladder. Ratio spreads are
generalizations of simple vertical spreads. Ladders are examples of combina-
tions of three options. The strike prices satisfy 0 < K1 < K2 < K3. Ratio spreads
and ladders are defined as follows:

1) Long 2 × 1 ratio call spread. Short K1 call, long 2 times K2 call. (Also called
a call backspread.)

2) Long 2 × 1 ratio put spread. Long 2 times K1 put, short K2 put. (Also called
a put backspread.)

3) Long call ladder. Long K1 call, short K2 call, short K3 call.
4) Long put ladder. Short K1 put, short K2 put, long K3 put.

2 Rising interest rates make calls more attractive than stocks: one has to pay stock immediately
whereas one avoids interest rates when buying a call. Rising interest rates make puts less attractive:
instead of buying a put one may sell stock short and collect interest. The effect is different with
options on futures, because futures contracts do not require cash outlay. High interest rates make
options less attractive than the underlying futures contract because one has to pay a premium to
buy options. Note that it is possible (and sometimes used) to make a futures types settlement to
options, which makes the effect of interest rates on the options price models effectively zero.
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Figure 17.2 Profit functions. (a) Long straddle; (b) long strangle; (c) long butterfly; and (d) long
condor.

17.1.2 Strangles, Straddles, Butterflies, and Condors

Figure 17.2(a)–(d) shows profit functions of a long straddle, long strangle, long
butterfly, and long condor.

Long straddles and strangles are profitable when the underlying makes a
large move.

1) Long straddle. Long K put and long K call, where K is close to the current
stock price.

2) Long strangle. The profit function of a long strangle can be constructed in
two ways. Let K1 < S0 < K2 and let S0 be the current stock price.
a) Long strangle. Long K1 put, long K2 call.
b) Long guts. Long K1 call, long K2 put.
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Figure 17.3 A profit function of a straddle. (a) A perspective plot of function Profit(𝛿S, 𝛿𝜎),
defined in (17.4); (b) slices 𝛿S → Profit(𝛿S, 𝛿𝜎) for five values of 𝛿𝜎.

Straddles are special cases of strangles and guts: when K1 = K2 = K , then we
obtain a straddle from a strangle or from a guts.

Figure 17.3 shows a two-dimensional profit function of a straddle. Now we
consider the profit not as a univariate function of the price of the underlying,
but as a two-dimensional function of the change in the price of the underlying
and of the change in the volatility. The Black–Scholes prices are used to define
the profit function. Panel (a) shows a perspective plot of function

Profit(ΔS,Δ𝜎) = Ct(S0 + ΔS,K , 𝜎0 + Δ𝜎,T)
+ Pt(S0 + ΔS,K , 𝜎0 + Δ𝜎,T)
− C0(S0,K , 𝜎0,T) − P0(S0,K , 𝜎0,T), (17.4)

where Ct(S,K , 𝜎,T) and Pt(S,K , 𝜎,T) are the Black–Scholes prices at time t
of a call and a put, when the underlying has value S, strike price is K , 𝜎 is the
annualized volatility, and T is the time of expiration. Panel (b) shows slices

ΔS → Profit(ΔS,Δ𝜎)

for five values of Δ𝜎. We can see that a long straddle profits also from a rising
volatility, and not only from large moves of the underlying.

To profit when the underlying does not move, one can sell a straddle, strangle,
or guts. However, these trades have an unlimited downside. Thus, it is useful to
apply butterflies and condors, which have a limited downside. Below 0 < K1 <

K2 < K3 < K4.

1) Long butterflies can be constructed in three ways:
a) Call butterfly. Long K1 call, short two K2 calls, long K3 call.
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b) Put butterfly. Long K1 put, short two K2 puts, long K3 put.
c) Long iron butterfly. Long K1 put, short K2 put and call, long K3 call.3

2) Long condors can be constructed in three ways:
a) Call condor. Long K1 call, short K2 call, short K3 call, long K4 call.
b) Put condor. Long K1 put, short K2 put, short K3 put, long K4 put.
c) Long iron condor. Long K1 put, short K2 call, short K3 put, long K4 call.

A long butterfly is obtained from a long condor by taking K2 = K3. Selling a
strangle can be considered as obtainable from a condor by letting K1 → 0 and
K4 → ∞. Selling a straddle can be considered as obtainable from a butterfly by
letting K1 → 0 and K4 → ∞.

17.1.3 Calendar Spreads

Calendar spreads allow us to profit from a rising volatility by shorting an option
with a shorter time to expiration and going long for an option with a longer time
to expiration. Calendar spreads are also called “time spreads” and “horizontal
spreads.” Diagonal calendar spreads make a simultaneous bet for the direction
of the underlying.

1) Long calendar spread:
a) Call calendar spread. Short T1 call, long T2 call.
b) Put calendar spread. Short T1 put, long T2 put.
c) Long straddle calendar spread. Short T1 straddle, long T2 straddle.

2) Long diagonal calendar spread:
a) Call diagonal calendar spread. Short T1, K1 call, long T2, K2 call.
b) Put diagonal calendar spread. Short T1, K1 put, long T2, K2 put.
c) Long diagonal straddle calendar spread. Short T1, K1 straddle, long T2,

K2 straddle.

Figure 17.4 shows a profit function of call calendar spread. The profit func-
tion is a function of two variables: the change in stock price and the change
in volatility. At time 0 we short a call with maturity T1 and buy a call with
maturity T2. The trade is terminated at T1. Panel (a) shows a perspective plot
and panel (b) shows slices ΔS → Profit(ΔS,Δ𝜎) for five values of Δ𝜎. The profit
function is

Profit(ΔS,Δ𝜎)
= C0(S0,K , 𝜎0,T1) − C0(S0,K , 𝜎0,T2)
− (S0 + ΔS − K)+ + CT1

(S0 + ΔS,K , 𝜎0 + Δ𝜎,T2),

3 A long iron butterfly is equal to a combination of a short straddle and a long strangle, and it is
also equal to a combination of a vertical short call spread and a vertical short put spread.
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Figure 17.4 Profit of calendar. (a) A perspective plot; (b) slices.
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Figure 17.5 Profit of diagonal calendar. (a) A perspective plot; (b) slices.

where Ct(S,K , 𝜎,T) is the Black–Scholes price at time t of a call option
when S is the stock price, K is the strike price, 𝜎 is the annualized volatil-
ity, and T is the expiration time. Here S + ΔS = ST1

, so that we have
(S0 + ΔS − K)+ = CT1

(S0 + ΔS,K , 𝜎0 + Δ𝜎,T1).
Figure 17.5 shows a profit function of call diagonal calendar spread. At time

0 we short a call with maturity T1 and strike K1, and buy a call with maturity
T2 and strike K2. The trade is terminated at T1. Panel (a) shows a perspec-
tive plot and panel (b) shows slices ΔS → Profit(ΔS,Δ𝜎) for five values of Δ𝜎.
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The profit function is

Profit(ΔS,Δ𝜎)
= C0(S0,K1, 𝜎0,T1) − C0(S0,K2, 𝜎0,T2)
− (S0 + ΔS − K1)+ + CT1

(S0 + ΔS,K2, 𝜎0 + Δ𝜎,T2),

where K2 > K1.

17.1.4 Combining Options with Stocks and Bonds

A stock can be replicated by a combination of a call and a put. Furthermore,
options can be combined with the underlying to make a protective put and
a covered call. A bond and a call can be combined to create a position with
bounded losses but a stock type upside potential.

17.1.4.1 Replication of the Underlying
The payout of buying a K-call and simultaneously selling a K-put is ST − K :

max{ST − K , 0} − max{K − ST , 0} = ST − K .

The profit of buying a K-call and simultaneously selling a K-put is

ST − K − (1 + r)(C0 − P0),

where C0 and P0 are the premiums of the call and the put.
Choosing K = (1 + r)S0 leads to the profit

ST − (1 + r)S0.

Indeed, a forward contract to buy stock at time T for the price K is equivalent to
buying a K-call and simultaneously selling K-put. This is the so called put–call
parity

C0 − P0 = S0 − K(1 + r)−1
,

studied in Section 14.1.2. Thus, when K = (1 + r)S0, the profit of buying a K-call
and simultaneously selling a K-put is ST − K , because the put–call parity gives
C0 − P0 = 0. Thus, the payoff of a stock can be obtained by options.

Conversely, being long K1-put and short K2-call, where K1 < S0 < K2, is a bet
on a falling stock price.4

Figure 17.6(a) and (b) shows profit functions of replicating being long and
being short of a stock.

4 Being long K1-call, short K2-put, long K2-put, and short K2-call gives a position, whose payoff is
K2 − K1 at the expiration. Thus, there is a possibility for an arbitrage, for suitable premiums. This
position is called box.
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Figure 17.6 Profit functions. (a) Long stock; (b) short stock; (c) protective put; (d) covered call;
(e) covered shorting; and (f ) bond and call.

17.1.4.2 Protective Put and Covered Call
A protective put consists of a simultaneous buying of the underlying and a put
on the underlying. The strike price of the put is K < S0, where S0 is the current
price of the underlying. This position gives insurance against a falling price of
the underlying, with the cost of paying the premium for the put option.

A covered call consists of a simultaneous buying of the underlying and selling
a call with strike price K > S0. A covered call has less risk than the pure position
in the underlying, because a premium is obtained from selling the call. On the
other hand, selling the call limits the potential upside. Note that a covered call
has a similarity with a long call spread.

A covered shorting consists of a simultaneous selling of the underlying and
buying a call with strike price K > S0. A covered shorting has less risk than plain
shorting, because buying the call makes the loss bounded from below.

Figure 17.6 shows profit functions of a protective put, covered call, and cov-
ered shorting in panels (c)–(e).

17.1.4.3 A Bond and A Call
Let a bond and a call be such that the maturity date of the bond is the same as
the expiration date of the call. Buying a bond and a call leads to a position where
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the guaranteed return is smaller than from the pure bond position, because the
premium for buying the call has to be subtracted from the profit. On the other
hand, there is a considerable upside potential, unlike in the case of the pure
bond position. The combination leads to a capital guarantee product.

Figure 17.6(f ) shows a profit function of buying a bond and a call. We assume
that the profit from the bond is higher than the premium of the call, and
thus the profit is always positive. Thus the profit function of Figure 17.6(f )
differs from the profit function of the call in Figure 17.1(a), where a loss is
possible.

17.2 Profitability of Option Strategies

We discuss how to study the profitability of option strategies that were defined
in Section 17.1. First we list the returns of option strategies, then we study the
distributions of the returns of the option strategies, and finally compute Sharpe
ratios of the option strategies.

