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Preface 

The study of scan statistics and their applications to many different scientific 
and engineering problems have received considerable attention in the literature 
recently. In addition to challenging theoretical problems, the area of scan statis
tics has also found exciting applications in diverse disciplines such as archaeol
ogy, astronomy, epidemiology, geography, material science, molecular biology, 
reconnaissance, reliability and quality control, sociology, and telecommunica
tion. This will be clearly evident when one goes through this volume. 

In this volume, we have brought together a collection of experts working in 
this area of research in order to review some of the developments that have taken 
place over the years and also to present their new works and point out some 
open problems. With this in mind, we selected authors for this volume with 
some having theoretical interests and others being primarily concerned with 
applications of scan statistics. Our sincere hope is that this volume will thus 
provide a comprehensive survey of all the developments in this area of research 
and hence will serve as a valuable source as well as reference for theoreticians 
and applied researchers. Graduate students interested in this area will find 
this volume to be particularly useful as it points out many open challenging 
problems that they could pursue. This volume will also be appropriate for 
teaching a graduate-level special course on this topic. 

Our thanks go to all the authors who showed great enthusiasm for this 
project and shared some of their recent research on scan statistics. We fully 
appreciate their cooperation in sending their manuscripts on time and in helping 
us with the review of some of the materials. Next we express our sincere thanks 
to Mrs. Debbie Iscoe for the excellent typesetting of the entire volume. Final 
thanks go to Mr. Wayne Yuhasz (Editor, Birkhauser, Boston) for taking a keen 
interest in this project. 

Storrs, Connecticut 
Hamilton, Ontario 

xi 

Joseph Glaz 
N. Balakrishnan 

October 1998 
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1 

Introduction to Scan Statistics 

Joseph G laz and N. Balakrishnan 

University of Connecticut, Storrs, CT 
McMaster University, Hamilton, Ontario, Canada 

Abstract: In this chapter, we define discrete and continuous scan statistics 
in one-dimensional as well as multidimensional cases. We then mention some 
related applications and open problems. We also present a brief account of 
order statistics which naturally arise in the study of scan statistics. 

Keywords and phrases: Order statistics, discrete scan statistics, continuous 
scan statistics, Bonferroni inequalities, circular scan statistics, product-type 
inequalities, conditional scan statistic 

1.1 Introduction 

In this chapter, we introduce scan statistics and present some basic definitions 
and results concerning them. We will present the "bare-bones" details on scan 
statistics with which the reader of this volume should first of all become familiar. 
With this as background, we feel that the reader will be able to understand and 
appreciate all the other developments on scan statistics that are presented in 
subsequent chapters of this volume. 

Since order statistics come in naturally in the study of scan statistics, we 
first present a brief and basic account of order statistics in Section 3. In Section 
4, we define discrete scan statistics in the one-dimensional case. In Section 
5, discrete scan statistics are defined for the multidimensional case. In these 
sections, we also describe briefly all the results presented in subsequent chapters 
of this volume and mention some related applications as well as open problems 
in this area of research. In Section 6, we define continuous scan statistics in 
the one-dimensional case. Finally, in Section 7, continuous scan statistics are 
defined for the multidimensional case. Once again, we also briefly outline in 
these sections the results presented in other chapters of this volume and point 
out some interesting applications as well as open problems in this area. 
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4 Joseph Glaz and N. Balakrishnan 

1.2 A Quick Glimpse 

The chapters in this volume, in addition to illustrating some applications of scan 
statistics, all deal with methods of evaluating distributions of scan statistics in 
the discrete or the continuous case. In the discrete case, distributions of scan 
statistics for the one-dimensional case have been examined by Chen and Glaz 
in Chapter 2, Krauth in Chapter 3, Naus in Chapter 4, Koutras and Balakrish
nan in Chapter 11, and Fu, Lou, and Chen in Chapter 13; distributions of scan 
statistics for the multidimensional case have been discussed by Chen and Glaz 
in Chapter 2 and Naus in Chapter 4. Similarly, in the continuous case, distribu
tions of scan statistics for the one-dimensional case have been investigated by 
AIm in Chapter 5, Huffer and Lin in Chapters 6 and 7, Wallenstein in Chapter 
8, Lin in Chapter 9, and Leung and Yamashita in Chapter 12; distributions 
of scan statistics for the multidimensional case have been discussed by AIm in 
Chapter 5, Mansson in Chapter 10, and Kulldorff in Chapter 14. 

As will be evident from this volume, scan statistics have found many im
portant applications. For example, scan statistics are used to test the null 
hypothesis of uniformity against a clustering alternative. Scan statistics have 
also been used in several different scientific and engineering problems. The 
diverse areas of applications highlighted in this volume include archaeology 
(Chapter 14 by Kulldorff), astronomy (Chapter 14 by Kulldorff), epidemiology 
(Chapter 3 by Krauth, Chapter 8 by Wallenstein, and Chapter 14 by Kulldorff), 
linguistics (Chapter 4 by Naus), geography (Chapter 14 by Kulldorff), mate
rial science (Chapter 5 by AIm), molecular biology and genetics (Chapter 4 by 
Naus, Chapter 12 by Leung and Yamashita, and Chapter 13 by Fu, Lou, and 
Chen), reconnaissance (Chapter 2 by Chen and Glaz, and Chapter 14 by Kull
dorff), reliability and quality control (Chapter 2 by Chen and Glaz, Chapter 
4 by Naus, and Chapter 11 by Koutras and Balakrishnan), telecommunication 
(Chapter 5 by AIm), and sociology (Chapter 2 by Chen and Glaz, and Chapter 
4 by Naus). 

In addition to such diverse and fascinating applications, the study of scan 
statistics also involves many sophisticated and intricate theoretical methods and 
techniques. Among these are included Bonferroni-type inequalities (Chapter 2 
by Chen and Glaz, Chapter 3 by Krauth, Chapter 7 by Huffer and Lin, and 
Chapter 9 by Lin), compound Poisson approximations (Chapter 2 by Chen 
and Glaz, Chapter 7 by Huffer and Lin, Chapter 9 by Lin, and Chapter 12 by 
Leung and Yamashita), finite Markov chain embedding (Chapter 13 by Fu, Lou, 
and Chen), Karlin-McGregor approach to multiple candidate ballot problems 
(Chapter 8 by Wallenstein), large deviation results (Chapter 13 by Fu, Lou, 
and Chen), linear programming (Chapter 7 by Huffer and Lin), Markov chain 
modeling (Chapter 7 by Huffer and Lin, and Chapter 9 by Lin), Monte Carlo 
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approach to testing of hypotheses (Chapter 14 by Kulldorff), order statistics 
and spacings (Chapter 6 by Huffer and Lin), Poisson approximations (Chapter 
2 by Chen and Glaz, Chapter 5 by AIm, Chapter 10 by Mltnsson, and Chapter 
12 by Leung and Yamashita), probability generating functions (Chapter 11 
by Koutras and Balakrishnan), product-type approximations and inequalities 
(Chapter 2 by Chen and Glaz, and Chapter 4 by Naus) , Chen-Stein method 
(Chapter 10 by Mfmsson), and symbolic computing (Chapter 6 by Huffer and 
Lin, and Chapter 9 by Lin). 

With such a plethora of theoretical methods and techniques and fascinating 
and diverse applications, the field of scan statistics will provide a rich and 
exciting area of research. We sincerely hope that this volume will provide a 
comprehensive survey of all the developments in this area and thus serve as 
a valuable source as well as reference for theoreticians and applied researchers 
involved (or even interested) in this topic of research. 

1.3 Order Statistics 

Let Xl, X2, ... , Xn be n arbitrarily distributed random variables. Let us denote 
XI:n ~ X2:n ~ ... ~ Xn:n for the variables obtained by arranging the n Xi'S 
in nondecreasing order of magnitude. Then, Xi:n (i = 1,2, ... , n) are called 
order statistics. Note that, in this definition, we need the Xi'S to be neither 
independent nor identically distributed. However, most of the developments 
in the area of order statistics have been based on the assumption that the 
variables Xi'S are independent and identically distributed; see, for example, 
Sarhan and Greenberg (1962), David (1981), Arnold and Balakrishnan (1989), 
Balakrishnan and Cohen (1991), Arnold, Balakrishnan, and Nagaraja (1992), 
and Balakrishnan and Rao (1998a,b). 

Let us now denote the population cumulative distribution function by F(x) 
and the probability density (mass) function by f(x). Then, it can be readily 
shown that the cumulative distribution function of Xi:n (1 ~ i ~ n) is 

Fi:n(X) = P(Xi:n ~ x) = ~ (~) {F(x)Y {I - F(x)}n-r (1.1) 

and, in particular, 

FI:n(X) = 1- {1- F(x)}n (1.2) 

and 

(1.3) 
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Instead of the familiar binomial form in (1.1), the cumulative distribution func
tion of Xi:n (1 ::; i ::; n) can also be written in a negative binomial form as 

(1.4) 

If the population is absolutely continuous, then we can differentiate the 
expression of the cumulative distribution function in (1.1) to readily obtain the 
probability density function of Xi:n (1 ::; i ::; n) as 

In this case, we can also similarly write the joint density function of Xil:n, X i2 :n, 
000, Xik:n (1 ::; il < i2 < 000 < ik ::; n) as 

f il,i2, ... ,ik:n(XI, X2, 0 0 0, Xk) 
C{F(xI)}il-I{F(X2) - F(xd}i2-i1-1 

X 000 X {F(Xk) - F(Xk_l)}ik-ik-1-1 

x{l- F(Xk)}n-ik f(xdf(X2) 0 0 0 f(Xk), Xl < X2 < 000 < Xk, (1.6) 

where 

n! 
C = (il - 1)!(i2 - il - I)! 0 0 0 (ik - ik-l - l)!(n - ik)! 

(1. 7) 

If the population is discrete, then from (1.1) we can immediately write the 
probability mass function of Xi:n (1 :::; i :::; n) as 

or, equivalently, as 

Kn(x) - Kn(x-) 

~ (~) [{F(x)Y {I - F(x)}n-r 

-{F(x-)Y{l- F(x_)}n-r] 

n! IF (X) i-I n-i 
kn(x) = C _ 1)'( _ ')' u (1- u) duo 

Z 0 n Z 0 F(x-) 

(1.8) 

(1.9) 

Similarly, we can express the joint probability mass function of Xil:n, X i2 :n, 
00 oXik:n (1::; il < i2 < 000 < ik::; n) as 

j .. '. (Xl X2 Xk) 11,'l2,.·.,tk·n , , ... , 
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where io = 0, Uo = 0, C is as defined in (1.7), and B is the k-dimensional space 
given by 

B {(Ul,'" ,Uk): Ul ~ U2 ~ ... ~ Uk, F(xr -) ~ Ur ~ F(xr ) 

forr=1,2, ... ,k}. 

From the probability density (mass) functions given above, we can readily 
write down the formulas for moments and joint moments of order statistics. 
Explicit expressions are available for a number of parent distributions and for 
others numerical computations are necessary; see, for example, Harter and Bal
akrishnan (1996). Several recurrence relations and identities satisfied by dis
tributions as well as moments of order statistics are available in the literature; 
see David (1981) and Arnold and Balakrishnan (1989). These sources will also 
provide extensive reviews of various bounds and approximations connected with 
distributions and moments of order statistics. 

Bounds are also available on probabilities associated with order statistics 
with many of the well-known ones being of the Bonferroni type. Specifically, 
let El , E2, ... , En be n events. Then, the Boole's formula gives 

P (0 Ei) = ~P(Ed - ~~P(Ei n Ej) + ... + (_I)n-lp (n Ei) 
~=l ~ ~<J ~=l 

(1.11) 

with the sum of an odd number of terms providing an upper bound and the 
sum of an even number of terms providing a lower bound for the probability of 
occurrence of at least one of the Ei'S. If we take the event Ei to be the event 
{Xi > x} and assume that the joint distribution of Xi'S is symmetrical in the 
Xi (which is more general than the assumption that the Xi'S are Li.d.), (1.11) 
becomes 

P(Xn:n > x) nP(Xl > x) - (;)P(Xl > x,X2 > x) + ... 

+(-It-l p(Xl > x, ... ,Xn > x). (1.12) 

These give rise to a series of inequalities, termed as Bonferroni inequalities; for 
example, the first of these inequalities are 

~P(Ei) - ~~P(Ei n Ej ) ~ P (0 Ei) ~ ~P(Ei)' 
~ ~<J ~=l ~ 

(1.13) 

Strictly speaking, since L:i P(Ei ) can exceed 1, we may modify the upper bound 
in (1.13) to be min(L:i P(Ei), 1). This upper bound can be still further sharp-
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ened as shown by Kounias (1968). Since 

we have 

and consequently, 

P (Q E;) ~ PtE;) + ~ PtE; n Ej ), 

j=/-i 

n 

< P(Ei ) + L {P(Ej ) - P(Ei n Ej)} 
j=l 
j=/-i 

n n 

LP(Ei) - LP(EinEj ) 
i=l j=l 

j=/-i 

(1.14) 

Notice that in the special case when P(Ei) = P(El) for all i and P(Ei n Ej ) = 

P(E1 n E2) for all i # j, (1.14) simplifies to 

P (Q Ei) :'S nP(Ed - (n - I)P(EI n E2). (1.15) 

Various further refinements, improvements and generalizations are available 
in the literature. We refer the interested readers to Galambos and Simonelli 
(1996). 

Order statistics also possess some very interesting general properties. For 
example, the sequence of order statistics arising from an absolutely continuous 
distribution forms a Markov chain whereas the sequence of order statistics aris
ing from a discrete distribution does not form a Markov chain. Furthermore, 
in the case of absolutely continuous distribution, the conditional distribution 
of Xj:n given Xi:n = x (for j > i) is exactly the same as the distribution of the 
(j - i)th order statistic in a sample of size n - i from the population distribution 
truncated on the left at x; similarly, the conditional distribution of Xi:n given 
X j :n = x (for i < j) is exactly the same as the distribution of the ith order 
statistic in a sample of size j - 1 from the population distribution truncated on 
the right at x. 

In addition to these nice general properties, order statistics from a few 
specific distributions also possess some very interesting and useful distributional 
properties. For example, in the case of the standard exponential distribution, 
the normalized spacings defined by 

Zi = (n - i + 1)(Xi:n - Xi-l:n) , i = 1,2, ... , n, (1.16) 
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with Xa:n == 0, are all independent and identically distributed once again as 
standard exponential. Also, in this exponential case, the sequence of order 
statistics form an additive Markov chain. 

In various parts of this volume, some of these properties and results of order 
statistics will be utilized in the study of scan statistics. 

1.4 Discrete Scan Statistics in the One-Dimensional 
Case 

Let Xl, ... , X N be a sequence of integer valued random variables. For 2 ::; m ::; 
N - 1 consider the moving sums of m consecutive observations. The linear 
unconditional discrete scan statistic is defined as 

Sm = max It, 
l::;t:SN-m+l 

where It = 2:~!~-1 Xi. The circular unconditional discrete scan statistics is 
defined as 

S:n = max It. 
l::;t:SN 

Sm and S':n are used in testing the null hypothesis that the observations are 
identically distributed as Fa, while under the alternative hypothesis, for some 
1 ::; i ::; N - m + 1 and 1m = {i, ... , i + m - I}, Xj, j E 1m, are distributed 
as H, and Xj, j E {1, ... ,N}\Im are distributed as Fa. For independent and 
identically distributed (i.i.d.) integer valued observations, the generalized likeli
hood ratio test rejects the null hypothesis in favor of the alternative hypothesis 
if Sm 2: k or S':n 2: k, where k is determined from a specified probability of type 
I error [Glaz and Naus (1991)]. 

Most of the research has focused on the case when Xl, ... ,XN are i.i.d. 
non-negative integer valued random variables and most of the results have been 
developed in particular for 0-1 i.i.d. Bernoulli trials. The case of an arbitrary 
sequence of i.i.d. integer valued random variables has been discussed by Glaz 
and Naus (1991); the nonidentical case for independent 0-1 Bernoulli trials has 
been treated by Wallenstein, Naus and Glaz (1994), and Koutras and Alexan
drou (1995); the dependent case for 0-1 Markov trials has been investigated by 
Glaz (1983) and Koutras and Alexandrou (1995); and the case of the multino
mial random vector has been discussed by Krauth (1992a,b) and Wallenstein, 
Weinberg and Gould (1989). In this volume, the one-dimensional discrete scan 
statistics are discussed by Chen and Glaz in Chapter 2, Krauth in Chapter 3, 
Naus in Chapter 4, Koutras and Balakrishnan in Chapter 11, and Fu, Lou, and 
Chen in Chapter 13. Many interesting applications, related references and open 
problems are presented in these chapters. 
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To implement a testing procedure based on the scan statistics for the hy
potheses specified above, accurate approximations for P(Sm 2: k) or P(S:n 2: k) 
are needed. In what follows, we will outline the difficulties and the methods 
that are currently available for evaluating P(k; m, N) = P(Sm 2: k) only. These 
methods can be extended to handle the circular scan statistics [Chen and Glaz 
(1998)] and will not be discussed here. Since 

{
N-m+l } 

P(Sm2:k)=P ttd (Yt 2: k) , 

one has to evaluate the probability of a union or an intersection of the se
quence of dependent events {(Yt 2: k)}~lm+l. Exact formula for P(Sm 2: k) 
is available only for 0-1 Li.d. Bernoulli trials [Naus (1974)], and even for this 
special case it is computable only for a restricted range of parameters. Koutras 
and Alexandrou (1995), using the Markov Chain embedding technique from Fu 
and Koutras (1994), have presented recursive equations that can be used to 
evaluate the tail probabilities for discrete scan statistics for a sequence of 0-1 
trials. This computational approach is also feasible for a restricted range of 
parameters. Therefore, accurate approximations and inequalities are especially 
needed. 

Two types of approximations have been developed for P(Sm 2: k). The first 
is the Poisson-type approximations. This method is using the fact that if we 
define 

{ I if Yt 2: k 
It = 0 if Yt < k, 

then, under certain conditions, the distribution of L::~lm+l Yt can be approx
imated by a Poisson distribution with mean A = L::~lm+1 E(It) [Darling and 
Waterman (1986) and Goldstein and Waterman (1992)]. Refinement of this 
method to account for clumping and compound-Poisson approximations are 
presented by Chen and Glaz in Chapter 2 of this volume. 

The second method used in approximating P(Sm 2: k) is the product-type 
approximation [Naus (1982) and Glaz and Naus (1991)]. For N > 3m, a third
order product-type approximation is given by 

P(Sm2:k):::::Jl-q3m q3m , ( )
N-3m 

q3m-l 

where for j 2: m, qj = 1- P(k;m,j) [Glaz and Naus (1991)]. This method 
exploits the positive dependence structure between the successive elements in 
the sequence of random variables {Yt}~lm+1 . In most cases, the product-type 
approximations are the most accurate ones [Chen and Glaz in Chapter 2, and 
Chen (1998)]. 
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Two methods that provide accurate inequalities for P(Sm 2: k) have been 
discussed. The first is the method of product-type inequalities introduced in 
Glaz and Naus (1991). For N > 3m, a third-order product-type inequality is 
given by 

1- q3m[1- (q2m-l - q2m)!N-3m oS P(Sm ;> k) oS 1- [ q3m 1 N-3m' 
1 + q2m-l-q2m 

q3m 

The second method is the Bonferroni-type approach investigated for the dis
crete scan statistics in Chen (1998). A related upper Bonferroni-type inequality 
has been presented in Glaz and Naus (1991). From the numerical results, it is 
evident that in most cases the product-type inequalities produce more accurate 
results. 

Let Xl, ... , XN be a sequence of integer valued random variables. Suppose 
we are given that 2:f:1 Xi = a. Then, conditional on 2:f:1 Xi = a, Sm (S:n) is 
referred to as a linear (circular) conditional discrete scan statistic. These statis
tics have applications in many areas of science including meteorology [Moye 
et al. (1988)], minefield detection [Glaz (1996)], molecular biology [Altschul 
and Erickson (1988), Arratia, Goldstein, and Gordon (1989), Fu and Curnow 
(1990), Karlin et al. (1983), and Naus and Sheng (1997)], quality control and 
reliability theory [Balakrishnan, Balasubramanian, and Viveros (1993), Chao, 
Fu, and Koutras (1995), Fu and Koutras (1994), Glaz (1983), Greenberg (1970), 
and Saperstein (1972, 1973)], and radar detection [Bogush (1972) and Nelson 
(1978)]. For the special case of 0-1 Li.d. Bernoulli trials, Naus (1974, Theorems 
1 and 2) has derived exact formulae for 

in terms of a sum of determinants of Lx L matrices where L = [;;:] , and [xl is 
the integer part of x. That formula can be evaluated only for a restricted range 
of parameters. Exact formula is not available for the circular case. Pro duct
type and Poisson-type approximations for the distribution of these linear and 
circular conditional scan statistics for 0-1 i.i.d. Bernoulli, binomial and Poisson 
models have been discussed by Chen (1998) and Chen and Glaz in Chapter 2 
in this volume. Bonferroni-type inequalities have been investigated by Chen 
et al. (1998) just for the 0-1 Li.d. Bernoulli trials. Inequalities for general 
i.i.d. nonnegative integer valued random variables are still not available for the 
conditional case. 
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1.5 Discrete Scan Statistics in the Multidimensional 
Case 

Let Xij, 1 ~ i ~ NI, 1 ~ j ~ N2, be a sequence of integer valued random 
variables. The scanning window here is a discrete rectangle of size ml x m2. 
The two-dimensional unconditional discrete scan statistic is defined as 

where 

i2+m2-I il +ml-I 

Yi1,i2 = L L Xij. 
j=i2 i=il 

Areas of applications for this two-dimensional scan statistic include astron
omy [Darling and Waterman (1986)], computer science [Pfaltz (1983)], ecology 
[Cressie (1991) and Koen (1991)]' epidemiology [Cressie (1991)]' image analysis 
[Rosenfeld (1978)], pattern recognition [Panayirci and Dubes (1983)], reliability 
theory [Barbour, Chryssaphinou, and Roos (1996), Koutras, Papadopoulos, and 
Papastavridis (1993), and Salvia and Lasher (1990)], and minefield detection via 
remote sensing [Muises and Smith (1992) and Smith (1991)]. We are interested 
in developing accurate approximations and inequalities for P(8mllm2 2: k). In 
this case, exact results are not yet available. For the special case of 0-1 i.i.d. 
Bernoulli trials Darling and Waterman (1986) have discussed a Poisson ap
proximation. For 0-1 i.i.d. Bernoulli trials, for the special case of k = m 2 , 

some approximations have been discussed by Barbour, Chryssaphinou, and 
Roos (1996), Koutras, Papadopoulos, and Papastavridis (1993), Roos (1993), 
and Sheng and Naus (1996). Refined Poisson-type and product-type approxi
mations and Bonferroni-type inequalities have been investigated by Chen and 
Glaz (1996) for the i.i.d. Bernoulli, binomial and Poisson models. In this vol
ume, Chen and Glaz (in Section 5 of Chapter 2) have presented a survey of these 
results. Moreover, approximations are derived for the expected size and stan
dard deviation of 8m1 ,m2 • Numerical results indicate that these approximations 
perform well. In this volume, Naus (in Section 4 of Chapter 4) has mentioned 
the two-dimensional scan statistic and has presented interesting references for 
a different method of scanning two-dimensional sequences of symbols. 

To conclude this brief introduction to the two-dimensional discrete scan 
statistic, we would like to mention that no approximations or inequalities are 
available for the two-dimensional conditional discrete scan statistic. Also, no 
results are available for higher dimensional discrete scan statistics. In particular, 
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the three-dimensional scan statistics could be of interest in astronomy, biology, 
medicine and oceanography. 

1.6 Continuous Scan Statistics in the 
One-Dimensional Case 

Let {Xt, t ~ O} be a Poisson process with intensity A on (0,00). Xt is the number 
of points (events) that have occurred in the interval (0, t]. For ° < w < T, let 
the associated scanning process Yt(w) = X Hw - X t denote the number of 
points (events) that have occurred in the interval (t, t + w). An unconditional 
one-dimensional scan statistic is defined as 

Sw = Sw(A, T) = max Yt(w), 
O<t~T-w 

where (0, T] is the total interval in which the Poisson process is observed. Ap
plications of this scan statistic have been discussed in many problems in science 
and engineering, including epidemiology [Wallenstein and Neff (1987)], molecu
lar biology [Karlin and Brendel (1992)]' material science [Newell (1963)], queue
ing theory [Glaz (1981)]' visual perception [Glaz (1979), Leslie (1969), Ikeda 
(1965) and Van de Grind (1971)], and telecommunication [AIm (1983)]. For 
convenience, in the above definition of the scan statistic, three parameters have 
been used. In fact, AW and wiT are sufficient. Moreover, without loss of gen
erality, one can assume that T = 1, by redefining w to be wiT and A to be 
AT. 

The exact distribution of Sw has been derived by Wallenstein and Naus 
(1974) and Huntington and Naus (1975). The expression they derived can 
be evaluated for a restricted range of parameters. Therefore, accurate ap
proximations and inequalities have been investigated by several authors [AIm 
(1983), Naus (1982), Samuel-Cahn (1983), and Wallenstein and Neff (1987)]. 
For L ~ 2, N = AW and T = Lw, Naus (1982) has derived accurate product
type approximations for P*(k; AT, wiT) = P(Sw ~ k) in terms of exact results 
for P* (k; iN, 1/i), i = 2,3 : 

P*(k;LA', 11L) ~ 1- Q3(Q3IQ2)L-3, 

where Qi = 1-P*(k; iN, 1/i), i = 2,3. The above approximation is quite accu
rate even ifTlw is not an integer and we use L = [Tlw]. Moreover, Naus (1982) 
has developed a product-type approximation for the circular unconditional scan 
statistic. 

AIm (1983), by analyzing the primary and secondary up crossings of level n 
by a in the scanning process associated with the Poisson process, arrived at the 
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following approximation: 

P*(k; AT, wiT) = 1- FAW(n - 1) exp [- (1- A:) A (T - w)PAW(n - 1)] , 

where FAW(n -1) and PAW(n -1) are the cumulative distribution function and 
the probability mass function, respectively, of a Poisson random variable with 
mean AW, evaluated at n - 1. This approximation performs well and is easy to 
evaluate. Other accurate approximations for P*(k; AT, w /T) have been derived 
by Samuel-Cahn (1983) and Wallenstein and Neff (1987). Accurate product
type inequalities for P*(k;AT,w/T) have been derived by Janson (1984). 

Large deviation approximations for the distribution of scan statistics for 
a one-dimensional Poisson process on the unit interval have been derived by 
Loader (1991). His approach also yields approximations for a certain class of 
nonhomogeneous Poisson processes and in the case when the scanning window is 
not fixed. Approximations for the distribution of the scan statistic for a certain 
class of nonhomogeneous Poisson process and their applications to evaluate the 
power of testing procedures based on scan statistics have been discussed by 
Wallenstein, Naus, and Glaz (1995). 

Let {Xt, t ~ o} be a Poisson process with intensity A on (0, 00). If one 
conditions on the number of observations in the interval (0, T] or the time 
interval in which the (n+ l)th observation is recorded, after a proper rescaling, 
the null hypothesis of testing uniformity reduces to testing that the times (or 
locations) of the n observations follow a uniform distribution on the interval 
(0,1]. 

Let Xl, ... ,XN be a sequence of independent uniformly distributed obser
vations in the interval (0,1]. For ° < w < 1 and 0< t::; 1- w, let Yt(w) be the 
number of observations in the interval (t, t + w]. Define 

Sw = max Yt(w). 
O<t::;I-w 

Sw is known as the linear conditional scan statistic and is used to test the 
null hypothesis that the observations are uniformly distributed in (0,1] against 
a clustering alternative. For a certain class of alternatives, Sw has several 
optimal properties, including being a generalized likelihood ratio test [Cressie 
(1977, 1978,1979, 1984) and Naus (1966b)]. The null hypothesis of uniformity 
is rejected if Sw exceeds the value k, which corresponds to a specified level of 
significance. The importance of this scan statistic arises from the applications 
in different disciplines, including geology [Conover, Bement, and Iman (1979) 
and Shepard, Creasey, and Fisher (1981)]' medicine [Ederer, Myers, and Mantel 
(1964), Wallenstein (1980), and Wallenstein and Neff (1987)], nuclear physics 
[Orear and Cassel (1971)], photography [Hamilton, Lawton, and Trabka (1972)] 
and radio-optics [Trusov (1970)]. 
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To implement the testing procedure based on Sw, one naturally has to eval
uate the tail probabilities 

P(kIN, w) = P(Sw 2: k). 

Exact formulae for P(kIN, w) that are computable for a restricted range of the 
parameters have been derived by Naus (1965, 1966a), Wallenstein and Naus 
(1974), and Huntington and Naus (1975). Approximations for P(kIN,w) have 
been discussed extensively in the statistical literature; see, for example, Berman 
and Eagleson (1985), Gates and Wescott (1984), Glaz (1989, 1992), Glaz, Naus, 
Roos, and Wallenstein (1994), Naus (1982), Wallenstein and Neff (1987), and 
Huffer and Lin (1997). Huffer and Lin (in Chapters 6 and 7) and Lin (in 
Chapter 9) have reviewed several approximations mentioned in these references 
and have presented numerical results comparing their performance. 

Berman and Eagleson (1985) have derived a second-order upper Bonferroni
type inequality for P(kln, w) based on the order statistics representation of Sw. 
That inequality has been extended to order k in Glaz (1989, 1992). These 
high-order upper inequalities perform well. Lower Bonferroni-type inequalities 
investigated by Glaz (1989, 1992) perform poorly. Recently, Huffer and Lin 
(1997) utilized the moments of the number of intervals of length at most w 
containing k observations to derive accurate inequalities for P(kIN, w) that are 
valid for k ~ 10. Huffer and Lin (in Chapters 6 and 7) and Lin (in Chap
ter 9) have reviewed the inequalities investigated in the references listed above 
and have presented numerical results comparing their performance. Chen et 
al. (1998) have derived tight second-order Bonferroni-type inequalities. These 
inequalities are based on the scanning window representation of the scan statis
tic and are valid for all values of the parameters. In turn, Chen et al. (1998) 
have derived accurate inequalities for E(Sw). Moreover, these inequalities can 
be easily extended to the circular conditional scan statistic, 

S:n = max Yt(w), 
0<t<1 

in which case n observations are uniformly distributed on the unit circle. The 
scan statistic on the circle, its use as a test for randomness, and other re
lated problems have been discussed by many researchers including Ajne (1968), 
Cressie (1977, 1978, 1980, 1984), Husler (1982), Kokic (1987), Naus (1982), 
and Takacs (1996). Exact results for the distribution of S:V are available only 
for w = 1/2 [Ajne (1968)] and w = 1/3 [Takacs (1996)]. Approximations for 
P(S:V 2: k) have been investigated in Naus (1982). Chen et al. (1998) have pre
sented Bonferroni-type inequalities for the distribution as well as the expected 
value of this circular scan statistic. 
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1.7 Continuous Scan Statistics in the 
Multidimensional Case 

For a two-dimensional Poisson process X with intensity A, the two-dimensional 
continuous unconditional scan statistic in a rectangular set A is defined as 

Sw = SW(A, A) = maxX(W(x) n A), 
xER2 

where A = [0, TIl x {O, T2], and W is a general scanning set. Applications in as
tronomy, biology, and logistics are mentioned in Naus (1965). AIm (1997) has 
discussed applications to structural mechanics and risk analysis. AIm (1997, 
1998) has derived accurate Poisson approximations for the distribution of Sw 
for rectangular scanning sets. Moreover, these approximations are extended 
to the three-dimensional case and extensions of these approximations to the n 
dimensional case are also indicated. These results are extended to general scan
ning sets. In the two-dimensional case, examples are given for the circular and 
triangular scanning sets. A review of these results and their applications along 
with a discussion on simulations, that are quite complex for multidimensional 
scan statistics, has been presented by AIm in Chapter 5. 

If one conditions on X(A) = N, then the N points are uniformly distributed 
over the region A. In this setting, the two-dimensional conditional scan statistic 
has been discussed by Eggleton and Kermack (1944) and Mack (1949). Naus 
(1965) has discussed upper and lower bounds for the distribution of this scan 
statistic for rectangular scanning sets. For a fixed rectangular set W, Loader 
(1991) has derived large deviation approximations for the distribution of the 
conditional two-dimensional scan statistic. These approximations are based on 
a result that characterizes the local behavior of a two-dimensional stationary 
Poisson process in a rectangular region. Moreover, a modified scan statistic 
based on a likelihood ratio principle has been investigated for varying window 
widths. 

Let N points be independently and uniformly distributed in ad-dimensional 
rectangle A C Rd , d 2: 2. Let We A be a convex set, which is small relatively 
to A. Mansson (in Chapter 10) has investigated the distribution of a multiple 
scan statistic defined as 

where 

(~) 
~(d,N,m,W) = Lh 

i=I 

1 if there exists x E A for which W (x) covers the ith 
subset of m points 

o otherwise, 
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where W(x) denotes the translate of W by x E Rd. Poisson approximations 
using the Stein-Chen method have been derived for the distribution of this 
multiple scan statistic. In Chapter 10, multiple scan statistics in other settings 
have also been reviewed. Lin (in Chapter 9) has discussed approximations for 
a related multiple scan statistic in the one-dimensional case. 
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the moving sums of m consecutive observations. The discrete scan statistic is 
defined as the maximum value of these moving sums. Conditional on the sum 
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In this chapter, we review the approximations for the distributions of the 
conditional and unconditional discrete scan statistics. Moreover, new approx
imations are derived for the distribution, the expected size and the standard 
deviation of scan statistics. Numerical results and simulation studies are pre
sented to evaluate the performance of these approximations. 
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servation Xi,j denotes the number of events that have occurred in the (i, j)th 
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In this chapter, we review the approximations for the distributions of the 
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2.1 Introduction 

Let Xl,.'" XN be a sequence of independent nonnegative integer valued ran
dom variables. In this chapter, we present accurate approximations for the 
distribution and moments of discrete scan statistics defined in terms of moving 
sums of a fixed length. For the special case of 0-1 Bernoulli trials, the discrete 
scan statistic generalizes the notion of the longest run of l's that has been 
studied extensively in statistical literature; see, for example, Balasubramanian, 
Viveros, and Balakrishnan (1993), Banjevic (1990), Chryssaphinou, and Papas
tavridis (1990), Fu (1986), Fu and Hu (1987), Fu and Koutras (1994a), Godbole 
(1990, 1991, 1993), Gordon, Schilling, and Waterman (1986), Hirano and Aki 
(1993), Karlin and Ost (1987), Koutras and Alexandrou (1996, 1997), Koutras 
and Papastavridis (1993), Mott, Kirkwood, and Curnow (1990), Philippou and 
Makri (1986), and Schwager (1983). 

The discrete scan statistics are used for testing the null hypothesis of unifor
mity against an alternative hypothesis of clustering, that specifies an increased 
occurrence of events in a connected subsequence of the observations [Glaz and 
Naus (1991)]. Under the null hypothesis, the random variables Xl, ... , XN are 
identically distributed as Fo, while under the alternative hypothesis, for some 
0::; io::; N -m+l and 1m = {io, ... ,io+m-l}, Xi (i E 1m) are distributed as 
Fl, and Xi (i E {I, ... , N} \I m) are distributed as Fo. In this chapter, we derive 
accurate approximations for the distribution of scan statistic for Fo being any 
discrete distribution. In this case, one can easily show [Glaz and Naus (1991, 
Section 1.3)] that the discrete scan statistic defined in (2.1) is a generalized like
lihood ratio test for testing the above hypothesis. In this chapter, numerical 
examples are presented only for Fo being a binomial or a Poisson distribution. 
Approximations for the power function of the scan statistic for the case of 0-1 
Bernoulli trials have been studied by Wallenstein, Naus and Glaz (1994). 

The discrete scan statistics have applications to many areas of science in
cluding analysis of DNA and protein sequences [Altschul and Erickson (1988), 
Arratia, Goldstein, and Gordon (1989), Fousler and Karlin (1987), Fu and 
Curnow (1990), Gotoh (1990), Karlin et al. (1989), Naus and Sheng (1997), 
Sheng and Naus (1994, 1996), and Waterman (1995)], epidemiology [Krauth 
(1992), and Wallenstein, Weinberg, and Gould (1989)], minefield detection 
[Glaz (1995)], quality control and reliability theory [Balakrishnan, Balasub
ramanian, and Viveros (1993), Chao, Fu, and Koutras (1995), Fu and Koutras 
(1994), Glaz (1983), Greenberg (1970), Koutras and Papastavridis (1993), 
Mosteller (1941), Saperstein (1972), and Viveros and Balakrishnan (1993)], 
radar detection [Bogush (1972) and Nelson (1978)], and sociology [Schwager 
(1983)]. 

In Section 2.2 of this chapter, we review the product-type approximations 



Discrete Scan Statistics 29 

for the tail probabilities of the discrete scan statistic. A new higher-order 
approximation is derived. In this section, we also investigate several Poisson 
and compound-Poisson approximations for the distribution of the discrete scan 
statistic. Based on these approximations, we derive approximations for the ex
pected size and the standard deviation of the scan statistic. Approximations for 
a multiple scan statistic are also mentioned here. The new approximations for 
the distributions of discrete scan statistics presented in Sections 2.2 and 2.3 are 
based on the approach used in Chen and Glaz (1997) to derive approximations 
for discrete scan statistics on the circle. 

In Section 2.3, for the special case of 0-1 Bernoulli trials, we extend the 
approximations discussed in Section 2.2 to the conditional case, when the total 
number of events that have occurred is known. In Section 2.4, we discuss 
how one can employ a Monte Carlo approach to derive approximations for the 
conditional scan statistic for the binomial and Poisson models. 

In Section 2.5, we review the approximations studied in Chen and Glaz 
(1995) for the two-dimensional scan statistics. Based on these approximations, 
we derive approximations for the expected size and the standard deviation of 
the two-dimensional scan statistic. 

To evaluate the performance of the approximations discussed in this chapter, 
numerical results along with a simulation study are presented in Section 2.6 
for selected values of the parameters for the binomial and Poisson models. 
Concluding remarks are presented in Section 2.7. 

2.2 Scan Statistic for LLd. Discrete Random 
Variables 

2.2.1 Product-type approximations 

Let Xl, ... , XN be i.i.d. nonnegative integer valued random variables. For 
integers 2 :::; m < Nand k ~ 2, define the discrete scan statistic as 

Sm = max{Xi + ... + XHm-l; 1 :::; i :::; N - m + I}. (2.1) 

We are interested in approximating P(k;m,N) = P(Sm ~ k). 
For m :::; j :::; N, let 

qj = 1- P(k;m,j). 

For N > 3m, the product-type approximation 

P(Sm ~ k) ~ 1- q3m ( q3m )N-3m 
q3m-l 

(2.2) 

(2.3) 

that has been derived by Glaz and Naus (1991), has been evaluated recently by 
Chen and Glaz (1996) using an algorithm from Karwe and Naus (1997). 
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We now present a product-type approximation recommended by Naus (1982) 
and Glaz and Naus (1991) based on a different representation of the event 
(8m ::; k - 1). 

For N = 1m, 1 2: 2 and 1 ::; i ::; 1 - 1, let 

m+l 

Bi = n (X(i-l)m+j + ... + Xim+j-l ::; k - 1) . (2.4) 
j=1 

Then (8m ::; k - 1) = nt:i B i . The following product-type approximation for 
P(8m ::; k - 1) [Naus (1982)J can be obtained: 

P(Sm ~ k -1) = P (6 Bi) = P(BI) n P (BiID Bi) 

l-1 l-2 P(Bi n Bi+1) 
~ P (Bl) ]J P (BiIBi-r) = P(BI n B2) ]J P(Bi) . 

(2.5) 

(2.6) 

For the special case of LLd. Bernoulli trails, employing the approach leading to 
approximation (2.6), we can obtain the following higher-order approximation: 

P(8m2:k)~1-q4m q4m , ( )
l-4 

q3m 
(2.7) 

where 

4m (4m) q4m = 1-E [1- q(4mla)J a pa(1- p)4m-a, (2.8) 

and q(4mla) is the probability that any consecutive m trials contain at most 
k - 1 1 's when the total number of 1 's in 4m trials is equal to a. The term 
q(4mla) is obtained from Naus (1974, Theorem 1). 

Numerical results for product-type approximations (2.3), (2.6) and (2.7) for 
selected values of N, m and k and parameters of binomial and Poisson distri
butions are given in Section 2.6. 

If N is not a multiple of m, an adjustment is needed for approximations 
(2.6) and (2.7). Suppose N = 1m - v where 1 ::; v ::; m - 1. Following an 
approach similar to Eq. (2.5), we recommend the following modification for the 
approximation (2.6): 

P(8m 2: k) 

(2.9) 
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If N is not a multiple of m, we recommend to modify approximation (2.7) 
as follows: 

P(Sm ~ k) ~ 1- q4'm-v q4m , ( )
1-4 

q3m 
(2.10) 

where q4m-v = (vjm)q3m + (1- (vjm)) Q4m, 1 :::; v:::; m - 1. In approximation 
(2.10) we have approximated Q4m-v by Q4m-v, since there are no algorithms to 
evaluate Q4m-v. The performance of approximations (2.9) and (2.10) are similar 
to those of (2.6) and (2.7), respectively, and so in our numerical examples we 
consider only n = lm, l ~ 4. 

2.2.2 Poisson approximations 

Let Xl, ... , XN be LLd. nonnegative integer valued random variables. For 
1 :::; j :::; N - m + 1, define 

Then, 

1 if Xj + ... + Xj+m-l ~ k 
o otherwise. 

P(Sm :::; k - 1) = P (N~+1 Ij = 0) . 
3=1 

(2.11) 

(2.12) 

Under quite general conditions, the distribution of L:f=lm +1 I j converges to the 
Poisson distribution with mean 

(
N-m+l ) 

,X = E ?= Ij = (N - m + 1)(1- Qm); 
3=1 

(2.13) 

see Darling and Waterman (1986) and Goldstein and Waterman (1992). A 
simple Poisson approximation is given by 

P(Sm ~ k) ~ 1- exp( -'x). (2.14) 

For k < m, approximation (2.14) can be inaccurate. The reason for this is 
that the events (Xj + ... + Xj+m-l ~ k), 1 :::; j :::; N - m + 1, tend to clump 
[Goldstein and Waterman (1992)]. Employing a local declumping approach 
[Glaz et al. (1994)], we derive below a more accurate Poisson approximation. 

For 1 :::; j :::; N - m + 1, let 

r = {1 if(Ij = 1) n {n1==J-m+1 (It = O)} 
3 0 otherwise, 

(2.15) 

where for t :::; 0 we define the event (It = 0) to be the entire space. By defining 
this new set of indicators Ij, 1 :::; j :::; N - m+ 1, we are not allowing the starting 
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points of two generalized runs to be too close to each other. For the problem 
at hand, we have 

N-m+1 N-m+1 

l: Ij = 0 {::=} l: I; = o. (2.16) 
j=1 j=1 

We approximate 

(
N-m+1 ) 

P ~ I; = 0 ~ exp(-.x*), 3=1 (2.17) 

where Aj = (Ij = 0) and 

A' = E C%tI;) 
P(Al) + ~1 p{ Ajn(n1 

Ai)} + (N - m + 2)P{ A~n(7l1 Aj)} 3=2 ~=1 3=1 
1- q2m-2 + (N - 2m + 2)(q2m-2 - q2m-d. (2.18) 

It follows from Eqs. (2.14)-(2.18) that the improved Poisson approximation for 
P(Sm ~ k) based on the local declumping approach described above is given 
by 

P(Sm ~ k) ~ 1- exp( -.x*), (2.19) 

where .x* is given in (2.18). 
We now proceed to examine new Poisson-type approximations based on the 

events Bi defined in (2.4). For 1 SiS l- 1, let 

J. = {1 if Bf occur 
~ 0 otherwise. 

(2.20) 

Then, 

P( Sm S k - 1) = P (I: Ji = 0) . 
~=1 

(2.21) 

A Poisson approximation can be obtained as 

(2.22) 

where 

AB = E (~J.) = (/-1)(1- q2m). (2.23) 

Employing a local declumping approach that is similar to the one described 
above, we get the following Poisson approximation. For 1 SiS 1 - 1, let 

J'! = {1 if Bf n Bi-1 occur 
~ 0 otherwise. 
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Approximate 

(
1-1 ) 

P L Jt = 0 ~ exp(-Xa), 
~=1 

(2.24) 

where 

(
1-1 ) 

Xa = E L Jt = 1- q2m + (l- 2)(q2m - q3m). 
~=1 

(2.25) 

It follows from (2.25) that a Poisson approximation for P(Sm 2: k) is given by 

P(Sm 2: k) ~ 1 - exp( -As), (2.26) 

where As is as defined in (2.25). The performance of Poisson-type approxima
tions given in Eqs. (2.14), (2.19), (2.22) and (2.26) for selected values of n, m, k 

and parameters of binomial and Poisson distributions is evaluated in Section 
2.6. 

2.2.3 Compound Poisson approximations 

We now examine six compound Poisson approximations for P(Sm 2: k). Follow
ing the approach in Roos (1993a,b) and Glaz et al. (1994), we approximate the 
distribution of L:f=lm+ 1 Ij by L:f=lm+ 1 j Mj, where Mj are independent Pois
son random variables with mean Aj. In practice, only a small number of Aj'S is 
used and even then they have to be approximated. The first approximation is 
based on the clump heuristic of Aldous (1989) as it was applied by Glaz et al. 
(1994). A set of m Aj's is used with the following approximations: 

Al ~ Ai = (N - m + 1)7r[1- 2p + p2 - mpm+l + (m + l)pm], 

Aj ~ Aj = (N - m + 1)7r(1 - p)2p1-1, j = 2, ... , m, 

where 
7r = P( h = 1) = 1 - qm, 

p = P(h = 1,h = 2)/P(h = 1) = (1- 2qm + qm+d/(l- qm) 

(2.27) 

(2.28) 

and the qj's are as defined in (2.2) and Ij's are as defined in (2.11). This yields 
the following approximation: 

P(Sm 2: k) ~ 1- exp (- fAi) , 
2=1 

(2.29) 

where Ai's are as given in (2.27) and (2.28). 
The second compound Poisson approximation is based on Barbour, Holst, 

and Janson (1992, Theorem 1O.N and Corollary 10.N.1). It follows from their 
work that 

(
N-m+l ) 

P L Ij = 0 ~ exp[-(N - m + l)P(h = 1,12 = 0, ... , 1m = 0)]. (2.30) 
J=1 
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Therefore, 

P(Sm ~ k) ~ 1- exp[-(N - m + 1)(q2m-2 - Q2m-l)], (2.31) 

The third compound Poisson approximation is using 

Aj ~ Aj = (N - m + 1)-ll'(1- p)2pi-l, j = 1, ... , 2m - 1. (2.32) 

This yields the following approximation: 

In the fourth compound Poisson approximation we have 

00 2m-l 

LAi- L Ai 
i=2 i=2 

(N - m + 1)71' {(1- p)2 + p2m-l [2m - (2m + 1)p]} 

and 

Aj ~ Aj = (N - m + 1)71'(1 - p)2pi-1, j = 2, ... , 2m - 1. (2.34) 

This yields the following approximation: 

(2.35) 

The fifth compound Poisson approximation is based on the Roos (1993b, 
Lemma 3.3.4), where 

Ai = (N - m + 1)71'(1 - p)2pi-l, i = 1, ... , m - 1, (2.36) 

(N - m + 1)71' [ . 1 2 . 1] Ai i 2(1-p)pt- +(2m-i-2)(1-p)pt- , 

i = m, ... ,2m - 2 (2.37) 

and 
(N - m + 1)(1- Qm)p2m-2 

A2m-l = 2m - 1 . (2.38) 

This yields the following approximation: 

( 
2m-l ) 

P(Sm ~ k) ~ 1- exp - ~ Ai . (2.39) 
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The sixth compound Poisson approximation is based on the representation 
of the event (8m :::; k - 1) via the events Bi given in (2.4) and Roos (1993b, 
1994). It follows that 

where for 1 :::; i :::; 3 the Ai's are given by [Roos (1993b)] 

Ai = ;. P(Bl) {27rI,i + (I - 3)7r2,i} , 
z 

7r1,i = P(J2 = i -IIJI = 1), 

7r2,i = P (JI + h = i -llh = 1), 

(2.40) 

(2.41 ) 

(2.42) 

(2.43) 

and Ji is as defined in (2.20). To evaluate approximation (2.40), we have to 
evaluate 

and 

P (J IJ ) q2m - q3m 
7r1,1 = 2 = 0 1 = 1 = , 

1- q2m 

_ P (J - IIJ - 1) _ 1 - 2q2m + q3m 7r1,2 - 2 - I - - , 
1- q2m 

2 

7r2,1 = P (JI + h = Olh = 1) = q~m - q4m, 
-q2m 

7r2,2 = P (JI + J3 = I1J2 = 1) = 2(q2m - q3m + q4m - q~m) 
1- q2m 

_ P (J + J - 21J - 1) - 1- 3q~m + 2q3m - q4m + q~m 7r2 3 - I 3 - 2 - - . , 1- q2m 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

In Section 2.6, for selected values of N, m, k and parameters of binomial and 
Poisson distributions we evaluate the accuracy of these compound Poisson ap
proximations and compare their performance with those of other approxima
tions derived in this section. 

2.2.4 Approximations for the expected size and standard 
deviation of the scan statistic 

Since 8m is a discrete random variable, we have 

m 

E(8m ) = L P(8m ~ k) 
k=1 

and 
m 

(2.49) 

Var(8m) = 2 L kP(8m ~ k) - E(8m){1 + E(8m)}. (2.50) 
k=l 
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Therefore, approximations for P(Sm ~ k) will yield approximations for E(Sm) 
and Var(Sm). In Section 2.6, we present approximations for E(Sm) and SD = 
[Var(SmW/2, denoted by E(Sm) and SD(Sm), respectively, based on the 
product-type approximation (2.6), improved Poisson approximation (2.26) and 
the best compound Poisson approximation (2.39), for selected values of the pa
rameters for the binomial and Poisson models. To evaluate the performance of 
these approximations, we present the simulated values for E(Sm) and SD(Sm), 
denoted by E*(Sm) and SD*(Sm), respectively, based on 10,000 trials. 

2.2.5 A multiple scan statistic 

We now discuss approximations for a multiple scan statistic defined as 

N-m+l 
€= L Ij, 

j=l 

(2.51) 

where Ij is as defined in (2.11). A product-type approximation for this statistic 
is extremely complex and of limited value. For a product-type approximation 
for a multiple scan statistic for continuous observations, see Glaz and Naus 
(1983). Since Poisson approximations usually give poor results for P(€ ~ 1), 
1 ~ 2 [Glaz et al. (1994)], we investigate the performance of several compound 
Poisson approximations for P(€ ~ 1). The compound Poisson approximations 
for the multiple scan statistics are given by 

P(€ ~ 1) ~ 1-I: ( L IT Af;) exp (- t Ai) , 
j=O /31 +2/32 +3/33+4/34 +5/3s =j i=l f3t· i=l 

(2.52) 

where f3i are nonnegative integers and several choices of Ai are given in Eqs. 
(2.38)-(2.40). In Section 2.6, for selected values of N, m, k andp we evaluate the 
accuracy of these compound Poisson approximations for the Bernoulli model. 

2.3 Scan Statistic for LLd. Bernoulli Trials When the 
Number of Successes Is Known 

2.3.1 Product-type approximations 

Let Xl, ... ,XN be a sequence of N Li.d. 0-1 Bernoulli trials. Suppose we know 
that a successes (l's) and N - a failures (O's) have been observed. In this case, 
the joint distribution of the 0-1 trials assigns equal probabilities to all the (~) 
arrangements of a l's and N - a O's: 

p(x,=x ..... ,XN=xNIt,xi=a) = (tl' (2.53) 
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We are interested in approximating 

(2.54) 

where Sm is as defined in (2.1). 
For integers k, l, m ;:::: 2 and N = ml, an exact formula for P(k; m, N, a) has 

been derived by Naus (1974, Theorem 1) as 

(2.55) 

where 

d .. _ 1 _ {o if Cij < 0 
~J - -

Cij! (m - Cij)! otherwise, 
or Cij > m 

j-I 

Cij (j - i)k - L N r + Ni for i < j 
r=1 

i 

(j - i)k+ LNr for i;:::: j, 
r=j 

where Ni is the number of l's in trials (i - l)m + 1, ... , im, 1 :::; i :::; £, and 
any negative factorial is defined to be o. For the special case when k > a/2, a 
simple formula is given by Naus (1974, Corollary 2) as 

P(k . N) = 2 2:~=k(~)e:_~m) + (lk _ _ 1) (k)e:~km) 
, m, , a un a un (2.56) 

If N, m, l are large and k < a/2, the computation of P(k; m, N, a) using Eq. 
(2.55) becomes impractical. In this section, we derive product-type approxima
tions for P(k; m, N, a) that are valid for any values of the parameters. 

Following Naus (1974, Section 1), consider the total number of l's in m 
consecutive trials along the entire sequence. For N = lm, l ;:::: 2 and 1 :::; i :::; l-l, 
define the events 

m+1 

Ei = n (Y(i-I)m+j + ... + Yim+j-I :::; k - 1) , (2.57) 
j=1 

where YI, ... , YN is the sequence of 0-1 trials that contains a l's and N - a O's. 
Following an approach similar to the one in Eq. (2.5), we get 

1- P(k· N) >::::! P (E nE) lrr-2 p(EinEi+I) , m, , a I 2. P (E-) 
~=2 ~ 

(2.58) 
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and 

1 -P(k' N) ';::::', P (E n EnE) Irr-3 P (Ei n Ei+1 n Ei+2) 
, m, , a 1 2 3. P (E- n E-) . 

2=2 2 2+1 

Since for 1 ~ i ~ l- 3, P(Ei) = q2m(a), P (Ei n Ei+d = q3m(a) and 
P (Ei n Ei+1 n Ei+2) = q4m(a), for r = 2,3,4 

and 
q(rmlj) = P(k; m, rm,j) 

(2.59) 

(2.60) 

(2.61) 

can be evaluated using (2.55). Substitution of (2.60) into Eqs. (2.58) and (2.59) 
yields the following product-type approximations: 

q3m a ( 
() 

)
1-3 

P(k; m, N, a) ';::::', 1- q3m(a) q2m(a) , l 2:: 4 (2.62) 

and 
q4m a ( ( )) 1-4 

P(k; m, N, a) ~ 1- q4m(a) q3m(a) , l 2:: 5. (2.63) 

In Section 2.6, for selected values of l, k, m, N and a we evaluate the performance 
of these product-type approximations. 

2.3.2 Poisson approximations 

Let E1," ., El- 1 be the events defined in (2.57). For 1 ~ j ~ l - 1, set 

H. = {I if Ej occur 
J 0 otherwise. 

(2.64) 

Then, a Poisson approximation for P(k; m, N, a) is given by 

P(k; m, N, a) ';::::', 1 - exp( -AE), (2.65) 

where 

(2.66) 

Since the events Ej might occur in clumps, we could employ the following 
declumping approach. For 1 ~ j ~ l - 1, let 

HJ~ = {01 if Ej n Ej - 1 occur 
otherwise, 
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where Eo is defined to be the entire space. Since 

1-1 1-1 

LHj =O~ LHJ =0, (2.67) 
j=l j=l 

the following Poisson approximation for P(k; m, N, a) will be studied: 

P(k; m, N, a) ~ 1- exp(-Xp;), (2.68) 

where 

(2.69) 

Numerical results for Poisson-type approximations will be presented in Section 
2.6. 

2.3.3 Compound Poisson approximations 

In this section, we examine five compound Poisson approximations for 
P(k; m, N, a). The first approximation is based on the clump heuristic of Al
dous (1989) as it was applied by Glaz et al. (1994). A set of m "fj's is used 
with the following approximations: 

1'1 ~ I'i = (N -m+1)7r(a) [1-2p(a)+p2(a)-mpm+1(a)+ (m+1)pm(a)], (2.70) 

I'j ~ I'J = (N - m + 1)7r(a){1- p(a)}2pi-1(a), j = 2, ... , m, (2.71) 

where 
7r(a) = P(H1 = 1) = 1 - qm(a), 

pea) = P(H1 = 1,H2 = 2)/P(H1 = 1) = {1- 2qm(a) + qm+1(a)}/{l- qm(a)} , 

qm(a) is as defined in (2.60), Hi's are as defined in (2.64), and 

1 1 min(k-1-kl,k-1-k3) (1) (m-1) (1) ( N-m-1 ) 
( ) _ '""' '""' '""' kl k2 k3 a-(k1 +k2+k3) 

qm+1a-~~ ~ N 
kl=Ok3=O kFO (a) 

This yields the following approximation: 

P(k;m,N,a) ~ 1- exp (-t I'i) , 
z=l 

(2.72) 

where I'i's are given in Eqs. (2.70) and (2.71). 
The second compound Poisson approximation uses 

I'j ~ I'J = (N - m + 1)7r(a){1- p(a)}2pi-1(a), j = 1, ... , 2m - 1. (2.73) 
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This yields the following approximation: 

P(k;m,N,a) ~ 1- exp (_ 2~1 'Y~) 
t=l 

1- exp {(N - m + l)7r(a)(l - p(a))(l - p2m-l(a)) } . 

(2.74) 

In the third compound Poisson approximation, we have 

00 2m-l 

L'Yi - L 'Yi 
i=2 i=2 

(N - m + l)7r(a) {(I - p(a))2 + p2m-l(a) [2m - (2m + l)p(a)]} 

and 

'Yj ~ 'Yj = (N - m + l)7r(a)(l- p(a))2rJ-l(a), j = 2, ... , 2m - 1. (2.75) 

This yields the following approximation: 

( 
2m-l ) 

P(k; m, N, a) ~ 1- exp - L 'Yi . 
t=l 

(2.76) 

The fourth compound Poisson approximation is based on Roos (1993b, 
Lemma 3.3.4), where 

'Yi = (N - m + l)7r(a)(l- p(a))2pi-l(a), i = 1, ... , m - 1, (2.77) 

'Yi 

and 

(N - m + l)7r(a) 
i 

x [2(1 - p(a))pi-l(a) + (2m - i - 2)(1- p(a))2pi-l(a)] , 

i = m, ... , 2m - 2, 

'Y2m-l = 
(N - m + 1)(1- Qm(a))p2m-2(a) 

2m-1 

This yields the following approximation: 

( 
2m-l ) 

P(k; m, N, a) ~ 1 - exp - L 'Yi . 
t=l 

(2.78) 

(2.79) 

(2.80) 

The fifth compound Poisson approximation based on Roos (1993b, 1994) is 
given by 

P(k; m, N, a) ~ 1 - exp (- t 'Yi) , 
t=l 

(2.81) 
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where, for i = 1,2,3, 

P(Ef) = 1- q2m(a), 

and 

41 

(2.82) 

(2.83) 

(2.84) 

(2.85) 

The explicit formulae for 1fi i and 1f2 i have the same general form as the one for 
1fl,i and 1f2,i in Eqs. (2.44)-(2.48). The only difference is that we have to replace 
qrm by qrm(a), 2 ::; r ::; 4, and q§m by q2m,2m(a). Note that the second com
pound Poisson approximation studied in Section 2.2.4, is not valid. In Section 
2.6, we evaluate the performance of these compound Poisson approximations 
for selected values of the parameters k, m, Nand a. 

2.3.4 Approximations for the expected size and standard 
deviation of the scan statistic 

Approximations for E(Sml2:~l Xi = a) and SD(Sml2:~l Xi = a) are ob
tained from Eqs. (2.49) and (2.50), respectively, by replacing the approxima
tions for P(Sm ~ k) with approximations for P(Sm ~ kl2:~l = a). 

In Section 2.6, we present approximations for E(Sml2:~l = a) and 
N ~ ~ 

SD(Sml2:i=l = a), denoted by E(Sm) and SD(Sm), respectively, based on the 
product-type approximation (2.63), improved Poisson approximation (2.68), 
and the best compound Poisson approximation (2.80), for selected values of 
the parameters of 0-1 i.i.d. Bernoulli model. To evaluate the performance of 
these approximations, we present the simulated values of E(Sm) and SD(Sm), 
denoted by E*(Sm) and SD*(Sm), respectively, based on 10,000 trials. 

2.4 Scan Statistics for Binomial and Poisson 
Distributions Conditional on the Total 
N umber of Events 

2.4.1 Poisson model 

Let Xl, ... , XN be independent and identically distributed Poisson random 
variables. Suppose we know that the total number of events 2:~1 Xi = a. In 
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this case, the sequence of Poisson random variable has a multinomial distribu
tion given by 

(2.86) 

We are interested in approximating the tail probability of the conditional scan 
statistic 

Since there are no exact results available for qfm(a) = Pp(k; m, rm, a), their 
simulated values denoted by iifm(a) , r = m, m + 1, ... , 4m, based on 100, 000 
trials, will be used to approximate qfm(a) in product-type approximation (2.63), 
Poisson approximations (2.65) and (2.68), and the compound Poisson approx
imation (2.81). The performance of these approximations will be examined in 
Section 2.6. 

2.4.2 Binomial model 

Let Xl, ... , XN be a sequence of n independent and identically distributed 
binomial (n, p) random variables. Suppose we know that the total number of 
successes L:~l Xi = a has been observed. In this case, the joint distribution 
of Xl, ... , XN conditional on L:~l Xi = a has a multivariate hypergeometric 
distribution given by 

(2.87) 

We are interested in approximating the tail probability of the conditional scan 
statistic 

Pb(k;m,N,a) = P (8m ~ kl ~Xi = a) . 

Since there are no exact results available for q~m(a) = Pb(k; m, rm, a), we use 
Patefield (1981) algorithm to simulate the values for q~m(a) denoted by ii~m(a), 
r = m, m + 1, ... , 4m based on 100, 000 trials. The performance of product
type approximation (2.63), Poisson approximations (2.65) and (2.68), and the 
compound Poisson approximation (2.81) will be studied in Section 2.6 using 
ii~m(a), r = m, m + 1, ... , 4m, instead of q~m(a). 
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2.5 Two-Dimensional Scan Statistics 

2.5.1 Product-type approximations 

Let Yi,j, i = 1, ... , Nl and j = 1, ... ,N2, be i.i.d. nonnegative integer valued 
random variables. Let 

i2+m2-1 il +ml-l 

S(il' i2) = L L Yi,j, (2.88) 
j=i2 i=il 

where 1 ::; il ::; Nl - ml + 1 and 1 ::; i2 ::; N2 - m2 + 1. The two-dimensional 
scan statistic is defined as 

Sml,m2 = max {S(il' i2); 1 ::; il ::; Nl - ml + 1,1 ::; i2 ::; N2 - m2 + 1}. 
(2.89) 

For simplicity, we assume that Nl = N2 = Nand ml = m2 = m. For 1 ::; 
iI, i2 ::; N - m + 1, let us define the events 

(2.90) 

Then, 

(2.91) 

To derive a product-type approximation for P(Sm,m 2 k) the following ap
proach was used by Chen and Glaz (1996). Let 

(2.92) 

Then, for a fixed value of 1 ::; il ::; N - m + 1, one can approximate accurately 
[Glaz and Naus (1991)] 

(2.93) 

where for 1 ::; I ::; m + 1, 

qm+l-l = P(AI1 n Al2 ... nAIL)' , , , (2.94) 
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Since we have to scan N - m + 1 rectangular m x n adjacent regions, the 
following product-type approximation for (2.92) is used: 

(2.95) 

Eq. (2.95) uses approximation (2.93) for il = 1, and for 2 :S il :S N - m + 1, 
it uses an adjusted approximation (2.93) with q2m replaced by q2m/q2m-1 to 
account for the dependence of the events {AYl,i2; i2 = 1, ... , N - m + I}, for 
different values of il. Eq. (2.95) then yields 

( 
q ) (N-2m+l)(N-m+l) 

P(Sm,m 2 k) ~ 1- q2m-1 ~ . 
q2m-1 

(2.96) 

In Section 2.6, we present numerical results for the product-type approximation 
(2.96) for selected values of N, m, k and the parameters of binomial and Poisson 
distributions. 

2.5.2 Poisson approximations 

Let r = {(il,i2); 1:S il :S N - m + 1, 1 :S i2 :S N - m + I} denote the index 
set of a collection of the integer valued random variables {fa; a E r}, where 

Then, 

Ia = {I if S(a) 2 k 
o otherwise. 

(2.97) 

Under quite general conditions, the distribution of LaEr Ia converges to a Pois
son distribution with mean oX, where 

(2.98) 

and qm = P(Atl); see Darling and Waterman (1986). The Poisson approxima
tion for this problem for the special case of k = m2 has also been discussed by 
Barbour, Chryssaphinou, and Roos (1995), Koutras, Papadopoulos, and Papa
stavridis (1993), and Roos (1994). In Section 2.6, we evaluate the performance 
of the Poisson approximation given by 

P(Sm,m 2 k) ~ 1 - exp( -oX) (2.99) 
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for selected values of N, m and k and parameters of binomial and Poisson dis
tributions. 

The Poisson approximation (2.99) is not expected to perform well when 
k < m 2 , since the events {(S(a) ;:::: k);a E r} tend to clump. Employing a local 
declumping approach, Chen and Glaz (1996) derived a more accurate Poisson 
approximation as 

P(Sm,m ;:::: k) ~ 1 - exp( -A*), (2.100) 

where 

A* = 1- q2m-2 + (N - 2m + 2)(N - m + 1)(q2m-2 - Q2m-l). (2.101) 

In Section 2.6, numerical results are presented for this Poisson approximation 
for selected values of N, m and k and parameters of binomial and Poisson dis
tributions. 

2.5.3 A compound Poisson approximation 

For the Bernoulli model, the compound Poisson approximations for P(Sm,m ;:::: 
k) presented below are from Roos (1993b, 1994). Roos (1993b) recommended 
approximating the distribution of EaEr 1a by the compound Poisson distribu
tion of M* = E~l iMi, where Mi are independent Poisson random variables 
M* = E~l Mi where Mi are with mean Ai. The constants Ai are given by 
[Roos (1993b)] 

Ai = ~ P(S(l, 1) ;:::: k) {47rl ,i + 4(N - m - 1)7r2,i + (N - m + 1)27r3,i} , 

(2.102) 
where, for 1 ::; i ::; 5, 

and 

7rl,i = P{h,2 + h,l = i -llh,l = I}, 

7r2,i = P{h,l + 12,2 + Is,l = i -llh,l = I}, 

7r3 i = P {h 2 + 12 1 + 12 3 + Is 2 = i - 11h 2 = I} . , "" , 

(2.103) 

(2.104) 

(2.105) 

It is tedious but routine to evaluate 7rl,i,7r2,i and 7r3,i and, therefore, we omit 
the derivations of their formulae. For details, see Chen and Glaz (1995). For 
the simpler special case of k = m 2 , Roos (1993b) has evaluated the compound 
Poisson approximation. In Section 2.6, numerical results are presented for the 
compound Poisson approximation given by 

P(Sm,m 2: k) '" 1- exp ( - ~ Ai) (2.106) 

for selected values of N, m and k and for selected values of p of the Bernoulli 
distribution. 
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2.5.4 Approximations for the expected size and standard 
deviation of the scan statistic 

Since Sm,m is a discrete random variable, we can write 

E(Sm,m) = L P(Sm,m 2: k) (2.107) 
k=l 

and 

m 2 

Var(Sm,m) = 2 L kP(Sm,m 2: k) - E(Sm,m) [1 + E(Sm,m)]. (2.108) 
k=l 

Hence, approximations for P(Sm,m 2: k) will yield approximations for E(Sm,m) 
and Var(Sm m). In Section 2.6, we present approximations for E(Sm m) and 
SD = [Var(Sm,m)j1/2 , denoted by E(Sm,m) and SD(Sm,m), respectivel~, based 
on the product-type approximation (2.96), improved Poisson approximation 
(2.100), and the compound Poisson approximation (2.106), for selected val
ues of the parameters for the binomial and Poisson models. To evaluate the 
performance of these approximations, we present simulated values of E(Sm,m) 
and SD(Sm,m), denoted by E*(Sm,m) and SD*(Sm,m), respectively, based on 
10,000 trials. 

