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Preface

Methods for the numerical simulation of dynamic mathematical models have been the focus
of intensive research for well over 60 years. However, rather than reaching closure, there is a
continuing demand today for better and more efficient methods, as the range of applications
is increasing. Mathematical models involving evolutionary partial differential equations
(PDEs) as well as ordinary differential equations (ODEs) arise in many diverse applica-
tions, such as fluid flow, image processing and computer vision, physics-based animation,
mechanical systems, relativity, earth sciences, and mathematical finance. It is possible to-
day to dream of, if not actually achieve, a realistic simulation of a clothed, animated figure
in a video game, or of an accurate simulation of a fluid flowing in a complex geometry in
three dimensions, or of simulating the dynamics of a large molecular structure for a realistic
time interval without requiring several weeks of intense computing.

This text was developed from course notes written for graduate courses that I have
taught repeatedly over the years. The students typically come from different disciplines,
including Computer Science, Mathematics, Physics, Earth and Ocean Sciences, and a variety
of Engineering disciplines. With the widening scope of practical applications comes a
widened scope of an interested audience. This means not only varied background and
expertise in a typical graduate class, but also that not all those who need to know how
to simulate such PDE systems are or should be experts in fluid dynamics! The approach
therefore chosen emphasizes the study of principles, properties, and usage of numerical
methods from the point of view of general applicability. This text is not a collection of
recipes, and basic analysis and understanding are emphasized throughout, yet a formal
theorem–proof format is avoided and no topic is covered simply for its theoretical beauty.
Moreover, while no one class of applications motivates the exposition, many examples from
different application areas are discussed throughout.

In addition to not relying on strict fluid dynamics prerequisites, the other strategic
decision made was to delay in each chapter as much as possible the separation of treatment
of parabolic and hyperbolic equations. The other route, taken by many authors, is to devote
separate chapters for the different PDE types. This often leads to a very neat presentation. In
this text the approach is more concept oriented, however, and it is hoped that the differences
necessarily highlighted by contrasting the treatments in this way shed more direct light
on some issues. Moreover, questions about problems such as simulating a convection-
dominated diffusion-convection process and about mixed hyperbolic-parabolic systems are
more naturally addressed.

The introductory Chapter 1 is essential. First we develop a sense for the types of math-
ematical PDE models for which solving evolutionary problems makes sense, by studying

xi
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xii Preface

well-posedness. Then we embark upon an introduction by example to numerical methods
and issues that are developed more fully later on.

Several years ago L. Petzold and I wrote a book in a similar spirit about the numerical
solution of ODEs. I still like that work, and thankfully so do others; however, there are many
students and researchers in various disciplines who simply don’t seem to have room in their
program to accommodate a course or a text devoted solely to numerical ODEs. Therefore,
I have included in the present text two chapters on this topic. Chapter 2 crams in all the
material from our book [14] that is viewed as essential for a crash course on simulating
ODEs, with an eye toward what is essential and relevant for PDEs. Chapter 6, not covered
in [14], is more specialized and considers certain problems and methods in Geometric
Integration, especially for Hamiltonian systems. These concepts and methods are relevant
also for PDEs—see especially Chapter 7—and they allow a different and interesting look
at numerical methods for differential equations. However, they are less essential in a way.

Chapter 3 develops in detail the basic concepts, issues, and discretization tools that
arise in finite difference and finite volume methods for PDEs. It relates to and expands the
material in the previous two chapters but they are not a strict prerequisite for reading it.

Stability is an essential concept when designing and analyzing methods for the nu-
merical solution of time-dependent problems. Chapter 4 deals with constant coefficient
PDEs where resulting criteria are relatively easy to check. Chapter 5 continues into vari-
able coefficient and nonlinear problems, where stability criteria and approaches are defined
and used, and where new methods for hyperbolic PDEs are introduced.

The first five chapters are the basic ones, and it is reasonable to teach in a semester
course mainly these plus some forays into later chapters, e.g., Chapter 6 if one concentrates
significantly on ODEs. On the other hand, many more delicate or involved issues in nu-
merical PDEs, and much of the more recent research, are in the last five chapters. The topic
of numerical dispersion in wave problems and of conservative vs. dissipative methods is
considered in Chapter 7, while handling solutions with discontinuities is discussed at some
length in Chapter 10. These chapters are both somewhat more topical and occasionally more
advanced, and neither is a prerequisite for the other. The handling of boundary conditions is
briefly considered in Chapter 3, but Chapter 8 discusses deeper and more specialized issues,
particularly for hyperbolic PDEs. Two related but different topics are considered in Chapter
9. The first concerns handling additional issues that arise for problems in more than one
space variable. There are many issues here, and they are necessarily covered occasionally
in less depth than would be possible in a more specialized monograph. I have used this
chapter also to introduce and discuss the interesting class of splitting methods, even though
these arise not only in multidimensional problems. Finally, Chapter 11 quickly describes
some highly interesting related topics that could require separate monographs if they were
to be fully treated.

There are several reviews of background material collected in separate sections in
Chapters 1 and 2. These are meant as refreshers to quickly help a reader who has been
exposed to their contents beforehand, not to replace a proper introduction to their subject
matters. The survey of iterative methods for linear systems of algebraic equations in Sec-
tion 9.4 is somewhere between a review and a core material. At the end of each chapter
there are also exercises, the first of which (numbered 0) consisting of more straightforward
review questions. I have tried to indicate those exercises that have been found to be more
difficult, or more time-consuming, among them.
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No attempt has been made to make the bibliography complete: this would have been
a vast and dangerous undertaking in itself. Wherever possible I have tried to refer to texts,
monographs, and survey articles that contain a wealth of additional references. Several
references to my own work are there simply because I’ve naturally drawn upon past work
as a source for examples and exercises and because I am generally more familiar with them
than with others.

Parts of Chapters 2, 6, and 7 were written for a short course that I gave at the Institute
of Pure and Applied Mathematics (IMPA) in Rio de Janeiro. Here is an opportunity to
thank my friends and colleagues there, especially D. Marchesin, A. Nachbin, M. Sarkis,
L. Velho, and J. Zubelli, for their hospitality during several visits to the “marvelous city.”
I also gratefully acknowledge the hospitality of A. Iserles and the pleasant Isaac Newton
Institute in Cambridge, where much of the material presented here was polished during a
seven-week stay last year.

Many people have helped me in various ways to shape, reshape, refine, and debug this
text. Several generations of our students had to endure its (and my) imperfections and their
various comments have helped tremendously. In particular let me note Eddy Boxerman, Hui
Huang, and Ewout van den Berg; there are many others not mentioned here. Colleagues who
have read various versions of these notes and/or offered loads of advice and useful criticism
include in particular Mark Ainsworth, Mihai Anitescu, Evaristo Biscaia Jr., Robert Bridson,
Chris Budd, Philippe Chartier, Chen Greif, Eldad Haber, Ernst Hairer, Arieh Iserles, Robert
McLachlan, Sarah Mitchell, Dinesh Pai, Linda Petzold, Ray Spiteri, David Tranah, and Jim
Varah. I am indebted to you all!

Uri M. Ascher
Vancouver, December 2007
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Chapter 1

Introduction

This text explores numerical methods based on finite difference and finite volume discretiza-
tions for solving evolutionary partial differential equations (PDEs). Mathematical models
involving such differential equations arise in many diverse applications, such as fluid flow,
image processing and computer vision, physics-based animation, mechanical systems, earth
sciences, and mathematical finance. We will methodically develop tools for understanding
and assessing methods and software for these problems.

We start at a relatively basic level, and rudimentary knowledge of differential equations
and numerical methods is a sufficient prerequisite. In later chapters we discuss advanced
techniques required for problems with nonlinearities, multidimensions, long-time integra-
tion, interfaces, and discontinuities such as shocks. Many examples are given to illustrate
the various concepts and methods introduced.

In general, our typical PDE will depend on a few independent variables. Throughout
this text we distinguish one of these variables as “time” while the other variables are treated
as “space” variables, often not distinguished from one another.

To make things more concrete, let us consider a motivating example. We will not get
into precise or full details as yet: these will come later. The advection-diffusion equation is
given by the PDE

ut + aux = νuxx. (1.1)

In this equation, the independent variables are time t and space x, and the unknown function
sought is u = u(t, x). The subscript notation corresponds to partial differentiation: ut = ∂u

∂t
,

ux = ∂u
∂x

, and uxx = ∂2u
∂x2 .

There are two parameters in (1.1), assumed known, real, and constant. The parameter
a corresponds to a fluid velocity in an advection process, while ν controls the amount of
diffusion (or viscosity, depending on the application area) and is required to be nonnegative,
ν ≥ 0. You don’t have to be familiar with the physical interpretations of these quantities in
order to proceed here.

Our differential equation is defined on a domain in space and time, 0 < x < b and
t ≥ 0; see Figure 1.1. For instance, set b = 1. The PDE is supplemented, in general, by
initial conditions and boundary conditions.

1
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2 Chapter 1. Introduction

b0 x

t

Figure 1.1. Domain of definition for an initial-boundary value problem.

At the initial time t = 0, our sought solution u must agree with a given function u0(x)

u(0, x) = u0(x), 0 ≤ x ≤ b. (1.2)

The situation with boundary conditions is more complex and there is more to choose
from. Conceptually, the simplest is to specify u for all t at both ends x = 0 and x = b,

u(t, 0) = g0(t), u(t, b) = gb(t), (1.3a)

which makes sense if ν > 0. These are called Dirichlet boundary conditions. For ν = 0
only one condition, either at x = 0 or at x = b (depending on the sign of a), may be
specified: we shall return to this later, in Chapter 8.

Another favorite type, good for any ν ≥ 0, are periodic boundary conditions, which
specify that u(t, x) = u(t, b + x) for all relevant t and x. In particular

u(t, 0) = u(t, b). (1.3b)

These boundary conditions say that what happens in the strip depicted in Figure 1.1 is
replicated at similar strips to the right and to the left: −b < x < 0, b < x < 2b, etc.
Thus, the problem is defined for all x real, as depicted in Figure 1.2. This corresponds to
having no boundary conditions at all on an infinite domain in x, a case that is pursued more
methodically in Section 1.1.

To better understand the expected behavior of solutions for the advection-diffusion
equation (1.1) subject to the initial conditions (1.2), let us look at a solution that at each
time t has the form

u(t, x) = û(t, ξ)eıξx (1.4)

for some fixed, real value of ξ . We assume that the boundary conditions (1.3) allow us
to do this (i.e., that they do not “interfere” with our intention to concentrate on the initial
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value problem for our PDE). The parameter ξ is called a wave number, and |û(t, ξ)| is the
amplitude of the mode eıξx . Here we use complex numbers, and this allows expressing
things elegantly. We employ the standard notation

ı = √−1

and recall that for any real angle θ in radians

eıθ = cos θ + ı sin θ,

|eıθ | = cos2 θ + sin2 θ = 1.

Thus, for a complex number λ, |eλ| = eReλ. In particular, |eıξx | = e0 = 1 for any real ξ

and x.
For our special form of the solution (1.4) we have

ux = ıξ û eıξx, uxx = (ıξ)2 û eıξx,

so, upon inserting these expressions into (1.1) and canceling the common exponent, we
obtain for our advection-diffusion equation

ût (t, ξ) = −(ξ 2ν + ıξa) û(t, ξ).

For each wave number ξ this is an ordinary differential equation (ODE) in t that has the
solution

û(t, ξ) = e−(ξ 2ν+ıξa)t û(0, ξ).

Therefore, the amplitude of this mode as it evolves in time is given by

|û(t, ξ)| = |e−(ξ 2ν+ıξa)t | |û(0, ξ)|
= e−ξ 2νt |û(0, ξ)|.

For the special form of solution (1.4) we clearly have |u(t, x)| = |û(t, ξ)| at each time
instance t , so

|u(t, x)| = e−ξ 2νt |u(0, x)|.
We see that

• If ν > 0, then the amplitude of the solution mode decays in time. The larger the wave
number ξ , the faster it decays. This is typical of a parabolic PDE.

• If ν = 0, then the amplitude of the solution mode remains the same for all ξ : we have
|û(t, ξ)| = |û(0, ξ)|. This is typical of a hyperbolic PDE.

The case of a very small but positive ν corresponds to a parabolic problem that is “almost
hyperbolic.”

This concludes our motivating example. In general, we may not expect the PDE to
have constant coefficients, and even if it has we may not expect its solution to look like a
single mode; and yet, some essential elements encountered above will keep appearing in
what follows.
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This introductory chapter has two essential parts. In Section 1.1 we develop a sense for
the types of mathematical problems that are being considered here in a more methodical way
than used in the preceding motivating example, still before any discretization or computation
is applied to them. We consider this right away because without some basic feeling for the
problem being solved it is hard to develop adequate numerical methods and to assess the
quality of obtained computational results later on. Thus we elaborate upon the concept
of well-posedness in example-driven fashion. Then in Section 1.2 we give a first taste of
what most of the text is concerned with, by defining and following the performance of three
simple discretizations for the simple advection equation. Various important properties are
manifested in these simple examples. By the end of this section we will be able to give a
rough guide to what follows in further chapters. There is also a section containing various
reviews of relevant background topics, and of course some inevitable exercises.

1.1 Well-posed initial value problems
We want to investigate numerical methods that yield sensible results. For instance, if the
physical problem being simulated has a bounded solution, then we want the numerical one
to be bounded as well. For this we must make some assumptions on the PDE problem being
discretized, essentially ensuring that it behaves sensibly before discretization. Thus, if a
computer simulation of such a problem yields poor results, then we’ll know that the fault
is with the numerical method and seek to improve it. The book by Kreiss and Lorenz [111]
covers well-posedness in depth. (See also Kreiss [110].)

0 x

t

Figure 1.2. Domain of definition for a Cauchy problem.

Consider a linear PDE

ut = P (∂x, t, x) u, −∞ < x < ∞, t > 0 (1.5a)

(see Figure 1.2). Here u = u(t, x) is a scalar or vector unknown function in the time
variable t and a space variable x, and P is an operator which is polynomial in ∂x : P =
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∑m
j=0 pj (t, x) ∂j

∂xj . For example, setting m = 2, p0 ≡ p1 ≡ 0, p2 ≡ 1, gives the simple
heat equation, ut = uxx . This in turn is a special case of (1.1) with ν = 1 and a = 0.

The differential equations are supplemented by a given (square integrable) initial value
function u0(x)

u(0, x) = u0(x), −∞ < x < ∞. (1.5b)

The system (1.5) is then a pure initial value problem (IVP), otherwise known as a Cauchy
problem.�

�

�

�

Note: For those weary of infinite domains, and even more so of integrals
over infinite domains such as those appearing in (1.6) or (1.10), let us
hasten to point out that we have no intention to program or compute
solutions for any of these as such. They are here for the purpose of basic
analysis, serving as a means to avoid introducing boundary conditions
too early in the game: ∞ is our friend!

In general, a well-posed problem possesses the property that its solution depends
continuously on the data: a small change in the data produces only a small change in the
solution. This is obviously a desired feature for the subsequent numerical solution by a
stable numerical process.

Let us define the L2-norm

‖u(t)‖ ≡ ‖u(t, ·)‖ =
(∫ ∞

−∞
|u(t, x)|2dx

)1/2

(1.6)

(see the review of function spaces in Section 1.3.3). We will say that the IVP (1.5) is well-
posed (sometimes referred to as properly posed) if there are constants K and α such that
for all t ≥ 0

‖u(t)‖ ≤ Keαt‖u(0)‖ = Keαt‖u0‖ ∀ u0 ∈ L2. (1.7)

Note that K and α may have definite values which can be retrieved for given problem
instances.1 Of particular importance is the value of α. It can possibly be zero, in which
case the solution does not grow much in time, or even negative, in which case the solution
decidedly decays.

More generally, we’ll have a possibly finite, or semi-infinite, range for x, e.g., the
domain depicted in Figure 1.1. Then the equations (1.5) (appropriately restricted in x) are
supplemented by boundary conditions (BCs) at (t, 0) and (t, b). We then have an initial-
boundary value problem. The boundary conditions may be assumed homogeneous. A
similar definition of well-posedness is then possible, with the integral range in the norm

1We regard the initial time as arbitrary here. Thus, strictly speaking we must require that

‖u(t)‖ ≤ Keα(t−t0)‖u(t0)‖
for any 0 ≤ t0 ≤ t . The same holds in the context of corresponding stability requirements for numerical methods
which follow later on.
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6 Chapter 1. Introduction

definition appropriately changed and all functions u(t, x) considered satisfying the homo-
geneous boundary conditions.

Consider next the pure IVP (1.5) with constant coefficients

P = P(∂x) =
m∑

j=0

pj

∂j

∂xj
. (1.8)

Then we can get a good handle on well-posedness upon using a Fourier transform (see
the review in Section 1.3.4). This gives both a justification and a generalization for our
motivating treatment of the advection-diffusion equation (1.1) by (1.4).

The PDE (1.5a) is now written simply as

ut = P(∂x)u, −∞ < x < ∞, t ≥ 0,

and it is transformed in Fourier space with respect to x using (1.17)

û(t, ξ) = 1√
2π

∫ ∞

−∞
e−ıξxu(t, x)dx.

This yields2 for each wave number ξ an ordinary differential equation (ODE) in time

ût = P(ıξ)û, t > 0. (1.9)

The matrix P(ıξ) (which is s × s for a system of s first order PDEs) is called the symbol
of the PDE system. The ODE (1.9) has a given initial value û(0, ξ) which is the Fourier
transform (1.17) of u0(x).

This initial value ODE is easy to solve:

û(t, ξ) = eP(ıξ)t û(0, ξ);
hence for one PDE

‖u(t, ·)‖2 = ‖û(t, ·)‖2 =
∫ ∞

−∞
|û(t, ξ)|2dξ

=
∫ ∞

−∞
|eP(ıξ)t û(0, ξ)|2dξ ≤ sup

ξ

|eP(ıξ)t |2‖û(0, ·)‖2

= sup
ξ

|eP(ıξ)t |2‖u0‖2. (1.10)

Comparing this bound to (1.7) we see that a Cauchy problem with constant coefficients is
well-posed if there are constants K and α independent of t ≥ 0 such that

sup
−∞<ξ<∞

|eP(ıξ)t | ≤ Keαt . (1.11)

For a PDE system with s > 1 a matrix norm replaces magnitude. The latter condition is
easy to check in practice, even though ξ runs over the entire real line, so we proceed to
consider special cases and verify their well-posedness.

2We call the Fourier variable corresponding to space a wave number, whereas the Fourier transform in time is
traditionally described in terms of frequencies. Occasionally people mix the two, talking about “high frequencies,”
for instance, while meaning high (i.e., large) wave numbers. We will try to stay consistent about this terminology.
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1.1.1 Simple model cases

1. For the simple heat equation

ut = uxx,

we have

P(ıξ) = (ıξ)2 = −ξ 2.

Hence

|eP(ıξ)t | = |e−ξ 2t | ≤ 1 ∀ξ.

The heat equation is the simplest instance of a parabolic equation. Thus, the solution
of the parabolic initial value problem for t > 0 does not grow—a stronger property
than what is required for a mere well-posedness. In fact, we see a decay in û(t, ξ)

which is more pronounced for the higher wave numbers. The solution operator of the
heat equation is thus a smoother.

On the other hand, for ut = −uxx the problem is not well-posed. Indeed, it is not
difficult to see from the equations in (1.10) that ‖u(t)‖ grows faster than is allowed by
(1.7) for any constant α. This PDE is just the heat equation for t ≤ 0, i.e., backward
in time, as can be seen by applying the change of variable t ← −t . Its ill-posedness
corresponds to the fact from physics that heat flow is not reversible: the temperature
distribution in the past cannot be determined from its present distribution.

2. Next, consider the advection equation

ut + aux = 0,

where a �= 0 is a real constant.3 This is perhaps the simplest instance of a hyperbolic
equation. We get

P(ıξ) = −ıξa,

which is purely imaginary, hence

|eP(ıξ)t | = 1

for each wave number ξ . The Cauchy problem is well-posed, with α = 0 in (1.11),
but unlike the heat equation there is no decay in û for any wave number.

The advection operator, therefore, is not a smoother. Consider for example the initial
conditions

u0(x) =
⎧⎨⎩ 1, x < 0,

0, x ≥ 0.

3We write the advection equation in this form because the PDE describes a substance (contaminant) with
concentration u(t, x) being carried downstream by a fluid flowing through a one-dimensional pipe with velocity a.
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8 Chapter 1. Introduction

Figure 1.3. Solution of the simple advection equation ut − ux = 0 starting from
a step-function. The discontinuity simply moves along x = −t .

The exact solution obviously has the form

u(t, x) = u0(x − at),

so the initial discontinuity at x = 0 propagates undamped into the half-space t > 0:
at a later time t = t̃ the solution is still a step function with the discontinuity located
at x = at̃ . The discontinuity therefore propagates with wave speed dx

dt
= a along the

characteristic curve
x − at = 0,

as can be seen in Figure 1.3.

On the other hand, the solution of the heat equation for the same initial values u0(x)

is smooth for all t > 0; see Figure 1.4. This is a simple instance of a fundamental
difference between parabolic problems (such as the heat equation) and hyperbolic
problems (such as the advection equation). Parabolic problems are easier to solve
numerically, in general, and methods which decouple the treatment of the time and
space variables are natural for them, as we will see. Simple hyperbolic problems
can be treated in a similar way, but in more complex situations the propagation of
information along characteristics in hyperbolic problems must somehow be taken into
account.

3. The wave equation

φtt − c2φxx = 0,
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Figure 1.4. Solution of the simple heat equation ut = uxx starting from a step-
function and u(t, −π) = 1, u(t, π) = 0. The discontinuity is diffused; in fact, u(t, ·) ∈ C∞
for t > 0.

where c is a real constant, is also known as the classical wave equation, to distinguish
it from other PDEs describing wave motion. It can be written as a first order system
in the following way: define u1 = φt and u2 = cφx , obtaining for u = (u1, u2)

T

ut −
⎛⎝0 c

c 0

⎞⎠ux = 0.

The eigenvalues of this matrix are ±c. (See Section 1.3.2.) They are real, hence
the wave equation is hyperbolic. The waves travel left and right along straight line
characteristics at speeds ±c.

Note that the Cauchy problem for u entails specification of φx and φt for all x at
t = 0. The usual form of Cauchy problem for φ actually involves specifying φ(0, x)

and φt(0, x) instead. However, obtaining φx(0, x) from φ(0, x) is straightforward.

4. The Laplace equation is the simplest instance of an elliptic equation. In the variables
t and x it reads

φtt + φxx = 0.

This looks like the wave equation, but with imaginary “wave speeds” c = ı. Thus,
there are no real traveling waves here.
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The symbol is

P(ıξ) = ıξ

⎛⎝0 ı

ı 0

⎞⎠ = −ξ

⎛⎝0 1

1 0

⎞⎠ .

The eigenvalues of the latter matrix are ±1; hence there is unbounded growth like
e|ξ t | in ‖eP(ıξ)t‖.

The Cauchy problem for elliptic PDEs is ill-posed!

1.1.2 More general cases

1. The general second order scalar PDE with constant coefficients

auxx + buxt + cutt + dux + eut + f u = 0

obviously has the simple heat, wave, and Laplace equations as special cases. Assum-
ing for definiteness that a �= 0, c2 + e2 > 0, it can be shown (see, e.g., [127] or the
classic [47]) that

• if b2 − 4ac > 0, then the PDE is hyperbolic;

• if b2 − 4ac = 0, then the PDE is parabolic;

• if b2 − 4ac < 0, then the PDE is elliptic.

This is the classical PDE classification. In case of variable coefficients the type
determination is done locally in time and space. It can happen (and does so in gas
dynamics) that a PDE would be hyperbolic in one part of the domain and elliptic in
another.

2. For the second order parabolic system

ut = Auxx,

where A is a symmetric positive definite matrix, we get

P(ıξ) = −ξ 2A.

Since A is symmetric positive definite, its eigenvalues are real and positive, and
moreover, we can use (1.24) with cond(T ) = 1; see Section 1.3.5. Hence

‖eP(ıξ)t‖ = ‖e−ξ 2At‖ ≤ 1 ∀ξ.

We have obtained a direct extension of the simple heat equation. The essential prop-
erties turn out also to hold if A is allowed to depend on x and t , as will be discussed
later.
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3. Next, consider the first order system

ut + Aux = 0.

This system is hyperbolic if the matrix A is a diagonalizable matrix with real eigenval-
ues. Say 
 = T −1AT is a diagonal matrix, where T is the corresponding eigenvector
matrix. By the Fourier transform we have the symbol

P(ıξ) = −ıξA.

Hence, in (1.24) we get purely imaginary, scalar exponents whose modulus is 1. This
yields

‖eP(ıξ)t‖ ≤ ‖T ‖‖T −1‖.
The point is that K = ‖T ‖‖T −1‖ is a constant, independent of the wave number. We
obtain a well-posed problem, but, as for the simple advection equation, there is no
decay, even in high wave numbers. This translates into potential numerical trouble
in more complex problems of this type.

1.1.3 Initial-boundary value problems

The preceding analysis is applied to the pure initial value problem. A key point is the
diagonalization of the PDE system by the Fourier transform, which leads to a simple ODE
for each wave number. However, on a finite interval in space a similar approach yields
some additional terms relating to the boundary, and the elegance (at least) may be lost.
Indeed, everything can potentially become much more complicated. An exception are
periodic boundary conditions, and this is pursued further in Section 1.3.6, Example 1.1, and
Exercise 2.

We will treat some issues regarding BCs in Section 3.1.3. A fuller treatment is delayed
until later, in Chapter 8, although of course we will encounter BCs again much before that.
Here, let us consider for a moment the heat equation in two space variables,

ut = uxx + uyy.

For the pure initial value problem we apply a Fourier transform in both space variables
x and y. A large initial value ODE system in time is obtained and well-posedness for all
nonnegative time t ≥ 0 is derived in exactly the same way as for the heat equation in one
space variable. Specifically, if ξ and η are the wave numbers corresponding to x and y,
respectively, then

P(ıξ, ıη) = −(ξ 2 + η2)

and

|eP(ıξ,ıη)t | = |e−(ξ 2+η2)t | ≤ 1 ∀ξ, η.

Now, if the domain of definition in space is a connected, bounded set � ⊂ R
2, then,

as it turns out, boundary conditions are needed along the entire boundary of �, denoted ∂�.
Suppose that u is given on ∂�—these are Dirichlet boundary conditions. The obtained
initial-boundary value problem is well-posed [111].
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12 Chapter 1. Introduction

Next, examine the steady state case of the heat equation in two space variables, where
the solution does not depend on time. Then ut = 0 and the Laplace equation is obtained.
The boundary value problem for the Laplace equation is well-posed, even though we found
earlier that the initial value problem is not!

1.1.4 The solution operator

Consider again the pure IVP with constant coefficients (1.8), (1.5b). Although not explicitly
stated, we have obtained the solution using a Fourier transform in space:

u(t, x) = 1√
2π

∫ ∞

−∞
eıξx û(t, ξ)dξ

= 1√
2π

∫ ∞

−∞
eıξxeP (ıξ)t û(0, ξ)dξ

= 1

2π

∫ ∞

−∞
eıξxeP (ıξ)t

[∫ ∞

−∞
e−ıξζ u0(ζ )dζ

]
dξ.

We can write this as

u(t, ·) = S(t)u0, (1.12)

where S(t) is the solution operator. It is easy to verify that the family of solution operators
{S(t), t ≥ 0} forms a semi-group on the solution space:

(a) S(0) = I ,

(b) S(t1 + t2) = S(t2)S(t1).

1.2 A taste of finite differences
Let us return to the pure IVP (1.5) defined on the domain depicted in Figure 1.2. We want
to replace the derivatives by divided differences, thereby replacing the differential equation
by algebraic equations which can be solved to yield an approximate solution. Consider a
uniform mesh in t and x with step sizes k = �t and h = �x. Thus, the mesh points are
(tn, xj ), where xj = jh, j = 0, ±1, ±2, . . ., and tn = nk, n = 0, 1, 2, . . . ; see Figure 1.5.
The solution u(t, x) is approximated at mesh points as

vn
j = v(tn, xj ) ≈ u(nk, jh).

For such a uniform mesh, under usual circumstances, the ratio

μ = k

hm
(1.13)

plays an important role, as we will see below and in future chapters. Recall that m is the
highest order of spatial differentiation that appears in (1.5a).



root
2008/5/5
page 13

�

�

�

�

�

�

�

�

1.2. A Taste of Finite Differences 13

0 x

t

h

k

Figure 1.5. Discretization mesh for a Cauchy problem.

The function v is called a mesh function. Let us also denote all its values at a certain
time level by vn = {vn

0 , vn
±1, v

n
±2, . . .}. The superscript denotes the time level, not a power!

Further, define the l2-norm

‖vn‖ = h

√∑
j

(vn
j )

2. (1.14)

Below we concentrate on a simple example, just to get a taste of the basic concepts.
The general case will be considered in subsequent chapters.

For the advection equation
ut + aux = 0,

consider the following three simple schemes applied at each mesh point (tn, xj ):

1.
1

k
(vn+1

j − vn
j ) + a

h
(vn

j+1 − vn
j ) = 0.

This scheme is first order accurate in both t and x. Such accuracy order essentially
means that if we substitute the exact solution u(tn, xj ) in place of vn

j , etc., in the
above difference equation, then the residual decreases by a factor M if both k and h

are decreased by the same factor M . We will define order more precisely in the next
two chapters; see in particular Section 3.2.1 and Example 3.9. Note that the difference
in x is one-sided in that the point to the right, or east, of (tn, xj ) participates but the
point to the left, or west, does not.

2.
1

k
(vn+1

j − vn
j ) + a

2h
(vn

j+1 − vn
j−1) = 0.

This scheme is first order accurate in t and second order in x (see Section 3.2.1). The
difference in x is centered.
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3.
1

2k
(vn+1

j − vn−1
j ) + a

2h
(vn

j+1 − vn
j−1) = 0.

This is known as the leapfrog scheme. It is second order accurate, and the difference
is centered, in both t and x. Note that this is a two-step scheme, whereas the other
two are one-step in time.

vn+1
j � vn

j − μa(vn
j+1 − vn

j )

vn+1
j � vn

j − μa

2 (vn
j+1 − vn

j−1)

vn+1
j � vn−1

j − μa(vn
j+1 − vn

j−1)

Figure 1.6. Three simple schemes for the advection equation.

It is worthwhile to keep in mind for each formula which locations of the mesh it
involves. The “computational molecule” distinguishes the schemes from one another; see
Figure 1.6. These schemes are all explicit. This means that the next unknown value, vn+1

j ,
is defined by known values at the previous time levels n and n − 1,

vn+1
j = vn

j − μa(vn
j+1 − vn

j ), (1.15a)

vn+1
j = vn

j − μa

2
(vn

j+1 − vn
j−1), (1.15b)

vn+1
j = vn−1

j − μa(vn
j+1 − vn

j−1), (1.15c)

where μ = k
h

. Starting from v0
j = u0(xj ) we can march in time using (1.15a) or (1.15b),

i.e., for n = 0, 1, 2, . . . , compute vn+1
j for all j in parallel based on the known vn. In the

case of (1.15c) we also need initial values at n = 1. These can be obtained by using the
Taylor expansion (see Section 1.3.1),

u(k) = u(0) + kut (0) + k2

2
utt (0) + O(k3) = u(0) − kaux(0) + k2a2

2
uxx(0) + O(k3),

or simply a stable, second order accurate, one-step scheme.4

4A one-step scheme is occasionally referred to as a two-level method in the PDE literature. A two-step scheme
is three-level, etc.
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Below and throughout the text we occasionally refer to the mesh function v as if it is
defined everywhere in the PDE problem’s domain. Thus, we write v(tn, xj ) = vn

j and refer
more generally to v(t, x). Although the mesh function is not defined, strictly speaking, at
locations other than mesh points, we imagine that its domain of definition is extended by
some appropriate local interpolation scheme. We do avoid taking derivatives of v on the
continuum; thus the details of the extension of the mesh function are unimportant and may
be left unspecified in what follows.

Example 1.1 The three schemes (1.15) all look reasonable and simple, and they approx-
imate the differential equation well when k and h are small. So what can possibly go
wrong?!

Consider the advection problem

ut + ux = 0,

u(0, x) = u0(x) =
{

1, x ≤ 0,

0, x > 0.

Here a = 1. Recall that the exact solution is

u(t, x) = u0(x − t).

So, at t = 1

u(1, x) =
{

1, x ≤ 1,

0, x > 1.

Now, consider applying the scheme (1.15a) for h and k as small as you wish (but in
any case h < 1). If x0 = 0, then v0

j = 0 ∀ j > 0, which implies that v1
j = 0 ∀ j > 0. This

yields in a similar manner v2
j = 0 ∀ j > 0, and so on. Thus, for N such that Nk = 1 we

likewise obtain
vN

j = 0 ∀ j > 0,

which has the error
|vN

j − u(1, xj )| = 1 for 0 < xj ≤ 1.

Figure 1.7 depicts the situation. This is an unacceptable error, both quantitatively and
qualitatively.

The reason for the failure in Example 1.1 is that a fundamental restriction has been
violated. The origin of this goes back to the ancient paper5 by Courant, Friedrichs, and
Lewy [52]. The condition is thus referred to as the CFL condition. It says that the
domain of dependence of the PDE must be contained in that of the difference scheme,
as in Figure 1.8. Indeed, the value of vn+1

j according to (1.15a) depends on vn
j and vn

j+1,

5By “ancient” we mean, needless to say, preceding the modern computing era.
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0 x

t

.3 .6 .9 1.2

.25

.5

.75

1

Figure 1.7. Example 1.1 with k = .25 and h = .3, i.e., μ < 1. The exact
solution for the PDE ut + ux = 0 at (t, x) = (1, .3) is equal to the value at the foot of the
characteristic curve leading to it (in dashed blue), u(1, .3) = u(0, −.7) = u0(−.7) = 1.
The approximate solution at the same location, on the other hand, is traced back to initial
values to the right of x = .3; since all of these vanish, v(1, .3) = 0.

0 x

t

Figure 1.8. Characteristic curves for ut + aux = 0, a < 0. The CFL condition
implies that the domain of dependence of the PDE is contained in that of the difference
scheme.

whereas that of the exact solution u(tn+1, xj ) is simply transported along the characteristic
curve, so that u(tn+1, xj ) = u(tn, xj − ka). Continuing interpreting such dependence back
to the starting line we see that vn+1

j depends only on the values of vn−1
j , vn−1

j+1 , and vn−1
j+2 ,

then on vn−2
j , vn−2

j+1, v
n−2
j+2 , and vn−2

j+3 , and so on backward in time until the initial values
u0(xj ), . . . , u0(xj+n+1), whereas u(tn+1, xj ) = u0(xj − atn+1). Now, if xj > xj − atn+1

or xj+n+1 < xj − atn+1, which would occur if a > 0 or (−a)μ > 1, respectively, then it is
possible to arbitrarily change the initial value function u0(xj − atn+1) and thus the exact
value u(tn+1, xj ) without affecting the value of the calculated approximate solution!

In particular, the scheme (1.15a) violates the CFL condition if a > 0, which explains
the failure in Example 1.1. This is because the forward difference in x is commensurate
with the characteristics traveling leftward in time, as in Figure 1.8, not rightward as in
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0 x

t

.2 .4 .6 .8 1

.25

.5

.75

1

Figure 1.9. Violation of the CFL condition when |a|μ > 1. The exact solution for
the PDE ut −ux = 0 at (t, x) = (1, .2) is equal to the value at the foot of the characteristic
curve leading to it (in dashed blue), u(1, .2) = u(0, 1.2) = u0(1.2). The approximate
solution at the same location is traced back after N time steps, Nk = 1, to initial values in
the range [.2, .2 + Nh]. If μ > 1, then .2 + Nh < .2 + Nk = 1.2. Here k = .25, h = .2,
hence μ = 1.2, N = 4 and .2 + Nh = 1. Assuming no change in the initial values u0(x)

over [.2, 1], the same numerical solution is obtained at t = 1, x = .2 regardless of the exact
value u0(1.2).

Figure 1.7. Even if the characteristics travel leftward, though, i.e., a < 0, we must maintain
(−a)μ ≤ 1: Figure 1.9 shows what happens if the latter condition is violated. Exercise 5
explores this further.

1.2.1 Stability ideas

Now, just as with well-posedness we want to make sure that for any h small enough ‖vn‖
does not increase too fast in n as k → 0, nk ≤ tf , for a fixed maximum time tf . In fact,
we don’t want ‖vn‖ to increase at all, if possible, in cases such as the advection equation
where the exact solution does not increase at all (α = 0 in (1.11)). This is the essence of
stability of the difference scheme.�

�
�
	

Note: The stability requirement of a difference method corresponds to
the well-posedness requirement of a differential problem.

Since the advection equation has constant coefficients, we have the same computa-
tional formula at all mesh points. This allows us to apply the Fourier analysis also in the
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18 Chapter 1. Introduction

discrete case. Writing

v(t, x) = 1√
2π

∫ ∞

−∞
eıξx v̂(t, ξ)dξ,

we obtain for the first scheme (1.15a)∫ ∞

−∞
eıξx v̂(t + k, ξ)dξ =

∫ ∞

−∞

[
eıξx v̂(t, ξ) − μa(eıξ(x+h) − eıξx)v̂(t, ξ)

]
dξ.

This must hold for any x, so the integrands must agree, yielding

v̂(t + k, ξ) = [
1 − μa(eıξh − 1)

]
v̂(t, ξ)

= γ1(ζ )v̂(t, ξ),

where ζ = ξh and
γ1(ζ ) = 1 − μa(eıζ − 1).

So, each Fourier mode is multiplied by a corresponding constant γ1 over each time step.
The stability condition requires that ‖vn‖ remain bounded in terms of ‖v0‖ for all n.

For a scheme which in Fourier space reads

v̂(t + k, ξ) = γ1(ζ )v̂(t, ξ),

this translates to requiring that

|γ1(ζ )| ≤ 1 ∀ζ. (1.16)

The function g(ζ ) = γ1(ζ ) is called the amplification factor; see Section 4.1.
For the scheme (1.15a) note that γ1(ζ ) is a periodic function, so we need consider

only |ζ | ≤ π . Writing γ1(ζ ) = 1 + μa − μaeıζ , the condition (1.16) is seen to hold (see
Figure 1.10) iff6 a ≤ 0 and

μ(−a) ≤ 1.

This is a stability restriction which coincides with the CFL condition.
Applying the same analysis to the second scheme (1.15b) we readily obtain

v̂(t + k, ξ) = γ2(ζ )v̂(t, ξ),

γ2(ζ ) = 1 − μa

2
(eıζ − e−ıζ )

= 1 − ıμa sin ζ.

Clearly, γ2(ζ ) does not satisfy the stability condition (1.16). We have stumbled upon a
phenomenon which does not occur in ODEs at all, where an innocent-looking, consistent
one-step scheme is nonetheless unconditionally unstable!

6iff stands for “if and only if.”
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1 + μa

1

Figure 1.10. Stability of the difference scheme (1.15a) for a < 0.

For the two-step, leapfrog scheme (1.15c) we obtain

v̂(t + k, ξ) = v̂(t − k, ξ) − μa(eıζ − e−ıζ )v̂(t, ξ) or

v̂n+1 = v̂n−1 − 2 (ıμa sin ζ ) v̂n.

We get a second order difference equation which we can solve by an ansatz: try v̂n = κn.
Substituting and dividing through by κn−1, this is seen to work if κ satisfies the quadratic
equation

κ2 = 1 − 2 (ıμa sin ζ ) κ.

Solving this equation we obtain the condition that |κ| ≤ 1 (i.e., the stability condition (1.16)
holds) provided again that the CFL condition holds. Indeed, here the condition is really

μ|a| ≤ 1,

i.e., the scheme is stable under the same condition regardless of the sign of a, unlike the
one-sided scheme (1.15a).

The number μ|a| is often referred to in the literature as the Courant number or the
CFL number.

Example 1.2 Let us carry out calculations using the three schemes (1.15) for the initial-
value PDE

ut − ux = 0,

u0(x) = sin ηx,

where η is a parameter. Periodic boundary conditions (BC) on the interval [−π, π ] are
employed; thus, u(t, −π + x) = u(t, π + x) for all relevant x and t , and in particular

u(t, −π) = u(t, π).
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20 Chapter 1. Introduction

The exact solution is then
u(t, x) = sin η(t + x).

With spatial and temporal step sizes h and k, respectively, let J = 2π
h

− 1 and seek
solution values vn

j for j = 0, 1, . . . , J . The periodic BC give

vn
J+1 = vn

0 ∀n.

Moreover, it is useful to imagine the spatial mesh points sitting on a ring, rather than on
a straight line, with xJ+1 identified with x0. Thus, for j = J , vj+1 = v0, and for j = 0,
vj−1 = vJ , at any n; see Figure 1.11.

x0 x1 xJ−1 xJ xJ+1

x0 = xJ+1
x1xJ

xJ−1

Figure 1.11. For periodic boundary conditions, imagine the red mesh points sitting
on a blue circle with x0 = xJ+1 closing the ring. Thus, xJ is the left (clockwise) neighbor
of x0, x1 is the right (counterclockwise) neighbor of xJ+1, and so on.

A simple MATLAB® script for the leap-frog scheme follows:

% parameters
eta = 1;
h = .001*pi;
k = 0.5*h; mu = k / h;

% spatial mesh
xx = [-pi:h:pi];
Jp2 = length(xx);
Jp1 = Jp2 - 1; J = Jp1 - 1;

% final time tf = 1
nsteps = floor(1/k);
tf = k * nsteps;

% initial condition
un = sin (eta * xx);

% exact solution at t=tf
ue = sin (eta * (xx + tf));
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%leap frog: need also initial values at t = k
vo = un;

% cheat for simplicity: use exact solution for v at t=k
vn = sin (eta * (k+xx));

% advance in time
for n=2:nsteps

voo = vo;
vo = vn;
% interior x-points
vn(2:Jp1) = voo(2:Jp1) + mu * (vo(3:Jp2) - vo(1:J));
% periodic BC: 1=Jp2 so left of 1 is 0=Jp1
vn(1) = voo(1) + mu * (vo(2)-vo(Jp1));
vn(Jp2) = vn(1);

end

% plot results and calculate error at t=tf
plot(xx,vn,’m’)
xlabel(’x’)
ylabel(’u’)
title(’Leap-frog scheme’)
err3 = max(abs(vn-ue));

Table 1.1. Maximum errors at t = 1 for the three simple difference schemes
applied to the equation ut − ux = 0 with u0(x) = sin ηx. Error blowup is denoted by *.
Note that k = μh.

η h μ Error in (1.15a) Error in (1.15b) Error in (1.15c)

1 .01π 0.5 7.7e-3 7.8e-3 1.2e-4

.001π 0.5 7.8e-4 * 1.2e-6

.001π 1.1 * * *

10 .01π 0.5 5.4e-1 1.15 1.2e-1

.001π 0.5 7.6e-2 * 1.2e-3

.0005π 0.5 3.9e-2 * 3.1e-4

Table 1.1 displays the resulting maximum errors. Note that we avoid taking k = h,
that is, μ = 1—this would correspond to stepping exactly along characteristics, which is
impossible in realistic mathematical models. (Our purpose here is to demonstrate typical
phenomena, not to actually solve ut − ux = 0 numerically as an end in itself!)

For η = 1 we observe that when μ < 1 is held fixed, the error decreases like h for
(1.15a) and like h2 for (1.15c). For μ > 1 all schemes are unstable because the stability
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restriction that coincides with the CFL condition is violated. For η = 10 we observe the
same first and second order convergence rates for the stable schemes, although in absolute
value all the errors are larger than those for η = 1 by factors of about 100 using (1.15a) and
1000 using (1.15c). This corresponds to the second and third derivatives of the solution u,
respectively, being involved in the error expressions of these two schemes, as we’ll see in
Chapter 3.

Let us further investigate the unstable scheme (1.15b). In general, after n steps

v̂n = γ2(ζ )nv̂0

(that’s the amplification factor to the power n). Thus, with nk = 1 we have at wave number
ξ the amplification

|v̂n| = |1 − ı
k

h
a sin(ξh)|1/k|û0(ξ)|.

The amplification factor is far from 1 when sin(ξh) is not small, e.g., ξh ≈ π/2. For
such a wave number ξ some basic calculus manipulations show that we get a blowup like

e
μa2

2h as k → 0. So, as h → 0 the blowup is faster, which is apparent in Table 1.1, and it
is particularly damaging for high wave-number components of the initial values. In fact,
different initial value functions u0(x) may have high wave-number components with small
or large amplitude, and thus exhibit different rates of blowup. The solution at t = 1 for
η = 1, h = .001π , and k = .5h is displayed in Figure 1.12.

For many physical problems it may be safely assumed that û0(ξ) = 0 for high wave
numbers, say, |ξ | > ξf for some value ξf . Then, as h, k → 0 with the ratio μ kept
fixed, convergence may be seen to occur even for an unstable scheme.7 That is to say,
convergence would have occurred in such cases had we worked in precise arithmetic!
However, roundoff errors introduce components with high wave numbers into û0(ξ), and
these error components are magnified by an unstable scheme.�

�
�
	

Note: Generally, we need accuracy for low wave numbers and stability
for high wave numbers of the error.

To close off this introductory chapter we next turn to a rough classification of the
problems and numerical algorithms under consideration. The PDE problems considered in
this text are well-posed as initial value problems. Attempting to classify them according
to suitable numerical treatment, we can distinguish between smooth and nonsmooth in two
different ways, namely, in the differential equation operator and in the solution, creating in
effect three classes:

• For the class of parabolic-type PDEs, the differential operator itself is a smoother, as
we have seen. The differential problem is diffusive. The solution of such an initial-

7We will soon make precise the meaning of stability, accuracy, consistency, and convergence. For now, we’re
appealing to the reader’s intuition and related knowledge from elsewhere—e.g., a numerical ODE course. Please
reread these paragraphs after you’ve read Chapters 2 and 3.
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−4 −3 −2 −1 0 1 2 3 4
−1

0

1
u

First order, stable scheme

−4 −3 −2 −1 0 1 2 3 4
−5

0

5
x 10

14

u

Unstable scheme

 −4 −3 −2 −1 0 1 2 3 4
−1

0

1

x

u

Leapfrog scheme

Figure 1.12. Solution of ut − ux = 0 at t = 1 using the three schemes (1.15) with
u0 = sin x, h = .001π, k = .5h.

boundary value problem is smooth even if the initial or boundary value functions
are not. Correspondingly, we can seek highly accurate, high order discrete approxi-
mations. The main computational challenge is often concerned with the mild stiffness
that such problems exhibit, issues that will be made clearer in Sections 2.6, 2.7, 5.1,
9.2, and elsewhere.

• For the class of hyperbolic-type PDEs, the differential operator is not a smoother and
the PDE is conservative. Still, in many situations concerning wave propagation the
solution is smooth. For such problems efficient numerical methods with high order
of accuracy are sought as well. The main issues here are stability, dissipation, and
dispersion, elaborated upon in Section 1.2, Chapters 4, 5, and 7, and elsewhere.

• For the class of hyperbolic-type PDEs, nonsmooth solutions may occur. These may
arise as a result of a discontinuity in the initial or boundary conditions, as in Figure 1.3.
For nonlinear problems, solution discontinuities inside the domain in x and t may
arise even if the solution is smooth along all boundaries. For such problems it is hard to
construct accurate numerical methods near discontinuities. Methods are then sought
that limit the effect of inevitable inaccuracies near discontinuities on the approximate
solution elsewhere in the domain and produce physical-looking solutions with sharp
profiles. They turn out to be rather different methods from those used for the smooth
case. This is elaborated upon in Chapter 10, Sections 5.2 and 11.3, and elsewhere.
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1.3 Reviews
In this section and in Section 2.12 we have collected short reviews on various mathematical
and numerical topics that are used throughout the text but are not developed here. Thus,
these topics are considered as background material. Of course the background of different
readers may vary widely. For some, a quick review may serve as a reminder or refresher.
Readers may find a review helpful to connect with other, related strands of knowledge. But
there are certain to be readers who may find our short reviews insufficient. If you find that
you still are clueless after reading one of these reviews, then please consult an appropriate
introductory text.

1.3.1 Taylor’s theorem

Let w(·) be a smooth function. Taylor’s theorem expresses the value of w at locations
x̂ = x + h near a given argument value x in terms of w and its derivatives at x

w(x̂) = w + h
dw

dx
+ h2

2

d2w

dx2
+ · · · + hl

l!
dlw

dxl
+ · · · .

Thus, for instance, the first derivative of a function u(t, x) with respect to x can be written
as

ux(t, x) = h−1(u(t, x + h) − u(t, x)) − h

2
uxx(t, x) + O(h2).

Here O(hp) is the customary notation for terms that tend to 0 at least as fast as hp when
h → 0. Defining the forward difference for ux as

D+u = u(t, x + h) − u(t, x), @ (t, x),

Taylor’s theorem yields an expression for the error

ux − 1

h
D+u = −h

2
uxx + O(h2), @ (t, x).

Also, defining the centered difference for ux as

D0u = u(t, x + h) − u(t, x − h), @ (t, x),

then, by writing the Taylor expansions

u(x ± h) = u ± hux + h2

2
uxx ± h3

6
uxxx + h4

4! uxxxx + · · · ,

we have

ux − 1

2h
D0u = −h2

6
uxxx + O(h4), @ (t, x).

Similarly, a centered difference for the second derivative uxx is given by

D+D−u = [u(t, x + h) − u(t, x)] − [u(t, x) − u(t, x − h)]
= u(t, x + h) − 2u(t, x) + u(t, x − h), @ (t, x).
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By adding the Taylor expansions for u(x ± h) and subtracting 2u(x) we have

uxx − 1

h2
D+D−u = −h2

12
uxxxx + O(h4), @ (t, x).

Recall from advanced calculus that Taylor’s theorem for a function of several vari-
ables gives

w(t + k, x + h) = w + hwx + kwt + 1

2! [h
2wxx + 2hk wxt + k2wtt ]

+ · · · + 1

l!�
lw + · · · ,

where the functions on the right-hand side are evaluated at (t, x) and

�lw =
l∑

j=0

(
l

j

)(
∂lw

∂xj∂t l−j
(x, t)

)
hjkl−j .

1.3.2 Matrix norms and eigenvalues

Let us first recall some matrix definitions. Many people are used to real-valued matrices, but
in this book we occasionally encounter more general, complex-valued ones. The concepts
extend smoothly from real to complex, and so does the associated vocabulary.

Consider a complex-valued m × m matrix A and denote by AT the transpose and by
A∗ the conjugated transpose of A. Thus, A∗ = AT if A is real, i.e., if all its elements are
real.

The following definitions are collected in Table 1.2. The matrix A is Hermitian
if A∗ = A and unitary if A∗ = A−1. Thus, for real matrices, A is Hermitian iff it is
symmetric (i.e., AT = A), and A is unitary iff it is orthogonal (i.e., AT A = I ). Further,
A is skew-Hermitian if A∗ = −A and skew-symmetric if AT = −A. The matrix A is
normal if AA∗ = A∗A. Hermitian, skew-Hermitian, and unitary matrices are all examples
of normal matrices.

Table 1.2. Some matrix definitions, for A complex- and real-valued.

Real-valued A Complex-valued A

Symmetric if AT = A Hermitian if A∗ = A

Skew-symmetric if AT = −A Skew-Hermitian if A∗ = −A

Orthogonal if AT A = I Unitary if A∗A = I

Normal if AT A = AAT Normal if A∗A = AA∗

Given an l ×m complex matrix A and a vector norm ‖ · ‖, the corresponding induced
matrix norm is defined by

‖A‖ = max
x �=0

‖Ax‖
‖x‖ .
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• For the maximum vector norm, ‖x‖∞ = max1≤i≤m |xi |, we have the induced matrix
norm

‖A‖∞ = max
1≤i≤l

m∑
j=1

|aij |.

• For the l1 vector norm, ‖x‖1 = ∑m
i=1 |xi |, we have the matrix norm

‖A‖1 = max
1≤j≤m

l∑
i=1

|aij |.

• For the l2 vector norm, where there is an associated inner product, ‖x‖2 = √
x∗x ≡

(x, x)1/2, we have the matrix norm

‖A‖2 = √
ρ(A∗A),

where ρ is the spectral radius, defined below.

Note that if, for instance, x = (1, 1, . . . , 1)T , then ‖x‖1 = m and ‖x‖2 = √
m. So, if

m increases unboundedly, then the vector norm definition may require scaling, e.g.,
‖x‖2 = √

x∗x/m. Indeed, in (1.14) we scale ‖vn‖ by the spatial step size h.

Let A be nonsingular. Then its condition number in a given norm is defined by

cond(A) = ‖A‖‖A−1‖.
The condition number features prominently in numerical linear algebra. It indicates a bound
on the quality of the computed solution to a linear system of equations involving A: the
smaller it is, the better is the guaranteed quality. The condition number is an even more
central indicator for the iterative methods reviewed in Section 9.4. However, one rarely
requires the exact value of cond(A), as it is used just to indicate quantity sizes. Hence, any
reasonable induced matrix norm may be used in its definition. Note that we always have

cond(A) = ‖A‖‖A−1‖ ≥ ‖AA−1‖ = 1.

Any unitary or orthogonal matrixT is thus ideally conditioned because‖T ‖2 = ‖T −1‖2 = 1,
hence cond(T ) = 1.

Given an m × m, generally complex-valued matrix A, an eigenvalue λ is a scalar
which satisfies

Ax = λx

for some vector x �= 0. In general, λ may be complex even if A is real. But if A is
Hermitian, then λ is guaranteed to be real. If all eigenvalues of A are positive, then A is
positive definite. The vector x, which is clearly determined only up to a scaling factor, is
called an eigenvector. Counting multiplicities, A has m eigenvalues, which we denote by
λ1, . . . , λm.

The spectral radius of a matrix is defined by

ρ(A) = max
1≤i≤m

|λi |.
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In general, in the l2 matrix norm

ρ(A) ≤ ‖A‖2

for any square matrix. But if A is normal, then

ρ(A) = ‖A‖2.

A similarity transformation is defined, for any nonsingular matrix T , by

B = T −1AT .

The matrix B has the same eigenvalues as A and the two matrices are said to be similar. If B

is diagonal, denoted B = diag{λ1, . . . , λm}, then the displayed λi are the eigenvalues of A,
the corresponding eigenvectors are the columns of T , and A is said to be diagonalizable.
Any normal matrix is diagonalizable, in fact, by a unitary transformation (i.e., T can be
chosen to satisfy T ∗ = T −1). This is nice because the similarity transformation is ideally
conditioned. For a general matrix, however, a unitary similarity transformation can at best
bring A only to a matrix B in upper triangular form. (This still features the eigenvalues on
the main diagonal of B.)

For a general, square matrix A there is always a similarity transformation into a
Jordan canonical form,

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


1 0


2

. . .

. . .

0 
s

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
; 
i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λi 1 0

λi 1
. . .

. . .

λi 1

0 λi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, i = 1, . . . , s .

The Jordan blocks 
i generally have different sizes.
A simple, sometimes useful, way to estimate matrix eigenvalues without computing

them is to use Gershgorin’s theorem. In its simplest form this theorem states that the
eigenvalues of A are all located in the union ∪m

i=1Di of disks (in the complex plane) centered
at the diagonal elements of A,

Di =
⎧⎨⎩z ∈ C : |z − aii | ≤

m∑
j=1j �=i

|aij |
⎫⎬⎭ .

For example, if aii > 0 ∀i and A is diagonally dominant, i.e.,
∑m

j=1j �=i
|aij | ≤ aii ∀i,

then Gershgorin’s theorem yields that Re λi ≥ 0 ∀i. Thus, if A is also Hermitian and
nonsingular, then it is positive definite.

If A is normal and nonsingular, then, utilizing the existence of a unitary similarity
transformation, it is easy to see that in the 2-norm

cond(A) = maxi |λi |
mini |λi | .
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For a positive definite matrix this simplifies into

cond(A) = maxi λi

mini λi

.

For a more general, possibly rectangular matrix A with a full column rank we have

cond(A) = maxi σi

mini σi

,

where σi are the singular values of A. These are the square roots of the eigenvalues of
AT A.

A good reference for numerical linear algebra is Golub and van Loan [68]. There are
many others, including the reader-friendly Trefethen and Bau [170] and Demmel [57]. See
Saad [149] for iterative methods.

1.3.3 Function spaces

On the real line R, define the L2 norm

‖w‖ =
(∫ ∞

−∞
|w(x)|2dx

)1/2

.

The space L2(R) consists of all square integrable functions, i.e., all functions whose L2

norm defined above is finite.
A similar definition applies more generally on a domain � ⊂ R

d which may be
bounded or unbounded: the space L2(�) consists of all square integrable functions over �,
with the norm

‖w‖ =
(∫

�

|w(x)|2dx
)1/2

.

It is customary to omit the dependence on � when there is no room for confusion (at least
in the author’s mind).

Other norms that we will encounter are the sup (max), or the L∞ norm

‖w‖∞ = sup
x∈�

|w(x)|,

and the L1 norm

‖w‖1 =
∫

�

|w(x)|dx.

Note that the corresponding spaces satisfy L∞ ⊂ L2 ⊂ L1.
Estimates that depend on function derivatives are also very common in PDE analysis.

These lead to Sobolev spaces. Based, say, on the L2 norm, a Sobolev space Hs is the space
of functions for which all the derivatives of order j , for all 0 ≤ j ≤ s, are square integrable,
and the corresponding Sobolev norm with which this space is equipped is just the sum of
the norms of these derivatives. Thus, in particular, H0 = L2 (where we identify the zeroth
derivative with the function itself) and Hs+1 ⊂ Hs .
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For example, let � be the unit circle defined by x2 + y2 ≤ 1, so its boundary ∂� is
defined by x2 + y2 = 1, and let

q(x) = q(x, y) =
{

1 x < 0

0 x ≥ 0
.

Then q is square integrable but qx is not. Thus, q ∈ H0(�) but q /∈ H1(�). Now, if the
function φ(x, y) satisfies Poisson’s equation φxx + φyy = q in � and φ = 0 on ∂�, then φ

and its derivatives up to order 2 are square integrable. Hence φ ∈ H2(�), and this higher
Sobolev index expresses the additional smoothness that φ has over q.

1.3.4 The continuous Fourier transform

For a square-integrable function v ∈ L2(R) define the Fourier transform

v̂(ξ) = 1√
2π

∫ ∞

−∞
e−ıξxv(x)dx, (1.17)

where ı = √−1. It then follows that the inverse transform is given by

v(x) = 1√
2π

∫ ∞

−∞
eıξx v̂(ξ)dξ. (1.18)

The variable ξ is traditionally referred to as the wave number when x is a space variable
and as the frequency when x is time.

The Fourier transform has many beautiful properties, among which are the following
two that can be easily verified:

• The L2 norm of the transform is equal to (and not just bounded by) the norm of the
original function

‖v‖ = ‖v̂‖ (1.19)

(this is called Parseval’s equality).

• A differentiation of v(x) is transformed into a multiplication of v̂(ξ) by ıξ ,

vx ⇐⇒ ıξ v̂(ξ). (1.20)

In d dimensions the Fourier transform readily generalizes to

v̂(ξ) = 1

(2π)d/2

∫
Rd

e−ıξ ·xv(x)dx, (1.21)

where ξ · x = ∑d
i=1 ξixi .

Let us demonstrate the use of (1.20) for the PDE

ut = uxx − 3ux, −∞ < x < ∞, t ≥ 0. (1.22a)
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This is the advection-diffusion equation (1.1) with ν = 1 and a = 3. Applying the Fourier
transform in x we have

u(t, x) = 1√
2π

∫ ∞

−∞
eıξx û(t, ξ)dξ.

There is only one place under the integral sign where either t or x appears. Taking derivatives
we obtain

ut (t, x) = 1√
2π

∫ ∞

−∞
eıξx ût (t, ξ)dξ,

ux(t, x) = 1√
2π

∫ ∞

−∞
eıξx(ıξ)û(t, ξ)dξ,

uxx(t, x) = 1√
2π

∫ ∞

−∞
eıξx(ıξ)2û(t, ξ)dξ.

Substituting in (1.22a) written as ut − uxx + 3ux = 0 we therefore have

1√
2π

∫ ∞

−∞
eıξx

[
ût + ξ 2û + 3ıξ û

]
(t, ξ)dξ = 0.

This equality is to hold for any real x, hence the expression in square parentheses must
vanish. Thus, for each real wave number ξ the following ODE in time,

ût = − (
ξ 2 + 3ıξ

)
û, t ≥ 0, (1.22b)

must hold. The PDE (1.22a) has thus been transformed into a set of scalar, constant
coefficient ODEs (1.22b) with the wave number ξ as a parameter. The ODE (1.22b) can be
solved exactly for each ξ .�

�

�

�

Note: The following identities hold for any scalar θ :

eıθ = cos θ + ı sin θ,

cos θ = eıθ + e−ıθ

2
,

sin θ = eıθ − e−ıθ

2ı
,

cos θ − 1 = −2 sin2(θ/2).

1.3.5 The matrix power and exponential

We will often want to bound the powers An (i.e., A times itself n times), where A is an
m × m matrix. If A = T 
T −1, where 
 is a diagonal matrix, then

An = (T 
T −1)(T 
T −1) · · · (T 
T −1)

= T 
(T −1T )
(T −1T ) · · · 
T −1 = T 
nT −1.
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Thus, in any consistent matrix norm

‖An‖ ≤ ‖
n‖cond(T ) = [ρ(A)]ncond(T ), (1.23)

where cond(T ) = ‖T ‖‖T −1‖ is the condition number of the transformation.
The matrix exponential is defined via a power series expansion by

eAt =
∞∑

n=0

tnAn

n! = I + tA + t2A2

2
+ t3A3

6
+ · · · .

If A = T 
T −1, where 
 is a diagonal matrix, then it is easy to see that eAt = T e
tT −1,
where e
t = diag{eλ1t , . . . , eλmt }. Thus,

‖eAt‖ ≤ emaxiReλi tcond(T ). (1.24)

The calculation of eAt for a general square matrix A, and even more so of eAtv for a
given vector v in case that A is very large, can be surprisingly exciting [135].

1.3.6 Fourier transform for periodic functions

Consider the function space L2[0, 2π ]. Define the inner product

(v, w) = 1

2π

∫ 2π

0
v(x)w∗(x)dx, (1.25)

which also holds for complex-valued vector functions. Then ‖w‖ = (w, w)1/2. Let

φj (x) = eıjx, j = 0, ±1, ±2, . . . , (1.26a)

be the trigonometric basis functions. Then

(φj , φl) = δjl =
⎧⎨⎩ 0, j �= l,

1, j = l,

and any function v ∈ L2[0, 2π ] can be written as

v(x) =
∞∑

j=−∞
v̂jφj (x), where (1.26b)

v̂j = (v, φj ). (1.26c)

Thus, the trigonometric functions form a complete, orthonormal basis for L2[0, 2π ]. Par-
seval’s equality (1.19) now reads (due to the basis orthonormality)

‖v‖ =
√√√√ ∞∑

j=−∞
|v̂j |2.
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Now, for a periodic function v (i.e., v(2π) = v(0)) we have the same diagonalization
effect on derivatives as in the infinite case (Section 1.3.4), because

(vx, φj ) = 1

2π

∫ 2π

0
vx(x)e−ıjxdx = ıj

2π

∫ 2π

0
v(x)e−ıjxdx = ıj v̂j .

Above, the crucial step follows from integration by parts using the periodicity of v to avoid
unwanted boundary terms.

1.4 Exercises
0. Review questions

(a) What is a Cauchy problem?

(b) Let û(t, ξ) be the Fourier transform of u(t, x), where t acts as a parameter. What
is the Fourier transform of ux(t, x)?

(c) Is the heat equation operator a smoother? Is the advection operator a smoother?

(d) For the PDE ut = ux , what is a characteristic curve? Does x grow or decrease
as t grows along this curve?

(e) Write down the wave equation and the Laplace equation. For which is the pure
IVP well-posed? For which is the boundary value problem well-posed?

(f) Define a mesh function.

(g) What is the leapfrog scheme for the advection equation?

(h) State the CFL condition. Is it equivalent to stability?

(i) What is an amplification factor? What happens if it equals 1.2 for all ζ?

1. For the Cauchy problem with constant coefficients (1.8) show that if ımpm has an
eigenvalue with a positive real part, then the problem cannot be well-posed.

2. For the initial-boundary value, constant-coefficient problem

ut = P(∂x)u, 0 < x < 2π, t ≥ 0,

u(0, x) = u0(x), u(t, 2π) = u(t, 0),

derive a well-posedness condition analogous to (1.11).

3. The celebrated Black–Scholes model [26] for the pricing of stock options is central
in mathematical finance; see, e.g., [183]. The PDE is given by

ut + 1

2
σ 2x2uxx + rxux − ru = 0, 0 < x < ∞, t ≤ T . (1.27)

For the sake of completeness let us add that u is the sought value of the option under
consideration, t is time, x is the current value of the underlying asset, r is the interest
rate, σ the volatility of the underlying asset, T the expiry date, and E the exercise
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price. In general, r and σ may vary, but here they are assumed to be known constants,
as are E and T .

For the European call option we have the terminal condition

u(T , x) = max(x − E, 0) (1.28a)

and the boundary conditions

u(t, 0) = 0, u(t, x) ∼ x − Ee−r(T −t) as x → ∞. (1.28b)

(a) Show that the transformation

x = Eey, t = T − 2s

σ 2
, u = Ev(s, y)

results in the initial value PDE

vs = vyy + (κ − 1)vy − κv, −∞ < y < ∞, (1.29)

v(0, y) = max(ey − 1, 0),

where κ = 2r
σ 2 .

(b) Show further that transforming

v = eγy+βsw(s, y), where

γ = (1 − κ)/2, β = −(κ + 1)2/4,

yields the PDE problem

ws = wyy, −∞ < y < ∞, s ≥ 0, (1.30)

w(0, y) = max(e
1
2 (κ+1)y − e

1
2 (κ−1)y, 0).

(c) Prove that the terminal-value PDE (1.27)–(1.28) is well-posed.

(Note that the solution of (1.30), and therefore also of (1.29) and (1.27)–(1.28), can
be specified exactly in terms of the integral

1√
2π

∫ z

−∞
e−ζ 2/2dζ.

However, you don’t need this for the purpose of the present exercise.)

4. Consider the advection-diffusion equation

ut + aux = νuxx

with constant coefficients ν > 0 and a. Show that the Cauchy problem is well-posed.
What happens as ν → 0?
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5. (a) For the advection equation ut + aux = 0 with a > 0, show that the one-sided
scheme (1.15a) is unconditionally unstable.

(b) On the other hand, show that the scheme

vn+1
j = vn

j − μa(vn
j − vn

j−1)

is stable for a > 0, provided that μa ≤ 1, but unstable for any μ ≥ 0 if a < 0.
Explain.

(c) An upwind (also known as upstream) difference scheme for the advection equa-
tion can be defined by

vn+1
j = vn

j − μa

{
(vn

j+1 − vn
j ), a < 0,

(vn
j − vn

j−1), a ≥ 0.

Show that this scheme is stable if μ|a| ≤ 1, just like the leapfrog scheme,
regardless of the sign of a.

(d) Without programming, construct an additional column in Table 1.1 correspond-
ing to the upwind scheme.

6. For the advection equation

ut + aux = 0,

with a < 0, we know that the exact solution satisfies

u(t + k, x) = u(t, x − ak).

This suggests a Lagrangian numerical method: set

vn+1
j = v̂n

j ,

where v̂n
j is an interpolation of nearby mesh values at the known time level tn for a

value at the point (tn, xj − ak).

(a) Show that the CFL condition implies that the point (tn, xj −ak) must lie between
(tn, xj ) and (tn, xj+1).

(b) Suppose that v̂n
j is defined as the linear interpolation of (xj , v

n
j ) and (xj+1, v

n
j+1)

at xj − ak. Show that the obtained scheme is the one-sided (1.15a).

7. The nonlinear Schrödinger equation (NLS) is given by

ıψt + ψxx = V ′(|ψ |)ψ,

where V : R → R is a smooth function (e.g., the cubic NLS V ′(w) = ±w2) and ψ

is complex-valued.

Linearizing by setting
V ′ = c,
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where c is a real constant, write the resulting equation as a system for a real u =
(u1, u2)

T , where
ψ = u1 + ıu2,

and show that the corresponding Cauchy problem is well-posed. Do you expect the
solution for discontinuous initial data to become smooth as in Figure 1.4 or stay
discontinuous for t > 0 as in Figure 1.3?

8. The so-called logarithmic norm of a square, complex-valued matrix A based on a
given matrix norm ‖ · ‖, is defined by

ν(A) = lim
k↓0

‖I + kA‖ − 1

k
. (1.31)

This is a very useful concept because of item (d) below.

(a) Show that for any k ≥ 0, −‖A‖ ≤ k−1(‖I + kA‖ − 1) ≤ ‖A‖.

(b) Show that k−1(‖I + kA‖ − 1) is monotonically nondecreasing in k. Hence the
limit as k ↓ 0 exists.

(c) Explain why ν(A) is not a matrix norm.

(d) Show that for any scalar K ∈ R

ν(A) ≤ K iff ‖eA‖ ≤ eK. (1.32)

(Note that K can be negative.)

9. Continuing the previous exercise, show that the logarithmic norm satisfies the fol-
lowing properties:

(a)

ν(sI + tA) = s + tν(A) ∀ s ∈ R, t ≥ 0,

ν(A + B) ≤ ν(A) + ν(B),

|ν(A) − ν(B)| ≤ ‖A − B‖,
ν(A) ≥ −‖Ax‖/‖x‖ ∀ x �= 0.

(b) For the usual 1, 2, and ∞-norms

ν∞(A) = max
i

⎛⎝Re(aii) +
∑
j �=i

|aij |
⎞⎠,

ν1(A) = max
j

⎛⎝Re(ajj ) +
∑
i �=j

|aij |
⎞⎠,

ν2(A) = max{λ| λ eigenvalue of (A + A∗)/2}.
10. Repeat the experiments of Example 1.2 for η = 2, μ = 0.5, and the three spatial step

sizes h = .1π, .01π , and .001π . Record maximum errors at t = 1 using the three
schemes (1.15). What are your observations?
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Chapter 2

Methods and Concepts
for ODEs

The numerical solution of ODEs is a subject that has received a lot of attention in past
decades. Many applications, for example, the motion of a system of rigid bodies obeying
Newton’s second law, give rise to mathematical models that involve dynamical behavior
in time but do not involve spatial derivatives. Several important concepts and methods
required for time-dependent PDEs arise also in the simpler ODE setting.

Moreover, a common approach for discretizing an initial value PDE problem is to first
discretize the space variables, obtaining an initial value problem for a set of ODEs in time.
This is called a semi-discretization. For instance, a semi-discretization for the advection
equation

ut + aux = 0

considered in Section 1.2 could be the one-sided spatial discretization

dvj

dt
= −a

h
(vj+1 − vj ) (2.1a)

or the centered discretization

dvj

dt
= − a

2h
(vj+1 − vj−1). (2.1b)

In (2.1) the index j ranges over the spatial mesh, yielding an ODE system for a mesh
function v(t) that is closed using some boundary conditions that are not our concern here.
The full discretization (1.15a) is a particular discretization in time, called forward Euler, of
the one-sided semi-discretization (2.1a), whereas the other two schemes (1.15b) and (1.15c)
are two different time discretizations of the centered semi-discretization (2.1b).

We consider semi-discretizations more methodically in future chapters; see especially
Section 3.1. Here our interest is to describe methods and concepts relevant once an ODE
system is obtained. In fact, Chapter 1 is not a prerequisite to the current chapter. Note that
ODEs commonly arise also in other situations when solving PDEs, e.g., from a Fourier anal-
ysis or when applying splitting methods (see Section 9.3). And yet, many PDE researchers
appear to be peculiarly ignorant of methods and concepts for solving ODEs. (Many ODE

37
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researchers, for their part, seem to have developed methods and theory in a manner often
suited only for small problems.) We aim to attain essential ODE expertise by introducing
the present basic chapter and the more advanced Chapter 6. No attempt is made here at
achieving completeness of ODE expositions.

The numerical solution of initial value problems for ODEs has been treated in many
fine books [82, 85, 44, 154, 113, 66]. A MATLAB-oriented treatment is found in [155]. An
ODE-enriched treatment of reaction-convection-diffusion PDEs is given by Hundsdorfer
and Verwer [98]. LeVeque’s [117] is a recent textbook covering basic methods for both
ODEs and PDEs. But several other PDE texts, such as [137, 159], hardly address ODEs
directly at all. The present chapter is partly extracted from Ascher and Petzold [14]. The
discussion of stability concepts is particularly important.�

�
�
	

Note: Following is a synopsis of the present chapter. The “must know”
topics are in Sections 2.1, 2.2, 2.5, 2.6, 2.7, and 2.9.

There are two popular families of methods in practice: linear multistep and Runge–
Kutta. They are introduced in Sections 2.1 and 2.2, respectively. Basic concepts of local
truncation error, consistency, and order of accuracy are introduced. These are extended to
PDEs in Section 3.2.

The relative simplicity of ODEs allows us to discuss various issues in a direct and
concise manner. Thus, convergence is considered in Section 2.3 and the practical issue of
estimating and controlling the discretization error is briefly exposed in Section 2.4. The
central issue of (absolute) stability is considered in Section 2.5 and related questions of
stiffness are found in Section 2.6.

Implicit methods for ODE systems require the solution of a system of algebraic
equations at each time step. This is considered in Section 2.7. The mixing of differential
and algebraic equations is briefly described in Section 2.8. Two quick sections follow, 2.9
and 2.10. They introduce symmetric schemes and a glimpse at highly oscillatory problems.
Another brief section summarizing a large topic is Section 2.11, where methods for boundary
value ODEs are considered. This is followed by several background reviews and exercises.

Turning to basic methods, consider a possibly nonlinear ODE system

dy

dt
≡ y ′ = f (t, y), t > 0, (2.2a)

subject to initial conditions

y(0) = y0. (2.2b)

In general, y and f have m components each, m ≥ 1. It may be convenient at first to think
of a scalar ODE, m = 1: the numerical methods described below all readily generalize
to ODE systems. When we want to emphasize that m > 1 and that y and f are vector
functions, e.g., in Section 2.7 and in particular examples, we use boldface notation.
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Note: Regarding notation, in the chapters concerning PDE discretizations
we use subscripts to denote location in space and superscripts to denote
location in time (e.g., vn

j ). Here, there is only one independent variable,
normally time. But using superscripts without subscripts may appear
confusing, so we use subscripts alone (e.g., yn to approximate y(tn)).
The time step is consistently denoted by k = �t .

2.1 Linear multistep methods
An s-step method uses at time tn the known solution values

yn+1−s , . . . , yn−1, yn

to define the next unknown value, yn+1, that approximates y(tn+1). The iteration process
increments n, starting at n = s − 1. Thus, the initial values ys−1, . . . , y0, and not only the
given y0, are required to start the algorithm. An instance with s = 2 is provided by the
leapfrog scheme (1.15c) given in its semi-discretized form (2.1b); see Example 1.2. Other
instances will follow shortly.

t

y

tn+1−s tn tn+1

yn+1−s yn yn+1

Figure 2.1. The setup for a linear multistep method: The known solution values
yn at the current location tn and yn−1, . . . , yn+1−s at previous mesh points, together with
the values of f there, are used to form an approximation for the next unknown yn+1 at tn+1,
employing a linear formula.

Assuming for simplicity a uniform mesh, tn = nk, n = 0, 1, . . . , where k is the step
size in time, a general linear s-step method for the ODE (2.2a) reads

s∑
j=0

αjyn+1−j = k

s∑
j=0

βjfn+1−j . (2.3)

Here, fn+1−j = f (tn+1−j , yn+1−j ) and αj , βj are coefficients. See Figure 2.1. Since (2.3)
can be scaled arbitrarily, we set α0 = 1 for definiteness. The method is explicit if β0 = 0
and implicit otherwise. Note that for an explicit method the unknown yn+1 appears only
on the left-hand side, so the method can be written as

yn+1 =
s∑

j=1

[−αjyn+1−j + kβjfn+1−j

]
,
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with the right-hand side thus involving only known quantities. An implicit method, on the
other hand, involves the unknown also through fn+1 = f (tn+1, yn+1), so carrying out the
time stepping iteration may be more involved; see Section 2.7. The method is called linear
because, unlike general Runge–Kutta, for instance, the expression in (2.3) is linear in f .

Let us define the local truncation error for the method (2.3) as

dn = k−1
s∑

j=0

αjy(tn+1−j ) −
s∑

j=0

βjy
′(tn+1−j ). (2.4)

This is the amount by which the exact solution fails to satisfy the difference equations (2.3)
divided by k. The method is said to have order of accuracy (or order for short) p if

dn = O(kp)

for all problems with sufficiently smooth exact solutions y(t). If p ≥ 1, as it practically
always is, then the method is said to be consistent.

The most popular families of linear multistep methods are the Adams family and the
backward differentiation formula (BDF) family.

The Adams methods are derived by considering the integration of (2.2a)

y(tn+1) = y(tn) +
∫ tn+1

tn

f (t, y(t))dt

and approximating the integrand f (t, y) by passing an interpolating polynomial through
previously computed values of f (tl, yl). (See reviews of polynomial interpolation in Section
2.12.2 and of numerical integration in Section 2.12.4.) In the general form (2.3) we therefore
set

α0 = 1, α1 = −1, and αj = 0 ∀ j > 1,

for all Adams methods.
The s-step explicit Adams method, also called the Adams–Bashforth method, is

obtained by interpolating f through the previous points t = tn, tn−1, . . . , tn+1−s , giving
an explicit method of accuracy p = s. Table 2.1 displays the coefficients of the Adams–
Bashforth methods for s up to 6. For s = 1 we obtain the forward Euler method

yn+1 = yn + kfn. (2.5)

The two-step Adams–Bashforth method reads

yn+1 = yn + k

2
(3fn − fn−1), (2.6)

and so on.

Example 2.1 Recalling briefly our semi-discretizations (2.1) for the advection equation, it
is easy to verify that the scheme (1.15a) is obtained by applying forward Euler to (2.1a)
while the unstable scheme (1.15b) is obtained by applying forward Euler to (2.1b). The
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Table 2.1. Coefficients of Adams–Bashforth methods up to order 6.

p s j → 1 2 3 4 5 6

1 1 βj 1

2 2 2βj 3 −1

3 3 12βj 23 −16 5

4 4 24βj 55 −59 37 −9

5 5 720βj 1901 −2774 2616 −1274 251

6 6 1440βj 4277 −7923 9982 −7298 2877 −475

Table 2.2. Coefficients of Adams–Moulton methods up to order 6.

p s j → 0 1 2 3 4 5

1 1 βj 1

2 1 2βj 1 1

3 2 12βj 5 8 −1

4 3 24βj 9 19 −5 1

5 4 720βj 251 646 −264 106 −19

6 5 1440βj 475 1427 −798 482 −173 27

leapfrog scheme (1.15c) is obtained by applying to the semi-discretization (2.1b) a linear
multistep time discretization which does not belong to the Adams family.

The s-step implicit Adams method, also called the Adams–Moulton method, is ob-
tained by passing an interpolating polynomial of f through the previous points plus the next
one, t = tn+1, tn, tn−1, . . . , tn+1−s , giving an implicit method of accuracy p = s + 1. Table
2.2 displays the coefficients of the Adams–Moulton methods for s up to 5. Note that there
are two one-step methods here: backward Euler (s = p = 1),

yn+1 = yn + kfn+1, (2.7)

and trapezoidal (s = 1, p = 2; sometimes referred to as Crank–Nicolson),

yn+1 = yn + k

2
(fn + fn+1). (2.8)

The four-step Adams–Moulton method (AM4) reads

yn+1 = yn + k

720
(251fn+1 + 646fn − 264fn−1 + 106fn−2 − 19fn−3) . (2.9)

This method is fifth order accurate. Some of these methods and their order of accuracy are
demonstrated in Example 2.5, after we connect order of accuracy to convergence.
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Table 2.3. Coefficients of BDF methods up to order 6.

p s β0 α0 α1 α2 α3 α4 α5 α6

1 1 1 1 −1

2 2 2
3 1 − 4

3
1
3

3 3 6
11 1 − 18

11
9
11 − 2

11

4 4 12
25 1 − 48

25
36
25 − 16

25
3
25

5 5 60
137 1 − 300

137
300
137 − 200

137
75
137 − 12

137

6 6 60
147 1 − 360

147
450
147 − 400

147
225
147 − 72

147
10
147

The s-step BDF method is obtained by evaluating f only at the right end of the current
step, (tn+1, yn+1), driving an interpolating polynomial of y through the previous points plus
the next one, t = tn+1, tn, tn−1, . . . , tn+1−s , and differentiating the resulting interpolant.
This gives an implicit method of accuracy order p = s. Table 2.3 displays the coefficients
of the BDF methods for s up to 6. For s = 1 we again obtain the backward Euler method
(2.7). These methods are particularly useful for stiff problems, as discussed in Section 2.6.

2.2 Runge–Kutta methods
Runge–Kutta are one-step methods in which f is repeatedly evaluated within one mesh
interval to obtain a higher order method. For instance, an “explicit trapezoidal method” is
obtained upon using forward Euler

Y1 = yn, Y2 = yn + kf (tn, Y1),

followed by setting

yn+1 = yn + k

2
(f (tn, Y1) + f (tn+1, Y2)).

This is a two-stage Runge–Kutta method of order 2.
In general, an s-stage Runge–Kutta method for the ODE (2.2a) can be written in the

form

Yi = yn + k

s∑
j=1

aijf (tn + cj k, Yj ), 1 ≤ i ≤ s, (2.10a)

yn+1 = yn + k

s∑
i=1

bif (tn + cik, Yi). (2.10b)

The Yi’s are intermediate approximations to the solution at times tn + cik, which may be
correct to a lower order of accuracy than the order for the solution yn+1 at the end of the
step. We shall always require

1 =
s∑

j=1

bj , ci =
s∑

j=1

aij , i = 1, . . . , s.
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t

y

tn tn+1

yn yn+1

Figure 2.2. The setup for a Runge–Kutta method. Repeated evaluations of the
function f in the one mesh subinterval [tn, tn+1] are used to obtain a higher order approx-
imation yn+1 at tn+1. Note that y ′(t) is allowed to be discontinuous at tn without loss of
accuracy, and no values before the current yn must be recorded to apply the method.

Note that Yi are local to the step from tn to tn+1, and the only approximation that the next
step “sees” is yn+1. A Runge–Kutta step is depicted in Figure 2.2.

A summary of the relative advantages and disadvantages of linear multistep and RK
methods is given at the end of Section 2.7.

The coefficients of the RK method are chosen in part to make error terms cancel in
such a way that yn+1 is more accurate. Thus, whereas in an s-step multistep method the
solution must be smooth over the several subintervals forming [tn+1−s , tn+1] to realize its
high order, here the exact solution may be merely continuous at tn.

The method can be conveniently represented in a shorthand notation:

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
. . .

...

cs as1 as2 · · · ass

b1 b2 · · · bs

As for multistep methods, the local truncation error dn is defined as the amount by
which the exact solution fails to satisfy the numerical formula per step (2.10b), divided by k.
The order of the method is then p if dn = O(kp). A method whose order is at least 1 is said
to be consistent. In addition, the stage order is defined similarly, as the minimum order of
the stages, i.e., the amount by which the exact solution fails to satisfy (2.10a) divided by k.
It becomes occasionally relevant, although more rarely than the order p itself.

The method is explicit if

aij = 0 ∀ i ≤ j.

Examples of explicit Runge–Kutta methods are the forward Euler method (2.5), given in
tableau notation by

0 0

1
,
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the explicit trapezoidal

0 0 0

1 1 0

1
2

1
2

,

and the classical fourth order method (RK4)

0 0 0 0 0

1
2

1
2 0 0 0

1
2 0 1

2 0 0

1 0 0 1 0

1
6

1
3

1
3

1
6

(2.11)

To show that (2.11) actually has order 4 is surprisingly nontrivial; see [14, 82]. In general,
the order p of an explicit Runge–Kutta method satisfies p ≤ s, with p = s for both forward
Euler (2.5) and the fourth order (2.11) above. There are no such methods with p = s > 4.
Some of these explicit Runge–Kutta variants and their order of accuracy are demonstrated
in Example 2.5 later on. But first, let us demonstrate how to work with such a method.

Example 2.2 The famous Lorenz equations are given by

y ′
1 = σ(y2 − y1),

y ′
2 = ry1 − y2 − y1y3,

y ′
3 = y1y2 − by3,

where σ, r, b are positive parameters. We can obviously write these equations as an au-
tonomous ODE system y ′ = f (y), i.e., f in (2.2a) does not depend explicitly on t , with
m = 3. This provides a simple example of a chaotic system; see [160, 161].

Here we use these equations merely to demonstrate the application of the explicit
Runge–Kutta method RK4, using a constant step size. Following Lorenz we set σ =
10, b = 8/3, r = 28, integrate starting from y(0) = (0, 1, 0)T , and plot y3 vs. y1 to obtain
the famous “butterfly”; see Figure 2.3. The following MATLAB script should be easy to
follow:

% Simulating the Lorenz butterfly using the simple ODE solver
rk4.

% parameters
k = .01; % constant step size
tf = 100; % final time

% given initial conditions
y0(1) = 0; y0(2) = 1; y0(3) = 0;
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Figure 2.3. Lorenz “butterfly” in the y1 × y3 plane.

y0 = shiftdim(y0);

% integrate
[tout,yout] = rk4(tf,k,y0);

% plot solution in phase space
plot(yout(1,:),yout(3,:))
xlabel(’y_1’)
ylabel(’y_3’)

function [tout,yout] = rk4 (tf,k,y0)
%
% [tout,yout] = rk4 (tf,k,y0)
% solves non-stiff IVODEs based on classical 4-stage Runge-

Kutta
%
% y’ = ffun (t,y), y(0) = y0, 0 < t < tf
% ffun returns a vector of m components for a given
% t and y of m components.
%
% Input:
% tf - final time
% k - uniform step size
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% y0 - initial values y(0) (size (m,1))
%
% Output:
% tout - times where solution is computed
% yout - solution vector at times tout.

% prepare
N = tf / k;
tout = [0];
fo = ffun (tout(1),y0);
yout(:,1) = y0;

% loop in time

for n=1:N
t = tout(n);
y = yout(:,n);
Y1 = y;
K1 = ffun(t,Y1);
Y2 = y + k/2*K1;
t = t + k/2;
K2 = ffun(t,Y2);
Y3 = y + k/2*K2;
K3 = ffun(t,Y3);
Y4 = y + k*K3;
t = t + k/2;
K4 = ffun(t,Y4);
tout(n+1) = t;
yout(:,n+1) = y + k/6*(K1+2*K2+2*K3+K4);

end

function f = ffun(t,y)

% function defining ODE

sigma = 10; b = 8/3; r = 28;

f = zeros(3,1);
f(1) = sigma *(y(2)-y(1));
f(2) = r * y(1) - y(2) - y(1)*y(3);
f(3) = y(1)*y(2) - b*y(3);

Again we emphasize that our purpose here is to show just how the Runge–Kutta loop
(in function rk4) may look. We do not intend this to replace a good, general-purpose ODE
software such as ode45; see also Section 2.4.
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In general, one should of course avoid evaluating the function f more than is abso-
lutely necessary. The formulation (2.10) can alternatively be written as (2.42).

Examples of implicit Runge–Kutta methods include the backward Euler method (2.7)

1 1

1

and the trapezoidal method (2.8)

0 0 0

1 1
2

1
2

1
2

1
2

An important variant of the trapezoidal method called the midpoint method is given by

1
2

1
2

1
,

i.e.,

yn+1 = yn + kf

(
tn+1/2,

yn + yn+1

2

)
. (2.12)

This method satisfies s = 1, p = 2. There are explicit Runge–Kutta variants of both the
midpoint and the trapezoidal method, with s = p = 2.

Families of methods derived by collocation at Gaussian points and at Radau points
yield high-order implicit Runge–Kutta methods. Such a collocation method constructs a
piecewise polynomial approximate solution y�(t) that is continuous over the entire integra-
tion interval in t , reduces to a polynomial on each mesh subinterval [tn, tn+1], and satisfies
the ODE at the collocation points tn + cik appearing also in (2.10). The resulting method
is equivalent to a particular implicit Runge–Kutta one. See Sections 2.12.2–2.12.4 for a
quick recap on piecewise polynomials, Gaussian points, and basic quadrature rules, and
see [14, 85] for derivation and formulas of the collocation-implicit Runge–Kutta methods.
Here we simply list the first few members of these families:

• Gauss methods. These are the maximum order Runge–Kutta methods; an s-stage
Gauss method has order p = 2s. For s = 1 the midpoint method (2.12) is obtained.
For s = 2 we have

3−√
3

6
1
4

3−2
√

3
12

3+√
3

6
3+2

√
3

12
1
4

1
2

1
2

s = 2, p = 4.
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• Radau methods. These correspond to quadrature rules where one end of the interval
is included (c1 = 0 or cs = 1), and they attain order p = 2s − 1. We consider only
the case cs = 1. For s = 1 the backward Euler method is obtained. For s = 2 we
have

1
3

5
12 − 1

12

1 3
4

1
4

3
4

1
4

s = 2, p = 3.

The important question regarding carrying out a step of implicit Runge–Kutta is
discussed in Section 2.7.

The task of determining the order of a high order Runge–Kutta method8 is much harder
than the corresponding task for linear multistep methods. Denoting C = diag{c1, . . . , cs},
bT = (b1, b2, . . . , bs), and 1 = (1, 1, . . . , 1)T , the following conditions are necessary for
the method to have order p:

bT AiCl−11 = (l − 1)!
(l + i)! = 1

l(l + 1) · · · (l + i)
, 1 ≤ l + i ≤ p . (2.13)

(The indices run as follows: for each l, 1 ≤ l ≤ p, we have order conditions for i =
0, 1, . . . , p − l. Note also that superscripts denote powers in (2.13) and that Cl−11 =
(cl−1

1 , . . . , cl−1
s )T .) These conditions are easy to verify. Exercise 6 encourages you to work

out what they imply for p = 1, 2, and 3.
The good news is that for orders up to 3 the conditions (2.13) are also sufficient. But

for higher orders they are not! The complete picture regarding determination of order for
Runge–Kutta methods is given, e.g., in [44, 82].

2.3 Convergence and 0-stability
Let us consider an initial value problem for an ODE system, (2.2). As done for PDEs in
Chapter 1, our approach when studying essential concepts is to ask what is required for
the ODE problem to be well-posed and then to require that the numerical method behave
similarly. For ODEs, however, the requirement for well-posedness can be easily stated in
a more general way, requiring only Lipschitz continuity of f in terms of y. Here is the
fundamental theorem for initial value ODEs.

