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Foreword

In 1982, Prof. John Aitchison read his well-known article The Statistical Analysis of
Compositional Data before the prestigious Royal Statistical Society (RSS) in
London. Whilst its 21 densely written pages are tremendously stimulating from a
scientific point of view, reading the replicas and counter-replicas by presti-
gious scientists from different areas of knowledge—statistics (eg. D.R. Cox,
J.E. Mosimann, D.M. Titterington), geology (eg. R.J. Howart) and finance
(eg. G.J. Goodhardt), among others—who critically evaluated the article, is even
more so. I have always been of the opinion that almost all of the main issues
involved in analysing compositional data (CoDa) and the feasible solutions to them
were dealt with during the presentation and subsequent discussions about that
historical session of the RSS. Later developments and improvement of the
methodology for CoDa carried out by J. Aitchison himself and his continuers have
persistently drawn from that presentation

Despite the transcendence of Prof. Aitchison’s scientific contribution to CoDa,
as often happens in the field of science it remained practically ignored for more than
a decade. It was Dr. V. Pawlowsky’s innate curiosity and stubborn persistence that
made other scientists finally take an interest in this methodology for CoDa, bringing
it once again to the fore in discussion forums, initially in the narrow field of geology
and later in a wide range of scientific areas of knowledge. CoDaWorks
(CDW) illustrates the point well. The first CDW took place at the University of
Girona in 2003 with just 28 contributions, while the number of CDWs held to date
now totals 6, the last one—with 53 contributions—in L’Escala (Girona) in 2015.
CDWs continue to maintain the germinal idea originally conceived: to be a place
for theoretic and applied researchers interested in CoDa to exchange ideas. Aside
from Prof. J. Aitchison, who despite his advanced years has attended most of the
CDWs, other distinguished guest professors invited to participate in the different
editions must also be acknowledged: D. Billheimer (Vanderbilt University, USA),
G. van der Boogaart (University of Greifswald), A.C. Atkinson (London School of
Economics), V. Liebscher (University of Greifswald), J. Bacon-Shone (University
of Hong Kong), P. Filzmoser (Vienna University of Technology), M.L. Eaton
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(University of Minnesota, USA), C. Glasbey (Biomathematics & Statistics
Scotland, UK), C. Reimann (Geological Survey of Norway), R. Tolosana-Delgado
(Helmholtz-Institute Freiberg for Resources Technology, Germany), E. Grunsky
(University of Waterloo, Canada) and R.S. Kenett (KPA Ltd., Raanana, Israel).

The publication you are holding is a collection of 12 noteworthy contributions to
CoDaWork 2015. As you will see, with CoDa as the common denominator they
deal with a diverse range of topics from geochemistry to archaeology, and there are
also some methodological contributions.

More than 30 years have passed since Prof. J. Aitchison’s lone presentation
before the scientific collectives of the RSS. This book, wholly dedicated to CoDa,
demonstrates that that presentation by the old professor was not given in vain. Let
us hope it remains that way for many years to come!

Dr. Carles Barceló-Vidal
Emeritus Professor, University of Girona
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Optimising Archaeologic Ceramics h-XRF
Analyses

J. Bergman and A. Lindahl

Abstract We present the first results of an experiment which is aimed at ultimately
producing recommendations for analysing archaeologic ceramics specimens using
handheld XRF analysis devices. In this experiment we study the effects of different
measurement durations, different number of measured points and three different
types of surface treatments (breakage, polished, grounded) when analysing ceramics
specimens, while controlling for nine different types of clay and three different types
of temper (no temper, sand, rock), in total almost 1000 analysed points. For each
measurement, the proportions of 36 different elements and all other elements are
estimated. In the cases with multiple measurements of a specimen, the compositional
centre of the measurements is calculated. A complicating issue in the analysis is the
large number of parts found to be below detection limit; 13 elements have more
than 50% of the measurements below detection limit and for more than half of
those (almost) all measurements are below detection limit. We try nine different
strategies for imputing the values. Each estimated elemental composition is compared
to a reference estimate using the simplicial distance. The log distances are finally
analysed using analysis of variance with main and interaction effects. We find that
the different surface treatments have the greatest effect on the distances: grounded
specimens yield the most accurate estimates and polished surfaces the least. We also
find a significant effect of increasing the number of measured points, but less effect
of increasing the duration of the measurements.
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Keywords Archaeologic XRF analyses · Archaeometric experiment · Ceramics
analysis · Elemental composition analysis · Simplicial distance

1 Introduction

X-ray fluorescence (XRF) analysis, using handheld devices, has gained increased
popularity among archaeologist during the recent years, primarily because of its
portability and relatively low cost. The analysis produces an estimate of the elemental
composition of a specimen. There is, however, not any real knowledge or agreement
of how the analyses should be done to obtain the best results. For how long time should
a specimen be analysed?Howmany points on a specimen should be analysed?Which
would be preferable, to analyse one point for 4min or two different points for 2min
each?

To obtain a goodmeasurement one also needs to consider the type of surface that is
being analysed.When an archaeologic artefact is encountered, the surface has usually
been exposed to various chemical and mechanical interactions with surrounding
materials, changing the elemental composition of the surface. Hence the surface
might not be representative of the rest of specimen. To overcome this, one could
ground the specimen to a fine powder which would mix all parts of the specimen and
also remove any effect that large grains might have on the analysis. Another option
would be to break off a small piece of the specimen to create a fresh breakage surface
gaining access to the interior of the specimen. A thirdmore controllable optionwould
be to remove a part of the surface of the specimen by polishing it with a suitable tool.
An important question is how the choice of treatment will affect the analysis. Is one
alternative preferable to the others?

In an attempt to answer the questions above, we present some first results of an
experiment inwhichwe study the effects of number of pointsmeasured,measurement
duration and treatment of the surface. The design of the experiment is described in
more detail in Sect. 2 and the results of the experiment are presented in Sect. 3.

2 Experimental Design

Nine different, commercially available, clays were purchased. The clays are listed
in Table1. Each clay was partitioned into three parts and different types of temper
was applied, i.e. different materials were added to the clays to control for shrinkage
as was commonly done in prehistoric and medieval pottery, and still is done today.
Sand was added to the first partition, to the second partition crushed rock was added
and to the third partition no temper was added. From the in all 27 different clay
partitions, small samples were produced resembling potsherds and fired in a modern
kiln at 700 ◦C to resemble the firing of prehistoric and medieval pottery.

We want to investigate the effect of three factors as follows:
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Table 1 The nine different clays used in the experiment

No. Clay type Description Max firing temp. (◦C)
1 Earthenware Black 970–1040

2 Earthenware Red, 25% grog 0.2mm Up to 1220

3 Earthenware Pale red, mix of natural blue and red clay 950–1000

4 Earthenware White 1020–1140

5 Earthenware White, 25% grog 0–0.5mm 1000–1280

6 Stoneware White 1000–1300

7 Earthenware Red 1000–1150

8 Stoneware Black, 40% grog 0–0.5mm 1220–1260

9 Earthenware Red, all lime has been washed/removed 950–1000

• The treatment of the potsherd (Treatment)
• The duration of the measurement (Duration)
• The number of measurement points (Points).

What treatment of potsherds provides the best estimates? From each of the 27 dif-
ferent types of test-potsherds three replicates were then prepared for analysis in one
of the three ways: one test-potsherd was broken to create a breakage surface com-
monly found in archaeologic ceramic samples, one test-potsherd was polished using
a diamond polishing disc to give a ‘perfect’, smooth surface and one test-potsherd
was grounded to a fine power to give a complete mixture of the sample removing
any differences between the surface and the interior of the potsherd.

Is there an advantage in measuring a potsherd at several points and calculating
the average or does it suffice to only make one measurement? We tried measuring
each potsherd at only one point and compared this to measuring it at five different
points and then calculating the average (compositional centre) of the five points.

Does longer measurement duration yield better estimates? We used two levels of
measurement duration: 60 and 380s.

Nine clays, three levels of temper, three levels of treatment, two levels of points
and two levels of duration yields 324 different combinations. Half of these requiring a
singlemeasurement andhalf requiringfivemeasurements, in total 972measurements.
However, due to the human factor the number of points analysed were in a few cases
four or six instead of five, yielding in total 971 measurements. The analysis was
done using a portable XRF device providing measurements of 36 elements plus a
‘Balance’ accounting for all other elements.

2.1 Measurements Below Detection Limit

Looking at the measurements we note that a fairly large amount of measurements
are below the detection limit (BDL). The number of BDL measurements for each
element is given in Table2. It should be noted that five elements (chlorine, cobalt,
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Table 2 The number of measurements below detection limit (BDL) for each element

Si Ti Al Fe Mn Mg Ca K P S V Cr

0 0 0 1 432 634 1 0 410 274 24 83

Ni Cu Zn Rb Sr Y Zr Nb Ba Pb Th Cl

656 530 25 0 0 1 1 1 11 21 85 965

Co As Se Mo Ag Cd Sn Sb W Au Bi U

968 315 971 221 931 922 918 970 658 854 971 422

In total the analysis comprises 971 measurements. Note that all measurements of selenium and
bismuth were BDL, and all but one of antimony. Also chlorine, cobalt, silver, cadmium and tin had
more than 90% measurements BDL

selenium, antimony and bismuth) have more than 99% BDL measurements, and
silver, cadmium and tin have all more than 90% BDL. Furthermore, magnesium,
nickel, copper, tungsten and gold have more than 50% BDL measurements.

It is of course problematic to analyse data with such a large amount of miss-
ing measurements. At least two main strategies are conceivable: elements could be
excluded or measurements could be imputed. As in all such cases, it becomes a ques-
tion of retaining information but not altering the data too much. Imputing data is of
course not a problem when only a limited number of measurements are imputed, but
one can question the reasonableness of imputing almost all values. We have chosen
to try different ways of excluding and imputing in order to compare the effects of the
different strategies. The procedure was done in two steps. First three data sets were
created removing all elements with more than 50, 90 and 99% BDL, respectively. In
those few cases where elements with observed measurements where excluded, the
observed measurements were added to the balance. From a theoretical point of view,
it may be noted that this amalgamation is not subcompositionally coherent; however,
it was chosen in order to retain asmuch information as possible. (A subcompositional
approach was also tried and the differences were negligible.)

Second, three imputation schemes were implemented to each data set. A non-
parametric imputation with 0.65 of the detection limit, a non-parametric multi-
plicative Kaplan–Meier smoothing spline, and a model-based lognormal with fixed
imputation values [3]. All imputations were done using the functions multRepl,
multKM and multLN in the R package zCompositions [4]. Looking at the average
composition (compositional centre) for each combination of clay and temper indi-
cated that there were large differences between the different clays, e.g. the amount of
iron, manganese and calcium, but no evident differences due to different temper. For
this reason the Kaplan–Meier and the lognormal imputations were done separately
for each clay but for all tempers as to retain a reasonable sample size. It should be
noted that normally one would not impute parts with more than 50% BDL values.

To provide some sort of comparisons of the effects of the imputation, the first
two principal components of the nine data sets are plotted in Fig. 1a and the third
and fourth are plotted in Fig. 1b. The four components account for 81–89% of the
variation in the data sets. The plots in Fig. 1 seem to indicate that overall pattern is the
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Fig. 1 The (a) first and second and (b) third and fourth principal components from the compositional
PCA analysis of the nine different data sets, with different colours for the different clays (see
colourbar on the right) and different symbols for the different treatments: breakage surface (�),
polished surface (�), grounded (◦)
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same in all plots; especially the non-parametric and the Kaplan–Meier imputations
yield quite similar patterns. The log-normal imputation, however, seems to have
induced more variability, particularly when only elements with less than 90% or
99% BDL are retained. In summary, the largest differences between the data sets
seem to be between only retaining elements with less than 50% BDL and keeping
more elements, and between the lognormal imputation and the other two imputations.

2.2 Assessing the Accuracy of the Measurements

In order to assess the accuracy of the measurement, a reference (or ‘truth’) is needed.
During the summer of 2013, we made an agreement with a colleague who had access
to analytical equipment of greater accuracy to analyse the 27 different clay-temper
combinations and provide reference measurements. To date we have not received the
results, but hopefully they will arrive in the near future. However, we still needed a
reference, so we decided to use the results we had. It was deemed that the grounded
samples with the longer duration would provide the best estimates. So, for every
clay-temper combination the centre composition [2]

C (g(x11, . . . , xn1), . . . , g(x1D, . . . , xnD))

of the 1 + 5 measurements at 380s was calculated. Here the closure operation is
denotedC (x) = (x1, . . . , xD)/

∑D
i=1 xi and g(x1, . . . , xn) = (x1 . . . xn)1/n denotes

the geometric mean. This was done separately for the nine different imputation
schemes, thus obtaining nine different reference sets each consisting 27 reference
compositions.

3 Analysis

For each combination of clay, temper, treatment, number of measured points and
measurement duration, we calculate the compositional centre of the measurements.
Thus, for one measured point we keep that measurement and for five points we
calculate the centre of the five measurements. This is repeated for all imputation
schemes resulting in nine data sets of 324 compositional estimates. For each estimate
we calculate the simplicial distance [1, p. 64]

dS(x, y) =
√
√
√
√

D∑

i=1

(

log
xi

g(x)
− log

yi
g(y)

)

,

where g(·) denotes the geometric mean, x denotes the compositional estimate, and y
denotes the corresponding reference composition, i.e. the composition of that com-
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Table 3 The results of the analysis of variance for lognormal imputation retaining only elements
with less than 50% BDL

Factor Df Sum Sq Mean Sq F value p-valuea

Clay 8 4.498 0.562 0.9202 0.4999

Temper 2 1.611 0.806 1.3188 0.2690

Treatment 2 272.368 136.184 222.9032 0.0000∗∗∗

Duration 1 1.890 1.890 3.0930 0.0796

Points 1 10.272 10.272 16.8131 0.0001∗∗∗

Treatment:Duration 2 19.062 9.531 15.6004 0.0000∗∗∗

Treatment:Points 2 9.662 4.831 7.9073 0.0004∗∗∗

Duration:Points 1 3.482 3.482 5.6994 0.0176∗

Residuals 304 185.731 0.611
a Significance codes: ∗0.05 ∗∗0.01 ∗∗∗0.001
The results for the other imputation schemes are similar. The treatment (breakage, polished or
grounded) is the most significant factor and the duration of measurements the least significant. The
main difference between the imputation schemes is that duration is significant when more elements
are retained, but not when only elements with less than 50% BDL are retained

bination of clay and temper, resulting in nine sets of 324 distances. The calculations
are done using the R package compositions [5].

The logarithm of the distances are analysed using analysis of variance. (The
logarithm of distances are used as the distances are only positive and are expected to
have a skew distribution. The decision is further strengthened by the fact that Box-
Cox transformations indicate an optimal λ ≈ 0.2, i.e. fairly close to 0.)Wemodel the
effect of different treatments, number of points and measurement duration including
all two-way interactions, controlling for different clays and temper.

In Table3 we present results of the analysis of variance for one of the imputation
schemes, the lognormal with less than 50%BDL. It can be noted that the clearlymost
significant factor is the treatment, i.e. if the measurement was done on a breakage
surface, a polished surface, or on the grounded sample. The least significant factor is
the duration of the measurement. The results are similar for the other imputation
schemes. The only difference is that the duration becomes significant when the
number of elements is increased.

To get an idea of how the distances differ for different factor levels, we calcu-
late the estimated expected log distances for the various combinations of treatment,
number of points and measurement duration, i.e. the predicted value for each com-
bination of factor levels. Since the expected value also depends on clay and temper
we present how the values differ from the baseline of one measured point for 60 s
on a breakage surface, the effect of the clay and temper is thus cancelled out. The
expected values are presented in Table4. The shortest distances are found when the
samples are grounded and the longest for the polished surfaces, with the breakage
surfaces in-between. An interesting observation is that, whereas the accuracy of the
measurements are improved with increased measurement duration for the grounded
sample, the accuracy deteriorates with increased measurement duration for polished
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Table 4 Differences in expectedvalueof the logdistances for the various combinations of treatment,
number of points and measurement duration compared to the baseline of one measured point for
60 s on a breakage surface

Points Duration (s) Treatment

Breakage Polished Grounded

1 60 0 0.2700 −0.9116

380 0.1483 0.8663 −1.4924

5 60 0.0422 0.4150 −1.5452

380 −0.2242 0.5967 −2.5407

These estimates come from the analysis of the lognormal imputation data set retaining only elements
with less than 50% BDL, but are similar for the other imputation schemes

surfaces. For increased number of measurements, the accuracy is improved for 380s
duration for both breakage and polished surfaces but deteriorated for the shorter
duration.

Figure2 shows normal QQ plots of the residuals for each of the nine different
analyses (imputation schemes). The plots indicate that the residuals have a slightly
skewed distribution possibly violating the normality assumption.

Apparently, the treatment has the greatest impact on the distances, and especially
whether or not the samplewas grounded. Since grounded sampleswere used to create
the elemental reference compositions, we rerun the analyses without the grounded
samples, i.e. with only breakage and polished surfaces. In all the nine data sets
treatment and the interaction between treatment and duration are the only significant
effects. As the results are similar for all data sets, we provide as an illustration
in Table5 the differences in expected values of the log distances for the various

Fig. 2 Normal QQ plots of
the residuals for the nine
different imputation schemes
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Table 5 Differences in expectedvalueof the logdistances for the various combinations of treatment,
number of points and measurement duration

Points Duration (s) Treatment

Breakage Polished

1 60 0 0.2700

380 −0.1292 0.5888

5 60 −0.2353 0.1376

380 −0.2242 0.5967

The changes are compared to the baseline of one measured point for 60 s on a breakage surface.
The estimates come from the analysis of the lognormal imputation data set retaining only elements
with less than 50% BDL

combinations of treatment, number of points and measurement duration for the same
data set as above, i.e. the lognormal imputation with less than 50% BDL. We note
that the breakage surface still provide shorter distances than the polished surface.
An interesting observation is that for breakage surfaces, the mean distance decreases
when either of the number of points or the measurement duration is increased, but
when both are increased not much is gained.

4 Conclusions and Future Research

We have investigated how the accuracy of the elemental composition analysis of
ceramics specimens, using a handheld XRF analysis device, is affected by differ-
ent types of surface treatments, different number of points measured and different
measurement durations. Our prior belief was that the more points and the longer the
duration, the better the accuracy. We also believed that a grounded specimen would
produce the most accurate measurements. These suppositions are confirmed by the
analyses.