2.5.5 A mUltiple scan statistic 

We now discuss approximations for a two-dimensional multiple scan statistic 
defined as 

N2-m2+1 N1-ml+l 

C = L L J(il' i2), (2.109) 
i2=1 il=l 

where J(il' i2) is as defined in (2.97). 
A product-type approximation for this statistic is extremely complex and 

of limited value. Poisson approximations give poor results for p(e 2: l), l 2: 2. 
Based on the compound Poisson approximation for P(S:n 2: k) discussed above, 
the following compound Poisson approximation for the multiple scan statistic 
has been studied by Chen and Glaz (1996): 

where (Ji are nonnegative integers and Ai are as given in (2.102). Numerical 
results for selected values of p of the Bernoulli model are given in Section 2.6. 
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2.6 Numerical Examples 

In this section, we present numerical examples for the distribution, expected 
size and the standard deviation of the discrete scan statistics discussed in this 
chapter. In Tables 2.1 and 2.2, numerical examples are presented for Li.d. 
0-1 Bernoulli trials. From these examples, it is evident that the product-type 
approximation (2.7) is the most accurate one. The usual Poisson approximation 
(2.14) performs poorly. The Poisson approximation (2.22) based on the events 
Bi given in (2.4) performs better. The reason for this is that the events Bi 
incorporate the dependence structure of the distribution of the scan statistic. 
The local declumping approach used in Poisson-type approximations (2.19) and 
(2.26) improve these approximations significantly. The best compound Poisson 
approximation given by (2.40) performs better in most cases than any other 
Poisson-type approximation. 

In Tables 2.3 and 2.4, numerical examples are presented for the binomial 
and Poisson models. From these examples, it is evident that the product-type 
approximation (2.6) is the most accurate one. In these tables, we report only 
the most accurate Poisson, improved Poisson, and compound Poisson approx
imations. The compound Poisson approximation (2.40) is the most accurate 
among these approximations. 

In Tables 2.5 and 2.6, numerical results are presented for the conditional scan 
statistics for the 0-1 Bernoulli trials. Here too, the product-type approximation 
(2.63) and the compound Poisson approximation (2.81) are the best performers. 
The product-type approximation is the most accurate approximation. In Tables 
2.7 and 2.8, a Monte Carlo approach was used to generate approximations for 
the conditional scan statistic for the binomial and Poisson models. The product
type approximation (2.63) performs quite well. 

In Table 2.9, several compound Poisson approximations for a multiple scan 
statistic for the 0-1 Bernoulli trials have been evaluated for selected values of 
the parameters. It is clear that the approximation (2.39) is the most accurate 
one. Still, there is room for improvement. 

In Tables 2.10-2.12, numerical results are presented for the two-dimensional 
discrete scan statistic. Again, it is evident that the product-type approximation 
(2.96) is the most accurate one. The improved Poisson approximation (2.100) 
and compound Poisson approximation (2.106) are not as consistent in their per
formance here as in the one-dimensional case. In Table 2.13, numerical results 
are presented for a two-dimensional multiple scan statistic for 0-1 Bernoulli tri
als. The compound Poisson approximation performs reasonably well in some 
cases, but in others it performs rather poorly. 

In Tables 2.14 and 2.15, numerical results are presented for the approxi
mations for expected size and standard deviation of scan statistics discussed 
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in this chapter. The approximations based on product-type approximations 
for tail probabilities of scan statistics are the best. These approximations per
form remarkably well, especially for the expected size of the scan statistic. For 
one-dimensional scan statistics, the approximations for the expected size have 
relative error less than or equal to .01, and for the standard deviation the rel
ative error is less than or equal to .05. For the two-dimensional scan statistic, 
the relative error for the expected size is less than or equal to .06, and for the 
standard deviation it is less than or equal to .12. The second best approxima
tion is based on the best compound Poisson approximation for tail probabilities 
of scan statistics. 

2.7 Concluding Remarks 

In this chapter, two methods of approximation for the distribution of scan 
statistics have been discussed. The method of product-type approximations, 
when it is applicable, produces the most accurate results. The second method, 
of Poisson-type approximations, produced varying results. The most frequently 
studied Poisson approximations, that do not take into account the dependence 
structure of the sequence of moving sums, perform poorly. The use of local 
declumping in Poisson approximations or the use of compound Poisson approx
imations result in a significant improvement in the accuracy of the approxima
tions. 

For the one- or two-dimensional multiple scan statistic studied in this chap
ter, the method of Poisson-type approximations is the only method currently 
available. For 0-1 Bernoulli trials, the compound Poisson approximations (2.39) 
and (2.110) are the most accurate ones. For the two-dimensional case, a more 
accurate approximation than (2.110) is needed. Also, it would be interesting to 
study compound Poisson approximation for other discrete distributions. 

For one-dimensional conditional scan statistics, no analytical approxima
tions are available except the case of 0-1 Bernoulli trials. Also, there are no ap
proximations available for the conditional scan statistic for the two-dimensional 
case. 

The multiple scan statistics mentioned in this chapter are based on moving 
sums of fixed length of observations. It would be interesting to investigate 
different approaches to account for multiple clusters. Also, power studies are 
needed to investigate the performance of scan statistics for testing the null 
hypothesis of uniformity against various alternatives. 

Acknowledgments. This research work was supported in part by the Of
fice of Naval Research Contract No. N00014-94-1-0061 and the University of 
Connecticut Research Foundation. 
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Table 2.1: Product-type and Poisson-type approximations to P(Sm 2: k) for 
i.i.d. Bernoulli model 

N m p k P(Sm 2: k) (2.7) (2.14) (2.19) (2.22) (2.26) 
100 10 .05 2 0.7482 0.7476 0.9996 0.6740 0.8483 0.6504 

3 0.2283 0.2272 0.6489 0.2200 0.2942 0.2178 
4 0.0315 0.0311 0.0893 0.0310 0.0394 0.0310 
5 0.0026 0.0025 0.0058 0.0025 0.0031 0.0025 

.10 3 0.7473 0.7461 0.9983 0.6766 0.8313 0.6530 
4 0.2814 0.2816 0.6879 0.2711 0.3503 0.2676 
5 0.0533 0.0542 0.1382 0.0539 0.0672 0.0537 
6 0.0060 0.0063 0.0133 0.0063 0.0076 0.0063 

20 .05 2 0.8715 0.8713 1.0000 0.6852 0.8781 0.6423 
3 0.5009 0.5009 0.9978 0.4360 0.5691 0.4210 
4 0.1718 0.1714 0.7242 0.1636 0.2085 0.1616 
5 0.0379 0.0385 0.1882 0.0381 0.0464 0.0380 
6 0.0062 0.0063 0.0263 0.0063 0.0073 0.0062 

.10 4 0.7264 0.7265 1.0000 0.5988 0.7584 0.5671 
5 0.3949 0.3953 0.9697 0.3556 0.4515 0.3454 
6 0.1491 0.1500 0.5981 0.1441 0.1783 0.1426 
7 0.0425 0.0418 0.1757 0.0413 0.0494 0.0412 
8 0.0091 0.0090 0.0331 0.0090 0.0104 0.0090 

500 10 .01 2 0.3263 0.3270 0.8769 0.3237 0.4518 0.3227 
3 0.0159 0.0159 0.0544 0.0159 0.0213 0.0159 
4 0.0003 0.0004 0.0010 0.0004 0.0005 0.0004 

.05 3 0.7399 0.7405 0.9965 0.7268 0.8500 0.7221 
4 0.1558 0.1541 0.3965 0.1534 0.1967 0.1532 
5 0.0136 0.0134 0.0308 0.0134 0.0166 0.0134 
6 0.0007 0.0007 0.0014 0.0007 0.0009 0.0007 

20 .01 2 0.5214 0.5218 0.9997 0.5053 0.6716 0.5007 
3 0.0645 0.0638 0.3829 0.0635 0.0858 0.0635 
4 0.0043 0.0038 0.0203 0.0038 0.0048 0.0038 

.05 3 0.9761 0.9765 1.0000 0.9496 0.9936 0.9384 
4 0.6452 0.6466 0.9995 0.6246 0.7541 0.6178 
5 0.1961 0.1984 0.7101 0.1962 0.2481 0.1956 
6 0.0359 0.0352 0.1465 0.0352 0.0432 0.0352 
7 0.0044 0.0045 0.0162 0.0045 0.0053 0.0045 
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Table 2.2: Compound Poisson approximations to P(Sm > k) for i.i.d. 
Bernoulli model 

N m p k P(Sm ::::: k) (2.29) (2.31) (2.33) (2.35) (2.39) (2.40) 
100 10 .05 2 0.7482 0.6452 0.9890 0.7130 0.8474 0.7390 0.6739 

3 0.2283 0.2123 0.3590 0.2372 0.2489 0.2393 0.2193 
4 0.0315 0.0303 0.0374 0.0328 0.0329 0.0328 0.0310 
5 0.0026 0.0025 0.0027 0.0026 0.0026 0.0026 0.0025 

.10 3 0.7473 0.6533 0.9494 0.7529 0.7983 0.7607 0.6723 
4 0.2814 0.2630 0.3740 0.3060 0.3095 0.3069 0.2696 
5 0.0533 0.0527 0.0625 0.0591 0.0592 0.0591 0.0538 
6 0.0060 0.0062 0.0068 0.0067 0.0067 0.0067 0.0063 

20 .05 2 0.8715 0.5725 1.0000 0.7429 0.9781 0.7893 0.6906 
3 0.5009 0.3868 0.9138 0.4940 0.5900 0.5022 0.4318 
4 0.1718 0.1497 0.3069 0.1853 0.1919 0.1859 0.1626 
5 0.0379 0.0357 0.0517 0.0423 0.0424 0.0423 0.0380 
6 0.0062 0.0060 0.0072 0.0068 0.0068 0.0068 0.0062 

.10 4 0.7264 0.5293 0.9813 0.7276 0.7929 0.7336 0.5911 
5 0.3949 0.3233 0.6187 0.4408 0.4502 0.4419 0.3509 
6 0.1491 0.1340 0.2073 0.1763 0.1768 0.1764 0.1432 
7 0.0425 0.0391 0.0517 0.0490 0.0490 0.0490 0.0413 
8 0.0091 0.0086 0.0105 0.0103 0.0103 0.0103 0.0090 

500 10 .01 2 0.3263 0.3213 0.6594 0.3275 0.3971 0.3386 0.3236 
3 0.0159 0.0158 0.0225 0.0162 0.0166 0.0162 0.0159 
4 0.0003 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 

.05 3 0.7399 0.7241 0.9092 0.7680 0.7865 0.7714 0.7256 
4 0.1558 0.1528 0.1861 0.1647 0.1653 0.1649 0.1533 
5 0.0136 0.0134 0.0145 0.0141 0.0141 0.0141 0.0134 
6 0.0007 0.0007 0.0008 0.0007 0.0007 0.0007 0.0007 

20 .01 2 0.5214 0.4971 0.9805 0.5221 0.7117 0.5399 0.5056 
3 0.0645 0.0627 0.1408 0.0662 0.0717 0.0667 0.0635 
4 0.0043 0.0038 0.0053 0.0039 0.0040 0.0039 0.0038 

.05 3 0.9761 0.9452 1.0000 0.9825 0.9950 0.9841 0.9499 
4 0.6452 0.6183 0.8866 0.7038 0.7179 0.7053 0.6228 
5 0.1961 0.1942 0.2705 0.2262 0.2270 0.2263 0.1959 
6 0.0359 0.0349 0.0421 0.0397 0.0397 0.0397 0.0352 
7 0.0044 0.0045 0.0050 0.0050 0.0050 0.0050 0.0045 
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Table 2.3: Comparison of five approximations to P(Sm 2: k) for 
i.i.d. Poisson model 

N m () k P(Sm 2: k) (2.6) (2.22) (2.26) (2.40) 
100 10 .10 3 .7645 .7667 .8529 .6676 .6898 

4 .3389 .3472 .4354 .3257 .3291 
5 .0977 .0965 .1237 .0949 .0951 
6 .0215 .0195 .0245 .0195 .0195 
7 .0033 .0032 .0039 .0032 .0032 

.25 5 .8918 .8900 .9317 .7681 .7977 
6 .9328 .6231 .7144 .5574 .5686 
7 .3205 .3187 .3909 .3009 .3034 
8 .1265 .1248 .1558 .1221 .1224 
9 .0402 .0401 .0495 .0398 .0399 
10 .0117 .0111 .0135 .0111 .0111 
11 .0027 .0027 .0033 .0027 .0027 

20 .25 8 .7563 .7623 .7811 .5893 .6151 
9 .5609 .5539 .6022 .4591 .4704 
10 .3570 .3458 .3952 .3075 .3113 
11 .1906 .1872 .2198 .1757 .1767 
12 .0950 .0894 .1056 .0868 .0870 
13 .0376 .0384 .0450 .0379 .0379 
14 .0147 .0150 .0174 .0149 .0149 
15 .0068 .0054 .0062 .0054 .0054 

500 10 .25 7 .8713 .8673 .9327 .8463 .8499 
8 .5032 .5060 .6023 .4971 .4983 
9 .1896 .1954 .2417 .1940 .1942 
10 .0594 .0578 .0713 .0577 .0577 
11 .0146 .0145 .0176 .0145 .0145 
12 .0030 .0033 .0039 .0033 .0033 

20 .25 11 .6886 .6870 .7745 .6561 .6606 
12 .4115 .4110 .4882 .3993 .4008 
13 .1923 .1996 .2415 .1968 .1971 
14 .0795 .0829 .0999 .0824 .0825 
15 .0322 .0307 .0306 .0306 .0307 
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Table 2.4: Comparison of five approximations to P(Sm 2:: k) for Li.d. 
binomial model 

N m N p k P(Sm 2:: k) (2.6) (2.22) (2.26) (2.40) 
100 10 5 .05 5 .8791 .8859 .9263 .7635 .7923 

6 .6015 .5983 .6871 .5365 .5469 
7 .2920 .2847 .3486 .2702 .2721 
8 .1039 .1008 .1249 .0990 .0992 
9 .0290 .0286 .0350 .0285 .0285 
10 .0059 .0069 .0082 .0069 .0069 

.10 9 .7589 .7624 .8260 .6669 .6841 
10 .4972 .4970 .5772 .4540 .4602 
11 .2635 .2577 .3117 .2459 .2474 
12 .1164 .1098 .1340 .1077 .1079 
13 .0447 .0399 .0483 .0397 .0397 
14 .0124 .0127 .0152 .0127 .0127 
15 .0032 .0036 .0043 .0036 .0036 

10 .05 9 .7788 .7836 .8443 .6832 .7020 
10 .5357 .5342 .6167 .4846 .4921 
11 .3014 .2958 .3572 .2802 .2822 
12 .1434 .1369 .1676 .1335 .1339 
13 .0598 .0548 .0667 .0542 .0543 
14 .0213 .0195 .0234 .0194 .0194 
15 .0048 .0063 .0074 .0063 .0063 

20 5 .05 7 .9040 .9126 .8921 .6687 .7171 
8 .7504 .7569 .7734 .5848 .6099 
9 .5491 .5371 .5839 .4468 .4574 
10 .3271 .3227 .3690 .2888 .2922 
11 .1769 .1659 .1945 .1567 .1575 
12 .0746 .0744 .0875 .0725 .0726 
13 .0278 .0296 .0345 .0293 .0293 
14 .0129 .0106 .0122 .0106 .0106 
15 .0027 .0035 .0039 .0035 .0035 

500 10 5 .05 7 .8286 .8290 .9031 .8082 .8117 
8 .4268 .4305 .5163 .4238 .4247 
9 .1414 .1432 .1761 .1424 .1425 
10 .0355 .0361 .0439 .0360 .0360 
11 .0080 .0076 .0091 .0076 .0076 
12 .0014 .0014 .0016 .0014 .0014 



Discrete Scan Statistics 53 

Table 2.5: Comparison of six approximations to P(k; m, N, a) for 
Bernoulli model for conditional case for N = 100 

m a k P(k;n,m,a) (2.63) (2.65) (2.68) (2.80) (2.81) 
10 5 2 .8941 .7885 .8355 .6703 .7207 .6945 

3 .1678 .1598 .1988 .1534 .1573 .1546 
4 .0098 .0090 .0110 .0090 .0090 .0090 

10 3 .8563 .7665 .8080 .6583 .7321 .6779 
4 .2287 .2210 .2641 .2095 .2266 .2115 
5 .0247 .0261 .0314 .0260 .0271 .0260 
6 .0016 .0016 .0018 .0016 .0016 .0016 

15 3 .9997 .9835 .9786 .8570 .9566 .8948 
4 .7316 .6753 .7237 .5890 .6690 .6031 
5 .2031 .1946 .2302 .1859 .2057 .1873 
6 .0261 .0268 .0318 .0266 .0284 .0267 
7 .0018 .0021 .0024 .0021 .0021 .0021 

20 4 .9864 .9445 .9448 .8141 .9209 .8426 
5 .5964 .5441 .5977 .4857 .5584 .4946 
6 .1431 .1402 .1652 .1356 .1507 .1363 
7 .0196 .0187 .0219 .0186 .0199 .0186 
8 .0021 .0014 .0016 .0014 .0014 .0014 

20 5 3 .5350 .5167 .5097 .4155 .4351 .4278 
4 .0835 .0824 .0947 .0795 .0791 .0798 
5 .0042 .0043 .0049 .0043 .0042 .0043 

10 4 .8714 .8254 .7487 .6107 .7183 .6342 
5 .3465 .3433 .3563 .2967 .3358 .3022 
6 .0752 .0748 .0844 .0724 .0785 .0727 
7 .0102 .0096 .0108 .0096 .0100 .0096 

15 5 .9585 .9218 .8313 .6744 .8335 .7037 
6 .5654 .5496 .5321 .4417 .5350 .4532 
7 .0192 .1875 .2033 .1729 .2026 .1746 
8 .0423 .0414 .0464 .0407 .0456 .0407 
9 .0062 .0062 .0069 .0062 .0067 .0062 

20 6 .9820 .9581 .8694 .7014 .8885 .7351 
7 .7079 .6809 .6360 .5265 .6614 .5421 
8 .2948 .2973 .3101 .2625 .3229 .2664 
9 .0882 .0862 .0955 .0830 .0981 .0834 
10 .0163 .0177 .0197 .0176 .0199 .0176 
11 .0037 .0026 .0029 .0026 .0029 .0026 
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Table 2.6: Comparison of six approximations to P(k; m, N, a) for 
Bernoulli model for conditional case for N = 500 

m a k P(k;n,m,a) (2.63) (2.65) (2.68) (2.80) (2.81) 
10 25 3 .7829 .7221 .8293 .7025 .7463 .7063 

4 .1358 .1314 .1668 .1306 .1390 .1307 
5 .0092 .0096 .0118 .0096 .0100 .0096 

50 4 .8523 .8119 .8911 .7902 .8449 .7940 
5 .2369 .2314 .2840 .2292 .2511 .2295 
6 .0265 .0270 .0327 .0270 .0288 .0270 
7 .0022 .0018 .0022 .0018 .0019 .0018 

75 4 .9986 .9974 .9995 .9909 .9986 .9928 
5 .8077 .7686 .8494 .7487 .8115 .7519 
6 .2111 .2215 .2677 .2196 .2426 .2198 
7 .0259 .0280 .0333 .0279 .0299 .0279 
8 .0023 .0020 .0023 .0020 .0021 .0020 

100 5 .9964 .9879 .9965 .9757 .9936 .9784 
6 .6601 .6535 .7388 .6383 .7029 .6405 
7 .1460 .1598 .1913 .1588 .1747 .1590 
8 .0159 .0180 .0212 .0180 .0191 .0180 
9 .0011 .0011 .0012 .0011 .0011 .0011 

20 25 4 .6769 .6204 .7163 .5898 .6629 .5953 
5 .1612 .1623 .2002 .1599 .1801 .1603 
6 .0249 .0233 .0282 .0233 .0256 .0233 
7 .0016 .0023 .0027 .0023 .0025 .0023 

50 6 .6169 .5675 .6513 .5425 .6394 .5465 
7 .1899 .1822 .2189 .1793 .2135 .1797 
8 .0377 .0372 .0442 .0371 .0429 .0371 
9 .0055 .0056 .0065 .0056 .0063 .0056 

75 7 .8686 .8105 .8718 .7672 .8798 .7744 
8 .4283 .4022 .4690 .3893 .4775 .3911 
9 .1254 .1213 .1440 .1201 .1461 .1203 
10 .0254 .0258 .0301 .0258 .0303 .0258 
11 .0042 .0042 .0048 .0042 .0048 .0042 
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Table 2.7: Comparison of six approximations to Pp(k; m, N, a) for Pois-
son model for conditional case for N = 100 

m a k Pp(k; n, m, a) (2.63) (2.65) (2.68) (2.80) (2.81) 
10 5 2 .9075 .7956 .8454 .6716 .8418 .7204 

3 .1943 .1819 .2413 .1731 .1962 .1728 
4 .0137 .0132 .0177 .0134 .0172 .0172 

10 4 .3060 .2879 .3496 .2706 .2929 .2805 
5 .0514 .0496 .0662 .0498 .0503 .0498 
6 .0055 .0049 .0063 .0048 .0055 .0055 

20 5 3 .5578 .5352 .5287 .4273 .5096 .4346 
4 .0970 .0967 .1115 .0919 .0894 .0862 
5 .0058 .0058 .0061 .0063 .0049 .0018 

10 4 .8876 .8459 .7667 .6217 .7732 .7096 
5 .4082 .3980 .4095 .3363 .3881 .3820 
6 .1070 .1061 .1212 .1019 .0891 .0862 
7 .0176 .0177 .0205 .0179 .0232 .0232 
8 .0019 .0019 .0020 .0017 .0024 .0024 
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Table 2.8: Comparison of six approximations to Pb(k; m, N, a) for binomial 
model for conditional case 

N m n a k Pt,(k; n, m, a) (2.63) (2.65) (2.68) (2.80) (2.81) 
100 10 5 50 10 .4882 .4490 .5122 .4117 .4991 .4989 

11 .2096 .1973 .2319 .1913 .2043 .2043 
12 .0727 .0739 .0819 .0688 .0778 .0778 
13 .0216 .0212 .0278 .0209 .0313 .0313 
14 .0059 .0054 .0060 .0055 .0027 .0027 

25 5 .9672 .9096 .9185 .7777 .8953 .8809 
6 .6247 .5701 .6308 .5004 .5780 .5736 
7 .2331 .2192 .2585 .2094 .2276 .2272 
8 .0625 .0617 .0748 .0582 .0778 .0778 
9 .0126 .0131 .0158 .0125 .0154 .0154 

20 5 50 14 .8751 .8455 .7629 .6287 .8175 .8169 
15 .6426 .6232 .5890 .4874 .6302 .6299 
16 .3928 .3849 .3898 .3280 .4240 .4240 
17 .2017 .1964 .2130 .1814 .2302 .2302 
18 .0918 .0902 .0995 .0872 .1187 .1187 
19 .0379 .0376 .0417 .0378 .0436 .0436 
20 .0137 .0132 .0140 .0133 .0161 .0161 

10 50 14 .8921 .8591 .7769 .6366 .8342 .8335 
15 .6750 .6516 .6139 .5066 .6654 .6653 
16 .4230 .4111 .4080 .3487 .4433 .4433 
17 .2334 .2293 .2379 .2097 .2738 .2738 
18 .1117 .1108 .1205 .1041 .1237 .1237 
19 .0474 .0475 .0529 .0467 .0567 .0567 
20 .0187 .0185 .0206 .0177 .0240 .0240 
21 .0069 .0073 .0071 .0072 .0073 .0073 

500 20 5 100 9 .8159 .7418 .8153 .7064 .8370 .8369 
10 .4583 .4172 .4854 .4032 .4598 .4598 
11 .1829 .1646 .1921 .1682 .1790 .1790 
12 .0608 .0513 .0594 .0537 .0829 .0829 
13 .0170 .0146 .0209 .0143 .0107 .0096 
14 .0041 .0031 .0034 .0029 .0048 .0048 

10 10 100 10 .4682 .3929 .5027 .4084 .4755 .4752 
11 .1945 .1618 .2261 .1641 .1949 .1947 
12 .0651 .0498 .0666 .0607 .0741 .0741 
13 .0183 .0122 .0181 .0176 .0284 .0284 
14 .0052 .0041 .0048 .0036 .0039 .0039 
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Table 2.9: Comparison of compound Poisson approximations to 
P(~ ~ l) for the Bernoulli model 

N m p k P(~ ~ l) (2.31) (2.35) (2.39) (2.40) 
100 10 .05 2 2 .7139 .6520 .7185 .6836 .5353 

3 .6834 .5946 .6371 .6314 .3018 
4 .6572 .5407 .5763 .5824 .1881 
5 .6114 .4904 .5230 .5367 .0957 

3 2 .1953 .1834 .1843 .1857 .1033 
3 .1614 .1417 .1424 .1441 .0189 
4 .1312 .1094 .1099 .1118 .0057 
5 .0976 .0843 .0847 .0868 .0010 

4 2 .0207 .0213 .0213 .0213 .0090 
3 .0154 .0138 .0138 .0139 .0003 
4 .0106 .0090 .0090 .0090 .0000 
5 .0066 .0058 .0058 .0059 .0000 

20 .05 4 2 .1560 .1586 .1589 .1594 .0602 
3 .1413 .1358 .1360 .1366 .0087 
4 .1235 .1163 .1164 .1170 .0020 
5 .1060 .0995 .0997 .1003 .0003 

500 10 .01 2 2 .3061 .2752 .2843 .2871 .2004 
3 .2675 .2309 .2359 .2436 .0489 
4 .2432 .1935 .1976 .2067 .0217 
5 .2145 .1619 .1654 .1756 .0046 

.05 4 2 .1145 .1111 .1111 .1113 .0568 
3 .0825 .0749 .0749 .0751 .0070 
4 .0560 .0504 .0505 .0507 .0016 
5 .0384 .0340 .0340 .0342 .0002 

20 .05 5 2 .1777 .1851 .1851 .1852 .0742 
3 .1443 .1514 .1514 .1516 .0117 
4 .1193 .1238 .1238 .1240 .0028 
5 .1068 .1012 .1012 .1014 .0004 

6 2 .0267 .0297 .0297 .0297 .0087 
3 .0210 .0223 .0223 .0223 .0003 
4 .0158 .0167 .0167 .0167 .0000 
5 .0150 .0125 .0125 .0125 .0000 
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Table 2.10: Comparison of five approximations to P(Sm,m ~ k) for 
Bernoulli model 

N m p k P(Sm,m ~ k) (2.96) (2.99) (2.100) (2.106) 
25 5 .05 6 .1711 .2206 .4143 .2310 .2365 

7 .0358 .0386 .0717 .0408 .0419 
8 .0038 .0050 .0086 .0054 .0055 

.10 9 .0940 .1016 .1827 .1071 .1115 
10 .0206 .0200 .0342 .0212 .0223 
11 .0037 .0032 .0051 .0034 .0036 

10 .05 12 .1570 .1569 .6652 .1737 .3443 
13 .0704 .0633 .3126 .0713 .1428 
14 .0259 .0226 .1118 .0257 .0505 
15 .0104 .0073 .0343 .0083 .0160 

.10 20 .0995 .0865 .3974 .0971 .1936 
21 .0470 .0394 .1862 .0445 .0883 
22 .0205 .0166 .0767 .0188 .0368 
23 .0080 .0065 .0288 .0074 .0143 

100 5 .05 8 .0959 .1208 .1653 .1220 .1079 
9 .0130 .0135 .0174 .0136 .0123 
10 .0012 .0012 .0016 .0012 .0011 

.10 11 .0646 .0789 .1021 .0797 .0724 
12 .0095 .0110 .0137 .0111 .0103 
13 .0003 .0013 .0016 .0013 .0012 

10 .05 16 .0841 .1383 .2644 .1399 .1352 
17 .0268 .0398 .0750 .0402 .0383 
18 .0075 .0102 .0186 .0103 .0098 
19 .0020 .0024 .0039 .0024 .0023 

.10 24 .1018 .1537 .2798 .1554 .1511 
25 .0377 .0565 .1025 .0572 .0550 
26 .0130 .0189 .0335 .0192 .0183 
27 .0057 .0060 .0103 .0060 .0056 
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Table 2.11: Comparison of four approximations to P(Sm,m ~ 
k) for Poisson model 

N m () k P(Sm,m ~ k) (2.96) (2.99) (2.100) 
25 5 .25 14 .5350 .6382 .8960 .6526 

15 .2970 .3556 .5966 .3698 
16 .1404 .1626 .2905 .1708 
17 .0598 .0649 .1154 .0686 
18 .0217 .0236 .0407 .0250 
19 .0070 .0080 .0133 .0084 
20 .0023 .0025 .0041 .0027 

25 5 .50 26 .1122 .1241 .2176 .1306 
27 .0579 .0603 .1046 .0637 
28 .0255 .0277 .0470 .0293 
29 .0170 .0122 .0200 .0129 
30 .0066 .0051 .0082 .0054 

100 5 .50 30 .1039 .1233 .1589 .1246 
31 .0464 .0520 .0661 .0525 
32 .0184 .0207 .0259 .0209 
33 .0077 .0079 .0097 .0080 

Table 2.12: Comparison of four approximations to P(Sm,m ~ 
k) for binomial(5,p) model 

N m p k P(Sm,m ~ k) (2.96) (2.99) (2.100) 
25 05 .05 15 .2420 .2830 .4853 .2954 

16 .1068 .1170 .2077 .1232 
17 .0383 .0423 .0734 .0446 
18 .0132 .0138 .0232 .0146 
19 .0052 .0042 .0067 .0044 

10 .05 40 .1259 .1155 .4991 .1289 
41 .0814 .0715 .3267 .0805 
42 .0495 .0428 .1983 .0484 
43 .0297 .0247 .1135 .0281 
44 .0200 .0139 .0622 .0158 
45 .0100 .0076 .0329 .0086 
46 .0064 .0040 .0169 .0046 

100 05 .05 19 .0843 .1022 .1326 .1032 
20 .0252 .0300 .0383 .0304 
21 .0071 .0080 .0098 .0082 
22 .0014 .0020 .0022 .0021 

10 .05 47 .0862 .1337 .2396 .1351 
48 .0476 .0698 .1248 .0706 
49 .0249 .0349 .0617 .0354 
50 .0119 .0170 .0291 .0172 
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Table 2.13: A compound Poisson approximation to P(C > 1) for a 
Bernoulli model 

N m p k l PCC > l) (2.110) N m p k P(e* >l) (2.110) 
25 5 .05 6 2 .1180 .1637 100 5 .05 7 2 .3436 .4203 

3 .0720 .0807 3 .2227 .2528 
4 .0486 .0327 4 .1559 .1429 
5 .0317 .0131 5 .0103 .0778 

7 2 .0168 .0228 8 2 .0420 .0516 
3 .0071 .0076 3 .0178 .0158 
4 .0061 .0017 4 .0116 .0039 
5 .0027 .0003 5 .0053 .0010 

.10 9 2 .0459 .0600 .10 10 2 .1743 .2064 
3 .0250 .0217 3 .0971 .0906 
4 .0152 .0062 4 .0588 .0369 
5 .0104 .0017 5 .0320 .0145 

10 2 .0090 .0095 11 2 .0210 .0272 
3 .0032 .0025 3 .0100 .0065 

25 10 .05 12 2 .1224 .2912 100 10 .05 15 2 .1632 .3071 
3 .0978 .2026 3 .1187 .1942 
4 .0780 .1200 4 .0988 .1092 
5 .0671 .0644 5 .0738 .0586 

13 2 .0500 .1122 16 2 .0520 .0936 
3 .0398 .0678 3 .0346 .0478 
4 .0323 .0323 4 .0282 .0197 
5 .0229 .0127 5 .0198 .0071 

Table 2.14: Approximations for the expected value and standard de-
viation of one-dimensional discrete scan statistic for N = 100 

Simulation Product-Type Poisson Compound Poisson 
E(S:r,) SD* E(Sm) SD E(Sm) SD E(Sm) SD 

p Bernoulli (p) model for m = 20 
.05 2.5735 1.0175 2.5833 1.0323 1.9433 1.5754 2.4088 1.3130 
.10 4.2605 1.2371 4.2648 1.2340 3.7873 1.5509 4.2203 1.5039 

p Binomial (5,p) model for m = 10 
.05 5.8734 1.2507 5.8951 1.2565 5.5639 1.5711 5.9899 1.3078 
.10 9.6003 1.5463 9.6134 1.5355 9.2047 1.9285 9.7719 1.5575 

0 Poisson (0) model for m = 10 
.10 3.1962 .9925 3.2173 .9985 2.9534 1.2403 3.2290 1.0710 
.25 6.0051 1.3139 6.0002 1.3299 5.6594 1.6485 6.1008 1.3804 

a Bernoulli model conditional on L~=l Xi = a for m = 20 
10 4.2962 .8227 4.2504 .8624 3.7172 1.3020 3.9890 1.2235 
20 7.0983 1.0091 7.0427 1.0542 6.3180 1.7042 6.9212 1.3549 
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Table 2.15: Approximations for the expected value and standard deviation 
of one-dimensional discrete scan statistic for N = 25 and m = 5 

Simulation Product-Type Poisson Compound Poisson 
E'CSm,m) SD' ECSm,m) SD ECSm,m) SD ECSm,m) SD 

p Bernoulli Cp) model 
.05 4.7072 .9326 4.9714 .8201 4.9951 .8271 5.0281 .8111 
.10 7.0991 1.0800 7.3211 .9475 7.3490 .9555 7.3961 .9378 

p Binomial C5,p) model 
.05 13.5315 1.5710 13.8504 1.4043 13.8930 1.4170 
.10 22.1959 1.9725 22.5822 1.7540 22.6361 1.7698 

0 Poisson CO) model 
.25 13.7945 1.6514 14.1328 1.4790 14.1777 1.4926 
.50 22.8515 2.1594 23.3019 1.9238 23.3611 1.9415 
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Ratchet Scan and Disjoint Statistics 

Joachim Krauth 

Dusseldorf University, Dusseldorf, Germany 

Abstract: A general definition of ratchet scan and disjoint statistics is given. 
The known results for the disjoint statistic, the linear ratchet scan statistic, and 
the circular ratchet scan statistic are reviewed. This concerns the exact and 
asymptotic distributions as well as exact bounds for the upper tail probabilities 
of the test statistics under the null hypothesis of no clustering. Further, results 
concerning the power of the tests in comparison with other tests for clustering 
are reported. In addition, certain modifications and extensions, e.g., the EMM 
procedure, the Grimson models, and the test of Hewitt et al. (1971), are studied. 
Finally, a general approach to derive exact upper and lower bounds for the tail 
probabilities of the general ratchet scan statistic is described. 

Keywords and phrases: Ratchet scan statistic, disjoint statistic, EMM pro
cedure, Hewitt's test, bounds for tail probabilities 

3.1 Introduction 

The one-dimensional scan statistic for the continuous case in the conditional 
situation has been used by many authors to test for clusters in time in epidemi
ological data. This statistic is defined as the maximum number of events within 
a window of given length which is moved along the time axis. If this statistic is 
used, the exact time of occurrence for each event has to be known. This is no 
longer the case if only the number of events for certain disjoint time intervals, 
e.g., months or years, is available. Then, the scan statistic cannot be calculated 
and a discrete version of it, which was named ratchet scan statistic by Wallen
stein, Weinberg, and Gould (1989b), has to be used. For the special case that 
the window has only the length of one of the given disjoint time intervals, N aus 
(1966) introduced the term disjoint test. Other authors used the term EMM, 
or Ederer-Myers-Mantel, procedure for both, the general and the special case, 
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because this kind of statistic seems to have been studied by Ederer, Myers, and 
Mantel (1964) for the first time. The present statistic must not be confused 
with the scan statistics for the discrete case in the conditional situation, which 
are considered elsewhere in this volume. 

In a more formal and more general way, we may introduce ratchet scan and 
disjoint statistics as follows: 

Let (Nl , ... , Nc ) be a random vector which is multinomially distributed 
with parameters N,Pl, ... ,Pc. Here, Nand c with 1 ~ N < 00, 2 ~ c < 00, are 
integers, and the Pi with 0 < Pi < 1, 1 ~ i ~ c, PI + ... + Pc = 1, are interpreted 
as probabilities assigned to certain cells Gl, ... , Gc . 

lt is assumed that a neighborhood structure exists for the cells G1, ... , Gc , 

Le., for each pair of cells, it is known whether or not the cells are neighbors. 
Two nonempty subsets of cells are called isomorphic if they contain the same 
number of cells and if there exists a one-to-one mapping from one subset to the 
other by which pairs of neighbors are transformed into pairs of neighbors and 
pairs of non-neighbors into pairs of non-neighbors. The two subsets may not 
be disjoint. A set of cells is called connected if no partition of the set into two 
nonempty subsets exists such that the cells of one subset have no neighbor in 
the other subset. If each cell has exactly two neighbors and if all c cells are 
connected, the cells are said to form a circle. The cells are said to form a line if 
all c cells are connected, if c - 2 of the cells have exactly two neighbors, and if 
each of the two remaining cells has exactly one neighbor. If at least one cell has 
at least three neighbors, the structure is said to have two or more dimensions. 

A window is a connected subset of m cells, 1 ~ m < c. We consider the 
set of all possible subsets of m cells of the c cells which are isomorphic to the 
window and assume that each of the c cells is contained in at least one of these 
subsets. For each subset, the sum of the Ni'S corresponding to the cells in this 
subset is calculated. The most important statistic to be considered here is the 
maximum of the sums in the set of subsets which are isomorphic to the window. 
This statistic is denoted by M(m). Of interest are the exact and asymptotic 
distributions of M(m), as well as approximations and bounds for the tail prob
abilities. 

The statistic M (m) for the circle is called ratchet circular scan statistic by 
Wallenstein, Weinberg, and Gould (1989b), the statistic M(m) for the line is 
called linear ratchet scan statistic by Krauth (1992b), while the test based on 
the statistic M(l) is called disjoint test by Naus (1966). 
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3.2 Disjoint Statistic 

3.2.1 Definition 

Consider N independent identically distributed d-dimensional random vectors 
Xl, ... , XN with a distribution that is concentrated on a bounded Borel set B 
in the d-dimensional Euclidean space. Under the null hypothesis Ha, we assume 
a uniform distribution, i.e., a distribution with constant density over B. This 
null hypothesis is to be tested against clustering alternatives. We assume a 
dissection of B into c ~ 2 disjoint Borel subsets or cells Gl , ... , Gc , of which 
the probabilities Pl, ... ,Pc, with Pl + ... + Pc = 1, are known under Ha. Let Ni 
denote the number of random vectors observed in cell Gi, i = 1, ... , c. Then, 
the disjoint statistic is defined by 

M(1) = max N·. 
l:S;i:S;c t 

The distribution of the c frequencies Nl, ... , Nc under H a is given by the multi
nomial distribution 

p (n {Ni = nd) 
t=l 

c 

0::; ni::; N (i = 1, ... ,c), I:ni = N. 
i=l 

Under Ha, most authors assume the equiprobable case with 

Pl = ... = Pc = 1/ c. 

Results for this case are of a simpler form and can be derived in an easier way 
than results for the general case with cell probabilities Pl, ... , Pc which may be 
unequal. 

3.2.2 Results for the equiprobable case 

Exact distribution 

Barton and David (1959) have given the formula for the cumulative distribution 
function of M(1) as 

where the summation is over c-compositions of N with no component greater 
than x. Here and in the following, we assume without loss of generality x to be 
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integer-valued. They have stated that P(M(l) ~ x) is the coefficient of tN in 
the expansion of 

This was also observed by Good (1957). 
A FORTRAN algorithm for calculating P(M(l) ~ x) is presented by Free

man (1979), while Grimson (1993) has derived the explicit formula 

P(M(l) ~ x) 

= C-NL (_l)k+1(C) t (c_k)N-iI- ... -jk.,Nl., 
k>1 k .++._ )1····)k· 

_ Jl ... Jk-X 

A table of the exact distribution of M(l) has been given by Ederer, Myers, and 
Mantel (1964) for c = 5 and N = 2(1)15. 

Approximations 

Barton and David (1959) and David and Barton (1962, p. 239) have derived 
the approximation 

P(M(l) ~ x) ~ 1- exp (-CGb (X;N,~)) 
with the binomial tail G(x; N,p). 

Good (1957) has discussed the usage of saddle-point methods to approxi
mate P(M(l) ~ x). 

Johnson and Young (1960) have derived three normal approximations for 
the upper percentage points of N M(l). Using a normal approximation of the 
multinomial distribution and the upper Bonferroni bound of degree one, Kozelka 
(1956) has derived approximate upper percentage points for M(l) of the form 

xa ~ N + V(C-1)N <1>-1 (1-~), 
C c2 c 

where <1> denotes the cumulative distribution function of the standard normal 
distribution. This approximation is identical to the third approximation of 
Johnson and Young (1960) if 0.5 is added to the right side of Kozelka's approx
imation as a correction for continuity. 

Viktorova and Sevastyanov (1967) have derived the asymptotic distribution 
of M (1) for N, c ---7 00 for the situations with N / (c In c) ---7 0 and N / (cln c) ---7 

b > 0, while Viktorova (1969) has considered the remaining situation with 
N/(clnc) ---7 00. 



Ratchet Scan and Disjoint Statistics 71 

Bounds 

The computation of the exact distribution of the disjoint statistic is only fea
sible for small values of Nand c, while it is not known how good the result of 
an approximation or simulation will be in a concrete situation. Therefore, close 
exact bounds for P(M(l) ~ x) which are easy to compute have advantages over 
the other approaches when statistical tests have to be performed. 

By using Bonferroni's inequalities and the fact that NI , ... , Nc are nonpos
itively correlated, Mallows (1968) has derived the bounds 

1 - exp ( -CGb (x; N, ~)) < 1 - (1 - Gb ( x; N, ~) r 
< P(M(l) ~ x) ~ cGb (X;N,~). 

By similar arguments, Yusas (1972) has obtained 

cGb (X;N,~) - ~c(c - 1) (Gb (X;N,~)) 2 

~ P(M(l) ~ x) ~ cGb (x; N, ~) . 

Krauth (1991) has derived upper and lower bounds of degrees one and two for 
P(M(l) ~ x). The upper bounds are given by 

UI min{l, cql}, 

U2 min{l, cql - (c - 1)qI2}, 

while the lower bounds are given by 

LI k(k: 1) (2kql - (c - l)qr) with k = 1 + l(c - l)qIJ , 

L2 k(k: 1) (2kql - (c -1)qI2) with k = 1 + l(c - 1)qI2/qIJ . 

Here, l x J denotes the integer part of x and 

ql Gb (X;N,~), 

qI2 = 
N-x N-s N! (l)S+t ( 2)N-s-t L L - 1--
s=x t=x s!t!(N - s - t)! c c 

with qI2 = 0 for 2x > N. The bound UI is the best linear upper bound of 
degree one, the bound U2 is the best linear upper bound of degree two, while 
the bound L2 is the best linear lower bound of degree two. The inequality 
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holds. As noted by Krauth (1996b), for 2x > N we get the exact result 

P(M(I) 2: x) 1 for x 2: 1 
CQl for 2x > N 
o for x > N. 

The lower bound of Yusas (1972) is identical to Ll if k = 1. For k > 1, the 
bound Ll is better than Yusas' bound. Likewise, the classical lower Bonferroni 
bound of degree two, which is used by David and Barton (1962, pp. 238-240), 
is identical to L2 if k = 1. For k > 1, the bound L2 is closer than David and 
Barton's bound. The bound Ul is identical to the upper bounds used by David 
and Barton, Mallows, and Yusas. 

Considering the example used in Mallows (1968) with N = 500, C = 50, and 
x = 20, we find 0.1447 and 0.1449 for Mallows' lower bounds, 0.1443 for both 
Yusas' lower bound and Ll, 0.1470 for both David and Barton's lower bound 
and L2, 0.1563 for Ul, and 0.1559 for U2. In a situation with a tail probability 
of 0.05 or smaller, the bounds would have been considerably closer than in our 
case with a tail probability of about 0.15. 

3.2.3 Results for the general case 

In most applications, one has to assume that the assumption of equal cell prob
abilities under Ho is not justified. Months as well as years differ in length and 
occasionally it is necessary to choose the probabilities in proportion to the total 
number of subjects in a cell. 

Exact distribution 

Good (1957) and Levin (1981) have noted that P(M(I) ~ x) is the coefficient 
of tN in the expansion of 

c x 

N! II L ((Pit)j / j!) . 
i=l j=O 

Levin (1981, 1983) has proposed to compute the cumulative distribution func
tion of M(I) by means of the relation 

P(M(I) ~ x) = N N!( _ ) {IT P(Xi ~ X)} P (t Yj = N) , (3.1) 
S exp S i=l j=l 

where s is an arbitrary positive real number, Xi'S are independent Poisson 
random variables with mean SPi, for i = 1, ... , c, and Yj's are independent 
truncated Poisson random variables with mean SPj and range 0,1, ... , x, for 
j = 1, ... , c. For s, Levin (1981, 1983) has recommended to choose S = N. 
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Approximations 

Levin (1981, 1983) has proposed normal approximations of P(M(l) ~ x) based 
on the formula given in (3.1). These approximations are of the form 

P (t y. = N) == f (N - 2:j=1 J-Lj) 1 

j=1 J V2:j=1 aJ V2:j=1 aJ 
for the last term of the formula in (3.1). Here, J-Li = E[Yi], ar = V[Yi], for 
i = 1, ... , c, and f(x) denotes an Edgeworth expansion, where the first order 
term is the density function of the standard normal distribution. 

Bounds 

We use the following notation: 

qi Gb(X; N; Pi) for i = 1, ... , c, 

qij 0 for 2x > N, 
N-x N-s N' 
'" '" • S t (1 )N-s-t qij L.....- L.....- s!t!(N _ s _ t)! PiPj - Pi - Pj 
s=x t=x 

for i -I j, i,j = 1, ... , c, 2x ~ N, 
c i-I 

82=LL%, 
i=2 j=1 

c i-I 

82 = L Lqiqj. 
i=2 j=1 

Mallows (1968) has shown that 

s 

1- exp(-8I) ~ 1- II(l- qi) ~ P(M(l) ~ x) ~ 81 
i=l 

holds, while Yusas (1972) has proved that 

81 - 8'2 ~ P(M(l) ~ x) ~ 81. 

Krauth (1991) has derived the upper bounds 

of degree one and 

U2 = min {l,Sl - max t qiS } 
l<s<c 

- - i=l 
ii-s 

of degree two, and the lower bounds 

L1 = k(k ~ 1) (kSI - 82) with k = 1 + l2S2/Sd 
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of degree one and 

of degree two. 
For these bounds, we have 

Here, Ul is the best linear upper bound of degree one, while L2 is the best 
linear lower bound of degree two, if only the values of 8 1 and 82 but not the 
probabilities qi and % are known. 

The upper bound Ul is identical to the upper bound proposed by Mallows 
and Yusas. If we assume k = 1 for the lower bound Ll, it is identical to Yusas' 
lower bound, i.e., Ll is always at least as close as Yusas' bound. 

For 2x > N, we have the exact result 

P(M(l) ~ x) = 81. 

3.2.4 Power 

Naus (1966) has compared the scan statistic and the disjoint statistic with 
respect to power against clustering alternatives. For accomplishing this, assume 
that Xl, ... ,XN are independent identically distributed random variables which 
take only values in the unit interval (0,1) with a cumulative distribution function 
F(x) with a continuous density function f(x). Under Ho, let F(x) = x for x E 

(0,1). The cells Gl, ... , Cc for the disjoint statistic are defined by dissecting the 
unit interval into c equal-sized intervals. Thus, under Ho, the same probabilitiy 
(l/c) corresponds to each of these cells, i.e., we are in the equiprobable case. 

Naus (1966) has derived 

(N) (l)X-l rl ((l)X-l) P(M(l) ~ x) = x ~ 1o (f(t))X dt + 0 ~ . 

For comparing the two tests, Naus has determined a randomization probability 
9 for which the levels of the scan test and the disjoint test are the same. This 
yields the level 

and the power 
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for the randomized disjoint test. 
In his Theorem I Naus (1966) has proved that, for c sufficiently large, the 

scan test is more powerful than the disjoint test against all alternative hypothe
ses with continuous density function. 

In particular, Naus (1966) has considered the alternative with F(x) = x 2 

for x E (0,1). In this case, the power of the disjoint test is given by 

( 1)2N-1 c ( 1) (1)2N c (N - 1) ~ ~(2i - 1)N-1 + 1- (N - 1) ~ ~ ~(2i - l)N 

which reduces to 

for N = 2. In the latter case, the scan test is more powerful than the disjoint 
test. This is not necessarily true for N > 2. From Table 1 in Naus (1966), we 
learn that the disjoint test is more powerful, e.g., for N = 6, c = 2; N = 7, 
c = 2,3; N = 8, c = 2,3; N = 9, c = 2,3,4; N = 10, c = 2,3,4,5. Generally 
speaking, the disjoint test is more powerful than the scan test of the same level 
for N large relative to c. 

Naus (1966) has also considered the generalizations of the disjoint test and 
scan test to more than one dimension by considering the unit k-dimensional 
cube. To define the disjoint statistic, this cube is dissected into c equal-sized 
rectangular solids. The power of the disjoint test is then given by 

((x + l)k - 1) (x: 1) (~) x fo1 ... fo1 (f(t1, ... , tk))X dt1 ... dtk 

+(X:1) (~)X fo1 ... fo1(f(t1, ... ,tk))X+1dt1 ... dtk+O((~)X). 
In his Theorem II Naus (1966) has proved that, for c sufficiently large, the scan 
test is more powerful than the disjoint test against all alternative hypotheses 
with continuous density functions on the unit k-dimensional cube. 

Yusas (1972) has compared the disjoint test with the corresponding chi
square test with respect to power in the case that the alternative does not 
differ very much from the null hypothesis of equal probabilities, i.e., for 

In this situation, Yusas (1972) has shown that 

1 c ( a) 1 (1 2 ( a)) a+---z 1-- --exp --z 1--
2c-1 c..;'2ir 2 c 

x Ncp2(1 + 0(1)), 
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where f denotes the power function of the disjoint test and z(1 - %) is the 
quantile of the standard normal distribution at level (1- %). Yusas (1972) has 
proved 

f ( ) X2 (1 - 20<. 1) 
Pl, .. ·,pc -a ~ 2 .c' (1+0(1)), 

g(Pl, ... ,pc)-a X (l-a,e-I) 

where 9 denotes the power function of the chi-square test and X2(1 - a; c) is 
the (1 - a )th quantile of the chi-square distribution with e degrees of freedom. 
For e = 2, the two tests are identical, i.e., we have f(PI, ... ,Pc) == g(PI, ... ,Pc), 
Then, the right side of the inequality becomes (1 + 0(1)). If c ~ 2 and 0 < a < 
0.5, the right side of the inequality is smaller than one and is monotonically 
decreasing with decreasing a or increasing c. 

3.2.5 Modifications and extensions 

EMM statistic 

The EMM procedure is proposed in Ederer, Myers, and Mantel (1964) as a test 
for clusters in space and time with applications in epidemiology. The first step is 
the dissection of the geographical area A of interest into d subareas AI, ... , Ad 
of equal size. In the second step, the observation period T is dissected into 
c subperiods Tl,"" Tc of equal length. From this, altogether d x c three
dimensional temporal-spatial cells Cij = Ai n Tj result, for i = 1, ... , d, j = 

1, ... , c, and for each cell the number of cases (Nij) is recorded. 
In the next step, the maximum of the numbers of cases is determined for 

those cells which belong to the same subarea and differ only with respect to the 
subperiods: 

Mi(I) = max Nij for i = 1, ... , d. 
I:S;J:S;c 

In other words, for a fixed subarea Ai the disjoint statistic is calculated with 
respect to the c time periods TI, ... , Tc. Ederer, Myers, and Mantel (1964) 
have derived the conditional distribution of the disjoint statistic Mi (1) given 
the number Wi = Nil + ... + Nic of cases in the considered subarea Ai under 
the null hypothesis of equal probabilities (for c = 5 and Wi = 2(1)15). For 
this distribution, the mean E[Mi(l) I Wi] and the variance V[Mi(l) I Wi], for 
i = 1, ... , d, are calculated. Next, Ederer, Myers, and Mantel (1964) have 
considered the sum 

d 

MI = "EMi(l) 
i=l 

with 
d d 

E[MI] = I: E[Mi(I) I Wi], V[MI] = I: V[Mi(l) I Wi] 
i=l i=l 

and calculate 
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They have assumed asymptotic normality of MI and an approximate chi-square 
distribution with one degree of freedom of XI under Ho, where the term 0.5 in 
XI denotes the correction for continuity which was introduced by Yates (1934). 
Mantel, Kryscio, and Myers (1976) have tried to justify the assumption of 
asymptotic normality arguing that, though each individual Mi(l) might follow 
some extreme-value distribution, (MI- E[MI])/(V[MI])I/2 "would tend to be 
asymptotically normally distributed under the central limit theorem by virtue 
of being a total of many independent observations each following distributions 
with finite second moment." 

Ederer, Myers, and Mantel (1964) have given the values of E[Mi(l) I Wi] 
and V[Mi(l) I Wi] for c = 5 and Wi = 2(1)15. Mantel, Kryscio, and Myers 
(1976) have corrected errors in this table and extended it to cover the cases 
c = 2, Wi = 2(1)100(5)200(100)500; c = 3, Wi = 2(1)50(5)200(100)500; c = 4, 
Wi = 2(1)50(5)200; c = 5, Wi = 2(1)50(5)100(25)200. 

Since tables of this kind do not cover all situations met in practice, Stark 
and Mantel (1967a) have derived approximate values of E[Mi(l) I Wi] and 
V[Mi(l) I Wi] based on a normal approximation of the multinomial distribu
tion. Mantel, Kryscio, and Myers (1976) have improved the approximation 
proposed by Stark and Mantel (1967a), introducing the exact values of the 
expectations and variances for Wi = 100,200, and 500 in the approximation 
formulas if Wi > 100, Wi > 200, or Wi > 500. Former results concerning nor
mal approximations of E[Mi(l) I Wi] and V[Mi(l) I Wi] are due to Greenwood 
and Glasgow (1950) and Owen and Steck (1962). 

Wartenberg and Greenberg (1990) have compared the power of the EMM 
procedure with that of Mantel's space-time regression procedure [Mantel (1967)] 
by means of a simulation study. They have concluded that the two procedures 
are specific to different hypotheses and that both show low power for small 
numbers of cases. 

Wallenstein, Gould, and Kleinman (1989a) have replaced the disjoint statis
tic M(l) in the EMM procedure by the scan statistic and have argued (where 
S denotes the modified EMM statistic, and d is replaced by J): "As for the 
EMM statistic, the Central Limit Theorem indicates that if J is sufficiently 
large and no single unit is much larger than the rest, then S in equation 2 will 
have approximately a normal distribution under Ho." For the application of the 
modified statistic, they have provided tables of means and variances of the scan 
statistic which are exact for Wi ~ 19 and based on simulations for Wi ~ 20. 

The Grimson models 

Grimson (1979, 1993) and Grimson and Oden (1996) have derived the distri
bution of the disjoint statistic M(l) in the equiprobable case in two situations 
where no multinomial distribution of the vector (NI, ... , Nc ) is assumed. 

In thermodynamics, three well-known probability models are discussed, 
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which are described by Feller (1968, pp. 39-41); also see Kotz and Bala
krishnan (1997). Assume N balls are to be placed into c cells resulting in 
the occupancy numbers Nl, ... , N c . Assuming that all cN possible placements 
are equally probable, the probability to obtain the given vector (nl, ... , nc) of 
occupancy numbers equals 

Le., a multinomial probability. This model is called Maxwell-Boltzmann statis
tics. 

Assuming that all possible distinguishable arrangements of the N balls in 
the c cells have the same probability, each arrangement has the probability 

(C+N _1)-1 
c-l 

This model is called Bose-Einstein statistics. Here, in contrast to the Maxwell
Boltzmann model, we do not consider the different ways to generate a particular 
configuration of the numbers nl, ... , nco 

Finally, we assume that no cell can contain more than one ball and that all 
distinguishable arrangements with this property have equal probabilities. This 
probability is given by 

Obviously, in this case we must assume N ~ c. This model is called Fermi
Dirac statistics. 

So far, we have only dealt with the Maxwell-Boltzmann model. Grimson 
(1979) has derived for the Bose-Einstein model 

P(M(I) ~ x) = 1- i)-I)j(~) (c+ N - jx -1) (C+N _1)-1, 
. J c-l c-l )=0 

and has also given formulas for the moments of M(I), in particular for the mean 
E[M(I)]. The exact values of E[M(I)] and V[M(I)] for c = 5 and N = 1(1)400 
are listed so that an EMM-like procedure can be performed. 

Grimson (1993) and Grimson and Oden (1996) have considered a certain 
Fermi-Dirac model which they view as the "matrix occupancy" analogue of the 
usual occupancy model. In this model, N balls are placed into the cells of c 
columns where each column has r cells and each cell may contain no more than 
one ball. Identifying the columns with our original cells, the statistic M(I) 
corresponds to the maximum number of occupied cells in a column. They have 
derived 
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P(M(l) 2: x) (rc) -1 2:) _l)k+l (c) t ( r.(c - k) .) 
N k>1 k . . _ N - Jl - ... - Jk 

_ )l,···,)k-X 

X (~) ... (;k). 
Other approaches 

Krauth (1993) has considered an extension of the disjoint statistic M(l), where 
not the maximum of N 1, ... , Nc but the sum of the v largest values of the 
N 1 , ... , Nc is studied, i.e., 

v 

Mv (1) = . max. L Njt for v = 1, ... , c - l. 
)1 <··-<)v t=1 

Obviously, M(l) = Ml(l). For the equiprobable case, the upper Bonferroni 
bound of degree one for P(Mv(1) 2: x) is given by 

with 

q(v) = Gb (X;N,~). 
Krauth (1996a) has cosidered a Fermi-Dirac model (see the last subsec

tion), where c cells and in each cell ri sub cells are given, for i = 1, ... ,c, into 
each of which at most one ball of altogether N balls may be placed in a ran
dom fashion. This kind of model is called binary occupancy model by Grimson 
(1993) and Grimson and Oden (1996). Under H Q , this results in a multivariate 
hypergeometric distribution of (Nl, ... ,Nc ), i.e., 

Here, R = rl + ... + rc and N ::; R, ni ::; ri, for i = 1, ... ,c. 

For this model, Krauth (1996a,b) has derived exact upper and lower bounds 
of degrees one and two for the tail of the distribution M(l) under HQ, so that 
we have 

where 

U1 min{l, Sd, 
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min {1'81 - 1~~ct%}, 
;¥-j 

k(k ~ 1) (k81 - 82") with k = 1 + l282"/8d, 

k(k ~ 1) (k81 - 82) with k = 1 + l282/8 d, 

c c c-1 c c-1 
Lqi, 82 = L Lqij, 82" = L Lqiqj, 
i=1 i=2 j=1 i=2 j=1 

qi 0 for x > r i, 

q, mm~N} (~r (:) (~~~) otherwise, for i = 1, ... ,c, 

qij 0 for x> min{ri, rj}, 

qij 0 for 2x > N, 

qij min{r;,N} min{rj,N-u} (R) -1 (ri) (rj) (R - ri - rj ) 
L L N u v N-u-v 
u=x v=x 

otherwise, for i =1= j, i,j = 1, ... ,c. 

For 2x > N, we get the exact result 

c 

P(M(l) ~ x) = Lqi. 
i=1 

The bound U1 is the best linear upper bound of degree one, while the bound 
L2 is the best linear lower bound of degree two for P(M(l) ~ x) if only the 
values of 81 and 82 but not the probabilities qi and qij are known. 

Krauth (1996b) has also derived bounds for the special case of the matrix 
occupancy model [Grimson and Oden (1996)] with rl = ... = rc = r. These 
follow immediately from the bounds for the general binary occupancy model 
given above by replacing ri and rj by r, R by rc and ri + rj by 2r. 

3.2.6 Applications 

Most applications of the disjoint statistic and its modifications can be found 
in epidemiology; for example, for detecting clusters of childhood leukemia [Ed
erer, Myers, and Mantel (1964), Fraumeni, Ederer, and Hardy (1966), Man
tel, Kryscio, and Myers (1976), and Stark and Mantel (1967b)], poliomyelitis 
[Ederer, Myers, and Mantel (1964), and Mantel, Kryscio, and Myers (1976)], 
hepatitis [Ederer, Myers, and Mantel (1964), and Grimson (1979)], occur
rences of bone fractures at an infirmary [G rimson (1993), and Krauth (1996b) 1 , 
Trypanosoma cruzi seropositivity data [Grimson and Oden (1996)], Down's 
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syndrome births [Mantel, Kryscio, and Myers (1976), and Stark and Mantel 
(1967a)], first-born anencephalics [Krauth (1991)], and Green Tobacco Sick
ness [McKnight et al. (1996)]. Other applications concern the clustering of 
uranium deposits [Krauth (1991)]' seabirds [Krauth (1993)], species from a 
subtidal marsh creek [Krauth (1993)], and of neurons in chick embryos, rats, 
and humans [Krauth (1996a)]. 

3.3 Linear Ratchet Scan Statistic 

3.3.1 Definition 

Let Xl, ... , XN be independent identically distributed random variables. Under 
HQ, a continuous uniform distribution on a real-valued interval [a, b] is assumed. 
The interval [a, b] is dissected into c subintervals or cells Gl , ... , Gc , i.e., the cells 
are pairwise disjoint and their union is [a, b]. The number of Xj's observed in 
Gi is denoted by Ni for i = 1, ... ,c, and 

Pi = P(Gi) for i = 1, ... ,c, PI + ... + Pc = 1 

are the probabilities assigned to the c cells. We set 

i+m-l 

Ti (m) = L Nt for i = 1, ... , c - m + 1, m = 1, ... , c - 1, 
t=i 

and define the linear ratchet scan statistic as the maximum number of Xj's 
observed in m consecutive cells: 

M(m) = max ~(m). 
l::;i::;c-m+ 1 

For m = 1, the sum Ti(m) reduces to Ti(1) = Ni and the statistic M(m) to the 
disjoint statistic M(1). 

Under HQ, the vector (Nl , ... , N c ) is multinomially distributed with param
eters N,Pl, ... ,Pc' 

3.3.2 Results 

Krauth (1992b) has derived exact upper and lower bounds for the upper tail 
probabilities of the linear ratchet scan statistic for the general and the equiprob
able cases. 

We use the notation b(s;N,p) for the binomial probability, Gb(s;N,p) for 
the binomial tail and 

N-s N-u N' 
Gt(s; N,p, q) = ~ ~ u!v!(N -'u _ v)! puqv(1_ p - q)N-u-v 
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Gt(s; N,p, q) 

Gt(s;N,p,q) 

Gt(s;N,p,q) 

for 0 < p, q < 1, 0::; 2s ::; N; 

o for 2s > N; 

1 for s ::; 0; 

Gb(S; N,p) for p + q = 1; 

Gb (x; N, i+~r ps) for i = 1, ... , c - m + 1, 

m=1, ... ,c-1; 

qji qij for i, j = 1, ... , c - m + 1, m = 1, ... , c - 1; 

q;; G, (x; N, H~' p" jj~' p,) for c 2: 2m, 
i = 1, ... , c - 2m + 1, 

j=i+m, ... ,c-m+1, m=1, ... ,c-1; 

qij ~ b (s; N, i+f1 pr) 
s=O r=2+U 

( 
",i+~-1 P 

G N 6r= r 
X t X - s; - S, i+m-1' 

1 - 2:r=i+u Pr 

",i+m+u-1 p ) 
6r=i+m r 

i+m-1 
1 - 2:r=i+u Pr 

+Gb (x; N.]:;>,) 
forc~2m, u=1, ... ,m-1, i=1, ... ,c-m+1-u, 

j = i+u 

or c < 2m, u = 1, ... , c - m, i = 1, ... , c - m + 1 - u, 

j = i +u; 
c-m+l 

81 L qi; 
i=1 

c-m+1 j-1 

82 = L L%· 
j=2 i=1 

Then, the exact results 

hold. 

P(M(l) ~ x) 

P(M(l) ~ x) 

P(M(2) ~ x) 

Furthermore, the inequalities 

81 for x > N/2, 

81 - 82 for x > N /3, 

81 - 82 for x > N /2 

L ::; P(M(m) ~ x) ::; U 
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with 

and 

{ 
c-m+1 } 

U = min 1,81 - max L qij 
1:S;J:S;c-m+1 i=l 

icpj 

2 . 
L = k(k + 1) (k81 - 8 2 ) wIth k = 1 + l282/8d 

83 

are valid. Here, L is the best linear lower bound for P( M (m) ~ x) if only the 
values of 81 and 82 but not the probabilities qi and % are known. 

The lower bound L will be larger than 81 - 82 if k ~ 2. In view of the 
exact results for M(l) and M(2), we may speculate that the lower bound L in 
general will be a better approximation of P(M(m) ~ x) than the upper bound 
U. 