8For implicit Runte–Kutta methods based on piecewise polynomial collocation, the order of accuracy can be
derived in ways different from, and simpler than, what is required for other Runge–Kutta methods; see [14].
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Theorem 2.3.
Let f (t, y) be continuous for all (t, y) in a region D = {0 ≤ t ≤ b, |y| < ∞}.
Moreover, assume Lipschitz continuity in y: there exists a constant L such that for
all (t, y) and (t, ŷ) in D,

|f (t, y) − f (t, ŷ)| ≤ L|y − ŷ|. (2.14)

Then

1. For any initial value vector y0 ∈ R
m there exists a unique solution y(t) for

the IVP throughout the interval [0, b]. This solution is differentiable.

2. The solution y depends continuously on the initial data: if ŷ also satisfies
the ODE (but not the same initial values), then

|y(t) − ŷ(t)| ≤ eLt |y(0) − ŷ(0)|. (2.15)

3. If ŷ satisfies, more generally, a perturbed ODE

ŷ ′ = f (t, ŷ) + r(t, ŷ),

where r is bounded on D, ‖r‖ ≤ M , then

|y(t) − ŷ(t)| ≤ eLt |y(0) − ŷ(0)| + M

L
(eLt − 1). (2.16)

Thus we have solution existence, uniqueness, and continuous dependence on the
data—in other words, a well-posed problem—provided that the conditions of the theorem
hold. Let us check these conditions: if f is differentiable in y (we shall automatically
assume this throughout), then the constant L can be taken as a bound on the first derivatives
of f with respect to y. Denote by fy the Jacobian matrix

(fy)ij = ∂fi

∂yj

, 1 ≤ i, j ≤ m.

Writing

f (t, y) − f (t, ŷ) =
∫ 1

0

d

ds
f (t, ŷ + s(y − ŷ)) ds

=
∫ 1

0
fy(t, ŷ + s(y − ŷ)) (y − ŷ) ds,

we can therefore choose L = sup(t,y)∈D ‖fy(t, y)‖.
In many cases we must restrict the region D in order to be assured of the existence

of such a (finite) bound L. For instance, if we restrict D to include bounded y such that
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|y − y0| ≤ γ , and on this D both the Lipschitz bound (2.14) holds and |f (t, y)| ≤ M , then
a unique existence of the solution is guaranteed for 0 ≤ t ≤ min(b, γ /M), giving the basic
existence result a more local flavor.

Considering next the numerical method approximating the ODE problem, let yπ be a
mesh function which takes on the value yn at each tn, i.e., yπ(tn) = yn, n = 0, 1, . . . , N .
(You can think of yπ(t) as a function defined for all t , but all that matters is what it does at
the mesh points.) Then the numerical method is given by

Nπyπ(tn) = 0,

and for the exact solution Nπy(tn) = dn, the local truncation error. For example, backward
Euler yields

Nπyπ(tn) = yπ(tn) − yπ(tn−1)

k
− f (tn, yπ (tn)), n = 1, . . . , N.

Under the conditions of the fundamental theorem, Theorem 2.3, we define the method to be
0-stable if there are positive constants k0 and K such that for any mesh functions xπ and
zπ with k ≤ k0

|xn − zn| ≤ K

{
|x0 − z0| + max

1≤j≤N
|Nπxπ(tj ) − Nπzπ (tj )|

}
, 1 ≤ n ≤ N. (2.17)

What this bound says in effect is that the difference operator Nπ is invertible and that its
inverse is bounded by K .

The definition (2.17) is for one-step methods, but the extension to multistep methods
is straightforward. With 0-stability it is an easy exercise to show that a method that has
accuracy order p converges with the same order. In fact, we have the next theorem.

Theorem 2.4.

consistency + 0-stability �⇒ convergence.

Indeed, if the method is consistent of order p and 0-stable, then it is convergent of
order p and

|yn − y(tn)| ≡ |en| ≤ K max
j

|dj | = O(kp). (2.18)

Example 2.5 Let us check the convergence error, both absolute value and order, for various
methods previously encountered in this chapter. The problem

u′′ + eu+1 = 0,

u(0) = 0, u′(0) = θ tanh(θ/4)
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has a solution that satisfies u(1) = 0 if θ satisfies the nonlinear algebraic equation

θ = √
2e cosh(θ/4).

See [14]. One such value is θ = 3.03623184819656. We therefore rewrite the ODE in first
order form for y1 = u and y2 = u′,

y ′
1 = y2,

y ′
2 = −ey1+1,

and apply forward Euler, explicit trapezoidal (RK2), RK4, the two-step Adams–Bashforth
(AB2), and the four-step Adams–Moulton (AM4) methods for this simple problem, mea-
suring absolute errors at t = 1. We use k = 10−l , l = 1, 2, 3, 4. The resulting errors are
recorded in Figure 2.4.
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Figure 2.4. Errors for different methods at different step sizes k plotted on a log-
log scale. Before roundoff error enters the picture, the errors are all along straight lines
with the slope equal to the method’s order.

It is clear from Figure 2.4 that the error is O(k) in forward Euler, O(k2) in RK2 and
AB2, O(k4) in RK4, and O(k5) in AM4. Since the plot is on a log-log scale we obtain
straight lines with the slope p for a method of order p. For the two highest order methods
the error is no longer on a straight line when it is so small in absolute value that roundoff
error takes over.

It is important to distinguish between the stability concepts arising in PDEs and those
arising in ODEs. They are related but are not quite the same. The numerical ODE concept
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which, in the sense of mimicking well-posedness, most closely mirrors the PDE stability
condition (3.33a) is 0-stability as defined above. However, whereas in the PDE the ratio of
the discretization steps k in time and h in space as k, h → 0 is of paramount importance,
here there is no such ratio: basically, we first determine the ODE problem and thus its size,
and only then we let k shrink to 0 in the difference method. Indeed, all ODE methods
specifically mentioned in this chapter are unconditionally 0-stable.

2.4 Error control and estimation
For the sake of automating the integration process and robustly obtaining high-quality
results at low cost, one wishes to write a mathematical software routine where a user would
specify f (t, y), the integration interval, y0 and a tolerance T ol, and the routine would
subsequently calculate {yn}Nn=0 accurate to within T ol. However, to control the global
error en = yn − y(tn) is difficult, so one is typically content to control the local error,

ln+1 = ȳ(tn+1) − yn+1,

where ȳ(t) is the solution of the ODE y ′ = f (t, y) which satisfies ȳ(tn) = yn (but ȳ(0) �= y0

in general).
Thus, we consider the nth mesh subinterval as if there is no error accumulated at its

left end tn and wonder what might result at the right end tn+1. We basically assume that

|ln+1| � k|en+1|.
To control the local error we keep the step size small enough, so, in particular, k = kn is no
longer the same for all steps n.

Suppose now that we use a pair of schemes, one of order q and the other of order
q + 1, to calculate two approximations yn+1 and ŷn+1, respectively, at tn+1, both starting
from yn at tn. Then we can estimate

|ln+1| ≈ |ŷn+1 − yn+1|.
So, at the nth step we calculate these two approximations and compare: the step is

accepted if
|ŷn+1 − yn+1| ≤ k T ol.

We then set yn+1 ← ŷn+1 (the more accurate of the two values calculated) and increment n.
If the step is not accepted, then we decrease k to k̃ and repeat the step. This is done as

follows: since the local error in the less accurate method is ln+1 = ckq+1, upon decreasing
k to a satisfactory k̃ its absolute value will become |c|k̃q+1 ≈ 0.9k̃ T ol, where the factor
0.9 is for safety. Dividing, we get(

k̃

k

)q+1

≈ 0.9k̃ T ol

|ŷn+1 − yn+1| .

Thus, set

k̃ = k

(
0.9k T ol

|ŷn+1 − yn+1|
) 1

q

. (2.19)
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The only question left is how to choose the pair of formulas of orders q and q + 1
wisely. For Runge–Kutta methods this is achieved by searching for a pair of formulas which
share the internal stages Yj as much as possible. A good Runge–Kutta pair of orders 4 and 5
would use only 6 (rather than 9 or 10) function evaluations per step. Such pairs of formulas
are implemented in MATLAB’s ode45, for instance, as well as in several publicly available
codes [14, 82].

One chief advantage of Runge–Kutta methods in the general context is that the step
size k = kn need not be the same in consecutive time steps. General-purpose codes usually
simulate a given initial value ODE attempting to keep the local error below a user-given
tolerance. This is done by estimating the local error and adjusting the step size kn for each
step n. For more details see Chapter 4 of [14].

For multistep methods, a method for determining k̃ is also possible, indeed is sim-
pler than Runge–Kutta—for example, using (2.19) with a pair of Adams formulas; see
Section 2.7. However, there is more overhead in implementing a step size change, as the
formulas involved must be updated as well; see Chapter 5 of [14]. In the present exposition
we continue to assume that k is constant for the sake of simplicity.

2.5 Stability of ODE methods
We next ask what happens when the step size k is not very small. This corresponds to
a finite ratio of time and space discretization steps k and h in the PDE case, because the
ODE problem (2.2) may correspond to a semi-discretization such as (2.1) (see also (3.2) in
Section 3.1) where the spatial step size h directly affects the size and contents of the ODE.
We will discuss this connection in the next chapter.

Here, the fact that (3.2) is a large system and not a scalar ODE is crucial; and yet it is
possible to learn a lot by considering the test equation

y ′ = λy, t > 0, (2.20)

where λ is a constant, complex scalar standing, e.g., for an eigenvalue of (3.2).
The solution of the test equation, y(t) = eλty(0), satisfies

|y(t)| ≤ |y(0)| ⇐⇒ Re λ ≤ 0.

Correspondingly, for a numerical method we define the region of absolute stability as that
region of the complex z-plane containing the origin where

|yn+1| ≤ |yn|, n = 0, 1, 2, . . . , (2.21)

when applying the method for the test equation (2.20), with z = kλ from within this region.
Note that 0-stability for the test equation corresponds to having the origin z = 0 belong to
the absolute stability region.
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Figure 2.5. Absolute stability regions of Adams methods.

For a Runge–Kutta method in the general form (2.10) applied to the test equation we
have

Yi = yn + z

s∑
j=1

aijYj , yn+1 = yn + z

s∑
j=1

bjYj .

Eliminating the internal stages Y1, . . . , Ys and substituting in the expression for yn+1 using
the same notation as in (2.13) we obtain

yn+1 = R(z)yn, R(z) = 1 + zbT (I − zA)−11. (2.22)

For example, you can directly verify that R(z) = 1+ z for forward Euler, R(z) = (1− z)−1

for backward Euler, and R(z) = (1 − z/2)−1(1 + z/2) for the implicit trapezoidal method.
The absolute stability region is then the connected set, containing the origin, of all complex
valued numbers z for which |R(z)| ≤ 1.

Plotting absolute stability regions is a favorite pastime for some; see, e.g., [85, 14].
Figure 2.5 displays these regions for the first few Adams methods. For instance, the forward
Euler method is absolutely stable for a real, negative λ only if |yn+1| = |yn + kfn| =
|yn + kλyn| ≤ |yn|, so the condition is |1 + kλ| ≤ 1, which gives

k|λ| ≤ 2.

Observe also that the stability regions of the explicit Adams–Bashforth methods shrink
rapidly as s increases. High-order methods of this sort typically yield stability restrictions
which are deemed too unwieldy in practice.

The first two Adams–Moulton methods contain the entire left half-plane in their ab-
solute stability region. Such methods are called A-stable.

Explicit methods of the type we have exposed cannot beA-stable. The stability regions
for explicit Runge–Kutta methods of the first few orders are depicted in Figure 2.6. Here,
unlike for the Adams families, the absolute stability regions grow with s. However, they
grow by not much: if we were to shrink the stability region for the s-stage method by a
factor s (to yield a fairer comparison of step size allowed per function evaluation of f ), then
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Figure 2.6. Stability regions for p-stage explicit Runge–Kutta methods of order
p, p = 1, 2, 3, 4. The inner circle corresponds to forward Euler, p = 1. The larger p is,
the larger the stability region. Note the “ear lobes” of the fourth order method protruding
into the right half-plane.

none of the methods depicted in Figure 2.6 has a longer segment of the negative real line
contained in their stability region than forward Euler.9

It is important to note that whereas the regions for the Runge–Kutta methods of order
1 and 2 have no intersection with the imaginary axis, those for the higher order methods do.
The observation in Figure 2.6 for the classical four-stage Runge–Kutta method of order 4
regarding the intersection of its absolute stability region with the imaginary axis is a major
reason for the popularity of this method in time discretizations of hyperbolic PDEs.

The absolute stability regions of the BDF methods have the “kidney shape” depicted
in Figure 2.7. These methods (for s ≤ 6) all have unbounded absolute stability regions.

2.6 Stiffness
An important concept in numerical ODE theory is stiffness. Loosely speaking, the initial
value ODE is stiff if the absolute stability requirement for explicit Runge–Kutta methods
dictates a much smaller step size than is needed to satisfy approximation requirements

9A class of s-stage explicit Runge–Kutta methods called Runge–Kutta–Chebyshev is particularly good in
this regard, containing a stable segment of the negative real line that is proportional in length to s2; see [98, 85]
and further references therein. A quick review of Chebyshev polynomials and points is found in Section 2.12.3.
These methods are particularly useful for mildly stiff problems with real eigenvalues, a situation yielded by
semi-discretizations of certain parabolic PDEs in several space dimensions!
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Figure 2.7. BDF absolute stability regions. The stability regions are outside the
shaded area for each method.

alone; see [14, 85]. In this case other methods, which do not have such a restrictive absolute
stability requirement, should be considered. Thus, explicit methods are suitable for nonstiff
problems, whereas for stiff ones implicit methods such as BDF or collocation at Radau and
Gauss points are appropriate.

L-stability and stiff decay

Let us generalize the test equation a bit to include an inhomogeneity,

y ′ = λ(y − g(t)), 0 < t < b, (2.23)

where g(t) is a bounded, but otherwise arbitrary, function. As Re(λ) → −∞, the (bounded)
exact solution of (2.23) satisfies

y(t) −→ g(t), 0 < t < b,

regardless of the initial value y0. This is a case of extreme stiffness. Correspondingly, we
say that a method has stiff decay if for 0 < tn < b fixed

|yn − g(tn)| → 0 as kRe(λ) → −∞. (2.24)

The trapezoidal and midpoint methods (which are A-stable) do not have stiff decay. How-
ever, the BDF methods and collocation at Radau points do possess stiff decay! These
methods are therefore particularly suitable for very stiff problems. They are also an ob-
vious choice for the direct discretization of differential-algebraic equations (DAEs); see
Section 2.8 and [14].

People often call a method which has stiff decay L-stable. Indeed, the latter term may
sound a bit less awkward, being an adjective, and we occasionally use it too. But note that
L-stability was originally defined for implicit, A-stable Runge–Kutta methods, restrictions
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Figure 2.8. Approximate solution and plausible mesh, Example 2.6.

that we do not necessarily intend to honor when checking for stiff decay. Specifically, an
A-stable Runge–Kutta method is said to be L-stable if

lim
Re(z)→−∞

R(z) = 0. (2.25)

So, readers should be careful to avoid confusion.
It can be easily seen that the implicit Runge–Kutta methods that are equivalent to

collocation methods based on Radau points are all L-stable. For these methods the matrix
A in (2.22) is nonsingular and the row vector bT coincides with the last row of A, hence
bT A−11 = 1. For backward Euler clearly R(−∞) = 0, while for the trapezoidal method
R(−∞) = −1.

Example 2.6 The scalar problem

y ′ = −100(y − cos t), t ≥ 0, y(0) = 0,

has a solution which starts at the given initial value and grows rapidly. But after a short
while, say, for t ≥ .03, y(t) varies much more slowly, satisfying y(t) ≈ cos t ; see Figure 2.8.
For the initial small interval of rapid change (commonly referred to as an initial layer or
transient) we expect to use small step sizes, so that 100kn ≤ 1, say. This is within the
absolute stability region of the forward Euler method. But when y(t) ≈ cos t , accuracy
considerations alone allow a much larger step size, so we want 100kn � 2. A reasonable
mesh is plotted using markers on the t-axis in Figure 2.8. Obviously, however, the plotted
solution in this figure was not found using the forward Euler method with this mesh, because
the absolute stability restriction of the forward Euler method is severely violated here.
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Figure 2.9. Approximate solution on a coarse uniform mesh for Example 2.6,
using backward Euler (the smoother curve) and trapezoidal (the oscillating one).

Indeed, the solution plotted in Figure 2.8 was obtained using the A-stable trapezoidal
method (2.8). The mesh was constructed as follows: for t < .05π it was obtained by the
nonstiff code ode45 with default tolerances; for larger t a uniform step size .05π was used,
which is much sparser than what ode45 comes up with. The trapezoidal method was then
run on the combined mesh.

Suppose next that we are not interested in the details of the initial layer! This is a
common occurrence in computational fluid dynamics (CFD), for instance. Can we then
use, say, a uniform step size k which skips these details but is small enough to reproduce
the smooth part of the solution?

This can be done using a method with stiff decay. For instance, employing backward
Euler (2.7) with a fixed step k = .05π to integrate this problem, the initial layer is poorly
approximated, and still the solution is qualitatively recovered where it varies slowly; see
Figure 2.9. On the other hand, the trapezoidal method, which does not have stiff decay,
produces disagreeable oscillations in these circumstances and cannot be used to skip layers.

Layer skipping means that there is a region in time where the discrete dynamical system
produced by the discretization no longer mimics closely the behavior of the continuous
dynamical system. Herein lies a great potential for efficient use, as well as a great danger
of misuse, of discretization methods such as backward Euler.

Returning to the generalized test equation (2.23) we can clearly generalize the obser-
vation regarding its solution for any limit |λ| → ∞, and we can also consider the ODE
subject to boundary conditions, as discussed in Section 2.11, instead of initial conditions.
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Correspondingly we can also change the definitions of stiff decay (2.24) and L-stability
(2.25) to hold for |z| → ∞. Such a modification does not alter the list of our methods that
qualify. For example, the backward Euler method damps the solution also when z � 1,
i.e., when the exact solution grows rapidly; see Figure 2.7. Indeed, it is easy to see that for
any Runge–Kutta method, R(−∞) = 0 iff R(∞) = 0. However, the interpretation of this
sort of damping as stability is problematic, so we have stuck to the definitions (2.24) and
(2.25).

2.7 Solving equations for implicit methods
We have seen that implicit methods have superior stability and accuracy properties, com-
pared to explicit ones. However, carrying out a step using an implicit method is also more
complicated and potentially much more expensive. We can write an s-step scheme (2.3) at
a fixed step n as

yn+1 = kβ0f (tn+1, yn+1) +
s∑

j=1

[−αjyn+1−j + kβjfn+1−j

]
.

If β0 �= 0, i.e., the method is implicit, then the unknown yn+1 appears on the right-hand
side. If f is nonlinear in y (not in t : the dependence on t is unimportant), then a nonlinear
algebraic problem must be approximately solved at each time step. Even if f were linear
there is a difficulty to reckon with in case that (2.2) stands for a large ODE system. To
emphasize that m may be large and to correspond to the notation in Section 2.12.5, let us
use boldface notation: the ODE system considered is

y′ = f(t, y)

and an implicit multistep scheme reads

yn+1 = kβ0f(tn+1, yn+1) +
s∑

j=1

[−αj yn+1−j + kβj fn+1−j

]
. (2.26)

A simple iterative method for solving (2.26) for yn+1 is to write the right-hand side as
φ(yn+1) and apply fixed point iteration

yν+1
n+1 = φ(yν

n+1), ν = 0, 1, . . . .

Note that ν is an iteration counter, not a power. An excellent initial guess y0
n+1 can usually

be obtained from the previous solution values as discussed below. Before that, however,
we must ask whether this iteration converges. That will happen (see Section 2.12.5) if there
is a constant ρ such that ∥∥∥∥kβ0

∂f
∂y

∥∥∥∥ =
∥∥∥∥∂φ

∂y

∥∥∥∥ ≤ ρ < 1.

Thus, the simple fixed point iteration can be used only if the problem is nonstiff!
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For nonstiff problems we must first explain why one would use implicit methods at
all. The answer lies in the unacceptably small absolute stability regions of higher order
Adams–Bashforth methods (see Figure 2.5) coupled with the high utility of a predictor-
corrector approach in obtaining an accurate approximation as well as an error estimate.
By contrast, implicit Runge–Kutta methods are rarely used for nonstiff problems. Upon
using an (s + 1)-step Adams–Bashforth method to predict y0

n+1, essentially one fixed point
iteration for the Adams–Moulton method (2.26) suffices to obtain an error cks+1 +O(ks+2)

whose leading term coefficient c, and not only the order s + 1, are the same as those of
the implicit method. Thus, the general fixed point iteration is abandoned and just one
iteration is applied. The favorite variant is PECE: Predict y0

n+1 using Adams–Bashforth,
Evaluate f(tn+1, y0

n+1), Correct using Adams–Moulton as above obtaining yn+1 = y1
n+1, and

Evaluate fn+1 = f(tn+1, yn+1) in preparation for the next step. See [85] for the absolute
stability regions of the PECE variant.

The advantages of the predictor-corrector approach are that (i) a higher order method
is cheaply obtained for s > 2, because only two evaluations of f are employed per step
(think what would be required by an explicit higher order Runge–Kutta method!); and (ii)
the pair yn+1 and y0

n+1 can be used to obtain an estimate for the local error so that error
control is enabled according to Section 2.4. See Chapter 5 of [14] for fuller details.

For stiff problems the situation is more complex. Writing (2.26) as g(yn+1) = 0,
which is done by simply moving all terms to the left side, we have

J = ∂g
∂yn+1

= I − kβ0
∂f
∂y

, (2.27)

a matrix that in the stiff case is no longer dominated by the identity I . The simple fixed point
iteration and its predictor-corrector truncations no longer work, and an Adams–Bashforth
method is not suitable for predicting y0

n+1. Instead we set y0
n+1 = yn, which is still O(k)-

accurate, and employ some variant of Newton’s method.
Newton’s method is known to converge very rapidly under certain conditions, pro-

vided that the initial guess is close to the solution. Here we do have such an initial guess
(indeed, one can reduce the step size k and repeat the step if the method does not converge).
The main challenge is to keep the cost of the iteration that now involves the solution of a
possibly large linear system of equations manageable: such a system must be solved at each
nonlinear iteration, at each time step. One thing people do is to freeze J locally and use its
LU -decomposition (see Section 2.12.1) for several time steps. Another idea is to apply just
one Newton iteration per time step, obtaining a semi-implicit variant which yields a first
order method overall (see Exercise 10) and is thus particularly suitable in conjunction with
the backward Euler method.

An extension of the latter idea for higher order Runge–Kutta methods is a Rosenbrock
method; see [85, 98]. For the autonomous ODE system y′ = f(y), and with A = ∂f

∂y (yn),
an s-stage Rosenbrock method reads

Ki = kf(yn +
i−1∑
j=1

αij Kj ) + kA

i∑
j=1

γij Kj , 1 ≤ i ≤ s,

yn+1 = yn +
s∑

i=1

biKi . (2.28)
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If all γij = 0, then this is a usual explicit Runge–Kutta method; see Exercise 5. More
interestingly, if γii are all nonzero, then s linear systems involving A must be solved per
time step; yet if γii = γ are all equal, then the same matrix J = I − kγA can be LU -
decomposed once, and only a forward-backward substitution is subsequently required for
each stage.

Also, depending on the application, one may seek approximations to J by dropping
less necessary but varying terms from it. Note that the size of J in (2.27) or (2.28) is m×m;
it has the same size and sparsity pattern as that of the Jacobian matrix of the ODE system.

A major practical impediment to using fully implicit Runge–Kutta methods such as
those from the Gauss and Radau families is that at each step a large system of equations must
be solved. Whereas for implicit multistep methods such as BDF the size of the Jacobian
matrix is m × m as we have seen, here the method’s Jacobian matrix has size sm × sm. In
addition to (2.28) there are other ways to ease the pain, but not completely; see [14, 85].
Still, the general-purpose code RADAU5 of Hairer and Wanner [85] that is based on Radau
collocation is competitive against any known alternative and better than most.

A popular approach is to seek diagonally implicit Runge–Kutta methods (DIRK).
Here one requires

aij = 0 ∀ i < j.

Then only (at most s) m × m systems are encountered, as the stages are resolved one at a
time; see Exercise 3. These methods are close to the Rosenbrock methods.

Example 2.7 The following ODE system models a chemical reaction system and has been
used extensively as a test problem for stiff solvers [154, 85, 14]:

y ′
1 = −αy1 + βy2y3 ,

y ′
2 = αy1 − βy2y3 − γy2

2 ,

y ′
3 = γy2

2 .

Here α = 0.04, β = 1.e + 4, and γ = 3.e + 7 are slow, fast, and very fast reaction rates.
The starting point is y(0) = (1, 0, 0)T .

It is easy to find the steady state (where y′ = 0) for this ODE. First, note that
∑3

i=1 y ′
i =

0, hence
∑3

i=1 yi(t) = ∑3
i=1 yi(0) = 1, for all t . Next, the third ODE yields at steady state

y2 = 0, then the second yields y1 = 0, so given the invariant sum the steady state is
y(∞) = (0, 0, 1)T . However, it is known that the steady state is reached very slowly for
this problem, so let us investigate this by integrating up to b = 106.

We use this opportunity to display a simple MATLAB script that employs the backward
Euler method with a constant step size.

% program to simulate Robertson’s equations
% using BDF with a constant step size

% initial data
y0 = [1,0,0]’;

% run parameters
tf = 1.e+6; % final time
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k = input(’enter constant time step : ’);
N = tf / k;
tol = 1.e-4; % tolerance for Newton iteration
niter = 10; % no more than niter Newton itns per

step
tp = 0:k:tf; % output times
yp = zeros(3,N+1); % initialize output solution array
yp(:,1) = y0;

% Backward Euler

for n = 1:N
yo = yp(:,n); % old y value (=y_n)
yn = yo; % initial Newton iterate
iter = 0; % Newton iteration counter
goon = 1; % iteration control variable

(= ’go on’)

while goon % Newton iteration
yc = yn;
[f,J] = robertsonf (tp(n+1),yc);
A = eye(3) - k*J;
b = yo - yc + k*f;
dy = A \ b;
yn = yc + dy;
iter = iter + 1;
if norm(dy) < tol * norm(yn) | iter == niter

goon = 0;
end

end
yp(:,n+1) = yn;

end

% plot solution
semilogx (tp,yp(1,:),’b’,tp,yp(2,:),’g--’,tp,yp(3,:),’r-.’)
axis([0 1.e+6 -.1 1.1])
legend(’y_1’,’y_2’,’y_3’,’Location’,’East’)
xlabel(’t’)
ylabel(’y’)

function [f,J] = robertsonf(t,y)
% function [f,J] = robertsonf(t,y)
% this function defines the robertson eqns plus Jacobian

a = 0.04; b = 1.e+4; c = 3.e+7;
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f = [-a*y(1) + b*y(2)*y(3); ...
a*y(1) - b*y(2)*y(3) - c*y(2)*y(2); ...
c*y(2)*y(2)];

if nargout > 1
J = zeros(3,3);
J(1,1) = -a; J(1,2) = b*y(3); J(1,3) = b*y(2);
J(2,1) = a; J(2,2) = -b*y(3) - 2*c*y(2); J(2,3) =

-b*y(2);
J(3,2) = 2*c*y(2);

end

Results using this program with time step k = 1 are displayed in Figure 2.10(a).
Figure 2.10(c) has been obtained by the MATLAB function ode23s. This routine is
adaptive and performs much faster than our simple program with unit time step, taking only
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Figure 2.10. Solving a very stiff problem using Backward Euler with k = 1,
semi-implicit Backward Euler with k = 1, and a MATLAB stiff solver.
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60 steps in total. The results agree qualitatively with backward Euler, although ode23s
is more accurate. Figure 2.10(b) is obtained upon setting niter = 1 in our program, so
only one Newton iteration is taken at each time step. This semi-implicit variant does not
perform well here, especially for smaller times, even though 106 steps are taken. This would
normally indicate that our choice of fixed time step is not much smaller than necessary for
using backward Euler, even for qualitative results. However, as it turns out, here a much
larger step size can be taken for backward Euler, still achieving qualitatively correct results:
it is the semi-implicit version that fails spectacularly!

This example therefore demonstrates, in addition to a simple implementation of an
implicit method for a stiff problem, both the advantages of adaptive time stepping using a
higher order method and the need for caution when using the semi-implicit variant.

�

�

�

�

Note: Now we can finally summarize the relative advantages and disad-
vantages of linear multistep and Runge–Kutta methods.

• Runge–Kutta has the advantage of flexibility, for both stiff and
nonstiff problems:

– no other, additional method is required to find extra initial
values;

– there are fewer difficulties in locating events (which are spe-
cific times, such as collisions in a particle system, when non-
smooth changes occur);

– affecting a step size change is straightforward.

• For nonstiff problems, PECE variants of Adams method pairs can
prove significantly less expensive than Runge–Kutta if high ac-
curacy is desired, especially if the evaluations of f dominate the
cost.

• The linear system that must be solved for stiff problems has minimal
size when using BDF methods, making them a relatively cheap and
popular choice in practice.

2.8 Differential-algebraic equations
Mathematical models often involve various relationships between dependent variables. It
often happens that some such relationships involve derivatives while others express in-
terdependence algebraically. Classical examples involve chemical reactions and electrical
circuits, among others; see [14, 85, 34]. Such a combination of differential and algebraic
equations (DAEs) can be written as a system,

F(t, y, y ′) = 0, t > 0, (2.29)
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which obviously generalizes the ODE form (2.2a) in that y ′ appears implicitly. The more
significant change from ODE, though, is when the Jacobian matrix ∂F

∂y ′ is singular.
Often DAEs arise in semi-explicit form, where differential and algebraic relations

are partially separated. For instance, consider the motion of a collection of rigid bodies.
Newton’s law relates accelerations, which are second derivatives of positions, to masses
and forces. If in addition there are constraints on the relative motion of these bodies, e.g.,
that two wheels in a car must maintain a constant separation distance, or that a door must
remain connected to a wall through its hinges, then we have a system of the form

M(x)x ′′ = f (x, x ′) − GT (x)z, (2.30a)

0 = g(x), (2.30b)

where x = x(t) are body positions, v(t) = x ′(t) are corresponding velocities, and z = z(t)

are Lagrange multiplier functions. Also, M is a symmetric positive definite (SPD) mass
matrix, f are forces (having nothing to do with f in (2.2)), g are the algebraic (holonomic)
constraints, and G = ∂g

∂x
. Assume that GM−1GT is SPD as well. It is not difficult to see

that (2.30) is a special case of (2.29), where y = (x, v, z); see Exercise 12.
An important concept in DAEs is the index. It expresses a sense of how far the DAE is

from being an ODE in disguise. The higher the index, the further the DAE is from an explicit
ODE, so intuitively also more surprises may be encountered upon applying numerical ODE
methods to it. For general DAE systems (2.29), the index along a solution y(t) is the
minimum number of differentiations of the system required to solve for y ′ uniquely in terms
of y and t (i.e., to define an ODE of the form (2.2) for y).

In case of the multibody system (2.30) we see that upon two differentiations of the
constraints we get Gx ′′+L(x, v) = 0. Multiplying the ODE part by GM−1 and substituting
we can express z at each t as

z = (GM−1GT )−1
(
GM−1f (x, v) + L(x, v)

)
.

Differentiating this once more finally gives an explicit expression for y ′, hence the index
equals 3.

There are two general approaches for solving DAE systems numerically. The first is to
discretize directly. Note that if we replace the constraint in (2.30b) by εSx ′ = g(x), where
0 < ε � 1 and S is a matrix of signs ensuring model stability, then a very stiff ODE system
is obtained. Therefore, seeing the DAE as a limit case with ε → 0, an L-stable method
such as BDF or Radau collocation must be employed in a direct discretization approach.
This turns out to work well for general index-1 DAEs and certain index-2 DAEs that are
common in practice, especially if the system is stiff anyway. The general-purpose codes
DASSL written by Petzold [34] and RADAU5 are good both for these types of DAEs and
for stiff ODEs.

The other approach is to transform the system, reducing its index prior to discretization.
This is called index reduction. For instance, given a constrained multibody system (2.30)
we can actually carry out two differentiations and obtain a nonstiff ODE by eliminating z.
The possibility of applying a nonstiff discretization method to the resulting ODE is certainly
a powerful incentive to at least investigate this route. However, note that the constraints
may have to be stabilized, the approach is less automatic, and some sparsity may be lost in
the transformation as well; see [14, 34, 85].



root
2008/5/5
page 66

�

�

�

�

�

�

�

�

66 Chapter 2. Methods and Concepts for ODEs

2.9 Symmetric and one-sided methods
The trapezoidal method (2.8) and the midpoint method (2.12) are examples of symmetric
methods: a change of variable τ = −t on [tn, tn+1], i.e., integrating from right to left,
leaves them unchanged. Like backward Euler they are implicit and A-stable, and their
cost of evaluation per step is similar as well. But the symmetry yields the higher order
of accuracy 2, whereas Euler methods are only first order accurate. Therefore, symmetric
time integration methods were preferred for parabolic PDEs in the early days of scientific
computing [54].

To define this notion more precisely and generally, consider for notational simplicity
the ODE y ′ = f (y). A discretization method given by yn+1 = yn + kψ(yn, yn+1, k) is
symmetric if

ψ(u, v, k) = ψ(v, u, −k).

For a symmetric method, then, by letting zn+1 ← yn, zn ← yn+1, and k ← −k, we get the
same method for zn as for yn.

However, symmetric methods cannot have stiff decay: the information damping prop-
erty required for stiff decay yields increases when integrating in the opposite direction. For
instance, backward Euler becomes forward Euler, and no infinite absolute stability region is
possible in both directions. Methods such as backward Euler are called one-sided. Higher
order symmetric Runge–Kutta methods are given by collocation at Gauss points or at Lo-
batto points, whereas collocation at Radau points provides higher order one-sided methods.
BDF methods are one-sided as well.

The realization of the power of one-sided methods in both space and time is commonly
considered as the most important advance in CFD in modern times. However, they have
their serious limitations, too, and we will see many situations where the symmetric methods
offer an added edge; see especially Chapters 6 and 7.

2.10 Highly oscillatory problems
Consider yet again the test equation (2.20), this time with λ purely imaginary. The exact
solution y(t) = eλty(0) now oscillates with |y(t)| = |y(0)| ∀t . In particular, there is no
decay in the exact solution. Numerical methods which cause significant decay in |yn| may
therefore be missing important information.

In general, the local error of a method of the type we have seen of order p is ≈
c|y(p+1)|kp+1, where y(p+1) = dp+1y

dtp+1 and c is a constant. For the test equation, y(p+1)(t) =
λp+1y(t). Thus, we cannot expect decent pointwise accuracy anywhere (not only in an
initial layer as in Section 2.6) unless k|λ| < 1.

Example 2.8 The harmonic oscillator

u′′ + ω2u = 0, 0 < t < b,

u(0) = 1, u′(0) = 0,

where ω is a real scalar has the solution

u(t) = cos ωt.
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If the frequency ω is high, ω � 1, then the derivatives grow larger and larger, because

‖u(p)‖ = ωp.

The local error of a discretization method of order p is

O(kp+1ωp+1).

This means that to recover the highly oscillatory solution u(t) accurately we must restrict

k < 1/ω

regardless of the order of the method. In fact, for k > 1/ω increasing the order of the
method as such is useless.

Even if high-frequency solutions are not of interest in themselves, the damping pro-
duced by a backward Euler discretization may be too much for some problems. Examples
are provided by symplectic maps and by hyperbolic PDEs with smooth solutions, studied
in future chapters. See especially Chapters 6 and 7.

Example 2.9 (Cloth simulation) This example is longer and more intensive than the pre-
vious ones and is better regarded as a case study. We first give some background to the
problem and then concentrate on the numerical issues. However, as we will see, the tasks
of deriving a mathematical model and of solving it numerically end up being somewhat
intertwined. Our exposition is based on [31, 6], whose work has its roots in Baraff and
Witkin [20] and Choi and Ko [48].

The problem of animating cloth (see Figure 2.11) is of direct relevance for virtual
character animation, garment design, and textile engineering. But these different purposes
give rise to different treatments. Textile engineers require a relatively accurate, quantitative
analysis and therefore must somehow solve complex sets of PDEs describing deformation of
elasticity continua. The spatial discretization usually employs finite elements, but we do not
dwell on this further here. The essential problem with applying such modeling techniques
to cloth animation in computer graphics is their computational expense, which is considered
prohibitive for interactive, real-time use. For virtual character animation the quest is then
for cheaper methods which still yield believable cloth motion, as far as our eye and our
perception are concerned.

With the latter goal in mind one is typically led to a particle method (also referred to
as a mass-spring model in the present context): the cloth is considered as a mesh of particles
(see Figure 2.12) which is more amenable to handling strange geometries and is intuitively
easier to render as well, and equations of motion are derived and solved for this system.
We proceed to discuss the latter approach, noting that there also exist various hybrids of the
two.

Thus, consider a uniform mesh in an underlying plane (u, v). For instance, this mesh
can consist of square or triangular cells where each square cell is bisected diagonally: all
this mesh does is maintain neighborhood relationships between the particles. Each node
(ui, vi), 1 ≤ i ≤ J, has an associated particle xi consisting of three cartesian components.
Denote also eij = xi − xj . In the absence of constraints our unknown vector of particle
positions x = x(t) ∈ R

3J is then x = (xT
1 , xT

2 , . . . , xT
J )T .
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(a) Spread over a table (b) Draped over a sphere

Figure 2.11. A square piece of fabric in two positions.

Figure 2.12. A particle mesh representation of a three-dimensional body surface.

Each particle has an associated mass mi > 0.10 The particle system then obeys
Newton’s second law of motion (which states that force equals mass times acceleration),

x′ = v, (2.31a)

Mv′ = f(x, v). (2.31b)
10This mass can be calculated as follows [20]: triangulate the mesh and assign to each triangle a mass which is

the product of the cloth’s density and the triangle’s fixed area in the (u, v) system. Then sum up the masses of all
triangles having xi as a node and let mi be the third of that total.
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Here v are the particle velocities (each vi having three components, of course) and M is the
diagonal mass matrix

M = diag(m1, m1, m1, m2, . . . , mJ , mJ , mJ ).

This then is our ODE system, but its specification is not complete until the construction of
the forces f is discussed, which we do next.

The forces acting on the system are of two types, f = fI + fII. External and damping
forces, fI, which may explicitly depend on both positions x and velocities v, include damping,
gravity, air drag, contact, and constraint forces. The remaining forces, fII, on which we
concentrate next, can all be written as the negative gradient of an internal energy function in
the position variables x only. This is where the modeling details of the mass-spring system
come in. There are three such forces—stretching, shearing and bending—and we use the
connectivity diagram depicted in Figure 2.13 to model these using springs, following [48].

Figure 2.13. Connectivity structure through the underlying (u, v)-mesh for stretch,
shear, and bend springs.

Stretch and shear springs are formulated identically, though they apply to different
neighbors of a particle i and possess rather different material constants. They are linear
springs that act only in extension and not in compression. Consider two particles i and
j connected by one of these springs. The elastic force acting on particle i due to the
deformation between it and particle j is

f j

i =
{

κ(|eij | − L)
eij

|eij | , |eij | ≥ L,

0, |eij | < L,
(2.32a)

where κ is the spring stiffness (κ = κst for stretching and κ = κsh for shearing) and L is
the spring’s rest length.

Another feature of the model [48] is its nonlinear handling of bending resistance. The
equilibrium shape of buckled cloth is approximated as a circular arc. The curvature is thus
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determined as a function of the axial spring strain |eij |
L

, and the corresponding restorative
force is expressed as

f j

i =
{

0, |eij | ≥ L,

fbend(
|eij |
L

)κbend
eij

|eij | , |eij | < L,
(2.32b)

where fbend is approximated as a fifth order polynomial function of the axial strain.
Let us not dwell here further on the modeling of damping or the very interesting

collision and constraint forces and concentrate instead on the purpose of this case study in
the present chapter’s context. For this we note first that if there were no forces fI, the system
(2.31) would have been of the highly oscillatory type. Indeed, since the stretching force is
rather stiff as compared to bending and shearing forces (try applying such forces to your shirt
or towel!), which translates to a much larger spring constant κst , we have a generalization of
the simple Example 2.8. In the early days of cloth simulation explicit integration methods
(that is, forward Euler; and also the leapfrog method considered in Chapter 6) were almost
exclusively used.11 But the resulting step size k is prohibitively small because essentially k

must be proportional to 1/
√

κst .
A major breakthrough was achieved in [20], where a variant of the backward Euler

method was proposed for the time discretization of (2.31). Their claim was that this elim-
inates stability restrictions and therefore allows using large time steps. To be precise, the
proposed method was a semi-implicit variant, where only one Newton iteration per time
step is used (see Section 2.7), which amounts to solving one large, sparse linear system
at each time step. Since the convergence of Newton’s method is guaranteed only locally,
this means that surprises, including instabilities, can happen with very large time steps, as
has indeed been subsequently reported by disenchanted experimentalists. Nonetheless, in
practice much larger steps than when using an explicit time discretization are often possible.

However, the reader who has really understood the material in this chapter must
wonder at this point how it is possible to use the highly damping semi-implicit backward
Euler discretization for a problem that contains no damping! The answer is that the problem
of interest, to recall, does contain damping, included in the forces fI. Remember that (2.31)
is merely a model for computation, not one describing a precise physical reality. Thus, the
parameter controlling the damping in fI can be reduced in view of the numerical damping
introduced by the time discretization. For this application it is acceptable to numerically
damp the in-surface, stretching oscillations, which also happen to be the problematic highly
oscillatory ones. The out-of-surface, bending modes are moderate and well approximated.
The result is a more efficient computation for a somewhat different mathematical model
than we have advertised, but still a computation that produces pleasant looking results at a
good price.

An implicit time step, even a semi-implicit one, results in the necessity to solve a
system of linear equations. Several interesting issues arise in this context [20, 6, 31]. Some
knowledge of the material covered in Sections 9.3 and 9.4 is necessary to pursue this further,
however, so we postpone additional discussion of this case study until Example 9.11.

11Jumping the gun on Chapter 6 we note that (2.31) with f = fII is a Hamiltonian system and that the leapfrog
scheme is symplectic. So is the explicit method obtained by applying forward Euler to (2.31b) followed by
backward Euler to (2.31a). Such methods do not introduce damping.
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2.11 Boundary value ODEs
Like our DAE description, the present section gives more of a synopsis than an in-depth
treatment of boundary value ODE (BVODE) problems. See [14] for a serious treatment of
the subject and Ascher, Mattheij, and Russell [10] for much more.

Considering an initial-boundary value problem such as (1.1)–(1.3) for a parabolic
PDE system in one space variable, the usual numerical approach is to discretize in space
first, obtaining an initial value ODE problem in time (IVP). However, if we discretize in
time first, using, say, one of the methods that have been discussed in this chapter, then
a BVODE system in the spatial variable results. This approach is called the transversal
method of lines (transversal MOL). Here the solution is not specified in its entirety at any
location of the independent variable x. Rather, a combination of the solution unknowns u

and ux is specified at x = 0, and possibly another combination of these variables is specified
at x = b.

The general formulation of a BVODE in first order form can be written as

y ′ = f (t, y), (2.33a)

0 = g(y(0), y(b)). (2.33b)

Usually the BC are linear

g(y(0), y(b)) = B0y(0) + Bby(b) − β, (2.33c)

where B0 and Bb are m×m matrices and β is an inhomogeneity vector. Note that the initial
value problem discussed hitherto is a special case of (2.33) with

g(y(0), y(b)) = y(0) − β,

i.e., B0 = I , Bb = 0.
The difference between the general boundary value problem (2.33) and the initial

value ODE problem is fundamental, however. For the initial value problem we know the
entire solution at one point t = 0, so we can proceed to integrate the ODE locally, marching
along in t with the entire solution information available for making adaptive decisions.
For the BVODE, on the other hand, we cannot proceed locally because the solution in its
entirety is not known anywhere. So we must integrate the ODE simultaneously, or globally,
on the entire interval [0, b], and numerically on the entire mesh approximating it. This can
be much harder to carry out, and indeed the transversal MOL approach is rarely used in
practice.

But there are many other applications where BVODE systems (2.33) naturally arise.
Some problems require a solution that is periodic in time and this involves specifying the
solution at more than one point. Another common situation is where a phenomenon is
described by means of an IVP, but the challenge is to find or identify some property such
as a diffusion coefficient or control variable from measurements of the solution at various
times. Such an inverse problem obviously has a global rather than a local nature.

A simple approach for solving BVODEs numerically is the shooting method. Denot-
ing by y(t; c) the solution of the ODE (2.33a) satisfying y(0) = c, we try to find c for which
the boundary conditions are satisfied. This gives a possibly nonlinear system of equations

g(c, y(b; c)) = 0. (2.34)
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The algebraic equations (2.34) are solved for c and the problem reduces to an initial value
one. This approach therefore involves solving several initial value problems numerically
for one BVODE system.

If we perturb the initial values of an ODE system, then the resulting trajectories may
differ more and more as the interval of integration grows longer. It is not surprising that
in such situations the solution of (2.34) as well as the subsequent initial value integration
for the chosen initial value vector can become highly sensitive and the shooting method
may run into trouble. The multiple shooting method seeks to limit the potential damage
by controlling the size of the subintervals over which initial value problems are integrated.
The given interval is thus divided into subintervals by a mesh of shooting points,

0 = t0 < t1 < · · · < tN = b,

IVP integrations are performed on each subinterval [tn, tn+1], and the resulting solution
segments are patched together to form a continuous approximate solution over the entire
interval [0, b] that satisfies the boundary conditions (2.33b).

Of course the IVP integration on a subinterval [tn, tn+1] also employs a discretization;
call its points tn = tn0 < tn1 < · · · tnJn

= tn+1. There are therefore two meshes here, really.
The coarse one comprises the shooting points and the fine one includes all the points where
y is calculated along the way. In the extreme we use only one integration step between each
two consecutive shooting points, whence the two meshes coincide and the method becomes
simply a one-step finite difference method.

If the given problem is linear and as usual we denote the approximate solution at tn
by yn, then the resulting multiple shooting or finite difference system can be written as

Rnyn+1 + Snyn = rn, n = 0, . . . , N − 1, (2.35a)

B0y0 + BbyN = β. (2.35b)

This can further be written as one linear system for the global solution y = (yT
0 , yT

1 , . . . , yT
N)T .

The resulting matrix has a specific sparsity structure that allows construction of fast direct
solvers. This is true especially if the boundary conditions are separated, which means that
for each j either the j th row of B0 or the j th row of Bb vanishes. This allows organizing
the matrix as banded; see Section 2.12.1.

Finally, the multiple shooting setup (2.35) naturally lends itself to a parallel imple-
mentation, both in forming the blocks Sn and Rn and in solving (2.35a) for yn+1 if this is
deemed useful. This procedure is in marked contrast to the usual IVP algorithms that march
in time. A natural direction to seek parallel algorithms for IVP integration is therefore to
explore BVP methods such as multiple shooting. Of course this makes sense especially
if the ODE problem to be solved is very large, such as it would be if arising as a semi-
discretization of an evolutionary PDE in several space variables. In such a case iterative
methods for solving (2.35) are typically sought.

2.12 Reviews
The present section is a continuation of Section 1.3, and we refer to Section 1.3 for an
explanation of what these reviews are all about. Here the topics concern basic numerical
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methods. They are all standard and are covered, e.g., in Heath [89], Burden and Faires [42],
and any other decent text on basic numerical methods.

2.12.1 Gaussian elimination and matrix decompositions

Consider a linear system of m equations

Ax = b,

where A is real, square, and nonsingular, b is given, and x is a solution vector to be found.
The solution is given by

x = A−1b.

However, it is usually bad practice to attempt to form A−1.
The well-known algorithm of Gaussian elimination (without pivoting) is equivalent

to forming an LU -decomposition of A, followed by forward and backward substitutions.
The decomposition stage is independent of the right-hand side b. It can be carried out

without knowing b and subsequently can be used for more than one right-hand side. We
deompose A as

A = LU,

where L is a unit lower triangular matrix (i.e., lij = 0, i < j , and lii = 1) and U is upper
triangular (i.e., uij = 0, i > j ). The LU -decomposition requires 1

3m3 + O(m2) flops (i.e.,
elementary floating point operations).

Given a data vector b we can now find x by writing

L(Ux) = Ax = b .

Solving Lz = b for z involves forward substitution and costs O(m2) flops. Subsequently
solving Ux = z completes the solution process using a back substitution and another
O(m2) flops. The solution process is therefore much cheaper, when m is large, than the cost
of the decomposition, at least in terms of sequential operation count and ignoring questions
of fast memory access. Assuming that the LU -decomposition exists and is stable, the
algorithm for Gaussian elimination without pivoting proceeds as described in the framed
box below.

Not every nonsingular matrix has an LU -decomposition, and even if there exists such
a decomposition the numerical process may become unstable. Thus, partial pivoting must
be applied (unless the matrix has some special properties, for instance, if it is symmetric
positive definite). A row-partial pivoting involves permuting rows of A to enhance stability
and results in the decomposition

A = PLU,

where P is a permutation matrix (i.e., the columns of P are the m unit vectors, in some
permuted order). We will refer to an LU -decomposition, assuming that partial pivoting has
been applied as necessary.

If A is large and sparse (i.e., most of its elements are zero), then the LU -decomposition
approach may or may not remain suitable. This depends on the sparsity pattern. For instance,
if all the nonzero elements of A are contained in a narrow band, i.e., in a few diagonals
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Algorithm: LU -decomposition and Gaussian elimination.

1. LU -decomposition

For j = 1 : m − 1

(a) for i = j + 1 : m

i. lij = aij /ajj

ii. A[i, j + 1 : m] = A[i, j + 1 : m] − lijA[j, j + 1 : m]
Comment: At this stage U is stored in the upper part of A. We could also
store L in the lower part of A.

Next, for each given right-hand side b:

2. Forward substitution

For i = 2 : m

(a) bi = bi −∑i−1
j=1 lij bj .

3. Back substitution

For i = m : −1 : 1

(a) xi = [bi −∑m
j=i+1 aij xj ]/ai,i .

neighboring the main diagonal (in which case A is called banded), then the Gaussian
elimination algorithm can be easily adjusted to avoid doing any work outside the band.
For finite differences with one spatial variable, this typically leads to a reduction in the
algorithm’s complexity from cubic to linear in the matrix dimension. But inside the band
the sparsity is usually lost, and other, iterative algorithms become more attractive. The latter
is typically the case for discretizations of PDEs in more than one spatial variable, and it is
further considered in Sections 9.2 and 9.4.

A special case of banded matrix is a tridiagonal matrix, corresponding to (3.3) with
l = r = 1, and arising in compact difference schemes. If the matrix is also positive definite,
then no pivoting is needed, and the above simplifies into the framed algorithm below.

This algorithm costs about 3m flops, which is comparable in its order to applying
a simple explicit scheme at m mesh points, at least so long as we may pretend that fast
memory access and parallelism are not an issue.

2.12.2 Polynomial interpolation and divided differences

Polynomial interpolation is a central building block for many computational tasks rooted in
calculus, such as integration, differentiation, and solution of ODEs and PDEs.
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Algorithm: Tridiagonal systems.

1. LU -decomposition

For i = 1 : m − 1

(a) li+1,i = ai+1,i/aii

(b) ai+1,i+1 = ai+1,i+1 − li+1,iai,i+1

Comment: At this stage U is stored in the superdiagonal of A. We could
also store L in the subdiagonal of A.

Next, for each given right-hand side b:

2. Forward substitution

For i = 2 : m

(a) bi = bi − li,i−1bi−1.

3. Back substitution

For i = m : −1 : 1

(a) xi = [bi − ai,i+1xi+1]/ai,i .

Supposeg(x) is a function to be interpolated at theq+1 distinct pointsx0, x1, x2, . . . , xq

by the unique polynomial φ(x) of degree ≤ q which satisfies the relations

φ(xl) = g(xl), l = 0, 1, 2, . . . , q.

The polynomial can be written explicitly in Lagrangian form,

φ(x) =
q∑

j=0

g(xj )Lj (x), (2.36a)

where Lj are the Lagrange polynomials,

Lj(x) = �
q

i=0,i �=j

(x − xi)

(xj − xi)
. (2.36b)

These are polynomials of degree q satisfying

Lj(xi) =
{

0, i �= j,

1, i = j.
(2.36c)

The Lagrange form is useful because it is written in terms of the interpolated values them-
selves. This is referred to as a nodal representation, borrowing from finite element termi-
nology.
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For other purposes, though, it may be more convenient to write the same polynomial
φ(x) in Newton’s form

φ(x) = g[x0] + g[x0, x1](x − x1) + · · ·
+ g[x0, x1, . . . , xq](x − x0)(x − x1) · · · (x − xq−1),

where the divided differences are coefficients defined recursively by

g[xl] = g(xl),

g[xl, . . . , xl+i] = g[xl+1, . . . , xl+i] − g[xl, . . . , xl+i−1]
xl+i − xl

. (2.37)

For instance, quadratic interpolation at the three points x0, x1, and x2 is obtained as follows.
We construct the triangular divided difference table

g[x0] = g(x0), g[x1] = g(x1), g[x2] = g(x2),

g[x0, x1] = g(x1) − g(x0)

x1 − x0
, g[x1, x2] = g(x2) − g(x1)

x2 − x1
,

g[x0, x1, x2] = g[x1, x2] − g[x0, x1]
x2 − x0

.

Then, for any x we may evaluate the interpolant

g(x) = g[x0] + (x − x0)g[x0, x1] + (x − x0)(x − x1)g[x0, x1, x2].
Returning to the general case of polynomial interpolation, the interpolation error at

any point x is

g(x) − φ(x) = g[x0, . . . , xq, x]�q

i=0(x − xi). (2.38)

If the points xi and x are all in an interval of size O(h) and g has q +1 bounded derivatives,
then the interpolation error is O(hq+1). If h is small, then

g[x0, . . . , xq, x] ≈ g(q+1)(ξ)

(q + 1)! ,

where the (q + 1)st derivative g(q+1) is evaluated at some nearby point ξ .
The Newton interpolation form is recursive and has two additional important proper-

ties:

• The interpolation points are added one at a time. Thus, the interpolant over the q + 1
points is an addition of one term to the interpolant over the first q points.

• The points xl do not have to be in increasing order.

In general, the interpolating function can be written as a linear combination of linearly
independent basis functions φ0(x), φ1(x), . . . , φq(x),

φ(x) =
q∑

j=0

αjφj (x).
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For the Lagrange form (2.36) we have φj (x) = Lj(x) and αj = g(xj ). For the Newton form
φj (x) = π

j−1
i=0 (x − xi), which is a polynomial of degree j , and αj = g[x0, . . . , xj ]. Note

that the expression (2.38) for the interpolation error is independent of the choice of basis
functions, which is just a choice of representation for the same interpolating polynomial.

Any form of polynomial interpolation should be considered only locally: if the points
x0, . . . , xq are spread over an interval [a, b] that is not very narrow, then the error (2.38),
which is not just an upper bound, is in general uncontrollable and not small. In such a case
we can divide the interval into small subintervals by a mesh much like those used for our
numerical approximations of differential equations,

a = ξ0 < ξ1 < · · · < ξJ = b,

apply polynomial interpolation on each subinterval [ξj−1, ξj ], and patch these polynomial
pieces together so that the obtained piecewise polynomial function φ(x) has a certain global
smoothness. A general rule of thumb is to ensure that φ ∈ Cm−1[a, b] if the mth derivative
of φ is to be constructed, say, in the course of approximately solving a differential equation
of order m. However, this rule is often broken and lower continuity is sought at breakpoints,
e.g., in the contexts of finite elements (Section 3.1.4) and discontinuous collocation [13, 81].

2.12.3 Orthogonal and trigonometric polynomials

Families of orthogonal polynomials are rarely used directly to construct numerial approxi-
mants in the sense of Section 2.12.2, but they underlie many important techniques in various
applications.

Given a smooth, nonnegative weight function w(x) on [−1, 1], a family of polyno-
mials φ0(x), φ1(x), . . . , φj (x), . . . spanning L2[−1, 1] such that φj (x) is a polynomial of
degree j is orthogonal with respect to the weight function w(x) if∫ 1

−1
w(x)φi(x)φj (x)dx = 0 ∀ i �= j.

Any polynomial p(x) of degree less than q can be written as a linear combination of the
first q orthogonal polynomials,

p(x) =
q−1∑
j=0

αjφj (x),

hence the basis function φq(x) is orthogonal to any polynomial of degree < q,∫ 1

−1
w(x)p(x)φq(x)dx = 0.

Here are two favorite families of orthogonal polynomials.
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• For w ≡ 1 we obtain the Legendre polynomials defined by a three-term recurrence
relation

φ0(x) = 1,

φ1(x) = x,

φj+1(x) = 2j + 1

j + 1
xφj (x) − j

j + 1
φj−1(x), j ≥ 1.

The j th Legendre polynomial has j simple (i.e., distinct) roots ζi = ζ
(j)

i , i =
1, . . . , j , that lie inside the interval (−1, 1). They are called Gaussian points. Of
course we can write a polynomial in terms of its zeros, φq(x) = cqπ

q

i=1(x − ζi), for
some nonzero coefficient cq . Thus, the orthogonality statement above says that for
all polynomials of degree < q∫ 1

−1
p(x) π

q

i=1(x − ζi) dx = 0

with ζi the corresponding q Gaussian points. This sets the scene for constructing
basic high order methods for numerical integration in Section 2.12.4.

Of course, not all problems are given on the interval [−1, 1]. For a general interval
[a, b] we can apply a linear transformation to x ∈ [−1, 1] which scales and translates
it

t = 1

2
[(b − a)x + (a + b)], or

x = 2t − a − b

b − a
.

For example, if [a, b] = [0, 1], then t = 1
2 (x + 1). For φ1(x) = x the Gaussian point

on [−1, 1] is ζ1 = 0, and on [0, 1] it is ζ1 = 1/2, remaining the interval’s midpoint.
The quadratic Legendre polynomial is φ2(x) = 3

2x2 − 1
2 = 1

2 (3x2 − 1), hence the
Gaussian points are ± 1√

3
, and on [0, 1] they are ζ1,2 = 1

2 (1 ± 1√
3
).

• For w(x) = 1√
1−x2 we have the Chebyshev polynomials

φ0(x) = 1,

φ1(x) = x,

φj+1(x) = 2xφj (x) − φj−1(x), j ≥ 1.

As for the Legendre polynomial, what really matters to us are the zeros of the Cheby-
shev polynomial, here called Chebyshev points and given for the j th polynomial
by

ζi = cos

(
2i − 1

2j
π

)
, i = 1, . . . , j.

Like the Gaussian points the Chebyshev points are simple and lie in (−1, 1).
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The zeros for the (q + 1)st Chebyshev polynomial have the min-max property that

(ζ1, ζ2, . . . , zq+1) = argmin min
x0,...,xq

max
−1≤x≤1

|πq

i=0(x − xi)|.

Returning to polynomial interpolation and its error expression (2.38) we see that it
has a factor that depends on the approximated function g and another factor that
depends only on the interpolation points. If we are free to choose these interpolation
points, then setting them to be the Chebyshev points minimizes the interpolation
error if the g-dependent factor is constant, i.e., if g is a polynomial of degree q + 1.
There are classical examples that show more generally that polynomial interpolation
at Chebyshev points can produce far superior results to interpolating at equidistant
points. But the situation has to be somehow special for this to provide a meaningful
difference and justify a departure from a simpler uniform mesh treatment.

Of course interpolation and approximation need not be done by (piecewise-) poly-
nomials alone. The class of trigonometric polynomials considered in Section 1.3.6 also
forms an orthogonal family. A trigonometric polynomial interpolation using q + 1 basis
functions is particularly effective for periodic functions.

2.12.4 Basic quadrature rules

Given the task of approximating an integral∫ b

a

f (t)dt

for some function f (t) on an interval [a, b], basic quadrature rules are derived by replacing
f (t) with an interpolating polynomial φ(t) and integrating the latter exactly. If there are
s distinct canonical interpolation points 0 ≤ c1 < · · · < cs ≤ 1, then we can write the
interpolating polynomial of degree < s in Lagrange form,

φ(t) =
s∑

j=1

f (xj )Lj (t),

where Lj are the Lagrange polynomials (2.36b) with xj = a + (b − a)cj . Note that the
notation has slightly shifted with respect to (2.36), with j → j + 1 and q = s − 1. Then∫ b

a

f (t)dt ≈
s∑

j=1

wjf (xj ),

where the weights wj are given by

wj =
∫ b

a

Lj (t)dt.

For instance, with s = 1, c1 = 0, we have f approximated by its value at a, so the
integral is approximated by (b−a)f (a). Likewise, the combination s = 1, c1 = 1/2, yields
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the midpoint rule (b − a)f
(

a+b
2

)
, and s = 2, c1 = 0, c2 = 1, yields the trapezoidal rule

(b−a)
f (a)+f (b)

2 . The more complex Simpson’s rule has s = 3, c1 = 0, c2 = 1/2, c3 = 1,
yielding b−a

6 (f (a) + 4f ((a + b)/2) + f (b)).
The order of the quadrature rule is p if the rule is exact for all polynomials of degree

< p, i.e., if for any polynomial f of degree < p,∫ b

a

f (t)dt =
s∑

j=1

wjf (cj ).

If b − a = O(h), then the error in a quadrature rule of order p is O(hp+1). Obviously
p ≥ s, but p may be significantly larger than s if the points cj are chosen carefully.

The midpoint and trapezoidal rules have order p = 2. Simpson’s rule has order
p = 4. Gaussian quadrature at s points has the highest order possible at p = 2s.

If the integration interval length b − a is not small, then there is no reason in general
to expect an accurate approximation from any of these basic rules. A composite quadrature
method consists of dividing the interval [a, b] into subintervals, say, of length h each, where
the size of h can now be controlled, and applying a basic rule in each of these subintervals.
The resulting method is the same as a corresponding collocation–Runge–Kutta method
applied to the very special ODE y ′ = f (t).

2.12.5 Fixed point iteration and Newton’s method

For solving an algebraic nonlinear equation

g(x) = 0,

a class of methods is obtained by rewriting the problem as

x = φ(x)

and defining a sequence of iterates as follows: x0 is an initial guess. For a current iterate
xν , where ν is the iteration counter, we set

xν+1 = φ(xν), ν = 0, 1, . . . .

This is called a fixed point iteration. The challenge is to choose φ that will be easy to
evaluate while the whole iteration process converges quickly.

The convergence of a fixed point iteration to a given rootx∗ at a linear rate is guaranteed
if there is a constant ρ, 0 ≤ ρ < 1, such that

|φ′(x)| ≤ ρ

for all x in a neighborhood of x∗ to which x0 also belongs. The smaller ρ is, the faster the
iteration is guaranteed to converge.

Newton’s method is a special case of fixed point iteration with

φ(x) = − g(x)

g′(x)
.
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To derive it we write

0 = g(x) = g(xν) + g′(xν)(x − xν) + · · · .

Approximating the solution x by neglecting the higher order terms in this Taylor expansion,
we define the next iterate xν+1 as the solution of the linear equation

0 = g(xν) + g′(xν)(xν+1 − xν).

This defines an iteration for xν+1 that converges (locally) quadratically under certain con-
ditions.

We can generalize this directly to a system of m algebraic equations in m unknowns,

g(x) = 0.

Everything remains the same, except that first derivatives are replaced by m × m Jacobian
matrices,

∂g
∂x

=

⎛⎜⎜⎜⎜⎜⎜⎝

∂g1

∂x1

∂g1

∂x2
· · · ∂g1

∂xm

∂g2

∂x1

∂g2

∂x2
· · · ∂g2

∂xm

...
...

. . .
...

∂gm

∂x1

∂gm

∂x2
· · · ∂gm

∂xm

⎞⎟⎟⎟⎟⎟⎟⎠ .

For the fixed point iteration we have

xν+1 = φ(xν),

and this converges if there is a constant ρ < 1 such that in a neighborhood to which both
x∗ and x0 belong, ∥∥∥∥∂φ

∂x

∥∥∥∥ ≤ ρ.

For Newton’s method we require the Jacobian matrix ∂g
∂x for the actual iteration, not

just for stating a convergence criterion. The method reads

xν+1 = xν −
(

∂g
∂x

(xν)

)−1

g(xν), ν = 0, 1, . . . .

Rather than computing xν+1 directly it is better in certain situations (when ill-conditioning
is encountered), and never worse in general, to solve the linear system for the difference
δ between xν+1 and xν and then update. Thus, δ is computed (for each ν) by solving the
linear system (

∂g
∂x

)
δ = −g(xν),

where the Jacobian matrix is evaluated at xν , and the next Newton iterate is obtained by

xν+1 = xν + δ .
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2.12.6 Discrete and fast Fourier transforms

In this brief description we follow Trefethen [169].
The continuous Fourier transform (1.17), (1.18), so powerful and essential for theory

in this book, is not useful for constructing a practical method. For the latter let us consider
a uniform periodic mesh,

0 = x0 < x1 < · · · xJ−1 < xJ = 2π,

where the value of the approximated function at x0 is identified with that at xJ . We have
xj = jh, j = 1, . . . , J , with h = 2π/J .

Let us assume that J is even and that the given values of the function v(x) are
v(xj ) = vj , j = 1, . . . , J . The discrete Fourier transform (DFT) is defined by

v̂l = h

J∑
j=1

e−ıljhvj , l = −J/2 + 1, . . . , J/2. (2.39a)

Note that the integer variable l has replaced ξ in (1.17). Then the inverse DFT reads

vj = 1

2π

J/2∑
l=−J/2+1

eıljhv̂l, j = 1, . . . , J. (2.39b)

We can write the DFT as a matrix transform,

v̂ = Bv, v = B−1v̂,

where both the J ×J matrix B and its inverse are explicitly given. The DFT and its inverse
transform each cost O(J 2) flops to carry out simplemindedly.

However, the matrices B and B−1 are special in that their elements are repetitive, all
being just powers of the J th root of unity, eı2π/J . Taking advantage of this to economize the
computation leads to the fast Fourier transform (FFT), one of the most important algorithms
ever, that costs only O(J log J ) flops. The details of the algorithm get technical and can be
found in many references, including [89, 42].

Let us see how to use the DFT and FFT in order to closely approximate derivatives
of a smooth, periodic function v(x). For technical reasons we define v̂−N/2 = v̂N/2 and
replace (2.39b) by

vj = 1

2π

J/2∑
l=−J/2

cle
ıljhv̂l, j = 1, . . . , J,

where cl = 1/2 for l = ±J/2, cl = 1 otherwise. This can be extended into the trigonometric
polynomial interpolant

p(x) = 1

2π

J/2∑
l=−J/2

cle
ılx v̂l , x ∈ [0, 2π ], (2.40)
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whose derivatives can now be taken and evaluated at x = jh. The rth derivative brings out
the familiar factor (ıl)r , so we set ŵl = (ıl)r v̂l . If r is odd, then due to lost symmetry we
set ŵJ/2 = 0. An inverse transform of ŵ then completes the task. The resulting derivative
approximations are called spectral derivatives. They can be extremely accurate if v is very
smooth in addition to being periodic.

We can form a differentiation matrix for the first derivative (and higher) in this way.
The J ×J matrix D, when multiplying v, then yields a corresponding vector of J derivative
values approximating dv

dx
(jh), j = 1, . . . , J . But a direct use of FFT is simpler. In

MATLAB, assuming that v is a column array containing the values vj and that J2 = 0 if r

is odd, J2 = J/2 otherwise, the script

v_hat = fft(v);
w_hat = (1i)ˆr * ([0:N/2-1 J2 -N/2+1:-1].ˆr)’ .* v_hat;
w = real(ifft(w_hat));

produces the desired approximations to the rth derivative. The strange row vector that
gets raised to the power r simply corresponds to the MATLAB convention of ordering the
wave numbers l. If more generally v = v(s), where s ∈ [a, b], then apply a scaling plus
translation transformation to the independent variable. In fact, the only change in the above
script (other than in the interpretation of the input and output locations) is that w_hat gets
multiplied by (2π/(b − a))r .

2.13 Exercises
0. Review questions

(a) Does f have to be linear in y or t in order to apply a linear multistep method
for the ODE y ′ = f (t, y)?

(b) What is a local truncation error? How does it differ from the local error defined
in Section 2.4?

(c) Write down the class of three-stage Runge–Kutta methods.

(d) Does a method of order p automatically yield a solution error O(kp) for step
size k sufficiently small?

(e) What is a stiff initial value ODE?

(f) Define 0-stability, A-stability, and L-stability.

(g) Why areAdams methods generally considered useful only for nonstiff problems?

(h) Why is the fixed point iteration considered inappropriate for stiff problems?
What is used instead in practice?

(i) What is a semi-explicit DAE?

(j) Is implicit trapezoidal a symmetric method? What about the explicit trapezoidal
method?

(k) Why is it difficult in general to find efficient methods for highly oscillatory
problems?
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(l) What is the cause for the essential added difficulty when solving boundary value
ODEs as compared to initial value ODEs?

1. Consider the method

yn+θ = yn + kθf (tn, yn),

yn+1 = yn + kf (tn+θ , yn+θ ),

where 0.5 ≤ θ ≤ 1 is a parameter.

(a) Show that this is a two-stage Runge–Kutta method. Write it in tableau form.

(b) Show that the method is first order accurate, unless θ = 0.5 when it becomes
second order accurate (and is then called explicit midpoint).

(c) Show that the domain of absolute stability contains a segment of the imaginary
axis (i.e., not just the origin) iff θ > 0.5.

2. For a given ODE system
y ′ = f (y),

consider the so-called θ -method

yn+1 = yn + k[θf (yn+1) + (1 − θ)f (yn)]
for some value θ , 0 ≤ θ ≤ 1. This popular family of methods is different from the
one considered in Exercise 1.

(a) Which methods are obtained for the values (i) θ = 0, (ii) θ = 1, and (iii)
θ = 1/2?

(b) Find a range of θ -values, i.e., an interval [α, β] such that the method is A-stable
for any α ≤ θ ≤ β.

(c) For what values of θ does the method have stiff decay?

(d) For a given δ, 0 ≤ δ < 1, let us call a method δ-damping if

|yn+1| ≤ δ|yn|
for the test equation y ′ = λy as λk → −∞. (Thus, if y0 = 1, then for any
tolerance TOL > 0, |yn| ≤ TOL after n steps when n exceeds log T OL

log δ
.)

Find the range of θ -values such that the θ -method is δ-damping.

(e) Write the θ -method as a general Runge–Kutta method; i.e., specify A, b, and c
in the tableau

c A

bT

(f) Using the order conditions given in (2.13) (you don’t need to prove them)
determine what is the order of the θ -method for each θ .
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(g) People often toy with values θ = 1/2 + ε, where 0 < ε � 1 is a suitably small
parameter. Discuss advantages and disadvantages of choosing such a value.

3. The TR-BDF2 [116] is a one-step method consisting of applying first the trapezoidal
scheme over half a step k/2 to approximate the midpoint value, and then the BDF2
scheme over one step

yn+1/2 = yn + k

4
(f (yn) + f (yn+1/2)), (2.41a)

yn+1 = 1

3
[4yn+1/2 − yn + kf (yn+1)]. (2.41b)

One advantage is that only two systems of the original size need be solved per time
step.

(a) Write the method (2.41) as a Runge–Kutta method in standard tableau form
(i.e., find A and b). Conclude that it is an instance of a diagonally implicit
Runge–Kutta (DIRK) method [85, 14].

(b) Show that both the order and the stage order equal 2.

(c) Show that the stability function satisfies R(−∞) = 0: this method is L-stable
[85, 113].

(d) Show that this method has stiff decay.

(e) Can you construct an example where this method would fail while the BDF2
method would not?

4. Consider the two-step method

yn+1 − yn−1 = 2k f (yn).

This is the generating method for the leap-frog scheme (1.15c).

However, the method does not do well for problems with damping: show that its
absolute stability region has an empty interior. Thus, the method is unstable for any
initial value ODE of the form y ′ = λy with Re λ < 0.

5. Show that the Runge–Kutta step (2.10) can be written as

Ki = f

⎛⎝tn + cik, yn + k

s∑
j=1

aijKj

⎞⎠ , 1 ≤ i ≤ s, (2.42a)

yn+1 = yn + k

s∑
i=1

biKi. (2.42b)

6. Write down explicitly the order conditions (2.13) for p = 1, 2, and 3. Elaborate upon
methods that satisfy them.
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7. A popular belief has it that implicit methods are suitable for stiff problems. In fact,
one has to be a bit careful here.

(a) Construct a consistent implicit linear multistep method that is not suitable for
stiff initial value ODEs.

(b) Construct a consistent implicit Runge–Kutta method that is not suitable for stiff
initial value ODEs.

8. Consider the special case of the test equation, y ′ = λy, where λ is real, λ ≤ 0.
If y(0) = 1, then the exact solution y(t) = eλt remains nonnegative and decays
monotonically as t increases. Let us call a discretization method nonnegative for a
step size k if yn ≥ 0 implies yn+1 ≥ 0. Show the following:

(a) If in addition z = λk is in the absolute stability region, then we have mono-
tonicity

yn ≥ yn+1 ≥ 0.

This guarantees that the qualitatively unpleasant oscillations that the trapezoidal
method produces in Figure 2.9 will not arise.

(b) The forward Euler method is nonnegative only when z ≥ −1. (NB Always
z ≤ 0.)

(c) The backward Euler method is unconditionally nonnegative.

(d) The trapezoidal method is only conditionally nonnegative even though it is
A-stable. Find its nonnegativity condition.

(e) Find the nonnegativity condition for the TR-BDF2 method of Exercise 3. Is it
unconditionally nonnegative?

(f) Can a symmetric Runge–Kutta method be unconditionally nonnegative? Justify
if not, or give an example if yes.
(This last item is a bit harder than the rest.)

9. The problem

y ′ = y2, y(0) = 1,

has the exact solution

y(t) = 1

1 − t
, 0 ≤ t < 1.

This blows up at t = 1.

(a) Considering this problem on the interval [0, 1 − ε] for a parameter 0 < ε � 1,
investigate what Theorem 2.3 guarantees as a function of ε.

(b) Integrate the problem numerically using (i) forward Euler and (ii) RK4 with a
constant step size k. Try this for k = ε = .1, .01, .001, .0001. (The alliance of
ε with k is unholy, of course, because the problem is generally assumed defined
before applying the numerical method. But let us proceed nonetheless.)
What do you observe? Is the difference between the methods’ behavior funda-
mental?
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(c) Some people would say that problems like this simply should not be solved
numerically. Try to defend this statement (without necessarily becoming a
believer yourself).

10. Consider applying a semi-implicit variant of a BDF method to a stiff, nonlinear ODE
system with a smooth solution.

Show that the resulting method is generally only first order accurate, even if the order
of the BDF method is higher.

11. Let us rewrite (2.31) for a second order ODE system

x ′′ = f (x, v), (2.43)

where v = x ′ and we have set M = 1 as well. This is equivalent, of course, to the
first order ODE form

x ′ = v, (2.44a)

v′ = f (x, v), (2.44b)

but we wish to seek more direct approximations for (2.43).

One simple idea is

xn+1 = 2xn − xn−1 + k2f (xn, vn), (2.45a)

vn = (2k)−1(xn+1 − xn−1). (2.45b)

However, we wish to define a one-step method that is more flexible when different
time steps are required.

The Newmark methods comprise a two-parameter family defined by

xn+1 = xn + kvn + k2

2
((1 − β)fn + βfn+1), (2.46a)

vn+1 = vn + k((1 − γ )fn + γfn+1). (2.46b)

(a) Show that (2.45) is second order accurate for x. What is the accuracy order for
v?

(b) Show that (2.46) is second order accurate in both x and v for any choice of
parameter 0 ≤ β ≤ 1 with γ = .5.

(c) Show that with β = γ = .5 in (2.46) we have the trapezoidal method for (2.44).

(d) Write down the method (2.46) for β = 0 and γ = .5. Under what circumstances
should this variant be advantageous?

(e) Try out the three specific methods mentioned above. Invent one example where
f depends on v and another where it does not. Check convergence orders and
absolute error values. Discuss your results.

12. Show that the constrained multibody system formulation (2.30) is a special case of
the general DAE form (2.29) for y = (x, x ′, z). What is the Jacobian matrix of F

with respect to y ′?
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13. Write a program to solve the Black–Scholes model described in Exercise 1.3. You
may choose to discretize (1.27)–(1.28) directly, or opt for (1.29) or (1.30) followed
by back transformation to u. Justify your choice. The display and assessment of
results should in any case be applied to the original u(t, x).

Use the second order accurate spatial discretization

uxx(t, xj ) ∼ uj+1 − 2uj + uj−1

h2
,

ux(t, xj ) ∼ uj+1 − uj−1

2h
, if needed.

This leads to an ODE system in time for u1(t), . . . , uJ (t).

For the time discretization try (i) forward Euler and (ii) the implicit trapezoidal
scheme. For each, select a fixed time step k based on accuracy and stability con-
siderations, aiming at an overall accuracy of O(h2).

Apply your program for the values r = 0.1, σ = 0.2, E = 1, and plot the solution at
0 ≤ x ≤ 2 for T − t = 0, 0.5, 1.0, and 1.5. Try h = .01, .005, .0025, and .00125
(with the time step decreased accordingly), and assess from the differences whether
an O(h2) accuracy is achieved.

14. In applications often the derivative of the sought function, y ′(t), depends not only on
the solution y at t but also on y at other locations. For instance, consider

y ′(t) = f (t, y(t), y(t − d)),

where d is a known delay. This is no longer an ODE but rather a delay differential
equation (DDE). In general the delay d may be a function, it may be positive or
negative, and there may be several delays [86, 22]. But below we concentrate on the
instance

y ′(t) = −y(t) + y2(t − 1) + 1, 0 ≤ t ≤ 10,

y(t) = 0, t ≤ 0.

(a) Show that y ′ is discontinuous at t = 0 and y ′′ is discontinuous at t = 1.

(b) Contemplating a fourth order numerical method for this initial value DDE,
explain why a Runge–Kutta method is preferred over a multistep one and why
it is a good idea to include the integers l = 0, 1, 2, . . . , 10 as mesh points.

(c) When integrating from tn to tn+1 using (2.10) we need solution values at the
points tn + cik − 1. Describe a local interpolation scheme to obtain such values
to sufficient accuracy.

(d) Write a code to solve the above problem and plot its solution. You may use
software such as MATLAB’s dde23 or other programs available on the Internet.

15. Continuing with the DDE of Exercise 14, let

yj (τ ) = y(τ + j − 1), 0 ≤ τ ≤ 1,

and denote y0 ≡ 0 and y = (y1, . . . , y10)
T .
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(a) Show that the DDE problem can be written as a boundary value ODE (BVODE)
without delays,

dy
dτ

= f(τ, y),

0 = g(y(0), y(1)).

(b) The resulting boundary conditions from the BVODE formulation above are not
separated. Reformulate the BVODE into one with separated BC by defining
y(τ ) more intelligently.

(c) Solve the resulting BVODE using MATLAB’s code bvp4c or any other code.
Compare the results to those of Exercise 14.

(d) Discuss pros and cons of the above two approaches, namely, direct discretiza-
tion vs. reformulation into standard BVODE form, in a more general context
including, e.g., more general integration intervals and more general delays.
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yj+1/2

xi−1/2 xi+1/2

Chapter 3

Finite Difference and
Finite Volume Methods

Having given a taste of finite difference methods for PDEs in Section 1.2 and an exposition
of methods for ODEs in Chapter 2, we embark in the present chapter upon a wider and more
methodical derivation of methods and concepts for PDE discretization.

To recall, we are treating the time variable t as special among the independent vari-
ables. To facilitate a gradual development of concepts and methods let us consider discretiz-
ing the spatial domain and derivatives first. This gives a semi-discretization, which yields
an (often very large) set of initial value ODEs. The advantages of the semi-discretization
approach are as follows:

1. ODE methods and software may be used under certain conditions to solve the problem.
In this context the term method of lines is commonly used; see Figure 3.1.

2. Different approaches (not just finite differences) for the spatial discretization may be
introduced.

3. The analysis for the semi-discrete formulation is sometimes simpler than for the fully
discrete formulation.

There are also disadvantages, or at least pitfalls:

1. Not all useful full discretization methods can be naturally obtained in this stepwise
way.

2. The approach assumes a certain separation between time and space which may not
be present, at least not naturally, especially in tough hyperbolic problems.

3. The analysis of a semi-discrete formulation must take into account the fact that the
number of ODEs in (3.2) is “large,” i.e., the size of L tends to ∞ as the spatial
discretization parameter tends to 0. One cannot simply apply ODE-based knowledge
here without care. And then, once this analysis is completed we are still not finished,
because the effect of the ensuing time discretization must be accounted for as well.

91
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10 x

t

Figure 3.1. Method of lines. The shaded strip is the domain on which the diffusion
PDE is defined. The approximations vj (t) are defined along the dashed lines.

We discuss semi-discretizations in Section 3.1, developing a feeling for the deriva-
tion of finite difference and finite volume methods in space and the handling of boundary
conditions (BC).

In Section 3.2 we apply an ODE discretization to the time variable as well, obtaining
a full discretization. Combining the techniques acquired for time discretization in Chapter
2 with those developed for semi-discretizations in the present chapter, there is a family
of complete discretizations to consider. For the fully discretized problems we then define
basic concepts of order, stability, and convergence, and we show in particular how the
order of accuracy and the stability of the difference method are expressed in the resulting
approximation error for the PDE solution.�

�
�
	

Note: Section 3.1 is long, essentially a chapter within a chapter, and we
will find ourselves referring back to it throughout the text.

3.1 Semi-discretization
Consider a general, linear PDE of evolution in d space variables,

ut = Lu + q, x ∈ �, t > 0, (3.1a)

where � ⊂ R
d , q = q(t, x) is given, u = u(t, x) is sought, and L is a differential operator

of the form

L =
∑

i1+···+id≤m

ai1,i2,...,id

∂i1+···+id

∂x
i1
1 ∂x

i2
2 · · · ∂x

id
d

. (3.1b)
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The coefficients of L may depend on t and x. There are initial conditions to be satisfied,

u(0, x) = u0(x), x ∈ �, (3.1c)

as well as appropriate BC.
Consider next the task of discretizing Lu + q for a fixed t . It may be useful to

think of L as an elliptic differential operator when the evolution PDE (3.1a) is parabolic.
There are various approaches for performing the discretization, such as finite elements
[158, 19, 35, 103, 67], spectral methods [45, 169, 32], and particle methods. We concentrate
mostly on finite difference and finite volume methods [137, 116, 110, 76, 164] but also devote
a short section in the spirit of Sections 2.8 and 2.11 to finite element methods. Whichever
spatial discretization method is used, we end up with an ODE system,

vt = Lv + q, (3.2)

where v may be thought of as a vector of unknowns corresponding to the solution u of (3.1)
at mesh points, L is a square matrix discretizing L (L depends on t if L does), and q is a
corresponding discretization of q. The special form of (3.2) corresponds to the special form
of (3.1). Other, more complex and even nonlinear differential operators can be discretized
in a similar fashion.

Below we continue with finite difference, and occasionally finite volume, discretiza-
tions in space. For the homogeneous problem (q = 0) in one space dimension we write
such a scheme as

d

dt
vj (t) =

r∑
i=−l

αivj+i (t), (3.3)

where αi = αi(t, xj ) in general.

Example 3.1 (A diffusion problem) For the simple diffusion problem in one space vari-
able x and time t ,

ut = uxx + r(x, u),

u(0, x) = u0(x), u(t, 0) = g0(t), u(t, 1) = g1(t),

where � = [0, 1] and r is a known (possibly nonlinear) function, we discretize on a
uniform spatial mesh with spacing h. Let vj (t) approximate u(t, xj ), where xj = jh, j =
0, 1, . . . , J + 1. Then replacing ∂2u

∂x2 by a three-point central difference we obtain

dvj

dt
= vj+1 − 2vj + vj−1

h2
+ r(xj , vj ), j = 1, . . . , J.

This ODE is of the form (3.3) with l = r = 1. The boundary conditions are used to close
the system in an obvious manner, setting v0(t) = g0(t) and vJ+1(t) = g1(t).

We have obtained an initial value ODE problem with the initial data vj (0) = u0(xj ),

j = 1, . . . , J .

If we write the discretization (3.3) in the vector form (3.2), then the obtained matrix L

is very large (possibly infinite) and very sparse. For instance, in the case of Example 3.1, L
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is tridiagonal. This sparsity is typical for finite difference, finite volume, and finite element
methods.

Suppose a finite difference semi-discretization on a uniform mesh with spacing h is
employed, yielding (3.2), where v is the vector of mesh values: vj (t) ≈ u(t, xj ). Let u be
the vector of size J composed of the exact values, uj (t) = u(t, xj ). Denote the truncation
error for the semi-discrete system (3.2) by

d = ut − (Lu + q). (3.4)

The method (3.2) has order of accuracy p if ‖d‖∞ = O(hp) for all sufficiently smooth so-
lutions. Under certain conditions, namely, stability and sufficient smoothness, this translates
to convergence of a similar order, i.e.,

‖u(t) − v(t)‖ = O(hp).

In Section 3.1.1 we derive basic discretizations for first and second derivatives. This
is followed by the lengthy Section 3.1.2, where staggered grid or staggered mesh12 dis-
cretizations are developed and demonstrated. These arise from attempts to obtain compact,
symmetric discretizations in space. Several more involved examples in more than one
space variable are provided to illustrate more complex issues that arise.

A partial treatment of boundary conditions (BC) is given in Section 3.1.3, first in
one dimension and then in several space variables. The latter are treated via a variational
approach, connecting naturally to Section 3.1.4, and this can be skipped on first reading
even though its subject matter is important. In Section 3.1.4 we briefly describe the finite
element method, reviewing it for the sake of completeness in the vein of Sections 2.8 and
2.11. Nonuniform meshes are considered in Section 3.1.5. A few words regarding stability
and convergence end this section, leading to the next.�

�
�
	

Note: This section need not be absorbed fully at first pass, as it often
proceeds tangentially to much of the rest of the text.

3.1.1 Accuracy and derivation of spatial discretizations

The most basic tool for deriving difference approximations and verifying their order of
accuracy is Taylor’s expansions; see the review in Section 1.3.1. This approach is intuitive
but not always methodical, and there are certain issues that are better highlighted by the
alternative approach considered next.

Differentiating polynomial interpolants

Polynomial interpolation provides a general approach for deriving difference formulas; see
the review in Section 2.12.2. It is more methodical but less intuitive than manipulating
Taylor’s expansions. It also works for deriving discretizations on nonuniform mesh stencils
(Exercises 2 and 3).

12The words “grid” and “mesh” are used interchangeably in this book.



root
2008/5/5
page 95

�

�

�

�

�

�

�

�

3.1. Semi-Discretization 95

For instance, let ui = u(xi)∀i and consider the straight line interpolation between
(xj , uj ) and (xj+1, uj+1),

w(x) = uj + uj+1 − uj

h
(x − xj ).

Differentiating this gives

wx(xj ) = uj+1 − uj

h
,

which is the forward approximation for ux(xj ). Polynomial interpolation also yields that
the error is first order in h,

ux(xj ) = uj+1 − uj

h
− h

2
uxx(η), (3.5a)

for some generic argument η; in this case, xj ≤ η ≤ xj+1.
Likewise, interpolating (xj−1, uj−1), (xj , uj ), and (xj+1, uj+1) by a quadratic poly-

nomial and differentiating yields the centered approximation

ux(xj ) = uj+1 − uj−1

2h
− h2

6
uxxx(η). (3.5b)

Here h = xj − xj−1 = xj+1 − xj . Differentiating the same quadratic interpolant once more
yields a formula used in Example 3.1 for the second derivative,

uxx(xj ) = uj+1 − 2uj + uj−1

h2
− h2

12
uxxxx(η). (3.5c)

This obviously can be generalized to obtain approximations for higher derivatives.
Note that for the lth derivative we must use an interpolating polynomial of degree at least
l (or risk an approximation that vanishes identically). This in turn implies that a difference
formula for the lth derivative must be based on at least l + 1 points.

A difference formula that is based on precisely l + 1 consecutive mesh points (in one
dimension) is called compact. Such a formula uses a difference stencil of minimal size.
The formulas (3.5a) and (3.5c) are both compact, but the centered formula (3.5b) for ux is
not! Noncompact formulas can certainly be used in many situations, as we have already
seen in Chapter 1, but occasionally they give rise to spurious modes; see, e.g., Section 7.1.

Notation and “exact” formula

It is useful to introduce the following difference notation:

D+uj = uj+1 − uj Forward, (3.6a)

D−uj = uj − uj−1 Backward, (3.6b)

D0uj = uj+1 − uj−1 Long centered, (3.6c)

δuj = uj+1/2 − uj−1/2 Short centered, (3.6d)

μuj = 1

2
(uj+1/2 + uj−1/2) Short average, (3.6e)

Euj = uj+1 Translation. (3.6f )
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The operators (3.6a)–(3.6e) can be clearly expressed in terms of the translation operator E,
e.g.,

D+ = E − I, D− = I − E−1,

etc. It is possible to combine these operators, e.g.,

h−2D+D−uj = h−1D+
uj − uj−1

h
= 1

h

[
uj+1 − uj

h
− uj − uj−1

h

]
= 1

h2

[
uj+1 − 2uj + uj−1

] = uxx + O(h2).

It is also possible to derive operator identities, such as δ2 = D+D− = D−D+ and μ2 =
1 + δ2/4.13

To obtain an exact formula we can write formally

Eu(x) = u(x + h) = u + hux + 1

2
h2uxx + · · ·

=
(

I + h∂x + 1

2
h2∂xx + · · ·

)
u(x) = eh∂x u(x).

Hence E = eh∂x , implying that

∂x = h−1 log E. (3.7)

Of course, the formula (3.7) has the disadvantage that it requires infinitely many mesh
points, but its local approximations may be useful. Below we proceed to derive some such
approximations, generalizing the simple formulas (3.5).

For the problematic first derivative, ux , we can derive forward (and likewise back-
ward) formulas as follows. Write

log E = log(I + D+) = D+ − 1

2
D2

+ + 1

3
D3

+ + · · · .

So, the first term alone is the first order (3.5a). A second order one-sided approximation of
ux at xj is given by

ux = 1

h

(
D+ − 1

2
D2

+

)
u + O(h2) = 1

h
(uj+1 − uj ) − 1

2h
(uj+2 − 2uj+1 + uj ) + O(h2).

The disadvantages of this formula are that (i) an extra neighbor is required, which may be
especially problematic near boundaries, and (ii) the error constant is not as small as a more
centered formula involving the same number of mesh points would yield. But if there is a
discontinuity to the left of xj , then taking one-sided differences into the smooth part of the
solution can be a clever move.

To obtain centered formulas for ux we write

D0 = E − E−1 = eh∂x − e−h∂x = 2 sinh(h∂x),

13Of course, μ here stands for the short averaging operator, not a ratio of time and space steps. There should
not be too much confusion about this in context because we will typically use μx or μt to denote averaging in x

or t , respectively.
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yielding

∂x = 1

h
sinh−1(D0/2) = 1

h

[
D0

2
− 1

6
(
D0

2
)3 + · · ·

]
.