We can conclude that grounding the specimen is the most important factor in
obtaining an accuratemeasurement.We are actually surprised by the large differences
between the three surface treatments. The polished surface should provide an optimal
surface for the XRF device, but turns out to yield the worst results. A possible
explanation could be that the samples have been polluted by substances from the
polishing disc, even though this seems unlikely. Another possible explanation could
be that with the polished surface the large grains of, e.g. temper are clearly visible,
allowing the analyst to avoid them. This is not possible with a breakage surface. It is,
however, a gratifying result that the breakage surface does so well. Grounding and,
to a slightly lesser extent, polishing are both destructive treatments, which are often
not an option for an archaeologist. One reason for the popularity of the handheld
XRF device is that it can be used on artefacts in e.g. museums without damaging or
even removing them. Grounding the specimen is thus an optimal but perhaps more
theoretical alternative.
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At least for breakage surfaces and grounded samples, the most accurate measure-
ments are obtained when using both five points and a measurement duration of 380s
per point. (This is not the case for polished surfaces, which is rather puzzling.) How-
ever, from a practitioner’s point of view, it should be noted that five measurements
each during 380s means that the total time of the analysis is more than 30min, not
counting the time setting up the equipment, preparing the specimen and moving the
specimen between the analyses. Since time is limited (for most of us), the question
becomes whether it is preferable to analyse a specimen at only one point for 380s or
at five points for 60 s each? In each case the total time of analysis is about 6min. Our
findings clearly show that measuring five points during 60s yields more accurate
estimates than one point during 380s. It should be noted though, that for breakage
and polished surfaces a single measurement of 60 s gives more accurate estimate
when the grounded samples are included in the analysis.

This has been a first report from an ongoing experiment. It is of course highly
unsatisfactory to use the same measurements that are analysed to estimate the ref-
erence values. We are therefore eagerly looking forward to get new independently
estimated reference values. In this paper an analysis of 971 measurements was pre-
sented. In total, the experiment to date consists of more than 1800 measurements
and more than 139h of XRF device running time. In order to obtain a balanced
experiment, about half of the measurements were excluded, as not all combinations
of the factors are currently measured. Thus it remains to complete the measure-
ment sequence. This will hopefully also allow us to identify any threshold values
in number of points and measurement duration: How much is gained in accuracy
when increasing the number of points from one to three compared to increasing the
number of points from three to five? Is there an optimal combination of number of
points and measurement duration? It also remains as future research to investigate
why the breakage and polished surfaces yielded more accurate measurements when
measured only once for 60 s, than compared to five measurement for 60 s and to one
measurement for 380s. Is there a reason for this, or is it some sort of artefact of
the extremely strong treatment effect? A final issue is that even though in theory all
XRF devices should yield similar estimates, it remains to confirm the results using
different XRF devices.

Our conclusions in this experiment so far are that an archaeologist intending to do
an elemental analysis of a ceramic specimen using a hand held XRF analysis device
should ground the specimen if possible, and if not possible find a fresh breakage
surface, and analyse the specimen at five points for 60 s each or, time permitting, for
380s each and finally calculate the compositional centre of the measurements.
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A Practical Guide to the Use of Major
Elements, Trace Elements, and Isotopes
in Compositional Data Analysis: Applications
for Deep Formation Brine Geochemistry

M.S. Blondes, M.A. Engle and N.J. Geboy

Abstract In the geosciences, isotopic ratios and trace element concentrations are
often used along with major element concentrations to help determine sources of and
processes affecting geochemical variation. Compositional Data Analysis (CoDA) is
a set of tools, generally attuned to major element data, concerned with the proper
statistical treatment and removal of spurious correlations from compositional data.
Though recent insights have been made on the incorporation of trace elements and
stable isotope ratios to CoDA, this study provides a general approach to thinking
about how radiogenic isotopes, stable isotopes, and trace elements fit with major
elements in the CoDA framework. In the present study, we use multiple data sets of
deep formation brines and compare traditional mixing models to their CoDA coun-
terparts to examine fluid movement between reservoirs. Concentrations of individual
isotopes are calculated using isotopic ratios and global mean isotopic abundances.
One key result is that isotope parts (e.g. 18O, 17O, 16O, 2H, 1H, 87Sr, 86Sr) can simply
be modelled by the major element concentration (H2O, Sr) in a clr-biplot as they
are perfectly dependent. Another important result is that an ilr transformation of
radiogenic isotope parts (e.g. 86Sr and 87Sr in 87Sr/86Sr) and trace elements can, like
stable isotopes in delta notation, be treated as a linear function of the isotopic ratio
or trace element concentration, scaled only by a constant. This implies that there are
multiple situations in which an ilr transformation provides little additional insight for
the analysis of trends: (1) any two parts with low log ratio variance (e.g. an isotope
ratio), no matter their concentrations in the solution, (2) any low concentration parts
(trace elements) or a ratio of a trace to a major element, no matter the variance of
the elements, and (3) large positive ratios (major/trace) over a restricted range of
variance. Similarly, a multivariate ilr transformation of a large data set with many
parts will also be a simple perturbation if the balances are evenly split between parts.
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CoDA transformations, however, even if they do not provide new insight in some
specific cases, will provide consistent interpretations for all types of data.

Keywords Compositional data analysis · Isotipes · Trace elements · Brines · Pro-
duced waters

1 Introduction

In the geosciences, variations in stable isotope ratios, radiogenic isotope ratios, and
trace element concentrations are often combined with variations in major element
concentration to interpret geologic processes. Radiogenic isotope systems are those
in which one or more isotopes are created from the radioactive decay of a parent
isotope. Ratios of isotopes from radiogenic systems (e.g. 87Sr/86Sr) in minerals are
a product of initial isotopic abundances, partitioning of elements during crystal-
lization, and subsequent radioactive decay over time. Particular minerals and rock
types often have a specific radiogenic isotopic signature that may be imparted onto
waters that interact with them. Radiogenic isotopes therefore are often used to deter-
mine the origin or pathways of fluids from rocks with a known or assumed isotopic
composition or to determine mixing relationships between multiple sources. Sta-
ble isotopes of a given element (e.g. 16O, 17O, 18O or 1H, 2H), on the other hand,
partition from one another during numerous geologic and biologic processes as a
function of differences in the mass and bond energy of the various isotopes (e.g.
Faure and Mensing [10]). Variations in stable isotopes can record evidence of spe-
cific processes (e.g. evaporation) or mixing between fluids that previously underwent
different geologic processes over time (e.g. mixing between isolated basin reservoir
brines and fresh meteoric water). Trace element concentrations are also particularly
useful for geologic interpretation and, like isotopes, can be used to identify the origin
of or processes that geological media have experienced. This is partly because trace
element concentration variance can be orders of magnitude larger than the major
constituents of a system, making them more sensitive and indicative of physical,
chemical, and biological processes (e.g. Goldschmidt [13]).

It has long been understood that compositional data, which include geochem-
ical data, are constrained by closure and subject to spurious correlations without
proper treatment [1, 19]. Geologists and statisticians have developed a number of
approaches over the years to remove closure, beginning with using concentration
ratios to examine only relative information between ions (e.g. Chayes [4]). Another
common current method for avoiding the effects of closure has been the use of trace
element, rather than major element, concentrations, under the assumption that trace
elements are dilute solutions that obeyHenry’s Law, whereby the trace element activ-
ity is proportional to its concentration (e.g. Irving [16]). This proportionality implies
that, thermodynamically, trace elements behave independently of major elements
like gases in an ideal solution, which has been interpreted to mean trace elements are
not subject to the effects of closure. It can be argued, however, that non-interaction
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between trace and major elements does not necessarily imply compositionally open
data. Other approaches use normalized log ratios like the additive log ratio (alr) and
centered log ratio (clr) to remove compositional closure and transform the data to a
Euclidean space to allow for proper treatment of many statistical tests (e.g. Aitchison
[1]). A more recent development is the ilr transformation [9], which has a number of
properties (orthogonality, subcompositional coherence, etc.) that make almost any
statistical analysis that relies on a Euclidean distance possible (e.g. linear regression
and cluster analysis). However, the ilr transformation requires some experience to
gain an intuitive sense for interpretation, particularly for exploratory analysis of trace
elements and isotopes in geologic data and is not yet common in most geochemi-
cal publications. More recent studies [20, 24] addressed the incorporation of stable
isotopes with major element compositional data into Compositional Data Analysis
(CoDA), an important step toward including the interpretive tools that geologists use.

However, when considering the proper statistical treatment for geochemical data,
there is a dilemma: on the one hand, an ilr transformation to orthonormal coordinates
will transform the data to the appropriate scale where Euclidean distance can be used,
but the data have often been transformed to a point that detailed processes may be
difficult to interpret. On the other hand, using simple trace elements and isotope ratios
may be easily interpretable to the geologist, but it is not always clear whether these
interpretations are mathematically valid. Our goal with this paper is twofold: (1) to
build on previous CoDA isotope work to present a general approach to incorporating
radiogenic isotopes and trace elements along with stable isotopes and major element
chemistry, and (2) to show under what conditions log ratio transformations provide
a more robust treatment of geochemical data and under what conditions simple
isotopic ratios and trace elements are nearly as valid in terms of following the rules
of Euclidean geometry.

Our example for the use of isotopes and trace elements in CoDA are data from
deep basin brines, including waters sampled from mine shafts and produced waters.
Produced waters are the waters co-generated with hydrocarbons during oil and gas
development. Produced waters may include portions of water originally present in
geologic formations (formationwater) prior to oil and gas production, waters injected
for well stimulation and hydraulic fracturing, and water condensing from the gas
phase. In many cases the salinity of deep basin brines can exceed that of bulk mod-
ern seawater (∼35g/L) by several times. Previouswork has shown that the large range
in salinity in produced waters can induce obvious effects on the related composi-
tion data, such as spurious correlation [6–8]. Analyzing brines can help researchers
understand basin scale hydrogeology and the transport of injected fluids. Isotopic
data are particularly useful in interpreting these types of processes because they can
demonstrate whether fluids in different reservoirs have mixed, and therefore whether
injected fluids have been transported from one reservoir to another. We use two com-
prehensive chemical and isotopic datasets of formation water to address CoDA of
isotopes: (1) formation waters from potash mine shafts in Saskatchewan, Canada
[17] and (2) formation brines from a Permian salt dome in the North German Basin
[18]. We focus on two stable isotope systems (O and H) and one radiogenic isotope
system (87Sr/86Sr). Trace elements are represented by Sr and B concentrations, as
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well as the calculated concentrations of individual low abundance isotopes (e.g. 87Sr,
1H).

2 Treatment of Isotopic Data for Compositional
Data Analysis

Whereas major cation (e.g. Ca, Na) and anion (e.g. SO4, Cl) concentrations are
measured as parts of a whole fluid, many isotopic ratios are directly measured as
proportions (e.g. 18O/16O) using a mass spectrometer. In traditional approaches, iso-
topic ratios are included together with concentrations during data analysis. However,
in order to combine isotopic ratios and concentration data in CoDA, particularly for
multivariate analyses, it is important to have a comprehensive understanding of how
to properly transform all relevant data into the Euclidean geometry of real space.

Tolosana-Delgado et al. [24] showed that chemical concentrations (e.g. SO4) can
be split into separate parts (e.g. 34SO4, 32SO4) based on their isotopic proportions.
They also showed that an ilr transformation of a stable isotope ratio is proportional
to values expressed in classical delta notation (per mil (�) relative to a standard) and
therefore the delta notation can simply be scaled to compare isotopic data and major
element concentrations simultaneously. Puig et al. [20] applied this approach to dis-
criminant analysis of groundwaters by separating clr transformed compositional data
from raw isotopic data and scaled both to have equal variances. This was necessary
because the log ratio variance of isotopic ratios is typically much smaller than the
log ratio variance of the compositional ionic data.

Display of stable isotopic ratios on a manageable scale is often done using delta
notation, in which the isotope ratio in question is normalized to a standard and
multiplied by a factor of 1000. For example:

δ18O = 1000 ×

(
18O
16O

)
sample

−
(

18O
16O

)
standard(

18O
16O

)
standard

(1)

and

δD = δ2H = 1000 ×

(
2H
1H

)
sample

−
(

2H
1H

)
standard(

2H
1H

)
standard

(2)

In the case of high salinity samples, such as many formation waters, large dif-
ferences exist between isotopic ratios of H and O depending on whether they were
measured on a concentration (mass) basis or an activity basis. For correct conversion
of the data into ilr or clr transformed results, and for comparison with concentra-
tion data, use of O and H isotopic data on a concentration basis is critical. Results
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presented in an activity basis can be converted to a concentration basis using the
methods of Sofer and Gat [22, 23].

By comparison, radiogenic isotopic data are conventionally presented as directly
measured concentration ratios of the radiogenic to a stable isotope or between two
radiogenic isotopes (e.g. Faure and Mensing [10]). For instance, in the case of stron-
tium, radiogenic 87Sr (which is derived from the decay of 87Rb) is typically normal-
ized to 86Sr, one of the four stable Sr isotopes. For radium, different variations exist,
but commonly 228Ra (part of the thorium radioactive decay chain) activity is normal-
ized to 226Ra (part of the uranium radioactive decay chain) activity. Often radiogenic
isotopic data are not normalized to any standard, although there are exceptions (Sr
data can be normalized by modern seawater and reported in epsilon notation).

As Tolosana-Delgado et al. [24] point out, isotopic data in delta notation are
proportional to log ratios, but multiplied by a different scaling factor. Unlike SO4

concentration data that can be split into proportions by its isotopic ratio, O and
H isotopes of water must be treated differently because the concentration of pure
H2O in aqueous samples is not usually measured. Further, to perform certain CoDA
transformations it is useful to treat each individual isotope as a separate concentration
(e.g. 16O, 17O, 18O, 1H, 2H, 86Sr, 87Sr, etc.).

All concentration data in this study are presented in units ofmg/kg solution (ppm).
The H2O concentrations were calculated as the difference between the samples’ den-
sity and total dissolved solids (TDS) concentration, where TDS is equivalent to the
sum of all dissolved ions in the fluid. For samples where density was not reported, it
was estimated using its relationship with TDS known from brine samples from the
Permian Basin of Texas and New Mexico. Water concentrations are therefore per-
fectly dependent on the concentration of the other ions and inversely correlated with
TDS. Based on stoichiometric relationships, H2O concentrations were converted to
concentrations of O and H in water in the solution. For O and H isotopic data in
delta notation, 18O/16O and 2H/1H ratios were determined from Eqs. 1–2, using the
known composition of Vienna Standard Mean Ocean Water (VSMOW). Assuming
the 17O/16O ratio is constant and that of the average global abundances, and assuming
3H is negligible, the concentrations of 16O, 17O, 18O, 1H, and 2H were individually
calculated. For Sr isotopes, the Sr concentration in mg/kg solution is split into 4 iso-
topic concentrations (84Sr, 86Sr, 87Sr, and 88Sr) using the average global abundances
for 84Sr, 86Sr, and 88Sr, and the measured 87Sr/86Sr ratio.

3 Interpretation of Isotopic Data Using Ilr Transformed
Subcompositions

Ilr transformation of subcompositions can be utilized to interpret brine geochemistry.
Engle and Rowan [8] showed that not only can ilr transformations of the Na–Cl–Br
system reveal halite dissolution and seawater evaporation trends common in certain
environments that are apparent in traditional ratio plots, but they also more clearly
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(a) (b)

Fig. 1 H and O isotopes of water for North German basin brines [18], presented a in standard
delta notation and b as a four-part ilr transformation. The solid black line labelled GMWL is the
global meteoric water line, which represents the isotopic composition of terrestrial surface and near
surface waters, and is dominantly a function of latitude, elevation, and temperature. Waters that
have experienced evaporation or re-equilibration with minerals in the subsurface tend to plot to the
right of the GMWL. Note the slight curvature of the GMWL in Fig. 1b

show secondary processes such as albitization or incorporation of clays. Engle and
Blondes [6] used ilr transformations of ions in produced waters from the Permian
Basin, USA, to link geochemical variation to thermodynamic mineral equilibration
models. The incorporation of isotopes into such CoDA-based studies would be an
important advancement for the study of basinal brine geochemistry.

Figure1a shows hydrogen and oxygen isotopes in water for brines from the North
German Basin [18] and from potash mine shafts in Canada [17]. The global meteoric
water line (GMWL) represents the isotopic composition of terrestrial surface and near
surface waters [5]. The position of a given data point along that line is a function of
many variables, dominantly latitude, elevation, and temperature. Evaporative loss,
which preferentially removes the lighter isotopes (1H and 16O), results in “heavier”
δ18O and δ2Hvalues that plot to the right of theGMWL.Exchange of oxygen between
water samples and typically isotopically heavy minerals such as carbonate and clay
minerals, can also produce enrichment of 18O, causing affected samples to plot to the
right of the GWML. Deep formation brines that previously experienced evaporation
or isotopic exchange with carbonate and silicate minerals but have not interacted
with surface waters tend to plot in this region.

The Permian North German Basin brines [18] plot directly on the GMWL, sug-
gesting they are of meteoric origin. The formation waters from the potash mine
shafts in Saskatchewan [17] have a wide range in isotopic composition that is nearly
as broad as all known terrestrial water compositions [21]. This makes it particularly
useful to detect differences between the traditional representation and a similar one
created using the ilr transform of a four-part subcomposition, with each part being the
individual isotopic concentrations. At first glance, the plots look identical except for
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Fig. 2 Sr isotope plots of
North German Basin brines
[18]. The solid black line
represents linear mixing
between the most fresh and
the most saline samples. a
Traditional presentation of
strontium isotopes in which
mixing is linear. b Two-part
ilr transformation for the
y-axis using 87Sr and 86Sr.
c Three-part ilr
transformation using 87Sr,
86Sr, and H2O

(a)

(b)

(c)

the values on the axes, suggesting that the difference is simply one of scale. However,
it is apparent from a closer look at Fig. 1b that the GMWL shows some curvature at
the top right of the plot. Though these differences do exist, given that these data span
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nearly the entire range in observed values for the isotopic composition of natural
waters, it is small enough to be negligible and the ilr transformation does not appear
to offer any major practical benefits in this type of plot for exploratory analysis.