In the equiprobable case with P1 = ... = Pc = 1/c, all formulae are consid
erably simplified: 

q1 Gb(X;N,:); 

Gt (X;N, :' :) for c ~ 2m; 

~b(S;N,m-U)Gt(X-S;N-S, U , U ) 
8=0 C C - m + U c - m + U 

+Gb (X;N, m~u) 
for c ~ 2m, U = 1, ... , m - 1 

orc<2m, u=l, ... ,c-m; 

(c-m+1)q1; 
m-1 1 
I: (c - m + 1 - U)Q1,u+l + "2 (c - 2m + l)(c - 2m + 2)Ql,m+l 
u=1 

for c ~ 2m; 
c-m 

8 2 L (c - m + 1 - U)Q1,u+1 for c < 2m; 
u=1 

m-1 
U 8 1 - 2 L q1,u+1 - (c - 3m + 2)Q1,m+1 for c ~ 3m - 2; 

u=1 
w 

U 8 1 - 2 L q1,u+1 - (c - m - 2k)Q1,k+2 for c < 3m - 2, 
u=1 

L 
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3.3.3 The EMM procedure 

The EMM procedure of Ederer, Myers, and Mantel (1964) has been described 
earlier in Section 3.2.5. There, for a fixed subarea Ai, the disjoint statistic 
Mi(l) is calculated with respect to the c time periods TI, ... , Te. They have 
suggested that, instead of Mi(I), the linear ratchet scan statistic Mi(2) or even 
Mi(m) with a more general m ~ 2 may be calculated for each subarea Ai. 
For m = 2, they have derived the conditional distribution of M(2) given the 
number Wi = Nil + ... + Nie of cases in the respective subarea Ai under the null 
hypothesis of equal probabilities (for c = 5, Wi = 2(1)15). For this distribution, 
the mean E[Mi(2) I Wi] and the variance V[Mi(2) I Wi], for i = 1, ... ,d, have 
also been calculated. As for Mi(I), they have calculated 

i=l 
d 

L E[Mi(2) I Wi], 
i=l 

d 

L V[Mi(2) I Wi], 
i=l 

and 

where an approximate chi-square distribution with one degree of freedom is 
assumed for X~. 

Mantel, Kryscio, and Myers (1976) have presented an extended table of 
E[Mi(2) I Wi] and V[Mi(2) I Wi] for c = 3, Wi = 2(1)50(5)200(100)500; c = 4, 
Wi = 2(1)50(5)200; c = 5, Wi = 2(1)50(5)100(25)200. 

3.3.4 Applications 

The linear ratchet scan statistic and the corresponding EMM procedure are 
applied in epidemiology where these methods are used to detect clusters of 
childhood leukemia [Ederer, Myers, and Mantel (1964), Fraumeni, Ederer, and 
Handy (1966), and Mantel, Kryscio, and Myers (1976)], poliomyelitis [Ederer, 
Myers, and Mantel (1964), and Mantel, Kryscio, and Myers (1976)], infectious 
hepatitis [Ederer, Myers, and Mantel (1964), and Mantel, Kryscio, and My
ers (1976)], and trisomies among karyotyped spontaneous abortions [Krauth 
(1992b)]. 
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3.4 Circular Ratchet Scan Statistic 

3.4.1 Definition 

Let XI, ... , X N be independent identically distributed random variables with a 
continuous uniform distribution on the circumference of a circle. This circum
ference is dissected into c disjoint arcs Cl, ... ,Cc whose union is the circum
ference. The number of Xi's observed in Ci is denoted by Ni, for i = 1, ... , c, 
and 

Pi = P( Ci) for i = 1, ... ,c, PI + ... + Pc = 1 

are the probabilities assigned to the c cells. We set 

i+m-l 
n(m) = L Nt mod c for i = 1, ... , c, m = 1, ... , c - 1, 

t=i 

where c mod c := c. The circular ratchet scan statistic is defined as the maxi
mum number of Xj'S observed in m consecutive cells: 

For m = 1, the sum n(m) is reduced to n(m) = Ni and the statistic M(m) to 
the disjoint statistic M(l). 

Under HQ, the vector (Nl,' .. ,Nc) is multinomially distributed with param
eters N,Pl,'" ,Pc' 

3.4.2 Results 

Wallenstein, Weinberg, and Gould (1989b) have given a table of the exact values 
of P(M(m) 2: x) for c = 12, m = 2 and 3, N = 8(1)25,30,35 and "small" p
values for the equiprobable case with PI = ... = Pc = lie. The values of x vary 
between 5 and 16. 

For e = 12, they have considered approximate upper percentage points of 
the form 

where Ya(m) is the upper percentage point for the maximum of certain normally 
distributed random variables. The values of Ya(m) are estimated by means of 
a simulation. 

Krauth (1992a) has derived exact upper and lower bounds for the upper tail 
probabilities of the circular ratchet scan statistic for the general and equiprob
able case. 
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We use the notation, where b(s; N,p), Gb(S; N,p), and Gt(s; N,p, q) are as 
defined in Section 3.3.2: 

Gb (X;N; i+~1 Pr mod c) 
qij for i,j = 1, ... ,c; 

G, (X;N:'~lp, mod,' 

for i = 1, ... , c, m = 1, ... , C - 1; 

j+m-1 ) 

~ Pr mod c 

for i = 1, ... ,c - m, j = i + m, ... ,i + c - m, j::; c; 

qij ~ b (s; N, i+f1 Pr mod c) Gt (x - s; N - s, 1 ~~r~!r mod c , 
8=0 r=~+u r=~+u Pr mod c 

2:~!o~/;:-l Pr mod c ) (i+~1 ) 
1 _ 'l\'i+m-1 + Gb x; N, ~ Pr mod c 

L...r=~+u Pr mod c r=~+u 

foru=1, ... ,m-1, i=1, ... ,c-u, j=i+u; 

q;; ~ b (8; N:+,%-l p, mod ,) 

( 
'l\'i+c-1 

x G x - s· N - S L...r=.i+c-uPr mod c 
t , '1 'I\'~+m-u-1 ' 

- L...r=i Pr mod c 

1 ~~?:!:~:!{ mod c ) + Gb (x; N, i+~-l Pr mod c) 
r=~ Pr mod c r=l 

for u = 1, ... ,m - 1, i = 1, ... ,u, j = i + c - u; 
c c j-1 

8 1 Lqi, 82 = L L%' 
i=l j=2 i=l 

The following exact results hold: 

The inequalities 

are true with 

and 

P(M(1) 2: x) 

P(M(1) 2: x) 

P(M(2) 2: x) 

8 1 for x > N/2, 

8 1 - 82 for x > N /3, 

81 - 82 for x > N /2. 

L ::; P(M(m) 2: x) ::; U 
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Here, L is the best linear lower bound for P(M(m) :2: x) if only the values of 
81 and S2 are known but not the probabilities qi and qij. The lower bound L 
will be larger than 81 - 82 for k :2: 2. In view of the exact results for M(l) 
and M(2), we may speculate that the lower bound L, in general, is a better 
approximation to P(M(m) :2: x) than the upper bound U. 

In the equiprobable case with PI = ... = Pc = lie, all formulae are consid
erably simplified: 

L 

U = 

Gt (X;N, ~, ~); 

I:b(S;N,m-U)Gt(X-S;N-S, U , U ) 
s=o C C - m + U c - m + U 

( m-u) +Gb x;N,-c- for u = 1, ... , m - 1; 

cq1, 
1 m-l 
'2 c(c - 2m + 1)q1,m+1 + c L ql,u+1, 

u=1 

k(k ~ 1) (k81 - S2) with k = 1 + l28218d, 

2 
81 - - 82. 

C 

Wallenstein, Weinberg, and Gould (1989b) have performed a simulation 
study in which they have compared the circular ratchet scan statistic M(3) with 
four other statistics for five alternative distributions with respect to power. The 
circular ratchet scan statistic showed the best result of all competitors for a pure 
3-month pulse alternative. As expected, this statistic, just as the continuous 
scan statistic, behaved in a less satisfactory way for sinusoidal alternatives. 

3.4.3 Modifications 

Edwards (1961) has considered to look for m consecutive cells with values of the 
Nj's which are all larger (or smaller) than the median of Nl, ... , Nc as a simple 
but inefficient distribution-free test for cyclic trend. This idea is extended by 
Hewitt et at. (1971), who calculated the largest rank-sum for any 6-month 
segment, Le., replaced the Nj's in the circular ratchet scan statistic M(6) by 
their ranks. The null distribution of this test statistic is derived by means of a 
simulation. Walter and Elwood (1975) have compared the test of Hewitt et at., 
with four parametric competitors for a real data set and concluded that this 
test will probably have a low power to detect a seasonal trend. 

Freedman (1979) has presented a simulation study where the test of Hewitt 
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et ai., is compared with three other tests, and he has observed that the test of 
Hewitt et al., is less powerful than the parametric test of Edwards (1961) and a 
distribution-free Kolmogorov-Smirnov-type statistic if a sinusoidal alternative 
is considered. Walter (1980) has provided exact and simulated null distributions 
for the statistic of Hewitt et ai., and has addressed the problem of ties. 

In a simulation study, Marrero (1983) has compared the test of Hewitt et al., 
to seven competitors with respect to power for three alternative distributions. 
However, the results for the test of Hewitt et ai., have not been included in 
the tables because of the weak performance of this test. Nevertheless, Marrero 
(1988) has performed a simulation study where the test of Hewitt et ai., has 
not been applied to the Nj's but to the incidence rates, i.e., to the number of 
cases divided by the size of the population at risk. The power of the test has 
been simulated for a simple sinusoidal curve with one peak and one trough, for 
a sinusoidal curve with two peaks and two troughs and a one-pulse model. The 
test can be very powerful for the first alternative, and has, in general, a low 
power for the two remaining alternatives. 

Marrero (1992) has given the exact null distributions for m = 3,4,5, and 6 
months for the statistic of Hewitt et ai. In a simulation study, he has found that 
this rank version of the circular ratchet scan statistic has a high power for one
pulse alternatives if the relative height of the pulse or the sample size is large. 
Average ranks are assigned to tied observations, and unequal month lengths 
are adjusted by enlarging the Nj's corresponding to months with fewer than 
31 days by assuming that the observations are equidistributed over the year. 
Obviously, not knowing Marrero's (1992) paper, Rogerson (1996) has derived 
simulated and exact null distributions for the test of Hewitt et ai. (1971), for 
m = 3,4,5, and 6, and has compared the power of this test with that of the 
chi-square test and (for m = 3) the circular ratchet scan test. For one-pulse 
alternatives and a sample size of N = 50, the test of Hewitt et ai., seems to 
have more power than the chi-square test though the circular ratchet scan test 
is superior to both other tests. 

Assume that c = 2d holds, and consider 

7j(d) 
i+d-l 

L Nt mod c for i = 1, ... , c, 
t=i 

(Ti(d) - Ti+d(d)) N-1/ 2 = 2 (7j(d) - ~N) N-1/ 2 for i = 1, ... , c, 

max 1 Ui I· 
l:::;i:::;d 

David and Newell (1965) have considered the statistic Vd, which, in an 
obvious way, is related to the circular ratchet scan statistic 

M(d) = max Ti(d). 
l:::;t:::;c 
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Assume that, under Ho, the cells G1 , ..• , Cc have equal probabilities and that 
the Ui, for i = 1, ... , c, approximately have a standard normal distribution. 
Under these assumptions, the approximate upper Bonferroni bound of degree 
one and the approximate lower Bonferroni bound of degree two are derived: 

d d i 

LP(I Ui I~ x) - LLP(I Ui I~ x, 1 Uj I~ x) 
i=l i=2j=1 

d 

~ P(Vd ~ x) ~ LP (I Ui I~ x). 
i=l 

Here, 
d 

L P (I Ui 1 ~ x) = dP (I Ui 1 ~ x) . 
i=l 

3.4.4 Applications 

The circular ratchet scan statistic and its modifications are mainly applied to 
problems in epidemiology. In particular, extrahepatic biliary atresia [Wallen
stein, Weinberg, and Gould (1989b), Krauth (1992a), and Marrero (1992)]' 
autism [Bolton et al. (1992)]' duodenal ulcer [Cohen (1994, 1995)], Guillain
Barr syndrome [Ward (1992)]' attempted suicides [Marrero (1992), Gould et al. 
(1994), and Rogerson (1996)], leukemia [David and Newell (1965), and Krauth 
(1992a)], anencephalus [Walter and Elwood (1975), and Krauth (1992a)], car
diac malformations [Hewitt et al. (1971)], and motor-vehicle-related fatalities 
[Marrero (1992)] are considered. 

3.5 Exact Bounds for the Upper Tail 
Probabilities of the Statistic M(m) 

In Section 3.1, we introduced the general statistic M(m) and in Sections 3.2-3.4 
we gave results for some special situations in which this statistic is considered. 
It is obvious that for most practical problems the computation of the exact 
distribution of M(m) is not feasible and asymptotic results may not be trust
worthy. Fortunately, we have the alternative option to derive exact bounds 
for the upper tail probabilities of M(m), which on the one hand allow a rapid 
calculation and on the other hand are rather close for the extreme upper tails 
which alone are of practical interest. To perform statistical tests for clustering, 
it suffices to derive upper bounds. However, if the closeness of these bounds is 
to be evaluated it is of use to have additional lower bounds available. 
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The statistic M (m) is defined as the maximum of the sums of frequencies 
in the cells of a moving window of size m: 

M(m) = max7i(m). 
~EI 

Here, I is a finite index set and Ti(m) is a sum of m frequencies. Obviously, we 
have 

P(M(m) ~ x) p (~{T;(m) ~ Xl) = P (~A;) 
with Ai = {Ti(m) ~ x} for i E I. 

Upper and lower bounds for the probability of a union are given by the classical 
Bonferroni bounds and the many improvements of these bounds which have 
been derived up to now. The bounds which we consider in the following are 
neither new nor are they the best available bounds known today. We looked for 
a compromise, where the bounds are of an acceptable accuracy and at the same 
time may be computed with low effort. Concerning the latter aspect, we must 
keep in mind that the probabilities P(Ai) or P(A n Aj) for i, j E I may be 
given by rather complicated expressions and it is often not advisable to consider 
intersections of more than two events. This is particularly true for m ~ 2 and 
unequal cell probabilities. 

Kounias and Marin (1974) have proved that the best linear bounds of degree 
one are given by 

Here, the right side is the classical upper Bonferroni bound of degree one. 
If only the values 

iEI i,jEI 
i<j 

are known, the best linear upper bound of degree two is given by 

min { 1, 31 - ~ 32 } 

[Kwerel (1975, Corollary to Theorem 5)]. 
However, if we assume that the probabilities P(Ai n Aj) are known for 

i, j E I, we had better choose the superior upper bound of degree two given by 
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which is due to Kounias (1968). 
Kwerel (1975) has proved that the bound 

which is equivalent to the bound of Dawson and Sankoff (1967), is the best 
linear lower bound of degree two if only the values of SI and S2 are known. For 
k = 1, we get just the Bonferroni lower bound SI - S2 of degree two. From 
Galambos (1977), we can conclude that the above expression will yield lower 
bounds of P(M(m) ~ x) for each integer k ~ 1. 

The lower bound of degree two proposed by Kwerel (1975) can be replaced 
in certain situations by an inferior lower bound of degree one assuming only 
the knowledge of P(Ai) for i E I. Jogdeo and Patil (1975) have proved that for 
certain multivariate discrete distributions, e.g., for the multinomial distribution, 
the Dirichlet distribution, and the multivariate hypergeometric distribution, the 
inequality 

holds; see, for example, Johnson, Kotz, and Balakrishnan (1997). For the 
multinomial distribution, this result was also proved by Mallows (1968), Yusas 
(1972), and Proschan and Sethuraman (1975). If we introduce this inequality 
in the lower bound of degree two of Kwerel (1975), we get a weaker lower bound 
of degree one: 

k(k ~ 1) (kSI - S2) with k = 1 + l2S2/Sd, S2 = i~I P(Ai)P(Aj ). 

i<j 

This nonlinear bound is superior to the best linear lower bound of degree one 
given above. 

The upper and lower bounds described above can be used to get exact 
bounds for P(M(m) ~ x) in the general case with a complex shape of the 
moving window, with unequal cell probabilities, and if not only the Maxwell
Boltzmann model but also the Bose-Einstein and the Fermi-Dirac models are 
considered. In many cases, the simple upper bound of degree one will be suffi
cient for performing a statistical test based on M (m). 
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Scanning Multiple Sequences 
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Abstract: Much of the scanning literature focuses on unusual clusters of a 
given type of event in a single sequence of trials or time period. In this chap
ter, we discuss approaches to simultaneously scan multiple series. In one set 
of problems, there are multiple series corresponding to the occurrence of dif
ferent types of events over the same period of time; the researcher looks for 
multiple-type clusters allowing for lagged effects between the different types of 
events. In the second set of problems, one scans multiple series looking for 
the largest common perfect or almost perfect match between all or most of the 
series. This second set of problems is of importance to molecular biologists 
searching for strong homologies in DNA sequences. Some related problems in 
two-dimensional scanning are mentioned. 

Keywords and phrases: Matching, DNA, scan statistic, double scan statistic 

4.1 Discrete Scan Statistic and Its Generalization to 
Multiple Sequences 

There is a large body of literature that describes properties of tests that scan for 
unusually large clusters, or multiple large clusters of events over time or space; 
see Naus (1988). Scan statistics and their distributions have been developed to 
study clustering in time (viewed as continuous), or in sequences of trials (the 
discrete case). In this chapter, we focus on the discrete case, but several of 
the problems have continuous counterparts, so it is useful to briefly distinguish 
among the cases. Furthermore, in certain applications the continuous case can 
serve as an approximation to the discrete case, and conversely. 

For the continuous case, the times of occurrence of events are assumed to 
have a specified random distribution over a time interval (0, T). The continuous 
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scan statistic 8w is the maximum number of points in any subinterval of (0, T) 
of length w. The name follows from the fact that we are "scanning" (0, T) 
with a window of length w, and looking for the largest number of points in the 
window. 

For the discrete case, we start by considering a sequence Xl, X 2, ... , X N 

of integer-valued random variables. The scan statistic is the maximum moving 
sum of m of the Xi'S. Formally, for m an integer, and t = 1,2, ... ,N - m + 1, 
define the random variables Yt = Et<i<t+m-l Xi. The scan statistic is 8 m = 
max19:::;N-m+dYt}· - -

Glaz and Naus (1991) have given accurate approximations and tight bounds 
for the distribution of 8m for the case where the Xi'S are Li.d. variables that 
take integer values. Various asymptotic results have been derived for this case 
under a variety of names: Erdos-Renyi Laws [Deheuvels (1985)], increments of 
partial sums. For the general case, the tight bounds and sharp approximations 
can sometimes be computationally complex, and the asymptotic results can be 
slow to converge. 

An important special case is where the Xi'S only take the values 0 and l. 
Many researchers deal with data that can be viewed as a series of trials, each 
with two possible outcomes. We will arbitrarily label the two alternative possi
ble outcomes of a trial as "success" and "failure." 8m is the maximum number 
of "successes" within any m contiguous trials within the N trials. Many results 
and applications exist for the distribution of the scan statistic for the special 
case of a sequence of 0-1 variates. These appear under a variety of names: 
Generalized Birthday Problem, Erdos-Renyi Laws, quotas, generalized runs, 
and k-in-n in m reliability sequences. For the case where the Xi'S are Li.d. 
Bernoulli variables, exact results and readily computable highly accurate ap
proximations and tight bounds exist for the distribution of 8m ; see, for example, 
Naus (1974, 1982) and Glaz and Naus (1991). 

Our generalizations deal with the simultaneous scanning of multiple se
quences with a window, or windows of m consecutive integers or letters. There 
are many possible ways in which this can be done, and they result in flavors of 
scan-type statistics of practical interest. Many of these generalizations lead to 
open combinatorial and probabilistic problems. Interesting applications have 
helped focus some of the directions of generalization, and in this chapter we 
will describe some of these. In the next two sections, we discuss two directions 
of generalization and the results derived. In the final section, we will mention 
some other directions of generalization of interest. 
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4.2 Clusters in Multiple Sequences Over the Same 
Time Period 

Researchers studying series of multiple outcomes sometimes seek to determine 
whether the observed clustering of different types of outcomes is likely to arise 
under a given chance model. Most of the scan statistic literature describes 
properties of a statistic that scans for unusually large clusters, or multiple large 
clusters of events over time. However, almost all of these results deal with one 
type of event within the cluster. In this section, we discuss generalization to 
several types of events. Two early results and the applications that motivated 
them are as follows. 

The first result grew out of a quality control setting. Quality control and 
acceptance sampling had led to some early results on the classic scan statistic. 
In some acceptance sampling plans, one looks at overlapping sets of items or 
batches of items, rather than just individual batches before passing sentence on 
individual batches. Anscombe, Godwin, and Plackett (1947) considered such 
types of deferred sentencing acceptance sampling plans. Ahn and Kuo (1994) 
considered the event that k successes out of m consecutive trials, occur for first 
time at jth trial, and note (p. 135) "In view of the control chart and acceptance 
sampling system, we recall that most of signaling and switching rules in classical 
statistical quality control (SQC) procedures take the form of signal or switch 
as soon as k out of m consecutive trials result in the occurrence of an event of 
interest." Page (1955), Roberts (1958) and some others have studied control 
chart procedures with warning lines in addition to the usual out-of-controllines. 
Some of the procedures flag the process if one point is out-of-control, or if k out 
of m consecutive points fall outside warning zones. Page (1955) has outlined 
(but does not use) an approach to find the expected waiting time until a cluster 
of the two types of events. The method generates all state combinations for the 
related discrete Markov Chain, and Page (1955) noted that even for the one 
type of event "k out of m consecutive points" it is complex except for some 
very simple cases. 

For recent advances on the Markov-chain embedding approach for the one 
type of event scan that may be useful more generally, see Koutras and Alexan
drou (1995). These authors have been motivated by examples in reliability of 
systems. In reliability theory, researchers evaluate the reliability of configu
rations of components, or design a system to have a certain reliability. Pa
pastavridis and Koutras (1993) and others have derived results for "k within 
consecutive m in N systems." These systems are viewed as a linearly ordered 
set of N independent components with possibly different individual probabili
ties of being defective; the system fails if there are k defectives within any m 
consecutive components in the system. 
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Huntington (1976) was motivated by a problem of breaks in transoceanic 
cables. Such breaks were relatively rare, and the company had a specialized ship 
to service and repair such breaks. The ship had to service cables in two different 
distant regions. If there were two breaks in the same region within a few days 
of each other, that would not pose any problem. However, if there was a break 
in both of the regions' cables within a few days of each other, there would be 
an unacceptable delay in repairing the cables. This led Huntington to derive 
general results for the expected waiting time until a cluster that contained at 
least one of each of the two types of events (a break in region one, and a break 
in region two) within a few days of each other. Huntington then generalized this 
to a cluster of at least k events within d days, that satisfy various constraints 
on the number of types of events. 

Naus and Wartenberg (1997) have developed a scan-type statistic called 
the double scan statistic based on the number of "declumped" (a type of non
overlapping) clusters that contain at least one of each of two types of event. 
They derived the expectation and approximate distribution of the number of 
declumped clusters for this test statistic for two chance models. They were 
analyzing a data set of different causes of death (homicide, suicide, accidents) 
among Americans aged 15-25 for a 7-year period. The data were broken down 
by day, type of death, race, and gender, and by county. However, the data did 
not give names or other identifiers that might relate one death to another. 

The goal of the analysis was to identify interesting clusters that could then 
be checked with police departments or other outside sources. An earlier arti
cle by Greenberg et al. (1991) had used the scan statistic to focus on unusual 
homicide clusters, and on unusual suicide clusters. Naus and Wartenberg (1997) 
were interested in techniques for focusing on unusual clustering of the two dif
ferent types of events. Unfortunately, it happens that someone murders another 
person and then kills themself. Several recent homicide/suicides in Kentucky, 
in Quebec, and elsewhere received wide publicity and concern. A different mo
tivating example was one in which the two different events were male suicide 
and female suicide. While many of the statistical scan methods deal with the 
clustering of one type of event over time, one can readily apply occupancy the
ory to the clustering of two types of events on the same day. In other cases, 
there may be a lagged relation. If we anticipated a delayed effect, we would 
want to look at cases where two types of events might occur within the same 
d-day interval. It is for these cases that Naus and Wartenberg (1997) developed 
the double scan statistic. 

The double-scan statistic: Given that at least one of each of the two types 
of events occur within a d-day period, we say that a "2-type d-day cluster" 
has occurred. Over a long period of D days, a scientist may observe several 
such clusters. The scientist seeks to determine whether the observed number of 
clusters is unusually greater than what would be expected under certain chance 
models. 
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For the case d = 1, the number of 2-type I-day clusters, NI, can be counted 
simply as the number of days in the D-day period that contain at least one of 
each of the two types of events. For the case d > 1, there are many alternative 
ways to count the number of 2-type d-day clusters. Naus and Wartenberg (1997) 
have used an approach that avoids multiple counting of the same, or too closely 
overlapping clusters. 

Define the event Ei to have occurred if anywhere within the d consecutive 
days i, i + 1, ... , i + d - 1 there are at least one of each of the two types of events. 
The event Ei indicates the occurrence of a 2-type d-day cluster. Let Zi = 1, 
if Ei occurs and none of Ei-I, Ei-2, ... , Ei-d+1 occur. Let Zi = 0, otherwise. 
Let Nd = LI:Si:SD-d+1 Zi. Naus and Wartenberg (1997) have termed Nd, the 
double scan statistic. 

This method counts the number of times that an Ei occurs with no previ
ously overlapping Ej's. This particular method of counting has the advantage 
that when the events are relatively rare and distributed according to certain 
chance models, the number of such "declumped" clusters is approximately Pois
son distributed. Further, the method of declumping used allows one to estimate 
the error in the Poisson approximation through the Chen-Stein method. For 
a more detailed discussion of Poisson approximation and the de clumping ap
proach, see Aldous (1989), Arratia, Goldstein, and Gordon (1990), and Barbour, 
Holst, and Janson (1992). 

Results for the expectation and variance of Nd are derived for two chance 
models. In the retrospective model, there are exactly A of the D days where 
a type-one event occurs, and exactly B of the D days where a type-two event 
occurs. All (~) ways of picking the A type-one days, and all (~) ways of picking 
the B type-two days are equally likely, and the occurrence of the two types of 
days are independent. For this model, the exact expectation and approximate 
variance of Nd are derived. 

In the prospective model, let Aki denote the event that the ith day contains 
a type k event, for k = 1,2 and i = 1,2, ... , D. Let aki = P(Aki ), and all Aki 
are mutually independent. For this model, the exact expectation and variance 
of Nd are derived. The Chen-Stein error bounds for the goodness-of-fit of the 
Poisson approximation are illustrated for the simple case where aki = ak for 
k = 1,2 and all i. 

Naus and Wartenberg (1997) have also considered a mixed model where 
some of the two types of events are linked in time, but many are not, and have 
illustrated how to evaluate the power of the double scan statistic against this 
alternative. 

For d > 1, the double scan statistic Nd measures for a possibly delayed 
relation between two types of events, but no order is prespecified for the two 
events. For the events in the quality control application, this might be reason
able. However, for homicide/suicide clusters one would be looking for unusual 
clusters where a person first commits a homicide and then kills themself. That 
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is, one would anticipate that the day of the homicide would be the same or ear
lier than the day of the suicide. This led Naus and Wartenberg (1997) to develop 
a directional double scan statistic, and illustrate its application. Define an Ei 
to have occurred if anywhere within the d consecutive days i, i + 1, ... ,i + d - 1 
there are at least one of each of the two types of events with a type-one event on 
the same or previous day as a type-two event. The statistic dedumps (counts 
the nonoverlap ping E* 's) as before. 

The discrete double scan statistics have more general forms as well as con
tinuous counterparts. The discrete double scan statistic can be generalized for 
the case of two types of events to cases where there are at least r type-one and 
s type-two events within a d-day period. For other applications, the statistics 
can be generalized to more than two types of events, and the distribution of 
the number of declumped clusters derived. 

The following is an example of the continuous version of the double scan 
statistic under a simple model. Consider two independent Poisson processes on 
(0, T), where the first process generates type-one points, and the second process 
generates type-two points. Scan (0, T) with a window of length wand count the 
number of non-overlapping clumps Cw of times that there are at least one each 
of a type-one and type-two point in the window. For the case where d « D, 
the distribution of Nd can frequently approximate the distribution of Cw , where 
w = (dj D)T, and conversely. To get a standardized form for the distribution of 
Cw , without loss of generality, choose the units so that T = 1. The continuous 
double scan can be generalized to cases where there are at least r type-one and 
s type-two events within a window of length w. 

4.3 Matching in Multiple Random Letter 
Sequences 

Given an alphabet consisting of B different letters, there are Bm possible dif
ferent m-letter words. Consider R sequences each consisting of N letters chosen 
from the B-letter alphabet. If all the R sequences share a common m-letter 
word, we say there is a perfect m-word match between the R sequences. The 
common word could appear in different positions in the R sequences; this is 
called the nonaligned case. Sometimes, we are looking for a common m-letter 
word in the same position in all R sequences; this is called the aligned case. 
Researchers are also interested in almost-perfect m-word matches. There may 
be a common m-letter word that appears with up to s letters changed in any 
match word. This is referred to as the almost perfectly matching word allow
ing s mismatches. There are several other variations in how the number of 
mismatches can be counted. 

The classic scan statistic is directly related to perfect or almost perfect m-
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word matches in the aligned case. View the R sequences of N letters as R 
rows aligned one above the other. Below the last row, add an (R + l)st row 
consisting of the sequence Xl, X2, ... , XN where Xi = 1 if the R letters above 
it are identical, and Xi = 0 otherwise. Now, scan the sequence of X's with a 
window of m consecutive letters. If the window contains m 1 's, this is equivalent 
to there being an aligned perfectly matching m-word. If the window contains 
k 1 's, this is equivalent to there being an aligned almost perfectly matching 
m-word with at most m - k mismatches. For the case where the R sequences 
are mutually independent sequences of independent (but not necessarily iden
tically distributed) letters, the results for the classic 0-1 scan statistic give the 
probability of aligned matching words allowing for mismatches. Exact results, 
highly accurate approximations, and tight bounds exist for this aligned case. 

The generalization that we discuss in this section involves the length of the 
longest common words in all R (nonaligned) sequences. Here, we are scanning 
each of the R sequences looking for any common word. Our motivation comes 
from an application in molecular biology. 

Scientists and researchers compare sequences of DNA from several biological 
sources. The DNA can be viewed as a sequence of letters from a four-letter 
alphabet (the nucleotides A,C,G,T), or a 20-letter amino acid alphabet (certain 
sets of the triplets of nucleotides), or in other ways. Similarity between different 
sequences suggests commonality of functions or ancestry. 

There are several large data banks of DNA sequences. Researchers with 
newly sequenced segments search these data looking for homologies. Computer 
algorithms have been developed to scan two long DNA sequences, searching for 
matching words. In comparing two long sequences, one would find, purely by 
chance, some matching words. The researcher seeks to determine, for various 
chance models, what an unusual match is. 

In some applications, two sequences are aligned by some overall criteria, 
and one looks for positionally matching words. Piterbarg (1992) has noted 
that a standard method starts with a given alignment of the two sequences, 
and compares each pair of aligned letters to get a sequence of similarity scores. 
The researcher often focuses on whether the letters match (a 0,1 similarity 
scoring). The method then computes the scan statistic 8 m for the sequence of 
similarity scores. Under the usual null model, it is assumed that the sequence 
of similarity scores is mutually independent. Arratia, Gordon, and Waterman 
(1990) have noted that even though the letters within a DNA sequence are not 
independent, the proportion of time that long common words were observed in 
unrelated sequences of DNA, is close to that estimated from the independence 
model. For this model, 0-1 scoring, two or more aligned sequences, and perfectly 
matching words, or for two aligned sequences and almost perfectly matching 
words, the classic (0-1) scan statistic results provide the necessary measures 
of unusualness. For the case of more than two aligned squences and almost 
perfectly matching words, a variety of similarity or consensus systems can be 
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used to score letters in the same position in the sequences. Naus and Sheng 
(1996) describe several integer scoring systems and have given distributional 
results for the scan statistic that measures the most similar (aligned) m-word. 

In other applications, the researcher is looking for common words in two 
or more (nonaligned) sequences. Sometimes, the researcher is using long com
mon words as a consensus-based approach for multiple sequence alignment; see, 
Waterman (1986) and Leung et al. (1991) for a discussion of such algorithmic 
alignment approaches. Other times, the researcher is looking for homologies in 
and between certain proteins. The researchers seek help to distinguish unusual 
matching, and significance levels are built in as part of the search and match 
engines. These measures of unusualness are based on the distribution of the 
length of the longest matching common word in R sequences, under various 
chance models. 

For the case of a (perfect) common word in two (nonaligned) sequences, and 
the independence model, Mott, Kirkwood, and Curnow (1990) and Sheng and 
Naus (1994) have presented excellent approximations. Karlin and Ost (1988) 
have given asymptotic results both for the independence and more general mod
els that gives (in a modified form) excellent approximations for even moderate 
size sequences. 

For the case of a perfect common word in three or more (nonaligned) se
quences, Karlin and Ost (1988) have given asymptotic results, but these can 
converge very slowly, particularly as the number of sequences gets larger. For 
six or more moderate size sequences, the approximations can be off. N aus and 
Sheng (1997) have presented several approximations that are more accurate for 
this case. The following table illustrates this for a few examples. The proba
bilities are for an m letter word in common to R independent sequences each 
of N LLd. letters drawn from an equally likely four-letter alphabet. 

Table 4.1: Probability of an m letter word in common to R sequence 
of N letters 

100,000 Upper 
m R N K&O(4) N&S(8) Simulations Bonferroni Bound 
4 6 74 .110 .050 .050 
4 8 111 .227 .049 .051 
4 10 118 .082 .010 .010 
6 6 682 .080 .050 .056 
6 10 1605 .287 .050 .062 

Karlin and Ost (K&O) and Naus and Sheng (N&S) both have given a 
Poisson-type approximation (with some declumping) for this case. We will 
describe the approximations in a heuristic way for the last case in Table 4.1. 

Karlin and Ost's approximation can be interpreted for this case as follows: 
For a 4-letter equally likely alphabet, the probability that the second sequence 
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has the same first letter as the first sequence is 1/4. The probability that the 
first letter of each of the 10-sequences is the same is>. = p9, where p = 1/4. The 
probability that the first six letters of all 10-sequences are a common word = 
(p9)6 = >.6. There are (N -m+1) = 1600 positions where a six-letter word could 
start in the first sequence, and similarly for all the sequences. Since the common 
word could be anywhere in each of the 1 O-sequences , we have to consider a very 
large number (N - m+ l)R = 160010 of possible combinations of positions. The 
probability of a 10-sequence match in any particular one of the combinations 
of positions is very small and equals 0.2554 . The expected number of such 10-
sequence matches is (N - m + l)R>.m = 16001°(0.2554 ) = 0.338131. Using a 
Poisson-type approximation for the probability that at least one of the possible 
sets of combinations leads to a common word, we get 1 - exp( -0.338131) = 

0.287. Karlin and Ost used a declumping factor of (1 - >.) to multiply the 
expectation to adjust for the fact that a 7-letter common word would include 
two overlapping 6-letter common words. For this example, the (1 - >.) factor 
makes no difference, the approximation is still 0.287. 

There is a strong dependence of multiple matching that is not taken into 
account in the K&O approximation. Consider two sets of positions for the 6-
letter words in the 10-sequences. The first set consists of the first six positions 
in all 10-sequences. The second set consists of the first six positions in the first 
9-sequences, and the last six positions in the last sequence. These two sets are 
highly dependent. 

Naus and Sheng (1997) have taken into account this type of dependence in 
the following Poisson-type approximation. Let 6 denote the probability that the 
first m = 6 letters of sequence one appears somewhere in sequence two. Since 
there are (N - m + 1) = 1600 positions for the matching word in sequence two, 
and the probability of a match in anyone position is p6 = (0.25)6, the expected 
number of such matches is 1600(0.25)6 = 0.390625. A Poisson approximation 
gives c5 ~ 1 - exp{ -0.390625} = 0.3233661. The probability that the first 6 
letters in sequence one find a matching word somewhere in all 9 other sequences 
is approximately 69 . This is the first stage of the approximation. 

In sequence one, there are 1600 possible positions for a 6-letter word, and we 
could argue that the expected number of lO-sequence common matches would be 
69 x 1600. However, one does not expect all the 1600 words in sequence one to be 
distinct. Given a 4-letter alphabet, there are 46 = 4096 distinct 6-letter words. 
Viewing the 1600 positions as 1600 balls distributed at random into the 4096 
distinct cells, we expect there to be N* = 4096{ 1- (4095/4096) 1600} = 1324.64 
distinct 6-letter words in sequence one. The expected number of (declumped) 
10-sequence matches is 1324.64(69) = 0.05121. The probability of at least one 
6-letter word is common to all 10-sequences is by the second stage Poisson 
approximation as 1 - exp{ -.05121} = 0.050. 

Karlin and Ost (1988) have given general asymptotic results for a common 
word in R out of S independent sequences, where the letters within an individ-
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ual sequence are (a) Li.d., or (b) independent but not identically distributed, 
or (c) alternative preasymptotic approximations. Currently, research is being 
carried out for the case of a matching word in multiple sequences allowing some 
mismatches within the common word. 

4.4 Lattice Problems Related to Common Words in 
Multiple Sequences 

The matching problem and the two event problem have various generalized 
problems on the lattice. In Section 4.3, we discussed the problem of scanning 
for common words in R multiple aligned sequences of N letters. There have been 
some results on the generalized problem of scanning R N x N lattices, looking 
for a common rectangular set of letters. View the R lattices as being placed 
on top of each other. Underneath all the R lattices, place another (indicator) 
N x N lattice from the 0-1 alphabet. If there is a common letter in the (i, j)th 
position in all the R lattices, place a 1 in the (i, j)th position in the bottom 
lattice, otherwise a O. Darling and Waterman (1985) and Sheng and Naus 
(1996) have derived results for the probability of finding an s x t rectangular 
sub-lattice all of 1 's within the indicator lattice. This is equivalent to finding a 
common generalized (2-dimensional word) in the same position in all lattices. 
Chen and Glaz (1996) have generalized this to allow for some mismatches in 
the 0-1 sub-lattice. 

A different generalization of the scan statistic to the lattice is motivated 
by a recent approach for analysis of codes in text; see, Witztum, Rips, and 
Rosenberg (1994) and Drosnin (1997). In this approach, a continuous text 
is written as an alphabetical lattice, and the rows are scanned for a particular 
word, and the columns scanned for a related word, and the closesness of the two 
words is measured. Simulation approaches are used to evaluate the unusualness 
of such matches. This application suggests a range of interesting and useful 
combinatorial problems. 
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Approximations of the Distributions of Scan 
Statistics of Poisson Processes 

Sven Erick AIm 

Uppsala University, Uppsala, Sweden 

Abstract: We study scan statistics of Poisson processes in one and higher di
mensions. First, a very accurate approximation is established in one dimension. 
This is done by studying up crossings of the scanning process and noting that 
these occur in clusters. The clusters appear more or less independently and the 
cluster size is estimated by a random walk argument. This idea is then used 
repeatedly to obtain approximations in higher dimensions. Simulation is used 
to check the accuracy of the approximations in two and three dimensions. A 
discussion of these simulations is included, as they are by no means trivial to 
perform. 

Keywords and phrases: Scan statistic, Poisson process, higher dimensions, 
unconditional, simulation 

5.1 Introduction 

Clustering of points in Poisson processes, in one or more dimensions, is of 
interest in many applications, including risk analysis, telecommunication, epi
demiology, reliability, and traffic theory. 

It is, therefore, of interest to find the distribution (or an approximation) of 
the maximum number of points in such a cluster. This study originates from 
the following teletraffic problem: Calls arrive according to a Poisson process to 
a computer controlled exchange. The computer is protected against overload 
through an overload control system. This system may fail if there is an ex
tremely large number of calls during a short time interval (1-5 seconds). The 
interesting quantity is the maximum number of calls in such an interval during 
the busy hour of a day, when the number of calls per second is typically 10-50. 

113 
J. Glaz et al. (eds.), Scan Statistics and Applications

© Birkhäuser Boston 1999



114 Sven Erick Alm 

The problem is also of interest for Poisson processes in more than one dimen
sion. As an example, suppose that, in a certain material, microcracks appear 
at random, according to a Poisson process, on the surface (or in the body) of 
the material. One way to explain cracks in the material is that they develop 
if sufficiently many microcracks appear in a small area (volume). It is then of 
interest to study the distribution of the maximum number of microcracks in 
any translate of such an area (volume). This maximum is known as the scan 
statistic. 

To derive approximations of the distribution of the scan statistic, the fol
lowing notation will be used. 

In one dimension, consider a Poisson process on R+, {Xt, t 2: O}, with 
intensity>., and the associated scanning process {yt(w), t 2: O}, where yt = 
X HW - X t . Then, 

Sw = Sw(>', T) = max yt(w) 
09:ST-w 

is the scan statistic with a scanning window of length w. Several authors [e.g., 
Naus (1982), AIm (1983), Janson (1984), and Loader (1991)] have suggested 
approximations for the distribution of Sw. 

In two dimensions, consider a Poisson process X, with intensity>., on a 
rectangular area A = [0, Tl] X [0, T2], and a fixed scanning set W. Let W(x) be 
the translate of W by x E R 2 , and define the scan statistic 

Sw = Sw(>', A) = max X(W(x) n A), 
xER2 

(5.1) 

i.e., the maximum number of points in A that can be covered by a translate of 
the scanning set W. 

When it is necessary to distinguish between different scanning sets, we will 
use S R to denote the scan statistic for rectangular scanning sets, ST for trian
gular, and Se for circular. 

AIm (1997) derived an accurate approximation for the distribution of the 
scan statistic in two dimensions. The arguments are based on the previous 
work in one dimension by AIm (1983), which is reviewed in Section 5.2. A 
summary of the approximations in two dimensions is presented in Section 5.3. 
Simulation is used to compare two suggested approximations for rectangular 
scanning sets. Based on these, we also give heuristic approximations for general 
convex scanning sets. The approximations are compared with simulations for 
circular and triangular scanning sets. Approximations for the distribution of 
Sw have also been suggested by Aldous (1989) (rectangular and circular W). 

The conditional case, where a fixed number of points are distributed uni
formly over A, i.e., where X(A) = N, has been studied by Mack (1949) ("gen
eral" W), Loader (1991) (rectangular W), and Mansson (1994) (general convex 
W). In a rather different setting, two-dimensional scan statistics are used by 
Kulldorff and Nagarwalla (1995) and Hjalmars et al. (1996) to study epidemi
ological problems. 
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In Section 5.4 we discuss approximations in three dimensions, with a Poisson 
process X on a rectangular volume, A = [0, TIl x [0, T2l x [0, T3l, and a fixed 
rectangular scanning set R. In analogy with (5.1), let R(x) be the translate of 
R by x E R 3, and define the scan statistic 

SR = SR(>'" A) = max X(R(x) n A), 
xER3 

i.e., the maximum number of points in A that can be covered by a translate of 
the rectangular scanning set R. This technique is generalized to d dimensions 
in Section 5.5. 

The agreement between the approximation and simulations is good also in 
three dimensions, although simulations only have been possible to perform for 
moderate parameter values. 

The simulations are discussed in greater detail in Section 5.6. They are very 
time consuming in more than one dimension, so it is of great interest to per
form them in an efficient way, which may include using some variance reducing 
techniques. The difficulty of simulating in higher dimensions, of course, make, 
the approximations more interesting. 

Limit theorems for the distribution of the d-dimensional rectangular scan 
statistic are studied by Auer, Hornik, and Revsz (1991). 

Throughout this chapter, we study scan statistics of homogeneous Poisson 
processes. In many applications, it would be of interest to generalize the results 
to the nonhomogeneous case, but this is far from a trivial task. 

5.2 Approximation in One Dimension 

Although the object of this chapter is to give approximations in higher dimen
sions, we will start by discussing an approximation in one dimension in some 
detail, as this forms the basis for the approximations in higher dimension. The 
results of this section were first presented by AIm (1983). 

Let {Xt, t 2: O} be a Poisson process with intensity>.., and Y = {yt, t 2: O}, 
where yt = yt(w) = X t+w - Xt, be the associated scanning process. Then, 

Sw = Sw(>", T) = max yt 
Os,ts,T-w 

is called the scan statistic. 

Remark 5.2.1 For convenience, we use too many parameters above. T' = T /w 
and A' = >..w are sufficient. 

Y is an integer valued stationary process that changes value through jumps 
of size ±l. A traditional technique for analyzing extreme values of stationary 
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processes is to study upcrossings. When Y changes value from n-1 to n, we say 
that an upcrossing of level n occurs. Let Mn denote the number of up crossings 
of level n in the interval (0, T - w). 

The scan statistic 8 w = max Yt is related to Mn through 
09~T-w 

P(8w < n) P(Yo < n n Mn = 0) 
~ P(Yo < n)P(Mn = 0) = Fp(n - 1; )..w)P(Mn = 0), 

(5.2) 

where Fp(n;J-l) is the distribution function of a Poisson distribution with mean 
J-l. Let p(n; J-l) denote the corresponding probability function. 

To approximate P(Mn = 0), we first note the following. 

Lemma 5.2.1 E(Mn) = )..(T - w)p(n - 1; )..w). 

PROOF. An up crossing in Y at t, 0 ~ t ~ T - w, can only occur if an event 
occurs in the Poisson process at t+w. The number of such t-values is XT-Xw , 

with mean )"(T - w), and such a t is an up crossing if the number of points in 
(t, t + w) is exactly n - 1, which occurs with probability p(n - 1; )..w). • 

For very high levels n, Mn can be approximated by a Poisson distribution, 
so that 

(5.3) 

This well-known approximation gives unsatisfactory results for moderately high 
levels n, because of the dependence between up crossings that occur close to each 
other. 

An example of this can be seen in Figure 5.1, where a simulation of the 
scanning process Y is plotted around the maximum. There were two up crossings 
of the maximum level n = 70, and these occurred very close to each other. 

A way to improve the approximation (5.3) is to partition the upcrossings 
into primary, that occur (almost) independently, and secondary, that follow 
close after a primary. 

Let Un be the number of primary and Vn be the number of secondary up
crossings of level n. Then, 

Un Un 

Mn = Un + Vn = Un + 2: Zi,n = 2:(1 + Zi,n) , (5.4) 
i=l i=l 

where Zi,n is the number of secondary upcrossings between primary upcrossings 
i and i + 1. 

While Y is at a high level n, it behaves approximately as a random walk 
with negative drift and jump probabilities 

P(+l) = )..w 
)..w+n 

n 
and P(-l) = ).. . 

w+n 
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Figure 5.1: The scanning process plotted around its maxima 

This random walk, starting at level n - 1, will have Z~ up crossings of level n, 

where 
I P(+I) AW 

E(Zn) = P(-I) - P(+I) n - AW' 

so that 

This gives, using Wald's Lemma, 

Combining this with Lemma 5.2.1, we get 

J-Ln = E(Un) ~ n -n AW E(Mn) = (1 - ~) A(T - w)p(n - 1; AW) 

(1- A:)AW (~ -1)p(n-l;AW) 

(1 - :) A' (T' - l)p(n - 1; A') . (5.5) 
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As primary up crossings of high levels are rare and occur (almost) indepen
dently, Un can be approximated by a Poisson distributed random variable, so 
that 

Combining this with (5.2) and (5.5), we get the approximation 

P(Sw:::; n) = P(Sw < n+ 1) 
~ Fp(n; AW) e-/Ln+l 

~ Fp(n; AW) e-(l-;;l)Aw(T/w-l)p(n;Aw) 

F ( . \') -(l-n~l)A'(TI-l)p(nY) 
p n,.I\ e . (5.6) 

This approximation is very accurate, as can be seen by comparing it with 
the exact lower and upper bounds given by Janson (1984). Computationally, 
approximation (5.6) is simpler than Janson's bounds as well as Naus' (1982) 
approximation. 

Table 5.1: Approximation (5.6) compared with lower 
and upper bounds for T' = 3600 and A' = 40 

n Lower bound Appr. (5.6) Upper bound 
63 0.0001 0.0001 0.0001 
64 0.0018 0.0018 0.0018 
65 0.0186 0.0188 0.0187 
66 0.0847 0.0850 0.0849 
67 0.2220 0.2223 0.2221 
68 0.4052 0.4054 0.4053 
69 0.5863 0.5864 0.5864 
70 0.7329 0.7329 0.7329 
71 0.8368 0.8368 0.8368 
72 0.9042 0.9042 0.9042 
73 0.9455 0.9455 0.9455 
74 0.9697 0.9697 0.9697 
75 0.9835 0.9835 0.9835 
76 0.9911 0.9911 0.9911 
77 0.9953 0.9953 0.9953 
78 0.9976 0.9976 0.9976 
79 0.9988 0.9988 0.9988 
80 0.9994 0.9994 0.9994 
81 0.9997 0.9997 0.9997 
82 0.9998 0.9998 0.9998 
83 0.9999 0.9999 0.9999 
84 1.0000 1.0000 1.0000 
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When both T' and ).' are large, the precision is very high even for smaller 
n, as can be seen in Table 5.1, where we have T' = 3600 and>..' = 40. The 
approximation gives a slight overestimate. 

Table 5.2: Approximations and Janson's bounds for T' = 10 and ).' = 3 

n Lower bound Appr. (5.6) Naus' appro Upper bound 
4 0.0050 0.1328 0.0202 0.0758 
5 0.0960 0.2349 0.1341 0.1891 
6 0.3621 0.4440 0.3883 0.4234 
7 0.6604 0.6862 0.6684 0.6806 
8 0.8558 0.8610 0.8573 0.8595 
9 0.9484 0.9492 0.9486 0.9488 
10 0.9838 0.9839 0.9838 0.9839 
11 0.9954 0.9955 0.9954 0.9954 
12 0.9988 0.9988 0.9988 0.9988 
13 0.9997 0.9997 0.9997 0.9997 
14 0.9999 0.9999 0.9999 0.9999 
15 1.0000 1.0000 1.0000 1.0000 

From Table 5.2, where T' = 10 and>..' = 3, we observe that the approxima
tion is accurate even for moderate parameter values, at least for large n. As a 
comparison, Naus' (1982) approximation is included. 

Remark 5.2.2 The idea of partitioning the up crossings into "independent 
clumps" is an example of the Poisson clumping technique of Aldous (1989). 

Remark 5.2.3 We could define the scanning process for all t,O :S t :S T, by 
either defining X on [0, T + w] or connecting the endpoints of the interval [0, T] 
to form a torus. In both cases, the only effect on (5.6) is that (Tjw - 1) is 
replaced by T/w (or T' - 1 by T'). 

Remark 5.2.4 By noting that the Z variables in (5.4) are approximately in
dependent and geometrically distributed, we actually get a compound Poisson 
approximation of the distribution of M n , and not only an approximation of the 
probability P(Mn = 0). 

In the next section, we will also need the joint distribution of Sw and U Sw . 

This is of independent interest, as it could also be used to obtain an approxi
mation for the distribution of the so-called multiple scan statistic. 

Consider a process X', where the number of primary up crossings of level n, 
U~, is exactly Poisson distributed with mean J.L~, and where, at each primary n

upcrossing, there is a fixed probability P~+l of this causing a (n+ 1)-upcrossing. 
Let the maximum of this process be Sf. Then 

, , , 
J.Ln+ 1 = J.LnPn+ 1 



120 

and, for k > 0, 

P(USI = k, S' = n) 

Sven Erick Aim 

P(U~ = k, S' = n) = P(U~ = k, U~+1 = 0) 

P(U~ = k)P(U~+1 = ° I U~ = k) 

(J.L~)k e-J1.'n(l _ p' )k 
k! n+1 

(' ')k J.Ln - J.Ln+I e-(J1.'n-J1.~+1)e-J1.~+1 
k! . 

For n, such that J.Ln > J.Ln+1, and k > 0, this gives the approximation 

5.3 Approximation in Two Dimensions 

Let X be a two-dimensional Poisson process with intensity A, and define the 
scan statistic 

Sw = Sw(A, A) = max X(W(x) n A), 
XER2 

where A = [0, TI] X [0, T2], and W is a general scanning set. 
For a rectangular scanning set R = [0, WI] x [0, W2], this gives the scan 

statistic 

max 
O:::;tl:<=;Tl-Wl 
O:::;t2:<=;T2-W2 

It should be noted that, just as in the one-dimensional case, we have un
necessarily many parameters. A' = AWIW2, T{ = TI/WI, and T2 = T2/W2 are 
sufficient, and will, at times, be used to simplify the notation. 

Remark 5.3.1 When comparing the effect of the shapes of different scanning 
sets, we will use the torus convention to avoid boundary effects. The scan 
statistic will then be denoted Sw(A, At), where At denotes the torus version of 
A; see, for example, AIm (1997) for details. 

To approximate the distribution of SR, we can not simply copy the technique 
from the previous section. First, it is not trivial to define upcrossings in two 
dimensions, as we have only a partial ordering in R2. This problem can be 
overcome by instead considering En = # extreme n-rectangles, defined to be 
those WI x W2 rectangles in A that contain exactly n points, but which can not 
be translated to the left or down without losing points. On the torus, At, the 
corresponding number is denoted En,t. 
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Remark 5.3.2 In one dimension, an up crossing of level n obviously corre
sponds to an extreme n-interval, i.e., one that can not be moved to the left 
without losing a point. 

There are two types of extreme n-rectangles: 

(i) Those with one point in the top right corner and n - 1 in the interior. 

(ii) Those with one point on the top side, one point on the right side, and 
n - 2 in the interior. 

By a similar argument to that of Lemma 5.2.1, we get the following. 

PROOF. The contribution from rectangles of type (i) is )..TIT2P(n - 1; )..WIW2) , 
since for each of the points in [0, TIl x [0, T2l the probability is p( n - 1; )..WI W2) 
that it is the top right corner of an n-rect angle , and the mean number of such 
points is )"TI T2. 

The mean number of pairs of points that are close enough to be the two 
points that define a rectangle of type (ii) is )..TIT2)..WIW2, and the probability 
of the correct number of interior points is p(n - 2; )..WIW2). 

Collecting terms, we now get 

)..TIT2P(n - 1; )..WIW2) + )..TIT2)..wlw2P(n - 2; )..WIW2) 

)..TIT2(1 + (n - l))p(n - 1; )..WIW2) = n)..TIT2P(n - 1; )..WIW2) . 

• 
By a similar but slightly more complicated argument, we get the following. 

Lemma 5.3.2 gives the possible, although poor, approximation 

(5.8) 

Remark 5.3.3 Although the concept of extreme rectangles (or boxes in three 
dimensions) does not lead to any usable approximation, it is fundamental in 
the simulations; see Section 5.6. 

Another approach is to study Gn , the number of subsets of n points that 
can be covered by a translate of the scanning set W. Using Mansson's (1994) 
expression for E(Gn ), we get an approximation 

P(Sw < n) ~ P(Gn = 0) ~ e-E(Gn ) , 
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which, as well as the related approximation (5.8), is even worse than the corre
sponding (5.3) in one dimension, due to the strong dependence between different 
n-subsets with common points. Note that, if Gn = 1, then Gn-l 2: n. 

Following the one-dimensional approach, we would like to partition the n
subsets (or extreme n-rectangles) , En, into primary and secondary ones. Again, 
this is not easily done because of the partial ordering in R2. However, with 
a suitable definition of Un as the number of primary n-rectangles, we would 
expect a reasonable approximation by using that 

P(SR < n) :::::: P(En = 0) = P(Un = 0) :::::: e-E(Un ) , 

as in the one-dimensional case. 
This idea, combined with the results of Mansson (1994), will be used in 

Section 5.3.2 to get approximations for general scanning sets, given the approx
imation for rectangular scanning sets derived in the next section. 

For rectangular scanning sets, we use a different approach which uses the 
one-dimensional technique in a more direct way. 

5.3.1 Rectangular scanning sets 

The idea behind the one-dimensional approximation was to form the stationary 
scanning process Y, and approximate the maximum of this by a random walk 
argument. 

To approximate the scan statistic in two dimensions, we will scan the 
rectangle A by first, for fixed t2, doing a one-dimensional scanning in the 
strip [0, TIl X [t2, t2 + W2], only considering the first coordinate. These one
dimensional scan statistics, which can be approximated using (5.6), form a new 
one-dimensional stationary process, corresponding to the scanning process Y 
in one dimension, whose maximum is the two-dimensional scan statistic. Thus, 
the distribution of the two-dimensional scan statistic can be approximated by 
using a slight variation of the one-dimensional technique. 

Consider, for fixed t2, the Poisson process on a vertical strip of width W2, 
[0, TIl X [t2' t2 + w2l. If we only consider the first coordinate, we get a one
dimensional Poisson process, X' = X'(t2) = {Xil (t2), 0 :::; tl :::; Tl}, with 
intensity AW2. 

For each t2, define a one-dimensional scan statistic corresponding to a scan
ning interval of length WI [see Figure 5.2l, 

SWl = SWl (t2) = max (X:l +Wl (t2) - X:l (t2)) 
°9l:STl-Wl 

as before. The distribution of SWl can, for fixed t2, be approximated using (5.6) 
as 

P(SWl :::; n) :::::: Fp(n; AWl W2)e -(1- >'~~~2 ),wlw2(Tl/wl-l)p(nj),wlw2) 

Fp(n; A')e -(1- n~l )>.'(T{ -l)p(n;>.') , (5.9) 
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Figure 5.2: One-dimensional scanning in a strip 

using the notation T{ = TI/wI, T2 = T2/W2, and A' = AWIW2. 
Now, Y = {SWI (t2), 0 ~ t2 ~ T2 - W2} is a new one-dimensional stationary 

stochastic process with maximum 

O::;t~1ff-W2 SWI (t2) = O~t~1ff-w2 (O::;t~~-Wl (X:l +Wl (t2) - X:1 (t2))) 

max ( max X ([tl' tl + WI] X [t2' t2 + w2D) 
O::;t2~T2-W2 O::;tl~Tl-Wl 

SR = SR(A, A), 

so that S R is both the two-dimensional scan statistic of the Poisson process X 
and the maximum of the one-dimensional scanning process Y. 

Repeating the one-dimensional argument for Y, we get [see (5.6)] 

FSR(n) ~ Fyo(n) e-rn+1 , (5.10) 

where Fyo(n) = P(SWI ~ n) is approximated by (5.9), and 

,n = E(number of primary n-upcrossings of Y = {Swl(t2), 0 ~ t2 ~ T2 -W2}). 

In is approximated by a random walk argument similar to that in one di
mension. A complication is that, if SWI (t2) = n, we may have several primary 
and/ or secondary up crossings of level n within the strip [t2' t2 + W2]. Disre
garding this possibility, we can copy the argument from the preceding section, 
replacing A with AWl and p(n - 1; AW2) by P(SWI = n - 1) in (5.5) to get 

In~l~l) = (1- AW~W2)AWIW2 (~~ -l)P(Swl =n-1) 

(1- ~) A' (T2 - l)P(Swl = n - 1), (5.11) 
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which, combined with (5.10), gives the approximation 

(1) (1) 
FSR(n) ~ FSR (n) = P(SWI ~ n)e-"Yn+1 • (5.12) 

The effect of secondary up crossings is a slight increase in the intensity, AWl, 
of upward jumps in the random walk, which may be estimated. There is also a 
more complicated increase in the probability of downward jumps. Fortunately, 
the total effect seems to be of small significance, so it will be neglected. 

By using (5.7), we can take into account the possibility of multiple primary 
up crossings in a strip. This gives a second approximation for 'i'n+1 [see AIm 
(1997) for details] as 

'i'n+1 ~ 'i'~~l = (1- AW1W2) AW1W2 (T2 -1) (J-tn - J-tn+1)e-J-Ln+1 
n+ 1 W2 

(1 - n ~ 1) A' (T~ - 1)(J-tn - J-tn+1)e-J-Ln+1 , (5.13) 

where, as in (5.5), we have 

J-tn ~ (1- AW~W2) >'W1W2 (~~ -1) p(n -1; >'W1W2) 

~ (1 - ~) >.' (T{ - l)p(n - 1; >.') . 

This gives a second approximation 

(2) (2) 
FSR(n) ~ FSR (n) = P(SWI ~ n)e-"Yn+1 . (5.14) 

Remark 5.3.4 To use the approximations on the torus At we only need to 
replace TI/wl -1 by TI/wl and T2/W2 -1 by T2/W2 (or T{ -1 by T{ and T~-1 
byTD· 

To compare the two approximations, (5.12) and (5.14), we have simulated 
the Poisson process for various values of the parameters T{, T~, and N. 

In each simulation, we have calculated the value of the scan statistic S R by 
studying all extreme n-rectangles. To get a reasonably accurate empirical dis
tribution, 10,000 simulations were performed for each parameter combination. 

AIm (1997) has presented numerous tables comparing the empirical distri
bution function with the approximations (5.12) and (5.14). We give two of these 
as examples. Table 5.3 gives the comparison for T{ = T2 = 30, while Table 5.4 
uses T{ = T2 = 20 on a torus. Both use N = 5. As can be seen from the tables, 
both approximations give a good agreement with the simulations. 

Here, we summarize the results of the simulations by measuring the distance 
between the empirical probability function Pe and the approximate Pa with the 
total variation distance 

d(Pe,Pa) = L iPe(k) - Pa(k)i· (5.15) 
k 
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Table 5.3: Comparison of approximations (5.12) and (5.14) with 
simulations for T{ = T2 = 30 and )..' = 5 

n Empirical Appr. (5.12) Appr. (5.14) 
14 0.0016 0.0009 0.0007 
15 0.0571 0.0537 0.0522 
16 0.3346 0.3368 0.3365 
17 0.6906 0.6907 0.6913 
18 0.8945 0.8899 0.8902 
19 0.9693 0.9662 0.9663 
20 0.9907 0.9905 0.9905 
21 0.9979 0.9975 0.9975 
22 0.9994 0.9994 0.9994 
23 0.9998 0.9999 0.9999 
24 1.0000 1.0000 1.0000 

Table 5.4: Comparison of approximations (5.12) and (5.14) with 
simulations on a torus for T{ = T2 = 20 and )..' = 5 

n Empirical Appr. (5.12) Appr. (5.14) 
13 0.0004 0.0008 0.0005 
14 0.0333 0.0326 0.0306 
15 0.2535 0.2440 0.2430 
16 0.6024 0.5936 0.5945 
17 0.8442 0.8379 0.8386 
18 0.9446 0.9459 0.9461 
19 0.9825 0.9837 0.9838 
20 0.9940 0.9955 0.9955 
21 0.9981 0.9988 0.9988 
22 0.9999 0.9997 0.9997 
23 1.0000 0.9999 0.9999 

Remark 5.3.5 AIm (1998) has used several measures to compare the approxi
mations. Fortunately, the result of the comparison does not seem to depend too 
much on the choice of measure. We have, therefore, chosen to use the variation 
distance d, as it is both easy to calculate and to interpret. 

The comparison is summarized in Table 5.5 for T{ = T2, and in Table 5.6 
for T{ t= T2· 

Note that we would really like to compare the approximations with the 
true distribution. Replacing this with the empirical distribution introduces a 
random error. A way to measure this error would be through d(P,Pe), where P 
is the true distribution. Here we face two complications, since not only is the 
true distribution unknown, but the distance d(P,Pe) is a random variable. To 
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get an idea about the distribution of d(p, Pe), we have used bootstrap. Repeated 
resampling (1000 samples of size 10,000) from the empirical distribution gives 
approximate estimates of the mean and standard deviation of d(P,Pe). These 
are denoted by p,; and (]'; and are included in the tables for comparison. 

Table 5.5: Comparison of approximations (5.12) and (5.14) when T{ = T2 

T' 1 T2 )..' Torus d(5.12) d(5.14) p,; (]'* 
e 

30 30 5 0.0208 0.0227 0.0173 0.0060 
20 20 5 + 0.0231 0.0249 0.0176 0.0059 
20 20 2 0.0529 0.0433 0.0150 0.0057 
10 10 5 0.0656 0.0608 0.0190 0.0058 
10 10 5 + 0.0383 0.0268 0.0190 0.0058 
5 5 5 + 0.1715 0.1454 0.0209 0.0060 

Table 5.6: Comparison of approximations (5.12) and (5.14) when T{ =f:. T2 

T' 1 T' 2 
)..' Torus d(5.12) d(5.14) p,; (]'* 

e 
20 20 2 0.0529 0.0433 0.0150 0.0057 
10 40 2 0.0480 0.0509 0.0149 0.0056 
40 10 2 0.0987 0.0619 0.0149 0.0056 
5 80 2 0.0453 0.0711 0.0148 0.0056 
80 5 2 0.1813 0.0963 0.0148 0.0056 
2 200 2 0.0652 0.2056 0.0149 0.0060 

200 2 2 0.4310 0.2126 0.0149 0.0060 

From Table 5.5 we see that when T{ = T2, the approximations give similar 
results, although (5.14), as might be expected, seems to be slightly better. 

When T{ =f:. T2, we actually have four different approximations to consider, 
as we can freely interchange T{ and T2. From Table 5.6, we see that (5.12) with 
T{ < T2 is preferable. As a general recommendation: Use (5.12) with T{ ~ T2. 

5.3.2 General scanning sets 

In one dimension, the only convex scanning sets are intervals. In two dimen
sions, we obtained good approximations for rectangular scanning sets in the last 
section. The technique that was used relied heavily on the scanning sets being 
rectangular, and can not, in any obvious way, be extended to general scanning 
sets. 

Aldous (1989), has given an approximation for a circular scanning set of 
radius r, which in our notation reads as 

( n2TIT2 2 r r ) 
P(Sc < n) ~ exp - 2 p(n; )..7fr )(1- 2-)(1- 2;:p) . 

7fr Tl.L2 
(5.16) 
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Aldous technique can be used for various shapes of the scanning set, but requires 
detailed, nontrivial, analysis for each shape. 

There is no method available that works for general scanning sets, but we 
will use the results of Section 5.3.1, combined with a result by Mansson (1994), 
to get reasonable approximations for arbitrary convex scanning sets W. 

Let, as before, Gn be the number of subsets of n points that can be covered 
by a translate of W, and G!;; be the corresponding quantity when the number 
of points is fixed as N instead of being Poisson. Under the torus convention, 
we will use the notation Gn,t and G!;;,t. 

Mansson (1994) has given the following result for E(G!;; t(W)): , 

N (N) ( v(W, TV)) (IWI)n-l 
E(Gn,t(W)) = n n + n(n - 1) IWI IAI (5.17) 

Here, W can be any convex set. IWI denotes the area of W, and v(W, TV) 
denotes the mixed area of Wand TV, the reflection of W. 

Suppose that we can partition the subsets as 

where Un denotes primary and Vn secondary subsets, in such a way that the 
primary subsets occur (almost) independently and [see (5.4)], 

so that 

A reasonable approximation would then be 

P(Sw < n) = P(Gn = 0) = P(Un = 0) ~ e-E(Un ), (5.18) 

but E(Un) is not easily calculated for general W. 
For rectangular scanning sets, we have obtained approximations of Tn 

E(Un ) in (5.11) and (5.13). Using (5.17) both for Wand a rectangular scanning 
set R, we can calculate 

E(G:;:,t(W)) and E(G:;: t(R)) , , 

and use the heuristic approximation 

R (W R) := E(G!;;,t(W)) ~ E(Gn(W)) ~ E(Un(W)) 1 + E(Zw) 
n, E(G!;;t(R)) E(Gn(R)) E(Un(R)) 1 + E(ZR)' (5.19) , 
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Using (5.17), choosing R so that IRI = IWI, and noting that v(R,R) = IRI, 
we get 

n + n(n - 1)~ IWln-l 1 + (n - 1)~ 
Rn(W,R) = n+n(n-1)v(~r) IRln-l = n . 