What is the gross return of an option strategy? An option strategy is defined
by giving its payoff

N∑
i=1

ciDi
T , (17.5)

where ci ∈ R, and Di
T are the payoffs of options. For example, the payoff of a

long call spread is

DT − D′
T ,

where DT = (ST − K)+, D′
T = (ST − K ′)+, and K < K ′. Let us include the pos-

sibility of investing in the risk-free rate, and let (1 + r) be the risk-free rate for
the period 0 → T . Let Di

0 be the premiums of the options. When
∑N

i=1 ciDi
0 ≠ 0,

then we can assume without losing generality that
N∑

i=1
ciDi

0 > 0.

Then the return of the strategy in (17.5) can be written as

RT = (1 − b)(1 + r) + b
∑N

i=1 ciDi
T∑N

i=1 ciDi
0

, (17.6)

where 1 − b is the weight of the risk-free rate and b is the weight of the option
strategy.

The return can be also written as

RT =

(
1 − a

N∑
i=1

ciDi
0

)
(1 + r) + a

N∑
i=1

ciDi
T , (17.7)
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where

a = b∑N
i=1 ciDi

0

.

A third way to write the return is

RT =

(
1 −

N∑
i=1

bi

)
(1 + r) +

N∑
i=1

bi
Di

T

Di
0
, (17.8)

where

bi = aciDi
0.

In (17.6)–(17.8), we have assumed that
∑N

i=1 ciDi
0 ≠ 0. In the case when∑N

i=1 ciDi
0 = 0, we can combine the option strategy with the risk-free return.

We start with the initial wealth W0 > 0 and obtain the wealth

WT = (1 + r)W0 + 𝜉
N∑

i=1
ciDi

T ,

where 𝜉 ∈ R is the exposure to the option strategy. The return is

WT

W0
= (1 + r) + 𝜉

W0

N∑
i=1

ciDi
T . (17.9)

Note that (17.8) leads to (17.9) with a = 𝜉∕W0.

17.2.1 Return Functions of Option Strategies

We draw return functions

ST → RT ,

where RT is the gross return of the option strategy. We denote the strike
prices

K ≤ K ′
≤ K ′′

≤ · · ·

We use the following notation for the payoffs of calls:

CT = max{0, ST − K}, C′
T = max{0, ST − K ′},…

We use the following notation for the payoffs of puts:

PT = max{0,K − ST}, P′
T = max{0,K ′ − ST},…

The corresponding premiums are C0, C′
0, C′′

0 ,… and P0, P′
0, P′′

0 ,…
We draw a blue horizontal line at the level one, because the gross return one

means that the wealth does not change. We draw a red horizontal line at the
height zero, because in the case of stock trading the gross return zero means
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bankruptcy. Note that in option trading we interpret the negative gross return
as leading to debt, and the amount deposited in the margin account should be
used to pay this debt.

The premiums are chosen to be the Black–Scholes prices, with the annualized
volatility 15%. The interest rate is r = 0. The initial stock price is S0 = 10. The
time to expiration is 6 months (which is 1∕2 in fractions of a year).

17.2.1.1 Calls, Puts, and Vertical Spreads
Figure 17.7(a) shows return functions of buying and selling calls. The gross
return is

RT = (1 − b)(1 + r) + b
CT

C0
, (17.10)

where K = S0 and CT = max{0, ST − K}. We show functions for the weights
b = 2, b = 1, b = 0.5, and b = −1. The profit functions of buying and selling
calls are shown in Figure 17.1(a) and (c).

Figure 17.7(b) shows return functions of buying and selling puts. The gross
return is

RT = (1 − b)(1 + r) + b
PT

P0
, (17.11)

where K = S0 and PT = max{0,K − ST}. We show functions for the weights
b = 2, b = 1, b = 0.5, and b = −1. The profit functions of buying and selling
puts are shown in Figure 17.1(b) and (d).

Figure 17.7(c) shows return functions of call vertical spreads. The gross
return is

RT = (1 − b)(1 + r) + b
CT − C′

T

C0 − C′
0
, (17.12)

where S0 = K < K ′, CT = max{0, ST − K}, and C′
T = max{0, ST − K ′}. When

b = 1, we obtain a long call spread. When b = −1 we obtain a short call spread.
The corresponding profit functions are shown in Figure 17.1(e) and (g). It
is of interest to note that a short call vertical spread has a return function
which is bounded from below. Indeed, we have that CT − C′

T ≤ K ′ − K .5 Thus,
when b < 0,

RT ≥ (1 − b)(1 + r) + b K ′ − K
C0 − C′

0
.

5 It holds that

C′
T − CT =

⎧⎪⎨⎪⎩
ST − K ′ − (ST − K), when ST > K ′

,

K − ST , when K ≤ ST ≤ K ′
,

0, when ST < K .
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Figure 17.7 Return functions of calls, puts, and vertical spreads. (a) Long and short call; (b) long
and short put; (c) long and short call spread; (d) long and short put spread; (e) short 2 × 1 ratio
call spread; (f ) short 2 × 1 ratio put spread; (g) long call ladder; and (h) long put ladder.

Figure 17.7(d) shows return functions of put vertical spreads. The gross
return is

RT = (1 − b)(1 + r) + b
P′

T − PT

P′
0 − P0

,

where K < K ′ = S0, PT = max{0,K − ST}, and P′
T = max{0,K ′ − ST}. When

b = 1, we obtain a long put spread. When b = −1 we obtain a short put spread.
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The corresponding profit functions are shown in Figure 17.1(f ) and (h). It is
of interest to calculate the lower bound for the return of a short put vertical
spread. We have that P′

T − PT ≤ K ′ − K . Thus, when b < 0,

RT ≥ (1 − b)(1 + r) + b K ′ − K
P′

0 − P0
. (17.13)

Figure 17.7(e) shows return functions of 2 × 1 ratio call spreads. The gross
return is

RT = (1 − b)(1 + r) + b
CT − 2C′

T

C0 − 2C′
0
, (17.14)

where K < S0 < K ′, CT = max{0, ST − K}, and C′
T = max{0, ST − K ′}. When

b = 1, we obtain a short 2 × 1 ratio call spread. When b = −1 we obtain a long
2 × 1 ratio call spread. The profit function of a long 2 × 1 ratio call spread is
shown in Figure 17.1(i).

Figure 17.7(f ) shows return functions of 2 × 1 ratio put spreads. The gross
return is

RT = (1 − b)(1 + r) + b
P′

T − 2PT

P′
0 − 2P0

,

where K < S0 < K ′, PT = max{0,K − ST}, and P′
T = max{0,K ′ − ST}. When

b = 1, we obtain a short 2 × 1 ratio put spread. When b = −1 we obtain a long
2 × 1 ratio put spread. The profit function of a long 2 × 1 ratio put spread is
shown in Figure 17.1(j).

Figure 17.7(g) shows return functions of call ladders. The gross return is

RT = (1 − b)(1 + r) + b
CT − C′

T − C′′
T

C0 − C′
0 − C′′

0
, (17.15)

where K < K ′ = S0 < K ′′, CT = max{0, ST − K}, C′
T = max{0, ST − K ′}, and

C′′
T = max{0, ST − K ′′}. When b = 1, we obtain a long call ladder. When

b = −1 we obtain a short call ladder. The profit function of a long call ladder is
shown in Figure 17.1(k).

Figure 17.7(h) shows return functions of put ladders. The gross return is

RT = (1 − b)(1 + r) + b
P′′

T − P′
T − PT

P′′
0 − P′

0 − P0
,

where K < K ′ = S0 < K ′′, PT = max{0,K − ST}, P′
T = max{0,K ′ − ST}, and

P′′
T = max{0,K ′′ − ST}. When b = 1, we obtain a long put ladder. When

b = −1 we obtain a short put ladder. The profit function of a long put ladder is
shown in Figure 17.1(l).
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Figure 17.8 Return functions of straddles, strangles, butterflies, and condors. (a) Long and short
straddles; (b) long and short strangles; (c) long and short butterflies; and (d) long and short
condors.

17.2.1.2 Straddles, Strangles, Butterflys, and Condors
Figure 17.8(a) and (b) shows return functions of straddles and strangles. The
gross return is

RT = (1 − b)(1 + r) + b
PT + CT

P0 + C0
, (17.16)

where PT = max{0,K − ST} and CT = max{0, ST − K ′}. In panel (a) we have
straddles: K = K ′ = S0. In panel (b) we have strangles: K < S0 < K ′. When b =
1, we obtain a long straddle and strangle. When b = −1 we obtain a short strad-
dle and strangle. The profit functions of a long straddle and a long strangle are
shown in Figure 17.2(a) and (b).
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Figure 17.8(c) and (d) shows return functions of call butterflies and condors.
The gross return is

RT = (1 − b)(1 + r) + b
CT − C′

T − C′′
T + C′′′

T

C0 − C′
0 − C′′

0 + C′′′
T
, (17.17)

where CT = max{0, ST − K}, C′
T = max{0, ST − K ′}, C′′

T = max{0, ST − K ′′},
and C′′′

T = max{0, ST − K ′′′}. In panel (b) we have butterflies: K < K ′ = K ′′ =
S0 < K ′′′. In panel (c) we have condors: K < K ′

< S0 < K ′′
< K ′′′. When b = 1,

we obtain a long butterfly and a long condor. When b = −1 we obtain a short
butterfly and a short condor. The profit functions of a long butterfly and a long
condor are shown in Figure 17.2(c) and (d).

17.2.1.3 Combining Options with Stocks and Bonds
Options can be combined with the underlying to replicate the underlying, to
apply a protective put, and to construct a covered call and a covered short.
Furthermore, options can be combined with bonds.

Replication of a Stock Let us replicate the stock by a simultaneous buying of a
K-call and K-put. The put–call parity implies that the prices C0 and P0 of the
options satisfy

C0 − P0 = S0 − K(1 + r)−1;

see (14.8) for a discussion of the put–call parity. When K < (1 + r)S0, then
C0 − P0 > 0, and the return is

RT = (1 − b)(1 + r) + b
CT − PT

C0 − P0
, (17.18)

where b ∈ R.
When C0 = P0, then we can define the return using (17.9) as

RT = (1 + r) + a(CT − PT ), (17.19)

where a ∈ R.
Figure 17.9(a) shows the return function ST → RT for the return (17.18), when

K = 5. Note that Figure 17.6(a) and (b) shows profit functions of being long and
being short of a stock.

A Protective Put A protective put is a position where the buying of the under-
lying is combined with buying a put with a strike price K < S0. Let us consider
more generally the return

RT = (1 − b)(1 + r) + b
ST + PT

S0 + P0
. (17.20)

A protective put is obtained when b > 0.
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Figure 17.9 Return functions of combination trades. (a) Replication of stock; (b) protective put;
(c) covered shorting; and (d) bond and call.

Figure 17.9(b) shows a return function of a protective put. In fact, we show
the cases b = 1, b = 2, and b = −1.

We can calculate a lower bound to the return of a protective put. In fact,6

ST + PT ≥ K .
When b > 0, the return satisfies

RT ≥ (1 − b)(1 + r) + b K
S0 + P0

.