We can also examine radiogenic 87Sr/86Sr isotopes in a similar way. Figure2a
again shows the Kloppman et al. [18] data set, color-coded by salinity where fresh
is <1 g/L TDS, brackish is 1–10 g/L TDS, saline is 10–100 g/L TDS, and brine is
>100 g/L TDS. This plot of 87Sr/86Sr versus 1/Sr is a standard way to show mixing
between Sr isotopic compositions, as pure mixtures of two end-members will fall
along straight lines. The black line in this figure is a hypothetical linear mixture
between the most fresh and the most saline (brine) sample in the data set. One can
quickly infer that these samples do not derive their chemical and isotopic variation
from simple mixing of these two end-members, yet because the data have not been
transformed to a Euclidean geometry, the distances from the data to the model may
be distorted. Using a two-part ilr transformation for the Sr isotopes 87Sr and 86Sr
(Fig. 2b), the same scaling relationship observed in Fig. 1b is apparent, whereby the
log ratio of a small variation is simply that small variation scaled. Figure2c shows
a three-part ilr transformation with 87Sr, 86Sr, and H2O. Similar interpretations of
mixing can be drawn by comparing the data to the models in real space, yet the
mixing relationship is no longer linear. While not as simple to the naked eye, the
fit of the mixing model is only truly quantifiable in Fig. 2c because distances are
preserved through the ilr transformation.

The result that the ilr-transform of subcompositions with small log ratio variance
is simply a scaling (or a perturbation) of the ratio has important implications for the
interpretation of both isotopes and trace elements. Unlike major element ratios (e.g.
Ca/SO4), which are more likely to have large log ratio variance and are subject to
significant spurious correlations, trace element and isotope ratios may not be subject
to the same constraints. In the following section we attempt to quantify under what
conditions the ilr transformation of compositional ratios functions as a simple per-
turbation. For a simple perturbation, exploratory analysis of trends will be identical
whether simple ratios or the ilr transformation is used, although distances will be
different.We further address howmajor versus trace elements fit into this context, i.e.
at what point does a trace element become trace enough, relative to another element,
to not be subject to the constraints that require a log ratio transformation for proper
interpretation.

4 The Simple Scaling Effect of Ilr Transformations on Low
Log Ratio Variance (Isotope) or Low Concentration
(Trace) Components

Figure3 schematically examines the effect of a two-part ilr transformation on any
pair of elements, x1 and x2. The x-axis represents a ratio of any two parts before
transformation, including isotopic ratios (e.g. 2H/1H or 87Sr/86Sr) or elemental ratios
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Fig. 3 Two-part log ratio transformations of two parts (x1 and x2) of a composition. The dashed
line is the natural log of this ratio, and the dotted line is the ilr transformation of this ratio (ztwo-part )
definedbyEq.3.The colored circles represent the full extent of variation for a given isotope ratio.The
red bar is a schematic representation of the ilr variability for trace elements (x1 = [trace element],
x2 = [solution]) or a ratio of a trace element to a major component. The green bar is a schematic
representation of the ratio of a major component to a trace component. The black diamonds are the
Na/Cl ratios from [17] that represent the variation of two components of similar concentration

(e.g. Cl/Br or Na/Cl). It can also represent simple trace element concentrations (e.g.
Sr/solution or B/solution) because they approximate a trace/major ratio (e.g. Sr/H2O
or Sr/Cl). This means that we can consider the simple trace element concentration
to be equivalent to a ratio of a trace to a major component of a system. The y-axis
represents the ilr transformation of that ratio (Eq. 3):

ztwo-part = 1√
2
log

x1
x2

. (3)
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The dashed curve is a log ratio transformation, and the dotted line is a two-part ilr
transformation, the only difference being the coefficient in the ilr transformation.
The colored circles represent different isotopic systems, centered at their standard
value (e.g. VSMOW) plotted on the ilr curve. The typical variation of an isotope ratio
is small relative to the scale of the plot and falls within the bounds of the circle. For
example, the typical 87Sr/86Sr ratio for natural waters is 0.70–0.72, which is just a
small regionwithin the orange circle. Themost important interpretation from this plot
is that wherever some subset of data is linear at a given scale along the log ratio or ilr
curves, the log ratio transformation of the data simply corresponds to a perturbation
or scale change of the original ratio. For the isotopic systems, the variation within
the ratio is so small relative to the scale of the plot that it functions as a tangent
line to the curve. This explains why there is little visible difference between Fig. 1a
with Figs. 1b and 2a with Fig. 2b. This low log ratio variance corresponds to the
high “stability” of Filzmoser et al. [11], a compositional measure of proportionality
between two components.

Another observation from Fig. 3 is that small log ratio variance is not the only way
an ilr transformation reduces to a simple perturbation. The log ratio and ilr curves
function as linear far from x1/x2 = 1 (as x1/x2 approaches either 0 or +∞), even if
the ratios have high log ratio variance. For example, the green segment could rep-
resent Cl/Br ratios from 5/1 to 10/1. A similar green segment would plot for Cl/Br
ratios of 50/1–100/1 or 500/1–1000/1 (not shown). This relationship would hold for
many produced water samples given that the concentration of Cl is typically orders
of magnitude greater than Br. Thus the log ratio of such Cl/Br data may function
as a simple perturbation or a scaling of the axis. The same result occurs for a com-
ponent pair with orders of magnitude log ratio variance but ratios much lower than
x = 1, shown by the red segment. The red segment could represent the relationship
between a trace and a major element or just a trace element concentration, using the
approximation for trace elements described above. Any high log ratio variance pair
would be considered to have low stability by Filzmoser et al. [11] but here we show
that there are certain conditions common in geochemical data (trace element con-
centrations and major element/minor element ratios over a restricted range) where a
low stability ratio will function as a high stability ratio through an ilr transformation.

Any ratiosmade from parts that have similar concentrations, includingmostmajor
components, will plot around x1/x2 = 1 where the curvature is most apparent. For
example, Na/Cl ratios of the Saskatchewan potashminewaters (open black diamonds
in Fig. 3) fall along the most curved part of the trend, where an ilr transformation
will have the greatest effect on the shape of the data. This is why such large dif-
ferences are seen in major element ternary diagrams when log transformations are
applied. Though these types of diagrams are often used for classification and a gen-
eral understanding of the major components in a system, most robust interpretations
of process are made by combining isotopic ratios (colored circles) and trace element
concentrations (which again approximate the ratios of trace to major components
and are represented by the red segment), both of which fit the conditions for an ilr
transformation providing less obvious extra benefit for exploratory trend analysis.
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Fig. 4 Multivariate ilr transformation for a 50-part composition for a range of binary partitions.
The x-axis is the ratio of the geometric mean of the numerator and denominator in the ilr equation

This generalization about the relative impact from conversion of ratios to an ilr
basis can be further expanded to a multivariate ilr approach. Figure4 is similar to
Fig. 3, but instead of a ratio of two elements, the x-axis now represents the ratio of
the geometric mean of the +1 balance components to the −1 balance components
in the ilr equation (Eq.4):

z =
√
n × d√
n + d

log

(∏
Xn

) 1
n

(∏
Xd

) 1
d

, (4)

where Xn and n are the components and the number of components, respectively in
the +1 balance or the numerator, and Xd and d are the components and the number
of components in the −1 balance or the denominator, respectively.

The numerator is the geometric mean of all of the positive balance parts and the
denominator is the geometric mean of all the negative balance parts. The geometric
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mean of the concentrations of the (+) balances equals the geometric mean of the
concentrations of the (−) balances at x = 1. The different curves show the effect of
changing the grouping of the balances. The x-axis represents concentration ratios and
the different curves represent the ratio of the number of parts. Typical geochemical
data sets are large, and a 50-part data set would have n(n − 1)/2 = 1225 possible
binary partitions. The different curves in Fig. 4 show the range of binary partition
possibilities including one part against the rest (1/49 = one part in the numerator
and 49 parts in the denominator or 49/1 = 49 parts in the numerator and one part
in the denominator), evenly split parts (25/25 = 25 parts in the numerator and 25
parts in the denominator), and smaller subcompositions (5/1, 1/5, 1/1, etc.). The 1/1
curve in Fig. 4 is the same as the ilr curve in Fig. 3 for a two-part subcomposition.
As in Fig. 3, the curvature of these lines can be used as a proxy for whether an
ilr transformation will change the shape of any data trends beyond a simple scale-
change. If the spread of data for an isotopic or chemical system falls into a linear
region of the curve, the ratio of the geometric means and ilr plots will be nearly the
same. Putting nearly all parts into the numerator partition creates a very rapid slope
change from nearly vertical at low X to nearly flat just above z=0. Putting nearly
all parts into the denominator creates a slow changing slope that shows the most
curvature of the range of potential geochemical concentrations. The more parts that
are used, the less curvature that exists, even for evenly split binary partitions (e.g.
compare the 25/25 to the 1/1 curve). For a geochemical data set, a first partitionmight
be splitting the cations and anions. In this example, the curve is almost completely
linear except for the rapid change at X= 1,meaning that unless X is close to unity, the
first sequential binary partition would generate an ilr transformation that is a simple
perturbation of the ratio of the geometric means of each part. This is less analogous
to traditional ratio plotting methods than the two-part ilr described above since it is
not typical to plot the ratio of geometric means, but it still helps underscore stability
in multivariate systems.

5 Clr-Biplot Interpretation of Low Log Ratio Variance
(Isotope) or Low Concentration (Trace) Components

Isotopic data can also be incorporated into biplots, but unlike trace elements with
large log ratio variance, isotopes with low log ratio variance cannot be easily dis-
cerned from one another. Principal component analysis of clr-biplots are useful for
showing multivariate compositional data on a single plot [2]. When derived from
the covariance matrix of clr-transformed variables, the length of the links between
the ray end points approximate the relative log ratio variance between those two
variables. Using data from Kloppman et al. [18], Fig. 5a shows covariance clr-biplot
of only TDS and all of the O and H isotopes of water. The H2O concentration is also
shown for illustrative purposes to compare the individual isotope rays to the H2O ray,
but it is a redundant variable because [H2O] = [18O]+ [17O]+ [16O]+ [2H]+ [1H].
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Fig. 5 Clr-biplots of
Kloppman et al. [18] data.
Only TDS, H2O and the O
and H isotopes are plotted.
a Covariance biplot. b Form
biplot. c Covariance biplot
with major component Cl
and trace component B
added

(a)

(b)

(c)
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All isotopes of O and H in water lie on the same ray as H2O, which is unsurprising as
their concentrations are completely dependent on one another and sum to H2O. The
scores are more clearly seen in the “form” version of the biplot (Fig. 5b), in which the
relationship between the scores and the coordinate axes are more visible. Here we
see that the 1st coordinate axis contains the entirety of the variability and represents
a salinity trend. Though the rays and the links between them have less meaning in
the form biplot, small deviations are visible between the numerators in the isotopic
ratios (18O, 2H) and the ray that represents H2O, 16O, 17O, and 1H. The longer ray
between 1H and 2H relative to the ray between 18O and 16O on the biplot supports
the theory and observation that the larger mass differences between isotopes in the
hydrogen system (2H has twice the mass of 1H) produces more isotopic fractionation
than the oxygen system (18O only has 12.5% more mass than 16O). Nearly 100% of
the variance is found in the link between TDS and H2O and the scores project along
this link as one would expect according to salinity. Figure5c shows a subcomposition
including trace (Sr, B) and major (H2O, Cl) components. The H2O–Cl link is similar
to the H2O–TDS link in Fig. 5a in that it represents variation related to salinity. The
scores project onto this link as a function of salinity. The links between isotopic pairs
are again near zero. The different isotopes of O and H plot on the H2O concentration
ray, and similarly the different isotopes of Sr plot on the Sr concentration ray. Unlike
the isotopic ratios, trace elements have high log ratio variance with other trace ele-
ments (Sr–B) and with major elements (Cl–B). In this case, what is controlling the
log ratio variance between Sr and B is not related to the salinity. Clr-biplots are useful
for determining trends and groups within homoscedastic data, but for isotopes with
low log ratio variance, scaling parts to similar variance is necessary for interpretation
(e.g. Puig et al. [20]).

6 Discussion and Conclusions

Much of the work on compositional data analysis in the geosciences has focused on
major element variation, whether mineral stoichiometry (e.g. Grunsky et al. [14]),
the major ions in an aqueous solution (e.g. Buccianti and Pawlowsky-Glahn [3]),
or whole rock geochemistry (e.g. Geboy et al. [12]). Incorporating trace elements
properly into CoDA has been increasingly used with success, particularly for spatial
applications (e.g. Grunsky et al. [15]; Tolosana-Delgado and van denBoorgaart [25]).
It has been shown that stable isotopes can be included by scaling the ratios [20, 24].
We show here that not only can radiogenic isotopes be included in a similar way but
that we can more generally address non-major parts of a system in two ways: either
as (1) low log ratio variance parts (isotopic ratios) or (2) low concentration parts
(trace elements).

Low log ratio variance parts, like an isotopic ratio, will be all but invisible on
a clr-biplot without prior scaling (Fig. 5a). The ilr transformation of isotopic ratios
produces interpretable trends, but at the scale of analysis these trends are nearly
identical to traditional presentations of isotopic ratios (Figs. 1 and 2). This is because
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the log ratio of two low variance parts is simply a linear scaling, or a perturbation,
of that ratio (Fig. 3). Any ratio with low variance will function as a tangent line
to the log curve, meaning that the interpretive power of the ilr transformation is
similar to that of the simple log ratio (Fig. 3). This can be extrapolated to multivariate
full- or sub-compositions that represent a large geochemical data set. For a data set
with 50 parts (all major and trace elements) split evenly between, for example,
cations and anions, the ilr transformation will be a simple perturbation of the ratio
of the geometric means except near where the geometric mean of the cations in
the numerator is vanishingly small relative to the denominator (Fig. 4). In practice,
this should never happen for a properly charge balanced analysis, but it might occur
if the +1 balance represented the 25 lowest concentration trace elements and the
−1 balance represented the 25 highest concentration components. Though low log
ratio variance parts like isotopes will likely always be a simple perturbation in ilr
space, there are other geologic data scenarios where this can be the case as well.
One clear example is low concentration parts, such as trace elements. The vertical
red bar in Fig. 3 represents an ilr transformation of a trace element. At the scale of
analysis, particularly when compared to the Na/Cl ratio, the ilr transformation of a
trace element is a simple perturbation. This is also the case for large positive ratios
over a restricted range (Fig. 3, green bar).

When geoscientists choose to make interpretations based on geochemical varia-
tion, it is important to avoid spurious correlations and inappropriate statistical mod-
els by properly transforming the data. One could claim that an orthonormal log ratio
transformation covers all statistical bases and should be used for every application.
In fact, the ilr transformation has been shown to provide powerful insight to the
interpretation of brine geochemistry where traditional methods could not, including
identifying spurious mixing trends [8], mineral equilibrium relationships [6] and
the effects of diffusion into clays and input of ions from kerogen maturation [7]. In
practice, however, there are many cases where the ilr transformation results in nearly
the same data patterns as the traditional approach, in which the axes are much more
familiar (such as specific values for isotopic ratios). The analysis here shows that
traditional approaches will generally yield the same results as an ilr transformation
for isotope ratios, trace elements compared to major elements or the entire solution,
and certain special cases of major element ratios.
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Towards the Concept of Background/baseline
Compositions: A Practicable Path?

A. Buccianti, B. Nisi and B. Raco

Abstract Water geochemistry is often investigated considering a large number of
variables, including major, minor and trace elements. Some of these are usually well
associated due to coherent geochemical behaviour, but the effect of anthropic factors
tends to increase data variability, sometimes obscuring the natural laws governing
their relationships. It may thus be difficult to identify geochemical features linked
to natural phenomena, as well as to separate geogenic anomalies from the anthro-
pogenic ones, or to define background or baseline concentrations for single chemical
elements. This is particularly true at regional level, where numerous phenomena
may interact and mix together, forming a complex pattern not easy to interpret. The
identification of background or baseline values is particularly difficult due to the
compositional nature of chemical variables, so that under the Compositional Data
Analysis (CoDA) theory single background or baseline values lose their meaning.
However, they are fundamental references for public institutions and government
policies. In this contribution a new approach is proposed, aimed at investigating the
regionalised structure of the geochemical data by considering the joint behaviour
of several chemical elements. The approach is based on the robust CoDA theory,
so that the proportionality features of abundance data are fully taken into account,
enhancing their relative multivariate behaviour, as well as the influence of outliers.
An application example is presented for the groundwater compositions in Tuscany
Region, a surface of about 23,000km2, where more than 6000 wells have been sam-
pled and analysed. The mapping of robust Mahalanobis distance was able to indicate
(1) in which part of the investigated area the pressure toward anomalous behaviour
was higher, (2) where the compositions nearest to the barycentre were and (3) if
spatial continuity was present in limited portions of the territory.
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1 Introduction

1.1 Background or Baseline: A Summary

Geogenic or “natural background” substances in the environment are known to occur
as concentrations in air, soils and waters. A number of terms are used to convey the
expected concentrations of an element in natural materials. These include: normal,
typical, baseline, ambient, characteristic, natural, background andwidespread. There
are some subtle differences between these terms in literature, they canmean different
things in different disciplines, and they can be confused with alternative uses [29].

In environmental geochemistry, background is a relative measure to distinguish
between natural element or compound concentrations and anthropogenically influ-
enced concentrations in real sample collectives. However, as reported in Nordstrom
[30] it may be difficult for water chemistry to refer to natural background as unpol-
luted or pristine preindustrial conditions. This happens because (1) a widespread
global contamination by several trace constituents has occurred, (2) natural varia-
tions can be large, so that a single analytical result for a given element or compound
cannot be useful and (3) the effect of scale and study objectives could have played a
very important role in the determination of background [33]. One of the most inter-
esting discussions on this subject is reported in Matschullat et al. [27]. These authors
recognise that the citation of single values for a geochemical background is neither
useful for the identification of the geogenic contribution nor for the determination
of an anthropogenic contamination, because single values do not yield information
about natural deviation.

Another term, geochemical baseline, is often closely associated with geochemical
background, terms often used as synonyms (e.g. [20, 28]). However, the geochemi-
cal baseline is often considered as the natural background in diffusely polluted areas
where the latest term cannot be further defined because natural conditions are com-
promised.