The first term corresponds to the second order (3.5b). The first two terms give a fourth order
approximation. However, they require seven neighboring values. This yields problems near
the boundary and other potential difficulties as well. Thus, we use short differences and the
fact that μ2 = 1 + δ2/4. Since μδ = D0/2 we get

∂x = 1

h
sinh−1(μδ) = 1

h

[
μδ − 1

6
(μδ)3 + · · ·

]
= 1

h

[
μδ − 1

6
μ(δ)3 + · · ·

]
= D0

2h

(
I − 1

6
D+D− + · · ·

)
.

This gives a fourth order, five-point formula

(ux)j = 1

12h

[−uj+2 + 8uj+1 − 8uj−1 + uj−2
]+ O(h4).

For the second derivative uxx we won’t discuss one-sided schemes because they are
rarely used in practice. Since ∂x = 2

h
sinh−1(δ/2), we square this expression to obtain

∂xx = 4

h2
sinh−2(δ/2) = 1

h2

[
δ2 − 1

12
δ4 + 1

90
δ6 + · · ·

]
.

Cutting this expansion after s terms gives an approximation of order 2s which requires
2s + 1 mesh points. For s = 1 we obtain the standard three-point formula (3.5c) used in
Example 3.1. Note that since only even powers of δ appear, we only evaluate u at mesh
points.

Implicit schemes

The idea here is more complex, and the following few paragraphs may be skipped without
loss of continuity. Suppose we want to derive a high order, centered formula for ux using as
few neighbors as possible, for the reasons indicated above. To obtain a symmetric scheme
we must use a point to the left and a point to the right of j , but we don’t want to use more.
It is possible to derive such a fourth order scheme, but this requires an implicit, nonlocal
formula. (See pp. 234–235 of [133].) Note that

I − 1

6
D+D− =

(
I + 1

6
D+D−

)−1

+ O(h4),

so

∂x = 1

2h

(
I + 1

6
D+D−

)−1

D0 + · · · .
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This is to be interpreted as (
I + 1

6
D+D−

)
Fj = 1

2h
D0uj , (3.8)

so an entire row of Fj is obtained all at once, with Fj = (ux)j + O(h4), and only three
points are used in the formula stencil.

To find the Fj ’s we add end conditions, obtained by a Taylor series for ux , and solve a
tridiagonal system. This can be done rapidly; see Section 2.12.1. What results is a nonlocal,
higher order approximation for ux . Example 8.7 demonstrates this scheme in action.

For the second derivative uxx , although the explicit derivation is cleaner than for the
first derivative, the fourth order approximation still uses five points, rather than three. To
recall, in general we cannot expect to use fewer than i+1 mesh points for approximating the
ith derivative locally, so here we may strive for a compact three-point formula. To obtain
a formula accurate to fourth order we may use the same basic idea as for obtaining (3.8).
Write

h2∂xx =
(

I − 1

12
δ2

)
δ2 ≈

(
I + 1

12
δ2

)−1

δ2.

Thus, solving (
I + 1

12
D+D−

)
Sj = 1

h2
D+D−uj (3.9)

for Sj yields a fourth order, implicit compact approximation for (uxx)j .
To carry this out we again need to solve a tridiagonal system for the Sj ’s in terms of

the uj ’s. For a review on solving such systems see Section 2.12.1.

3.1.2 Staggered meshes

The previous subsection gives some basic tools for deriving difference methods. In practice,
it often turns out to be desirable to derive symmetric, or centered, discretizations, because
they automatically yield higher order accuracy (typically second order in the simplest cases),
and because they often reproduce certain solution properties; see Chapters 2, 6, and 7. For
second derivatives the natural, compact three-point formula (3.5c) is centered, and not much
more is needed. But for first derivatives the centered approximation at mesh points is “long,”
spanning two subintervals instead of one, and this leads at times to undesirable phenomena
because spurious high frequency (or large wavenumber) error components may arise.

The “short” difference introduced in (3.6d) then appears to be more suitable, but
this implies centering the entire formula in between where the mesh function values are
presumed to approximate the exact solution. For example, given the ODE ux = q(x) we
can approximate the integral form

u(xj+1/2) − u(xj−1/2) =
∫ xj+1/2

xj−1/2

q(x)dx

by the midpoint rule

δvj = vj+1/2 − vj−1/2 = hq(xj ). (3.10a)
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xj−1 xj xj+1

xj−1/2 xj+1/2

Figure 3.2. A staggered mesh in one dimension. The points xj−1, xj and xj+1

belong to the primal mesh, while the midpoints xj−1/2 and xj+1/2 belong to the dual mesh.

We can think of the original mesh points {xj } as defining the primal mesh while the
midpoints {xj+1/2} constitute a dual mesh. Note that except for the effect near boundaries,
which we assume for the moment to be absent, the discretization (3.10a) is equivalent to
the usual midpoint discretization

vj+1 − vj = hq(xj+1/2), (3.10b)

because it is just a matter of redefining what the primary mesh is; see Figure 3.2. The ap-
proximation is second order accurate.

Example 3.2 (Diffusion equation) Consider the diffusion equation with nonconstant
coefficients

ut = (a(x)ux)x + q(t, x),

where a(x) > 0. This type of equation is very popular in applications.
Assuming that a is smooth enough we could rewrite the PDE as ut = auxx +axux +q

and discretize directly using the formulas of Section 3.1.1,

dvj

dt
= a(xj )

h2

[
vj+1 − 2vj + vj−1

]+ ax(xj )

2h

[
vj+1 − vj−1

]+ q(t, xj ).

However, this requires specification of ax and uses a long centered difference unnecessarily.
A better, more elegant way to discretize this PDE uses a staggered mesh. Denoting

w = a(x)ux we have ut = wx +q, so these are two first order equations in x. We discretize
each using a short difference in x. Moreover, to retain a compact overall effect we consider
the approximation for w at midpoints and use (3.10b) and (3.10a), respectively, for the two
equations

a(xj+1/2)
vj+1 − vj

h
= wj+1/2,

dvj

dt
= wj+1/2 − wj−1/2

h
+ q(t, xj ).

Eliminating w-values yields the preferred semi-discretization

dvj

dt
= h−1

[
a(xj+1/2)

vj+1 − vj

h
− a(xj−1/2)

vj − vj−1

h

]
+ q(t, xj ).

See Exercise 4 for a version of this discretization on a nonuniform mesh.



root
2008/5/5
page 100

�

�

�

�

�

�

�

�

100 Chapter 3. Finite Difference and Finite Volume Methods

Example 3.3 (Discontinuous coefficients) The staggered discretization developed in the
previous example is particularly useful if a(x) in the diffusion equation is piecewise con-
tinuous and bounded, with possible jump discontinuities at isolated points in x, or if it just
varies rapidly on the scale of h. We then write down the discretization

aj+1/2
vj+1 − vj

h
= wj+1/2, (3.11a)

dvj

dt
= wj+1/2 − wj−1/2

h
+ q(t, xj ), (3.11b)

and thus

dvj

dt
= h−1

[
aj+1/2

vj+1 − vj

h
− aj−1/2

vj − vj−1

h

]
+ q(t, xj ), (3.11c)

and ask how to define aj+1/2: the exact value of a at the midpoint, even if we knew it, does
not necessarily capture the effect of discontinuities or of a significant local variation in the
best way.

Recalling that integration is a smoothing operation, and given that w(x), unlike a(x),
has a bounded derivative, we write

ux = a−1(x)w

and integrate this equation over one mesh subinterval in space. Thus, we apply the integra-
tion to the rougher (i.e., less smooth) quantity ux , rather than to the smoother w. Further,
we approximate w by its midpoint

u(xj+1) − u(xj ) =
∫ xj+1

xj

a−1w dx ≈ wj+1/2

∫ xj+1

xj

a−1dx,

which makes sense because a does not change sign. This yields the above staggered formula
(3.11) with

aj+1/2 = h

[∫ xj+1

xj

a−1dx

]−1

. (3.12a)

The obtained formula for aj+1/2 employs harmonic averaging.
Of course, carrying out precise integration can be excessive in many applications.

Assuming, for instance, that a = aj is constant over each subinterval [xj−1/2, xj+1/2) we
get the simpler formula

aj+1/2 =
[

a−1
j + a−1

j+1

2

]−1

. (3.12b)

The methodology developed here, often referred to as finite volume, can also be used
in cases where a = a(x, u(x)), i.e., for a nonlinear diffusion equation. Both equations
(3.12) generalize directly, where now aj = a(xj , vj ).
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What if a is a function of ux , e.g., a = 1
|ux |? Here it is natural to discretize ux by the

centered (vj+1 −vj )/h over the interval [xj , xj+1]. So, the integrand in (3.12a) is constant,
the point about harmonic averaging is moot, and

aj+1/2 = h

|vj+1 − vj | .

(Some modification must be made to keep the denominator positive even when u is flat; see
Example 3.5.)

If we avoid the elimination step, then the pair (3.11a) and (3.11b) forms a discretization
for a couple of first order PDEs where different components of the solution are approximated
at different locations on the mesh, hence the name staggered mesh. Up to this point, and
in the discussion that follows in Section 3.2, we assume one spatial variable for simplicity
of exposition and imply a direct extension to more space variables. A staggered mesh is
also useful occasionally for one space variable, but it becomes especially important in more
dimensions. We demonstrate this next by three more involved examples.


�
�

Note: The following three examples are in several space variables.

Example 3.4 (Anisotropic diffusion in two dimensions) The same diffusion equation from
Example 3.2 reads in two spatial dimensions,

ut = (aux)x + (auy)y + q ≡ ∇ · (a∇u) + q, (3.13)

where a = a(x, y) > 0, and q = q(t, x, y) is integrable. Note our notation ∇· for the
divergence operator div and ∇ for the gradient operator grad. Let us assume for simplicity
that this PDE is defined over the unit square spatial domain � = [0, 1] × [0, 1] for t ≥ 0,
and discretize by a uniform mesh with step h = 1/(J + 1). If a were just a constant, then
the semi-discretization is straightforward:

dvi,j

dt
= a

h2

[−4vi,j + vi−1,j + vi+1,j + vi,j−1 + vi,j+1
]+ qi,j , 1 ≤ i, j ≤ J.

However, if a varies considerably over the scale of h, particularly if it is discontinuous, then
much more care is required in developing an appropriate finite volume discretization.

Thus, as in Example 3.3 we consider a volume (cell) of length h centered at the node
(i, j); see Figure 3.3. Defining the flux w = (wx, wy)T we write (3.13) as

ut = wx
x + wy

y + q = ∇ · w + q, (3.14a)

w = a∇u. (3.14b)

Note that the flux is typically an important physical quantity, not just a mathematical in-
vention for the purpose of reduction from (3.13) to (3.14). Often boundary conditions are
specificed on the normal component of w, rather than on ∂u

∂n
. We delay further discussion

of boundary conditions to Section 3.1.3.
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(xi, yj )

yj−1/2

yj+1/2

xi−1/2 xi+1/2

Figure 3.3. A finite volume in two dimensions.

The first of these equations looks easy: we integrate (3.14a) over the control volume
V = [xi−1/2, xi+1/2]×[yj−1/2, yj+1/2]. The midpoint rule is applied to ut and q. Moreover,
by the Gauss divergence formula the integral of ∇ · w over the control volume is equal to
the line integral of w · n over the boundary of V , where n is the outward pointing normal.
Writing, e.g.,

wx
i+1/2,j =

∫ yj+1/2

yj−1/2

wx(xi+1/2, y)dy,

and similarly for the other three edges of the control volume, we obtain the staggered mesh
expression

dvi,j

dt
= h−1

[
wx

i+1/2,j − wx
i−1/2,j + w

y

i,j+1/2 − w
y

i,j−1/2

]
+ qi,j , 1 ≤ i, j ≤ J.

For (3.14b) we can divide by a, as in Example 3.3 above, and integrate ux = a−1wx

in x and uy = a−1wy in y. But, where in y should we integrate ux and where in x should
we integrate uy?! This is where the two-dimensional case can differ painfully from the one-
dimensional case described in Example 3.3. A simplistic approach is to interpret wx

i+1/2,j

as a point value and thus to integrate ux in x at y = yj . This yields

ai+1/2,j

vi+1,j − vij

h
= wx

i+1/2,j .

Upon subsequent elimination of the fluxes this yields the formula for the primal mesh
unknowns {vi,j },

dvi,j

dt
= h−2

[
ai+1/2,j (vi+1,j − vi,j ) − ai−1/2,j (vi,j − vi−1,j ) (3.15a)

+ ai,j+1/2(vi,j+1 − vi,j ) − ai,j−1/2(vi,j − vi,j−1)
]+ qi,j , 1 ≤ i, j ≤ J,
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where, e.g.,

ai+1/2,j = h

[∫ xi+1

xi

a−1(x, yj )dx

]−1

. (3.15b)

However, (3.15) is only what we can best do as an extension of the one-dimensional case. If
a really varies wildly over the entire control volume in a way that is not miraculously aligned
with the axes x or y, then the above line integrals may not capture some essential part of
such a variation. Techniques leading to 2 × 2 tensor coefficients for a have therefore been
proposed, and concepts such as upscaling and homogenization become relevant [109, 123].
The plot thickens quickly, and we leave it at that.

Example 3.5 (Denoising, diffusion, and total variation) Consider the denoising problem
depicted in the two upper subfigures of Figure 3.4. Given the noisy image on the upper
right, u0, we would like to recover the clean image u to the extent possible.

One way to do this is to smooth the noise by applying a diffusion filter. Recall from
Chapter 1 that the heat operator smooths rough initial data (see in particular Figure 1.4).

Original Image

256 * 256

Noisy Image

Noise added = 20 percent

Diffusion

6, misfit=2.67e+01

Anisotropic Diffusion

6, misfit=2.12e+01

Figure 3.4. Denoising: The “true image” (upper left) is corrupted by adding
20% white noise (upper right) and the latter is fed as data u0 to a denoising program using
isotropic diffusion (lower left) and anisotropic diffusion (lower right). Anisotropic diffusion
produces a more pleasing result.
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Thus we set out to solve

ut = uxx + uyy [= ∇ · ∇u],
u(0, x, y) = u0(x, y).

At the boundary the so-called natural boundary conditions are specified; see Section 3.1.3.
The space discretization of the Laplacian operator is as in Example 3.4, specifically (3.15),
for a ≡ 1. The mesh is determined by the resolution of the original picture, here being
256 × 256 on a square spatial domain. The natural boundary conditions are discretized as
described in Section 3.1.3 below: this is not central to the present example.

Note that the PDE above does not directly describe a physical process to be simulated
at all cost. Rather, it describes a diffusion analogy to denoising. The PDE is part of
the computational model here. In particular, we have an instance of artificial time [9].
Alternative computational models can be formulated for the same denoising purpose.

A forward Euler discretization of the diffusion equation reads

un+1 = un + k∇ · ∇un, n = 0, 1, 2, . . . ,

and this can be interpreted as a steepest descent step for the minimization problem

min
u

λ

2
‖u − u0‖2

2 +
∫

�

|∇u|2dxdy

with |∇u| = √
u2

x + u2
y , where we let the nonnegative parameter λ vanish and start the

iteration from the data, u0 = u0. The step size k can now be determined by a line search. If
you are not familiar enough with the Euler–Lagrange equations, please see (3.18)–(3.19).
But if you are also not familiar with optimization techniques, then we suggest to just trust
us for now about these statements, as a foray into numerical optimization [139] could take
a while.

Clearly if we let “time” (i.e., n in the iteration) grow a lot, we’ll reach a very flat,
undesirable solution, so this integration must be stopped before it is too late. Unfortunately,
the result at the bottom left of Figure 3.4 indicates that even after a few (six) steps there is
significant smearing of edges in the reconstructed image. Indeed, what we want to smooth
out is the random noise, not the edges!

Thus, we define an anisotropic diffusion filter that would smooth only in directions
where u does not vary too abruptly. The operator ∇ · ∇u is replaced by ∇ · (a∇u) as in
(3.13), with a(x, y) small (but still strictly positive) precisely where |∇u| is large. There are
various ways for doing that [142, 145, 151], and we show here one called total variation
(TV), where we set a = 1 / |∇u|. This leads to the PDE

ut = ∇ ·
( ∇u

|∇u|
)

.

We mention in passing that the operator on the right-hand side of the latter PDE corresponds
to mean curvature; see, e.g., [140] for details.

A further insight into TV can be obtained by considering the minimization problem
that corresponds to the diffusion model above. Across image edges u is discontinuous, hence
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|∇u| is unbounded, containing a δ-function. But such a function, although integrable, is
not square integrable! The smearing across edges apparent in the lower left subfigure
of Figure 3.4 is the result of the compensation by the discrete algorithm for this lack of
integrability in the limit h → 0. Replacing

∫
�

|∇u|2dxdy by the total variation integral∫
�

|∇u|dxdy

(see also Section 10.3) therefore yields better, sharper results. Modifying the minimization
problem accordingly and applying a steepest descent step then corresponds to the TV PDE
presented above.

In practice the TV expression is modified in regions where u is very flat, to keep
a > 0 bounded, either by adding a small positive constant under the square root sign or by
switching to least squares. This results in ∇ · ( ∇u√

u2
x+u2

y+ε2

)
or ∇ · ( ∇u

max(|∇u|,γ )

)
, respectively,

appearing in the TV PDE, where ε and γ are suitable positive constants; see [8].
Now the choice of expression for ai+1/2,j becomes uncomfortable, because the ex-

pression couples derivatives in both x and y directions. The most common choice for the
unmodified TV part is

ai+1/2,j = ai,j+1/2 = h
[
(ui+1,j − ui,j )

2 + (ui,j+1 − ui,j )
2
]−1/2

,

and this leads to the reconstruction depicted at the lower right subfigure of Figure 3.4. The
result is clearly better than what is obtained using isotropic diffusion.

Of the various possibilities available in the literature for anisotropic diffusion, TV
enjoys the most solid theoretical backing. However, in practice it does not always perform
best. A 2 × 2 tensor of coefficients for a has also been proposed [181] in which one tries to
smooth only along, and not across, edges.

Example 3.6 (Maxwell’s equations in three dimensions) Maxwell’s equations for elec-
tromagnetic fields read

μHt = −∇× E,

εEt = ∇× H − σE,

where E(t, x, y, z) = (E1, E2, E3)T is the electric field in three space dimensions, H(t, x,

y, z) = (H1, H2, H3)T is the magnetic field, ε and μ are known constants, and σ =
σ(x, y, z) is a known function [163, 30]. These six differential equations form in general a
hyperbolic system. However, if we are allowed to set εEt = 0 (this is called the quasi-static
approximation), then the system becomes parabolic.

The curl operator ∇× can be viewed as a skew-symmetric matrix of first order
derivatives,

∇× =

⎛⎜⎜⎜⎝
0 −∂z ∂y

∂z 0 −∂x

−∂y ∂x 0

⎞⎟⎟⎟⎠ .
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E1i+ 1
2 ,j,k

H2i+ 1
2 ,j,k− 1

2
H1i,j− 1

2 ,k− 1
2

E2i,j− 1
2 ,k

E3i,j,k+ 1
2

H3i− 1
2 ,j− 1

2 ,k

(i+ 1
2 ,j+ 1

2 ,k+ 1
2 )

x

yz

Figure 3.5. A staggered mesh cell for Maxwell’s equations.

We wish to design a semi-discretization which is centered and uses only short differences.
Thus, for instance, the equation

μH1t = E2z − E3y

indicates that E2 and E3 should be placed on a staggered mesh in such a way that their short
differences in the z and y directions, respectively, are centered at the same point where H1
is defined. For a uniform mesh consisting of cubic cells, the arrangement of the unknowns
is depicted in Figure 3.5. The resulting semi-discrete equations read

μ
dH1i,j+ 1

2 ,k+ 1
2

dt
= E2i,j+ 1

2 ,k+1 − E2i,j+ 1
2 ,k

h
− E3i,j+1,k+ 1

2
− E3i,j,k+ 1

2

h
,

ε
dE1i+ 1

2 ,j,k

dt
= −H2i+ 1

2 ,j,k+1/2 − H2i+ 1
2 ,j,k− 1

2

h
+ H3i+ 1

2 ,j+ 1
2 ,k − H3i+ 1

2 ,j− 1
2 ,k

h
−(σE1)i+ 1

2 ,j,k ,

etc. Note that each of these six difference equations is centered at a different (though nearby)
location on the mesh; see Exercise 12.

A resulting bonus of this staggered mesh discretization is that the discretization of the
operator ∇· ∇× (where ∇· is the divergence operator, ∇· H = H1x+H2y+H3x) vanishes,
like the operator itself. This is a property of invariance reproduced by the discretization
scheme.

3.1.3 Boundary conditions

In Example 1.2 we demonstrated the treatment of periodic boundary conditions (BC). In
this section we discuss basic questions regarding the handling of other simple BCs. More
complex situations are delayed until Chapter 8.
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v−1 v0 v1 v2

10 x

t

Figure 3.6. Location of unknowns for an initial-boundary value problem. Beyond
the boundary at x = 0 are ghost unknowns vn

−1, n = 0, 1, . . . .

Let us first consider the simple heat equation in a strip,

ut = uxx, 0 ≤ x ≤ 1, t > 0,

u(0, x) = u0(x);

see Figure 3.6. We need BCs both at x = 0 and at x = 1 for t > 0. It can be shown that the
problem is well-posed under the boundary conditions

αu(t, 0) + γ ux(t, 0) = g0(t),

βu(t, 1) + δux(t, 1) = g1(t), (3.16)

provided that α2 + β2 > 0. This is good news numerically, because we generally need
boundary conditions at both ends of the interval in x.

In Example 3.1 we examined the case of Dirichlet BC with the standard three-point
formula for uxx . For instance, set r = 0 there to obtain

dvj

dt
= vj+1 − 2vj + vj−1

h2
.

This formula is second order accurate, and in case of Dirichlet BC (α = β = 1, γ = δ = 0
in (3.16)) it is applied for j = 1, . . . , J , where h(J + 1) = 1, with v0(t) = g0(t) and
vJ+1(t) = g1(t).

The situation is a bit more complex for Neumann or mixed BC. Consider the case of
Neumann BC at x = 0, i.e., α = 0, γ = 1, say, with Dirichlet BC at the other end x = 1.
Then we must approximate the BC at x = 0 appropriately. The approximation order of
the BC formula must at least match the order of accuracy of the interior formula, or else a
deterioration in the global order of convergence may result, at least locally (see the error
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bound (3.36)). In the present case the order is 2 and so we can use the scheme

v1 − v−1

2h
= g0(t), (3.17)

dvj

dt
= vj+1 − 2vj + vj−1

h2
, j = 0, 1, . . . , J.

In other words, we define a ghost unknown v−1 (see Figure 3.6) and apply at the boundary
x = 0 both discretizations, for the PDE and for the BC.

This allows a local elimination of the ghost unknown v−1 for each t . The obtained ODE
system is subsequently discretized in time. Alternatively, we can consider the equations of
(3.17) without prior elimination. The system resulting from the method of lines is then seen
as a system of differential-algebraic equations (DAEs) in time. There are packages based
on BDF discretizations and on collocation at Radau points which are designed to solve initial
value DAE problems—see Section 2.8 and [14]. While for the simple prototype problem
considered here the elimination of the ghost unknown is straightforward, in more complex
problems and spatial discretizations the more general DAE formulation is attractive because
it provides for a higher level mode of programming.

The elimination of v−1 from (3.17) yields

v−1 = v1 − 2hg0(t);
hence

dv0

dt
= 2v1 − 2v0 − 2hg0(t)

h2
.

It may appear as if this formula is only first order accurate, whereas (3.17) is obviously
second order. However, the elimination of v−1 in itself of course does not yield an order
reduction. It is important when assessing order of accuracy to consider the local truncation
error in the PDE and the BC discretizations separately, with the formulas written in divided
difference form, as in (3.17). The elimination of v−1 involves multiplication by h, hence
the misleading formal first order resulting from it.

On the other hand, suppose we were to replace the centered difference formula by a
forward formula,

v1 − v0

h
= g0(t).

This carries with it the benefit of no ghost unknowns (the PDE discretization need not be
applied at the boundary j = 0) and allows local elimination of v0 as for the Dirichlet BC.
However, the resulting scheme is unfortunately only first order accurate indeed. We can
consider a second order one-sided formula for ux(t, 0) based on v0, v1, and v2 (see Section
3.1.1) and eliminate v0 from that. But the resulting matrix L in (3.2) is no longer tridiagonal.
Using the ghost unknown is therefore popular in practice, although it is not always advisable
either; see Chapter 8.

The above ideas extend to more space variables, barring tricky geometry issues. Con-
sider first the diffusion equation on a square (or cubic) spatial domain. Handling Dirichlet
BC is straightforward: we use the knowledge of the values of u on the boundary to eliminate
the corresponding v-values. For a Neumann BC it is useful to imagine the same control
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volume as in Figure 3.3 applied around a boundary node, i.e., with half the volume extend-
ing outside the actual domain. The reasoning of Example 3.4 can be directly applied to
eliminate ghost unknowns, much like the one-dimensional case (Exercise 6).

The situation becomes more complex with domains whose boundary does not align
well with coordinate axes. This is where finite elements shine. But even without finite
elements it is possible to cook up local interpolation schemes involving mesh points (nodes)
near the boundary where solution values are given in the Dirichlet case (Exercise 7). For
Neumann conditions a similar ghost unknown trick can be devised in principle along the
normal to the boundary.

Natural and essential BCs

Let us ignore time dependence for the moment and consider a steady-state, elliptic PDE,
say, in two spatial dimensions. Such PDEs often arise from a variational principle, i.e., as
a necessary condition for a functional minimization problem. For instance, the problem

min
u

∫
�

[
a|∇u|2 + bu2 − 2uq

]
dxdy, (3.18)

where a(x, y) > 0, b(x, y) ≥ 0, and q are square integrable (i.e., they are functions in
L2(�)), and u(x, y) is required to have bounded first derivatives (i.e., u ∈ H1(�)), has the
necessary condition called the Euler–Lagrange equation,

−∇ · (a∇u) + bu = q in �, (3.19a)
∂u

∂n
|∂� = 0. (3.19b)

The homogeneous Neumann BCs (3.19b) are therefore natural. If the minimization problem
(3.18) is subject to some Dirichlet BC, say, that u vanish on part of the boundary ∂�1 ⊂ ∂�,
then the PDE problem (3.19) would be subject to the same, essential BC, and the boundary
condition (3.19b) becomes

u|∂�1 = 0,
∂u

∂n
|∂�2 = 0, (3.19c)

where ∂�2 = ∂� \ ∂�1.
Next, to solve a PDE problem of the form (3.19) we can discretize the minimization

formulation (3.18). Assuming for notational simplicity that � is the unit square and ∂�2 =
∂�, i.e., no essential BC, and using a simple centered discretization for the integrals on each
mesh element, we obtain

min
v

1

2

J∑
i,j=0

[ai+1/2,j (vi+1,j − vi,j )
2 + ai+1/2,j+1(vi+1,j+1 − vi,j+1)

2

+ ai,j+1/2(vi,j+1 − vi,j )
2 + ai+1,j+1/2(vi+1,j+1 − vi+1,j )

2]

+ h2

4

J∑
i,j=0

[bi,j v
2
i,j − 2qi,j vi,j + bi+1,j v

2
i+1,j − 2qi+1,j vi+1,j (3.20)

+ bi,j+1v
2
i,j+1 − 2qi,j+1vi,j+1 + bi+1,j+1v

2
i+1,j+1 − 2qi+1,j+1vi+1,j+1],
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i.e., an algebraic minimization problem for (J +2)2 unknowns {vi,j }. The necessary condi-
tions for the latter minimization problem yield a discretization for the PDE problem (3.19),
including the natural BC. In short, we discretize and then minimize, rather than the other
way around; see Section 11.1.

The resulting set of necessary conditions corresponds to that derived in Example 3.4.
At interior mesh points we have

− [
ai+1/2,j (vi+1,j − vi,j ) − ai−1/2,j (vi,j − vi−1,j )

+ ai,j+1/2(vi,j+1 − vi,j ) − ai,j−1/2(vi,j − vi,j−1)
]

+ h2bi,j vi,j = h2qi,j , 1 ≤ i, j ≤ J.

The natural BC discretization can be obtained alternatively as described earlier in this
subsection using a control volume at the boundary. Indeed, (3.20) is viewed as writing the
original integral over the unit square as the sum of integrals over mesh control volumes
which are subsequently discretized in an obvious way.

Writing the necessary conditions as

Av = q,

where v is the mesh function v reshaped as a vector, it is clear that A is symmetric, although
the discretization (3.20) involves only forward differences. If b > 0 or ∂�1 is not empty,
then A is also positive definite. Otherwise A is only positive semi-definite with a constant
null-space, i.e., v is determined only up to a constant as is the exact solution u of (3.19).

3.1.4 The finite element method

The finite element method (FEM) is in fact an approach leading to a class of discretization
methods that provide an alternative to the finite difference and finite volume families. A
structured approach, it usually gives rise to more solid mathematical theory, which makes
it the darling of many a mathematician. Its practical utility lies mainly in the general
and elegant treatment of domains of general shapes whose boundaries do not align with
coordinate axes, as is often the case with applications in several space variables.

The derivation in Section 3.1.3 through functional minimization is fundamental also
to basic, so-called conforming finite element methods. For instance, the domain � can be
triangulated, which adds great flexibility when domains with complex geometry are en-
countered; see Figure 3.7. An approximate solution is sought in the form of a piecewise
polynomial function over the elements. On each triangle this solution reduces to a poly-
nomial of a certain degree, and these polynomials are patched together along interelement
boundaries. The requirement that the resulting piecewise polynomial only be continuous
with bounded first derivatives (and not continuously differentiable), which is enabled by
the minimization formulation, is of great practical importance. Finite volume methods can
mimic the finite element construction as well, although finite element theory is more elegant.

However, the FEM approach can also be more cumbersome to derive and more ex-
pensive to carry out than finite difference and finite volume methods, hence it is rarely used
for time or one space variable discretizations. Its main application has traditionally been for
elliptic-type problems that may of course arise from semi-discretizations of time-dependent
problems in more than one space variable.
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x

y

Figure 3.7. A triangulation of a nonrectangular domain in two dimensions.

Therefore we give here a brief introduction to the FEM. Many textbooks have been
written on this subject, including [158, 104, 67, 73, 35, 59]. Needless to say, our few pages
are not meant to replace any FEM textbook. Nonetheless, it is important to note also that
most issues with which this book is concerned arise in the context of FEM methods for
time-dependent problems as well.

To focus attention let us consider the Poisson equation on a domain � in two dimen-
sions,

−(uxx + uyy) ≡ −�u = q, (x, y) ∈ �. (3.21)

The domain boundary ∂� is assumed smooth and a combination of homogeneous Dirichlet
and Neumann BCs as in (3.19) is imposed on it. To be specific, assume BCs in the form
(3.19c). The given right-hand-side function q(x, y) is assumed to be square integrable,
q ∈ L2. Then u ∈ H2; see Section 1.3.3.

In the FEM the domain � is replaced by a union of subdomains of simple geometric
shapes—triangles or rectangles in two dimensions, as in Figure 3.7. These are called
elements. Let h represent the spatial mesh width, say, the diameter of the largest element.
In general there is a “skin,” not shown in the figure, that is the difference between � and the
union of elements �h approximating it, which is left out by this process, possibly adding an
O(h) error component to the approximation. A globally continuous piecewise polynomial
approximate solution is then sought. It is important to ensure that no very small angles
arise in such a triangulation, since these would introduce a large approximation error in the
computed solution [158].

We are looking for a solution uh that lies in the space Vh of all continuous piecewise
polynomials that satisfy the Dirichlet (essential) part of the homogeneous BC (3.19c).

The functions in Vh have bounded first derivatives, but second derivatives may be
generally unbounded, unlike those of the exact solution u. However, the space in which
u is sought can be correspondingly enlarged by considering the variational form. If V is
the space of all functions that satisfy the essential BC such that v, vx , and vy are square
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integrable (see the review of function spaces in Section 1.3.3), then for each v ∈ V we can
integrate by parts to obtain∫∫

�

−(uxx + uyy)v dxdy =
∫∫

�

(uxvx + uyvy)dxdy.

Denote14

b(u, v) =
∫∫

�

(uxvx + uyvy)dxdy, (u, v) =
∫∫

�

uv dxdy. (3.22a)

Then (3.21) has the variational formulation: find u ∈ V such that for all v ∈ V

b(u, v) = (q, v). (3.22b)

Obviously the solution of our problem (3.21) satisfies the weaker form (3.22). More inter-
estingly, the converse can be shown to hold as well.

Now, the Galerkin FEM discretizes the variational form (3.22). Thus we seek uh ∈ Vh

such that for any vh ∈ Vh

b(uh, vh) = (q, vh). (3.23)

This FEM is called conforming since Vh ⊂ V .
How is the computation mandated by (3.23) carried out in practice? We describe

the piecewise polynomial functions using a basis. Let the functions φi(x, y) ∈ Vh, i =
1, . . . , J , be such that any vh ∈ Vh can be uniquely written as

vh(x, y) =
J∑

i=1

αiφi(x, y)

for a set of coefficients αi . Then we are seeking the coefficients α∗
i that define uh by requiring

J∑
i=1

b
(
φi, φj

)
α∗

i = b

(
J∑

i=1

α∗
i φi, φj

)
= (q, φj ), j = 1, . . . , J.

This yields a set of J linear equations for the J coefficients α∗
i .

Assembling this linear system of equations, the resulting matrix A is called the stiff-
ness matrix for historical reasons dating back to the days when civil engineers invented
this method. In the (i, j)th position the stiffness matrix has b(φi, φj ). Of course, we seek
a basis such that assembling A and solving the resulting linear algebraic equations are as
efficient as possible. For a piecewise linear approximate solution on a triangulation as in
Figure 3.7 this is achieved by associating with each vertex, or node (xi, yi), a roof function
(or tent function, depending perhaps on what comfort level one is used to) φi ∈ Vh that
vanishes at all nodes other than the ith one and satisfies φi(xi, yi) = 1. This gives three

14We are using a different notation here than elsewhere, in that v is not the approximation for u. Rather, uh is.
This is standard notation in the FEM literature.
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interpolation conditions at the vertices of each triangle, determining a linear polynomial,
and the global solution pieced together from these triangle contributions is thus once differ-
entiable. Then, unless vertex j is an immediate neighbor of vertex i we have b(φi, φj ) = 0
because the regions on which these two functions do not vanish do not intersect. Moreover,
the construction of nonzero entries of A becomes relatively simple, although it still involves
quadrature approximations for the integrals that arise.

Note that
α∗

i = uh(xi, yi).

This is called a nodal method. The obtained scheme has many characteristics of a finite
difference method, including sparsity of A, with the advantages that the mesh has a more
flexible shape. Note also that A is symmetric positive definite, as in the finite volume
approach through minimization described earlier in Section 3.1.3.

The assembly of the FEM equations, especially in more complex situations than for
our model problem (3.21), can be significantly more costly. Moreover, for different PDEs
such as in Examples 3.4 to 3.6, different elements (e.g., mixed finite elements [35]) are
required. Nevertheless, for problems with complex geometries the FEM is the approach of
choice, and most general packages for solving elliptic boundary value problems are based
on it.

In recent years a family of nonconforming FEM called discontinuous Galerkin has
become a red-hot research area. As the name implies, these methods do allow solution
discontinuities in between elements, with penalties on the jumps to ensure they remain
minuscule where the exact solution is smooth. This gives an opportunity, in addition to
providing flexibility in other aspects, for entertaining actual discontinuities in the solution,
the like of which often occurs in nonlinear hyperbolic-type PDEs. So, here is a platform for
designing methods that both capture discontinuities and work on complex spatial geometries.
See, e.g., [51, 50].

3.1.5 Nonuniform meshes

The finite difference and finite volume meshes considered in this section so far are all uniform
in space: the width of all spatial steps is the same h. There are circumstances, however,
where a nonuniform mesh may be more effective, requiring significantly fewer points than
a uniform mesh to represent the sought solution adequately. Example 2.6 provides one such
instance; see Figures 2.8 and 2.9. (The fact that the independent variable there is “time”
is immaterial here.) Essentially, we want more mesh points in regions of the domain �

where the solution varies rapidly and fewer points where u varies slowly. Other situations
where we would want a denser mesh in particular subdomains are singularities in the PDE,
noncartesian coordinate systems, and local boundary articulation in more than one space
variable.

Questions arise as to how to estimate the local solution error, or at least obtain a local
error indicator based on which a nonuniform mesh may be specified. However, available
algorithms in the much more complex PDE context are typically significantly cruder than
those treated in Section 2.4 for the initial value ODE case. We delay further discussion
of these issues until Section 11.2. Here we concentrate on maintaining nonuniform spatial
meshes and discretizing function derivatives on them.
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In one space variable things are relatively straightforward. The spatial domain � =
[0, 1], say, can be subdivided by a nonuniform mesh,

0 = x0 < x1 < · · · < xJ+1 = 1, (3.24)

with the widths hj = xj+1 − xj , j = 0, 1, . . . , J , not necessarily all equal. A one-
step discretization is defined with no serious change from the uniform mesh case. For
discretizations spanning more than one subinterval see Exercises 2, 3, and 4.

The nonuniform mesh may be viewed as having been obtained by a coordinate
transformation from a uniform mesh. Thus, denote h = 1/(J + 1) and let � : [0, 1] −→
[0, 1] be a sufficiently smooth, monotonically increasing function satisfying

�(jh) = xj , j = 0, 1, . . . , J + 1. (3.25a)

Often the nonuniform mesh is actually obtained by selecting an appropriate map �. Oth-
erwise we may envision a sufficiently smooth spline interpolant, say. Since �(ξ) is mono-
tonic15 it has an inverse

� = �−1. (3.25b)

Figure 3.8 depicts such a mesh transformation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

ξ

Φ

Figure 3.8. A nonuniform mesh transformation. Here ξ = �(x) = c(1 − e−αx),
where α = 5 and c is a constant such that �(1) = 1.

15Note that ξ is just the argument of the mesh function. There is no wave number in sight so no notational
confusion should result.
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Writing ξ = �(x) we have in the new independent variable ξ

∂u

∂x
=
(

∂ξ

∂x

)
∂u

∂ξ
= �′(�(ξ))

∂u

∂ξ
,

∂2u

∂x2
= �′(�(ξ))

∂

∂ξ

(
�′(�(ξ))

∂u

∂ξ

)
.

Thus, a discretization on a nonuniform mesh of ux and uxx is equivalent to the discretization
on a uniform mesh of the modified expressions in ξ given by the right-hand sides of the
above identities.

Example 3.7 The ODE
d2u

dx2
= q(x)

for some given function q, when discretized on a nonuniform mesh (3.24), becomes the
ODE

d

dξ

(
a(ξ)

du

dξ

)
= q(�(ξ))

a(ξ)
, a(ξ) = �′(�(ξ)),

discretized on the corresponding uniform mesh. For the coordinate transformation function
depicted in Figure 3.8,

x = �(ξ) = − 1

α
ln(1 − ξ/c), c = 1

1 − e−α
,

where α > 0 is a parameter, we have the inverse transformation

ξ = �(x) = c
(
1 − e−αx

)
,

hence �′(x) = αce−αx ≥ 0, and

a(ξ) ≡ �′(�(ξ)) = α(c − ξ).

Note that a is positive, bounded away from 0, and grows in magnitude linearly with α.
The price to pay for moving to a uniform mesh is a problem with variable coef-

ficients, and the variable coefficient becomes steeper the further the mesh is from being
uniform.

More complications arise in several space variables. The simplest extension of the
uniform case is where a cartesian mesh has different uniform step sizes in different directions,
say, hx in the x-direction, hy in the y-direction, and hz in the z-direction. For instance, in
geophysical applications often the depth variable z is different in scale from the horizontal
variables x and y, so a different mesh is naturally required for its discretization. Such an
extension of the uniform case is straightforward, because our derivatives are usually in one
direction only: in uxx + uyy the term uxx is discretized on a uniform mesh in x with step hx

while uyy is discretized on a uniform mesh in y with step hy .
The situation remains essentially similar so long as the mesh is in tensor product form.

This means that there are one-dimensional meshes like (3.24) for each spatial coordinate.



root
2008/5/5
page 116

�

�

�

�

�

�

�

�

116 Chapter 3. Finite Difference and Finite Volume Methods

10

0

1

x

y

Figure 3.9. This tensor product mesh should be fine when both .4 ≤ x ≤ .6 and
.2 ≤ y ≤ .4, but instead it is fine when either .4 ≤ x ≤ .6 or .2 ≤ y ≤ .4.

Each mesh point can be written, say, in two dimensions, as (xi, yj ), with xi from the x-
mesh and yj from the y-mesh. Bookkeeping is still easy for such a mesh and derivative
discretizations are as discussed above and in the exercises for the one-dimensional case.

However, the tensor product mesh may not always be adequate. For one thing the
domain � need not be rectangular; see, e.g., Figure 3.7. Even if it is, the mesh may be fine
not only where it should be; see Figure 3.9. In contrast, finite element meshes are naturally
local in several space variables. In Figure 3.7 the smaller triangles do not affect the size or
shape of the larger triangles. This ability to refine the mesh in a relatively local manner is
even more important in three dimensions.

The finite element mesh of Figure 3.7 is not rigidly ordered; indeed it is unstructured.
Care must be taken when refining unstructured meshes to avoid small and large obtuse angles
in triangular (or tetrahedral in three-dimensional) elements. This flexibility unfortunately
also means that the data structure required to store and manipulate the mesh (e.g., when
refining it) is more involved, and that the sparsity of the stiffness matrix may be complicated;
see Section 3.1.4. The latter, in turn, may adversely affect the efficiency of an iterative
algorithm for solving linear equations that may arise for such a matrix; see Section 9.2.1.

In the finite volume context it is better then to allow only a controlled refinement. In a
Quadtree data structure the mesh is defined by means of successive subdivisions that may
be carried out locally. Starting from a square mesh, say, a rectangular finite volume (or cell,
or “element”) in two dimensions may be divided if need be into four equal subrectangles.
This subdivision operation may be repeated recursively if needed; see Figure 3.10. Each
node of the corresponding tree points to a mesh cell, and the subdivision operation of a cell
is recorded as the tree node having four children. The tree leaves correspond to the actual
resulting mesh [93]. If h is the maximum width of all rectangular elements and hmin is the
width of the finest one, then

h = 2lhmin,

where l is the depth of the tree.
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Figure 3.10. A Quadtree. The root of the tree is associated with the original
domain, here the unit square. It has four children nodes, three of which are leaves. The
remaining, southeast child has four children, of which the southwest one further has four
children. The depth of the tree is therefore l = 3.

The ratio of largest to smallest neighboring cell widths is called the local mesh ratio,
to be distinguished from the global mesh ratio, which is the ratio of largest to smallest
over all cell widths. In Figure 3.10 both ratios equal 8. Often in practice the refinement is
restricted so that the local mesh ratio is at most 2, for reasons related both to the handling
of the data structure and to the accuracy of the computed results. The global ratio can be
much larger.

In three dimensions each cell is a box, and a simple subdivision as above replaces
such a cell by 23 = 8 subboxes. The corresponding data structure is then an Octree. The
details get hairier but in principle the situation is analogous to that in two dimensions with
the Quadtree.

To discretize on a Quadtree or an Octree we may generally regard the values of a
function u(x, y) or u(x, y, z) as given at the nodes or at the cell centers. Supposing that
there are u-values at the nodes of the mesh, the discretization of ux or uyy is again along x or y

directions separately, and the one-dimensional methodology applies. The situation becomes
more complex, however, when a staggered mesh as in Examples 3.4–3.6 is contemplated.
Here the flux (for instance) is defined at cell edges, and there is the question of how to center
it and the resulting approximations properly. We leave this to Exercise 9; see [122, 79].

Example 3.8 Consider the problem

min
u

I (u) =
∫

�

[|∇u|2 − 2uq
]

dxdy

on the unit square with homogeneous Dirichlet BC

u|∂� = 0.
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The necessary and sufficient condition for the minimum is the Euler–Lagrange equation

−�u = q,

u|∂� = 0.

This is obviously a special case of (3.19). Assume that the solution u is smooth and has as
many bounded derivatives as we wish; for instance, let

u(x, y) = sin(πx) sin(πy),

obtained if q(x, y) = 2π2 sin(πx) sin(πy).
Now, consider the approach of discretizing the integral on a Quadtree mesh followed

by minimizing the discrete equations. The unit square is subdivided into a union of square
cells cl, l = 1, . . . , L, so

I (u) =
L∑

l=1

∫
cl

[|∇u|2 − 2uq
]

dxdy,

and we can approximate the integral over each cell to second order by applying the trape-
zoidal rule. Denoting the solution values at the four corners of the lth cell byuNE

l , uNW
l , uSE

l ,
and uSW

l , and the cell’s width by hl , we have∫
cl

[|∇u|2 − 2uq
]

dxdy

= 1

2

[
(uNE

l − uNW
l )2 + (uSE

l − uSW
l )2

]+ 1

2

[
(uNE

l − uSE
l )2 + (uNW

l − uSW
l )2

]
− h2

l

2

[
uNE

l qNE
l + uNW

l qNW
l + uSE

l uSE
l + uSW

l qSW
l

]+ O(h4
l ).

Adding these approximations, we obtain a discrete approximation Ih(u) which satisfies
Ih(u) = I (u) + O(h2), where h is the maximum cell size.

Next we then look for a mesh function v that minimizes the approximate integral, i.e.,
v = argminwIh(w). Naturally, we expect

‖v − Pu‖ = O(h2),

where P projects the exact solution u on the Quadtree mesh by simple injection.
This is precisely what happens when the mesh is uniform. The equations resulting

from equating the gradient of Ih(v) to 0 are those obtained by the usual five-point difference
formula, i.e., (3.15a) in the steady state with a ≡ 1 there. The calculated maximum error
behaves like O(h2).

However, Haber has pointed out that when the Quadtree mesh is not uniform an
unwelcome surprise arises: the observed errors are significantly larger and the maximum
error is now only O(h). How can that be?!

Let us take a closer look at the part of the unit square depicted in Figure 3.11 with
h1 = h. The red point is a dangling node, a phenomenon that occurs neither for a uniform
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c1

c2

c3

Figure 3.11. Discretizing �u on a Quadtree. At the red point the obtained stencil
uses only solution values at the green points in a way that would yield second order accuracy
only if the solution value at the cell center of c1 equals uNE

2 = uSE
3 up to O(h2).

mesh nor for the triangle mesh of Figure 3.7. This node is a legitimate vertex of the cells c2

and c3, but it is not participating in defining the approximation on c1 even though it is on
its edge. Now, looking at the equation formed by ∂Ih(v)

∂v∗ = 0, where v∗ = vNW
2 = vSW

3 is at
the red point, we obtain

4v∗ − vSW
2 − vNW

3 − (vNE
2 + vSE

3 ) = h2q∗.

Noting further that vNE
2 = vSE

3 , we obtain the same discretization stencil as for the homo-
geneous Neumann BC on a uniform mesh, depicted in Figure 3.6 and (3.17) with g0 = 0
there. The dangling node has created an artificial boundary across the wall on which it is
placed! Now, in general of course the value of u at the center of c1, which plays “ghost
unknown” here, is only equal to the value of uNE

2 up to O(h), not O(h2). Hence we have
only an O(h) truncation error at the red point.

How do we fix this?

1. We can fix the value of v∗ as an interpolation of its closest green and/or blue neigh-
bors, or perhaps only those which share the problematic edge with it. However, this
generates a nonsymmetric matrix to invert.

2. We can move to FEM as follows. Replace c1 by three triangles, adding edges from
the red point to the blue points in Figure 3.11. Replace also the smaller squares by
two triangles each. This creates a triangle mesh on which a piecewise linear Galerkin
FEM can be defined, for instance. The resulting stiffness matrix is symmetric positive
definite. The Quadtree is still useful in keeping tracks of activities on this mesh.

3. Do nothing and live with the reduced order. The rationale here is that the example
we have used is artificially bad in that there has to be a reason for refinement in
the first place. In the present example, in fact, we have none (except of course for
the demonstrative aspect). Now, if u has large gradients across the wall on which
the dangling node is placed, suggesting mesh refinement there, then the difference
between the first order and second order truncation errors is less noticeable. Also, there
are applications such as certain inverse problems in which other error components
are not smaller than this O(h) term anyway.
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3.1.6 Stability and convergence

Earlier in this section we defined order of accuracy p of a semi-discretization (3.2). If we
let the error vector at mesh points be

e(t) = u − v,

then from (3.4) the error satisfies

et = Le + d,

where d is the vector of truncation errors. The accuracy of the discretization scheme implies
that the inhomogeneity d in the differential equation which e satisfies shrinks like hp as
h → 0.

The semi-discretization (3.2) starting from exact initial values is convergent if e → 0
as h → 0. In fact, as indicated earlier, for a method of order p we would like to obtain a
result of the form ‖e‖ = O(hp).

Analogously to the well-posedness requirement (1.7) for the homogeneous initial
value PDE (i.e., with q = 0), we say that the semi-discretization is stable if there are
constants K̂, α̂, and h0 such that for all 0 < h ≤ h0

‖v(t)‖ ≤ K̂eα̂t‖v(0)‖ ∀ v(0) ∈ l2. (3.26)

If the large ODE system (3.2) is stable, then indeed we have convergence of order p.
The proof, and indeed the entire derivation, are sufficiently similar to the full discretization
case that we refer to the treatment in Section 3.2.2 rather than repeating its variation here.

3.2 Full discretization
An obvious way to obtain a full discretization scheme for a time-dependent PDE such as
(3.1) is to discretize in time the corresponding semi-discretization (3.2). There is a lot of
knowledge from the ODE literature about methods that may prove suitable here, and the in-
formation provided in Chapter 2 should come in handy. In recent years, BDF discretizations
for parabolic problems and certain explicit Runge–Kutta methods for hyperbolic problems
have become popular.

Corresponding to (3.3) we write a general explicit difference scheme at time t = tn
as

vn+1
j =

r∑
i=−l

βiv
n
j+i . (3.27a)

Forming the mesh function vn = {vn
j } as in Section 1.2 this can be expressed as

vn+1 = Qvn, (3.27b)

where Q is a linear operator on l2. The index j can have a finite or an infinite range, and
correspondingly Q can have a representation as a finite (but very large) or an infinite sparse
matrix. For the pure initial value problem (Cauchy problem) we write
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Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For an implicit difference scheme we have similarly

r∑
i=−l

γiv
n+1
j+i =

r∑
i=−l

βiv
n
j+i , (3.27c)

or

Q1v
n+1 = Q0v

n, (3.27d)

where we assume that Q1 is an invertible operator. Thus, with Q = Q−1
1 Q0 we get the

representation (3.27b) for both explicit and implicit schemes, although in the implicit case
only Q0 and Q1, but not Q, are sparse.

For multistep schemes, e.g.,

vn+1
j =

r∑
i=−l

βiv
n
j+i +

r∑
i=−l

γiv
n−1
j+i , (3.28a)

we can obtain the notation (3.27b) by converting to a system over one step (just for formu-
lation and analysis purposes!),

vn+1
j =

r∑
i=−l

βiv
n
j+i +

r∑
i=−l

γiw
n
j+i ,

wn+1
j = vn

j . (3.28b)

Example 3.9 For the hyperbolic system of s PDEs,

ut = A(t, x)ux,

the leapfrog scheme reads

vn+1
j = vn−1

j + μAn
j (v

n
j+1 − vn

j−1),
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vn+1
j = vn−1

j + μAn
j (v

n
j+1 − vn

j−1)

(1 + 4
3μ)vn+1

j − 2
3μ(vn+1

j+1 + vn+1
j−1)

= 4
3vn

j − 1
3vn−1

j

Figure 3.12. Computational molecules: leapfrog for a hyperbolic system and
two-step BDF for the heat equation.

where μ = k
h

; see Figure 3.12. Here l = r = 1. Using (3.28b) this becomes a system of
size 2s at each time step,⎛⎝v

w

⎞⎠n+1

j

=
⎛⎝0 I

I 0

⎞⎠⎛⎝v

w

⎞⎠n

j

+
⎛⎝μAn

j 0

0 0

⎞⎠⎛⎝v

w

⎞⎠n

j+1

−
⎛⎝μAn

j 0

0 0

⎞⎠⎛⎝v

w

⎞⎠n

j−1

.

The resulting matrix Q is block-tridiagonal with 2s × 2s blocks.
Next, for the heat equation

ut = uxx

we can apply the two-step implicit BDF method (see Figure 3.12),(
1 + 4

3
μ

)
vn+1

j − 2

3
μ
(
vn+1

j+1 + vn+1
j−1

)
= 4

3
vn

j − 1

3
vn−1

j ,

where μ = k
h2 . This is formulated as (3.27c) and as (3.27b) in Exercise 10.

3.2.1 Order, stability, and convergence

Let us write the general difference scheme (3.27c) in a divided difference form,

k−1

(
r∑

i=−l

γiv
n+1
j+i −

r∑
i=−l

βiv
n
j+i

)
= 0.

The local truncation error is the amount by which the exact solution u(t, x) fails to satisfy
this equality:

τ(t, x) = k−1

[
r∑

i=−l

γiu(t + k, x + ih) −
r∑

i=−l

βiu(t, x + ih)

]
. (3.29)
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As in Section 1.2 we relate to the mesh function v as if it were defined at every point,
v = v(t, x), and define

• The difference method is accurate of order (p1, p2) if for any sufficiently smooth
function u(t, x)

‖τ(t)‖ = ‖τ(t, ·)‖ ≤ c(t) (kp1 + hp2), (3.30)

where c(t) is bounded on any fixed finite interval in time, 0 ≤ t ≤ tf , independently
of k and h.

• The difference method is consistent if ‖τ(t)‖ → 0 as k, h → 0. Thus, any method
accurate to first order or higher in both t and x is consistent.

Example 3.10 Continuing with Example 3.1, where we set r ≡ 0 and g0 ≡ g1 ≡ 0, we
have the ODE system

dvj

dt
= vj+1 − 2vj + vj−1

h2
,

vj (0) = u0(xj )

for j = 1, . . . , J . Note that for each t a straightforward manipulation of Taylor expansions
yields

uj+1 − 2uj + uj−1

h2
= uxx(t, xj ) + h2

12
uxxxx(t, xj ) + O(h4).

• Discretizing the time variable using an explicit Euler method (2.5) gives the scheme

1

k
(vn+1

j − vn
j ) = 1

h2
(vn

j+1 − 2vn
j + vn

j−1),

or

vn+1
j = vn

j + μ(vn
j+1 − 2vn

j + vn
j−1), (3.31a)

where μ = k/h2; see Figure 3.13. This scheme is explicit and compact. By Taylor’s
expansion about (tn, xj ),

τ(tn, xj ) = 1

k
(un+1

j − un
j ) − 1

h2
(un

j+1 − 2un
j + un

j−1)

= ut + k

2
utt + O(k2) − uxx − h2

12
uxxxx + O(h4).

Since ut = uxx , we see that τ = O(k) + O(h2) provided utt and uxxxx are bounded,
i.e., the method has order (1, 2).

If we freeze h for a moment and write the ODE system as in (3.2) in matrix form

dv
dt

= Lv,
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vn+1
j = vn

j + μ(vn
j+1 − 2vn

j + vn
j−1)

(1 + μ)vn+1
j − 1

2μ(vn+1
j+1 + vn+1

j−1) =
(1 − μ)vn

j + 1
2μ(vn

j+1 + vn
j−1)

(1 + 2μ)vn+1
j − μ(vn+1

j+1 + vn+1
j−1) = vn

j

Figure 3.13. Simple explicit (Euler) and implicit (Crank–Nicolson and backward
Euler) discretizations for the heat equation.

then the eigenvalues of the tridiagonal J × J matrix L can be calculated exactly.
As it turns out, they are all negative and the largest in magnitude is ≈ −4/h2. The
absolute stability requirement for the forward Euler method then yields k ≤ h2/2,
i.e., we need μ ≤ 1/2 for ODE stability. So it is tempting to say that the method
is simply second order in h, because we must maintain k = O(h2). However, such
language may cause a confusion of the concepts of accuracy and stability. Moreover,
if the solution becomes smoother as t increases, then we may want to take large time
steps because the constant in the O(k) term may be very small. Then the restriction
on μ becomes a serious burden.

• Even before properly defining stability in the present context, one intuits that an A-
stable method should not have the forward Euler restriction on the time step. Such is
the trapezoidal method (2.8) which yields the Crank–Nicolson scheme

1

k
(vn+1

j − vn
j ) = 1

2h2
(vn+1

j+1 − 2vn+1
j + vn+1

j−1 + vn
j+1 − 2vn

j + vn
j−1),

or

(1 + μ)vn+1
j − μ

2
(vn+1

j+1 + vn+1
j−1) = (1 − μ)vn

j + μ

2
(vn

j+1 + vn
j−1); (3.31b)

see Figure 3.13. To find the local truncation error we expand in Taylor series about
the center of the molecule, (tn+1/2, xj ). This yields

τ = k2

24
uttt − k2

8
uxxtt + O(k4) + h2

12
uxxxx + O(h2k2).

The local truncation error is O(k2) + O(h2) for u sufficiently smooth, so the order is
(2, 2). The method turns out to be unconditionally stable (see Example 4.1).

However, the method is also implicit: at each time step a system of algebraic equations
must be solved for the unknown values at level n + 1. The algorithm for tridiagonal
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systems described in Section 2.12.1 is useful. For more space variables this difficulty
is more serious; see Section 9.2, especially Example 9.1.

• Instead of forward Euler we could use the backward Euler discretization (2.7) for time.
This method has stiff decay (see Section 2.6), so we may expect not only unconditional
stability but also a decay in high frequency error components, corresponding to a
similar decay in the exact solution modes. We will revisit this important idea later, in
Chapter 5. The formula (see Figure 3.13) is implicit and reads

(1 + 2μ)vn+1
j − μ(vn+1

j+1 + vn+1
j−1) = vn

j . (3.31c)

The local truncation error is derived analogously to that for the forward Euler method,
except that the Taylor expansions are carried out about (tn+1, xj ). The obtained order
is (1, 2).

• The two-step BDF method discussed in Example 3.9 has order (2, 2) and otherwise
similar properties to those of the backward Euler discretization.�
�

�
	

Note: Continuing with a general full discretization scheme we next define
stability and convergence and examine their relationship.

In Example 1.2 we analyzed stability of methods for the advection equation on a
somewhat intuitive, introductory level. In Example 3.10 we used the concept of ODE
absolute stability before defining PDE stability to motivate different time discretizations
for the heat equation. We next generalize and define stability properly. Note that by these
examples we may expect some methods to be stable for any positive h and k, some to never
be stable, and some to be stable only when

k ≤ S(h) ∀ 0 ≤ h ≤ h0, (3.32)

where S is a continuous function that satisfies S(0) = 0 and S(z) > 0 for z > 0, and h0 is
some suitable positive constant. We call S a stability function and allow it to be unbounded
in general. For the scheme (3.31a), S(z) = z2/2; see Figure 3.14. Note that S depends
both on the discretization method and on the PDE being discretized. We next define the
following:

• The difference method is stable if there are constants K̃ , α̃, and h0 > 0 independent
of h and k and a stability function S such that for all 0 ≤ h ≤ h0 and 0 ≤ k ≤ S(h)

‖v(t)‖ ≤ K̃eα̃t‖v(0)‖. (3.33a)

Compare this to the well-posedness requirement (1.7).16 If S(h) is bounded for
0 ≤ h ≤ h0, then the method is conditionally stable. Otherwise it is unconditionally
stable.

16Strictly speaking, as for well-posedness we must require uniformity with respect to the starting time, i.e.,

‖v(t)‖ ≤ K̃eα̃(t−t0)‖v(t0)‖
for any 0 ≤ t0 ≤ t . But we set t0 = 0 in (3.33a) for notational simplicity.
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0 0.1 0.2 0.3 0.4 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

h

k
S

stable

Figure 3.14. Stability function for forward Euler applied to the heat equation
(Example 3.10).

The method is further said to be strictly stable if α̃ ≤ α.

• The method is convergent if

u(t, x) − v(t, x) → 0, as k, h → 0. (3.33b)

A fundamental theorem in the numerical analysis of differential equations is the Lax equiv-
alence theorem:17

Theorem 3.11. If the linear evolutionary PDE (3.1) is well-posed and the differ-
ence method is consistent, then

convergence ⇐⇒ stability.

The complete proof of this theorem can be found in Richtmyer and Morton [144].
See also [159].

17The name Lax–Richtmyer theorem is also commonly used for Theorem 3.11.
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Let us concentrate on the more useful aspect of the equivalence theorem, Theo-
rem 3.11: we want to bound the convergence error for a given, stable scheme. For the linear
initial value problem (1.5) we write

u(t, x) = S(t, t0)u(t0, x),

where S(t, t0) is the linear solution operator. The well-posedness property is written as

‖S(t, t0)‖ ≤ Keα(t−t0).

Now, for inhomogeneous problems

ut = P(∂x, t, x)u + q(t, x), −∞ < x < ∞, t > 0,

Duhamel’s principle (see [76]) gives

u(t, x) = S(t, 0)u0(x) +
∫ t

0
S(t, ξ)q(ξ, x)dξ.

Hence

‖u(t)‖ ≤ K

[
eαt‖u0‖ + φ(α, t) max

0≤ξ≤t
‖q(ξ, ·)‖

]
,

where

φ(α, t) =
{

(eαt − 1)/α, α �= 0,

t, α = 0.
(3.34)

This bounds the solution u in terms of the data u0 and q.
Consider next the approximate solution, where we have analogous results. For the

homogeneous problem,
v(t, x) = Sk,h(t, t0)v(t0, x),

where Sk,h(t, t0) is the discretized solution operator. The stability property (3.33a) now
gives

‖Sk,h(t, t0)‖ ≤ K̃eα̃(t−t0)

for all 0 ≤ h ≤ h0, k ≤ S(h). For the inhomogeneous problem, writing in operator form

Q1v(t + k, x) = Q0v(t, x) + kq(t, x), (3.35)

we have, similarly to Duhamel’s principle, that after N time steps with t = tN

v(t, x) = Sk,h(t, 0)v(0, x) + k

N∑
n=0

Sk,h(t, nk)Q−1
1 q(nk, x).

Thus

‖v(t)‖ ≤ K̃

[
eα̃t‖v0‖ + Mφ(α̃, t) max

0≤ξ≤t
‖q(ξ, ·)‖

]
,

where M = max
0≤ξ≤t

‖Q−1
1 ‖.
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Having successfully expressed the dependence of the numerical solution on the data,
we now turn to the error e(t, x) = u(t, x)−v(t, x). The error function e(t, x) satisfies the in-
homogeneous difference scheme (3.35) with the local truncation error as the inhomogeneity,
q = τ . Thus, stability and accuracy yield convergence with the bound

‖u(t) − v(t)‖ ≤ K̂M max
0≤ξ≤t

‖c(ξ)‖(kp1 + hp2)φ(α̃, t). (3.36)

This shows that the order of accuracy also features in the bound on the solution error itself,
and it highlights the importance of keeping α̃ small if at all possible!

It is important to realize that whereas the local truncation error is local in space and
time, the global error bound in (3.36) is global. The fact that this bound holds everywhere
in the PDE’s domain of definition also implies that it is hard to use directly in order to
refine the mesh locally, for instance, because it is not sufficiently sensitive to local changes.
The local truncation error or other local error indicators are more suitable in this regard.
Indeed, the arguments leading to (3.36) suggest that it is a good idea to try to make the local
truncation error roughly equal everywhere. A rigid implementation of such a criterion may
perhaps be too fancy in practice, but it gives an idea of the goal for local mesh refinement;
see Sections 3.1.5 and 11.2.

3.2.2 General linear stability

We have seen that the two elements controlling convergence in (3.36) are accuracy and
stability. It is relatively simple to estimate the local truncation error and to derive schemes
with a desirable accuracy order, at least in the simple cases considered hitherto. To get a
handle on stability is harder. We can write the general form (3.27b), where Q = Q(nk, h),
as

vn+1 = Q(nk, h)vn = · · · = �n
l=0Q(lk, h)v0 = Sk,h(tn+1, 0)v0.

The stability condition is

‖�n−1
l=0 Q(lk, h)‖ ≤ K̃eα̃nk ∀ h, n, k ≤ S(h), nk ≤ tf ,

and if Q does not depend on t (although it still depends on k), then the stability condition
becomes

‖Q(h)n‖ ≤ K̃eα̃nk.

This is satisfied if

‖Q‖ ≤ eα̃k = 1 + O(k), (3.37)

provided k and h are small enough with k ≤ S(h). The bound (3.37) is a bit more revealing.
In fact, we can get rid of O(k) terms, so in the case that h/k is bounded we can even
eliminate the dependence on h. Indeed, we have the following theorem.
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Theorem 3.12. If the scheme

vn+1 = Qvn

is stable and Q̃ is a bounded operator, then the scheme

vn+1 = (Q + kQ̃)vn

is also stable.

The proof is obvious by (3.37). This theorem was first given by Strang; see [144].

Example 3.13 Theorem 3.12 is useful to establish stability for some PDEs with lower order
terms. For instance, applying a scheme similar to (1.15a) for the PDE

ut = ux + b(x)u,

we have
vn+1

j = vn
j + μ(vn

j+1 − vn
j ) + kb(xj )v

n
j ,

where μ = k/h. Assuming that k ≤ h we have shown stability for the scheme with b = 0
in Chapter 1. But the latter addition is just a low order term which cannot affect stability.
Thus, the extended scheme is also stable under the restriction that μ ≤ 1 is fixed.

On the other hand, for a parabolic equation such as

ut = uxx + aux + bu,

using, say, an extension of the Euler method with a centered discretization is space, we have

vn+1
j = vn

j + μ(vn
j+1 − 2vn

j + vn
j−1) + ak

2h
(vn

j+1 − vn
j−1) + kbvn

j .

Here, keeping μ = k/h2 fixed, the term bu gives an O(k) perturbation and has no effect on
stability, but the term aux gives an O(h) perturbation which cannot simply be waved away
in the same fashion.

In summary, to show stability we essentially need to show that Q is power bounded,

‖Qn‖ ≤ K̄ ∀n.

This task is not simple at all, however: recall that the matrix Q is a very large, if not
downright infinite in size. In fact, a general boundedness criterion is not known. It is useful
to review Section 1.3.5 at this point.

There are two practical ways to proceed.

• Consider constant coefficient problems. This allows eigenvalue-based and Fourier-
based analyses. We consider such approaches in the next chapter. The results are
simple and general, but they usually yield only necessary conditions for stability.
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• Freeze coefficients and explore dissipativity, or apply some “energy method.” This is
discussed in Chapter 5. Energy estimates provide sufficient conditions for stability,
even for some nonlinear problems, but finding such estimates is an art, applicable
only to special cases and depending on the ingenuity of the analyst.

3.3 Exercises
0. Review questions

(a) What is a semi-discretization and why is it useful?

(b) Review the difference notation (3.6) and show that δ2 = D+D− = D−D+ and
μ2 = 1 + δ2/4.

(c) What is an implicit scheme for approximating a derivative (in contrast to a
time-dependent differential equation)?

(d) What is a staggered mesh and why is it useful?

(e) Define a ghost unknown and explain its use for discretizing Neumann boundary
conditions.

(f) What are natural and essential BCs? In what way are these names suggestive
or intuitive?

(g) Describe a tensor product mesh, an unstructured mesh, a triangle mesh, and an
Octree mesh.

(h) For a full discretization define order, consistency, stability, and convergence.

(i) What is a stability function? What is the stability function for the Crank–
Nicolson scheme?

(j) Write down the Lax equivalence theorem and explain in what sense the obtained
convergence error bound is global while the local truncation error is local.

1. (a) For the heat equation, let

a(z) = h2
r∑

i=−l

αiz
i .

Show that the semi-discretization method (3.3) is of order p if and only if (iff)
there exists a constant c �= 0 such that

a(z) = (log z)2 + c(z − 1)p+2 + O(|z − 1|p+3),

as z → 1.

(b) For the advection equation, let

a(z) = h

r∑
i=−l

αiz
i .
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Show that the semi-discretization method (3.3) is of order p iff there exists a
constant c �= 0 such that

a(z) = log z + c(z − 1)p+1 + O(|z − 1|p+2),

as z → 1.

2. Suppose that the points xj−1, xj = xj−1+hj−1, and xj+1 = xj +hj are used to derive
a second order formula for ux(xj ) which holds even when hj−1 �= hj . A careless
approach, which has actually seen use in the research literature, would suggest the
formula

ux(xj ) ≈ uj+1 − uj−1

hj−1 + hj

, (3.38a)

which quickly generalizes the familiar centered three-point formula (3.5b).

Instead, consider the formula

ux(xj ) ≈ hj − hj−1

hj−1hj

uj + 1

hj−1 + hj

(
hj−1

hj

uj+1 − hj

hj−1
uj−1

)
. (3.38b)

(a) Apply the two formulas (3.38) for the function u(x) = ex at xj = 0 with hj−1 =
.5h, hj = h. Record the errors using both methods for h = 10−l , l = 1, . . . , 5.

(b) Derive an error expression for the formula (3.38b), assuming that u is smooth
(i.e., that it has all the derivatives you encounter, bounded).

(c) It should be apparent from your numerical results that the formula (3.38a) is
only first order accurate. But why is this necessarily so?

Formulating the question more generally, let u(x) be smooth with uxx(xj ) �= 0.
Show that the truncation error in the formula (3.38a) with hj = h and hj−1 =
h/2 must decrease linearly, and not faster, as h → 0.

3. Consider the following two methods for deriving an approximate formula for the
second derivative uxx(xj ) of a smooth function u(x) using three points xj−1, xj =
xj−1 + hj−1, and xj+1 = xj + hj , where hj−1 �= hj .

• Define w(x) = ux(x) and seek a staggered mesh, centered approximation

wj+1/2 = (uj+1 − uj )/hj ; wj−1/2 = (uj − uj−1)/hj−1;
uxx(xj ) ≈ 2(wj+1/2 − wj−1/2)

hj−1 + hj

.

The idea is that all the differences are short (i.e., no long differences for first
derivatives) and centered.

• Using the second degree interpolating polynomial in Newton form, differenti-
ated twice, define

uxx(xj ) ≈ 2u[xj−1, xj , xj+1].
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(a) Show that the above two methods are equivalent.

(b) Show that this method in general is only first order accurate.

(c) Run the method for the example of Exercise 2 (but for the second derivative of
u(x) = ex). What are your findings? Discuss.

4. Consider the boundary value ODE

−(au′)′ = q, 0 < x < 1,

u(0) = 0, u′(1) = 0,

where a(x) > 0 and q(x) are known, smooth functions. It is well known (recall
Section 3.1.3) that u also minimizes

T =
∫ 1

0

[
a(u′)2 − 2uq

]
dx

over all functions with bounded first derivatives that satisfy the essential BC u(0) = 0.
Consider next discretizing the integral on a nonuniform mesh,

0 = x0 < x1 < · · · < xJ = 1,

as in Exercises 2 and 3.

(a) Show that, applying the midpoint rule for the first term and the trapezoidal
rule for the second term in T for each subinterval, one obtains the problem of
minimizing

Th =
J−1∑
i=0

a(xi+1/2)
(vi+1 − vi)

2

hi

− hi (q(xi)vi + q(xi+1vi+1))

with v0 = 0. Thus, Th(u) = T (u) + O(h2), where h = maxi hi .

(b) Obtain the necessary conditions

a(xj+1/2)
vj − vj+1

hj

+ a(xj−1/2)
vj − vj−1

hj−1
= hj + hj−1

2
q(xj )

for j = 1, . . . , J, where we set vJ+1 = vJ .

(c) Show that upon writing the above as a linear system of equations Av = q, the
matrix A is tridiagonal, symmetric, and positive definite despite the arbitrary
nonuniformity of the mesh.

(d) Convince yourself by running a computational example that the solution v is
second order accurate despite what Exercise 3 may suggest. Then try to prove
it.

5. For the problem and notation of Exercise 4 define the hat function in one dimension:

φi(x) =

⎧⎪⎨⎪⎩
x−xi−1

hi−1
, xi−1 ≤ x < xi,

xi+1−x

hi
, xi ≤ x < xi+1,

0 otherwise.
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(a) Show that φi is piecewise linear and that any piecewise linear function w on
this mesh that satisfies w(0) = 0 can be written as

w(x) =
J∑

i=1

w(xi)φi(x).

(b) Derive the Galerkin finite element method for the boundary value ODE. Show
that the stiffness matrix A is tridiagonal, symmetric, and positive definite. How
does this method relate to the method of Exercise 4?

6. Suppose that the problem of Example 3.4 has the BC ∂u
∂n

= 0, i.e., the normal derivative
vanishes, at the wall x = 0. Derive the corresponding discrete boundary equations

dv0,j

dt
= h−2[2a1/2,j (u1,j − u0,j )

+ a0,j+1/2(u0,j+1 − u0,j ) − a0,j−1/2(u0,j − u0,j−1)] + q0,j , 1 ≤ j < J.

7. Consider a parabolic problem such as in Example 3.4, with Dirichlet BC u|∂� = g,
where ∂� is the boundary of a spatial, nonsquare domain � in 2D. Such a domain
boundary is depicted in Figure 3.15.

(xi, yj )

Figure 3.15. A domain � with boundary ∂� that does not align with the mesh.

Use nearby boundary conditions to eliminate the ghost unknowns marked in red for
the difference scheme (3.15) applied at the marked mesh point (xi, yj ) next to the
boundary at the upper left corner.

8. Draw the Quadtree that corresponds to Figure 3.10.

9. (a) Suppose we are given values of the function u(x, y) at the green nodes of
Figure 3.16. It is desired to obtain approximations for ux or uy at the red points
using short differences.
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For each of these red points determine whether it is ux or uy that may be dis-
cretized and derive the corresponding formula.

(b) Now suppose that u is given at the blue points (cell centers). Derive an O(h)

formula for ux at the two red points on the edges between the larger and the
smaller cells.

Figure 3.16. Discretizing u derivatives on a Quadtree. Values of ux or uy at the
red points should be obtained from values of u at the green points or at the blue points.

10. Show the following:

(a) The two-step BDF scheme formulated in Example 3.9 and Figure 3.12 can be
written in the forms (3.27b)–(3.27d).

(b) For this scheme Q0 is diagonal, Q1 is tridiagonal, and Q is in general a full
matrix.

(c) Both methods discussed in this example have order of accuracy (2, 2).

11. Show that both the backward Euler scheme and the two-step BDF scheme applied to
the heat equation are unconditionally stable.

12. For the Maxwell equations discussed in Example 3.6:

(a) Derive all six equations for the staggered mesh semi-discretization.

(b) Show that ∇ · E = ∇ · H = 0, provided that the initial value functions satisfy
these identities.

(c) Show that appropriate discretizations of ∇ · E and ∇ · H based on the same
staggered mesh and short differences also vanish.
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Chapter 4

Stability for Constant
Coefficient Problems

This chapter continues from where Section 3.2.2 ends. We aim to establish conditions under
which stability holds, i.e., to determine the stability function for a given difference scheme
in time and space.

Rarely is the numerical solution of constant coefficient PDE problems of interest
in itself. However, the stability analysis possible for such problems often gives a good
indication of the performance of similar schemes in more complicated situations. The
Fourier analysis developed in Sections 4.1.1 and 4.1.2 is, in fact, the only general tool
known which provides an easy-to-check stability indication for full discretizations of time
dependent PDEs. Most of this chapter is consequently devoted to it. In Sections 4.1.3 and
4.1.4 we make the connection between PDE stability and ODE absolute stability for the
semi-discretization.

The eigenvalue analysis described in Section 4.2 is more limited in practice, but
it sometimes works where the Fourier analysis method does not, e.g., in the presence of
boundary conditions and variable coefficients for parabolic problems.

Much (but not all) of the material in this chapter and the next follows a combination of
Kreiss [110], Gustafsson, Kreiss, and Oliger [76], Iserles [100], Morton and Mayers [137],
and the true classic, Richtmyer and Morton [144].

4.1 Fourier analysis
Consider the difference scheme (3.27) which we rewrite here in general form,

vn+1 = Qvn. (4.1)

Recall the explicit difference scheme (3.27a) applied to a system of s PDEs,

vn+1
j =

r∑
i=−l

βivn
j+i . (4.2)

We use boldface notation to emphasize that vn
j+i are vectors of size s. Correspondingly, βi

are s × s matrices. We would like to apply to this scheme the same Fourier analysis that has

135
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been used in Section 1.2.1 for some simple examples. For this we need the same formula
(4.2) to be applicable at all mesh points, with the coefficients βi independent of the location
j and n. Thus we require the following:

• The problem has constant coefficients.

• The problem is defined on an infinite mesh, i.e., it is a pure initial value problem. Alter-
natively, periodic boundary conditions are imposed, which allows a straightforward
periodic extension into an infinite mesh for analysis purposes.

Under these conditions the trigonometric functions (1.26a) are eigenfunctions (or, discretely,
eigenvectors), and the Fourier transform diagonalizes Q if s = 1 or block-diagonalizes it
in case that s > 1, as we show next.

Let

v(t, x) = 1√
2π

∫ ∞

−∞
eıξx v̂(t, ξ)dξ. (4.3)

Then ∫ ∞

−∞
eıξx v̂(t + k, ξ)dξ =

r∑
i=−l

βi

∫ ∞

−∞
eıξ(x+ih)v̂(t, ξ)dξ

=
∫ ∞

−∞

(
r∑

i=−l

βie
ıξ ih

)
eıξx v̂(t, ξ)dξ.

Thus

v̂(t + k, ξ) = g(ζ )v̂(t, ξ), ζ = ξh.

For a scalar PDE g is the amplification factor

g(ζ ) =
r∑

i=−l

βie
ıiζ . (4.4)

If the PDE has s components, then g is an s × s amplification matrix.
Now, for t = nk with n a positive integer we can obviously write v̂(t, ξ) = g(ζ )v̂(t −

k, ξ) = g(ζ )2v̂(t − 2k, ξ) = · · · , so

v̂(t, ξ) = g(ζ )nv̂(0, ξ).

Recalling Parseval’s equality (1.19), the stability condition of Section 3.2.1 becomes simply

‖g(ζ )n‖ ≤ K̃eα̃nk, (4.5a)

which is satisfied if the following stability condition holds:

‖g(ζ )‖ ≤ eα̃k ∀ |ζ | ≤ π. (4.5b)



root
2008/5/5
page 137

�

�

�

�

�

�

�

�

4.1. Fourier Analysis 137

This corresponds to the stability condition (3.37), with the advantage that it is much easier
to check in practice.

An analogous derivation can be applied for a general implicit difference scheme,

r∑
i=−l

γivn+1
j+i =

r∑
i=−l

βivn
j+i , (4.6)

where βi and γi are s × s constant matrices. This yields the conditions (4.5) with

g(ζ ) =
(

r∑
i=−l

γie
ıiζ

)−1 r∑
i=−l

βie
ıiζ . (4.7)

The process just described can be viewed as a similarity transformation applied to the
(infinite) matrix Q, whereby (4.1) is transformed into

v̂n+1 = Q̂v̂n

with

Q̂(ζ ) =

⎛⎜⎜⎜⎜⎜⎜⎝
g(ζ )

g(ζ )

. . .

⎞⎟⎟⎟⎟⎟⎟⎠ .

The integration process can be viewed as a summation (indeed it is, in the case of periodic
boundary conditions; see Section 1.3.6) involving the trigonometric functions restricted to
the mesh. These are eigenvectors when s = 1 (for which Q̂ is diagonal); in any case the
similarity transformation is orthogonal and hence norm preserving.

4.1.1 Stability for scalar equations

When s = 1 the stability condition (4.5b) simply reads

|g(ζ )| ≤ 1 + O(k), |ζ | ≤ π.

The O(k) term in this bound is really used or needed only in cases where the exact solution
to the homogeneous problem grows.

Example 4.1 For parabolic equations, as it turns out, a scalar PDE is not very different in
principle from a system of PDEs in terms of stability conditions. Thus we return to the
simple heat equation

ut = uxx,

considered in Example 3.10. For the forward Euler method

vn+1
j = vn

j + μD+D−vn
j ,
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Figure 4.1. Amplification factor for forward Euler applied to the heat equation.
To be stable the curve must stay in the shaded area. Note that for μ = .6 stability violation
occurs at high wave numbers.

where μ = k/h2, we have

D+D−eıξx = (eıζ − 2 + e−ıζ )eıξx = 2(cos ζ − 1)eıξx

= −4 sin2(ζ/2)eıξx,

so
g(ζ ) = 1 − 4μ sin2(ζ/2).

Figure 4.1 depicts this amplification factor. Thus, to ensure that |g(ζ )| ≤ 1 we must require

μ ≤ 1/2, i.e., k ≤ h2/2.

Moreover, it is the high wave numbers (ζ near ±π ) that may cause instability if μ > 1/2.
The corresponding stability function S(h) is depicted in Figure 3.14. This can be a

very restrictive condition on the time step size k (corresponding to using a nonstiff method
for a stiff ODE; see Sections 2.5 and 2.6). Note again that, although the order of accuracy
(1, 2) also suggests taking μ = O(1), here we must take μ ≤ 1/2 even if we integrate
toward steady state and for accuracy reasons alone would expect to be able to take large
time steps.

For the Crank–Nicolson method,(
1 − μ

2
D+D−

)
vn+1

j =
(

1 + μ

2
D+D−

)
vn

j ,
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we get

g(ζ ) = 1 − 2μ sin2(ζ/2)

1 + 2μ sin2(ζ/2)
.

Here |g(ζ )| ≤ 1 for all μ > 0, so the scheme is unconditionally stable.
Let J = h−1. To advance from time level n to n + 1 using either the explicit Euler

or the implicit Crank–Nicolson costs cJ operations with a modest constant c. If we take
h ∼ k, then it requires O(J ) steps to reach tf = 1 for a total of O(J 2) flops, whereas using
the Euler scheme a similar task costs O(J 3) flops.18

A slightly more involved parabolic PDE is considered in Exercise 1.

When constructing amplification factors we often find ourselves combining contribu-
tions from standard difference operators such as D+D− and D0. For convenience, they are
listed in Table 4.1.

Table 4.1. Difference operators and their effect in Fourier space.

Difference operator Contribution to g(ζ )

D+ eıζ − 1

D− 1 − e−ıζ

D0 2ı sin ζ

δ 2ı sin(ζ/2)

D+D− −4 sin2(ζ/2)

4.1.2 Stability for systems of equations

For systems of PDEs the matrix Q̂ is no longer diagonal, and g(ζ ) is an s × s matrix. Let
us emphasize this by denoting g(ζ ) ≡ G(ζ). The stability condition (4.5) still holds, with
G replacing g.

Rather than checking the norm of G(ζ) for every |ζ | ≤ π , it is easier to require a
similar condition on the spectral radius,

ρ(G(ζ )) ≤ eα̃k ∀ |ζ | ≤ π. (4.8)

This is the celebrated von Neumann condition. Recall from the review in Section 1.3.2
that ρ(G) ≤ ‖G‖ and that equality holds for the Euclidean norm in general only if G is
normal.19 Thus, the von Neumann condition (4.8) is in general only necessary and not
sufficient for stability. It is sufficient if either of the following hold:

18Using a flop count to assess algorithm complexity should be frowned upon, strictly speaking, because it
ignores other, crucial aspects affecting CPU time, such as fast memory access. The argument here is a classical
one, though, and it often still gives the right flavor despite its imperfections.

19If G is normal, i.e., there is an orthogonal transformation T such that T T GT = 
 is diagonal, then G =
T 
T T ; hence ‖G‖ ≤ ρ(G) and equality follows: ‖G‖ = ρ(G).
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• If G(ζ) is normal ∀ |ζ | ≤ π , then (4.8) implies (4.5b).

The normality condition, however, often does not hold for hyperbolic problems.

• If G(ζ) is uniformly diagonalizable in ζ , i.e., there is a transformation T (ζ ) such
that T −1GT is diagonal and cond(T ) ≤ K̃ ∀ |ζ | ≤ π , then by (1.23) we obtain the
stability condition (4.5a) from the von Neumann condition (4.8).

Example 4.2 Let u have two components and consider the trivial PDE ut = 0 and the
(admittedly strange but) first order discretization

vn+1
j = vn

j −
⎛⎝0 1

0 0

⎞⎠μ2D2
0vn

j

with μ = k/h = 1. This gives the amplification matrix

G(ζ) =
⎛⎝1 4 sin2 ζ

0 1

⎞⎠ .

So the von Neumann condition is fulfilled, and yet

Gn = I + n

⎛⎝0 4 sin2 ζ

0 0

⎞⎠ ,

which grows unboundedly.
What happens here is that the matrix G is defective (i.e., not diagonalizable) and the

off-diagonal element is not merely O(k), so the eigenvalues do not tell the whole story
about stability.

Example 4.3 Consider the leapfrog scheme for a hyperbolic system,

ut + Aux = 0

with A constant and diagonalizable. To recall, the leapfrog scheme reads

vn+1
j = vn−1

j − μA(vn
j+1 − vn

j−1),

which can be written as⎛⎝v

w

⎞⎠n+1

j

=
⎛⎝0 I

I 0

⎞⎠⎛⎝v

w

⎞⎠n

j

− μ

⎛⎝A 0

0 0

⎞⎠⎛⎝v

w

⎞⎠n

j+1

+ μ

⎛⎝A 0

0 0

⎞⎠⎛⎝v

w

⎞⎠n

j−1

.

This is obviously in the form (4.2) with 2s × 2s matrices βi , i = −1, 0, 1.
For one PDE the amplification matrix reads

G(ζ) =
⎛⎝−2ıaμ sin ζ 1

1 0

⎞⎠ .
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The eigenvalues are

λ = −ıaμ sin ζ ±
√

1 − a2μ2 sin2 ζ .

Here, |λ|2 = a2μ2 sin2 ζ + (1 − a2μ2 sin2 ζ ) = 1 for both roots regardless of ζ as long as
the square root expression stays real, so the von Neumann condition holds for

μ|a| ≤ 1

(the CFL condition). Now, if μ|a| < 1, then the two roots differ: λ1 �= λ2. Hence G

is diagonalizable and the scheme is stable. But if μ|a| = 1, then at ζ = π/2 we have
1 − a2μ2 sin2 ζ = 0; hence λ1 = λ2 and G is not diagonalizable. (Note that although G

is symmetric, it is complex and not Hermitian! It is not normal, either.) Indeed, there is a
mild instability in this case, and it can be easily seen that ‖Gn(π/2)‖ grows linearly in n,
as in the previous example.

This sort of instability is often tolerable in practice. It is very different from the
exponential error blowup seen in Table 1.1 and Figure 1.12. But in any case, it is advisable
in a more realistic model to keep μ|a| < 1.

Returning to the case of a system of PDEs we have the amplification matrix

G(ζ) =
⎛⎝(−2ıμ sin ζ )A I

I 0

⎞⎠ .

The eigenvalues of G are pairs which obey the formula

λ±
l = −ıalμ sin ζ ±

√
1 − a2

l μ
2 sin2 ζ

for each eigenvalue al of A. The stability condition is then

μ <
1

max1≤l≤s |al| .

Kreiss gave, back in 1962, three equivalent conditions for the sufficiency of the von
Neumann stability requirement [76]. Remember, however, that this analysis is only for the
constant coefficient case.

Example 4.4 The von Neumann condition (4.8) is an easy to check, necessary and “almost
sufficient” stability condition. But most problems encountered in practice are nonlinear,
or at least have variable coefficients. Given such a practical problem to solve, the most
popular basic search for a stability condition is to “freeze” its coefficients, ignore boundary
conditions, and check (4.8).

For instance, the stability condition for the leapfrog discretization of a variable coef-
ficient advection equation

ut + a(x)ux = 0

would read

μ max
x

|a(x)| ≤ 1 (μ = k/h).
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Similarly, for the anisotropic diffusion equation

ut = (a(u)ux)x, (4.9a)

if we wish to apply the forward Euler method

vn+1
j = vn

j + μ(aj+1/2D+ − aj−1/2D−)vn
j (4.9b)

(recall Examples 3.3 and 4.1), then the stability condition reads

μ max
u

|a(u)| ≤ 1/2 (μ = k/h2). (4.9c)

Of course, this gives rise to the question how to estimate max |a(u)| when u is our unknown
function. But in practice such estimates are often known. Even if they are not, they
can be obtained by solving the problem with rough k and h, for which computations and
experimentations are cheap. The key observation is that (4.9c) is used only to limit the
time step k, so with only a ballpark estimate ã of max |a(u)|, we can “play safe” by simply
setting k to, say, half its estimated maximum,

k = h2

4ã
.

However, we caution that although such techniques are often satisfactory in practice,
they do not always work. Example 5.1 documents a case of the latter type. Chapter 5
discusses the aftermath at length.

4.1.3 Semi-discretization stability

For a semi-discretization (3.3) of an initial-value, homogeneous PDE with constant coeffi-
cients we write

vt (t, x) =
r∑

i=−l

αiv(t, x + ih),

where the coefficients αi are constant, independent of t and x.
Using the same Fourier transform as before we obtain

v̂t (t, ξ) = g̃(ζ )v̂(t, ξ), (4.10a)

g̃(ζ ) =
r∑

i=−l

αie
ıiζ , ζ = ξh. (4.10b)

For each ξ the exact solution of this ODE in constant coefficients is

v̂(t, ξ) = eg̃(ζ )t v̂(0, ξ).

The semi-discretization is therefore stable iff there is a real constant α̂ independent of h and
ξ such that

‖eg̃(ζ )‖ ≤ eα̂ ∀ |ζ | ≤ π. (4.11)
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For a single PDE, s = 1, we obtain the simple stability condition

Re g̃(ζ ) ≤ α̂ ∀ |ζ | ≤ π. (4.12a)

For a system of PDEs let g̃1, . . . , g̃s be the eigenvalues of the matrix G̃(ζ ). Then the
(necessary but not always sufficient) von Neumann condition corresponds to

max
1≤l≤s

Re g̃l(ζ ) ≤ α̂ ∀ |ζ | ≤ π. (4.12b)

It is worthwhile at this point to compare the semi-discretization equations and conditions
(4.10b), (4.11), and (4.12) with the corresponding full discretization expressions (4.4),
(4.5b), and (4.8).

Example 4.5 For the PDE
ut = νuxx + aux + cu,

the semi-discretization

d

dt
vj (t) = ν

h2
(vj+1 − 2vj + vj−1) + a

2h
(vj+1 − vj−1) + cvj

yields the amplification factor

g̃(ζ ) = −4ν

h2
sin2(ζ/2) + c + ıa

h
sin ζ.

Thus, the stability condition (4.12a) holds, provided that ν ≥ 0, with α̂ = c if c > 0, and
α̂ = 0 otherwise.