By (5.19), the value of this ratio depends on the two factors 

E(Un(W)) 

E(Un(R)) 

and we need to estimate one of them to get an approximation for E(Un(W)). 
A rough estimate is obtained by assuming that E(Zw) does not depend (too 

much) on the shape of the set W. This gives a first approximation 

E(Un(W)) ~ E(Un(R))Rn(W, R) = ')'nRn(W, R), (5.20) 

probably overestimating E(Un(W)). 
Assuming the other extreme, that E(Un(W)) does not depend (too much) 

on the shape of the set W, gives the trivial approximation 

E(Un(W)) ~ ')'n, (5.21) 

which probably underestimates E(Un(W)). 
To improve the approximation (5.20), a more careful study of how E(Zw) 

depends on the shape of W is needed. Here, we will use a simple heuristic 
argument to try to improve the approximation. 

Assuming that the relative number of primary and secondary subsets are 
affected similarly by the shape of W, we could approximate 

or simpler 

E(Un(W)) E(Zw) 
E(Un(R)) ~ E(ZR) , 

E(Un(W)) 1 + E(Zw) 
E(Un(R)) ~ 1 + E(ZR) . 

(5.23) gives the approximation 

E(Un(W)) ~ ')'nJRn(W,R) , 

and (5.22) gives the slightly more complicated 

(5.22) 

(5.23) 

(5.24) 

E(Un(W)) ~ J~ + Rn(W, Rhn{1 + ')'n) - ~. (5.25) 

Combining (5.20), (5.21), (5.24), or (5.25) with (5.18) gives four possible 
approximations. In the following sections, these will be compared with simula
tions for circular scanning sets (where the approximations coincide) and for a 
triangular scanning set (where they differ). 
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Circular scanning sets 

As v(W, TV) = IWI for all centrally symmetric sets W, e.g., rectangles and 
circles, we get the same approximation, E(Un ) ~ "tn, for all such sets, and we 
can use either (5.11) or (5.13) to approximate "tn, which gives approximation 
(5.12) or (5.14). 

Using both a circular scanning set C, with radius r, and a square scanning 
set, with WI = W2 = y0fr, in the same simulation supports this result; see 
Tables 5.7 and 5.8, where we compare the empirical distribution functions of 
the scan statistics with approximations (5.12) and (5.14). We have also included 
Aldous' (1989) approximation (5.16) for comparison. The empirical distribution 
functions are denoted Fs for a square scanning set and Fe for a circular. 

In Table 5.7, we show the results of 10,000 simulations with X = 5 and 
T{ = T~ = 10. The empirical distributions are quite close, and in reasonable 
agreement with both (5.12) and (5.14), but differ significantly from (5.16). 

Table 5.7: Square and circular scanning sets, T{ = T~ = 10 and X = 5 

n Fs Fe (5.12) (5.14) (5.16) 
11 0.0006 0.0007 0.0095 0.0064 0.0000 
12 0.0222 0.0232 0.0477 0.0428 0.0000 
13 0.1687 0.1726 0.1994 0.1973 0.0007 
14 0.4663 0,4750 0.4814 0.4838 0.0618 
15 0.7389 0.7464 0.7450 0.7476 0.3715 
16 0.8976 0.9016 0.8979 0.8991 0.7198 
17 0.9650 0.9648 0.9643 0.9647 0.9027 
18 0.9873 0.9880 0.9886 0.9888 0.9704 
19 0.9958 0.9967 0.9966 0.9967 0.9917 
20 0.9984 0.9988 0.9991 0.9991 1.0000 
21 0.9995 0.9995 0.9998 0.9998 1.0000 
22 1.0000 1.0000 0.9999 0.9999 1.0000 

As square and circular scanning sets are affected differently by the boundary, 
we have included Table 5.8, where the simulation is performed on a torus with 
A' = T{ = T~ = 5. Although T{ and T~ are smaller than in the previous table, 
we get a good agreement, except for (5.16), in particular, for large n. 

Triangular scanning sets 

The maximum value of v(W, TV)/IWI is 2 for triangles, so that for a triangular 
scanning set T, 

(5.26) 
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Table 5.8: Square and circular scanning sets, T{ = T2 = 5 and >..' = 5 
on a torus 

n Fs Fe (5.12) (5.14) (5.16) 
9 0.0018 0.0007 0.0791 0.0709 0.0000 
10 0.0195 0.0180 0.0931 0.0858 0.0000 
11 0.1176 0.1120 0.1730 0.1705 0.0006 
12 0.3407 0.3360 0.3498 0.3542 0.0352 
13 0.5942 0.5968 0.5879 0.5950 0.2501 
14 0.7981 0.7961 0.7903 0.7952 0.5884 
15 0.9146 0.9132 0.9106 0.9128 0.8281 
16 0.9682 0.9679 0.9665 0.9673 0.9393 
17 0.9884 0.9887 0.9886 0.9889 0.9807 
18 0.9961 0.9956 0.9964 0.9965 0.9943 
19 0.9984 0.9987 0.9989 0.9990 0.9984 
20 0.9997 0.9998 0.9997 0.9997 0.9996 
21 0.9998 0.9999 0.9999 0.9999 0.9999 
22 0.9999 0.9999 1.0000 1.0000 1.0000 
23 1.0000 1.0000 1.0000 1.0000 1.0000 

It is quite remarkable that triangular scanning sets give such a dramatic 
increase in Rn(T, R), almost double that of centrally symmetric scanning sets! 

Using (5.20), (5.24), or (5.25) gives the approximations 

and 

E(Un) ~ 1n (2 - ~) , 

E(Un) ~ 1nj (2 - ~) , 

In all of these, we have used (5.14) to approximate 1n. 

(5.27) 

(5.28) 

(5.29) 

The scanning sets that have been used in this section are a square, with 
WI = W2, and a right-angled isosceles triangle with the same area. FT denotes 
the empirical distribution function for a triangular scanning set. 

We give two comparisons, each based on 10,000 simulations on a torus. 
Table 5.9 uses T{ = T2 = 20 and )..' = 10. In Table 5.10, the area is larger 
(T{ = T2 = 30) but the intensity is smaller ()..I = 5). 

As expected, (5.27) underestimates the distribution function, whereas (5.14) 
overestimates it. Both (5.28) and (5.29) give good approximations, with a 
slightly better agreement for (5.28) in Table 5.9 and for (5.29) in Table 5.10. 
Note that (5.28) tends to overestimate and that (5.29) tends to underestimate 
the distribution function. 
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Table 5.9: Square and triangular scanning sets, T{ = T~ = 20 and 
>..' = 10 on a torus 

n Fs (5.14) FT (5.27) (5.28) (5.29) 
22 0.0037 0.0038 0.0004 0.0000 0.0004 0.0003 
23 0.0611 0.0551 0.0166 0.0035 0.0175 0.0147 
24 0.2592 0.2462 0.1273 0.0647 0.1411 0.1209 
25 0.5338 0.5280 0.3814 0.2867 0.4094 0.3621 
26 0.7541 0.7587 0.6568 0.5823 0.6795 0.6252 
27 0.8918 0.8924 0.8375 0.8001 0.8527 0.8138 
28 0.9563 0.9561 0.9335 0.9158 0.9391 0.9187 
29 0.9827 0.9832 0.9756 0.9673 0.9765 0.9678 
30 0.9939 0.9939 0.9902 0.9880 0.9914 0.9880 
31 0.9975 0.9978 0.9965 0.9958 0.9970 0.9958 
32 0.9991 0.9993 0.9984 0.9986 0.9990 0.9986 
33 0.9998 0.9998 0.9996 0.9995 0.9997 0.9995 
34 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
35 0.9999 1.0000 0.9999 1.0000 1.0000 1.0000 
36 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Table 5.10: Square and triangular scanning sets, T{ = T~ = 30 and 
>..' = 5 on a torus 

n Fs (5.14) FT (5.27) (5.28) (5.29) 
14 0.0007 0.0005 0.0000 0.0000 0.0000 0.0000 
15 0.0396 0.0425 0.0092 0.0022 0.0124 0.0104 
16 0.3075 0.3118 0.1543 0.1047 0.1976 0.1709 
17 0.6725 0.6737 0.5274 0.4646 0.5769 0.5227 
18 0.8823 0.8830 0.8160 0.7852 0.8408 0.8005 
19 0.9660 0.9640 0.9409 0.9311 0.9501 0.9331 
20 0.9923 0.9899 0.9840 0.9804 0.9859 0.9806 
21 0.9977 0.9973 0.9961 0.9948 0.9963 0.9948 
22 0.9996 0.9993 0.9992 0.9987 0.9991 0.9987 
23 1.0000 0.9998 0.9998 0.9997 0.9998 0.9997 
24 1.0000 1.0000 1.0000 0.9999 1.0000 0.9999 



132 Sven Erick Aim 

5.4 Approximation in Three Dimensions 

The same techniques that were used in the last section to go from one to two 
dimensions can be used to get approximations in three dimensions based on 
the two-dimensional approximations. For simplicity, we only use the technique 
leading to approximation (5.12). 

Consider a Poisson process X, with intensity A in three dimensions and let 

max 
O:::;tcSTI -WI 

O:::;t2:::;T2-W 2 
093:::;T3-W 3 

be the scan statistic corresponding to the rectangular scanning set R3 = [0, WI] x 
[0, W2] x [0, W3], translated over the (larger) box A3 = [0, TI] X [0, T2] X [0, T3]. 

Note that we have used too many parameters above. We only need T{ = 

TdwI, T~ = T2/W2, T(" = T3/W3, and X = AWIW2W3. 
Consider, for fixed t3, a layer of width W3, [0, TI] X [0, T2] X [t3, t3+W3], where, 

disregarding the last coordinate, we have a two-dimensional Poisson process X' 
with intensity AW3 on A2 = [0, TI] X [0, T2]' 

Then, [see (5.10)] 

P(SR3 :::; n) = P(SR2(AW3,A2):::; n)e-'Pn+1 = P(SR;(A',A~):::; n)e-'Pn+1, 
(5.30) 

where R; = [0,1] x [0,1]' and 

'Pn+1 :;::j (1 - AWIW2W3) AWIW2W3 (TI - 1) P(SR2( AW3, A2) = n) 
n+ 1 WI 

( 1 - ~) A'(T{ - 1)P(SR' (A', A;) = n) , (5.31) n+ 1 2 

in analogy with (5.11). 
As SR2(AW3,A2) is a two-dimensional scan statistic, we can use (5.12) or 

(5.14) to approximate P(SR2 (AW3, A2) :::; n) = P(SR; (X, A;) :::; n), which gives 
the two approximations 

(5.32) 

and 
(5.33) 

Remark 5.4.1 In the next section, we will use this argument to get an ap
proximation in d dimensions given one in d - 1 dimensions. 
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Remark 5.4.2 To use the approximations on a torus, simply substitute T{ - 1 
with T{, T~ - 1 with T~, and T3 - 1 with T3. 

Remark 5.4.3 Mansson (1995) gives a formula that, if combined with (5.30), 
can be used to obtain approximations for general convex scanning sets W, by 
the same procedure that was used in Section 5.3.2 in the two-dimensional case. 
The formula is more complicated in three dimensions, so the generalization from 
rectangular to general scanning sets is omitted here. 

To estimate the precision of the approximations, we have simulated the 
process for a number of different parameter combinations. The simulations are 
much more time consuming in three dimensions than in two dimensions, and so 
we have only been able to use moderate values of T{, T~, T3, and N. To get a 
reasonably accurate empirical distribution, 10,000 simulations were performed 
for each parameter combination. All simulations were performed on a torus. 
Some aspects of the simulations are discussed in Section 5.6. 

Table 5.11: Comparison with simulations for T{ = T~ = T3 = 10 and ),,' = 5 

n Empirical (5.32) (5.33) 
16 0.0003 0.0016 0.0016 
17 0.0465 0.0525 0.0541 
18 0.3400 0.3287 0.3327 
19 0.6945 0.6885 0.6913 
20 0.8910 0.8915 0.8925 
21 0.9687 0.9676 0.9678 
22 0.9902 0.9911 0.9912 
23 0.9979 0.9977 0.9978 
24 0.9996 0.9995 0.9995 
25 0.9999 0.9999 0.9999 
26 0.9999 1.0000 1.0000 
27 1.0000 1.0000 1.0000 

Table 5.12: Comparison with simulations for T{ = 4, T~ = 8, T3 = 16 and 
),,' = 2 

n Empirical (5.32) (5.33) 
8 0.0000 0.0009 0.0011 
9 0.0162 0.0343 0.0393 
10 0.3010 0.3339 0.3494 
11 0.7382 0.7530 0.7610 
12 0.9357 0.9389 0.9409 
13 0.9879 0.9876 0.9880 
14 0.9974 0.9978 0.9978 
15 0.9997 0.9996 0.9996 
16 1.0000 0.9999 0.9999 
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Examples from the simulations, where the empirical distribution is com
pared with the approximations (5.32) and (5.33) are given in Table 5.11, where 
T{ = T2 = T3 = 10 and>..' = 5 and in Table 5.12, where T{ = 4, T2 = 8, 
T3 = 16, and >..' = 2. 

From the tables, we see that both approximations give good agreement with 
the simulations, even for moderate values of n. 

Table 5.13: Comparison of approximations (5.32) and (5.33) 
when T{, T2, and T3 are equal 

T{ T2 T3 >..' Torus d(5.32) d(5.33) 1-£; (J"* 
e 

4 4 4 8 + 0.2431 0.2198 0.0211 0.0058 
5 5 5 2 + 0.1768 0.1820 0.0162 0.0057 
5 5 5 5 + 0.1368 0.1206 0.0187 0.0060 
10 10 10 1 + 0.2484 0.2560 0.0128 0.0054 
10 10 10 2 + 0.1084 0.1144 0.0143 0.0060 
10 10 10 3 + 0.0592 0.0668 0.0159 0.0057 
10 10 10 5 + 0.0402 0.0369 0.0169 0.0061 

Table 5.14: Comparison of approximations (5.32) and (5.33) 
when T{, T2, and T3 are unequal 

T{ T2 T3 >..' Torus d(5.32) d(5.33) 1-£; (J"* 
e 

4 8 16 2 + 0.0674 0.0976 0.0145 0.0058 
4 16 8 2 + 0.0914 0.1210 0.0145 0.0058 
8 4 16 2 + 0.0702 0.0824 0.0145 0.0058 
8 16 4 2 + 0.1484 0.1500 0.0145 0.0058 
16 4 8 2 + 0.0994 0.1002 0.0145 0.0058 
16 8 4 2 + 0.1578 0.1502 0.0145 0.0058 

To compare the approximations, we have, for each simulation, calculated the 
total variation distance d(pe,Pa) of (5.15) as a measure of the distance between 
the approximate and the empirical distributions, and bootstrap estimates, 1-£; 
and (J";, of the mean and standard deviation of the distance d(pe,P) between 
the empirical and the true distribution; see Section 5.3.l. 

In Table 5.13, the parameters T{, T2 and T3 are equal, and the two approx
imations give similar results, with (5.33) doing slightly better for larger values 
of >..'. In Table 5.14, T{, T2 and T3 are unequal. Here, the precision depends 
heavily on the choice of T{, T2 and T3, with T{ < T2 < T3 and approximation 
(5.32) giving the best fit. As a general recommendation: Use approximation 
(5.32) with T{ ~ T2 ~ T3. 
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5.5 Approximation in Higher Dimensions 

In d dimensions, study a Poisson process with intensity A on the box Ad = 
[0, TIJ x [0, T2J x ... x [0, TdJ, with scanning set Rd = [0, WIJ x [0, W2J x ... x [0, WdJ. 
Introduce the notation 

d 

T! = Td Wi , i = 1, ... , d , A' = A II Wi , 

i=I 

Ad = [0, T{] x ... x [0, T~J, and Rd = [0, 1J x ... x [0, 1J. 

Then, the scan statistics S Rd (A, Ad) and S R~ (A', Ad) have the same distribution. 
Repeating the argument that resulted in (5.32) gives 

P(SR~(A', Ad) :S n) 

P(S, (A' A' ) < n)e-ad-1(n+I) 
R d _ 1 ' d-I - , 

where ad-I(n + 1) is approximated as in (5.11) and (5.31) by 

ad-I(n + 1) ~ (1-~) A'(T~ -1)P(SR' (A', Ad-I) = n). n + 1 d-l 

(5.34) 

(5.35) 

Note that the (d - 1)-dimensional scan statistic SR~_l (A', Ad-I)' in (5.34) and 
(5.35), has the same distribution as SRd_1 (AWd, Ad-I) . 

Remark 5.5.1 Formula (5.34) holds also for d = 1, if SR' (A', Ab) is identified 
o 

as a Poisson distributed random variable with mean A'. Then, (5.34) reduces 
to (5.6). For d = 2 we get formula (5.12), and for d = 3 we get (5.30). 

5.6 Comments on Simulations 

For simplicity, we will throughout this section, with a slight abuse of notation, 
write A, TI, T2, and T3 instead of A', T{, T~, and T3. 

The accuracy of the one-dimensional approximation (5.6) can be evaluated 
by comparing it with the lower and upper bounds given by Janson (1984). In 
two and more dimensions, there are no known corresponding bounds and so we 
have to use simulation to evaluate the different approximations. 

The key idea behind the simulations, in all dimensions, is that, to determine 
the value of the scan statistic for a certain realization of the Poisson process, it 
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is sufficient to study the number of points in a finite number of sets, the extreme 
sets. 

In one dimension, the extreme sets are the intervals where one endpoint 
(e.g., the left) coincides with a point in the realization. 

In two dimensions, with rectangular scanning sets, the extreme sets are two 
types of rectangles; see Figure 5.3. 

(i) Those where one corner (e.g., the lower left) coincides with a point. 

(ii) Those where two sides (e.g., the lower and the left) contain one point 
each. 

-• -(i) (ii) 

Figure 5.3: Extreme sets in two dimensions 

To study the extreme rectangles oftype (ii), we need to consider all pairs of 
points (at least those where the points lie sufficiently close), which makes the 
simulations much more time consuming in two dimensions than in one. 

In three dimensions, with rectangular scanning sets, the extreme boxes are 
those that can not be translated by increasing any of the coordinates without 
losing a point. Consider a certain box. If it is extreme, it can not be fixed by 
interior points, but must have points in a corner (which fixes all three coordi
nates), on an edge (which fixes two coordinates), or on a side (which fixes one 
coordinate) . 

This gives three different types (one with three cases) to check: 

(i) Those which are fixed by one point (in the corner where all coordinates 
are minimal). 

(ii) Those which are fixed by two points, one on an edge and one on a side. 
There are three possible cases, depending on which coordinate is fixed by 
the point on the side. 

(iii) Those which are fixed by three points, on three different sides. 
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From the above, one would expect the time required for the simulation to be 
of the order )"Tl, ()"TlT2)2 and ()"TlT2T3)3 in one, two, and three dimensions, 
respectively. 

By using the possibility of ordering the points after one of the coordinates 
(for example, the first), it is possible to reduce these orders to 

(5.36) 

and 
(5.37) 

To indicate how the value of the scan statistic was determined, we will 
give a brief description of the procedure in two dimensions. The realization of 
the Poisson process was obtained by first generating the horizontal coordinate 
according to a one-dimensional Poisson process with intensity )"T2, using the 
well-known fact that the gaps are exponentially distributed and independent. 
This gives an automatic ordering of the points with regard to this coordinate. 
The vertical coordinate is then, independently for different points, chosen ac
cording to a uniform distribution on (0, T2). 

Going through the points from left to right, we then check for extreme 
rectangles with this point in the lower left corner, or on the left side with 
another point on the lower side. As the points are ordered, we need only check 
new points until we come across one whose horizontal coordinate is too large. 

The idea in three dimensions is similar, although somewhat more compli
cated. 

From (5.36) and (5.37), we see that it is important to sort the points ac
cording to the coordinate that corresponds to the largest of Tl , T2 and T3. 

The simulations are very time consuming, especially in three dimensions, 
where some of the simulations required more than a hundred hours of CPU 
time. In contrast, to calculate the approximations, it took typically only a few 
seconds on a PC. The calculations were performed in UBASIC to guarantee 
sufficient numerical precision, but could be performed with any tool admitting 
at least double precision. 

Because of the considerable execution time, it is tempting to try some vari
ance reducing technique in order to obtain the same precision with fewer sim
ulations. 

One possibility is to study not only the scan statistics S R, but also the re
lated statistics S~, which are obtained by maximizing only over disjoint rectan
gles/boxes. As the latter statistics are the maximum of a number of independent 
random variables, their distributions can easily be calculated exactly. 

This method is discussed in greater detail by AIm (1998). 
For this technique to give a usable reduction of the variance, the correlation 

between SR and S~, p = P(SR' S~), must not be too small. From experience, 
we can expect a reduction in variance by a factor of order 1 - p2. 
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Unfortunately, the correlations are decreasing with the dimension, and in 
three dimensions, where we really need a reduction of the variance, 1_p2 > 0.85, 
which unfortunately is of little practical use. 

Simulations with non-rectangular scanning sets are more complicated, but 
can be performed in a similar way. As an example, with a circular scanning 
set in two dimensions, we need to check all pairs of points that are sufficiently 
close to lie on the circumference of the same circle. For such a pair there are 
two possible circles. It is sufficient to check one of them, e.g., the one whose 
center is closest to the origin. This method was used to perform simulation with 
circular scanning sets by AIm (1997). A similar technique can be used for any 
convex scanning set in two dimensions, and also for spherical scanning sets in 
three dimensions. The time required for the simulation increases markedly when 
non-rectangular scanning sets are used, increasing the need for good algorithms 
and approximations! 
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An Approach to Computations Involving Spacings 
With Applications to the Scan Statistic 

Fred W. Huffer and Chien-Tai Lin 

Florida State University, Tallahassee, FL 
Tamkang University, Taiwan 

Abstract: Consider the order statistics from N i.i.d. random variables uni
formly distributed on the interval (0,1]. We present a general method for com
puting probabilities involving differences of the order statistics or linear com
binations of the spacings between the order statistics. This method is based 
on repeated use of a basic recursion to break up the joint distribution of linear 
combinations of spacings into simpler components which are easily evaluated. 
Let Sw denote the (continuous conditional) scan statistic with window length w. 
Let Cw denote the number of m : w clumps among the N random points, where 
an m: w clump is defined as m points falling within an interval of length w. We 
apply our general method to compute the distribution of Sw (for small N) and 
the lower-order moments of CWo The final answers produced by our approach 
are piecewise polynomials (in w) whose coefficients are computed exactly. These 
expressions can be stored and later used to rapidly compute numerical answers 
which are accurate to any required degree of precision. 

Keywords and phrases: Uniform distribution, number of clumps, order 
statistics, m-spacings, symbolic computation 

6.1 Introduction 

We begin by giving a general description of our work. In order to do this, we 
need some notation. Let Xl, X2, ... , XN be LLd. random variables which are 
uniformly distributed on the interval (0,1]. Let X(l) < X(2) < ... < X(N) 

be the corresponding order statistics. The spacings GI ,G2, ... ,GN+I are the 
lengths of the spaces (or gaps) between consecutive order statistics, that is, 
G i = X(i) - X(i-l) for i = 1,2, ... , N + 1 where, for convenience, we take 
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X(O) = 0 and X(N+1)=l. Let G = (G I ,G2, ... ,GN+d' denote the column 
vector of spacings. 

We have developed general methods for computing probabilities involving 
linear combinations of spacings. In particular, we are able to compute quantities 
of the form 

p(rG > w) or p(rG < w) (6.1) 

for a wide variety of matrices f. (For a vector U = (UI, ... , Uk) and a real value 
w, we say that U> w if Ui > w for all i; U < w is similarly defined.) Most of 
our attention has been directed to linear combinations which are simple sums 
of the spacings. To represent these sums, we use the following notation: for any 
set Ll C {I, 2, ... , N + I}, define 

(6.2) 

We are able to compute 

(6.3) 

for a fairly broad class of configurations of the sets LlI, ... , Llr . Differences 
between the order statistics X(j) are sums of consecutive spacings (that is, 
X(k) - X(j) = Gj+l + Gj+2 + ... + Gk for j < k) and an important special class 
of (6.3) is to evaluate the quantities 

P (6 {X(ki ) - X(ji) > w } ) (or replace> by <) (6.4) 

where ji < ki for i = 1, ... ,r. 
The work we have done in finding probabilities in (6.1), (6.3), and (6.4) 

is described in Huffer (1988), Lin (1993), and Huffer and Lin (1995, 1996, 
1997a, 1997b). The current status of our work is as follows: We are now able 
to find arbitrary probabilities of the form (6.4), but are not yet able to find 
probabilities having the more general forms (6.1) and (6.3). We are in the 
process of developing algorithms and software which can find probability in 
(6.1) for arbitrary matrices r with rational entries. 

The main application of our methods so far has been to compute the distri
bution of the scan statistic Sw and the moments of the number of clumps Cw. 
We now formally define these quantities. The scan statistic Sw is simply the 
maximum number of points Xl, X2, ... , XN contained in a scanning interval 
(window) of length w. If we let yt ( w) denote the number of these points in the 
interval (t, t + w], then we can write Sw = maXO<t<l-w yt(w). We say that m 
points form an m : w clump if these points are all contained in some interval of 
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length w. There is an m: w clump beginning at XCi) if X(i+m-l) - XCi) < w. 
We define the total number of clumps Cw to be 

N-m+l 

Cw = L I(X(i+m-l) - XCi) < w). (6.5) 
i=l 

It is clear that Sw 2:: m if and only if there exists at least one m: w clump. 
This implies 

(
N-m+l ) 

P(Sw < m) = 1- P(Sw 2:: m) = P iQ {X(i+m-l) - XCi) > w} (6.6) 

which is a probability of the type (6.4). Similarly, we show in Section 6.8 that 
the moments of Cw can be expressed as sums of probabilities all having the 
form in (6.4). 

The remainder of this chapter is organized as follows. Section 6.2 lists some 
results about spacings that we shall need. Section 6.3 presents the recursion 
which is the basis of our approach; we evaluate quantities such as (6.1) and (6.3) 
by repeated use of this recursion. This section also presents some notation and 
properties which are used in conjunction with the recursion. Section 6.4 extends 
the recursion to Li.d. exponential random variables. Section 6.5 illustrates the 
use of the recursion by applying it in a simple, but important special case: the 
evaluation of (6.1) when r is a binary matrix with two rows. In Section 6.6, 
we show how our methods may be used to evaluate the distribution of the scan 
statistic Sw. In Section 6.7, we present an algorithm for systematically applying 
the recursion to evaluate any quantity of the form (6.4). Finally, in Section 6.8 
we illustrate the use of our methods to evaluate the moments of the number of 
clumps CWo 

6.2 Properties of Spacings 

We now review some well-known properties of spacings that we shall need later. 
The vector of spacings G is uniformly distributed on the simplex 

{G E nN+1 : Gi > 0 for all i and Gl + G2 + ... + GN+1 = 1}. 

This is equivalent to saying that the spacings have a joint Dirichlet distribution 
with parameters 1,1, ... ,1 which we abbreviate as 1)(1,1, ... ,1); see Wilks 
(1962) and Johnson, Kotz, and Balakrishnan (1999) for a review of the Dirichlet 
distribution. With this notation, we may write 

(6.7) 
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Many facts about spacings can be easily derived from the following formula 
which may be found in Chapter I, Exercise 23 of Feller (1971). For arbitrary 
al 2: 0, ... , aN+I 2: 0, we have 

(6.8) 

Here, we use (x)+ to denote the positive part, that is, (x)+ = max(x, 0). From 
this formula, it is immediate that the spacings G I, G2, ... , G N + I are exchange
able random variables, each with a beta(I, N) distribution. 

The joint distribution of nonoverlapping sums of spacings also has a Dirichlet 
distribution. This is an easy consequence of (6.7) and standard properties of the 
Dirichlet distribution. Here is a precise statement of this fact. Let ~I, ... , ~r 
be disjoint nonempty subsets of {I, 2, ... , N + I} with cardinalities I~il = Pi 
for 1 :::; i :::; r. Then 

Starting from this joint distribution, it can be shown that 

where aI, ... , ar are nonnegative, and the sum is over all r-tuples of integers 
(k1 , k2 , ... , kr ) satisfying 0 :::; ki :::; Pi - 1 for all i. This formula may be found 
as Theorem 2.1 of Khatri and Mitra (1969). If PI = P2 = ... = Pr = 1, then 
(6.9) reduces to (6.8). 

We rely on (6.9) for most of the explicit formulas in our work. This formula 
gives the solution to problems of the form (6.3) in the case where the sets ~i 
are disjoint. When the sets ~I, ... , ~r overlap, we can use the recursion (6.15) 
presented in the next section to re-express the probability (6.3) as a sum of 
similar probabilities which involve only disjoint sets; these probabilities can 
then be evaluated using (6.9). 

We can express probabilities of the form (6.3) in a much more compact form 
by introducing the following notation. For integers j 2: 0 and real values A 2: 0, 
define 

{ 
(~)wj(I - AW)N-j for AW < 1, 

R(j, A) = 
o for AW 2: 1 . 

(6.10) 

The dependence of R on Nand W can be left implicit because these values are 
fixed in any given application of our methods. Viewed as a function of W (taking 
values in (0,1)) with N, j and A fixed, R is a piecewise polynomial with two 
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pieces: wE (0,1/>') and wE (1/>.,1). In terms of R, when al = ... = ar = w, 
formula (6.9) becomes 

(6.11) 

where again the summation is over all r-tuples of integers (kl' k2 , ... , kr ) satis
fying 0 ~ ki ~ Pi -1 for all i. Suppressing the dependence on Nand w reduces 
the length of the answers we obtain and makes it easier to state answers which 
are valid for all Nand w. 

6.3 The Basic Recursion 

In this section, we describe the recursion which is the basis of our approach. 
This recursion was first obtained by Micchelli (1980) as a result about mul
tivariate B-splines. The result was rediscovered in a probabilistic setting by 
Huffer (1988). We also introduce some matrix notation and simplify properties 
that we find very useful when applying this recursion. 

Let r be an r x (N + 1) real matrix. Let G = (G1 ,G2,'" ,GN+d' be the 
vector of spacings between uniform random variables as defined in Section 6.1. 
For anye E nr, define ri,~ to be the r x (N + 1) matrix obtained by replacing 
the ith column of r bye. The basic recursion is the following. 

Th 6 3 1 S ( )' t' fi "N+1 eorem .. uppose e = cr, C2,···, CN+l sa ~s es L.."i=l Ci 1. Let 
e = re. Then, 

N+l 
p(rG E B) = L Ci p(ri,t;G E B) (6.12) 

i=l 

for any measurable set B c nr. 

For a proof, see Huffer (1988). The proof given there uses the moment generat
ing function of rG and properties of divided differences. In some special cases, 
the recursion can be proved by very elementary means. See Chapter 6 of Huffer 
(1982) for an example of this kind. 

Matrix notation for spacings problems 

We now introduce some matrix notation which allows us to re-express the re
cursion (6.12) in a form convenient for presenting examples of its use. 

Let A be any matrix having r rows and at most N + 1 columns. Take r 
to be the matrix with N + 1 columns obtained by padding A with columns of 
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zeros; r = (AI 0). Define Y = (Yl, Y2, ... , Yr ) by Y = rG. For any value of 
w, we define 

{A}~ = p(rG > w) = P(min Yi > w), (6.13) 

and 

{A}; = p(rG < w) = P(maxYi < w). (6.14) 

When the value of w is held fixed in an argument, we delete the subscript and 
just write {A}l or {A}2. We also omit the superscript when convenient. 

The quantity {A} is well defined so long as the number of spacings N + 1 
is greater than or equal to the number of columns in A. The value of {A} 
depends, of course, on N, but we do not indicate this in the notation because 
the value of N is not important in most of our manipulations. 

When specialized to probabilities of the type (6.13) and (6.14), the basic 
recursion (6.12) becomes the following: 

Let A be a matrix having k columns with k ~ N + 1. Suppose c = (Cl' C2, ... , Ck)' 

satisfies 2:f=l Ci = 1. Let e = Ac. Then, 

k 

{A} = LCi{Ai,d. (6.15) 
i=l 

It is understood that all of the braces {.} appearing in (6.15) have a common 
superscript of 1 or 2 and a common subscript of w. 

Simplification properties 

Properties 81-84 given below allow us to rearrange and simplify the matrix 
A of (6.13) or (6.14) in various ways. We state these properties in terms of 
evaluating {A }l. 

(Sl) If the ith row of A dominates (is componentwise greater than or equal 
to) the jth row, the ith row can be deleted without changing the value of 
{A}l. 

The value of {AP remains the same when 

(S2) a column of zeros is deleted, 

(S3) the columns are permuted, (6.16) 

(S4) the rows are permuted. 

The same properties apply to {A}2 except that S1 must be reversed. In other 
words, 
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(Sl') if the ith row of A is dominated by (is componentwise less than or equal 
to) the jth row, the ith row can be deleted without changing the value of 
{A}2. 

These properties are all straightforward and we shall not prove them in 
detail. However, some comments are in order. The matrix A is just a short
hand for writing a set of inequalities, with each row corresponding to a different 
inequality. Property Sl simply states that redundant inequalities (rows) can 
be omitted. If the kth column of A is zero, this means the spacing Gk is not 
actually involved in any of the inequalities. Thus, we can drop G k from our 
inequalities and renumber the spacings G j for j > k (justified byexchangeabil
ity) to fill in the resulting gap. This is the content of property S2. Noting 
that each column of A is associated with a particular spacing, property S3 
follows immediately from the exchangeability of the spacings. Property S4 is a 
consequence of the fact that each of the implied inequalities in (6.13) or (6.14) 
involves the same value w. If we had defined {AP = P(Yi > Wi for all i) where 
the values of Wi are not all equal, then property S4 would no longer hold. 

6.4 The Recursion for Exponential Variates 

The joint distribution of the spacings is closely related to that of independent 
exponential random variables. Because of this, the recursion (6.12) [and the 
special case (6.15)] also holds for exponential random variables. This section is 
devoted to a brief discussion of this fact and its consequences. This section can 
be omitted with little loss of continuity. 

Let Zl, Z2, ... , ZNH be Li.d. exponential random variables with mean 1. 
Define Z = (Zl, Z2,.'" ZN+l)'. Then we have 

Corollary 6.4.1 The recursion (6.12) remains true when G is replaced by Z. 

We give a brief argument for this corollary at the end of this section. Similarly, 
the recursion (6.15) and simplification properties (6.16) continue to hold if we 
replace G by Z in the definitions (6.13) and (6.14). Also, most of the formu
las in Section 6.2 have obvious analogs for exponential random variables. In 
particular, if we replace the definition of R in (6.10) by 

wj 
R(J' >.) = _e-AW , ., ' J. 

(6.17) 

then (6.11) continues to hold so long as we make the obvious notational change, 
replacing G(~i) by the analogous quantity Z(~i)' 

Because (6.11) and (6.15) also hold for exponential random variables, the 
results we obtain by our methods [which are expressions like (6.28), (6.31), and 
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(6.43) given later] have two valid interpretations: as results about spacings: 
and as results about exponential random variables. Alternatively, since the 
inter arrival times in a Poisson process are independent exponential random 
variables, our results may be interpreted in terms of Poisson processes. 

PROOF OF COROLLARY. Define T = ~i!tl Zi. It is well known that 

T and ZIT are independent and ZIT:b G. 

This implies that 

Z:b TG, (6.18) 

where T is independent of G and has a gamma distribution with parameters 
N + 1 and 1. Let c, e, and B be as in (6.12), and let g be the probability 
density function of the gamma random variable T in (6.18). By conditioning 
on the value of T, we find 

1000 p(trG E B)g(t)dt 

N+l roo tr Ci 10 p(tri,eG E B)g(t)dt 

N+l 

L CiP(ri,e Z E B). 
i=l 

Here, we have used 

N+1 
p(trG E B) = L CiP(tri,eG E B) 

i=l 

which follows from the recursion (6.12) upon replacing r by tr and noting that 
tri,e = (tr)i,te· • 

6.5 Binary Matrices With Two Rows 

To illustrate the use of the basic recursion, we will consider the simple, but 
important case of a binary matrix with two rows. In particular, we will calculate 
the probability 

P(G1 + G2 + G3 + G4 + G5 + G6 > w, G5 + G6 + G7 + Gs + Gg > w). (6.19) 

This concrete example suffices to introduce all the necessary ideas. 
matrix notation defined in (6.13), this probability is {A}~ where 

( 111111000) 
A= 000011111 . 

In the 

(6.20) 



Computations Involving Spacings 149 

Let "Ii denote the ith column of A and 0 denote a column vector of zeros. The 
columns of A satisfy "II - "16 + "17 = O. Thus, we may apply the recursion (6.15) 
with c = (1,0,0,0,0, -1, 1,0,0)' and e = Ac = 0 to obtain 

{A} = {Al,O} - {A6,o} + {A7,O} 

which can be written more explicitly as 

{ 111111000}= 
o 0 0 0 1 1 1 1 1 

{ 011111000} {111110000} {111111000} 
000011111 - 000010111 + 000011011 . 

Deleting the columns of zeros [using 82 of (6.16)] leads to 

{ 1 1 1 1 1 0 0 O} {1 1 1 1 1 0 0 O} {1 1 1 1 1 1 0 O} (6.21) 
= 00011111 - 00001111 + 00001111 . 

The matrices in these terms all have the same general form as A in (6.20). 
To capitalize on this fact, we shall introduce some notation. Define 

Q(i,j, k) = P(G(6.d + G(6.3 ) > w, G(6.2 ) + G(6.3 ) > w), (6.22) 

where 6.1,6.2,6.3 are disjoint sets and 16.11 = i, 16.21 = j, 16.31 = k. The value of 
k is the number of spacings common to both sums. This definition makes sense 
because it is clear from the exchangeability of the spacings that the probability 
depends on the sets 6.1,6.2,6.3 only through the values i, j, k. 

With this notation, we have {A}~ = Q(4, 3, 2). The result in (6.21) can be 
expressed as 

Q(4, 3, 2) = Q(3, 3, 2) - Q(4, 3,1) + Q(4, 2, 2). (6.23) 

Essentially the same argument shows, more generally, that for any positive 
integers i, j, k (satisfying i + j + k :::; N + 1), we have 

Q(i,j, k) = Q(i - 1,j, k) + Q(i,j - 1, k) - Q(i,j, k - 1). (6.24) 

This general relation may now be used to break up each of the terms which ap
pear in (6.23). Repeated application of (6.24) eventually leads to an expression 
for Q ( 4, 3, 2) as a sum of "boundary" terms Q( i, j, k) in which one of the values 
i, j, or k is zero. For example, applying (6.24) to the middle term in (6.23) 
produces 

Q(4, 3,1) = Q(3, 3,1) + Q(4, 2,1) - Q(4, 3, 0) 
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which contains the boundary term Q(4, 3, 0). From the definition (6.22), it is 
clear that 

Q(i, 0, k) 

Q(O,j, k) 

Q(i,j,O) 

P(G(b.3) > w), 

P(G(b.3) > w), and 

P(G(b.I) > w, G(b.2) > w). 

Each of these expressions is easily evaluated using (6.11) yielding 

k-l 
Q(i, 0, k) = Q(O,j, k) = ~ R(p, 1) 

p=O 

and 

Q(i,j,O) = ~I: (P+Q)R(P+Q,2). 
p=Oq=O p 

(6.25) 

What we have outlined above is an entirely mechanical procedure for evalu
ating Q(i, j, k) by repeated application of (6.24). The first step in the evaluation 
of {A}~ = Q(4, 3, 2) is given in (6.23). Pursuing this process to its conclusion 
leads to 

{A}~ = -154R(0, 1) + 35R(I, 1) + 155R(0, 2) + 121R(I, 2) + 88R(2, 2) 

+57 R(3, 2) + 30R(4, 2) + 10R(5, 2) . 

Note that this expression supplies an answer to (6.19) which is valid for all w 
and for all N ~ 8. 

6.6 The Distribution of the Scan Statistic 

We now show how the recursion (6.15) can be used to compute the distribution 
of the scan statistic Sw. We do this by way of a particular example. Suppose 
there are N = 6 random points on the unit interval and we are interested in 
the probability P(Sw < 3) that no interval of length w contains more than 2 of 
these points. Then by (6.6), we have 

P(Sw < 3) 

P(X(3) - X(l) > w, X(4) - X(2) > w, X(S) - X(3) > w, X(6) - X(4) > w) 

P( G2 + G3 > W, G3 + G 4 > w, G 4 + Gs > w, Gs + G6 > w) 

P(GI + G2 > W, G2 + G3 > W, G3 + G4 > w, G4 + Gs > w). 
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In the last step, we have made use of the exchangeability of the spacings to 
replace Gi by Gi-1 everywhere. In the matrix notation of (6.13), we can now 
write P(Sw < 3) = {A}~ where 

(
11000) o 1 100 

A= 00110 . 

000 11 

(6.26) 

Let /i denote the ith column of A. Since /1-/2+/3-/4+/5 = (0,0,0,0)' = 
o and 1-1 + 1-1 + 1 = 1, the recursion (6.15) with c = (1, -1, 1, -1, 1)' and 
e = 0 implies that 

{A} = {A1,o} - {A2,o} + {A3,O} - {A4,O} + {A5,O} 

01100 00100 01000 01100 01100 
{ 

01000} {10000} {11000} {11000} {11000} 
= 00110 - 00110 + 00010 - 00100 + 00110 . 

00011 00011 00011 00001 00010 

By applying the simplification properties SI and S2 of (6.16) to each term, we 
obtain 

{A} = 0 1 1 0 - 0 1 00 + ~ ~ - 0 0 1 0 + 0 1 1 0 . {
1000} {1000} { } {1100} {lIDO} 

0011 0011 0001 0001 

Since we can freely permute the rows and columns in the above matrices [using 
properties S3 and S4 of (6.16)]' we see that the first and fifth terms are equal. 
Also, the second and fourth terms are equal. Combining these equal terms leads 
to 

{
lIDO} {lIDO} { } {A} = 2 0 1 1 0 - 2 00 1 0 + ~ ~ . 
0001 0001 

(6.27) 

The second and third terms above can be evaluated directly using (6.11). Only 
the first term requires further work. The columns of the first term satisfy 
/1 - /2 + /3 = (0,0,0), so that using the recursion (6.15) with c = (1, -1, 1, D)' 
and e = 0 gives 

{
lIDO} {DIDO} {1000} {lIDO} 0110 = 0110 - 0010 + 0100 . 
0001 0001 0001 0001 

Using the simplification properties SI and S2, we obtain 

~ ~ ~ }. 
001 
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Combining this with (6.27) gives 

{A} 5 { ~ ~ } - 2 { ~ ~ ~ } - 2 { ~ ~ ~ ~ } 
001 0001 

5P(GI > w,G2 > w) - 2P(GI > w,G2 > w,G3 > w) 

-2P(G1 + G2 > w, G3 > w, G4 > w). 

Evaluating these terms using (6.11) leads to 

{A}~ 5R(0, 2) - 4R(0, 3) - 2R(1, 3) 

5(1 - 2w)~ - 4(1 - 3w)~ - 2Nw(1- 3w)~-1 . 

(6.28) 

Plugging in N = 6 now gives us P(Sw < 3) for all w E (0,1). The expression 
(6.28) also has a valid interpretation for N > 6; it gives the probability that 
no three of the first six order statistics X(l), ... , X(6) lie in a window of length 
w. Similarly, using (6.17), the expression has an interpretation in terms of the 
Poisson process; it gives the probability that no three of the first six arrivals 
(in a Poisson process with rate 1) lie in a window of length w. 

The remarks above apply more generally. Our approach leads to answers 
which are symbolic expressions (as opposed to numerical values). These ex
pressions are valid for all window sizes wand all sufficiently large values of N. 
They also have a valid interpretation in terms of Poisson processes or sums of 
exponential random variables. 

We have so far tackled a very small problem; computing P(Sw < 3) when 
N = 6. The same approach works for much larger problems. We need notation 
to describe matrices with patterns like that in (6.26). Let l(p, k) denote a 
(k-p+1) x"k matrix whose (i,j)th entry is 1 if 0 ~ j-i ~ p-1 and 0 otherwise. 
This means that row i contains a block of p consecutive 1 's which begins in 
column i. Using this notation, the matrix in (6.26) is 1(2,5). Repeating the 
argument that led from (6.6) to (6.26), it is easy to see that, for any values of 
m and the sample size N, we have 

P(Sw < m) = {1(m -l,N -1)}~. (6.29) 

The evaluation of {1(P, k)} for any values of p and k can be accomplished by 
repeated application of the recursion (6.15) just as in the example above. For 
small enough values of p and k, this whole process can be carried out "by hand" 
using the recursion in an ad hoc fashion. Most problems of interest are much 
too large for this approach; they require a computer for their solution. In doing 
a small problem by hand, we can rely on the human's ability to "see" that 
a particular application of the recursion results in progress toward a solution. 
For large problems, which may require using the recursion (6.15) hundreds or 
thousands of times, we need to employ the recursion in a definite, systematic 
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fashion which is guaranteed to terminate in a solution. For the evaluation 
of {I(P, k)}, just such a systematic approach is supplied by the "marking" 
algorithm described in the next section. 

As an example of a larger problem involving the scan statistic, we will find 
an expression for P(Sw < 8) for a sample of size N = 22 points. By (6.29), 
this equals {I(7,21)}. In order to evaluate this, our software requires many 
thousands of applications of the recursion (6.15). We shall indicate only the 
first step in this process; we give below the matrix 1(7,21) along with the 
vector c (given by the "marking" algorithm of the next section) used in the 
first application of (6.15): 

1 1 1 111 
o 1 1 111 
o 0 1 1 1 1 
00011 1 
o 0 0 0 1 1 
000001 
000 000 
000000 
000000 
o 0 0 0 0 0 
o 0 0 0 0 0 
000 000 
000 000 
000 000 
000 000 

The vector c is 

1 0 0 0 0 0 0 
1 1 000 0 0 
1 1 1 0 0 0 0 
1111000 
1111100 
1111110 
1 1 1 1 1 1 1 
o 1 1 1 1 1 1 
001 1 111 
0001111 
o 0 001 1 1 
0000011 
o 0 0 000 1 
o 0 0 0 0 0 0 
o 0 0 0 0 0 0 

o 0 0 0 0 000 
o 0 0 0 0 000 
o 0 0 0 0 0 0 0 
o 0 0 0 0 000 
o 0 0 0 0 0 0 0 
o 000 0 0 0 0 
o 0 0 0 0 0 0 0 
1 0 0 0 0 000 
1 100 0 0 0 0 
1 1 100 000 
1 1 1 1 0 000 
11111000 
1 1 1 1 1 100 
1 1 1 1 1 110 
o 1 1 1 1 1 1 1 

(1 0 0 0 0 0 -1 1 0 0 0 0 0 -1 1 0 0 0 0 0 0). 

(6.30) 

In this case, we note that the vector e = Ac in (6.15) is not a vector of zeros 
(as it was in previous examples), but has a 1 as the last entry. 

At the end of the entire process, we obtain the answer 

5903471R(0, 3) + 250971R(1, 3) - 334305R(2, 3) - 43605R(3, 3) 

+64719R(4, 3) + 14331R(5, 3) - 23425R(6, 3) - 4932R(7, 3) 

+21324R(8, 3) + 22803R(9, 3) + 32409R(10, 3) + 1l0253R(1l, 3) 

+271293R(12,3) + 456885R(13, 3) + 577005R(14, 3) + 574860R(15, 3) 

+453024R(16,3) + 262548R(17, 3) + 87516R(18, 3) - 5903470R(0, 4) 

-6154438R(1,4) - 6071092R(2,4) - 5609800R(3,4) - 4791568R(4,4) 

-3716128R(5,4) - 2551872R(6, 4) - 1494528R(7,4) 

-702464R(8,4) - 236544R(9,4) - 43008R(10,4). (6.31) 

Once we obtain the expression (6.31), we set N = 22 and then evaluate it 
numerically for the window sizes w of interest to us. The expressions like (6.31) 
that we obtain by our methods are often quite large, but the individual terms 
are easily computed so that numerical computations using these expressions are 
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fairly quick. Because of the very large integer coefficients (with both positive 
and negative values) that occur in these expressions, standard single or double 
precision calculations are generally not accurate enough to be useful. We usually 
do our final numerical calculations using a symbolic math package (such as 
Maple or Mathematica) which allows one to specify an arbitrarily large number 
of digits to be retained during the calculations. The process of constructing the 
expressions [such as (6.31)] by repeated use of the recursion (6.15) is carried 
out by a program written in the C programming language. 

Using the definition of R(·,·) in (6.10), we see by inspection that the expres
sion (6.31) is a piecewise polynomial with two pieces; it is a distinct polynomial 
in w within each of the disjoint intervals (0,1/4) and (1/4,1/3), and is iden
tically zero for w > 1/3. Neff and Naus (1980) have presented these same 
piecewise polynomials in a different way. (They have also used totally different 
methods to compute the polynomials.) Our approach of writing the answer 
in terms of the R-functions has two advantages; the expressions we give are 
usually much more compact, and our expressions have interpretations for all 
sufficiently large N and also for Poisson processes. 

The amount of computation time and memory needed to obtain expressions 
for {I(p, k)} increases rapidly with the value of k. With our current software, 
we can handle cases somewhat beyond those given in the tables of Neff and Naus 
(1980). It is difficult to summarize the exact capability of our current programs 
since the difficulty of computing {I(p, k)} also varies with p, and the range of 
problems we can solve depends on machine-specific factors such as the amount 
of available RAM. Roughly speaking, we can handle most problems with k ~ 20 
and some problems with 20 < k ~ 30. But for k > 30, we can solve only a 
very narrow range of special cases. We plan to make various improvements to 
our programs, and hope to substantially extend the range of problems we can 
solve. 

Because it is so time-consuming to construct expressions for {I(p, k)} when 
k is large, but the expressions themselves are easily evaluated, a sensible strat
egy is to store a library of such expressions for future use. Such a library would 
essentially be a computerized version of the tables of Neff and Naus (1980). 

6.7 The Marking Algorithm 

In this section, we give an algorithm for determining all probabilities of the form 
(6.4). When such probabilities are translated into the matrix notation of (6.13) 
or (6.14), we end up with binary matrices A having a certain "descending" 
form; the 1 's in each row form a contiguous block with these blocks moving to 
the right as one advances from row to row. Examples of such matrices are given 
in (6.20) and (6.26). A more formal definition follows. Suppose A is an r x p 
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binary matrix. For i = 1, ... , r, let ai and bi denote the position of the first and 
last 1 in row i. We say that A = (Aij) has descending form when Aij = 1 if and 
only if ai ::; j ::; bi (that is, the 1 's in each row are contiguous), and the values ai 
and bi satisfy 1 = al < a2 < ... < ar , b1 < b2 < ... < br = p and ai+l ::; bi + 1 
for i = 1, ... , r - 1. We note that, when translating a problem of the form 
(6.4) into matrix notation, it may be necessary to simplify and rearrange the 
resulting matrix using Sl-S4 of (6.16) in order to get it into descending form. 

Suppose we have a matrix A in descending form. If the blocks of 1 's in the 
different rows are disjoint (that is, ai+ 1 = bi + 1 for i = 1, ... , r -1), then we can 
immediately evaluate {A} using (6.11). Our goal is to reduce any descending 
matrix A to this special case (where the rows are disjoint) by repeated use of 
the recursion (6.15). 

It suffices to deal with matrices in which consecutive rows always overlap 
(that is, ai+ 1 ::; bi for i = 1, ... , r - 1). We shall say that descending matrices 
with this property are "overlapping." It is clear that any descending matrix 
A is either overlapping or can be written as a block diagonal matrix in which 
each of the blocks has this property. If we have an algorithm that works for 
overlapping matrices, we can simply apply this algorithm in turn to each of the 
blocks in A. 

We now present an algorithm for applying the recursion (6.15) to an r x p 
overlapping matrix A. This algorithm constructs the vector c = (Ck) needed 
in (6.15). First, we define some useful terms. We call two rows i and j (with 
i < j) "adjacent" if bi + 1 = aj. We "mark" a row (say row i) by setting Ck 

to be + 1 and -1 in the positions k corresponding to the first and last nonzero 
entries in row i, that is, setting cai = + 1 and Chi = -1. We can now state the 
algorithm. Start with Ck = 0 for all k. Now search through rows 1,2, ... , r, 
and mark the sequence of adjacent rows that you observe (starting with row 
1). Continue marking rows as long as possible. When you have finished with 
this, the vector c has l:k Ck = 0, not 1 as required in (6.15). You must modify 
c slightly (so that L.k Ck = 1) as follows. Let m (where 1 ::; m ::; r) denote 
the last row that was marked. If m = r, erase the last -1 in c, that is, set 
Cbrn = O. If m < r, then add another +1 to c immediately following the last 
-1 entry, that is, set Cbrn+l = 1. Now you are done. An equivalent, but shorter 
description of the marking algorithm is given in Figure 6.1 which is taken from 
Huffer and Lin (1997b). As an illustration, we give in (6.32) a typical matrix 
A in descending form and the corresponding vector c which is produced by the 
algorithm. We have underlined the rows which get marked by our procedure. 

Now let us examine what happens when we apply the recursion (6.15) with 
the vector c given by the marking algorithm. Consider e = Ac. By trying 
some cases, it is easy to see that either e = 0 or e = er (where er denotes a 
vector with a 1 in position rand 0 everywhere else). The matrices in (6.20), 
(6.26), and (6.32) are cases with e = O. The matrix in (6.30) illustrates the 
other situation with e = er . When e = 0, then all of the matrices Ai,~ have a 
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Initialize: 

Repeat: 

C! .- 1, Ci := 0 for i ~ 2 
m:= 1 

IF m = r THEN STOP 
ELSE { 

} 

Cbm := -1 
Cbm +1 := +1 
IF ::J j > m such that aj = bm + 1 

THENm:= j 
ELSE STOP 

Figure 6.1: Procedure for obtaining the vector c needed to apply (6.15) to a 
descending matrix with overlapping rows 

111 1 000 0 0 0 0 0 0 0 0 0 0 0 
01111 1 100 0 0 0 0 0 0 0 0 0 
o 0 0 0 1 1 1 1 100 0 0 0 0 0 0 0 
o 0 0 001 1 1 1 1 1 0 0 0 0 0 0 0 

A 000000001111000000 
000 0 0 0 0 0 0 1 1 1 1 1 1 000 
00000 0 0 0 0 0 1 1 1 1 1 100 
000 0 0 0 0 0 0 000 1 1 1 1 1 0 
00000 0 000 0 0 001 1 1 1 1 

(6.32) 

c = (1 0 0 -1 1 0 0 0 -1 1 0 0 0 0 -1 1 0 0). 

column of zeros which can be deleted using property S2 of (6.16). After deleting 
this column of zeros, further simplifications may be possible using Sl or Sl' of 
(6.16). This leads to a list of matrices in descending form which are all simpler 
(in the sense of having fewer columns and fewer nonzero entries in each row) 
than their "parent" matrix A; see the examples in (6.21) and (6.27). 

We give one small example to show what happens when e = er . Here is a 
matrix A along with the corresponding vector c given by the marking algorithm: 

A = (
1 1 1 1 
o 0 1 1 
o 0 0 0 

c (1 0 0 -1 

o 0 
1 0 
1 1 

1 0 0). 
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This gives e = (0,0,1)'. Application of the recursion (6.15) then leads to 

{ O~ {A}l = 
I I I 0 0 
0 I I I 0 
0 0 0 I I 

{ ~ I I 0 0 0 
I I I 0 0 
0 o I I I 

!}-{: 
~} - {~ 

I 
0 
0 

I 
0 
0 

I 0 
I 0 
o I 

I 0 
I I 
0 I 

0 0 O} e"1OOO} I 0 o + 0 0 I I 000 
I I I 000 0 I I I 

0 0 
O} {IIOOO} 0 0 ~ + 0 0 I I I . (6.33) 

I I 

The first and second terms in (6.33) have been put back into descending form 
by moving the column (0,0,1)' into the last position. The third term has been 
simplified by using SI (of (6.16)) and then S2. All three matrices in (6.33) are 
simpler than A in some sense. The third term has disjoint rows and can be 
evaluated immediately using (6.11). The second term has fewer nonzero entries 
than A and also has less overlap between the first and second rows. The first 
term is perhaps not obviously simpler than A. This first term is the same as A 
except that a 1 has been moved from the beginning of row one to the end of row 
r (= 3). However, it is clear in general that repeating this maneuver (moving a 
1 from row one to row r) must eventually force a simplification via SI or SI' 
of (6.16). 

We have seen that using the vector c given by the marking algorithm al
ways produces matrices which are in descending form and are simpler than the 
parent matrix. Repeated use of the marking algorithm eventually reduces any 
descending matrix A to terms we can evaluate using (6.11). A more formal 
discussion of the marking algorithm is given by Huffer and Lin (1997b). 

The marking algorithm determines only probabilities of the form (6.4). It 
cannot be used to evaluate { A } for matrices which are not binary, or for 
binary matrices which cannot be put in descending form. We have developed 
methods which can solve some of these more general problems. These methods 
are described by Lin (1993). 

6.8 The Moments of Ow 

The results of the previous sections can be used to compute the moments of Cw , 

the number of m: w clumps defined in (6.5). These moments will be used in the 
following chapter to construct bounds and approximations for the distribution 
of the scan statistic. In principle, our methods can be used to compute E(C~) 
for any positive integer k. However, the magnitude of the calculations increases 
rapidly with k, and we have mainly worked with k :::; 4. For k = 2, we have 
obtained a general formula valid for all clump sizes m and window lengths w, 
and for all sufficiently large values of the sample size N. For k = 3 and k = 4, we 
have not found general formulas of this sort, but we have obtained expressions 
for the moments valid for particular values of the clump size m. 
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We shall sketch the derivation of the first and second moments. For conve
nience, we introduce the indicator random variables Zi = I(X(i+m-l) - X(i) < 
w) and let g = N - m + 1 so that Cw = L:¥=I Zi. Also, define Pi = E(Zi) and 
Pi,j = E(ZiZj). Then, 

9 

E(Cw ) = I.:: Pi 
i=1 

and 

(6.34) 

since Pi,i = Pi and Pi,j = Pj,i. The difference X(i+m-I) - X(i) can be written 
as a sum of spacings. Define the set 6i = {i + l,i + 2, ... ,i + m -I} so that 
X(i+m-I) - X(i) = G(6i ) using the notation in (6.2). Since the spacings are 
exchangeable random variables, it is immediate that Pi is the same for all i, 
and that Pi,j depends only on the number of spacings in the overlap 6i n 6j which 
in turn depends only on Ii - i I. The set 6i n 6j is empty when Ij - i 1 2: m - 1. 
Thus, for i < j, we see that Pi,j = Pl,j-i+1 for j - i < m - 1 and Pi,j = PI,m 
for j - i 2: m - 1. Combining identical terms in (6.34) leads to 

and 

(6.35) 

This formula is valid for all m and N so long as the binomial coefficient (~) is 
defined to be zero when a < b. 

Now note that 
H = 1 - P(G(I5I) > w) 

and 

PI,j P(G(6I) < w, G(6j ) < w) 

1- P(G(61) > w) - P(G(6j ) > w) + P(G(151) > w, G(6j ) > w) 

1 - 2P(G(6I) > w) + P(G(I5I) > w, G(6j) > w) . 

We obtain P(G(61) > w) directly from (6.11). This gives us 

E(Cw)=g l-I.::R(j,I) =(N-m+l) I-I.:: . wJ(I-w)N-J ( m-2) ( m-2 (N) . .) 
J=O J=O J 

Recalling the definition of Q in (6.22), we see that 

P(G(61) > w, G(6j) > w) = Q(j -1,j - 1, m - j) 
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for all j :::; m. Thus, we may evaluate Pi,j by repeated use of (6.24) and (6.25). 
All of the terms in (6.35) can be expressed in terms of the R-functions. After 
working out E(C~J explicitly for some small values of m, Lin (1993) was able 
to guess the general answer and prove it via induction. The principal tool in 
this induction argument was (6.24). 

In order to write the general expression for E(C~), we must introduce some 
notation. For fixed values of Nand w, define 

and 

The quantities HCO) (i) and FCO) (i, j) are particular binomial and trinomial prob
abilities. Now for p ~ 1, define HCp)(i) and FCp)(i,j) by repeated cumulative 
summation as 

i 

HCP+1)(i) = L HCp)(j) 
j=O 

and 
i j 

FCp+1) (i, j) = L L FCp) (k, J!) . 
k=O£=O 

In terms of this notation, we can write 

and 

E(Cw ) + (N - m + l)(N - m)(l- 2H(1)(m - 2)) 

+ 4(N - m)HC3)(m - 3) - 12H(5)(m - 4) 

+ (N - 2m + 3)(N - 2m + 2)FCl)(m - 2, m - 2) 

- 2(N - 2m + 3)FC2)(m - 3, m - 3) 

(6.36) 

+ 2F(3)(m - 4, m - 4) (6.37) 

valid for N ~ 2(m - 1). A different expression for this formula has been given 
by Huffer and Lin (1997a). 

Formulas for the first and second moment of Cw were also given by Glaz and 
Naus (1983). Their formula for the second moment is difficult to use for large 
N. In contrast, for a fixed value of m, the computational effort and numerical 
accuracy of formula (6.37) changes very little with N. We have had no difficulty 
using the formula with N = 1,000. However, the computational effort does grow 
with m, with the rate of growth proportional to m 2 . We have successfully used 
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formula (6.37) for values of m as large as 140, but the calculations become 
progressively more time-consuming. 

We now go on to consider the third and fourth moments of CWo Our results 
here are much less satisfactory, but still useful. We extend our earlier notation 
[used in (6.34)] and define Pi,j,k = E(ZiZjZk). Then 

9 9 9 

E(C!) = L L LPi,j,k 
i=l j=l k=l 

L Pi + 6 L Pi,j + 6 L Pi,j,k. (6.38) 
i<j i<j<k 

As in (6.34), the exchangeability of the spacings implies that many of the terms 
in (6.38) are equal. The value of Pi,j,k depends only on the amount of overlap 
among the sets 6i , 6j , 6k, that is, it depends only on the cardinalities of the sets 
6i n 6j, 6i n 6k, 6j n 6k, and 6i n 6j n 6k. Using this, it is easy to show that 

Pi,j,k = P1,j-i+l,k-i+1 if j - i < m - 1 and k - j < m - 1, 

Pi,j,k = P1,m,m+k-j if j - i ~ m - 1 and k - j < m - 1 , 

Pi,j,k = H,m,2m-l if j - i ~ m - 1 and k - j ~ m - 1 

and other similar facts. Thus, we can greatly simplify (6.38) by grouping the 
terms Pi,j,k into classes of equal terms and counting the number of terms in 
each of these classes. We select one term ~,j,k from each class and let #(i,j, k) 
denote the number of terms which are equivalent to this given term. The 
selected terms (one from each class) will be referred to as the "distinct" terms. 
Similarly, we group together the terms Pi,j into classes and let #(i,j) denote 
the number of terms equivalent to Pi,j. Then we can write (6.38) as 

distinct 
(i,j) 

distinct 
(i,j,k) 

(6.39) 

The values #(i,j, k) can be obtained by elementary combinatorial arguments. 
When m = 4, carrying this process to its completion leads to the formula 

E(C!) = b(3, 1)H + 6b(4, 1)Pl,2 + 6b(5, 1)H,3 + 6b(5, 2)Pl,4 

+ 6b(5, 1)Pl,2,3 + 6b(6, 1)Pl,2,4 + 6b(6, 1)Pl,3,4 

+ 6b(7, 1)Pl,3,5 + 12b(6, 2)Pl,2,5 + 12b(7, 2)Pl,3,6 + 6b(7, 3)Pl,4,7, 

(6.40) 

where the combinatorial factors b(j, k) are defined by 

for N ~ j + k, 
(6.41) 

for N < j + k. 
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The expression (6.40) is valid for all N, but only for m = 4. The corresponding 
expressions for other values of m have the same general form. See formulas (25) 
and (26) of Huffer and Lin (1997a) for further details. 

We have now reduced the original sum (6.38) down to a much smaller num
ber of terms. These terms can all be evaluated by our methods since each 
term can be represented in the matrix notation (6.14) using a matrix which 
has the descending form required by the marking algorithm in Section 6.7. For 
example, when m = 4, we have Pl,2,4 = {A}~ with 

( 
1 1 1 0 0 0) 

A= 0 1 1 1 0 0 . 
00011 1 

We evaluate each term in (6.39), obtaining an expression involving the R
functions. Then we collect together terms having the same R-function and 
obtain a final expression in the form 

E(C!) = B+ 'LBj,kR(j,k), 
j,k 

(6.42) 

where Band Bj,k denote functions of N which are sums of integer multiples 
of the binomial coefficients b(·,·) defined in (6.41). For example, evaluation of 
(6.40) leads to 

E(C!) = 
(+6b(7,3) + 30b(7, 2) + 61b(7, 1) + 37b(7, 0) + 19b(6, 0) + 7b(5, 0) 

+ 1b( 4,0)) + (-18b(7, 3) - 12b(7, 2) + 29b(7, 1) + 23b(7, 0) - 1b(6, 0) 

-13b(5,0) -lb(4,0))R(0, 1) + (-18b(7, 3) - 60b(7, 2) -73b(7, 1) 

-31b(7, 0) - 7b(6, 0) - 1b(5, 0) - 1b(4, O))R(l, 1) + (-18b(7, 3) - 84b(7, 2) 

-157b(7, 1) - 91b(7, 0) - 43b(6, 0) -13b(5,0) -lb(4,0))R(2, 1) 

+( +18b(7, 3) - 66b(7, 2) - 54b(7, 1) - 60b(7, 0) - 18b(6, 0) + 6b(5, O))R(O, 2) 

+( +36b(7, 3) - 36b(7, 2) - 78b(7, 1) - 66b(7, 0) - 30b(6, O))R(l, 2) 

+( +72b(7, 3) + 72b(7, 2) + 18b(7, 1) - 18b(7, 0) - 18b(6, 0))R(2, 2) 

+( +108b(7, 3) + 252b(7, 2) + 174b(7, 1) + 48b(7, 0))R(3, 2) 

+( + 108b(7, 3) + 324b(7, 2) + 282b(7, 1) + 72b(7, 0) )R( 4,2) 

+( -6b(7, 3) + 48b(7, 2) - 36b(7, l))R(O, 3) 

+( -18b(7, 3) + 96b(7, 2) - 36b(7, l))R(l, 3) 

+( -54b(7, 3) + 168b(7, 2) - 24b(7, 1))R(2, 3) 

+(-144b(7, 3) + 216b(7, 2))R(3, 3) + (-324b(7, 3) + 144b(7, 2))R(4, 3) 

+( -540b(7, 3))R(5, 3) + (-540b(7, 3))R(6, 3). (6.43) 

This expression is valid for all Nand w, but only for clumps of size m = 4. 
We have computed similar expressions for other values of m. Unfortunately, 
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these expressions are so complicated that we have been unable to see a general 
pattern. So, we have been unable to deduce a general expression for the third 
moment valid for all m (as we could for the second moment). 