1.2 Baseline Hydrochemical (Compositional) Facies

The knowledge of groundwater chemistry and of associated background/baseline
values for elements and compounds is a priority for human health as established by
the environmental organisms and institutions of many industrialised and developing
countries [35, 38]. Notwithstanding the importance of this item, the definition of the
background or baseline content in water is difficult and cannot be based only on a
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good analytical phase and on a time-limited sampling campaign. In fact, water chem-
istry can vary in space depending on changing climate conditions as well as on the
contribution of anthropogenic pollution. Moreover, in the same place the abundance
of chemical species can change in time due to the effect of several environmental
and anthropic factors [30].

Consequently, it is evident that single concentration values are not able to give
representative information about the influence of complex phenomena as occurring in
groundwater systems. In this natural reservoir, only simultaneous chemical equations
are able to describe the differentmineral/water equilibria and the investigation of data
variability assumes a fundamental role. For these reasons, it is our opinion that only a
compositional approach is able to describe the conditions of such a complex phase [3,
7, 9]. Moreover, due to the expected presence of anomalous values, robust methods
can improve our proposal [11, 26, 34, 36].

Thus, the combination of compositional and robust methods applied to water
chemistry in anthropic areas could force the concept of baseline for single values to
evolve to that of baseline composition or baseline hydrochemical (compositional)
facies. The approach can be extended to different scales in groundwater investigation
and represents an implementation, moving from the value of single variables to that
of compositions when the joint distribution of D variables is considered [8, 12].

2 Materials and Methods

2.1 Data Sources

The geochemical data used in this study refer to groundwater samples actually stored
in the GEOBASI database1 [32] (http://www506.regione.toscana.it/geobasi/index.
html) representing the official repository for the geochemical composition of geolog-
ical media of the Tuscany Region (Central Italy), a surface of about 23,000km2. The
northern and southern sectors of Tuscany are bordered by the Northern Apennine, an
orogenic belt formed by the Cretaceous to Miocene compressive phase related to the
collision of the European and African plates. The metamorphic Paleozoic basement
(e.g. phyllitic to quarzitic and micaschists rocks to Triassic evaporitic anyhydrites),
the Mesozoic and Cenozoic carbonate and evaporitic formations, overlain by flysch
series, as well as granite intrusions and volcanic rocks are typical lithologies [10].

The chemical compositions of 6,808 cases (springs and wells) were considered,
6,435 of which were geo-referenced and checked through the inspection of the orig-
inal field maps. For those samples where the main composition (Ca, Mg, Na, K,
HCO3, SO4 and Cl) was available, the quality of the geochemical data was checked
by means of a simple charge balance and only those waters having a percentage
deviation <10 (4,804 samples) were taken into account for further processing.

1Part of Consorzio LaMMA, http://www.lamma.rete.toscana.it.

http://www506.regione.toscana.it/geobasi/index.html
http://www506.regione.toscana.it/geobasi/index.html
http://www.lamma.rete.toscana.it


34 A. Buccianti et al.

Fig. 1 Location of all the water samples for which the chemical composition is stored in the
GEOBASI repository [32]. Cases located in red and brown areas correspond to groundwater located
in alluvial and fracture rock aquifers, respectively

For the sake of clarity, it should be noted that all the geochemical data were
used, including those repeatedly analysed over time, so that variability could be also
affected by seasonality (Fig. 1). Besides this source of variability, other phenomena
such as seawater intrusion, land use, pollution, are expected to affect data variability
even if with a more punctual spatial impact.

2.2 Statistical Methodologies

In this contribution, our aim is to shift the attention from the investigation of sin-
gle variables of compositional data sets to their joint multivariate behaviour. To
achieve this target, the principles of CoDA (compositional data analysis) theory were
followed [4], combined with the application of multivariate robust methodologies
[11, 26]. Compositional data are vectors of positive values quantitatively describing
the contribution of D parts of some whole, which carry only relative information
[3, 4]. Due to these features, the approach based on the Euclidean geometry of the
real space to the statistical analysis of compositions may give misleading results,
since compositional data pertain to the simplex sample space [6, 7, 13]. The simplex
sample space is governed by the Aitchison geometry, and has all the properties of
a (D−1) dimensional Euclidean space [13]. To work in these unconstrained condi-
tions, compositions need to be expressed as vectors of values that belong to such a
space.

In our case the isometric log-ratio (ilr) transformation, proposed by Egozcue
et al. [15], was adopted. Notwithstanding its theoretical advantages and practical
properties, its usemay be compromisedwhen coordinates have to be interpreted from
a geochemical point of view. However, if the concept of balance between groups of
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parts originated by a sequential binary partition is considered [14], this path may be
highly simplified. In a sequential binary partition, in each of the D−1 steps of the
procedure, the compositional parts are divided into two non-overlapping groups; the
resulting D−1 ilr-variables represent balances between these groups in RD−1:

ilri =
√
r × s

r + s
log

g(c+)

g(c−)
, (1)

with i = 1, 2, . . ., D−1 and where g(c+) represents the geometric mean of the r
variables of the numerator of the balance, g(c−) the geometricmean of the s variables
of the denominator.

The matrix of ilr coordinates was analysed by robust methods with the aim to
identify samples with anomalous behaviour but simultaneously avoiding their effect
on the classical estimates. For this purpose, the Mahalanobis robust distance of a
composition, labelled RDi , was used to detect whether it was an outlier composition
or not. It was defined as:

RDi =
√

(xi − μ̂MCD)T Σ̂−1
MCD (xi − μ̂MCD), (2)

with μ̂MCD and Σ̂MCD the location and scatter estimates obtained by using the Min-
imum Covariance Determinant (MCD) estimator [34, 36]. Mahalanobis distance
identifies observations that lie far away from the centre of the data cloud, giving
less weight to variables with large variances or to groups of highly correlated vari-
ables. This distance is often preferred to the Euclidean distance which ignores the
covariance structure and treats all variables equally.

The robust distance is an improvement on the Mahalanobis one, where classical
mean and empirical covariance matrix are used as estimates of location and scat-
ter [16–19]. Under the normal assumption the outlier compositions are those com-
positions having a robust distance larger than the chosen cut-off value, here taken as√

χ2
D−1,0.975.
This approach, however, does not account for the sample size n of the data, and

independently from the data structure observations could be flagged as outliers even
if they belong to the data distribution. A better procedure could use a fixed threshold
to be adjusted to the data set at hand. The chi-square plot is often used for this purpose
by plotting the squared robust Mahalanobis distances against the quantiles of χ2

D ,
then by deleting the most extreme points, identified as outliers, until the remaining
points follow a straight line [21].

This study starts from the work of Filzmoser and Hron [17] and proposes some
original improvements considering the investigation of the distributional form of
RDi and its spatial behaviour. All the analyses have been performed using robust
routines developed in Matlab and R [31, 36].

Themapping of robustMahalanobis distance could be able to indicate (1) inwhich
part of the investigated area the pressure toward anomalous behaviour is higher, (2)
where the compositions nearest to the barycentre are and (3) if spatial continuity is
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present in limited portions of the territory. Important information about the geochem-
ical processes, their diffusion and influence in the different parts of the investigated
areas can be consequently obtained. To be stressed here is the fact that the investi-
gated area, corresponding to a surface of about 23,000km2, presents a sample point
pattern that cannot be described by a Complete Spatial Randomness (CSR) model
(goodness-of-fit testing for CSR with p < 0.05, spatstat R-package, [31]). The wells
were drilled where needed and where geological conditions guaranteed a successful
production.

3 Results and Discussion

3.1 Sequential Binary Partition of Water Chemistry

In the investigation of the main groundwater composition of Tuscany region, the first
stepwas to transform the original variables expressed inmg/L by using the isometric
log-ratio conversion. To achieve this aim, the sequential binary partition proposed
by Egozcue and Pawlowsky-Glahn [14] was adopted. In each of the D−1 steps of
the procedure the compositional parts were split into two non-overlapping groups;
the resulting D−1 ilr-variables represented balances between these groups in RD−1.
Thus, the balances between two groups of parts are orthogonal log-ratio contrasts
between geometric means of the selected non-overlapping groups. The sequential
binary partition of [Eq. (1)] was chosen so that all the cations were balanced (symbol
|) considering the following steps:

[Ca, Mg, K, Na | HCO, Cl, SO4],
[Ca, Mg | K, Na],
[Ca | Mg],
[K | Na],
[HCO3 | Cl, SO4],
[Cl | SO4].
In this conversion, the geometric means are central values in each group of parts,

their ratio measures the relative weight of each group and the logarithm provides the
appropriate scale; the square root coefficient of [Eq. (1)] is a normalising constant
which allows the comparison of different balances. A positive balance means that, in
(geometric) mean, the group of parts in the numerator has more weight in the com-
position than the group in the denominator (and conversely for negative balances).

From the calculus of the robust RDi distance and the inspection of the chi-square
plot (here not reported), it was possible to clearly discriminate 901 anomalous com-
positions that resulted well separated from the remaining 3543 cases. Their relative
position is reported in Fig. 2. As we can see, 3543 RDi values (grey points) cover
most part of the region, while outlier RDi values (black points) mainly pertain to
the coastal areas (saline intrusion) and to some zones where presence of minerali-
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Fig. 2 Position of the anomalous groundwater samples (black points, n = 901) compared with the
rest of the dataset (grey points, n = 3543) (methodology modified from [21]). GB = Gauss-Boaga
coordinates reference system

sation, geothermal activities or pollution due to anthropic contributions can explain
the presence of geochemical anomalies.

This first discrimination of the data allows us to identify anomalous compositions
with a well defined geochemical explanation but does not assure that the remaining
cases follow a multivariate normal distribution. In fact, the application of several
statistical tests indicates that this hypothesis must be rejected (p < 0.05, MNV R-
package, [31]). The chemical composition of the robust barycenter (obtained by
back-transforming the ilr results of the analysis) in mg/L is given by HCO3 =356,
Ca=102, Cl=51, Mg=21, K=2.23, Na=40.64, SO4 =55.51, with a Total Dis-
solved Solids content (TDS) equal to 628mg/L. Since its identification was not
affected by anomalous values, it could represent a potential baseline hydrochemical
facies, resulting as the most frequent facies for the investigated area.
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As most groundwater that is used for water supply is derived from rainfall (TDS
<20mg/L, less in rural areas far from atmospheric pollution), its chemistry is a result
of the chemistry of rainwater and the soils and rocks through which the water has
passed, and the residence time in the aquifer. As residence time increases, groundwa-
ter tends to pick up more and more dissolved solids as a result of mineral dissolution
(or weathering) reactions and its TDS value increases, according to the lithology
of the areas [37]. From this point of view, the water associated with the lowest
robust distance from the barycenter pertains to a typical Ca–HCO3 geochemical
facies (composition in mg/L equal to HCO3 =581, Ca=168, Cl=803, Mg=32.7,
K=3.4, Na=67.9, SO4 =97.6), increasing its TDS to 1754mg/L, while the water
with the higher distance pertains to a classical Ca–SO4 geochemical facies (com-
position equal to HCO3 =4.8, Ca=356, Cl=270, Mg=104, K=2.4, Na=250,
SO4 =1250) with TDS equal to 2237mg/L.

Fig. 3 Histogram of the Mahalanobis distance of n = 3543 groundwater samples after having
eliminated 901 cases clearly separated from the others using the chi-square plot method [21]
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3.2 The Distributional Behaviour of Robust Mahalanobis
Distance

After having eliminated 901 cases from thewhole dataset and verified that the remain-
ing data distribution is not multivariate normal, interesting information can now be
obtained by the analysis of the histogram of the robust Mahalanobis distance, as
reported in Fig. 3. Its analysis is important to understand how compositions move
from the barycentre or if data are again fragmented in sub-sets or if we are faced
with a homogeneous set of data, even if not multivariate normal. Moreover, if the
robust barycentre is supposed to represent a possible hydrochemical (compositional)
baseline (the most frequent composition), the investigation of variability of compo-
sitional changes from this reference point could be monitored by the distributional
behaviour of the robust Mahalanobis distance.

The RDi data distribution appears to be slightly asymmetrical and apparently
classical normal or lognormal models are not able to describe it. A model that leads
towards much heavier tails is the power law distribution, often used to describe inho-
mogeneous and irregular distributions of element concentrations in several geolog-
ical situations. When a probability density function displays a heavy non-Gaussian
tail, this may be indication of the presence of multifractal processes [2]. This also
indicates that the system as a whole is experiencing a non-linear dissipation in the
energy interchange among different scales [23]. From this perspective the shape of
a probability density function can be a powerful diagnostic tool in environmental
problems. A nonnegative random variable X is said to have a power law distribution
if:

Pr [X ≤ x] ∼= cxα (3)

for constants c > 0 and α > 0, so that asymptotically the tails fall according to the
power α. For a power law distribution usually α falls in the range 0 < α ≤ 2, in
which case X has infinite variance. If α ≤ 1 then X also has infinite mean. The
scaling exponent α is usually called the fractal dimension D. From a general point
of view the model leads to much heavier tails than other common models explaining
the concentration of minor and trace elements in geological materials [22, 25].

An interesting feature of this distribution model is that if X has a power law
distribution, then in a log-log plot of Pr[X ≤ x] the pattern of points will be described
by a straight line. The graphical analysis is often used to visualise breaks in the data
distribution (change in slope and presence of more than one straight line) and to
investigate geochemical anomalies versus background [1]. Results for the studied
groundwater data are reported in Fig. 4. As we can see a single straight line is not
sufficient to describe all the data. Apparently, compositional changes that move
compositions from the robust barycenter are multifractal and the physical-chemical
reasons for this behaviour could be related to the presence of non-linear interactions
between different scales and to the inhomogeneous character of dissipation of the
chemical reactions.
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In general, multifractality is a property of a dynamical system in which energy
dissipation cannot be neglected. This condition leads to the presence of extended
areas (or intervals) of low fluctuations intermittent with small areas of extremely
large fluctuations. The spatial distribution of the RDi values related to different
segments of Fig. 4 is reported in Fig. 5.

As we can see, compositions similar to that of the robust barycenter are near to
or in some cases overlap compositions very far from this reference, indicating that
the chemistry of our samples can change in a short spatial/temporal range. Even
if more research is needed in this direction, on the whole results suggest that the
investigated water-rock system developed under conditions far from equilibrium as
a progressively self-organising dissipative structure [24]. A “dissipative structure” is
a non-equilibrium system, far from an equilibrium state, and should be supported by
continuous inputs and outputs of materials in open conditions. Several authors have
discussed the features of dissipative structures for groundwater flow systems and
human activity appears to be a significant perturbation factor [39]. In this respect,
the evolution of the investigated groundwater system may be attributable to a dissi-
pative process of macroscopic states being perturbed by natural and human factors.
Consequently the groundwater system is an open and complicated framework where
interactions are governed by non-linear dynamics. In this context the identification of
baseline hydrochemical compositions, as in our case, could be more representative
of single values in the understanding of the processes working in the investigated
area. However, to be noticed here is the possibility to also consider the value of
single variables, as extracted from the compositional barycenter, for defined (legal)
purposes. This makes the use of the concept of baseline compositions a practicable
path.

Fig. 4 Cumulative number N of samples whose robust Mahalanobis distance is equal to or higher
than a given value RDi on a log–log scale. D (slope of the segments) is the fractal dimension
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Fig. 5 Spatial distribution of the RDi values partitioned according to the five segments of Fig. 4.
Colours of the points on the maps correspond to the colors of the different segments

4 Conclusions

The term “geochemical baseline”, officially introduced in 1993 in the context of the
International Geological Correlation Program (IGCP Project 360), Global Geochem-
ical Baselines, refers to the natural variation in the concentration of an element in the
media of the superficial environment. The term can indicate the actual content of an
element at a given point in time/space. It includes the geogenic natural concentrations
(natural background) and the anthropogenic contribution.

Compositional changes from the robust barycenter for groundwater chemistry of
Tuscany Region (central Italy) were analysed by investigating the behaviour of the
robust Mahalanobis distance. The distance was calculated after having transformed
original concentrations by using balances (a particular type of isometric log-ratio
transformation, [5]). The aim was to verify (1) if the robust barycenter could be
considered a possible baseline composition, (2) which type of information was con-
tained in the variability of the robust distance values. After having eliminated the
more anomalous compositions from the whole dataset [21], the distributional form of
the robust Mahalanobis distance was investigated. The application of normality tests
indicated that the hypothesis of multivariate normality cannot be accepted and that
the distance obeys the power law distribution, displaying properties ofmultifractality.
In this perspective, compositional changes from barycenter are neither completely
deterministic not totally chaotic. Rather they are in an intermediate state, which pos-
sesses a property of multifractality in the spatial domain and probable intermittency
in time.

Since fractal structures form spontaneously only in the presence of a complex
dissipative structure, the investigated groundwater system appears to be an open and
complicated framework where interactions are governed by non-linear dynamics.
Moreover, compositional changes are characterised by self-similarity patterns. This
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means that the physical–chemical laws that control spatial and temporal variability
on one scale also control patterns and spatial variability on other scales, implying
scale-independence.

All of the previous results, even if preliminary, require caution in the definition of
baseline concentrations for single values without the use of a compositional approach
and a global conceptual model of the groundwater system for all its interconnected
components.
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Multielement Geochemical Modelling
for Mine Planning: Case Study
from an Epithermal Gold Deposit

N. Caciagli

Abstract Mineralisation and alteration processes will result in zones with distinct
geochemical characteristics within an orebody. To visualise themine scale variability
that arises as a result of these processes, geochemical domains are defined using a k-
means clustering algorithm to analyse multielement data. The fact that the chemical
values can be grouped in a defined 3D location clearly suggests that the clusters
have meaning in terms of geological process. Principal component analysis (PCA)
of these clusters can further improve the understanding of this variability. These
clusters form the basis of the geochemical domains which have direct implications
for characterization and proportional sampling of geometallurgical and waste rock
domains. In the case study presented, pre-mining geochemical characterisationswere
undertaken at an epithermal gold deposit to support metallurgical sampling and
mine planning. k-means cluster analysis and principal component analysis of the
geochemical clusters was used to support the metallurgical sampling programme by
identifying domains for variability testing. The geochemical clusters identified were
used to define the oxide, sulphide and transition zones, a critical factor for mineral
processing and recoveries and a key variable in the economics of the project. The R
software environment for statistical computingwas used for exploratory data analysis
(e.g. PCA; zCompositions, robCompositions) and k-means analysis (fpc).