There is no stability if ν < 0, but then the initial value PDE is not well-posed either.
Next, let c = 0 and assume ν > 0. Recall from Chapter 1 that for this PDE

|eP(ıξ)| = e−νξ 2

decreases as ξ increases. Here, similarly, Re g̃(ζ ) decreases toward its minimum as |ζ | →
π .

4.1.4 Fourier analysis and ODE absolute stability regions

For each fixed ξ the Fourier transform applied to the semi-discrete form yields a scalar ODE
(4.10) with a constant, complex-valued coefficient. The stability condition (4.12) can be
strengthened by requiring α̂ = 0, i.e.,

max
1≤l≤s

Re g̃l(ζ ) ≤ 0 ∀ |ζ | ≤ π, (4.13)

in cases where no solution growth is possible for the exact PDE for any initial value function
u0 ∈ L2. In other words, we require α̂ = 0 when α ≤ 0 in (1.7) or (1.11).

Discretizing (3.3) in time yields a full discretization scheme where now we require
that

‖vn+1‖ = ‖v̂n+1‖ ≤ ‖v̂n‖ = ‖vn‖.
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Note: For a full discretization of the given PDE, which can be viewed
as an ODE time-discretization applied to a semi-discretization in space,
the semi-discretization can be seen to provide coefficients g̃(ζ ) in an
appropriate range satisfying (4.13), and the “subsequent” choice of time-
discretization must then have suitable absolute stability and decay prop-
erties.

However, this condition coincides with the definition (2.21) which gives the region of
absolute stability for the time-discretization method applied to (4.10)! Chapter 2 comes in
handy at this point.

Example 4.6 Continuing Example 4.5 we now require c ≤ 0 to allow no growth in the
exact solution, i.e., α ≤ 0 in (1.11). The usual spatial discretizations of the terms νuxx

and cu contribute a real, nonpositive component to g̃(ζ ) for any ζ, |ζ | ≤ π . The time-
step restriction for the forward Euler method (and for any other explicit time discretization
proposed in Chapter 2) in terms of μ = k

h2 follows directly.
From the “hyperbolic part” of the PDE, however, we obtain a purely imaginary eigen-

value. From Figure 2.6 it becomes clear why the method (1.15b) cannot be stable: there
is no intersection between the absolute stability region of the forward Euler method and
the imaginary axis for h > 0. On the other hand, the third and especially the fourth order
explicit Runge–Kutta methods are good candidates for discretizing hyperbolic problems
using the method of lines so long as the solution is smooth; see Section 5.3.2.

4.2 Eigenvalue analysis
We can write a semi-discretization of an initial-value, homogeneous PDE with constant
coefficients in the form (3.2),

vt = Lv,

where L is a large, constant matrix. This matrix can be infinite or finite with some appropriate
boundary conditions incorporated.

If L is diagonalizable, then there is a similarity transformation to a diagonal matrix

T −1LT = 
.

Consequently, for
w = T −1v

we have the decoupled system
wt = 
w.

For each component of w we have a scalar equation,

dwj

dt
= λjwj ,
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which can be analyzed as we have done with the Fourier technique. The system for w is
then stable if there is a constant α̂ such that for all h > 0 small enough

max
j

Re λj ≤ α̂. (4.14)

The big question is, Can we haul this stability result back to v? In general, all we
have is

‖v(t)‖ ≤ cond(T )emaxj Re λj t‖v(0)‖.
Since T is a very large matrix which does depend on h, stability of w does not guarantee
stability of v! This eigenvalue analysis is worthwhile only if cond(T ) is uniformly bounded.
Such boundedness would happen, e.g., if L is a normal matrix, in which case we can choose
T orthogonal and hence cond(T ) = 1.

An analogous treatment can be applied to the full discretization (3.27b) reproduced
here:

vn+1 = Qvn.

Viewing Q as a large matrix, we can deduce stability by considering its eigenvalues (as-
suming we can find them, or at least estimate them) using (4.14) and ODE absolute stability
regions, provided Q is normal.

For hyperbolic systems Q may not be normal, or even diagonalizable (see Exercises
10–12); hence this approach requires much care. However, for certain parabolic problems
it may be useful. Note that the approach can be applied if Q is symmetric, and moreover,
boundary conditions can be incorporated and the PDE coefficients do not have to be constant.

Example 4.7 Consider the diffusion equation

ut = (a(x)ux)x + q(t, x),

where a(x) > 0. Assume at first that a is constant and that the boundary condition u = 0
is prescribed at x = 0 and at x = 1 for t > 0.

Applying the same semi-discretization as in Examples 3.1, 3.2, and 4.5, and incor-
porating the Dirichlet boundary conditions, we obtain an ODE of the form (3.2) with the
J × J matrix

L = a

h2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1

1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1

1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where J + 1 = 1/h. To find the eigenvalues of L, write

Lvl = λlvl ,
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where for the lth eigenvector we guess

vl
j = sin(j lhπ), j = 1, . . . , J.

This guess works (please check!) and we obtain the eigenvalues

λl = −4a

h2
sin2 lhπ

2
.

These eigenvalues are all nonpositive, hence stability follows. Note also that as lh increases
λl gets smaller, which corresponds to the behavior of the PDE discussed in Example 4.5.

Turning to full discretizations, for the forward Euler method we have Q = I + kL,
hence Q is also symmetric and its eigenvalues are

λFE
l = 1 − 4μa sin2 lhπ

2
.

To ensure that ρ(Q) ≤ 1 we must require μ ≤ 1/2, which coincides with what the Fourier
analysis gives in Example 4.1. For the trapeziodal method (Crank–Nicolson) we again
obtain symmetric matrices and the eigenvalues

λCN
l = 1 − 2μa sin2 lhπ

2

1 + 2μa sin2 lhπ
2

.

Obviously, |λCN
l | ≤ 1, so stability is unconditional. However, note that if μ is large (e.g.,

because we take k = h � 1), then λCN
J ≈ −1, so high-frequency errors are kept in check

but are not damped much. Finally, for the backward Euler method we obtain

λBE
l = 1

1 + 4μa sin2 lhπ
2

.

Here, not only is stability unconditional but also the high-frequency eigenvectors are damped
by the method, in parallel with the smoothing property of the differential operator and the
semi-discretization.

The above results for the full discretizations can be obtained directly by ODE nu-
merical stability analysis, using the concepts of absolute stability regions, A-stability and
L-stability (see Sections 2.5 and 2.6).

For this simple equation we can also extend the results for a variable a(x) > 0 using
the discretization of Example 3.2. It is easy to see using Gershgorin’s theorem (Section 1.3.2)
that the resulting matrix remains symmetric and diagonally dominant, and hence negative
definite (see Exercise 3). Stability follows directly.

4.3 Exercises
0. Review questions

(a) Define amplification factor and amplification matrix, and explain their impor-
tance.
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(b) Why can’t the Fourier analysis be applied in general directly to nonlinear prob-
lems or to problems with Dirichlet BC?

(c) Is the von Neumann condition applied to (4.2) sufficient for stability in the case
of a scalar PDE? What about a system of PDEs?

(d) What is the stability condition according to Fourier analysis for the semi-
discretization case?

(e) In what circumstances is the eigenvalue analysis preferred over the Fourier
analysis?

1. Analyze the stability of the three discretizations discussed in Example 3.10 extended
to the PDE

ut = νuxx + aux + cu

with ν > 0, a and c given constants.

2. Consider the advection equation

ut + aux = 0,

and recall that the consistent scheme (1.15b) is unconditionally unstable. The Lax–
Friedrichs scheme is a variation:

vn+1
j = 1

2
(vn

j−1 + vn
j+1) − μa

2
(vn

j+1 − vn
j−1). (4.15)

Show that the Lax–Friedrichs scheme is stable, provided that the CFL condition holds.

3. Extend the argument of Example 4.7 for the case where a(x) is varying and the
discretization of Example 3.2 is used.

4. Show that a consistent difference scheme must satisfy ρ(g(0)) = 1.

5. For the scalar PDE
ut = νuxx + aux

with ν > 0, a > 0, consider discretizing the “parabolic part” implicitly and the
“hyperbolic part” explicitly:

vn+1
j = vn

j + νk

h2
D+D−vn+1

j + ak

h
D+vn

j .

What is the order of the method? Analyze its stability.

6. For the advection equation
ut = aux,

consider the corresponding semi-discretization obtained using a centered difference
in space:

dvj

dt
= a

2h
D0vj .

Analyze the stability of the full discretizations obtained using the following methods
in time:
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(a) Forward Euler.

(b) Trapezoidal method. Show that |g(ζ )| = 1 ∀ζ . (Such a method is called energy
conserving.)

(c) Backward Euler.

(d) The two-step Adams–Bashforth method:

vn+1
j = vn

j + aμ

4
(3D0v

n
j − D0v

n−1
j ).

7. The leapfrog scheme for the heat equation ut = uxx reads

vn+1
j = vn−1

j + 2μD+D−vn
j , μ = k

h2
.

Show that this scheme is unconditionally unstable.

8. Apply a Fourier stability analysis to the scheme

vn+1
j = vn−1

j − μD0

[
ρ + ν

h2
D+D−

]
vn

j , μ = k

h
,

where ρ and ν are given parameters. This is a leapfrog discretization of the linearized
KdV equation

ut + ρux + νuxxx = 0.

9. The Dufort–Frankel scheme has to be the quirkiest of all difference schemes which
bear someone’s name. It alleviates the leapfrog instability for the heat equation
(Exercise 7) by replacing vn

j with the average (vn+1
j + vn−1

j )/2. This yields (please
check)

(1 + 2μ)vn+1
j = (1 − 2μ)vn−1

j + 2μ(vn
j+1 + vn

j−1). (4.16)

(a) Show that this scheme is unconditionally stable.

(b) Dividing (4.16) by 1+2μ we obtain what looks like an explicit scheme. Explain
why the scheme is nonetheless implicit, in general.

(c) Show that the scheme is generally inconsistent! Specifically, the local truncation
error does not shrink to 0 for all families of steps k → 0 and h → 0.

(d) On the other hand, the scheme is conditionally consistent: show that if k → 0
and h → 0 such that μ remains constant, then the scheme has order (1, 2).

So there is really no stability condition as such, but if we keep increasing μ, then
accuracy deteriorates more severely than for Crank–Nicolson, say. In particular, for
k = h, which is a good choice for Crank–Nicolson, the Dufort–Frankel scheme is
only zero-order accurate.
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10. For the advection equation
ut + aux = 0

subject to periodic boundary conditions, consider the semi-discretization obtained
using a centered difference in space:

dvj

dt
+ a

2h
D0vj = 0.

Writing the result in the form of an ODE system,

vt = Lv,

what properties does the constant matrix L have? Specifically, is it symmetric, skew-
symmetric, or neither? Does it have real, imaginary, or generally complex eigenval-
ues? Under what conditions are we guaranteed that the real parts of these eigenvalues
stay nonpositive?

11. Consider the same setting and answer the same questions as in Exercise 10 but now
with the boundary condition u(t, 1) = 0 and the one-sided difference

dvj

dt
+ a

h
D+vj = 0.

12. Consider the initial-boundary value problem for the advection equation ut − ux = 0
for t ≥ 0, 0 ≤ x ≤ 1, with two types of BCs:

• Dirichlet u(t, 1) = 0 and

• periodic u(t, 0) = u(t, 1).

(a) For each BC write the one-sided discretization (1.15a) as vn+1 = Qvn for a
finite matrix Q. Is Q diagonalizable? Is it normal?

(b) Repeat the tasks above for the scheme (1.15b) which sports a symmetric spatial
discretization.
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Chapter 5

Variable Coefficient and
Nonlinear Problems

The previous chapter provides us with a useful practical tool for checking stability for con-
stant coefficient problems, determining conditions under which a given difference method
is stable. The next task is naturally to investigate the application and applicability of this
tool in a more general, realistic context. Treatment of stability effects of boundary condi-
tions, especially nontrivial ones, is still delayed and will be considered in Chapter 8. Here
we consider extensions to problems with variable coefficients and ultimately to nonlinear
problems.

Example 5.1 (An unexpected instability) The purpose of this example is to motivate the
entire present chapter.

The Korteweg–de Vries (KdV) equation is a nonlinear PDE which arises in many
applications. We write it as

ut + (αu2 + νuxx)x = 0, (5.1)

where ν and α are known constants. The equation has a long history and admits, in particular,
solitary wave solutions [58]. We shall return to it later in this chapter as well as in Section 7.3.
Right now, let us simply state that the linearization of this equation is a hyperbolic PDE, and
that the initial value problem is well-posed with a bounded solution existing for all t ≥ 0.

The following explicit, leapfrog scheme was proposed in the 1960s [187]. With μ = k
h

the scheme reads

vn+1
j = vn−1

j − 2αμ

3
(vn

j−1 + vn
j + vn

j+1)(v
n
j+1 − vn

j−1)

− νμ

h2
(vn

j+2 − 2vn
j+1 + 2vn

j−1 − vn
j−2).

It is accurate of order (2, 2). The discretization of the nonlinear term is reasonable and will
be discussed in Section 5.3.

Upon freezing coefficients and applying von Neumann’s constant coefficient stability
analysis (Exercise 4.8) we obtain that the time step must be restricted to satisfy

k < h/

[
4|ν|
h2

+ 2|αumax|
]
,

151
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Figure 5.1. Snapshots of the solution for Example 5.1.

where umax is the least upper bound on |u(t, x)|. Following [188, 12] we choose the data

ν = 0.0222, α = 0.5,

u0(x) = cos(πx), u(0, t) = u(2, t).

The solution profile at different times is displayed in Figure 5.1.
Thus, we can generously estimate umax ≤ 5 and conclude that it would be wise to

select

k < h/(4 × .0222/h2 + 5).

For h = .01 this is satisfied if k < .0004.
And yet, here is what happens: the solution calculated using MATLAB standard

arithmetic for this explicit scheme with h = .01 and k = .0001 is qualitatively correct for a
while. However, around t = 5, after about 50,000 time steps, the numerical solution blows
up!20 Reducing the time step further does not help either.

What happens is that enough high wave number error accumulates in the solution after
many time steps so that the linear stability bound becomes violated. The primary lesson
for us now is that the constant coefficient Fourier analysis is not always sufficient in
practice.

20It is conceivable that with the computing equipment available in the early 1960s, calculating 50,000 time steps
of anything was considered an unaffordable luxury.
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Despite Example 5.1 it turns out that extension of the constant coefficient analysis is possible
if we require that high-frequency amplifications are attenuated and not merely bounded
by 1. This leads to the concept of dissipativity, considered in Section 5.1.

Dissipativity is obtained naturally when consistent discretizations are designed for
problems that contain dissipation. But for hyperbolic equations, which are not dissipative,
the design of dissipative methods is tricky. This is the subject of Section 5.2, and it arises in
future chapters as well. We use the opportunity to introduce several schemes for hyperbolic
PDE systems in one spatial variable and to demonstrate their performance.

Extensions of the Fourier and eigenvalue techniques are not always possible. An
alternative approach, the energy method, for ascertaining stability in the nonlinear setting is
discussed in Section 5.3. The approach is more ad hoc, but sometimes it works beautifully.
In Section 5.3.2, in particular, we consider the popular classical fourth order Runge–Kutta
time discretization and show its dissipation properties by “energy” estimates.

5.1 Freezing coefficients and dissipativity
We consider a general difference scheme for a linear initial value problem. A natural idea
is to “freeze” the coefficients, i.e., assume that the (variable) coefficients of the PDE are
constant, with constant values in the range of the actual coefficient functions, and check
stability using the methods of the previous chapter.

The question is, suppose that all these constant-coefficient schemes come out stable—
is the method for the variable-coefficient problem stable as well? As it turns out, the answer
is not necessarily, even though in practice usually the technique of freezing coefficients
works well, especially in giving a basic feeling on what should work when. However, some
unusual examples exist to show that, strictly speaking, the stability of the method for the
frozen problem is neither sufficient nor necessary for stability in the variable coefficient
case.

Basically, the difficulty is as follows: if we allow the eigenvalues of the amplification
matrix G defined in Section 4.1.2 to be on the unit circle (rather than inside), then some
perturbation, which cannot always be controlled, may push them in the “wrong” direction
and produce an instability. Now, by Exercise 4.4 we cannot require maxζ ρ(G(ζ )) < 1,
because consistency implies that ρ(G(0)) = 1. See also Figure 4.1. But our concern is not
low wave numbers anyway—it is the high wave numbers |ζ | � π , i.e., |ξ | � π/h where
h is small, whose growth may cause instability. So, we require damping of the high wave
numbers.

The difference scheme is called dissipative21 of order 2r if there is a constant δ > 0
such that for all the associated frozen coefficient schemes the eigenvalues of the amplification
matrix G(ζ) satisfy

ρ(G(ζ )) ≤ eα̃k(1 − δ|ζ |2r ) ∀|ζ | ≤ π. (5.2)

Thus, at ζ = 0 the von Neumann condition is retrieved while for higher wave numbers
the present requirement is more demanding. The dissipativity condition (5.2) just defined
is not necessary for the “good behavior” of a scheme, essentially because it is not necessary

21Sometimes, the term strictly dissipative is used.
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for producing a smooth approximate solution. But it allowed Kreiss to prove the following
useful results [76, 110].

Theorem 5.2. If the linear evolutionary PDE (3.1) is well-posed and the difference
method is consistent, dissipative of order 2r , and has coefficients that are Lipschitz
continuous in x and t , then the scheme is stable in each of the following cases:

• The PDE is strictly hyperbolic (i.e., ut + Aux = 0 with the eigenvalues of
A real and distinct).

• The PDE is symmetric hyperbolic and the difference scheme is symmetric
and accurate of order at least 2r − 2.

• The PDE is parabolic, with μ bounded by a constant.

Example 5.3 For parabolic problems, with sufficiently moderate values ofμ all the schemes
that we have seen are dissipative in the sense of (5.2); see Figures 4.1, 5.2, and 5.3. Note
that even forward Euler is dissipative for μ < .5. When μ is raised beyond the stability
restriction of the explicit scheme but remains moderate, then the Crank–Nicolson scheme is
still dissipative; see Figure 5.2. This is not surprising since the schemes, being consistent,
inherit dissipation from the PDE. Thus, the von Neumann analysis is usually indicative of
what happens for general parabolic problems. We have seen some of this already in Example
4.7 and Exercise 4.3. As the time step k is increased further so that μ becomes large, the
Crank–Nicolson scheme loses dissipation, leaving the backward Euler scheme as the only
strongly dissipative one in the limit of large time steps; see Figure 5.3. This corresponds to
the stiff decay property in numerical ODEs.

But the real interest in Theorem 5.2 is what it says about schemes for hyperbolic, not
parabolic, problems. Let us consider this next.

5.2 Schemes for hyperbolic systems in one dimension
For a hyperbolic s × s system

ut + Aux = 0,

i.e., A has a complete set of eigenvectors and real eigenvalues, recall from Chapter 1 that
there is no attenuation in high wave number components of the symbol P(ıξ). Thus,
dissipation in the numerical scheme is in a sense an artificial property, and its amount must
be carefully controlled, lest the numerical solution end up displaying different qualitative
features from those of the exact solution. As usual, we set μ = k/h.
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Figure 5.2. Amplification factors for the Crank–Nicolson scheme applied to the
heat equation. The scheme remains dissipative for all μ, although as μ grows the amplifi-
cation factor inches toward −1 at high wave numbers.
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Figure 5.3. Amplification factors for the backward Euler scheme applied to the
heat equation. The scheme remains dissipative for all μ. As μ grows the amplification
factor inches toward 0 at high wave numbers, as it should.
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Note: There are several issues that arise for hyperbolic-type PDEs which
do not occur for parabolic or elliptic problems. These can all be traced
back to the conservative nature of hyperbolic PDEs, where the linear PDE
ut = P(∂x)u satisfies |eP(ıξ)t | = 1 ∀ξ ; see Section 1.1.

1. The PDE admits no dissipation. Dissipative numerical schemes are
considered in the present chapter.

2. There is numerical dispersion whether or not the PDE is dispersive.
Numerical dispersion is considered in Chapter 7.

3. There are delicate issues concerning boundary conditions (BCs).
These and numerical BCs are considered in Chapter 8.

4. The solution may have discontinuities inside the time–space do-
main. Discontinuities and methods for handling them are consid-
ered in Section 5.2 and in Chapter 10.

5.2.1 Lax–Wendroff and variants for conservation laws

Let us derive this scheme for the constant coefficient case first. By Taylor’s expansion for
one equation,

u(t + k, x) = u + kut + k2

2
utt + O(k3),

where the right-hand-side terms are evaluated at (t, x). Replacing ut by −aux and utt by
a2uxx , and then approximating the spatial derivatives by centered differences, we obtain

u(t + k, x) = u − k

2h
aD0u + k2

2h2
a2D+D−u + k O(k2 + h2).

Hence the scheme

vn+1
j =

(
I − μ

2
aD0 + μ2

2
a2D+D−

)
vn

j (5.3a)

is accurate of order (2, 2).22

In the case of a PDE system where A depends on x the term A2uxx in the above
derivation changes into A(Aux)x . Correspondingly, the scheme becomes

vn+1
j =

[
I − μ

2
AjD0 + μ2

2
Ajδ(Ajδ)

]
vn

j . (5.3b)

For an even more general A we must calculate An+1/2, which may prove to be a drag,
especially in the nonlinear case.

22Note that (5.3a) is not naturally derived from a time differencing of a semi-discretization.
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Fortunately, many nonlinear problems arising in practice appear in conservation
form:

ut + f(u)x = 0. (5.4)

This is the case for many flow problems, where the equations in (5.4) express conservation
of various physical quantities such as mass, energy, and momentum.

Example 5.4 The inviscid Burgers equation

ut + uux = 0

can be expressed in the conservation form

ut + 1

2
(u2)x = 0.

More generally, the Navier–Stokes equations describing fluid flow in three space variables
contain the material derivative (for the fluid velocity components u, v, and w),

Du

Dt
= ut + uux + vuy + wuz,

Dv

Dt
= vt + uvx + vvy + wvz,

Dw

Dt
= wt + uwx + vwy + wwz,

which does not appear to be in conservation form. However, in the case where the fluid is
incompressible, the incompressibility condition

ux + vy + wz = 0

can be used to write the material derivative in the conservation form,

Du

Dt
= ut + (u2)x + (vu)y + (wu)z,

Dv

Dt
= vt + (uv)x + (v2)y + (wv)z,

Dw

Dt
= wt + (uw)x + (vw)y + (w2)z.

The conservation form (5.4) can be written as ut + Aux = 0, where A = ∂f
∂u is the Jacobian

matrix which generally depends on u. But in the derivation of the Lax–Wendroff scheme
we can use f directly to obtain the variant

vn+1
j = vn

j − μ

2
(fn

j+1 − fn
j−1)

+ μ2

2
[An

j+1/2(f
n
j+1 − fn

j ) − An
j−1/2(f

n
j − fn

j−1)]. (5.5a)
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This is an explicit, second order formula for nonlinear systems of conservation laws for
which we apply a stability analysis below. Before that, though, we mention two other
variants due to Richtmyer and MacCormack, respectively, which avoid using the Jacobian
matrix altogether and reduce to the Lax–Wendroff scheme in the constant-coefficient case
[144, 133, 92]:

v̄j = 1

2
(vn

j + vn
j+1) − 1

2
μ(fn

j+1 − fn
j ),

vn+1
j = vn

j − μ(f(v̄j ) − f(v̄j−1)) (5.5b)

(see Exercise 5) and

v̄j = vn
j − μ(fn

j − fn
j−1),

vn+1
j = 1

2
(vn

j + v̄n
j ) − 1

2
μ(f(v̄j+1) − f(v̄j )). (5.5c)

Let us consider the stability properties of the Lax–Wendroff scheme. Note that for
constant coefficients all the above variants coincide and reduce to the system version of
(5.3a). For each eigenvalue al of A there corresponds an eigenvalue of the amplification
matrix G(ζ):

λl(ζ ) = 1 − ıμal sin ζ − 2μ2a2
l sin2(ζ/2).

From Exercise 1 we learn that
|λl(ζ )| ≤ 1 − δ|ζ |4,

where δ > 0 so long as the strict CFL condition, μ max |al| < 1, holds. Thus, the various
Lax–Wendroff schemes are strictly dissipative and hence stable as per the stipulations of
Theorem 5.2.

Note that the amount of dissipation in the Lax–Wendroff scheme is not controlled:
the high wave number components get damped more than the low ones and the solution
is smoothed. Thus, sharp solution features may be smeared and integration over a long
time could yield undesirable results. It is important then to introduce as little dissipation as
possible—just enough to prevent instability.

5.2.2 Leapfrog and Lax–Friedrichs

The leapfrog scheme can be written as

vn+1
j = vn−1

j − μAn
j (v

n
j+1 − vn

j−1), (5.6a)

extending to conservation laws in an obvious way:

vn+1
j = vn−1

j − μ(fn
j+1 − fn

j−1). (5.6b)

Like the Lax–Wendroff scheme, it has order (2, 2). We have already seen in Example 4.3
that, provided the CFL condition holds, the eigenvalues of the amplification matrix satisfy
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|λl| = 1 for all relevant l and ζ , hence the scheme is energy-conserving and nondissipative.
To avoid instabilities, which may arise especially in nonlinear problems, we can modify the
scheme as in [110]:

vn+1
j =

(
I − ε

16
D2

+D2
−
)

vn−1
j − μAn

jD0vn
j , (5.7)

where ε < 1 is a parameter. Then

|λl| = 1 − ε sin4(ζ/2) provided μ|al| < 1 − ε.

So, we get a dissipativity of order 4, with ε controlling the amount of dissipation. There is
no loss of accuracy order in the modified scheme.

Next, we recall the Lax–Friedrichs scheme (4.15), to which Exercise 4.2 is devoted.
This scheme extends to systems in an obvious way, with a replaced by An

j in (4.15). It also
immediately extends to nonlinear conservation laws. The order of accuracy is (1, 1). The
scheme can further be written as

vn+1
j = vn

j − μ

2
An

j (v
n
j+1 − vn

j−1) + 1

2
(vn

j−1 − 2vn
j + vn

j+1). (5.8)

Note that this scheme is not strictly dissipative; i.e., it does not satisfy (5.2); see
Exercise 2. Yet we show next that the Lax–Friedrichs scheme is certainly stable for variable
coefficient problems nonetheless, provided that the CFL condition holds. Let us rewrite the
one-equation version of (5.8) as

vn+1
j = 1

2
(1 − μan

j )vn
j+1 + 1

2
(1 + μan

j )vn
j−1.

If μ max |a| ≤ 1, then the scheme has nonnegative coefficients multiplying the solution val-
ues on the right-hand side. Schemes with this property are called monotone. We encounter
this property again in Chapter 10. Since the sum of the coefficients is 1 (this must be so by
consistency) we get |vn+1

j | ≤ max{|vn
j+1|, |vn

j−1|}, and thus also

max
j

|vn+1
j | ≤ max

j
|vn

j |. (5.9)

This is a strong stability bound in the maximum (or l∞-) norm. The scheme does not require
additional artificial dissipativity terms! In fact, (5.9) guarantees more than just stability, as
is discussed in Example 5.6 below.

Although not derived in that way, both Lax–Wendroff and Lax–Friedrichs schemes
can be viewed as a forward Euler discretization of a large ODE system in time. Exercise 6
shows that the eigenvalues of the corresponding Jacobian matrix have negative real parts
and are no longer purely imaginary, unlike for conservative schemes such as leapfrog and
(1.15b).

Finally, we mention here that another way to “correct” the instability of the scheme
(1.15b) is to replace the forward Euler time discretization by the classical Runge–Kutta
method of order 4 (RK4). Figure 2.6 suggests that RK4 has the stability that forward Euler
lacks along the imaginary axis. We delay further discussion of this scheme to Section 5.3.2,
where a numerical example is given as well.
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Table 5.1. Maximum errors at t = 1 for three difference schemes applied to the
equation ut − ux = 0 with u0(x) = sin ηx and periodic BC. Error blowup is denoted by *.
Note that k = μh.

η h μ Lax–Wendroff Lax–Friedrichs Box

1 .01π 0.5 1.2e-4 2.3e-2 6.1e-5

.001π 0.5 1.2e-6 2.4e-3 6.2e-7

.001π 5.0 * * 2.0e-5

10 .01π 0.5 1.2e-1 9.0e-1 6.1e-2

.001π 0.5 1.2e-3 2.1e-1 6.2e-4

.0005π 0.5 3.1e-4 1.1e-1 1.5e-4

Example 5.5 In Figure 1.9 we displayed results using the leapfrog and other schemes for
the simple advection equation ut − ux = 0. For the smooth initial data u0(x) = sin ηx

the stable schemes appear to perform well. Errors for the various schemes presented in
this section are recorded in Table 5.1, which is to be compared with Table 1.1. From these
results it is clear that the Lax–Wendroff scheme is second order; indeed the errors are very
similar to those of the leapfrog scheme. On the other hand, the significantly less accurate
Lax–Friedrichs is only first order in both x and t , and the error magnitudes are about twice
those recorded in Table 1.1 for the upwind scheme (1.15a).

Example 5.6 For the advection equation Examples 5.5 and 1.2 show that if the initial
data are smooth, then we may expect decent results from all schemes considered here,
essentially reflecting their order, provided that the CFL condition holds. But all this changes
dramatically if the initial data function is discontinuous. Here we run the schemes discussed
so far in the present section for the same problem but for initial data with discontinuities.
Thus we choose u0 = 0, except when .25 ≤ x < .75, where we set u0 = 1. The exact
solution for ut −ux = 0 then has this square wave moving left at speed dx

dt
= −1. Figures 5.4

and 5.5 display results at t = 1 using the Lax–Friedrichs scheme, the Lax–Wendroff scheme,
the leapfrog scheme, and the dissipated leapfrog (5.7) with ε = 0.5.

Unlike the Fourier transform of the smooth initial function from Chapter 1, here the
Fourier transform of the square wave is rich in all wave numbers. When these Fourier
modes are heavily damped, as in the Lax–Friedrichs scheme, we obtain a solution which
certainly looks stable but is simply too smooth and too smeared out. It does satisfy (5.9),
though, and no spurious oscillations arise. The Lax–Wendroff scheme also smooths out the
solution, but much less so. The leapfrog scheme has annoying oscillations which spread
also away from the square wave. This is improved upon by the dissipative term, and the
modified leapfrog performs almost as well as the Lax–Wendroff scheme in this case.

The display in Figure 5.5 indicates that even for a fine discretization (finer than is
typically affordable in complex applications) there is excessive smoothing in the Lax–
Friedrichs scheme, and the Gibbs phenomenon (i.e., the oscillations in the approximate
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Figure 5.4. Solving ut − ux = 0 starting from a square wave, using μ = 0.5 and
h = 0.01π . The exact solution at t = 1 is plotted, together with the approximate results.
The usual piecewise linear interpolation is employed between mesh values: this does not
generate any spurious maxima or minima.

solution near the discontinuities) in the other schemes does not disappear. The leapfrog
scheme is bad again, and the added dissipativity improves it, but not beyond what is achieved
by the Lax–Wendroff scheme.

The solution profile for the Lax–Friedrichs scheme in Figure 5.4 features an annoying
staircasing effect which is the result of the fact that this scheme can be split into odd and
even parts: only solution variables vn

l with even l participate in forming vn+1
j for odd j , and

vice versa. There are ways to fix this, though. For instance, a smoother curve of the same
basic accuracy can be obtained by simple postprocessing: at tN where we wish to display
the results, replace vN by ṽN , where

ṽN
j = 1

4
[vN

j−1 + 2vN
j + vN

j+1]. (5.10)

Although this may smooth true discontinuities somewhat, there is nothing close to discon-
tinuity in the case of the Lax–Friedrichs scheme anyway.



root
2008/5/5
page 162

�

�

�

�

�

�

�

�

162 Chapter 5. Variable Coefficient and Nonlinear Problems

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5
u

Exact
Lax−Friedrichs
Lax−Wendroff

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

x

u

Exact
Leapfrog
Dissipated LF, ε=.5

Figure 5.5. Solving ut − ux = 0 starting from a square wave, using μ = 0.5 and
h = 0.001π . The exact solution at t = 1 is plotted, together with the approximate results.

5.2.3 Upwind scheme and the modified PDE

The results in Example 5.6 are typical for problems with discontinuous solutions. Generally,
the schemes we have seen so far are simply not sufficiently good for such problems. Note
that for nonlinear hyperbolic PDEs discontinuities may develop in the solution even if the
initial and boundary data are smooth! Essentially, methods that are based on a fixed spatial
discretization coupled with a time discretization are adequate for parabolic problems and for
hyperbolic problems with smooth solutions. But when faced with a hyperbolic problem with
some solution discontinuities, the problem’s characteristic directions must be taken more
into account. This implies that the spatial discretization requires “individual attention” at
each mesh point.

The upwind scheme featured in Exercise 1.5 is a discretization of this more elaborate
sort. For the advection equation ut + aux = 0 it is defined by

vn+1
j = vn

j − μa

{
(vn

j+1 − vn
j ), a < 0,

(vn
j − vn

j−1), a ≥ 0.
(5.11)

The name “upwind” becomes more intuitive if we imagine a variable coefficient a(t, x) that
may change sign. The discretization stencil then depends on the location in time and space.
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Figure 5.6. Solving ut − ux = 0 starting from a square wave, using μ = 0.5 and
either (i) h = 0.01π (upper plate) or (ii) h = 0.001π (lower plate). The exact square wave
solution at t = 1 is plotted, together with the approximate solution.

Example 5.7 Repeating the experiments of Example 5.6 using (5.11) yields the results
displayed in Figure 5.6.

We see that this upwind scheme exhibits a desirable behavior similar to the Lax–
Friedrichs one, with the obtained profiles being sharper. These are arguably the best results
we have in the present chapter for problems with solution discontinuities.

Indeed, the upwind and the Lax–Friedrichs schemes have a number of properties in
common. The upwind scheme has order (1, 1) and, writing it as

vn+1
j = vn

j − μ|a|vn
j + μ|a|vn

j−sign(a) (5.12a)

= vn
j − μa

2
(vn

j+1 − vn
j−1) + μ|a|

2
(vn

j+1 − 2vn
j + vn

j−1), (5.12b)

we see from (5.12a) that it is monotone (has nonnegative coefficients) provided the CFL
condition holds. This yields the bound (5.9), which guarantees no spurious oscillations in
the computed approximate solution.

Additional insight may be obtained by considering the modified PDE, developed next.
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Modified PDE

Let us recall the definitions of local truncation error (3.29) and order of accuracy (3.30). To
derive or show the order of a given method one uses Taylor expansions, as in Example 3.10
and many exercises. Thus, the truncation error is typically written as a sum of two leading
terms of size O(kp1) and O(hp2), plus higher order terms. These leading order terms involve
solution derivatives, of course, so incorporating them may suggest a modified PDE that the
given discretization approximates more closely than it does the intended one. The properties
of such a modified PDE may then shed light on our numerical method.

To see how this works consider the upwind scheme for the advection equation with
a < 0. Then the scheme (5.11) boils down to (1.15a). We next write

u(t + k, x) = u + kut + k2

2
utt + k3

6
uttt + · · · ,

u(t, x + h) = u + hux + h2

2
uxx + h3

6
uxxx + · · · ,

τ = u(t + k, x) − u

k
+ a

u(t, x + h) − u

h

=
[
ut + k

2
utt + k2

6
uttt + · · ·

]
+ a

[
ux + h

2
uxx + h2

6
uxxx + · · ·

]
.

The expansions are about the point (t, x), and we omit this argument when it arises above.
Now, canceling out ut = −aux yields the usual order (1, 1) for this upwind method. Further,
however, we apply the differential equation again to obtain utt = a2uxx . The leading terms
of the local truncation error can therefore be written as −νuxx , where ν = − 1

2 [ka2 + ha],
or

ν = h

2μ
(μ|a| − μ2a2). (5.13a)

Since τ+νuxx = O(k2)+O(h2), the same upwind method may be viewed as approximating
to a higher order the advection-diffusion equation

ut + aux = νuxx . (5.13b)

There is dissipation in the modified, parabolic PDE (5.13b), and correspondingly there is
attenuation of high wave number amplification factors in this scheme.

Exercise 7 shows that a similar modified PDE but with the larger value ν = h
2μ

(1 −
μ2a2) is obtained for the Lax–Friedrichs scheme. Thus, both these schemes can be seen as
simple discretizations resulting from adding an artificial viscosity, or artificial diffusion
term to the hyperbolic PDE which is the advection equation.

Whereas the Lax–Friedrichs scheme generalizes automatically to systems of conser-
vation laws such as (9.2), the generalization of the upwind scheme requires a lot of attention.
We leave this to Chapter 10. But note that when it is applicable, the upwind scheme adds
less artificial diffusion (less since the CFL condition μ|a| ≤ 1 must hold in any event) and
produces sharper, nonoscillatory solution profiles. Note that for the Lax–Friedrichs scheme
there is relatively more artificial diffusion as k gets smaller with h fixed. Its corresponding
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results in Figures 5.4 and 5.5 could be improved by selecting μ = 0.9 instead of μ = 0.5.
But this is not always possible in more complex situations; see Example 10.10.

The Lax–Wendroff scheme (5.3a) can also be seen as a higher order (specifically,
third order) approximation to a modified PDE (5.26b) (see Exercise 7), but that modified
equation involves uxxx , not uxx , and the resulting PDE is a dispersive, hyperbolic equation
which does not “control” the oscillations.

For more on modified PDEs see, e.g., [137, 134]. Care must be taken to use this tool
rigorously. We have not done this here and are using modified PDEs only to get a feel for
the relative performance of different methods.

5.2.4 Box and Crank–Nicolson

Next we introduce two schemes that are not dissipative but are energy conserving (i.e.,
the amplification factors equal 1 in magnitude for all wave numbers). They are also both
implicit and thus need not obey the CFL condition.

The Crank–Nicolson scheme for the hyperbolic system is obtained as a limit of the
same scheme applied to the parabolic problem, i.e., the trapezoidal method (2.8) is applied
in time. This yields (

I + 1

4
μAD0

)
vn+1

j =
(

I − 1

4
μAD0

)
vn

j , (5.14)

with μ = k/h. The matrix A should be evaluated as An+1
j in the left-hand term and as

An
j in the right-hand term. Alternatively, we can apply the midpoint rule (2.12) instead and

evaluate A = A
n+1/2
j in both sides of the equation; see Chapter 2. Some prefer the latter

variant, although there is no huge difference. A variant for conservation laws can again be
written down naturally.

The two variants of Crank–Nicolson coincide in the constant coefficient case and the
scheme is again energy conserving. It is possible to add a dissipative term to the Crank–
Nicolson scheme by modifying (5.14) into(

I + 1 + ε

4
μAD0

)
vn+1

j =
(

I − 1 − ε

4
μAD0

)
vn

j , (5.15)

where 0 ≤ ε = O(kh). This relates to the θ -method of Exercise 2.2. Moreover, stability
for variable coefficient problems is unconditional. However, the scheme is also implicit,
unlike the modified leapfrog, which is explicit.

Example 5.8 Consider the problem

ut + aux = σuxx,

u(0, x) =
{

1 x ≤ 0,

0, x > 0,
u(t, −π) = 1, u(t, π) = 0,

which we wish to integrate from t = 0 to t = 1.
This is a parabolic problem for σ > 0, but if σ � 1, then the PDE is “almost

hyperbolic.” Specifically, with a = −1 it is “almost” the same advection equation that
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gives rise to Figure 1.3. Thus, we expect the solution to look more like the latter than like
the one depicted in Figure 1.4. Let us then set a = −1, σ = 10−3.

The familiar Crank–Nicolson scheme reads(
1 + ka

4h
D0 − kσ

2h2
D+D−

)
vn+1

j =
(

1 − ka

4h
D0 + kσ

2h2
D+D−

)
vn

j , 1 ≤ j ≤ J,

and it boils down to the scheme (5.14) introduced above when σ = 0.
Using the boundary conditions to close off the system in space, we can propagate it

in time. The tridiagonal matrix that appears at the left-hand side for the implicit method
can be assembled and decomposed once, and then for each time step only a quick forward-
backward substitution is required. We first calculate an accurate solution by employing
a fine discretization with step sizes k = .0001, h = .0001π . The result is plotted in
Figure 5.7(a). Indeed, the solution resembles the step function of Figure 1.3.

But taking very small, and hence many, steps in x and t does not seem right for such
a simple looking solution. Hence we next try increasing the spatial step size to h = .01π

and the time step size to k = .01. Note that both these steps are larger than σ ; hence we
are really looking in Figure 5.7(b) basically at what the Crank–Nicolson scheme does for
the advection equation. It is not surprising to observe again the artificial wiggles near the
somewhat smoothed discontinuity, because the scheme has no dissipativity when σ = 0.

Next consider again the upwind scheme for the advection equation. To its right-hand
side we add kσ

h2 D+D−vn
j , discretizing the term σuxx in a forward Euler fashion. This is easy

and natural with the form (5.12b)! We obtain the scheme

vn+1
j = vn

j − ka

2h

(
vn

j+1 − vn
j−1

)+
[
kσ

h2
+ k|a|

2h

] (
vn

j+1 − 2vn
j + vn

j−1

)
.

Thus, the actual diffusion is added to the artificial diffusion. The amplification factor of this
scheme can readily be calculated to yield

g(ζ ) = 1 − ı
k

h
a sin(ζ ) − 4

k

h
|a|b sin2(ζ/2), b =

[
σ

|a|h + 1

2

]
,

and for parameters like the ones we are using stability is ensured if all is well at ζ = π , i.e.,
if we restrict k to satisfy

k ≤ h

2|a|b .

This restriction is only slightly worse than the CFL condition for the case σ = 0, and it
holds for the above choices of σ, a, h, and k.

The result in depicted in Figure 5.7(c). Although the sharp front is smoothed some-
what, it looks much more pleasing than Figure 5.7(b).

It can be argued that instead of kσ
h2 + k|a|

2h
we ought to have taken max{ kσ

h2 ,
k|a|
2h

}. The
difference in the result here is not huge, but the latter expression yields a smoother transition
from artificial to real diffusion as σ grows. We defer further discussion and demonstration
to Section 10.6.
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(c) Upwind, k = .01, h = .01π

Figure 5.7. Solving an “almost hyperbolic” parabolic problem, Example 5.8.
When the spatial step size is large enough so that h � σ , the Crank–Nicolson scheme
develops wiggles while the modified upwind scheme does not.

And now on to something different. Let us introduce the only symmetric scheme
in this chapter that is not based on the noncompact, long centered difference D0. The box
scheme is described in [137], although its roots are much older [143, 107, 165]. This scheme
treats time and space locally in a similar fashion (as does the leapfrog scheme, incidentally),
applying short differences to both over a control volume.

Indeed, each conservation law (5.4) can be considered as the divergence in (t, x) of
the “flux” vector ⎛⎝u

f

⎞⎠
equated to 0. Integrating (5.4) over the control volume V = [tn, tn+1] × [xj , xj+1] (from
where the name “box” derives its origin, especially when envisioned in more than one space
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dimension), and applying the Gauss divergence formula, we obtain as in Example 3.4

un+1
j+1/2 − un

j+1/2 + fn+1/2
j+1 − fn+1/2

j = 0, (5.16a)

where, e.g.,

un
j+1/2 =

∫ xj+1

xj

u(tn, x)dx, fn+1/2
j =

∫ tn+1

tn

f(u(t, xj ))dt. (5.16b)

For the integrals in (5.16b) we apply the trapezoidal rule, which introduces a truncation
error of order (2, 2) and yields the formula

vn+1
j+1 + vn+1

j − vn
j+1 − vn

j + μ
(

fn+1
j+1 + fn

j+1 − fn+1
j − fn

j

)
= 0. (5.17)

The formula (5.17) can be written neatly using the short difference and averaging operators
(see Exercise 8).

Like Crank–Nicolson this method is centered, second order accurate, energy con-
serving, unconditionally stable, and (alas) implicit. Unlike Crank–Nicolson and leapfrog,
it is compact, avoiding the long difference D0. We return to this point in Chapter 7.

Example 5.9 We apply the box scheme to the simple advection equation with initial condi-
tions as in Examples 5.5 and 5.6. The results for the Crank–Nicolson scheme are similar and
not better, so we omit them. Results for the smooth initial conditions appear in Table 5.1.
For μ < 1 they are comparable to (and slightly better than) the results for the Lax–Wendroff
or leapfrog schemes. The latter are therefore preferable, because they are cheaper per step,
unless there is reason to want the time step to be significantly larger than the spatial step:
as can be seen in the table, for the choice μ = 5.0 the box scheme alone produces decent
results.

When applying the box scheme to the same problem with the square wave as initial
conditions, the results resemble qualitatively those for the leapfrog scheme (see Figures 5.4
and 5.5)—so much so that they are not reproduced here. It should come as no surprise
at this point that conservative methods like these do not perform well in the presence of
discontinuities, as they contain no damping mechanism for high wave number modes.

5.3 Nonlinear stability and energy methods
Strictly speaking, the techniques introduced hitherto for the stability analysis of difference
schemes do not extend to nonlinear problems.

Practically, we can still freeze coefficients and check stability. For instance, for the
inviscid Burgers’s equation ut + 1

2 (u2)x = ut + uux = 0, we “freeze” u = ũ, where ũ

takes on various values from the (somehow estimated) range of u, and check stability for
the resulting advection equation ut + ũux = 0. A stability restriction of the form
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k <
h

max |u|
is sure to follow, upon using one of the explicit, conditionally stable methods described so
far.

While freezing coefficients in this manner provides a useful practical check, secur-
ing linear stability generally does not guarantee stability for the nonlinear problem. The
discrepancy between the linear and nonlinear situations is of importance especially when
the computed solution is not smooth, as in the case of the leapfrog method in Examples
5.1 and 5.6. Then some nonlinear instability phenomena may arise, as we have seen in
Example 5.1.

For nonlinear problems we may have to directly check boundedness of the approximate
solution to guarantee stability, which is occasionally possible using an energy method.

5.3.1 Energy method

This is a name for a loosely defined collection of techniques. The objective is to show
stability directly, by ensuring that

‖v(nk, ·)‖
does not increase too much (in the l2-norm) with n.

In Chapter 1 we note that the stability requirement of a numerical scheme corresponds
to the well-posedness of the differential problem. Here, too, let us discuss the differential
problem first, as in Morton and Mayers [137].

The basic observation is very simple: upon multiplication of ut by 2u and integration
we have ∫ ∞

−∞
2uutdx = ∂

∂t

∫ ∞

−∞
u2(t, x)dx.

Therefore, applying the same procedure for the general, possibly nonlinear initial value
problem

ut = f (t, x, ux, uxx, uxxx, . . .), −∞ < x < ∞, t > 0, (5.18a)

we have that if ∫ ∞

−∞
uf (t, x, ux, uxx, uxxx, . . .)dx ≤ 0, (5.18b)

then ‖u(t)‖ ≤ ‖u(0)‖ for all t ≥ 0, and stability in the L2-norm follows. Moreover, if it
turns out that ∫ ∞

−∞
uf (t, x, ux, uxx, uxxx, . . .)dx = 0, (5.18c)

then we have the conservation property that ‖u(t)‖ = ‖u(0)‖ for all t ≥ 0. The basic
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tool for obtaining such estimates is integration by parts.23 This involves BCs, in general,
but for the pure IVP we may assume that u and derivatives as required vanish at ±∞ or are
periodic. The above can certainly be developed in a similar way for finite intervals in x.

Example 5.10 For the heat equation (yes, again) ut = uxx , we note that (uux)x = uuxx +
(ux)

2 and obtain ∫ ∞

−∞
uuxxdx = −

∫ ∞

−∞
(ux(t, x))2dx ≤ 0.

Therefore (5.18b) holds. Indeed we can see that ‖u(t)‖ actually decreases with t barring
trivial cases.

Next, let us turn to the nonlinear KdV equation (5.1). Using integration by parts once
again (NB (u3)x = u(u2)x + 2u2ux), we have∫

u(2uux)dx =
∫

u(u2)xdx = −
∫

2u2uxdx.

This integral equals its negative and hence must vanish, so (5.18c) holds for the case ν = 0.
Likewise, we can show that ∫

uuxxxdx = 0,

hence (5.18c) holds for ν �= 0 as well. The KdV solution therefore satisfies norm conser-
vation

‖u(t)‖ = ‖u(0)‖ ∀t.

Note that for ν = 0 and α = 1/2 we have the Burgers equation. This equation also
conserves the spatial L2-norm so long as the solution is smooth. In general, if the solution
has (or develops) discontinuities, then of course the above manipulations cannot be carried
out and all bets are off. As it turns out the KdV solution exists for all times but the Burgers
solution typically does not.

Finally, consider the nonlinear Schrödinger equation from Exercise 1.7,

ıψt = −ψxx + V ′(|ψ |)ψ.

Here, ψ(t, x) is complex valued, |ψ |2 = ψ̄ψ , and the L2-norm is defined by ‖ψ(t)‖2 =∫
ψ̄(t, x)ψ(t, x)dx. Therefore

∂

∂t
‖ψ‖2 =

∫
ψ̄ψt + ψ̄tψ = 2Re

∫
ψ̄ψt .

23If f (x) and g(x) are differentiable on an interval [a, b], then

f (b)g(b) − f (a)g(a) =
∫ b

a

(fg)′dx =
∫ b

a

f ′gdx +
∫ b

a

fg′dx;

hence ∫ b

a

f ′gdx = −
∫ b

a

fg′dx + f (b)g(b) − f (a)g(a). (5.19)

If f (a)g(a) = f (b)g(b), then the boundary terms disappear in (5.19), and we can write it as

(f ′, g) = −(f, g′).
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So, we must check Re {ı ∫ ψ̄(ψxx − V ′(|ψ |)ψ)}. By Exercise 9, however, this quantity
vanishes. Thus, norm conservation (5.18c) holds here as well.

Moving on to the discrete case, let v and w be mesh functions (which can be viewed
as possibly infinite vectors). Their components may be complex numbers. Define the inner
product and norm as in (1.14):

(v, w) = h

∞∑
j=−∞

vj w̄j , ‖v‖2 = (v, v). (5.20)

Note that the infinite summation range can become finite upon use of periodic or other
boundary conditions. The factor h scales the norm properly in the case that the interval of
integration in x is of length ≈ 1.

Now, for a semi-discretization of a PDE whose solution does not grow in time we
obtain stability in the strict form ‖v(tn+1)‖ ≤ ‖v(tn)‖ if we can show that

∂

∂t
(‖v‖2) ≤ 0.

The main tool is summation by parts. The method works for nonlinear problems and in
the presence of boundary conditions. But it is not a simple, general prescription for stability
checking that can be automated. Below we proceed with an example and a few additional
comments.

We can establish the following identities involving inner products:

1. For the time derivative

∂

∂t
(‖v‖2) = (v, vt ) + (vt , v) = (v, vt ) + ¯(v, vt ) = 2Re (v, vt ).

So

∂

∂t
(‖v‖2) = 2Re (v, vt ). (5.21a)

2. For the centered difference operator

(v, D0w) = h
∑

vj (w̄j+1 − w̄j−1) = h
∑

w̄j (vj−1 − vj+1).

(It should be clear how the ends of a finite sum would have to be carried along for
nonzero BC.) So

(v, D0w) = −(D0v, w); hence Re (v, D0v) = 0. (5.21b)

3. For one-sided operators we can show in a similar fashion that

(v, D+w) = −(D−v, w). (5.21c)
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4. For any difference operator R

Re (v, Rv) = 0 ⇐⇒ Re (v, Rw) = −Re (Rw, v) ∀ v, w ∈ l2. (5.21d)

We leave the proof to Exercise 10.

Example 5.11 Consider again the inviscid Burgers equation where it has a differentiable
solution. We saw in Example 5.4 that it can be written in two forms, conservative and
nonconservative. We now write a general combination of the two,

ut + θ

2
(u2)x + (1 − θ)uux = 0,

where θ is a weight parameter, 0 ≤ θ ≤ 1. A centered semi-discretization of the latter form
reads

vt + 1

2h

[
θ

2
D0(v

2) + (1 − θ)vD0v

]
= 0.

The semi-discretization solution, unlike that of the PDE, does depend on the value of the
parameter θ . We now take the inner product of the latter equation (which holds at each
mesh point) with the mesh function v. This gives

(v, vt ) + 1

2h

[
θ

2
(v, D0(v

2)) + (1 − θ)(v, vD0v)

]
= 0.

By (5.21b), (v, D0(v
2)) = −(D0v, v2), so

(v, vD0v) = (v2, D0v) = (D0v, v2) = −(v, D0(v
2)).

Taking
θ = 2/3

gives θ
2 = 1 − θ , which therefore yields (v, vt ) = 0; hence by (5.21a)

∂

∂t
(‖v‖2) = 0.

We have obtained nonlinear stability (indeed, the conservation of ‖v(t)‖ !) for the semi-
discretization for Burgers’s equation, so long as the exact solution is smooth, upon using a
seemingly unlikely combination of conservative and nonconservative forms!

It was further shown [76] that the semi-discretization with θ = 0 can be unstable.
Moreover, passing to the full discretization, it can be shown that using the leapfrog scheme
may still yield some instability, as in Example 5.1.

However, for Crank–Nicolson with θ = 2/3 stability in the l2-sense is guaranteed.
Consider the midpoint version

1

k
(vn+1

j − vn
j ) + 1

2h

[
θ

2
D0(v

n+1/2
j )2 + (1 − θ)v

n+1/2
j D0v

n+1/2
j

]
= 0,
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where

v
n+1/2
j = 1

2
(vn

j + vn+1
j ).

Multiplying through by 2kv
n+1/2
j and summing up on j we have

‖vn+1‖2 − ‖vn‖2 + μ

[
θ

2

(
v

n+1/2
j , D0(v

n+1/2
j )2

)
+ (1 − θ)

(
v

n+1/2
j , v

n+1/2
j D0v

n+1/2
j

)]
= 0.

Repeating the argument above, we obtain that the term that μ multiplies vanishes when
θ = 2/3, whence

‖vn+1‖ = ‖vn‖ ∀ n ≥ 0.

A class of schemes of the form

(I − kR1)v
n+1 = 2kR0v

n + (I + kR1)v
n−1 (5.22)

is considered in [110, 76], where R0 stands for a symmetric difference operator such as D0

and the part involving R1 corresponds to an implicit discretization. Thus we have in (5.22)
a family of implicit-explicit discretizations. However, the form involving the time level
n − 1 is not always natural, so we refer the reader to the cited literature for further results;
see also Section 7.3 for some numerical experiments.

5.3.2 Runge–Kutta for skew-symmetric semi-discretizations

In this subsection we apply simple energy estimates to investigate the properties of time-
differencing methods for the semi-discretization

v′ = vt = Lv, (5.23)

where L is a real J × J , possibly large, skew-symmetric matrix

LT = −L.

The matrix L may arise as a result of a spatial discretization of a hyperbolic PDE system
with a symmetric coefficient matrix; see Exercise 4.10. A relevant reference is Levy and
Tadmor [118], although we are really following no one in particular here.

It is not difficult to verify that the eigenvalues of L all satisfy Re λi = 0, and moreover

‖L‖ = ρ(L) = max
i

|λi |.

Note also that for any real vector x ∈ R
J

xT Lx = (Lx, x) = −(x, Lx) = −xT Lx = 0.

Finally, it also holds that

‖v(t)‖ = ‖v(0)‖ ∀ t ≥ 0.
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These properties follow directly from the skew-symmetry of L and hold even if L = L(t, v).
Next consider the implicit midpoint method (2.12) for the time discretization

vn+1 − vn

k
= L

vn+1 + vn

2
. (5.24)

(Evaluate L = L(tn+1/2, vn+1+vn

2 ) if it is not constant.) Multiplying both sides of (5.24) by
(vn+1 + vn)T gives

‖vn+1‖2 − ‖vn‖2 = k

2
(vn+1 + vn)T L(vn+1 + vn) = 0.

Hence we obtain not only unconditional stability (even for the nonlinear problem!) but also
“energy” conservation

‖vn‖ = ‖v0‖ ∀ n ≥ 0.

The present paragraph makes a point that is a bit more technical but also elegant. The
result for the midpoint method can also be extended for higher order implicit Runge–Kutta
methods based on Gauss points (zeros of the Legendre polynomial). These methods are
equivalent to piecewise polynomial collocation and have order p = 2l when l collocation
points are used (see Sections 2.2 and 6.2.1), as well as [14]. Denoting the collocation solution
by v�(t) (it is a polynomial on each time-interval [tn, tn+1] and it satisfies v�(tn) = vn ∀n)
and the collocation points by tnj , j = 1, . . . , l, we have

‖vn+1‖2 − ‖vn‖2 = 2
∫ tn+1

tn

vT
�(t)v′

�(t)dt = 2k

l∑
j=1

bj vT
�(tnj )v′

�(tnj )

= 2k

l∑
j=1

bj vT
�(tnj )Lv�(tnj ) = 0.

The crucial step in the above derivation is the equality of the integral to the sum (bj are
quadrature weights), and this holds because vT

�v′
� is a polynomial of degree (at most) 2l −1

and the points are Gaussian; see Section 2.12.4 and [14].
The big disadvantage of implicit Runge–Kutta methods is that they are implicit. The

time step typically allowed by explicit methods may not be unbearably small as it is for
parabolic problems, and the matrix L is not symmetric positive definite (which makes
solving linear systems of equations harder); hence there is an incentive to stay with explicit
methods. An inspection of absolute stability regions for such methods (see, e.g., Figure 2.6)
suggests that among p-stage methods of order p only third and fourth order methods have
a chance to be suitable, because their region of absolute stability contains a segment of the
imaginary axis.

Let L be constant. Then for the explicit Runge–Kutta methods considered here we
can write

vn+1 =
p∑

i=0

ki

i! L
ivn.
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See, e.g., [14, 118]. For instance, all four-stage, fourth order Runge–Kutta methods coincide
for this constant coefficient case. Thus

‖vn+1‖2 − ‖vn‖2 =
(

p∑
i=0

ki

i! L
ivn,

p∑
i=0

ki

i! L
ivn

)
− (

vn, vn
)
.

Now, notice that

(Liv, Lj v) =
{

0, |i − j | odd,

(−1)|i−j |/2‖L(i+j)/2v‖2, |i − j | even.

For the forward Euler method we have

‖vn+1‖2 − ‖vn‖2 = k2‖Lvn‖2,

and no stability is possible for any k > 0. Indeed, this agrees with the fact that the absolute
stability region of the forward Euler method does not intersect the imaginary axis.

For the fourth order, “classical” Runge–Kutta method RK4, however, there is more
hope. We obtain

‖vn+1‖2 − ‖vn‖2 = k2‖Lvn‖2 + k4

4
‖L2vn‖2 + k6

36
‖L3vn‖2 + k8

576
‖L4vn‖2

− k2

2
‖Lvn‖2 + k4

24
‖L2vn‖2 − k4

6
‖L2vn‖2

− k2

2
‖Lvn‖2 − k6

48
‖L3vn‖2 − k4

6
‖L2vn‖2 + k4

24
‖L2vn‖2

− k6

48
‖L3vn‖2 = k6

72

(
−‖L3vn‖2 + k2

8
‖L4vn‖2

)
.

Thus, we have stability by the energy method

‖vn+1‖2 ≤ ‖vn‖2,

provided that

k ≤ 2
√

2

ρ(L)
. (5.25)

Example 5.12 We return to the simple advection equation

ut − ux = 0

with periodic boundary conditions u(t, π) = u(t, −π) and employ a centered difference
method in space and the fourth order classical Runge–Kutta method in time. In space we
use two discretizations:

i. The second order approximation D0 used so far almost exclusively,

D0vj

2h
= vj+1 − vj−1

2h
,
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Table 5.2. Errors using the fourth order classical Runge–Kutta method in time
and two centered discretizations in space, applied to the equation ut −ux = 0 with u0(x) =
sin ηx. Note that k = μh.

η h μ Error using D0 Error using D̃0

1 .01π 0.5 1.6e-4 3.3e-8

.001π 0.5 1.6e-6 3.3e-12

.001π 2.0 1.6e-6 1.6e-11

10 .01π 0.5 1.6e-1 3.2e-3

.001π 0.5 1.6e-3 3.3e-7

.001π 2.0 1.6e-3 1.6e-6

ii. The fourth order approximation D̃0 = D0(1 − 1
6D+D−),

D̃0vj

2h
= 1

12h
(−vj+2 + 8vj+1 − 8vj−1 + vj−2).

Handling the extra neighbors when using D̃0 near the boundaries poses no problem here
because of the periodic boundary conditions which imply that u(t, π + δ) = u(t, −π + δ),
and we can take δ = ±h; see Figure 1.11.

We try three types of initial conditions:

1. For the smooth initial data
u0(x) = sin ηx,

Table 5.2 displays results to be compared to those in Tables 1.1 and 5.1. Note that
the error is only second order when using D0: indeed, we have a local truncation
error O(k4) + O(h2) with k = O(h) and solution derivatives of a similar size in
x and t , so it is not surprising that the O(h2) term dominates the error. The results
are similar to those obtained in Table 1.1 with the leapfrog scheme. Note, though,
that μ is allowed to climb up to ≈ 2.8, and the results for k = 2h reflect a stable
scheme. When switching to D̃0 we have a scheme of order (4, 4), and indeed the
error decreases like k4 as the mesh is refined.

2. Upon using the square wave of Example 5.6 and μ = 0.5 we obtain results which are
qualitatively similar to those found using the leapfrog scheme; see Figures 5.4 and
5.5. Choosing D0 or D̃0 does not make much difference here. Increasing μ to about
μ = 2 amounts to adding dissipation, in view of the absolute stability region of the
Runge–Kutta method (see Figure 2.6 or Figure 6.11). Indeed, the resulting plots look
somewhat like the leapfrog scheme with dissipation added. The results are not better,
however, than those displayed in Figures 5.4 and 5.5 for the Lax–Wendroff scheme,
so they are omitted.

3. We also tried
u0(x) = sin(50x)e−50x2

,

as discussed further in Example 7.1. The results are qualitatively similar to those
obtained for the square wave in relation to other schemes. This is true so long as the
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spatial discretization is too coarse to properly resolve the initial solution profile—see
Figures 7.2 and 7.3. However, upon choosing h = .001π the solution profile is
sufficiently resolved and the maximum errors at t = 1 using μ = 2 are 2.3e-1 using
D0 and 7.1e-3 upon using the more accurate D̃0.

5.4 Exercises
0. Review questions

(a) Why is the instability in Example 5.1 “unexpected”?

(b) Define (strict) dissipativity. Is it necessary for stability for strictly hyperbolic
PDEs? Is it sufficient?

(c) What is a conservation form? Is the PDE ut + a(u)ux = 0 in conservation
form?

(d) The Lax–Wendroff and leapfrog schemes are both second order accurate in
time and space, and both require the CFL condition to hold in order to produce
meaningful results. What is the basic difference between them in terms of
stability?

(e) What is a monotone scheme, and why is this property desirable?

(f) Name one advantage and one disadvantage of the Lax–Friedrichs scheme in
comparison to the Lax–Wendroff scheme for hyperbolic conservation laws.

(g) Define the upwind scheme for the nonlinear advection equation ut +a(u)ux = 0.
Would you expect the cost of carrying out a step of the upwind scheme to be
lower or higher than that of the leapfrog scheme? Explain.

(h) When simulating fluid flow in computer graphics people usually apply some
variant of the upwind scheme. Why?

(i) What is a modified PDE? Illustrate its use.

(j) What is different in the box scheme from all other schemes proposed in this
chapter? Under what circumstances can this scheme be advantageous?

(k) What is an “energy method” for proving stability? Can you think of an in-
stance in which such a method would help where the usual stability analysis is
unsatisfactory or incomplete?

(l) Describe the method of collocation at Gaussian points. How does it relate to
Runge–Kutta methods?

(m) Describe two advantages that RK4 has over forward Euler when applied to the
semi-discretization vt = Lv with L skew-symmetric.

1. Prove that the Lax–Wendroff scheme (5.5) is dissipative by showing that

|μl(ζ )| ≤ 1 − δl|ζ |4,
where

δl = 1

4
μ2|al|2(1 − μ2|al|2).

Try to do this without consulting [133].
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2. Show that the Lax–Friedrichs scheme is not dissipative in the sense that (5.2) does
not hold for any δ > 0. However, many high-frequency amplification components
are damped nonetheless.

3. Show that the backward Euler scheme for a hyperbolic system

vn+1
j = vn

j − 1

2
μAn+1

j (vn+1
j+1 − vn+1

j−1)

satisfies the von Neumann condition for any μ ≥ 0. And yet, like the Lax–Friedrichs
scheme, it is not strictly dissipative and it is not “energy conserving.”

4. Write a program that solves the advection problem ut − ux = 0 using the Lax–
Friedrichs, Lax–Wendroff, and box schemes. Try the initial data

u0(x) =
{

1 − |x|, |x| ≤ 1,

0, |x| > 1

(cf. [159]). Use periodic boundary conditions on [−π, π ]. Keeping μ = 0.5 fixed,
run for h = .01π and h = .001π . Plot the resulting solutions at t = 1 and tabulate
maximum errors. What are your observations?

5. Show that the Richtmyer variant (5.5b) of the Lax–Wendroff method can be written
as an explicit midpoint method,

vn+1
j = vn

j − μ
(

f
(

vn+1/2
j+1/2

)
− f

(
vn+1/2

j−1/2

))
,

where vn+1/2
j+1/2 is obtained by a Lax–Friedrichs half-step.

6. The Lax–Friedrichs and Lax–Wendroff schemes, being explicit one-step, can be writ-
ten as a forward Euler differencing of a semi-discretization. Consider the same setting
and answer the same questions as in Exercise 4.10.

(For this exercise it suffices to calculate the eigenvalues using some canned routine
for a small instance, say, J = 10 or J = 100.)

7. (a) Show that the modified PDE for the Lax–Friedrichs scheme for the advection
equation is

ut + aux = h

2μ

(
1 − μ2a2

)
uxx . (5.26a)

(b) Show that the modified PDE for the Lax–Wendroff scheme for the advection
equation is

ut + aux = −ah2

6

(
1 − μ2a2

)
uxxx . (5.26b)

8. Show that the box scheme (5.17) can be written as

k−1δtμxvn+1/2
j+1/2 + h−1μtδxfn+1/2

j+1/2 = 0, (5.27)

where μx is the averaging operator in x, δt is the short centered difference in t , etc.
(Beware of the clash of the μ’s!)
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9. Continuing Exercise 1.7 and Example 5.10, show that
∫

ψ̄(ψxx − V ′(|ψ |)ψ)dx is
real.

10. Prove (5.21d). Hint: Use no more than four lines in total.

11. Show that for the choice θ = 2/3,

θ

2
D0(v

2
j ) + (1 − θ)vjD0vj = vj−1 + vj + vj+1

3
D0vj .

Compare this with the discretization utilized in Example 5.1.

12. Let M be a real J × J symmetric positive definite matrix, and consider generalizing
(5.23) into

Mvt = Lv

with L skew-symmetric. Also, define the norm

‖w‖M = (wT Mw)1/2.

This is sometimes referred to as an “energy norm.”

(a) Show that
‖v(t)‖M = ‖v(0)‖M ∀ t ≥ 0.

(b) Show that the midpoint method (as well as higher order Gaussian collocation
methods) reproduce this “energy conservation”:

‖vn‖M = ‖v0‖M ∀ n ≥ 0.

(c) Consider a hyperbolic system with constant coefficients

ut + Aux = 0

with initial conditions and periodic BCs. Let T −1AT = 
, where 
 is diagonal
and real, and define

M̃ = T −T T −1.

Show that M̃ is symmetric positive definite and that M̃A is symmetric.

(d) For the hyperbolic system (where A is not necessarily symmetric) derive an
“energy conservation” rule which the Crank–Nicolson scheme reproduces.

13. Consider the problem

ut = wx, wt = ux, 0 ≤ x ≤ 2π, t ≥ 0,

with periodic BCs and the initial conditions w0(x) = 0, u0(x) = e−50(x−π)2
. The

exact solution satisfies u(2lπ, ·) = u0(·) for any integer l.

Write a program to solve this problem as follows. For the spatial discretization use
a centered, five-point, fourth order formula and for the time discretization use RK4.
Plot the solution component u at different time steps (in MATLAB use mesh). In a
separate figure plot the solution profile u(t, x) at two times, the initial time t = 0 and
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the final time t = tf . If tf = 2lπ for some integer l, then calculate least squares and
maximum error norms.

Run your program for tf = 8π with spatial steps h = 2−7π and h = 2−8π and with
the time steps k = h, k = 2h, and k = 3h for each h. What are your observations?

14. Consider the problem

ut = wx, wt = ux + νwxxt , 0 ≤ x ≤ 2π, t ≥ 0,

with periodic BC and the initial conditions w0(x) = 0, u0(x) = e−50(x−π)2
. The

parameter ν ≥ 0 is not large; set ν = .01 in your numerical experiments.

(a) Let us write the PDE system as the partial differential algebraic equation (PDAE)

ut = wx, (5.28a)

ψt = ux, (5.28b)

ψ = w − νwxx. (5.28c)

Show that the Cauchy problem for (5.28) is well-posed and that high wave
numbers are not attenuated (as for the case ν = 0).

(b) Write a program to solve this problem as follows. The algebraic condition in
time (5.28c) is discretized employing the usual three-point difference formula.
The other two equations are discretized as in Exercise 13. Thus, at t = 0 we get
{ψ0

j } directly from (5.28c). Then, at each step n we obtain un+1 and ψn+1 from
the explicit discretization of (5.28a), (5.28b), followed by solving a tridiagonal
system based on (5.28c) for wn+1.

Plot the solution component u at different time steps. In a separate figure plot
the solution profile u(t, x) at two times, the initial time t = 0 and the final
time t = tf . Run your program for tf = 8π with spatial steps h = 2−7π and
h = 2−8π and with the time steps k = h, k = 2h, and k = 3h for each h. What
are your observations?

15. Repeat Exercises 13 and 14, replacing RK4 by each of the following alternatives:

(a) The three-step Adams–Moulton method [180]. You can use the three-step
Adams–Bashforth as a predictor in a PECE arrangement (recall Section 2.7).
Use RK4 for the first few steps to obtain the necessary initial values.

(b) The four-step Adams–Moulton method. You can use the four-step Adams–
Bashforth as a predictor in a PECE arrangement.

What are your observations?
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Chapter 6

Hamiltonian Systems and
Long Time Integration

Differential systems often have some qualitative features that are of particular interest. Once
such a system is discretized for numerical simulation, the computed solution is expected
not only to approximate the differential system but also to approximately reproduce these
qualitative features. Depending on the circumstances, it may in fact be worthwhile to attempt
to reproduce these features more precisely than the differential solution itself. Methods for
doing the latter are generally clustered under the title geometric integration (GI). They
often give rise to more sophisticated mathematical analyses. Presently, however, most GI
enthusiasts hail from the ODE community, where such methods have proved useful. The
PDE community remains on the fence, in general, although the need to preserve important
solution features and reproduce physical laws has certainly been recognized in the numerical
PDE literature for decades. The present chapter, which is devoted to ODEs, and part of
the following chapter, where we try to apply some related concepts to nontrivial hyperbolic
PDEs in one dimension, should provide a good feeling for the applicability of some such
methods.

Perhaps the simplest instances of the above are differential systems with algebraic
invariants. These arise frequently in various applications, including but not limited to index
reduction in differential algebraic equations (DAEs); see Section 2.8 and [14]. The invariant
might represent conservation of energy, momentum, or mass in a physical system [153]. For
instance, the ODE in Example 2.8 has the invariant that the energy (u′)2 + ω2u2 is constant
for all t . (The initial values determine the constant.) This holds also for other, general
autonomous Hamiltonian systems to be considered further below. Attempting to satisfy
such invariants in addition to the discretized ODE leads to an overdetermined system, for
which only special discretizations, if any at all, would have an exact solution.

Here we concentrate on Hamiltonian systems and their numerical integration. This
is a very important class of problems in GI to which a lot of attention has been devoted
in recent years. There are good recent reference books available on this material, namely,
Hairer, Lubich, and Wanner [81] and Leimkuhler and Reich [115]. The lecture notes of
Budd and Piggott [41] are useful as well. A classical reference for the mathematical topic
is Arnold [3]. The early numerical work of Sanz-Serna and Calvo [150] has also been very
influential.

181
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Hamiltonian systems have the important property that the flows they induce are sym-
plectic. We explain what this is in Section 6.1. Special methods developed for their nu-
merical integration retain this property at the discrete level and are described in Section 6.2.
These methods are claimed to yield superior performance under certain conditions, espe-
cially when the time integration is relatively long. Since Hamiltonian systems describe
mechanical systems where energy is conserved rather than dissipated, we may well want to
integrate them over a long time period.

It must be said that symplectic methods were apparently “sold” rather heavily in the
1990s. Many of the papers describing them and other methods of GI seem to be absorbed
with the newness and the mathematical richness of the subject, stopping short of a sober
assessment of efficacy. We attempt to do this in a very limited way in Section 6.3 and also
in Section 6.4, where we briefly consider highly oscillatory problems.

As in Chapter 2 we denote differentiation by, e.g., y ′ = dy

dt
, and use subscripts, e.g.,

yn, for the numerical solution.

6.1 Hamiltonian systems
A Hamiltonian system consists of m = 2l differential equations

q ′
i = ∂H

∂pi

, (6.1a)

p′
i = −∂H

∂qi

(6.1b)

for i = 1, . . . , l, or, in vector notation (with ∇pH denoting the gradient of H with respect
to p, etc.),

q′ = ∇pH(q, p), p′ = −∇qH(q, p) .

The scalar function H(q, p), assumed to have continuous second derivatives, is the Hamil-
tonian. A simple instance of a Hamiltonian system is provided in Example 2.8, to which
we return in Example 6.1 below. A stiff spring pendulum is another, less simple instance of
a Hamiltonian system with

H(q, p) = 1

2
pT p + (φ(q) − φ0)

2 + ε−2(r(q) − r0)
2, (6.2)

where ε−1 � 1 is the stiffness constant. Here l = 2.
For a general, autonomous Hamiltonian, differentiating H with respect to time t and

substituting (6.1) gives
H ′ = ∇pH

T p′ + ∇qH
T q′ = 0,

so H(q, p) is constant for all t . A typical example to keep in mind is that of a conservative
system of particles. Then the components of q(t) are the generalized positions of the
particles, and those of p(t) are the generalized momenta. The Hamiltonian H in this case
is the total energy (the sum of kinetic and potential energies), and the constancy of H is a
statement of conservation of energy.

Next, consider an autonomous ODE system of order m = 2,

y′ = f(y),



root
2008/5/5
page 183

�

�

�

�

�

�

�

�

6.1. Hamiltonian Systems 183

with y(0) = (y1(0), y2(0))T ∈ B, for some set B in the plane. Each initial value y(0) = c
from B spawns a trajectory y(t) = y(t; c), and we can follow the evolution of the set B

under this flow,
S(t)B = {y(t; c) ; c ∈ B} .

We then ask how the area of S(t)B compares to the initial area of B: does it grow or shrink
in time? It is easy to see in linear problems that this area shrinks for asymptotically stable
problems and grows for unstable problems. Less easy to see, but which can be shown, is the
fact that the area of S(t)B remains constant, even for nonlinear problems, if the divergence
of f vanishes:

∇ · f = ∂f1

∂y1
+ ∂f2

∂y2
= 0.

This remains valid for m > 2 provided that ∇ · f = 0 with an appropriate extension of the
concept of volume in m dimensions.

Now, for a Hamiltonian system with l = 1,

q ′ = Hp, p′ = −Hq,

we have

∇ · f = ∂2H

∂p∂q
− ∂2H

∂q∂p
= 0;

hence the Hamiltonian flow preserves area. In more dimensions, l > 1, it turns out that the
area of each projection of S(t)B on a qi × pi plane, i = 1, . . . , l, is preserved, and this
property is referred to as a symplectic map.

Since a Hamiltonian system cannot be asymptotically stable, its stability (if it is stable,
which is true when H can be considered a norm at each t , e.g., if H is the total energy of
a friction free multibody system) is in a sense marginal. The solution trajectories do not
simply decay to a rest state, and their long-time behavior is therefore of interest. This leads
to some serious numerical challenges.

Example 6.1 The simplest Hamiltonian system is the linear harmonic oscillator. The
quadratic Hamiltonian

H = ω

2
(p2 + q2)

yields the linear equations of motion

q ′ = ωp, p′ = −ωq,

or ⎛⎝q

p

⎞⎠′

= ωJ

⎛⎝q

p

⎞⎠ , J =
⎛⎝ 0 1

−1 0

⎞⎠ .

Here ω > 0 is a known parameter. The general solution is⎛⎝q(t)

p(t)

⎞⎠ =
⎛⎝ cos ωt sin ωt

− sin ωt cos ωt

⎞⎠⎛⎝q(0)

p(0)

⎞⎠ .
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Hence, S(t)B is just a rotation of the set B at a constant rate depending on ω. Clearly, this
keeps the area of B unchanged.

Note that the eigenvalues of J are purely imaginary. Thus, a small “push” (i.e., a
perturbation of the system) of these eigenvalues toward the positive half-plane can make
the system unstable; see Figure 6.1.

z

Figure 6.1. The marginal stability of Hamiltonian systems. If an eigenvalue has
a negative real part, then we can draw a circle around it such that perturbations within
the circle stay stable. But for an imaginary eigenvalue we cannot draw such a circle. The
linear harmonic oscillator matrix ωJ has only imaginary eigenvalues.

In this simple example the geometric shape of B does not change: it merely gets
rotated under the transformation by the solution operator. This much does not hold in
general for symplectic maps, though.

In general, we can write the Hamiltonian system (6.1) as

y′ = J∇H(y), (6.3a)

where

y =
⎛⎝q

p

⎞⎠ , J =
⎛⎝ 0 I

−I 0

⎞⎠ . (6.3b)

The important properties of the matrix J are that it is skew-symmetric, i.e., J T = −J (see
the review in Section 1.3.2) and that it is nonsingular and constant in t .

Denote the Jacobian matrix

Y (t; c) = ∂y(t; c)
∂c

(6.4)
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with y(0; c) = c for some arbitrary initial time. The flow is called symplectic if the
following condition holds:

YT J−1Y = J−1 ∀t. (6.5)

For the Hamiltonian system we can differentiate (6.3a) with respect to c to obtain

Y ′ = J (∇2H)Y, Y (0) = I, (6.6)

where ∇2H stands for the Hessian matrix of H (and not a Laplacian). Differentiating
YT J−1Y with respect to t and substituting (6.6) then yields

d

dt
(Y T J−1Y ) = YT (∇2H)J T J−1Y + YT J−1J (∇2H)Y = 0.

Thus, YT J−1Y is constant, and since it equals J−1 at t = 0 the condition (6.5) holds and
we have proved that Hamiltonian systems produce symplectic flows.

It can be shown that symplecticity also implies a Hamiltonian flow [81]. These systems
possess many beautiful properties which do not usually hold for other, general systems
[81, 41, 150]. Hence, it is of great interest to preserve the property (6.5) in numerical
discretizations of Hamiltonian systems.

Let us freeze the coefficients in (6.6), as in Section 4.1. Exercise 2 shows that the
eigenvalues of J∇2H are purely imaginary if the symmetric Hessian matrix ∇2H is positive
definite. If ∇2H is merely symmetric, however, then eigenvalues with positive and negative
real parts may arise. See also Exercise 7 as a warning not to conclude that eigenvalues always
tell the whole story.

6.2 Symplectic and other relevant methods
There are different approaches to constructing symplectic numerical methods, of which we
consider mainly two: Runge–Kutta, and splitting and composition methods. But before we
get to a more systematic development of such methods, let us consider a simple example to
motivate the search.

Example 6.2 Returning to the harmonic oscillator of Example 6.1 we now set ω = 1 and
consider the evolution of the unit circle under the discrete flow which different numerical
discretizations affect. Remember that the exact solution leaves the unit circle invariant at
all times t .

The first three methods we consider are the usual:

1. Forward Euler:

qn+1 = qn + kpn, pn+1 = pn − kqn, n = 0, 1, . . . , N − 1.

2. Backward Euler:

qn+1 = qn + kpn+1, pn+1 = pn − kqn+1, n = 0, 1, . . . , N − 1.

3. Midpoint:

qn+1 = qn + k
pn + pn+1

2
, pn+1 = pn − k

qn + qn+1

2
, n = 0, 1, . . . , N − 1.
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−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

q

p

F Euler
B Euler
Midpoint

Figure 6.2. The evolution of the unit circle for the harmonic oscillator, recorded
at t = 100, using (i) forward Euler k = 0.01 (dashed), (ii) backward Euler k = 0.01 (dots),
and (iii) midpoint k = 0.5 (solid). The latter reproduces the initial circle exactly.

We use these methods to integrate the harmonic oscillator with a constant, relatively coarse
step size, starting from initial values on the unit circle. The resulting values of p vs. q at
time t = 100 are plotted in Figure 6.2.

We see that the forward Euler method increases the original volume significantly,
while the backward Euler method shrinks it significantly. The midpoint method reproduces
the Hamiltonian, p2(t) + q2(t) = 1, in this special case.

For the forward and backward Euler methods we have used a relatively small step size
of k = 0.01. However, with the coarse step size k = 0.5 used for the midpoint and other
methods below, the forward Euler method comes close to blowing up while the backward
Euler method shrinks the unit circle into a tiny circle.

The poor performance of the Euler methods, often cited as the reason to use sym-
plectic methods, is really not that surprising. This constant coefficient Hamiltonian system
corresponds to the test equation (2.20) with purely imaginary eigenvalues. The forward
Euler stability region intersects with the imaginary axis only at the origin (see Figure 2.6);
obviously it is the wrong method to use, much like the unconditionally unstable method of
(1.15b). The backward Euler method is just forward Euler in reverse for this symmetric
problem. Its excessive damping properties, so useful for highly stiff problems, are a disaster
here.
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Note: Numerical methods for Hamiltonian systems should not dampen
solution modes, at least not heavily.

The performance of the midpoint method is “better than life” because here the Hamil-
tonian is quadratic and the midpoint method reproduces quadratic invariants, as we shall
shortly prove. For more general problems this is not possible (nor necessarily desirable; see
[16]). Moreover, the midpoint method is implicit. Thus, we turn to other alternatives. In
Figure 6.3 we record results corresponding to those of Figure 6.2 for the following methods:

1. The classical four-stage explicit Runge–Kutta of order 4, RK4.

2. Forward Euler for the first ODE, and backward Euler for the second,

qn+1 = qn + kpn, pn+1 = pn − kqn+1, n = 0, 1, . . . , N − 1.

This is called symplectic Euler. It is an explicit method because the Hamiltonian
has a special, separable form. (Recall also Example 2.9.)

3. Staggered midpoint, as in Example 3.2,

qn = qn−1 + kpn−1/2, pn+1/2 = pn−1/2 − kqn, n = 1, . . . , N − 1,

starting with p1/2 = p0 − k
2q0 and ending with qN = qN−1 + kpN−1/2, pN =

pN−1/2 − k
2qN . This is called the Störmer–Verlet method.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 RK4
S Euler
Verlet
Exact

(a) k = 0.5

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 RK4
S Euler
Verlet
Exact

(b) k = 1.0

Figure 6.3. The evolution of the unit circle for the harmonic oscillator, recorded
at t = 100, using coarse step sizes k = 0.5 and k = 1.0 and the following methods: (i)
classical RK4 (dashed), (ii) symplectic Euler (dash-dot), and (iii) Störmer–Verlet (dashed
green). The latter is close to the initial circle, depicted as in Figure 6.2 by solid blue.

The last three methods are all explicit, unlike implicit midpoint, and none reproduces
the Hamiltonian invariant exactly. And yet they all produce decent results with the coarse
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step size k = 0.5. The classical RK4 method is slightly dissipative, as noted in Section 5.3.2,
but it is much more suitable for problems with imaginary eigenvalues than forward Euler
or any two-stage second order explicit Runge-Kutta method (see Figures 2.6 and 6.11). Its
dissipativity is expressed by the fact that the unit circle is slightly smaller in Figure 6.3. For
the very coarse step size k = 1.0 the shrinkage is significant, though.

The symplectic Euler and the Störmer–Verlet (or just Verlet) methods are symplectic,
i.e., they reproduce the invariance of YT (t)J−1Y (t); see (6.5). This translates, for our
simple example with l = 1, to keeping the area of the unit circle, although not necessarily
its shape, invariant. The symplectic Euler is first order accurate while the other method is
second order. Their application here is much simpler than that of RK4. For the coarse step
size k = 1.0 the difference in accuracy between the two is rather stark, although they both
still preserve area.

6.2.1 Symplectic Runge–Kutta methods

In the previous section we saw that the symplectic condition (6.5) is a quadratic invariant
of the variational differential system (6.6). A first attempt at obtaining a symplectic method
could therefore be to look for numerical methods that preserve quadratic invariants. This
is also useful in Section 5.3.1 and the next chapter, and it leads to piecewise polynomial
collocation at Gaussian points; see Sections 2.2 and 5.3.2, as well as [5, 14].

These methods are equivalent to certain implicit Runge–Kutta methods and have order
2s when s collocation points are used. Denoting the collocation solution by y�(t) (it is a
polynomial of degree at most s on each time interval [tn, tn+1] and it satisfies y�(tn) = yn ∀n)
and the collocation points by tnj = tn +kcj , j = 1, . . . , s, we define Y� = ∂y�(t;c)

∂c , a matrix
whose components are also polynomials of degree at most s on each time interval. The ODE
(6.3) is satisfied by y� at the collocation points:

y′
�(tnj ) = J∇H(y�(tnj )), j = 1, . . . , s.

Therefore, we also have

Y ′
�(tnj ) = J∇2H(y�(tnj ))Y�(tnj ), j = 1, . . . , s,

so

YT
� (tn+1)J

−1Y�(tn+1) − YT
� (tn)J

−1Y�(tn)

=
∫ tn+1

tn

((Y T
� )′J−1Y� + YT

�J−1Y ′
�)dt

= k

s∑
j=1

bj ((Y
T
� )′(tnj )J−1Y�(tnj ) + YT

� (tnj )J
−1Y ′

�(tnj ))

= k

s∑
j=1

bj [YT
� (∇2H)J T J−1Y� + YT

�J−1J (∇2H)Y�](tnj )

= 0.
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As in Section 5.3.2 the crucial step here is the equality of the integral to the sum (bj are
quadrature weights), and this holds because the integrand is a polynomial of degree at most
2s − 1 and the points are Gaussian. (See the quick review of quadrature in Section 2.12.4
or a more comprehensive basic text on numerical analysis.) No other quadrature abscissas
achieve this precision.

In the Runge–Kutta notation the precision requirement translates into the condition

biaij + bjaji − bibj = 0, i, j = 1, . . . , s. (6.7)

But there are no other reasonable (nondegenerate) methods that achieve this. The first
method of this collocation family is the midpoint method (2.12) which has order 2s = 2.
In Exercise 4 you are asked to show directly that this method is symplectic.

Note that the trapezoidal method (2.8) is not symplectic. However, it is symmetric.
More generally, this is referred to as time reversible; see, e.g., [84, 81]. Exercise 5 shows
that the trapezoidal method is in a sense almost symplectic.

Referring to Example 6.2 we see that the midpoint method both is symplectic and
reproduces the Hamiltonian exactly (ignoring roundoff errors). However, in the general
case this is not possible [65]. As stated before, attempting to reproduce the Hamiltonian in
general does not seem to be a good strategy, whereas devising symplectic methods is.

The big disadvantage of Runge–Kutta methods that are based on Gauss–Legendre
collocation is that they are fully implicit (ai,j �= 0, i, j = 1, . . . , s). Thus, they remain
implicit even for the popular case where the Hamiltonian is separable, i.e., when it can be
written in the form

H(q, p) = T (p) + V (q). (6.8)

Typically, T is the kinetic energy and V is the potential energy in (6.8).
The natural partitioning in the Hamiltonian system (6.1) suggests that different Runge–

Kutta methods may be applied to (6.1a) and (6.1b). This leads to partitioned Runge–Kutta
methods. Let c, A, b be the coefficients of the method for (6.1a) and c̃, Ã, b̃ those for (6.1b)
(see Section 2.2, specifically (2.10), for notational convention). Then the symplecticity
condition is

bi = b̃i , bi ãij + b̃j aji − bi b̃j = 0, i, j = 1, . . . , s, (6.9)

which is to be compared to (6.7). For a separable Hamiltonian the condition bi = b̃i may
be dropped.

The symplectic Euler method, demonstrated in Example 6.2, applies the forward Euler
method to one of the equations in (6.1) and the backward Euler method to the other. To
verify that (6.9) holds we calculate

1 = 1, 1 · 0 + 1 · 1 − 1 · 1 = 0.

The method becomes explicit for a separable Hamiltonian. See [82, 41, 150] for more
methods and justification of the above claims.

6.2.2 Splitting and composition methods

Here we follow [41, 115], who in turn follow [128] and [186]. However, the idea of splitting
in a more general context is much older than these references, and it occurs repeatedly in
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the literature on the numerical solution of PDEs in several space variables; see Section 9.3
as well as [159, 76].

The basic idea is to derive the discrete flow over a time step as a composition of
simpler, symplectic flows. This yields a symplectic map!

Suppose that the Hamiltonian H(q, p) can be written as a sum of Hamiltonians

H = H1 + H2 + · · · + Hs

and that the exact flow over a time step [tn, tn+1] of the ODE system for Hj alone can be
obtained: denote it, say, by yj (t; yj (tn)). (This superscript notation is not a power—just a
counter.) Thus

(yj )′ = J∇Hj(yj ).

Now, choose

y1(tn) = yn, (6.10a)

yj+1(tn) = yj (tn+1), j = 1, . . . , s − 1, (6.10b)

and set the result of the step to be

yn+1 = ys(tn+1). (6.10c)

The obtained method is a composition of flows which are symplectic because they are exact
flows of Hamiltonian systems. As such, it is also symplectic, as Exercise 8 indicates.

Example 6.3 For a separable Hamiltonian (6.8) we naturally define the splitting

H1 = T (p), H2 = V (q).

Then for y1 we have

(q1)′ = ∇pT (p1), (p1)′ = 0, y1(tn) =
⎛⎝qn

pn

⎞⎠ .

The solution is p1 ≡ pn constant; hence q1
n+1 = qn + k∇pT (pn). Now, for y2 we have

(q2)′ = 0, (p2)′ = −∇qV (q2), y1(tn) =
⎛⎝q1

n+1

pn

⎞⎠ .

The solution is q2 ≡ qn+1 = q1
n+1 constant; hence pn+1 = pn − k∇qV (qn+1). This yields

once again the symplectic Euler method

qn+1 = qn + k∇pT (pn),

pn+1 = pn − k∇qV (qn+1). (6.11)

Whereas the solution of the simple flows above is exact, their composition is not
exact, and this is the source of the error for the resulting method. If we express the solution
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operators of the two subflows as exponents of their corresponding (Lie derivative) operators
L and M , then the local error depends directly on

ek(L+M) − ekLekM.