6 It holds that

ST + PT =
{

ST , when ST > K ,
ST + (K − ST ), when ST ≤ K .
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A Covered Call and a Covered Short A covered call is a position where the buying
of the underlying is combined with selling a call with a strike price K > S0. A
covered short is a position where the shorting of a stock is combined by the
buying of a call with strike price K > S0.

Let us consider returns

RT = (1 − b)(1 + r) + b
ST − CT

S0 − C0
. (17.21)

A covered call is obtained when b > 0. A covered short is obtained when b < 0.
Figure 17.9(c) shows return functions for the cases b = 2, b = 1, and b = −1.

Selling a stock has an unbounded maximum loss but in a covered short we
buy simultaneously a call option, with strike price K > S0, which makes the
maximum possible loss bounded. Selling a call has an unbounded maximum
loss but in a covered call we buy simultaneously the stock, which makes the loss
bounded when the stock price goes up, although it is possible to lose the total
investment, when the stock price goes to zero. The strike price of the covered
call satisfies K > S0. The covered call can be used to earn extra return when the
stock price does not make a big upside move. We have that7

ST − CT ≤ K .
When b < 0, the return satisfies

RT ≥ (1 − b)(1 + r) + b K
S0 − C0

,

and thus the return of the covered short is bounded from below. When b > 0,
the return satisfies

RT ≤ (1 − b)(1 + r) + b K
S0 − C0

,

and thus the return of the covered call is bounded from above.

A Bond and a Call A suitable simultaneous buying of a bond and a call creates a
capital guarantee product. We assume that the time to maturity of the bond and
the time to the expiration of the call are equal. The return is given in (17.10) by

RT = (1 − b)(1 + r) + b
CT

C0
, (17.22)

where CT = max{0, ST − K}, C0 is the premium of the call, and r is the net
return of the bond. Unlike in (17.10) we take b close to zero, in order to guar-
antee that the capital is not lost.

Figure 17.9(d) shows return functions for the cases b = 0, b = 0.05, and
b = 0.2.

7 It holds that

ST − CT =
{

ST − (ST − K), when ST > K ,
ST , when ST ≤ K .
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17.2.2 Return Distributions of Option Strategies

We estimate the return distributions using the S&P 500 daily data, described
in Section 2.4.1. The daily data is aggregated to have sampling interval of 20
trading days, and we study options with the time to expiration being 20 days.

The option prices are taken to be the Black–Scholes prices with the volatility
being the annualized sample standard deviation of the complete time series of
the observations. The risk-free rate is taken to be zero. These simplifications
do not prevent us from gaining qualitative insight into the return distributions.
The Black–Scholes prices are different from the real market prices, and thus
we are not able to obtain precise estimates of the actual return distributions
of the past option returns. In particular, the out-of-the-money options tend
to have higher market prices than the Black–Scholes prices: this can be
seen from the volatility smile, which means that the implied volatilities
of the out-of-the-money options have larger implied volatilities than the
at-the-money options (see Section 14.3.2).

To estimate the return distributions we use histogram and kernel estimators,
as defined in Section 3.2.2. We use the normal reference rule to choose the
smoothing parameter of the kernel density estimator. Also, we apply tail plots
of the empirical distribution function, as defined in Section 3.2.1.

17.2.2.1 Calls, Puts, and Vertical Spreads
Figure 17.10 shows a return distribution of buying a call option with moneyness
S0∕K = 1. The return is given in (17.10), where we choose b = 1. Panel (a) shows
a histogram estimate of the call returns. The red curve shows a kernel estimate
of the corresponding S&P 500 returns. Panel (b) shows a tail plot of the empiri-
cal distribution function of the option returns with black circles. The red circles
show a tail plot of the empirical distribution function of the corresponding S&P
500 returns. The corresponding profit function is shown in Figure 17.1(a) and
the return function is shown in Figure 17.7(a). We see that there is a large prob-
ability of gross return zero, and small probabilities of high returns.

Figure 17.11 shows the return distribution of buying a put option with
moneyness K∕S0 = 1. The return is given in (17.11), where we choose b = 1.
Panel (a) shows a histogram estimate of the put returns. The red curve shows
a kernel estimate of the corresponding S&P 500 returns. Panel (b) shows a tail
plot of the option returns (black) and a tail plot of the corresponding S&P 500
returns (red). The corresponding profit function is shown in Figure 17.1(b)
and the return function is shown in Figure 17.7(b). We see that the return
distribution of buying a put option is close to the return distribution of buying
a call option.

Figure 17.12 shows the return distribution of selling a call with moneyness
S0∕K = 1. The return is given in (17.10), where we choose b = −1. Panel (a)
shows a histogram estimate of the returns. The red curve shows a kernel
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Figure 17.10 Long call option: Return distribution. (a) A histogram estimate of call returns
(black) and a kernel estimate of S&P 500 returns (red); (b) an empirical distribution function
of option returns (black) and S&P 500 returns (red).
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Figure 17.11 Long put option: Return distribution. (a) A histogram estimate of call returns
(black) and a kernel estimate of S&P 500 returns (red); (b) an empirical distribution function
of option returns (black) and S&P 500 returns (red).

estimate of the corresponding S&P 500 returns. Panel (b) shows a tail plot of
the option returns (black) and a tail plot of the corresponding S&P 500 returns
(red). The corresponding profit function is shown in Figure 17.1(c) and the
return function is shown in Figure 17.7(a). We see that the return distribution
of selling a call option is a mirror image of the return distribution of buying
a call option: there is a large probability of a gross return over one, but small
probabilities of quite large negative returns.
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Figure 17.12 Short call option: Return distribution. (a) A histogram estimate of option returns
(black) and a kernel estimate of S&P 500 returns (red); (b) an empirical distribution function
of option returns (black) and S&P 500 returns (red).
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Figure 17.13 Short put option: Return distribution. (a) A histogram estimate of option returns
(black) and a kernel estimate of S&P 500 returns (red); (b) an empirical distribution function
of option returns (black) and S&P 500 returns (red).

Figure 17.13 shows the return distribution of selling a put option with
moneyness K∕S0 = 1. The return is given in (17.11), where we choose b = −1.
Panel (a) shows a histogram estimate of the returns. The red curve shows a
kernel estimate of the corresponding S&P 500 returns. Panel (b) shows a tail
plot of the option returns (black) and a tail plot of the corresponding S&P 500
returns (red). The corresponding profit function is shown in Figure 17.1(d)
and the return function is shown in Figure 17.7(b). We see that the return
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Figure 17.14 Selling a call spread: Return distribution. (a) A histogram estimate of option
returns (black) and a kernel estimate of S&P 500 returns (red); (b) an empirical distribution
function of option returns (black) and S&P 500 returns (red).

distribution of selling a put option is close to the return distribution of selling
a call option.

Figure 17.14 shows the return distribution of selling a call spread with
S0 = 100, K = 100, and K ′ = 105. The return is given in (17.12), where we take
b = −1. Panel (a) shows a histogram estimate of the returns. The red curve
shows a kernel estimate of the corresponding S&P 500 returns. Panel (b) shows
a tail plot of the option returns (black) and a tail plot of the corresponding S&P
500 returns (red). The corresponding profit function is shown in Figure 17.1(e)
and the return function is shown in Figure 17.7(c). The return distribution is
bounded from below, unlike in the case of Figure 17.12, where a call option
is sold.

Figure 17.15 shows the return distribution of a 2 × 1 ratio call spread with
S0 = 100, K = 95, and K ′ = 105. The return is given in (17.14), where we take
b = −1. Panel (a) shows a histogram estimate of the return distribution of the
option. The red curve shows a kernel estimate of the corresponding S&P 500
returns. Panel (b) shows a tail plot of the option returns (black) and a tail plot
of the corresponding S&P 500 returns (red). The corresponding profit function
of long position is shown in Figure 17.1(i) and the return function is shown in
Figure 17.7(e).

Figure 17.16 shows the return distribution of a short call ladder with S0 = 100,
K = 95, K ′ = 100, and K ′′ = 105. The return is given in (17.15), where we take
b = −1. Panel (a) shows a histogram estimate of the return distribution of the
option. The red curve shows a kernel estimate of the corresponding S&P 500
returns. Panel (b) shows a tail plot of the option returns (black) and a tail plot
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Figure 17.15 A 2 × 1 ratio call spread: Return distribution. (a) A histogram estimate of option
returns (black) and a kernel estimate of S&P 500 returns (red); (b) an empirical distribution
function of option returns (black) and S&P 500 returns (red).
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Figure 17.16 A short call ladder: Return distribution. (a) A histogram estimate of option returns
(black) and a kernel estimate of S&P 500 returns (red); (b) an empirical distribution function
of option returns (black) and S&P 500 returns (red).

of the corresponding S&P 500 returns (red). The corresponding profit function
of a long position is shown in Figure 17.1(k) and the return function is shown
in Figure 17.7(g).

17.2.2.2 Straddles, Strangles, Butterflys, and Condors
Figure 17.17 shows the return distribution of a straddle with S0 = 100 and
K = 100. The return is given in (17.16), where we take b = 1. Panel (a) shows
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Figure 17.17 A straddle: Return distribution. (a) A histogram estimate of option returns (black)
and a kernel estimate of S&P 500 returns (red); (b) an empirical distribution function of option
returns (black) and S&P 500 returns (red).

a histogram estimate of the return distribution of the option strategy. The red
curve shows a kernel estimate of the corresponding S&P 500 returns. Panel (b)
shows a tail plot of the option strategy returns (black) and a tail plot of the
corresponding S&P 500 returns (red). The corresponding profit function of a
long position is shown in Figure 17.2(a) and the return function is shown in
Figure 17.8(a).

Figure 17.18 shows a short straddle. The setting is the same as in Figure 17.17.
Figure 17.19 shows the return distribution of a strangle with S0 = 100,

K = 95, and K ′ = 105. The return is given in (17.16), where we take b = 1.
Panel (a) shows a histogram estimate of the return distribution of the option
strategy. The red curve shows a kernel estimate of the corresponding S&P 500
returns. Panel (b) shows a tail plot of the option strategy returns (black) and a
tail plot of the corresponding S&P 500 returns (red). The corresponding profit
function of a long position is shown in Figure 17.2(b) and the return function
is shown in Figure 17.8(b).

Figure 17.20 shows a short strangle. The setting is the same as in Figure 17.19.
Figure 17.21 shows the return distribution of a butterfly with S0 = 100,

K = 95, K ′ = K ′′ = 10, and K ′′′ = 105. The return is given in (17.17), where
we take b = 1. Panel (a) shows a histogram estimate of the return distribution
of the option strategy. The red curve shows a kernel estimate of the corre-
sponding S&P 500 returns. Panel (b) shows a tail plot of the option strategy
returns (black) and a tail plot of the corresponding S&P 500 returns (red). The
corresponding profit function of a long position is shown in Figure 17.2(c) and
the return function is shown in Figure 17.8(c).
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Figure 17.18 A short straddle: Return distribution. (a) A histogram estimate of option returns
(black) and a kernel estimate of S&P 500 returns (red); (b) an empirical distribution function
of option returns (black) and S&P 500 returns (red).
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Figure 17.19 A strangle: Return distribution. (a) A histogram estimate of option returns (black)
and a kernel estimate of S&P 500 returns (red); (b) an empirical distribution function of option
returns (black) and S&P 500 returns (red).