Keywords Compositional data analysis · PCA · Cluster analysis geology ·Mining

1 Introduction

A new gold or base metal mine can take 10–15years to permit and construct and
involves an investment of >$1B USD. Inadequate characterization of the orebody
can lead to unexpected issues with geotechnical stability, metallurgical recoveries,
environmental impacts, or other problems. Kinross has determined that a thorough
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understanding of its orebodies is critical to the success of these major, long-term
investments and that geochemistry is a key component of this understanding.

Mineralizing and alteration processes will result in zones with distinct geochem-
ical characteristics. The fact that the chemical values can be grouped in a defined
3D location clearly suggests that the clusters have meaning in terms of geological
process. This forms the basis of the geochemical domains, which have direct impli-
cations for sampling locations for variability testing of geometallurgical recoveries.

The geochemical domains will reflect the mineralogy of the domains with a gran-
ularity not always visible by geological mapping and logging alone. For example,
alteration events associated with gold mineralization can overprint the host lithology
to a degree that the original rock type is unable to be properly identified, or meta-
somatism may result in chemical changes to mineralogy not fully evident through
visual inspection alone. The use of geochemical domains supports a more concrete
link between mineralogy and metallurgical variables such as cyanide consumption,
metal recoveries, concentration of deleterious elements, as well as comminution
properties (hardness, grindability).

2 Methodology

The ultimate goal of the geochemical modelling process is to produce geochemical
domains that are relevant for metallurgical study on a scale compatible with the
proposed mining method. As such there will be a trade-off between granularity and
complexity of themodel. Geochemical domains need to be viewedwithin the context
of lithology and alteration so that metallurgical variables can be linked tomineralogy.

2.1 Data Pre-processing

The dataset used for the geochemical modelling must consist of spatially colocated
data. For example; samples for gold analysis and multielements analysis should be
collected over the same intervals. Any hyperspectral logging (qualitativemineralogy)
or QEMSCAN (quantitative mineralogy) should also be spatially colocated with the
geochemical and metal assay data. The sampling strategy needs to be assessed for
possible sampling bias. This can be accomplished by visualisation of the data in
3-D space, examination of sample lengths and counts by lithology, alteration, struc-
ture through histograms and box and whisker diagrams. Exploratory data analysis
of the multielement geochemistry (i.e. summary stats, detection limits) is key to
understanding the nature and distribution of the dataset [4].
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Fig. 1 Quantile–quantile
plot of imputed values and
reported values for Hg

2.1.1 Data Imputation

The modified “Expectation-Maximisation” (EM) algorithm from the zCompositions
package [6] within the R statistical computing programme [7] was used to impute
values below the lower limits of detection (LOD) as well as any missing values in the
dataset. This procedure fills in the lower tail of the distribution of each element while
still preserving the covariance structure of the data. The zCompositions modified
EM-imputation algorithm imputes values based on a reference dataset (i.e. samples
with no missing observations) and on the threshold values (i.e. the limit of detection
for a given element). Following the application of the imputation routine, every
imputed value was visually inspected on a quantile–quantile plot (Fig. 1) for a given
element to assess the appropriateness of the replacement.

2.1.2 Data Transformation

The working dataset was transformed using log ratio normalisation [1]. Composi-
tional data is by definition constrained to a constant sum (e.g. reported as percent
or per mil) and as such the individual variables will not vary independently. This
induced correlation introduces a bias into the covariance structure of the data and
may obscure the true relationships between the variables. Log ratio normalisation
takes into account the constant sum constraint of compositional data and centres
the data in a way that removes this bias. For robust PCA (see below) the working
datasets are normalised using an isometric log ratio transform (ilr; Egozcue et al. [2]).
k-means clustering is performed on a centred log ratio transformed (clr) dataset.
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2.2 rPCA

In a mining environment, understanding the behaviour of outliers is of significant
interest. Gold mineralization tends to be inherently non-uniform and as a result many
samples within the ore zone may have “anomalous” values compared to the waste
rock. These samples need to be understood with respect to their geological context
(lithology, alteration and structure) for vectoring and targeting purposes, as well as
for understanding the nature of the gold distribution within the ore body. Unless
sampling issues or analytical errors are confirmed the dataset is examined inclusive
of outliers.

Principal component analysis (PCA) is the simplest of the true eigenvector-based
multivariate analyses. Its purpose can often be thought of as revealing the internal
structure of the data in a way which best explains the data variance. It is a technique
used to change a set of original variables into a number of basic dimensions. The
algorithm used here for the calculation of the principal components was the “Robust
PCA” from the robCompositions package [3, 8, 9] within the R statistical comput-
ing programme. Robust PCA (rPCA) is less affected by outliers in the dataset and
provides more reliable calculation of the covariance matrix for the analysis. The
rPCA algorithm from the robCompositions package utilises a minimum covariance
determinant (MCD) by examining a subset of h observations with the smallest deter-
minant of their sample covariance determinant. In order to maximise the robustness
of the MCD location, the h used here was 1/2 of the total sample size because the
number of outliers tends to be high.

2.3 k-Means Cluster Analysis

k-means clustering is amethod of cluster analysis that aims to partition n observations
into k clusters, inwhich each observation belongs to the clusterwith the nearestmean.
k-means clustering uses theminimumEuclidian distance (difference between values)
as the main criterion to discriminate between different groups. These clusters can be
back-coded into the database and viewed in 3D space for interpretation within the
context of lithology, alteration and metallurgical responses.

The number of clusters to partition a dataset can be assessed using a plot of the
sum of squared errors (SSE) versus number of clusters (Fig. 2). The best number of
clusters to describe the structure in the dataset can be determined by locating the break
in slope on a plot of the SSE versus number of clusters. For geochemical modelling
of an orebody a combination of the SSE plot, visualisation of the clusters in either
principal component space or classical discriminant coordinates and a visual (3D)
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Fig. 2 An example of a sum of squared errors (SSE) plot versus number of clusters

inspection of the clusters in a geological modelling software was used to determine
the “best” number of clusters. For example, from Fig. 2, four clusters are suggested;
however five clusters showed distinct separation in 3-D space (see Fig. 4).

2.3.1 Statistical Validation of Clusters

The robustness of the clusters was determined using a bootstrapping algorithm from
the fcp package [5] within the R statistical computing programme that resamples the
dataset 100 times and returns a measure of the stability of the cluster, the Jaccard
similarity value, which is assigned a value between 0 and 1. Generally, a valid, stable
cluster should yield a mean Jaccard similarity value of 0.75 or more [5].

2.3.2 Geochemical and Spatial Validation of Clusters

The geochemical variability of the clusters can be examined within either principal
component space orwith a discriminant analysis. The sample dataset was taggedwith
the cluster number and plotted with their rPCA coordinates (see Fig. 3). This type
of plot can also provide as assessment as to the suitability of the number of clusters
selected for k-means cluster analysis. For example, samples from cluster 7 (red) and
cluster 5 (blue) completely overlap in PC1–PC2 space, suggesting that there is very
little variability between these clusters. These samples were then examined spatially
to determine if they have a defined location in space (Fig. 4) and can be explained
within the context of known lithology, alteration or structure or whether they just
describe the inherent geochemical heterogeneity within that domain.
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Fig. 3 Plot of PC1 versus PC2 coordinates for samples colour coded by cluster number

Fig. 4 Drill hole intervals back-coded with cluster number viewed in 3-D space

2.4 Wireframes and Characterization of Domains

The first pass wireframe construction process uses Leapfrog™ geological mod-
elling software to create surfaces based on the criteria outlined above to encapsulate
the back-coded clusters. The surfaces are created independently of the lithologi-
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cal or alteration domains, however the geochemical domains will correspond to a
combination of the lithological, alteration and weathering domains determined from
visual logging.

3 Case Study

Deposit A is interpreted as having been emplaced into a phreatomagmatic diatreme–
dome complex with local diatreme fill. Mineralization is associated with high sulphi-
dation vuggy silicawith advanced argillic quartz–alunite or quartz–pyrophyllite alter-
ation, which grades outward into quartz-clays. The alteration assemblage appears to
have a high percentage of silica and lesser amounts of clay. In oxidised portions, the
gold and silver are residual, but at depth gold and silver are associated with multi-
ple sulphides (mostly enargite and pyrite, with lesser covellite and sphalerite) and
sulphosalts.

The depth of oxidation varies from less than 100m to over 300m and is typically
around 120–150m. There is a narrow and discontinuous “mixed” horizon at the
oxide–sulphide interface (transition zone), less than 10m thick, but it invariably
includes secondary chalcocite.

Within this transition zone, metal recoveries can be significantly less than in the
oxide zone; in this case, 75% recovered Au compared to 82%. A robust definition
and identification of this domain is critical to determining the economics of the
project. However determination of this transition zone by visual logging is difficult
and subjective.

A detailed geochemical model was created within the mineralised vuggy silica
zone of Deposit A to determine a consistent and unbiased definition of the oxide,
transition and sulphide zones to accurately assess the amount of recoverable metals
and better understand the economic potential of the deposit.

3.1 Data and Data Pre-Processing

The working dataset consisted of information collected on two very different reso-
lutions. The logged lithology, logged alteration and metal assay data were collected
with a 2m resolution. In contrast, the multielement data (collected by previous oper-
ators) consisted of 10m composites created by taking a 20g sample from every 5
assay sample pulps (originally collected on 2m intervals) down hole, homogenising
those 5 samples and sending an aliquot of the composite for aqua regia digest and
multielement analysis by ICP. In order to properly merge the two datasets the data
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Fig. 5 Elemental distribution of raw data—all expressed as ppm, (n) indicates samples > LOD
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in the 2m Au, Cu, Ag, As, Pb, Zn and Hg assay tables needed to be composited over
10m.Multielement data sampled over 2m intervals, consistent with the Au sampling
protocol would be preferable.

The statistical distribution of each element was inspected individually. Elements
were removed from the dataset if a significant portion of samples measured below
detection limits (>50%) or if the data was severely quantized due to the analytical
resolution. This resulted in the removal of Sc, Cd, Tl, Ti, Th, B, Be, W, La, Ga and
U (Fig. 5).

3.2 rPCA

TheDepositA rPCAwas constructed using centre log ratio transformedmultielement
data to examine relationships found in Au-bearing lithology and alteration types. The
numerical variables analysed were the assayed elements: Au, Ag, As, Al, Ba, Bi, Ca,
Co, Cr, Cu, Fe, Hg, K,Mg,Mn,Mo, Na, Ni, P, Pb, Sb, Sr, S-total, Sulphide, Sulphate,
V and Zn.

Partial digestion, using aqua regia, was used to extract elements for analysis.
This method dissolves minerals selectively and therefore the bulk rock chemistry
is not reflected in the major elements determined by this method. The recovery of
each element will depend on the mineralogy. The aqua regia method only targets the
trioctahedral silicates (biotite, chlorite), clays, sulfosalts and some oxides. It will not
recover elements hosted by other silicates and refractory oxides. Consequently, extra
care must be given to interpretation of the major element data obtained by partial
rock dissolution.

The observed chemical relationships of selected elements show patterns that are
assumed to be a function of the type of mineralization and accompanying alteration.
In the rPCA variable map in Fig. 6, a number of elements are correlating with Au
(Cu, Ag, Hg, Fe, SO4 and S; the vectors are in close proximity to each other). The
presence of enargite (Cu3AsS4) is suggested by the Cu–As association. The strong
correlation of Al–K implies an illite (K–Al clay) association. The vector describing
Zn is the longest vector in the PCA suggesting that the occurrence of sphalerite (ZnS)
is highly variable; however as demonstrated in the k-mean analysis, discussed below,
the Zn variability can be spatially defined.

3.3 k-means cluster analysis

All the elements used in the rPCA are also used in the clustering exercise. For Deposit
A, the preliminary cluster analysis resulted in domains that broadly correspond to the
alteration zones (see Fig. 4). To provide further resolution of the variability within
only the mineralized ore zone, a k-means cluster analysis was carried out on the
geochemical data from intervals in the vuggy silica oxide, vuggy silica sulphide and
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Fig. 6 rPCA variables map for deposit a multielement data

alunite alteration zone. In this deposit, the geochemical contrast is so high between
the various alteration zones and between the fresh and weathered zones that the
k-means clustering can be applied to the clr-transformed variables. On other cases
applying the k-means clustering can be improved, cancelling much of the “noise”
and focusing on specific processes, by clustering specific principal components.

For Deposit A, a combination of the SSE plot, visualisation of the clusters in
discriminant coordinate space (Fig. 8) and 3D space (Fig. 4) was used to determine
the appropriate number of clusters.

From Fig. 7, four clusters are suggested; however, five clusters showed distinct
separation in both geochemical space (Fig. 8) and 3D space (Fig. 4).
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Fig. 7 Sum of squared errors (SSE) versus number of clusters

Fig. 8 Visualisation of the clusters in geochemical space

The robustness of the clusters was determined using a bootstrapping algorithmwhich
resamples the dataset 100 times and returns the Jaccard values, a measure of the
stability, for each cluster. The mean Jaccard values for Clusters 2, 4 and 5 range from
0.82 to 0.84, while the Jaccard values for Cluster 1 and Cluster 3 are 0.66 (Figs. 4
and 8).
These clusters can be briefly characterised as

Cluster 1: A low copper (mean content of 0.5%) high zinc domain within the
sulphide zone corresponding to sphalerite rich zones. The gold within this domain
is highly refractory and not recoverable by current processing methods.
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Fig. 9 Drill core photos of intervals classified as oxide domain (cluster 4) and transition domain
(cluster 2).Within the oxide zone vugs are either empty or filledwith quartz (A).Within the transition
domain, vugs are filled with quartz + fine grained disseminated sulphides (photo is cm scale)

Cluster 2: A “mixed” horizon at the oxide-sulphide interface with elevated soluble
copper content corresponding to the transition domain.

Cluster 3: A high copper (mean content of 2%) and arsenic domain within the
sulphide zone corresponding to enargite rich zones.Due to the high arsenic content
and the refractory nature of the gold in this domain is not economically recoverable
by current processing methods, however due to the higher Cu content this zone
could be significant.

Cluster 4: An oxide domain (mean S content of 0.2%)within the vuggy silica zone
corresponding to the oxide zone. This domain has the highest gold recoveries.

Cluster 5: A potassium and aluminium rich domain that slightly overprints the
vuggy silica alteration and transitions into the quartz–illite alteration halo on the
margin of the deposit. There is recoverable metal in this domain, but the differing
mineralogywill result in differing behaviour in themill. This domain also contains
the highest mean Pb content of all the domains.

Cluster 2 (transition domain) and 4 (oxide domain) occur predominantly within
the portion of the deposit logged as oxide. Visual logging frequently misidentifies
transition and oxide materials, particularly near the oxide-sulphide interface due to
difficulty in visually identifying these zone and subjective nature of the geologi-
cal logging (Fig. 9). Because the identification of the transition zone is relevant for
metallurgical processing and key to determining metal recoveries, this geochemical
determination provides an unbiased and consistent way to identify this zone.
The transition domain at the oxide–sulphide interface includes the secondary copper
minerals, chalcocite. Chalcocite provides high concentrations of soluble copper will
have a negative effect on the total cyanide consumption and possibly reduced gold
recoveries.

Figure10 shows how the spatial separation of clusters 2 and 4 relate to the redox
limits as established by visual logging. Chemical cluster 4, interpreted as the oxide
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Fig. 10 A vertical cross section through the ore zone showing the lithological and spatial relation-
ship of the geochemically determined oxide zone (blue intervals) and transition zone (red intervals).
Also shown is the logged vuggy silica domain (light grey shape) and the redox boundary identified
by visual logging (darker grey)

Fig. 11 Drill core photos of intervals classified as a low Cu–high Zn sulphide domain (cluster 1)
characterised by coarse-grained interlocking sulphides and b high Cu–As sulphide domain (cluster
3) characterized by massive Cu-rich sulphide veins (Photo is cm scale)
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Fig. 12 Plan view of the
logged vuggy silica
alteration (grey shape)
within the sulphide zone
showing the spatial
relationship between the
high Cu–As sulphide domain
(cluster 3; green drill strings)
and the low Cu–high Zn
sulphide domain (cluster 1;
purple drill strings)

domain, is hosted by the vuggy silica alteration well within the visually logged
oxide zone while the intervals assigned to cluster 2, interpreted as transition domain,
correspond to the vuggy silica alteration at the interface between the oxide and
sulphide zones.

Clusters 1 and 3 occur within the visually logged sulphide zone and differ from
each other in copper content. Cluster 3 has mean copper content of 2% and cluster
1 has a mean copper content of 0.5%. Cluster 3 most likely represents copper rich
feeder zones or copper rich veins within the low copper domain (cluster 1; Fig. 11).
However, the overlap between cluster 1 and 3, spatially and geochemically likely
reflects the inability of the 10m composited data to precisely discriminate at this
scale. Depending on the ultimate metallurgical processing flowsheet, resolution of
these high copper zones may or may not be necessary.

The high copper domain within the sulphide zone of vuggy silica alteration (clus-
ter 3) is centred on the main feeder zones of the vuggy silica alteration. The low
copper domain (cluster 1) is more predominant on the peripheries of the vuggy silica
alteration zone to the north and south (Fig. 12).
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Fig. 13 Drill core photo of interval alunite-rich domain (cluster 5). These rocks are easily identified
by their distinct yellow-beige colour

Fig. 14 Plan view of the
logged vuggy silica zone
(grey) and logged advanced
argillic alteration (yellow)
showing the spatial
relationship between the
alunite-rich domain (light
blue drill strings) and the
logged geology and
alteration
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Cluster 5 corresponds to a potassium and aluminium rich domain that slightly
overprints the vuggy silica alteration on the margin of the deposit. This domain is
characterized by high sulphate content consistent with the appearance of the sulphate
minerals alunite and jarosite (Fig. 13). This domain extends beyond the logged vuggy
silica zone into the advanced argillic alteration halo within the host rock (see Fig. 14).
Due to the presence of sulphate minerals, the ore in this domain has a higher lime
consumption and is slightly softer than the vuggy silica ore. Characterization of this
domain is relevant for mine planning because these variables can affect processing
costs and throughput estimates.