Generally, we have (verify!)

ekLekM − ek(L+M) = 1

2
k2(ML − LM) + O(k3),

and an overall first order accuracy in k may result if L and M do not commute.
Fortunately, a simple trick (in hindsight), occasionally referred to as Strang splitting,

allows restoring an overall second order accuracy. The idea is to replace ekLekM by

ek(L+M) ≈ e
k
2 LekMe

k
2 L. (6.12)

See Exercise 9.

Example 6.4 Continuing Example 6.3, the formula (6.12) corresponds to taking half a k-
step for p, followed by a full k-step for q, followed by another half step for p. Assuming
that k is constant, however, we may combine the last half step with the first half step of the
next one. This yields the celebrated Störmer–Verlet method, which we have derived as a
staggered midpoint scheme,

qn+1 = qn + k∇pT (pn+1/2),

pn+1/2 = pn−1/2 − k∇qV (qn). (6.13)

We start the method by calculating p1/2 = p0 − k
2∇qV (q0) and end, if necessary, by

calculating pN = pN−1/2 − k
2∇qV (qN).

The scheme (6.13) is the mainstay method for calculations in molecular dynamics. It
is explicit and symplectic. Note that its symplecticity follows from its current derivation as
a splitting method, and not from the derivation in Example 3.2!

Example 6.5 The Henon–Heiles system has a separable Hamiltonian given by

H = 1

2

(
p2

1 + p2
2

)+ 1

2

(
q2

1 + q2
2

)+ q2
1q2 − 1

3
q3

2 ; (6.14)

see [130]. Please convince yourself that you can derive the corresponding ODE system
with your eyes closed; see Exercise 6.

We apply two methods to this system: the RK4 workhorse and the Störmer–Verlet
method. For the latter we choose the step size k = .01. Since RK4 involves four function
evaluations per step we use k = .04 although for reasons of overhead the special-purpose
symplectic method is more than four times cheaper than RK4.

The initial conditions (q1, q2, p1, p2)(0) = (.25, .5, 0, 0) yield a chaotic orbit [130,
160]. Indeed at t = 500 the two methods yield solutions that are O(1) apart. And yet,
the errors in the Hamiltonians satisfy H(500) − H(0) ≈ 2.5 × 10−7 for both methods!
Both these errors remain small for a long time; see Figure 6.4(a). This shows that the
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(a) (q1, q2)(0) = (.25, .5), chaotic
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(b) (q1, q2)(0) = (.1, .2), quasi-periodic

Figure 6.4. Errors in the Hamiltonian over 0 ≤ t ≤ 20, 000 for RK4 (k = .04) and
Verlet (k = .01). The RK4 error grows linearly but remains very small over this interval.
The Verlet error does not clearly grow in time as indeed it should not by theory.

error in the Hamiltonian, so attractive to calculate due to its availability, can be an extreme
underestimator for the pointwise error in the solution.

On the other hand, the initial conditions (q1, q2, p1, p2)(0) = (.1, .2, 0, 0) yield a
quasi-periodic orbit; see [130, 160] and Figure 6.5. Here the two methods yield relatively
accurate pointwise solutions for 0 ≤ t ≤ 2000, and Figure 6.5 could have been generated
by any of them, as far as the eye can tell. The error in the Hamiltonian is depicted in
Figure 6.4(b). As it turns out, here the Hamiltonian error is a reasonable error under-
estimator. Note that while the Hamiltonian error in RK4 grows linearly, that in Störmer–
Verlet does not. And yet, one would have to wait a very long time indeed to discount the
nonsymplectic method based on the Hamiltonian conservation criterion for this particular
example: a mere two million time steps won’t do.

The more specialized symplectic method is actually simpler and more accurate for
very long times t if the step sizes were to be adjusted to equate the computational costs of
the two methods for this small example. Yet, the slightly dissipative RK4 also performs
adequately and allows easy time step changes. A more accurate symplectic method of order
4 is proposed in [130].

Even in the quasi-periodic case nasty results may arise when we increase the step size
k. McLachlan has pointed out that repeating the calculation leading to the phase portrait of
Figure 6.5, but using the standard options of the most popular MATLAB ODE integrator
ode45, leads to the completely wrong results depicted in Figure 6.6. The problem here is
not how to fix the plot: Exercise 6 shows that the same routine ode45 with more stringent
tolerances will easily work well. Rather, the cause for concern is the deceptively good look
of the wrong plot and the tendency of many a scholar to accept the results of packaged
software as unquestionably true. Here is an important lesson and a chilly reminder to
exercise caution with mathematical software!

The average step size that leads to Figure 6.6 is below 0.2. For the RK4 method
with constant step size the phase plane plot is still roughly correct using k = .2 but not with
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Figure 6.5. Phase plane plot for 0 ≤ t ≤ 1000 of a quasi-periodic orbit for the
Henon–Heiles map defined by (6.14).

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

q
1

q 2

Figure 6.6. Erroneous phase plane plot produced by MATLAB’s solver ode45 with
standard options for the quasi-periodic orbit of the Henon–Heiles map. The qualitatively
correct plot is in Figure 6.5.
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k = .4. For Störmer–Verlet with constant step size the transition to nonsense occurs only
at k > .6.

Higher order splitting methods are given in [186, 130]. A symplectic splitting method
is derived in Section 7.3 for a semi-discretization of the KdV equation of Example 5.1.

6.2.3 Variational methods

We briefly mention, without getting into details, another wide class of integrators. These are
based on a discrete variational principle. Relevant continuous structure that is available
in many ODE applications is thus replicated on the discrete level.

For instance, in the case of basic elasticity the Lagrangian is defined as the kinetic
energy minus the potential energy,

L(q, q′) = T (q′) − V (q). (6.15a)

Then the Euler–Lagrange equations

∂L

∂q
− d

dt

(
∂L

∂q′

)
= 0 (6.15b)

express Hamilton’s principle [3], which states that the correct path of motion of a dynamical
system is such that its action has a stationary value. These are the necessary conditions for
a critical point of the integral in time of L. Defining the variables v = q′ and p = ∂L

∂v we
can express (6.15b) as

q′ = v, p′ = ∂L

∂q
, p = ∂L

∂v
. (6.15c)

Example 6.6 Let

T = 1

2
(q′)T Mq′,

where M is a symmetric positive definite mass matrix. Then (please verify) the Euler–
Lagrange equations (6.15b) yield Newton’s law of motion,

Mq′′ = −∇V (q).

Moreover, in terms of (6.15c) with the momenta p we can set (with a slight abuse of
notation in T )

T (p) = 1

2
pT M−1p, p = Mv,

and obtain the same Newton’s law by writing (6.1) for the Hamiltonian,

H(q, p) = T (p) + V (q).

Note the sign difference between this Hamiltonian and the Lagrangian in (6.15a).
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Next, we can apply to (6.15c) a centered, staggered discretization as before (see Example 6.4
and Section 3.1.2) and obtain the same symplectic method in a natural way.

The idea of a discrete variational principle is not new: it is at the base of early finite
element developments—see, e.g., Strang and Fix [158]—and is routinely applied in the
context of finite volume methods, as in Section 3.1. The approach can be seen as an instance
of discretizing before optimizing, a topic to which we return in Section 11.1. Moreover, the
utility of the variational approach as a tool for designing useful new symplectic methods that
are not naturally derived with other approaches can be challenged. The advantage of the
discrete variational approach is that it can naturally suggest good discretization methods in a
wider context that includes more than just Hamiltonian systems, incorporating, for instance,
dissipation terms and algebraic constraints (yielding DAEs), and extending to applications
such as optimal control [119]. Interesting results have been developed for these methods
in the present context, and favorite symplectic methods have been reproduced in this way;
see Marsden and West [126] and references therein.

6.3 Properties of symplectic methods
Why is it important to use a symplectic method?

As indicated before, the literature is not always very clear on this. At one end,
as we have said earlier, the mathematics here tends to be more involved. At the other
end, physicists doing stellar mechanics computations and chemists performing molecular
dynamics simulations have used simple symplectic methods such as (6.13) for many years
and report good experiences. Indeed, when the competition is forward Euler or backward
Euler, or even a two-stage second order explicit Runge–Kutta method, then symplectic
methods shine, as is clearly indicated in Example 6.2.

A fairer assessment, comparing symplectic methods to good nonsymplectic alterna-
tives such as RK4 or the four-step Adams–Moulton method AM4 given by (2.9), yields the
following points:

1. Some favorable error accumulation properties for long times (i.e., many time steps)
have been both observed and proved [150]. In particular, the Hamiltonian seems to
be well-approximated by such methods without attempting to enforce its constancy.
There are impressive results, both theoretical and practical, in this direction.

2. Moreover, symplectic methods often shine, especially when solution phase portraits
are considered. See Examples 6.5 and 6.8. This is particularly important when certain
statistical properties of the system are of interest [130].

3. However, for any of the methods that we have observed to be symplectic, the step size
must be constant! This is a very serious limitation which may overshadow the above
point in some practical applications. There are variable-step symplectic and time-
reversible methods [81, 115, 83], but they are not as nice and simple as the Störmer–
Verlet method. For implicit symplectic methods there is the added disadvantage that
complications in the convergence of the nonlinear algebraic equation solver, if they
arise, cannot be so simply waved away by cutting down the step size.

4. If the ODE system is large, then an implicit symplectic method necessitates solving
a large system of possibly nonlinear algebraic equations at each step. If iterative
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methods are used, then the symplectic property could be lost unless the iteration is
carried out to a very high accuracy. Attaining such high accuracy may contribute to
the expense of the method.

5. The entire development of symplectic methods ignores roundoff errors. Certainly
these cannot be expected to be highly structured, as their sources are essentially ran-
dom. Roundoff errors generally propagate (accumulate) according to similar rules as
discretization errors which dominate them. However, linear accumulation of round-
off errors cannot be avoided, and when billions of time steps are applied this may
become a factor.

6. Perhaps even more important than the first point above is the following theorem.

Theorem 6.7. A symplectic method discretizing a Hamiltonian system yields (in in-
finite precision) a solution which is arbitrarily close to the exact flow of a perturbed
Hamiltonian system.

The error of a symplectic method, then, is not arbitrary but rather is highly structured.
There is another, modified Hamiltonian system or ghost Hamiltonian system that
the present numerical solution actually solves (almost) exactly.

This result is proved using backward error analysis. See, e.g., Chapter IX of [81]
and references therein.

Example 6.8 The modified Kepler problem [150, 84, 81] is a Hamiltonian system with the
Hamiltonian

H(q, p) = p2
1 + p2

2

2
− 1

r
− α

2r3
,

where r =
√

q2
1 + q2

2 and we take α = 0.01. The ODE system is therefore

q′ = p,

p′ = −
(

1

r3
+ 3α

2r5

)
q.

Figure 6.7 depicts phase plain portraits of q1 vs. q2 for 0 ≤ t ≤ 500 obtained using the
relatively coarse step size k = .1. We plot (a) the exact solution (or rather, a sufficiently close
approximation to it), and solutions by (b) the implicit midpoint method, (c) the classical
explicit Runge–Kutta method of order 4 (RK4), and (d) the explicit Störmer–Verlet method.
The initial conditions are

q1(0) = 1 − β, q2(0) = 0, p1(0) = 0, p2(0) = √
(1 + β)/(1 − β)

with β = .6.
The exact solution lies on a torus in the phase plane. This feature is reproduced by the

two symplectic methods, midpoint and Verlet, but it is not well reproduced by the slightly
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q1 vs q2 for Kepler problem

(a) Exact solution for T=500
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q1 vs q2 for Kepler problem

(b) Implicit midpoint, 5000 uniform steps
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(c) RK4, 5000 uniform steps
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(d) Verlet, 5000 uniform steps

Figure 6.7. Modified Kepler problem: Approximate solutions in phase plane using
step size k = .1.

dissipative, fourth order method RK4.24 Note that the pattern of the solution and the radius
of the torus are off in all these coarse approximations. The symplectic methods look orderly,
though, because they accurately approximate another Hamiltonian system!

Is this a good feature to have? This is almost a philosophical question, and the best
answer seems to be that it depends on the application and the interpretation. For graphical
or virtual reality purposes, a solution which looks realistic, even if wrong, can be better
than one that looks wrong. Moreover, the global feature that the solution lies on a torus is
depicted by the symplectic computations. The solutions (b) and (d) in Figure 6.7 somehow

24This step size is particularly nasty to RK4: a smaller k = .05 already yields a much better picture, because
RK4 becomes less dissipative (see Figure 6.11). But fairness to RK4 is not our purpose here.
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look more pleasing than (c) to most people we’ve surveyed. On the other hand, when we
read about simulations of the evolution of the solar system over many millions of years
by a symplectic method we may wonder precisely what stellar system the obtained result
simulates: would that be the intended physical one?! Apicture may lie better than a thousand
words.

Example 6.9 This example does not relate particularly to Hamiltonian systems or to ODEs,
but it does follow an issue raised in Example 6.8, namely, how to measure errors. In intro-
ductory classes on numerical analysis (as well as introductory physics and other disciplines)
one learns about absolute and relative errors, which are objective means of measuring devi-
ations between exact and approximate quantities. But the tori produced by the symplectic
methods in Figure 6.7 have more appeal, compared to the one produced by the nonsym-
plectic method, than can be quantified by such error measures. Here the “eye-ball norm”
rules, and not only in the context of computer graphics or image processing.

The latter error measure is harder to qualify, let alone quantify, and here we merely
give another example, to make the point rather than attempt to precisely define it. Consider
the picture in Figure 6.8. Some of it is not in focus, some overexposed, some in the shade,
and there is something ruffled at the edge of the rug. But what we see first and foremost
is the center ripple in the rug, which is not the way we expect it to be laid on the floor in
the absence of “error.” If we view elevation above floor level as error, then the ripple is
much more distinguished than a random error of the same absolute value would be because
of its clear pattern and the recognition filter that we automatically apply to such a domestic
scene.

6.4 Pitfalls in highly oscillatory Hamiltonian systems
Consider the Hamiltonian

H(q, p) = 1

2
pT p + V (q) + 1

2ε2
g(q)T g(q), (6.16)

where V and g are smooth, bounded functions, and the parameter is small, 0 < ε � 1.
Recall the corresponding differential system

q′ = ∇pH = p,

p′ = −∇qH = −∇V (q) − ε−2G(q)T g(q), (6.17)

where G = ∂g
∂q .

As we saw in Example 2.8, to obtain a pointwise accurate solution we would need
to discretize (6.17) with a step size satisfying k < cε for some moderate constant c. But
this may imply an extremely small step size in applications such as molecular dynamics
simulations. Hence, we wish to use a larger step size, giving up pointwise accuracy but
still recovering important structural features. Let us remember that here, unlike the usual
stiff case considered in Section 2.6, the fast modes do not decay but rather oscillate, and
they do affect the exact solution significantly at all times. Thus, unless there is a source
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Figure 6.8. The “eye-ball norm”: The ripple in the rug, interpreted as an error,
is much more distinguished than a random error of the same norm would be because of
its clear pattern and the recognition filter that we automatically apply to such a domestic
scene.

of damping as in Example 2.9, it is not clear what we can get away with when giving up
accurate pointwise approximation.

Let us start with a warning not to be too simpleminded. For instance, the above
justifies a quest for a numerical discretization that for any step size k and any ε

• conserves the Hamiltonian reasonably well,

• is stable and efficient, and

• disregards pointwise accuracy of solutions.

But a solution satisfying all these desires is the constant qn = q(0), pn = p(0), n = 0, 1, . . . .

Clearly this is not what we have in mind! The question is of interest and relevance when
both fast and nontrivial slow solution features are present and the numerical scheme ought
to approximate slow solution features well.

Example 6.10 A modification of the notorious Fermi–Pasta–Ulam problem (FPU) is pre-
sented in the introductory chapter of [81]. It consists of a chain of m̂ mass points connected
with springs that have alternating characteristics: the odd ones are soft and nonlinear whereas
the even ones are stiff and linear.
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There are variables q1, . . . , q2m̂ and p1, . . . , p2m̂ in which the associated Hamiltonian
is written as

H(q, p) = 1

4

[
2

2m̂∑
i=1

p2
i + 2ω2

m̂∑
i=1

q2
m̂+i + (q1 − qm̂+1)

4 + (qm̂ + q2m̂)4

+
m̂−1∑
i=1

(qi+1 − qm̂+1+i − qi − qm̂+i )
4

]
. (6.18a)

The parameter ω relates to the stiff spring constant and is large. This Hamiltonian is
conserved as usual by the solution of the corresponding Hamiltonian system. In addition,
denote the energy in the ith stiff spring by

Ii = 1

2
(p2

m̂+i + ω2q2
m̂+i ). (6.18b)

Then it turns out that there is an exchange of energies such that the total oscillatory energy

I =
m̂∑

i=1

Ii

is an adiabatic invariant, satisfying

I (q(t), p(t)) = I (q(0), p(0)) + O(ω−1) (6.18c)

for exponentially long times t .
As a variation of the example in [81] we choose m̂ = 3 (yielding an ODE system

of size m = 12), ω = 100, q(0) = (1, 0, 0, ω−1, 0, 0)T , p(0) = (1, 0, 0, 1, 0, 0)T , and
integrate from t = 0 to t = 500 using RK4 with a constant step size k = .00025. The
resulting Hamiltonian error is a mere 6.8 × 10−6, and the oscillatory energies are recorded
in Figure 6.9.

The curves depicted in the figure are exact as far as the eye can tell. The “noise” is
not a numerical artifact. Rather, small “bubbles” of rapid oscillations occasionally flare up
and quickly die away; see [81].

Now, imagine that we fit low-degree polynomials to each of these curves in the least
squares sense. Surely I will be fitted with an almost constant straight line, and the long scale
trend of the others could also be accommodated by low degree polynomials (of degrees up
to 7, say). It is this sort of larger scale behavior that we would ideally like to capture by a
method that does not first reproduce all small scale details.

However, satisfying this wish turns out to be a rather nontrivial undertaking.

Example 6.11 Consider, yet again, the harmonic oscillator of Example 6.1, with large ω.
We write this in the form (6.16), (6.17) as

H(q, p) = 1

2
[p2 + ε−2q2],
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Figure 6.9. Oscillatory energies for the Fermi–Pasta–Ulam (FPU) problem. Note
that the trend of I stays almost constant in time.

q ′ = p, p′ = −ε−2q.

It is not difficult to verify that the Störmer–Verlet method (6.13) is stable only if
k ≤ 2ε. On the other hand, the midpoint method (2.12) is unconditionally stable. To see
this, note that the quadratic Hamitonian is conserved by the implicit midpoint method, so
stability is obtained in an energy norm for any k and ε.

Of course, if we use the midpoint method with k � ε, then the pointwise numerical
solution is wrong. Moreover, it is easy to verify that for a collocation method, in case of a
bounded solution, at collocation points (where the ODE is satisfied by the piecewise poly-
nomial approximate function) the numerical solution is O(ε/k)‖q‖. This is systematically
wrong. Whether it matters depends on the problem in which such a harmonic oscillator is
embedded.

Exercise 7 shows that the midpoint method may not always be stable for Hamiltonian
systems. Moreover, we must beware of misleading results, as the following example shows.
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Example 6.12 This example is from [16]. Consider a linear oscillator with a slowly varying
frequency,

q ′ = ω2(t)p,

p′ = −ε−2q,

with, e.g., ω(t) = 1 + t .
Since the system is not autonomous, the Hamiltonian is no longer constant in t . But

the adiabatic invariant

J (q, p, t) = H(q, p, t)/ω(t) = ω(t)p2/2 + ε−2ω−1(t)q2/2

satisfies for T = c1 ec2/ε, where ci are constants, the “almost conservation”

[J (t) − J (0)] /J (0) = O(ε), 0 ≤ t ≤ T ;

see [3].25

Let us see how well this is reproduced by the midpoint method

(qn+1 − qn)/k = ω(tn+1/2)
2 (pn+1 + pn)/2 ,

(pn+1 − pn)/k = −ε−2 (qn+1 + qn)/2 .

Specifically, we ask: What ODE does this really approach when ε � k → 0?
Let

un = (−1)nε−1qn, vn = (−1)n+1pn, α = k2

4ε
.

Then

(un+1 + un)/2 = −ω(tn+1/2)
2 α (vn+1 − vn)/k,

(vn+1 + vn)/2 = α (un+1 − un)/k.

Now, as we let k → 0 for a fixed α we get

−ω2(t)αv′ = u,

αu′ = v.

So, the obtained ghost ODE is an oscillator with α essentially replacing ε. Hence[
Ĵ (t) − Ĵ (0)

]
/Ĵ (0) = O(α),

Ĵ (un, vn, tn) = Ĵ (ε−1qn, pn, tn) = J (qn, pn, tn) .

25Note that J of the adiabatic invariant has nothing to do with the skew-symmetric J of (6.3).
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Figure 6.10. Error in adiabatic invariant vs. α = k2

4ε
using the midpoint method.

The results for ε = 10−5, 10−6, and 10−7 are virtually indistinguishable when using k

proportional to
√

ε. These results are poor unless the constant of proportionality α is small,
regardless of how small k and ε are.

A wrong adiabatic invariant is consistently approximated!
To verify this numerically we calculate �J = max0≤t≤1 |J (t)−J (0)|/J (0) for values

of α in the range [10−3, 102] as follows: for each of the three values ε = 10−5, 10−6, and
10−7 we calculate the corresponding time step k = √

4εα, solve the midpoint equations,
and calculate �J . The obtained curves are superimposed in Figure 6.10. They are too close
to tell apart.

Thus, unless α is small we may not expect reasonable approximations for the slowly
varying adiabatic invariant when using the midpoint method, regardless of how small k is.
Similar results are obtained upon using the symplectic, sixth order method of collocation at
three Gaussian points [16].

In general, we may obtain misleading results for highly oscillatory problems when
the smooth manifold of the Hamiltonian system

q′ = p,

p′ = −∇V (q) − ε−2GT g(q),
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is not the solution of the DAE,

q′ = p,

p′ = −∇V (q) − GT λ,

0 = g(q),

in the limit ε → 0. We quickly mention two more examples, referring the reader to [15, 16]
for additional details.

Example 6.13 Consider a pendulum whose rod is actually a stiff spring, with a spring
constant 1/ε for a value of ε satisfying 0 < ε � 1. With the notation q = (q1, q2)

T we
have

r = |q| =
√

q2
1 + q2

2 ,

sin φ = q1/|q|;
r(t) is now a variable, oscillating rapidly about a constant r0. In fact, the variables (r, φ)

form a spherical coordinate system given in terms of the planar coordinate system q. The
ODE system describing the stiff spring pendulum is

q′ = p,

p′ = −(φ(q) − φ0)∇φ(q) − ε−2(r(q) − r0)∇r(q) (6.19)

(take φ0 = 0). The system (6.19) is highly oscillatory. Its numerical simulation leads
to challenging questions, unless one is prepared to pay the price for resolving the rapid
oscillation in r by taking very small discretization steps.

For the stiff spring pendulum (6.19) the DAE above is the correct limit system. How-
ever, we have fast and slow solution modes. Experiments using the implicit midpoint
method yield poor results as k → 0 when α = k2

4ε
is large and fixed.

This is because the fast and slow solution modes are strongly coupled! Here r is
fast and φ is slow: transforming first to an ODE system in r and φ, a subsequent midpoint
discretization works very well, since the fast and slow modes are decoupled. In general, no
method may be expected to work well when ε � k2 if fast and slow modes (the latter to be
well reproduced) are strongly coupled.

Example 6.14 Next, consider the reversed stiff spring pendulum

q′ = p,

p′ = −ε−2(φ(q) − φ0)∇φ(q) − (r(q) − r0)∇r(q), (6.20)

so r is slow and φ is fast. Such constructs occur within large molecular dynamics problems.
Here, unfortunately, the limit DAE as ε → 0 is different from the obvious one [16].

This example combines the previous two sources of trouble: both coupling of slow
and fast modes and poor reconstruction of adiabatic invariants appear. Now, even in the
weakly coupled coordinates r and φ we must have α = k2

4ε
small; otherwise, a wrong limit

ghost DAE is discretized in effect.



root
2008/5/5
page 205

�

�

�

�

�

�

�

�

6.5. Exercises 205

The implicit midpoint method, as it turns out, can be particularly difficult to work
with in the present circumstances, despite its properties of symplecticity, conservation of
quadratic invariants, and unconditional stability for constant coefficient problems. For
another unwelcome surprise in a PDE context, see Example 9.6. There are, however,
many situations in which effective methods for highly oscillatory problems may be devised.
Separate chapters are devoted to such special methods in [115] and [81], and this is currently
a fairly hot research area.

However, extreme care must be exercised as no general recipes are available, and
caution is the reason we have included the pessimistic but simple examples of this section. In
particular, much of the effort in designing methods for highly oscillatory problems has been
aimed at molecular dynamics simulations (see again [115]), and yet, despite efforts spanning
several decades the method that still reigns in large molecular dynamics codes is Störmer–
Verlet (6.13), simply utilized with small steps k and benefitting from a low cost per step.
Thus, the most popular family of “stiff highly oscillatory” problems is routinely simulated
using a nonstiff, explicit method utilizing a constant time step size! How frustrating.

6.5 Exercises
0. Review questions

(a) What is geometric integration?

(b) Define a Hamiltonian system and a symplectic map. Does a Hamiltonian system
necessarily induce a symplectic map?

(c) In what sense is the stability of Hamiltonian systems marginal?

(d) Explain why forward Euler and backward Euler methods generally perform
poorly for Hamiltonian systems.

(e) Define the symplectic Euler and Verlet methods, and describe their properties.

(f) What is a partitioned Runge–Kutta method? Give an example of one.

(g) Describe splitting methods in the context of this chapter. Find an example where
the Strang splitting clearly produces a more accurate numerical result than the
simple splitting it aims at improving.

(h) What is most perturbing about Figure 6.6?

(i) Why is Theorem 6.7 important?

(j) What is the essential difference between highly oscillatory Hamiltonian systems
and very stiff ODEs?

1. Write a short program which uses the forward Euler, the backward Euler, and the
trapezoidal or midpoint methods to integrate a linear, scalar ODE with a known
solution, using a fixed step size k = b/N , and which finds the maximum error. Apply
your program to the ODE

dy

dt
= (cos t)y, 0 ≤ t ≤ b,
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Table 6.1. Maximum errors for long interval integration of y ′ = (cos t)y.

b N Forward Euler Backward Euler Trapezoidal Midpoint

1 10 .35e-1 .36e-1 .29e-2 .22e-2

20 .18e-1 .18e-1 .61e-3 .51e-3

10 100

200

100 1000 2.46 25.90 .42e-2 .26e-2

2000

1000 1000

10000 2.72 1.79e+11 .42e-2 .26e-2

20000

100000 2.49 29.77 .42e-4 .26e-4

with y(0) = 1. The exact solution is

y(t) = esin t .

Verify those entries given in Table 6.1 and complete the missing ones. Make as many
(useful) observations as you can about the results in the complete table. Attempt to
provide explanations. (Hint: Plotting these solution curves for b = 20, N = 10b,
say, may help.)

2. Let J be a real, skew-symmetric matrix, and let A be a real, symmetric matrix of the
same size. Prove the following:

(a) The nonzero eigenvalues of J are all purely imaginary.

(b) Let M = JA. If λ is an eigenvalue of M , then so is −λ.

(c) If A is also positive definite, then the nonzero eigenvalues of M are all purely
imaginary. (However, we remark that the latter property does not hold without
positive definiteness: if A is merely symmetric, then M will have, in general,
eigenvalues with a positive real part.)

3. (a) Show that the midpoint method is symmetric, second-order, and A-stable. How
does it relate to the trapezoidal method for a constant coefficient ODE?

(b) Suppose we allow λ to vary in t , i.e., consider the scalar ODE

y ′ = λ(t)y

in place of the test equation. Show that what corresponds to A-stability holds,
namely, using the midpoint method

|yn+1| ≤ |yn| if Re(λ) ≤ 0.
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(This property is called AN-stability [43].) Show that the same cannot be said
about the trapezoidal method: the latter is not AN-stable.

4. Show directly (i.e., without casting it as a collocation method and without using (6.7))
that the implicit midpoint method is symplectic.

5. (a) Show that the trapezoidal step (2.8) can be viewed as a half step of forward
Euler followed by a half step of backward Euler.

(b) Show that the midpoint step (2.12) can be viewed as a half step of backward
Euler followed by a half step of forward Euler.

(c) Consider an autonomous system y′ = f(y) and a fixed step size, kn = k, n =
1, . . . , N . Show that the trapezoidal method applied N times is equivalent to
applying first a half step of forward Euler (i.e., forward Euler with step size k/2)
followed by N −1 midpoint steps and finishing off with a half step of backward
Euler.

Conclude that these two symmetric methods are dynamically equivalent [55];
i.e., for k small enough their performance is very similar independently of N ,
even over a very long time b = Nk � 1. This is so even though the midpoint
method is symplectic whereas the trapezoidal method is not.

(d) However, if k is not small enough (compared to the problem’s small parameter,
say, λ−1), then the two methods do not necessarily perform similarly. Construct
an example where one of these methods blows up (error > 105, say) while the
other yields an error below 10−5. (Do not program anything: this is a (nontrivial)
pen-and-paper question.)

6. (a) Derive the ODE system (6.1) that corresponds to the Hamiltonian defined by
(6.14).

(b) Find sufficiently small absolute and relative error tolerances for ode45 to obtain
the qualitatively correct phase plot of Figure 6.5.

7. Consider two linear harmonic oscillators, one fast and one slow, u′′
1 = −ε−2(u1 − ū1)

and u′′
2 = −(u2 − ū2). The parameter is small: 0 < ε � 1. We write this as a first

order system,

u′ =
⎛⎝ε−1 0

0 1

⎞⎠ v,

v′ = −
⎛⎝ε−1 0

0 1

⎞⎠ (u − ū),

where u(t), v(t), and the given constant vector ū each have two components. It is
easy to see that EF = 1

2ε
(v2

1 + (u1 − ū1)
2) and ES = 1

2 (v2
2 + (u2 − ū2)

2) remain
constant for all t .
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Figure 6.11. Stability functions of RK4 and AM4 along the imaginary axis. In
both cases, .99 ≤ |R(z)| < 1 for 0 < |z| ≤ 1.

Next, we apply the time-dependent linear transformation

u = Qx, v = Qz,

Q(t) =
⎛⎝ cos ωt sin ωt

− sin ωt cos ωt

⎞⎠ , K = −QT Q′ =
⎛⎝0 −1

1 0

⎞⎠ ,

where ω ≥ 0 is another parameter. This yields the coupled system

x′ = QT

⎛⎝ε−1 0

0 1

⎞⎠Qz + ωKx, (6.21a)

z′ = −QT

⎛⎝ε−1 0

0 1

⎞⎠Q(x − x̄) + ωKz , (6.21b)

where x̄ = QT ū. We can write the latter system in our usual notation as a system of
order 4,

y′ = A(t)y + q(t) .

(a) Show that the eigenvalues of the matrix A are all purely imaginary for all ω.

(Hint: Show that AT = −A.)
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(b) Using the values ū = (1, π/4)T , u(0) = ū, v(0)T = (1, −1)/
√

2, and b = 20,
apply the midpoint method with a constant step size k to the system (6.21) for the
following parameter combinations: ε = 0.001, k = 0.1, 0.05, 0.001, and ω =
0, 1, 10 (a total of nine runs). Compute the error indicators maxt |EF (t)−EF (0)|
and maxt |ES(t) − ES(0)|. Discuss your observations.

(c) Show that the midpoint method is unstable for this problem if k > 2
√

ε/ω (see
[15]). Conclude that A-stability and AN-stability do not automatically extend
to ODE systems.

8. Show that the composition of two symplectic maps is also a symplectic map.

9. Show that

ek(L+M) = e
k
2 LekMe

k
2 L + O(k3)

for any s × s matrices L and M .

10. The absolute stability region plots in Section 2.5 for both RK4 and the four-step
Adams–Moulton method AM4 suggest that these methods remain stable and only
slightly dissipative for a while along the imaginary axis. Check this out by plotting
|R(z)| vs. w, where z = ıw for 0 ≤ w ≤ 1.2. You should get something like
Figure 6.11.
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Chapter 7

Dispersion and
Dissipation

This chapter is in many ways a continuation of Chapter 5. However, we wish to also extend
some of the ideas introduced in Chapter 6 to PDEs, and this is the natural place to do it.

In Section 1.1 we saw that prototype parabolic problems dissipate energy, whereas
hyperbolic ones do not. This has very important ramifications on numerical methods: for
hyperbolic problems one is torn between the necessity to attenuate numerical solution modes
for stability reasons and the fear that too much dissipation may cause the discrete solution
to lose sharp qualitative features of the exact one.

We consider exclusively in this chapter hyperbolic-type PDEs that have smooth, wave-
like solutions. Methods with little or no dissipativity are then adequate.

Another important wave property is dispersion. In Section 7.1 we introduce the
concept of numerical dispersion and briefly discuss the wave attributes of dispersion and
dissipation in one context. As it turns out, numerical dispersion often arises in high wave-
number solution components, even when the PDE is nondispersive, and if unchecked it may
give rise to spurious or parasitic waves. This gives an edge to dissipative methods, because
they dampen parasitic dispersion waves. But using dissipative methods may introduce other
problems, as we have seen in Chapter 5, particularly Sections 5.1 and 5.2. All the methods
considered there suffer from dispersion effects, yet these effects are particularly pronounced
when low-order, noncompact methods are applied on coarse meshes. Increasing resolution
and order of accuracy, as well as using compact discretizations, generally improve the
situation.

In Section 7.2 we briefly discuss numerical methods for the classical wave equation
and some extensions. These are nondispersive PDEs with a symplectic structure, and we
study the performance of the symplectic, compact, and unavoidably dispersive leapfrog
method. A staggered mesh (also known as staggered grid) discretization results for the
corresponding formulation of the wave equation as a first order PDE system.

In Section 7.3 we consider the dispersive, nonlinear Korteweg–de Vries (KdV) equa-
tion already introduced in Example 5.1. This entire section may be viewed as a case study.
Numerical stability as well as artificial dispersion effects arise and we examine the perfor-
mance of symplectic, compact, and multisymplectic methods in this context.

211
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It is possible to distinguish three classes among mesh-based numerical methods: finite
difference/volume, finite element, and spectral methods. This book is devoted to the first of
these classes, but in Section 3.1.4 we have briefly reviewed the second. In Section 7.4 we
likewise review the class of spectral methods. This is a natural place to do it because these
methods particularly excel when applied to problems of the types considered in the present
chapter.

Finally, in Section 7.5 we briefly mention Lagrangian and particle methods. These can
provide a relief from the dispersion problem, but at a cost of introducing other difficulties.

An excellent, classical reference on waves and the PDEs leading to them is Whitham
[182].

7.1 Dispersion
First we introduce the concept of dispersion in PDEs. Then we consider dispersion in PDE
discretizations. As usual we utilize a simple example. Consider the advection equation with
one Fourier mode as initial data

ut + aux = 0,

u(0, x) = e−ıξx . (7.1)

We would like to trace the solution’s progress in time, in the exact and approximate cases.
Then we would use superposition (i.e., the Fourier transform) for more general initial data.

The exact solution of (7.1) is

u(t, x) = eıξ(at−x).

So, this is a wave which propagates with speed a. The speed a is the phase velocity.
More generally, let

eı(ωt−ξx)

be a solution form for a scalar, constant coefficient PDE, where ξ is the wave number and
ω is the frequency. We define

ω = ω(ξ) dispersion relation

c(ξ) = ω(ξ)

ξ
phase velocity

C(ξ) = dω(ξ)

dξ
group velocity

For the simple constant-coefficient advection equation (7.1) we have the dispersion
relation ω = aξ , and so the phase and group velocities both simply equal a. Thus, the
phase velocity is independent of the wave number and the PDE is nondispersive: different
Fourier modes travel at the same speed.

More generally, however, the phase velocity c(ξ) may depend on ξ , and this is called
dispersion. In this case, different Fourier modes travel at different speeds and the evolution
of a packet of modes, containing several wave numbers, is more complicated. The KdV
equation (5.1) is an example of a dispersive PDE, and so is its linearization, ut + ρux +
νuxxx = 0. The energy associated with wave number ξ moves asymptotically (as t → ∞)
at the group velocity.
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Semi-discretization of the advection equation

Next, on a uniform spatial mesh with step size h consider the semi-discretization

v′
j + a

2h
D0vj = 0

(
v′

j = dvj

dt

)
,

which is common to many full discretization schemes where one is interested in retaining
features of smooth solutions. The solution is clearly

vj (t) = eı(ωt−ξjh),

where the dispersion relation is

ω = a

h
sin(ξh).

The phase velocity is therefore

c1 = a
sin(ξh)

ξh
,

and the group velocity is
C1 = a cos(ξh).

We see that the semi-discretization is dispersive, even though the PDE is not! At low wave
numbers, c1 ≈ a ≈ C1. But at high wave numbers the phase and group velocities differ
significantly, and they depend on the wave number. In particular, at ξh ≈ π/2 we have
C1 ≈ 0, while at ξh ≈ π we have c1 ≈ 0. Thus, at high wave numbers the numerical
waves are nearly stationary, with the trouble arriving sooner for the group velocity. These are
often called parasitic waves. The desire to apply as little dissipativity as possible, expressed
throughout Chapter 6, now becomes somewhat questionable, if those undamped high wave
number modes are going to travel at incorrect speeds (or in other words, if parasitic waves
are undamped).

Lax–Wendroff dispersion

For the advection equation (7.1) recall that the Lax–Wendroff scheme reads

vn+1
j =

(
1 − μ

2
aD0 + μ2

2
a2D+D−

)
vn

j ,

where k is the step size in time and μ = k/h. Substituting

vn
j = eı(ωnk−ξjh),

we obtain the (implicit) dispersion relation for ω(ξ)

cos(ωk) + ı sin(ωk) = eıωk = 1 + ıμa sin(ξh) − 2μ2a2 sin2(ξh/2). (7.2)

Thus

tan(ωk) = μa sin(ξh)

1 − 2μ2a2 sin2(ξh/2)
.
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Consider the phase velocity c2 = ω/ξ . For low wave numbers, |ξ |h � 1, we have by
accuracy

c2 = a(1 + O(h2)).

A more precise expression is given in Exercise 1. For high wave numbers we again obtain

c2 ≈ 0, ξh ≈ π.

For the group velocity we differentiate (7.2) with respect to ξ , obtaining

ıkeıωkC2 = ıhμa cos(ξh) − hμ2a2 sin(ξh).

Again, C2 ≈ a when |ξ |h � 1, but Re C2 ≈ 0 at ξh ≈ π/2, as k → 0. The Lax–Wendroff
scheme supports parasitic waves similarly to the centered semi-discretization.

Leapfrog dispersion

For the leapfrog scheme applied to (7.1),

vn+1
j = vn−1

j − μa(vn
j+1 − vn

j−1),

we substitute the solution

vn
j = eı(ωnk−ξjh)

and obtain the implicit dispersion relation (Exercise 2)

sin(ωk) = μa sin(ξh). (7.3)

Again, for low wave numbers we obtain ω ≈ aξ , hence the phase and group velocities
satisfy

c3 ≈ a ≈ C3.

Following [167] we plot ω vs. ξ in Figure 7.1. From this figure it is clear that again at high
wave numbers we can have stagnating parasitic waves,

c3(π) = 0, C3(π/2) = 0.

In fact, there are even more parasitic waves here than before.

Example 7.1 We repeat the experiments of Example 5.6, but this time with the initial value
function

u0(x) = sin(ηx)e−ηx2
, η = 50.

Thus, we have an oscillatory sinusoidal wave attenuated away from x = t . We again set
μ = 0.5, use periodic BCs on [−π, π ], and record solutions for the four methods (Lax–
Friedrichs, Lax–Wendroff, leapfrog, and leapfrog with dissipativity added) at t = 1. Using
a fine step size h = 0.001π leads to qualitatively correct approximate solutions, upon
employing any of the second order methods. The Lax–Friedrichs scheme performs the
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Figure 7.1. Dispersion relation for the leapfrog scheme applied to ut + ux = 0, μ = 0.5.

poorest of them all, producing what looks like an approximation to 0. Coarsening the step
size to h = 0.005π yields the results recorded in Figure 7.2. The Lax–Wendroff solution
is now overly smooth and the leapfrog solution has the oscillations more pronounced, but
the pattern is not quite right and a phase error is apparent. Coarsening to h = 0.01π

further clarifies the observations recorded in Figure 7.3. The Lax–Wendroff solution is
much too smooth, while the leapfrog solution shows oscillations which lag behind the exact
solution. The reason for the qualitatively different behavior of the two methods is that the
Lax–Wendroff scheme is dissipative whereas the leapfrog scheme is not.

One can argue either way as to which solution is worse. The Lax–Wendroff (and cer-
tainly the Lax–Friedrichs) solution may lead an unsuspecting scientist to conclude that noth-
ing happens when something does, whereas the leapfrog solution may suggest
that something happens, but giving the wrong shape and at the wrong location. Again,
a method which takes characteristic directions into account more may be required for
this problem when the discretization mesh is so coarse as to render the initial conditions
nonsmooth.

Box scheme dispersion

The box scheme (5.17) is the only scheme discussed in Chapter 5 that is not based on the
long centered difference D0. This long centered difference is not compact and thus may
give rise to spurious modes. Such modes arise also when applying multistep methods for
ODEs as in Section 2.1, and methods that appropriately suppress them, such as the Adams
methods, are called 0-stable. Here we wonder what happens if short differences are used in
both space and time, specifically, the compact box scheme.
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Figure 7.2. Example 7.1: solving ut − ux = 0 starting from a tapered sinusoidal
wave, using μ = 0.5 and h = 0.005π . All approximate solutions are visibly wrong at this
resolution, with parasitic waves more pronounced for schemes with less dissipativity.

For the advection equation the scheme reads

vn+1
j+1 + vn+1

j − vn
j+1 − vn

j + μa
(
vn+1

j+1 + vn
j+1 − vn+1

j − vn
j

)
= 0. (7.4)

Substituting the Fourier mode for vn
j as before and centering (7.4) at the middle of the “box,”

i.e., canceling out eı(ω(n+1/2)k−ξ(j+1/2)h), we obtain

tan(ωk/2) = μa tan(ξh/2). (7.5)

This dispersion relation is plotted in Figure 7.4. Again c3 ≈ a ≈ C3 for low wave numbers,
but now we see no parasitic waves! The phase and group velocities do not vanish at high
wave numbers, although they are not necessarily correct. This is true for any μ > 0, as
befits an implicit scheme. However, it does not mean that there is no dispersion, of course;
see Exercise 3. Recall also that the box scheme is conservative and nondissipative.

Example 7.2 We repeat the experiments of Example 7.1 using the box scheme (7.4). The
results are displayed in Figure 7.5. The incorrectly located approximate solution profile
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Figure 7.3. Example 7.1: solving ut − ux = 0 starting from a tapered sinusoidal
wave, using μ = 0.5 and h = 0.01π . All approximate solutions are visibly wrong at this
resolution, with parasitic waves more pronounced for schemes with less dissipativity.

is unattenuated here, as for the leapfrog scheme in the previous example, although the
lag and oscillations are about half as much. The lack of parasitic waves has not made
much difference here because these modes are not excited in the previous example either.
However, we will see in Section 7.3 an occasion where such spurious modes can become a
problem.

7.2 The wave equation
In this section we consider the numerical solution on a uniform mesh of the possibly non-
linear, scalar wave equation

φtt = c2φxx − dV (φ)

dφ
, x0 ≤ x ≤ xJ+1, t > 0, (7.6a)

where c > 0 is a constant and V (φ) is a smooth, scalar function. This equation is subject
to initial conditions

φ(0, x) = φ0(x), φt (0, x) = φ1(x), (7.6b)
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Figure 7.4. Dispersion relation for the box scheme applied to ut + ux = 0, μ = 0.5.

and boundary conditions which may be either periodic,

φ(t, x0) = φ(t, xJ+1), (7.6c)

or Dirichlet (assume homogeneous for simplicity),

φ(t, x0) = φ(t, xJ+1) = 0. (7.6d)

As in Section 1.1 the wave equation can be written as a first order system,

ut +
⎛⎝0 c

c 0

⎞⎠ux = 0, u =
⎛⎝ φt

−cφx

⎞⎠ , (7.7)

and it can certainly be discretized this way using the methods introduced in Chapter 5. But
handling the initial and boundary conditions becomes less natural and certain conservation
laws are not nicely reproduced without staggering the mesh. A more direct treatment results
in a very simple method and so we proceed with a direct approach. Amore loaded treatment,
mathematically speaking, will follow Example 7.3.

Let us denote V ′(φ) = dV (φ)

dφ
. Applying a centered discretization in x yields the

semi-discretization

d2vj

dt2
= c2

h2

(
vj−1 − 2vj + vj+1

)− V ′(vj ), j = 1, . . . , J, (7.8)

with vj (0) = φ0(xj ) and dvj

dt
(0) = φ1(xj ) given. Note that unlike D0 for the first derivative,

here the discretization is compact. Next, we apply a similar discretization in t as well. This
gives the leapfrog scheme

vn+1
j − 2vn

j + vn−1
j = c2μ2(vn

j−1 − 2vn
j + vn

j+1) − k2V ′(vn
j ). (7.9)



root
2008/5/5
page 219

�

�

�

�

�

�

�

�

7.2. The Wave Equation 219

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

0

1

x
u

Box scheme, h=.005π, μ = 0.5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

0

1

x

u

Box scheme, h=.01π, μ = 0.5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

0

1

x

u

Box scheme, h=.005π, μ = 2.0

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

0

1

x

u

Box scheme, h=.01π, μ = 2.0

Figure 7.5. Solving ut − ux = 0 starting from a tapered sinusoidal wave, using
the box scheme with various h and k = μh. The exact solution at t = 1 is plotted in red,
and the approximate results are in blue.�

�
�
	

Note: Unlike for the advection equation, the leapfrog scheme is compact
and natural for the classical wave equation.

The next step is stability analysis. Let us assume until further notice that V (φ) is
constant, so the low order term V ′(φ) vanishes. The Fourier method yields

v̂n+1 − 2(1 − 2c2μ2 sin2(ζ/2))v̂n + v̂n−1 = 0.

As in Chapter 1 we turn to the characteristic roots of

κ2 − 2(1 − 2c2μ2 sin2(ζ/2))κ + 1 = 0

and find

κ = 1 − 2c2μ2 sin2(ζ/2) ± 2cμ sin(ζ/2)

√
c2μ2 sin2(ζ/2) − 1.
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If the expression under the square root sign is positive, then there is a root with magnitude
greater than 1 and the method is unstable. Otherwise we get two roots of modulus 1: the
method is stable and nondissipative under the CFL condition

cμ ≤ 1. (7.10)

(Actually, our analysis holds only for cμ < 1. But here it can be argued that cμ = 1 is
okay as well [159].)

Note that the exact solution of the pure initial value problem is given by26

φ(t, x) = 1

2
[φ0(x − ct) + φ0(x + ct)] + 1

2c

∫ x+ct

x−ct

φ1(ξ)dξ. (7.11)

Recall that the characteristic curves are given by

dx

dt
= ±c.

We see that the solution at a point (t, x) is influenced only by the data in the interval
[x − ct, x + ct]. This forms the famous domain of dependence typical of hyperbolic
problems, depicted in Figure 7.6. Recall also Figures 1.7, 1.8, and 1.9 for the advection
equation. The CFL condition (7.10) implies that the domain of dependence of the numerical

0 x

t

Figure 7.6. Domain of dependence for φtt = φxx . Note that the CFL stability
condition implies that the domain of dependence of the PDE is contained in that of the
difference scheme.

scheme must contain that of the PDE. This is an obvious requirement on physical grounds.
If it is not met, then arbitrary changes in the data within the PDE domain of dependence,
but outside the numerical one, would affect the exact solution arbitrarily without affecting
the numerical solution at the top point in Figure 7.6.

For a general first order hyperbolic problem, handling Dirichlet BC requires care and
is discussed in Chapter 8. But here it is simple: setting vn

0 = vn
J+1 = 0 ∀ n ≥ 1, the solution

of (7.9), j = 1, 2, . . . , J , is uniquely defined for given initial conditions, regardless of how
v−l or vJ+1+l are defined for l ≥ 1. Thus, we can extend the problem into a Cauchy problem
by padding with zeros.

26Again we are interested in investigating properties of a numerical method for a simple model problem to get
at the main issues, not to actually obtain the solution for that particular model.
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For initial conditions we have

v0
j = φ0(xj ), (7.12a)

but we also need v1
j accurate to second order. Using Taylor’s expansion gives

φ(k, x) = φ(0, x) + kφt (0, x) + k2

2
φtt (0, x) + O(k3).

Then we apply the semi-discretization (7.8) which defines

v1
j = φ0(xj ) + kφ1(xj ) + μ2c2

2

(
φ0(xj−1) − 2φ0(xj ) + φ0(xj+1)

)
(7.12b)

for j = 1, . . . , J . The condition (7.12b) is modified in an obvious way when the full
equation (7.6a), with V not constant, is solved.

Example 7.3 Consider the wave equation on the interval −10 ≤ x ≤ 10 with c = 1 and
the initial conditions

φ(0, x) = e−αx2
, φt (0, x) = 0,

where α > 0 is a parameter. As evident from (7.11), the exact solution has a particularly
simple form for these initial conditions. The initial shape splits into two pulses of a lower
amplitude moving toward the boundaries at wave speeds ±1. With periodic boundary
conditions, the waves then get reflected back so φ(20l, x) = φ(0, x) for all nonnegative
integers l. With homogeneous Dirichlet BC there is also a reflection at the boundaries but
the sign is reversed, so the period in time is doubled: φ(40l, x) = φ(0, x).

Figure 7.7 displays the exact and approximate solutions for α = 1 at t = 400. After
20,000 time steps the resulting solution is still very good in that the pulse shape and its
location are qualitatively correct. There is no meaningful difference between the errors
upon using the BC (7.6c) or (7.6d).

Next consider the sine-Gordon equation, for which we do not know the exact solution,
where in (7.6a) we take

dV (φ)

dφ
= sin(φ).

We use periodic boundary conditions and record the solution at t = 400 in Figure 7.8. The
solution profile is qualitatively correct based on accuracy checks done by halving h and k

and repeating the calculation.
It is tempting to conclude that the leapfrog scheme always performs satisfactorily

for the classical wave equation. Alas, upon sharpening the initial profile to α = 10, we
obtain familiar spurious wiggles in the approximate solution, like those encountered when
dispersion mingles with low mesh resolution in Section 7.1; see Figure 7.9. These artificial
wiggles spread toward the boundaries as t increases further, and although no solution blowup
is observed, the solution profile becomes qualitatively wrong. Computing a solution for
the sine-Gordon equation with the sharper profile α = 10 would require k and h to be
substantially smaller than in Figure 7.8 in order to obtain a meaningful result.
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Figure 7.7. Example 7.3: approximate (solid blue) and exact (dashed red) solu-
tions using leapfrog for the wave equation: α = 1, t = 400, k = 0.02, h = 0.04. There is
no sign of instability and the maximum error is .019.

Let us next connect the leapfrog scheme to Hamiltonian ODEs and Chapter 6. Note
that the semi-discretization (7.8) can be written as a system

d2v
dt2

= −Bv − V ′(v). (7.13)

(This involves a slight, harmless abuse of notation concerning V (v).) The matrix B is
symmetric positive definite, and with the BC (7.6d) it is also tridiagonal; see Exercise 5.
Clearly the ODE (7.13) is Hamiltonian, i.e., it is in the form (6.1) with

H(v, w) = 1

2
wT w + 1

2
vT Bv + V (v). (7.14)

The Hamiltonian H is conserved by the flow (namely, the solution of (7.13)) and defines a
symplectic map. The leapfrog scheme (7.9) is, in fact, none other than the Störmer–Verlet
method for (7.13) and hence is a symplectic discretization for it.
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Figure 7.8. Example 7.3: approximate solution (solid blue) and initial profile
(dashed red) using leapfrog for the sine-Gordon wave equation: α = 1, t = 400, k = 0.005,
h = 0.01.

Indeed, the semi-discretization (7.8) can be written as a first order ODE system,

dvj

dt
= wj,

dwj

dt
= c2

h2

(
vj−1 − 2vj + vj+1

)− V ′(vj ).

A subsequent, staggered discretization, as in Section 6.2 and in Example 3.2 but in time,
gives

vn+1
j − vn

j

k
= w

n+1/2
j , j = 1, . . . , J,

w
n+1/2
j − w

n−1/2
j

k
= c2

h2

(
vn

j−1 − 2vn
j + vn

j+1

)− V ′(vn
j ).

This allows elimination of the w-quantities, which yields the leapfrog scheme (7.9).
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Figure 7.9. Example 7.3: approximate (solid blue) and exact (dashed red) so-
lutions using leapfrog for the wave equation φtt = φxx: α = 10, t = 400, k = 0.01,
h = 0.02. The maximum error is .25 and artificial wiggles (or waves) appear.

Example 7.4 The same approach can be applied to Maxwell’s equations—see Exam-
ple 3.6. Now the derivation is less obvious, and it leads to Yee’s celebrated 1966 scheme;
see [185, 163]. Thus, we have a staggered mesh in space as well as in time. The discretiza-
tion, which for smooth coefficients has accuracy order (2, 2), reads

μ
(
H1n+1/2

i,j+ 1
2 ,k+ 1

2
− H1n−1/2

i,j+ 1
2 ,k+ 1

2

)
= k

h

[
E2n

i,j+ 1
2 ,k+1

− E2n

i,j+ 1
2 ,k

− E3n

i,j+1,k+ 1
2
− E3n

i,j,k+ 1
2

]
,

ε
(
E1n+1

i+ 1
2 ,j,k

− E1n

i+ 1
2 ,j,k

)
= k

h

[
−H2n+1/2

i+ 1
2 ,j,k+1/2

+ H2n+1/2
i+ 1

2 ,j,k− 1
2
+ H3n+1/2

i+ 1
2 ,j+ 1

2 ,k
− H3n+1/2

i+ 1
2 ,j− 1

2 ,k

]
− kσi+ 1

2 ,j,kE1n+1/2
i+ 1

2 ,j,k
,
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etc. Note that here μ is not a mesh ratio; rather, it is a parameter (permeability) which
appears in the problem statement. The parameter function σ (conductivity) is independent
of time. If σ is defined to be a positive constant σi,j,k in each cell as depicted in Figure 3.5,
then the value between cells can be defined by the harmonic average

σi+ 1
2 ,j,k = 2

σ−1
i,j,k + σ−1

i+1,j,k

.

Also define E1n+1/2 = (E1n + E1n+1)/2.
Although this looks more complicated than the simple wave equation, it is possible

to eliminate the H-quantities in a way similar to the elimination of wj in Example 7.3. We
simply write the equations for E1, say, at time levels n + 1 and n and subtract, obtaining at
the right-hand-side expressions involving H2 and H3. The result can be substituted for in
terms of E-components. We leave this to Exercise 8.

Whether or not H is eliminated, we expect a method with order, stability, and long-
time characteristics that are similar to that of the leapfrog scheme for the wave equation.

The wave equation is also a Hamiltonian PDE [41, 38, 137] and can be seen to satisfy
the local conservation law,[

1

2
u2

1 + 1

2
u2

2 + V (φ)

]
t

+ [cu1u2]x = 0, (7.15a)

where u1 = φt , u2 = −cφx (7.15b)

(recall (7.7) and do Exercise 7). This is referred to as a multisymplectic structure, but so
are other similar concepts; see Exercise 9.

If we are to discretize (7.15), recovering nodal mesh quantities vn
j ≈ φ(tn, xj ), then

again it makes sense to use a staggered mesh with

(u1)
n+1/2
j = vn+1

j − vn
j

k
, (u2)

n
j+1/2 = −c

vn
j+1 − vn

j

h
.

Using short differences in (7.15a) as well yields the conclusion that a discrete version of
the conservation law is obeyed by the discretization. See also Example 7.5. Further, the
intermediate quantities u1 and u2 can subsequently be eliminated, and the same leapfrog
scheme (7.9) is obtained yet again (Exercise 12).

We conclude that the leapfrog scheme with uniform step sizes k and h satisfies several
conservation laws and reproduces certain PDE solution structure. At the same time, the mesh
resolution must be sufficiently fine to resolve the real waves, lest artificial ones be introduced
due to numerical dispersion.

Example 7.5 (Speech synthesis) This example is a case study based on [174]. It concerns
acoustics simulation for articulatory speech synthesis. A widely used physical model for
sound propagation in ducts such as occurring in the vocal tract and in wind instruments
is a one-dimensional tube described by an area function. Excitations are placed in the
tube and their propagation is approximated by a digital ladder (or waveguide) filter. The
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resulting numerical task is the real-time simulation of wave propagation in a one-dimensional
acoustical tube, with a cross-section area that depends on both time and space, and in the
presence of damping terms of varying strength.

The mathematical model

Let us then consider a tube of length L and area function A(t, x) with 0 ≤ x ≤ L along
the axis of the tube. We assume that the physical quantities of pressure p̂, air density
ρ̂, and air velocity û depend only on x and t , and introduce the scaled variables p(t, x)

(dimensionless pressure or density deviation) and u(t, x) (volume velocity with dimension
of area), by p = ρ̂/ρ0 − 1, u = Aû/c, where ρ0 is the mass density of air and c is the speed
of sound. The linear lossless acoustics of the tube is governed by the equations

(u/A)t + cpx = 0, (7.16a)

(Ap)t + cux = −At . (7.16b)

While (7.16) is on solid theoretical footing, realistic models must also account for
energy losses. The latter are much harder to describe within a one-dimensional model as
essentially higher-dimensional phenomena such as boundary layer effects play an important
role here. The damping term we consider is of the form

−d(A)u + D(A)uxx.

See [174] for further justification and experimentation. We are therefore led to consider the
PDE

(u/A)t + cpx = −d(A)u + D(A)uxx, (7.17a)

(Ap)t + cux = −At . (7.17b)

Note that near constrictions in the tract the damping coefficients d and D can become large,
whereas in other areas they may be small. This gives the model different properties in
different spatial regions. For ease of presentation we consider the boundary conditions

u(0, t) = ug(t), p(L, t) = 0, (7.17c)

where ug is a prescribed volume velocity source.
Note that A(t, x) could be described in practice by a dynamical model, resulting in a

dynamical wall model; however, we assume here that the function A is given.

Discretization

The PDE (7.16) corresponds, in case that A ≡ 1, to the first order system (7.7) for the
classical wave equation (7.6a) with V ≡ 0 there. Since A is not constant, and since we
have additional terms in (7.17), we want to discretize the latter directly. However, since
the damping terms may be very small in some sections of the tube we want to retrieve the
leapfrog scheme for (7.6a) in the appropriate limit case.

Thus we use a staggered mesh, both in space and in time. Still assuming A ≡ 1,
consider for simplicity a uniform mesh in space, x0 < x1 < · · · < xJ < xJ+1, with
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h = xj+1 − xj , and likewise a mesh in time 0 = t0 < t1 < · · · , with k = tn+1 − tn. Let also
xj+1/2 = (xj + xj+1)/2 and tn+1/2 = (tn+1 + tn)/2. We can integrate (7.16a) on a mesh
volume in a manner similar to deriving the box scheme in Section 5.2.4. This yields

0 = 1

kh

∫ tn+1/2

tn−1/2

∫ xj+1/2

xj−1/2

(ut + cpx)dtdx = u
n+1/2
j − u

n−1/2
j

k
+ c

pn
j+1/2 − pn

j−1/2

h
,

which is exact by the Gauss divergence theorem if we interpret un+1/2
j , etc., as line integrals,

e.g.,

u
n+1/2
j = 1

h

∫ xj+1/2

xj−1/2

u(tn+1/2, x)dx.

This is a second order approximation for the value at edge midpoint (tn+1/2, xj ).
Likewise, we integrate (7.16b) on another, nearby mesh volume,

0 = 1

kh

∫ tn+1

tn

∫ xj+1

xj

(pt + cux)dtdx = pn+1
j+1/2 − pn

j+1/2

k
+ c

u
n+1/2
j+1 − u

n+1/2
j

h
;

see Figure 7.10.
Again, second order accurate pointwise values can be obtained upon interpretation

of these quantities as midpoint values at the edges of the control volume. What results is
clearly a staggered mesh scheme, as the volume velocity variables u live at the mesh nodes
in space and at half-mesh nodes in time, whereas the pressure variables p live between
spatial mesh nodes and at the temporal mesh nodes.

Now, substituting the centered approximations

u
n+1/2
j = −φn+1

j − φn
j

ck
, pn

j+1/2 = φn
j+1 − φn

j

h
− 1,

xj−1/2 xj xj+1/2 xj+1

tn−1/2

tn

tn+1/2

tn+1

pn
j+1/2

u
n+1/2
j

(a)

(b)

Figure 7.10. The staggered mesh, control volumes, and unknowns for Example 7.5.
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we can obtain the leapfrog scheme approximating (7.6a) with V = 0 there. On our uniform
mesh this leapfrog scheme is the usual (7.9). The staggered scheme therefore inherits
various conservation properties from the differential system, including symplecticity and
multisymplecticity.

Next we use the above as the basis for developing a discretization for the acoustic
equation (7.17). The variables u and p continue to live on the same separate space–time
mesh locations and are considered constant in the cells around the nodes. The area function
A, on the other hand, is given externally and is assumed to be defined everywhere.

Integrating (7.17a) as above and approximating 1
A

by a piecewise linear function we
get

u
n+1/2
j /Ã

n+1/2
j − u

n−1/2
j /Ã

n−1/2
j

k
+ c

pn
j+1/2 − pn

j−1/2

h

= 1

kh

∫ tn+1/2

tn−1/2

∫ xj+1/2

xj−1/2

[−d(A)u(x, t) + D(A)uxx(x, t) ]dxdt

with

1

Ã
n+1/2
j

=
(

1

A
n+1/2
j−1/2

+ 2

A
n+1/2
j

+ 1

A
n+1/2
j+1/2

)
/4.

In order to discretize the volume integral of −d(A)u above we consider u at tn+1/2

rather than at tn, thus obtaining an implicit scheme that remains stable even for very large
values of d without requiring very small time steps. This touch of backward Euler turns
out to be practically as accurate for the present mathematical model as a more moderate
attenuation of the hitherto centered time discretization. We then integrate over x, which
yields −d̂

n+1/2
j u

n+1/2
j , where

d̂
n+1/2
j =

(
d
(
A

n+1/2
j−1/2

)
+ 2d

(
A

n+1/2
j

)
+ d

(
A

n+1/2
j+1/2

))
/4.

For the term D(A)uxx above we first replace uxx with

u′′n+1/2
j = 1

h2
D+D−u

n+1/2
j = u

n+1/2
j+1 − 2u

n+1/2
j + u

n+1/2
j−1

h2

for j = 1, . . . , J . Then we proceed as for the term d(A)u, leading to D̂
n+1/2
j u′′n+1/2

j , where

we used a similar notation for D̂ as for d̂.
We finally obtain

u
n+1/2
j /Ã

n+1/2
j − u

n−1/2
j /Ã

n−1/2
j

k
+ c

pn
j+1/2 − pn

j−1/2

h

+ d̂
n+1/2
j u

n+1/2
j − D̂

n+1/2
j u′′n+1/2

j = 0. (7.18a)

Likewise, integrating (7.17b) over the cell labeled (b) in Figure 7.10 yields

Ân+1
j+1/2p

n+1
j+1/2 − Ân

j+1/2p
n
j+1/2

k
+ c

u
n+1/2
j+1 − u

n+1/2
j

h
+ Ân+1

j+1/2 − Ân
j+1/2

k
= 0 (7.18b)
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with
Ân

j+1/2 = (
An

j + 2An
j+1/2 + An

j+1

)
/4.

To correspond to the BCs (7.17c) we set x0 = 0, xJ+1/2 = L. At a given time tn, n ≥ 0,
assume we already know {pn

j+1/2}Jj=0 and {un−1/2
j }Jj=0. For n = 0 we obtain this from the

initial data. Advancing by one time step then involves the following:

1. Use (7.18a) to obtain {un+1/2
j }Jj=1. This involves the inversion of a tridiagonal matrix

which can be done rather efficiently. If D = 0, then no matrix inversion is needed at
all. Note that the tridiagonal system involves only the u nodes.

2. Set u
n+1/2
0 = ug(tn+1/2) by the left BC.

3. Use (7.18b) to obtain {pn+1
j+1/2}J−1

j=0 . This can be done explicitly.

4. Set pn+1
J+1/2 = 0 by the right BC.

For stability, the CFL condition must generally hold, i.e.,

ck

h
< 1.

In more general situations we find that stability depends also on the area function A(t, x),
and instability may occur sometimes already for ck close to but still below h. Setting
k = .5h/c, say, is safe. The damping term does not make matters worse here because it is
discretized implicitly.

We have assumed above that the length of the spatial interval L is constant. In general,
however, this length varies with time, L = L(t). To take care of this we can dynamically
change the step size h = L/(J + 1) to correspond to changes in L(t). This is a simple
example of a moving mesh. We have

xj (t) = xj (0)

L(0)
L(t)

and similarly for xj+1/2(t), j = 1, . . . , J . For a corresponding mesh quantity wj(t) we
now have wj = w(t, xj (t)). Hence

d

dt
wj (t) = (wt )j + (wx)j

d

dt
xj (t) = (wt )j + (wx)j

xj (0)

L(0)

d

dt
L(t).

Generally, an approximation to the rightmost term above must therefore be added in both
equations (7.18) reflecting, for example, the fact that un+1/2

j and u
n−1/2
j no longer relate to the

same location in space. In the present application, however, fortunately the length L(t) of
the tract changes slowly, so this adjustment to the difference equations proves unnecessary
in practice.

In [174] there are descriptions of several applications of the scheme developed above
for sound synthesis. An online demo can be found on van den Doel’s website,

http://www.cs.ubc.ca/∼kvdoel/
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7.3 The KdV equation
This entire section may be viewed as one case study. It is based on [12], which in turn
extends [11].

The design and development of symplectic methods for Hamiltonian ODEs, to which
Chapter 6 is devoted, yields very powerful numerical schemes with beautiful geometric
properties. Symplectic and other symmetric methods have been noted for their superior
performance, especially for long time integration. Recall that Hamiltonian systems describe,
for instance, the motion of frictionless, energy-conserving mechanical systems. Thus, they
possess marginal stability (see Figure 6.1) which corresponding symplectic numerical
schemes mimic. This “living at the edge of stability” is feasible, at least for sufficiently
small (and possibly many!) time steps, because of the implied geometric structure that such
discrete schemes conserve.

On the other hand it has long been known that conservative discretization schemes for
nonlinear, nondissipative PDEs governing wave phenomena tend to become numerically
unstable, and dissipation has subsequently been routinely introduced into such numerical
schemes, as described in detail in Chapter 5. In particular, conservative difference schemes
are known to occasionally yield numerical solutions which at first look fine but at a later
time may suddenly explode, as in Example 5.1. See also Example 9.6. Consequently, non-
dissipative schemes have generally been discouraged in important sectors of the scientific
computing community, especially for long time integration. Typical work on pseudospectra
(see, e.g., [168]) when applied to stability studies of ODEs, must also assume that eigenval-
ues are placed off the imaginary axis and into the left half-plane, so that sufficiently small
circles of stability can be drawn around them: in the context of Hamiltonian systems this
corresponds to using a slightly dissipative discretization scheme.

Thus, the common beliefs of two established communities seem headed to a clash
upon considering symplectic time differencing for Hamiltonian semi-discretizations and
multisymplectic discretizations of certain Hamiltonian PDEs. The purpose of this study
is to examine this situation numerically, by designing methods for the Korteweg–de Vries
(KdV) equation (5.1) reproduced here,

ut + (αu2 + νuxx)x = 0. (7.19)

Specifically, we attempt to see whether carefully designed, conservative finite difference
and finite volume discretizations can remain stable and deliver sharp solution profiles for a
long time. If yes, then to what extent is symplectic structure essential in such methods?

There are several good reasons to use the KdV equation as a prototype for our com-
parative study:

• It is a model nonlinear hyperbolic equation with smooth solutions for all times.

• It is nondissipative, although, unlike the advection and the classical wave equations,
it is dispersive. To see this, consider the linearization

ut + ρux + νuxxx = 0, −∞ < x < ∞, t ≥ 0, (7.20)

where ρ = 2αū, with ū some constant estimate for the size of u. Using the notation
of Section 1.1 we write the linear PDE as ut = P(∂x)u. The symbol is

P(ıξ) = ı(νξ 3 − ρξ).
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This shows that the Cauchy problem is stable but conservative, i.e., as for the advection
equation there is no attenuation of high wave number modes. The dispersion relation
is given by

ω = ξ(ρ − νξ 2).

Dividing by ξ we also see that for ν �= 0 the phase velocity depends on the wave
number (recall Section 7.1); hence this PDE is dispersive.

Thus, the KdV equation is a natural test bed for comparing conservative vs. dissipative
discretizations.

• The KdV equation (7.19) is notorious: a lot of previous attention has been devoted
to it. Moreover, the unexpected, “nonlinear” instability displayed in Example 5.1 is
tantalizing.

• The KdV equation is well known to satisfy a lot of conservation laws. Let us highlight,
in particular, three properties:

– Let ‖u(t)‖2 = ∫
u2(x, t)dx. Then it is easy to see norm preservation

‖u(t)‖ = ‖u0‖ ∀t.

– It is a Hamiltonian PDE (e.g. [129, 38]); i.e., it can be written as

ut = ∂

∂x

δH

δu
, H =

∫ (α

3
u3 − ν

2
(ux)

2
)

dx.

– It has a multisymplectic structure; see [36, 37, 188, 11] and Exercise 9. This
arises from writing it as

Lzt + Kzx = ∇zS(z), (7.21)

where K and L are skew-symmetric, constant matrices, and

z = (φ, u, v, w)T ,

φx = u, v = −νux, w = vx + 1

2
φt − αu2.

�
�

�
	

Note: Rather than getting technical, let us simply say that multisymplectic
= symplectic in both space and time.

These properties may be used to design different discretizations for (7.19), and the
question then is, Which stability and qualitative accuracy properties are obtained?

• When |ν| � 1 the PDE (7.19) is somehow close to the Burgers equation, its dispersion
limit. But the Burgers equation often develops solutions with shock discontinuities,
discussed at length in Chapter 10, whereas the solution of (7.19) remains always
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smooth. For the Burgers equation a nondissipative scheme cannot avoid developing
wiggles similar to those observed in Section 5.2 as soon as a shock forms [97, 173].
Thus, interesting numerical phenomena crop up when approximating (7.19) with
small ν using a large spatial step h.

• When |ν| is not small the term νuxxx leads to stiffness: fast waves can destabilize
schemes. Often these fast waves are not resolved in time. Indeed it is easy to see, as
in Example 5.1, that an explicit scheme must satisfy the very restrictive condition

k = O(|ν|−1h3). (7.22)

This is unacceptable in most practical situations.

• Many recent schemes that have appeared in the literature are fully implicit. But this
can be cumbersome! On the other hand, explicit schemes are too limited. So, we
consider semi-explicit splitting schemes below, where the term νuxxx is discretized
implicitly, whereas the rest is discretized explicitly.

• Symplectic discretizations may not be compact, whereas multisymplectic discretiza-
tions must be. There is no such difference for the classical wave equation of the
previous section, where the same discretization is compact, symplectic, and multi-
symplectic. Here we can therefore ask, Is the extra structure preservation worthwhile?

There are also reasons that make the choice of the KdV equation as a prototype for
our study less ideal. In particular it is completely integrable, which is uncharacteristic
of nonlinear hyperbolic PDEs, and it models only low wave number phenomena in one
dimension. But despite the negatives there are sufficiently many positives to make the
present study of interest: indeed, it employs much of the accumulated wisdom of the
previous chapters as well as the present one.

7.3.1 Schemes based on a classical semi-discretization

The usual semi-discretization in space reads

dvj

dt
+ α

2h

(
θD0vj

2 + 2(1 − θ)vjD0vj

)+ ν

2h3
D0D+D−vj = 0, (7.23)

where θ is a parameter.
The choice θ = 1 yields a Hamiltonian system arising from approximating

H� = h
∑

j

(α

3
v3

j − ν

2h2
(vj+1 − vj )

2
)

, (7.24)

whereas the choice θ = 2/3 yields discrete norm preservation

‖v(t)‖2 = h
∑

j

v2
j = ‖v(0)‖2

(recall Section 5.3). Thus, one must make a choice regarding which of these two properties
to preserve. However, it turns out that usually there is no major qualitative difference in
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practice between choosing one of these alternatives or the other. In particular, replacing
θ = 2/3 by θ = 1 in the explicit leapfrog scheme of Example 5.1 does not have a significant
impact on that scheme’s instability.

Full discretization: The midpoint rule

We next consider applying time discretization to the large ODE system (7.23). An explicit
scheme is usually too limited as we have seen, and we abandon any such possibility. On the
other hand, the implicit midpoint rule preserves the properties of the semi-discretization:
with θ = 1 it yields a symplectic scheme (because the ODE (7.23) is Hamiltonian and
midpoint is a symplectic method), whereas with θ = 2/3 it yields a norm-preserving
scheme

‖vn‖2 = ‖v0‖2 ∀n

(because midpoint reproduces quadratic invariants), and hence stability in the l2-sense is
guaranteed. The scheme reads

vn+1
j = vn

j − μ

2
D0

[
θα(v

n+1/2
j )2 + ν

h2
D+D−v

n+1/2
j

]
− (1 − θ)μαv

n+1/2
j D0v

n+1/2
j , v

n+1/2
j = (vn

j + vn+1
j )/2. (7.25)

As before, μ = k/h.
To advance in time using the fully implicit midpoint scheme (7.25) requires the so-

lution of a nonlinear system of algebraic equations for vn+1. Newton’s method amounts to
(fully) linearizing the nonlinear terms in the equation. This is also called quasi-linearization.
Thus, with v̂ known near v, we write

v2 ≈ v̂2 + 2v̂ (v − v̂) = 2v̂v − v̂2.

Also
vvx ≈ v̂v̂x + v̂(vx − v̂x) + (v − v̂)v̂x = −v̂v̂x + v̂vx + vv̂x,

but to simplify notation we consider only θ = 1. The Newton iteration therefore reads

v
n+1,s
j = vn

j − μ

4
D0

(
α

[(
vn

j + v
n+1,s−1
j

) (
vn

j + v
n+1,s
j

)
− 1

2

(
vn

j + v
n+1,s−1
j

)2
]

+ ν

h2
D+D−

(
vn

j + v
n+1,s−1
j

))
(7.26a)

for s = 1, 2, . . . . For the initial iterate we can choose

v
n+1,0
j = vn

j . (7.26b)

The equations (7.26a) form a linear system for vn+1,s . Newton’s method is well known
to converge (locally) quadratically, and since the initial iterate (7.26b) is O(k) away from
the solution vn+1, the first Newton iteration is already O(k2) away from the solution at
step n + 1. This may not always be sufficiently accurate, but two Newton iterations are
normally more than sufficient. There is a modified Newton technique, widely used in initial
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value ODE software, which typically necessitates only one Jacobian matrix assembly and
decomposition and costs less than two Newton iterations per time step.

In numerical experiments the implicit midpoint scheme stays stable over a wide range
of parameters for a long time. For a given discretization mesh it is often one of the more
accurate among the schemes considered here. However, it does develop tiny spatial wiggles
for relatively large h and k, and the symplectic version can even become unstable and blows
up in some extreme cases. The l2-stability for θ = 2/3 does prevent blowups but it does not
guarantee stability forux , and we get meaningless sawtooths in corresponding extreme cases.
Moreover, when a sharp-sawtooth approximate solution tries to move fast, the nonlinear
solver eventually falls apart.

A semi-explicit, symplectic method

Fully implicit schemes are cumbersome and expensive to use. So, consider a symplectic,
semi-explicit scheme, where the nonlinear part of the KdV equation is discretized explicitly
and the rest is discretized implicitly. This is a splitting method (see Section 6.2.2 and also
9.3). Starting from the Hamiltonian semi-discretization vt = (2h)−1D0∇H�(v), we split
the Hamiltonian into three parts,

H� = h
∑

j

(α

3
(vj )

3 − ν

2h2
(vj+1 − vj )

2
)

= h

⎛⎝∑
j

α

3
(v2j )

3 +
∑

j

α

3
(v2j+1)

3 −
∑

j

ν

2h2
(vj+1 − vj )

2

⎞⎠
≡ H 1

� + H 2
� + H 3

�.

The ODE vt = (2h)−1D0∇H 3
�(v) has constant coefficients, so it is discretized by the

unconditionally stable implicit midpoint method. This requires setting up and decomposing
the matrix just once! For half a time step, let us denote the inverse of this matrix by M . To
the rest we apply odd–even splitting; e.g., the ODE vt = (2h)−1D0∇H 1

�(v) at even spatial
mesh points

(v2j )t = α

2
((v2j+1)

2 − (v2j−1)
2), (v2j+1)t = 0,

is integrated exactly from tn to tn+1. Then the same mechanism is applied to the odd part of
the mesh.

Our semi-explicit, symplectic scheme is now obtained by a Strang-type (also, Verlet)
splitting,

U = Mvn;
Uodd = Uodd − αμ

4
((Uodd+1)

2 − (Uodd−1)
2);

Ueven = Ueven − αμ

2
((Ueven+1)

2 − (Ueven−1)
2);

Uodd = Uodd − αμ

4
((Uodd+1)

2 − (Uodd−1)
2);

vn+1 = MU. (7.27)
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A constant coefficient Fourier stability analysis demands restricting the time step to

2|αumax|μ < 1.

As in Chapter 6, note that the first M-partial step at level n follows the last M-partial step
at level n − 1 and so they can be combined into one partial step with M2. The operator
splitting is thus staggered, which allows retaining the second order accuracy (see Exercise
6.9).

The selling feature of this semi-explicit scheme is that the work per time step is roughly
an order of magnitude less than for a fully implicit method. Just how much faster the semi-
explicit scheme is depends of course on various factors, including the implementation details
of the nonlinear solver for a fully implicit scheme.

To carry out the step defined at each time level in (7.26a) or in a semi-explicit scheme
requires in principle solving a 5-diagonal linear system of equations. For the semi-explicit
scheme on an infinite spatial mesh we have

Avn+1 = b,

where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

−η 2η 1 −2η η

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, η = μν

2h2
.

With periodic boundary conditions, however, we have a matrix of finite size with nonzeros
at the corners,

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −2η η −η 2η

2η 1 −2η η −η

−η 2η 1 −2η η

−η 2η 1 −2η η

· · · · ·
· · · · ·

−η 2η 1 −2η η

η −η 2η 1 −2η

−2η η −η 2η 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Rapid techniques exist for the solution of such systems of linear equations (a matrix of this
type is called circulant) using the fast Fourier transform (FFT); see [100, 178] and the
review in Section 2.12.6.

7.3.2 Box schemes

All the schemes we have seen so far use a noncompact semi-discretization of the form (7.23),
so in particular they cannot be multisymplectic.

Hence we wish to apply a compact discretization in both x and t centered at a cell
(box), or a finite volume, with the corners

(xj , tn), (xj+1, tn), (xj , tn+1), (xj+1, tn+1).

Like the implicit midpoint rule the schemes obtained here are fully implicit, but they are
also compact, so we hope to avoid those extra wiggles that may appear when using the
noncompact semi-discretization (7.23).

We can start developing a box scheme as in Section 5.2.4, arriving at (5.16) and (5.17),
where now

f (u) = αu2 + νuxx.

But this must be followed with a spatial discretization of uxx . Employing the usual compact
three-point discretization for the latter in (5.16b) yields

f
n+1/2
j =

∫ tn+1

tn

[
αvj (t)

2 + h−2νD+D−vj (t)
]
dt.

Further, using the trapezoidal rule and plugging the result in (5.16a) gives the discretized
term νuxxx as

h−3νμtδxD+D−v
n+1/2
j+1/2

= ν

2h3

[
vn+1

j+2 − 3vn+1
j+1 + 3vn+1

j − vn+1
j−1 + vn

j+2 − 3vn
j+1 + 3vn

j − vn
j−1

]
.

The corresponding computational molecule (or stencil) is depicted in Figure 7.11. The
control volume is thus expanded to include three mesh cells.

n

n + 1

j j + 1

Figure 7.11. Computational molecule for the KdV box schemes.

A direct extension of (7.4) now reads

k−1δtμxv
n+1/2
j+1/2 + h−1μtδx

[
α(v

n+1/2
j+1/2)

2 + h−2νD+D−v
n+1/2
j+1/2

]
= 0,
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which we call the narrow box scheme.
But now, given that the uxxx term has taken us to the wider stencil depicted in Fig-

ure 7.11, we need not restrict ourselves to the narrow cell we had before when discretizing
first derivatives. For instance, we can obtain a fourth order approximation for un

j+1/2 in
(5.16b) by integrating the cubic interpolant of u(tn, x) at xi, i = j − 1, j, j + 1, j + 2. For
(u2)x we can consider the wider stencil, too. Define extrapolating averages as

vR,j+1/2 = (1 − 3b)vj+1 + bvj+2, vL,j+1/2 = (1 − 3b)vj + bvj−1,

where 0 ≤ b ≤ 1/3 is a parameter, and use (vR,j+1/2)
2 − (vL,j+1/2)

2 for u2(t, xj+1/2)x .
With c another parameter, our general KdV box scheme (in all its gory glory) is then written
as

1

k

[
2c(vn+1

j+1 + vn+1
j − vn

j+1 − vn
j ) + (1 − 2c)(vn+1

j+2 + vn+1
j−1 − vn

j+2 − vn
j−1)

]
+ α

h

[
bvn+1

j+2 + (1 − 3b)vn+1
j+1 − (1 − 3b)vn+1

j − bvn+1
j−1

+ bvn
j+2 + (1 − 3b)vn

j+1 − (1 − 3b)vn
j − bvn

j−1

]
(7.28)

+ ν

h3

[
vn+1

j+2 − 3vn+1
j+1 + 3vn+1

j − vn+1
j−1 + vn

j+2 − 3vn
j+1 + 3vn

j − vn
j−1

]
= 0.

These are compact, centered, implicit, conservative schemes of order (2, 2). If we
choose c = 13

24 , corresponding to the cubic interpolant mentioned earlier, then the accuracy
order improves to (2, 4). The choice b = 0, c = 1/2 yields the narrow box scheme. The
choice b = 1/4 (hence also 1 − 3b = 1/4), c = 3/8, corresponds to a multisymplectic
box scheme, derived from the discrete conservation of (7.21); see [188, 11].

With ρ = 2|αumax| it is possible to show (Exercise 14) that for large values of

s = ρν−1h2

and very large μ the scheme becomes unstable unless b ≥ 1/4.
Having introduced several potentially interesting discretizations we next test them

numerically on two examples.

Example 7.6 Consider the same choice of parameters used to demonstrate instability in
Example 5.1. Noting that 2|αumax| ≈ 2.6, we take this to be the Courant number for the
semi-explicit method. Thus, we safely set

μ = .2.

Here we select h = .005, k = .001, and record relative errors at t = 5 and at t = 10
in the discrete Hamiltonian (7.24) (denoted Error-Ham) and in the l2-norm (denoted Error-
norm). Note that these are often underestimators for the maximal pointwise error; see, e.g.,
Example 6.5. The results are displayed in Table 7.1.

The main observation concerning these results is that the multisymplectic box is the
least accurate, and by a significant margin. On the other hand, the semi-explicit, symplectic
method shines, given its much smaller computational cost per time step. The narrow box
scheme is the most accurate on the given mesh.
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Table 7.1. Error indicators in Hamiltonian and norm for Example 7.6 using
h = .005, k = .001.

Method t Error-Ham Error-norm

Multisymplectic Box 5 5.0e-1 2.1e-3

Narrow Box 5 6.0e-5 4.9e-4

Semi-explicit Symplectic 5 3.6e-3 8.9e-4

Implicit midpoint 5 8.4e-5 8.9e-4

Multisymplectic Box 10 4.8e-1 2.0e-3

Narrow Box 10 8.6e-5 4.8e-4

Semi-explicit Symplectic 10 3.7e-3 8.7e-4

Implicit midpoint 10 1.2e-4 8.7e-4

Next we apply our discretization schemes using rough resolutions. By this we mean
that the discretization step h is too large to enable reconstruction of all the solution details
visible at t = 10 in Figure 5.1. We keep μ = .2.

At first we set h = .02, thus k = .004. The solutions are graphed in Figure 7.12. Note
the extra wiggles that appear in the solution curves of those schemes that are based on the
semi-discretization (7.23). The box schemes do not show such wiggles. The narrow box
scheme produces a curve which is less smooth but closer to the exact solution, whereas the
multisymplectic box scheme produces a very stable, wiggle-free, not very accurate solution.
Exercise 15 attempts to explain all this.

Next we make things really rough by setting h = 1/30; hence k = 1/150. Now the
semi-explicit, symplectic scheme blows up before reaching t = 10, and so do the narrow
box and the symplectic midpoint schemes. The multisymplectic box scheme is the only one
that continues to produce smooth, wavy solution profiles which, although having little to do
with the exact solution, remain very stable and could look like the exact solution of another
problem of the same type; see Figure 7.13(a) and recall Theorem 6.7.

As mentioned earlier, setting θ = 2/3 rather than θ = 1 in (7.23) and applying implicit
midpoint in time produces a scheme which is unconditionally stable in the l2-sense. For
the present example the solution indeed does not blow up in this case, unlike its symplectic
comrade. However, it does not look like much more than noise either, even though the
l2-norm is in relative error of only 3.9e-8 (which comes from the accuracy tolerance of the
nonlinear solver); see Figure 7.13(b).

Example 7.7 The following setting is also taken from [188]. We choose

ν = −1, α = −3, ρ = 0,

u0(x) = 6sech2(x), u(−20, t) = u(20, t).

After a short while the solution has two solitons, a tall and narrow one (maximum
height = 8), and a shorter, wider one. These pulses both move with time to the right,
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(a) Semi-explicit, symplectic
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(b) Implicit midpoint
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(c) Multisymplectic box
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(d) Narrow box

Figure 7.12. Solutions for Example 7.6 for a rough resolution h = .02 at time
t = 10. Note the wiggles in the noncompact schemes (a) and (b).
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(a) Multisymplectic box
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(b) Implicit midpoint θ = 2/3

Figure 7.13. Solutions for Example 7.6 for a very rough resolution h = 1/30 at
time t = 10. These profiles have little to do with the exact solution, yet note the smooth
variation in scheme (a) in contrast to the very large spatial derivative in (b).
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Figure 7.14. KdV solution, a waterfall plot for Example 7.7. The semi-explicit
scheme with h = .05, k = .001 was used for the calculations, and each 10th mesh value in
both time and space (i.e., a sparser mesh by a factor of 100) was utilized for the plot.

wrapping around as is usual for periodic boundary conditions. But the taller soliton moves
faster, hence the two occasionally merge and then split apart again. See Figure 7.14 for
a “waterfall” figure depicting the progress of the solitons in time. Figure 7.15 shows full
resolution snapshots at times t = 4 and t = 100.

Turning to the numerical discretization, note that 2|αumax| ≈ 48. For the semi-explicit
scheme we take h = .05, k = .001.

But the remaining three fully implicit schemes do not share the stability restriction of
the semi-explicit scheme. For these we take h = .05, k = .005. This yields roughly equal
CPU time per time step for all schemes. Results are recorded in Table 7.2.

The most striking effect in the results of Table 7.2 is that these error underestimators
hardly deteriorate for a long time. Note that with k = .001 it takes 100,000 time steps to
arrive at t = 100. These error underestimators thus appear to be too good to be true! (A
similar phenomenon occurs in Example 6.5.) Indeed, the pointwise error does deteriorate:
the shape of the solitons is preserved by all schemes other than midpoint with k = .005, but
their location is not. This well-known numerical dispersion effect is evident in Figure 7.15.



root
2008/5/5
page 241

�

�

�

�

�

�

�

�

7.3. The KdV Equation 241

−20 −10 0 10 20

0

2

4

6

8

x

u

T=4
T=100

(a) Semi-explicit symplectic, k = .001.
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(b) Implicit midpoint, k = .005
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(c) Multisymplectic box, k = .005
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(d) Narrow box, k = .005

Figure 7.15. Solutions for Example 7.7 at times t = 4 and t = 100. Note how
crisply all of the conservative schemes except midpoint capture the solitons after a long
time integration. However, notice also the significant phase error.

Further experimentation with finer space–time meshes indicates that the phase shift is sig-
nificantly the smallest in the semi-explicit plot Figure 7.15(a), where the computation was
indeed performed with a smaller time step.

Note how crisply the solitons are captured in Figure 7.15. The correct amplitude is
preserved even at t = 100 by the semi-explicit, symplectic method (7.27). Exercise 16,
and even more so Exercise 17, should convince you that this is no mean feat.

Running the above examples with c = 13/24 yields qualitatively similar results to
those previously displayed. Yet, choosing c = 13/24 appears to improve the time accuracy,
especially in terms of conserving the l2-norm, without compromising stability at all. Here
is free lunch.

Thus we end this long exploration with the conclusion that conservative schemes
for conservative problems should not be discounted too quickly, although they do require
more care in handling. Another conclusion, one that surprised us, is that the winners—the
semi-explicit scheme (7.27) and the box schemes (7.28) with c = 13/24 and b = 0 or
b = 1/4—are not among “the usual suspects” and did not appear in the literature before
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Table 7.2. Error indicators in Hamiltonian and norm for Example 7.7 using h = .05.

Method t k Error-Ham Error-norm

Multisymplectic box 4 .005 5.8e-3 8.8e-4

Narrow box 4 .005 1.5e-3 2.3e-4

Semi-explicit symplectic 4 .001 3.5e-4 4.5e-4

Implicit midpoint 4 .005 6.6e-2 2.0e-2

Implicit midpoint 4 .001 1.2e-4 5.0e-4

Multisymplectic box 100 .005 5.8e-3 8.9e-4

Narrow box 100 .005 1.5e-3 2.3e-4

Semi-explicit symplectic 100 .001 3.5e-4 4.5e-4

Implicit midpoint 100 .005 3.7e-1 1.2e-1

Implicit midpoint 100 .001 1.1e-4 5.0e-4

the relatively recent [11, 12]. Finally, whereas these box schemes have been shown to
have favorable properties in preserving structure, it seems that their essential ingredient
(in addition to being conservative and symmetric) is compactness, i.e., the use of short
differencing avoiding D0 in both space and time.

7.4 Spectral methods
Throughout most of this book we consider low order methods. More precisely, we use
low order methods to expose concepts and numerical issues, due to their simplicity and
flexibility. But this of course does not mean that the preferred methods to use for a given
application are necessarily of low order. The choice of a suitable method depends on the
special challenges and accuracy requirements of the application at hand. For many problems
accumulated experience suggests that the ideal order of accuracy is not far from four.