The discussion above has been in terms of the third moment of Cw , but 
carries over to moments of any order. For any given values of k and m, our ap
proach would lead to an expression for E(Ct) having the general form in (6.42). 
But, the amount of computational effort required to obtain these expressions 
increases with both k and m. The expressions also become progressively longer 
as k and m increase. With our current software, we can compute expressions 
for the fourth moment only for clumps of size m ::; 10. We have stored a li
brary of such expressions for use in computing the bounds and approximations 
described in the next chapter. 

The remarks following Eq. (6.31) can be echoed here. We construct expres
sions like (6.43) using a C program, but do our numerical calculations using 
Maple so that we can achieve the desired precision. (Also, Maple supplies 
many features which are useful in computing our bounds and approximations.) 
Numerical computations using these expressions are fairly fast. 

As we have noted before, the expressions we obtain also give expressions for 
the Poisson process. Thus, for example, (6.43) gives the third moment of the 
number of clumps of size 4 among the first N arrivals of a Poisson process. The 
expression is valid for all Nand w. 
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Using Moments to Approximate the Distribution 
of the Scan Statistic 

Fred W. Huffer and Chien-Tai Lin 
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Abstract: Let Cw denote the number of m : w clumps among N random points 
uniformly distributed in the interval (0, 1]. (We say that an m : w clump exists 
when m points fall within an interval of length w.) The previous chapter de
scribed how to compute the lower-order moments of CWo In the present chapter, 
we discuss ways these moments can be used to obtain bounds and approxima
tions for the distribution of the (continuous conditional) scan statistic Sw' We 
give upper and lower bounds based on the use of four moments. In some situ
ations, these bounds improve considerably on the previously available bounds. 
We present an approximation based on a simple Markov chain model, and also 
give a variety of compound Poisson approximations. These approximations are 
compared with others in the literature. Finally, we present a compound Poisson 
approximation to the distribution of the number of clumps Cw . 

Keywords and phrases: Compound Poisson approximation, Markov chain 
approximation, linear programming, probability bounds, method of moments, 
spacings, number of clumps 

7.1 Introduction 

Let X(l) < X(2) < ... < X(N) be the order statistics from a sample of size N 
from the uniform distribution on the interval (0,1]. Let yt(w) be the number 
of X(i)'S contained in the scanning interval (window) (t, t + w] and define the 
scan statistic Sw by Sw = maxO<t<l-w yt(w). We say that m X(i)'S form an 
m: w clump if these points are all contained in some interval of length w, and 
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we define the number of m : w clumps Cw to be 

N-m+l 

Cw = 2: I(X(i+m-l) - X(i) < w) . 
i=l 

In this chapter, we use the moments of the number of clumps Cw to obtain 
bounds and approximations for the tail probabilities of the scan statistic. These 
tail probabilities are denoted by P(m; N, w) = P(Sw ~ m). When no confusion 
can result we use the abbreviation p = P(m; N, w). The chapter is organized 
into Sections 7.2 and 7.3 which discuss bounds for p and approximations for p, 
respectively. The results in this chapter are largely taken from Huffer and Lin 
(1995, 1997). 

The moments of Cw are computed by the methods described in Chapter 
6 (see Section 6.8). However, this chapter can be read entirely independently 
of the earlier one. Define J-Lk = E(C~). The amount of computational effort 
needed to obtain J-Lk increases with k and with the clump size m. For clump 
sizes m ::; 10, our current software allows us to compute J-Lk for k ::; 4. Most 
of the approximations and bounds in this chapter require four moments and 
thus are currently restricted to m ::; 10. In particular, the bounds UB and 
LB discussed in Section 7.2 and the approximations LP4 and CPG4 discussed 
in Section 7.3 all require four moments. The approximations MC2 and CPG2 
discussed in Section 7.3 use only the first two moments so that we can compute 
these approximations for much larger values of m. 

7.2 Bounds 

Throughout this section, we shall suppose that m, N, and ware fixed and that 
we have computed numerical values for the first four moments J-Ll, J-L2, J-L3, J-L4. 

Our bounds and approximations for p are all based on the simple observation 
[see previous chapter Eq. (6.6)] that P(Sw ~ m) = P(Cw ~ 1). The largest 
possible value of Cw is 9 = N - m + 1. Since the random variable Cw takes 
values in the set B = {a, 1, ... , g}, it is immediate that 

LB ::; P(Cw ~ 1) ::; UB, 

where the upper bound UB is the maximum value of P(X ~ 1) attained by 
random variables X which take values in B and have E(Xk) = J-Lk for k = 

1, ... ,4. The lower bound LB is the corresponding minimum. Restating this 
in terms of the probabilities Pk = P(X = k), we see that we may compute UB 
and LB by solving the following linear programming problems: 
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UB = max (PI + P2 + ... + pg) 
9 

subject to L ikpi = ILk for 1 ~ k ~ 4 
i=1 

and Pi 2: 0 for all i ; 

LB = min of same. 
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(7.1) 

(7.2) 

The solution of these linear programming problems is routine. The necessary 
software is widely available; for example, it is available within Maple. 

A few comments are in order on the form of these linear programming 
problems. In what follows, we rely heavily on the theoretical results in Pn§kopa 
(1988). These results are stated in terms of binomial moments, but are easily 
restated in terms of ordinary moments. 

First, note that, since Po does not occur explicitly in the formulas for the 
moments, we do not need to include any constraints (such as Po 2: 0) on Po 
in our formulation. One might expect that we would have to include in our 
problems the constraint that PI + P2 + ... + Pg ~ 1, but this turns out not to be 
necessary. To be precise, suppose we amended the above problems to include 
the constraint PI + ... +Pg ~ 1 and denoted the resulting values of the maximum 
and minimum UB' and LB', respectively. We would find that LB' = LB (always) 
and that UB' = min(UB, 1). Thus, nothing useful is accomplished by imposing 
the constraint. See Section 2 of Pn§kopa (1988) for further details. 

Second, the values of 9 = N - m + 1 occurring in applications can be quite 
large (perhaps several hundreds), so that, in principle, the linear programming 
problems in (7.1) and (7.2) might be very high-dimensional. This would make 
it difficult to solve these problems using standard software. Luckily, Theorems 
9 and 10 in Prekopa (1988) allow us to safely replace the problems (7.1) and 
(7.2) by low-dimensional problems. These theorems characterize the form of 
the optimal solutions to (7.1) and (7.2). Let P = (PI, P2, . .. , pg) be any "feasi
ble" solution of (7.1) or (7.2), that is, any vector of values which satisfies the 
constraints I::i ikpi = ILk for 1 ~ k ~ 4 and Pi 2: 0 for all i. A consequence of 
Theorems 9 and 10 of Prekopa (1988) is the following: 

If {i : Pi> O} = {l,j,j + 1,g} with 1 < j and j + 1 < g, 

then p maximizes I::iPi. (7.3) 

If {i : Pi> O} = {j,j + 1, k, k + I} with 1 ~ j, j + 1 < k, k + 1 ~ g, 

then p minimizes I::iPi. (7.4) 

Slightly more general conditions are obtained by replacing" =" with" c" in 
both (7.3) and (7.4). However, when applying these conditions in practice, the 
sets in question are typically equal. 

These results allow us to replace the problems (7.1) and (7.2) by "reduced" 
versions in which most of the values Pi are assumed to be zero a priori. Let h 
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be some suitably small integer. The "reduced" problems are 

h 

max LPi+P9 
i=1 

h 

subject to L ikpi + lpg = J-lk for 1 ~ k ~ 4 
i=1 

and Pi~O foriE{I,2, ... ,h,g}, 

and the corresponding 

h 

min LPi 
i=1 

h 

subject to L ikpi = J-lk for 1 ~ k ~ 4 
i=1 

and Pi~O foriE{I,2, ... ,h}. 

(7.5) 

(7.6) 

Any solution of (7.5) is automatically a feasible solution of (7.1). Thus, if it 
satisfies the condition (7.3), it will be the desired solution of the original problem 
(7.1). Similarly, any solution of (7.6) is automatically a feasible solution of (7.2), 
so that, if it satisfies condition (7.4), it will be a solution of the original problem 
(7.2). 

The value of h should be chosen small enough so that the resulting reduced 
problems are easily solved. If h is chosen too small, one or both of the reduced 
problems may fail to have a solution [or may have a solution that does not 
satisfy the required condition (7.3) or (7.4)]. If this happens, you must try 
again with a larger value of h. 

Numerical example 

We now illustrate the computation of UB and LB in one particular case. Take 
w = .0025, N = 1,000, and m = 10 so that 9 = 991. Using the approach 
described in Section 6.8, we find the first four moments of Cw to be 

J-ll 1.1089315629, 
J-l2 3.9886505165, 
J-l3 20.3814923874, 
J-l4 134.6837629145. 

Solving the reduced problem (7.5) with h = 10 leads to the values 

PI .487685, 

P5 .045307, 

P6 .065785, (7.7) 
Pg .213808 x 10-10 , 

Pi 0 otherwise. 
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This solution clearly satisfies condition (7.3) so that it also gives a solution for 
(7.1). Using these values, we obtain UB = LiPi = .59878. We note that the 
small value of Pg we see in this example is fairly typical. 

Solving the reduced problem (7.6) with h = 10 leads to the values 

P2 .260498, 

P3 .117033, 

P7 .000189, (7.8) 

Ps .029439, 

Pi 0 otherwise. 

This solution satisfies condition (7.4) so that it also gives a solution for (7.2). 
Using these values, we obtain LB = Li Pi = .40716. 

7.2.1 The dual problem 

We have described how to obtain the bounds UB and LB via linear program
ming. There is an entirely different way to derive these bounds which is more 
familiar to statisticians because it is the same approach used to derive the 
well-known Markov and Chebyshev inequalities. In general, if we wish to find 
bounds for P(X E A), we can look for "tractable" functions ¢ and '!jJ sat
isfying ¢(x) ::; IA(x) ::; '!jJ(x) for all x, and then use the bounds given by 
E(¢(X)) ::; P(X E A) ::; E('!jJ(X)). Here, IA(X) denotes the indicator function 
of the set A. If we have classes of tractable functions ¢ and '!jJ, the tightest such 
bounds are given by max</> E(¢(X)) ::; P(X E A) ::; min"p E('!jJ(X)). 

In our situation, given knowledge of the moments J-ll to J-l4, the tractable 
functions are clearly the polynomials of order four; for ¢(y) = ao + L[=1 aiyi, 
we have E(¢(X)) = ao + L[=1 aiJ-li. Taking A = {1, 2, ... , g} in the general 
approach above leads to the following bounds: 

UB = min (ao + alJ-l1 + a2J-l2 + a3J-l3 + a4J-l4) 
4 

LB 

over all polynomials '!jJ(y) = L aiYi 
i=O 

satisfying '!jJ(0) ~ 0 

and '!jJ(i) ~ 1 for i = 1,2, ... ,g; 

max (ao + al/-ll + a2/-l2 + a3/-l3 + a4/-l4) 
4 

over all polynomials ¢(y) = L aiyi 
i=O 

satisfying ¢(O)::; 0 

and ¢(i)::;1 for i=1,2, ... ,g. 

(7.9) 

(7.10) 
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These bounds can be computed by linear programming. In fact, the optimiza
tion problems (7.9) and (7.10) above are the "duals" of the earlier problems 
(7.1) and (7.2), and the values UB and LB obtained by the two approaches 
are identical. See equations (13) and (14) of Pn§kopa (1988). We note that 
the polynomials 'IjJ(y) and ¢(y) which achieve the bounds always have ao = 0, 
so that the coefficient ao and the constraints 'IjJ(0) 2: 0 and ¢(O) :::; 0 can be 
dropped from (7.9) and (7.10). 

Expressing the bounds UB and LB in the above form has one advantage: it 
permits us to calculate the bounds easily without explicit use of linear program
ming. That is because we can identify, for both (7.9) and (7.10), small classes 
of polynomials which are guaranteed to achieve the bounds. These polynomials 
are now defined. For integer j satisfying 1 < j and j + 1 < g, define 

(y - 1)(y - g)(y - j)(y - j - 1) 
'ljJj(Y) = 1 - gj(j + 1) . 

For integer pairs (j, k) satisfying 1 :::; j, j + 1 < k, and k + 1 :::; g, define 

(y - j)(y - j - 1)(y - k)(y - k - 1) 
¢j,k(Y) = 1 - j(j + l)k(k + 1) . 

It is easy to show that these polynomials satisfy the constraints in (7.9) and 
(7.10). Consider the polynomial ¢j,k(Y). It is immediate that ¢j,k(O) = 0 
and ¢j,k(j) = ¢j,k(j + 1) = ¢j,k(k) = ¢j,k(k + 1) = 1. Since a polynomial of 
order four can have at most four crossings of any given level, we know that 
¢j,k(Y) 1= 1 for Y ¢ {j,j + l,k,k + I}. Now the fact that ¢j,k(O) < 1 forces 
cPj,k(Y) < 1 for Y E (-oo,j), cPj,k(Y) > 1 for Y E (j,j + 1), cPj,k(Y) < 1 for 
Y E (j + 1, k), ¢j,k(Y) > 1 for Y E (k, k + 1), and ¢j,k(Y) < 1 for Y E (k + 1,00). 
Since the intervals (j, j + 1) and (k, k + 1) contain no integers, we conclude that 
¢j,k(i) :::; 1 for i = 1,2, ... , g as desired. The argument for 'ljJj(Y) is similar. We 
note that 'ljJj(Y) = 1 only when Y E {1,j,j + l,g}, and ¢j,k(Y) = 1 only when 
Y E {j,j + 1, k, k + I}; these are precisely the sets occurring in (7.3) and (7.4). 

Using Theorems 9 and 10 of Prekopa (1988), we can show that 

This allows us to compute UB and LB by a simple systematic search. We choose 
some suitable upper limit h, evaluate 

and take these as our bounds. The values of j and k which attain UB and LB 
are usually fairly small; setting h = 10 is generally adequate. We note that, if 
we should err and set h too small, the bounds obtained are still valid, but they 
are no longer the tightest possible such bounds. 
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7.2.2 Performance of bounds 

In this section, we examine the performance of the bounds UB and LB. Glaz 
(1989, 1992) gave extensive tables comparing various bounds and approxima
tions for the distribution of the scan statistic. We shall compare our upper 
bound UB to the mth order bound obtained by taking L = m in equation (2.5) 
of Glaz (1992); we refer to this bound as GUB in what follows. This bound was 
the best of the upper bounds that Glaz studied. It is based on a Bonferroni-type 
inequality given in Theorem 2.1 of Glaz (1989). 

Since UB and GUB are based on entirely different principles, there is no 
a priori reason to expect one bound to be superior to the other. In fact, for 
the clump sizes m ~ 10 that we can currently work with, they are very close 
competitors. In Table 7.1, we present some numerical results comparing UB 
and GUB for sample sizes N of 100 and 1,000. This table also gives approximate 
values of P = P(m; N, w) obtained from simulations with 1,000,000 trials. From 
the table, we see that neither bound is uniformly superior to the other. UB tends 
to be superior to GUB for smaller values of m and larger values of p. However, 
the region of superiority changes with the value of N and it is difficult to give 
a good rule of thumb for which bound to use. Both bounds are usually quite 
good for small values of p. Glaz (1989) also studied the performance of one 
lower bound, given in his equation (2.12). He refers to this as the Kwerellower 
bound (which we abbreviate as KLB) since it is based on an inequality due to 
Kwerel (1975). The bound KLB uses only the first two moments of CWo We 
know a priori that LB is uniformly superior to KLB. That is because KLB is 
the solution of a linear programming problem similar to (7.2), but using only 
the first two moments. Our Table 7.1 lists the values of LB and KLB. In some 
situations, LB improves considerably upon KLB. 

When P is small, the bounds UB and LB are usually fairly tight. 

7.2.3 Improving the bounds 

The bounds UB and LB are the best possible bounds for P( Cw ~ 1) which 
use only the first four moments of Cw and no other information about the 
distribution of CWo The distributions Pi which actually achieve the values of 
UB and LB [such as (7.7) and (7.8)] may bear little resemblance to the true 
distribution P(Cw = i). In particular, linear programming always produces 
solutions with I{i : Pi> O}I ~ 4 which is clearly highly artificial. 

In simulations, the distribution of Cw seems to be reasonably well behaved. 
It is apparently unimodal, and when E(Cw ) is small (say, less than 0.5), the 
mode is at zero. If we could prove these empirical observations, we could use 
this knowledge to improve our bounds. For example, if we knew the distribu
tion was unimodal at zero, we could modify the linear programming problems 
(7.1) and (7.2) to include the constraints Po ~ PI ~ ... ~ Pg . (It would now be 
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Table 7.1: Bounds for p = P(m; N, w) 

m w p KLB LB UB GUB 
N=100 4 .0009 .01029 .01019 .01021 .01021 .01025 

4 .0015 .04345 .04292 .04330 .04334 .04413 
4 .002 .09425 .09238 .09433 .09460 .09842 
4 .003 .25912 .23688 .25790 .26424 .29385 
4 .004 .47379 .36548 .46537 .50195 .61576 
6 .005 .01290 .01231 .01273 .01282 .01280 
6 .007 .05386 .04940 .05358 .05501 .05495 
6 .009 .14490 .11859 .14332 .15184 .15381 
6 .011 .29367 .22103 .28287 .31802 .33362 
6 .013 .48245 .34373 .43766 .55193 .61055 
8 .015 .05079 .03839 .04972 .05363 .05161 
8 .018 .12789 .09453 .12229 .14011 .13339 
8 .021 .25671 .18028 .23330 .29327 .28218 
8 .025 .49465 .33132 .42846 .61723 .61310 
10 .020 .01163 .00856 .01123 .01222 .01155 
10 .025 .05033 .03662 .04760 .05577 .05098 
10 .028 .10013 .07013 .09155 .11385 .10297 
10 .033 .24460 .16236 .21074 .29797 .26494 
10 .040 .55968 .35628 .46235 .78054 .70036 

N=l,OOO 4 .00005 .01917 .01925 .01927 .01927 .01946 
4 .00007 .05025 .05057 .05076 .05077 .05207 
4 .0001 .13633 .13419 .13615 .13637 .14622 
4 .0002 .64604 .50666 .62806 .69831 >1 
6 .0003 .01404 .01378 .01397 .01399 .01406 
6 .0004 .05134 .04976 .05135 .05168 .05272 
6 .0005 .13396 .12381 .13297 .13606 .14305 
6 .0006 .27199 .22532 .26914 .28499 .31642 
6 .0007 .45839 .34785 .44065 .49936 .60771 
8 .0008 .01626 .01531 .01627 .01660 .01646 
8 .0010 .06081 .05330 .06026 .06302 .06258 
8 .0011 .10362 .08536 .10202 .10816 .10885 
8 .0013 .24459 .18268 .23582 .26621 .27903 
8 .0015 .45770 .31912 .41034 .53285 .60433 
10 .0015 .01923 .01608 .01905 .02017 .01948 
10 .0019 .10027 .07377 .09609 .10872 .10480 
10 .0022 .24697 .17311 .22431 .28244 .28040 
10 .0025 .47486 .31449 .40716 .59878 .63265 

p = P{m; N, w) was estimated from 1,000,000 simulations. KLB and GUB are 

from Glaz [1989, Eq. (2.12)]' and Glaz [1992, Eq. (2.5)]' respectively. 
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necessary to also explicitly include the constraints Po ~ 0 and Li Pi = 1 in 
the problems.) The simplest way to do this is probably to restate the linear 
programming problems entirely in terms of the differences Ui = Pi - Pi+I for 
i = 0, 1, ... ,g. These modified problems are still quick and easy to solve using 
standard software. 

Similarly, if we knew the distribution was unimodal with mode k (known), 
we just modify the problems to include the constraints Po ~ PI ~ ... ~ Pk-I ~ 
Pk ~ PH 1 ~ .... If the location of the mode is unknown, then maximizing (or 
minimizing) the desired probability over all unimodal distributions (with given 
moments) would require solving a series of linear programming problems, vary
ing the value of the mode k. In general, any information about the distribution 
of Cw, which can be stated in terms of linear inequalities, can be incorporated 
into the linear programming approach. 

7.2.4 Using more than four moments 

We have discussed in detail the construction of bounds which use four moments. 
If a larger (or smaller) number of moments is available, it is easy to modify the 
discussion and compute the corresponding bounds. For example, let us suppose 
that five moments are available. To obtain bounds corresponding to DB and 
LB, we simply modify the linear programming problems (7.1) and (7.2) and 
the reduced problems (7.5) and (7.6) by adding an additional constraint for the 
fifth moment 11-5. From Theorems 9 and 10 of Prekopa (1988), the conditions 
analogous to (7.3) and (7.4) are: 

If {i : Pi > O} = {1,j,j + 1, k, k + 1} with 1 < j, j + 1 < k, and k + 1 ~ g, 

then p maximizes Li Pi ; 

If {i : Pi> O} = {j,j + 1, k, k + 1,g} with 1 ~ j, j + 1 < k and k + 1 < g, 

then p minimizes Li Pi . 

Solutions of the reduced problems satisfying these conditions are guaranteed 
to be solutions of the original linear programming problems. In the "dual" 
approach to obtaining the bounds DB and LB, we use families of polynomials 
1jJ(x) and ¢(x) of order five which satisfy 1jJ(0) = ¢(O) = 0, 1jJ(y) = 1 for 
y E {1,j,j + 1, k, k + 1}, and ¢(y) = 1 for y E {j,j + 1, k, k + 1,g}. 

The bounds based on moments that we use are special cases of Bonferroni
type inequalities. A thorough treatment of these inequalities is given in the 
book by Galambos and Simonelli (1996). This book also includes discussion on 
the use of linear programming to compute probability bounds. We note that 
the bounds based on two and three moments can be given in closed form so that 
it is not necessary to use linear programming software (or systematic search) 
to compute these bounds. The best lower bound based on two moments is the 
Kwerellower bound (KLB) mentioned earlier. The closed formulae for the best 
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upper and lower bounds based on three moments may be found in Boros and 
Prekopa (1989) and Galambos and Simonelli (1996). 

7.3 Approximations 

In this section, we present a number of approximations to p = P(m; N, w). 
These approximations use the moments of Cw to approximate p = P(Cw 2: 1). 
Let g = N - m + 1 and define the sequence of indicator random variables 
Zl, Z2, .. ·, Zg by Zi = I(X(i+m-l) - X(i) < w) so that Cw = ~f=l Zi· Our 
approximations are based on finding simple stochastic models for Zl, Z2, ... , Zg 
and then using the "method of moments." 

The stochastic model we choose should exhibit groups or clusters of 1 's qual
itatively similar to those in the sequence Zl, Z2, . .. , Zg. The random variables 
Zi and Zj are positively correlated when Ii - jl < m - 1 since in this case the 
spacings involved in the definitions of Zi and Zj overlap. But for li- jl 2: m-1, 
we expect Zi and Zj to be very close to being independent (assuming N is 
sufficiently large). Thus, the sequence Zl, ... , Zg exhibits short-range depen
dence (in the form of positive correlation) and long-range independence. Any 
convenient stochastic model with these properties might lead to reasonable ap
proximations. 

7.3.1 The approximation MC2 

This approach is best illustrated by an example. The simplest stochastic model 
exhibiting short-range dependence and long-range independence is a two-state 
Markov chain. If we assume the sequence Zl, ... , Zg behaves roughly like a 
two-state Markov chain, we are led to a simple, but often surprisingly good 
approximation for P(m; N, w). 

Let Zl, Z2, ... , Zg be a Markov chain with two states (0 and 1) having the 
transition matrix 

( l-a a ) 
b 1- b . 

We shall suppose this chain is started from the stationary distribution which 
is P(Zl = 1) = 7f and P(Zl = 0) = 1 - 7f where 7f = a/(a + b). Define 
G = ~tl Zi. There are simple closed formulas for P(G 2: 1), E(G) and 
E(G2 ). Our approach consists of the following steps: (i) computing Itl = E(Cw ) 

and 1t2 = E( C;) using the methods of Section 6.8, (ii) solving the system of 
equations 

(7.11) 
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for a and b, and then (iii) using these values of a and b to compute P(C 2: 1) 
which we take as our approximation to P( Cw 2: 1). This leads to an approxi
mation we call MC2. Since MC2 uses only the first two moments of Cw (which 
we can obtain using formulas (6.36) and (6.37) in the previous chapter), we can 
compute MC2 even for rather large values of m. 

We now fill in some of the details. The necessary formulas are more cleanly 
stated in terms of the parameters 7r and 8 given by 

a 1 
7r = -- and 8 = --

a+b a+b 

instead of a and b. For the two-state Markov chain, it is straightforward to 
compute the following: 

P{C 2: 1} 

E(C) 
E(C2) 

( )
9-1 

1-(1-7r) 1-~ (7.12) 

g7r, and (7.13) 

g27r2 + g7r(1- 7r) + 27r(1- 7r)(8 - 1)(g - 8(1- c)), 

where c = (1 - ~ y. Substituting these formulas for E( C) and E( ( 2 ) into 

(7.11), we find that 7r = ltI/g and the system reduces to a single equation for 
8 which can be solved by a simple iterative scheme. If we drop c from this 
equation, it becomes a quadratic equation in 8, so that we obtain a closed form 
solution for 8 given by 

where c = 1L2-~!~~;t7l"). (The value of c is extremely small in most applica
tions so that dropping it has very little effect on the answers.) Plugging these 
values for 7r and 8 into Eq. (7.12) gives us the value of MC2. 

We have extensively studied the performance of MC2 and report some nu
merical results in Tables 7.2 and 7.3. Glaz (1989) surveyed various approxi
mations for P (m; N, w). He recommended three different approximations for 
general use. These are the approximations given by Naus [1982, Eq. (6.1)]' 
Wallenstein and Neff [1987, Eq. (1)], and Glaz [1989, Eq. (3.3)]. Later, Glaz 
(1992) improved upon his earlier approximation. As our standard of compar
ison, we shall use the mth order approximation obtained by taking L = m 
in Glaz [1992, Eq. (2.8)]. This approximation is accurate in a wide range of 
circumstances, and is probably the best of the currently available approxima
tions for the clump sizes m :::; 10 of primary interest to us. In our tables, this 
approximation is listed under the heading GLAZ. 

We see from Tables 7.2 and 7.3 that MC2 is fairly reliable; there is no region 
where it does really badly. It is generally very accurate for small clump sizes m, 
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but tends to underestimate p for larger m with the downward bias increasing as 
m increases. As a general rule, MC2 tends to do better than GLAZ for smaller 
m and for larger values of p. But the value of N also affects the comparison, 
and it is difficult to state a simple rule for deciding which approximation to use. 
For m :S 10, it appears that MC2 is better (on the whole) than GLAZ when 
N = 100, but that GLAZ is better when N = 1,000. When p is small, MC2 
and GLAZ often produce answers which are extremely close, so that it matters 
very little which is used. For m > 10, GLAZ is better than MC2 except for 
values p which are close to 1. 

For smaller values of N, the approximation GLAZ can be rapidly computed 
using equation (2.10) of Glaz (1992). However, for larger values of N, this 
approach breaks down because of the accumulation of round-off error. For 
large N (such as N = 1,000 used in Table 7.2), GLAZ must be obtained by 
computing a series of numerical integrals so that the computation is much more 
time-consuming. On the other hand, the amount of computation required for 
MC2 increases with m, but is roughly constant in N. Thus, for large N, MC2 
is faster to compute than GLAZ unless m is quite large. 

The relatively poor performance of MC2 for larger clump sizes m is perhaps 
to be expected. When m is large, the sequence Zl, ... , Zg has a higher-order 
dependence which cannot be well approximated by the first-order dependence in 
the two-state Markov chain. It is intuitive that P(Zi = 11 Zi-l = 0, Zi-2 = 1) 
will be larger than (and perhaps substantially larger than) P(Zi = 11 Zi-l = 0) 
unless m is small. Another problem with the two-state Markov chain is that it 
has only two parameters a and b, so that we cannot easily incorporate higher 
order moments (when we are able to compute them) into our approximation. A 
natural way to tackle both of these problems is to try using a Markov chain with 
more states and more parameters. We have tried using a three-state Markov 
chain (with states labeled 1, 2, 3) with transition probability matrix given by 

(
l-a a 0) 

c I-b-c b . 
o d 1- d 

Let WI, W2, ... , Wg be a Markov chain with this transition matrix. We now 
define a process Zi, i = 1, ... , 9 by lumping together the states 1 and 2. More 
precisely, define Zi = I (Wi = 3) for i = 1, ... , g. The process {Zi} has two 
states 0 and 1, and can exhibit (with appropriate choice of the parameter values 
a, b, c, d) the kind of higher-order dependence we desire. Let {; = L:f=l Zi. 
We are able to derive formulas for P( {; ;::: 1) and E( {;k) for k = 1,2,3,4. 
Unfortunately, these formulas are much more complicated than those in (7.12) 
and (7.13), and when we attempt to solve for the values a, b, c, d which produce 
given values of /-l1,J.L2, /-l3, /-l4, we run into various difficulties (such as numerical 
inaccuracies and multiple roots). We may eventually overcome these difficulties, 
but in any case this example indicates the general sort of stochastic models we 
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are seeking. 

7.3.2 Compound Poisson approximations 

We have worked with a number of approximations to P( m; N, w) based on 
another sort of stochastic model. If the random variables Zi'S were independent 
Bernoulli trials, then Cw = Li Zi would have a binomial distribution with mean 
A = gE(ZI) which [if E(ZI) is sufficiently small] could be well approximated 
by a Poisson(A) distribution. Because of the short-range dependence among 
the Zi'S, there is a tendency for the l's in the sequence Zl, ... , Zg to occur in 
clusters. For this reason, a simple Poisson approximation to the distribution 
of Cw often performs badly. However, the long-range independence among the 
Zi'S suggests that the number of such clusters of l's will have approximately 
a Poisson distribution so that Cw itself will have approximately a compound 
Poisson distribution. This is an instance of the "Poisson clumping heuristic" 
treated in the book by Aldous (1989). This heuristic idea can be made precise 
in our situation: Roos (1993) and Glaz et al. (1994) have shown that, for any 
fixed value of m, if N -+ 00 and w -+ 0 in such a way that E(Cw ) remains 
constant, then there is a sequence of compound Poisson distributions which 
converges to the distribution of Cw at the rate O(I/N). Much work has been 
done recently on the subject of Poisson and compound Poisson approximations 
to the distribution of Cw; see Dembo and Karlin (1992) and the previously cited 
work by Roos (1993) and Glaz et al. (1994). 

Review of compound Poisson distribution 

Before proceeding, we will give a formal definition of the compound Poisson 
(CP) distribution and review some of its basic properties. Let VJ., V2, V3 , ... 

be a sequence of independent random variables with Vi rv Poisson(Ai) where 
A = (A1, A2, A3, ... ) satisfies Ai 2: 0 for all i and Li Ai < 00. Then, 

00 

C* = LiVi (7.14) 
i=l 

has a CP distribution denoted by C* rv CP('x). In our setting, we wish to 
approximate the distribution of Cw by that of C*; the random variable Vi 
represents the number of clusters of size i, and Ai is the expected number of 
such clusters. 

Compound Poisson distributions are very convenient for the sort of "method 
of moments" approximations we are using. That is because of the simplicity of 
the formulas (7.15) and (7.20) given below. Let C* rv CP('x). It is clear from 
(7.14) that 

(7.15) 
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Table 7.2: Approximations for p = P(m; N, w) with m ::; 10 

m w p MC2 LP4 CPG4 GLAZ 
N=100 4 .0009 .01029 .01021 .01021 .01021 .01021 

4 .0015 .04345 .04331 .04331 .04331 .04324 
4 .002 .09425 .09439 .09435 .09436 .09405 
4 .003 .25912 .25942 .25909 .25912 .25702 
4 .004 .47379 .47494 .47387 .47392 .46761 
6 .005 .01290 .01273 .01273 .01275 .01273 
6 .007 .05386 .05381 .05376 .05386 .05364 
6 .009 .14490 .14518 .14472 .14526 .14379 
6 .011 .29367 .29422 .29251 .29410 .28861 
6 .013 .48245 .48393 .48056 .48323 .46987 
8 .015 .05079 .05055 .05032 .05087 .05051 
8 .018 .12789 .12728 .12592 .12822 .12618 
8 .021 .25671 .25642 .25352 .25864 .25108 
8 .025 .49465 .49639 .49100 .50225 .47687 
10 .020 .01163 .01141 .01135 .01154 .01150 
10 .025 .05033 .04979 .04939 .05058 .04997 
10 .028 .10013 .09917 .09820 .10108 .09888 
10 .033 .24460 .24391 .24061 .25069 .23881 
10 .040 .55968 .56164 .55868 na .53309 

N=l,OOO 4 .00005 .01917 .01927 .01927 .01927 .01927 
4 .00007 .05025 .05076 .05076 .05076 .05075 
4 .0001 .13633 .13618 .13617 .13617 .13610 
4 .0002 .64604 .64654 .64638 .64640 .64498 
6 .0003 .01404 .01396 .01397 .01397 .01397 
6 .0004 .05134 .05135 .05137 .05139 .05137 
6 .0005 .13396 .13342 .13344 .13357 .13339 
6 .0006 .27199 .27202 .27199 .27235 .27166 
6 .0007 .45839 .45787 .45757 .45837 .45657 
8 .0008 .01626 .01628 .01631 .01634 .01633 
8 .0010 .06081 .06049 .06052 .06077 .06069 
8 .0011 .10362 .10289 .10286 .10342 .10322 
8 .0013 .24459 .24356 .24307 .24501 .24395 
8 .0015 .45770 .45579 .45366 .45851 .45517 
10 .0015 .01923 .01914 .01916 .01931 .01929 
10 .0019 .10027 .09874 .09826 .09996 .09959 
10 .0022 .24697 .24355 .24219 .24706 .24513 
10 .0025 .47486 .47037 .46774 .47732 .47104 

p = P(m; N, w) was estimated from 1,000,000 simulations. 

The approximation GLAZ is from Glaz [1992, Eq. (2.8)]. 
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Table 7.3: Approximations to p = P(m; N, w) for m > 10 

m w p CPG2 MC2 GLAZ 
N = 100 12 .03 .01155 .01134 .01133 .01149 

12 .05 .35777 .35903 .35712 .34451 
14 .10 .99902 .99983 .99953 .99129 
16 .10 .86152 .88372 .87070 .80795 
18 .10 .41351 .41394 .40925 .39193 
20 .10 .11888 .11460 .11420 .11601 
22 .10 .02419 .02307 .02304 .02401 
30 .20 .27376 .26785 .26366 .26482 
32 .20 .09983 .09463 .09400 .09811 
35 .20 .01466 .01375 .01372 .01463 
35 .30 .94639 .96874 .94152 .91355 
38 .30 .58769 .60007 .57305 .56627 
40 .25 .02270 .02135 .02127 .02277 
40 .35 .92461 .94973 .91048 .89966 
42 .35 .70489 .73005 .68774 .68688 
43 .30 .08640 .08230 .08144 .08615 
45 .30 .02873 .02731 .02715 .02904 
45 .35 .31233 .31274 .30205 .31167 

N = 1,000 12 .005 .99589 .99603 .99585 .99365 
14 .005 .57313 .56259 .56218 .56493 
16 .005 .09775 .09471 .09470 .09768 
20 .01 .86481 .85475 .85336 .84671 
25 .01 .03905 .03650 .03649 .03898 
30 .02 .99741 .99760 .99718 .99215 
35 .02 .39131 .36202 .36145 .37956 
45 .03 .70957 .67745 .67466 .67620 
50 .03 .11954 .10423 .10416 .11687 
60 .04 .26199 .23133 .23089 .25333 
65 .04 .03271 .02768 .02768 .03237 
80 .05 .00859 .00722 .00722 .00866 
115 .1 .98272 .98593 .98066 .94429 
120 .1 .75276 .72100 .71136 .69105 
125 .1 .35499 .31013 .30812 .33419 
130 .1 .11234 .09239 .09221 .10947 
140 .1 .00490 .00387 .00387 .00489 



180 Fred W. Huffer and Chien-Tai Lin 

Let Pk = P(C* = k) for k = 0,1,2, .... Define the generating functions A(x) 
and P(x) by 

00 00 

A(x) = L >"ixi and P(x) = LPixi . (7.16) 
i=l i=O 

We see that 
(7.17) 

Using elementary properties of generating functions and the fact that the prob
ability generating function of the Poisson(>..) distribution is eA(x-l) , it is easy 
to show that 

P(x) = poeA(x) . (7.18) 

Let f.j denote the jth cumulant of Cw and f.; the jth cumulant of C*. The 
first two cumulants 6 and 6 are just the mean and variance of Cwo There are 
standard relations for computing moments from cumulants and vice versa. To 
compute the cumulants from the moments, we can use the recursion 

f.i+l = J-Lj+1 - t (~)J-Lkf.i+l-k' 
k=l 

(7.19) 

Working directly from (7.14) and using elementary properties of cumulants 
leads to 

00 

f.; = L kj>"k' (7.20) 
k=l 

By comparing this formula to what one obtains by successive differentiation of 
the generating function A(x), we find that 

(7.21) 

where D is the operator D = x tx . 
Our main interest is in using P(C* ~ 1) given in (7.15) to approximate 

P( Cw ~ 1). If we wish to approximate the entire distribution of Cw by that 
of C*, then we need a way to compute the values pj for j ~ 1. There is no 
simple closed form for these values, but they may be easily calculated using the 
recursion 

j 

jpj = L (k>"k)Pj_k . (7.22) 
k=l 

Alternatively, the values pj may be obtained by computing the power series 
expansion of P(x) given in (7.18). This is easily done within software packages 
such as Maple or Mathematica. The recursion (7.22) is not new, but is probably 
not well known, so we shall sketch a proof. Differentiation of (7.18) gives us 
P'(x) = N(x)P(x). Equating coefficients in the power series expansions of 
P'(x) and the product N(x)P(x) then leads immediately to (7.22). 
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Formula (7.20) says that the cumulants ~; are linear in the Ak'S. Thus, 
given the cumulants of C*, it is typically straightforward to compute the Ak'S. 
Moreover, Eq. (7.21) guarantees that if A(x) has a simple closed form, then the 
lower-order cumulants are also given by simple closed formulas. 

General remarks 

Our approximations all proceed as follows. Suppose we have computed the first 
k moments of CWo We use (7.19) to compute the first k cumulants 6,6,··., ~k. 
Then we look for a "plausible" sequence A = (AI, A2, A3, ... ,) which matches 
these cumulants, that is, such that the distribution of C* '" CP(A) has 

~; = ~j for j = 1,2, ... ,k. (7.23) 

We then use (7.15) to compute P(C* 2 1) which we use as our approximation 
to P(Cw 2 1). If we wish to approximate the entire distribution of Cw, we use 
the values pj = P(C* = j) computed with (7.22). 

For given values 6,6, ... ~k, there are (typically) infinitely many sequences 
A which match these values. The asymptotic results of Roos (1993) suggest a 
particular choice for A, but the computations required to compute this choice 
are difficult (except for small values of the clump size m). Our approximations 
are based on somewhat ad hoc choices of A, motivated largely by analytical 
convenience and simulation studies. 

An approximation computed via linear programming 

The simplest approximation is obtained by assuming that Aj = 0 for j > k. 
This assumption can be partly justified by simulation studies. Given particular 
values for m, w, and N, we can simulate many realizations of the sequence 
Zl, Z2, ... , Zg and count the number of clusters of l's of various sizes that 
we see in these sequences. (To do this, we need a precise definition of "clus
ter." There is some arbitrariness in this, but one definition is to say that two 
groups of 1 's constitute separate clusters if they are separated by at least m - 2 
O's.) When m is small, such simulation studies usually produce very few large 
clusters, so that assuming Aj = 0 for sufficiently large j seems reasonable. If 
we do assume that Aj = 0 for j > k, then (7.23) is just a system of k linear 
equations in k unknowns. This system has a unique solution (AI, ... , Ak). This 
leads to an approximation for P(Cw 2 1) (denoted APk) which was studied by 
Lin (1993). This approximation is often very good for small values of m and p, 
but it suffers from one major drawback: in many situations, the approximation 
is not well defined because solving the equations (7.23) leads to a solution in 
which one or more of the values Ai is negative. When this happens, it means 
that there does not exist a CP distribution with Aj = 0 for j > k having the 
given values for the first k cumulants. 
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Let us say that a compound Poisson distribution CP(A) has order q if Aj = 0 
for j > q. The easiest way to fix the problem with the APk approximation in 
the previous paragraph is to use a CP distribution of higher order. If we assume 
the distribution of Cw can be well approximated by a CP distribution of order 
q> k, then (7.23) becomes a system of k linear equations in q unknowns. When 
q is chosen large enough, there will usually be a solution of this system which 
satisfies Ai ~ 0 for i = 1,2, ... , q and thus corresponds to a genuine CP distribu
tion. Our problem is one of solving a system of linear equations subject to linear 
constraints, and so we can solve it by linear programming. Unfortunately, there 
will now (typically) be infinitely many solutions, and we must find some way 
to choose which of these solutions we will use to construct our approximation. 
One way to narrow down the set of solutions is to impose additional conditions 
on the values Ai, which are suggested by simulation studies. Examining the 
frequency distribution of the cluster sizes (obtained by simulation as in the pre
vious paragraph) suggests that this distribution has a mode at 1 and drops off 
in a convex (actually, roughly geometric) fashion. Thus, it seems reasonable to 
impose the additional constraints that the sequence AI, A2, A3, . .. is nonincreas
ing and convex. These are linear constraints, and so are easily incorporated 
into our linear programming problem. Imposing these constraints will still not 
determine a unique solution: If there exists a solution to the resulting linear 
programming problem, then (typically) there exists infinitely many solutions. 
We are forced to make a final choice from this solution set in a fairly arbitrary 
fashion. 

Suppose we have computed the first four cumulants of CWo The considera
tions of the previous paragraph suggest the following procedUre for determining 
A. Choose a sufficiently large value of q, set Ai = 0 for i > q, and then take 
AI, ... , Aq to be the solution of the following linear programming problem: 

minimize E{=l Ai 
subject to the constraints 

(a) E{=l iTAi = ~T for r = 1,2,3,4, 

(b) Ai ~ 0 for i = 1, ... , q, 

(c) Ai - Ai+ 1 ~ 0 for i = 1, ... , q , 

(d) Ai-2Ai+1+Ai+2~Ofori=1, ... ,q. (7.24) 

Condition (a) above is just the system (7.23) written out explicitly. The choice 
to minimize in (7.24) is fairly arbitrary; maximizing E Ai also leads to a legit
imate solution to our problem. Both choices usually lead to good approxima
tions, but in our experience "minimizing" usually produces the better approx
imation; it also leads to a solution that (if it exists) does not depend on the 
particular value of q, provided that q is chosen to be sufficiently large. Note that 
the constraints (b), (c), (d) are nested, that is, (d) implies (c) implies (b), so 
that (b) and (c) are actually redundant. There is no guarantee that a solution 
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will exist satisfying (d). If no solution exists, we drop (d) and try to solve the 
problem with the constraint (c). If there is still no solution, we drop (c) and 
look for a solution satisfying (b) alone. Occasionally, usually when N is small, 
there is no solution satisfying (b) and this approach fails altogether. If we do 
obtain a solution A, we use this to compute our approximation to P(Cw 2: 1). 
The resulting approximation is given in Table 7.2 under the heading LP4. (We 
shall comment later on the performance of LP4.) If the number of cumulants 
available is k 1= 4, we make fairly obvious changes to the linear programming 
problem and compute a corresponding approximation LPk. 

The linear programming problem (7.24) is most easily solved by restating 
it interms of the second differences of the Ai'S. 

The CPGk approximation 

We now describe another general approach to constructing compound Pois
son approximations. Again, we suppose we are given the values of the first k 
cumulants 6, ... ,~k, and wish to find a plausible sequence A which matches 
these cumulants. In this approach, we choose a parametric family of sequences 
{A(O) : 0 E 8} depending on k parameters 0 = (01, ... ,Ok). Then the system 
(7.23) becomes a system of k equations in k unknowns. If we can solve this sys
tem for 0, we use the resulting sequence A(O) to construct our approximation. 
The APk approximation can be viewed as a simple example of this approach in 
which we take 0 = (AI, ... , Ak); this leads to a system of linear equations. In 
more complicated examples, this approach leads to systems of nonlinear equa
tions which must be solved numerically by iterative techniques. If the family 
{A(O) : 0 E 8} leads to generating functions A(x) [see (7.16)] that have a 
simple closed form, then the relation (7.21) gives a convenient way to explicitly 
construct the system of equations (7.23). 

We have experimented with a number of approximations of this type. We 
give details on only one of these. This approximation (designated CPGk) 
assumes the values Ai decay geometrically starting with Ak-l, that is, Ai = 
Ak_lri-k+1 for i 2: k - 1. The k parameters 0 = (AI, ... , Ak-l, r) must satisfy 
Ai 2: 0 for all i and 0 ~ r < 1 in order to correspond to a legitimate CP distri
bution. This approximation is suggested by the simulation results mentioned 
earlier in which the frequency distribution of the cluster sizes drops off in a 
roughly geometric fashion. The assumptions for CPGk imply 

k-2 \ k-l 
A(x) = 2: AiXi + /\k-I X 

i=l 1 - rx 

so that (7.21) and (7.23) lead immediately to an explicit system of k nonlinear 
equations for AI, ... , Ak-l, r. In our work, we have used the Maple procedure 
fsolve to find numerical solutions of these equations. In some cases, the equa
tions have no solution or the solution is not legitimate. In these cases, the 
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approximation CPGk is not defined. Table 7.2 lists values for the approxima
tion CPG4 based on four moments. The "na" entry marks a case where CPG4 
was not defined. 

When k = 2, various simplifications occur and the approximation can be 
written in closed form. In this case, 

A(x)=~ 
1- rx 

so that the system of equations we need to solve is 

Taking the ratio gives 
6 l+r 
6 1-r 

which is easily solved to obtain 

(6/6) -1 
r = ...;-:( €-'-2 /"":-6-:--) -+-1 . 

Plugging this back into (7.25) gives us 

(7.25) 

This solution for Al and r is legitimate if 0 :S r < 1 which is true so long as 
6 ~ 6· Using these results and noting that A(l) = AI/(l - r), we obtain our 
final approximation (from (7.15) or (7.17» as 

{ -26 } 
CPG2 = 1 - exp 1 + (6/6) . 

If we assume that Cw has approximately a simple (not compound) Poisson 
distribution, the natural approximation to use is P(Cw ~ 1) ~ 1 - e-6 . It 
is clear that CPG2 always produces a value which is smaller (and sometimes 
substantially smaller) than this simple Poisson approximation. 

Performance of approximations 

The approximations CPG2 and MC2 both depend on only two moments. These 
approximations tend to give similar answers; their agreement is particularly 
close for small m. For this reason, we list only MC2 in Table 7.2. For small m, 
MC2 usually does a little better than CPG2 when N is small or p is close to 
1. The earlier remarks comparing the performance of MC2 and GLAZ can be 
repeated for CPG2; it is a close competitor of GLAZ for small m. It is clear from 
Table 7.3 that CPG2 is inferior to GLAZ for large m (unless p is fairly large), but 



Approximations Using Moments 185 

it may still be useful because it leads naturally [via (7.22)] to an approximation 
for the entire distribution of Cw; there is no similar approximation produced 
by GLAZ. 

There is an intuitive reason for expecting reasonably close agreement be
tween CPG2 and MC2; both are making similar assumptions about the clusters 
of l's occurring in the sequence Zl, Z2, ... , Zg. If the two-state Markov chain 
{Zi} (which underlies MC2) is in state 1 at time t, it will remain in state 1 for a 
length of time which has a geometric distribution. Similarly, CPG2 is based on 
the assumption that the number of 1 's in a cluster has a geometric distribution. 

We now examine the performance of the approximations LP4 and CPG4 
which use four moments. Our study is currently limited to clump sizes m ::; 10. 
From information like that given in Table 7.2, we see that the approximations 
MC2, CPG4, LP4, and GLAZ usually give answers which are very close when 
p is small (say p < .1). Since we must compare all of these with simulated 
estimates of p, it is often difficult to determine which of the approximations is 
best. For very small m (say m ::; 6), both LP4 and CPG4 tend to be more 
accurate than MC2. But for larger values of m, the situation is less clear. For 
m ~ 7, we find that LP4 tends to do worse than both CPG4 and MC2. The 
relative performance of CPG4 depends on the sample size N. When N = 1,000, 
if we discard those cases where the answers are so close that comparisons are 
difficult or meaningless, we find in the remaining cases that CPG4 is usually 
better than both MC2 and GLAZ. For N = 1,000, CPG4 is probably the best 
overall approximation. But for the smaller sample size N = 100, there are 
many cases in which CPG4 does worse than the much simpler approximation 
MC2. 

For the smaller sample size N = 100, the approximations LP4 and CPG4 
sometimes fail to exist. This problem occurs primarily when m ~ 7 and p 
is close to 1, and is more pronounced for CPG4 than for LP4. The problem 
becomes more severe as m increases, that is, it occurs for smaller and smaller 
values of p. When m = 10, there are cases with p ~ .46 in which CPG4 does 
not exist. 

The performance of the "four moment" approximations LP4 and CPG4 is 
somewhat disappointing. They are not uniformly better than the "two moment" 
approximations CPG2 and MC2, and when they are better, the improvement 
is not as dramatic as we had hoped for. We are continuing to look for better 
four moment approximations. The higher-order moments J.l3 and J.l4 of Cw are 
quite sensitive to the exact behavior of the distribution in the right tail. In 
simulations, it is clear that the frequency distribution of cluster sizes departs 
more and more from the geometric assumption (which underlies the CPGk 
approximation) as m increases. In order to effectively use the higher-order 
moments in our compound Poisson approximations, we need to replace the 
simple "geometric tail" assumption by something more accurate. 
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Approximating the distribution of Cw 

The compound Poisson approximations LPk and CPGk lead immediately [via 
(7.22)] to approximations for the entire distribution of CWo An approximate 
distribution constructed in this way will have the same first k moments as Cw . 

In Tables 7.4 and 7.5, we give examples using CPG2 and CPG4 to approximate 
P(Cw 2: j) for j = 2,3,4,5 for samples of size N = 100 and N = 1,000. We 
compare these with a compound Poisson approximation due to Glaz et ai. [1994, 
Eq. (3.4)] which is listed as GCP in Tables 7.4 and 7.5. GCP was the most 
accurate of the approximations studied by Glaz et ai. (1994); it was superior 
to a number of simple Poisson approximations. 

The approximations GCP and CPGk are closely related. GCP approximates 
the distribution of Cw by a particular compound Poisson distribution CP(A) in 
which A2, A3,'" ,Am-1 decay geometrically, Aj = 0 for j 2: m, and Al is chosen 
so that the first moments match. Thus, both GCP and CPGk use the ideas of 
matching moments and geometric decay of the Aj'S. 

From Tables 7.4 and 7.5, we see that all of the approximations GCP, CPG2, 
and CPG4 tend to perform better at N = 1,000 than at N = 100. This is 
not at all surprising since the original heuristic motivation for using compound 
Poisson approximations was asymptotic in nature and the theoretical results 
supporting their use are asymptotic. Both GCP and CPG2 do well, but CPG2 is 
usually more accurate than GCP. The approximation CPG4 typically improves 
on CPG2 for m :s 6, but often does worse than CPG2 for m 2: 7. Again, it 
appears that we need more precise knowledge of the distribution of Cw in the 
right tail before we can safely use the higher moments in our approximations. 
For general use, we (tentatively) recommend CPG2. This recommendation is 
tentative because the performance of CPG2 deteriorates as m increases; it is 
possible that GCP will prove to be superior to CPG2 for large m. More study 
is needed on this point. 
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Table 7.4: Approximations to Prob = P(Cw 2: j) for N = 100 

m w j Prob CPG2 CPG4 GCP 
4 .002 2 .01242 .01237 .01245 .01276 
4 .002 3 .00157 .00156 .00155 .00162 
4 .002 4 .00018 .00019 .00018 .00014 
4 .002 5 .00002 .00002 .00002 .00001 
4 .005 2 .37818 .37736 .37854 .37677 
4 .005 3 .18163 .18041 .18273 .18694 
4 .005 4 .07759 .07776 .07842 .08236 
4 .005 5 .02964 .03097 .03070 .03328 
7 .013 2 .04293 .04335 .04234 .04318 
7 .013 3 .01504 .01497 .01571 .01474 
7 .013 4 .00522 .00514 .00520 .00496 
7 .013 5 .00179 .00176 .00171 .00162 
7 .023 2 .60117 .60575 .57753 .58861 
7 .023 3 .43627 .43373 .44336 .42919 
7 .023 4 .30359 .29742 .31475 .30242 
7 .023 5 .20259 .19694 .20099 .20633 

10 .03 2 .07150 .07332 .06649 .07321 
10 .03 3 .03616 .03641 .03944 .03500 
10 .03 4 .01827 .01804 .01903 .01667 
10 .03 5 .00908 .00892 .00906 .00789 
10 .037 2 .25821 .26175 .22146 .26228 
10 .037 3 .16287 .16240 .17844 .16289 
10 .037 4 .10193 .09979 .11187 .10004 
10 .037 5 .06322 .06080 .06264 .06076 
Prob = P(Cw :2: j) was estimated from 1,000,000 simulations. 

GCP is from Glaz et al. [1994, Eq. (3.4)]. 
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Table 7.5: Approximations to Prob = P(Cw ~ j) for N = 1,000 

m w j Prob CPG2 CPG4 GCP 
4 .0002 2 .31241 .31182 .31194 .31213 
4 .0002 3 .12371 .12338 .12350 .12418 
4 .0002 4 .04252 .04233 .04234 .04263 
4 .0002 5 .01300 .01303 .01300 .01303 
4 .0003 2 .83715 .83779 .83749 .83528 
4 .0003 3 .65875 .65899 .65897 .65741 
4 .0003 4 .46633 .46601 .46629 .46619 
4 .0003 5 .29897 .29887 .29923 .30023 
7 .001 2 .14241 .14334 .14166 .14278 
7 .001 3 .05578 .05596 .05629 .05466 
7 .001 4 .02123 .02116 .02134 .02018 
7 .001 5 .00778 .00780 .00787 .00721 
7 .0015 2 .83679 .83725 .83566 .83931 
7 .0015 3 .70010 .70070 .69957 .70329 
7 .0015 4 .55640 .55641 .55638 .55896 
7 .0015 5 .42256 .42193 .42259 .42393 
10 .002 2 .05379 .05558 .05306 .05436 
10 .002 3 .02194 .02241 .02261 .02054 
10 .002 4 .00914 .00900 .00922 .00772 
10 .002 5 .00376 .00360 .00374 .00288 
10 .003 2 .70744 .70939 .69958 .72400 
10 .003 3 .56337 .56617 .56260 .57691 
10 .003 4 .43596 .43779 .43884 .44346 
10 .003 5 .32912 .32967 .33095 .33071 
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Applying Ballot Problem Results to Compute 
Probabilities Required for a Generalization of the 
Scan Statistic 

Sylvan Wallenstein 

Mount Sinai School of Medicine, New York, NY 

Abstract: The scan statistic, the maximum number of events in a sliding 
window of width w, has previously been used to test the null hypothesis of 
uniformity against the pulse alternative that the density takes on two values -
a high one on some interval [b, b + w), b unknown, and a low density elsewhere. 
We generalize the statistic to the case where the density under the null is an 
arbitrary step function, so that use of a single critical value would not be of 
interest. We find the probability that under an arbitrary step function density, 
the number of events in any interval [t,t+w) is less than g(t), where g(t) is also a 
step function. The probabilities are derived based on a ballot counting problem 
of Karlin and McGregor concerning the amount of lead in a multi-candidate 
election. 

Keywords and phrases: Scan statistic, ballot problem, Karlin-McGregor 
theorem 

8.1 Introduction 

The scan statistic, the maximum number of events in a sliding window of width 
w, is [Naus (1966b)] a generalized likelihood ratio test of the null hypothesis 
of uniformity against the pulse alternative, that the density takes on two val
ues: a high one on some interval on length w, and a low density elsewhere. 
Naus (1966a) has used a corollary of Barton and Mallows (1965) to find the 
exact probability, that under a uniform distribution of events, the scan statistic 
exceeds a single critical value, when w = 1/ L, L an integer. The result was 
extended to rational w by Wallenstein and Naus (1973), and to all w by Hwang 
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(1977), and by Huntington and Naus (1975). A drawback in testing for disease 
clustering noted by Stroup, Williamson, and Herndon (1989) and others, is the 
apparent inability to adjust for temporal time trends, i.e., to test for a cluster 
superimposed on some given underlying linear or seasonal trend. To do so, 
while retaining the fixed window size w, we will have to let the critical value 
change as the postulated underlying probability of the event changes. Thus, we 
will have to solve a more complicated problem: What is the probability that 
for each t, yt (w), the number of points in [t, t + w), is less than a given function 
g(t), given that the density of the events themselves is given by f(t). 

Without loss of generality, we assume throughout this chapter that the total 
time frame is T = 1. We will also assume that the scanning interval w is of 
the form 1/ L, L an integer, although this could perhaps be relaxed, to yield 
a slightly more complicated result. Formally, for i = 1, ... , N, let Xi be a 
sequence of random variables independently distributed on [0,1), and let yt(w) 
be the number of events in [t, t + w). In this chapter, we find 

Prf(t)[Yt(w) < g(t), all 0:::; t < 1- w] (8.1) 

when the density of the X's is given by f(t), and where f(t) and g(t) are step 
functions. 

For the scan statistic, g(t) is a constant, k, and f(t) is usually the uni
form distribution. Cressie (1977) and Wallenstein, Naus, and Glaz (1993) have 
calculated power of the scan statistic by allowing f(t) to be a pulse (a step 
function with a single step of width w), but keeping the restriction that g(t) is 
a constant. 

In Section 8.2, we find the probability in (8.1) when the step functions are 
"as fine" as the scanning window, i.e., both step functions have equally sized 
steps of length w. In Section 8.3, we discuss the case when the density and 
critical values can change on intervals of width w /2, and in Section 8.4, we 
discuss arbitrary step functions. 

8.2 Exact Distribution of a Statistic With Critical 
Values Changing on Each Interval of Length w 

In this section, we find the probability in (8.1) when the functions f and 9 are 
constant over intervals of widths w, so that for (i - l)w :::; t < iw: 

f(t) = Oi, i = 1, ... ,L; g(t) = ki' i = 1, ... , L - 1. (8.2) 

Thus there are L = 1/ w cells, each of width w, on which the density is constant. 
For simplicity of notation, especially in the sequel, we let for i = 1, ... , L, 
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1fi = w(h, and ni = y(i-l)w(W) (the number of events in each cell) so that 
(nl' n2, ... , nL) f'J MUlt(Nj 1fl, 1f2, ... , 1fL) where ~1fi = l. 

Under these conditions 

Prf(t)[Yt(w) < g(t), all 0 ~ t < 1- w] 

= Pr Cl,o'L-l {SUPo~.~w1(i-l)W+'(W) < k;}). 
Theorem 8.2.1 Given the density, f((i - 1)w + s) = (}i, i = 1, ... , 1/w, 0 < 
s <w, 

Pr (._ n {sUPo~s~wY(i-l)W+S(W) < ki}) = NlwN L detG[r (}~i 
t-l, ... ,L-l VI (N) t-l 

(8.3) 

here, G is a square matrix with L rows having elements 

1/ [ki + E~:'!+1 (ku - nu)] 1 for i < j -1, 

gij = 1/ki l for i = j -1, (8.4) 
1/ni l for i =j, 

1/ [ni - E~-==~(nu - ku)] 1 for i > j, 

where 1/xl = 0 if x < 0, andvl(N) is the set of {nl,"" nd such that ~ni = N, 
and ni < min(ki, ki-l), i = 1, ... , L; ko = kl; kL ~ kL-I. (The notation 
suppresses the dependence of VI (N) on kl' k2, ... , k L-l. ) Note that when for all 
i = 1, ... , L, ki = k, and (}i = 1, the result is identical to Naus (lg66a). 

PROOF. Following Naus (1966a) and Cressie (1977), we prove this assertion 
using a corollary of Barton and Mallows (1965) to a theorem of Karlin and 
McGregor (1959). For clarity and for the purpose of further extensions, we 
elaborate on the proof which is presented tersely in previous versions. Suppose 
N voters choose among L candidates. Let Ai (m) be the partial total of can
didate i after m votes have been counted, so that Ai(N) is the total number 
of votes for candidate i. Then, Barton and Mallows (1965) have shown that 
conditional on Ai(N), and for 1'1 > 1'2 > ... > I'L, 

Pr [tf {A;(m) + "Ii> Ai+1(m) + "Ii+1, m = 1, ... , N} 1 = leI. 

where Cij = Ai(N)l/(A(N) + I'i - I'j)!. 

(8.5) 

• 
We view the candidates in the election as the L cells, and the N votes 

as the N events, so that Ai(N) = ni. The data for the jth observation Xj, 
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j = 1, ... , N, is replaced by a pair (c(Xj) , d(Xj)) where the cell number is 
c(Xj) = CEIL [Xj/w] = CEIL[LXj], and d(Xj) = Xj - w[c(Xj) - 1] is the 
distance between Xj and the left (lower) boundary of the cell. (CEIL(x), is x 
rounded upward, thus CEIL(2.3) = CEIL(3) = 3). The process then induces a 
total number of votes for candidate i at position x, 0 :::; x :::; w, given by 

A~(x) = L J{d(Xj) - x:::; O}J{c(Xj) = i}, (8.6) 
j=l,N 

where J {E} = 1 if E is true, and J {E} = 0 if E is false. The total number of 
votes at time x is given by M (x) = ~iAi( x ). 

The following table gives an example of such a setup when L = 4: 

j x c(x) d(x) A't(d(x)) A2(d(x)) A3(d(x)) A4(d(x)) M(x) 

1 .10 1 .10 1 2 1 2 6 
2 .11 1 .11 2 2 1 2 7 
3 .19 1 .19 3 2 1 3 9 

4 .30 2 .05 0 1 0 2 3 
5 .32 2 .07 0 2 1 2 5 

6 .56 3 .06 0 1 1 2 4 

7 .76 4 .01 0 0 0 1 1 
8 .77 4 .02 0 0 0 2 2 
9 .88 4 .13 2 2 1 3 8 

Thus, 

so that 

and 

To place the problem in the format of a ballot problem, we sort by m and let 
Ai(m) be the value for A~(d(Xj)) when M(Xj) = m, as in the following panel: 
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m AI(m) A2(m) A3(m) A4(m) 

1 0 0 0 1 
2 0 0 0 2 
3 0 1 0 2 
4 0 1 1 2 
5 0 2 1 2 
6 1 2 1 2 
7 2 2 1 2 
8 2 2 1 3 
9 3 2 1 3 

Thus setting 
'Yi - 'Yi+l = ki - ni, 

we rewrite (8.7) as 

{ sup y(i-l)w+s(W) < ki} 
O~s~w 

= {A(m) + 'Yi > Ai+l(m) + 'Yi+l, m = 1, ... , N}. (8.8) 

(The expression on the right-hand side really only depends on the set of m's 
where Ai(m) or Ai+l(m) change.) Applying the corollary of Barton and Mal
lows (1965), we have 

Pr (n sup y(i-l)w+s(W) < ki I nl, n2,···, nL) 
i O~s~w 

where 

Pr [0{A(m) +'Yi > AiH(m) +'Yi+l, m = 1, ... ,N}] = detC, 

(8.9) 

Unconditioning, by multiplying (8.9) by 

L 

Pr(nl' n2, ... , nL) = N! II 7r~i /ni!, 
i=l 

yields (8.3) with gij = Ci,j/niL To complete the proof, note that (ni +'Yi +'Yj) is 
the expression in square brackets in the denominator of (8.4), that the constraint 
'Yi > 'YiH stated prior to (8.5) implies ni < ki' while setting m = N in (8.5) 
implies ni + 'Yi - 'YiH > ni+l, so that niH < ki. 
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8.3 Finding the Probability for Step Function With 
2L Steps 

In this section, we find the probability in (8.1) when the functions f and 9 are 
constant over intervals of widths w /2, so that for (i - l)w /2 ~ t < iw /2: 

f(t) = ()i, i = 1, ... , 2L; g(t) = ki' i = 1, ... ,2L - 2. (8.10) 

As above, we set 7ri = w()i/2, and relabel the 2L cell occupancy numbers by 
ni = Y(i-l)w/2 (w /2), so that under (8.10), (nl' n2, ... ,n2L) rv Mu1t(N; 7rl, 7r2, 
... ,7r2L), where I:7ri = 1. For i = 1,2, ... ,2L - 2, let 

Under (8.10), 

Fi = { sup y(i-l)w/2+s(W) < ki} . 
05,s<w/2 

Prf(t)[Yt(w) < g(t), all 0 ~ t < 1- w] = Pr (._ n _ Fi). 
2-1, ... ,2L 2 

(8.11) 

To find this probability, we will consider two simultaneous arrangements of 
points, one in "odd numbered intervals" and the other in "even numbered inter
vals." The odd numbered intervals consist of the disjoint subintervals [iw, iw + 
w /2), i = 0, ... , L - 1, while the even numbered intervals consist of the disjoint 
subintervals [iw + w/2, (i + l)w), i = 0, ... ,L -1. Let El = n i=I, ... ,L-l F2i-l 
and E2 = ni=I, ... ,L-l F2i . . For given cell occupancy numbers nl,.·., n2L, the 
occurrence of El depends on the distribution of points in odd numbered inter
vals, and the occurrence of E2 depends on the distribution of points in even 
numbered intervals. Since these arrangements are conditionally independent, 

p, C1DL-2 Fi I {nil) 

= Pr(EI n E2 I {ni}) = Pr(EI I {ni} )Pr(E2 I {ni}). (8.12) 

As above, for each Xj, define c(Xj) = CEIL[2Xj/w], and d(Xj) = Xj -
(w/2)[c(Xj ) - 1], and define A~(d(x)) and M(x) as in (8.6) except now i goes 
from 1 to 2L, and x from 0 to w/2. Then 

so that 

y(i-l)w/2+Aw) = ni - A~(s) + ni+l + A~+2(s)' 

Fi {sup y(i-l)w/2+s(w) < ki} 
05,s<w/2 

---t { sup A~+2(S) - A~(S)} < ki - ni+l - ni. 
05,s<w/2 
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Then for i :S L - 2, mapping from A'(x) to A(m) yields 

Pr(Fil{ni}) = Pr {AH2(m) - Ai(m) < ki - ni+1 - ni, m = 1, ... , N}. 

Taking the intersection of events yields 

Pr (E21{ni}) = Pr(F2 . F4, ... , ·FL-2) 

~ Pr [0: {A2i+2(m) - A,,(m) < k,; - "'HI - n2;, m ~ 1, ... ,N}]. 