4 Conclusions

Geochemical domains were created using a k-means clustering algorithm to analyse
multielement data from the vuggy silica zone of a high sulphidation epithermal
gold deposit (Deposit A). This analysis was able to partition the deposit into several
distinct geochemical domains that correlate with the known geological and alteration
domains of the deposit, but also provided additional information on the delineation
of the transition zone between the oxide and sulphide zones.

The transition zone at the oxide-sulphide interface includes secondary chalcocite,
Cu2S, which is soluble in cyanide solutions. When cyanide consumption and copper
gold recoveries were examined the transition domain (cluster 2) was found to contain
higher soluble copper concentrations than the oxide domain (cluster 4). Gold recov-
eries within the transition domain (cluster 2) were on the average of 75%. Within
the oxide domain (cluster 4) gold recoveries were approximately 83%.

Because the gold recoveries are so variable between the oxide and transition zone
for Deposit A the robust, unbiased delineation of the oxide and transition zones
is critical to assessing the economic viability of this project. Compositional data
analysis, including robust principal component analysis and k-means cluster analysis
is an effective tool for increasing the understanding and knowledge of an orebody.
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A Compositional Approach to Allele Sharing
Analysis

I. Galván-Femenía, J. Graffelman and C. Barceló-i-Vidal

Abstract Relatedness is of great interest in population-based genetic association
studies. These studies search for genetic factors related to disease. Many statisti-
cal methods used in population-based genetic association studies (such as standard
regressionmodels, t-tests, and logistic regression) assume that the observations (indi-
viduals) are independent. These techniques can fail if independence is not satisfied.
Allele sharing is a powerful data analysis technique for analyzing the degree of
dependence in diploid species. Two individuals can share 0, 1, or 2 alleles for any
genetic marker. This sharing may be assessed for alleles identical by state (IBS) or
identical by descent (IBD). Starting from IBS alleles, it is possible to detect the type
of relationship of a pair of individuals by using graphical methods. Typical allele
sharing analysis consists of plotting the fraction of loci sharing 2 IBS alleles versus
the fraction of sharing 0 IBS alleles. Compositional data analysis can be applied
to allele sharing analysis because the proportions of sharing 0, 1 or 2 IBS alleles
(denoted by p0, p1, and p2) form a 3-part-composition. This chapter provides a
graphical method to detect family relationships by plotting the isometric log-ratio
transformation of p0, p1, and p2. On the other hand, the probabilities of sharing 0, 1,
or 2 IBD alleles (denoted by k0, k1, k2), which are termed Cotterman’s coefficients,
depend on the relatedness: monozygotic twins, full-siblings, parent-offspring, avun-
cular, first cousins, etc. It is possible to infer the type of family relationship of a pair of
individuals by using maximum likelihood methods. As a result, the estimated vector
k̂ = (k̂0, k̂1, k̂2) for each pair of individuals forms a 3-part-composition and can be
plotted in a ternary diagram to identify the degree of relatedness. An R package has
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been developed for the study of genetic relatedness based on genetic markers such as
microsatellites and single nucleotide polymorphisms from human populations, and
is used for the computations and graphics of this contribution.

Keywords Allele sharing · Identical by state · Identical by descent · Cotterman’s
coefficients · Ternary diagram · Isometric log-ratio transformation

1 Introduction

The application of statistics in genetics and molecular biology has become an active
field of research over the last decades. Studies of family relationships in genetic data
analysis are crucial in population-based genetic association studies [5]. Themain aim
of research in these association studies is to find genetic factors related to disease.
These studies assume that individuals from human populations are independent.
The dependence between individuals, e.g., the presence of related individuals in a
database, can invalidate the statistical methods applied in association studies such as
regression models or t-tests. Thus, it is important to detect the degree of relatedness
of a pair of individuals in the database. This can help to avoid such dependence by
removing one individual of the detected pair.

Genetic datasets are composed of genetic markers that are helpful to find the pos-
sible DNA regions related to a disease of interest such as cancer. Single nucleotide
polymorphisms (SNPs) and microsatellites or short tandem repeats (STRs) are com-
mon genetic markers in population-based genetic association studies [9]. SNPs are
common throughout the human genome; they occur once every 300 nucleotides on
average in the DNA sequences formed by the bases adenine (A), cytosine (C), gua-
nine (G), and thymine (T). SNPs are mostly used for large scale genetic association
studies. We give an example of a SNP for three individuals who have the following
DNA sequences on a pair of chromosomes at a specific locus: ID1 = (CCGATC,
CCAATC), ID2 = (CCGATC, CCGATC), and ID3 = (CCAATC, CCAATC). Note
that for the first individual the sequences differ only at the third base pair for the alle-
les G and A and for the second and the third individual the same alleles appear at the
third base. Thus, the third position is a SNP, in this case a G/A polymorphism. The
three individuals have a SNP coded by the genotypes GA, GG, and AA, respectively,
at this specific locus.

On the other hand, microsatellites are short DNA sequences that are repeated. The
length of the repeated DNA sequences is constant for each STR and ranges from 2
to 6 nucleotides. Unrelated individuals have genetic variability because their alleles
of determined regions of DNA vary. As a result, microsatellites are very powerful
to distinguish each individual from the population due to the presence of genetic
variability between individuals. Particularly, the number of the repeated sequences
across STRs varies between unrelated individuals. For this reason, they are also used
for forensic DNA studies. There are two ways to code an STR: by recording the total
size in base pairs of the repeating sequences; or by considering only the number of
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repeats of a particular sequence. For instance, an individual has the following DNA
sequences on a pair of chromosomes at a specific locus: ID1 = (ATTATTATTATT,
ATTATTATTCCC). This is a trinucleotide repeat ATT that can be coded as an STR
of (4, 3) repeats or as an STR of size (12, 9).

Allele sharing analysis is a classical technique for analyzing the degree of depen-
dence between individuals [2]. Two diploid individuals can share 0, 1, or 2 alleles
for any genetic marker. The larger the number of shared alleles between a pair of
individuals across genetic markers, the more likely they are to be closely related.
Thus, individuals from the same family share on average more alleles than unrelated
individuals. Allele sharing is called identical by state (IBS) if the DNA composition
of the alleles is identical but the alleles do not necessarily come from a common
ancestor. It is called identical by descent (IBD) if the alleles originate from a com-
mon ancestor. A pair of IBD alleles is necessarily a pair of IBS alleles, but not the
reverse. We consider both methods for relatedness research in the rest of this paper.

The estimation of the probabilities of sharing 0, 1, or 2 IBD alleles for a pair of
individuals is not trivial. These probabilities depend on the genotypes and the allele
frequencies of the population and should be estimated. The maximum likelihood
method is considered to be the best procedure for estimating IBD probabilities [17].
Family relationships can be identified by comparing the estimated IBD probabilities
with the theoretical Cotterman coefficients (denoted by k0, k1, k2) [3, 15, 16]. We
remark that the Cotterman coefficients can be considered in the simplex, S3, and we
show the representation of the estimates of the Cotterman coefficients in a ternary
diagram.

This chapter is organized as follows. Section2 gives an overview of the IBS allele
sharing analysis and the application of ilr-coordinates. Section3 presents the basic
principles of the IBD allele sharing and the representation of the family relationships
in a ternary diagram. Sections2 and 3 treat examples of IBD and IBS studies with
microsatellite and SNP data. An R package that can simulate data for the studies is
discussed (still in development). Finally, Sect. 4 summarizes the principal conclu-
sions of this contribution.

2 Identical by State Studies

IBS studies ignore if the alleles of any pair of individuals are derived from a common
ancestor. The IBS sharing of a pair of individuals can be calculated from the genotype
data. Then, two individuals share 0 IBS alleles if they have no alleles in common
(e.g., AA and GT); share 1 IBS allele if one individual has only a single allele in
common with the other individual (e.g., AA and AT or AA and TA; the position of
the alleles is irrelevant), and 2 IBS alleles if they have identical genotypes (e.g., AA
and AA). Occasionally, the number of shared alleles may be missing (NA) if some
individual has missing genotyping information (e.g., AA and NA, or NA and NA).

This approach is usually considered for all the pairs of individuals from a human
population across geneticmarkers. Then, for each pair of individualswe have a vector
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of 0, 1, or 2 shared alleles as large as the number of genetic markers in the database.
Consequently, it is possible to build a vector p of the proportions of shared alleles (0,
1, 2) for each pair of individuals denoted by p = (p0, p1, p2). Classical IBS allele
sharing consists of plotting the proportion of sharing 2 IBS alleles (p2) versus the
proportion of sharing 0 IBS alleles (p0) for all pairs of individuals froma given human
population [14]. This graphical method is powerful to detect family relationships by
observing the pairs of individuals with higher values of p2. It is known that family
relationships of degree zero, that is, monozygotic twins (MZ), usually have values
of p2 close to 1. Parent-offspring pairs (PO) usually have values of p0 close to 0.
Full-siblings (FS), half-siblings (HS), avuncular (AV), and grandparent–grandchild
(GG) are also family relationships that can be detected by this graphical method.
Unrelated individuals (UN) usually have higher values of p0. However, the plot p2
versus p0 ignores the constraint p0 + p1 + p2 = 1 and the relative information of
the component p1.

For this reason, we propose the isometric log-ratio (ilr ) transformation [4] of the
vector (p0, p1, p2) in order to preserve the relative information of the 3 parts. The
resultant ilr-coordinates can be plotted to detect family relationships in IBS studies.

By construction, the first ilr-coordinate (z1) interprets the balance between p2
and p0. Note that this coordinate captures the information of the graphical method
explained before by Rosenberg [14]. The second ilr-coordinate (z2) corresponds to
the balance between p0, p2, and p1. The ilr-coordinates are defined as follows:

⎧
⎨

⎩

z1 = 1√
2
ln

(
p2
p0

)

z2 = 1√
6
ln

(
p0 p2
p21

) (1)

MZ, PO, FS, HS, AV, GG pairs have higher values of z1, whereas unrelated
individuals have lower values of z1.

2.1 Example

We present an R package called IBS.IBD.studies. This package contains a sample
from the Maya population of 25 individuals extracted from a world-wide database
from the Noah A. Rosenberg Research lab at Stanford University [13, 14]. This
world-wide database is derived from the Human Genome Diversity Cell Line Panel
(HGDP) [1]. For each individual, the sample from the Maya population includes 5
columns with their individual code number assigned by the HGDP (ID), the popu-
lation code number assigned by Rosenberg’s lab (Pop.Code), the population name
(Pop.Nam), the geographic information (Geographic), and the region of the popula-
tion (Region). The genetic information consists of 377microsatellites (STRs) labeled
by their respective “locus names” (D12S1638,D14S1007,…).Table1 shows aglance
at the database of the Maya population.
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Each individual from the Maya population is listed in two consecutive lines. For
instance, the genotype for the individual ID = 854 for the STR D12S1638 is (120,
120). The allele “120” indicates the total size in base pairs of the repeating DNA
sequence. An individual whose genotyping information is missing, is coded by NA
(not available).

We use the functions allelesharing() and percentages() from the
IBS.IBD.studies R package. The first function computes the shared IBS alleles for
each genetic marker and for each pair of individuals. Using percentages(), the
proportions of sharing 0, 1, or 2 IBS alleles (p0, p1, p2) for each pair of individuals
from the sample are obtained.

Figure1a plots the fraction of loci sharing 2 IBS alleles (p2) versus the fraction of
loci sharing 0 IBS alleles (p0) for all pairs of individuals from the Maya population.
The family relationships documented by Rosenberg [14] are represented in different
colors. Observe that outlying individuals correspond to family relationships of the
first degree (PO and FS) and the second degree (AV or GG); relationships of the
third degree such as first cousins (FC) are more difficult to detect and are mixed with
unrelated individuals (UN).

Figure1b shows the representation in ilr-coordinates of all pairs of individuals of
the Maya population. According to the first ilr-coordinate (z1), the distance between
the two PO pairs and the UN pairs from the Maya population equals three units,
whereas the distance between the FS pair and the UN pairs is approximately one
unit. According to the second ilr-coordinate (z2), the distance between PO and UN
is approximately two units. The z1 ilr-coordinate facilitates the detection of family
relationships which separates related individuals from unrelated individuals. Outly-
ing pairs with large values of the z1 coordinate usually represent related individuals.
Comparing Fig. 1a and b, we note that PO pairs are more outlying in ilr-coordinates.
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Fig. 1 IBS graphics for all pairs of individuals from the Maya population. a Plot of the fraction of
loci sharing 2 IBS alleles (p2) versus the fraction of loci sharing 0 IBS alleles (p0). b ilr-coordinates
(z1, z2)
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3 Identical by Descent Studies

Wehave shown that IBS studies offer graphicalmethods to detect relatedness between
individuals fromhumanpopulations.Here,wepresent IBDstudies in order to identify
accurately which type of family relationship belongs to each pair of individuals. The
degree of relatedness can be inferred by considering the number of IBDalleles shared.
The probabilities of sharing 0, 1, or 2 IBD alleles are called Cotterman’s coefficients
[3] and are denoted by k0, k1, and k2, respectively. These probabilities depend on the
relatedness: monozygotic twins (MZ), parent-offspring (PO), full-sibs (FS), half-sibs
(HS), avuncular (AV), grandparent-grandchild (GG), first cousins (FC), or unrelated
individuals (UN) are presented in Fig. 2 (top). Note that HS, AV, andGG have exactly
the same Cotterman coefficients and is not possible to distinguish them, unless we
build a pedigree tree for the given human population under study. The set of IBD
probabilities has the simplex as its domain. For this reason, it is possible to represent
all the family relationships in a ternary diagram as is shown in Fig. 2 (bottom).

In practice, genetic data contains information for estimating the IBD probabilities.
However, these probabilities depend on the genotypes and the allele frequencies of
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Type of Relative Degree k0 k1 k2
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Half-siblings/ avuncular/ 2 1/2 1/2 0
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First cousins 3 3/4 1/4 0
Unrelated ∞ 1 0 0

Fig. 2 Top Cotterman’s coefficients for the different type of family relationship and degree of
relatedness. Bottom Representation of the Cotterman coefficients in a ternary diagram
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the human population under study. For this reason, a good procedure for estimating
the Cotterman coefficients is needed. If the estimated IBD probabilities are close
or coincide with the theoretical Cotterman coefficients from Fig. 2 (top) for a given
relationship, then that relationship is inferred. Many articles have been found in
the literature on the estimation of Cotterman’s coefficients. Maximum likelihood
estimation is the best estimation method [10, 17]. We do not detail the steps of
this method in this contribution, as the ML estimation is summarized in Chapter
6 [7]. In this chapter, we compute the maximum likelihood estimates (k̂0, k̂1, and
k̂2, respectively) using the function cotterman() from the IBS.IBD.studies R
package. This function uses the optimization routines from theRsolnpRpackage [6].

Once the estimates of k̂0, k̂1, and k̂2 are obtained, graphical methods such as the
plot of k̂1 versus k̂0 [12] or k̂2 versus k̂1 [11] are commonly used to identify the
degree of relatedness. These plots separate the related individuals from the unrelated
individuals, however, they ignore the relative information of the remaining part of
the 3-part-composition k̂ = (k̂0, k̂1, k̂2). Therefore, it seems logical to plot the Cot-
terman coefficients in a ternary diagram as an additional graphical method in order
to identify relatedness. The ternary diagram has the advantage of showing all Cotter-
man coefficients simultaneously, in contrast to the k̂1 versus k̂0 or k̂2 versus k̂1 plots
that represent only two of them. This way, the information of the IBD probabilities
is preserved for all pairs of individuals and the family relationships are inferred by
comparing the estimates with the theoretical values of k0, k1 and k2 plotted in Fig. 2
(bottom). The Cotterman coefficients can be plotted in a ternary diagram by using
the function ggplot() from the ggtern R package [8] as shown by the examples
below.

3.1 Examples

In this section, we use simulated and empirical datasets and plot them in a ternary dia-
gram in order to identify relationships. The functionssimSNP() and children()
from the R package IBS.IBD.studies can be used to simulate genetic marker data
with given family relationships. First, we generate a sample of 20 unrelated indi-
viduals with 1000 genetic markers. The function simSNP() simulates random sin-
gle nucleotide polymorphisms (SNPs), giving categorical variables with the three
genotypes AA, AB, and BB. All SNPs have a minor allele frequency of 0.5. SNPs
are simulated independently under the assumption of Hardy–Weinberg equilibrium:
p2A + 2pA pB + p2B = 1 [5]. Thus, each SNP is a random sample of a multinomial
distribution of size 20 (the number of unrelated individuals). The theoretical geno-
type probabilities of AA, AB, and BB are 0.25, 0.5, and 0.25, respectively. Each
individual is labeled by ‘ID’ as shown in Table2.

Once the sample is generated, we use the function children() to build a
pedigree tree as follows. Because we know that a child always has received one
allele from the father and one allele from the mother, the function children()

http://dx.doi.org/10.1007/978-3-319-44811-4_6
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Table 2 A glance at the simulated dataset

Individuals SNP1 SNP2 SNP3 SNP4 · · · SNP1000

ID1 AA AB AB AB . . . BB

ID2 AA BB AB BB . . . AB

ID3 BB AB AB AA . . . BB

ID4 AB BB AB AA . . . AB

ID5 AB AB BB AA . . . BB
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

ID20 BB AA AB AA . . . BB

chooses one allele randomly across SNPs from the individual ‘ID1’ and one allele
from the individual ‘ID2’ to generate a child. This new individual is labeled by
‘ID21A’. Analogously, we produce another child labeled by ‘ID21B’. Thus, ‘ID21A’
and ‘ID21B’ are a full-siblings pair. We complete the pedigree tree by generating a
child (labeled by ‘ID22’) of the individuals ‘ID2’ and ‘ID3’ in order to originate two
half-siblings pairs, which correspond to the pairs ‘ID21A’–‘ID22’ and ‘ID21B’–
‘ID22’. An additional family relationship was created, a duplicated individual of
‘ID15’ (labeled by ‘ID23’); hence, ‘ID15’ and ‘ID23’ represent a monozygotic twin
pair. Thus, the new simulated population consists of 24 individuals. The simulated
relationships are composed of one MZ pair, six PO pairs, one FS pair and two HS
pairs as shown in Fig. 3.