Figure 17.22 shows the return distribution of a short butterfly. The setting is
the same as in Figure 17.21.

Figure 17.23 shows the return distribution of a condor with S0 = 100, K = 90,
K ′ = 95, K ′′ = 105, and K ′′′ = 110. The return is given in (17.17), where we
take b = 1. Panel (a) shows a histogram estimate of the return distribution of
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Figure 17.20 A short strangle: Return distribution. (a) A histogram estimate of option returns
(black) and a kernel estimate of S&P 500 returns (red); (b) an empirical distribution function
of option returns (black) and S&P 500 returns (red).
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Figure 17.21 A butterfly: Return distribution. (a) A histogram estimate of option returns (black)
and a kernel estimate of S&P 500 returns (red); (b) an empirical distribution function of option
returns (black) and S&P 500 returns (red).

the option strategy. The red curve shows a kernel estimate of the correspond-
ing S&P 500 returns. Panel (b) shows a tail plot of the option strategy returns
(black) and a tail plot of the corresponding S&P 500 returns (red). The corre-
sponding profit function of a long position is shown in Figure 17.2(d) and the
return function is shown in Figure 17.8(d).
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Figure 17.22 A short butterfly: Return distribution. (a) A histogram estimate of option returns
(black) and a kernel estimate of S&P 500 returns (red); (b) an empirical distribution function
of option returns (black) and S&P 500 returns (red).
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Figure 17.23 A condor: Return distribution. (a) A histogram estimate of option returns (black)
and a kernel estimate of S&P 500 returns (red); (b) an empirical distribution function of option
returns (black) and S&P 500 returns (red).

Figure 17.24 shows the return distribution of a short condor. The setting is
the same as in Figure 17.23.

17.2.2.3 A Protective Put and a Covered Call
Figure 17.25 shows the return distribution of a protective put with S0 = 100 and
K = 95. The return is given in (17.20), where we take b = 1. Panel (a) shows a
histogram estimate of the return distribution of the option strategy. The red
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Figure 17.24 A short condor: Return distribution. (a) A histogram estimate of option returns
(black) and a kernel estimate of S&P 500 returns (red); (b) an empirical distribution function
of option returns (black) and S&P 500 returns (red).
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Figure 17.25 A protective put: Return distribution. (a) A histogram estimate of option returns
(black) and a kernel estimate of S&P 500 returns (red); (b) an empirical distribution function
of option returns (black) and S&P 500 returns (red).

curve shows a kernel estimate of the corresponding S&P 500 returns. Panel (b)
shows a tail plot of the option strategy returns (black) and a tail plot of the cor-
responding S&P 500 returns (red). The corresponding profit function is shown
in Figure 17.6(c) and the return function is shown in Figure 17.9(c).

Figure 17.26 shows the return distribution of a covered call with S0 = 100 and
K = 105. The return is given in (17.21), where we take b = 1. Panel (a) shows



644 17 Option Strategies

Return

(a)

Return

(b)

0.80 0.85 0.90 0.95 1.00 1.05

0
5

10
15

20

0.8 0.9 1.0 1.10.
00

1
0.

00
5

0.
02

0
0.

10
0

0.
50

0

Figure 17.26 A covered call: Return distribution. (a) A histogram estimate of option returns
(black) and a kernel estimate of S&P 500 returns (red); (b) an empirical distribution function
of option returns (black) and S&P 500 returns (red).

a histogram estimate of the return distribution of the option strategy. The red
curve shows a kernel estimate of the corresponding S&P 500 returns. Panel (b)
shows a tail plot of the option strategy returns (black) and a tail plot of the cor-
responding S&P 500 returns (red). The corresponding profit function is shown
in Figure 17.6(d) and the return function is shown in Figure 17.9(d).

17.2.2.4 A Bond and a Call
Figure 17.27 shows the return distribution of a capital guarantee product
with S0 = 100 and K = 105. The bond gross return is 1.01. The return is given
in (17.22), where we take b = 0.01. Panel (a) shows a histogram estimate of
the return distribution of the option strategy. The red curve shows a kernel
estimate of the corresponding S&P 500 returns. Panel (b) shows a tail plot of
the option strategy returns (black) and a tail plot of the corresponding S&P 500
returns (red). The corresponding profit function of is shown in Figure 17.6(f )
and the return function is shown in Figure 17.9(d).

17.2.3 Performance Measurement of Option Strategies

We estimate the Sharpe ratios of few option strategies and show the cumulative
wealths and wealth ratios.

We use the S&P 500 daily data, described in Section 2.4.1. The option prices
are computed using the Black–Scholes formula, with the volatility equal to the
sequentially estimated annualized GARCH(1, 1) volatility. The risk-free rate is
deduced from the rate of the one-month Treasury bill, using data described in
Section 2.4.3.
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Figure 17.27 A bond and a call: Return distribution. (a) A histogram estimate of strategy
returns (black) and a kernel estimate of S&P 500 returns (red); (b) an empirical distribution
function of strategy returns (black) and S&P 500 returns (red).

The Sharpe ratios are not equal to the Sharpe ratios which are obtained using
the market prices of options. Also, we do not take the transaction costs into
account. However, studying the performance of option strategies gives insights
into the concepts of performance measurement. Also, we can interpret the
results as giving information about the properties of the Black–Scholes prices,
since the fair option prices should be such that statistical arbitrage is excluded.

17.2.3.1 Covered Call and Protective Put
Figure 17.28 shows the Sharpe ratios of buying (a) covered call and (b) protec-
tive put. The x-axis shows the put moneyness, defined as K∕S0, where K is the
strike price and S0 is the stock price at the time of the writing of the call option.
The y-axis shows the Sharpe ratio. The time to expiration is 20 days (black), 40
days (red), and 60 days (green). The blue horizontal lines show the Sharpe ratio
of S&P 500. We see that the Sharpe ratio of the covered call converges to the
Sharpe ratio of the underlying, when the strike price increases, and the Sharpe
ratio of the protective put converges to the Sharpe ratio of the underlying, when
the strike price decreases.

Figure 17.29 shows the wealth ratios of buying (a) covered call and (b) protec-
tive put. The time to expiration is 20 trading days. The strike price is K = 105
for the covered call and K = 95 for the protective put, when the stock price is
S0 = 100.

17.2.3.2 Calls, Puts, and Capital Guarantee Products
Figure 17.30 shows the Sharpe ratios of buying (a) call options and (b) put
options. The x-axis shows the put moneyness, defined as K∕S0, where K is the
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Figure 17.28 Covered call and protective put: Sharpe ratios. (a) Covered call and (b) protective
put. The Sharpe ratios as a function of the put moneyness K∕S, when the time to expiration
is 20 (black), 40 (red), and 60 (green) trading days.
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Figure 17.29 Covered call and protective put: Wealth ratios. (a) Covered call and (b) protective
put. We show the time series of wealth of the option divided by the wealth of S&P 500.

strike price and S0 is the stock price at the time of the writing of the option.
The y-axis shows the Sharpe ratio. The time to expiration is 20 days (black),
40 days (red), and 60 days (green). The blue horizontal lines show the Sharpe
ratio of S&P 500. We see that the Sharpe ratios of the call options converge to
the Sharpe ratio of the underlying, when the strike price approaches zero. The
Sharpe ratios of the call options are larger than the Sharpe ratio of the under-
lying when the moneyness is around zero. The Sharpe ratios of the put options
are lower than the Sharpe ratio of the underlying.
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Figure 17.30 Buying calls and puts: Sharpe ratios. (a) Long call and (b) long put. The Sharpe
ratios as a function of the moneyness, when the time to expiration is 20 (black), 40 (red), and
60 (green) trading days.
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Figure 17.31 Buying a call and a bond: Wealth. (a) Time series of cumulative wealths for b = 0
(black), b = 0.01 (red), and b = 0.5 (green). The blue curve is the cumulative wealth of S&P
500. (b) Wealth ratios.

Figure 17.31 considers the capital guarantee product, which is constructed
by combining a call and a bond to give return

RT = (1 − b)(1 + r) + b
CT

C0
,

where b ∈ R is the weight. This return was discussed in (17.22). The Sharpe
ratio is given in Figure 17.30(a), because the weight b does not change the
Sharpe ratio (see Section 10.1.1). We choose b positive but close to zero,
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in order to guarantee the preservation of the capital. The strike price is
K = 100 for the call, when the stock price is S0 = 100. The time to expiration
is 20 trading days. Panel (a) shows the cumulative wealth for b = 0 (black),
b = 0.01 (red), and b = 0.5 (green). The blue curve is the cumulative wealth of
S&P 500. Panel (b) shows the wealth ratios where the cumulative wealths of
the capital guarantee products are divided by the cumulative wealth of S&P
500. We see that when b = 0.5 (green), then the bankruptcy follows quite soon.
When b = 0.01 (red), then the cumulative wealth is larger than for S&P 500,
but with the expense of higher volatility.
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18

Interest Rate Derivatives

A zero-coupon bond can be the underlying asset for forwards and options, in
the same way as a stock. The price Z(t,T) of a zero-coupon bond is 1 at the expi-
ration, so that Z(T ,T) = 1; but for t < T , the price Z(t,T) is a random variable,
in the same way as stock price St is a random variable. The forward price of
a zero-coupon bond can be found by an arbitrage argument, in the same way
as the forward price of a stock. A coupon-bearing bond can be expressed as a
portfolio of zero-coupon bonds, so that much of the pricing of coupon-bearing
bonds can be done with the help of pricing of zero-coupon bonds.

A forward rate agreement (FRA) allows to change a floating rate L against a
fixed rate K , where L is typically a Libor rate. Thus, the payoff of a forward rate
agreement is of type

L − K .

The arbitrage-free price of a forward rate agreement can be found in the same
way as the forward price of a zero-coupon bond, or the forward price of a stock.
Caplets and floorlets are calls and puts whose underlying is a Libor rate. The
payoff of a caplet is of type

(L − K)+ = max{L − K , 0}.

A swap is a series of forward rate agreements. Thus, the payoff of a swap is of
type

m∑
i=1

(Li − K),

where Li = L(Ti−1,Ti) are Libor rates for different time periods [Ti−1,Ti], whose
value is known at time Ti−1. A cap is a series of caplets and a floor is a series of
floorlets. Thus, the payoff of a cap is of type

m∑
i=1

(Li − K)+.

Nonparametric Finance, First Edition. Jussi Klemelä.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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A swaption is an option on a swap. Thus, the payoff of a payer swaption (call on
a swap) is of type

max

{ m∑
i=1

(Li − K), 0

}
.