This event is basically the same as that in (8.8), and restricted to the difference 
in votes for "even numbered" candidates, with 'Yi - 'YH 1 replaced by 

Applying the corollary of Barton and Mallows (1965) then yields 

where c~~) = n2ij[n2i + 'Y?) - 'Y)2)]!. Rewriting this difference in terms of the 

cell occupancy number and critical values yields that C(2) is the same as C, 
with ni replaced by n2i, and ki by k2i - n2H1, so that 

n2i!/ [k2i - n2i+1 + L~:'!+1 (k2u - n2u+1 - n2U)]! for i < j - 1, 

c~2) = n2i!j(k2i - n2i+1)! for i = j - 1, 
2) n2i!jn2i! for i = j, 

n2i!/ [n2i - L~-:~(n2u - (k2u - n2U+1)]! for i > j. 

A similar argument yields 

where 
(1) _ . j[. (1) (1)], Cij - n22-1 n22-1 + 'Yi - 'Yj ., 

'YP) - 'YJ~l = k2i-1 - n2i - n2i-1· 

Thus substituting into (8.12) yields 

(
2L-2 ) 

Pr [1 Fi 1 {ni} = IC(I)IIC(2)1· 

The unconditional probability is then 

Prf(t)[Yt(w) < g(t), all 0 :S t < 1- w] 

= L IC(I)IIC(2)IPr(n1,n2, ... ,n2L), (8.13) 
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where the summation is over v2(N), the set of all nl, ... , n2L such that 2: ni = 
N, and ni + niH < min(ki, ki-l), i = 1, ... , 2L - 1; ko = kl; k2L-I = k2L-2. 
Substituting 

into (8.13) yields 

2L 

Pr(nl' n2,"" n2L) = N! II 7rri /ni! 
i=l 

(8.14) 

where gg) = cW /n2i-I!, gg) = c~~) /n2i!. Equivalently, a(l) and C(2) are L x L 
matrices with 

and 

11/ ["j-l k _ ,,2j-2 ], 
L.Ju=i 2u-1 L.Ju=2i nu . 

gg) = 1/n2i-l! 
2i-1 i-I , 1/ [2:U =2j-1 nu - 2:u=j k2U-I]. 

1 / [
"j-l k ,,2j-1 ], 1 L.Ju=i 2u - L.Ju=2i+ I nu . 

g~J) = 1/n2i! 

1/ ["2i "i-l k ], L.Ju=2j nu - L.Ju=j 2u . 

and l/x! = 0, if x < O. 

8.4 General Result 

for i < j 

for i = j 

for i > j, 

for i < j 

for i = j 

for i > j, 

Finally, we consider the more general case in which we evaluate the probability 
in (8.1) under arbitrarily fine step functions which are constant over intervals 
of length w/r, r an integer. Formally, for (i - l)w/r :S t < iw/r, 

f(t) = ()i, i = 1, ... , Lr; g(t) = ki' i = 1, ... , r(L - 1). (8.15) 

By choosing r large enough, any two step functions for f(t) and g(t) can be 
defined in this framework. However, the computations will become increasingly 
complex for large r. The concept of the argument is given in the previous 
section for the case r = 2, and also in Wallenstein and Naus (1973), although 
the latter paper concerns a different problem. 
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Set 7ri = w(}i/r, and let ni = Yw(i-l)jAw/r), i = 1, ... , rL, so that under 
(8.15), (nl, n2, ... , nrd "" Mult(N; 7r1, 7r2,·.·, 7rrL). Then, for i = 1,2, ... , r(L-
1), let 

so that under (8.15), 

Fi = { sup y(i-l)wjr+s(w) < ki} , 
O-:;'s<wjr 

Prf(t)[Yt(w) < g(t), all 0 S t < 1- wi ~ Pr CBc }i) . (8.16) 

Theorem 8.4.1 Let vr(N) be the set of cell occupancy numbers, nl, n2, ... ,nrL, 

such that 

i+r-l 

'Eni = N, L nu < min(ki, ki- 1), i = 1, r L - r + 1, 
u=i 

where ko = kl' krL-r+l = krL-r. Then under (8.15), 

(8.17) 

where G(m) is a square matrix with L rows and with elements 

{ 1/ [,\,j-2 k ,\,(j-l)r-l ] , f . . 
G~m) = L..u=i-l ru+m - L..u=(i-l)r+l n u+m ' Jor'l < J 

J 1/ [,\,(2-1)r ,\,i-2 k ] , f . . L..u=(j-l)r nu+m - L..u=j-l ru+m' Jor'l 2: J. 

PROOF. As above for each Xj, j = 1, ... , N, we define c(Xj) = CEIL[r Xj/w]' 
and d(Xj) = Xj - (w/r)[c(Xj ) - 1], and define A~(x) and M(x) as in (8.6), 
except now i goes from 1 to r L and x from 0 to w / r. Then 

so that 

i+r-l 

y(i-l)wjr+s(w) = ni - A~(s) + L nj + A~+r(s), 
j=i+l 

For m = 1, ... , r, let 

I(m) = {i I i = m(mod r), i:::; L - r}, 

(8.18) 
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so that 
L-2 

Em = n Fm+ir = n Fi 
i=O iEI(m) 

and 
r Lr-r n Em= n Fi. 

m=l i=l 

Note that conditional on nl, n2, ... , nrL, Em depends only on the position of 
points in cells I (m), and the events EI, E2, ... ,Er are conditionally indepen
dent. Thus 

where by (8.18) 

with 

(m) (m) 
"Ii - "Ii+! [kr(i-l)+m - ri~-l n j ]- nr(i-l)+m 

j=r(i-l)+m+! 

ri+m-l 

= kr(i-l)+m - L nj. 
j=r(i-l)+m 

Apply the corollary of Barton and Mallows (1965) to find 

(8.19) 

where c(m) is identical to C with ni replaced by nr(i-l)+m and with ki replaced 
by the expression in brackets in (8.19). Thus, 

Unconditioning by multiplying by the probability of the cell occupancy numbers 
as in (8.14), proves the theorem with g~m) = c~j) /nr(i-l)+m!. • 
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Scan Statistic and Multiple Scan Statistic 

Chien-Tai Lin 

Tamkang University, Taiwan 

Abstract: The scan statistic and multiple scan statistic can be used in many 
areas of science. In this chapter, a survey of results on scan statistic for the 
continuous conditional case is presented. We discuss the exact distribution and 
asymptotic results, and study various approximations and bounds. Moreover, 
a general expression for the kth moment of the multiple scan statistic and 
a computational approach for its distribution are covered. Numerical results 
comparing various approximations in the literature are also presented. 

Keywords and phrases: Bonferroni-type inequality, compound Poisson ap
proximation, Markov chain approximation, multiple scan statistic, product-type 
approximation, scan statistic, spacings, Stirling numbers, symbolic computation 

9.1 Introduction 

Given N points Xl, ... ,XN randomly distributed on the interval (0, 1], let 
yt(w) be the total number of points that lie in the interval (t, t + w]. The 
(continuous conditional) scan statistic 8w is defined as 

8w = max yt(w). 
O::;t9-w 

It is commonly used to test for the presence of nonrandom clustering on an 
interval. 

The field of scan statistic is a very fascinating area with wide variety of 
applications in various branches of sciences as already pointed out in Chapter 
1 by Glaz and Balakrishnan (1999). The growth of literature in this area over 
the past forty years provides a testimonial to this fact. Naus (1965) was the 
first to carry out a detailed study of scan statistic. For a particular type of 
nonrandom clustering alternatives, the optimality properties of using the scan 
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statistic to test the uniformity were well discussed by Cressie (1984) and Naus 
(1966). Under the assumption of uniformity, the developments of the exact 
distribution of scan statistic up to 1980 were thoroughly reviewed by Neff and 
Naus (1980). In the meantime, Cressie (1977, 1980) also established some of 
the asymptotic results. 

When N is large, m is moderate, and w is small, the computation of 
P(Sw ~ m) becomes complicated and infeasible. Moreover, the applicabil
ity of the asymptotic results is limited. Hence, attention has since focused on 
the developments of the approximations and bounds to the distribution of the 
scan statistic. Recently, Huffer and Lin (1997b) proposed a computational ap
proach to evaluate the exact distribution of scan statistic. The purpose of this 
chapter is to provide a review of published work on the scan statistic. 

In addition to the scan statistic for applications in tests of hypotheses, we 
may also use for this purpose the multiple scan statistic, the number of clumps 
with clump size m in one dimension as discussed by Dembo and Karlin (1992), 
Glaz and Naus (1983), Glaz et al. (1994), Huffer and Lin (1997a), and Roos 
(1993). This multiple scan statistic is defined as follows: 

N-m+l 

Cw = L I(X(i+m-l) - X(i) ::; w), (9.1) 
i=l 

where X(l) ::; X(2) ::; ... ::; X(N) are the N ordered observations. Glaz and 
Naus (1983) looked at its mean and variance, and gave a product-type approx
imation for its distribution. Glaz et al. (1994), based on the results of Roos 
(1993), constructed a compound Poisson approximation for the distribution of 
CWo Huffer and Lin (1997a) studied the lower-order moments of Cw with order 
up to four. They also presented a compound Poisson approximation to the dis
tribution of the multiple scan statistic. From tables presented in these articles, 
a criterion to evaluate the accuracy of various approximations for a wide range 
of applications is needed. We use the elementary facts in combinatorics and the 
exchangeability of spacings to obtain a general expression for E(C~). Based 
on these expressions and the algorithm proposed by Huffer and Lin (1997b), a 
simple procedure to compute the exact distribution of Cw is established. For 
small N, the proposed method is readily computable and very accurate. The 
values should be of assistance in order to assess the performance of various 
approximations. 

This chapter starts with a relatively long survey in the second section on 
aspects of the exact and asymptotic results, approximations and bounds for the 
distribution of the scan statistic. The following sections cover some results on 
the multiple scan statistic that have not appeared elsewhere. In Section 9.3, 
the moments of the multiple scan statistic are discussed. We then describe a 
procedure to compute the exact distribution of Cw in Section 9.4. In Section 
9.5, we perform an extensive numerical study of P(Cw ~ 2) and compare it 
with existing approximations mentioned earlier. The results of a simulation 
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study for large N are also included in order to evaluate the accuracy of these 
approximations. 

9.2 Methods of Evaluating the Tail Probabilities 
of Sw 

We first discuss the developments on evaluating the exact tail probabilities of the 
scan statistic P(Sw 2: m) = P(m; N, w) under the assumption of uniformity. 
Barton and David (1956), Darling (1953), and Parzen (1960) all studied the 
expression of P(m; N, w) for m = 2. Naus (1965) used a combinatorial approach 
to express P(m; N, w) as the sum of binomial probabilities for m > N/2. 

Naus (1966) applied a result of Barton and Mallows (1965) and Karlin and 
McGregor (1959) to express P(m; N, 1/ L), where L is an integer, as a sum of 
L x L determinants, in which the number of terms to sum is the number of 
all possible arrangements of partitioning N into L positive integers each less 
than m. Wallenstein and Naus (1974) combined the approaches underlying 
the previous work of Naus (1965, 1966) to calculate P(m; N, 1/ L) in terms of 
sums of determinants with smaller dimensions. They tabulated P(m; N, 1/ L) 
for various ranges of Nand L when N /3 < m ~ N /2. 

By using a different method of partitioning, the formula of P( m; N, w) given 
by Naus (1966) was further extended by Huntington and Naus (1975). A modi
fication was suggested by Neff and Naus (1980) in order to improve the compu
tational effort, including reducing the summations of determinants. They pro
vided piecewise polynomials for P(m; N, w) and presented tables of P(m; N, w) 
for 0 < w < 0.5 and 3 ~ m < N ~ 25. 

The methods for evaluating P( m; N, w) so far described are quite related 
to the scanning process and the calculation of sums of determinants. An alter
native approach of obtaining P(m; N, w) was given by Huffer and Lin (1997b). 
They developed a very general methodology for evaluating probabilities which 
involve linear combinations of spacings, and then applied this procedure to 
express P(m; N, w) as a polynomial (in w) whose coefficients are computed ex
actly. The expressions of P(m; N, w) could be stored and easily evaluated later. 
Their program has so far handled cases somewhat beyond those given in the 
tables of Neff and Naus (1980). 

When N gets larger, the exact computation of P(m; N, w) becomes infea
sible. Arguments about the asymptotic results for P(m; N, w) can be found 
in Berman and Eagleson (1983), Cressie (1977, 1980), and Dembo and Karlin 
(1992). The performance of these results in many instances for P(m; N, w), 
noticed especially by Glaz (1992b), tends to be not accurate enough for the 
specific use of the testing procedure based on the scan statistic. In view of this, 
recent research emphasis has settled more on finding computationally tractable 
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approximations and bounds. Recently, Glaz (1993) presented a nice review of 
the developments on the approximations and bounds for P(m; N, w) under the 
null hypothesis of uniformity. The related methods for evaluating P(m; N, w) 
under the alternative hypothesis were discussed by Cressie (1977) and Wallen
stein et al. (1993). 

For the purpose of convenience in studying various approximations and 
bounds for P(m; N, w), we will classify these results into three categories: (i) 
those that utilize the scanning process, (ii) those that are based on the order 
statistics representation of the scan statistic, 

M(m) = min {X . - X . } 
N ISiSN-m+l (t+m-I) (t), 

and by the fact that 

p(M~m) ~ w) = P(Sw ~ m), 

and (iii) those that are related to the multiple scan statistic Cw for testing 
uniformity and by the relationship that 

P(Cw ~ 1) = P(Sw ~ m). 

Methods in the first category have been studied by Naus (1982) and Wal
lenstein and Neff (1987). Let 

(9.2) 

denote the binomial probabilities for 0 ::; i ~ Nand 0 ::; p ::; 1. Employing a re
sult of Naus (1966), we have an approximation for Q(m; N, w) = 1-P(m; N, w) 
as 

where 

2m-2 

VI L Q(m; i, 1/2)b(i; N, 2w), 
i=O 

3m-3 

V2 = L Q(m; i, 1/3)b(i; N, 3w). 
i=O 

Following the approach of Naus (1965), Wallenstein and Neff (1987) obtained 
an approximation that 

N 

P(m; N, w) ~ (m/w - N + l)b(m; N, w) + 2 L b(i; N, w). 
i=m+1 



Scan Statistic and Multiple Scan Statistic 207 

This expression is very similar to the exact formula of Naus (1965) for the case 
when m > N/2 and w ~ 1/2. 

There are many results of the second type available in the literature. Berman 
and Eagleson (1985), Glaz (1989, 1992a), and Krauth (1988, 1991) have all 
discussed results of this form. Berman and Eagleson (1985), based on the sec
ond order Bonferroni-type inequality result due to Hunter (1976) and Worsley 
(1982), obtained an upper bound 

P(m;N,w) 
N N 

< L b(i; N, w) + (N - m) L (_1)Hm-1b(i; N, w) 
i=m-l i=m-l 

N N 

(N-m+1) L b(i;N,w)-(N-m) L (l-(-l)Hm-l)b(i;N,w), 
i=m-l i=m-l 

(9.3) 

where b(i; N, w) is as defined in (9.2). 
Glaz (1989) gave further results in this direction. Making use of Kwerel's 

(1975) lower bound result and the exchangeability of spacings, Glaz obtained 
the following lower bound for P(m;N,w): 

P( ·N » 2(N-m+1) ~ b(o.N )_2N~-1(N-m-i)OlH2 
m, ,w _ € . ~ z, ,w ~ €(€ _ 1) , 

t=m-l t=O 

(9.4) 
where € is the integer part of 

N-m-l (N ·)0 
2 " - m - z IH2 
~ N. +2 
i=O (N - m + 1) I:j=m-l b(]; N, w) 

and 
N 

L b(j;N,w) 
j=m+i 

+ NI:-\-l)jb(m + i + j;N,w) t t (r + S + j), 
j=O r=O 8=0 r, S 

for i = 0, 1, ... ,m - 2, 
N 

L b(j;N,w) 
j=m+i 

+ NI:-i(_l)jb(m + i + j;N,w) t min(i,~-r-l) (r + S + j) 

j=O r=O 8=0 r, S 

i-m+l i-r ( N ) 
+ L L . wm+i- r- 1(1_ 2w)N-m-Hr+l, 

r=O 8=m-l S, m + z - r - S - 1 
for i = m - 1, m, ... ,N - m - 1. 
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In a follow-up paper, Glaz (1992a) extended the earlier work and proposed 
mth order product-type approximation and Bonferroni-type upper bound for 
P(m; N, w). Let 

N N 
Qi = L b(i;N,w), Q2 = L (_1)i+m- 1b(i;N,w), 

i=m-1 i=m-1 

and for 3 :::; L :::; m 

Q'L = b(m-1;N,w)-b(m;N,w) 

N-m+1 . L-2 i(i _ 1) 
+ L (-1)2IT[1-·C 1)lb(m+i-1;N,w). 

i=L j=l J J + 

Glaz presented the mth order product-type approximation for P(m; N, w) as 

( 
m ) [( m ) ( m-1 )]N-2m+1 P(m;N,w)~1- 1-{;Q: 1-{;Q: / 1- {;Q: 

(9.5) 
Glaz also used the mth order Bonferroni-type inequality introduced in Hoover 
(1990) and generalized the inequality in (9.3). This inequality is given by 

m-1 
P(m;N,w):::; L Q: + (N - 2m + 2)Q~. (9.6) 

i=l 

Other results that can be placed in this category are those of Krauth (1988, 
1991). Krauth (1988) discussed a third order Bonferroni-type upper bound for 
P(m;N,w). Later, Krauth (1991) presented a lower bound for P(m;N,w) by 
Galambos' (1975) method of indicators, or by a linear programming approach 
similar to the result of Prekopa (1988). 

Results in the third category deal with finding Poisson and compound Pois
son approximations to the distribution of multiple scan statistic CWo Glaz et 
al. (1994) considered several Poisson approximations and a compound Pois
son approximation for P(m; N, w). Numerical comparisons showed that the 
compound Poisson approximation gave more reasonable values. Let 

m-1 
1 - L (1 - (_1)i)b(m - i - 1; N, w) + (-1)m(1- 2w)N 

i=O 
~= --~~----------~N~-----------------------

L b(i;N,w) 
i=m-1 

and b( i; N, w) be as defined in (9.2). The compound Poisson approximation is 

( 
m-1 ) m-1 )..(3i 

P(m;N,w) ~ 1- exp - L )..i L IT {32., , 
i=l (31+2(32+ .. +(m-1)(3m-l=O i=l 2' 

(9.7) 
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where (3i's are nonnegative integers, 

N m-l 
Al = (N - m+ 1) L b(j;N,w) - L iAi, 

j=m-l i=2 

and 

N 

Ai=(N-m+1)(1-7])27]i-l L b(j;N,w), i=2, ... ,m-1. 
j=m-l 

Huffer and Lin (1997a), based on the theoretical results of Pn§kopa (1988) 
and the values of the first four moments E(C~) (k = 1,2,3,4), obtained the 
upper and lower bounds for P(m;N,w). They also investigated several approx
imations for P( m; N, w). Among these results, a Markov chain approximation 
(MC2) and a compound Poisson approximation (CPG2) were fairly reliable and 
also computable for large m. Both these approximations depend only on the 
first two moments. Let 

and 
(9.8) 

The Markov chain approximation MC2 is as follows: 

P(m;N,w) ~ 1- (l-7r)(l-7r/s)N-m, (9.9) 

where 
7r = E(Cw)/(N - m + 1) (9.10) 

and 

s = ~ (N - m + 2 - V(N - m)2 + 2(N - m + 1) _ 2Var(Cw)) . 
2 7r(1 - 7r) 

(9.11) 

In contrast, the compound Poisson approximation CPG2 for P(m; N, w) is given 
by 

( 2E(Cw)) 
P(m;N,w)~l-exp - 1+~ . (9.12) 

Other types of approximations and bounds to P( m; N, w) have been dis
cussed by Gates and Westcott (1984), Knox and Lancashire (1982), and Loader 
(1991). Gates and Westcott (1984) derived a recursive formula for Q(m; N, w). 
Let QN == Q(m; N, w). The recursive approximation QN for QN is 

_ _ min(N,2m-l) (N - 1) _ 
QN = QN-l + L . _ 1 cPjQN-j, N = m, m + 1, ... , 

J=m J 
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with 
QN = QN = 1, N = 0, 1, ... ,m -1, 

and 

where j = m, m + 1, ... , 2m - 1 and w ::; 1/2. The recursive formulae of upper 
and lower bounds for Q(m; N, w) were also discussed and illustrated with m = 3. 

Knox and Lancashire (1982), based on a modification of the simple dis
joint test procedure, found an entirely pragmatic approximation to P(m; N, w). 
Their expression is 

where 

Nw 

N-l 

P(m;N,w) ~ 1- eAvw/w2 L Ai/il, 
i=O 

for a crude approximation, 
N - e/lnN 

l/w + 1 + v'2/(2 + In w) 
for a more refined approximation. 

Another approximation for P(m; N, w) was suggested by Loader (1991). Let 
E = Nw/m - 1, Al = (1 - w(l + E))/(l - w), and A2 = 1 + Eo In this setting, 
Loader used results of boundary-crossing probabilities for random walks and 
Poisson processes to obtain a large-deviation approximation as 

N m-l 
P(m;N,w) ~ NEb(m;N,w) + L b(i;N,w) + L (AI/ A2)2(m-i)b(i;N,w), 

i=m i=O 

where b(i;N,w) is as defined in (9.2). 
Recommendations for using these approximations and bounds for P( m; N, w) 

have been discussed by Glaz (1989, 1993) and Huffer and Lin (1997a). In gen
eral, the approximations in (9.5), (9.7), (9.9), and (9.12) may give us reasonable 
values. The lower bound given by Huffer and Lin (1997a) is superior to Glaz's 
(1989) lower bound in (9.4) when m ::; 10; however, the situation is more com
plicated for the upper bound. It is recommended that we calculate by both 
methods of Glaz (1992a) and Huffer and Lin (1997a) first and then choose the 
smaller value as the upper bound. For m > 10, the current program of Huffer 
and Lin (1997a) is not durable to compute the higher-order moments of Cw and 
thus the bounds for P(m; N, w). Hence, the approaches of Glaz (1989, 1992a) 
in (9.4) and (9.6) can offer us the best bounds to P(m; N, w). More details 
about the performance of approximations and bounds in the literature can be 
found in Chapter 7 by Huffer and Lin (1999). 
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9.3 The Moments of Cw 

For 2 :S m :S N, 0 < w < 0.5, and 1 :S i :S N - m + 1, define 

Ai = {X(m+i-l) - X(i) < w}. (9.13) 

It follows from the definition of Cw in (9.1) that the kth order moment of Cw 

can be written as 

In turn, the expression yields 

k 

E(C~) = 'L d(k, i)Ti' 
i=l 

where 

(9.14) 

and d(k, i), the number of ways to partition a set of k indices into exactly i 
parts without taking order into account, is equal to the value of the Stirling 

number of the second kind times iI, i.e., { ~ } iL The values of d(k, i) can be 

obtained directly from the identity of Stirling numbers of the second kind: for 
a,b> 0, 

and the special values 

a-I 
b 

{ ~ } = 0, { ~ } = 1, and { : } = 1. 

Thus, to evaluate E(C~), we just need to obtain the values of Ti , i :S k. 
The remainder of this section is devoted to obtaining expressions for Ti , i :S 

k, in terms of summations of quantities involving Pi = P(Ai) and Pi,j = P(Ai n 
Aj ), etc., as these expressions will be used later in Section 9.4. 

For integers a and b, let (~) denote the usual binomial coefficient which we 
take to be zero when a < b. Using the exchangeability of the spacings and 
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elementary combinatorics, we can show that the sum in (9.14) is equal to the 
following much smaller sum: 

(9.15) 

where Ci is the set of i-tuples of integers h = (hI"", hi) satisfying 1 = hI < 
h2 < ... < hi :::; N - m + 1 and hj - hj-l :::; m - 1 for j = 2, ... , i, and 
r(h) = 1 + I{j : hj - hj -l = m - 1}1. (For any set A, we use IAI to denote the 
cardinality of A.) We think of the i-tuple h as consisting of r(h) blocks with 
boundaries at those values of the index j for which hj - hj-l = m - l. 

The above sum can be further reduced in size by noting that the terms 
corresponding to i-tuples h with similar block structure are indeed identical. 
This can be precisely stated as follows. For any i-tuple h E Ci, let <5(h) denote 
the vector of consecutive differences (h2 - hI, h3 - h2, ... , hi - hi-I). If r (h) = r, 
then <5(h) = (dl, m -1, d2, m -1, ... , m -1, dr ), where dl, d2, ... , dr are blocks 
of integers of varying lengths (denoted Idll, Id21, ... , Idrl), some of which may 
be empty (Le., O-tuples). Define Ph = p(n;=IAhj)' Suppose the i-tuples h 
and h' satisfy r(h) = r(h') = r. Let dl,d2, ... ,dr be the blocks in <5(h), and 
d~ , d2, ... , d~ be the blocks in <5 (h'). We say that hand h' are equivalent if 
d~, d2, ... , d~ is a permutation of d1, d2, ... , dr. It follows immediately from 
the exchangeability of the spacings that Ph = Ph' whenever hand h' are 
equivalent. In particular, every i-tuple in Ci is equivalent to at least one i
tuple h for which Idll 2: Id21 2: ... 2: Idrl. Thus, we may restrict the sum in 
(9.15) to this smaller class of i-tuples, provided we compensate by including the 
appropriate multiplicative factor. This is done below. 

Let C: consist of those i-tuples h E Ci whose blocks dl, d2, ... , dr(h) (defined 
above) satisfy Idll2: Id212:'" 2: Idr(h)l. For each hE q, define n(h) to be the 
number of distinct rearrangements of the integers Idll, Id21, ... , Idr(h)l. Then, 
we have 

T, = h'>ic, (N -m + :(~/" + r(h))n(h)Ph . 
, 

(9.16) 

For illustrative purposes and for further use in Section 9.4, we now present 
in detail what formula (9.16) becomes in the case of T6 • The integer factor 
preceding each of the sums below is the value of n(h) for that group of terms: 

n 
m-2 81+m-2 82+m-2 83+m-2 84+m-2 

= L L L L L (N - m + 1- 85)Pl,81+1,82+1,83+1,84+1,85+1 
81=182=81+183=82+184=83+185=84+1 

m-2 81 +m-2 82+m -2 83+m -2 (N - 2m + 3 - 84) 

+2 L L L L 2 Pl,81+1,82+1,83+1,84+1,84+m 
81=182=81 +183=82+1 84=83+1 
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m-2 81+m - 2 (N 4 + 7 ) - m -82 
+ 6 L L 4 P1,81 +1,81 +m,82+m,82+2m-l,82+3m-2 

81=182=81+1 

m-2 (N - 5m + 9 - 8 1) 
+5 L 5 Pl,81+1,81+m,81+2m-l,81+3m-2,81+4m-3 

81=1 

( N - 6m+ 11) + 6 P1,m,2m-l,3m-2,4m-3,5m-4. 

Given specific values of N, m and w, T6 can thus be obtained by passing on the 
expression to the program developed by Huffer and Lin (1997b). In a similar 
way, we can obtain all the values of T i , 1 :s: i :s: k, and thus the value of E( C~). 

9.4 Method for Evaluating the Probabilities of Cw 

Utilizing the expressions of Ti'S presented in Section 9.3, P(Cw = j), the prob
ability that exactly j of the events Ai [defined in (9.13)] occur, is 

N~+l (_1)i- j (i.)Ti. 
t=J J 

(9.17) 

For small values of N, we can apply the algorithm proposed by Huffer and 
Lin (1997b) to the expressions presented in Section 9.3 to obtain the exact 
polynomials and thus the accurate values of the distribution of CWo Let us 
restrict our attention to the case when N = 10 and m = 5, and have 

T6 = P1,2,3,4,5,6, 
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T5 = 2Pl,2,3,4,5 + Pl,2,3,4,6 + Pl,2,3,5,6 + Pl,2,4,5,6 + P1,3,4,5,6, 

T4 = 3Pl,2,3,4 + 2Pl,2,3,5 + Pl,2,3,6 + 2Pl,2,4,5 + Pl,2,4,6 + Pl,2,5,6 

+2Pl,3,4,5 + Pl,3,4,6 + Pl,3,5,6 + H,4,5,6, 

T3 = 4Pl,2,3 + 3P1,2,4 + 2Pl,2,5 + 3Pl,3,4 + 2Pl,3,5 + Pl,3,6 

+2Pl,4,5 + Pl,4,6 + 2H,2,6, 

T2 = 5H,2 + 4Pl,3 + 3P1,4 + 3Pl,5, 

Tl = 6Pl. 

Translating these Ti'S into matrix notation as defined by Huffer and Lin (1997b) 
and then passing in to their program separately, we obtain 

T6 1 - 2R(0, 1) - 2R(I, 1) + 4R(2, 1) - 6R(3, 1) + 15R(0, 2) - 12R(I, 2) 

+12R(2, 2) - 20R(3, 2) + 8R(4, 2) - 14R(5, 2) + 24R(6, 2) - 14R(0, 3), 

T5 6 - 30R(0, 1) + 6R(I, 1) + lOR(2, 1) - 30R(3, 1) + 14R(0, 2) 

+12R(I,2) - 6R(2, 2) - 56R(3, 2) - 32R(5, 2) + 1l0R(6, 2) 

+ 10R(0, 3) + lOR(I, 3), 

T4 15 - 42R(0, 1) + 24R(I, 1) - 60R(3, 1) + 39R(0, 2) - 12R(I, 2) 

-70R(2, 2) - 90R(3, 2) - 42R(4, 2) + 10R(5, 2) + 198R(6, 2) 

-12R(0, 3) - 12R(1, 3) - 8R(2, 3), 

T3 20 - 8R(0, 1) + 16R(I, 1) - 20R(2, 1) - 60R(3, 1) - 32R(0, 2) 

-48R(I,2) - 80R(2, 2) - 80R(3, 2) - 20R(4, 2) + 88R(5, 2) 

+172R(6, 2) + 20R(0, 3) + 20R(I, 3) + 16R(2, 3) + 8R(3, 3), 

T2 15 - 6R(I, 1) - 20R(2, 1) - 30R(3, 1) - 15R(O, 2) - 24R(I, 2) 

-28R(2,2) - 12R(3, 2) + 24R(4, 2) + 60R(5, 2) + 60R(6, 2), 

Tl 6 - 6R(0, 1) - 6R(I, 1) - 6R(2, 1) - 6R(3, 1) , 

where 
R(f, (3) = { (~)w£(I- (3w)N-£ for (3w < 1, 

o for (3w ;::: 1. 

and integers f, (3 ;::: O. 
Plugging in the values of wand j in (9.17), the exact value of P( Cw = j) can 

be easily obtained. Table 9.1 compares the approximations that were studied 
by Glaz and Naus [1983, Eq. (2.5)(GN)] and Glaz et al. [1994, Eq. (3.4)(GCP)], 
with our results for various choices of w to the distribution of Cw when N = 10 
and m = 5. Note that the exact results given by Neff and Naus (1980) are 
matching exactly with our results for P(Cw = 0) here. 
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Table 9.1: Comparison of two approximations to P( Cw = j) 
when m = 5 and N = 10 

w j p GN GCP 
0.01 0 .9387 .9383 .9422 

1 .0484 .0495 .0433 
2 .0106 .0099 .0109 
3 .0020 .0019 .0028 
4 .00028 .00035 .00071 
5 .00003 .00006 .00005 
6 .000001 .000001 

0.15 0 .7910 .7871 .8114 
1 .1413 .1500 .1169 
2 .0491 .0451 .0444 
3 .0147 .0129 .0180 
4 .0034 .0036 .0073 
5 .0005 .0010 .0014 
6 .00004 .00004 

0.20 0 .5670 .5508 .6202 
1 .2398 .2728 .1951 
2 .1206 .1113 .0919 
3 .0509 .0411 .0500 
4 .0172 .0155 .0274 
5 .0039 .0062 .0093 
6 .0005 .0004 

p = P( Cw = j) is evaluated from the proposed method. 

GN is taken from Table III in Glaz and Naus (1983). 

GCP is from Glaz et al. [1994, Eq. (3.4)]. 

From these results, we find that the approximations of Glaz and Naus (1983) 
and Glaz et al. (1994) perform poorly as the value of w increases. A method 
that is more accurate is therefore needed. 

9.5 Approximations for P( Cw > 2) 

We now evaluate, for selected values of N, m, and w, P(Cw ~ 2) derived in 
Section 9.4 and compare it with the approximations that were discussed by 
Glaz and Naus [1983, Eq. (2.5)], Glaz et al. [1994, Eq. (3.4)], and Huffer 
and Lin (1997a, CPG2 and MC2). In particular, the approximate values of 
P(Cw ~ 2) obtained from CPG2 approximation and MC2 approximation are 
as follows: 
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CPG2 approximation for P(Cw 2: 2) is 

1- (1 + Al)exp (_ 2~~;)), (9.18) 

where Al = 4E(Cw)/(~ + 1)2 and ~ is as defined in (9.8); 

MC2 approximation for P(Cw 2: 2) is 

1- (1- ?T)(1- ~)N-m 
8 

_ (1- ~)N-m-2 [2?T(1- ?T) (1-~) + (N - m -1)?T(1- ?T?] , 
8 8 8 8 2 

where ?T and 8 are as defined in (9.10) and (9.11), respectively. 

Employing the recursion 

j 

jP(Cw = j) = L iAiP(Cw = j - i), j 2: 1, 
i=1 

and substituting j for 1, (9.18) can be obtained immediately. The MC2 ap
proximation for P(Cw 2: 2) is not included in Huffer and Lin (1997a), but its 
derivation can be easily obtained from the material given there. 

From the numerical results presented in Table 9.2, we find that MC2 is as 
good or better than any other approximation for P(Cw 2: 2). It is evident that 
the GN approximation is inaccurate for large values of P(Cw 2: 2). The CPG2 
approximation seems to be very reliable; it is very similar to MC2, but MC2 
does a little better. When the values of m and N get larger, the performance 
of GCP approximation gets better, and it is the best approximation if m = 5 
and P(Cw 2: 2) > O.l. 

We now turn to the problem of evaluating the approximations discussed 
above (except the GN approximation) for larger values of N. When N gets 
larger, the exact value of P(Cw 2: 2) is difficult to compute. Thus, to assess the 
accuracy of these approximations, we present results from a simulation study 
based on 1,000,000 trials. 
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Table 9.2: Comparison of four approximations to P(Cw :2: 2) 

m N w p GN CPG2 MC2 GCP 
3 6 .01 .00012 .0001 .00011 .00012 .00016 

.03 .00293 .003 .00281 .00287 .00424 

.05 .01264 .012 .01192 .01236 .01797 

.07 .03224 .030 .03014 .03153 .04373 

.09 .06347 .059 .05946 .06226 .08096 
7 .01 .00027 .0003 .00027 .00027 .00036 

.03 .00678 .007 .00648 .00663 .00923 

.05 .02881 .027 .02718 .02810 .03764 

.07 .07187 .067 .06781 .07023 .08751 

.09 .13749 .125 .13111 .13495 .15469 
8 .01 .00054 .0005 .00053 .00054 .00070 

.03 .01357 .013 .01296 .01325 .01763 

.05 .05661 .053 .05364 .05521 .06876 

.07 .13685 .125 .13080 .13404 .15208 
9 .01 .00099 .001 .00097 .00098 .00125 

.03 .02457 .023 .02347 .02398 .03059 

.05 .09971 .093 .09519 .09743 .11346 
10 .01 .00161 .002 .00164 .00165 .00207 

.03 .04120 .039 .03942 .04022 .04930 

.05 .16084 .149 .15499 .15769 .17274 
4 8 .05 .00268 .003 .00255 .00260 .00332 

.07 .00924 .009 .00865 .00892 .01136 

.09 .02258 .021 .02084 .02177 .02722 

.11 .04498 .042 .04116 .04343 .05247 

.13 .07811 .072 .07133 .07575 .08729 
9 .05 .00565 .005 .00538 .00548 .00677 

.07 .01898 .018 .01776 .01832 .02244 

.09 .04523 .042 .04186 .04366 .05180 

.11 .08773 .081 .08096 .08497 .09588 
10 .05 .01063 .010 .01010 .01030 .01244 

.07 .03487 .033 .03262 .03367 .03984 

.09 .08100 .075 .07531 .07835 .08838 
11 .05 .01840 .018 .01745 .01782 .02110 

.07 .05894 .055 .05521 .05698 .06514 

.09 .13311 .123 .12474 .12919 .13866 
p = P(Cw 2:: 2) is evaluated from the proposed method. 

GN is taken from Table III in Glaz and Naus (1983). 

GCP is from Glaz et al. [1994, Eq. (3.4)). 
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Table 9.2 (contd.): Comparison of four approximations to P(Cw 2:: 2) 

m N w p GN CPG2 MC2 GCP 
5 10 .07 .00267 .003 .00254 .00258 .00305 

.09 .00815 .008 .00767 .00786 .00925 

.11 .01928 .018 .01794 .01855 .02157 

.13 .03842 .036 .03544 .03700 .04201 

.15 .06767 .063 .06213 .06541 .07173 

.17 .10857 .100 .09972 .10554 .11075 
11 .07 .00533 .005 .00509 .00517 .00596 

.09 .01584 .015 .01493 .01530 .01753 

.11 .03642 .034 .03399 .03517 .03952 

.13 .07053 .066 .06546 .06827 .07415 

.15 .12067 .112 .11199 .11739 .12178 
12 .07 .00970 .009 .00926 .00941 .01067 

.09 .02806 .027 .02647 .02715 .03042 

.11 .06277 .059 .05875 .06080 .06614 

.13 .11815 .110 .11041 .11489 .11943 

From Table 9.3, it is evident that the most accurate approximation is given 
by the MC2 approximation. For larger value of Nand P(Cw 2:: 2) is smaller 
than 0.01, the GCP approximation is the best. The performance of the CPG2 
approximation is still very similar to MC2, but MC2 does a better job in this 
study. In general, we would recommend the use of the MC2 approximation for 
P(Cw 2:: 2). However, a more extensive discussion is still needed in order to 
find a good approximation for the distribution of CWo 
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Table 9.3: Comparison of three approximations to P(Cw ~ 2) 

N m w p CPG2 MC2 GCP 
100 4 .01 .98966 .99097 .99042 .98294 

5 .01 .47064 .46880 .46924 .46283 
6 .01 .07398 .07449 .07467 .07517 
7 .01 .00953 .00965 .00965 .00948 
15 .10 .94489 .96314 .95531 .92159 
17 .10 .52467 .54146 .53732 .53677 
19 .10 .16059 .16522 .16500 .17764 
20 .10 .07665 .07925 .07922 .08584 
22 .10 .01439 .01473 .01473 .01564 
26 .15 .08336 .08610 .08594 .09811 
28 .20 .49278 .51357 .50398 .52953 
30 .20 .21149 .21779 .21599 .25005 
32 .20 .07133 .07323 .07302 .08663 

1000 6 .001 .78877 .78944 .78930 .78948 
7 .001 .14241 .14333 .14338 .14278 
8 .001 .01528 .01555 .01555 .01506 
9 .001 .00164 .00167 .00167 .00160 
12 .005 .98617 .98693 .98656 .98932 
13 .005 .78412 .78582 .78531 .81161 
14 .005 .40288 .40793 .40790 .43004 
15 .005 .15340 .15779 .15781 .16368 
16 .005 .05018 .05255 .05255 .05320 
17 .005 .01510 .01601 .01601 .01591 
18 .005 .00426 .00456 .00456 .00447 
19 .005 .00115 .00122 .00122 .00119 

p = P(Cw ~ 2) was estimated from 1,000,000 simulations. 

GCP is from Glaz et al. [1994, Eq. (3.4)]. 
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On Poisson Approximation for Continuous 
Multiple Scan Statistics in Two Dimensions 

Marianne Mansson 

Chalmers University of Technology, Goteborg, Sweden 

Abstract: In this chapter, Poisson approximation for multiple scan statistics 
in the continuous case is investigated. The setting is mainly two dimensional, 
but higher dimensions are also discussed. The scanning set can be any convex 
set, and in order to motivate the choice of parameters in the approximations, 
some geometrical arguments are given. The errors involved in the approxi
mations are studied both by simulations and by giving bounds on the total 
variation distances by means of the Stein-Chen method. Furthermore, Poisson 
process approximations of some point processes, which occur in this context, 
are considered. 

Keywords and phrases: Multiple scan statistics, Poisson approximation, 
Poisson process, Stein-Chen method 

10.1 Introduction 

Assume A C ]Rd, d 2: 2, is a d-dimensional rectangle in which N points are 
independently and uniformly distributed, and let W c A be a convex set, small 
relative to A. There are (;;:) subsets consisting of m ::; N points, referred to 
as m-subsets in the following, some of which are covered by some translate 
of the scanning set W. We define the multiple scan statistic in d dimensions, 
~(d, N, m, W), as the number of m-subsets which actually are covered by some 
translate of W. If the m-subsets are ordered in some fixed way, then the multiple 
scan statistic can be written as 

(;::) 
~(d,N,m, W) = I:h 

i=l 

225 

(10.1) 
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where 

Marianne Mansson 

1 if there exists x E A such that the ith m-subset is covered by W (x), 
o otherwise, 

and W(x) denotes the translate of W by x E IRd. 
The purpose of this chapter is to investigate Poisson approximation for 

the multiple scan statistic as defined above, which means in the conditional 
continuous case. The setting will be primarily two dimensional, but also a short 
discussion of higher dimensions is included. Furthermore, to avoid problems 
with the boundaries of A, the torus convention will be used. 

The plan for this chapter is as follows. First, some notation and neces
sary theory concerning convex sets is introduced. In Section 10.3, references to 
previous works on scan statistics in the continuous conditional case are given. 
The probability of covering a given m-subset is derived in the following section. 
In Section 10.5, approximations are suggested and examined in terms of the 
total variation distance and by simulations. Some point processes, determined 
by positions and "sizes" of the m-subsets that are covered, are studied in Sec
tion 10.6. The chapter is concluded by a discussion on some generalizations 
and possible improvements of the results derived here. 

10.2 Preliminaries 

Let IRd denote the d-dimensional Euclidean space, with a fixed origin 0, and 
orthogonal coordinate-axes. The volume of a (measurable) subset of IRd is its 
d-dimensional Lebesgue measure which we denote by J.L. We will mainly discuss 
IR 2 and then J.L is the area. 

For B, C C IRd and c E IR, the Minkowski sum and scalar multiple are 
defined as 

B+C={x+y:XEB,yEC} and cB={cX:XEB}, 

respectively. If c = -1, we get B = {-x: x E B}, which we call the reflected 
set of B. For x E IRd , B + {x} is the translate of B by x, which is denoted by 
B(x). If B = B(x) for some x E IRd, B is said to be centrally symmetric. An 
alternative, and for us more useful, way of writing the Minkowski sum is 

B + C = {x : B n C(x) =1= 0}. (10.2) 

For the set xB+yC, where x, y E IR+ and B, C C IR2 are nonempty convex 
sets, the area can be written as 

(10.3) 
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where v(B, C) is the mixed area of Band C, which is actually defined by (10.3); 
see, for example, Bonnesen and Fenchel (1948, p. 40). It can be shown that if 
C is a convex set in lR 2 , then 

J-l(C) :::; v(C, C) :::; 2J-l(C), (10.4) 

where the lower bound is attained if and only if C is centrally symmetric while 
the upper bound is attained if and only if C is a triangle. For a proof of these 
facts, see Bonnesen and Fenchel (1948, p. 105), where equations corresponding 
to (10.3) and (10.4) in higher dimensions also can be found. 

Of particular interest here is v(W, tV), since this functional is involved in the 
expression for E[~(2, N, m, W)], which is given in (10.14). To derive v(W, tV) 
for an arbitrary convex set W is not so easy. However, for centrally symmetric 
sets, such as discs and rectangles, and for triangles it is given in (10.4), and for 
arbitrary polygons a simple formula can be found in Eggleston (1958, p. 85). 

We will assume that the rectangle in which the points are distributed, A, is 
centered at the origin. The family of convex sets, W c lR 2 , with the properties 
that W + tV c A and that 0 is an interior point of W, is denoted by K. 

Let (X, A) be any measurable space. The total variation distance, dTV, 
between two probability measures J-l and v on X is defined to be 

dTV(J-l, v) = sup 1J-l(A) - v(A)I· 
AEA 

If the state space is discrete, then 

1 
dTV(J-l, v) = 2 L IJ-l{i} - v{i}l, 

iEX 

(10.5) 

and in this case convergence in total variation distance, dTV(C(Xn ), C(X)) ---7 0, 
is equivalent to {Xn} converging in distribution to X. 

10.3 Historical Background 

10.3.1 Multiple scan statistics 

The multiple scan statistic in one dimension is defined as follows. Let Xl, ... , XN 

be independently and uniformly distributed in A = [0, T] c lR, and let 
X(l),"" X(N) denote the ordered sample. For a fixed w, 0 < w < T, and 
m, 1 :::; m < N, the multiple scan statistic is defined as 

N-m 
~(l,N,m,w) = L Ji, (10.6) 

i=l 
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where 
Ji = { 1 if X(m~i) - X(i) ~ w, 

o otherwIse, 

i = 1, ... N - m. By letting A be a circle instead of an interval, and replacing 
N - m in the sum in (10.6) by N, we would get a torus version of this defintion. 
In contrary to the case of higher dimensions, where the torus convention will be 
used throughout, this convention will not be further discussed in one dimension. 

In higher dimensions, we assume that A c lRd is a d-dimensional rectangle 
in which N points are independently and uniformly distributed. Since there is 
no natural total order relation in lRd, d ~ 2, we cannot use the same definition 
of the multiple scan statistic as in one dimension. In this chapter, the d
dimensional multiple scan statistic ~(d, N, m, W) is defined as in (10.1), i.e., as 
the number of m-subsets which are covered by some translate of W, for a given 
convex set W c A. 

Note that Ii = 1 in the definition of the d-dimensional multiple scan statis
tic in (10.1), means that m points are "close together," while Ji = 1 in the 
definition in the one-dimensional case in (10.6), means that m + 1 points are 
"close together." Hence, m in the d-dimensional case, d ~ 2, corresponds to 
m - 1 in the one-dimensional case. 

In one dimension, the m-spacings are defined by 

Y (m) - X X 
i - (m+i) - (i), 

i = 1, ... , N - m. The relation between the ordered m-spacings, denoted by 

YeS,)),···, Yc.~2m)' and the multiple scan statistic is 

P(~(l, N, m, w) ~ i) = P(YrY;) ~ w). (10.7) 

The lack of a total order relation in higher dimensions also prevents the 
definition of spacings to be directly generalized. To get a relation similar to 
(10.7), which involves the multiple scan statistic ~(d,N,m, W), we introduce 

(10.8) 

where Ti = inf{y E lR+ : the ith m-subset E yW(x) for some x E A}. We will 

call Zi(m) the size of the ith m-subset. The relation between the ordered sizes 

zg)), i = 1, ... , (~), and the multiple scan statistic is 

P(~(d, N, m, W) ~ i) = P(Z~;)) ~ J.L(W)). (10.9) 

In one dimension, the multiple scan statistic has been studied by Glaz and 
Naus (1983) and Glaz et al. (1994). In the latter, several Poisson approxima
tions have been proposed and investigated by means of simulations. In particu
lar, a compound Poisson approximation, which was first derived by Roos (1993), 
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has been studied, and the simulations show that this is the most accurate of 
the suggested approximations. 

Barbour, Holst and Janson (1992) proposed a Poisson approximation for m
spacings in one dimension by means of the Stein-Chen method. By the relation 
(10.7), those results also hold for ~(1, N, m, w). 

Other references in which the continuous multiple scan statistic has been 
investigated, however without using this notion, are Eggleton and Kormack 
(1944), Silberstein (1945), and Mack (1948, 1949). The setting in these refer
ences is mainly one dimensional, but they also cover the two-dimensional cases 
when the scanning set W is a disc or a rectangle. Mack (1949) extended the 
reasoning in the two-dimensional case to arbitrary scanning sets. The cases of 
discs and squares are also studied by Aldous (1989). 

In the special case of m = 2 and a circular scanning set W, the number of 
m-subsets that are covered equals the number of pairs of points with interpoint 
distance less than the diameter of W. Convergence of this number to a Poisson 
limit has been discussed by Silverman and Brown (1978, 1979). 

Silverman and Brown (1978) have given the number of close pairs as an 
example of the classical U-statistic. Poisson approximation for U-statistics and 
sums of so-called dissociated variables are treated by Barbour and Eagleson 
(1984) and Barbour, Holst, and Janson (1992). In these two references, the 
Stein-Chen method is used to bound the total variation distance for Poisson 
approximations for the sums. 

10.3.2 Scan statistics 

The scan statistic Sw in one dimension is defined as the maximal number of 
points which can be found in some translate of an interval of a given length 
w < T, when there are N points uniformly and independently distributed in 
[0, T]. If we let St,Hw be the number of the points that lie in the interval 
Ct, t + w], then 

Sw = max StHw, 
Og:::;T-w ' 

In this case, there is no problem to generalize the definition to higher dimen
sions: fix the scanning set W, and let Sw be the maximal number of points 
which are covered by some translate of W. 

In this chapter, the scan statistic will not be considered. However, its rela
tion to multiple scan statistics and m-spacings should be noted: 

P(Sw ~ m) = PCYc,~-l) ~ w) = P(~(1, N, m - 1, w) ~ 1), 

P(Sw ~ m) = p(ZfG) ~ /-l(W)) = P(~(d, N, m, W) ~ 1), d ~ 2. 

In one dimension, various approximations for the distribution of the scan 
statistic can be found; see, for example, AIm (1983), Barbour, Holst, and Jan
son (1992), Gates and Westcott (1985), Glaz (1989), Janson (1984), and Naus 
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(1982). In two dimensions, the case of a rectangular scanning set has been 
treated by Loader (1991). General convex scanning sets in two and higher 
dimensions have been investigated by AIm (1997). Kulldorff and Nagarwalla 
(1995) and Kulldorff (1997) have studied scan statistics in two dimensions from 
a somewhat different perspective, mainly in an epidemiological context. 

10.4 The Probability of Covering a Given m-Subset 

Assume Xl ... ,Xm are independently and uniformly distributed points in the 
rectangle A C ffid and let W E K. In this section, we will derive the probability 

P(::Ix E A: Xl, ... ,Xm E W(x)) (10.10) 

by means of results in integral geometry, and give some historical background. 

First, the case of two points will be considered in a two-dimensional setting, 
so as to give some understanding of the formula for the probability (10.10), given 
in Theorem 1004.1. Given the position of Xl, the probability that Xl,X2 E 

W(x) for some x E A equals the quotient of the area of all possible positions 
for X2 such that both points are covered by some translate of W, and J.L(A): 

P( ::J A . X X W() I X = ) = J.L( {z : y, z E W(x) for some x E A}) 
::JX E . 1, 2 E x 1 Y J.L(A) . 

By the independence and uniform distribution of Xl and X 2 , and the torus 
convention, it does not matter where the first point Xl lies, and we can without 
loss of generality let Xl = O. 

Example 10.4.1 If WE K is a disc of radius r, the possible positions for the 
second point constitute a disc of radius 2r. Then, 

Example 10.4.2 Let W E K be a triangle. Figure 10.1 shows Wand the 
possible positions for the second point, given the position of Xl. As seen in the 
figure, this area is six times as large as that of the original triangle. Hence, 
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Figure 10.1: The possible area for the second point 

By these examples (which will turn out to be extreme, see Corollary 10.4.1), 
we learn that it is not only the area of the sets which is of importance for the 
probability of covering the points. 

To handle the case of a general W E K, we will view the problem in a 
different way. Recall that W = {-x: x E W} is the reflection of W at the 
origin. First, note that for arbitrary points x, y E lRd and W C lRd, 

XEW(y) {::;. x-yEW {::;. y-xEW {::;. YEW(x). 

From this equivalence, it follows that if Xl, ... ,xm E lR d, then 

:::Ix E lRd such that Xl, ... , Xm E W(x) 

if and only if 

:::Ix E lRd such that x E W(Xi), i = 1, ... , m, i.e. n~l W(Xi) i= 0. 

This result implies that 

P(:::Ix E A : Xl, ... , Xm E W(x)) = p(n~l W(Xd i= 0) 

when the torus convention is used. It is now easy to derive an expression for 
the probability in case of two points and a general convex set W E K. Since we 
may let Xl = 0, we are looking for the probability 

P(W n W(X2) i= 0) = P(X2 E {x : W n W(x) i= 0}). 

Now {x : W n W(x) i= 0} equals W + W by (10.2), and thus 

P(:::Ix E A : Xl, X2 E W(x)) P(W n W(X2) i= 0) 

J-l(W + W)IJ-l(A) 

2 (J-l(W) + //(W, W)) IJ-l(A) , 
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where the last equality follows from (10.3). What determines the probability is 
hence the area and the mixed area of the set, where the latter is dependent on 
the shape of the set. This carries over to the case of more than two points, as 
can be seen in Theorem 10A.l. 

In case of an arbitrary number of points, no proper proof of Theorem 1004.1 
will be given, but mainly references to previous results in integral geometry. 

As already mentioned, a consequence of using the torus convention is that 
we may assume that the first point lies at the origin, so that the probability we 
aim at is 

P(3x E A : 0, X2, ... , Xm E W(x)) = peW n W(X2) n ... , nW(Xm) i= 0). 

Because of the assumptions that the origin lies in the center of A and is an 
interior point of W, and of the restrictions on the sizes of W, W E lC, all 
vectors (X2, ... , xm) such that 

satisfy Xi E A, i = 2, ... , m, without using the torus convention. Hence, once 
the assumption that the first point lies at the origin is made, we may treat A 
as a "normal" d-dimensional rectangle. 

Since X2, ... , Xm are independently and uniformly distributed in A, the 
vector (X2, .. . , Xm) is uniformly distributed in the product space Am-I. Let 
J-lm- 1 denote the (m-1)-fold product measure of J-l, the d-dimensional Lebesgue 
measure. Now J-lm-l(Am- 1) = J-l(A)m-l, and 

peW n W(X2) n ... n W(Xm) i= 0) 
= J-lm - 1{(X2, ... , xm) : Xi E JRd, W n W(X2) n ... n W(Xm) i= 0} / J-l(A)m-l. 

To see the connection with integral geometry, we write 

J-lm- 1{(X2, ... , Xm) : Xi E JRd, W n W(X2) n ... n W(Xm) i= 0} 

= r ... r VO(W n W(X2) n ... n W(Xm))dX2··· dxm, (10.11) iRd iRd 
where 

Vr(C)={ 1 ifCi=0, 
o 0 if C = 0. 

The functional Vo(C) is one of the so-called intrinsic volumes of C, Vi(C), 
i = 0, ... , d, defined for compact, convex subsets of JRd. 

As early as 1937, explicit expressions for (10.11) were given for m = 2,3 
in two and three dimensions. Blaschke (1937) discussed both dimensions while 
Berwald and Varga (1937) handled three dimensions. In a probabilistic context, 
the planar case including an iterated version (Le., for an arbitrary number of 
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sets) was rediscovered by Miles (1974), and the two- and three-dimensional 
cases by Mansson (1996). 

In an arbitrary dimension and for general Vi, the integral in (10.11) is han
dled in Weil (1990), where it is a special case of an even more general situation. 
Hence, the formula for p(n~l W(Xi) =I 0) follows directly in an arbitrary di
mension. However, in higher dimensions, the formulas involve complicated func
tionals for which explicit descriptions are known only in special cases. Since the 
setting in this chapter is mainly two dimensional, we present the probability 
only in this case here. 

Theorem 10.4.1 Suppose W E lC, and that Xi, i = 1, ... , m, are indepen
dently and uniformly distributed points in A C lR2 , and m = 2,3, .... Then, 
using the torus convention, 

P(:3x E A: Xl, ... ,Xm E W(x)) p(n~l W(Xi) =I 0) 

( V(VV,W)) ~(w)m-l 
m + m(m - 1) ~(W) ~(A)m-l . 

The following corollary follows directly from Theorem 10.4.1 and (10.4). 

Corollary 10.4.1 Under the assumptions of Theorem 10.4.1, 

where there is equality on the left if and only if W is centrally symmetric and 
on the right if and only if W is a triangle. 

It should be noted that, in fact, no more effort is needed to handle 
p(n~l Wi(Xi) =I 0), where the sets Wi E K can be of different shape, than 
to derive the probability in Theorem 10.4.1. The result in this generalized case 
looks as follows: 

Theorem 10.4.2 Suppose Wi E K, i = 1, ... , m, and that Xi, i = 1, ... , m, 
are independently and uniformly distributed points in A C lR2 , and m = 
2,3, .... Then, using the torus convention, 
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When not all Wi'S are equal, we cannot reformulate the event nZ;1 Wi (Xi) i= 0 
in terms of covering points, and this case is hence not of any primary interest 
here. 

The discussions in this chapter will be carried on in terms of covering points. 
But we shall bear in mind that when reading, for instance, "m uniformly dis
tributed points are covered by W," we equally well can read "m uniformly 
translated copies of W have a nonempty intersection." 

10.5 Poisson Approximation 

In this section, we will examine approximation of the multiple scan statistic in 
two dimensions, ~ = ~(2, N, m, W), by a Poisson variable with parameter E[~l. 
This will be done in terms of the total variation distance in Subsection 10.5.1, 
and by means of simulations in Subsection 10.5.2. Without loss of generality, 
we will henceforth assume that I-l(A) = l. 

First, we need to find the expectation of ~ which will be denoted by A. This 
is easily done by results in the previous section. Recall from the introduction 
that ~ is the number of m-subsets which are covered by some translate of W, 
which can be written as 

where 

(~) 

~=Lh 
i=l 

(10.12) 

1 if there exists x E A such that the ith m-subset is covered by W (x), 
o otherwise. 

From Theorem 10.4.1, we know that 

P(3x E A: Xl, ... ,Xm E W(x)) 

( m + m(m - 1) l/~~~) ) I-l(W)m-l, (10.13) 

i = 1, ... , (:;;.), and hence 

(10.14) 

The suggested approximation is thus 

(10.15) 

where A is given in (10.14). 
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10.5.1 Total variation distance 

We will now theoretically examine the approximation suggested in (10.15). This 
will be done in terms of total variation distance, which has been defined in 
(10.5). 

~ is a sum of indicators, where those pairs of indicators which concern 
m-subsets with common points are dependent while those with no points in 
common are independent. In a situation such as this, the local approach of the 
Stein-Chen method is a suitable mean to get a bound on the total variation 
distance between the distribution of ~ and a Poisson variable with parameter 
'x. 

Before applying the Stein-Chen method to the problem at hand, it will be 
stated in general terms. Following the notation of Barbour, Holst, and Janson 
(1992), let r be an arbitrary finite collection of indices and let 

W = EaEr la and ,x = E[W], 

where la, a E r, are, possibly dependent, indicator variables. For each a E r, 
let r\ { a} be divided into two subsets; one consisting of those (3 E r for which 
1{3 is weakly dependent on la, and the other consisting of the indices of the 
indicators which are strongly dependent on la. Denote these subsets by r~ 
and r~, respectively, and let 

The local approach of the Stein-Chen method is suitable to use when there 
is a natural dependence structure which allows every pair of indicators to be 
classified in this way. 

Theorem 10.5.1 [Theorem 1.A of Barbour, Holst, and Janson {1992}]. Let r 
be an arbitrary finite collection of indices. With the above definitions, for any 
choice of the index sets r~, a E r, 

dTv(C(W), Po(,x)) :::; 2)E[la]2 + E[la]E[Za] + E[laZa]),X-l(l - e-A) 

aEr 
+ L 'TIa min(l,'x -1/2), (10.16) 

aEr 

where 'TIa = E [lE[la I (I{3, (3 E r~)] - E[la]I]· 

In our case, r = {I, ... , (;;;:)}, and a suitable choice of q, i E r, is 

r s Um-lrs 
i = 1=1 i,l' 

where 

ri,l = {j f= i: the ith and jth m-subsets have 1 common points} 
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are disjoint. Then, Ii and Ij are independent if j Err, and hence 7]i = 0, 
so that the last sum in (10.16) is zero. Furthermore, note that the number of 
indices in r: I, i.e., the number of m-subsets with l points in common with the 

ith m-subse~, is (7)(~~7). Now, for each l = 1, ... , m - 1 choose any of the 
indicators pertaining to an m-subset that has l particles in common with the 
1st m-subset, and denote it by Ii. Mansson (1996) has shown that 

E[I;[' + E[I;[E[Z;[ ~ E[h[' (1+ ~ (7) (:' -::'7) ) 
< E[I-1l2 (:)m2/N, 

and 

E[l;Zil };;1 (7) (:' -::.7) E[ hIE[I! [ h ~ 11 

< };;1 (7) (:'-::.7)E[hll'(W + w)m-', 

for all i = 1, ... , (~). Inserting these estimates in the bound in Theorem 10.5.1 
yields the following result. 

Theorem 10.5.2 Let ~ and A be defined by (10.12) and (10.14), respectively. 
Then, 

It should be noted that it is E[IiZi], i = 1, ... , (~), and hence the sum in the 
bound in Theorem 10.5.2, which handles the dependence between the indicators. 
We will see later that this sum, or to be more precise, the term which concerns 
m-subsets with m - 1 common points (l = m - 1), is the critical part in the 
approximation. 

We will now consider how the bound in Theorem 10.5.2 behaves as N ---+ 00 

for sequences of sets of decreasing area. Let {WN }1\?=1 be a sequence of sets 
in K, {~N }1\?=1 the corresponding multiple scan statistics, and let AN = E[~Nl· 
To get a bound on the variation distance valid for all shapes of the set W N we 
use that 

/L(WN + WN) ~ 6/L(WN) 

by (10.3) and (10.4). Furthermore, the expectation of ~N, given in (10.14), can 
be bounded by 
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by Corollary 1004.1. These bounds, together with (1 - e-.AN ) ~ min(l, AN), 
inserted in Theorem 10.5.2, yield the following result. 

Theorem 10.5.3 

(i) For any sequence of sets, {WN}N=l1 WN E K, 

(ii) For a sequence of sets {WN }N=l' WN E lC, with J.L(WN) = O(N-t ), where 
t > 1 is constant, the bound of the total variation distance tends to zero 
and is of the order 

if 1 < t ~ m / (m - 1), 
ift ~ m/(m -1). 

Remark 10.5.1 Note that it is the term in the sum in Theorem 10.5.2 for 
which 1 = m - 1 which is critical and determines the rates in the second part of 
the theorem above. This term concerns the dependence between two indicators 
connected to m-subsets with m - 1 common points. Hence it is, as expected, 
the tendency of clumping which is troublesome in the Poisson approximation. 

Remark 10.5.2 The bound on the total variation distance tends to zero for 
sequences {WN}N=l such that J.L(WN)N ---+ O. By (10.14), this condition is 
equivalent to ANN-1 ---+ O. 

In Theorem 10.5.3 (ii) , we can see that the rate of convergence is changed 
at the value t = m/(m - 1) if J.L(WN) = O(N-t ). We will now consider how 
AN behaves in the special case where J.L(W N) = cN-t, C > 0 and t E JR, which 
further illustrates the special role of t = m/(m-1). Then, the expected number 
of m-subsets which are covered by some translate of W N is 

The limit of this expectation depends on the value of t: 

AN ---+ { ~ 
and if t = m / (m - 1) 

if t < m/(m - 1) 
if t > m/(m - 1) 

as N ---+ 00, 

m2cm - 1 (2m2 - m)cm - 1 
---'-, - ~ lim inf AN ~ lim sup AN ~ ..:.....---~--

m. n-HX) n->oo m! 

(10.17) 

(10.18) 
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where the bounds follow by Corollary 1004.1. If WN are of the same shape for 
all N, then lI(WN' WN)I/L(WN) = a for some 1 ::; a::; 2, and 

AN ~ (m + m(m - 1)a)cm- 1/m! as N ~ 00 

if t = m/(m - 1). 
Of particular interest is when AN is held constant as N ~ 00. This means 

that /L(WN) = O(N-m/(m-l)), and the following corollary follows immediately 
from Theorem 10.5.3 (ii). 

Corollary 10.5.1 Let {WN }N=l be a sequence of sets such that WN E K and 
assume that E[~Nl = A for all N where 0 < A < 00. If £(Z) = Poisson(A), then 

1) 
~N ~ Z as N ~ 00 

at rate O(N-l/(m-l)). 

Remark 10.5.3 This result can be compared with the Poisson approximation 
for m-spacings in one dimension which is carried out by means of the Stein
Chen method in Chapter 7 of Barbour, Holst, and Janson (1992). There, it is 
shown that the distribution of the number of "small" m-spacings converges to 
a Poisson distribution at the rate O(N-1/ m) as N ~ 00, when the expectation 
is held constant. Recall that in Section 10.1, it was argued for that m in the 
context of m-spacings in one dimension corresponds to m-1 in our case. Hence, 
the bounds in these two cases are of the same order. 

This subsection is concluded by an application of Theorem 10.5.3. Let SWN 

be the maximal number of N independent and uniformly distributed points on 
A which are covered by WN(X) for some x E A, i.e., the scan statistic. The 
following theorem shows that the asymptotic distribution of SWN for sequences 
of sets decreasing at a certain rate, is either concentrated in one or in two values. 

Theorem 10.5.4 Suppose that m E {2, 3, ... }, c > 0, and let {WN}]'" be a 
sequence of sets in K with /L(WN) = cN-t. 1ft = m/(m - 1) and AN ~ A as 
N ~ 00, then 

{ 
e->' i = m - 1 

P(SWN = i) ~ 01 - e->' i = m as N ~ 00. 

i -=I m -I,m 

If (m + l)/m < t < m/(m - 1), then 

P(SWN = i) ~ {~ ~;: as N ~ 00. 

Remark 10.5.4 Note that the condition AN ~ A is equivalent to that 
lI(W N, W N ) I /L(W N) ~ a for some 1 ::; a ::; 2. This condition is satisfied, 
for instance, if W N are of the same shape for all N. 

A proof of this theorem has been given by Mansson (1996). 
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10.5.2 Simulations 

In this subsection, the accuracy of the approximation which was proposed in 
(10.15) is evaluated by simulations. Here A is a square, and as earlier, we let 
p,(A) = 1. 