We again study the Maya population (Sect. 2.1) as an empirical example.
Figure4 shows the ternary diagrams of the estimated Cotterman coefficients

(k̂0, k̂1, k̂2) for all pairs of individuals of the simulated human population and the
Maya population respectively. All the family relationships of degree zero, one, and
two are close to the theoretical probabilities described in Fig. 2. However, relation-
ships of degree three such as FC in Fig. 4 (right) are difficult to discriminate from
UN or AV. The ternary diagram of the Maya data reveals higher values for k1 and
lower values for k0 of the FS and HS pairs in comparison with the simulated data.
We suggest this is due to the fact that the simulated data consists mainly of entirely

Fig. 3 The simulated family relationships. Left a pedigree tree consisting of six PO pairs, one FS
pair and two HS pairs. Right a MZ pair
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Fig. 4 Ternary diagrams of the estimated Cotterman coefficients (k̂0, k̂1, k̂2) for all pairs of indi-
viduals from the simulated data (left) and the Maya population (right)

unrelated individuals, whereas the Maya individuals derive from common ancestors,
and are probably inbred to a certain extent.

4 Conclusion

This chapter is focused on the annotation of the relatedness between individuals in
genetic data. We stress the importance of the detection of family relationships as a
tool for quality control in population-based genetic association studies. The statistical
methods used in these studies can fail if the dependence between individuals is
not documented. We have shown two classical approaches in relatedness research
and we have applied tools from compositional data for the identification of family
relationships.

First, the IBS allele sharing analysis provides a graphical tool for detecting related
individuals. This graph plots the proportion of sharing 2 IBS alleles versus the pro-
portion of sharing 0 IBS alleles.We propose an additional graphical method by using
the isometric log-ratio transformation of the vector of proportions of sharing 0, 1, or
2 IBS alleles. We plot the ilr-coordinates for all pairs of individuals and use this plot
to detect relationships.

Finally, the IBD allele sharing analysis offers an accurate estimation of relatedness
by using Cotterman’s coefficients. Plots of k̂1 versus k̂0 or k̂2 versus k̂1 are used to
represent graphically the family relationships from a population. These plots ignore
the constraint k̂0 + k̂1 + k̂2 = 1 and we state that ternary diagrams may be useful to
identify family relationships. The theoretical values of k0, k1 and k2 form reference
points in the ternary diagram for the standard relationships.
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An Application of the Isometric Log-Ratio
Transformation in Relatedness Research

J. Graffelman and I. Galván-Femenía

Abstract Genetic marker data contains information on the degree of relatedness of
a pair of individuals. Relatedness investigations are usually based on the extent to
which alleles of a pair of individuals match over a set of markers for which their
genotype has been determined. A distinction is usually drawn between alleles that
are identical by state (IBS) and alleles that are identical by descent (IBD). Since any
pair of individuals can only share 0, 1, or 2 alleles IBS or IBD for any marker, 3-way
compositions can be computed that consist of the fractions of markers sharing 0, 1, or
2 alleles IBS (or IBD) for each pair. For any given standard relationship (e.g., parent–
offspring, sister–brother, etc.) the probabilities k0, k1 and k2 of sharing 0, 1 or 2 IBD
alleles are easily deduced and are usually referred to as Cotterman’s coefficients.
Marker data can be used to estimate these coefficients by maximum likelihood. This
maximization problem has the 2-simplex as its domain. If there is no inbreeding, then
the maximummust occur in a subset of the 2-simplex. The maximization problem is
then subject to an additional nonlinear constraint (k21 ≥ 4k0k2). Special optimization
routines are needed that do respect all constraints of the problem.A reparametrization
of the likelihood in terms of isometric log-ratio (ilr) coordinates greatly simplifies
the maximization problem. In isometric log-ratio coordinates the domain turns out
to be rectangular, and maximization can be carried out by standard general-purpose
maximization routines. We illustrate this point with some examples using data from
the HapMap project.
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1 Introduction

Methods for investigating the degree of relatedness of a pair of individuals form
an active area of research in statistical genetics. Relatedness studies are based on
the idea that genetic markers carry information regarding the family relationships
of the individuals involved. There are several reasons for performing a relatedness
study. First of all, such studies serve to verify documented relationships between
individuals. If sufficient genetic information is available, a relatedness study may
reveal that a pair of putative sibs is in fact a pair of half-sibs or a twin pair. An
important criterion in relatedness studies is the degree to which a pair of individuals
shares alleles over a set of genetic markers. If two individuals share many alleles
at many loci then it becomes more likely that they are closely related. In the most
extreme case, if all alleles at all loci coincide for a pair of individuals, then the
pair is, supposing sufficiently polymorphic loci, in theory a monozygotic twin pair.
However, some caution is called for, because 100% coincidence will also arise if
two registers in the database are accidentally duplicated, or if a biological sample
has been genotyped twice in the laboratory.

Secondly, relatedness is a reason of concern in gene-disease association studies
for statistical reasons. The presence of related individuals violates the independence
assumption that underlies many statistical techniques used in these studies, such as
chi-square tests on contingency tables, logistic regression, and others. It is thus of
interest to investigate the possible relatedness of the individuals in the sample prior
to applying tests for association. If relatedness is detected, one individual of each
related pair may be removed in order to maintain independence.

A distinction can be drawn between relatedness studies that are based on alleles
that are identical by state (IBS) and alleles that are identical by descent (IBD). Two
alleles are IBS if they are the same irrespective of their provenance, a situation that is
statistically often referred to as a “match.” In this contribution we restrict ourselves
to IBD allele-sharing. Two alleles are IBD if they are IBS and have descended from
the same parent. Because a child receives one allele from each parent, it shares one
allele IBD with its father and one allele IBD with its mother. It is not possible for the
child to receive zero or two IBD alleles from the father. The probabilities of sharing
0, 1, or 2 IBD alleles for a given relationship are called Cotterman coefficients, and
denoted by k0, k1 and k2, respectively. If X denotes the number of IBD alleles for a
parent–offspring (PO) pair then its probability distribution is k0 = P (X = 0) = 0,
k1 = P (X = 1) = 1 and k2 = P (X = 2) = 0. For other relationships it is only
slightly more involved to obtain the theoretical IBD probabilities. Let α/β repre-
sent the paternal alleles and A/B the maternal alleles of a couple sharing two alleles
IBS. This couple can have four possible types of children (α/A), (α/B), (β/A), and
(β/B), and the number of IBD alleles for each possible pair of sibs is shown in
Table1.

From this table it is easily inferred that the IBD sharing probabilities for a pair of
full sibs are given by k0 = 1

4 , k1 = 1
2 and k2 = 1

4 . IBD probabilities can be estimated
from the genotype data by maximum likelihood, as described in Sect. 2. If the esti-
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Table 1 Number of IBD alleles for all possible pairs of sibs descendant from a (α/β, A/B) couple

α/A α/B β/A β/B

α/A 2 1 1 0

α/B 1 2 0 1

β/A 1 0 2 1

β/B 0 1 1 2

mated probabilities coincide with or are close to a set of theoretically known IBD
probabilities for a given relationship, then that relationship is inferred.

The structure of the remainder of this chapter is as follows. First we review the
maximum likelihood estimation of IBD probabilities. Then we present a reparame-
trization of the likelihood in terms of isometric log-ratios. We give some detailed
examples with data from the HapMap project. Finally we discuss our results and
provide some references.

2 Maximum Likelihood Estimation of IBD Probabilities

Good accounts of theMLestimation of IBDprobabilities are given byThompson [11]
andWeir et al. [12]. We briefly reviewML estimation here in order to provide a self-
contained chapter. The Cotterman coefficients can be obtained in a similar way as
outlined in the introduction for all standard family relationships and are given in
Table2.

LetG1 andG2 be the pair of genotypes observed at a locus for two individuals, and
let q (0, 1 or 2) represent the number of IBD alleles. By the law of total probability

Table 2 IBD probabilities or Cotterman coefficients for some standard family relationships (MZ
= Monozygotic twins, PO = Parent–offspring, FS = Full sibs, HS = Half-sibs, AV = Avuncular,
GG = Grandparent-grandchild, FC = First cousins, UN = Unrelated)

Relationship k0 k1 k2

MZ 0 0 1

PO 0 1 0

FS 1
4

1
2

1
4

HS 1
2

1
2 0

AV 1
2

1
2 0

GG 1
2

1
2 0

FC 3
4

1
4 0

UN 1 0 0
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we have

P (G1 ∩ G2|k0, k1, k2) = P (G1 ∩ G2|q = 0) k0 + P (G1 ∩ G2|q = 1) k1
+P (G1 ∩ G2|q = 2) k2. (1)

The probabilities P (G1 ∩ G2|q = 0) depend on the genotypes of the individuals
and are calculated from the allele frequencies in the population. We denote different
alleles by the letters i, j, l and m and let pi , p j , pl and pm be their corresponding
allele frequencies. We denote genotypes by i/j , the slash separating the alleles found
on the homologous chromosomes. For example, if G1 = i/ i and G2 = i/ i , then
under the assumption of Hardy–Weinberg equilibrium (with probabilities p2i and
2pi p j for homozygous and heterozygous genotypes respectively) we obtain

P (G1 = i/ i ∩ G2 = i/ i |q = 0) = P (G1 = i/ i) P (G2 = i/ i) = p2i p
2
i = p4i ,

P (G1 = i/ i ∩ G2 = i/ i |q = 1) = P (G1 = i/ i) P (G2 = i/ i |G1 = i/ i |q = 1) = p2i pi = p3i ,

P (G1 = i/ i ∩ G2 = i/ i |q = 2) = P (G1 = i/ i) = P (G2 = i/ i) = p2i .

These probabilities are also determined for all other genotype pairs ((i/ i, i/j),
(i/ i, j/j), etc.) and the results are given in Table3. If there are n independent genetic
markers, then the likelihood function for a pair of individuals can be written as

L(k0, k1, k2|G1 ∩ G2) =
n∏

i=1

(d0i k0 + d1i k1 + d2i k2), (2)

where the coefficients d0i , d1i and d2i depend on the nature of the pair (possibilities
given in Table3) and on the allele frequencies of the corresponding markers. For
example, if for one marker both individuals are homozygous (an (i/ i, i/ i) pair)
then the contribution to the likelihood function is p4i k0 + p3i k1 + p2i k2, with pi the
i th allele frequency of that marker. Taking logarithms, we search to maximize the
log-likelihood function

Table 3 Probabilities of observing 0, 1 or 2 IBD alleles for all possible genotype pairs

Pair Shared alleles q = 0 q = 1 q = 2

(i/ i, i/ i) 2 p4i p3i p2i
(i/ i, j/j) 0 p2i p

2
j 0 0

(i/ i, i/j) 1 2p3i p j p2i p j 0

(i/ i, j/m) 0 2p2i p j pm 0 0

(i/j, i/j) 2 4p2i p
2
j pi p j (pi + p j ) 2pi p j

(i/j, i/m) 1 4p2i p j pm pi p j pm 0

(i/j,m/ l) 0 4pi p j pm pl 0 0
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l(k0, k1, k2|G1 ∩ G2) =
n∑

i=1

ln (d0i k0 + d1i k1 + d2i k2) , (3)

where k0, k1 and k2 are the parameters to be estimated, and the coefficients d0i , d1i , d2i
are obtained by substituting the sample allele frequencies in accordance with the type
of pair.

3 Reparametrization of the Likelihood in Isometric
Log-Ratios

Themaximization of the likelihood inEq. (3) is not trivial, as the following constraints
need to be taken into account: 0 ≤ ki ≤ 1,

∑2
i=0 ki = 1, and k21 ≥ 4k0k2. The last

inequality follows from the assumption of absence of inbreeding [10]. This is a
maximization problem that has an arrow-headed subset of the simplex as its domain,
as is shown by the gray region in Fig. 1a. Standard R functions like optim or
nlminb from the stats package [7] assume the domain of the objective function
to be rectangular. For these R functions the simplex constraint k0 + k1 + k2 = 1 is
a problem. The range for ki is not simply the [0, 1] interval but the limits depend
on the values of the other parameters. Besides this linear constraint, at the same
time the nonlinear inequality k21 ≥ 4k0k2 must also be taken into account. If the
standard functions are used for the problem at hand, then the algorithm will typically
step outside the feasible region leading to numerical errors. The function solnp
from the R-package Rsolnp [4] solves general nonlinear programming problems and
allows for inequalities and nonlinear equalities, and can handle our maximization
problem. Figure1 also represents the standard relationships whose compositions are
given in Table2. All these relationships are at the edge of the feasible region.

A

MZ

PO

FS

UN

HS

FC

AV
GG

k1

k0 k2
MZ

PO

FS

UN

HS

FC

AV
GG

B

z1

z 2

FS

0

− 2 3ln(2)

Fig. 1 Domain of the likelihood function (gray) in a ternary plot representation (a) and in isometric
log-ratio coordinates (b)



80 J. Graffelman and I. Galván-Femenía

The parabola delimiting the feasible region described by k21 = 4k0k2 can be recog-
nized as coinciding with the second dimension of the isometric log-ratio coordi-
nates [1] of composition k = (k0, k1, k2). The same parabola is also of relevance in
studies of Hardy–Weinberg equilibrium [5], but with a different genetic interpreta-
tion of the composition. This suggests that we might reparameterize the likelihood in
terms of the isometric log-ratio coordinates in order to obtain a rectangular domain
for the likelihood. This simplifies the maximization problem, as it can now be solved
using R’s general-purpose optimization routines optim and nlminb.

We use the isometric log-ratio transformation, calculating the coordinates as fol-
lows:

z1 = 1√
2
ln

(
k0
k2

)

, z2 = 1√
6
ln

(
k0k2
k21

)

. (4)

The inverse relationships are given by

(k0, k1, k2) = C (e
√
2z1 , e

1
2

√
2z1− 1

2

√
6z2 , 1), (5)

where C is the closure operator. This gives the reparameterized log-likelihood

l(z1, z2|G1 ∩ G2) =
n∑

i=1

(
ln

(
d0i e

√
2z1 + d1i e

1
2

√
2z1− 1

2

√
6z2 + d2i

)

− ln
(
1 + e

√
2z1 + e

1
2

√
2z1− 1

2

√
6z2

))
. (6)

The nonlinear constraint k21 ≥ 4k0k2 becomes a linear inequality for the second
ilr-coordinate

z2 ≤ −
√
2

3
ln (2) . (7)

The domain of the reparameterized log-likelihood is shown in Fig. 1b.

4 Examples

We use data from the Mexican population of phase III of the HapMap project [9] to
illustrate the estimation of IBD probabilities in log-ratio coordinates. The data con-
sist of genotype information of 86 individuals (mostly parent–offspring trios) from
Los Angeles of Mexican ancestry. Several scholars have analyzed these data, and
many undocumented family relationships have been reported [3, 6, 8]. We filtered
single nucleotide polymorphisms (SNPs) from the genome-wide HapMap database
as follows. SNPs significant in a chi-square test for Hardy–Weinberg equilibrium
(α = 0.05) were excluded to avoid possible genotyping error. SNPs with a minor
allele frequency below 0.4 were also excluded in order to guarantee a set of suf-
ficiently polymorphic markers. We sampled 5,000 SNPs at random from this sub-
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Table 4 ML estimation of IBD probabilities of a FS pair, using 5,000 SNPs, with initial point
(0.575, 0.400, 0.025). Iteration histories with the log-likelihood (l) for maximization in original and
in log-ratio coordinates by solnp and nlminb respectively

solnp

It. l k̂0 k̂1 k̂2

1 −9483.1290 0.41422 0.48104 0.10474

2 −9368.1777 0.18452 0.56753 0.24796

3 −9366.4621 0.21746 0.52776 0.25478

4 −9366.4615 0.21697 0.52798 0.25505

5 −9366.4615 0.21697 0.52798 0.25505

nlminb

It. l ẑ1 ẑ2
0 −9671.5480 2.217130 −0.983749

1 −9503.2604 1.528570 −1.708930

2 −9446.4083 0.538662 −1.567190

3 −9415.8636 0.214144 −1.361630

4 −9367.0124 −0.184897 −0.705093

5 −9366.5961 −0.108992 −0.696269

6 −9366.4802 −0.127274 −0.667618

7 −9366.4659 −0.113317 −0.666588

8 −9366.4622 −0.116864 −0.661281

9 −9366.4617 −0.114033 −0.661312

10 −9366.4615 −0.114846 −0.660250

11 −9366.4615 −0.114261 −0.660282

12 −9366.4615 −0.114416 −0.660107

13 −9366.4615 −0.114323 −0.660105

14 −9366.4615 −0.114323 −0.660105

set, and consider the resulting dataset as a set of approximately independent and
highly polymorphic markers. We consider two pairs chosen from this database as an
example.

The first pair is a presumably unrelated pair of individuals with identifiers
NA19662 and NA19685. This pair was inferred to be a FS pair [6] using the program
RELPAIR [2]. Here we reanalyze the relationship of this pair using ML estimation
of the IBD probabilities, with initial point (0.575, 0.400, 0.025). The iteration his-
tory and log-likelihood (l) are given in Table4 for the maximization of Eq. (3) with
solnp and for the maximization in ilr-coordinates (Eq. (6)) with nlminb. Both
algorithms converge to the same maximum. Back-transformation of the final ilr-
coordinates (−0.1143,−0.6601) gives the same estimates k̂0 = 0.217, k̂1 = 0.528
and k̂2 = 0.255, which confirms the hypothesis of a FS pair. The level curves of the
log-likelihood function are shown in Fig. 2a and show the maximum as an interior
point.
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Fig. 2 Level curves of the log-likelihood function in ilr-coordinates for a FS pair and a PO pair

We consider a second example of another undocumented relationship between
NA19660 andNA19685 that was inferred to be a parent–offspring (PO) pair [6]. This
example differs from the previous one because now the reference relationship (PO
with k0 = 0, k1 = 1 and k2 = 0) is outside the simplex. Results for the maximization
in original and log-ratio coordinates are shown in Table5.