In several places of this text we do provide and demonstrate fourth order methods and
higher, in both time and space. These methods are all based on local polynomial approxima-
tions; see, in particular, Sections 2.1, 2.2, and 3.1. For both multistep methods in Chapter 2
and spatial derivative discretizations in Chapter 3 we have seen that if we insist on a linear
difference method, then more mesh points are required for higher order approximations. If
we continue to increase the order by including more and more mesh points then eventually
one high-order polynomial approximation is obtained. Our approximate solution, say, in
one space variable, may then be written for each t as

v(t, x) =
J∑

i=1

αi(t)φi(x), (7.29)
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where φi(x) are global basis functions, as in Review Section 2.12.3. Note that t is just a
parameter in (7.29). In favorable circumstances this approach can lead to approximations
that are more accurate than any finite difference order l, i.e., the approximation error is
O(J−l) for every positive finite l. This is called spectral accuracy.

The next observation is that these global basis functions may be chosen suitably for
different instances, not necessarily to form a polynomial approximation: whereas locally
anything sufficiently smooth looks like a polynomial according to Taylor’s theorem, the
same does not hold globally. This opens the door to a large variety of methods called
spectral methods. The present section offers a taste of these methods, their triumphs and
limitations. There are several texts and monographs available, including the pioneering
Gottlieb and Orszag [71], the comprehensive Canuto et. al. [45], the useful Fornberg [63],
and the delightful Trefethen [169].

There are Galerkin spectral methods [45], but most people these days concentrate
on collocation spectral methods. Moreover, for time-dependent PDE problems, typically
an ODE discretization method of the sort explored in Chapters 2 and 6 is coupled with a
spectral discretization of the spatial derivatives. This is along the lines of the representation
(7.29), where the time variable is separated from space variables.

Let us then concentrate on the spatial variable x. We choose global basis functions
φi(x) and a discretization mesh {xj }Jj=1 and consider forming a J ×J differentiation matrix
as in Section 2.12.6. (Recall also the implicit difference methods of (3.8) and (3.9).) This
operator yields values vx(t, xj ), j = 1, . . . , J , given values vj = v(t, xj ), j = 1, . . . , J ,
according to (7.29).

If the given PDE is subject to periodic BC, as is the case in most examples considered
in this chapter (and unlike many other examples that arise in practice), then it is best to use
trigonometric polynomial basis functions. The effect of the differentiation matrix is then
achieved by an FFT, as described in Section 2.12.6. This is where the spectral accuracy of
the resulting spatial discretization over a uniform mesh may imply that we may use fewer
mesh points and/or obtain less numerical dispersion!

Example 7.8 Let us return to the classical wave equation and the specifications of Exam-
ple 7.3. We retain the leapfrog method in time but replace the spatial discretization by
F−1

(−ξ 2F(vn)
)
, where F denotes the discrete Fourier transform in space. This has the

effect of applying the square of the differentiation matrix to the mesh function vn = {vn
j }Jj=1

at the current time level. The scheme in time and space is then

vn+1 = vn−1 + 2vn + k2F−1
(−ξ 2F(vn)

)
. (7.30)

Numerical results with time step sizes corresponding to those in Example 7.3 are
recorded in Table 7.3. For α = 1 the recorded error is due only to the time discretization,
and for J ≥ 128 there is no difference in the plots of exact and approximate solutions as far
as the eye can tell. This also holds for much smaller J , although then care must be taken to
plot the results using a more judicious interpolation than the standard piecewise linear (i.e.,
“broken line”) method. For J = 1024 (h ≈ .02) the scheme blows up because a stability
restriction on the time step is violated.

For the nonlinear sine-Gordon equation we subtract k2 sin(vn) from the right-hand
side of (7.30). A plot that is qualitatively similar to Figure 7.8 is obtained with k = .005
and J = 128. The corresponding spatial step h ≈ .16 is far coarser than in Figure 7.8.
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Table 7.3. Maximum errors at t = 400 using the spectral method (7.30) with time
step size k.

J = 64 J = 128 J = 256 J = 512

α = 1, k = .02 3.4e-3 3.4e-3 3.4e-3 3.4e-3

α = 10, k = .01 8.9e-1 9.6e-2 9.6e-2 9.6e-2

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

u

Leap−frog spectral

Figure 7.16. Example 7.8: approximate (solid blue) and exact (dashed red) solu-
tions using the spectral leapfrog method for the wave equation φtt = φxx: α = 10, t = 400,
k = 0.01, h = 20/256. The maximum error is .096 and artificial wiggles (or waves) appear.

For α = 10 at J ≥ 128 the solution plot depicted in Figure 7.16 has visible dispersion,
but it is less pronounced than in Figure 7.9. This dispersion arises mainly due to the time
differencing. For J = 64 the results are disastrous as the spurious waves spread throughout
the domain; the corresponding finite difference method of Example 7.3 deteriorates more
gracefully as h is increased.
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In summary, the spectral method does very well in the setup of the present example.
Of course, the cost of a double FFT is higher for the same number of spatial mesh points
than the cost of calculating a finite difference array, but when J is 10 times smaller a more
efficient and capacious method results.

If the boundary conditions are not periodic, then the trigonometric polynomial approx-
imation is not suitable. In such a case we resort to a high degree polynomial approximation.
But this requires care, both in terms of choosing the basis functions describing the space
of polynomials of degree < J and in terms of selecting the collocation points. If we
choose them equi-spaced as in the Fourier case, then rather large interpolation errors may
result using a very large degree polynomial. Recalling Sections 2.12.2 and 2.12.3, it is
much preferable to use the Chebyshev points. On the interval [−1, 1] and including the
boundary points, these are given by

xj = cos

(
πj

J

)
, j = 0, 1, . . . , J.

Now we can construct (J + 1) × (J + 1) differentiation matrices based on polynomial
interpolation of degree J at these points, with the usual scaling and translation applying for
any interval [a, b] other than [−1, 1].

Moreover, the effect of the Chebyshev differentiation matrix can be obtained using
FFTs as well; see, e.g., Chapter 8 of [169]. Note also that upon obtaining a solution on this
mesh, a polynomial evaluation is required to plot the solution reasonably on some possibly
uniform, denser plotting mesh.

Depending on the BC, then, we may use Chebyshev spectral collocation or Fourier
spectral collocation to replace the spatial derivatives of our time-dependent PDE. This can
be easily done also in more than one space dimension on a rectangular (or box in three
dimensions) domain. The resulting ODE system in time is usually discretized as above by
finite differences. The eigenvalues of the resulting differentiation matrix imply a restriction
on the time step yielding absolute stability; see Section 2.5. This necessary condition for
stability is often close enough to being practically sufficient as well. In Example 7.8 we
saw that k must be less than h = 20/J times some factor smaller than 1 for the explicit
leapfrog. For Chebyshev collocation, unfortunately, often the time step size restriction
is much more severe than for trigonometric polynomial collocation. However, spectral
method aficionados shrug this off because due to accuracy considerations the time step size
k is usually taken much smaller than (b−a)/J anyway. One could even think of an explicit
method for the KdV equation with ν not small [63, 169].

The basic disadvantages of spectral methods are clear as well. As explained in basic
texts on numerical methods, there is a reason why standard robust general-purpose inter-
polation software never uses high degree polynomials! And this reason is relevant here.
Thus, spectral methods work well if the solution and the coefficient functions used to define
the PDE are very smooth. For the speech synthesis Example 7.5, for instance, this would
not be the case. Similarly, complex geometries and detailed boundaries in more than one
space variable would cause spectral methods to collapse. However, for many models con-
sidered by applied mathematicians and for many other mathematical models that arise in
the physical and engineering sciences, conditions are right for spectral methods to shine.
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7.5 Lagrangian methods
This chapter and Chapter 5 highlight not only strengths but also some limitations in finite
difference (and finite volume and finite element) discretizations for PDEs of the hyperbolic
type: if we want to mimic the conservative nature of such problems, even in the presence
of discontinuities or of steep solution features that are not well resolved by the mesh, then
unpleasant surprises may arise. If instead we introduce lots of artificial dissipativity or
viscosity, then the problem of oversmoothing arises, as we have seen when using the Lax–
Friedrichs scheme in Figures 5.4, 5.5, 7.2, and 7.3. Section 5.2.3 and Chapter 10 offer
techniques based on upwinding that do improve upon the Lax–Friedrichs performance.
Moreover, more accurate simulations using higher order methods are less susceptible to
significant dispersion; see, e.g., Section 7.4. Still, the essential dilemma remains: we really
do not know how to faithfully integrate complex systems of hyperbolic type in several space
dimensions over funny geometries for a long time at a reasonable price.

Some of the trouble appears to be inherent in methods that utilize a mesh. This is an
Eulerian approach: one sits at a fixed mesh point and observes the flow that passes by.
Instead, a Lagrangian approach would have the observer watch the world while sitting on
a particle that is part of the flow. This leads to particle methods. But unlike Example 2.9
that deals with cloth simulation, here there may not be an underlying mesh at all. Such
methods are therefore also referred to as meshless.

In Lagrangian methods the material derivative Du
Dt

defined in Example 5.4 becomes
an ordinary derivative: dui

dt
for the ith particle. Specifying the way these particles interact

with neighboring particles and with the boundary then yields a set of ODEs to be solved in
time.

However, the “law of preservation of difficulty” is at work here, too. Maintaining
everything on a prespecified mesh as in the Eulerian approach makes life much easier in
many aspects, including programming, evaluating, and displaying the resulting solution and
assessing the quality of the obtained solution in rigorous terms. Using a Lagrangian method
instead, we are left without any of these advantages.

Specifying just precisely how these particles interact yields different methods. One
class of such techniques especially popular in the astrophysics community is called smooth
particle hydrodynamics (SPH). We shall not dwell on this much here; see Monaghan
[136] for a recent, long review of these methods (which originated in the 1970s) and [64]
for a large state-of-the-art hydrodynamic code implementing it for astrophysical purposes.
Another method of this sort is called material point; see [162] and references therein. We
do note, in general, that some significant tweaking may be required to make such methods
work, and theory for them is at a generally unsatisfactory state; yet they can occasionally
be made to work to an impressive effect.

7.6 Exercises
0. Review questions

(a) Define dispersion, phase velocity, and group velocity for a linear PDE.

(b) Is the advection equation dispersive? Is the wave equation? Is the KdV equa-
tion?
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(c) Which of the following schemes for the advection equation is dispersive: Lax–
Wendroff, leapfrog, box?

(d) What is the effect of dissipativity on dispersive numerical schemes?

(e) Show that the centered three-point semi-discretization of the classical wave
equation is Hamiltonian and that the subsequent application of the Verlet method
yields the leapfrog scheme.

(f) What is the sine-Gordon equation? Answer for it the previous question.

(g) Name as many properties of the KdV equation as you can that the wave equation
does not have.

(h) Why is the semi-explicit method derived for the KdV equation symplectic but
not multisymplectic?

(i) Write down specifically the narrow box and the multisymplectic box schemes
for the KdV equation (7.19).

(j) Give an example for which use of a spectral method is recommended and an
example for which it is not recommended.

1. Use the dispersion relation (7.2) to show that for the Lax–Wendroff scheme applied
to (7.1) the phase velocity satisfies

c2 ≈ a

[
1 − 1

6
(ξh)2(1 − μ2)

]
when |ξ |h � 1. (See [133].)

2. Prove the dispersion relation (7.3) for the leapfrog scheme.

3. For the box scheme (7.4):

(a) Prove the dispersion relation (7.5).

(b) Setting a = 1, calculate (approximately) phase and group velocities at π − h

and at π/2, for μ = 0.5 and for μ = 2.0. What do you observe? Try to explain
Figure 7.5.

4. The advection equation with variable coefficient

ut + a(x)ux = 0, a(x) = .2 + sin2(x − 1),

for 0 ≤ x ≤ 2π , t ≥ 0, with periodic BC and u0(x) = e−100(x−1)2
, was used to create

the cover page of [169] and shows the initial pulse propagating with variable speed.
The corresponding program (called p6) is available at

http://www.comlab.ox.ac.uk/oucl/work/nick.trefethen

A spectral discretization with J = 128 points was used in space and the leapfrog
scheme of Exercise 2.4 (see also (7.30)) was applied in time with k = h/4.
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Write a program that solves this problem using the same time discretization and the
following space discretizations: (i) the centered second order discretization of ux

that creates the usual leapfrog scheme, and (ii) the centered five-point, fourth order
scheme derived in Section 3.1.1. Add also a variant of order (4, 4) that combines the
five-point discretization in space with RK4 in time: for the latter you may set k = h.

Try your program for J = 128, J = 192, and J = 256 using h = 2π/J . Explain
your observations.

5. Consider the semi-discretization (7.8) for the wave equation (7.6a) with V constant
and Dirichlet BC (7.6d).

(a) Write this as an ODE system

d2v
dt2

= −Bv

with B a tridiagonal, symmetric positive definite matrix.

(b) Find a nonsingular matrix C such that

B = CT C.

(c) Define w by

CT w = dv
dt

and show that the semi-discretization can be written as⎛⎝v

w

⎞⎠
t

= L

⎛⎝v

w

⎞⎠
with L skew-symmetric. Conclude that

‖v(t)‖2 + ‖w(t)‖2 = ‖v(0)‖2 + ‖w(0)‖2 ∀ t ≥ 0.

(d) Repeat the numerical experiments reported in Example 7.3 with V constant,
using the leapfrog scheme and measuring

En = [‖vn‖2 + ‖wn‖2]1/2 − [‖v0‖2 + ‖w0‖2]1/2.

You will need to define wn sensibly and locally for this, based on the computed
mesh values of v in time and space. Plot En vs. tn for α = 1 and α = 10. What
are your conclusions?

6. For the system of conservation laws (5.4) we can define the two-step, staggered mesh
scheme

vn+1/2
j+1/2 = vn−1/2

j+1/2 − μ (f(vn
j+1) − f(vn

j )),

vn+1
j = vn

j − μ (f(vn+1/2
j+1/2) − f(vn+1/2

j−1/2)),

where μ = k/h.
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(a) Show that this scheme is second order accurate in both k and h.

(b) Apply a Fourier analysis to the frozen-coefficient problem. Is the scheme dissi-
pative? Is it conservative?

(c) Show that when applied to the simple advection equation

ut = ux,

this scheme can be considered as equivalent to the leapfrog scheme applied to
the classical wave equation utt = uxx .

(d) Apply the scheme to the simple advection equation with the initial data functions
of Examples 5.6 and 7.1. Use μ = 0.5 and try h = 0.01π and h = 0.005π .
Plot your results and compare them to Figures 5.4, 7.2, and 7.3. What are your
conclusions?

7. Show that the wave equation (7.6a) satisfies the local conservation law (7.15).

8. (a) Write down the full set of algebraic equations discretizing Maxwell’s equations
as in Example 7.4 (and Example 3.6).

(b) Eliminate the H-unknowns, obtaining equations in E alone. What do these
approximate?

9. A multisymplectic PDE has been defined by Bridges [36, 37] to be one that can be
written in the form (7.21), repeated here,

Lzt + Kzx = ∇zS(z),

where K and L are constant, skew-symmetric matrices.

(a) Show that the wave equation (7.6a) can be written in this form.

(b) Show that the KdV equation (7.19) can be written in this form. (See the lines
following (7.21) for a choice of z.)

10. The problem (5.28) of Exercise 5.14 reduces for ν = 0 to the classical wave equation
written in first order form. The methods and considerations of Section 7.2 are therefore
applicable.

(a) Design a compact, centered, second order discretization on a staggered mesh
for the PDE system (5.28).

(b) Repeat the experiments of Exercise 5.14 with the new scheme. What are your
observations regarding stability and dispersion?

(You should see some improvements with the current scheme despite its lower
accuracy order.)

11. This “exercise” describes a potential term project.
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One of the most widely used variants in the class of Boussinesq systems was first
proposed by Boussinesq himself (see the wave bible Whitham [182, p. 462]). It is
given by

wt + (uw)x = 0, (7.31a)

ut +
(

w + 1

2
u2

)
x

= −νwxtt . (7.31b)

Here (w, u) are scalar-valued functions of (t, x) with w(t, x) required to be positive
for all (t, x). For shallow water flow in a one-dimensional channel aligned in the
x-direction, w(t, x) is the height of the water surface above the channel bottom and
u(t, x) is the average velocity in the x-direction.

Instead of w often the elevation η(t, x) of the free surface from the water column at
rest w0 is employed. Writing w = w0 + η, and assuming for simplicity that w0 ≡ 1
and |η| � 1, we obtain

ηt + ux + (uη)x = 0, (7.32a)

ut +
(

η + 1

2
u2

)
x

= −νηxtt . (7.32b)

Moreover, from (7.32a) ηttx ≈ −utxx , so another nearby Boussinesq system is [180,
29, 138]

ηt + ux + (uη)x = 0, (7.33a)

ut +
(

η + 1

2
u2

)
x

= νuxxt . (7.33b)

(a) Show that the PDE system (7.31) is multisymplectic (as per the notation in
Exercise 9) for

z = (w, q, ψ, φ, r, p)T ,

u = φx, q = uw, ψ = wt, w = rx, p = w + φt + νψt + 1

2
u2 .

Hint: Construct K and L with

S(z) = pw − 1

2
w2 + 1

2
q2/w − ν

2 ψ2.

(b) Apply the box scheme to the obtained PDE form. This yields a multisymplectic
discretization. Then proceed to eliminate all auxiliary unknowns, resulting in
the full discretization

δtMxw + δxMt(uw) = 0, (7.34a)

δtMtMxu + δxM
2
t

(
w + 1

2
u2

)
= −νδxδ

2
t w. (7.34b)
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Note that the first of these is centered at (j + 1/2, n+ 1/2), whereas the second
is centered at (j + 1/2, n). This formula is certainly compact, spanning one
spatial mesh subinterval and two time steps. Show that it is implicit with a
4-diagonal Jacobian matrix.

(c) Investigate the numerical properties of the scheme (7.34). Design a numerical
experiment and compare its performance to other schemes that you may either
dream up or look up in the literature.

(d) Design a numerical scheme for the system (7.33). Discuss computational issues
and compare its performance with the scheme for (7.31) and (7.32).

Hint: Recalling Exercises 10 and 5.14 may help.

12. Carry out the staggered mesh formulation outlined following (7.15) and obtain the
leapfrog method for the wave equation.

13. Suppose that the wave equation with V ′ = 0 is defined in a spatial domain [−π, π ]
and that at x = 0 there is a (virtual) “wall” such that the spatial step, h−, at x < 0 is
half that of the spatial step, h+, at x ≥ 0.

(a) Recalling the staggered mesh underlying the leapfrog scheme, carefully extend
the method for this case of a nonuniform mesh.

(b) Design a box scheme for the wave equation and show that it is not affected at
all by a nonuniform spatial mesh.

14. Let k/h increase unboundedly in (7.28) when applied to the linearized KdV (7.20),
and consider the scheme corresponding to a steady state ut = 0.

(a) Show that the obtained linear difference scheme has the characteristic polyno-
mial

p(ζ ) = (ζ − 1)[(sb + 1)(ζ 2 + 1) + (s(1 − 2b) − 2)ζ ],
where s = ρν−1h2.

(b) Show that all roots of the characteristic polynomial are in the unit circle, hence
that the scheme is stable in this limit, if{

s < 4
1−4b

, b < 1/4,

unconditionally, b ≥ 1/4.

15. Perform a dispersion analysis for the various KdV schemes used in Section 7.3. Show
that schemes based on the semi-explicit discretization (7.23) all support spurious low-
frequency modes corresponding to high wave numbers, whereas the box schemes do
not support such modes.

16. The semi-explicit splitting framework can be used to construct other schemes, too,
and not necessarily conservative ones, either. Thus, (7.27) is replaced by applying
U = Mvn, followed by solving the Burgers equation (i.e., (7.19) with ν = 0) for one
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time step, followed by another application of vn+1 = MU , where M is the inverse of
the solution operator for half a step of (7.19) with α = 0.

Consider applying the classical RK4 to the semi-discretization of Burgers’s equation
(i.e., (7.23) with ν = 0) in this context. Repeat the experiments of Examples 7.6 and
7.7. Can you recover the soliton shapes as well as the conservative schemes do in
Figure 7.15, even for t = 100?

17. Repeat Exercise 16 where the Burgers equation is now approximated by a one-sided
scheme,

Uj = Uj − μα

{
(Uj+1)

2 − (Uj )
2, Uj < 0,

(Uj )
2 − (Uj−1)

2, Uj ≥ 0.

This is an instance of a semi-Lagrangian method.

18. This “exercise” describes a potential term project.

The Kuramoto–Sivashinsky (KS) equation

ut = −uxxxx − (uxx + uux) (7.35)

has attracted much attention for several decades among researchers interested in
dynamical systems and reaction-diffusion problems [112, 99]. It admits chaotic so-
lutions. The nonlinear term transfers energy from low wave numbers to high wave
numbers, and in the latter regime the fourth order term acts to stabilize while the
second order term acts to destabilize.

In [105] there is an impressive picture of a solution for the case of periodic BCs on
[0, 32π ] and initial data

u0(x) = cos(x/16)(1 + sin(x/16)),

together with the program used to generate that figure. The method used couples
elements briefly described in Sections 7.4 and 9.3.3.

Your task is to investigate the behavior of this problem further, using the above ref-
erences and others, and to devise numerical methods for its solution that are different
from the one given in [105], along the lines of the methods developed in this chapter
and in Section 9.3. Notice that here, as in the KdV equation, the leading terms of
the PDE are pleasantly constant coefficient ones, so some form of splitting comes to
mind.

Test your methods on the above problem and also using the initial conditions

u0(x) = e−(x−16π)2
.

Discuss your findings.
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More on Handling
Boundary Conditions

In previous chapters we have steered clear of potentially problematic boundary conditions
(BC). We have dealt mostly with pure initial value problems, but we also discussed peri-
odic boundary conditions for hyperbolic-type equations, particularly in Example 1.2 and
Section 7.3.1. Furthermore, in Section 3.1.3 we handled Neumann and Dirichlet BC in
simple situations. Ghost unknowns are introduced for both periodic and Neumann BC;
see, e.g., Figure 3.6.

This, of course, does not account for all situations related to BC that may arise in
practice. In this chapter we discuss handling other such issues, mainly how to prescribe the
boundary conditions in some contexts. We also consider the effect on stability. We still work
essentially in one space dimension, although several ideas do extend to multidimensional
problems.

As usual, life is simpler for parabolic problems, and we discuss these in Section 8.1.
Here we concentrate in particular on handling inconsistencies that often arise at the domain
corners where initial and boundary data meet.

Hyperbolic problems may yield more difficulties, or perhaps unexpected challenges,
and we discuss these in Section 8.2, which is by far the longest section in the present chapter.
Essentially, the problem is to prescribe BC in a manner that avoids unwanted phenomena
such as spurious error waves reflecting off the boundary back into the domain of integration.
Other phenomena such as order reduction and stability may also arise from the meeting of
the different operators that apply inside the domain and on the boundary, on both continuous
and discrete levels.

Finally, in Section 8.3 we briefly consider the approximation of infinite domains by
finite ones, which involves prescribing appropriate BC.

8.1 Parabolic problems
The basics of handling BC for parabolic problems are covered already in Section 3.1.3.
We can generalize and abstract this as follows. For the general difference scheme (3.27c)
reproduced here,

r∑
i=−l

γiv
n+1
j+i =

r∑
i=−l

βiv
n
j+i ,

253
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the range of j where the scheme is applied depends on the type of BC, on the scheme used
to approximate them, and on the extent of the computational molecule l, r . If we use some
fixed linear extrapolation,

vn
j =

q∑
i=1

bjiv
n
i + fj , j = 0, . . . ,−r, (8.1)

to approximate the BC at the left boundary, and similarly at the right boundary, then the
scheme can be written in the matrix form (3.27b) or (3.27d), i.e.,

Q1v
n+1 = Q0v

n, Q = Q−1
1 Q0,

where Q is a large but finite matrix incorporating the BC. In the explicit case, Q = Q0 is a
banded matrix with the βi on its diagonals (i = −l, . . . , r), and with two blocks involving
additional rows corresponding to the BC added at the top left and at the bottom right.

The stability condition is still

‖Q‖ ≤ 1,

and a necessary condition for this to hold is

ρ(Q) ≤ 1.

The general analysis of stability is complicated and can be found in Varah [176]. The overall
conclusion is simple and comforting, though, saying basically that barring weird situations
there are no instability traps to beware of.�

�
�
	

Note: For parabolic PDEs, sensible consistent BC approximations turn
out to be stable.

It often occurs in practice that initial and boundary values do not agree at their points
of meeting, say, (t, x) = (0, 0) and (0, 1). It makes sense then to interpret the boundary
conditions as holding only for t > 0, to avoid ambiguity. The jumps at the corners are
smoothed by the diffusion operator as soon as we step into the interior of the domain of
definition.

Example 8.1 (Adsorption in a finite bath) This chemical engineering model for multi-
component adsorption from a finite bath is due to Liapis and Rippin [120]. We use it as
a case study, although we stop short of calculating any numerical solutions. Rather, we
emphasize the use of the knowledge and experience accumulated hitherto in order to design
promising numerical discretizations. Exercise 1 then completes the computational task.
Alternatively, see Viera and Biscaia [177].

The mathematical model consists of a system of parabolic PDEs,

∂yi

∂t
+ ∂zi

∂t
= λi

r2

∂

∂r

(
r2 ∂yi

∂r

)
, (8.2a)

zi = ki(y)yi, t > 0, 0 ≤ r ≤ 1, (8.2b)
dui

dt
= −3αλi

∂yi

∂r
|r=1 , i = 1, . . . , Ne. (8.2c)
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The zi are known functions of y = (y1, . . . , yNe
). The constants λi and α are known. The

unknowns ui(t) basically “live” on the spatial boundary r = 1.
There are initial conditions,

yi(0, r) = zi(0, r) = 0, ui(0) = ui0 > 0, (8.3a)

boundary conditions at r = 0 arising from symmetry,

∂yi

∂r
(t, 0) = 0, (8.3b)

and boundary conditions at r = 1,

∂yi

∂r
(t, 1) = βi[ui(t) − yi(t, 1)]. (8.3c)

For actual values of the various parameters and functions mentioned above, see Exercise 1.
This model features relatively large time derivatives near the initial time, corresponding
to higher mass transfer rates for the separation of mixture components occurring at the
beginning of the separation process [177].

Let

ȳi (t) = 3
∫ 1

0
r2yi(r, t)dr,

z̄i(t) = 3
∫ 1

0
r2zi(r, t)dr.

Then multiplying (8.2a) by r2 and integrating with respect to r yields

dȳi

dt
+ dz̄i

dt
= 3λi

∂yi

∂r
|r=1 = −α−1 dui

dt
.

Thus, the global mass balance

ui(t) + α(ȳi(t) + z̄i (t)) = ui0 (8.4)

is an (integral) invariant of the system.
An inconsistency occurs at the corner (0, 1). Crawling in r along the initial line t = 0

we have from (8.3a), ∂yi (0,r)

∂r
|r=1 = 0, as well as y(0, 1) = 0; and yet ui(0) �= 0, so (8.3c)

cannot hold at the corner. But the entire problem is nice and parabolic, so any boundary
jump is immediately smoothed inside the PDE domain of definition.

It seems best to insert (8.3c) into (8.2c), obtaining

dui

dt
= −3αλiβi[ui − yi(t, 1)]. (8.5)

Then integrate (8.2a), (8.2b), (8.5) for t > 0 with the initial conditions (8.3a) holding at
t = 0 and the boundary conditions (8.3b) and (8.3c) holding for t > 0.

Next, consider a semi-discretization for this problem. We can use the same method
as for the diffusion equation in Example 3.1. Thus, let rj = jh, where h = (J + 1)−1 is the
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discretization step in r , and rj+1/2 = rj + h/2. With yi,j (t) approximating yi(t, rj ), etc.,
we obtain

dyi,j

dt
+ dzi,j

dt
= λi

r2
j h2

(
r2
j+1/2(yi,j+1 − yi,j ) − r2

j−1/2(yi,j − yi,j−1)
)
,

j = 1, . . . , J + 1, i = 1, . . . , Ne, (8.6a)

zi,j = ki(yj )yi,j , j = 0, . . . , J + 1, i = 1, . . . , Ne , (8.6b)
dui

dt
= −3αλiβi(ui − yi,J+1) , i = 1, . . . , Ne. (8.6c)

At r = 0 we get a division by 0 if we apply (8.6a). Writing instead

λi

r2

∂

∂r

(
r2 ∂yi

∂r

)
= λi

[
∂2yi

∂r2
+ 2

r

∂yi

∂r

]
and applying l’Hôpital’s rule to obtain

2

r

∂yi

∂r
|r=0 = 2

∂2yi

∂r2

gives

dyi,0

dt
+ dzi,0

dt
= 3λi

h2

(
yi,1 − 2yi,0 + yi,−1

)
. (8.6d)

Because the boundary conditions are Neumann or mixed, we have extended the spatial
discretization stencil to include the boundaries. The boundary conditions yield

yi,−1 = yi,1, (8.6e)

yi,J+2 = yi,J + 2hβi(ui − yi,J+1). (8.6f )

The two side conditions (8.6e)–(8.6f) can be used to eliminate the ghost unknowns
yi,−1 and yi,J+2. Substituting this and a once-differentiated (8.6b) into (8.6a) yields (includ-
ing also (8.6c)) an ODE system of size (J + 3)Ne. The initial conditions are

yi,j (0) = 0, j = 0, . . . , J + 1, i = 1, . . . , Ne, (8.7a)

ui(0) = ui0, i = 1, . . . , Ne. (8.7b)

The semi-discrete system (8.6)–(8.7) may best be further discretized in time by an
implicit method which has stiff decay, such as BDF or Radau collocation (see Section 2.6
and [14]). These methods are implemented in general-purpose codes such as DASSL [34] or
RADAU5 [85]. The system is not evaluated at the initial line, so the inconsistency problem
is avoided altogether, except perhaps in the automatic choice of the first step by a general-
purpose time integration code. If the latter is a problem, then simply turn off the automatic
step selection mechanism for the first time step and choose that first step size yourself.
(This should be easy to do in RADAU5, where no variable order mechanism is utilized.)
After all, the method-of-lines ODE or DAE (8.6) already contains the errors from the spatial
discretization where the discretization mesh is typically not chosen automatically.
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Without the last set of manipulations leading to an ODE, the system (8.6) is an index-1
DAE of the form (2.29) (see Section 2.8), which is of a type that can be solved using DASSL
or RADAU5. Solving this DAE, and not the ODE, may well be necessary if differentiation
of (8.6b) must be avoided (e.g., because of the appearance of square root terms of near-0
values in ki). Note that the system (8.6) can be reduced to a semi-explicit index-1 DAE by
a simple change of variables,

ζi,j = yi,j + zi,j , ηi,j = yi,j − zi,j .

As an example, we write down the application of the backward Euler method (2.7) to
the system (8.6), with a time step k and μ = k

h2 :

yn+1
i,j + zn+1

i,j − μ
λi

r2
j

(
r2
j+1/2

(
yn+1

i,j+1 − yn+1
i,j

)
− r2

j−1/2

(
yn+1

i,j − yn+1
i,j−1

))
= yn

i,j + zn
i,j , j = 1, . . . , J + 1, i = 1, . . . , Ne,

zn+1
i,j = ki

(
yn+1

j

)
yn+1

i,j , j = 0, . . . , J + 1, i = 1, . . . , Ne,

un+1
i + k3αλiβi

(
un+1

i − yn+1
i,J+1

) = un
i , i = 1, . . . , Ne,

yn+1
i,0 + zn+1

i,0 − μ3λi

(
yn+1

i,1 − 2yn+1
i,0 + yn+1

i,−1

) = yn
i,0 + zn

i,0,

yn+1
i,−1 = yn+1

i,1 ,

yn+1
i,J+2 = yn+1

i,J + 2hβi

(
un+1

i − yn+1
i,J+1

)
.

The implicit discretization of (8.6) does involve solving a nonlinear system of alge-
braic equations with a block structure (blocks of size O(Ne) because of the dependence
of zi on y) at each time step. If we want to avoid this and consider an explicit method
(with a small, O(h2) time step, though) for the ODE formulation, then the ODE does get
evaluated at the initial line t = 0. However, the inconsistency translates into a nonzero (but
only O(h)) value for the ghost unknown yi,N+1(0). If the time horizon is not large, then a
simple, constant step, forward Euler method in time may work well for a rough accuracy
that could be sufficient for some engineering purposes.

8.2 Hyperbolic problems
In general, an initial-boundary value hyperbolic problem is well-posed only if some types of
BC are imposed selectively. We must understand this first, before moving on to numerical
discretizations.

8.2.1 Boundary conditions for hyperbolic problems

Example 8.2 Consider once again the simple advection equation, this time on a strip,

ut − ux = 0, 0 ≤ x ≤ 1, t > 0,

u(0, x) = u0(x).
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10 x

t

Figure 8.1. Characteristics for the advection equation ut − ux = 0 in case of an
initial-boundary value problem.

For the pure Cauchy problem we know that the solution is u(t, x) = u0(t +x). The solution
consists of the initial data propagated leftward at speed dx

dt
= −1.

The solution propagation on a strip is depicted in Figure 8.1. We see that the values
of u at the left boundary (t, x = 0) are determined by the initial values and by the boundary
values at the right boundary (t, x = 1). Thus, only solution values at the right boundary
may be specified.

For the same advection equation on the quarter-space,

x ≥ 0, t ≥ 0,

we need no BC.
On the other hand, for the advection equation

ut + ux = 0

the characteristics propagate rightward. Hence, on the same positive quarter-space we do
need BC imposed at the boundary x = 0, as well as initial data.

Let us generalize the observations made in Example 8.2. For a hyperbolic system

ut + Aux = 0, (8.8a)

the matrix A is diagonalizable and has real eigenvalues,

T −1AT = 
 =

⎛⎜⎜⎜⎝
λ1

. . .

λs

⎞⎟⎟⎟⎠ . (8.8b)
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Let us arrange the eigenvalues so that the negative ones—say, there are m of those—appear
first on the diagonal of 
,


 =
⎛⎝
I


II

⎞⎠ , (8.8c)

and define the characteristic variables⎛⎝wI

wII

⎞⎠ ≡ w = T −1u (8.8d)

with wI denoting the first m components of w. Then, in the case that A is constant we have

wt + 
wx = 0, (8.8e)

so the PDEs for w decouple and can be examined individually. For wI , as in Example 8.2,
we only need BC at the right end of the interval in x, if that interval end is finite. Similarly,
for wII we only need BC at the left end of the interval in x, if it is finite.

So, we may specify

wII (t, 0) = SI (wI (t, 0) + gI (t)), s − m conditions (8.9a)

wI (t, 1) = SII (wII (t, 1) + gII (t)), m conditions, (8.9b)

where SI is (s −m)×m and SII is m× (s −m). The BC describe how waves are reflected
at the boundaries.

In general, then, the allowable BC must satisfy that s − m conditions are specified at
x = 0 and m conditions are specified at x = 1 with the BC matrices multiplying wII (t, 0)

and wI (t, 1) being nonsingular. (This assumes that no eigenvalue vanishes. For λl = 0 it
does not matter at which end the BC on wl is imposed.) Note that the characteristic curves
are again straight lines given by

dx

dt
= λl, l = 1, . . . , s.

Example 8.3 For the classical wave equation

φtt − c2φxx = 0

considered in Section 7.2, specifying φ at both ends works well; see, e.g., numerical results
in Example 7.3. To examine it in light of our recently acquired knowledge, let us write the
linear wave equation in first order form for u1 = φt , u2 = −cφx . Then we have, as in
Chapter 1, a system of the form (8.8a) with u = (u1, u2)

T and

A =
⎛⎝0 c

c 0

⎞⎠ .
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The eigenvector and eigenvalue matrices for A are

T −1 =
⎛⎝1 −1

1 1

⎞⎠ , 
 =
⎛⎝−c 0

0 c

⎞⎠ .

So, the characteristic variables are wI = u1 − u2 and wII = u1 + u2. We should specify
one boundary condition at each end. Any φt + αcφx would do at x = 0, except α = 1, and
any such condition would do at x = 1, except α = −1.

If A = A(t, x) is not constant, then the results above still hold, except that the
characteristics are not straight lines in general, and w satisfies a PDE of the form

wt + 
wx + Bw = 0.

This can be solved by the iteration

wν+1
t + 
wν+1

x + Bwν = 0,

so we obtain the previous form (8.8e) with a harmless inhomogeneity added. The results
regarding the type and location of the BC remain unchanged.

If the problem is nonlinear, then, in general, additional surprises can materialize. A
special situation occurs for nonlinear conservation laws (5.4). Consider one conservation
law,

ut + f (u)x = 0, a(u) = ∂f

∂u
.

The characteristic direction is

dx

dt
= a(u).

Since the solution remains constant along characteristics, a(u) remains constant: the char-
acteristics of conservation laws (5.4) are straight lines. See, for instance, Figure 10.1.
However, unlike the constant coefficient case, the value of a(u), even its sign, depends
on the data! For nonlinear problems, the locations of the boundary conditions are not
independent of the values of the initial and boundary data.

Example 8.4 For the inviscid Burgers equation

ut + uux = 0

defined on the positive quarter-space x, t ≥ 0, the initial data u0(x) ≡ −1 produce the
solution u(t, x) ≡ −1, requiring no boundary data to be specified at x = 0. But the initial
data u0(x) ≡ 1 must be supplemented by boundary data at (t, 0) and produce a solution
which is not necessarily constant everywhere. Please verify that for this scalar example
(s = 1) the first u0 yields m = 1 whereas the second yields m = 0, and then check conditions
(8.9).
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In summary, the PDE problem is well-posed if BC are prescribed on part of the
boundary. These BC are appropriately called inflow boundary conditions because they
must be prescribed where the flow direction is into the domain. This is the general rule
of thumb also for problems in more space variables and on spatial domains which are not
necessarily rectangles or cubes.

8.2.2 Boundary conditions for discretized hyperbolic problems

We now turn to the numerical solution of initial-boundary value problems for hyperbolic
systems. While the PDE problem requires inflow BC, a numerical method may well also
require outflow boundary conditions. For example, the Lax–Wendroff, Lax–Friedrichs,
and leapfrog schemes for the advection equation all expect a neighbor both left and right of
any spatial location xj .

Two questions arise, in general:

• If the numerical scheme requires boundary data where the PDE problem does not,
how should this additional information be imposed? In short, how should outflow
BC be specified?

• What are the implications of boundary conditions on the stability of the resulting
scheme?

These questions are, of course, interrelated. For both, the quest is not to improve upon, but
rather to avoid deterioration of, results for the pure initial value problem.

Example 8.5 For the simple advection equation on a strip � as in Example 8.2,

ut − ux = 0, 0 ≤ x ≤ 1, t > 0,

u(0, x) = u0(x),

u(t, 1) = g1(t),

consider two different discretization schemes:

1. The upwind scheme (1.15a) reads

vn+1
j = vn

j + μ(vn
j+1 − vn

j ), j = 0, 1, . . . , J.

To complete description of the scheme we need to specify v0
j and vn

J+1 for all relevant
j and n. (NB (J + 1)h = 1.) Using the given initial and boundary conditions we set

v0
j = u0(jh), j = 0, . . . , J + 1,

vn
J+1 = g1(nk), n = 1, 2, . . . ,

and there is nothing more to it.

2. The leapfrog scheme (1.15c) reads

vn+1
j = vn−1

j + μ(vn
j+1 − vn

j−1), j = 1, . . . , J.
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Recall that this scheme is stable in the absence of BC if the CFL condition holds,
which here requires μ ≤ 1.

To complete description of the scheme we must specify v0
j , v1

j , vn
0 , and vn

J+1 for all
relevant j and n. Obviously, we specify

v0
j = u0(jh), j = 0, . . . , J + 1.

We also saw before in Section 1.2 how to specify v1
j , j = 1, . . . , J , so assume this

has been done. For the boundary condition at the right end we specify

vn
J+1 = g1(nk), n = 1, 2, . . . .

This leaves the left boundary vn
0 , for which no values are provided by the PDE problem

specification.

One might carelessly specify a value arbitrarily, say,

vn
0 = 0.

(There seems to be an implicit human need to minimize what we don’t know, and
since we don’t know vn

0 , why not make it 0?) However, such an arbitrary assignment
is inconsistent with the value of the exact solution which is propagated from within
the domain �. Combined with the nondissipative leapfrog scheme, this inconsistency
generates an error wave which propagates undamped back into the interior of �. For
instance, with

u0(x) ≡ 1, g1(t) ≡ 1,

the exact solution equals 1 everywhere, but the approximate solution is

vn
j =

{
1, xj > tn,

1 − (−1)j , xj ≤ tn ≤ 1.

A better idea for specifying vn
0 for the advection equation with a > 0 is simple

extrapolation from interior to boundary solution values, i.e.,

vn
0 = vn

1 .

Amore careful approach for specifying outflow BC is to extrapolate along the outgoing
characteristic curves from within the domain �. This is consistent with the behavior of the
PDE. For ut − ux = 0, the characteristic curve hitting (t, x) = ((n + 1)k, 0) crosses time-
level n at (nk, k). Thus, the value vn+1

0 should be the same as vn(x = k), except that the
latter is not defined. We specify it by a linear interpolation in x,

vn(x = k) = h−1(kvn
1 + (h − k)vn

0 );
see Figure 8.2. Note that h − k ≥ 0 because the CFL condition is obeyed.

We rewrite the obtained absorbing boundary condition27 as

vn+1
0 = vn

0 + μ(vn
1 − vn

0 )

27Absorbing BC also go by other names, depending on circumstances and taste, e.g., nonreflecting BC.
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0 1 2

n

n + 1

x

t

Figure 8.2. Extrapolation along an outgoing characteristic to obtain an absorbing
boundary condition.

and observe that the formula is identical to the one-sided scheme (1.15a) considered in
Chapter 1 (see also Exercise 1.6).

Let us generalize the principle demonstrated in Example 8.5 for a hyperbolic problem
(8.8) with boundary conditions (8.9).�

�

�

�

Note: A general recipe for absorbing BC reads as follows: extrapolate
along the m outgoing characteristic variables wI (t, x) for x near 0, and
use the obtained values together with the given BC (8.9a) to specify vn+1

0 .
Similarly, near the right end of the interval in x extrapolate along wII (t, x)

and use this together with (8.9b) for vn+1
J+1.

Absorbing boundary conditions work very well in practice when they can be applied.
However, specifying them may require some fancy manipulation. The simple order-0 ex-
trapolation mentioned at the end of Example 8.5 often also works well in practice, especially
if the PDE is discretized by a dissipative scheme, and it is simpler to apply. (However, see
Example 8.6 and Table 8.1.)

Stability

Turning to the question of general stability of the obtained scheme for an initial-boundary
value problem, we consider again the general form (3.27b) or (3.27d),

vn+1 = Qvn,

where now the matrix Q includes the effects of a scheme for boundary conditions, as
described above. The question is, given that the scheme for a pure initial value problem is
stable, does it remain stable after incorporating the effects of the boundary conditions? In
other words, have the boundary conditions introduced any new eigenvalue into Q which
has modulus > 1? A necessary condition for stability is that there exist no eigensolution
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(i.e., a mesh function in x) φ ∈ l2 for the equation28

Qφ = zφ (8.10)

such that |z| > 1. This is called the Godunov–Ryabenkii condition.
For any eigensolution pair (z, φ) of Q we may consider φ as an initial value mesh

function v0, provided φ ∈ l2. Then

vn+1 = Qvn = · · · = Qn+1v0 = Qn+1φ = zn+1φ.

(The superscript on v is the time level, while on z it is a power.) Obviously, if |z| > 1 we
obtain a blowup as n → ∞, i.e., an instability. The blowup is extreme if we choose the
eigenvector corresponding to the offending eigenvalue as an initial value, but other initial
value functions will generally contain a component in the direction of φ as well.

To be more concrete, let us consider the leapfrog scheme for the advection equation,
as in Example 8.5, but on a quarter-space x ≥ 0. We have

z2φj = φj + zμD0φj , j = 1, 2, . . . , (8.11a)

and the question is, What should φ0 be? For a given z the equation (8.11a) is a difference
equation with constant coefficients for φ. We therefore write

φj =
∑

i

αi(τi)
j ,

where αi are arbitrary coefficients and τi are the roots of the characteristic equation

z2 = 1 + μ(τ − τ−1)z. (8.11b)

Now, we may only consider φ ∈ l2, so the general form of φj cannot contain components
with |τi | > 1. Thus

φj =
∑
|τi |<1

αi(τi)
j . (8.11c)

Rewriting (8.11b), we are thus looking at roots τ of the quadratic equation

τ 2 − z2 − 1

μz
τ − 1 = 0 (8.11d)

which satisfy |τ | < 1 when |z| > 1. This would give an eigensolution which destroys
stability.

It is easy to check that for |z| > 1 there is at most one solution of the quadratic
equation (8.11d) with |τ | < 1. So, φj = ατj . Now, consider a general boundary condition
form

φ0 =
p∑

j=1

bjφj . (8.11e)

28By φ ∈ l2 we mean that ‖φ‖ remains bounded as h → 0.
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We would like to design BC of this form which lead to an overall stable scheme. Note that
z is an eigenvalue corresponding to an eigenvector

{φj = ατj }∞j=0

provided

1 =
p∑

j=1

bj τ
j . (8.11f )

So, if the equation (8.11f) has solutions with |τ | < 1, then the choice of (8.11e) leads to
instability!

As it turns out, reasonably conceived BC approximations tend not to yield |τ | < 1.
The necessary stability condition usually holds, given that the pure IVP scheme is stable.

However, this condition is only necessary. In particular, we must worry about cases
where

z = ±1.

In such cases, a small perturbation to z(ε) = ±(1 + ε) yields |z| > 1 when 0 < ε � 1.
Note from (8.11d) that |τ | = 1 when z = ±1, i.e., τ is a borderline case as well. For the
perturbed values of z we respectively obtain

τ ≈ ±
(

−1 + ε

2μ

)
,

as well as a root satisfying |τ | > 1. Adangerous situation may therefore arise when z = 1+ε

and τ = −1 + cε, or when z = −1 − ε and τ = 1 − cε, where c > 0 is some constant.

1. If we use an extrapolation of the form

D
q
+φ0 = 0

for (8.11e), with q a natural number, then we obtain (τ − 1)q = 1, and hence τ = 1
and z = ±1 are possible. The combination of τ = 1 and z = −1 allows for unstable
perturbations for the leapfrog scheme.

2. If we extrapolate along the outgoing characteristic, as in Example 8.5, then

z = 1 + μ(τ − 1).

Here, only z = 1 and τ = 1 are supported, and so no unstable perturbations result.

The unstable perturbation described above creates in effect a wave that grows linearly
in t/k. This is a parasitic wave going rightward into the domain �, i.e., in the wrong
direction. The growth is only linear in n, so it has a limited effect in practice. However,
when solving the problem on a strip as in Example 8.5, and not on a quarter-space, the wave
reflects back into the domain from x = 1, and then, when it reaches x = 0, it grows once
again. The overall effect is an intolerable growth proportional to (t/k)t .
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Thus, for the leapfrog scheme the BC D+φ0 = 0 is not stable, whereas the ex-
trapolation along the characteristic is. On the other hand, if a dissipative scheme such as
Lax–Wendroff is used for the discretization of the PDE, then there is really no similar diffi-
culty of instability, because the small perturbations generated at the boundary get damped
by the scheme as they travel in the interior of �.

Example 8.6 Continuing Example 8.5, we now solve it numerically using

1. the Lax–Wendroff scheme, and

2. the leapfrog scheme.

At x = 1 we impose the BC
u(t, 1) = 0.

We fix h = 0.1 and impose the initial condition that

v0
j =

{
0, j �= 1,

1, j = 1.

It may be argued that these initial conditions are mesh-dependent (we are envisioning u0(x)

with support that is contained in (0, 2h), like a roof basis function in finite elements), but
our purpose here is merely to check BC effects on error propagation. The exact solution for
t > 2h (say) vanishes identically.

We use three boundary conditions at x = 0:

1. D+vn+1
0 = 0,

2. D2+vn+1
0 = 0,

3. absorbing BC.

The results are recorded in Table 8.1, where maximum errors are measured at t = 10 for
k = .05, and any error below 10−13 is rounded to 0. The errors in the Lax–Wendroff scheme
are of course unrealistically good—they simply mean that no instability is caused by any
of these BCs. The performance of the leapfrog scheme is more interesting and alarming.
The results agree with the preceding analysis. Additional calculations also confirm that
the errors can be improved significantly by adding dissipativity to the leapfrog scheme as
discussed in Section 5.2.

Table 8.1. Errors at t = 10 for the Lax–Wendroff and leapfrog difference schemes
applied to the equation ut − ux = 0 with different choices of BCs at x = 0. The side
conditions are all homogeneous except v0

1 = 1; step-sizes are h = 0.1, k = 0.05.

Scheme vn+1
0 = vn+1

1 vn+1
0 = 2vn+1

1 − vn+1
2 vn+1

0 = vn
0 + μ(vn

1 − vn
0 )

Lax–Wendroff 0 0 0

leapfrog 3.3e+4 1.1e+9 3.0e-2
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(a) Upwind: no artificial wave but inaccurate (b) Lax–Wendroff: a little dissipativity helps

(c) Leapfrog: artificial waves reflect off bound-
aries

Figure 8.3. Artificial wave reflection for the leapfrog scheme, Example 8.6. The
upwind scheme does not need an outflow BC. For Lax–Wendroff and leapfrog the simple ex-
trapolation D+vn+1

0 = 0 is used at the outflow boundary x = 0. Here u0(x) = e−100(x−.5)2
,

h = .005π , and k = .5h.

A more realistic initial value function is depicted in Figure 8.3. Here u0(x) =
e−100(x−.5)2

is a pulse. The rest of the details, including PDE, domain, and inflow BC
remain as before. This pulse propagates leftward unchanged for our advection equation,
and should disappear for t ≥ 1.

We apply the upwind, Lax–Wendroff, and leapfrog schemes and display results for
0 ≤ t ≤ 5 in Figure 8.3. Observe that the pulse does disappear, of course, when using the
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upwind scheme (for which no outflow BCs are necessary), but the amplitude diminishes
noticeably. For the second order schemes we use the simple extrapolation D+vn+1

0 = 0.
The slightly dissipative Lax–Wendroff scheme performs best here. The leapfrog scheme
performs poorly. Note the artificial waves repeatedly reflecting off both boundaries for the
leapfrog scheme, in agreement with what has been explained earlier. In a more realistic
context, where small waves may be expected as part of the true solution, encountering such
artificial waves is worse than their mere maximum error value would indicate, because it
may be hard to tell them apart from the real ones.�

�
�
	

Note: If applying absorbing BCs is simply too fancy, then try a simple
extrapolation together with a dissipative scheme.

The perturbation argument we’ve made prior to the last example appeals to intuition.
A general theory covering the distance between necessary and sufficient conditions for
stability in the present context was given by Gustaffson, Kreiss, and Sundstrom [77]. The
conditions they came up with are referred to as the GKS theory. Their paper is hard to read,
though. A nice interpretation of these results in terms of group velocity (see Section 7.1)
was given by Trefethen [167].

8.2.3 Order reduction for Runge–Kutta methods�

�

�

�
Note: This entire subsection constitutes one case study in which we put
into use several techniques encountered in the present chapter and in
previous ones.

Consider the conservation law

ut + f (u)x = 0, x ≥ 0, t ≥ 0, (8.12a)

u(t, 0) = g(t), u(0, x) = u0(x). (8.12b)

Thus, we are assuming that f and the initial and boundary conditions are such that the
characteristic curves propagate to the right, unlike in Examples 8.5 and 8.6. We first semi-
discretize in space, obtaining ODEs in time for the unknowns vj (t) ≈ u(t, xj ). Suppose
the discretization in space is sufficiently accurate so we can concentrate on the error in
time. Recall that the classical RK4 (2.10), (2.11) is very popular for the ensuing time-
discretization. The main reason is that it has a reasonable absolute stability region that
contains a sizable segment of the imaginary axis (recall Section 5.3.2). Another important
reason is that it is fourth order accurate, which is sufficient and effective for many practical
purposes. But do we actually realize this fourth order accuracy in calculations?

Let us examine the question of accuracy order. If the unknowns are denoted v(t) =
(v1(t), . . . , vJ (t))T , then we can write the semi-discretization with the obvious use of the
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boundary condition at x = 0 as a DAE,

v′ = F(t, h, v0, v), (8.13a)

v0(t) = g(t), (8.13b)

where h is the spatial discretization step size. But this DAE yields the ODE

v′ = F(t, h, g, v). (8.14)

In the ODE literature there are known cases where the order of an RK method is reduced
due to stiffness. This is essentially because the intermediate stages in (2.10) generally have
a lower accuracy order, and the higher order at the end of each time step is achieved because
of cancellation of error terms due to the integration: if there is no integration (as in the
extreme stiffness limit or for the algebraic part of a DAE), then the higher accuracy order
is lost. Here, however, the ODE (8.14) is not stiff, and discretizing it by the classical fourth
order Runge–Kutta method RK4 should yield fourth order accuracy globally in time. No
ODE order reduction should be experienced.

And yet, as it turns out, this is not the entire story. Let us proceed with a simple
numerical test.

Example 8.7 Following Carpenter et al. [46], consider the simplest advection equation

ut + ux = 0, x, t ≥ 0,

with the chosen solution u(t, x) = sin(t − x), and thus

u(0, x) = u0(x) = − sin(x),

u(t, 0) = g(t) = sin(t).

Since RK4 is an explicit method we must keep μ = k/h = O(1) as k is refined, and in fact
we always keep μ fixed below. Therefore, to realize fourth order accuracy a fourth order
discretization is used in space as well.

Because of the Dirichlet BC, use of the wider stencil D0(I − 1
6D+D−) is awkward.

We employ the implicit scheme (3.8) instead. Also, at the outflow, set at x = 1, we use the
higher order absorbing BC,

vJ+1 = 4vJ − 6vJ−1 + 4vJ−2 − vJ−3. (8.15a)

At the left end the given boundary condition is applied

v0 = g(t). (8.15b)

In the present context this means that sin(tn), sin(tn + k/2), sin(tn + k/2) again, and
sin(tn + k) are used for the intermediate stages of the current time step.

The results are listed in Table 8.2 under errg . These are maximum absolute errors at
t = 1 for a sequence of step sizes each being half its predecessor. We also list the rate of
convergence rateg defined by

rate = log2
err(2k)

err(k)
.



root
2008/5/5
page 270

�

�

�

�

�

�

�

�

270 Chapter 8. More on Handling Boundary Conditions

Table 8.2. Numerical errors in maximum norm at t = 1 for the linear advection
equation ut + ux = 0 using RK4 and μ = 1. Note error order deterioration, especially in
errg .

h = k errg rateg errg′ rateg′

.1 × 20 2.83e-05 2.67e-05

.1 × 2−1 5.15e-06 2.5 2.20e-06 3.6

.1 × 2−2 1.39e-06 1.9 1.63e-07 3.8

.1 × 2−3 3.54e-07 2.0 1.08e-08 3.9

.1 × 2−4 8.88e-08 2.0 7.11e-10 3.9

.1 × 2−5 2.22e-08 2.0 7.54e-11 3.2

.1 × 2−6 5.56e-09 2.0 8.18e-12 3.2

Clearly from Table 8.2 the error is only O(k2) and not O(k4) as anticipated.

In fact, the unexpected error order reduction observed in Example 8.7 has two sources.
But first, let us note something we don’t see. When discussing order reduction in ODE
methods we assume that the ODE system is fixed as the step size k is reduced, whereas here
we also reduce h, so the ODE system is actually different for different k. Hence the above
example does not violate ODE theory.

The first source of order reduction may be observed already at points (tn, xj ) which
are common to fine and coarse meshes. Assuming a spatial discretization of order 4, one
would be tempted to naively write for the solution of the fully discretized problem

vn
j − u(tn, xj ) = [vn

j − vj (tn)] + [vj (tn) − u(tn, xj )] = O(k4) + O(h4).

However, this does not take into account the fact that the size of the ODE system (8.14)
increases with refinement. The “constant” of the O(k4) error term may depend on this
size and through it, on h−1, which may decrease the order in k for a fixed mesh ratio μ.
Such an effect may be expected for hyperbolic PDEs, although not for parabolic ones; see
Section 1.1.2.

The second effect may occur if we compare errors at all points for different meshes,
including fine mesh points which are not coarse mesh points. In particular, the first spatial
interior mesh point x1 gets closer and closer to the boundary as h gets smaller. The error in
vn

1 may be larger then, because there is no integration of g(t) on the boundary! In such a
case we could get an error boundary layer.

A simple remedy for the second error effect is to replace (8.15b) at each time step by
its derivative: at each time level n, replace (8.15b) by the ODE

v′
0 = g′(t), v0(tn) = g(tn), (8.16)

and apply the same RK4 discretization to the entire ODE system so obtained. This alleviates
the problem of error boundary layer, independent of the linearity of the PDE and the actual
use of RK4: it should work for nonlinear conservation laws and for other, higher order
Runge–Kutta schemes equally well! Also, no derivatives of g other than the first are used.
However, the first effect of error order reduction may persist.
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Example 8.8 Continuing the previous example, results using (8.16) are listed in Table 8.2
under the heading errg′ . These errors are certainly satisfactory, although the rate insists on
remaining less than the ideal 4.

For the very simple advection equation it is possible to recover the full fourth order
accuracy [46]. However, the resulting method variant does not produce appreciably better
results than (8.16), and worse, it is not generalizable.

Example 8.9 Finally, consider the nonlinear conservation law problem

ut + uux = 0, x, t ≥ 0,

with

u(0, x) = u0(x) ≡ 1,

u(t, 0) = g(t) = e−t .

This is the famous Burgers equation which we discuss more thoroughly in Chapter 10. Here
let us say only that with these initial-boundary conditions, the characteristic curves dx

dt
= u

all migrate upper-right, and they do not cross, so no shocks arise.
We now find the exact solution at a fixed t . For x ≥ t it is obvious that u(t, x) ≡ 1.

For each 0 < x < t there exists a τ , x < τ < t , such that the straight-line characteristic
emanating from (τ, 0) hits (t, x), and so u(t, x) = e−τ . We have

t − τ

x − 0
= eτ ,

which defines a transcendental equation for τ = τ(t, x). Solving this to a high accuracy (by
Newton’s method for each x, starting from a good initial guess) yields the exact solution
u(t, x) = e−τ at this point in space–time.

In Figure 8.4(a) we display the exact and approximate solutions, using k = h = .01
and (8.16). The solution has a jump in first derivative at x = t = 1, and even though the
approximate solution looks very similar to the exact one, the error plot reveals that this
mild form of discontinuity does have an effect. Certainly no fourth order accuracy may be
anticipated here!

8.3 Infinite or large domains
Some issues regarding handling boundary conditions also arise in problems that are inde-
pendent of time, which is hardly surprising. One very important such issue is the handling
of infinite spatial domains. In many mathematical models of physical problems the spatial
domain is assumed infinite, and we generally know that the solution and its derivatives
should decay or become constant “far enough” from where the action takes place. In prac-
tice we must replace this infinite domain with a finite one, and the question becomes which
boundary conditions to impose at the boundary of this finite domain, and how large to make
it, in order to approximate the solution to the original problem sufficiently well.

Indeed, the original domain does not need to be infinite for such a question to arise:
for a given, large spatial domain, one is often particularly interested in what happens in
some smaller subdomain. So, if we try to restrict the problem to the subdomain of interest,
a similar question regarding BC arises.
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(b) Error

Figure 8.4. Solutions and error for the Burgers equation in a case without jump
discontinuities. Here t = 1, h = k = .01. The maximum error is ≈ 10−3.

For boundary value ODEs, which is what remains from a PDE in one spatial variable
at steady state, as x increases there is typically a subspace of exponentially growing modes
(i.e., fundamental solution components) and its complement of nongrowing modes. The
BC then must be chosen so as to kill off the growing modes, because these could rapidly
blow up. See, e.g., [10, 108] and Exercise 5. The resulting type of BC is often referred to
as radiating boundary conditions.

When the problem depends on time as well there is an added difficulty, especially
in the hyperbolic case. The issue is clear and simple: we do not want artificial waves
reflecting off our introduced boundary into the new spatial domain! The problem then
is not dissimilar to that of specifying outflow BC. Absorbing boundary conditions and
nonreflecting boundary conditions usually yield the desirable behavior. When working
with these proves to be too fancy in practice, try using a simple extrapolation, which often
works well.

But more delicate situations also arise in applications, especially in more than one
space variable. A lot of research has been done on this. The topic in its entirety is outside
the scope of this text, and we refer to Hagstrom [80], Taflove [163], and LeVeque [116] for
more.

8.4 Exercises
0. Review questions

(a) Define periodic, Dirichlet, and Neumann BC.

(b) Why can’t the situation described in Example 8.2 and Figure 8.1 occur for
parabolic problems?
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(c) Define characteristic variables and explain their importance for determining BC
for hyperbolic problems.

(d) Is the initial-boundary value problem for the classical wave equation well defined
with the BC

u1(0) = 0, u2(1) = 0?

What about the BC

u1(0) = 0, u1(1) + u2(1) = 0?

(e) What are inflow, outflow, and absorbing boundary conditions?

(f) Define the Godunov–Ryabenkii condition and explain its importance for stabil-
ity analysis.

(g) What is particularly alarming about Figure 8.3(c)?

(h) The orders of discretization in Example 8.7 are equal to 4 both in time and in
space. Yet the observed error rate in Table 8.2 is less than 4; in fact rateg = 2.
How can such an observed error rate reduction not violate theory?

(i) What are radiating boundary conditions?

1. Implement and test a numerical method of your choice for the problem of adsorption in
a finite bath (Example 8.1). Justify your choice of method and try it for the following
parameter values:

Ne = 2, λ1 = 1, λ2 = 1.15, ep = 0.7, eb = 0.5,

α = 1 − eb

eb

ep

Rp

= 7, ki(y) = ai0

ep + ai1y1 + ai2y2
,

a10 = 171.07, a20 = 372.85, a11 = 1400, a21 = 1573,

a12 = 2835, a22 = 2565, u10 = 0.001, u20 = 0.001,

Rp = 0.1, β1 = 100, β2 = 200.

Plot the solution at t = 0, 0.01 and 1. Discuss your observations.

2. Consider the classical wave equation of Section 7.2, namely, (7.6a) with V (u) = 0,
and (7.6b).

(a) Formulate the PDE as a first order hyperbolic system (8.8a) and explain how
the initial conditions are specified.

(b) Show that the initial-boundary value problem is well posed with the BCs

φx(t, 0) = g0(t), φx(t, 1) = g1(t).

(c) Derive boundary conditions in order to solve the problem in first order form
numerically.

(d) Implement this using the leapfrog and the Lax–Wendroff schemes, and compare
with the results in Example 7.3. What are your conclusions?
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3. Consider the box scheme (Section 5.2.4) applied to the advection equation.

(a) Show that no outflow BCs are needed here.

(b) Explain how time-stepping can be achieved without inverting any linear system
of algebraic equations.

(c) Is there any difference expected in execution time between this suddenly turned
explicit method and a “normal” explicit method, such as leapfrog or Lax–
Wendroff?

(d) Does the method remain explicit for a general hyperbolic PDE system?

4. In Section 3.1.3, natural and essential boundary conditions are derived for Poisson-
like equations; see (3.18) and (3.19).

The biharmonic equation is a fourth order elliptic PDE that arises in fluid flow
modeling and reads

��u = q, x ∈ �. (8.17a)

It, too, can be treated via a minimization functional as in (3.18).

Of the following two popular BC pairs, determine which of the three different BCs
is essential and which is natural:

(i) u|∂� = 0,
∂u

∂n
|∂� = 0, (8.17b)

(ii) u|∂� = 0, �u|∂� = 0. (8.17c)

5. Consider the linear boundary value ODE

d2u

dx2
≡ u′′ = u, 0 ≤ x < ∞,

u(0) = 1, u(∞) is bounded.

This is a (major) simplification of common situations where radiating BCs are con-
sidered.

(a) Show that although the value of u(∞) is not specified, the problem has the
unique solution

u(x) = e−x.

(b) To solve this problem numerically one typically chooses a finite interval [0, L]
(where L stands for “long”) and discretizes the problem on it. We next must
determine which homogeneous BC to specify at L.
Show (theoretically or computationally) that the radiating BC

u(L) + u′(L) = 0

is better than the more simpleminded

u(L) = 0

in the sense that a smaller L can be chosen to achieve the same accuracy with
the same mesh width.
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Chapter 9

Several Space Variables
and Splitting Methods

Most of the material covered in previous chapters concerns PDEs in one space dimension.
Exceptions are Section 3.1 and Example 7.4, which involve the differential operator ∇×
and thus makes less sense in one dimension.

Of course, most mathematical models arising in practice involve more than one space
variable. This chapter is devoted to extending our previous methods and analysis to the
more general models. The following questions or issues naturally arise:

• Extending known schemes and examining their stability properties.

• Finding the solution at the next time level when implicit schemes are used.

• Handling BC on rectangular (tensor) meshes.

• Handling more generally shaped spatial domains.

As it turns out, many aspects of the methods and analysis that we have seen easily generalize
to more dimensions, while some require more effort but eventually come under control. The
most thorny issues seem to be the handling of solution discontinuities which are not aligned
with the discretization mesh and of arbitrarily shaped domains.

An important basic observation related to theory is that for a hyperbolic PDE system,

ut + Aux + Buy = 0, (9.1)

even with A and B constant matrices, complications may arise unless A and B commute
or are simultaneously diagonalizable. The latter holds true when there is a nonsingular
transformation T such that T −1AT and T −1BT are both diagonal. This assumption, which
does not necessarily hold in practice, is needed to elevate results, such as Fourier stability
and absorbing BC, from scalar equations to PDE systems.

In Section 9.1 we examine the extension of the basic methods developed earlier to
several space dimensions. The material which follows is largely based on the books by
Gustafsson, Kreiss, and Oliger [76] and Strikwerda [159]. Then, in Section 9.2 we consider
the important issue of solving the large, sparse, linear algebraic systems arising from using
implicit time discretization methods.

275



root
2008/5/5
page 276

�

�

�

�

�

�

�

�

276 Chapter 9. Several Space Variables and Splitting Methods

There are general methods for such linear systems of equations, and we briefly survey
these in Section 9.4. This is really a review section, somewhere between Section 2.12 and
the rest of the text in spirit. See Saad [149], Trottenberg, Oosterlee, and Schuller [171], and
Elman, Silvester, and Wathen [59] for more. In Section 9.2.1 we demonstrate the application
of techniques described in Section 9.4 in our time-dependent PDE context. The older ADI
method and other variants of dimensional splitting are described in Section 9.2.2; see also
Mitchell and Griffith [133].

Issues concerning the handling of boundary conditions are discussed in this chapter
as they arise. See also Sections 3.1.3–3.1.5 and Exercise 3.7.

Dimensional splitting is a special case of operator splitting, giving rise to splitting
methods, also known as fractional step methods. We have seen symplectic splitting methods
for ODEs in Section 6.2.2 and for the KdV equation in Section 7.3. But the concept is more
general, and splitting methods are important not only in the context of symplectic methods
or dimensional splitting. For lack of a better place, we devote Section 9.3 to exploring
further aspects of splitting methods, not just for several space variables.

Examples of applications are given to underscore the popularity and power of the
splitting approach. We also briefly discuss related techniques. The latter include additive, or
implicit-explicit methods, as well as certain exponential integration methods about which
there has been considerable recent interest. All these involve a splitting of the differential
operator.

9.1 Extending the methods we already know
Consider a Cauchy problem in two space variables. For instance, a system of conservation
laws reads

ut + f(u)x + g(u)y = 0. (9.2)

The extension from two dimensions to three dimensions turns out to be usually straightfor-
ward, at least in principle.

Extending the methods we have seen hitherto, such as the centered semi-discretization
and its various subsequent time discretizations, or the Lax–Wendroff scheme, is straight-
forward in a simpleminded way. However, there are more variants now, with a larger
variety of time step restrictions. The Fourier stability analysis extends directly, where the
basic transform is given by (1.21). For two space variables we therefore have two wave
numbers, ξ1 and ξ2. However, assessing situations under which the extension of the von
Neumann condition for PDE systems is sufficient for stability is significantly harder than in
one dimension.

Rather than writing down a general difference scheme, which looks tedious and in-
volves multi-indices, let us consider some familiar instances.

The Lax–Friedrichs scheme for (9.2) naturally extends into

vn+1
j,l = v̄n

j,l − μ1

2

(
f(vn

j+1,l) − f(vn
j−1,l)

)− μ2

2

(
g(vn

j,l+1) − g(vn
j,l−1)

)
,

v̄n
j,l = 1

4

(
vn

j+1,l + vn
j−1,l + vn

j,l+1 + vn
j,l−1

)
. (9.3)
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Here μi = k/hi , where h1 is the uniform step size in direction x and h2 is the uniform step
size in direction y.

Next, we write down the scheme for the case of a scalar PDE with constant coefficients
(replacing f(u) by au and g(u) by bu), and apply a double Fourier transform,

v(t, x, y) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
eı(ξ1x+ξ2y)v̂(t, ξ1, ξ2)dξ1dξ2.

Substituting into the difference scheme we have∫ ∞

−∞

∫ ∞

−∞
eı(ξ1x+ξ2y)v̂(t + k, ξ1, ξ2)dξ1dξ2

=
∫ ∞

−∞

∫ ∞

−∞
eı(ξ1x+ξ2y)

[
1

4

(
eıξ1h1 + e−ıξ1h1 + eıξ2h2 + e−ıξ2h2

)
− μ1a

2

(
eıξ1h1 − e−ıξ1h1

)− μ2b

2

(
eıξ2h2 − e−ıξ2h2

)]
v̂(t, ξ1, ξ2)dξ1dξ2.

The procedure is precisely the same as in Sections 1.2 and 4.1 for one spatial variable. We
obtain stability iff∣∣∣∣12 (cos ζ1 + cos ζ2) − ı(μ1a sin ζ1 + μ2b sin ζ2)

∣∣∣∣ ≤ 1 ∀ |ζ1| ≤ π, |ζ2| ≤ π,

where ζi = ξihi, i = 1, 2. Stability therefore holds if

max {μ1|a|, μ2|b|} ≤ 1/2.

More generally, for the system of conservation laws (9.2) we let A = ∂f
∂u , B = ∂g

∂u ,
freeze the coefficients, and obtain a necessary condition for stability involving the spectral
radii of the two matrices A and B,

max {μ1ρ(A), μ2ρ(B)} ≤ 1/2. (9.4)

In one dimension, to recall, we have a bound similar to (9.4), except that the constant
at the right-hand side equals 1, not 1/2. Similarly, for the heat equation in two dimensions,

ut = uxx + uyy, (9.5)

applying the usual three-point discretization in each of the spatial variables and forward
Euler in time we obtain the stability restriction

max

{
k

h2
1

,
k

h2
2

}
≤ 1

4
,

which is again half the allowed step size compared to the one-dimensional case.
The stability restriction for all explicit schemes developed earlier for hyperbolic prob-

lems in one dimension, unless they are unconditionally unstable or use repetitive evaluations
at each time step, coincides with the CFL condition. This gives the maximum time step size
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allowed based on physical considerations. In two dimensions, however, the CFL condition
is more permissive and reads

max{μ1ρ(A), μ2ρ(B)} ≤ 1.

It is therefore conceivable (and, as it turns out, also true!) that other explicit schemes exist
for the two-dimensional case which have a more generous stability restriction than (9.3)
has, without resorting to multistage evaluations.

Another, less happy difference between one and two dimensions is that, in general,
it is difficult to obtain a sufficient stability condition from (9.4). This is not because of a
deficiency in the Fourier analysis but because of the passage from matrix norms to their
eigenvalues. To see this better, write the Lax–Friedrichs scheme for the constant coefficient
system, assuming also μ1 = μ2 = μ (or, equivalently, absorbing h1/h2 into B),

vn+1
j,l = v̄n

j,l − μ

2

[
A(vn

j+1,l − vn
j−1,l) + B(vn

j,l+1 − vn
j,l−1)

]
,

v̄n
j,l = 1

4

(
vn

j+1,l + vn
j−1,l + vn

j,l+1 + vn
j,l−1

)
,

and note that for a scalar PDE the condition (9.4) guarantees that all coefficients at time level
n are nonnegative. Thus, ‖vn+1‖∞ ≤ ‖vn‖∞, which is a very strong stability statement,
and no spurious oscillations occur either (recall Example 5.6 and Figures 5.4 and 5.5). We
return to this property in Chapter 10. To elevate this to systems with constant coefficients,
however, we must require that A and B be simultaneously diagonalizable. If they are, then
we can envision a transformation to characteristic variables, as in (8.8), where the equations
decouple and nonnegativity holds provided that (9.4) holds. Alas, in practice A and B do
not usually commute and hence are not simultaneously diagonalizable.

The situation is theoretically better for strictly dissipative schemes where Theorem 5.2
may be extended to many space variables—the details can be found in [76].

The leapfrog scheme also extends to more dimensions in an obvious fashion. For the
system of conservation laws (9.2), it reads

vn+1
j,l = vn−1

j,l − μ1
(
f(vn

j+1,l) − f(vn
j−1,l)

)− μ2
(
g(vn

j,l+1) − g(vn
j,l−1)

)
. (9.6)

A Fourier analysis for the constant coefficient problem readily yields the necessary stability
condition

μ1ρ(A) + μ2ρ(B) ≤ 1. (9.7)

If the step sizes in the spatial directions are chosen wisely, so that μ1ρ(A) ≈ μ2ρ(B),
then the stability condition (9.7) is similar to that for Lax–Friedrichs (9.4), and it can be
improved in principle. Such an improvement is considered in Exercise 2. However, unless
A and B are simultaneously diagonalizable, it is hard to guarantee stability for the leapfrog
scheme.

The Lax–Wendroff scheme generalizes directly, in principle, although in practice it
is considerably messier than in one dimension, with mixed derivatives cropping up. Thus,
we write the Taylor expansion for u(t + k, x, y) about u(t, x, y) and replace the first two
time derivatives by their spatial equivalents according to the PDE, before commencing with
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a symmetric, compact nine-point discretization in space. The variants which take advantage
of the special form of conservation laws also generalize, the one by MacCormack (5.5c)
being particularly direct,

v̄j,l = vn
j,l − μ1

(
fn
j,l − fn

j−1,l

)− μ2
(
gn

j,l − gn
j,l−1

)
, (9.8)

vn+1
j,l = 1

2

(
vn

j,l + v̄j,l

)− 1

2
μ1

(
f(v̄j+1,l) − f(v̄j,l)

)− 1

2
μ2

(
g(v̄j,l+1) − g(v̄j,l)

)
.

The necessary stability condition for the Lax–Wendroff scheme, which is sufficient for
suitable variable-coefficient systems because of strict dissipativity, turns out to be

max{μ1ρ(A), μ2ρ(B)} ≤ 1

2
√

3
. (9.9)

The bound in (9.9) is not ideal, and several variants have been proposed to improve it up to
1; see Example 9.4 as well as [76, 133] and references therein.

Finally, the approach of applying a Runge–Kutta discretization in time to a centered
semi-discretization in space generalizes directly. The classical RK4 method is dissipative
and thus stable for strictly hyperbolic systems of variable coefficient PDEs, but with the
maximal time step again cut to essentially half the corresponding one in one dimension.

The Crank–Nicolson and box schemes, together with their variants, and also the
BDF methods we have seen for parabolic problems, are unconditionally stable.

9.2 Solving for implicit methods
When using an implicit discretization in time the solution values at the unknown level n+1
are coupled through the algebraic equations forming the discretization. This necessitates
solving a large system of algebraic equations, typically the size of the mesh times the number
of PDEs. The algebraic system would be nonlinear if nonlinear terms of the PDE are
discretized implicitly, but here we consider at first a linear PDE, where the major departure
from the one-dimensional case already appears, returning to nonlinear problems toward the
end of the section.

Let us consider, for instance, the Crank–Nicolson discretization for the simplest heat
equation (9.5) with the simplest mesh. Setting μ = k/h2 and h1 = h2 = h the scheme
reads [

1 − μ

2
Dx+Dx− − μ

2
Dy+Dy−

]
vn+1

j,l

=
[
1 + μ

2
Dx+Dx− + μ

2
Dy+Dy−

]
vn

j,l . (9.10)

Assume that this heat equation is defined on the unit square in space, i.e., � = {0 ≤ x, y ≤ 1},
and that the boundary conditions are Dirichlet, i.e., u|∂� = g(t, ·, ·) for t ≥ 0. Then the dis-
cretization (9.10) is defined for the J 2 unknowns vn+1

j,l with j, l = 1, . . . , J , (J + 1)h = 1,

and with vn+1
0,l , vn+1

J+1,l , v
n+1
j,0 , vn+1

j,J+1 given by the boundary conditions g for all relevant j, l.
In the corresponding one-dimensional case we write the algebraic equations in matrix

form, ordering the unknowns by their natural correspondence to mesh locations. This
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yields a tridiagonal system, which can be solved quickly using the algorithm described in
Section 2.12.1. For a system of such PDEs we cannot expect a tridiagonal matrix, but
in one dimension there is a narrow band (independent of J ) which contains all nonzero
elements of the matrix to be “inverted.” For the KdV equation we have to deal with a
penta-diagonal matrix (see Section 7.3), and moreover, for periodic BC there are additional
terms. A variant of Gaussian elimination for the latter introduces additional zeros, but only
O(J ) of them, during the decomposition stage. The overall work and storage required for
all the one-dimensional cases remains O(J ), which is comparable to the asymptotic cost of
an explicit time step, at least if issues of parallelization and vectorization are ignored.

This situation changes in more than one space variable. There is really no natural
ordering of mesh unknowns into a vector in the multidimensional case. We can order them
lexicographically by rows, or by columns, or even more innovatively in a nested dissection
or minimal degree fashion—methods that we do not discuss here. Whichever ordering
we use, in the end some unknowns that appear in (9.10) and are neighbors on the two-
dimensional mesh are no longer neighbors in the vector of unknowns. Thus, while the
obtained matrix is still sparse (a trademark of finite difference schemes, shared by finite
volume and finite element techniques, but not shared by spectral methods or methods based
on integral equations), its nonzero diagonals no longer huddle together next to the main
diagonal. In the simple case of (9.10) for J = 10 we get the sparsity pattern depicted in
Figure 9.1. This corresponds to ordering the unknowns either by row or by column. We

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 478

Figure 9.1. Sparsity pattern of the matrix arising using an implicit method for the
heat equation on a square.
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have five nonzero diagonals, three of which are the main-, the super-, and the subdiagonals.
The remaining two diagonals are separated from the main diagonal by O(J ) zero diagonals.

If the system is treated as banded, and LU -decomposition is applied as described
in Section 2.12.1, then the zero diagonals outside the outer band remain undisturbed, but
those within the band get filled with nonzeros, in general. This is referred to as a fill-
in. Such a Gaussian elimination algorithm therefore costs O(J 3) storage locations and
O(J 4) operations, as compared to O(J 2) operations and storage for an explicit scheme.
Unfortunately, problems in several space variables on domains with complex geometries
are precisely where explicit methods may require exceedingly small time steps due to small
spatial widths that crop up near irregular boundaries; see Figure 9.2. Therefore, it is ill-
advised precisely here to just ignore implicit methods.

(xi, yj )

Figure 9.2. Interior mesh points can get close to a boundary ∂� that does not
align with the mesh.

This sets the stage for possibly opting out of direct methods for solving linear algebraic
systems and considering iterative methods as an alternative. Such methods usually have
significantly lower storage requirements, they are often easier to set up, and they often require
fewer flops as well. An added advantage here is that a good initial approximation for the
unknowns vn+1 is given by the values at the current level vn or an extrapolation of solutions
at previous time levels. Matrices arising from the discretization of parabolic problems
are particularly suited for the application of methods such as multigrid, preconditioned
conjugate gradient, and other Krylov space methods surveyed in Section 9.4, because the
matrices involved are typically (at least close to being) symmetric positive definite. When
used correctly, such methods may require in some cases as little as one or two iterations per
time step, bringing the operation count back to the optimal O(J 2) per time step.

Before continuing let us remark that the above statements based on flop counts can be
misleading in practice. Issues such as rapid memory access, which give the nod to algorithms
that can be expressed in terms of vector operations and use high level BLAs wisely, can
have a major impact on CPU time, and not only in MATLAB. Among explicit discretization
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methods for parabolic PDEs there is the Runge–Kutta–Chebyshev family, although the
utility of these methods drops when considering more involved PDEs and domain geometry.
Moreover, sparse matrix technology today is at such a level that many problems arising
from implicit methods for PDEs in two dimensions can be solved rather rapidly using direct
methods. See, for example, Davis [56]. There is a publicly available code called MUMPS
[1]; see also the descriptions and user manuals of SuperLU and ScaLAPACK at Demmel’s
site,

http://www.cs.berkeley.edu/∼demmel/

There are many such computations, especially but not only in finite element methods, where
linear system solvers are not the bottleneck issue any more. The utility of iterative methods
is really more crucial for PDE problems in three and more space variables or when very fine
spatial meshes are involved, and when one does not possess a large machine architecture.
What this amounts to is that in many situations the methods discussed next are the methods
or choice, but often there is also some practical alternative breathing down their neck.

9.2.1 Implicit methods for parabolic equations

The methods described in Section 9.4 are directly applicable to discretized elliptic problems.
This is what we face at each step of an implicit time discretization of a parabolic PDE with
appropriate initial and boundary values prescribed.

Consider, for instance, the simple heat equation in the unit cube in d space dimensions

ut =
d∑

l=1

∂2u

∂x2
l

+ q(t, x1, . . . , xd) (9.11a)

with Dirichlet BC. The source function q is assumed known. Applying an implicit time
discretization, and the standard three-point centered discretization on a uniform mesh with
step size h = 1/(J + 1) in each space variable, yields an m×m system of linear equations,

Avn = qn, n = 1, 2, . . . , nf . (9.11b)

Thus we have a linear algebraic system for each time step n, where the mesh function vn

approximating the solution u at t = tn has been reshaped as a vector. The known right-hand
side contains the effect of the time discretization as well. Note that m = J d and that the
superscripts in (9.11b) are not powers.

The condition number29 can be shown to satisfy

cond(A) = O(J 2).

29Recall that the condition number of a matrix A is defined by

cond(A) = ‖A‖‖A−1‖. (9.12a)

Any induced matrix norm would do, but in the 2-norm we have

cond(A) = max σi

min σi

, (9.12b)

where σi are the singular values of A. Recall also that if A is symmetric positive definite, then σi = λi , i.e.,
eigenvalues replace singular values in (9.12b).
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In particular, cond(A) grows unboundedly as h → 0. For reasonable resolution values, say,
J = 100 or even J = 1000, this condition number is not large enough to cause roundoff
error trouble when using standard double precision floating point arithmetic. But it does
slow down iterative methods such as conjugate gradients (CG) considerably, which is why
we are bringing up the subject here and not earlier in the book. We urge you at this point to
read Section 9.4: see in particular Example 9.12 and Figure 9.12.

Can the condition number be made to be bounded as resolution increases using an-
other discretization method? This question and related ones are considered at length for
ODE systems in [10]. A reformulation of a higher order ODE as a first order system prior
to discretization or through it can help reduce the condition number, but unless the differ-
ential problem is reformulated as an integral equation, the discretization matrix will have a
condition number that grows unboundedly with J .

To understand this better in the PDE context, consider (9.11a) in steady state. Recall
from Review Section 1.3.3 that u is generally smoother than q, and thus u belongs to a
Sobolev space which is a strict subspace of the space to which q belongs. But in (9.11b)
both vn and qn belong to the same space, R

m. The smoothing operation of the solution
operator is grossly undervalued being approximated by the boundedness of ‖A−1‖, while
the differentiation process leading from u to q does translate into unboundedness of ‖A‖ in
the limit.

The next natural question is, Which of the iterative methods of Section 9.4 are partic-
ularly suitable in the context of parabolic PDEs?

One advantage in the context of multigrid methods is that for parabolic problems
relaxation is easy because the PDE is dissipative. Thus, a consistent discretization can
naturally provide a smoother! See, e.g., [171, 175] and recall also Section 1.1. In some
situations only one or two multigrid cycles are needed per time step [18, 17].

More generally, note that we have here a family of algebraic systems to solve, with
time as the family parameter. These systems can be very similar to one another, in some
cases differing only in their right-hand sides. This brings up the important question of
a warm start: can the nf linear systems (9.11b) sharing the same matrix be solved in
much less effort than nf times the effort required to solve one of them? The answer is
affirmative. Using direct methods, an LU decomposition is applied to A only once, and then
for each right-hand-side vector qn only forward and backward substitutions are required;
see Section 2.12.1.

In contrast, warm starting iterative methods in a similar way is generally an open
research question. On the other hand, an obvious warm start effect not shared by di-
rect methods can be obtained by using previous solutions for the initial guess in a PCG
algorithm. The simplest is to set the initial iterate to the solution at the previous time
level, vn+1,0 = vn. Another possibility is to extrapolate from the previous time levels,
vn+1,0 = 2vn − vn−1.

Some warm starting can be applied through the choice of a preconditioner, especially
in case of a linear PDE with constant coefficients. If the preconditioner is a multigrid cycle,
or an SSOR iteration, then not much sharing among systems with different n can be achieved.
However, an ILU preconditioner can be shared, i.e., the same incomplete decomposition
can be used for different linear systems (9.11b) to efficiently obtain the preconditioning
effect. This can be done even for problems arising as linearizations for nonlinear PDEs,
where A in (9.11b) does depend on n, so long as it does not vary too rapidly in time.
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It is important to stress again that neither the Krylov space iteration nor the pre-
conditioner (when done right) require forming A: only matrix-vector multiplications are
performed. The number of iterations required at each time step should remain comfortably
small given the excellent initial guess, or else the preconditioner is deemed ineffective.

Example 9.1 (Aquifer problem) This application is described in [69] and elsewhere. The
motion of water in an aquifer is governed, under certain assumptions, by the PDE

b(x, y)ut = (a(x, y)ux)x + (a(x, y)uy)y + q(t, x, y),

where u is the piezometric head height and q is a known function. The transmissivity a and
the storage coefficient b are positive parameter functions which characterize the aquifer.
Initial conditions, as well as a combination of Dirichlet and Neumann boundary conditions,
are prescribed.

This problem must be solved for u in order to simulate an efficient water extraction
from the aquifer. But first, the coefficient functions a and b must be found to calibrate
the aquifer. To simplify, let us assume that b ≡ 1 and concentrate on finding a. This is
done by observing values of u for certain initial and boundary data and solving the inverse
problem, finding both a and u which would satisfy the PDE problem and fit the data well
enough. What “well enough” means depends on the amount of noise in the measured data.
The inverse problem, which we do not get into here, involves a regularization (see, e.g.,
[178, 60, 166]), and an iterative procedure in which u is solved for based on current iterate
values of a(x, y), and then the latter are updated. This requires solving the forward problem
(i.e., finding u given a) efficiently and robustly.

Assuming a square spatial domain discretized by a uniform mesh with spacing h, we
utilize a semi-discretization as in Example 3.4,

dvj,l

dt
= h−1

[
aj+1/2,l

vj+1,l − vj,l

h
− aj−1/2,l

vj,l − vj−1,l

h

+ aj,l+1/2
vj,l+1 − vj,l

h
− aj,l−1/2

vj,l − vj,l−1

h

]
+ q(t, xj , yl). (9.13)

Assume for simplicity that the BC are Dirichlet all around a square boundary.30 Then
in (9.13), the subscripts are over the range j, l = 1, . . . , J , and v0,l , vJ+1,l , vj,0 and vj,J+1

are given by the BC for all t .
Next, we discretize (9.13) in time using an implicit method such as backward Euler,

or a higher order BDF method, or the trapezoidal rule. In any of these cases we obtain at
each time step a system of equations that is linear for a given a(x, y). The system has the
form (9.36) with x corresponding to the J 2 unknowns vn+1 ordered by row or by column
and A is the corresponding matrix that has the sparsity structure of Figure 9.1.

For the solution of this system we can use a preconditioned CG algorithm, starting,
e.g., from the initial guess vn for vn+1. For the preconditioner we can use either a multigrid
cycle [171] (this gets trickier, although still possible, if a is bumpy), or an incomplete
Cholesky decomposition, as described above. Indeed, here is a case where the same matrix
appears at each time step as in (9.11), provided the time step is constant.

30In Section 3.1 we discuss in detail how Neumann BC can be discretized in a way compatible with the finite
volume approach.
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For a simple numerical example, let a(x, y) = 1 + x + y on the unit square and
construct the inhomogeneity q(t, x, y) as well as initial and Dirichlet boundary data from
the exact solution

u(t, x, y) = sin(πx)(1 − e−y)e−t .

Given a spatial step size h for the semi-discretization (9.13), a forward Euler time
discretization requires k ≤ h2/12 to be stable. Using a Crank–Nicolson scheme of compa-
rable accuracy instead, we can choose k = h, so the time step size is larger by a factor of
12/h. Thus, a simple CG method without preconditioning would do well in comparison if
the number of iterations it requires per time step is well below 12/h.

The actual maximum absolute error at t = 1 for h = .005, using k as specified above
for either time discretization method, is around 2.e-6. So we set the absolute convergence
tolerance for the CG method at tol = (h/.005)210−6 and count the average number of
iterations per step. The results are recorded in Table 9.1. Plots of the solution and its error
are given in Figure 9.3.

Table 9.1. Crank–Nicolson with conjugate gradients (CN-CG) for a diffusion
problem. The maximum error at t = 1, recorded under Error, is O(h2) and dominates
the CG convergence error. The average number of required CG iterations is listed under
Iterations. The relative amount of work for a comparable purpose using forward Euler is
listed under 12/h. Even when no preconditioning is used the CN-CG method is far more
efficient than the corresponding explicit time discretization method.

h = k Error Iterations 12/h

.04 1.2e-4 25 300

.02 3.0e-5 44 600

.01 7.5e-6 74 1200

.005 1.9e-6 115 2400

We hasten to point out again that using a good preconditioner will further improve the
efficiency of the CG method significantly. Our purpose here is to emphasize the simplicity of
an implementation for the implicit method which already yields major gains. No matrix has
been formed, let alone inverted, here, and the basic matrix-vector multiplication performed
at each CG iteration is as simple as for the forward Euler step.

Example 9.2 (Inverting electromagnetic data) This case study briefly describes the work
in [78], which in turn culminates work reported in several earlier papers by Haber and his
collaborators. The problem is essentially to reconstruct, or at least image, the inhomoge-
neous conductivity in some survey area in earth from measurements of the electromagnetic
field for a given source. It is posed and solved in time and three space dimensions. The
purpose may be aiding a mining company to decide whether there is enough ore in a par-
ticular site that is worth extracting commercially. Or perhaps it is suspected that there is
a gold box buried by pirates centuries ago under the sand in a particular beach. Or the
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(a) Solution (b) Error

Figure 9.3. Solution and error for the diffusion equation of Example 9.1 at t = 1
using the Crank–Nicolson scheme with h = .005. See Table 9.1.