Recall that the suggested approximation of P(~ :s: l) is 

I 

'"' -Ad/., ~e 1\ z., 
i=O 

(10.19) 

where A, given in (10.14), depends on N, m, p,(W) and on the functional 
v(W, W), which is determined by the shape of W. In Table 10.1, the empirical 
distribution of P(~:S: l) is compared to (10.19) in the case where W is a square 
of area 82 . In this case, 

A = (:)m2s2(m-l) 

by Corollary 10.4.1. In Table 10.2, the same comparison is made, but with an 
equilateral triangle W with area t2 /2, which gives 

again by Corollary 10.4.1. 
As can be seen from the tables, the approximations perform well in the 

examples chosen here when m = 2, but as m increases the approximations 
rapidly become poor. The reason is that the covered m-subsets tend to occur 
in clumps, and the larger m gets, the worse this problem gets. If, for instance, 
m+k points are covered by W(x), then (m~k) m-subsets are covered by W(x). 
This was also discussed in Remark 10.5.1, and in Corollary 10.5.1 it was shown 
that the total variation distance tends to zero at the rate O(N-1/(m-l)) as 
N --+ 00. It can also be seen in the tables that when m gets large, there is a 
tendency for the empirical distribution of ~ to get more spread out than that of 
the approximating Poisson distribution. This also agrees with the conclusion 
that an approximating distribution allowing for clumps is more appropriate to 
use. A natural candidate is a suitably chosen compound Poisson distribution. 
This is further discussed in Section 10.7. 
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Table 10.1: Comparison of Poisson approximations to P(~ ::; l) with 
simulated values when W is a square of area 82 

N m 8 l empir. (10.19) N m 8 l empir. (10.19) 
100 2 .01 0 .1364 .1381 1000 2 .002 0 .0003 .0003 

1 .4115 .4114 5 .1908 .1920 
2 .6847 .6821 10 .8161 .8167 
3 .8626 .8607 15 .9917 .9918 
4 .9492 .9491 20 .9999 .9999 
5 .9837 .9841 1000 2 .005 30 .0015 0016 
6 .9953 .9957 40 .0858 .0872 

100 2 .05 30 .0011 .0020 50 .5415 .5403 
40 .0916 .0974 60 .9285 .9288 
50 .5764 .5657 70 .9970 .9971 
60 .9348 .9374 1000 3 .005 0 .4131 .3927 
70 .9960 .9976 1 .7668 .7600 

100 3 .03 0 .3680 .3076 2 .9258 .9313 
1 .7050 .6703 3 .9749 .9848 
2 .8758 .8841 4 .9910 .9972 
3 .9376 .9680 5 .9969 .9996 
4 .9685 .9928 1000 3 .01 5 .0105 .0029 
5 .9852 .9986 10 .1879 .1207 

100 3 .05 0 .0016 .0001 15 .5842 .5727 
5 .2416 .1100 20 .8652 .9189 
10 .6848 .6946 25 .9678 .9940 
15 .9000 .9760 30 .9934 .9998 
20 .9701 .9995 1000 4 .01 0 .5776 .5155 

100 4 .05 0 .5300 .3752 1 .8662 .8570 
1 .8034 .7430 2 .9556 .9702 
2 .9076 .9233 3 .9774 .9952 
3 .9400 .9821 4 .9819 .9994 
4 .9491 .9995 5 .9910 .9999 

100 4 .08 5 .1292 .0010 1000 4 .015 0 .0067 .0005 
10 .3827 .0634 3 .1831 .0573 
15 .6000 .4231 6 .5059 .3716 
20 .7425 .8418 9 .7376 .7709 
25 .8338 .9822 12 .8695 .9555 
30 .8913 .9991 15 .9333 .9951 
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Table 10.2: Comparison of Poisson approximations to P(~ :::; l) with 
simulated values when W is a triangle of area t2/2 

N m t l empir. (10.19) N m t l empir. (1O.19) 
100 2 .01 0 .2241 .2265 1000 2 .005 20 .0012 .0013 

1 .5637 .5629 30 .1247 .1256 
2 .8143 .8126 40 .6984 .6973 
3 .9364 .9362 50 .9795 .9798 
4 .9815 .9821 60 .9997 .9997 
5 .9953 .9958 1000 3 .01 0 .0042 .0020 

100 3 .05 0 .0525 .0226 3 .1766 .1317 
2 .3748 .2705 6 .5873 .5692 
4 .6854 .6698 9 .8668 .8992 
6 .8582 .9101 12 .9666 .9883 
8 .9382 .9843 15 .9924 .9992 
10 .9720 .9981 1000 4 .02 0 .0023 .0000 

100 4 .07 0 .3736 .1990 5 .2609 .1000 
2 .8117 .7796 10 .6769 .6726 
4 .9077 .9755 15 .8833 .9721 
6 .9588 .9986 20 .9565 .9994 
8 .9786 1.0000 25 .9829 1.0000 

10.6 Point Processes 
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The purpose of this section is to introduce three point processes determined by 
positions and sizes of the m-subsets which are covered by some W (x), and con
sider approximation of these processes by Poisson processes. The accuracy of 
the approximations will be examined by means of bounds on the total variation 
distance between the processes. It is worth noting that the same bounds are 
valid also for the total variation distance between the distribution of any func
tional of the approximated process and of its corresponding Poisson process. 
For a more detailed exposition than the one given below, the reader is referred 
to Mansson (1997). 

The point processes are defined as follows. Let the leftmost points (the 
lowest of these in case of ambiguity) in the m-subsets which actually are covered 
by some translate of W constitute the points of the point process SA on A. 

Recall from (10.8) that the size of the ith m-subset zim ) , is defined to be 
T?J.L(W), where ~ is the smallest real number such that TiW(X) covers the ith 

m-subset, for some x E A. If the normalized sizes zim ) / J.L(W) are attached 
to the points of SA, we get a point process on the space A x [0,1]' which we 
denote by S. These sizes are identically, but not independently, distributed 
with distribution function 

F(y) = P(::Ix E A: Xl, .. ' ,Xm E yW(x) l::Ix E A: Xl, ... ,Xm E W(x)) 
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(m + m(m - l)v(yW, yW)/ JL(YW)) JL(yw)m-l 

(m + m(m - l)v(W, W)/ JL(W)) JL(w)m-l 

y2(m-l) , (10.20) 

a ~ y < 1, by Theorem 10.4.1 and since v(yW, yW) y2v(W, W) and 
JL(YW) = y2JL(W). If we drop the positions and just consider the sizes, the 
result is a point process on [0,1], which we denote by 3[0,1]' 

All these three processes can be written as 

(~) 

L 1i 8Yi, 
i=1 

where 8y denotes the unit mass at y, and the state space for {Yi}, denoted by 
y, is A, [0,1] or A x [0,1]. We will first consider 3, for which Y = A x [0,1], 
and we need to derive the measure on Y defined by 

(~) 
A(A) = L Ai(A), 

i=1 

where 
Ai(A) = P(Ii = 1, Yi E A), 

i = 1, ... , (~). The position of an m-subset which is covered by some translate 
of W, i.e., its leftmost point, is uniformly distributed in A, since the m points 
themselves are uniformly and independently distributed in A, and the torus 
convention is used. The size of an m-subset which is covered takes its value in 
[0,1] and has density function 

2(m - 1)y2m-3 

by (10.20). Furthermore, the size is independent of the position of the m
subset. With p = E[h] and A as defined in (10.13) and (10.14), respectively, 
the measure Ai is thus given by 

1 
dAi(X, y) = p JL(A) 2(m -1)y2m-3dxdy = p2(m _1)y2m-3dxdy, (10.21) 

i = 1, ... , (~), and we get 

dA(X, y) 

(10.22) 

In the theorem below, a bound on the total variation distance between £(3) 
and a Poisson process with intensity A is given. 
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Theorem 10.6.1 Let 3 = L:El Iiby;, be the point process on A x [0,1] defined 
above and let A be given by (10.22). Then, 

Remark 10.6.1 The bound in the theorem above equals the bound on the 
distance between £(~) and a Poisson variable with parameter A given in The
orem 10.5.2 if A ~ 1. If A > 1, the bound is unfortunately not as good in the 
process case. 

Remark 10.6.2 Since 3A and 3[0,1] and the corresponding Poisson processes 
are obtained as measurable mappings from 3 and Poisson(A), respectively, it 
follows that 

dTv(£(3y), Poisson(AY)) ~ dTV(£(3), Poisson(A)), 

where Y = A or [0,1]' and Ay is the measure corresponding to (10.22). Hence, 
the bound in Theorem 10.6.1 holds also when these processes are concerned. 

A proof of Theorem 10.6.1 has been given by Mansson (1997). 
Let {3N }N=l and {AN }N=l be the sequences of processes and measures, re

spectively, introduced above, which correspond to the sequence of sets {WN }N=l. 
As noted in Remark 10.6.1, the bound on dTv(£(3N), Poisson(AN)) in Theo
rem 10.6.1 equals the bound on dTv(£(~N),Poisson(AN)) in Theorem 10.5.2 
if )IN ::; 1, and is not as good when AN > 1. To obtain convergence of 
dTv(£(3N),Poisson(AN)) to zero in the latter case, we can therefore not allow 
the areas of the sets to decrease as slowly as in the previous case of sequences 
of variables, and the counterpart of Theorem 10.5.3 reads as follows. 

Theorem 10.6.2 Let 3N and AN be as defined in Theorem 10.6.1. 

(i) For any sequence of sets {WN }N=l' WN E lC, 

m-1 
dTv(£(3N),Poisson(AN)) = O(L N 2m- 1M(WN)2m-I-1). 

1=1 

(ii) For a sequence of sets {WN }N=l' WN E lC, with M(WN) = O(N-t ), where 
t> (m + l)/m is constant, this bound tends to zero and is of the order 

dTV(£(3N),Poisson(AN)) = O(Nm(l-t)+l). 

Note that the condition for convergence in the variable case is that M(W N)N --7 

0, which does not depend on m. Here, the condition is M(WN )N(m+1)/m --70; 
the smaller the m, the faster must the areas decrease. 
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10.7 Miscellaneous 

10.7.1 Higher dimensions 

A natural extension of this chapter is to generalize the results to higher dimen
sions. The approximations make use of the probability of covering a number of 
independently and uniformly distributed points with some translate of a con
vex set. In three dimensions, this probability can be found in Mansson (1996) 
and, as shown in Section 10.4, the probability in an arbitrary dimension can be 
obtained directly from results in Weil (1990). It should be straightforward, but 
tedious, to extend the approximation results to an arbitrary dimension. 

10.7.2 The unconditional case 

In this chapter, we have studied the conditional case, i.e., when N, the total 
number of points, is fixed. In the unconditional case, the number of points in A 
is Poisson distributed rather than being fixed. In that case A, i.e., the expected 
number of covered m-subsets, becomes slightly different: in the definition of A 
given in (10.14), (~) should be replaced by ()ffi 1m!, if the expected total number 
of points in A is (). 

To derive results in the unconditional case, corresponding to these presented 
here, should be easy, and it would be surprising if it asymptotically would be 
any different. 

10.7.3 The torus convention 

In this chapter, the torus convention has been used throughout. The reason for 
this is computational convenience: it is then possible to calculate the exact pa
rameters and easier to derive bounds on the total variation distances. However, 
since this convention does not seem very natural in applications, it is desirable 
to find approximations also when the convention is not used. For simple sets 
such as rectangles, it should not be difficult to find the exact parameter, and 
a bound on the total variation distance can be found by adding a term to the 
bound derived here. This new term is of minor importance if the sets are small 
enough, in which case any approximation suggested here will be reasonable. 
This is further discussed by Mansson (1996, p. 55). 

10.7.4 Compound Poisson approximation 

Recall that the multiple scan statistic e(d,N,m, W), as defined in (10.1), is a 
sum of (~) indicators, where the ith indicator is 1 if the ith m-subset is covered 
by some translate of W. The indicators pertaining to m-subsets with common 
points are not independent, but have a positive dependence, and the m-subsets 
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that are covered tend to occur in clumps. The more common the points and the 
larger the sets, the stronger is the dependence. And, consequently, the worst is 
the Poisson approximation suggested here, which can be seen in the simulations 
and by the bounds on the total variation distance. Then, it seems natural to 
approximate ~(d, N, m, W) by some distribution other than Poisson, and the 
point process determined by the positions of the covered m-subsets by some 
process in which clumps are more likely to occur than in the usual Poisson 
process. Natural candidates are the compound Poisson distribution and the 
compound Poisson process. However, it is not obvious how to carry out such 
approximations. One problem is how to define clumps in such a way that the 
approximations can be theoretically examined, for instance, by means of Stein's 
method. Another problem is to calculate the parameters in the approximating 
distribution. 

AIm (1983) suggested a method to handle the problem with clumping for 
scan statistics in one dimension. AIm (1997) generalized the technique to two 
and three dimensions. The scanning set can be any convex set, and the accuracy 
of the suggested approximations is verified by means of simulations. 

In Corollary 10.5.1, it is stated that if A is kept fixed as N -----> 00, then 
~(2, N, m, W N) converges to a Poisson variable with parameter A at the rate 
O(N-1/(m-l)). As noted in Remark 10.5.3, it has been shown by Barbour, 
Holst, and Janson (1992) that the rate at which the distribution of the number 
of small m-spacings converges to a Poisson distribution is O(N-l/m ). Recall 
that m - 1 in our case corresponds to m in the one-dimensional case so that 
the rates are equal. Roos (1993) has shown that a suitably chosen compound 
Poisson approximation for the number of small m-spacings yields rates of order 
O(N-1) for all m. It might be possible that a compound Poisson approximation 
would give rates of this order also in the case of multiple scan statistics in two 
and higher dimensions. 
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A Start-Up Demonstration Test Using a Simple 
Scan-Based Statistic 

Markos v. Koutras and N. Balakrishnan 

University of Athens, Athens, Greece 
McMaster University, Hamilton, Ontario, Canada 

Abstract: Recently, start-up demonstration tests and various extensions of 
them (in order to accommodate dependence between the trials, to allow for 
corrective action to be taken once the equipment fails for the first time, etc.) 
have been discussed in the literature. In this chapter, we propose a start-up 
demonstration test using a simple scan-based statistic that would facilitate an 
early rejection of a potentially bad equipment. We then derive the probability 
generating function of the waiting time for rejection of an equipment and the 
mean and variance of the waiting time. We also present some recurrence rela
tions satisfied by the probability mass function and the moments. In addition, 
we indicate how the moment estimator for the unknown probability of success 
(p) of the individual trials can be derived. The case of start-up demonstra
tion testing when consecutive attempts are dependent in a Markovian fashion 
is discussed next. Finally, we present a numerical example to illustrate the test 
proposed and the usefulness of the results established in this chapter. 

Keywords and phrases: Start-up demonstration testing, scan statistics, 
Bernoulli trials, probability generating function, method-of-moment estimation, 
Markov dependent trials 

11.1 Introduction 

A start-up demonstration test, as first discussed by Hahn and Gage (1985), 
involves successive attempted start-ups of an equipment with each attempt 
resulting in either a success or a failure and accepts the equipment if a pre
specified number (c) of consecutive successful start-ups occur on or before a 
pre-specified number of attempts. While Hahn and Gage (1985) explained prob-
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ability calculations for such start-up demonstration tests, Viveros and Bala
krishnan (1993) discussed some inferential methods (for the unknown probabil
ity of a successful start-up, p) based on data obtained from start-up demonstra
tion tests. Viveros and Balakrishnan (1993) and Balakrishnan, Balasubrama
nian, and Viveros (1995) studied the start-up demonstration testing problem 
after allowing the outcomes of successive attempted start-ups to be depen
dent in a Markovian fashion [instead of being independent as in the original 
formulation of Hahn and Gage (1985)]. Balakrishnan, Balasubramanian, and 
Viveros (1995) also considered the start-up demonstration testing under cor
rective action model which allows for a corrective action to be taken by the 
experimenter immediately after observing the first failure (Le., after the first 
failed attempt). An extension of the start-up demonstration testing in which the 
outcomes of successive attempted start-ups have a higher-order Markov depen
dence has been discussed recently by Aki, Balakrishnan, and Mohanty (1996). 
In a similar vein, Balakrishnan, Mohanty, and Aki (1997) have discussed the 
start-up demonstration testing with corrective actions under the higher-order 
Markov dependence model. For a synthesis of all these developments and work 
on related waiting time problems, we refer the interested readers to the book 
by Balakrishnan and Koutras (1999). 

In this chapter, we first propose a start-up demonstration test using a simple 
scan-based statistic, which is as follows. Let an equipment be subjected to 
successive attempts to start-up. Then: 

(i) If the equipment fails to start in any of the first r - 1 attempts, an 
additional failure in any subsequent attempt will lead to the rejection of 
the equipment; 

(ii) If the equipment starts successfully in the first r -1 attempts, the equip
ment will be rejected only if two attempted start-ups lying less than k 
places apart result in failures; 

(iii) If neither (i) nor (ii) occurs in a pre-specified number of attempts to start 
(say, N), then the equipment is accepted. 

Observe that in (i) we regard it to be very important for the equipment to 
succeed in the first r - 1 trials and that if this does not happen, then the exper
imenter becomes very strict and does not allow any other unsuccessful start-up 
till the end of the testing process. Observe also that in (ii) the equipment is 
being rejected using a simple scan-based statistic with a window of size k. 

Let Xi correspond to the outcome of the ith start-up attempt, taking on the 
value 1 if it is successful and the value 0 if it is a failure. Let the corresponding 
probabilities be p and q = 1 - p, respectively. Let us denote the waiting time 
for the rejection of the equipment by T. Finally, let us denote the probability 
mass function of T, viz., P(T = n), by g(n) and the probability generating 
function of T, viz., I:~=og(n)zn, by G(z). 
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In this chapter, we first derive a recurrence relation for the probability mass 
function g(n) and also an explicit expression for the probability generating 
function G(z). Then, from G(z) we also derive an explicit expression for the 
mean and variance of the waiting time for rejection of the equipment and a 
recurrence relation for determining the higher-order moments. We then show 
that the mean waiting time is monotonically decreasing in q and use this fact to 
suggest a method-of-moment estimator for the unknown parameter p. Next, we 
present some results for the problem when the underlying attempts for start-up 
on the equipment are dependent in a Markovian fashion. These results naturally 
generalize the corresponding results based on Bernoulli trials presented in the 
earlier sections. Finally, we present a numerical example to illustrate the start
up demonstration testing procedure proposed in this chapter and also some 
applications of the results presented here. 

11.2 Probability Mass Function of T 

With g(n) denoting the probability mass function of the waiting time variable 
T, it is clear that 

g(O) = g(l) = 0 and g(n) = (n - l)q2pn-2 for 2 :s; n :s; r. 

For n > r, we may write 

g(n) = P(T = n and Xi = 0 for exactly one i E {1,2, ... ,r -I}) 

+ P(T = n and Xl = X2 = ... = X r - l = 1) 

P(Xn = 0 and Xi = 0 for exactly one i E {I, 2, ... , r - I} 

and Xi = 1 for i = r, r + 1, ... , n - 1) 

+ P(XI = ... = Xr-l = 1 and the waiting time for the first 

appearance of two failures which lie at most k places apart 

in the sequence {Xr, X r+l , ... } is n - r + 1). 

If we now use f(n) to denote the probability mass function of the waiting time 
for the first appearance of two failures separated by at most k - 2 successes in 
a sequence of Bernoulli trials with success probability p = 1- q, then g(n) may 
be expressed as 

g(n) = (r - l)q2pn-2 + pr-l f(n - r + 1), n > r. 

Probability mass function f(n) satisfies the recurrence relations [see Koutras 
(1996)] 

f(n) (n - l)q2pn-2 = pf(n - 1) + q2pn-2 for 2 :s; n :s; k, 

f(n) p f(n - 1) + qpk-l f(n - k) for n > k (11.1) 
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with initial conditions f(O) = f(l) = O. Thus, after computing f(n) recursively 
from (11.1), the probability mass function g(n) of T can be determined by 

g(n) o for n = 0,1 

(n - 1)q2pn-2 for 2 ::; n ::; r (11.2) 

(r - 1)q2pn-2 + pr-l f(n - r + 1) for n > r. 

11.3 Probability Generating Function of T 

From (11.2), the probability generating function of the waiting time variable T 
can be written as 

Noting that 

00 

n=r 

r-l 

L (n - 1)(pz)n-2 
n=2 

and 

00 

00 

L g(n)zn 
n=O 

r 00 

L(n _1)q2pn-2 zn + L (r _1)q2pn-2 z n 

n=2 n=r+l 
00 

+ L pr-l f(n - r + l)zn. 
n=r+l 

(pzr-2 

1- pz ' 

1 ~ d ( )n-l 
-~- pz 
p n=l dz 

1 - (r - 1) (pzr-2 + (r - 2)(pzr-1 

(1-pz)2 

00 

L f(n - r + l)zn-r+1 
n=r+l n=2 

( z)2 {l_(pz)k-l} 
q I-pz 

1- pz - qpk-lzk 

(11.3) 

[see Koutras (1996)], substituting all these expressions in (11.3) and simplifying, 
we obtain 

G(z) = (1 ~z~:)2 {1- (r - 1)(pzr-2 + (r - 2)(pzr-1 } 
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+ (1' _ 1) ( q z ? (pz y-2 + (pZ r-1 -:----O(-=-q Z-:-) 2..,...:{'-1_---'(=-pZ-'-)_k-"""7"1..::....,} ,.---;-:-
1 - pz (1 - pz)(1 - pz - qpk-lzk) 

(11.4) 

The above probability generating function can also be derived by direct 
algebraic approach. In order to do so, let us first note that the rejection of an 
equipment can occur in one of the following three mutually exclusive ways: 

A: 2 F's (failures) within the first l' - 1 attempts, 

B: 1 F in the first l' -1 attempt and the second F on or after the 1'th attempt, 

C: No F in the first l' - 1 attempt, but on or after the 1'th attempt, 2 F's 
occur (for the first time) within a window of k attempts. 

Clearly, the contribution of A to the probability generating function of T is 
given by 

Next, for B, by noting that a typical sequence of outcomes is given by 

12 ···1'-11'1'+1··· F 
'"-,..---' ~ , 
1 F & (r-2)S'S ;:::0 S 

(11.5) 

we obtain the contribution of B to the probability generating function of T as 

(1' - 1)qz(pzy-2{1 + pz + (pz)2 + .. ·}qz 
(qz)2(pz)r-2 

(1' - 1) . 
1- pz 

Finally, for C, we note that a typical sequence of outcomes is given by 

12···1'-11'1'+1···F 
~~ 

all S's ;:::0 S 

S···SFS···SF······S···SFS···SF 
~ '--v--' ~ ~ , 

;:::k-l ;:::k-l ;:::k-l ~k-2 .. 
£ times, £;:::0 

and its contribution to the probability generating function as 

(pzr-1{1 + pz + (pz)2 + .. ·}qz [{ (pz)k-l + (pz)k + ... } qZr 

x {1 + pz + (pz)2 + ... + (pz)k-2} qz 

(pz)r-l~ {(pZ)k-l~}£ 1 - (pz)k-l qz. 
1 - pz 1 - pz 1 - pz 

(11.6) 
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Upon adding the above expression for all possible values of P over 0 to 00, we 
obtain the contribution of C to the probability generating function of T as 

Gc(z) = (pzy-l(qZ)2 1 - (pz)k-l f= {(Pz)k-l~}£ 
(1-pz)2 £=0 1-pz 

T-l 2 1- (pz)k-l 
(pz) (qz) (1- pz){l _ pz _ qpk-lzk} . (11.7) 

By adding the expressions of GA(Z), GB(Z) and Gc(z) in (11.5), (11.6) and 
(11.7), respectively, we simply obtain the probability generating function of the 
stopping time variable T as presented earlier in Eq. (11.4). 

Furthermore, by combining (11.1) and (11.2), we can show that 

g(n) 0 forn=O,l 

(n - 1)q2pn-2 for 2 ~ n ~ k + r - 1 

pg(n - 1) + qpk-lg(n - k) - (r - 1)q3pn-3 for n ~ k + r. 
(11.8) 

Thus, the probability mass function of T can be determined easily in a recursive 
manner from (11.8). 

Alternatively, by rewriting the probability generating function expression in 
Eq. (11.4) as 

(1- pz)2(1- pz - qpk-lzk)G(z) 
q2z2 _ q2pz3 _ q3pk-l zk+2 _ q2pT+k-2 zT+k + q2pT+k-2 zT+k+1 

(11.9) 

and comparing coefficients of zn on both sides of (11.9), we obtain the following 
relationships: 

g(2) = q2, 

g(3) - 3pg(2) = _q2p, 

g(n) - 3pg(n - 1) + 3p2g(n - 2) - p3g(n - 3) = 0 for n = 4, ... , k + 1, 

g(n) - 3pg(n - 1) + 3p2g(n - 2) - p3g(n - 3) - qpk-lg(n - k) 

+ 2qpkg(n - k -1) - qpk+1g(n - k - 2) = 0 

for n = k + 3, ... , k + r - 1, 
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g(k + r) - 3pg(k + r - 1) + 3p2g(k + r - 2) - p3g(k + r - 3) 
_ qpk-lg(r) + 2qpkg(r _ 1) _ qpk+lg(r - 2) = _q2pk+r-2, 

9 (k + r + 1) - 3pg (k + r) + 3p2 9 (k + r - 1) - p3 9 (k + r - 2) 

- qpk-lg(r + 1) + 2qpkg(r) - qpk+lg(r _ 1) = q2pk+r-2, 

g(n) - 3pg(n - 1) + 3p2g(n - 2) - p3g(n - 3) - qpk-lg(n - k) 

+ 2qpkg(n - k - 1) - qpk+1g(n - k - 2) = 0 

for n = k + r + 2, k + r + 3, ... 
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(11.10) 

It may be pointed out that, by repeated use of the relations in (11.10) and 
simplifying the resulting equations, (11.10) may be reduced to (11.8) which is 
certainly simpler for computational purposes. 

11.4 Mean, Variance, and Moments of T 

Upon differentiating the probability generating function of T in (11.4) with 
respect to z once and simplifying, we obtain 

G'(z) = 
q2{2z - (r + l)pr-l zr + (r _1)przr+l} 

(l-pz)3 

q2pr-l zr {(r + 1) - rpz - (r + k)pk-l zk-l + (r + k - l)pk zk} + ~----~--~~~~~--~~--~~~------~~ 
(1 - pz)2(1- pz - qpk-lzk) 

q2przr+l(1_ pk-lzk-l)(l + kqpk-2 z k-l) 
+ (1 - pz)(I- pz _ qpk-lzk)2 (11.11) 

Setting now z = 1 in (11.11) and simplifying, we can derive the mean waiting 
time as 

, 2 pk+r-2 
E(T)=G(z)lz=l=-+ (1 k-l) q q - p 

(11.12) 

From (11.12), we observe that E(T) ~ 2 as q ~ 1 and E(T) ~ 00 as q ~ O. 
Further, it can also be readily verified that E(T) is a monotonically decreasing 
function in q. In addition to revealing that the proposed start-up demonstration 
test procedure will, on an average, reject a bad equipment very early and take 
very long to reject a good equipment, the monotonicity of the mean in (11.12) 
will also enable us to develop a method-of-moment estimator for the parameter 
p (assuming, of course, that rand k are fixed by the experimenter). This is 
discussed further in the next section. 
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Upon differentiating the expression of G'(z) in (11.11) once more with re
spect to z and setting z = 1, we derive the second factorial moment of T, 
viz., E{T(T - 1)}. Then, upon adding to it the expression of E(T) - {E(T)}2 
obtained from (11.12) and simplifying the resulting expression, we obtain the 
variance of the waiting time to be 

2 p2k+2r-4 
Var(T) = p 

q2 {q(l- pk-l)}2 

pk+r-3{ -3p + 5p2 + 2(k + r)pq + (3 - 2r)pkq} (1113) 
+ {q(l- pk-l)}2 . . 

For the derivation of higher-order moments I-Li = E(Ti) of T, we can estab
lish a recurrence relation for the raw moments of T. For this purpose, with the 
aid of the recurrence relation for the probability mass function of T presented 
in (11.8), we may write 

00 

I-L~ = E(TS) = L n S g(n) 
n=2 

k+r-l 00 

L n S g(n) + L n S g(n) 
n=2 n=k+r 

k+r-l 00 

q2 L nS(n - 1)pn-2 + p L n S g(n - 1) 
n=2 n=k+r 

00 00 

+qpk-l L nSg(n-k)-(r-1)q3 L ns pn-3. (11.14) 
n=k+r n=k+r 

Noting now that 
00 

L n Sg(n-1) 
n=k+r n=k+r-l 

and 
00 

L nSg(n-k) 
n=k+r n=r 
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we may rewrite (11.14) as 

k+r-l 00 

J-L~ = q2 L n S (n - 1)pn-2 - (r - 1)q3 L n S pn-3 
n=2 n=k+r 

+p to (; )t,; -p to (;) '%2 nig(n) 

+qpk-l t (:) ks-iJ-L~ - qpk-l t (:) k s- i ~ nig(n). (11.15) 
t=O t=O n=2 

Now, upon using (11.8) and rearranging the terms, we derive a recurrence 
relation for the raw moments of T as 

q(1 _11"'_1) {~ (;) (p + qP'- l k,-i) 1': 
k+r-l 00 

+q2 L nS(n - 1)pn-2 - (r - 1)q3 L n spn-3 
n=2 n=k+r 

(11.16) 

The recurrence relation in (11.16) can be used effectively to determine all the 
raw moments of T in a recursive manner. 

For example, by setting s = 1 in (11.16), we obtain 

J-L~ = E(T) = 
1 { k+r-l 

p + kqpk-l + q2 " n(n _ 1)pn-2 
q(1- pk-l) ~ 

00 k+r-2 
- (r - 1)q3 L npn-3 - q2p L (n - 1)pn-2 

n=k+r n=2 
k+r-2 r-l 

- q2p L n(n - 1)pn-2 - kq3pk-l L (n - 1)pn-2 
n=2 n=2 

_ q3pk-l ~ n(n _ 1)pn-2 }. (11.17) 

Upon using the identities 
m 

L n(n - 1)pn-2 
n=2 

m(m + 1)pm-l 2(m + 1)pm 2(1 _ pm+l) 
------ - + ---=---'-

q q2 q3 

00 L npn-l 
n=m 

mpm-l pm 
----''--- + -

q q2 
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and 
f)n _1)pn-2 = _ mpm-l + 1-:m 
n=2 q q 

in (11.17) and simplifying the resulting equation, we obtain 

E(T) = 1 {2(1_ pk-l)+pk+r-2} 
q(l- pk-l) 

2 pk+r-2 

q + q(l- pk-l) 

as given earlier in (11.12). 
Similarly, by setting s = 2 in (11.16), we obtain 

2 1 { 2 k-l k-l I J.l~ = E(T) = q(1- pk-l ) p + k qp + 2(P + kqp )J.ll 

k+r-l 00 

+ q2 2: n2(n _1)pn-2 - (r - 1)q3 2: n2pn-3 
n=2 n=k+r 
k+r-2 k+r-2 

- q2p 2: (n - 1)pn-2 - 2q2p 2: n(n - 1)pn-2 
n=2 n=2 

k+r-2 r-l 
- q2p 2: n2(n - 1)pn-2 - k2q3pk-l 2: (n - 1)pn-2 

n=2 n=2 

- 2kq3pk-l I: n(n - 1)pn-2 - q3pk-l I: n2(n - 1)pn-2}. 
n=2 n=2 

(11.18) 

Then, from (11.18), upon using the identities 

m 

L n2(n - 1)pn-2 
n=2 

m(m + 1)2pm-l (m + 1)(3m + 2)pm 
q q2 

2 - (6m + 8)pm+! 6(1 _ pm+!) 
+ 3 + 4 q q 

and 
00 2 n-3 m2 pm-3 (m + 1)pm-2 mpm-l 2pm 2: n p = + 2 + 2 +-3-' 

n=m q q q q 

recalling the expression of the mean in (11.12), and doing algebraic simplifica
tions, we obtain an expression for the second raw moment of T from which the 
expression of the variance in (11.13) can be derived. 
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11.5 Inference on p 

Suppose a random sample of n equipments are placed on the proposed start
up demonstration test, and that the corresponding number of attempts until 
rejection are denoted by Tl, T2, ... , Tn. In other words, they are the waiting 
times for rejection of the n equipments. Then, based on these data, we develop 
here some inference procedures for the unknown probability of success (p). 
Naturally, there are two types of data possible: one in which the entire sequence 
of binary outcomes leading to the rejection of each equipment is available, and 
the other in which only the waiting time for rejection of each equipment is 
available. 

Let us now consider the first scenario in which it is assumed that the entire 
sequence of binary outcomes until the rejection of each equipment is avail
able. Let (81, Ft), (82, F2), ... , (8n, Fn) denote the number of successful and 
unsuccessful start-ups corresponding to the n equipments under test; clearly, 
8i + Fi = Ti for i = 1,2, ... ,n. Then, the likelihood function is given by 

(11.19) 

where 8 = 2:7=1 8i is the total number of successful start-ups, F = 2:7=1 Fi is 
the total number of unsuccessful start-ups, and 8 + F = 2:7=1 Ti . Note that 
8 is a sufficient statistic for p. From (11.19), we readily obtain the maximum 
likelihood estimator of p as 

(11.20) 

The observed Fisher information is given by 

(11.21) 

From (11.20) and (11.21), upon invoking the asymptotic normality of the MLE 
p, we have an approximate 100(1 - 0:)% confidence interval for pas 

(

A Za/2 A za/2) 
p- JI(P) , p+ JI(fJ) , (11.22) 

where za/2 is the upper 0:/2 percentage point of the standard normal distribu
tion. 

Next, let us consider the second scenario in which it is assumed that only 
the waiting times Tl , T2,"" Tn are available. Then, it is well known that 
T = ~ 2:7=1 Ti is an unbiased estimator of E(T), say h(p). Since h(p) is a 
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monotonically increasing function in p, the moment estimator of P (or q) is 
unique and can be easily obtained as the solution of the equation 

_ 2 pk+r - 2 
T = h(P) = - + -:---~;-----;---;-:-

1- p (1 - p)(l - pk-l) 
(11.23) 

The moment estimate p has to be determined numerically from (11.23). For 
the special case k = r = 2, however, (11.23) yields 

2 1 
(l-p) =f'-1 

from which an explicit moment estimator of p can be derived as 

p = 1- (f' _1)-1/2. 

An approximate 100(1 - a)% confidence interval can be developed based on 
the moment estimator as well. This may be done by using the central limit 
theorem and considering 

(f' - Za/2 :n ' f' + Za/2 :n) , (11.24) 

where a- is the standard deviation of T determined from (11.13) with p replaced 
by p. Realizing that (11.24) is a confidence interval for h(p), an approximate 
100(1 - a)% confidence interval for p can be obtained as 

( -1 (- a-) -1 (- a- )) h T - Za/2..jii ,h T + Za/2 ..jii (11.25) 

since h(P) is a monotonically increasing function in p. 

11.6 Results for Markov-Dependent Start-Ups 

Until now, we have assumed that the attempted start-ups of an equipment are 
all independent trials with probability of a successful start-up p and probability 
of an unsuccessful start-up q. However, when successive start-ups are attempted 
on an equipment, it is more realistic in many practical situations to assume some 
sort of dependence among them. In this section, we shall assume a two-state 
Markov dependence among the outcomes of successive start-ups and develop 
results analogous to those presented in Sections 11.2-11.4. 

To this end, let us denote by Po (qo) the probability of a successful (unsuc
cessful) start-up in the first attempt, by PI (ql) the probability of a successful 
(unsuccessful) start-up in any attempt given that the earlier attempt was suc
cessful, and by P2 (q2) the probability of a successful (unsuccessful) start-up in 
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any attempt given that the earlier attempt was unsuccessful. Once again, let us 
use T for the waiting time until rejection of the equipment. Then, as in Section 
11.3, we may find the contribution of A to the probability generating function 
ofT as 

Similarly, the contribution of B to the probability generating function of T is 

GB(Z) = 

(11.27) 

Finally, the contribution of C to the probability generating function of T is 

{ 2 3 2 4 k-3 k-I } 
X q2z + P2QlZ + P2PIQlZ + P2Pl QlZ + ... + P2Pl QlZ 

r-2 r + (p ) 2 k-2 k POPI qlZ q2Z 2 - PI Z - P2PI QIZ 

1 - PIZ 1 - PIZ - P2P~-2QIzk 
(11.28) 

Now, upon adding the expressions of GA(Z), GB(Z) and Gc(z) presented in 
Eqs. (11.26)-(11.28), respectively, and simplifying the resulting expression, we 
derive the probability generating function of the waiting time T as 

poPr-2QlQ2Zr-t-l 

1- PIZ 

P Pr-2Q zr + 0 1 1 
1- PIZ 

(11.29) 
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It may be easily verified that in the case of independent start-ups (case Po = 

PI = P2 = P and qO = qI = q2 = q), the above probability generating function 
of T reduces to that presented earlier in (11.4). Also, as done earlier in Section 
11.3, the generating function in (11.29) can be utilized to derive a set of recur
rence relations that would facilitate the computation of the probability mass 
function of the waiting time T. 

Furthermore, upon differentiating G(z) in (11.29) once with respect to z, 
setting z = 1 and then simplifying the resulting expression, we obtain the mean 
waiting time to be 

E(T) = 2 + Po + P2 - 2PI + pOPl+k-4p2(q~_~ P2) 
qI qI(I- P2PI ) 

(11.30 ) 

It may be verified once again that in the case of independent start-ups (case 
Po = PI = P2 = P and qo = qI = q2 = q), the above expression for the mean 
waiting time reduces to that presented earlier in (11.12). 

Inference procedures for the parameters Po, PI and P2 can be developed along 
the lines followed in Section 11.5. However, we refrain from this discussion here. 

11. 7 Illustrative Example 

In this section, we present a simulated start-up demonstration test data and 
use it to illustrate the inferential methods discussed in Section 11.5. We assume 
that n = 20 identical units with probability of successful start-up P = 0.9 are 
tested. If the equipment fails to start in any of the first 3 attempts (1' = 4), 
an additional failure in any subsequent attempt will lead to its rejection. If the 
equipment starts successfully in the first 3 attempts, it will be rejected only if 
two attempted start-ups lying less than k = 8 places apart result in failures. 
The simulated data, along with the values of the statistics Si, Pi and Ti, are 
presented in Table 11.1. The ToF (type offailure) column in this table indicates 
which of the two termination conditions caused the rejection of the equipment: 
10 indicates that a failure was observed in at least one of the first 3 attempts and 
the equipment was rejected immediately upon the occurrence of an additional 
start-up failure; 01 indicates that the equipment started successfully in the first 
3 attempts, and was rejected upon the occurrence of two unsuccessful start-ups 
lying less than k = 8 places apart. 
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Table 11.1: Simulated start-up demonstration data for n = 20 identical units 
with p = 0.9, r = 4, and k = 8 

i ToF Si Fi Ti Individual start-up outcomes 

1 10 15 2 17 10111111111111110 
2 01 32 4 36 111111111011111111111110111111101110 
3 01 5 2 7 1111100 
4 01 11 2 13 1111111101110 
5 01 44 4 48 1111011111111111101111111111111111111111 

11110110 
6 10 5 2 7 0111110 
7 01 20 2 22 1111111111111111011110 
8 10 6 2 8 10111110 
9 01 123 7 130 1111111101111111111111111111111111101111 

1111110111111111111111111111111111111111 
1111111111111111101111111111011111111111 
1101111110 

10 01 40 2 42 1111111111111111111111111111111111011111 
10 

11 01 54 5 59 1111011111111111111111110111111111111111 
1101111111111111100 

12 01 5 2 7 1111100 
13 01 11 2 13 1111111011110 
14 10 2 2 4 1010 
15 01 75 7 82 1111011111111111111101111111011111110111 

1111111111111111111111110111111111111101 
10 

16 01 12 2 14 11111111111010 
17 01 28 3 31 1111111111111111011111111111100 
18 01 25 3 28 1111111101111111111110111110 
19 01 19 3 22 1111111111110111111100 
20 01 66 5 71 1111111111111111111011111111101111111101 

1111111111111111111111101111110 

Total 598 63 661 
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For these data, we have 

20 20 20 

8 = L8i = 598, F = LFi = 63, T = L'Ii = 8 + F = 661; 
i=l i=l i=l 

substituting these in (11.20) and (11.21), we obtain the MLE of p and the 
observed Fisher information as 

p = _8_ = L:~=l 8i = 0.90469, 
8 + F L:i=l 'Ii 

I( A) = L:i=l Ti = 7665 89 
p p(l- p) .. 

An approximate 95% confidence interval for p then follows from (11.22) as 

(0.90469 - 1.96/v'7665.89, 0.90469 + 1.96/v'7665.89) = (0.8823, 0.9271). 

-

The moment estimator of p is computed by solving the equation h(P) =T= 
661/20 = 33.05 with h(p) as given in (11.23). Thus, 

P = h-1(33.05) = 0.9134. 

Moreover, by substituting this estimate in (11.13), we obtain an estimate of 
the standard deviation of T as a- = 24.5829. Next, from (11.25), we obtain an 
approximate 95% confidence interval for p (based on the moment estimate p) 
as 

(h-1 (33.05 -1.96 2~9) ,h-1 (33.05 + 1.96 2~9)) = (0.8866,0.9279). 

It is worth mentioning that, even for a sample as small as 20, both methods 
yield point estimates which are very close to the true value of p (p = 0.9). 
Also, the confidence intervals are both quite narrow and close to each other; a 
significant improvement in the intervals' width is observed if the sample size is 
increased. 
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Applications of the Scan Statistic in DNA 
Sequence Analysis 

Ming-Ying Leung and Trad E. Yamashita 

University of Texas at San Antonio, San Antonio, TX 
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Abstract: Advances of biochemical techniques have made available large data
bases of long DNA sequences. These sequences reflect conglomerates of random 
and nonrandom letter strings from the nucleotide alphabet {A, C, G, T}. As 
the databases expand, mathematical methods play an increasingly important 
role in analyzing and interpreting the rapidly accumulating DNA data. In 
this chapter, we discuss a specific example of identifying nonrandom clusters 
of palindromes in a family of herpesvirus genomes using the r-scan statistic. 
Palindrome positions on the genome are modeled by Li.d. random variables 
uniformly distributed on the unit interval (0,1). After a comparison of three 
Poisson-type approximations, the r-scan distribution is computed by a com
pound Poisson approximation proposed by Glaz (1994). Some of the significant 
palindrome clusters are located at genome regions containing origins of replica
tion and regulatory signals of the herpesviruses. 

Keywords and phrases: DNA sequence analysis, palindrome clusters, Pois
son approximations 

12.1 Introduction and Background 

Since the elucidation of its double helical structure by Watson and Crick in 1953, 
DNA has repeatedly been confirmed to be the storage medium for genomic data. 
DNA stores all necessary information for controlling life processes, including its 
own replication. In the past two decades, molecular biologists have been able to 
delineate how genetic information in DNA is encoded, retrieved, and duplicated. 
This knowledge has led to a better understanding of the molecular mechanisms 
in many biological processes and genetic diseases. 
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DNA is deoxyribonucleic acid, which is made up of four different types of 
nucleotide bases: adenine (A), thymine (T), cytosine (C), and guanine (G). The 
bases A and T form a complementary pair, as do C and G. Two complemen
tary bases are held together by hydrogen bonds to form a nucleotide base pair 
(bp). A large number of these base pairs are strung together to form a giant 
double stranded DNA molecule comprising two complementary polynucleotide 
sequences. 

Recent advances in biochemical techniques have led to an exponential in
crease in the amount of sequence data. For example, in GenBank (the United 
States nucleic acid sequence database maintained by the National Institutes of 
Health), there are over a million sequences containing more than a billion nu
cleotide bases. As the genome databases expand, mathematical methods play 
an increasingly important role in obtaining, organizing, archiving, analyzing, 
and interpreting the rapidly accumulating DNA data. Excellent reviews of how 
various branches of mathematics contribute to the advancement of molecular 
biology can be found in Waterman (1989), Doolittle (1990), and Waterman 
(1995). 

While probing for insights into the organization of a genome, one of the 
problems that arises is how to characterize anomalies in the spacings of markers 
in a long sequence of nucleotides. Here "markers" refer to any short sequence 
segments with a prescribed pattern. Spacing anomalies include properties of 
clumping (too many neighboring short spacings), overdispersion (too many long 
gaps between markers), and excessive regularity (too few short spacings and/or 
too few long gaps). The problems of identifying such anomalies in large DNA 
molecules as well as their biological significance are discussed by Karlin and 
Brendel (1992), who first suggested using r-scan lengths for evaluating their 
statistical significance. 

The next section describes the r-scan lengths (or simply r-scans) and their 
close relationship to the traditional scan statistic. We shall illustrate the appli
cation of the r-scans by an example that identifies unusual palindrome clusters 
in a family of herpesvirus genomes. Since the exact probability distribution of 
the r-scans are not available, one must rely on an approximation when assessing 
statistical significance for the clusters. In Section 12.3, we shall compare the 
accuracy of three Poisson-type approximate distributions by contrasting the 
calculated approximate probabilities with simulation results. 



Applications of the Scan Statistic in DNA Sequence Analysis 

12.2 r-Scans and DNA Sequence Analysis 

12.2.1 Duality 
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For a set of points Xl, ... , XN distributed independently and uniformly over 
the unit interval (0,1), the r-scan is defined as the cumulative lengths of r 
consecutive distances between the ordered statistics X(l), ... , X(N). Formally, 
let Di denote the distance between the ordered ith and (i + l)th points, i.e., 
Di = X(i+1) - X(i)' i = 1, ... , N - 1. For any fixed integer r between 1 and 

N -1, the r-scan at the point X(i) is Ar,i = 2::;::-1 Dj, i = 1, ... , N -r [Dembo 
and Karlin (1992)]. The order statistics of these r-scans are denoted by Ar,(i). 
In particular, the minimal r-scan Ar,(l) = min{Ar,i, i = 1, ... , N - r} is most 
frequently used in DNA sequence analysis. For simplicity, we shall abbreviate 
Ar,(l) as Ar in this chapter. 

Ar is intimately related to the traditional scan statistic Sw = max yt ( w ), 
O<t<l-w 

where ° < w < 1 is a prescribed window length and yt (w) is the number of 
points in the interval [t, t + w]. Consider the event {YX(i) (w) 2:: r + I} for 
i = 1, ... , N - r, which says that there are at least r + 1 points contained in the 
window [X(i) , X(i) + w]. This is equivalent to the event {Ar,i ::; w} which says 
that there are at least r adjoining spacings, starting at X(i)' whose cumulative 
length is no more than w. Since this equivalence holds for all i, certainly it will 
hold for the particular window holding the maximal number of points. Hence, 
we have the duality relation 

{Sw 2:: r + I} = {Ar ::; w} 

for fixed values of w E (0,1) and r = 1, ... ,N - 1. 
By virtue of this duality relation, we will automatically know the distri

bution of Ar if the distribution of Sw is available. Thus, the traditional scan 
statistic and the minimal r-scan can be used interchangably. In DNA sequence 
analysis, the r-scan is usually preferred, principally due to convenience. We 
shall explain this further after we present an example in which palindrome 
clusters in herpesvirus genomes are analyzed using A r . 

12.2.2 DNA sequence analysis 

Various applications of the r-scan theory to identify distributional anomalies of 
palindromes, close direct and inverted repeats, and over- and underrepresented 
DNA words in a yeast chromosome, bacterial sequences, as well as viral genomes 
have been discussed by Karlin et al. (1993), Karlin, Mrazek, and Campbell 
(1996, 1997), Karlin and Cardon (1994), Leung, Schachtel, and Yu (1994), and 
Leung, Marsh, and Speed (1996). Here, we present one example demonstrating 
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how to use the distribution of Ar to assess the statistical significance of unusual 
palindrome clusters in a family of completely sequenced herpesvirus genome 
DNA sequences. 

The herpesvirus family includes several well-known viruses such as herpes 
simplex, chicken pox, Epstein-Barr, and cytomegalovirus which are associated 
with life threatening diseases such as AIDS and various cancers [Labrecque et 
al. (1995), and Vital et al. (1996)]. Each herpesvirus genome consists of a 
single DNA molecule which is wrapped inside an icosahedral capsid. A virus 
infects the host by introducing its genome into a suitable host cell. Inside 
the cell, herpesviruses may stay dormant most of the time and only become 
harmful after entering a lytic cycle in which they grow and replicate thousands 
of copies. There is biological evidence [Masse et al. (1992)] indicating that in 
some herpesvirus genomes, clusters of palindromes are harbored in the lytic 
origin of replication (Le., the point in the genome at which DNA replication 
begins during the lytic cycle) and other gene regulatory regions. 

A DNA molecule can be regarded as a long string of letters ala2a3 ... an, 

sampled from the four-letter nucleotide alphabet {A, C, G, T}. These four 
letters are grouped into pairs of complementary bases: A-T and C-G. Based 
on this complementary pairing, one can define a symmetric structure called a 
palindrome. A palindrome of length 28 is a sequence of 8 bases followed imme
diately by its inverted complementary sequence. If we denote the complement 
of a base b by bt , then a palindrome of length 28 has the form blb2 ... bsb~ ... b~b~. 
For example, GCGCATGCGC constitutes a length 10 palindrome. 

Since short palindromes often occur by chance in a random letter string, 
one needs to focus only on reasonably long palindromes. Consider an i.Ld. 
random sequence ala2a3 ... an where each ai, i = 1,2, ... , n, is drawn from the 
nucleotide alphabet with probabilities of getting A, C, G, T, being PA, PC, 
Pc, PT, respectively. At each position, we expect to find a palindrome of length 
28 «< n) with probability P = AS, where A = 2(PAPT+PCPC). The probability 
P attains its maximum value of 1/4s when PA = PT = PC = Pc = 1/4. Setting 
s = 5 yields a value of P < 0.001. So, taking only those palindromes of length 
2': 10 bp should be sufficient to screen out most of the random noise. 

Our data set consists of seven herpesviruses whose complete genome DNA 
sequence is available. A hash-coding computer program [Leung et al. (1991)] is 
used to screen the entire genome of the herpesviruses for palindromes of length 
2': 10 bp. The number of palindromes observed in each genome, along with the 
genome lengths, are listed in Table 12.1. 
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Table 12.1: The number of palindromes of length 2: 10 bp in the viruses and 
their genome lengths. There are seven herpesviruses in our data set: Epstein
Barr (EBV) , Equine herpes simplex (HSE), Ictalurid herpes (HSI), Herpes 
saimiri (HSS), Herpes simplex I (HSVl), Varicella-zoster (VZV), and Human 
cytomegalovirus (HCMV). 

Genome Palindromes Genome Length 
EBV 113 172282 
HSE 194 150223 
HSI 111 134226 
HSS 131 112930 
HSVI 220 152260 
VZV 122 124885 
HCMV 296 229354 

The sliding window plot is a useful descriptive tool that helps identify clus
ters visually. The plot displays the frequency distribution of palindromes on 
the genome by reporting, at selected sequence positions (X), the counts (Y) of 
palindromes in a sliding window of size w. As an illustration, take the human 
cytomegalovirus (HCMV). We can use a window of size w = 1000 bp starting 
at the first base and sliding it forward in steps of 500 bp so that successive 
windows overlap by half. The number of palindromes contained in the window 
is counted at each step. A plot of the palindrome counts is shown in Figure 
12.1. 
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Figure 12.1: Sliding window plot of the palindrome counts of HCMV 

Figure 12.1 shows the highest peak of 10 palindromes occurring at the win
dow spanning the segment from 92001 bp to 93000 bp. Following this guide, 
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Masse et al. (1992) carried out detailed experimental assays around this part of 
the genome and characterized the segment between 92210 bp and 93715 bp as 
the lytic origin of replication for HCMV. Note also that the second highest peak 
is located at the window from 195000 to 196000 bp. This segment contains a 
well-known enhancer element which potentiates the transcriptional activity of 
certain genes [Weston (1988)J. 

If the identification of palindrome clusters is to serve as a computational 
tool for automated DNA sequence analysis by pinpointing biologically impor
tant regions of the genome, this underlying approach will require more rigorous 
statistical guidelines. Based on this premise, the following question arises: Does 
a peak observed in the sliding window plot actually represent a significant clus
ter, or could it solely be due to chance? Either the minimal r-scan Ar , or 
equivalently, the scan statistic Sw will provide an inferential statistical means 
by which we can distinguish any significant clusters from those incurred by 
chance. We shall illustrate with the HCMV data how the analysis is performed 
using Ar . 

12.2.3 Application of Ar 

Palindromes, like many other markers of biological interest, are mostly very 
short compared to the length of the whole DNA sequence and are generally 
scattered quite evenly over the entire molecule. For illustration, Figure 12.2 
displays the Q-Q plot of the location of the palindromes of HCMV versus the 
uniform quantiles. The palindromes are ordered according to their starting po
sitions expressed in units of a thousand bases. The overall linearity displayed 
in the plot seems to justify modeling palindrome occurrence along a DNA se
quence as points uniformly distributed over the unit interval. In this setting, 
one can apply Ar to identify any nonrandom clusters. 

There is a very simple asymptotic approximation for the distribution of Ar 
[Cressie (1977), and Dembo and Karlin (1992)J: For any x > 0, 

lim Pr{Ar :::; 1:1/} = e-xr / r !. 
N->oo N r 

When N is large, it yields the following approximation: 

(12.1) 

Leung, Schachtel, and Yu (1994) made use of (12.1) to derive values of the 
critical r-spacings at various values of r and levels of significance Q. Locations 
of palindrome clusters with r-spacings less than the critical value are identified. 



Applications of the Scan Statistic in DNA Sequence Analysis 

Q-Q plot of palindromes vs. a uniform distribution (HCMV) 
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Figure 12.2: Q-Q plot of the ordered starting positions of 296 palindromes on 
the HCMV genome versus the uniform quantiles. The ith quantile is calculated 
by (i - 0.5)/296. 

Table 12.2 is a listing of the positions of all statistically significant clusters 
at a = 0.05 and r = 1, ... , 15 in the HCMV genome. These positions clearly 
indicate that the region between 91500 bp and 93000 bp is unusually rich in 
palindromes. This confirms that the highest peak of palindrome counts revealed 
by the sliding window plot is indeed a statistically significant cluster. Note also 
that the palindromes at the enhancer region are indicated by the 4- and 5-scans 
as significant clusters. 

The identification of these nonrandom clusters can also be accomplished 
by using the traditional scan statistic Sw instead of A r • Note that, for Sw, 
we must choose an appropriate value of wand, for Ar, we must also choose 
an appropriate value of r. In applying either statistic, it is difficult to know 
in advance which parameter choices are most appropriate. Hence, it is often 
necessary to perform the analysis using a variety of values. For Ar , our experi
ence has shown that a range of r from 1 to 15 is generally sufficient to capture 
all of the clusters of interest, regardless of the DNA sequence analyzed or the 
biological purpose of the investigation. In contrast, the continuous parameter 
w must be obtained by dividing a chosen DNA window length (in bp) by the 
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Table 12.2: Starting positions of statistically significant (a = 0.05) palin
drome clusters on the HCMV genome identified by AT for r = 1, ... , 15 

r Positions of significant clusters 
1 None 
2 None 
3 None 
4 92526 92570 92643 92701 195032 195112 
5 92526 92570 92643 195032 
6 92526 92570 92643 
7 92526 92570 92643 
8 91953 92526 92570 92643 92701 
9 91637 91953 92526 92570 92643 
10 91490 91637 91953 92526 92570 
11 91490 91637 91953 92526 92570 
12 91490 91637 91953 92526 
13 91490 91637 91953 
14 91490 
15 91490 

total genome length. Clearly, the choice of the range for w would vary from 
application to application, depending on the data sequence and the biological 
objective of the analysis. Probably due to its convenience, AT seems to be used 
more often in these types of studies involving DNA sequence analysis. 

When applying an asymptotic approximation in a practical situation where 
the number of points N is finite, we must be concerned with the accuracy by 
which the asymptotic distribution approximates the true distribution of AT. 
Leung, Schachtel, and Yu (1994) have compared some approximate probabili
ties computed using approximation (12.1) to simulated results of Glaz (1989). 
They observed that in many cases there are large discrepancies. It is, therefore, 
not advisable to routinely apply approximation (12.1) to evaluate the statisti
cal significance of palindrome clusters. An alternative is provided by Dembo 
and Karlin (1992) using the Chen-Stein Poisson approximation technique. In 
a similar vein, Arratia, Goldstein, and Gordon (1990) and Glaz et al. (1994) 
put forth two other Poisson-type approximations to AT. In the next section, 
we shall briefly review these approximations and present some simulation re
sults specific to the family of herpesviruses, showing that Glaz's compound 
Poisson distribution produces the best approximation to AT in these cases. We 
have, therefore, adopted Glaz's result to evaluate the statistical significance of 
palindrome clusters in the seven herpesvirus genomes in our data set. These 
significant palindrome clusters found are listed in Table 12.3. 



Applications of the Scan Statistic in DNA Sequence Analysis 277 

Table 12.3: Locations of palindrome clusters on the herpesviruses that were 
deemed statistically significant (a = 0.05) by the compound Poisson approx
imate distribution of Ar . The corresponding features of biological interest 
found at those locations are listed in the third column for the three more 
extensively researched human herpesviruses. 

Genome Cluster Location Genome Feature 
HCMV 91490-92643 origin of replication (oriLyt) 

195032-195112 transcriptional regulator 
EBV 52787-53311 origin of replication (oriLyt) 

85174 
HSV1 129511 transcriptional regulator 

146228 origin of replication (oris) 
HSE 115125-115893 

144717-146485 
HSS 112418-112422 

109081-109238 
VZV 1542 

12.2.4 Biological implication of the significant clusters 

Once the locations of all the statistically significant palindrome clusters have 
been determined, one natural question arises: Do these locations correspond 
to important sites of genetic activity? This question cannot be addressed by 
mathematics but can only be answered through experimental results. We are 
able to gather some information on three of the herpesviruses: HCMV, EBV, 
and HSV1, for which extensive research has been done in the past. 

It has been mentioned earlier that the two significant palindrome clusters on 
the HCMV genome contain an origin ofreplication [Masse et ai. (1992)] and an 
enhancer element [Weston (1988)]. The genetic map of the EBV genome [Farrell 
(1993) ] lists position 52787 as the start of the site of an origin of replication. For 
the HSV1 genome, position 129511 is the location of a transcriptional regulator, 
and position 146228 an origin of replication [McGeoch and Schaffer (1993)]. 
These regions correspond to the statistically significant locations determined for 
HCMV, EBV, and HSVl. Thus, it seems reasonable to expect that the regions 
of significant clusters in the other herpesviruses may be likely candidates for 
origins of replication or gene regulators. 

12.3 Approximate Distributions of Ar 

We shall look at three Poisson-type approximate distributions for Ar , all related 
in some way to the Chen-Stein Poisson approximation technique [Chen (1975)] 
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for sums of dependent Bernoulli random variables. Arratia, Goldstein, and 
Gordon (1990) have provided an excellent introduction of this techique along 
with many interesting applications. 

12.3.1 The finite Poisson approximation 

Arratia, Goldstein, and Gordon (1989) have formulated a version of the Chen
Stein Poisson approximation theorem, which is applied by Dembo and Karlin 
(1992), to yield 

{ [ 
r-I wi(N + l)i] } 

Pr(Ar ::; w) ~ 1 - exp -(N - r) 1- e-(NH)w ~ i! . (12.2) 

Leung, Schachtel, and Yu (1994) have called this the finite Poisson approxi
mation to distinguish it from the asymptotic approximation (12.1). Here, we 
briefly explain how it is obtained. 

For every Q in a finite or countable index set I, let Va represent a Bernoulli 
random variable with success probability Pa, and Ba C I a subset of indices 
containing Q. Ba may be thought of as a neighborhood about Q such that, for 
each f3 E Ba, Va and V,B are dependent. Define 

bl = L L PaP,B, 
aEI,BEBa 

b2 = L L Pa,B, 
aEI ai=/3EBa 

and 

b3 = L EIE {Va - PalU(V,B : f3 ¢ Ban I, 
aEI 

where Pa,B = E[Va V,Bl and u(V,B : f3 ¢ Ba) denotes the u-algebra generated by 
the set of random variables V,B, f3 ¢ Ba. 

The approximation errors in the Chen-Stein method are measured in terms 
of the total variational distance, which is defined for any two nonnegative integer 
valued random variables WI and W2 to be 

sup IE[h(WI)]- E[h(W2)]1 
IIhll=1 
2 sup IP(WI E A) - P(W2 E A)I, 

A 

where £(W) represents the distribution of W, h is a real-valued function defined 
on the common set where the densities of both WI and W2 are nonzero, IIhll = 
sUPk~O Ih(k)l, and A is any subset of nonnegative integers. 
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Theorem 12.3.1 [Arratia, Goldstein, and Gordon (1989)] Let W = 2::aEI Va 

be the number of occurrences of dependent events, and let Z be a Poisson random 
variable with E[Z] = E[W] = ,\ < 00. Then, 

IIL:(W) - L:(Z) II ::; 2 [(bl + b2) 1 - eXf {-A} + b3(1/\ 1.4,\-1/2)] , 

where (a /\ b) = min(a, b). 

This theorem implies that if the quantities bl, b2, and b3 can be made small, 
W will have a distribution close to that of the Poisson. 

Now consider i.i.d. nonnegative random variables Xl, X2, ... , XN with dis
tribution function F(x). For any w > 0, one can construct the (dependent) 
Bernoulli random variables 

Vi = {I if Xi + ... + Xi+r-l ::; w 
o otherwise, 

i = 1,2, ... , N - r + 1. Let Cr(w) = E[:lr +l Vi represent the count of those 
r-sums Xi + ... + Xi+r-l not exceeding w; and Z>. represent a Poisson random 
variable with mean ,\ = (N - r + l)Fr(w), where Fr is the distribution of 
2::j=l Xj which is the r-fold convolution of F. Dembo and Karlin (1992) have 
derived from the above theorem that 

With Do, ... , DN being the spacings between N uniformly sampled points 
from the unit interval, the joint distribution of (TN+lDo, ... , TN+lDN) is the 
same as that of (El, ... , EN+l) where Ei'S are i.i.d. exponential random vari
ables with parameter 1 and TN + 1 is a gamma( N + 1, 1) random variable indepen
dent of Do, ... , DN [Karlin and Taylor (1981)]. By virtue of this distributional 
equivalence and the Berry-Essen estimates of the normal approximation to the 
gamma distribution, Dembo and Karlin (1992) obtained the following result: 
For j = 1, ... , N - r, let 

v = {I if Ar,j ::; W 

J 0 otherwise. 

Let Cr(w) = Ef=lr 10 be the count of r-spacings Ar,j, j = 1, ... , N - r, not 
exceeding w, and denote by G(r,l) the distribution function of the gamma(r, 1) 
random variable. If we define 

,\ = (N - r)G(r,l)((N + l)w) = (N -r) [1- e-(N+l)w I: wj(N.,+ l)j] , 
. ° J. J= 

then 
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When N is large and w is suitably chosen that the right-hand side above is 
small, then Z>.. will provide a good approximation for Cr(w). So we have 

Pr{Ar > w} = Pr{Cr(w) = O} ~ Pr{Z>.. = O}, 

yielding approximation (12.2). 

12.3.2 Declumping approximation 

If an r-spacing beginning at XU) is exceedingly small, then there is a higher 
probability that the next r-spacing beginning at X(j+!) will also be small. And, 
depending upon the "smallness" of the first r-spacing, this dependence may 
well extend to the next r - 1 consecutive r-spacings, resulting in a clump of 
these small r-spacings. In terms of the previously quoted theorem of Arratia, 
Goldstein, and Gordon (1989), this would inflate the parameter b2 and degrade 
the accuracy of the Poisson approximation. This difficulty also occurs in the 
investigation of the distribution of the longest run of 1 's for LLd. Bernoulli trials 
by Arratia, Goldstein, and Gordon (1990) who propose a declumping technique 
to remedy the situation. Glaz et al. (1994) have adopted a similar declumping 
idea to derive an approximate distribution for Ar . 

For 1 ::s; j ::s; N - r, define new Bernoulli random variables 

v:- = {I if Vi = 1 and Vi = 0 for i = j + 1, ... , min(j + r - 1, N - r) 
J 0 otherwise. 

Again, we will define the sum C;(w) = L:.f=,lr ~*. Note that ~* will be 1 only if 
a "small" r-spacing is followed by r - 1 "large" r-spacings, "small" and "large" 
determined by the choice of w. Thus, every success will be separated by at least 
r - 1 failures which remove the clumping effect. 

Glaz et al. (1994) have obtained the following: 

where 

Pr{Ar 2: w} = Pr{C;(w) = O} ~ exp{-oX}, 

r-1 

oX = L Qj + (N - 2r + l)Qr 
j=l 

(12.3) 

for 2 ::s; r ::s; N /2. Expressions for Q1 and Q2 have been calculated by Berman 
and Eagleson (1985) and can be expressed as 

N 

Q1 = Lb(j;N,w), (12.4) 
j=r 

N 

Q2 L( -lr+j b(j; N, w) (12.5) 
j=r 
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where b(j; N, w) is the binomial probability (~)wj(l- w)N-j. For 3 ~ k ~ r ~ 
N /2, Glaz (1992) has given 

N-r k-2 [ '(' 1)] , J J - , 
Qk=b(r;N,w)-b(r+1;N,w)+L(-1)JII 1- 'r ) b(r+J;N,w). 

j=k i=l 'l 'l + 1 

12.3.3 Compound Poisson approximation 

Roos (1993) has shown that for r ~ 2 and in the presence of clumping, the rate 
of convergence between the distribution of Ar and the Poisson approximation 
can be improved by using, instead, an appropriately chosen compound Poisson 
distribution. Define a compound Poisson random variable as 2:i2:1 iNi, where 
each Ni is an independent Poisson random variable with mean Ai, i = 1,2, ... , 
and 2:i2:1 Ai is finite. Roos (1993) has considered points uniformly distributed 
on the unit circle and has applied the general bounds on the compound Poisson 
approximation derived by Barbour, Holst, and Janson (1992). By using a cou
pling argument and explicitly choosing Ai's such that iAi decreases to zero as i 
increases to infinity, Roos has obtained bounds on the total variational distance 
between the count of small r-spacings and this compound Poisson distribution. 
The rate of convergence for the compound Poisson approximation is of the order 
O(l/N) for all r ~ 1. 

Glaz et at. (1994) have adapted Roos' results to consider r-spacings between 
points on the unit interval rather than the unit circle. With 1 ~ r ~ N:t 1 , 
lv < Nw < 1, and an approximation for Ai suggested in Aldous (1989), they 
obtained the following compound Poisson approximation for the distribution of 
the minimal r-scan: 

P{Ar ~ w} ~ exp{ -(N - r)1f(l- p + pr(r + p - rp))}, (12.6) 

where 1f = Ql, P = 1 - &-' with Ql and Q2 as defined in (12.4) and (12.5), 
respectively. 

12.3.4 Comparison with simulated probabilities 

It has already been mentioned by Glaz et at. (1994) and Leung, Schachtel, and 
Yu (1994) that the finite Poisson approximation (12.2) is not always sufficiently 
accurate. In order to evaluate the quality of the local de clumping and com
pound Poisson approximations in terms of assessing the statistical significance 
of palindrome clusters, we compare the calculated approximation probabilities 
with those from a simulation with suitable values of N, r, and w chosen to 
reflect the genome structure of the herpesviruses. 