In this chapter, we define such concepts as zero-coupon bond, continuously
compounded yield, discretely compounded yield, simply compounded yield,
yield curve, short rate, discount curve, discount factor, coupon-bearing bond,
accrued interest, duration, par yield, forward zero-coupon bond, forward price
of a zero-coupon bond, forward rate corresponding to a forward zero-coupon
bond, forward rate agreement, forward rate corresponding to a forward rate
agreement, instantaneous forward interest rate, swap, forward swap rate,
caplet, floorlet, cap, floor, and swaption.

Black–Scholes model has been standard for pricing European derivatives but
no such widely applicable model for interest rate derivatives has been found.
The pricing and hedging of interest rate derivatives depends on the whole yield
curve, and not on any single interest rate, which complicates the pricing and
hedging. The main submarkets for derivatives include cap markets and swap
markets.

Section 18.1 discusses such basic concepts of fixed income markets as inter-
est rates, zero-coupon bonds, and coupon-bearing bonds. Section 18.2 studies
forwards whose underlyings are fixed income instruments. These include
forward zero-coupon bonds, forward rate agreements, and swaps. Section 18.3
discusses options whose underlyings are fixed income instruments. These
include caps, floors, and swaptions.

18.1 Basic Concepts of Interest Rate Derivatives

First, we discuss various definitions of interest rates. Second, we discuss
zero-coupon bonds and coupon-bearing bonds.

Interest rates appear in several contexts.
1) In mathematical finance, the risk-free rate is modeled as a stochastic

process, in a similar way as the time series of stock returns. Note that the
risk-free rate is a predictable process, which means that the rate is known
at the beginning of the period, whereas the stock return is known at the end
of the period. Modeling is done in the one-period model, in a multiperiod
model, or in a continuous time model.

2) The yield is derived from the price of a zero-coupon bond or from the price
of a coupon-bearing bond. The yields are a more convenient way to quote
the prices than the dollar value, because we can compare different kinds of
bonds with their yields.

3) The coupon payments of a coupon-bearing bond are often quoted as a
percentage of the face value, and this percentage is a kind of interest rate.
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18.1.1 Interest Rates and a Bank Account

A lender and a borrower can agree for various compounding rules in defining
a fixed income investment. Interest rates can be defined as simple, discretely
compounded, or continuously compounded. Different definitions of an interest
rate lead to different definitions of a bank account. A bank account may also be
called a money market account or a cash account.

We denote with

T − t or 𝜏(t,T),

the time from t to T in fractions of a year. For example, half a year is 0.5. Sym-
bols t and T denote either the real numbers or a calendar date (d,m, y) = (day,
month, year). If t and T are real valued, then 𝜏(t,T) = T − t. Otherwise, we
have to agree on a day-count convention.1

18.1.1.1 Simple Interest Rates and the One-Period Model
In the one-period model, there are two time points t = t0 and t = t1. In the
one-period model, the bank account can be defined using the simple interest
rate:

Bt0
= 1, Bt1

= 1 + r ⋅ 𝜏(t0, t1),

where r > −1 is the yearly interest rate. In Chapter 13, we had t0 = 0, t1 = 1,
and 𝜏(t1, t2) = Δt. In the following, we denote t1 = 0 and t2 = T .

In the one-period model, it is natural to use the simple interest rate. Rate r is
a simple interest rate, if at time t1 the investment has value

(1 + r ⋅ 𝜏(t0, t1))P, (18.1)

where the principal P > 0 is invested at time t0.

18.1.1.2 Discretely Compounded Interest Rates and the Multiperiod Model
Let us consider time period [0,T]. In the multiperiod model, there are n + 1
time points

tk = kT
n
, k = 0,… , n.

1 Some examples of day-count conventions include the following:

• Actual/365. Under this convention, 𝜏(t,T) is equal to the actual number of days between t and
T divided by 365.

• Actual/360. Under this convention, 𝜏(t,T) is equal to the actual number of days between t and
T divided by 360.

• 30/360. Under this convention, we assume that months are 30 days long. Instead of d2 − d1, we
have to use the formula max(30 − d1, 0) + min(d2, 30). Thus,

𝜏(t,T) = (y2 − y1) + 30(m2 − m1 − 1)∕360 + [max(30 − d1, 0) + min(d2, 30)]∕360.

Here we denote t = (d1,m1, y1), T = (d2,m2, y2).
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The bank account can be defined using the discretely compounded interest
rate:

Btk
= (1 + rΔt)k

,

where r > −1 is the yearly interest rate, and

Δt = 𝜏(ti−1, ti) =
T
n
.

Alternatively, the interest rate can be changing:

B0 = 1, Btk
=

k∏
i=1

(1 + riΔt), k = 1,… , n,

where ri > −1 is interest rate for the period [ti−1, ti].
In a multiperiod model, it is natural to use a discretely compounded interest

rate. Rate r > 0 is a discretely compounded interest rate, if the fixed income
investment pays(

1 + rT
n

)n
P (18.2)

at the expiration T , where n ≥ 1 is an integer, and principal P > 0 is invested at
time 0. Here r is the yearly interest rate and T is time to maturity in fractions
of a year, since we consider period [0,T].2

18.1.1.3 Continuously Compounded Interest Rates and the Continuous
Time Model
In the continuous time model, the bank account can be defined using the con-
tinuously compounded interest rate:

Bt = ert
, t ∈ [0,T],

where r > 0 is the instantaneous spot rate (spot interest rate, short rate). If the
instantaneous spot rate is time varying rt > 0, then

Bt = exp
(
∫

t

0
rs ds

)
, t ∈ [0,T].

In the Black–Scholes model, rt is taken to be deterministic and constant.
This assumption is justified because usually the variability of interest rates has

2 Note that often the notation is used where T is the number of years for the investment, and every
year there are m times compounding. Then (18.2) can be written as(

1 + r
m

)mT
P.

We have that n = mT .
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a contribution of a smaller order to the price of equity derivatives than the
variability of the equity. When pricing interest rate products, the variability
of rt has to be taken into account, and it is typically assumed that rt is
stochastic.

In a continuous time model, we use a continuously compounded interest rate.
Rate r > 0 is the continuously compounded interest rate, if the fixed income
investment pays

erT P (18.3)

at the expiration T , when the principal P is invested at time 0. A discretely com-
pounded interest rate approximates the continuously compounded interest rate
because(

1 + rT
n

)n
−−→ erT

,

as n → ∞.
If the rate r is continuously compounded, then we get the equivalent rate rn

for the compounding frequency n by solving equation

erT =
(

1 +
rnT

n

)n

,

which gives

rn = n
T
(erT∕n − 1).

The bank account can be constructed by investing $1 at time 0 into infinitely
many zero-coupon bonds with infinitesimal time to maturity, such that one
maturity date is the starting date of the next zero-coupon bond, and all
zero-coupon bonds together span the time from 0 to t. The prices of the
zero-coupon bonds are fixed at time 0.

The bank account with continuous compounding can also be obtained as the
solution of the differential equation 𝜕B(t)∕𝜕t = r ⋅ B(t). The solution is the func-
tion B(t) = B(0)ert .

18.1.2 Zero-Coupon Bonds

A zero-coupon bond, or a pure discount bond, is a certificate which gives the
owner a nominal amount 1 at the future maturity time T . We denote the price
of the bond at time t with

Z(t,T), 0 ≤ t ≤ T .

We have that Z(T ,T) = 1. When the interest rate is positive, then Z(t,T) < 1
for 0 ≤ t < T .
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18.1.2.1 Yield
The yield of a zero-coupon bond can be defined as continuously compounded,
k-times-per-year compounded, or simply compounded.

Continuously Compounded Yield The continuously compounded yield Y (t,T) of
the zero-coupon bond Z(t,T) is defined by

Y (t,T) = −
log Z(t,T)

T − t
.

The yield Y (t,T) is also called the continuous zero rate or the zero rate. If T − t
is the number of years to maturity, then Y (t,T) is also called the yearly discount
rate or the annual zero-coupon rate. The definition of the yield is equivalent
with the equation

Z(t,T) = exp{−Y (t,T)(T − t)}.

Note that if there exists a bank account with deterministic and constant con-
tinuously compounded spot rate r from period t to T , then the zero-coupon
bond can be written as

Z(t,T) = exp{−r(T − t)}, (18.4)

because the bank account e−r(T−t) is an investment that has value 1 at time T ,
just like Z(t,T), and thus to exclude arbitrage, they have to have the same price
at the previous times.

k-Times-Per-Year Compounded Yield The k-times-per-year compounded yield is
defined by

Y (k)(t,T) = k
Z(t,T)1∕[k(T−t)]

− k.

This definition of the yield is equivalent with the equation

Z(t,T) = 1
[1 + Y (k)(t,T)∕k]k(T−t)

. (18.5)

We have that

lim
k→∞

Y (k)(t,T) = Y (t,T).

The annually compounded yield of a zero-coupon bond is obtained by k = 1.
The simply compounded yield in (18.6) is obtained by k = 1∕(T − t), when
T − t ≤ 1.

Simply Compounded Yield The simply compounded spot interest rate is defined
by

L(t,T) = 1 − Z(t,T)
(T − t)Z(t,T)

. (18.6)



18.1 Basic Concepts of Interest Rate Derivatives 655

This definition of the yield is equivalent with the equation

Z(t,T) = 1
1 + (T − t)L(t,T)

.

The market Libor rates are simply compounded rates.

18.1.2.2 Yield Curve
For a fixed t, the function

T → Y (t,T), T ≥ t,

is called the yield curve (zero-rate curve, zero-coupon curve, term structure of
interest rates), when T − t is larger than a year. When T − t is less than a year,
then we consider

T → L(t,T).

An increasing yield curve is called normal, and a decreasing yield curve is
called inverse. If the market expects the rates to fall, then the yield curve will
be inverted.

Statistical techniques are needed to infer a continuous time yield curve from
discrete data. Similar methods are needed to estimate the discount curve in
(18.8), and forward curve in (18.21). Parametric methods search to model func-
tion f (x) = Y (t, x) with a function f (x, 𝜃), where 𝜃 is a vector of parameters. The
Nelson–Siegel family models the rate curve by

f (x, 𝜃) = 𝜃1 + (𝜃2 + 𝜃3x)e−x𝜃4 .

The Svensson family models the rate curve by

f (x, 𝜃) = 𝜃1 + (𝜃2 + 𝜃3x)e−𝜃4x + 𝜃5xe−𝜃6x
.

The vector parameter 𝜃 is found which minimizes

(𝜃) =
∑

j
𝑤j|Bj − Bj(𝜃)|2,

where𝑤j are weights, Bj are the prices for on-the-run bonds and notes available
on the day, and Bj(𝜃) are the prices which one would get by pricing these bonds
and notes using the curve f (x, 𝜃).