Figure 9.4. Borehole geometry for Example 9.2. The dashed line at the surface is
a loop source. All three components of the magnetic field are acquired in the boreholes.

methodology can be possibly used to discover mines left during past wars in an area under
examination. Such objects all have much higher conductivity than that of the sand or soft
rock presumably surrounding them.

The inverse problem for Example 9.1, namely, estimating a(x, y) there from given
measurements on the field u, is of a somewhat similar nature mathematically, although it is
rather simpler than the present problem. We have therefore allowed ourselves to only solve
the forward problem numerically by simple means there, since we discuss here solving both
the forward and the inverse.

An example for the experimental setting is depicted in Figure 9.4, which, like Fig-
ure 9.5, is taken from [78]. The source is the current along a square loop with dimen-
sions 50 × 50 meters. The data are measured at 20 depths uniformly spaced down each of



root
2008/5/5
page 287

�

�

�

�

�

�

�

�

9.2. Solving for Implicit Methods 287

four boreholes at 18 logarithmically spaced time instances between 10−4 and 10−1 seconds.
The “true model” is that of a sphere (radius 15m, conductivity σ = 0.1S/m) buried in
a uniform half-space that has conductivity σ = 0.01S/m. Using this we generate data
by solving the forward problem described below for the electromagnetic field, sampling all
three magnetic components at the locations described above, adding 2% normally distributed
random noise, and then “forgetting” the true model and trying to reconstruct it from these
data. The results are depicted in Figure 9.5. For such sparse data and highly ill-posed
inverse problem, this is actually a successful reconstruction. Our next step is then to see
what is involved numerically.

−50 0 50
−50

0

50

−50 0 50
−50

0

50

−2

−1.8

−1.6

−1.4

−1.2

−1.8

−1.6

−1.4

−1.2

Figure 9.5. Result of inversion of time domain electromagnetic data. The top
panel is a horizontal slice of the recovered conductivity at a depth corresponding to the
center of the sphere. The true conductivity is shown in the bottom panel.

The forward model involves solving Maxwell’s equations given in Example 3.6,
except that there is an additional, known source sr (t). The boundary conditions along the
spatial domain boundary ∂� are

n × H = 0,

where n is the outward normal in three dimensions.
Given typical earth parameters these equations represent wave phenomena over very

short time scales (up to 10−7 seconds, say). However, over longer times the equations
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tend to exhibit heavy dissipation, behaving more like stiff parabolic than like hyperbolic
PDEs. There is an initial layer where the solution varies rapidly, but later on it is smoother
in time. Moreover, the data measurements are not taken within this initial layer. Hence,
stepping with a relatively large time step size that in particular skips the layer is sensible and
desirable, and this gives rise to L-stable time discretization methods. There are additional
reasons that rule out higher order methods in the inverse problem context, so the method of
choice here is backward Euler. With αn = (tn+1 − tn)

−1 being the inverse of the nth time
step we have the semi-discretization in time

∇ × En+1 + αnμHn+1 = αnHn ≡ sH in �, (9.14a)

∇ × Hn+1 − (σ + αnε)En+1 = sn+1
r − αnεEn ≡ sE in �, (9.14b)

n × Hn+1 = 0 on ∂�. (9.14c)

Here solution quantities at n + 1 are unknown while those at n are known. Note that the
time steps are such that data measurements are at mesh points. In the particular experiment
shown we have 32 time levels spaced nonuniformly.

Note that we have deviated here from our usual semi-discretization treatment, which
consists of applying spatial discretization first. Here we discretize in time first, because that
choice is independent of the spatial discretization and yields an elliptic-like PDE system
at each time level. What corresponds to discretizing in time first also arises in DAEs (see
Section 2.8), where a set of algebraic equations resulting from the implicit discretization
and the equations that do not contain a time derivative are simultaneously solved at each
new time level. This also arises when differential equations are subjected to inequality
constraints, for example, when simulating multibody systems with frictional contact, a
problem that arises in mechanical engineering and computer graphics [2, 106].

To solve the initial-boundary value problem of which (9.14) describes one step, we
apply a spatial discretization. Here, however, the plot thickens. Because the curl operator
annihilates any function of the form ∇φ, it has a nontrivial null-space. A good, conservative
finite volume method such as the one described in Example 3.6 may thus give rise to a large,
sparse linear system of equations at each time level that is a challenge to solve using iterative
methods. The challenge is, essentially, to restrict the iteration only to the active space,
avoiding the null-space because there the iteration is totally ineffective. This removal
of the null-space can indeed be done at the discrete level, e.g., inside a multigrid solver
[91]; however, the resulting code can be complex and hard to modify. Another approach
used in [78] is to remove the null-space first at the PDE level of (9.14), using a variable
transformation called the Helmholtz decomposition with Coulomb gauge. The details can
be found in [78] and further references therein and are too specific to this application to
resurrect in full here. Suffice it to say for the present purpose that the resulting system at
each time step is a discretization of four coupled Poisson equations of the form encountered
in Example 3.4, and a finite volume method such as (3.15) is relevant.

To solve the resulting linear system, note that for αn sufficiently small (time step
sufficiently large!) the obtained system is dominated by its diagonal blocks, and therefore a
good preconditioner can be obtained by solving for each Poisson equation separately. Based
on this we have used one multigrid cycle and/or ILU to obtain effective preconditioners for
a BICGSTAB iteration.
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Combining all the time step discretizations together yields a system of the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1(m)

B2 A2(m)

B3 A3(m)

. . .
. . .

Bs AN(m)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1

u2

...

...

uN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q1

q2

...

...

qN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
for N time steps. We write out explicitly the dependence on our model m, which can be,
for instance, m = log σ . This is our reconstruction goal in the inverse problem.

Obviously a block forward substitution can be performed, combined with the above
iterative techniques for each An. We can write the system (before elimination) as

A(m)u = q.

This is then a very large, sparse system of algebraic equations that we know how to solve
using iterative methods.

For the inverse problem, to recall, we have observed data b that correspond to certain
components of the field u at particular points, denoted Qu. Thus we seek a model m such
that the predicted data Qu, where u = A(m)−1q, matches the observed data b to within the
often unknown noise level. This problem turns out to be highly ill-posed, and some form
of regularization is required in order to solve a saner, nearby problem and to incorporate a
priori information such as that the solution model m is a smooth mesh function and not just
an assortment of values at pixels. A Tikhonov-type regularization then seeks to minimize a
data fitting term plus a penalty on the roughness of m

min
m,u

1

2
‖Qu − b‖2 + βR(m), (9.15)

s.t. A(m)u = q.

The regularization functional can be a discretization of the integral

1

2

∫
�

|∇m|2dx.

But there are other choices, too, as briefly mentioned in Example 3.5. The parameter β

balances the two terms of regularization and data fitting, being larger the higher the noise
level.

To solve (9.15) we can eliminate u from the forward problem, yielding a minimization
problem in m alone. The latter can be solved using a Gauss–Newton technique, employing
a preconditioned CG procedure for the inner iteration. Or else we can solve the constrained
formulation (9.15) without elimination. Thus we find ourselves iterating all at once for
m, u and the Lagrange multiplier functions resulting upon stating the necessary conditions
for the constrained minimization. However, the present description and the narrator are
getting carried further and further away from the purpose of this example in its context, so
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let us bring this discussion to a halt, referring again to [78] and references therein for much
more.

Finally, we mention that there are packages available on netlib such as VODPK and
DASPK, written by Hindmarsh, Petzold, and coworkers, which use preconditioned Krylov
space methods in combination with the method of lines for systems of time-dependent PDEs.

Next, we proceed to briefly discuss a class of methods that make sense only in the
present context and leads naturally to Section 9.3 as well.

9.2.2 Alternating direction implicit (ADI) methods

When ordering the unknowns corresponding to (9.10) by rows, the unknowns corresponding
to consecutive mesh locations in x (i.e., vj−1,l , vj,l, vj+1,l) remain close neighbors in the
vector of unknowns, whereas the neighbors in the y direction are not. But when ordering
the unknowns by column it is the neighbors in the y direction (i.e., vj,l−1, vj,l, vj,l−1) which
remain close neighbors. This suggests an iterative method where the ordering alternates
according to rows or columns, and in which only the close neighbors are solved for. Such
methods were proposed in the 1950s by Peaceman and Rachford, Douglas, and others, and
they remain popular today among some practitioners for sufficiently simple, nonautomated
situations.

Let us consider the Crank–Nicolson equations (9.10) on a simple domain. We can
write them in operator form[

I − μ

2
(QL + QM)

]
vn+1 =

[
I + μ

2
(QL + QM)

]
vn, (9.16)

where vn is the mesh function at level n: this is the collection of (J + 2)2 solution values
corresponding to the spatial mesh at time tn not yet ordered into a vector in one way or another.
Note that vn+1 incorporates J 2 unknown interior mesh values, plus known boundary values.

Next, we split the operator, approximating (9.16) by(
I − μ

2
QL

) (
I − μ

2
QM

)
vn+1 =

(
I + μ

2
QL

) (
I + μ

2
QM

)
vn. (9.17a)

Note that the difference between (9.16) and (9.17a) is

k
μ2

4
QLQM

vn+1 − vn

k
,

where μ = k/h2. When we substitute the exact solution (with bounded second derivatives)
this term is O(k3). Hence, (9.17a) retains the accuracy order (2, 2). Writing the above
equations as (

I − μ

2
QL

)
w =

(
I + μ

2
QM

)
vn,(

I − μ

2
QM

)
vn+1 =

(
I + μ

2
QL

)
w (9.17b)

(the formulations (9.17a) and (9.17b) are equivalent because the operators I + μ

2 QL and
(I − μ

2 QL)−1 commute), we obtain two half-steps each corresponding to inversion in only
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Figure 9.6. ADI method. Solve tridiagonal systems in one direction, then in the other.

one direction. Thus, we solve for w by ordering the unknowns horizontally, obtaining a
set of tridiagonal systems (one for each mesh row, using boundary values at the vertical
boundary segments), and then we solve another set of tridiagonal systems for vn+1, ordering
the unknowns vertically and using boundary conditions at the horizontal boundary segments;
see Figure 9.6. Since each solution of a tridiagonal system has a cost which is linear in
the number of unknowns, the total cost per step is the optimal O(J 2), both in flops and in
storage.

One question arising is, What are the appropriate boundary conditions for w? If the
boundary values g depend on t , then one must avoid the temptation of simply setting the
values of w corresponding to boundary locations to g(tn+1/2, ·, ·), which yields only a first
order approximation. Instead, add the equations(

I − μ

2
QL

)
w =

(
I + μ

2
QM

)
vn,(

I + μ

2
QL

)
w =

(
I − μ

2
QM

)
vn+1,

obtaining

w = 1

2

[(
I + μ

2
QM

)
vn +

(
I − μ

2
QM

)
vn+1

]
. (9.18)

Now substitute g(tn, ·, ·) and g(tn+1, ·, ·) for the boundary values of vn and vn+1, respec-
tively, obtaining the corresponding boundary values of w.

There are other variants of dimensional splitting methods such as ADI in both two and
three dimensions; see [133] and also the more recent but less detailed [137]. One persistent
question with these methods is how to specify intermediate (or split-step) BC.

In Exercise 5 we ask our patient reader to extend and implement the ADI method for
Example 9.1. Once the appropriate discretization, domain geometry, and BC combine well,
a very simple solution procedure is obtained. More generally, however, the high degree
of specialization required to use these methods gives the nod, in our opinion, to the more
modern, general approaches described in Section 9.4 and utilized in Section 9.2.1.
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9.2.3 Nonlinear problems

If the PDE system that is being discretized by an implicit method is nonlinear, then the large
system of algebraic equations is also nonlinear. Bearing in mind the lessons of Section 2.7,
in light of the mild stiffness present in parabolic problems we require an appropriate variant
of Newton’s method. The situation is not really different in this regard from that described
in Section 2.7, and there is no reason to duplicate that exposition here. Instead we make
two additional, important observations.

The first is that incorporating a Newton iteration with an iterative method for the
resulting linear system yields an inner–outer iteration, with one of the methods described
in Sections 9.2.1 and 9.4 providing the inner loop. A simple idea for gaining efficiency is to
cut the inner iteration short when the outer, Newton iteration, is not yet close to the solution
and thus not so important to resolve exactly. This leads to inexact Newton methods; see,
e.g., [139, 78]. These methods can have central importance in some applications but are less
crucial in the present context of solving a time-dependent PDE problem where we really
don’t expect to apply more than one or two Newton iterations per time step anyway. It is the
tolerance for the convergence of the exact Newton method that can be set relatively loosely
here, depending on the accuracy of the PDE discretization.

The second observation is that the Newton linearization (recall the review in Sec-
tion 2.12.5) can be applied directly to the PDE rather than to the discretized algebraic
equations. This often less messy approach to deriving Newton’s method for PDE dis-
cretizations is also called quasi-linearization. See the description for the midpoint method
in Section 7.3.1 for an instance.

9.3 Splitting methods
The splitting idea, utilized in a special way in Section 9.2.2 to obtain the ADI method, can be
applied in much more general circumstances. It can be applied directly to the PDE, not just
to its discretization, and it can be applied to split different PDE components, as discussed
later in Section 9.3.1.

Example 9.3 The Cauchy problem for the simple, scalar advection equation

ut + aux + buy = 0,

u(0, x, y) = u0(x, y)

has the solution

u(t, x, y) = u0(x − at, y − bt)

(this can be verified directly). Further, treating each y as a parameter, let φ(t, x) = φ(t, x; y)

satisfy the one-dimensional advection equation

φt + aφx = 0,

φ(0, x) = u0(x, y).

Then from Section 1.1 we know that

φ(t, x; y) = u0(x − at, y).
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Similarly, treating each x̂ = x − at as a parameter, let ψ(t, y) = ψ(t, y; x̂) solve the
one-dimensional advection equation

ψt + bψy = 0,

ψ(0, y) = u0(x̂, y) = φ(t, x; y).

Then

ψ(t, y; x̂) = u0(x − at, y − bt) = u(t, x, y).

Thus, we can split the solution process of the two-dimensional advection equation
into solutions of one-dimensional advection equations. Here there is no splitting error at
all, which is unusual in the treatment of general splitting techniques.

In terms of the solution operator we generalize (1.12) into

u(t, ·, ·) = S(t)u0, (9.19a)

where S(t) can be written as

S(t) = Sy(t)Sx(t) ∀t. (9.19b)

The solution operators for the simple advection equation in Example 9.3 are

Sx(t) = e−ta∂x , Sy(t) = e−tb∂y ,

S(t) = e−t (a∂x+b∂y) = e−tb∂y e−ta∂x ,

where the exponent of a differential operator is to be understood, as for a matrix, in terms
of its Taylor expansion; see Section 1.3.5.

While the splitting in the case of the scalar advection operator is exact, for matrix
operators it is only approximate. For example, corresponding to the constant coefficient
hyperbolic system (9.1) we obtain

ekA∂x ekB∂y − ek(A∂x+B∂y) = 1

2
k2(BA − AB)∂x∂y + O(k3).

The same general lack of commutativity between A and B, which haunts us when trying
to establish stability properties for conservative schemes, here reduces the approximation
order to 2, leading in general to a first order accuracy in k.

For a semi-discretization of a constant coefficient PDE in two spatial variables,

dv

dt
= (L + M)v,

the solution is

v(t + k) = ek(L+M)v(t).

This suggests a natural splitting

ek(L+M) ≈ ekLekM. (9.20)
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The Crank–Nicolson scheme (9.10) for the heat equation corresponds to approxi-
mating ez by the diagonal Padé approximation 2+z

2−z
. This splitting leads to locally one-

dimensional (LOD) formulas, which are not as popular as the ADI splitting; see, e.g.,
[133, 137].

Generally we have as for the matrix PDE operators

ekLekM − ek(L+M) = 1

2
k2(ML − LM) + O(k3),

and an overall first order accuracy in k may result if L and M do not commute.
Fortunately, a simple trick (in hindsight) due to Strang allows restoring an overall

second order accuracy; see Exercise 10 and recall Section 6.2.2 as well as the semi-explicit
method (7.27). The idea is to replace (9.20) by

ek(L+M) ≈ e
k
2 LekMe

k
2 L. (9.21)

Now, approximate each exponent by a one-dimensional Lax–Wendroff scheme, say. For a
system of conservation laws one of the corresponding variants of (5.5) may be used.

Denoting the corresponding full discretization operator by Q(L, k
2 ), etc., we obtain

vn+1 = Q

(
L,

k

2

)
Q(M, k)Q(L,

k

2
)vn = · · ·

= Q

(
L,

k

2

)
Q(M, k)Q(L, k)Q(M, k) · · · Q(L, k)Q(M, k)Q

(
L,

k

2

)
v0.

Thus, the first fractional step of the next time step can be combined with the last frac-
tional step of the current one, so there are essentially two one-dimensional half-steps per
time step on a mesh that is staggered in time. Note that the application of one of these
one-dimensional discretization operators carries with it the corresponding one-dimensional
stability restrictions.

Example 9.4 Utilizing the splitting (9.21), the MacCormack scheme (9.8) becomes a four-
stage prescription which reads

v̄j,l = vn−1/2
j,l − μ1

(
fn−1/2
j,l − fn−1/2

j−1,l

)
, (9.22)

v̂j,l = 1

2

(
vn−1/2

j,l + v̄j,l

)
− 1

2
μ1(f(v̄j+1,l) − f(v̄j,l)),

ṽj,l = v̂j,l − μ2(g(v̂j,l) − g(v̂j,l−1)),

vn+1/2
j,l = 1

2
(ṽj,l + v̄j,l) − 1

2
μ2(g(ṽj,l+1) − g(ṽj,l)).

The advantage here is not in solving linear algebraic equations—the schemes are explicit—
but in the restoration of the CFL time step restriction

max{μ1ρ(A), μ2ρ(B)} ≤ 1, (9.23)

which is to be compared to the bound (9.9) obtained for the direct extension of the one-
dimensional scheme. Remarkably, a significant improvement in the time step size restriction
is obtained without much extra effort.
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Figure 9.7. Solution of an advection problem, Example 9.4.

To see some numbers, consider the advection problem

ut − ux − 2uy = 0, (x, y) ∈ [−π, π ] × [−π, π ], t ≥ 0,

u(0, x, y) = sin x sin y,

under periodic BC. The exact solution is u(t, x, y) = sin(x + t) sin(y + 2t). It is depicted
for t = 1 in Figure 9.7. The meshes used below for the numerical experiments are fine
enough that any of the stable configurations in Table 9.2 leads to a plot indistinguishable
from Figure 9.7. Here we do not need to stagger the mesh in time to retrieve the second
order accuracy of the Lax–Wendroff scheme.

We set h2 = 2h1, hence μ2 = .5μ1, so corresponding to the notation of (9.23),
μ1|a| = μ2|b| = μ1. Table 9.2 records maximum errors at t = 1 for four methods:

1. Upwind, extending (1.15a) in an obvious fashion: see Exercise 3;

2. Lax–Wendroff as in (9.8);

3. Upwind split in an obvious fashion (see also Example 9.3); and

4. Lax–Wendroff split as in (9.22).

From the results in Table 9.2 it is clear that the upwind scheme is first order accurate
and the Lax–Wendroff scheme is second order accurate in both split and unsplit forms.



root
2008/5/5
page 296

�

�

�

�

�

�

�

�

296 Chapter 9. Several Space Variables and Splitting Methods

Table 9.2. Errors using explicit methods (upwind and Lax–Wendroff) in split and
unsplit form for the advection equation in two dimensions. Unacceptably large error due
to instability is denoted by *.

h1 μ1 Upwind L-W Upwind split L-W split

.01π .45 4.1e-2 8.4e-4 4.2e-2 1.0e-3

.005π .45 2.1e-2 2.1e-4 2.1e-2 2.6e-4

.0025π .45 1.1e-2 5.3e-5 1.1e-2 6.5e-5

.01π .9 * * 7.7e-3 2.5e-4

.005π .9 * * 3.9e-3 6.2e-5

.0025π .9 * * 2.0e-3 1.6e-5

When μ1 < .5 the methods are all stable. But when 0.5 < μ1 < 1 the original methods
become unstable as predicted by (9.23), while the split methods remain stable.

We emphasize that the lack of splitting error in the computational part of this example
is not general.

Example 9.5 The restoration of second order accuracy by the Strang splitting is based on
matching another term in the Taylor expansions of the corresponding matrix exponentials—
see Exercise 10. Of course, if ‖kL‖ � 1 or ‖kM‖ � 1, then all bets are off, because the
first few terms in the Taylor expansion of a rapidly decaying exponential function say little
about the entire series. This situation occurs for stiff problems (recall Section 2.6). Consider
the simple ODE system

dv
dt

=
⎛⎝−ε−1 1

1 1

⎞⎠ v

with v(t) a vector function of only two components and ε � 1 a positive parameter. We
write this in split form in order to isolate the stiff component,

dv
dt

= (L + M)v, where L =
⎛⎝−ε−1 0

0 1

⎞⎠ , M =
⎛⎝0 1

1 0

⎞⎠ .

Further, we use the exact solution operators and consider the splitting error for step sizes
k � 1 such that possibly ε � k. In this stiff situation the Strang splitting loses its second
order status and becomes only first order accurate. In Table 9.3 we record absolute errors
at t = 1 starting from the initial data v(0) = (1, 1)T . Note that the exact solution is
v(1) = eL+Mv(0). (In MATLAB, use the function expm for small matrices.) In addition
to ε and k we record errors for the following splitting methods:
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Table 9.3. Errors in fast and slow solution components using four splitting methods
for a simple ODE. The errors are due to splitting only.

ε k ekMekL ekLekM e
k
2 LekMe

k
2 L M-inhomog.

10−3 10−2 2.46e-2 8.20e-3 2.72e-3 3.55e-2 2.54e-3 8.38e-3 3.53e-7 2.43e-2

10−3 1.58e-3 9.14e-4 1.14e-3 1.81e-3 1.10e-4 1.14e-4 1.02e-8 1.58e-3

10−4 1.38e-4 1.32e-4 1.34e-4 1.41e-4 1.13e-6 1.14e-6 8.34e-10 1.38e-4

10−6 10−1 2.85e-1 1.39e-1 2.72e-6 4.24e-1 2.72e-6 1.39e-1 2.46e-8 2.59e-1

10−2 2.73e-2 1.36e-2 2.72e-6 4.09e-2 2.72e-6 1.36e-2 2.69e-10 2.70e-2

10−3 2.72e-3 1.35e-3 2.72e-6 4.07e-3 2.72e-6 1.35e-3 2.72e-12 2.71e-3

1. vn+1 = ekMekLvn,

2. vn+1 = ekLekMvn,

3. vn+1 = e
k
2 LekMe

k
2 Lvn, and

4. vn+1 = [ekL + (ekL − I )L−1M]vn.

The last formula is an approximation arising from considering Mv as an inhomogeneity and
approximating the exact formula

v(t + k) = ekLv(t) +
∫ k

0
e(k−s)LMv(t + s)ds. (9.24)

We will have more to say about this method in Section 9.3.3.
Let us concentrate first on the errors in v2. It is clear that when ε � k the errors in

all these splitting methods are first order in k and hardly distinguishable from one another.
On the other hand, when k ≤ ε the Strang splitting is more accurate than the other methods
and displays a second order behavior.

In the first component v1 there is more variety. The errors are usually smaller than
those in v2, for all but the first splitting method they decrease with ε, and for the last
method they decrease with both ε and k. Note how significantly better it is to apply L

after M , not before. Unfortunately, however, these effects are only observed when the “fast
solution component” v1 is essentially decoupled from the “slow solution component” v2.
If we consider the same problem, except that L is replaced by ST LS for some rotation or
reflection matrix S, then the fast and slow solution components are mixed, and only errors
such as those for v2 in Table 9.3 are observed.

9.3.1 More general splitting

From what has already been said it is clear that the idea of splitting can be generalized
further. Splitting the operator does not necessarily have to be into only two parts (indeed,
the direct generalization of the preceding methods to three spatial variables would involve
splitting the spatial operator into three parts), and not necessarily because the problem is
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multidimensional. We have seen a more sophisticated instance of this sort in the semi-
explicit, symplectic method (7.27) developed in Section 7.3.1 for the KdV equation.

In general, if the spatial differential operator contains (additively) parts of a different
character then different discretization techniques may be applied to each part of the differ-
ential operator using the splitting idea. Candidates for this approach are multidimensional
problems, problems with different time scales, nonlinear problems which contain linear
leading differential terms, problems which combine parabolic and hyperbolic terms, etc. It
must be understood, however, that by merely identifying a particular method as a splitting
method not much is yet concluded about its accuracy or convergence properties.

Example 9.6 (Schrödinger equation) Let us recall again the nonlinear Schrödinger equa-
tion (NLS) from Exercise 1.7 and Example 5.10. Consider in particular the cubic NLS,

ψt = ı(ψxx + |ψ |2ψ). (9.25)

Note that ψ(t, x) is complex-valued. From Example 5.10 we know that for the pure initial
value problem the solution’s L2-norm remains constant for all time,

∫
ψ̄(t, x)ψ(t, x)dx ≡

‖ψ(t)‖2 = ‖ψ(0)‖2. Moreover, this is a Hamiltonian PDE (see, e.g., [41]), which means
that it can be written as

ut = D
(

δH
δu

)
, where

H[u] =
∫

H(x, u, ux, . . .)dx,

∫
δH
δu

vdx =
(

d

dε
H[u + εv]

)
ε=0

(9.26)

with

u = (ψ, ψ̄)T , D = ı, H(ψ, ψ̄) = ψxψ̄x − 1

2
ψ2ψ̄2.

Note that the operator ı is skew-symmetric. There is also a multisymplectic structure here.
We can construct a symplectic method for this PDE by splitting the right-hand side

of (9.25) in an obvious way. Note that the problem

ut = ıuxx

is linear. We discretize it in space using the usual D+D− operator and in time using the
(symplectic) midpoint method. The matrix that arises because the method is implicit does
not depend on t and hence can be assembled and decomposed once using sparse LU -
decomposition.

The nonlinear part
ut = ı|u|2u

is really an ODE with x as a parameter. It is easy to verify that its exact solution is

u(t) = u(t0) eı(t−t0)|u|2
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with |u| independent of t ; see Exercise 11. Hence, stepping from t with any time step k we
have

u(t + k) = u(t) eık|u|2 .

So, we use the Strang splitting (9.21) to compose these two solution operators, the midpoint
for the linear PDE and the exact one for the ODEs at the spatial mesh points, to obtain a
compact, symplectic method with accuracy order (2, 2).

To see this method in action we use an example from [98]. Periodic BC are specified
on the interval [−20, 80], and the initial value function is

ψ(0, x) = eıx/2sech(x/
√

2) + eı(x−25)/20sech((x − 25)/
√

2).

This yields two pulses which propagate to the right at different speeds, with their shapes
unchanged except when they coalesce.

At first we run twice, for k = h = .1 and for k = h = .01, and at tf = 200 compute
the difference from the values at t = 0 in the discrete solution norm,

√∑
j |ψj |2, and in

the discrete Hamiltonian,
∑

j h−2|D+ψj |2 − 1
2 |ψj |2. These results are tabulated in the first

two data rows of Table 9.4. The error indicators are pleasantly small. The solution profile is
plotted in Figure 9.8(a). There is no significant phase error here, even for the coarser mesh.
Nonetheless let us caution, with Example 6.5 in mind, that we may not conclude from this
evidence that the solution is pointwise accurate.

Table 9.4. Error indicators in Hamiltonian and norm for Example 9.6 measured
at t = 200.

tf k h Error-Ham Error-norm

200 .1 .1 3.7e-5 4.3e-13

.01 .01 3.9e-9 1.5e-11

1000 .1 .1 5.2e+2 2.9e-12

.01 .1 3.3e-7 4.2e-12

.01 .01 3.4e+2 7.7e-11

Next we increase the final time to tf = 1000 and run again from t = 0. For k =
h = .1 the solution after t = 200 develops an instability in ψx , i.e., fast oscillations with
a bounded amplitude! The result recorded in the third row of Table 9.4 shows that the
considerable pointwise error is reflected in the Hamiltonian deviation but not in the solution
norm deviation. A similar phenomenon occurs for k = h = .01; see Figure 9.8(b). The
intolerable spurious oscillation disappears when we choose k = .01, h = .1.

This surprising instability arises because we have for the semi-discretization ut =
ıh−2D+D−u imaginary eigenvalues of size O(h−2). When k = h we are therefore in
the highly oscillatory regime of the midpoint method, and the difficulties pointed out in
Section 6.4 become relevant. Choosing k = O(h2) brings these eigenvalues back to the
manageable regime. Splitting methods should not be trusted blindly! See also Part (b) of
Exercise 11.
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(b) t = 1000

Figure 9.8. Solution magnitude for the Schrödinger equation (Example 9.6) using
k = h = .01. The two pulses look accurate at t = 200. But as integration proceeds an
instability in the solution derivative arises, yielding sharp oscillations that in the figure look
like a thick line. See Table 9.4.

A popular scheme replaces the difference scheme for the linear PDE with a spectral
method in the above splitting. See Section 7.4 and Review Section 2.12.6. The Fourier
spectral method is applied to the constant coefficient problem ut = ıuxx subject to periodic
boundary conditions. Let F denote applying the transform in space. Then we can write

u(t + k) = F−1
(
e−ıξ 2kF(u(t))

)
.

Spectral accuracy results upon replacing the transform by its discrete counterpart. The
splitting error remains O(k2), though, and in fact k must often be taken rather small for this
highly sensitive problem.

The tame-looking nonlinear Schrödinger equation (9.25) can thus cause serious sur-
prises. In fact, it gets worse in more space dimensions where the PDE reads

ıψt + �ψ = V ′(|ψ |)ψ. (9.27)

Incidentally, this equation arises in optics and water wave applications. In three dimensions
there may be solution blowups and in two dimensions there may be “almost blowups” [41].
The splitting idea used above can be applied without change, although the solution of

ut = ı�u

becomes more interesting. For an implicit time discretization the usual iterative methods
may not work well (can you see why?), and direct methods using sparse matrix technology
look attractive; see, e.g., [132]. Alternatively, a Fourier spectral method can be applied.
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Another possibility is to replace the implicit midpoint scheme by the explicit RK4.
No splitting is needed here. The method is not symplectic (recall Chapter 6), and it demands
k = O(h2) even for integration intervals that are much shorter than tf = 200. But if we are
resigned to using k = O(h2), then this method is much faster than the implicit midpoint,
and its relative advantage grows in more spatial dimensions. In one dimension for k = .005
and h = .1 it yields at tf = 1000, Error-Ham = 3.2e-10, and Error-norm = 3.5e-12, which
is quite respectable. A somewhat cheaper alternative to RK4, still with k = O(h2), would
be the four-step Adams pair in PECE mode; see Chapters 2 and 6.

Example 9.7 (Shallow water equations) This model is described in [110, 133, 76] and
arises in meteorology and oceanography. The equations form a nonlinear hyperbolic system⎛⎜⎜⎜⎝

u

v

φ

⎞⎟⎟⎟⎠
t

+

⎛⎜⎜⎜⎝
u 0 1

0 u 0

φ 0 u

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

u

v

φ

⎞⎟⎟⎟⎠
x

+

⎛⎜⎜⎜⎝
v 0 0

0 v 1

0 φ v

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

u

v

φ

⎞⎟⎟⎟⎠
y

= 0

and are subject to initial conditions and periodic boundary conditions. The unknown func-
tions u and v denote velocities in the x- and y-directions, and φ > 0 is a potential function.
In many applications, it is realistic to assume that there is a mean value φ0 > 0 of φ, and
0 < ε � 1, such that

|u| + |v| ≤ εφ0, |φ − φ0| ≤ εφ0.

Thus, we have two time scales (as in Example 9.5 and the KdV equation of Section 7.3)
and a small variation of φ about its known mean.

To investigate the problem first, it makes sense to symmetrize it, because more is
known about symmetric hyperbolic systems. The change of variables φ ← 2

√
φ achieves

the desired result and yields the system which we’ll assume from now on to be the given
one, ⎛⎜⎜⎜⎝

u

v

φ

⎞⎟⎟⎟⎠
t

+

⎛⎜⎜⎜⎝
u 0 1

2φ

0 u 0

1
2φ 0 u

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

u

v

φ

⎞⎟⎟⎟⎠
x

+

⎛⎜⎜⎜⎝
v 0 0

0 v 1
2φ

0 1
2φ v

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

u

v

φ

⎞⎟⎟⎟⎠
y

= 0.

To investigate the problem further, freeze the coefficients at mean values U0, V0, �0

and denote w = (u, v, φ)T . Applying a Fourier transform (1.21) with d = 2 and ξ =
(ξ1, ξ2)

T gives

ŵt = ı(ξ1A + ξ2B)ŵ,

and hence

ŵ(t, ξ) = T eı
tT −1ŵ(0, ξ),
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where 
 and T are the eigenvalue and eigenvector matrices


 =

⎛⎜⎜⎜⎝
ξ1U0 + ξ2V0 0 0

0 ξ1U0 + ξ2V0 + q̃ 0

0 0 ξ1U0 + ξ2V0 − q̃

⎞⎟⎟⎟⎠ ,

T =

⎛⎜⎜⎜⎝
ξ2/q ξ1/q̃ −ξ1/q̃

−ξ1/q ξ2/q̃ −ξ2/q̃

0 1 1

⎞⎟⎟⎟⎠ ,

with q = ‖ξ‖2, q̃ = q
√

�0.
Thus, we have two types of waves, a slow one moving at speed (U0, V0) and two fast

ones with speeds depending on �0. These correspond to the two time scales. There are
practical situations in which we are interested in the slow wave only, but numerical stability
may dictate discretization step sizes depending on the fast waves, unless we do something
more clever.

For example, a direct application of the leapfrog scheme to this PDE yields the stability
restriction

μ ( |U0| + |V0| +√
2�0 ) < 1.

Nonlinear instability phenomena occur here for the leapfrog scheme, as in Example 5.1,
and the introduction of some dissipativity into the numerical scheme is deemed necessary.
Thus, we have again the same double incentive as for KdV to use an implicit scheme for
this hyperbolic system, namely, to stabilize over a long time integration and to avoid a steep
time step restriction.

Using the splitting approach of the current section, we can write this PDE system as

wt + (L1 + L2 + L3 + L4)w = 0, where

L1 =

⎛⎜⎜⎜⎝
0 0 1

2φ0

0 0 0

1
2φ0 0 0

⎞⎟⎟⎟⎠ ∂x, L2 =

⎛⎜⎜⎜⎝
u 0 1

2 (φ − φ0)

0 u 0

1
2 (φ − φ0) 0 u

⎞⎟⎟⎟⎠ ∂x,

L3 =

⎛⎜⎜⎜⎝
0 0 0

0 0 1
2φ0

0 1
2φ0 0

⎞⎟⎟⎟⎠ ∂y, L4 =

⎛⎜⎜⎜⎝
v 0 0

0 v 1
2 (φ − φ0)

0 1
2 (φ − φ0) v

⎞⎟⎟⎟⎠ ∂y.

We can further approximate each ekLj in some way to second order accuracy and put these
approximations together using an extension of the formula (9.21).

In this example, we have split the operators such that L2 and L4 are slow: they can be
approximated using leapfrog with some dissipation added, or Lax–Wendroff, or the classical
Runge–Kutta scheme RK4, with reasonably large step sizes in time. For the fast operators
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L1 and L3 another method can be used: if φ0 is constant, then an exact solution operator is
possible. If not, then an implicit scheme can be used, now applied only for a linear operator.
We can even use the same scheme as for L2 and L4, but with a smaller step size k for the
simplified, fast operators only.

Example 9.8 (Splitting applications) The appeal of the splitting approach, which provides
a simple divide and conquer mechanism for complex models at the cost of an often small or
at least amorphous additional error, has led to its use in many applications. Here we briefly
describe three such applications, in addition to Examples 9.6 and 9.7, just to give an idea
of the variety and appeal of splitting methods. There are many other papers which utilize
similar techniques.

• Diffusion-generated motion

This example concerns a numerical technique described in Merriman, Bence, and
Osher [131] and Ruuth [147]. The task of simulating the motion of evolving surfaces
with junctions according to some curvature-dependent speed is a major motivation
for level set methods, briefly described in Section 11.3; for much more see [152, 140].
Motion by mean-curvature is a particularly popular instance of this sort. It is quite
possible that a blob would separate into two blobs and more during such motion, or
that several blobs will merge and become one, so a method that tracks the interface
defining the surface of the blob too rigidly may fail at such singularities.

An alternative method for this motion, which shares the topological flexibility of level
set methods, is based on a sequence of steps alternately diffusing and sharpening the
interface defining the surface. It may be considered as a splitting method for the
Allen–Cahn equation

ut = ε�u − ε−1f ′(u), (9.28a)

where f is a double well potential, e.g.,

f (u) = u2(u − 1)2, hence f ′(u) = u(u − 1)(u − 1/2), (9.28b)

in the limit ε → 0. The function u is the characteristic function of the corresponding
domain D whose shape we are tracking,

u =
{

1, x ∈ D,

0 otherwise,
(9.28c)

so the initial value function u0(x) at t = 0 is determined by the initial shape.

Each time step n of the method consists of two stages. In the first we turn off f and
solve

ut = �u,

subject to homogeneous Neumann conditions and starting from the characteristic
function that is the approximation for u from the previous step at tn. This obviously
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has the effect of diffusing the interface. Call the result ũ. In the second stage we then
sharpen the picture by turning off �u in (9.28a) and solving at each x

εut = f ′(u)

in the limit as ε → 0. This is actually very simple, because we must set u to one of
the zeros of f ′(u) in a stable way. But of the three zeros only u = 0 and u = 1 are
stable. Thus, we set at each location u = 0 if ũ ≤ 1/2 and u = 1 otherwise.

This method was proposed in [131], and its proved convergence does not follow from
its interpretation as a splitting in the limit. Upon discretization, a finite difference
method for the differential equation part turns out to be very slow, because small
time steps must be taken and correspondingly the discretization step h must be fine
enough so that some motion gets generated at this scale. A special spectral method
was proposed in [147] to improve the efficiency of the resulting overall procedure.
We will not dwell on this further here, but see Section 7.4 for a quick survey of spectral
methods.

• A semi-Lagrangian transport model

This example is described in Manson, Wallis, and Hope [125]; see also [134]. The
transport of reactive substances by groundwater flow is modeled by the differential
system

φt + (uφ)x = (dcx)x + αa(s − c), (9.29a)

âst = −αa(s − c), (9.29b)

φ = ac. (9.29c)

Here the unknown functions are the concentration of chemical in the water, c(t, x), and
the concentration of the interacting rock, s(t, x). The functionsu(x), d(x), a(x), â(x),
and α(x) are all known. The domain is 0 < x < b, t ≥ 0. Initial conditions are given
on both c and s. The boundary conditions are

c(t, 0) = g(t), cx(t, b) = 0,

where the function g(t) is given.

The ODEs for s at each x, (9.29b), yield in principle a function s = s(t, x; c) that
can be substituted in (9.29a). This yields a reaction-diffusion-convection equation
for the concentration c. In practice of course we do not eliminate s ahead of time but
rather solve the system (9.29) simultaneously.

Denoting the time step size as usual by k, the method proposed in [125] reads at each
time step n for each space location j

φ̃j = φn
j + k [−(uφ)x]nf b ,

φn+1
j = φ̃j + k [(dcx)x]n+1

j + k [αa(s − c)]n+1
j ,[

âs
]n+1
j

= [
âs
]n
j
− k [αa(s − c)]n+1

j ,
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where [·]nf b is evaluated at time tn using spatial cubic interpolation for the foot of the
characteristic of the convection part

φt + (uφ)x = 0

arriving at (tn+1, xj ). See also [25]. The ensuing spatial discretization of (dcx)x is
by now standard; see Section 3.1.2. Of course, c = φ/a may be obtained from φ at
any given point.

This is a semi-Lagrangian method, where the convection part of the differential op-
erator is split from the diffusion and reaction parts and receives a different numerical
treatment. At first a Lagrangian method is applied to the convection part, and then a
backward Euler discretization is applied to the rest. See [125] for further discussion
and numerical results.

• Fluid flow animation

If there is one research area for which splitting methods seem just perfect, it is physics-
based animations in computer graphics. The mathematical models describing in detail
the complex scenes, for instance, of fluid flow, that one would like to have animated,
say, for a large-budget movie or a computer game, can be very complicated. But the
results need not correspond to true physics—they merely should look good. Hence
replacing a combined action in such a model by a series of actions each involving part
of the model is a major, natural simplification. The actual splitting error that results
may be unimportant, provided that the order in which the subproblems are solved is
correct and that the error is not allowed to accumulate unfavorably.

Typically, the incompressible Navier-Stokes equations in the inviscid limit, i.e., the
incompressible Euler equations, model the flow. The equations read

ut + u · ∇u + ∇p = g, (9.30a)

∇ · u = 0, (9.30b)

where u is the vector of velocities, e.g., u = (u, v)T in two space variables, p is the
pressure, and g are the forces, including in particular gravity. The component forms
of the operators ut + u · ∇u and ∇ · u appear in Example 5.5.

An operator splitting method that goes back to [49] solves at each step the equation
(9.30a) for the velocity un+1 while holding p = pn at the known level and then
adjusts the pressure to satisfy the incompressibility condition (9.30b) calling the result
pn+1. For the inviscid Euler equations often a marker-and-cell (MAC) technique is
employed, which uses a staggered mesh as in Figure 9.9 and also has early roots
[87, 33]. A semi-Lagrangian method as briefly described above in the context of the
groundwater application (but in more space dimensions) is typically used.

An example employing such techniques is found in Feldman et al. [62]. Another
paper where a multiple splitting method is massively applied is Gundelman et al.
[74]. Here water, smoke, flexible bodies, and rigid bodies all interact. The figures
and video clips that come with these papers look so good that it would be a shame to
continue to describe them here in black and white with just words and formulas.
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v

v

u up

Figure 9.9. The marker-and-cell staggered mesh for fluid flow, here in two dimen-
sions. The velocity components u and v in the x and y directions, respectively, are located
at the edge centers while the pressure p is at the cell center.

9.3.2 Additive methods

These methods are not quite splitting methods in the form presented above, but they are
often confused with the latter. More importantly, they do involve a splitting of the spatial
differential operator, so here is a good place to discuss them.

Consider a semi-discretization of a PDE system which, as before, has a spatial differ-
ential operator consisting of a few additive parts, say,

dv
dt

= L(v) + M(v), (9.31a)

where v(t) is the mesh function turned vector and the operators L and M may be nonlinear
(i.e., they may depend on v nonlinearly). We can write

v(t) = φ(t) + ψ(t), (9.31b)

where φ and ψ are also time-dependent mesh functions satisfying

dφ

dt
= L(v) = L(φ + ψ), (9.31c)

dψ

dt
= M(v) = M(φ + ψ). (9.31d)

In (9.31) not only the operator but also the solution is being split. But the idea is
to never compute values for φ or ψ , only for their sum v. The partitioned form (9.31c)–
(9.31d) does allow applying different time discretization methods to the two equations, and
the results of these discretizations are combined into one formula. In particular, methods
consisting of an implicit discretization for (9.31c) and an explicit one for (9.31d) (called
IMEX methods) are possible. For instance, in Exercise 4.5 a backward Euler method for
the diffusion term and an explicit one-sided method for the advection term of a simple
advection-diffusion equation were combined. Examples of reaction-diffusion were studied
in [146].

In general, IMEX linear multistep methods can be constructed, which allow for ac-
curacy p in time when using a p-step method (Exercise 13). The construction of IMEX



root
2008/5/5
page 307

�

�

�

�

�

�

�

�

9.3. Splitting Methods 307

Runge–Kutta schemes is also possible and leads to more generous time steps, although
achieving higher order accuracy is more intricate; see [17]. Still, we are ahead in terms of
high accuracy order when compared to simple operator splitting methods.

Example 9.9 For the advection-diffusion equation

ut = ν(uxx + uyy) + aux

with the constants ν, a > 0, a typical semi-discretization reads

dvj,l

dt
= ν

h2

[
Dx+Dx− + Dy+Dy−

]
vj,l + a

h
Dx+vj,l .

The simplest IMEX method is to discretize diffusion by backward Euler and advection
by forward Euler,

vn+1
j,l = vn

j,l + νk

h2

[
Dx+Dx− + Dy+Dy−

]
vn+1

j,l + ak

h
Dx+vn

j,l .

Like forward and backward Euler this method is first order, but now the stability condition
is at worst k ≤ h/a. Moreover, the solution of the implicit equations is much easier and
faster without the advection term: using CG with a multigrid preconditioning cycle, we
often need only one or two iterations per time step. See [18, 17] for numerical results.

Next, we can get a second order method by combining (carefully) an IMEX pair of
two second order methods, e.g., the implicit Crank–Nicolson (or the two-step BDF) with
the explicit two-step Adams–Bashforth. Additive two-stage Runge–Kutta methods of order
two are not difficult to construct, either.

Example 9.10 The following system of convection-diffusion equations arises in applica-
tions of fluid flow:

ut + uux + vuy + wuz = ν(uxx + uyy + uzz),

vt + uvx + vvy + wvz = ν(vxx + vyy + vzz),

wt + uwx + vwy + wwz = ν(wxx + wyy + wzz).

(Recall Example 5.4.) These equations are defined on a three-dimensional domain � in
space, for t ≥ 0, and are equipped with appropriate initial and boundary conditions.

If the parameter ν is not small, then applying an explicit discretization would yield a
severe restriction of the form k ≤ cν−1h2 on the time step, where c is a constant of order
unity. Thus, we look for an implicit discretization for this term. The terms from the material
derivatives, however, are nonlinear and their explicit discretization would yield only a mild
time step restriction of the form k ≤ ch. The argument for an IMEX approach is therefore
similar to the one made before for Example 9.9 and for the KdV equation in Section 7.3.

Unlike for the KdV equation, however, there is an additional argument here. Recall
from Section 9.2 that when using an implicit scheme for a PDE in more than one space
variable, the system of equations to be solved is large and sparse, which calls for iterative
methods. In this respect it is also better that only the parabolic terms be discretized implicitly,
as in Example 9.9, because they yield an algebraic system which is well suited to the
application of methods like PCG and multigrid.
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Another approach taken in the literature is to allow a semi-implicitness also in the first
order terms, utilizing approximations such as unun+1

x . This still yields a linear algebraic
system at each time step and allows taking a larger time step, which is advantageous espe-
cially when ν is not very large (i.e., as compared to the option of discretizing uux explicitly).
However, in this case the iterative solution of the resulting system may be more costly as
well. See, e.g., [172].

Example 9.11 Let us recall the cloth simulation case study, Example 2.9. Cloth is modeled
there by a particle system in a mass-spring arrangement that should obey the equations of
motion,

xt = v,

Mvt = f(x, v),

where x denotes the positions of the particles in three dimensions, i.e., three coordinates per
particle, v are the corresponding velocities, M are the masses, and f are the forces. These
forces include terms due to stretching, shearing, bending, gravity, damping, air drag, and
particle collisions both with other particles and with solids. It is a good idea to refresh your
knowledge of Example 2.9 at this point before going on.

Further, we have discussed the application of a semi-implicit backward Euler method
in view of the stiff stretching forces. This numerical discretization essentially exchanges stiff
spring energy with in-surface damping. What we have not discussed is how to efficiently
solve the resulting system of algebraic equations at each step, which is a major issue if a
realistic animation in real time is contemplated. We consider this next.

Just one full Newton step for backward Euler at each time step can already be too
much because the Jacobian matrix is large and nonsymmetric. In [20] an approximate
Jacobian matrix is used where terms that disrupt symmetry and positive definiteness are
dropped. There is also the obvious benefit of sparsifying this matrix as much as possible
before applying either a direct or an iterative solution method. Now, from Figure 2.13
we see that different forces connect between different unknowns and hence would yield
nonzeros at different locations in the Jacobian matrix. This sets the stage for an IMEX
method, where only stretching and occasionally shearing forces are discretized implicitly
and thus contribute terms to the Jacobian matrix. See [31] and references therein.

The simplest IMEX schemes mix forward and backward Euler, so that (2.31) is dis-
cretized by ⎛⎝xn+1

vn+1

⎞⎠ =
⎛⎝xn

vn

⎞⎠+ k

⎛⎝ vn+1

M−1
(
f I (xn, vn) + f II (xn+1, vn+1)

)
⎞⎠ ,

where f = f I + f II is split into nonstiff and stiff force contributions. Note that xn+1 =
xn + kvn+1 can be eliminated, yielding a set of equations only for vn+1 at each time step.
Which terms go into f I and which into f II can be determined adaptively by an absolute
stability criterion borrowed from the Fourier stability analysis for a related PDE in three
space variables (one which we do not wish to solve). Figure 9.10 demonstrates the potential
gain from this strategy. There are further methods proposed in [31] for improving the
sparsity structure, involving decomposition of the spatial mesh.
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(a) Implicit scheme
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(b) Adaptive IMEX scheme

Figure 9.10. Sparsity gain when switching from a fully implicit time step to an
IMEX step in Example 9.11. The matrices are both 300 × 300. Each point represents a
3 × 3 block, and nz denotes the number of nonzero blocks.

(a) Blanket up (b) Blanket down

Figure 9.11. Dusting a blanket by vigorously raising and lowering it at its four
corners. The positions of the four corner particles are directly determined by external
constraints.

Before turning to solution methods for the linear algebra system there is another
concern that needs to be addressed, namely, the incorporation of constraints. The above
equations of motion apply to particles that are free to move about, not those that are directly
constrained by an applied force. For instance, imagine two people holding the four ends of
a blanket, raising and lowering it; see Figure 9.11.

It is possible to incorporate these constraints directly into the time-dependent system.
Thus, the positions or velocities of the constrained particles are known and they appear at
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the right-hand side of the equations for a vector of unknowns v̂n+1 which now contains
only the unconstrained particle velocities. A direct solution method for the resulting sparse
system is a competitive way to proceed, unless the particle mesh is very fine and the cloth
cannot be easily decomposed as described in [31].

Another approach that is possible here is to describe the constraints in terms of a
projection of the unconstrained system of equations. Let us write the unconstrained system
as

Avn+1 = b.

We describe the constraints in terms of an orthogonal projection S. The generally rank-
deficient matrix S satisfies

ST = S2 = S,

and it can be used to decompose vectors as a direct sum. The constrained system can then
be written as

SAvn+1 = Sb,

(I − S)vn+1 = (I − S)z,

where S is the block diagonal projection matrix and z are prescribed constraint values. Thus,
for each particle the equations of motion hold only in the range subspace of S, range(S),
whereas in the orthogonal subspace range(I − S) the given values of z determine those of
vn+1.

A modified conjugate gradient method for this constrained system was proposed in
[20]. See [31] and references therein for subsequent improvements, including selecting a
preconditioner for the constrained system.

To summarize, the potential advantages of additive methods are that they naturally
allow splitting of the spatial differential operator, or its discretization, without being confined
to a low-order method and with less difficulty regarding handling of boundary conditions.
However, their construction and certain resulting properties can be less obvious than those
of some splitting methods.�

�

�

�

Note: Like the “purer” splitting methods of Section 9.3.1 and the expo-
nential methods described in Section 9.3.3, the IMEX methods are not
automatically best or even nontrivially applicable for any given problem.
These methods all have their distinct advantages, though, and for the
“right” application they can yield substantial improvements over other
good alternatives.

9.3.3 Exponential time differencing

Another class of methods based on splitting the spatial differential operator extends the use
of (9.24), which has been demonstrated in Table 9.3 under “M-inhomog.” See Cox and
Matthews [53]. In [105] many references are given and several methods are surveyed and
compared in a particular context.
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The essential observation leading to these methods is that the spatial differential
operator of several important PDEs can be split into a constant coefficient leading term plus
a lower order nonlinear term. Instances include the KdV equation, Boussinesq, NLS, and
KS equations.

After spatial discretization we have the form

dv
dt

= Lv + M(v), (9.32)

where L is a constant matrix containing the stiff, or leading, part of the PDE. Then we can
write as in (9.24)

v(tn + k) = ekLvn +
∫ k

0
e(k−s)LM(v(tn + s))ds (9.33)

and obtain various method variants by discretizing the integral in (9.33) wisely. The time
step restriction, if an explicit method is used, typically relates only to M , not to L, and the
high accuracy achieved in sufficiently specialized circumstances can be rather impressive.

The simplest method of this sort replaces M(v(tn + s)) in (9.33) by M(v(tn)) à la
forward Euler. Integrating the result exactly yields the time stepping method

vn+1 = ekLvn + (ekL − I )L−1M(vn). (9.34)

Higher order methods may result using higher order polynomial approximations of the
integrand, either in a linear multistep fashion extending Adams methods or in a one-step
fashion extending Runge–Kutta [53]. For example, replace M(v(tn + s)) by M(vn+1/2),
where vn+1/2 is the average of vn and the result of (9.34), to obtain a second order method
from (9.33).

Of course an appropriately fast method for evaluating the exponential function, or
more precisely ekLz for any given vector z, is crucial to the performance of methods based
on this approach [135, 94, 95].

Further complications may arise because the function

φ(z) = ez − 1

z
, (9.35)

if evaluated straightforwardly, yields cancellation error near z = 0. In that regime a trun-
cated Taylor expansion works well, but the same approximation does not apply for large
z. Of course, the reason for considering these methods in the first place is stiffness, which
typically means that the matrix kL has both small and large eigenvalues, so we have a
difficulty to deal with. If φ(kL) can be efficiently diagonalized, say, using a fast Fourier
transform, then an appropriate treatment can be applied to individual eigenvalues, avoiding
cancellation error. Alternatively, a fancy method involving integration in the complex plane
is proposed in [105].

The exponential time differencing methods are somewhat related to the Rosenbrock
methods (2.28), briefly introduced in Section 2.7, and to exponential Runge–Kutta meth-
ods. We refer the reader to [105, 94, 95] for further details and references.
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9.4 Review: Iterative methods for linear systems
This section offers a review of iterative methods for linear systems of algebraic equations,
a tad more detailed than those in Section 2.12. The reasons it is separated from the other
reviews are that we use it essentially only from this chapter on, and because much of it is
more advanced and less “canned” than the reviews of Section 2.12. This should become
clear in what follows.

A full exposition of iterative methods for linear systems is well beyond the scope of
this text, but there are several good sources around; see, e.g., [149, 21, 171, 59].

Consider the problem of solving a linear system of algebraic equations

Ax = b (9.36)

with A an m×m real matrix. The notation in (9.36) is not really consistent with our notation
in the rest of this chapter: the unknown x is our mesh function {vn+1} reshaped into a vector
(say, column by column for the two-dimensional case), and this A is of course different from
the small matrix A in Section 9.1. Rather, (9.36) corresponds to (9.11b), and the matrix
A is like that depicted in Figure 9.1; if it arises from a PDE discretization in two space
variables as in (9.10), then its dimension is roughly J 2 × J 2, i.e., m = J 2. The reason we
have switched is that (9.36) is the standard notation used in numerical linear algebra, and
sticking to it here will make reading other texts easier.

The basic premise throughout this section is that to form a matrix-vector product Ay
is significantly cheaper than to form A−1y. In fact, A need not even be formed or stored as
such: all we need is a function that returns Ay for any input vector y. This is the case if A

is very sparse as, e.g., in Figure 9.1. However, the matrix A does not have to be sparse for
the algorithms presented below to be worth considering.

The methods reviewed here all generate a sequence of iterates xs , s = 1, 2, 3, . . . ,

with x0 a given initial iterate.

9.4.1 Simplest iterative methods

This subsection reviews so-called relaxation methods. Given a splitting of A

A = M − (M − A),

the iteration reads

xs+1 = xs + M−1rs , where

rs = b − Axs , s = 0, 1, . . . . (9.37)

Note that this is a fixed point iteration; see Section 2.12.5. The Jacobian matrix of the
iteration is T = I − M−1A, and since this is independent of x or s the iteration is called
stationary. The trick is to choose M such that (i) unlike A it is easy to calculate M−1y
for any given vector y, and (ii) the spectral radius of the iteration matrix, ρ(T ), is really
small and in any case smaller than 1 to ensure convergence. The smaller ρ is the faster the
convergence, but also the closer M must be to A in some sense.
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None of the following methods should really be used in a standalone fashion in our
applications because they are all too slow and specialized, but they are useful building
blocks for other, faster methods. Let us denote

D =

⎛⎜⎜⎜⎜⎜⎜⎝
a11

a22

. . .

amm

⎞⎟⎟⎟⎟⎟⎟⎠ , E =

⎛⎜⎜⎜⎜⎜⎜⎝
a11

a21 a22

...
...

. . .

am1 am2 · · · amm

⎞⎟⎟⎟⎟⎟⎟⎠ .

• The Jacobi iteration uses M = D = diag(A), i.e.,

xs+1
i = 1

aii

⎛⎝bi −
m∑

j=1,j �=i

ai,j x
s
j

⎞⎠ , i = 1, . . . , m, (9.38a)

where the superscript denotes the iteration, or sweep, counter.

This iteration converges if A is symmetric positive definite or diagonally dominant,
but for the standard discretization problem (9.10) it does so rather slowly, requiring
O(J 2) iterations to reduce the error by a constant factor such as 10.

• The Gauss–Seidel (GS) sweep is defined by setting M = E, yielding a simple forward
substitution,

xs+1
i = 1

aii

⎛⎝bi −
i−1∑
j=1

ai,j x
s+1
j −

m∑
j=i+1

ai,j x
s
j

⎞⎠ , i = 1, . . . , m. (9.38b)

For a symmetric positive definite matrix the number of iterations is halved here com-
pared to Jacobi’s, although parallelization and vectorization become less straightfor-
ward.

If there is a mesh underlining the definition of A, then the neighboring relationship
between the mesh unknowns defines the sparsity pattern of the matrix. This naturally
leads to orderings such as red–black of the sweep in (9.38b) which allows restoring
a higher degree of parallelism; see, e.g., [171].

• The ω-relaxation method is defined by setting

M = 1

ω
(ωM̂ + (1 − ω)D) (9.38c)

in (9.37) with M̂ = D for ω-Jacobi and M̂ = E for ω-GS. Here ω is a parameter. The
iteration is an underrelaxation if 0 < ω < 1 and an overrelaxation if 1 < ω < 2. The
only combination that leads to a faster standalone method than before is overrelaxation
with GS. This yields the successive overrelaxation (SOR). If ω is chosen well, then
the number of iterations in our particular context may drop from O(J 2) to O(J ).
However, the choice of ω depends on the application, and some experimentation is
required in practice.
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• One somewhat bothersome aspect of Gauss–Seidel and SOR is that the direction of
the sweep over the elements of x (i.e., over the mesh points in our applications of
interest) matters. To make the iteration more symmetric, the present variant uses a
sweep in one direction followed by one in the opposite direction, obtaining an iteration
called symmetric SOR or SSOR.

9.4.2 Conjugate gradient and related methods

The methods considered here can be written as (9.37), except that M depends on the iteration
s, so the methods are nonstationary.

Consider the problem of solving (9.36), where the real matrix A is symmetric positive
definite. A natural way for viewing the conjugate gradient (CG) algorithm is as a method
for minimizing the quadratic function

φ(x) = 1

2
xT Ax − bT x. (9.39)

The necessary and sufficient condition for minimizing (9.39) is our problem (9.36). We
then look for a method which generates a sequence of iterates xs , s = 1, 2, . . . , with x0 a
given initial iterate and φ(xs+1) < φ(xs). The update step is written as

xs+1 = xs + αsps , (9.40)

where ps is a search direction (in R
m ) and the scalar αs is the step length.

Denote the residual as before by

rs = −∇φ(xs) = b − Axs . (9.41)

The steepest descent direction is

ps = rs .

But the resulting method (with the step length defined by exact line search) tends to be
slow. The CG direction is often better and is defined by

ps = rs + βs−1ps−1, (9.42)

where p0 = r0 and βs−1 = rT
s rs/rT

s−1rs−1. See the framed algorithm.
Note that only one matrix-vector multiplication involving A is needed per iteration.

The matrix A need not be evaluated or stored; only the result of multiplying an arbitrary
vector by it must be specified.

It can be shown that when the condition number of A is large the number of iterations
s required to reduce the initial error by a constant factor is bounded by O(

√
cond(A)). For

the steepest descent method a similar estimate yields s = O(cond(A)), which underscores
the popularity of CG. In fact, if the eigenvalues of A are located in only a few narrow
clusters, then the CG method requires only a few iterations to converge. The convergence is
slower, though, if the eigenvalues are widely spread, as is typically but not always expressed
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Algorithm: Conjugate gradients (CG). Given an initial guess x0 and a tolerance
tol, set at first r0 = b − Ax0, δ0 = rT

0 r0, bδ = bT b, s = 0, and p0 = r0. Then
While δs > tol2 bδ

ss = Aps ,

αs = δs

pT
s ss

,

xs+1 = xs + αsps ,

rs+1 = rs − αsss ,

δs+1 = rT
s+1rs+1,

ps+1 = rs+1 + δs+1

δs

ps ,

s = s + 1.

by cond(A). In the context of implicit methods for time-dependent PDEs in two space
variables, cond(A) = O(J 2) = O(m), so the cost per time step using this algorithm for the
Crank–Nicolson scheme (9.10) is O(J 3) flops.

The Krylov space of degree s for A and r0 is defined as

Ks = span{r0, Ar0, A
2r0, . . . , A

sr0}.
Let us also define the energy norm ‖r‖B = √

rT Br for any symmetric positive definite ma-
trix B. Then it is possible (and not even difficult) to show that CG is a subspace minimization
method in the following sense: set

Ts = r0 + span{Ar0, A
2r0, . . . , A

sr0} ⊂ Ks;
then the defect in the sth iteration satisfies rs ∈ Ts and

‖rs‖A−1 = min
r∈Ts

‖r‖A−1 . (9.43)

Krylov space methods

What if A in (9.36) is not symmetric positive definite?
We can always consider solving the normal equations

AT Ax = AT b

instead, using the CG method, but this squares the condition number of A and hence the
number of required iterations. Other methods based on Krylov subspaces have been devised
instead. These include MINRES, GMRES, BICGSTAB, and QMR [149, 21, 59]. Each of
these is particularly good in some circumstances. Let us mention in our PDE context that if
A is not symmetric positive definite simply because of handling boundary conditions, then
possibly the BICGSTAB variant is most suitable.
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The theory for these methods is not as complete as for CG, but the essential conclusion,
that the methods converge rapidly if cond(A) is not too far from 1, holds in practice here as
well.

Preconditioned conjugate gradient method

The performance of the CG algorithm and other Krylov space methods for our type of
problems pales when compared against the (almost) constant number of iterations required
for an alternative such as the multigrid method. Since the rate of convergence of the
conjugate gradient method depends on the spread of the eigenvalues of A, we would like to
redefine it so that the basic iteration is applied to a transformed problem, in which the matrix
involved is better conditioned. This is the basic idea behind the preconditioned conjugate
gradient method (PCG). If P is a symmetric positive definite matrix, the preconditioner,
then we are essentially trying to solve the problem

P −1Ax = P −1b. (9.44)

This yields the algorithm stated below.

Algorithm: Preconditioned conjugate gradients (PCG). Given an initial guess
x0 and a tolerance tol, set at first r0 = b − Ax0, h0 = P −1r0, δ0 = rT

0 h0,
bδ = bT P −1b, s = 0, and p0 = h0. Then

While δs > tol2 bδ

ss = Aps ,

αs = δs

pT
s ss

,

xs+1 = xs + αsps ,

rs+1 = rs − αsss ,

hs+1 = P −1rs+1,

δs+1 = rT
s+1hs+1,

ps+1 = hs+1 + δs+1

δs

ps ,

s = s + 1.

Similar rationale, modification, and improvements hold for other Krylov space meth-
ods designed for the more general case where A is not symmetric positive definite.

The choice of P should be such that the following seemingly contradictory require-
ments hold:

• It should be easy and efficient to solve problems of the form P y = c.

• The matrix P −1A should have a small condition number, hopefully not much larger
than 1.
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This echoes the requirements from a good splitting of A stated earlier, identifying P with M .
Indeed, P −1 is often referred to as an approximate inverse of A. Of course, the problem
(9.36) is not easy to solve, or else this entire section would not have been needed, so the
reader may wonder if we are really ahead—how can P possess the property that A lacks
and be close to it at the same breath?

The answer is yes, we are ahead, and the key word is “approximate.” The beauty of
preconditioners is that when designing them we no longer need to solve our problem exactly,
which yields flexibility. For example, handling problematic BC on funny geometries in the
PDE context can be much relaxed when the preconditioner is designed.

A simple, popular preconditioner is an SSOR sweep with ω = 1. A more complex but
more effective preconditioner is one multigrid cycle: we return to this below. Another class
of preconditioners is based on incomplete LU -decomposition (ILU); see, e.g., [59] or [149].
The basic idea of the latter is to perform steps corresponding to the LU -decomposition of
A, stopping short of replacing too many zeros in A by nonzeros in the factors L or U . What
“too many” means is determined by a drop tolerance. A variant of this that is suitable for
a symmetric positive definite A is incomplete Cholesky decomposition, which results in a
symmetric decomposition without permutations, L = UT .

Example 9.12 Let us compare the performance of the CG method, both preconditioned
and not, and simple relaxation methods as standalone solvers. We consider the Poisson
equation on the unit square with homogeneous Dirichlet BC and discretize it using the
standard five-point formula,

− 1

h2

[
Dx+Dx− + Dy+Dy−

]
vj,l = qj,l, j, l = 1, . . . , J,

with (J + 1)h = 1 and q some given right-hand side. This is obviously a special case of
(9.11), and the same in essence as the system we need to solve at each time step of (9.10),
but we start the iterations for each method with a zero guess, ignoring issues of warm start.

For SOR we pick ω = 1 + cos(πh)

(1+sin(πh))2 . This is an optimal value available for this
example but not in general, so SOR performs better than it may be expected to more generally.
As a preconditioner for CG we use the incomplete Cholesky decomposition, such that no
nonzeros are introduced where the original matrix has zeros.

The results are recorded in Figure 9.12. The most impressive performer, taking cost of
iteration into consideration, is the CG method. The incomplete Cholesky preconditioner is
not very impressive when taking the extra iteration cost into account. Better preconditioners
can be tailored for this application upon taking the nature of the underlying PDE into
account.

9.4.3 Multigrid methods

Next consider problems (9.36) where the matrix arises from a discretization on a two- or
three-dimensional spatial mesh, or grid. The essential observation that has led to multigrid
methods is that there exist simple and cheap relaxation schemes such as Gauss–Seidel,
underrelaxed Jacobi, or the ILU method that reduce the high-frequency components of the
residual (or the iteration error) in a given iteration much faster than they reduce the low-
frequency ones. What this means is that the error, or the residual r = b − Ax, becomes
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Figure 9.12. Relative performance of iterative methods for the Poisson equation
with homogeneous Dirichlet BC on the unit square. A five-point discretization as in (9.10)
is used with J = 63; hence m = 632 = 3969.

smoother upon applying such a relaxation, when considered as a mesh function, well before it
decreases significantly in magnitude. The relaxation operator is thus a smoother. Therefore,
it is possible to represent the smoothed residual error well on a coarser grid,31 thereby
obtaining a smaller problem to solve, ACvC = rC . The obtained correction vC is then
prolongated (interpolated) back to the finer grid and added to the current solution x, and
this is followed by additional relaxation. The process is repeated recursively: for the coarse
grid problem the same idea is applied utilizing an even coarser grid. At the coarsest level
the problem is so small that it can be rapidly solved “exactly,” say, using a direct method.

The framed multigrid algorithm applies first ν1 relaxations at the current finer level
and then calculates the residual, coarsens it as well as the operator A, solves the coarse grid
correction problem approximately γ times starting from the zero correction, prolongates
(interpolates) the correction back to the finer grid, and applies ν2 more relaxations. The
whole thing constitutes one multigrid iteration, or a cycle, costing O(m) operations. If
γ = 1, then we have a V-cycle, while if γ = 2 we have a W-cycle. Typical relaxation
values are ν1 = ν2 = 2. Although better theory requires a W-cycle, in practice the cheaper
V-cycle is more popular.

Example 9.13 Let us compare the performance of a simple multigrid method (denoted
MG) with that of the PCG method in three variants: not preconditioned (denoted CG), pre-
conditioned with IC(0) (denoted PCG/IC(0)) and preconditioned by one multigrid iteration
(denoted PCG/MG). We run these methods on the same very simple Poisson problem as in
Example 9.12. Setting J = 2l − 1 for l = 5 : 9, we record the number of iterations as well
as the CPU time required on a garden variety desktop to satisfy a relative residual tolerance

31Throughout this book we use the term mesh rather than grid, viewing them as synonymous. However, in
the multigrid context it feels like heresy to talk about coarser and finer meshes, so let us switch terminology,
temporarily, to grid.
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Algorithm: Multigrid method. Given three positive integer parameters ν1, ν2,
and γ , start at level = f inest :

Function x = multigrid (A, b, x, level)
If level = coarsest then

solve exactly x = A−1b;
else

For j=1:ν1

x = relax (A, b, x);
End
r = b − Ax; [Ac, rC] = restrict(A, r);
vC = 0;
For l=1:γ

vC = multigrid(AC, rC, vC, level − 1);
End
x = x + prolongate(vC);
For j=1:ν2

x = relax (A, b, x);
End

End

of tol = 10−6. Our multigrid code uses an underrelaxed Jacobi with ω = .8 (it turns out that
ω = 1 does not yield a smoother whereas ω = .8 does!), and we set γ = 1, ν1 = ν2 = 2.
The code generates A anew at each coarse level at each iteration, but MATLAB’s command
delsq is fast and simple so we didn’t bother to optimize this. For the CG variants that do
not involve MG, MATLAB commands pcg and cholinc(A,’0’) are used. The results
are recorded in Tables 9.5 and 9.6.

Table 9.5. Relative performance in terms of iteration counts of iterative linear
algebra methods for the Poisson equation with homogeneous Dirichlet BC on the unit
square. A five-point discretization as in (9.10) is used with J = 2l − 1, l = 5 : 9. For the
largest J , the matrix order is m ≈ 260,000.

Iterations J = 31 J = 63 J = 127 J = 255 J = 511

CG 52 102 202 396 771

PCG/IC(0) 23 42 69 119 229

MG 10 11 11 12 12

PCG/MG 27 22 16 13 13

Clearly the multigrid method offers great advantage here, both in pure form and as
a preconditioner. This example is particularly good for the multigrid approach. The CG
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Table 9.6. Relative performance in terms of CPU time (secs) of iterative linear
algebra methods for the Poisson equation with homogeneous Dirichlet BC on the unit
square. A five-point discretization as in (9.10) is used with J = 2l − 1, l = 5 : 9.

CPU secs J = 31 J = 63 J = 127 J = 255 J = 511

CG 4.7e-2 6.3e-2 6.3e-1 6.7 5.6e+1

PCG/IC(0) 4.7e-2 2.7e-1 3.1 4.4e+1 6.5e+2

MG 4.7e-2 6.3e-2 2.7e-1 1.4 6.1

PCG/MG 6.3e-2 1.6e-1 4.4e-1 1.6 7.6

method without preconditioning performs admirably well for a simple, basic method. The
incomplete Cholesky preconditioner performs remarkably poorly.

The multigrid mechanism, when it works, converges rapidly; indeed it can be spec-
tacularly fast. But making it work precisely for a complex problem can lead to a hair-raising
programming job. So, it is more customary to use one such multigrid iteration, a V-cycle
to be precise, as a preconditioner for a Krylov space method, as we have done with the
PCG/MG variant in Example 9.13. The number of iterations for the preconditioned Krylov
space method is often pleasantly small and does not grow with the problem size. See [4, 59]
for more vigorous applications.

Incidentally, the entire multigrid cycle is a stationary iteration of the form (9.37);
however, the matrix that corresponds to M−1 is singular.

There are exciting methods of this type called algebraic multigrid (AMG) also for
meshless problems, or problems that do not have a mesh that can be easily and logically
coarsened. Modern, practical multigrid methods were started in the mid 1970s by Brandt
[33]. A friendly, broad introduction to multigrid methods can be found in [184], and [171]
is an excellent source for detailed information.

9.5 Exercises
0. Review questions

(a) What are simultaneously diagonalizable matrices, and why is this important in
the context of hyperbolic systems in more than one space variable?

(b) Derive the CFL condition for the advection equation in three dimensions,

ut = aux + buy + cuz = 0,

for a discretization on a given spatial-temporal mesh that is uniform in each
direction with step sizes k and hi, i = 1, 2, 3.

(c) The relationship between the CFL condition and the stability restriction for
the simplest, most basic discretizations for hyperbolic PDEs is different in one
dimension than in more space dimensions. How?
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(d) What is a fill-in? How much fill-in may at worst occur during an LU -decomposi-
tion for the linear algebra problem defined in (9.10)?

(e) How do irregular boundaries relate to restrictions on the time step size for explicit
methods?

(f) What is a warm start effect? Describe warm starting techniques for both direct
and iterative methods.

(g) The ADI method is conceptually simple. Why is it rarely used nowadays?

(h) What are inner-outer iterations in the context of inexact Newton methods?

(i) What is a quasi-linearization method?

(j) What is an operator splitting method? Is ADI such a method?

(k) What is common to splitting methods, IMEX, and exponential time differencing
methods? More subtly, distinguish among them.

1. Extend the method (9.3) to three dimensions and show stability for the scalar PDE
ut + aux + buy + cuz = 0, provided that

max{μ1|a|, μ2|b|, μ3|c|} ≤ 1/3.

2. Let v̄j,l = 1
2 (vj,l+1 + vj,l−1), v̂j,l = 1

2 (vj+1,l + vj−1,l), and consider the following
modification of the leapfrog scheme applied to (9.2):

vn+1
j,l = vn−1

j,l − μ1(f(v̄n
j+1,l) − f̄(vn

j−1,l)) − μ2(g(v̂n
j,l+1) − g(v̂n

j,l−1)).

Show that a Fourier analysis yields the CFL condition as the necessary condition for
stability of this scheme [159]. This is twice as good as (9.4).

3. Extend the upwind scheme first introduced in Exercise 1.5 to the PDE

ut + aux + buy = 0,

where a and b are real constants. Find its stability restriction and compare it to the
CFL requirement.

4. The hyperbolic PDE

ut +
⎛⎝ 2 −1

−1 2

⎞⎠ux +
⎛⎝1 0

0 α

⎞⎠uy = 0,

with periodic BC on [−π, π ] × [−π, π ] and suitable initial conditions, has the exact
solution

u(t, x, y) =
⎛⎝ sin(x − t) + sin(y − t)

sin(x − t) + cos(y − αt)

⎞⎠ .

The two matrices involved are simultaneously diagonalizable if α = 1 and are not so
if α = 3. For both values of α, max{ρ(A), ρ(B)} = 3.
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Implement the leapfrog and the Lax–Friedrichs schemes, and run with different (mod-
erate!) values of h1 = h2 and k, establishing experimentally (i) the methods’ orders
of accuracy, and (ii) the (approximate) maximum time step size k allowed for each
of these two values of α. See [133].

5. The ADI method is described in Section 9.2.2 for the Crank–Nicolson discretization
on the unit square of the PDE

ut = uxx + uyy.

(a) Staying with Crank–Nicolson on the unit square, extend the ADI method for the
PDE semi-discretization (9.13).

(b) Implement the method and carry out computations to parallel those described
in Example 9.1. Compare your results to those in Table 9.1. Discuss.

6. The PDE

ut = �u − λ

(1 + u)2
, (x, y) ∈ �, (9.45a)

subject to homogeneous Dirichlet BC and zero initial data (u(0, x, y) = 0 every-
where), is considered in [75]. It is related to the mathematical modeling of MEMS
electric devices. Here λ is a parameter that is proportional to square the applied
voltage of the idealized device.

If λ is larger than a critical value λ∗, then u will reach the value of −1 at some
point (x, y) in finite time, whereupon the solution derivative blows up. This is called
touchdown. The voltage value corresponding to λ∗ is called pull-in voltage.

Your task is to integrate this problem numerically to determine touchdown time for
a given λ > λ∗. Rather than tackling (9.45a) directly, however, it is a good idea to
consider the transformation

w = 1

3λ
(1 + u)3 (9.45b)

for which the touchdown value is obviously w = 0; see [75].

(a) Show that w satisfies the PDE

wt = �w − 2

3w
|∇w|2 − 1 (9.45c)

with w = 1
3λ

both initially and at the boundary for all t .
The latter PDE (9.45c) reaches touchdown more gracefully than (9.45a); but
you don’t need to show this fact, just use it.

(b) Devise a difference method of accuracy order (4, 2) to investigate the problem
for the case where � = [0,

√
π ] × [0,

√
π ] and λ = 2. The touchdown time

T∗ for this case should be around t = .2, but we want it precise to at least four
digits. Plot u(t, x, y) at a time t as close as you can to touchdown.
Hint: Depending on your chosen method it may make sense to use smaller time
steps as you get closer to touchdown.
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(c) Same as the previous item, but now the domain is the unit disk, � : x2 +y2 ≤ 1,
and λ = 1. Your designed method is required to have accuracy order of only
(2, 2) here. You may want to use suitable coordinates, other than Cartesian.

(d) Optionally, investigate the determination of λ∗ for a given domain �. You would
want to consider the steady state case for this (why?), and a bifurcation analysis
is involved, so this item is somewhat tangential to our course.

7. The notation in this exercise corresponds to that in Section 9.4, and we consider ODEs
in time t for a solution x(t).

(a) Consider applying forward Euler to the scalar ODE

dx

dt
= b − ax, x(0) given,

with a > 0 and b constant. It reads

xs+1 = xs + ks(b − axs), s = 0, 1, . . . .

Show that a step size k = k0 can be chosen such that the steady state solution
x(∞) = b/a is reached in one step, i.e., x0 = x(0) and x1 = x(∞).

(b) The same cannot be said, in general, about applying forward Euler to the corre-
sponding system of size m,

dx
dt

= b − Ax, x(0) given, (9.46)

with A a constant, symmetric positive definite matrix, and b a constant vector.
Show that it is possible if working in infinite precision to select step sizes ks

such that after m steps the steady state x(∞) = A−1b is reached. However,
the resulting method for solving the linear system (9.36) is unstable, unless all
eigenvalues of A are equal.

(c) Consider applying forward Euler with a fixed step size to (9.46). A stable choice
is k = (maxi λi)

−1, where λi are the eigenvalues of A.

Derive an expression for the number of steps required to reduce the “error”
xs − x(∞) by a factor of 10. Show that this number gets worse (i.e., larger) the
higher the condition number cond(A) = maxi λi

mini λi
.

8. The steepest descent method for minimizing the quadratic function (9.39) is the
“poorer cousin” of CG, where in (9.40) we take ps = −ds .

(a) Show that the steepest descent method is equivalent to forward Euler for (9.46)
with the “time step” ks = αs .

(b) An intelligent choice of time step for forward Euler, not requiring finding eigen-
values of A, is given by

ks = dT
s ds

dT
s Ads

.
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Justify and show that this is a stable choice.

More difficult: estimate the number of iterations required to reduce the error by
a factor of 10.

9. Continuing the previous two exercises, consider applying forward Euler to the ODE
system

M
dx
dt

= b − Ax, x(0) given,

where the symmetric positive definite matrix M is easy to invert, unlike A.

(a) Derive a corresponding preconditioned version of the steepest descent method.
What step sizes would you choose?

(b) How would you go about designing the matrix M? What properties should it
have?

10. Show that

ek(L+M) = e
k
2 LekMe

k
2 L + O(k3)

for any s × s matrices L and M .

11. (a) Show that the nonlinear ODE

ı
du

dt
= −|u|2u, t ≥ t0,

with the initial condition u(t0) = u0, has the exact solution

u(t) = u0 eı(t−t0)|u|2 .

Furthermore, |u(t)| = |u0| for all t ≥ t0.

(b) Carry out the calculations described in Example 9.6 using the full Crank–
Nicolson method, i.e., no splitting. Do this for k = h = .1, or k = h = .01,
and tf = 1000. What are your observations?

12. Let us modify the cubic NLS (9.25) to read

ψt = ı(ψxx + 2|ψ |2ψ),

and consider it, following [63], on the interval x ∈ [−1, 1] with periodic BC and
ψ(0, x) = ψ0(x) = π

√
2(1 + .1 cos(πx)).

(a) Derive the exact solution for the nonlinear part,

ı
du

dt
= −2|u|2u, t ≥ t0.



root
2008/5/5
page 325

�

�

�

�

�

�

�

�

9.5. Exercises 325

(b) Apply the splitting method of Example 9.6 for this problem, integrating from
t = 0 to t = 1. Measure the error in norm and discrete Hamiltonian.

Set h = .01 and try k = .01 and k = .0001. For the latter you can also replace
midpoint by RK4. What do you observe?

It’s fun to watch |ψ(tn, x)| change with the time level n. If you use MATLAB,
then something like the following (inside your time stepping loop) works:

if mod(n,10)==0,
plot(x,abs(psi)); drawnow; pause(0);

end

13. Consider an ODE system, arising from a semi-discretization, of the form

v′ = f(t, v) + g(t, v), t ≥ 0.

A linear, p-step IMEX method yields a full discretization and has the form

p∑
l=0

αlvn+1−l = k

p∑
l=1

βlfn+1−l + k

p∑
l=0

γlgn+1−l .

The combination of a two-step Adams–Bashforth method for f and a trapezoidal rule
or a two-step BDF for g is common in the literature (especially in combination with
spectral methods).

Show that

(a) The p-step method has order p̂ if

p∑
j=0

αj = 0,

1

i!
p∑

j=1

j iαj = − 1

(i − 1)!
p∑

j=0

j i−1βj = − 1

(i − 1)!
p∑

j=0

j i−1γj

for i = 1, 2, . . . , p̂ and such a condition does not hold for i = p̂ + 1.

(b) The 2p̂ + 1 constraints above are linearly independent, provided that p̂ ≤ p;
thus, there exist p-step IMEX methods of order p.

(c) A p-step IMEX method cannot have order greater that p.

(d) The family of p-step IMEX methods of order p has p parameters.

See [18].
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Chapter 10

Discontinuities and
Almost Discontinuities

In Chapter 1 we have seen that the solution to the simple advection equation

ut + aux = 0, −∞ < x < ∞, t ≥ 0, (10.1)

does not become smooth when starting from discontinuous initial data (recall Figure 1.3).
In fact, starting from initial data u0(x) the solution is u(t, x) = u0(x −at) and thus consists
of the initial values, discontinuities included, propagating along characteristics dx/dt = a.
Furthermore, when solving nonlinear hyperbolic-type PDEs, discontinuities in the solution
or its derivatives may arise even if the initial value function u0(x) is smooth.

However, usual discretization methods such as those considered in Chapters 3, 5, and
7 rely for their accuracy on the existence of bounded higher solution derivatives. When
there are no such bounded derivatives the computed results can be unacceptably poor; see,
e.g., Example 5.6. The present chapter is therefore devoted to designing methods that are
appropriate for problems with discontinuities in their solutions.

While the advection equation causes propagation of initial data discontinuities, the
solution of the advection-diffusion equation

ut + aux = νuxx, −∞ < x < ∞, t ≥ 0, (10.2)

with ν > 0 and starting from the same initial conditions, is smooth for t > 0. See
Figure 1.4, which displays the solution for the case a = 0, ν = 1. And yet, this strong
distinction between the properties of the two PDEs becomes weaker as ν gets smaller,
0 < ν � min{|a|, 1}, with a �= 0. In such a case we expect a sharp layer through which
the solution varies rapidly, if smoothly. Recall Example 5.8, particularly Figure 5.7. This
type of problem occurs in convection-dominated models of convection-diffusion type, and
when simulating fluid flow governed by the Navier–Stokes equations with a large Reynolds
number. Indeed, in the latter problems it is common to simplify the physical situation by
sending the Reynolds number to ∞, obtaining in the inviscid limit the Euler equations,
which are systems of conservation laws of the form (5.4) or (9.2). For the simple models
above this would correspond to approximating (10.2) by (10.1) when ν is very small and
positive. As Example 5.8 suggests, methods for problems with “almost discontinuities”

327
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corresponding to (10.2) with a small diffusion term naturally fit in the present chapter as
well.

In Section 5.2.3 we discuss some basic ideas of upwinding and artificial viscosity, or
diffusion, to solve the simple models above without encountering spurious wiggles. Recall
that a general, explicit, consistent one-step scheme for linear, homogeneous PDEs,

vn+1
j =

r∑
i=−l

βiv
n
j+i ,

is said to be monotone if βi ≥ 0, i = −l, . . . , r . With such a scheme we have for each j

|vn+1
j | ≤ max−l≤i≤r

|vn
j+i |

r∑
i=−l

βi = max−l≤i≤r
|vn

j+i |.

Hence ‖vn+1‖∞ ≤ ‖vn‖∞ and, moreover, no offshoots can arise in the numerical solution.
In Section 5.2 we have seen that the Lax–Friedrichs and upwind schemes are monotone,
and indeed they both produce smooth solution profiles for the advection equation, even for
discontinuous initial data (recall Figures 5.4, 5.5, and 5.6).

However, extending these ideas to nonlinear problems can be nontrivial. In Sec-
tion 10.1 we therefore discuss the theory for the simplest class of nonlinear problems which
displays solution discontinuities, namely, scalar one-dimensional conservation laws.

For nonlinear problems we write a general explicit full discretization scheme as

vn+1
j = �(vn; j), (10.3)

where the dependence of � on the mesh spacing is suppressed. A scheme of the form (10.3)
is called monotone if

∂�(vn; j)

∂vn
j+i

≥ 0 ∀i. (10.4)

Despite the imposing notation, this concept is very simple and extends the definition of
monotone schemes for linear, constant coefficient problems.

In Section 10.2 we turn to basic, first order schemes for conservation laws. In addition
to extending the upwind scheme we introduce Godunov’s method, which is based on
completely different principles but yields a similar scheme in the simplest cases.

The low-order schemes of Section 10.2 are all monotone, and this property not only
provides stability but also ensures the prevention of spurious oscillations. However, higher
order schemes cannot be monotone. In Section 10.3 we discuss methods which are at
least second order accurate away from discontinuities and yet produce good resolutions of
discontinuities as well. This long section introduces several important concepts and modern
methods, including high-resolution schemes, ENO, and WENO.

In Section 10.4 we extend the methods introduced earlier to systems of conservation
laws. Then in Section 10.5 we extend the methods to multidimensional problems. The
theoretical backing available in one space dimension erodes significantly in two and three
dimensions, but the practical utility of the methods often does extend.
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Although discontinuities in hyperbolic-type problems may be regarded as extreme
cases of parabolic-type problems with sharp transition layers, the passage to the extreme
also yields some simplifications—a simple observation that is not always well understood
in the community. In Section 10.6 we consider methods for more general problems with
sharp transition layers. In some cases it is important to design a method that varies smoothly
through layers.

A huge amount of work has been carried out on these topics in the past half century,
especially on systems of conservation laws. Our main references here are LeVeque [116]
and Shu [156]; see also Hundsdorfer and Verwer [98] and Hirsch [92]. The methods we
describe fall under the general classification of shock capturing, where general methods
are capable of handling also the appearance of shocks in the solution. Another class of
exciting methods called front tracking is left out; see, e.g., Holden and Risebro [96].

10.1 Scalar conservation laws in one dimension
The examples of solution discontinuities in Chapters 1 and 5 arise from discontinuous initial
data. One may wonder if the solution is smooth provided only that the initial plus boundary
data are smooth. Unfortunately, we see next that solution discontinuities may develop for
smooth data when solving nonlinear hyperbolic-type problems.

In this section we consider the Cauchy problem for a single conservation law,

ut + f (u)x = 0, −∞ < x < ∞, t ≥ 0, (10.5a)

u(0, x) = u0(x).

The function f is called the flux and is assumed smooth.32 Upon integration in x we have

d

dt

∫ b

a

u(t, x)dx = −(f (u(t, b)) − f (u(t, a))),

hence the interpretation of the conservation law is that the rate of change in u in a volume
[a, b] equals the difference between the flux in and the flux out.

This PDE can be written as

ut + a(u)ux = 0, a(u) = df

du
, (10.5b)

and so u is constant along the characteristic curves x = x(t) which are given by

dx

dt
= a(u). (10.5c)

We obtain the remarkable property that the characteristics for this nonlinear PDE are straight
lines!

32By “smooth” we mean that f varies smoothly with u, not that f (u(t, x)) varies smoothly with t or x.
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Figure 10.1. Characteristic curves for the inviscid Burgers equation, and the
corresponding initial data u0.

Example 10.1 The inviscid Burgers equation

ut + 1

2
(u2)x = 0

is an instance of (10.5) with f (u) = 1
2u2 and a(u) = u. Figure 10.1 displays characteristic

curves for the initial data function

u0(x) = sin x.

While the characteristic curves for a conservation law are straight lines, their directions
are not parallel, unlike for the simple advection equation. When two such characteristic
curves collide (this would clearly eventually happen in Figure 10.1) they are bringing with
them different solution values to the point of collision (t, x). Thus, a discontinuity forms
and the solution no longer exists in the classical sense.

Example 10.2 The solution for the inviscid Burgers equation with initial data

u0(x) = 1

4
+ 1

2
sin πx, −1 ≤ x ≤ 1,
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Figure 10.2. Solution of the inviscid Burgers equation which, starting from a
smooth sinusoidal function, develops a shock.

and periodic boundary conditions is plotted in Figure 10.2. Adiscontinuity is seen to develop
before t reaches the value 1.

To be able to talk about solution existence for all time, even in the presence of dis-
continuities, we must admit weak solutions.

We multiply (10.5a) by an arbitrary differentiable function w(t, x) which vanishes at
∞, and integrate over t and x. Integration by parts then transfers the derivatives from u to
w and allows consideration of a piecewise continuous u. Thus, u is a weak solution of the
PDE (10.5a) if it satisfies∫ ∞

0

∫ ∞

−∞
[wtu + wxf (u)]dxdt +

∫ ∞

−∞
w(0, x)u0(x)dx = 0 (10.6)

for all test functions w(t, x) ∈ C1 with compact support.33

If u is a piecewise continuous weak solution of (10.5), then across the line of discon-
tinuity

s(uR − uL) = f (uR) − f (uL), (10.7)

where s is the speed of propagation of the discontinuity and uL and uR are the states to the
left and to the right of the discontinuity, respectively. This jump condition is also called

33A function with compact support vanishes outside a compact set.
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(a) Shock wave
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(b) Rarefaction wave

Figure 10.3. Characteristic curves (solid blue) and wave speed (dashed green)
for the inviscid Burgers equation with piecewise constant data.

the Rankine–Hugoniot condition. It can be obtained by considering a test function w(t, x)

which vanishes everywhere except on a small volume which crosses the discontinuity line,
and integrating (wisely) by parts. We leave the proof to Exercise 3.

Example 10.3 For the inviscid Burgers equation,

f (uR) − f (uL) = 1

2
(u2

R − u2
L).

Thus, the jump condition (10.7) gives

s = u2
R − u2

L

2(uR − uL)
= 1

2
(uR + uL).