In HCMV, for example, there are 296 palindromes with length ~ 10 bp. 
We conducted a simulation consisting of 20,000 trials which sampled N = 296 
points from the uniform (0,1) distribution using S-plus. The minimal r-spacing 
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was determined for r = 1, ... ,20 and the probability, P{Ar ::; w}, obtained 
for window size w = 1000 /229354 ~ 0.004. These values of rand w were 
chosen based on the observation that the functional sites of interest on these 
viral genomes usually span a sequence segment on the order of about 1000 
bp and would extremely rarely, if at all, contain more than 20 palindromes of 
length ~ 10 bp. A comparison of the simulated probabilities with the Poisson 
and compound Poisson approximations given in (12.2), (12.3), and (12.6) are 
displayed with the corresponding errors in Table 12.4. Similar comparisons 
were also carried out for the HCMV genome by varying the value of w, as 
well as for the other herpesvirus genomes listed in Table 12.1 with appropriate 
adjustments for the number of palindromes N and the genome length. 

Table 12.4: Approximations and associated errors with respect to the corre
sponding simulated values (SIM) of Pr{Ar ::; w} for HCMV with N = 296, 
w = 1000/229354, using the compound Poisson (CP), local declumping (LD), 
and the finite (F) Poisson approximations. The simulation consists of 20,000 
trials. 

w r "!JIM CP 181M cpl LD 181M LDI F 181M FI 
"" 0.004 1 1.0000 1.0000 0.0000 1.0000 0.0000 

2 1.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 
3 1.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 
4 0.9999 0.9997 0.0002 0.9990 0.0009 1.0000 0.0001 
5 0.8684 0.8627 0.0057 0.8442 0.0242 0.9529 0.0845 
6 0.3387 0.3445 0.0058 0.3354 0.0033 0.4698 0.1311 
7 0.0731 0.0747 0.0016 0.0731 0.0000 0.1077 0.0346 
8 0.0115 0.0124 0.0009 0.0121 0.0006 0.0179 0.0064 
9 0.0024 0.0018 0.0006 0.0017 0.0007 0.0025 0.0001 

10 0.0002 0.0002 0.0000 0.0002 0.0000 0.0003 0.0001 
>11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

It can be seen from Table 12.4 that the local declumping approximation 
and the compound Poisson approximation both perform better than the finite 
Poisson approximation. It is, however, not as obvious in Table 12.4 which of 
the local declumping or compound Poisson approximation works better than 
the other. In all of our 787 comparisons, over 87% of the cases indicate that 
the compound Poisson approximation error is no bigger than that of the local 
declumping approximation. We have, therefore, chosen to use the compound 
Poisson approximation in the previous section to determine the location of 
statistically significant clusters on the family of herpesvirus genomes. 

Although not as frequently used in DNA sequence analysis as the minimal r
scan Ar, the higher order r-scans Ar,(k) , k = 2, ... , N -r, also have approximation 
distributions derived from the three methods above. Glaz et al. (1994) have 
remarked that the compound Poisson approximation provides an even more 
pronounced improvement over the local declumping approximation for the kth 
minimal r-scan length Ar,(k) when k > 1. 
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12.4 Concluding Remarks 

Presently, it is fairly common for computer DNA sequence analysis programs 
to include statistical modules for discerning significantly nonrandom sequence 
features from those occurring purely by chance. The statistical guidelines can 
then help design finely tuned laboratory experiments. However, one must keep 
in mind that statistical significance and biological relevance are two independent 
concepts. It is well possible that a palindrome cluster is highly significant from 
a statistical point of view but has little biological relevance. On the other hand, 
there are biologically active sequence sites that do not contain any statistically 
significant palindrome clusters. Since statistical assessment is always based on 
simplified model assumptions, significance levels should be regarded as mere 
benchmarks. While potentially important DNA features may be identified by 
statistics, the final conclusion has to come from biological experiments. 

The comparison of the different Poisson-type approximations to the minimal 
r-scan distribution discussed in this chapter is an effort to incorporate the best 
available statistical criterion for assessing palindrome clusters. Recently, Huffer 
and Lin (1998a,b) have developed a recursive algorithm capable of calculating 
the r-scan probabilities to any desired degree of accuracy. Implementation of 
this algorithm will be more involved than the Poisson-type approximations, but 
it will offer a new dimension of flexibility that allows the user greater control 
over the accuracy of the statistical criterion employed. 

This chapter has focused upon the scan statistic for i.i.d. uniformly dis
tributed points over the unit interval because it seems to have a most immediate 
application in identifying origins of replication and gene regulatory sites. The 
works of Glaz and Naus (1991), Sheng and Naus (1994), and Naus and Sheng 
(1996) contain interesting discussions of the scan statistic for sequences of i.i.d. 
discrete random variables in relation to DNA sequence analysis. Their results 
are applied to the analysis of longest matching or almost matching words in 
nucleic acid and amino acid sequences, as well as in the identification of elec
tric charge clusters on amino acid sequences. It is anticipated that the ability 
to identify significant charge clusters will help elucidate the three-dimensional 
structure and function of protein molecules. As the human and other genome 
projects evolve, one can envision many other applications of the scan statistic 
that will help extract useful information from the enormous, and still rapidly 
growing, amount of DNA sequence data. 
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Abstract: Mathematically, a DNA segment can be viewed as a sequence of 
four-state (A, C, G, T) trials, and a perfect match of size M occurs when two 
DNA sequences have at least one identical subsequence (or pattern) oflength M. 
Pattern matching probabilities are crucial for statistically rigorous comparisons 
of DNA (and other) sequences, and many bounds and approximations of such 
probabilities have recently been developed. There are few results on exact 
probabilities, especially for trials with unequal state probabilities, and no exact 
analytical formulae for the pattern matching probability involving arbitrarily 
long nonaligned sequences. In this chapter, a simple and efficient method based 
on the finite Markov chain imbedding technique is developed to obtain the exact 
probability of perfect matching for Li.d. four-state trials with either equal or 
unequal state probabilities. A large deviation approximation is derived for very 
long sequences, and numerical examples are given to illustrate the results. 

Keywords and phrases: Aligned and nonaligned DNA sequences, matching 
probability, finite Markov chain imbedding, large deviation approximation 

13.1 Introduction 

Deoxyribonucleic acid (DNA) molecules form the blueprint for life on earth, and 
each strand of the famous double helix is a linear combination of the polymerized 
nucleotides (bases) adenine (A), guanine (G), cytosine (C), and thymine (T). 
For our purposes, a DNA segment can be viewed as a sequence of trials over this 
four letter alphabet B = {A, C, G, T}. Molecular biologists routinely compare 
newly discovered DNA sequences to existing databases such as Genbank (USA), 
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EMBL (Europe), and DDBJ (Japan), as genes with similar sequences often 
share similar function, resulting protein structure, and/or evolutionary origin. 
These databases presently contain hundreds of thousands of sequence entries 
corresponding to hundreds of millions of sequence nucleotides, and it is not 
unlikely that a new sequence will appear similar to a number of known ones. 
Such apparent similarities could, however, be due purely to chance, and hence 
there exists an urgent need to study matching probabilities for various chance 
models. To that end, this chapter formulates the exact probability of pattern 
matching between two nonaligned DNA sequences resulting from independent 
and identically distributed (LLd.) four-state trials. Here we discuss similarity 
based on primary structure or the linear sequence of nucleotides, as opposed 
to the secondary or tertiary spatial molecular structure, and focus on pattern 
matching instead of scoring matrices [e.g., Waterman (1995), and references 
therein]. 

The matching problem for simple patterns between two aligned sequences 
(Le., without shifts) has been studied extensively in the literature. For instance, 
Erdos and Revesz (1975), Gordon, Schilling, and Waterman (1986), and Kar
lin and Ost (1987, 1988) found asymptotic results. Naus (1974) derived an 
exact formula, and Fu and Curnow (1990) obtained recursive relations, but 
they are limited in use due to their computational complexity; Glaz and Naus 
(1991) recently gave accurate approximations and tight bounds. For nonaligned 
sequences (Le., with shifts), the matching problem is more difficult since all pos
sible alignments (shifts) need to be considered. Several bounds and approxima
tions have been obtained. For example, Hunter (1976), Hoover (1990), and Glaz 
(1993) determined lower bounds; Mott, Kirwood, and Curnow (1990) and Sheng 
and Naus (1994) found good approximations. Asymptotic formulae were given 
by Arratia, Gordon, and Waterman (1986, 1990), and some results for match
ing among multiple sequences have been obtained by, for instance, Leung et ai. 
(1991) and Naus and Sheng (1997). Most existing results for the probability of 
pattern matching between nonaligned sequences assume that the sequences are 
independent and that each sequence consists of Li.d. four-state trials. The state 
probabilities are often assumed equal (PA = PC = PG = 'PI' = 1/4) to reduce the 
computational complexity, but here we are able to incorporate unequal state 
probabilities with relative ease. 

Computing exact pattern matching probabilities for nonaligned sequences 
has in the past required tremendous computational effort for anything but very 
short sequences, and large sample asymptotic approximations are only applica
ble to very long sequences. In this chapter, a simple, new and very efficient 
method, based on the finite Markov chain imbedding technique (FMCI) of 
Fu and Koutras (1994), is developed to derive the exact probability of pat
tern matching for arbitrarily long sequences. The FMCI technique has been 
used successfully to study the exact distributions of various types of runs and 
patterns in a sequence of two- or multistate Markov-dependent trials [Fu and 
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Koutras (1994), Koutras and Alexandrou (1995), Lou (1996) and Fu (1996), for 
example]. Our proposed approach to pattern matching is intuitive, naturally 
incorporates unequal state probabilities, and can easily be extended to Markov
dependent models. For very long sequences, a simple alternative approximation 
based on large deviations is suggested. Numerical results are given to illustrate 
the theoretical results. 

This chapter is organized as follows: Definitions of patterns and finite 
Markov chain imbedding are given in Section 13.2, followed by the derivation of 
the exact probability for perfect matching in Section 13.3. In Section 13.4, the 
large deviation approximation is derived, and numerical results are presented 
in Section 13.5. A brief discussion is provided in the concluding section. 

13.2 The Matching Problem and Notation 

Consider two independent sequences, Wand R. Let W = {WI, ... , Wd} be a 
sequence of d independent and identically distributed (Li.d.) four-state trials 
having probability mass function 

P(Wi = b) = PIb, i = 1,"" d, and b = {A, C, G, T}. 

Similarly, let R = {RI,"', Rn} be a sequence of n i.i.d. four-state trials having 
probability mass function 

P( Rj = b) = P2b, j = 1, ... ,n, and b = {A, C, G, T}. 

For each pair of indices (i,j), 1:::; i :::; d, 1 :::; j :::; n, define a zer%ne random 
variable 

Z .. - J { I ifWi=R· 
tJ - 0 otherwise. (13.1) 

We say that there is a match between position i of sequence Wand position 
j of sequence R when Zij = 1. Without loss of generality, we assume d :::; n 
throughout this article. 

For the two nonaligned sequences Wand R, the scan statistic 8M [Naus 
(1965)] of window size M, 1 :::; M :::; d, is given by 

M-I 

8M (d n) - max "Z·· 
, - I<i<d-M+II</<n-M+I ~ t+t,J+h 

- - , _J_ t=o 
(13.2) 

and can be viewed as the maximum number of matching words within M con
secutive trials between two sequences where all possible shifts are considered. 



290 James C. Fu, W. Y. Wendy Lou, and S. C. Chen 

When shifts are not allowed and the two sequences are of equal length (d = n), 
the scan statistic (13.2) for two aligned sequences simplifies to 

M-I 

SM(d d) - max '" Z" t "+t , - I<i<d-M I ~ t+,t . - - + t=O 

(13.3) 

Definition 13.2.1 For 1 ~ M ~ d and 1 ~ m ~ M, an event Ed,n(m, M) 
occurs when no (m, M) matching exists between two nonaligned sequences of 
lengths d and n, i.e., 

(13.4) 

For m = M, event Edn(M, M) is called a "perfect" match, where the 
superscript "e" denotes the ~omplement of the event, and for m = M -1, event 
Ed,n (M -1, M) is called an "almost perfect" match. In words, event Ed,n (m, M) 
means that there are always less than m matches between any subsequence of 
size M from sequence Wand any subsequence of size M from sequence R. 
Event Ed n (M, M) means that there exists at least one subsequence of size 
M from ~ach of the two sequences (Wand R) which are perfectly matched. 
Mathematically, the event Ed n (M, M) is equivalent to saying that there exists 
at least one pair (i,j), 1 ~ i'~ d - M + 1 and 1 ~ j ~ n - M + 1, such that 
~f!;OI ZHt,j+t = M. In what follows, the window size M is also referred to as 
pattern size. 

The probabilities of event Ed,n(m, M), m = 1"", M, for various kinds of 
models are of great interest in molecular genetics applications. Here, we focus 
mainly on the exact probability for perfect matching Edn(M,M), which is 
most commonly studied. In order to investigate the exact p~obability of perfect 
matching using the finite Markov chain imbedding technique, we first define 
two types of patterns. 

Definition 13.2.2 For a given positive integer M, if A is composed of a spec
ified sequence of M symbols (or bases), i.e., A = bIb2'" bM, then A is a called 
a simple pattern of size M. 

For example, A = ACT A is a simple pattern of size 4, and A = ACC is a 
simple pattern of size 3. 

Definition 13.2.3 Given k, if A is a union of k distinct simple patterns, i.e., 
A = Al U A2 U··· U Ak, then A is called a compound pattern. 

For example, if Al = ACA and A2 = ACTA, then the compound pattern 
A = Ul=I Ai means that either AC A or ACT A is considered. Note that the 
sizes of these simple patterns composing the compound pattern do not have to 
be the same. Hence, the compound pattern A may not have a fixed length. 
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For a specified pattern A (simple or compound), we now define an integer 
random variable Xn(A) from a sequence of n four-state trials {XiH as 

Xn(A) = the number of A patterns that occurred in the sequence {XiH. 

In general, the number of A patterns that occurred in a sequence depends 
on the counting method, no-overlap-counting or overlap-counting. For example, 
consider a sequence of ten trials {AAC AC ACT AC}, and patterns Al = AC A 
and A2 = ACTA. Under no-overlap-counting, XlO(Ad = 1 and XlO(A) = 
XlO(A I U A2) = 2, while under overlap-counting, XlO(Ad = 2 and XlO(A) = 3. 
Unless otherwise specified, throughout this chapter overlap-counting is used for 
Xn(A). 

Definition 13.2.4 The random variable Xn(A) is finite Markov chain imbed
dable if 

(i) there exists a finite Markov chain {Yt : t = 1,· .. ,n} defined on a finite 
state space n with transition probability matrices M t , t = 1, ... ,n, and 
initial probability 1T"O, 

(ii) there exists a partition {Cx , x = 0,1, ... ,l} on the state space n (where 
Cx and 1 may depend on n), and 

(iii) for every x = 0,1, ... ,l, 

If Xn(A) can be imbedded into a finite Markov chain {Yt, t = 1, ... , n}, then 
it follows from the Chapman-Kolmogorov theorem [see Fu and Koutras (1994)] 
that the distribution of Xn(A) can be obtained from 

(13.5) 

where u' (ex) is the transpose of U(Cx), U(Cx) = LaECx U(a), and U(a) = 
(0, ... ,0,1,0, ... ,0) is a unit vector associated with state a E n. 

Further, the moments (and hence the mean and variance) are given via 

k = 1,2,···, (13.6) 

where V~ is the transpose of V x and V x = LaECx xkU (a). 
In view of the above definition and (13.5), the exact probability for pat

tern matching can be obtained once one properly constructs the three essential 
components for imbedding: 
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• a proper finite state space {l based on the structure of the pattern A, 

• a proper partition {Gx } on the state space {l for each of the x = 0, 1, ... , I, 

• a finite Markov chain and its transition probability matrices M t , 

t = 1, .. . ,n. 

13.3 Perfect Matching Probability 

In the following, we assume for simplicity that the two nonaligned sequences 
Wand R are Li.d. and that they have common probability mass function 

b={A,G,G,T}, 

for all i = 1"", d, and j = 1", " n. 
For a given pattern A of size M, we now redefine, given the simplicity of 

this problem, Xn{A) to be a zer%ne random variable for the occurrence of 
pattern A in sequence R. To illustrate how the FMCI technique described 
in the previous section can be used to study the exact probability for perfect 
matching of pattern size M, a simple example is given below. 

Example 13.3.1 Suppose that sequence W is specified, say W = {AAGT}, 
and that sequence R has length five, R = {Rj H. Given M = 3, there are two 
distinct simple patterns of size three associated with W, Al = AAG and A2 = 
AGT. Let A be the compound pattern generated by W, that is A = Al U A2 . 

We first decompose Al and A2 into four ending block states: 1 ~ A, 2 ~ AA, 

3 ~ AG, ° ~ otherwise. 

Define a Markov chain operating on R: 

Yt(R) = (Xt(A), Et ), t = 1,2,3,4,5, 

where Xt(A) is the indicator of whether compound pattern A has occurred in 
the first t trials of sequence R (Xt(A) is zero if not, and one otherwise.) Et is 
the backward counting ending block [see Fu (1996)J of the first t trials, and is 
defined according to the above decomposition of the pattern A (hence Et takes 
on the values 0,1,2,3). The state space can be defined as 

{l = {(O, v) : v = 0,1,2, 3} U {(1, On, 

where (1,0) is an absorbing state for the destination of transitions when pattern 
matching has occurred. For instance, given the sequence R = {GAGTG}, the 
realization of the Markov chain {Yt(R) : t = 1,2,3,4,5} is {(O,O), (0, 1), (0,3), 
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(1,0), (1,0)}. Note that once a perfect match has occurred, yt stays at the 
absorbing state; i.e., yt = (1,0) means that there is at least one pattern A in the 
first t trials. The partitions on the state space 0 are Co = {(O, v) : v = 0, 1,2, 3} 
and Cl = {(I, O)}. 

Since all trials are considered to be homogeneous, the transition probability 
matrices of the imbedded Markov chain yt are the same for all t, and can be 
expressed as 

(0,0) (0,1) (0,2) (0,3) (1,0) 
(0,0) I-PA PA ° ° ° 

Mt(W) = (0,1) 1- PA - Pa ° PA pa ° (0,2) 1- PA - Pa ° PA ° Pa , t = 1,2,3,4,5. 
(0,3) 1- PA - PT PA ° ° PT 
(1,0) ° ° ° ° 1 

For nonhomogeneous trials, we would simply replace the probabilities Pb (b = 

{A, C, G, T}) with time-dependent probabilities Pb(t) to form the transition 
probability matrices M t . 

Having completed the construction of the three essential components for 
imbedding (0, Cx and M t ), we can now obtain the exact probability for match
ing pattern A. 

Given the initial probability 7T"0 = (1,0,0,0,0), the conditional probability 
of perfect matching for a pattern size of 3 and specified W can then be obtained 
VIa 

P(E4,5(3, 3)IW) = P(X5(A) > 0IW) = 7T"0 (g Mt(W)) u l (Cd, 

where U(C l ) = (0,0,0,0,1). For instance, given PA = 0.1, PC = 0.2, PG = 0.3, 
and PT = 0.4, then P(E4 5(3, 3)IW = AAGT) = 0.0426. , 

In the following, prior to giving a general expression for our FMCI approach, 
we denote 

9w = {AI,··· ,Ad 

to be the collection of all distinct simple patterns of size M in sequence W, 
where M and Ware given, and further denote 

Aw = UAiE9wAi 

to be the compound pattern of size M generated by W. 

Theorem 13.3.1 Given sequence W, the random variable Xn(Aw) is finite 
Markov chain imbeddable, and the conditional probability for perfect matching 
of pattern size M is 

(13.7) 
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where 1T'o = (1,0,···, 0), U~ = (0,···,0,1), and the transition probability 
matrices Mt(W) are generated by the compound pattern Aw. 

PROOF. Given W, it follows from the definitions of Ed,n(M, M) and Xn(Aw) 
that P(Edn(M,M)IW) = P(Xn(Aw) > 0). It is easy to see that the random 
variable Xn(Aw) is finite Markov chain imbeddable, and the result (13.7) fol
lows immediately from the Chapman-Kolmogorov equation. This completes 
the proof. • 

If sequence W is not specified, then all possible sequences of length d have 
to be considered. Denote 

Fd {W = (WI,···, Wd) : Wi = A,C,G,T} 

the collection of all possible sequences of length d. 

It follows from Theorem 13.3.1 that the following corollary holds. 

Corollary 13.3.1 If sequence W is not specified, then the probability (uncondi
tional) of perfect matching for pattern size M between two nonaligned sequences 
is given by 

P(Ed,n(M,M)) = L P(Xn(Aw) > O)P(W) 
WEFd 

L 1T'o (IT Mt(W)) U~ x P(W), 
WEFd t=1 

(13.8) 

where P(W) is the probability associated with W, WE Fd. 

Pattern sizes of interest in the matching of DNA sequences often range from 
2 to 9 (2 :S M :S 9). Theorem 13.3.1 and Corollary 13.3.1 provide a simple 
and efficient procedure for computing the exact conditional and unconditional 
perfect matching probabilities for 2 :S M :S 9 and moderate d, as will be 
illustrated via numerical examples in Section 13.5. 

13.4 A Large Deviation Approximation 

Various upper and lower bounds for the matching probability have been pro
posed [e.g., Hunter (1976), Hoover (1990), Glaz (1993), and Sheng and Naus 
(1994)], and several approximations have been derived [e.g., Arratia, Gordon, 
and Waterman (1990), Mott, Kirwood, and Curnow (1990), and Sheng and 
Naus (1994)]. Numerical comparisons for some selected bounds and approxi
mations have been performed by Sheng and Naus (1994), using simulations to 
obtain the matching probability. 
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With the FMCI approach, we are able to efficiently obtain the exact prob
ability of perfect matching for sequences of moderate length. For example, for 
d = n = 9 and M = 3, we obtain the exact probability P(Eg 9(3,3)) = 0.4716, 
which differs by about one percent (relative error) from the' estimate derived 
via simulations by Sheng and Naus (1994), as shown in Table 13.1 along with 
various other bounds. 

Table 13.1: P{ Eg 9(3,3)} with PA = Pc = Pc = PT = 0.25 , 

Bonferroni- Sh * Glaz-
Hunter-

Bonferroni eng -
Simulat. Exact Glaz-Sheng- N Hoover N aus probab. probab. Hoover 

upper 
aus 

b d bound bound bound 
oun bound 

0.3771 0.4524 0.4747 0.4716 0.5289 0.5575 0.7329 
* For details, see Sheng and Naus (1994). 

In general, for M ~ d and large n, the bounds are reasonable, but they 
become less accurate when M is much smaller than d and n is moderate. The 
exact matching probabilities, on the other hand, can be easily obtained via 
Theorem 13.3.1 and Corollary 13.3.1, even for moderate or large n. When n is 
very large, bounds and approximations are very useful, and for such cases, we 
suggest a simple alternative based on the large deviation method to approximate 
the exact probability. 

The idea of the large deviation approximation is based on the fact that, for 
any given d and 1 ::; m ::; M, the exact probability P(Ed,n(m, M)) converges to 
zero exponentially (or obeys the first large deviation principle) in the following 
sense: there exists a positive constant (3 > 0, for which 

lim .!. log P(Ed n(m, M)) = -(3, 
n---t(X) n ' 

(13.9) 

where (3 is called the exponential rate for the sequence of probabilities of events 
Ed,n (m, M). The exponential rate (3 usually depends on m, d, and the state 
probabilities Pb in a very complex way. 

Before deriving the approximation, we first study the exponential rate of 
P(Ed,n(M,M)IW) where the sequence W is specified. 

Theorem 13.4.1 Given W = {WI,"', Wd}, 

. 1 
hm - logP(Edn(M, M)IW) = -(3w, 

n--->()() n ' (13.10) 

where(3w =min((hll "',(3Ak) and(3Ai = -log(l-PA;), Ai E 9w, i = 1,"',k, 
k is the number of distinct patterns in 9w, and PAi is the probability of simple 
pattern Ai (e.g., if Ai = GTA, then PAi = PCPTPA). 
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PROOF. Consider a simple pattern A with probability PA of occurring. Using 
the method developed by Fu (1986), Chao and Fu (1989), and Papastavridis 
and Koutras (1992), it can be shown that for arbitrarily small c > 0, there 
exists a positive integer no such that the following inequality holds: 

It follows that 

lim ~ log P(Xn(A) = 0) = -f3A, 
n-+oo n 

(13.11) 

where f3A = -log(1 - PA). Since SM(d, n) < M if and only if Xn(Ai) = 0 for 
all Ai E YW, (13.10) follows directly from (13.11) and the following inequality, 

This completes the proof. • 
Theorem 13.4.1 implies that P(Ed,n(M, M)IW) ~ exp{ -nf3w} for very 

large n. This yields a large deviation approximation for the perfect matching 
probability of pattern size M between two nonaligned sequences. 

Theorem 13.4.2 For fixed d and very large n, 

P(Ed,n(M, M)) ~ 1 - L P(W) exp{-nf3w}, (13.12) 
WEFd 

where f3w is as defined in Theorem 13.4.1. 

PROOF. Since P(Ed,n(M, M)) = 1 - P(Ed,n(M, M)) and P(Ed,n(M, M)) 
I:WEFd P(W)P(Ed,n(M, M)IW), (13.12) is a direct consequence of Theorem 
13.4.1. This completes the proof. • 

13.5 Numerical Results 

The computational algorithm associated with the finite Markov chain imbed
ding technique is very simple. In addition to construction of the state space 
and the transition probability matrices, it basically only requires matrix multi
plications. To illustrate our theoretical developments of the previous sections, 
several numerical results are presented here. 

The exact perfect matching probabilities P(Ed n (M, M)) for various n, d, 
and M are given in Table 13.2 for equal state pr~babilities (i.e., PA = Pc = 

Pc = PT = 0.25) and in Table 13.3 for a set of unequal state probabilities 
(PA = 0.15, PC = 0.25, and Pc = PT = 0.3). 
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Table 13.2: P{Edn(M, M)} with PA = Pc = PG = PT = 0.25 , 

Matching prob. for M = 3 Matching prob. for M = 4 
n 

d=3 d=4 d=5 d=4 d=5 
10 0.1188 0.2027 0.2793 0.0270 0.0479 
50 0.5316 0.7368 0.8521 0.1682 0.2766 

100 0.7869 0.9326 0.9780 0.3162 0.4868 
500 0.9996 1 1 0.8571 0.9665 

1500 1 1 1 0.9971 0.9999 
M: pattern size, n: length of sequence R, and d: length of sequence W. 

Table 13.3: P{Edn(M, M)} with PA = 0.15,pc = 0.25,PG = PT = 0.3 , 

Matching Probability 
n 

d=3 d=4 d=5 
M 

3 10 0.1384 0.2318 0.3155 
50 0.5733 0.7653 0.8702 

100 0.8043 0.9319 0.9754 
1000 0.9997 1 1 

4 10 0.0339 0.0592 
100 0.3688 0.5440 

1000 0.9654 0.9939 
5 100 0.1164 

1000 0.6785 
4000 0.9631 

M: pattern size, n: length of sequence R, 
and d: length of sequence W. 
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Note that M :::; d :::; n, and hence the lower-left corner of Table 13.3 has 
no values. It may be seen from Tables 13.2 and 13.3 that (a) for fixed M and 
n, the matching probability increases as d increases, (b) for fixed d and n, the 
matching probability decreases rather quickly with increasing M, and (c) for 
fixed M and d, as n increases, the matching probability increases exponentially 
fast to one. 

To show the last point (c), the exponential rate of convergence, and Theorem 
13.4.1, a graph of the conditional probability P(Edn(M,M)IW) is given in 
Figure 13.1, where sequence W is specified as W = ACG. 
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Figure 13.1: Rate of convergence for P{Edn{M, M)IW) with W = AGC, 
and PA = Pc = PG = 'PI' = 0.25 ' 

Since P{Edn{M, M)) is a weighted linear combination of P{Edn{M, M)IW), 
the unconditio~al probability P{Ed n (M, M)) also tends to one 'exponentially 
fast. This phenomenon can also be ~een in Tables 13.2 and 13.3. 

When n is very large, the conditional probability for perfect matching of 
pattern size M can be approximated via Theorem 13.4.1 for both equal and 
unequal state probabilities. For instance, for d = M = 3 and specified W = 
AGC, given PA = 0.1, Pc = 0.2, PG = 0.3, and 'PI' = 0.4, the conditional perfect 
matching probability can be approximated by the quantity 

P{E3n{3,3)IW = AGC) ~ 1- exp{-n,8w}, , 

where ,8w = -log{1 - PAPGPC) = 0.0060180723. Comparisons between exact 
and approximated probabilities are listed in Table 13.4, and show that the large 
deviation approximations are highly accurate. 

For equal state probabilities (PA = PC = PG = 'PI' = 0.25), if also M = d, a 
much simpler approximation for this special case can be used. It follows from 
Theorem 13.4.2 that 

P{EiI,n{M, M)) ~ 1 - (1 - 4~ ) n (13.13) 
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Table 13.4: Comparisons between exact probabilities and large deviation 
approximations for P(E~,n(3, 3)IW = AGe) with PA = O.I,pc = 0.2,PG = 
0.3,PT = 0.4 

Length of R-seqs. 
n 

500 
1000 
1500 
2000 

Matching probability 
Exact Large Deviation 

0.95186467 0.95066079 
0.99771131 0.99756564 
0.99989118 
0.99999999 

0.99987989 
0.99999941 

Comparisons between the exact probabilities and approximation (13.13) are 
given in Table 13.5. 

Table 13.5: Comparisons between exact probabilities and large deviation 
approximations for P{Edn(M, M)} with PA = Pc = PG = PT = 0.25 , 

n 

10 
50 

100 
500 

Matching prob. for M = d = 3 
Exact Large Devi. Approx. 
0.1188 0.1457 
0.5316 
0.7869 
0.9995 

0.5450 
0.7930 
0.9996 

Matching prob. for M = d = 4 
Exact Large Devi. Approx. 
0.0270 0.0384 
0.1682 
0.3162 
0.8571 

0.1777 
0.3239 
0.8587 

M: pattern size, n: length of sequence R, and d: length of sequence W. 

The numerical results presented in Table 13.5 show that the simplified large 
deviation approximation performs extremely well even when n is only mod
erately large. Based on our computational experience, if n 2: 50, the large 
deviation formula (13.13) provides a good approximation. 

13.6 Discussion 

The theorems and numerical results presented herein are based on the assump
tion that the sequences of four-state trials are independent and identically dis
tributed with either equal or unequal state probabilities (PA, Pc, PG, and PT)· 
In real biological applications, the trials within sequences (Wand R) could be 
dependent. In view of our formulation for the matching problem using the finite 
Markov chain imbedding technique, with some modifications our results could 
be extended to study the matching probability when the trials within sequences 
are Markov-dependent. 

For simplicity, we have assumed that the two nonaligned sequences (W 
and R) have a common probability mass function, i.e., Plb = P2b = Pb, b = 
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{A, C, G, T}. Relaxing this assumption, i.e., Plb t= P2b for some b, the formula 
(13.8) could still be used to obtain the exact probability of perfect matching, 
where P(W) is computed under Plb and P( E:i n (M, M) I W) is computed under , 
P2b· 

Here, we view DNA segments as sequences of four-state trials. In principle, 
our FMCI approach is applicable to other multi-state trials, as in the matching 
of protein sequences where B is an alphabet of twenty amino acids. It is obvious 
that our FMCI approach for nonaligned sequences could also be used for aligned 
sequences. We feel that the derivation is rather simple, and hence leave it to 
the reader. 

Our numerical results were computed on a UNIX system using the program
ming language MATLAB, and for the examples we have considered, the CPU 
time on a SPARC 1000 machine is negligible when sequence W is specified. 
For unspecified sequence W, 3 :::; M :::; 5, and moderate d (3 :::; d :::; 9), com
puting the exact matching probabilities requires a CPU time of only about a 
few minutes even when n is very large. For unspecified W, and moderate M 
(6:::; M :::; 12), the computational time increases rapidly with d to hours, since 
all possible sequences W have to be considered. We believe that the compu
tational time could be significantly reduced via faster computer hardware and 
more efficient numerical implementation. For very large n, the proposed large 
deviation approximation provides a very simple and efficient alternative. 

Acknowledgments. This work was supported in part by the NATO Collabo
rative Research Grants Programme CRG-970278 and the National Science and 
Engineering Research Council of Canada Grant A-9216. 
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Spatial Scan Statistics: Models, Calculations, and 
Applications 

Martin K ulldorff 

National Cancer Institute, Bethesda, MD 

Abstract: A common problem in spatial statistics is whether a set of points are 
randomly distributed or if they show signs of clusters or clustering. When the 
locations of clusters are of interest, it is natural to use a spatial scan statistic. 

Different spatial scan statistics have been proposed. These are discussed 
and presented in a general framework that incorporates two-dimensional scan 
statistics on the plane or on a sphere, as well as three-dimensional scan statistics 
in space or in space-time. Computational issues are then looked at, presenting 
efficient algorithms that can be used for different scan statistics in connection 
with Monte Carlo-based hypothesis testing. It is shown that the computational 
requirements are reasonable even for very large data sets. Which scan statistic 
to use will depend on the application at hand, which is discussed in terms of past 
as well as possible future practical applications in areas such as epidemiology, 
medical imaging, astronomy, archaeology, urban and regional planning, and 
reconnaissance. 

Keywords and phrases: Spatial statistics, geography, spatial clusters, space
time clusters, maximum likelihood, likelihood ratio test 

14.1 Introduction 

The scan statistic is a statistical method with many potential applications, 
designed to detect a local excess of events and to test if such an excess can 
reasonably have occurred by chance. The scan statistic was first studied in 
detail by Naus (1965a,b), who looked at the problem in both one and two 
dimensions. 
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In two or more dimensions, which is the topic of this chapter, the events may 
be cases of leukemia, with an interest to see if there are geographical clusters 
of the disease; they may be antipersonnel mines, with an interest to detect 
large mine fields for removal; they could be Geiger counts, with an interest to 
detect large uranium deposits; they could be stars or galaxies; they could be 
breast calcifications showing up in a mammography, possibly indicating a breast 
tumor; or they could be a particular type of archaeological pottery. Later on 
we will discuss each of these and several other applications and the type of scan 
statistic that is suitable in each situation. 

Three basic properties of the scan statistic are the geometry of the area 
being scanned, the probability distribution generating events under the null 
hypothesis, and the shapes and sizes of the scanning window. We present a 
general framework in which most multidimensional scan statistics fit. Depend
ing on the application, different models will be chosen, and depending on the 
model, the test statistic may be evaluated either through explicit mathemati
cal derivations and approximations or through Monte Carlo sampling. In the 
latter case, random data sets are generated under the null hypothesis, and the 
scan statistic is calculated in each case, comparing the values from the real and 
random data sets to obtain a hypothesis test. 

While computer intensive, the Monte Carlo approach need not be overly so. 
In this chapter, we present a set of efficient algorithms which can be used to 
calculate the spatial scan statistic for a set of different models with a circular 
window. One of these with a continuously variable radius, required 163 minutes 
of computing time on a 100 MHz Pentium PC, when applied to 65,040 cases of 
melanoma in the 3,053 counties of the continental United States. 

Section 14.2 is essentially a review of the existing literature, while Sec
tion 14.3 presents mostly new material. Section 14.4 describes how the spatial 
scan statistic can be utilized in practice in an attempt to inspire its use in 
current as well as new areas of application. 

14.2 Models 

14.2.1 A general model 

As mentioned above, the three basic properties of the scan statistic are the 
geometry of the area being scanned, the probability distribution generating 
events under the null hypothesis, and the shapes and sizes of the scanning 
window. 

Kulldorff (1997) defined a general model for the multidimensional scan 
statistic. Let A be the area in which events may occur, a subset of Euclidean 
space where different dimensions may represent either physical space or time. 



Spatial Scan Statistics 305 

For example, A could be particular geographical area during a ten-year period, 
where events are recorded both geographically and temporally. 

On A define a measure J-l, representing a known underlying intensity that 
generates events under the null hypothesis. For a homogeneous Poisson process 
on a rectangle A, we have J-l(x) = A for all x E A and some constant A. The 
measure could also be discrete, so that it is only positive on a finite number 
of population points, where J-l(B) is the combined measure of the population 
points located in area Be A. We require that J-l(B) > 0 for all areas B. 

Let X denote a spatial point process where X(B) is the random number 
of events in the set B c A. Two different probability models are considered, 
based on Bernoulli counts and the Poisson process, respectively. 

For the Bernoulli model, we consider only discrete measures J-l such that 
J-l(B) is an integer for all subsets B c A. Each unit of measure corresponds to 
an "entity" or "individual" who could be in either one of two states, for example 
with or without some disease, or being of a certain species or not. Individuals 
in one of these states are defined as events, and the location of those individuals 
constitute the point process. Under the null hypothesis, the number of events 
in any given area is binomially distributed, so that X (B) rv Bin (J-l ( B), p) for 
some value p and for all sets B c A. 

For the Poisson model, events are generated by a homogeneous or nonhomo
geneous Poisson process. Under the null hypothesis, X(B) rv Poisson(pJ-l(B)) , 
for some value p and for all sets B c A. The measure J-l may either be de
fined continuously so that events may occur anywhere, or discretely so that 
events may occur only at prespecified locations, or as a combination of the two. 
The discrete case is useful when we are dealing with individual counts or with 
aggregated data. 

The window of a scan statistic is often thought of as an interval, area, or 
volume of fixed size and shape, which then moves across the study area. As it 
moves, it defines a collection W of zones W c A. To be more general, we allow 
for windows of variable size and shape, by defining the window as a collection 
W of zones W c A of any size and shape. What defines it as a scan statistic is 
that the different zones overlap each other and jointly cover the whole area A. 

Conditioning on the observed total number of events, X(A), the definition 
of the scan statistic is the maximum likelihood ratio over all possible zones 

Sw = maxwEwL(W) = max L(W) 
Lo WEW Lo ' 

(14.1) 

where L(W) is the likelihood function for zone W, expressing how likely the 
observed data are given a differential rate of events within and outside the zone, 
and where Lo is the likelihood function under the null hypothesis. 

Let X(A \ W) = X(A) - X(W) and J-l(A \ W) = J-l(A) - J-l(W). For the 
Bernoulli model, 
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(14.2) 
if X(W)jjt(W) > X(A \ W)jjt(A \ W), and L(W) = 1 otherwise. For the 
Poisson model, 

(~)X(W) (~)X(A\W) 

(~{1nX(A) 
L(W) 

Lo 
(14.3) 

if X(W)j jt(W) > X(A\W)jjt(A\W), and L(W) = 1 otherwise. The expression 
X(W)jjt(W) > X(A \ W)jjt(A \ W) simply states that there are more than 
the expected number of events within the window as compared to outside the 
window. If we were scanning for areas with a low number of events, then ">" 
would change to "<." For details and derivations as a likelihood ratio test, see 
Kulldorff (1997), who has also proved some optimal properties for these test 
statistics. 

When the window size is fixed in terms of the expected number of events, 
that is, if jt(W) = jt(W') for all W, W' E W, then the scan statistic is 

Sw = max X(W), 
WEW 

the maximum number of events in the window over all possible locations. Note 
that Sw 1- Sw, but for any two realizations of the point process, say WI and 
W2, Sw(WI) > Sw(W2) if and only if SW(WI) > SW(W2). This means that, when 
the window size is fixed, then a hypothesis test based on Sw is identical to one 
based on Sw. 

For a Poisson model with continuous measure, a lower bound on the window 
size is needed. If not, then a window containing a sequence of increasingly 
smaller zones all containing the same event will in the limit give an infinite 
valued test statistic. It is also natural to put an upper bound on the window 
size. A window W that contains almost all of A makes little sense, and should 
be interpreted as a lack of events outside of W rather than as an excess inside. 

14.2.2 Special cases 

Both one and multidimensional scan statistics are special cases of the above 
model. Many features of it originated in connection with one-dimensional scan 
statistics; see, for example, Saperstein (1972), Naus (1974), Weinstock (1981), 
Wallenstein, Weinberg, and Gould (1989b), and Glaz and Naus (1991). Here, 
we review the multi-dimensional literature. 
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In terms of the area A being scanned, Naus (1965b), Loader (1991), AIm 
(1997, 1998) and Anderson and Titterington (1997) all considered a rectangle. 
AIm (1998) also looked at a three-dimensional rectangular volume. Chen and 
Glaz (1996) looked at a regular grid of discrete points within a rectangular area. 
Thrnbull et al. (1990) used an irregular grid, where points may be anywhere 
within an arbitrarily shaped area. 

Under the null hypothesis, Naus (1965b), Loader (1991), and AIm (1997, 
1998) looked at a homogeneous Poisson process, Turnbull et al. (1990) con
sidered a nonhomogeneous Poisson process, while Anderson and Titterington 
(1997) considered both types. Chen and Glaz (1996) considered a Bernoulli 
model. 

As for the scanning window, Naus (1965b), Loader (1991), Chen and Glaz 
(1996), AIm (1997, 1998) and Anderson and Titterington (1997) all considered 
rectangles. In addition, AIm (1997, 1998) also looked at circles, triangles, and 
other convex shapes. Thrnbull et al. (1990) considered a circular window 
centered at any of the grid points making up the data. The window is, in all 
cases, of fixed shape as well as of fixed size in terms of the expected number 
of events, with the exception of Loader (1991), who also considered a variable 
size window. 

In terms of applications, the general model has been applied in a number of 
different settings, the first of which was presented at the SPRUCE conference 
in 1992 and later published by Kulldorff and Nagarwalla (1995). For all of 
these, the data are located on an irregular grid within an arbitrarily shaped 
area. Kulldorff and Nagarwalla (1995) and Section 6.1 of Kulldorff (1997) 
used the Bernoulli model, while Section 6.2 of Kulldorff (1997), Hjalmars et 
al. (1996), Kulldorff et al. (1997, 1998), and Walsh and Fenster (1997) used a 
nonhomogeneous Poisson process. In terms of the scanning window, all used a 
variable size circle centered on the grid points, except for Kulldorff et al. (1998), 
who used a three-dimensional cylinder where the size of both the base and the 
height is variable independently of each other. 

The choice of scan statistic will depend on the particular application at 
hand, a topic we will turn to in Section 14.4. 

14.2.3 Related methods 

As part of a "geographical analysis machine," Openshaw et al. (1987) used a 
number of overlapping circular zones of different radii. The purpose is the same 
as with a spatial scan statistic, to detect clusters of events, but a separate test 
is performed for each of the many zones. This leads to multiple testing, and 
even under the null hypothesis we would expect a large number of "significant" 
clusters, but as a descriptive geographical analysis tool the method is useful. 
Thrnbull et al. (1990) solved the problem of the multiple testing for circles 
with fixed expected number of cases, while Kulldorff and Nagarwalla (1995) 
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and Kulldorff (1997) solved it for variable size circles. 
Priebe (1998) proposed a spatial scan statistic for stochastic scan partitions. 

In a two-step procedure, one set of data is first used to create a set of non
overlapping zones, called scan partitions, while another set of data containing 
the events is used to see if any of these partitions have a statistically significant 
excess of events. Because the zones are nonoverlapping, the calculations for the 
second part are more simple than for a standard scan statistic. It is necessary 
to have the additional data set though, used in the first step, and under the 
null hypothesis the two data sets need to be independent of each other for the 
test to be valid. 

In other related problems, Eggleton and Kermack (1944), Besag and Newell 
(1991), Mansson (1996), and many others have studied the number of clusters 
of some prespecified magnitude. Lawson (1997) applied a Bayesian framework 
to investigate the number of clusters and their locations. Adler (1984), Worsley 
et al. (1992), and some others have investigated the supremum of a Gaussian 
random field. 

Wallenstein, Gould, and Kleinman (1989a) used a scan statistic in the time 
dimension to improve on a previously proposed space-time clustering test, but 
the test itself is not a scan statistic. Rather than taking a maximum over 
the geographical zones, the degree of clustering in each zone is summed over all 
zones, making it a global clustering test. Such tests are useful for quite different 
purposes, when the locations of clusters are not of interest. 

14.3 Calculations 

14.3.1 Probabilistic approximations 

The mathematics for obtaining the distribution of the scan statistic is quite 
complex, and exact derivations have proved elusive for all but the simplest 
scenarios. There are some very interesting and impressive probabilistic approx
imations though. Starting with Naus (1965b), later results have been obtained 
by Loader (1991), Chen and Glaz (1996), and AIm (1997,98). Mansson (1996) 
has derived some limit results. Details of these developments can be found in 
Chapter 5 of this volume by Sven-Erick AIm, and in Chapter 10 by Marianne 
Mansson. 

14.3.2 Monte Carlo-based hypothesis testing 

When probabilistic approximations are not available, Monte Carlo-based hy
pothesis testing is. In principle, this can be applied to any special case of the 
general model presented in Section 14.2. Generating random cases is typically 
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not a problem, but calculating the value of the test statistic can be a com
plex undertaking, depending on the model chosen. For the descriptive cluster 
detection method described earlier, Openshaw et al. (1987) used a Cray su
percomputer even though their approach is conceptually simpler than a scan 
statistic. By using efficient statistical algorithms, the calculation times can be 
substantially reduced. 

Monte Carlo-based hypothesis testing was proposed by Dwass (1957), who 
pointed out that the probability of falsely rejecting the null hypothesis is exactly 
according to the significance level, in spite of the simulation involved. Mantel 
(1967) proposed its use in terms of spatial point processes, while Turnbull et al. 
(1990) was the first to use it in the context of a multidimensional scan statistic. 
Monte Carlo hypothesis testing for a scan statistic is a four-step procedure: 

1. Calculate the value of the test statistic for the real data. 

2. Create a large number of random data sets generated under the null hy
pothesis. 

3. Calculate the value of the test statistic for each of the random replications. 

4. Sort the values of the test statistic, from the real and random data sets, 
and note the rank of the one calculated from the real data set. If it 
is ranked in the highest 0: percent, then reject the null hypothesis at 0: 

percent significance level. 

The key in terms of minimizing computing time is Step 3, as it can be 
complex in nature, and most of all, because it must be repeated once for each 
random replication of the data set. Anderson and Titterington (1997) pre
sented the following algorithm for a circular window of fixed diameter d on a 
homogeneous Poisson process: 

Algorithm 14.3.1 (Anderson-Titterington: Circular window. Fixed size. Ho
mogeneous Poisson process.) 

1. Identify the locations (x, y) of two events no more than distance d apart. 

2. Construct the two circles of diameter d for which x and y lie on the 
circumference. 

3. Identify the number of events that lie on or inside each of the two circles 
and let n be the larger of those two numbers. 

4. Repeat Steps 1 to 3 for all relevant pairs of locations and report the largest 
of the resulting n-values as being the scan statistic. 
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The complexity of one visit to Step 3 is ofthe order O(N), where N = X(A), 
the total number of events. Steps 1-3 must be repeated O(N2) times for each 
of R Monte Carlo replications, so the total complexity is O(RN3 ). When N is 
large, a more efficient algorithm is: 

Algorithm 14.3.2 (Circular window. Fixed size. Homogeneous Poisson pro
cess.) 

1. Identify the location x of an event and construct a large circle with radius 
d centered at x. Pick an arbitrary location on the large circle, xo, and 
denote the angle from x to Xo as 0°. 

2. Create a smaller circle of radius d/2 within the larger one. Imagine the 
smaller circle moving clockwise completely within the larger circle in such 
a way that x is always on its circumference. Denote by xa, 0° < a < 360°, 
the single point that is on the circumference of both circles, where a is the 
angle from x to Xa' 

3. For each event on or inside the larger circle, note the two angles of the 
line from x to Xa when the event enters and departs the smaller moving 
circle. Sort the angles in increasing order, keeping track of whether the 
angle corresponds to an entrance or a departure. 

4. For the smaller circle which has both x and Xo on its circumference, count 
the number of events inside it. Then go through the array of sorted angles 
from 0° to 360°, adding one to the count for each entrance, subtracting 
one for each departure. Denote the maximum count by n. 

5. Repeat Steps 1 to 4 for all events, and report the largest of the resulting 
n-values as the scan statistic. 

6. Repeat Steps 1 to 5 for each Monte Carlo replication. 

Each visit to Steps 2 and 4 is O(N) while the sorting in Step 3 is O(NlogN). 
There are N iterations of Steps 1 to 5 for each of R replications, and hence the 
total complexity is O(RN) [O(N) + O(NlogN) + O(N)] = O(RN2logN). 

In most practical applications, the cluster size is unknown a priori. For a 
homogeneous Poisson process, the simplest algorithm to program would be to 
pick all triplets of events, in turn, and for each triplet construct the circle for 
which all three events lie on the circumference, then counting the number of 
events within that circle. Based on the number of events and the circle size, it 
is then possible to calculate the likelihood according to (14.3), and the largest 
likelihood over all possible triplets is the scan statistic. Such an algorithm 
is O(RN4). A more efficient algorithm, with complexity O(RN3 logN) , is as 
follows. 
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Algorithm 14.3.3 (Circular window. Variable size. Homogeneous Poisson 
process.) 

1. Identify the locations (x, y) of two events, and construct the straight line 
L between the two where each point on the line is equal distance from x 
and y. Denote one end of the line as the left end. 

2. For each remaining event z, construct the circle such that all of (x, y, z) 
lie on the circumference. Note where on L lies the circle centroid cor
responding to z, and whether event z enters or departs the circle as the 
centroid moves toward the left. 

3. Sort the circle centroids on L from right to left, keeping track of whether 
that centroid corresponds to an entrance or a departure. 

4. Calculate the number of events in the circle with its centroid farthest to 
the right, as well as the circle size. Then move down the sorted array of 
circles centroids adding or subtracting events as they enter or depart the 
circle. For each circular area W, register the number of events n as well 
as the circle measure J.L(W) = fw J.L dy = J.L7rr2, where r is the radius. 

5. Repeat Steps 1 to 4 for all pairs of events, and report the largest likelihood 
based on all (n, J.L(W)) -pairs as the scan statistic, where the likelihood is 
calculated according to (14.3). 

6. Repeat Steps 1 to 5 for each Monte Carlo replication. 

So far, we have presented algorithms for homogeneous Poisson processes. A 
simple case of a nonhomogeneous Poisson process is a gradual linear shift in 
intensity so that J.L(x) = a+bx for some a and b. Algorithm 14.3.3 can be easily 
modified to account for this by calculating the measure of the circular area W 
centered at x as J.L(W) = fw J.L(y)dy = J.L(x)7rr2dx, where r is the circle radius. 

Another form of nonhomogeneity is the discrete case in which the measure 
is concentrated on a finite set of population points. The following algorithm is 
similar to Algorithm 14.3.3 but based on the location of the population points 
containing positive measure, rather than on the location of events. We can no 
longer calculate the measure simply from the circle size, and hence, we need 
to keep track of the amount of measure in the window simultaneously with the 
number of events. 

Algorithm 14.3.4 (Circular window. Variable size. Discrete nonhomoge
neous Bernoulli or Poisson process.) 

1. Identify the locations (x, y) of two population points, and construct the 
straight line L between the two where each point on the line is equal dis
tance from x and y. Denote one end of the line as the left end. 
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2. For each remaining population point z, construct the circle such that all 
of (x, y, z) lie on the circumference. Note where on L lies the circle cen
troid and whether the population point enters or departs the circle as the 
centroid moves toward the left. 

3. Sort the circle centroids located on L from right to left, keeping track of 
whether that centroid corresponds to an entrance or departure. 

4. Calculate the number of events n in the circle with its centroid farthest to 
the right on the line, as well as the measure /.l(W) for that circle. Then 
move down the sorted array of circles centroids adding and subtracting 
events and measure as population points enter and depart the circle. For 
each circular area W, register the number of events n as well as the pop
ulation measure /.l(W). 

5. Repeat Steps 1 to 4 for all pairs of population points, and report the largest 
likelihood based on all (n, /.l(W))-pairs as the scan statistic, where the 
likelihood is calculated according to {14.2} in the case of a Bernoulli model, 
and according to {14.3} for the Poisson model. 

6. Repeat Steps 1 to 5 for each Monte Carlo replication. 

The complexity ofthis algorithm is O(RM3logM)), where M is the number of 
population points. 

For most applications, it is not crucial to include all possible circles in the 
set of zones constituting the window, and an alternative is to use only a subset 
of closely overlapping circles. This reduces the computing time. In the following 
two algorithms, the window contains only those circles that are centered at any 
of a number of prespecified irregular grid points. The radius of the circles still 
vary continuously. 

Algorithm 14.3.5 (Circular window. Variable size. Circle centroids on grid. 
Homogeneous Poisson process.) 

1. Pick a grid point. Calculate the distance to the different events and sort 
in increasing order. 

2. Create a circle centered at the grid point and continuously increase the 
radius. For each event entering the circle, note the number of events n 
and the measure /.l(W) = wrrr2 inside the circle. 

3. Repeat Steps 1 and 2 for each grid point. Report the largest likelihood 
based on all (n, /.l(W)) -pairs as the scan statistic, where the likelihood is 
calculated according to {14.3}. 

4. Repeat Steps 1 to 3 for each Monte Carlo replication. 
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The complexity of this algorithm is O(RGNlogN), where G is the number of 
grid points. For a discrete nonhomogeneous process, we have the following: 

Algorithm 14.3.6 (Circular window. Variable size. Circle centroids on grid. 
Discrete nonhomogeneous Bernoulli or Poisson process.) 

1. Pick a grid point. Calculate the distance to the different population points 
and sort those in increasing order. Memorize the sorted population points 
in an array. 

2. Repeat Step 1 for each grid point. 

3. Pick a grid point. 

4. Create a circle centered at the grid point and continuously increase the 
radius. For each population point entering the circle, update the number 
of events n and the measure J.L(W) inside the circular area W. 

5. Repeat Steps 3 and 4 for each grid point. Report the largest likelihood 
based on all (n, J.L(W)) -pairs as the scan statistic, where the likelihood is 
calculated according to (14.2) or (14.3). 

6. Repeat Steps 3 to 5 for each Monte Carlo replication. 

The complexity of Steps 1 and 2 is O(GMlogM), as this does not have to be 
repeated for each Monte Carlo replication. The complexity of Steps 3 to 6 is 
O(RGM). 

Algorithms 14.3.5 and 14.3.6 also work for three-dimensional spherical win
dows by simply defining the population points in three-dimensional space. The 
complexity remains the same but for a complete coverage, the number of grid 
points G may have to be larger. 

In space-time applications, one option is simply to define time as a third 
dimension and use a spherical window on that three-dimensional space. One 
problem with this is that the result will depend on the relative units of spatial 
and temporal distances. Another problem is that a sphere would represent a 
cluster starting with zero spatial size, then growing steadily over time until 
a maximum spatial size is reached, after which it gradually shrinks back to 
zero size again. It is more natural to scan for clusters using the intersection 
of a spatial circle and a temporal interval, leading to a cylindrical window. 
Algorithm 14.3.6 can be adjusted for this purpose, if for each geographical 
circle, we also scan the time-dimension using a variable size temporal interval. 
It also means that the geographical and temporal size can vary independently of 
each other. The complexity of Steps 3 to 6 then becomes O(RGMN2) if exact 
times are known, and O(RGMI2) if times are aggregated into I time intervals. 

Algorithms 14.3.1 to 14.3.6 extend to circular windows on the surface of a 
sphere, by simply defining the events and population points in three dimensions 
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on the spherical surface, and by adjusting the calculations of circle sizes and 
distances accordingly. This is very useful for geographical applications, avoiding 
the need for two-dimensional map projections. 

Scanning for low rates can also be handled by any of the mentioned algo
rithms. For Algorithms 14.3.4 and 14.3.6, it is just a question of changing the 
sign of the inequality when calculating the likelihood L(W). For the other al
gorithms, it is also necessary to subtract the number of events on the border of 
the circle from the circle total. 

A circular window has the advantage of being invariant under a rotation 
of the space. There are applications though where other shapes are of inter
est. Anderson and Titterington (1997) gave an O(RN2) algorithm for a square 
window of fixed size with sides parallel to the axes of the coordinate system. 
A scan statistic with a fixed shape variable size ellipsoidic window can be cal
culated using any of Algorithms 14.3.3 to 14.3.6, by rescaling one of the axes 
in the underlying coordinate system. We leave it for future research to present 
algorithms for other models. 

14.3.3 Software 

For certain multidimensional scan statistics, Kulldorff and Williams (1997) have 
developed Sa TScan. This software is available free of charge from the authors, 
or from the World Wide Web at http://dcp.nci.nih.gov/BB/SaTScan . html. 

SaTScan uses Algorithm 14.3.6, and is based on a nonhomogeneous Poisson 
process defined on an irregular grid; it can be used to analyze the following 
types of multidimensional scan statistics: (i) a scan statistic on the plane with 
a circular window of variable size with centroids on an arbitrarily defined regular 
or irregular grid, (ii) same on the surface of a sphere such as the earth, (iii) a 
three-dimensional scan statistic with variable size spheric windows centered on 
an arbitrary irregular grid, (iv) a space-time scan statistic with a variable size 
cylinder, where the base of the circle corresponds to a geographical area, and 
the height to a time interval, and where the sizes of the circle and interval are 
variable independently of each other. 

The software will, in all cases, adjust for any number of covariates specified 
by the user, and it is possible to scan for areas with a large number of events 
as well as for areas with a low number of events. Certain one-dimensional scan 
statistics can also be analyzed by putting all data on a single line. A future 
version will also include the Bernoulli model. 

Using SaTScan, the calculations for the New Mexico example below took 8 
seconds on a 100 MHz Pentium PC. With 1175 events in only 32 census areas, it 
is a rather small data set though. For the same type of analysis but with 65,040 
cases of melanoma in the United States, aggregated to 3053 counties, SaTScan 
used 163 minutes of computer time when the maximum window size was set to 
50% of the total, and 80 minutes when it was set to 10%. For 1592 cases of 
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leukemia in 2507 Swedish parishes, it used 62 and 15 minutes, respectively. The 
cylinder based space-time scan statistic used 21 hours for the Swedish data set 
with years as the temporal unit and 10% as the maximum geographic window 
size. The number of Monte Carlo replications were in all cases 999. 

This shows that the computational requirements for the spatial scan statistic 
is quite reasonable in practical applications with very large data sets. 

14.4 Applications 

14.4.1 Epidemiology 

There is a long history of geographical surveillance of disease by publishing 
disease atlases. If there are areas with exceptionally high rates, they may 
give us clues to the etiology of the disease, it may indicate areas where health 
care needs improvement, or it may indicate areas to be targeted for preventive 
measures. In those atlases that are not purely descriptive, analysis is often done 
by dividing the study region into nonoverlapping districts, making a separate 
test of hypothesis for each district to see if it has an excess incidence or mortality 
[Choynowski (1959)]. With a spatial or space-time scan statistic, we can do the 
surveillance adjusting for the multiplicity of possible cluster locations, without 
being limited by the boundaries of prespecified districts, and without defining 
the size of potential cluster a priori. 

Events may be cases diagnosed of some disease or deaths due to that dis
ease. The measure is by nature nonhomogeneous, reflecting the geographical 
distribution of the population at risk. In most situations, we want to adjust 
for covariates that are known risk factors such as age or sex. We might have 
individual locations for cases and all non-cases, or of cases and a random set 
of controls, but more often the data are aggregated at some small geographical 
level such as census tracts, parishes or postal code areas. In either case, we can 
use Algorithm 14.3.4 or 14.3.6. 

If the population at risk is all births and the events are occurrences of sudden 
infant death syndrome [Kulldorff (1997)] or birth defects, then we should use the 
Bernoulli model. If on the other hand, we are looking at fatal cardiac arrest in 
a population, we choose the Poisson model since such individuals are no longer 
part of the population numbers after the event occurs. Most applications fall 
somewhere in between the two, but whenever the number of events is small 
compared to the population at risk, the two models approximate each other so 
that either could be chosen. 

In terms of practical epidemiological applications, the spatial scan statistic 
has been used to study leukemia in Upstate New York by Turnbull et ai. (1990) 
using a fixed size window, and by Kulldorff and Nagarwalla (1997) using a vari-



316 Martin K ulldorff 

able size window. Hjalmars et al. (1996) have looked at childhood leukemia 
incidence in Sweden, Kulldorff (1997) studied sudden infant deaths in North 
Carolina, Kulldorff et at. (1997) have looked at breast cancer mortality in the 
northeastern United States, while Walsh and Fenster (1997) have studied mor
tality from systemic sclerosis in the southeastern United States. All these use a 
variable size circular window. Using a fixed size square window, Anderson and 
Titterington (1997) looked at laryngeal cancer in South Lancashire, England. 
The space-time scan statistic, using a variable size cylindrical window, has been 
applied to brain cancer incidence in New Mexico by Kulldorff et at. (1998). 

14.4.2 Example: Brain cancer in New Mexico 

To give an example, we look at the geographical distribution of brain cancer 
incidence in New Mexico. In 1989, a local resident detected an excess of brain 
cancer in Los Alamos during the previous year. This cluster alarm was evaluated 
statistically by Kulldorff et al. (1998) using a space-time scan statistic, without 
finding a significant space-time cluster in Los Alamos. Here, we will use a purely 
spatial scan statistic in more of a surveillance setting. 

Broken down by age and sex, brain cancer and population data are available 
from 1973 to 1992 at the aggregated level of 32 counties. A circular variable 
size window was used. The circle centroids are limited to the county centroids, 
while the radius varies continuously from zero and up until it includes 50% of 
the total population at risk. Using a Poisson model, the analysis is adjusted for 
age and sex. One analysis was done scanning for areas with high rates (clusters) 
and another scanning for areas with low rates. 

When scanning for areas with high rates, a cluster was found in and around 
Albuquerque, containing Bernadillo, Cibola-Valencia, Los Alamos, Sandoval, 
San Miguel, Santa Fe, Socorro, and Torrance counties (Figure 1.1), almost half 
the total state population. With 642 cases when 583.2 were expected, this area 
had a rate 10 percent higher than the New Mexico average, and it is significant 
with p = 0.030. As the New Mexico mortality rate was 16 percent lower than 
the United States average during 1986-90 [Miller et al. (1993)], this cluster may 
indicate that the Albuquerque area is more similar to the rest of the United 
States in terms of brain cancer than other parts of New Mexico. 

When scanning for areas with low rates, the likelihood took on its maximum 
value for Lea and Eddy counties combined (Figure 14.1). With 72 cases when 
97.4 were expected, these counties had an incidence rate 26 percent lower than 
the state average, with p = 0.221, a nonsignificant result. 

When interested in areas with either high or low rates, then we can either 
do two one-sided tests as we have done above, or we can do a single two-sided 
test, which is recommended. The clusters found will be the same, but not the 
p-value. For the two-sided test, p = 0.067. 

Note from Figure 14.1 that the detected clusters are not perfect circles even 



Spatial Scan Statistics 317 

though we used a circular window. This is because the data are aggregated to 
the county level, so that all of a county is considered to be within the window 
when the centroid is, and vice versa. The only way to obtain perfect circles is 
to have non-aggregated data. 

New Mexico 

Figure 14.1: Brain cancer incidence in New Mexico 1973-1991: The most 
likely cluster around Albuquerque in Bernadillo county (p = 0.030) and the 
most likely area with exceptionally low rate in Lea and Eddy counties (p = 
0.221) 

14.4.3 Medical imaging 

In medical imaging, the aim may be to detect tumors using mammography, or 
areas of activation in a brain scan related to certain physical or mental activities. 
There are applications in both two and three dimensions. Priebe (1998) applied 
his scan statistic based on random scan partitions on mammography images, 
looking for clusters of breast calcifications, and using the texture of the breast 
to define the scan partitions. Worsley et al. (1992) and others have looked at 
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the supremum of a Gaussian random field to determine centers of activity in 
the brain. The multidimensional scan statistic is a complementary approach to 
these problems, where each specific application will determine the best method 
to use. 

14.4.4 Astronomy 

The three-dimensional scan statistic can be used for two different types of as
tronomy problems. We could be interested to see if stars, galaxies, or some 
other type of heavenly object are randomly distributed, or whether there are 
significant local clusters. This leads to a homogeneous Poisson model and Al
gorithm 14.3.5. It can also be of interest to know whether a particular type of 
star or galaxy is randomly distributed after adjusting for the locations of all 
stars/galaxies. Then we should use the nonhomogeneous Bernoulli model and 
Algorithm 14.3.6. 

14.4.5 Archaeology and history 

Alt and Vach (1991) studied the location of graves containing individual, with 
a certain genetically determined odontological feature, comparing them to the 
locations of all graves within a prehistoric burial site. The purpose was to see if 
biologically related persons, who are more likely to share the same odontological 
feature, were buried close to each other. Using a test for global clustering, their 
main purpose was to test for spatial correlation without any interest in cluster 
locations. If we are interested in the latter, we would instead use a spatial 
scan statistic based on a discrete Bernoulli model with calculations based on 
Algorithms 14.3.4 or 14.3.6. 

Other potential archaeological and historical applications include the geo
graphical distribution of a certain type of pottery as compared to the distribu
tion of all discovered pottery, to locate areas where that type is significantly 
abundant, the geographical location of cities or castles in relation to the pop
ulation distribution, or the geographical distribution of villages with a certain 
name ending as compared to the distribution of all villages. 

14.4.6 Urban and regional planning 

Post offices, elementary schools, voting locations and many other establish
ments need to be fairly spread out so they can be conveniently reached by 
most people. By applying the spatial scan statistic to look for areas with an 
exceptionally low number of them, adjusting for the underlying population dis
tribution, we may find underserved populations where additional localizations 
are warranted. Businesses could also use such an approach to help determine 
appropriate locations for restaurants, grocery stores, health clubs, hairdressers, 
etc. 
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14.4.7 Reconnaissance 

Antipersonnel mines injure thousands of people each year long after the war 
for which they were intended has ended. It is of great importance to detect 
mines so they can be deactivated and removed. It is possible to scan a large 
area for possible mines from the air, but of the point locations obtained, only 
some will reflect true mines while others will be false detections. By using a 
scan statistic, areas most likely to contain mines can be detected. 

For such an application, we have a homogeneous Poisson process under the 
null hypothesis. As the size of possible minefields are hard to know a priori, we 
should use a variable size window, leading to Algorithms 14.3.3 or 14.3.5. 

If there are boundary features in the landscape in such a way that it is 
unlikely that a minefield would cut across such borders, then it is advantageous 
to use those to create scan partitions as suggested by Priebe (1998). That will 
increase the power of the test. 

Another type of reconnaissance for which a spatial scan statistic can be 
useful is when searching for mineral, oil, or uranium deposits. 

14.4.8 Power 

Wallenstein, Naus, and Glaz (1993, 1994a,b) have provided simple approxima
tions for the power of the one-dimensional scan statistic against a rectangular 
pulse alternative, and Sahu, Bendel, and Sison (1993) have shown that it has 
good power against other pulse alternatives such as triangles. This may indi
cate that multidimensional scan statistics also have good power against pulse 
alternatives, but that has never been thoroughly investigated. For one special 
case, it has been confirmed by Kulldorff and Nagarwalla (1995) who compared 
their model using a variable window size with the fixed window size model used 
by Turnbull et al. (1990). The variable size model had good power irrespective 
of the true cluster size. The fixed size model had higher power if the specified 
size was within about 20 percent of the true cluster size. Neither model had 
a problem detecting a square shaped cluster even though both used a circular 
window. 
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