A smoothing spline method estimates the yield curve nonparametrically by
finding the curve 𝜙(x) that approximates Y (t, x). The yield curve 𝜙 is found
which minimizes

(𝜙) =
∑

j
𝑤j|Bj − Bj(𝜙)|2 + 𝜆

∫
|𝜙′′(x)|2 dx,

where Bj(𝜙) are the prices which one would get by pricing these bonds and
notes using the curve 𝜙(x), and 𝜆 ≥ 0.
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A spline method is used by the U.S. Federal Reserve and the Bank of Japan,
parametric methods are used by European central banks, and the investment
banks use the so called bootstrapping method. More information can be found
in Carmona and Tehranchi (2006).

18.1.2.3 Short Rate
The short rate, or instantaneous rate, is defined by

r(t) = − 𝜕

𝜕T
log Z(t,T)

||||T=t
. (18.7)

Symbolically, we may write r(t) = Y (t, t), where Y (t,T) is the yield of the bond.
We have

r(t) = lim
T→t+

Y (t,T),

and similarly for L(t,T), and Y k(t,T).

18.1.2.4 Discount Curve
For a fixed t, the function

T → Z(t,T), T ≥ t, (18.8)
is called the discount curve (zero-bond curve). The discount curve starts at 1
and is usually decreasing.

18.1.2.5 Discount Factor
The value Z(t,T) can be called the discount ratio, discount factor, or present
value, because amount P of cash at time T is worth Z(t,T)P at time t. At time
t the value Z(t,T) is known: the random variable Z(t,T) is measurable with
respect to t .

We can compare this definition of the discount factor to the definition

D(t,T) = exp
(
−
∫

T

t
rs ds

)
,

where rs > −1 is instantaneous time varying spot rate. The discount fac-
tor D(t,T) is a random variable. If the spot rate rt is deterministic, then
D(t,T) = Z(t,T).

18.1.3 Coupon-Bearing Bonds

Most bonds make regular payments (coupons) before the final payment at the
maturity. A coupon bond is a series of payments

P1,… ,Pn

at times
T1,… ,Tn.

The terminal payment contains the notional and the final coupon payment.
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For example, a 5-year, 4% semiannual coupon bond with $1000 face value
makes ten $20 payments every six months and the final payment of $1000. Thus
Pi = $20 except the last payment is $1020.

The price C(t,T) of a coupon bond can be written with the help of
zero-coupon bonds:

C(t,T) =
n∑

i=1
PiZ(t,Ti).

Let k be the number of coupon payments in one year. The coupon payments
are often quoted as a percentage c of the face value P, so that Pi = cP∕k and
Pn = (1 + c∕k)P. Now the price of the coupon-bearing bond is

C(t,T) = cP
k

n∑
i=1

Z(t,Ti) + PZ(t,Tn). (18.9)

Using the k-times-per-year compounded yield in (18.5), we can write the
price as

C(t,T) =
n∑

i=1

Pi

(1 + ri∕k)k(Ti−t)

=
n−1∑
i=1

cP∕k
(1 + ri∕k)k(Ti−t)

+
(1 + c∕k)P

(1 + rn∕k)k(Tn−t)
,

where we denote the k-times-per-year compounded yield by

ri = Y (k)(t,Ti).

It holds often that k(Ti − t) = i, so that

C(t,T) =
n−1∑
i=1

cP∕k
(1 + ri∕k)i +

(1 + c∕k)P
(1 + rn∕k)n .

18.1.3.1 Yield of a Coupon-Bearing Bond
When continuous compounding is used, then the yield of a coupon-bearing
bond can be defined as the solution R(t,T) of the equation

C(t,T) =
n∑

i=1
Pie−R(t,T)(Ti−t)

.

When discrete compounding is used, then the yield of a coupon-bearing bond
can be defined as the solution R(t,T) of the equation

C(t,T) =
n∑

i=1

Pi

(1 + R(t,T))Ti−t .
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18.1.3.2 Accrued Interest
When a transaction happens between interest payments, then one should take
the accrued interest into account. The accrued interest is defined by

AC(Ti, t) =
t − Ti

Ti+1 − Ti
Pi+1,

when t ∈ [Ti,Ti+1]. The clean price is defined by

CP(t,T) = C(t,T) − AC(Ti, t), t ∈ [Ti,Ti+1],

where C(t,T) =
∑n

j=i+1 PjZ(t,Tj).

18.1.3.3 Duration
The duration of a bond is defined by

(t,T) = 1
C(t,T)

n∑
i=1

Pi(Ti − t)e−R(t,T)(Ti−t)
.

The duration is the effective expiry time: it is the average time of the future cash
flows, weighted by the contribution to the bond price.

18.1.3.4 Par Yield
The par yield is defined as the yield (or coupon) of a bond priced at par: it is the
value c for which C(t,T) = P. Thus, (18.9) shows that the par yield is the value
c for which

1 = c
k

n∑
i=1

Z(t,Ti) + Z(t,Tn).

A coupon-bearing bond is said to be valued at par if its current market value
equals its face value (or par value).

The yield of a coupon paid at par is equal to its coupon rate. If the market
value of a bond is less than its face value, we say the bond trades at a discount.
Otherwise, the bond trades at a premium.

18.1.3.5 Floating-Rate Notes
A floating-rate note ensures payments at future times T1,… ,Tn of Libor rates
that reset at the previous instants T0,… ,Tn−1. Moreover, the note pays a last
cash flow at time Tn consisting of the reimbursement of the notional value. We
may write a floating-rate note in terms of zero-coupon bonds as

PZ(t,Tn) + P
n∑

i=1
𝜏(Ti−1,Ti)L(Ti−1,Ti)Z(t,Ti).
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Replacing the Libor rate L(Ti−1,Ti) with the forward interest rate f (t,Ti−1,Ti),
defined in (18.17), we obtain

PZ(t,Tn) + P
n∑

i=1
𝜏(Ti−1,Ti)f (t,Ti−1,Ti)Z(t,Ti)

= PZ(t,Tn) + P
n∑

i=1
[Z(t,Ti−1) − Z(t,Ti)]

= PZ(t,T0).

Using the argument leading to (18.18), which gives the present value of a for-
ward rate agreement, we obtain the present value of the floating-rate note as
PZ(t,T0).

18.2 Interest Rate Forwards

We discuss forward zero-coupon bonds and forward rate agreements. Forward
zero-coupon bonds are discussed also in Section 14.1.1.

18.2.1 Forward Zero-Coupon Bonds

A forward zero-coupon bond is an agreement, where at time t two parties want
to exchange at a future time T1 a zero-coupon bond, whose maturity is at T2,
with a cash payment P = P(t,T1,T2). At time t, only the agreement is made, the
cash payment is made at time T1, and the zero-coupon bond is received at T1.

18.2.1.1 The Forward Price
The forward price (the cash payment at T1) is equal to

P(t,T1,T2) =
Z(t,T2)
Z(t,T1)

, (18.10)

where Z(t,T1) and Z(t,T2) are the prices of the zero-coupon bonds with matu-
rities T1 and T2. The forward price is the delivery price such that the forward
contract has value zero at t. In other words, the forward price is such price
that for no cost at t one can agree to buy at T1 the zero-coupon bond maturing
at T2.

Equation (18.10) is proved in (14.5).

18.2.1.2 Forward Rates Corresponding to Forward Zero-Coupon Bonds
A forward rate R(t,T1,T2) is the rate agreed at t, at which borrowing and lend-
ing can be made for the period from T1 to T2. A forward zero-coupon bond
implies a forward rate.
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Continuous Compounding Let P(t,T1,T2) be the price of a forward zero-coupon
bond. We may define the forward rate R(t,T1,T2), corresponding to the forward
zero-coupon bond, by equation

P(t,T1,T2) = exp{−R(t,T1,T2)(T2 − T1)}.

By (18.10),

P(t,T1,T2) =
Z(t,T2)
Z(t,T1)

.

Thus,

R(t,T1,T2) = −
log Z(t,T1) − log Z(t,T2)

T2 − T1
. (18.11)

Letting T2 − T1 approach zero leads to the instantaneous forward interest rate
in (18.19).

Note that if we use (18.4) to write

Z(t,T1) = e−r1(T1−t)
, Z(t,T2) = e−r2(T2−t)

,

then (18.11) leads to

R(t,T1,T2) =
r2(T2 − t) − r1(T1 − t)

T2 − T1
. (18.12)

Equation (18.12) can also be derived from

er1(T1−t)eR(t,T1,T2)(T2−T1) = er2(T2−t)
,

which should hold to exclude arbitrage, because the rate r1 for the period from
t to T1 and the forward rate R(t,T1,T2), both agreed at t, should as a combina-
tion lead to the same result as rate r2, agreed also at t but for the period from
t to T2.

Discrete Compounding We may define the forward rate R(t,T1,T2) by the
equation

P(t,T1,T2) =
1

(1 + R(t,T1,T2))T2−T1
.

Then,

R(t,T1,T2) = P(t,T1,T2)−1∕(T2−T1) − 1 =
(Z(t,T2)

Z(t,T1)

)−1∕(T2−T1)

− 1.

If we write

Z(t,T1) =
1

(1 + r1)T1−t , Z(t,T2) =
1

(1 + r2)T2−t ,

then

R(t,T1,T2) =
(
(1 + r1)T1−t

(1 + r2)T2−t

)−1∕(T2−T1)

− 1. (18.13)
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Note that (18.13) can also be derived from
(1 + r1)T1−t(1 + R(t,T1,T2))T2−T1 = (1 + r2)T2−t

.

Forward Libor Rates Libor rate L(t,T) is defined in (18.6) as the solution of the
equation

1 = (1 + 𝜏(t,T)L(t,T))Z(t,T),

where 𝜏(t,T) is the accrual factor (day count fraction).
A forward Libor rate L(t,T1,T2) is the interest rate one can contract at time

t to put money in money-market account for the time period [T1,T2]. It is
defined by

Z(t,T1) = (1 + 𝜏(T1,T2)L(t,T1,T2))Z(t,T2),

which gives

L(t,T1,T2) =
1

𝜏(T1,T2)
Z(t,T1) − Z(t,T2)

Z(t,T2)
. (18.14)

The time T1 is called maturity and T2 − T1 is called tenor of the forward Libor
rate. At time T1, the forward Libor rate L(T1,T1,T2) is fixed (or set), and it is
called the spot Libor rate.

18.2.2 Forward Rate Agreements

A forward rate agreement allows to change a fixed rate K against a floating rate
L(T1,T2).

A forward rate agreement involves three time instants: the current time t
(entering time), the expiry time T1 > t (reset time), and the maturity time T2 >

T1 (payment time). The payoff for the seller at time T2 is
FRAT2

= P ⋅ [K − L(T1,T2)] ⋅ 𝜏(T1,T2), (18.15)
where P is the principal, L(T1,T2) is the Libor rate that resets at time T1 for the
payment at T2, and K is the strike. We assume that rates K and L(T1,T2) have
the same day-count convention. We call PL(T1,T2)𝜏(T1,T2) the floating leg and
PK𝜏(T1,T2) the fixed leg.