In Figure 10.3 we display the characteristics, as well as the curve with speed s, for two
piecewise constant initial-value functions.

Note that in Case (a) of Figure 10.3, s = 1/2 and the unique weak solution is given
by

u(t, x) =
{

1, x < t/2,

0, x > t/2.

In Case (b) of Figure 10.3, also s = 1/2 and a weak solution is given by

u(t, x) =
{

0, x < t/2,

1, x > t/2.

However, this latter weak solution is not unique. Physically, it is not very plausible ei-
ther, because the characteristics do not really collide, so there is no reason to expect a
shock.
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In Case (b) of Example 10.3 the conditions admitting a weak solution (10.6) plus
the jump condition (10.7) do not yield a unique solution, and a question arises: What is
the physically relevant weak solution? An answer is obtained, in the spirit of the previous
section, by viewing the conservation law as a limit of a viscous problem,

ut + f (u)x = ε[b(u)ux]x, ε, b(u) > 0, (10.8)

and considering the limit of the sequence of solutions of (10.8) as ε → 0. This can be
characterized by the Oleinik entropy condition stating that all discontinuities should have
the property

f (u) − f (uL)

u − uL

≥ s ≥ f (u) − f (uR)

u − uR

(10.9a)

for all u between uL and uR . If f is convex (as it is for the inviscid Burgers equation) then
(10.9a) is equivalent to the Lax entropy condition

f ′(uL) > s > f ′(uR). (10.9b)

For Case (b) of Example 10.3 no value of s satisfies (10.9), hence there is no discontinuity in
a solution satisfying the entropy condition, and the one prescribed at the end of Example 10.3
is neither the desirable rarefaction wave nor the one obtained using our upwind or Lax–
Friedrichs methods. The corresponding continuous solution is obtained below using a
similarity transformation.

10.1.1 Exact solution of the Riemann problem

A Cauchy problem consisting of a scalar conservation law, together with piecewise constant
initial data with one discontinuity, is called a Riemann problem. In Example 10.3 we have
seen the possible solutions of such a problem for the inviscid Burgers equation. Let us now
generalize to a conservation law (10.5) with the initial data

u0(x) =
{

uL, x < x∗,
uR, x > x∗.

Assume for notational simplicity that [f ′(uR) − f ′(uL)](uR − uL) > 0.

1. If there is a shock, then its speed is given by (10.7), i.e.,

s = f (uR) − f (uL)

uR − uL

.

Thus, if uL > uR , then the solution of the Riemann problem is given by

u(t, x) =
{

uL, x − x∗ < st,

uR, x − x∗ > st.
(10.10a)
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2. Otherwise, we have uL < uR . Then we look for a similarity solution

u(t, x) = g(ξ), ξ = x − x∗
t

.

Substituting into (10.5a) gives

−ξg′ + f ′g′ = 0.

Thus, g(ξ) is determined as the solution of

f ′(g(ξ)) = ξ. (10.10b)

We have the rarefaction wave

u(t, x) =

⎧⎪⎨⎪⎩
uL, x − x∗ ≤ f ′(uL)t,

g( x−x∗
t

), f ′(uL)t < x − x∗ ≤ f ′(uR)t,

uR, x − x∗ > f ′(uR)t.

(10.10c)

In (10.10a) and (10.10c) the solution of the Riemann problem is completely specified.
A similar construction may be applied for the case [f ′(uR) − f ′(uL)](uR − uL) < 0, and
the two cases may then be combined. In particular, at x = x∗, t > 0, we obtain a simple
expression for the solution as a function of time,

u(t, x∗) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

uL, uL > uR, s > 0,

uR, uL > uR, s ≤ 0,

uL, uL ≤ uR, 0 ≤ f ′(uL),

g(0), uL ≤ uR, f ′(uL) < 0 ≤ f ′(uR),

uR, uL ≤ uR, 0 > f ′(uR).

(10.11)

Observe that at x = x∗ the solution is constant for all t > 0.
For the inviscid Burgers equation, f ′(ξ) = ξ , so g is the identity, g( x−x∗

t
) = x−x∗

t
.

Specifically, for Case (b) of Example 10.3 we have

u(t, x) =

⎧⎪⎨⎪⎩
0 if x ≤ 0,

x/t if 0 < x ≤ t,

1 if x > t.

This solution is continuous throughout, but its derivative is not. See also Example 8.9.

10.2 First order schemes for scalar conservation laws
The simple schemes presented for the simple advection equation in Sections 5.2.2 and 5.2.3
generalize to handle scalar conservation laws; but care must be exercised, especially with the
upwind scheme. The good news is that their interpretation as higher order approximations for
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a corresponding modified PDE with an added artificial diffusion term, allows for entertaining
the hope that they yield a solution which approximates a weak solution satisfying the entropy
condition. On the other hand, not every generalization of (5.11) is guaranteed to approximate
the discontinuity speed s correctly. To achieve that, we must approximate the conservation
form.

To see this, consider the inviscid Burgers equation written in nonconservative form,

ut + uux = 0.

Multiplying this PDE by u and denoting ψ = u2 we have

ψt + ψ1/2ψx = 0.

This can be written as a new conservation law,

ψt + 2

3
(ψ3/2)x = 0,

and the jump condition yields

sψ = 2

3

[
u3

R − u3
L

u2
R − u2

L

]
.

This speed of propagation for the discontinuity differs from the speed obtained for the
inviscid Burgers equation in conservation form. But a numerical scheme based on the
nonconservative form may well approximate any of these speeds, or none of them!�

�

�

�

Note: Recall that in Sections 5.3 and 7.3 the discretization of a particular
combination of conservative and nonconservative forms has proved ad-
vantageous. Here in the presence of discontinuities the story is different,
and we should discretize the conservation form! Our advice to the reader
is to keep alert.

Let us next integrate the conservation law ut + f (u)x = 0 over the control volume
V = [tn, tn+1]× [xj−1/2, xj+1/2] and apply the Gauss divergence formula. See Figure 10.4.
This yields

ūn+1
j − ūn

j + μ
(
f̄

n+1/2
j+1/2 − f̄

n+1/2
j−1/2

)
= 0, (10.12a)

where, e.g.,

ūn
j = h−1

∫ xj+1/2

xj−1/2

u(tn, x)dx,

f̄
n+1/2
j+1/2 = k−1

∫ tn+1

tn

f (u(t, xj+1/2))dt. (10.12b)
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xj−1 xj−1/2 xj xj+1/2 xj+1

tn

tn+1

tn−1

vn
j

vn+1
j

f
n+1/2
j−1/2 f

n+1/2
j+1/2

Figure 10.4. A control volume (shaded). See (10.12) and (10.13).

The formula (10.12) is exact and may be considered a better representation of the conser-
vation law in the presence of low-smoothness solutions. Note that ūn

j is the average of u

over the space interval [xj−1/2, xj+1/2], and f̄
n+1/2
j+1/2 is the average flux over the time step at

x = xj+1/2. Thus, (10.12a) expresses flux conservation across the finite volume cell.
A comparison of the above to the formulas used for deriving the box scheme in

Sections 5.2 and 7.3 is inevitable. The major difference is that there we have tried our best
to treat time and space in the same way. Here the propagation of solution information along
characteristic curves, such as the dashed arrow in Figure 10.4, forward in time is of utmost
importance. In fact, we seek to approximate the average flux f̄

n+1/2
j+1/2 by explicit schemes.

Thus, consider three-point explicit schemes in conservation form

vn+1
j = vn

j − μ
(
f

n+1/2
j+1/2 − f

n+1/2
j−1/2

)
, (10.13a)

where

f
n+1/2
j+1/2 = f̂ (vn

j , v
n
j+1) (10.13b)

is the numerical flux function required to approximate (and be at least consistent with) the
average flux. The conservation form (10.13) can be shown to yield qualitatively correct
approximations to discontinuity speeds.

The Lax–Friedrichs scheme can be written in this form:

vn+1
j = 1

2
(vn

j+1 + vn
j−1) − μ

2
(f (vn

j+1) − f (vn
j−1))

= vn
j − μ

([
f (vn

j ) + f (vn
j+1)

2
+ vn

j − vn
j+1

2μ

]
−
[
f (vn

j ) + f (vn
j−1)

2
+ vn

j−1 − vn
j

2μ

])
.

The Lax–Wendroff scheme and its variants mentioned in (5.5) are also in conservation
form. For instance, in the Richtmyer formula (5.5b) we have f

n+1/2
j+1/2 = f (v̄j ), where in

fact v̄j = v
n+1/2
j+1/2 is an explicit Runge–Kutta-style approximation for u(tn+1/2, xj+1/2).



root
2008/5/5
page 337

�

�

�

�

�

�

�

�

10.2. First Order Schemes for Scalar Conservation Laws 337

To extend the upwind scheme we follow the work of Engquist and Osher [61]. First
we write (5.11) as

vn+1
j = vn

j − μ[a+D− + a−D+]vn
j ,

where

a+ = max(a, 0) = 1

2
(a + |a|), a− = min(a, 0) = 1

2
(a − |a|). (10.14)

Now extend to a conservation law (10.5)

vn+1
j = vn

j − μ[D−f +(vn
j ) + D+f −(vn

j )], (10.15a)

where

f +(u) =
∫ u

0
a+(ξ)dξ, f −(u) =

∫ u

0
a−(ξ)dξ. (10.15b)

Notice that for any u (10.15b) satisfies

f (u) = f +(u) + f −(u),
df +(u)

du
≥ 0,

df −(u)

du
≤ 0. (10.16)

A flux decomposition that satisfies (10.16) is called flux splitting.

Example 10.4 For the inviscid Burgers equation, the definitions (10.15b) simplify into

f +(u) = 1

2
[max(u, 0)]2, f −(u) = 1

2
[min(u, 0)]2.

Then the scheme (10.15a) reads as expected,

vn+1
j = vn

j − μ

2

{
[(vn

j+1)
2 − (vn

j )
2] if vn

j < 0,

[(vn
j )

2 − (vn
j−1)

2] if vn
j ≥ 0.

In Figure 10.5 we display the results using the Lax–Friedrichs and upwind schemes, both
in conservative and in nonconservative form. The initial data are the same as in Case (a) of
Figure 10.3, and the step sizes are h = .01π , k = 0.5h.

The best scheme for this example is clearly the upwind scheme in conservative form.
The nonconservative form is a disaster. The Lax–Friedrichs variants both smear the disconti-
nuity significantly. In Exercise 5 we see that the nonconservative form of the Lax–Friedrichs
scheme can lead to a disaster as well.

The flux splitting (10.15b) is not a smooth function of u, and determining it can
become a challenge in general. A simpler flux splitting is given by

f ±(u) = 1

2
(f (u) ± Mu), M = max

u
|a(u)|. (10.17)
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Lax−Friedrichs scheme: conservative form

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0
0.5

1
1.5

u

Lax−Friedrichs scheme: nonconservative form
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Upwind scheme: conservative form
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Upwind scheme: nonconservative form

Figure 10.5. Solving the inviscid Burgers equation, starting from a step function
leading to a shock, and employing conservative and nonconservative forms of the Lax–
Friedrichs and upwind schemes.

Since we are considering explicit schemes in time the practical calculation of M by maxi-
mizing over all mesh points vn

j at each time tn is straightforward. It is easy to see that (10.17)
satisfies (10.16), i.e., it is indeed a flux splitting. Moreover, this is a smooth splitting, unlike
(10.15b). For the simple advection equation where a is constant, M = |a| and the same
upwind scheme (5.11), (10.14) is retrieved. But for nonlinear conservation laws the two
flux splittings can yield significantly different results. Generally, (10.17) tends to smear the
discontinuity more.

10.2.1 Godunov’s scheme

This is another basic, low-order scheme which is based on a different approach than the
other methods in this section, although for the simple advection equation it, too, coincides
with the upwind scheme (5.11).

In a finite volume approach we can view the approximate solution at a mesh point,
vn

j , as approximating the cell average ūj (tn) defined in (10.12b). This then suggests using
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vn
j to define a piecewise constant function

ṽn(x) = vn
j , xj−1/2 ≤ x < xj+1/2. (10.18a)

The basic idea is to use this piecewise constant function as initial data for the next step and
to solve the resulting Riemann problem on each mesh subinterval [xj , xj+1] exactly. This is
possible, according to Section 10.1.1, so long as the time step k is small enough that waves
from neighboring subintervals do not begin to interact.

Denote the solution so constructed from the sequence of Riemann problems by
ṽn(t, x). Then at the end of the time step we set

vn+1
j = h−1

∫ xj+1/2

xj−1/2

ṽn(tn+1, x)dx. (10.18b)

Despite the different approach, the method can be seen to be in the conservative
form (10.13). Indeed, noting that ṽn(t, x) satisfies the conservation law (10.5a) exactly,
we integrate this PDE over the volume [tn, tn+1] × [xj−1/2, xj+1/2] and insert (10.18b) and
(10.18a) to obtain

vn+1
j = vn

j − μ
(
f

n+1/2
j+1/2 − f

n+1/2
j−1/2

)
(10.18c)

with the flux

f
n+1/2
j+1/2 = k−1

∫ tn+1

tn

f (ṽn(t, xj+1/2))dt (10.18d)

(see (10.12b)).
It remains to calculate the integral in (10.18d). But this is easy, because ṽn(tn, x) is

piecewise constant on [xj , xj+1], with the discontinuity at x∗ = xj+1/2. The solution is
given by (10.10a) or (10.10c) with uL = vn

j and uR = vn
j+1. In particular, at x = xj+1/2

the solution is constant in t and is given by (10.11). Thus

f
n+1/2
j+1/2 = f (ṽn

j+1/2), (10.19)

where ṽn
j+1/2 is the value of u(t, x∗) according to (10.11). The working formula for Go-

dunov’s method thus becomes very simple.
Recall that the above procedure works if waves from neighboring cells do not interact.

This happens if k is small enough to satisfy

μ|a(vn
j )| ≤ 1 ∀j. (10.20)

We get a natural extension of the CFL condition.

Example 10.5 Consider the inviscid Burgers equation with the initial conditions

u0(x) = 1

4
+ 1

2
sin πx, −1 ≤ x ≤ 1.

The exact solution is smooth up to t = 2
π

; then it develops a moving shock which interacts
with the rarefaction waves [88]. At t = 1.1 there is a shock, with a monotone solution
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Lax−Friedrichs scheme: conservative form
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Upwind scheme: conservative form

Figure 10.6. Solving the inviscid Burgers equation, starting from a smooth sinu-
soidal function leading to a shock. The schemes employed are Godunov, Lax–Friedrichs in
conservative form, and the upwind scheme in conservative form.

elsewhere—see Figure 10.2. Employing the schemes we have seen so far in this chapter,
the results using h = 0.01 and μ = 0.9 are displayed in Figure 10.6. The Godunov results
are qualitatively similar to those obtained by the upwind scheme and considerably better
than those obtained by the Lax–Friedrichs scheme.

The Lax–Friedrichs scheme does have one potential advantage over the upwind and
Godunov schemes, in that its coefficients vary smoothly, even through sonic points, i.e.,
points where f ′(u) = 0. Higher order schemes based on upwind or Godunov as building
blocks without smoothing may lose accuracy at sonic points because of the sharp transition
in these schemes.

10.3 Higher order schemes for scalar conservation laws
The schemes featured in Section 10.2 are all first order accurate and monotone (i.e., they
satisfy (10.4)). For a monotone scheme, if vn

j ≤ wn
j ∀j, then vn+1

j ≤ wn+1
j ∀j . This
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gives stability and prevents the possibility of spurious oscillations resulting from solution
discontinuities. However, as it turns out, monotone schemes can only be first order accurate,
essentially because they require O(h) artificial diffusion (recall Section 5.2.3): a scheme
that approximates with high accuracy another problem that is O(h) away from our problem
obviously cannot have accuracy better than O(h) for our problem.

Therefore, weaker properties than monotonicity are sought. For a spatial mesh func-
tion v, define the total variation as

T V (v) = h
∑

j

|vj+1 − vj |. (10.21a)

A numerical scheme (10.3) is called total variation diminishing (TVD) if for all mesh
functions

T V (vn+1) ≤ T V (vn) ∀ n ≥ 0. (10.21b)

The scheme is called total variation bounded (TVB) if for all mesh functions

T V (vn+1) ≤ B ∀ n ≥ 0, (10.21c)

where B is a constant depending only on T V (v0). The scheme is called monotonicity
preserving if v0

j ≤ v0
j+1 ∀j implies vn

j ≤ vn
j+1 ∀j for all n ≥ 0.

As it turns out, these properties are related as follows.

Theorem 10.6.

monotone �⇒ TVD �⇒ monotonicity preserving.

The search is therefore on for second order TVD methods.

10.3.1 High-resolution schemes

Unfortunately, a linear monotonicity-preserving scheme is at most first order accurate. This
was shown already in 1959 by Godunov. Note that it is the scheme, not the PDE, which is
linear in this negative theoretical result. More depressingly, in two space dimensions a TVD
scheme is at most first order accurate except in certain trivial cases [70]. In one dimension it
is possible to construct second order TVD (nonlinear) schemes, and such methods work well
in practice also in two dimensions, despite the negative theory. We will return to the latter
point in Section 10.4; now we proceed with methods for scalar, one-dimensional problems.

The basic observation here is that the excessive amount of artificial diffusion (or
viscosity) which causes the scheme to be only first order accurate is needed only in the
vicinity of a discontinuity. Elsewhere, a higher order method with less artificial viscosity
can be used.
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In flux limiter schemes we combine a higher order flux approximation fH,j+1/2(v)

such as Lax–Wendroff, which works better away from discontinuities, with a first order
flux fL,j+1/2(v) such as that of any of the monotone schemes of the previous section.
For instance, with an upwind method the combined scheme can be seen as a higher order
centered method with upwinding introduced only if and where needed. The scheme then
has the form (10.13) with

f
n+1/2
j+1/2 = fL,j+1/2(v) + φ(θj )[fH,j+1/2(v) − fL,j+1/2(v)], (10.22a)

where φ is a function which is near 0 in the vicinity of a discontinuity and near 1 when the
solution varies slowly. The parameter θj measures the “smoothness” of the solution, e.g.,

θj = vn
j − vn

j−1

vn
j+1 − vn

j

. (10.22b)

Various possibilities have been proposed for φ, e.g., the “superbee,”

φ(θ) = max (0, min(1, 2θ), min(θ, 2)). (10.22c)

In [76] and [116] there are numerical comparisons of various variants on a simple model
problem.

Such schemes have been shown to be TVD. We refer to [116] and references therein
for much more detail.

10.3.2 Semi-discretization and ENO schemes

“Higher order” can be more than 2! However, the TVD schemes of the previous section are
not. If we give up satisfying the TVD property orthodoxly, but still require a careful control
of the oscillations, then we can aspire to an even higher order of accuracy. Moreover, we
now introduce a pleasing semi-discretization setting which allows construction of higher
order schemes in time and space separately, a fact that becomes even more important in more
than one space variable. The pioneering work here was done by Harten and his collaborators
[88].

This again is a finite volume approach. Consider the cell averages that have inspired
the Godunov scheme. Independent of the time step, we define

ūj (t) = h−1
∫ xj+1/2

xj−1/2

u(t, x)dx. (10.23)

Integrating the conservation law over the cell [xj−1/2, xj+1/2] we obtain

dūj

dt
+ h−1[f (u(t, xj+1/2)) − f (u(t, xj−1/2))] = 0 (10.24a)

with no approximation utilized as yet. Now, if v(t) is a mesh function approximating u(t, ·),
then we can construct a numerical flux f̂j+1/2(v(t)) approximating f (u(t, xj+1/2)) based
on spatial considerations alone. Suppose that v̄j (t) correspondingly approximates ūj (t).
Then we have the semi-discretization

dv̄j

dt
+ h−1[f̂j+1/2(v(t)) − f̂j−1/2(v(t))] = 0. (10.24b)
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If we discretize these equations in time using forward Euler, then a conservative
scheme of the form (10.13a) is obtained. But we can discretize in time more accurately.
Runge–Kutta methods come to mind, although some care must be exercised, as explained
in Section 10.3.3.

To figure out the order of such a scheme, let us concentrate first on the semi-discretiza-
tion (10.24b). The unusual feature in (10.24a)–(10.24b) is that these formulas involve both
cell average and pointwise values of the solution. Let v̄(t) be the mesh function composed of
the values v̄j (t), and likewise denote by ū(t) the corresponding mesh function for the exact
cell averages. The relationship between ū and the exact solution u is given by (10.23). For
the approximate solution we construct in the sequel local interpolations for pointwise values
vj+i in terms of the values v̄j . Denoting the result of such a construction by v(t) = �(v̄(t)),
we can write (10.24b) as

dv̄j

dt
+ h−1[f̂j+1/2(�(v̄(t))) − f̂j−1/2(�(v̄(t)))] = 0. (10.24c)

Thus, the local truncation error for (10.24), considered as a formula for the cell averages,
is

τ = h−1[(f̂j+1/2(�(ū(t))) − f (u(t, xj+1/2)))

− (f̂j−1/2(�(ū(t))) − f (u(t, xj−1/2)))].
If τ = O(hp) ∀t , and f̂ is Lipschitz continuous, then upon subtraction of (10.24b) from
(10.24a) and integration we obtain

ūj (t) − v̄j (t) = O(hp).

If we now use a Runge–Kutta method of order p̃ to integrate the ODE system (10.24c),
then the overall order of the resulting full discretization is (p̃, p).

Reconstruction of v, and ENO schemes

The integration in time is for cell averages v̄j . However, to obtain the formula and the final
solution reconstruction we need pointwise values vj and vj+1/2. This can be developed
elegantly using primitive functions. For a fixed t , let w be defined by

w′(x) = u(t, x), w(x1/2) = 0. (10.25a)

Then

wj+1/2 = w(xj+1/2) =
∫ xj+1/2

x1/2

u(t, ξ)dξ = h

j∑
i=1

ūi(t). (10.25b)

The values of w(xj+1/2) are known exactly in terms of the cell averages, so we can apply
a high-order polynomial interpolation and recover w(x) to a high order! Thus, if pj in a
polynomial of degree at most q which interpolates q + 1 values wj+i+1/2 nearby xj , then
(see Section 2.12.2)

pj (x) = w(x) + O(hq+1), xj−1/2 ≤ x ≤ xj+1/2, (10.25c)
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provided that w is smooth over the interpolated area, i.e., provided that the span of the points
xj+i+1/2 involved does not cross a discontinuity.

Now, we don’t know the ūi , but if we know the v̄i accurate to O(hp), p ≥ q, then
we can use those in place of ūi in (10.25b) to define wj+1/2. Then we set

vj = p′
j (xj ), vR

j−1/2 = p′
j (xj−1/2), vL

j+1/2 = p′
j (xj+1/2), (10.25d)

obtaining O(hq) approximations to u(t, xj ), u(t, x+
j−1/2), and u(t, x−

j+1/2), respectively. In
the notation of (10.24c), this defines �(v̄(t)).

Example 10.7 Let us demonstrate the construction of v at mesh points from cell averages.
Choose q = 3, i.e., we consider a local cubic interpolation of the primitive function w near
xj . Suppose, say, that the interpolation points are xj−1/2, xj+1/2, xj+3/2, and xj+5/2.

To construct the polynomial interpolant we form the divided differences

w[xj−1/2, xj+1/2] = wj+1/2 − wj−1/2

h
= v̄j ,

w[xj+1/2, xj+3/2] = v̄j+1, w[xj+3/2, xj+5/2] = v̄j+2,

w[xj−1/2, xj+1/2, xj+3/2] = v̄j+1 − v̄j

2h
, w[xj+1/2, xj+3/2, xj+5/2] = v̄j+2 − v̄j+1

2h
,

w[xj−1/2, xj+1/2, xj+3/2, xj+5/2] = (3h)−1

[
v̄j+2 − v̄j+1

2h
− v̄j+1 − v̄j

2h

]
= v̄j+2 − 2v̄j+1 + v̄j

6h2
.

So, the cubic

pj (x) = w(xj−1/2) + v̄j (x − xj−1/2) + v̄j+1 − v̄j

2h
(x − xj−1/2)(x − xj+1/2)

+ v̄j+2 − 2v̄j+1 + v̄j

6h2
(x − xj−1/2)(x − xj+1/2)(x − xj+3/2)

approximates w(x) to fourth order and, more importantly, the quadratic

p′
j (x) = v̄j + v̄j+1 − v̄j

2h

[
(x − xj−1/2) + (x − xj+1/2)

]+ v̄j+2 − 2v̄j+1 + v̄j

6h2
·[

(x − xj−1/2)(x − xj+1/2) + (x − xj−1/2)(x − xj+3/2) + (x − xj+1/2)(x − xj+3/2)
]

approximates v near xj to third order.
In particular, substitute to get the third order approximations

vj = p′
j (xj ) = 1

4
(−v̄j+2 + 6v̄j+1 − v̄j ),

vL
j+1/2 = p′

j (xj+1/2) = 1

6
(−v̄j+2 + 5v̄j+1 + 2v̄j ), (10.26a)

vR
j−1/2 = p′

j (xj−1/2) = 1

6
(2v̄j+2 − 7v̄j+1 + 11v̄j ). (10.26b)
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Exercise 6 shows that similarly, using the interpolation points xj−3/2, xj−1/2, xj+1/2, and
xj+3/2 we have another local third order interpolant yielding

vL
j+1/2 = 1

6
(2v̄j+1 + 5v̄j − v̄j−1), (10.26c)

vR
j−1/2 = 1

6
(−v̄j+1 + 5v̄j + 2v̄j−1), (10.26d)

and using the interpolation points xj−5/2, xj−3/2, xj−1/2, and xj+1/2 yields

vj = 1

4
(−v̄j + 6v̄j−1 − v̄j−2),

vL
j+1/2 = 1

6
(11v̄j − 7v̄j−1 + 2v̄j−2), (10.26e)

vR
j−1/2 = 1

6
(2v̄j + 5v̄j−1 − v̄j−2). (10.26f )

During an ENO reconstruction, one of these formula pairs is used at each mesh point j .
Note that the tedious algebra needs to be done just once, and what comes out are

simple formulas defining �.

Next, we use these obtained values to define f̂ . We need to approximatef (u(t, xj+1/2)),
and we have two values at this point, vL

j+1/2 = p′
j (xj+1/2) and vR

j+1/2 = p′
j+1(xj+1/2). A

Riemann solver comes to mind. We then use the formula (10.11) to define vj+1/2 and set
f̂j+1/2(�(v̄(t))) = f (vj+1/2).

Clearly, we must choose the points over which to interpolate carefully. It is well
known that high-order polynomial interpolation may produce some oscillations even for
smooth data (hence we give up the notion of strict monotonicity preservation when we go
to orders higher than 2), but we can realistically hope to achieve good results, provided that
no region with large gradients is crossed. The main idea behind essentially nonoscillatory
schemes (ENO) is to choose the set of neighbors of xj for the j th polynomial interpolation
automatically, in such a way that the oscillation is minimized.

For this purpose, the Newton form of polynomial interpolation is ideal—for a review
see Section 2.12.2. Since the construction adds the interpolation points one at a time we can
start with the pair xj−1/2, xj+1/2, noting that w[xi−1/2, xi+1/2] = v̄i . Then, at some stage
where we have already interpolated at xj−l+1/2, . . . , xj+r−1/2, do the following:

• Form the divided differences w[xj−l−1/2, . . . , xj+r−1/2] and
w[xj−l+1/2, . . . , xj+r+1/2] according to (2.37).

• Choose the point xj−l−1/2 or xj+r+1/2 which yields the divided difference that is
smaller in magnitude.

• Form the next term of the interpolating polynomial, increasing its degree from r+l−1
to r + l.
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As in Example 10.7, no values of w, only values of v̄i , are needed to form the divided
difference tables. Once a step is completed in choosing the next neighbor, we add the
corresponding contribution to the differentiated polynomial at the points of interest using
coefficient tables that have been prepared in advance.

Example 10.8 Continuing with Example 10.5 we display results using first and second
order schemes of the type described above. The “exact solution” is calcuated using a
second order method with small values of k and h, and this is used to calculate errors in
results obtained using much coarser step sizes. The time discretization used together with
the first order spatial discretization is the forward Euler method. This yields essentially
the Godunov scheme. For the second order spatial discretization, explicit trapezoidal (a
two-stage Runge–Kutta method of order 2), given by

0 0 0

1 1 0

1
2

1
2

is used. Thus, we are looking essentially at two schemes, one of order (1, 1) and the other
of order (2, 2).

In Table 10.1 we record solution errors ‖error‖ in three (normalized) norms: (i) at
t = 0.3, where the solution is still smooth, and (ii) at t = 1.1, where the solution contains
a shock layer, as in Figure 10.5. In all cases we took μ = k/h = 0.5. The results in
Table 10.1 clearly indicate the expected order of accuracy of these methods for the smooth
solution at t = 0.3. At t = 1.1 we have not only a shock but also a relatively flat profile
away from the shock, which gives the first order method an advantage. The results differ
significantly depending on the norm in the latter case, an observation which you should be
able to explain.

In Figure 10.7 we display the mesh function values (marked with ×) together with
the exact solution, for the following cases: (i) first order method, h = 0.05, (ii) second
order method, h = 0.05, (iii) first order method, h = 0.1, and (iv) second order method,
h = 0.1. The second order method is more accurate, but the improvement is not amazing
in this particular instance.

The solution displayed in Figure 10.2 was calculated using our current second order
method, with h = 0.02 and k = 0.01, for t ∈ [0, 1.5].

Note that ENO can naturally be applied for outflow boundary conditions by taking
the appropriate one-sided stencils that use only mesh points inside the domain.

10.3.3 Strong stability preserving methods

The idea of separating the considerations for the spatial and time discretizations is very
appealing. In the previous section we achieve that, but at a price. Generally, many families
of methods such as (10.13) (including the high-resolution methods of Section 10.3.1) look
as if the forward Euler method is utilized in time, and theoretical results have been derived
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Table 10.1. Errors for ENO schemes applied to the inviscid Burgers equation.
At t = 0.3 the solution is still smooth, but at t = 1.1 there is a shock. The measured
errors are generally acceptable, and the higher order method is more accurate, but not
spectacularly so.

t Method h ‖error‖∞ ‖error‖2 ‖error‖1

0.3 (1, 1) 0.1 5.21e-2 2.14e-2 1.69e-2

0.05 3.25e-2 1.19e-2 9.13e-3

0.02 1.57e-2 5.11e-3 3.90e-3

0.01 8.03e-3 2.63e-3 2.00e-3

0.005 4.07e-3 1.34e-3 1.01e-3

(2, 2) 0.1 2.97e-2 1.18e-2 8.03e-3

0.05 1.24e-2 3.77e-3 2.30e-3

0.02 3.71e-3 7.76e-4 3.78e-4

0.01 1.47e-3 2.38e-4 9.94e-5

0.005 5.52e-4 7.24e-5 2.55e-5

1.1 (1, 1) 0.1 3.24e-1 7.76e-2 3.66e-2

0.05 1.93e-1 4.30e-2 2.01e-2

0.02 2.96e-1 3.08e-2 7.32e-3

0.01 1.44e-1 1.35e-2 3.20e-3

(2, 2) 0.1 2.89e-1 6.52e-2 2.14e-2

0.05 1.16e-1 2.42e-2 6.66e-3

0.02 2.81e-1 2.82e-2 3.43e-3

0.01 1.05e-1 1.03e-2 1.09e-3

for such formulations. It is natural, then, to want to “lift” such results up for more accurate
time discretizations.

Let us consider an ODE system

v′ ≡ dv
dt

= g(v), (10.27)

and assume that the forward Euler method satisfies, in some norm, the monotonicity property

‖vn + kg(vn)‖ = ‖vn+1‖ ≤ ‖vn‖, n = 0, 1, . . . . (10.28)

Then an ODE method for (10.27) is said to be strong stability preserving (SSP) if it, too,
satisfies ‖vn+1‖ ≤ ‖vn‖. See [72, 98].
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Figure 10.7. Solving the inviscid Burgers equation, starting from a smooth sinu-
soidal function leading to a shock, and employing Godunov’s scheme as well as a second
order ENO scheme.

Next, consider an explicit s-stage Runge–Kutta method (2.10) for (10.27), which we
write as

Y1 = vn,

Yi+1 = vn + k

i∑
j=1

ai+1,j g(Yj ), i = 1, . . . , s,

vn+1 = Ys+1 (10.29)

(where we set as+1,j = bj ). This can be written (nonuniquely, in general) as

Y1 = vn,

Yi+1 =
i∑

j=1

αi,j Yj + k

i∑
j=1

βi,j g(Yj ), i = 1, . . . , s,

vn+1 = Ys+1 (10.30)
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with αi,j ≥ 0, 1 ≤ j ≤ i ≤ s + 1. Now, if βi,j ≥ 0, all 1 ≤ j ≤ i ≤ s + 1, then the
higher order RK method is just a convex combination of forward Euler steps, and therefore
the SSP property holds.

Example 10.9 The explicit trapezoidal method employed in Example 10.8 is SSP. This can
be seen by writing it as

Y1 = vn,

Y2 = Y1 + kg(Y1),

vn+1 = Y3 = 1

2
(Y1 + Y2) + k

2
g(Y2).

The explicit midpoint method

0 0 0

1
2

1
2 0

0 1

is not SSP, and we leave verifying this as Exercise 7. Note, however, that the results of
running this variant as in Example 10.8 are not significantly different from those of the
explicit trapezoidal method.

Higher order RK methods that have the SSP property have been constructed [157, 72].
Unfortunately, this turns out not to be a simple matter [148]. Explanations of this concept
in terms of contractivity are given in [90]. Linear multistep SSP methods have also been
devised. The most popular method of this sort in practice is based on Runge–Kutta time
discretization and has accuracy order (3,3). The reconstruction in space uses the formulas
in Example 10.7. The corresponding RK method is given by

0 0 0 0

1 1 0 0

1
2

1
4

1
4 0

1
6

1
6

2
3

10.3.4 WENO schemes

In Chapter 7 we take extra pains to apply centered, conservative methods such as the leapfrog
and box schemes in order to discretize hyperbolic PDEs. Such schemes are more accurate
than one-sided ones and preserve solution structure better. However, in Section 5.2 we
have already seen that in the presence of discontinuities such methods perform poorly,
hence upwind methods are introduced there and studied further in Section 10.2, consider-
ably lowering expectation of both high accuracy and structure preservation: survival takes
precedence over fancy footwork.
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In Section 10.3.1 we again bring back more accurate, centered discretizations to
be used away from discontinuities through the mechanism of flux limiters. But in Sec-
tions 10.3.2 and 10.3.3 we are back with a purer upwind idea, slightly violated but improved
in accuracy through the ENO methods.

The next stage is then to realize that ENO may occasionally also be “too one-sided,”
unnecessarily so in regions where the solution is smooth. Moreover, ENO methods may
change too abruptly through a sonic point where a(u) changes sign. It then makes more
sense, after forming those local divided differences from which ENO chooses the smallest
in magnitude, to use a weighted average of them. The weights are chosen so as to yield
essentially an ENO method near a discontinuity and a higher order method in regions where
the solution is smooth. This yields a modification of ENO called WENO (for weighted
ENO). See Shu’s detailed paper [156].

To see how this works in detail let us restrict attention to the case where local cubics
are used to interpolate the primitive function w(x) of (10.25), as in Example 10.7. In (10.26)
there are three sets of interpolation formulas, and we denote the corresponding interpolants
v(1), v(0), and v(−1) respectively. Next, consider a weighted sum of the three interpolants,

vj+1/2 = d−1v
(−1)
j+1/2 + d0v

(0)
j+1/2 + d1v

(1)
j+1/2. (10.31a)

Since all five values from v̄j−2 to v̄j+2 are involved, one may reasonably hope that there
are weights dl that yield a fifth order approximation where the approximated solution is
smooth. Indeed, it turns out that such values exist and are given by

d−1 = 0.1, d0 = 0.6, d1 = 0.3. (10.31b)

Similarly we have

vj−1/2 = d1v
(−1)
j−1/2 + d0v

(0)
j−1/2 + d−1v

(1)
j−1/2. (10.31c)

Therefore, in the WENO method we choose weights adaptively, so that in smooth areas
they are close to those given by (10.31b). By adjusting the weights appropriately, the order
of the obtained method away from discontinuities can be increased from 3 to 5 [121, 102].

Specifically, the interpolation formula is

vL
j+1/2 = w−1v

(−1)
j+1/2 + w0v

(0)
j+1/2 + w1v

(1)
j+1/2, (10.31d)

wr = αr

α−1 + α0 + α1
, αr = dr

(ε + βr)2
,

where ε = 10−6 is there to ensure no division by zero. The βr are smoothness indicators
calculated for each j , where βr = O(h2) if the rth stencil covers a smooth area and
βr = O(1) otherwise. Following [156] we set

β1 = 13

12
(v̄j − 2v̄j+1 + v̄j+2) + 1

4
(3v̄j − 4v̄j+1 + v̄j+2)

2,

β0 = 13

12
(v̄j−1 − 2v̄j + v̄j+1) + 1

4
(v̄j+1 − v̄j−1)

2, (10.31e)

β−1 = 13

12
(v̄j − 2v̄j−1 + v̄j−2) + 1

4
(3v̄j − 4v̄j−1 + v̄j−2)

2.
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Similarly

vR
j−1/2 = w̃−1v

(−1)
j−1/2 + w̃0v

(0)
j−1/2 + w̃1v

(1)
j−1/2, (10.31f )

w̃r = α̃r

α̃−1 + α̃0 + α̃1
, α̃r = d−r

(ε + βr)2
.

Note that for the advection equation, where a(u) is a nonzero constant, we have in
smooth solution regions f (vj±1/2) = avj±1/2. Examining the above formulas we can easily
see that away from discontinuities the method inches toward a centered one. The obtained
scheme thus typically boils down to something close to a centered discretization in space.
This makes the SSP concept irrelevant for WENO schemes, because the condition (10.28)
may not be expected to hold (recall the unstable scheme in our very first Example 1.2). The
higher order explicit Runge–Kutta methods that are typically used to match the order of the
spatial discretization then double up as a savior from forward Euler instability [179]. The
classical RK4 method shines once again, yielding a method of order (4, 5) in combination
with the semi-discretization described above.

The finite volume version of WENO schemes described above may be too fancy, or
too expensive, to apply in practice, especially when extensions to systems and to more than
one space variable are considered. A more straightforward, finite difference variant applies
a similar methodology directly to a flux splitting of f . Unfortunately, to be able to retrieve
the high accuracy order we must have a smooth splitting, i.e., f +(u) and f −(u) should have
at least as many derivatives as appear in the high order interpolation bounds. This gives
advantage to the splitting (10.17).

The procedure is as follows [179, 156]:

1. For all i identify v̄i with f +(vi); carry out the reconstruction procedure described in
(10.31) and (10.26) to obtain vL

j+1/2 for each j .

2. For all i identify v̄i with f −(vi); carry out the reconstruction procedure described in
(10.31) and (10.26) to obtain vR

j−1/2 for each j .

3. For each j calculate the numerical flux

f̂j+1/2 = f̂ +
j+1/2 + f̂ −

j+1/2

= vL
j+1/2 + vR

j+1/2.

4. For each j form the right-hand side of the semi-discretization,

dvj

dt
= − 1

h

(
f̂j+1/2 − f̂j−1/2

)
.

Currently, WENO schemes are probably the most popular methods in practical use
for conservation laws when higher order accuracy away from discontinuities is desired.
Therefore, rather than demonstrating them here, we ask for your help in carrying out the
implementation and testing the scheme as described in Exercises 8 and 9.



root
2008/5/5
page 352

�

�

�

�

�

�

�

�

352 Chapter 10. Discontinuities and Almost Discontinuities

10.4 Systems of conservation laws
In this section we extend the methods developed earlier to systems of conservation laws,
still in one space dimension. Our essential approach is similar to the one used in earlier
chapters, especially Section 8.2.1. Thus, we (i) transform to characteristic variables, (ii)
apply ideas and methods to each resulting scalar PDE, and (iii) transform back to the original
variables.

At first, consider a constant coefficient hyperbolic PDE system,

ut + Aux = 0. (10.32a)

As in (8.8), A can be diagonalized

T −1AT = 
 =

⎛⎜⎜⎜⎝
λ1

. . .

λs

⎞⎟⎟⎟⎠ , (10.32b)

and the eigenvalues λi are real. We further define characteristic variables,

w = T −1u, (10.32c)

and obtain the decoupled set of s advection equations,

wt + 
wx = 0. (10.32d)

Each solution wi(t, x) is a wave propagating at speed λi , and our solution

u = T w, (10.32e)

which is what gets observed eventually, is therefore a superposition of s waves.
Next consider a Riemann problem for (10.32a), i.e., with the initial data

u0(x) =
{

uL, x < x∗,
uR, x > x∗.

We can apply a similar transformation, defining

wL = T −1uL, wR = T −1uR,

obtain s scalar Riemann problems which we know how to solve (see Section 10.1.1), and
compose the solution u using the back-transformation (10.32e). It is important to realize
that s is small and the transformation T is a constant s × s matrix that can be obtained ahead
of the game. The process above is therefore not just for theoretical interest.

Similarly, we can extend the simple upwind and Lax–Friedrichs methods. The ex-
tension of the Lax–Friedrichs method is immediate and is a special case of (9.3).34 For the

34Indeed, if you get lost in our treatment for systems of conservation laws and for problems in several space
variables, it is useful to always remember that the Lax–Friedrichs method (9.3) is an option, if one can live with
its significant inaccuracy.
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simple upwinding method we again apply the decoupling transformation (10.32). Define

|
| =

⎛⎜⎜⎜⎝
|λ1|

. . .

|λs |

⎞⎟⎟⎟⎠ , |A| = T |
|T −1. (10.33)

Then (5.12b) extends into

vn+1
j = vn

j − μ

2
A(vn

j+1 − vn
j−1) + μ

2
|A|(vn

j+1 − 2vn
j + vn

j−1). (10.34)

As before, the same method (10.34) is also the one obtained when extending Godunov’s
scheme for the case of constant coefficient systems. The stability condition for this upwind
method involves the spectral radius of A, ρ(A), in an obvious manner.

We can also write (10.34) as

vn+1
j = vn

j − μ[A+D− + A−D+]vn
j , (10.35a)

where

A+ = 1

2
(A + |A|), A− = 1

2
(A − |A|), (10.35b)

which better reflects the scheme’s upwind nature.

Example 10.10 The simplicity of the Lax–Friedrichs scheme, which on the face of it does
not require transformation to characteristic variables or construction of |A|, is attractive.
Let us therefore consider a simple sobering example.

We construct an advection system of two components by


 =
⎛⎝−1 0

0 −0.1

⎞⎠ , T =
⎛⎝cos(π/3) − sin(π/3)

sin(π/3) cos(π/3)

⎞⎠ , A = T 
T −1.

With u = T w the Lax–Friedrichs scheme discretizes ut +Aux = 0 directly, whereas for the
upwind scheme we must consult the eigenvalues first before realizing that for this particular
example, since both eigenvalues are negative, the scheme simply uses forward differencing
for u in space, as in (1.15a).

Using periodic BC on [−π, π ] and initial conditions u0 = T w0, with

w1
0(x) =

{
1, .25 ≤ x < .75,

0 otherwise,
w2

0(x) =
{

2, .5 ≤ x < .7,

0 otherwise

(the superscripts denote the components of w), we run the two methods with h = .01π and
μ = .9. The results are plotted in Figure 10.8, where the filter (5.10) has been applied at
the end of the integration process as well.

The two square waves move intact in time for the characteristic variables w and
get mixed through the transformation T to obtain the exact u. The performance of the
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Figure 10.8. Exact and approximate solutions for Example 10.10. The first solu-
tion component u1 and its approximations are displayed. It is a superposition of the square
waves w1 and w2. With μ = 0.9 the upwind and Lax–Friedrichs methods have comparable
accuracy for w1, but for w2 the upwind method is significantly better.

two schemes for w1 is comparable, although the upwind scheme is slightly better; for w2,
however, the upwind scheme is much better and the Lax–Friedrichs scheme is unacceptably
poor.

This is not difficult to understand if we recall the comparison made in Section 5.2.3
between the diffusion terms added by the two methods: the closer μ|a| is to 1, the closer
Lax–Friedrichs is to the performance of the upwind scheme. But here we have two wave
speeds, a = λ1 and a = λ2! The time step is limited by the larger one, and so with k = .9h

the methods perform fairly similarly for the faster wave w1. But for w2 the wave speed is
only λ2 = −.1, and for it μ|λ2| is much smaller than 1. So, the Lax–Friedrichs scheme
introduces way too much dissipation for the slower wave.

A simple remedy is to apply the transformation to characteristic variables and then
apply the Lax–Friedrichs method using different time steps for the different characteristic
variables. But this is no longer simpler than upwinding.

Next, consider a system of nonlinear conservation laws,

ut + f(u)x = 0, A(u) = f ′(u) ≡ ∂f
∂u

. (10.36)



root
2008/5/5
page 355

�

�

�

�

�

�

�

�

10.4. Systems of Conservation Laws 355

As in Section 10.2, it is better to consider the integrated form corresponding to (10.12)–
(10.13), which extends directly.

The Godunov method does extend if we only know how to solve the resulting Riemann
problem. Indeed, the symbols used in (10.18)–(10.19) need only be boldfaced, and we obtain

vn+1
j = vn

j − μ
(

fn+1/2
j+1/2 − fn+1/2

j−1/2

)
, (10.37a)

fn+1/2
j+1/2 = f(ṽn

j+1/2), (10.37b)

see (10.19) and (10.11). Note again that these Riemann solutions are used only at the
cell edges, xj+1/2 ∀j . The connection between (10.37a) and (10.35a) is made by writing
(10.37a) as

vn+1
j = vn

j − μ
((

f(vn
j ) − fn+1/2

j−1/2

)
+
(

fn+1/2
j+1/2 − f(vn

j )
))

and identifying these flux fluctuations in the special constant coefficient case.
However, the process of solving the Riemann problem for nonlinear systems is pro-

hibitively expensive. Thus, approximate Riemann solvers are sought. An obvious ap-
proach is to replace the nonlinear problem by a linearized one defined for each time step n

at each cell interface j + 1/2,

ût + Ân
j+1/2ûx = 0. (10.38)

The matrix Ân
j+1/2 depends on two states vn

j and vn
j+1 and is required to satisfy the following:

1. It should be diagonalizable with real eigenvalues, so the local PDE (10.38) is hyper-
bolic.

2. It should satisfy consistency

Ân
j+1/2 → A(u) as vn

j , vn
j+1 → u.

3. Preferably
Ân

j+1/2(v
n
j+1 − vn

j ) = f(vn
j+1) − f(vn

j ).

This turns out to be a tall order. But the first two requirements are satisfied by using the
midpoint rule,

Ân
j+1/2 = A

(
1

2
(vn

j + vn
j+1)

)
. (10.39)

For more sophisticated choices satisfying all three requirements for important special cases,
see Section 15.3 in [116].

Extension of the high-order schemes of Section 10.3 is possible. For flux limiter
schemes a natural candidate for the higher order method is one of the variants of Lax–
Wendroff aimed at directly approximating conservation laws, namely, the Richtmyer scheme
(5.5b) or the MacCormack scheme (5.5c). The ENO and WENO schemes also extend in a
similar fashion; see, e.g., [156].
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10.5 Multidimensional problems
Without a doubt the simplest way to extend the methods of the previous sections to the
case of systems of conservation laws in more than one space variable is using dimensional
splitting. See Section 9.3.1. Thus, for the PDE system

ut + f(u)x + g(u)y = 0, (10.40)

we first solve for each mesh value in y, y = yl , the one-dimensional system

ut + f(u)x = 0,

starting from {vn
·,l} and obtaining a solution {v∗

·,l}. Then we solve for each mesh value in x,
x = xj , the one-dimensional system

ut + g(u)y = 0,

starting from {v∗
j,·} and obtaining a solution {vn+1

j,· }.
Care must be taken in specifying appropriate boundary conditions for v∗. Moreover,

the resulting method is in principle only first order accurate. But the BC question can be
resolved by carrying out the fractional step integration in x also for ghost unknowns which
then provide BC for the next split-step, and the accuracy is often much better than a first
order designation would indicate.

Example 10.11 The equations governing compressible fluid flow, called the Euler equations
for gas dynamics, form a system of conservation laws. In two dimensions they have the
form (10.40) with

u =

⎛⎜⎜⎜⎜⎜⎜⎝
ρ

ρu

ρv

E

⎞⎟⎟⎟⎟⎟⎟⎠ , f =

⎛⎜⎜⎜⎜⎜⎜⎝
ρu

ρu2 + p

ρuv

(E + p)u

⎞⎟⎟⎟⎟⎟⎟⎠ , g =

⎛⎜⎜⎜⎜⎜⎜⎝
ρv

ρuv

ρv2 + p

(E + p)v

⎞⎟⎟⎟⎟⎟⎟⎠ , (10.41a)

where u and v are velocity components in the x and y directions, respectively, ρ is the
density, E the total energy, and p the pressure given by the equation of state for an ideal
polytropic gas,

E = p

γ − 1
+ 1

2
ρ(u2 + v2). (10.41b)

The known constantγ is the ratio of specific heats, or adiabatic exponent, e.g., in airγ ≈ 1.4.
You should be able to figure out how the system (10.41) looks like in one dimension and in
three dimensions.
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The Jacobian matrix A(u) = f ′(u) has the eigenvalue and eigenvector matrices (Ex-
ercise 11)


x =

⎛⎜⎜⎜⎜⎜⎜⎝
u − c

u

u

u + c

⎞⎟⎟⎟⎟⎟⎟⎠ , T x =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 0 1

u − c u 0 u + c

v v 1 v

H − uc 1
2 (u2 + v2) v H + uc

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where c = √
γp/ρ is the sound speed. There are similar expressions for the eigenvalues

and eigenvectors of B(u) = g′(u).
Godunov’s method brought a breakthrough, back in the late 1950s, in succeeding to

solve these equations in one dimension. For the present problem we can apply dimensional
splitting, relying on the method described in Sections 10.4 and 10.2 for the one-dimensional
case.

Let us return to the basic scalar advection equation

ut + aux + buy = 0

and consider methods other than dimensional splitting. The basic upwind scheme (5.12) or
(10.34) generalizes directly into

vn+1
j,l = (

1 − μ1[a+Dx,− + a−Dx,+] − μ2[b+Dy,− + b−Dy,+]) vn
j,l . (10.42)

For simplicity of notation assume a, b > 0. Then we have the scheme

vn+1
j,l = vn

j,l − aμ1(v
n
j,l − vn

j−1,l) − bμ2(v
n
j,l − vn

j,l−1). (10.43)

As discussed in Section 9.1, however, we expect this first order scheme to be stable only
under the more restrictive condition

max{μ1|a|, μ2|b|} ≤ 1/2.

Indeed, there is something not entirely satisfactory in (10.43) beyond just the halving
of the allowable step size. Recall the Lagrangian interpretation of the upwind scheme in one
dimension, namely, that the characteristic curve hitting (tn+1, xj ) is traced back to time level
tn and its value is then linearly interpolated by neighboring values. Here, in two dimensions
we would expect an interpolation based on the four nodes of a mesh cell at t = tn (see
Figure 10.9) to participate in the action, and yet only three of these nodes appear in (10.43).
Recall that whereas on a triangle a general linear function is given by α + βx + γy, on a
rectangle we must consider the bilinear function α + βx + γy + δxy. In other words, it
requires the participation of all four nodes to get an interpolation corresponding to the linear
interpolation of the Lagrangian method in one dimension. The resulting formula is then

vn+1
j,l = vn

j,l − aμ1(v
n
j,l − vn

j−1,l) − bμ2(v
n
j,l − vn

j,l−1) (10.44)

+ 1

2

[
aμ1[bμ2(v

n
j,l − vn

j,l−1) − bμ2(v
n
j−1,l − vn

j−1,l−1)]
+ bμ2[aμ1(v

n
j,l − vn

j−1,l) − aμ1(v
n
j,l−1 − vn

j−1,l−1)]
]
.
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(xj , yl , tn)

(xj , yl−1, tn)

(xj−1, yl , tn)

(xj−1, yl−1, tn)

(xj , yl , tn+1)

x

y

t

Figure 10.9. Tracing back the characteristic curve in two dimensions.

It is called corner-transport upwind, in contrast to (10.43), which is called donor-cell
upwind [116]. Its theoretical stability restriction based on Fourier analysis is now back to
the CFL condition.

The method is next generalized to variable coefficient problems (the coefficients in
(10.44) beceome localized) and to conservation laws. In addition to the previous one-
dimensional Riemann solvers, a transverse Riemann solver is required. Flux limiters can
also be introduced to obtain high resolution methods. See Chapter 20 of [116] for details.

Finally, let us note that the semi-discrete approach which leads in Section 10.3 to ENO,
WENO, and SSP methods can be generalized to problems in more than one dimension as
well, not only through dimensional splitting. Note, however, that the high-order methods
can become prohibitively complex for systems in more than one space variable, and many
people restrict themselves to methods of order at most two.

The software package clawpack available at

http://www.amath.washington.edu/∼claw/apps.html

implements methods that are described in detail in LeVeque’s book [116]. There are also
several numerical examples on that site.

10.6 Problems with sharp layers
If the original PDE to be solved is of the form (5.13b), but with ν > 0 very small, we may
expect spurious oscillations in the solution upon applying leapfrog or Lax–Wendroff, unless
ν ≥ h|a|

2 . Thus, if ν is not sufficiently large in this relative sense, then artificial diffusion or
viscosity may have to be added. The number R = h|a|

ν
is sometimes referred to as the cell

Reynolds number. Artificial viscosity may be added, then, if the cell Reynolds number
exceeds 2, and the amount to be added in such a case should bring this number down to at
most 2 to avoid spurious oscillations.

Example 10.12 Throughout this chapter we have been using the inviscid Burgers equation
as an example of a conservation law. Let us now consider the Burgers equation with a small
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amount of viscosity,

ut + 1

2
(u2)x = σuxx,

where σ ≥ 0 is a given parameter.
The above considerations suggest extending the upwind scheme of Example 10.4 to

read

vn+1
j = vn

j + σ̂ n
j

μ

h
D+D−vn

j − μ

2

{
D+(vn

j )
2 if vn

j < 0,

D−(vn
j )

2 if vn
j ≥ 0,

(10.45a)

where μ = k/h and

σ̂ n
j = max(σ − .5h|vn

j |, 0). (10.45b)

This is clearly an explicit, first order scheme in time and space. To obtain an indication
of the stability restriction we freeze coefficients and obtain, as in Example 5.8, that the time
step size k = kn should satisfy

k < h/ max
j

{
|vn

j | + 2σ̂ n
j

h

}
. (10.45c)

Thus, where σ is significantly smaller than .5h|vn
j | we have essentially the upwind scheme

for the inviscid case. The scheme switches smoothly to the parabolic regime with the
forward Euler stability restriction, as σ grows with the numerical method mesh fixed.

An alternative scheme for this problem is obtained by a splitting, semi-Lagrangian
approach; see Section 9.3.1 and especially Example 9.8. We apply a fractional step using
(10.45a) with σ̂ = 0, calling the result {v̂j }, say. This is followed by a Crank–Nicolson
step for ut = σuxx , starting from {v̂j } to obtain vn+1. The time step size restriction is now
(10.45c) with σ̂ n

j = 0, for any σ .
We tried out these two schemes for the same initial and (periodic) boundary conditions

as in Example 10.4. There is no difficulty with boundary conditions for the split step here,
and no fancy splitting is required as the scheme is first order accurate anyway. Figure 10.10
records solution profiles at t = 1 for various values of σ . These are all calculated using the
splitting scheme with k = h = .001.

We then varied k and h for the different σ values to investigate what happens when
h � σ , h ≈ σ , and h � σ .

When h � σ the results are not qualitatively different from those displayed in Fig-
ure 10.10. However, the explicit upwind scheme requires exceedingly small time steps for
reasons of stability. This handicap is not shared by the splitting scheme.

When h ≥ σ both schemes work fairly well. However, again the splitting scheme
is better in localizing the region of fast solution variation. Near the sonic point, where vn

is slow and changes sign, the presence of σ that satisfies 0 < σ � h is suddenly felt in
(10.45), and this produces a jarring effect that is not apparent when using the other scheme.

Of course the explicit scheme step is simpler, and it can be significantly cheaper to
carry out in more than one space variable.
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

u(
t=

1)
σ=0
σ=.0001
σ=.001
σ=.01
σ=.1

Figure 10.10. Solving the slightly viscous Burgers equation, with initial and
boundary conditions as in Figure 10.2. Solution profiles at t = 1 are sharp when σ is
small and get more diffused as σ is increased. All solutions were computed using the
semi-Lagrangian scheme with k = h = .001.

The orderly progression to the limit σ → 0 demonstrated in Example 10.12 does
not hold automatically for any PDE that looks like a conservation law plus a higher order
differential term. The most obvious example of this is the KdV equation, which may be
viewed as adding a third derivative term νuxxx to the Burgers equation. Here the exact
solution under similar initial and boundary conditions is infinitely smooth and bounded,
and it remains wiggly so long as ν > 0. In particular, for Examples 5.1 and 7.6, where
ν ≈ .004 � 1 = α, the initial conditions were chosen such that the corresponding Burgers
equation develops a shock (without any oscillations) much before any of the KdV schemes
become unstable. See Exercise 7.17.

10.7 Exercises
0. Review questions

(a) Define monotonicity for a one-step difference scheme and explain its impor-
tance.
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(b) Show that the characteristic curves for a conservation law are straight lines even
when the PDE is nonlinear. Explain how solution discontinuities may arise even
if the initial data function of a pure IVP is smooth.

(c) What is a weak solution? What is a jump condition?

(d) Explain the difference between a shock wave and a rarefaction wave.

(e) The inviscid Burgers equation can be written as ut + 1
2 (u2)x = 0 and as ut +

uux = 0. Which of these forms is more appropriate to seek discretizations of
in the presence of solution discontinuities?

(f) What is a flux splitting and why is it important?

(g) The Godunov scheme is first order accurate and delivers results similar to those
of the upwind scheme in conservation form. Are these schemes one and the
same?

(h) Define the properties of total variation diminishing and total variation bounded
and explain their importance.

(i) What is a flux limiter?

(j) Explain the basic ideas behind the ENO scheme.

(k) Explain the basic ideas behind the WENO scheme.

(l) Define the SSP property. Explain why it is important for ENO schemes and why
it is unimportant for WENO schemes.

(m) What is an approximate Riemann solver?

(n) How does dimensional splitting help make most of this chapter’s material rele-
vant to practical problems?

(o) What is the difference between corner-transport upwinding and donor-cell up-
winding?

1. Devise an upwind scheme for the advection-diffusion equation (10.2) which avoids
spurious oscillations by being monotone and adds a minimal amount of artificial
diffusion. Your scheme should automatically adjust for any values of ν ≥ 0 and a.

2. Consider the advection equation with variable coefficient [76]

ut − (sin x) ux = 0

with initial condition
u(0, x) = sin x

and periodic BC on [−π, π ].
(a) Would you expect the solution to this problem to develop a discontinuity or

remain smooth for all time?

(b) Propose an appropriate discretization method, implement it, and report your
results at t = 1 and t = 10. These results don’t have to be perfect, but your
discussion of them should be.
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3. Prove the Rankine–Hugoniot jump condition (10.7).

4. Obtain the form of the rarefaction wave for Case (b) of Example 10.3 by plugging in
a solution of the form u(t, x) = g(x/t).

5. Consider the inviscid Burgers equation with initial data given by

u0(x) =

⎧⎪⎨⎪⎩
0 if − 1 ≤ x < −2/3,

1 if − 2/3 ≤ x < 0,

0 if 0 ≤ x < 1

and with periodic boundary conditions on [−1, 1].
(a) Find the exact solution for t ≤ 1.

(b) Implement the four schemes of Example 10.5. Find the solutions using h = 0.01
and h = 0.001 with μ = 0.9. Compare against the exact solution at t = 1.
What are your observations?

6. Verify the interpolation formulas for third order ENO and fifth order WENO recon-
structions given in (10.26).

Find the corresponding formulas for vj .

7. Show that the explicit midpoint scheme in the context of Section 10.3.3 is not SSP.

8. Implement either the finite volume or the finite difference version of the fifth order
WENO scheme in one space variable, using RK4 in time. Test your program as
follows.

(a) Construct a table of errors corresponding to Table 10.1. At least for t = .3 you
should get much smaller errors. Then construct also two plots for h = .1 and
h = .05 as in Figure 10.7. What are your observations?

(b) Solve the inviscid Burgers equation with periodic BC on [−1, 1] starting from
the initial data,

u(0, x) = sin(10πx)e−10x2
.

Plot the solution every few time steps and watch it change shape. At t = 1 you
should obtain a profile that matches that of Figure 10.11.

9. The Buckley–Leverett flux [116] for water is given by

f (u) = u2

u2 + a(1 − u)2
. (10.46)

Use your WENO program from the previous exercise above, or another program you
wrote implementing another suitable method, to integrate this conservation law with
the same initial conditions and periodic boundary conditions as in Exercise 8. You
should be able to retrieve (as far as the eye can tell) the results in Figure 10.12.
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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u

Figure 10.11. Solving the inviscid Burgers equation, starting from u(0, x) =
sin(10πx)e−10x2

. Several discontinuities are observed at t = 1.
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(a) u0 = .25 + .5 sin(πx); @t = 1.1
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0.05

0.1
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u

(b) u0 = sin(10πx)e−10x2 ; @t = 1

Figure 10.12. Solution profiles for the Buckley–Leverett conservation law with a = .5.
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10. Repeat the calculations of Example 10.10, and produce corresponding observations
and considerations, for the case where the eigenvalue λ1 = −1 of A is replaced by
λ1 = 1. The other eigenvalue remains the same. Thus


 =
⎛⎝1 0

0 −0.1

⎞⎠ , T =
⎛⎝cos(π/3) − sin(π/3)

sin(π/3) cos(π/3)

⎞⎠ , A = T 
T −1.

11. Consider the Euler equations for gas dynamics, (10.41).

(a) Write explicitly A(u) = f ′(u) and B(u) = g′(u).

(b) For each matrix find the eigenvalues and eigenvectors. Verify that the expres-
sions for T x and 
x in Example 10.11 are correct, and write the expressions
for B.
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Additional Topics

11.1 What first: Optimize or discretize?
Many differential systems arise as necessary conditions for a stationary or critical point of
a functional involving temporal and spatial derivatives. For instance, consider the Poisson
problem in two spatial variables with a mix of Dirichlet and Neumann conditions,

−�u = q in �, (11.1a)

u|∂�1 = 0,
∂u

∂n
|∂�\∂�1 = 0,

where ∂�1 is part of the boundary ∂�. Recall Section 3.1.3, and in particular equations
(3.18)–(3.20), as well as Example 3.8. This PDE problem is the Euler–Lagrange equation
(which is, to recall, the necessary condition) for the minimization of the functional∫

�

[|∇u|2 − 2qu
]
d� (11.1b)

over all functions u satisfying u|∂�1 = 0 that are bounded together with their gradient in
the L2(�)-norm. This steady state problem is clearly related to a parabolic diffusion one.

Another instance is the family of optimal control problems, where a functional de-
pending on a control function and state variables is to be minimized subject to satisfying
an ODE system. This is further described below; see Section 11.1.3. A third instance is the
variational principles briefly discussed in Section 6.2.3.

Our usual approach in this text has been to ignore the source of a given differential
system and consider discretization methods directly. Thus, the discretization of (11.1)
occurs after the optimization, in the sense that necessary conditions for the optimal or
critical solution are formed first. However, we have occasionally seen in Sections 3.1, 6.2.3,
and elsewhere that good numerical methods may be obtained by discretizing the functional
first, and only then proceeding to generate the necessary conditions. The discretization of
the variational principle corresponding to a functional such as (11.1b) is routine in finite
element methods: indeed, the piecewise linear basis functions described in Section 3.1.4
and Exercise 3.5 do not have the bounded second derivative required in (11.1a), but can

365
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be readily used to discretize (11.1b) where only first derivatives appear. Finite volume
techniques, which in general attempt to mimic finite element methods without the overhead
of operating with basis functions, likewise lead to a discretize-first approach.

The class of methods that are built on the principle of reasonably discretizing first is
generally smaller (because the eventual result can always be interpreted as a discretization
of the necessary conditions) and more structured than the optimize-first class. This often
allows for avoiding some pitfalls and concentrating on “the good ones,” as we demonstrate
below. The downside is in situations where some phenomenon or property of the exact
solution cannot be reproduced at the discrete variational level. An instance is bang-bang
control in optimal control problems. Another instance is the theoretically appealing finite
element method of streamline diffusion; see [101] and references therein. This method
is in a sense more faithful to the principle of multidimensional upwinding, and yet it is
typically not nearly as effective in practice as the methods described in Section 10.5 and
[116]. Upwinding methods that use the differential equations locally to decide on the
discretization itself do not lend themselves to being cast as the discretization of a general
optimization or variational formulation. Finally, in many situations a practical decision
about discretizing or optimizing first may depend on what adequate software is available
for the optimization problem or the differential system that result.

Let us next consider specific instances of the discretize-first approach.

11.1.1 Symmetric matrices for nonuniform spatial meshes

As an opener for Section 11.2 consider discretizing the boundary value ODE,

−(au′)′ = q, 0 < x < 1, (11.2)

u(0) = 0, u′(1) = 0,

where a(x) > 0 and q(x) are given, using a general, nonuniform mesh.
If we try any reasonable-looking 3-point discretization for (11.2), coupled with a

reasonable-looking discretization for the BC involving u′, then we could end up with a
tridiagonal nonsymmetric matrix problem to solve. On the other hand, if we discretize
instead the corresponding functional as specified in Exercise 3.4, then the obtained matrix
(for the obtained second order discretization) is symmetric positive definite!

This is even more important in several space variables, because iterative methods are
typically used for the matrix problem. If the matrix is symmetric positive definite, then a
preconditioned CG method can be applied, while the loss of symmetry obtained by using
a general finite difference discretization mandates use of a Krylov space method such as
preconditioned BICGSTAB, a method that is less safe and potentially less efficient; see
Section 9.4.

11.1.2 Efficient multigrid and Neumann BCs

Consider the usual 5-point formula for Poisson’s equation (11.1a), as in Example 3.4 with
a ≡ 1. In the early 1980s it was already known that in the case where there are no Neumann
BCs, i.e., ∂�1 = ∂�, a simple multigrid method solves the resulting linear system of
equations rather accurately in but a few sweeps over the grid (or mesh) points. However,
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this high efficiency, demonstrated in Table 9.5, deteriorated in the case where Neumann BCs
were present and discretized in certain simple ways. Special mechanisms were proposed to
improve the relaxation phase of the multigrid cycle for the latter case [33].

Yet, the problem of slowdown for Neumann BCs completely disappears if the dis-
cretization is carried out first on the corresponding functional (11.1b) as described in Sec-
tion 3.1.3. No special treatment of BC is required, and the problem handled in [33] is not
an issue! See, for example, [7].

11.1.3 Optimal control

Many applications give rise to optimal control problems. An instance is given by the
planning of a route for a vehicle traveling between two points, satisfying equations of
motion, such that fuel consumption is minimized or the travel time is as short as possible.
Typically, the m state variables y(t) satisfy an ODE system which involves a control function
u(t),

y′ = f(t, y, u), 0 ≤ t ≤ b. (11.3a)

This system may be subject to some side conditions,

y(0) = c, (11.3b)

although it is possible that y(b) is prescribed as well, or that there are no side conditions
at all. Inequality constraints are also popular, but let’s leave them out of the present quick
discussion; see Bryson and Ho [39] for full details on models and analytical methods. The
control u(t) must be chosen so as to optimize some cost function, say,

minimize J = φ(y(b), b) +
∫ b

0
K(t, y(t), u(t))dt (11.4)

subject to (11.3).
The necessary conditions for an optimum in this problem are found by considering

the Hamiltonian function

H(t, y, u, λ) =
m∑

i=1

λifi(t, y, u) + K(t, y, u),

where λi(t) are adjoint variables, i = 1, . . . , m. The conditions

y ′
i = ∂H

∂λi

, i = 1, . . . , m,

yield the state equations (11.3a), and in addition we have ODEs for the adjoint variables,

λ′
i = −∂H

∂yi

= −
m∑

j=1

λj

∂fj

∂yi

− ∂K

∂yi

, i = 1, . . . , m, (11.5a)

and

0 = ∂H

∂ui

, i = 1, . . . , mu. (11.5b)
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This gives a DAE in general; however, u(t) can often be eliminated from (11.5b) in terms
of y and λ, yielding an ODE system. Additional side conditions are

λi(b) = ∂φ

∂yi

(b), i = 1, . . . , m. (11.5c)

The system (11.3), (11.5) comprises a boundary value ODE (or DAE).
An indirect approach for solving this optimal control problem involves the numerical

solution of the boundary value ODE just prescribed. This is the optimize-first approach. In
contrast, a direct approach involves the discretization of (11.4), (11.3), and the subsequent
numerical solution of the resulting large, sparse, finite dimensional, constrained optimization
problem. Each of these two approaches has its advantages (and advocates). We have
already mentioned above that there are some phenomena that the direct approach could fail
to reproduce, but it often leads to significantly easier simulations as well [28, 27].

Finally, let us mention the issue of personal preference for mathematical analysis.
The discretization first approach, while often bringing more structured and conservative
discretizations to the fore, may seem on other occasions to bypass rigorous analysis of PDE
and ODE methods in appropriate function spaces. Indeed, there are papers in the literature
which describe successful practical methods, starting from some discrete optimization or
variational formulation, with the differential system serving as mere background. The latter
may cause strong reactions among certain mathematicians.

11.2 Nonuniform meshes
This discussion starts where Sections 3.1.5 and 2.4 have left off, and familiarity with that
material is assumed below. We have briefly surveyed in Section 3.1.5 methods for handling
nonuniform meshes and some discretization issues associated with them, but we have not
said much outside Section 2.4 about how such meshes are selected.

Let us state right away that the departure from uniform meshes in a PDE context can
be a costly adventure. Bookkeeping is harder, orders of accuracy can get reduced, basic
parallelism may be lost, and programming becomes more delicate. Thus, there has to be
a strong reason for choosing nonuniform meshes in practice! A spatial mesh changing
smoothly and pleasantly as a function of time may yield a pretty mesh motion animation,
but this does not necessarily translate to a more efficient PDE algorithm than one on a boring
uniform mesh that is only twice as dense in each direction, say.

However, there are often situations in practice where the solution is so much steeper
in certain narrow spatial locations than elsewhere, that a mesh which is dense only where
the solution derivatives are large can really be advantageous in terms of computational
efficiency. A solution profile of this sort is depicted in Figure 11.1. It was obtained, truth
to be told, by solving (9.45c), not (9.45a), using a basic discretization scheme on a uniform
200 × 200 mesh—this after all is a chapter on additional topics. Nonetheless, the point is
that solutions like this one with very sharp profiles do arise in practice, and a simplifying
transformation such as (9.45b) is often not available.

The concept of automatic mesh refinement is typically intertwined with some sort
of error control. An error indicator is calculated and used to decide how to select the
mesh, usually in an iterative, dynamic fashion as described below. The error indicator
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Figure 11.1. Solution u(T∗, x, y) of the problem defined by (9.45) for λ = 2 and
T∗ = .1975.

most often relates to the pointwise solution accuracy, if not directly, then indirectly through
local error measures. This practice in itself is not beyond question either, as we have
repeatedly seen in Chapters 6 and 7: in many cases pointwise accuracy is of less interest
than reconstruction of other, problem-specific quantities. However, despite the recent surge
of interest in geometric integration (GI) methods, controlling the solution error is still of
importance in many practical situations, and software packages often aim at satisfying such
desires in a soft sense. We now proceed to briefly describe mesh refinement methods.

11.2.1 Adaptive meshes for steady state problems

Let us say a few words first about adaptive meshes for steady state problems before con-
sidering time-dependent ones. The first distinction that must be made is between static and
dynamic mesh selection. In the static case we know ahead of time where a finer mesh is
needed, and the criteria for the mesh selection do not depend on estimates of the sought
solution. For example, the Poisson problem −�u = 1 on the unit square with homoge-
neous Dirichlet BC has a jump discontinuity in the second derivatives of the solution at the
square’s corners, because along the boundaries uxx = 0 and uyy = 0. Hence it makes sense
to have a finer mesh near these corners. This is even more important at the inner (reentrant)
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corner of an L-shaped domain, because the solution there is already discontinuous in its
first derivative. See, e.g., [171]; there are many other references for this. Another static
situation is where an approximate solution is computed in advance on a coarse mesh and
is then used for selecting the fine mesh. As usual with such ideas the coarse mesh must
be both fine enough to capture “danger zones” and coarse enough so that subsequent mesh
refinement in such zones is actually needed.

But now let us concentrate on the fully adaptive, dynamic case. Thus we envision a
sequence of meshes on which approximate solutions are computed. Each such solution is
then used in a monitor function M(u), according to which the algorithm decides where to
refine the next mesh. This is done until sufficient accuracy is achieved globally.

Typically the local truncation error for a method of order p behaves like h
p

j |u(p)(xj )|,
where hj is the mesh width at mesh point xj and u(p) is the pth derivative of the exact
solution evaluated locally. The error in the solution relates to the local truncation error
through an integral involving Green’s function, and this has the effect of producing an
error estimate of the same order but global: |v − u| = O

(
hp‖u(p)‖), where h = max hj .

Although this notation suggests a one-dimensional problem, the above lines extend to the
elliptic PDE case.

It may therefore appear that although we really want to control the global error, it is
practically better to control the local truncation error and to select the mesh accordingly,
as is approximately done for initial value ODEs. Many people do precisely this. The
local truncation error may be estimated for instance using more than one mesh by local
extrapolation [171].

However, this logic, although valid, does not always outweigh other considerations.
For boundary value problems the solution is evaluated globally anyway, i.e., an approximate
solution is found on a current mesh covering the entire domain �, and this solution is used
to decide if and where to refine the mesh to obtain a better solution in any case. Moreover,
for boundary value ODEs it is often possible to isolate a local leading term of the global
error and to use that to select the next mesh. We refer to Chapter 9 of [10] for much more on
this topic. The upshot is that for boundary value ODEs it makes practical sense to use the
approximate solution on the current mesh in order to estimate high derivatives of the solution
and then attempt to select an equi-distributing mesh where a quantity such as h

p

j |u(p)(xj )|
is kept roughly independent of j . This implies that where the solution derivatives are large
the mesh width is proportionately small.

For boundary value PDEs, typical expressions for the error are much more involved
for several reasons, including that the Green’s function is unbounded and that even the
local truncation error contains more than one contribution. Again estimating the local
truncation error based on previous meshes is an option. Also popular are equi-distribution
methods according to simple monitor functions such as the first derivative hi,j |∇ui,j | and the
arclength hi,j

√
1 + |∇ui,j |2. In both of these the approximate solution is used to estimate

the gradient locally and the step size is chosen so as to keep these quantities roughly equal
for all i, j .

For time-dependent problems the situation can become significantly more complex. If
the locations in space which require mesh refinement are stationary in time, then the previous
considerations apply, except of course that there is another source of error embodied in the
time discretization. One cause for concern is that a discretization scheme which is stable
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only if the time step k is restricted by a finite stability function S(h) can be severely limited.
This is because it is the smallest spatial mesh width which determines k. For parabolic
type problems this gives the nod to implicit schemes with unconditional stability, because
explicit schemes do not scale up well for fine meshes. Moreover, if there is a sharp front
moving as a function of time then the locations where the mesh must be fine vary in time
as well. These concerns gives rise to the methods briefly discussed next.

11.2.2 Adaptive mesh refinement

This method, or approach, was developed by Berger, Oliger, and Colella [24, 23]. It is aimed
at solving fluid flow problems such as those arising in hydrodynamics, and in particular
systems of hyperbolic conservation laws, in several space dimensions. An underlying
coarse grid covering the spatial domain allows finding a rough solution using a relatively
liberal time step even with an explicit method such as those considered in Chapter 10. This
allows rough error estimation which is used to determine where more resolution is needed.
Finer, higher resolution meshes in both space and time are then locally superimposed on
the coarse one, and the process is repeated until the desired accuracy is reached. Since the
fine meshes have smaller time steps associated with them we have a multi time-stepping
method. The fluxes between the fine and coarse meshes are manipulated so that conservation
is enforced.

There are software packages associated with this approach available at Berger’s web-
site,

http://cs.nyu.edu/berger

One of these is an AMR version of the package clawpack mentioned in Section 10.5.
AMR is very popular among physicists and other scientists and engineers; see, e.g.,

[64]. A library toolkit that allows AMR use in a parallel setting is provided in [124]. It uses
an Octree data structure and allows adjacent refinement levels to differ by a factor of two.

While the AMR approach has proved to be of great practical importance, it targets a
specific class of problems. A more general approach would be to allow the spatial mesh to
vary as a function of time for a given time-dependent PDE system. This is considered next.

11.2.3 Moving meshes

Much of the discussion in this book has concentrated on methods that attempt to separate
the treatment in time and space: semi-discretizations are devised in space or in time first,
and this is followed by a discretization in the remaining variable(s). This approach is often
convenient, but occasionally it is essential, as for ENO and WENO methods and for methods
that impose inequality algebraic constraints at the end of each time step.

With this in mind, a natural general first approach for adaptive mesh selection for
time-dependent problems is to apply a steady state algorithm as described in Section 11.2.1.
Such a method is sometimes called rezoning: we integrate a few steps in time using the
current spatial mesh, then pause to redistribute the mesh points in order to achieve a better
error equi-distribution according to some simple monitor function. A local interpolation
scheme must be applied to obtain missing solution values on the new spatial mesh, and
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this may introduce some smearing of sharp solution fronts, reminiscent of semi-Lagrangian
methods. Some procedure for estimating the time discretization error has to be incorporated
as well. Typically, an implicit time discretization suitable for stiff problems is used to avoid
multi time-stepping. The resulting procedure has seen use in practice.

A more conceptually elegant approach is to allow the mesh to move continuously
in time. We have considered allowing spatial mesh points to move in a prespecified way
in Example 7.5, but now we want this done automatically, as part of the solution process.
Thus, the mesh nodes may be considered as particles, and they are allowed to move in time,
obeying a moving mesh PDE (MMPDE) that describes a coordinate transformation that in
one dimension is written as x(ξ, t). In Section 3.1.5 we have described such a transformation
(see in particular (3.25) and Example 3.7), but here the stakes are much higher as the
transformation depends on time and is specified indirectly, in order to equi-distribute the
error according to some monitor function. There are several papers, particularly by Huang,
Russell, and their collaborators, which describe theoretical and practical details of these
ideas; see [40, 114] and references therein.

An essential concern with these methods is regarding the relative importance given to
the PDE problem to be solved vs. the work associated with the moving mesh. It is practically
important to ensure that the MMPDE plus the mesh transformation do not take over and
produce an overall much harder numerical problem to solve. Occasionally researchers
attempt to decouple the two tasks, obtaining methods that look more like rezoning but with
the time variation better taken into account in the mesh selection process.

For problems in one space variable, satisfactory results have been reported in the sense
of having a general purpose method. However, in more than one space variable, where finite
elements with varying, unstructured meshes are typically used in space, the success record
of such methods is more mixed. Several of these efforts have been devoted to parabolic
blowup problems, i.e., problems whose solution blows up in finite time [40].

11.3 Level set methods
Many applications involve tracking interfaces between different media as they move in
time. Classical instances are the simulation of crystal growth and the visualization of water
waves and other fluid motion. The latter is required for many purposes, including special
effects in large-budget movies.

Other applications do not originally involve motion, but an artificial motion may be
introduced. For instance, in the design of an object such as a turbine wing an optimal shape is
desired based on some criteria. An iterative algorithm aimed to achieve that optimal shape
may be viewed as dynamically altering the shape at each iteration. Thus, the interface
defining the shape is moving as a function of artificial time [9].

Let us restrict discussion, for simplicity, to two spatial variables. A propagating
interface is then a parametric curve in motion. However, tracking such a curve may not be
simple. For one thing, it represents a moving discontinuity. Imagine, for instance, a shape
S in two dimensions defined by its characteristic function χ = χS , such that χ(x, y) = 1
if (x, y) ∈ S and χ(x, y) = 0 otherwise. The characteristic function of course has a
discontinuity at the interface, which is where everything happens. Moreover, a method that
attempts to track interfaces directly may hit a snag, or at least become very complicated,
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Figure 11.2. A level set function φ defining shapes in two dimensions. The points
(x, y) where φ(x, y) = 0 define the interface between the regions inside and outside the
shapes.

if the topological nature of the interface changes, e.g., one body splits into two or more
separate ones, or some separate bodies merge into one.

An incredible amount of recent attention has been devoted to an alternative approach
that views an interface as the zero-level set of a smoother function φ(x, y) ∈ H1; see
Figure 11.2. Thus, the function φ whose derivative exists and is bounded describes the less
smooth characteristic function χ . The seminal paper in this area is Osher and Sethian [141],
although some similar ideas have been around before. These two authors have subsequently
written many papers as well as a book each [152, 140], but the area is still far from having
settled down. The devil is often in the detail here. A MATLAB toolbox written by Mitchell
thus greatly helps:

http://www.cs.ubc.ca/∼mitchell/ToolboxLS/index.html

The actual motion of the interface depends on the application in question, but it is
generally governed by a Hamilton–Jacobi equation,

φt + H(∇φ) = 0. (11.6)

For instance, in case of a known external velocity field w(t, x, y) we have H(∇φ) = w·∇φ,
and the equation for φ is advection with variable coefficients,

φt + w · ∇φ = 0. (11.7)
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The equation (11.6) is generally of hyperbolic type. But unlike in Chapter 10 we
expect φ to vary continuously. In fact, letting u = ∇φ and applying ∇ to (11.6) we have

ut + ∇H(u) = 0.

In one dimesion this is a conservation law for u. Anticipating discontinuities in u therefore
leads us to expect φ to be differentiable but perhaps not smoother than that.

For the external motion equation (11.7) we can apply the techniques from Chapter
10, especially the upwind methods discussed in Section 10.5. ENO, WENO, and SSP
techniques can also be applied, one dimension at a time [140], with the saving grace that
the judicious polynomial interpolation described in Section 10.3.2 is applied directly to φ,
which indeed is expected to be as smooth as the primitive function w of (10.25).

Other methods for solving (11.6) for different situations, as well as a particle level set
method, are discussed in Osher and Fedkiw [140], where several applications are given.
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backward differentiation

formula (BDF), 42, 108,
120, 256

backward Euler, 41, 125
box, 165, 167, 336
classical fourth order

Runge–Kutta (RK4), 44,
159

collocation, 47, 174, 188
collocation at Radau points, 108
compact, 211, 219
consistency, 40, 43, 123
contractivity, 349
convergence, 120
Crank–Nicolson, 124, 165
diagonally implicit

Runge–Kutta (DIRK), 61
dispersion, 211
dissipativity, 153, 278
Dufort–Frankel, 148
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392 Index

energy, 153
energy conserving, 148, 159
essentially nonoscillatory

(ENO), 345
Euler, 123
Eulerian, 246
explicit, 39, 120
explicit Runge–Kutta, 43
explicit trapezoidal, 42
exponential integration, 276
finite element, 110
finite volume, 100, 342
fixed point iteration, 80
flux limiter, 342
forward Euler, 37, 40, 43
four step Adams–Moulton

(AM4), 41
Gauss–Newton, 289
Gauss–Seidel, 313
Godunov, 338
implicit, 39, 121, 124
implicit Runge–Kutta, 47
implicit-explicit (IMEX), 276,

306
Jacobi, 313
L-stable, 56
Lagrangian, 34, 212, 246
Lax–Friedrichs, 159, 352
Lax–Wendroff, 156, 213, 279,

294
leapfrog, 121, 140, 158, 218
level set, 303
MacCormack, 158, 279, 294,

355
meshless, 246
midpoint, 47
monotone, 159, 328
monotonicity, 86
monotonicity preserving, 341
multiple shooting, 72
multistep, 39
multisymplectic, 211
Newmark, 87
Newton, 80
nodal, 113
nonnegative, 86

one-sided, 66
order, 40, 43, 48
particle, 212, 246
partitioned Runge–Kutta, 189
predictor-corrector, 60
Radau collocation, 256
Richtmyer, 158, 355
Rosenbrock, 60
Runge–Kutta (RK), 42, 120, 268
Runge–Kutta–Chebyshev, 55,

282
semi-implicit, 60, 70
semi-Lagrangian, 252, 305, 359
shooting, 72
spectral, 212, 242, 280
splitting, 359
Störmer–Verlet, 187, 191
stability, 120, 125
staggered midpoint, 191
stiff decay, 125
streamline diffusion, 366
strict stability, 126
strictly dissipative, 153
strong stability preserving

(SSP), 347
successive overrelaxation

(SOR), 313
symmetric, 66
symmetric successive

overrelaxation (SSOR), 313
symplectic, 211, 222, 276, 298
symplectic Euler, 187
theta, 84, 165
time reversible, 189, 195
total variation bounded, 341
total variation diminishing, 341
trapezoidal, 41
underrelaxation, 313
upstream, 34
upwind, 34, 359
variational, 194
weighted essentially

nonoscillatory (WENO),
350

method of lines, 71, 91, 108, 144
midpoint method
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dynamic equivalence to
trapezoid method, 207

mode, 3
modified Hamiltonian system, 196
modified PDE, 164–165, 178, 335
molecular dynamics, 205
monotone scheme, 159, 328, 340
monotonicity, 347
monotonicity preserving, 341
moving mesh, 229, 371–372
multigrid algorithm, 319
multigrid method, 281, 307, 316,

317, 367
multistep method, 39–42

Adams, 40
Adams–Bashforth, 40
Adams–Moulton, 41
backward differentiation

formula (BDF), 42
multisymplectic structure, 225, 231,

249, 298

Navier–Stokes equations, 157, 327
Newton’s method, 80
nodal representation, 75
nonlinear Schrödinger equation

(NLS), 34, 170, 298, 311
norm

logarithmic, 35
matrix, 25
vector, 25

Octree, 117, 371
operator splitting, 189, 234, 276
optimal control, 365, 367

adjoint variables, 367
Hamiltonian function, 367

optimization, 104
order of accuracy, 38, 40, 43, 48, 94
order reduction, 268
ordinary differential equation (ODE),

3, 6, 38
autonomous, 44
boundary value problem, 71
initial value problem, 71

orthogonal and trigonometric
polynomials, review, 77

orthogonal projection, 310

Padé approximation, 294
parabolic

differential operator, 93
problem, 7, 8
system, 10

parasitic wave, 213
Parseval’s equality, 29, 31
partial differential algebraic equation

(PDAE), 180
partial differential equation (PDE), 1

constant coefficient, 6
hyperbolic, 3
parabolic, 3

particle method, 67, 93, 246
phase velocity, 212
piecewise polynomial, 77
polynomial

Chebyshev, 55, 78
Legendre, 78
trigonometric, 79

polynomial interpolation, review, 74
preconditioned conjugate gradient

algorithm (PCG), 316
preconditioning, 281
predictor-corrector approach, 60
primitive function, 343
properly posed problem, 5

quadrature
Gaussian, 80
midpoint rule, 80
Simpson’s rule, 80
trapezoidal rule, 80

quadrature rule, review, 79
Quadtree, 117
quasi-linearization, 292
quasilinearization, 233

Radau collocation, 48
Radau points, 47
Rankine–Hugoniot jump condition,

332
rarefaction wave, 333
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region of absolute stability, 53, 144,
145

regularization, 289
relaxation, 317
relaxation method, 312–314
reviews

discrete and fast Fourier
transforms, 82–83

fixed point iteration and
Newton’s method, 80–81

Fourier transform, the
continuous case, 29–30

Fourier transform, the periodic
case, 31–32

function spaces, 28–29
Gaussian elimination and matrix

decomposition, 73–74
iterative methods for linear

systems, 312–320
matrix norms and eigenvalues,

25–28
matrix power and exponential,

30–31
orthogonal and trigonometric

polynomials, 77–79
polynomial interpolation, 74–77
quadrature rule, 79–80
Taylor’s theorem, 24–25

Reynolds number, 327
Riemann problem, 332, 333, 339, 352

approximate solver, 355
Rosenbrock method, 60, 311
roundoff error, 22
Runge–Kutta method, 42–48

semi-discretization, 255, 342
semi-group, 12
semi-implicit backward Euler, 70
semi-Lagrangian method, 252, 305
shallow water equations, 250, 301
shock

capturing, 329
jump condition, 332

similarity solution, 333, 334
similarity transformation, 27
simultaneously diagonalizable, 275

sine-Gordon equation, 221
singular value, 28
smooth particle hydrodynamics

(SPH), 246
smoother, 7, 22
Sobolev space, 28
solution operator, 12
sonic point, 340, 350
sound synthesis, 225
space variable, 1
specral method, 247
spectral

accuracy, 243
collocation method, 243
Galerkin method, 243

spectral derivative, 83
spectral method, 93, 242, 300, 304,

325
spectral radius, 26, 139
speech synthesis, 225
splitting, 312
splitting method, 189, 234, 276, 292,

356
spurious mode, 215
stability, 17, 120, 125

0-stability, 215
A-stability, 54, 124
AN-stability, 207
condition, 18, 19
conditional, 125
function, 125
Godunov–Ryabenkii condition,

264
L-stability, 56
ODE methods, 53
region, 53, 144
stiff decay, 125
unconditional, 125
unconditionally unstable, 18
von Neumann, 139, 143

staggered grid, 94
staggered mesh, 94, 101, 117
stationary iterative method, 312
steady state, 12
steepest descent, 314, 323
step size, 39
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stiff decay, 56, 125, 256
stiffness, 23, 55, 296

transient, 57
Strang splitting, 191
strict dissipativity, 278
strong stability preserving (SSP), 347
summation by parts, 171
superposition, 352
symbol, 6, 154
symmetric discretization, 94
symplectic

map, 183
method, 70, 185

symplectic discretization, 222

Taylor’s theorem, review, 24
tensor product mesh, 115, 116
test equation, 53
theorem

convergence-stability
equivalence, 126

monotonicity and TVD, 341
ODE convergence, 50
stability for perturbed problem,

129
stability of dissipative schemes,

154
symplectic perturbation, 196
well-posed ODE, 49

time variable, 1
total variation (TV), 104, 341

bounded (TVB), 341
diminishing (TVD), 341

trapezoid method
dynamic equivalence to

midpoint method, 207
triangle mesh, 111
trigonometric

basis function, 31
polynomial, 79

truncation error, 94
two time scales, 297, 301

upstream difference, 34
upwind scheme, 34

variational
approach, 94
form, 111
principle, 109, 365

variational method, 194–195
viscosity, 1
von Neumann stability condition,

139, 143, 276

warm start, 283
wave equation, 8, 217, 259
wave number, 3, 6, 212
weak solution, 331
weighted essentially nonoscillatory

scheme (WENO), 328, 350,
362

well-posed problem, 4, 49