18.2.2.1 The Present Value of a Forward Rate Agreement
The present value of a forward rate agreement is

FRAt = P ⋅ [KZ(t,T2)𝜏(T1,T2) − Z(t,T1) + Z(t,T2)]. (18.16)
This is shown in (14.7).3

3 Indeed, using (18.6), we can write

FRAT2
= P

[
𝜏(T1,T2)K − 1

Z(T1,T2)
+ 1

]
,

where the present value of the term 1∕Z(T1,T2) is Z(t,T1) and the present value of 𝜏(T1,T2)K + 1
is Z(t,T2)[𝜏(T1,T2)K + 1].
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The value of a forward rate agreement at time T1 is obtained by discounting:

FRAT1
=

FRAT2

1 + L(T1,T2)𝜏(T1,T2)
.

18.2.2.2 Forward Rates Corresponding to Forward Rate Agreements
The forward rate is defined to be the strike K that gives zero value to the forward
rate agreement: the strike K that gives zero value to (18.16). The forward rate
is called also the equilibrium strike or the equilibrium rate. Thus, the simply
compounded forward interest rate f (t,T1,T2) is defined as

f (t,T1,T2) =
1

𝜏(T1,T2)

(Z(t,T1)
Z(t,T2)

− 1
)
. (18.17)

At time T1, the forward rate is equal to the Libor rate:

f (T1,T1,T2) = L(T1,T2).

Using the definition of forward interest rate, the value of a forward rate agree-
ment can be written as

FRAt = PZ(t,T2)𝜏(T1,T2)[K − f (t,T1,T2)]. (18.18)

Thus, f (t,T1,T2) can be seen as an estimate of the future spot rate L(T1,T2).

18.2.2.3 Instantaneous Forward Interest Rate
Instantaneous forward interest rate (the rate for instantaneous borrowing at
time T) is defined by

f (t,T) = − 𝜕

𝜕T
log Z(t,T)

= 𝜕

𝜕T
[(T − t)Y (t,T)]

= Y (t,T) + (T − t) 𝜕
𝜕T

Y (t,T), (18.19)

where the yield Y (t,T) is defined by

Z(t,T) = exp{−(T − t)Y (t,T)}.

Note that

Z(t,T) = exp
{
−
∫

T

t
f (t,u) du

}
. (18.20)
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Using the convention 𝜏(T1,T2) = T2 − T1, we have that the forward rate
f (t,T1,T2) satisfies

lim
T2↓T1

f (t,T1,T2) = − lim
T2↓T1

1
Z(t,T2)

Z(t,T2) − Z(t,T2)
T2 − T1

= − 1
Z(t,T2)

𝜕Z(t,T1)
𝜕T1

= −
𝜕 log Z(t,T1)

𝜕T1

= f (t,T1).

Note also that f (t, t) = r(t), where short rate r(t) is defined in (18.7).
For a fixed t, the function

T → f (t,T), T ≥ t, (18.21)

is called the forward curve. If the zero-rate curve is normal, then the forward
curve lies above the zero-rate curve; if the zero-rate curve is inverted, then the
forward curve lies below the zero-rate curve.

18.2.3 Swaps

An interest rate swap (IRS) is a generalization of a forward rate agreement. A
swap is a series of FRAs.

A swap is a commitment to exchange the payments originating from a fixed
leg and a floating leg. The buyer of a receiver swap obtains payments with a
fixed interest rate and pays payments with a variable interest rate. The buyer of
a payer swap obtains payments with a variable interest rate and pays payments
with a fixed interest rate. Thus, when the fixed leg is paid and the floating leg
is received, then an interest rate swap is called a payer (forward-start) interest
rate swap (PFS). Otherwise, it is called a receiver (forward-start) interest rate
swap (RFS).

A swap spans the period [T0,Tm], where T0 is the expiry, and Tm is the matu-
rity. There are time points

t ≤ T0 < T1 < · · · < Tm,

where t is the time of the agreement for the swap. At every instant Ti−1,
i = 1,… , n, the fixed leg pays

P ⋅ 𝜏(Ti−1,Ti)K ,
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where K is the fixed interest rate and P is the principal. The floating leg pays
P ⋅ 𝜏(Ti−1,Ti)L(Ti−1,Ti),

where L(Ti−1,Ti) is the Libor rate.

18.2.3.1 The Value of a Receiver Swap
A receiver swap is a portfolio of forward rate swaps, whose payoff was written
in (18.15) as

FRA(Ti−1,Ti) = P ⋅ [K − L(Ti−1,Ti)] ⋅ 𝜏(Ti−1,Ti).
The value at time t of a forward rate swap was written in (18.18) as

FRAt(Ti−1,Ti) = P ⋅ Z(t,Ti)[K − f (t,Ti−1,Ti)] ⋅ 𝜏(Ti−1,Ti).
We can write the value at time t of a receiver swap as

RFSt =
m∑

i=1
FRAt(Ti−1,Ti). (18.22)

The forward rate f (t,Ti−1,Ti) was written in (18.17) as

f (t,Ti−1,Ti) =
1

𝜏(Ti−1,Ti)

(Z(t,Ti−1)
Z(t,Ti)

− 1
)
.

Thus,

RFSt = PK
m∑

i=1
𝜏(Ti−1,Ti)Z(t,Ti) − P(Z(t,T0) − Z(t,Tm)).

Note that we have the decomposition of the value of the receiver swap to the
value of the fixed leg minus the value of the floating leg:

RFSt = At − FLt ,

where the value of the fixed lag is

At = P ⋅ K ⋅
m∑

i=1
𝜏(Ti−1,Ti)Z(t,Ti).

The value of the floating leg may be written as

FLt = P
m∑

i=1
𝜏(Ti−1,Ti)f (t,Ti−1,Ti)Z(t,Ti)

= P
m∑

i=1
[Z(t,Ti−1) − Z(t,Ti)]

= P[Z(t,T0) − Z(t,Tm)],
where we used the formula (18.17) for the simply compounded forward inter-
est rate, f (t,Ti−1,Ti). For a spot-starting swap, we have FLt = P[Z(T0,T0) −
Z(T0,Tm)].
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18.2.3.2 Forward Swap Rate
The forward swap rate SR(t,T0,Tm) (the equilibrium swap rate) is the fixed rate
K for which RFSt = 0. This makes an interest rate swap a fair contract at the
present time. Thus, we can write the swap rate in terms of forward rates as

SR(t,T0,Tm) =
m∑

i=1
𝑤if (t,Ti−1,Ti), (18.23)

where
𝑤i =

Z(t,Ti)𝜏(Ti−1,Ti)∑m
j=1 𝜏(Tj−1,Tj)Z(t,Tj)

.

We have also the formula

SR(t,T0,Tm) =
Z(t,T0) − Z(t,Tm)∑m
i=1 𝜏(Ti−1,Ti)Z(t,Ti)

.

We can write

Z(t,Tk)
Z(t,T0)

=
k∏

j=1

Z(t,Tj)
Z(t,Tj−1)

=
k∏

j=1

1
1 + 𝜏jfj(t)

,

where 𝜏j = 𝜏(Tj−1,Tj) and fj(t) = f (t,Tj−1,Tj). Thus we arrive at a third formula

SR(t,T0,Tm) =
1 −

∏m
j=1

1
1 + 𝜏jfj(t)∑m

i=1 𝜏i
∏i

j=1
1

1 + 𝜏jfj(t)

.

18.2.4 Related Fixed Income Instruments

Bond futures are futures whose underlying is a bond.4 There are several other
fixed income instruments which are constructed from some more basic fixed
income instruments.

1) Convertible bonds. A convertible bond gives the owner an option to convert
the bond into a given number of shares of equity for each unit of the face
value.

4 The financial instrument underlying the Treasury bill futures contract is a fictitious Treasury bill
with exactly 90 days to maturity. The contract has the notional amount of 1 million US dollars. Two
years Treasury note futures contract has $200,000 notional value. Ten years Treasury bond futures
contract has $100,000 notional value. Euro-Schatz futures are on instruments having remaining
term from 1.75 to 2.25 years. Euro-Bobl futures are on instruments having remaining term from
4.5 to 5.5 years. The Euro-Bund futures are on instruments having remaining term from 8.5 to 10.5
years (the delivery window 8.5–11 years). A delivery obligation arising out of a short position may
only be fulfilled by the delivery of debt securities with a remaining term on the delivery day within
the remaining term of the underlying. A bond is called cheapest to deliver, if it has smallest value
among the bonds eligible to be delivered.
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2) Credit default swaps. A credit default swap is a bilateral financial contract
where the seller makes an equalization payment if credit default occurs pre-
viously to the stabilized event of the credit. In return, the buyer makes a
periodic payment to the seller until either default occurs or maturity of the
contract is reached.

3) Collateralized debt obligations. Collateralized debt obligations (CDOs) are
asset-backed securities whose underlying collateral is a portfolio of corpo-
rate or sovereign bonds, or bank loans. CDO securities are divided into
tranches, which are treated differently with respect to interest payments and
the principal repayments. A subordination scheme is typical: senior CDO
notes are paid before mezzanine, and mezzanine is paid before junior. Any
residual cash flow is paid to the equity piece.

4) Basket default swaps. Basket default swaps (BDSs) are based on several
(usually more than five) financial instruments. Typical products are
first-to-default (FtD) swaps, and second-to-default (StD) swaps.

5) Defaultable zero-coupon and coupon-bonds. The default risk of defaultable
zero-coupon and coupon-bonds has to be estimated. The approach of Mer-
ton (1974) is to model the price of a defaultable zero-coupon bond as the
difference between the value of the firm’s assets minus the value of a certain
call option. The firm’s assets are modeled as an Itô process. The strike price
of the call option is equal to the notional of the zero-coupon bond, and the
maturity is equal to the maturity of the zero-coupon bond.
In the reduced form or intensity-based models, the default is modeled by
the stopping time of some hazard-rate process. Thus, the default process is
modeled exogeneously.

18.3 Interest Rate Options

Caplets and floorlets are calls and puts when the underlying is a Libor rate. Caps
and floors are portfolios of caplets and floorlets. Swaptions are options when
the underlying is a swap. Caps, floors, and swaptions are the basic interest rate
derivatives.

18.3.1 Caplets and Floorlets

A caplet is a call option whose underlying is an interest rate. A floorlet is the
corresponding put option.

18.3.1.1 Payoffs of Caplets and Floorlets
Let the underlying be the Libor rate L(T1,T2). Then the payoff of a caplet at
time T2 is

CPLT2
(K ,T1,T2) = P ⋅ 𝜏(T1,T2) ⋅ (L(T1,T2) − K)+, (18.24)
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where P is the notional value, K is the strike price, and 𝜏 is the day count frac-
tion. Time T1 is called the expiry and T2 is called the maturity.5 The payoff of a
floorlet is

P ⋅ 𝜏(T1,T2) ⋅ (K − L(T1,T2))+.
A company which is Libor indebted can buy an insurance against rising Libor

rates by buying a caplet. Indeed,

L − (L − K)+ = min{L,K}

and thus when a Libor indebted company enters a cap, it will not pay higher
rates than min{L,K}.

18.3.1.2 Pricing of Caplets
Caplets can be priced assuming a log-normal distribution for the Libor rate
L(T1,T2), as in (14.74). This is called Black’s model. The corresponding price is
given in (14.75).

On the other hand, the price of a caplet can be written in terms of the price of
an European put on a zero-coupon bond. The price of a caplet at time t ≤ T1 is

CPLt(K ,T1,T2) = E[D(t,T2)P ⋅ (L(T1,T2) − K)+ ⋅ 𝜏 |t],

where the expectation is with respect to the risk-neutral measure, the discount
factor is

D(t,T2) = exp
{
−
∫

T2

t
rs ds

}
,

and 𝜏 = 𝜏(T1,T2). Using the iterative conditioning, we can write

CPLt(K ,T1,T2) = P ⋅ E(D(t,T1)Z(T1,T2) ⋅ (L(T1,T2) − K)+ ⋅ 𝜏 |t).

Indeed, for t < s < T and for a s-measurable random variable Hs,
E(D(t,T)Hs |t) = E(E(D(t,T)Hs |s) |t)

= E(D(t, s)HsE(D(s,T) |s) |t)
= E(D(t, s)HsZ(s,T) |t).

Using the definition (18.6) of Libor rate, we can write the price of the caplet at
time t as

CPLt(K ,T1,T2)

= P ⋅ E
(

D(t,T1)Z(T1,T2) ⋅
[

1
Z(T1,T2)

− 1 − K𝜏
]
+

|||||t

)

= P′ ⋅ E(D(t,T1) ⋅ [K ′ − Z(T1,T2)]+|t),

5 For example, suppose that the 6 month USD Libor rate sets 3% at 1st of March. Then a caplet on
the six month USD Libor rate, with the expiry at 1st of March, struck at 2%, with the notional of
$1000, pays $1000 × 0.5 × (0.03 − 0.02) at the end of August.
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where P′ = P(1 + K𝜏) and K ′ = 1∕(1 + K𝜏). Thus the price of a caplet can be
written in terms of the price of a put option on a zero-coupon bond. If we model
the risk-neutral distribution of the zero-coupon bond, then we obtain a price
for the caplet.

18.3.2 Caps and Floors

A cap is a series of caplets and a floor is a series of floorlets. Thus, an interest
rate cap is a derivative in which the buyer receives payments at the end of each
such period in which the interest rate exceeds the agreed strike price.

Let us consider time points

t ≤ T0 < · · · < Tm,

and the corresponding caplet payoffs

CPLTi
(K ,Ti−1,Ti) = P ⋅ 𝜏(Ti−1,Ti) ⋅ (L(Ti−1,Ti) − K)+,

where i = 1,… ,m.
A cap payoff is a series of payments CPLTi

(K ,Ti−1,Ti) at times Ti. The
discounted payoff of a cap can be written as

P
m∑

i=1
D(t,Ti)𝜏(Ti−1,Ti)[L(Ti−1,Ti) − K]+. (18.25)

A cap can be viewed as a payer interest rate swap where each exchange payment
is executed only if it has positive value. The discounted payoff of a floor is

P
m∑

i=1
D(t,Ti)𝜏(Ti−1,Ti)[K − L(Ti−1,Ti)]+.

The price of a cap is the sum of the prices of the caplets:
m∑

i=1
CPLt(K ,Ti−1,Ti).

18.3.3 Swaptions

A swaption is an European option on a swap. The buyer of a swaption pays a
premium and gets the right to enter an interest rate swap at the given date.

A receiver swaption is a call on a receiver swap. It is an insurance against
falling interest rates. A payer swaption is a call on a payer swap. It is an insurance
against raising interest rates. The fixed rate of the underlying swap is called the
strike of the swaption. In addition, we have to specify the expiration date of
the option and the tenor of the swap (time to maturity at the exercise of the
option). A swaption is purchased at time t, to enter at the expiry time T0 a
swap spanning the period [T0,Tm] from the expiry to maturity with the fixed
leg paying an annuity with a prespecified coupon K .
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A swaption gives the right to enter a swap at a future maturity time. Usually
the maturity time is equal to the first reset time. We will denote the maturity
time T0. The underlying interest rate swap length Tm − T0 is called the tenor of
the swaption. The payoff of payer swaption at time T0 can be written by using
(18.22) as

SWPT0
= P ⋅

( m∑
i=1

Z(T0,Ti)𝜏(Ti−1,Ti)[f (T0,Ti−1,Ti) − K]

)
+

. (18.26)

Jensen’s inequality and the convexity of x → (x)+ implies(∑
ai(bi − K)

)
+
≤

∑
ai(bi − K)+, where ai ≥ 0.

Comparing the discounted payoff of a cap in (18.25) to the payoff of a swaption
in (18.26) suggests that the payoff of the swaption is smaller than the value of
the cap.

The payer swaption payoff can be expressed in terms of the relevant forward
swap rate SR(T0,T0,Tm), defined in (18.23):

SWPT0
= P ⋅ (SR(T0,T0,Tm) − K)+

m∑
i=1
𝜏(Ti−1,Ti)Z(T0,Ti). (18.27)

A payer swaption is said to be at the money if K = SR(T0,T0,Tm). A payer
swaption is said to be in the money if K < SR(T0,T0,Tm) and out of the money
if K > SR(T0,T0,Tm). For a receiver swaption, the converse holds.

18.4 Modeling Interest Rate Markets

Interest rate markets can be modeled by modeling the instantaneous forward
interest rate, which is done in Heath–Jarrow–Morton (HJM) model, and dis-
cussed in Section 18.4.1.

Libor and swap market models are models for the forward interest rate (see
Brace et al., 1997, Miltersen et al., 1997, Jamshidian 1997).

Black (1976) introduced the Black model, where a log-normal model is
assumed for the short interest rate. We have discussed pricing under this
model in (14.74). Other short rate models are listed in Section 18.4.2. Short
rate models take the short-term interest rate as the only state variable, but
HJM model takes the whole of the current yield curve as summarizing the
current information.

It is also possible to directly assume that the prices of zero-coupon bonds are
driven by an m-dimensional Wiener process and thus the zero-coupon bonds
satisfy

dZ(t,T) = 𝜇(t,T) dt +
d∑

j=1
𝜎j(t,T) dWj(t),

where Wj are Wiener processes. This is called the Itô model.
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Interest rate models are studied in Zagst (2002) and in Brigo and Mercurio
(2006).

18.4.1 HJM Model

Heath et al. (1992) introduced the HJM model. Instantaneous forward interest
rate is defined in (18.19). HJM model assumes that the instantaneous forward
rates satisfy

f (t,T) − f (t0,T) =
∫

t

t0

𝛼(s,T) ds +
∫

t

t0

𝜎(s,T) dWs.

Using the differential notation, we can write

df (t,T) = 𝛼(t,T) dt + 𝜎(t,T) dWt .

The model is a special case of a diffusion Markov process, as defined in (5.59).
We can assume that the Wiener process is d-dimensional and 𝜎(t,T) is a
d-dimensional vector, so that 𝜎(t,T) dWt =

∑d
j=1 𝜎j(t,T) dW j

t .
Let us use log Z(t,T) = − ∫

T
t f (t, s) ds as in (18.20). Then it can be shown that

the zero-coupon bond follows the model

dZ(t,T) = b(t,T)Z(t,T) dt + a(t,T)Z(t,T) dWt , (18.28)

where

a(t,T) = −
∫

T

t
𝜎(t, s) ds

and

b(t,T) = r(t) −
∫

T

t
𝛼(t, s) ds + 1

2
∥a(t,T)∥2

.

Note that a(t,T)dWt =
∑d

j=1 aj(t,T)dW j
t . The short rate r(t) is defined in (18.7)

and it holds that f (t, t) = r(t).6
We defined the geometric Brownian motion in (5.63) as a stochastic process

dSt = 𝜇St dt + 𝜎St dWt . This is the Black–Scholes model for stock prices, and
the pricing of stock options is made under the risk-neutral model with 𝜇 = r,

6 We obtain first (Leibniz rule) that Yt = log Z(t,T) satisfies

dYt = f (t, t) dt −
∫

T

t
df (t, s) ds = r(t) dt −

∫

T

t
(𝛼(t, s)dt + 𝜎(t, s)dWt)ds.

Second (Fubini’s theorem),

dYt =
(

r(t) −
∫

T

t
𝛼(t, s) ds

)
dt −

∫

T

t
𝜎(t, s) ds dWt .

Itô’s Lemma, given in (5.61), leads to the distribution of Z(t,T) = exp{Yt}.
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where r > 0 is the risk-free rate (see the discussion after (14.67)). In the similar
way, when we assume that the prices of the zero-coupon bonds follow (18.28),
then we obtain the risk-neutral model when

b(t,T) = r(t) ⇔ 1
2

∥a(t,T)∥2 =
∫

T

t
𝛼(t, s) ds. (18.29)

We have that

∥a(t,T)∥2 =
∫

T

t
𝜎(t, s)′ ds

∫

T

t
𝜎(t, s) ds =

d∑
j=1

(
∫

T

t
𝜎j(t, s) ds

)2

.

Differentiating (18.29) with respect to T leads to the equation

𝛼(t,T) =
d∑

j=1
𝜎j(t,T)

∫

T

t
𝜎j(t, s) ds = 𝜎(t,T)′

∫

T

t
𝜎(t, s) ds.

18.4.2 Short-Rate Models

A general short rate model for the spot interest rate r(t) = rt is given by

drt = 𝜇(t, rt) dt + 𝜎(t, rt) dWt .

The model is a diffusion Markov process, as defined in (5.59).

• The Vasicek model is

drt = (𝜃 − a ⋅ rt) dt + 𝜎dWt .

• The Hull–White model is

drt = (𝜃(t) − a ⋅ rt) dt + 𝜎dWt .

In the Ho–Lee model, a = 0.
• The generalized Hull–White model is

drt = (𝜃(t) − a(t) ⋅ rt) dt + 𝜎(t)r𝛽t dWt .

For 𝛽 = 0, the model is called generalized Vasicek model and for 𝛽 = 1∕2, the
model is called the generalized Cox–Ingersoll–Ross model.

• The log-normal model or the Black–Derman–Toy model is

d log rt = (𝜃(t) − a(t) ⋅ log rt) dt + 𝜎(t)r𝛽t dWt .

If the bond prices are given by

Z(t,T) = exp{A(t,T) − r ⋅ C(t,T)},

for t0 < t < T < T∗ and for deterministic A and C, then we say that the interest
rate market has affine term structure. The Vasicek model and the generalized
Hull–White model for 𝛽 = 0 and for 𝛽 = 1∕2 are affine term structure models.
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