Function solnp gives estimates k̂0 = 0.0018, k̂1 = 0.9982 and k̂2 = 0.0000
which suggests a PO pair. The maximization in log-ratio coordinates shows that

Table 5 ML estimation of IBD probabilities of a PO pair, using 5,000 SNPs, with initial point
(0.575, 0.400, 0.025). Iteration histories for maximization of the likelihood function (l) in original
and in log-ratio coordinates by solnp and nlminb respectively

solnp

It. l k̂0 k̂1 k̂2

1 −9489.1607 0.29473 0.70527 0.00000

2 −9320.4669 0.00184 0.99816 0.00000

3 −9320.4669 0.00184 0.99816 0.00000

nlminb

It. l ẑ1 ẑ2
0 −9680.5924 2.21713 −0.98375

1 −9324.1179 0.24058 −3.86971

2 −9322.1662 1.56428 −4.90716

3 −9321.5402 2.13094 −5.41660

4 −9320.7389 3.37902 −6.55765

5 −9320.5206 4.20767 −7.31837

6 −9320.4712 4.73722 −7.80468

7 −9320.4672 4.91901 −7.97160

8 −9320.4671 4.94894 −7.99905

9 −9320.4671 4.95042 −8.00037
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z1 increases and z2 decreases until the change in the log-likelihood drops below
the tolerance used. Back-transformation of the coordinates gives the result k̂0 =
0.0018, k̂1 = 0.9982 and k̂2 = 0.0000 which coincides with the estimates obtained
by solnp. Figure2b shows the level curves of the log-likelihood function together
with the maximum found (marked with a dot). As z2 decreases at some point the
log-likelihood function becomes very flat.

For the FS pair, different initial points were used and all converged to the same
maximum. For the PO pair, different starting points often give different solutions
in ilr-coordinates. The maxima found according to the iteration histories in Tables4
and 5 are marked by a point. For the PO pair, the solutions obtained from three
different additional initial points are shown by black triangles. In ilr-coordinates
these solutions differ, but all correspond to an area where the log-likelihood function
is very flat. Back-transformation of all solutions gives however, up to five decimals,
the same IBD probabilities.

5 Discussion

In this contribution we have shown that isometric log-ratio coordinates can be used
to simplify a genetic maximization problem that has the simplex or a subset of
the simplex as its domain. In statistics there are more likelihood functions that are
subject to a unit sum constraint on the parameters, and that may possibly be simpler
to maximize in log-ratio coordinates, such as likelihoods based on the multinomial
distribution. Maximization of likelihoods in coordinates may therefore have a wider
applicability then suggested by the specific genetic problemdealtwith here. Themain
advantage is that the irregular domains of the likelihood function in the simplex can
become rectangular when expressed in ilr-coordinates. Most standard maximization
functions can then handle the maximization problem, whereas specialized software
is needed for maximizing the likelihood function over a subset of the simplex.

We note that the theoretical IBD probabilities for the most common family rela-
tionships fall on the edge of the simplex (see Fig. 1a). Only the FS relationship is
an interior point of the simplex and all other relationships from Table2 are outside
the simplex because zeros are not admitted. Thus, when maximizing in coordinates,
these theoretical probabilities can never be attained. In practice the log-ratio coor-
dinates tend to extreme values for these relationships, and convergence can be slow
because the log-likelihood function flattens. Setting an adequate tolerance criterion
may help to speed up the convergence.

The ilr-coordinates of the numerical solution found for relationships on the edge of
the simplex can vary considerably (see Fig. 2b). However, when back-transformed to
IBD probabilities the corresponding relationships can be inferred. In this respect,
we note that large negative values for z1 combined with z2 at its maximum of
−√

2/3 ln (2) point to a MZ pair, and large positive values for z1 combined with
z2 at its maximum of −√

2/3 ln (2) suggest an unrelated pair (UN). Avuncular pairs
(AV, aunt–niece, etc.), grandparent–grandchild pairs (GG), and half-sibs (HS) can not
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be distinguished because they all have the same Cotterman coefficients. With the iso-
metric log-ratio transformation proposed here, these relationships are characterized
by a positive z1 and proportionality between the log-ratio coordinates (z1 = −√

3z2).
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Recognizing and Validating Structural
Processes in Geochemical Data:
Examples from a Diamondiferous
Kimberlite and a Regional Lake
Sediment Geochemical Survey

E.C. Grunsky and B.A. Kjarsgaard

Abstract Geochemical data are compositional in nature and are subject to the prob-
lems typically associated with data that are restricted in real positive number space,
the simplex. Geochemistry is a proxy for mineralogy, and minerals are comprised of
atomically ordered structures that define the placement and abundance of elements
in the mineral lattice structure. The arrangement of elements within one or more
minerals that comprise rocks, soils, and surficial sediments define a linear model in
the Euclidean geometry of real space in terms of their geochemical expression.When
methods such as principal component analysis are applied to multielement geochem-
ical data, the dominant components generally reflect features related to mineralogy
and describe geologic processes that are both independent and partially codepen-
dent. The dominant principal components can be used as a filter to eliminate noise
or under-sampled processes in the data. These dominant components can be used
to create predictive geological maps, or maps displaying recognizable geochemical
processes. Using these techniques, we demonstrate that stoichiometrically controlled
geochemical processes can be “discovered” and “validated” from two sets of data,
one derived from drill-hole lithogeochemistry of a series of kimberlite eruptions and
a second from a suite of granitic, metamorphic, volcanic, and sedimentary rocks.
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1 Introduction

The compositional nature of geochemical data requires care when considering rela-
tionships between the elemental, oxide, or molecular constituents that define a com-
position. The use of ratios are essential when making comparisons between elements
in systems such as igneous fractionation [25, 32, 35] and the use of log ratios is essen-
tial when measuring moments such as variance/covariance in examination of data
derived from geochemical surveys [1, 4, 7, 22].

The relationships between the elements of geochemical data are governed by
“natural laws” [2] and specifically by stoichiometry and thereby imposing struc-
ture within the data. Grunsky and Bacon-Shone [12] have shown that geochemical
patterns and trends are closely related to the stoichiometric constraints of minerals.

To effectively interpret geochemical data, a two-phase approach is suggested; that
of process discovery, followed by process validation. This tactic identifies geochem-
ical/geological processes that exist in the data, but are not obvious unless robust
statistical methods are utilized. The process discovery phase is most effective when
carried out using amultivariate approach. Linear combinations of elements related by
stoichiometry are generally expressed as strong patterns, whilst random patterns and
under-sampled processes show weak or uninterpretable patterns. Grunsky et al. [13]
initially demonstrated these concepts usingmultielement lake sediment geochemical
data from the Melville Peninsula area, Nunavut, Canada.

Two examples are presented. The first demonstrates the usefulness of compo-
sitional data analysis combined with multivariate statistical analysis for process
discovery and validation from drill core geochemistry from the Star kimberlite in
Saskatchewan, Canada [11]. Distinct geochemical kimberlite phases can be statisti-
cally identified using this approach and lead to efficiencies in the economic evaluation
of kimberlite for diamonds.

The second example is the evaluation of lake sediment geochemistry obtained
from a regional geochemical survey [19]. The results presented here are from a
campaign to reanalyze sample pulps using modern analytical methods including
inductively coupled plasma mass spectrometry (ICP-MS). In cases where elements
have been analyzed using two ormoremethods, the elements were evaluated in terms
of detection limit suitability and visual examination of the correlation of the element
with each method. The elements B, Ge, In, Pd, Re, Ta, and Te were dropped due
to large numbers of observations that were reported at less than the lower limit of
detection (lld); furthermore, these elements are not key elements observed in typical
rock forming minerals.

One of the primary purposes of geochemical data analysis is the recognition
of geochemical/geological processes. Processes are recognized by a continuum of
variable responses and the relative increase/decrease of these variables. The presence
of censored data (values < lld) can, in some cases, affects the results of a process
recognition investigation. In the compositional data analysis framework, early on
Aitchison [1] recognized the problem of censored data. Martín-Fernández et al.
[17, 18] and Hron et al. [16] discuss various replacement options based on the nature
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of the censored data. Recognizing the difference between missing (i.e., no data)
values and censored (<lld) data is crucial in deciding how a replacement value, if
any, should be estimated. Details on the methods used are described below.

2 Methods

Themethods used in this study were applied in the R programming environment [31]
and are documented below. Venables and Ripley [37] provide many useful details
and scripts for analyzing, visualizing, and statistically studying data.

2.1 Process Discovery

Process discovery involves the use of unsupervised multivariate methods such as
principal component analysis (PCA), multidimensional scaling and Random Forests,
to name a few. Process discovery with geochemical data reflects the recognition of
linear models that reflect the stoichiometry of rock forming minerals and subsequent
processes that modify mineral structures (hydrothermal fluids, weathering, ground-
water). Additional processes such as fluid dynamics effects can effectively sort min-
erals according to the energy of the environment and mineral density. The chemistry
of minerals is governed by stoichiometry and the relationships are described within
the simplex. Geoscientists have long recognized that many geochemical processes
can be clearly described using cation ratios that reflect the stoichiometric balances
of minerals during formation (e.g., Pearce [25]).

Geochemical data, expressed in elemental form is a proxy for mineralogy. If the
mineralogy of a geochemical data set is known, then the proportions of these ele-
ments can be determined using linear methods. Grunsky [10] has reviewed some of
the normativemineral calculation procedures that are available. An advantage of esti-
mating normative mineral compositions is that the linear combinations of normative
minerals will increase the signal to noise ratio in the normative mineral composi-
tions. However, in many cases the compositions of minerals that have a continuum
of element substitutions requires assumptions to be made about such compositions,
and the resulting estimates may not reflect the actual mineral compositions or abun-
dances. Thus, in this study, we have chosen to use only the geochemical data and use
the observed linear patterns as proxies for mineralogy.

Many geochemical datasets contain values that are reported at less than the lower
limit of detection and these values are generally termed “censored.” The estimation
of statistical parameters can be severely affected by censored data and it is useful to
find a replacement value that does not bias the estimate of the statistical moments.
The R-package “zCompositions” with the function (lrEM) [20, 21] was used to
determine suitable replacement values for several of the elements.
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When mixtures of minerals (rocks, soils, glacial till, stream sediments) are ana-
lyzed for their geochemistry there may be multiple linear processes embedded in the
resulting geochemical analyses. Techniques such as principal component analysis
can be effectively used to identify these processes. A method of PCA used in this
study is a combined R-mode/Q-mode PCA as documented in Grunsky [8].

An essential part of the process discovery phase is a suitable choice of coordinates
to overcome the problem of closure. The logcentered transform [1] is a suitable
transform for the evaluation of geochemical data. The resulting principal components
are orthonormal and reflect linear processes related to stoichiometry. The components
are ideal for subsequent process validation. Enhancements to the visualization of
groups of data on scatterplotsweremade using theR library “cluster” and the function
“ellipsoidhull,” which creates a convex hull around specified groups of data.

2.2 Process Validation

Process validation is themethodology employed to verify that a geochemical compo-
sition (response) is associated with identified processes. The processes can be in the
form of, e.g., lithology, soil character, ecosystem properties, climate, or deeply buried
tectonic assemblages. Validation can be in the form of an estimate of likelihood that
a composition can be assigned membership to one of the identified processes. This is
typically done through the assignment of a class identifier or ameasure of probability.
Assignment of class membership can be done through the application of techniques
such discriminant analysis, logistic regression, neural networks, or Random Forests.
There are many other methods available.

An essential part of process validation is the selection of variables that enable effi-
cient classification, which involves selecting variables that maximize the differences
between the different classes and minimizes the amount of overlap due to noise or
unresolved processes in the data. Within the context of compositional data, variables
that are selected for classification require transformation to log-ratio coordinates.
The additive log ratio (alr) or the isometric log ratio (ilr) are equally effective for
the implementation of classification procedures. The logcentered (clr) transform is
not suitable because the covariance matrix of these coordinates is singular. How-
ever, analysis of variance (ANOVA) applied to logcentered data enables recognition
of the compositional variables (elements) that are most effective for distinguishing
between the classes. Choosing an effective alr transform (choice of suitable divisor)
or balances for the ilr transform is not a trivial task. Moreover, ANOVA applied
to the principal components derived from the logcentered transform can be highly
effective at discriminating between the different classes. Subsequent classification
can be carried out with far fewer variables based on principal components derived
from the logcentered transform.

Initially, an ANOVA (R function “aov”) was applied to the logcentered elements
or the principal components derived from the logcentered data. In this study, the
principal components were used in the analysis of variance.
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Classification results can be conveniently expressed as direct class assignment or
posterior probabilities in the form of forced class allocation, or as class typicality.
Forced class allocation assigns a posterior probability based on the shortest Maha-
lanobis distance of a compositional observation from the compositional centroid of
each class. Class typicality measures the Mahalanobis distance from each class and
assigns a posterior probability based on the F-distribution. This approach can result
with an observation having a zero posterior probability for all classes, indicating that
the composition is not close to the compositions defined by the class compositional
centroids. The results shown for this study used the R function, “lda”, from which
the posterior probabilities were estimated.

The results of cross-validation linear discriminant analysis (LDA) are posterior
probabilities of class membership, which are also compositions [1, 23, 34]. As a
result, the subsequent derivation of maps displaying posterior probabilities requires a
suitable log-ratio transformation to preserve nonnegativity and overcome the constant
sum constraint. In this study, the posterior probabilities were transformed using
an additive (alr) log-ratio transformation. Ordinary cokriging, using the R gstat
package [26], was applied to the transformed posterior probabilities followed by a
back-transformation for geospatial rendering. However, the alr transform cannot be
used to estimate kriging variance [1, 34]. Kriging variance can be estimated by the
calculation of the expected value and error variance covariance matrix by Gauss–
Hermite integration [24] after which a backtransform can be applied. In this study,
kriging variance was not considered and cokriging of the alr-transformed posterior
probabilities was applied directly.

Classification accuracies can be assessed through the generation of tables that
show the accuracy and errors measured from the estimated classes against the initial
classes in the training sets used for the classification.

2.3 Geospatial Coherence

The results from the classification of materials gathered from a geochemical survey
should bear a geospatial resemblance to the area sampled. The creation of maps
are part of the process validation procedure. If a geospatial rendering of a poste-
rior probability shows no spatial coherence, then it is likely that the classification is
difficult to interpret within a geologic context. The most effective way to test this
is through the generation and modeling of semivariograms that describe the spa-
tial continuity of a specific class based on the posterior probabilities. If meaningful
semivariograms can be created, then geospatial maps of the posterior probabilities
can be generated through interpolation using the kriging process. Maps of posterior
probabilities may show low overall values but still be spatially coherent. This is also
reflected in the classification accuracy matrix that indicates the extent of classifica-
tion overlap between classes. Geospatial analysis methodology described by Bivand
et al. [3] and the gstat package [26]were used to generate the geostatistical parameters
and images of the principal components and posterior probabilities from kriging.
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3 Examples

3.1 Process Discovery and Validation of Diamondiferous
Kimberlites

Grunsky and Kjarsgaard [11] evaluated diamond drill core lithogeochemistry from
the Star kimberlite located in Saskatchewan, Canada. The Star kimberlite is a series of
kimberlite eruptions with five recognized phases (from oldest to youngest: early Joli
Fou, mid-Joli Fou, late Joli Fou, Pense, Cantuar). The early Joli Fou phase contains
more macro-diamonds than the other phases, thus making it highly desirable to
recognize this phase in the diamond exploration and evaluation process. Figure1
shows a scatter plot matrix of elements that are typically associated with kimberlite
magma, and fractionation processes. The data are presented in cation percent and are
untransformed. The scatter plots reveal two distinct patterns. There is a linear pattern
of relative enrichment/depletion for all five phases. Additionally, there is a distinct
pattern of relative enrichment/depletion associated with the early, mid- and late Joli
Fou kimberlites. A separate trend is noted for the Pense and Cantuar phases. The late
Joli Fou and the Cantuar kimberlites show the greatest relative enrichment of the four
elements shown in Fig. 1. These linear patterns reveal the control that stoichiometry
has over the formation of minerals and the associated changes in mineralogy during
kimberlite magma contamination (mantle and crustal), and fractionation processes,
as described below. Such patterns are well documented by Pearce [25].

The lithogeochemical data were also evaluated in a multivariate process discov-
ery context by the application of a principal component analysis (PCA) on logcen-
tered data. The eigenvalues of the PCA indicated that the first three components
accounted for 77% of the overall data variation, with the first two accounting for
66%. Figure2 shows the PCA biplot for the data in which there are three notable
compositional trends. The first is a trend toward the positive PC1 and negative PC2
axis in which there is a relative enrichment of P, Nb, La, Th, and Zr that represents
kimberlite magma and fractionation processes. Mineral phases associated with this
trend include apatite and perovskite. The Pense and Cantuar phases appear to have
the highest kimberlite magmatic component, and exhibit more extensive fractiona-
tion than the mid- and late Joli Fou phases. The trend of the mid- and late Joli Fou
phases toward the positive PC1 and PC2 axes represents relative enrichment inK, Rb,
and Na. This represents crustal contamination through the assimilation of feldspar
minerals that exist in the upper crust through which the kimberlite magma ascended;
alkali feldspars do not crystallize from kimberlite magma. The third trend along the
negative PC1 axis shows relative enrichment in Si, Ni, Mg, Cr, and Co and represents
primary olivine and Cr-spinel in the kimberlite, but importantly contamination of the
kimberlite magma by the Earth’s lithospheric mantle. These elements are typically
associated with the mantle minerals olivine, orthopyroxene, Cr-diopside, chromite,
and Cr-pyrope garnet. The principal component biplot of the first two elements
reveals distinctive information about the processes that have affected the kimberlite
geochemical compositions.
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Fig. 1 Scatter plot matrix of elements that are typically associated with kimberlite magma fraction-
ation from the Star kimberlite geochemistry. Note the linear relationships between these elements.
There is one linear trend associated with the evolution of the eJF-mJF-lJF eruptions and a second
linear trend associated with the Pense and Cantuar eruptions. Originally published in Grunsky and
Kjarsgaard [11]. © crown Copyright 2008. Published with kind permission of Elsevier. All Rights
Reserved.

A linear discriminant analysis was carried out using an additive log ratio based
on Ga as the divisor. Log-ratio theory demonstrates that the choice of any divisor
will yield the same results when using classification methods [1]. In this study, Ga
was chosen because it appears to be neutral with respect to the processes observed in
the PC1-PC2 biplot, i.e., it plots near the origin on the PC1-PC2 plot. Furthermore,
ANOVA of individual elements in a logcentered transform indicate Ga (and Yb) has
the least discriminating ability between the five phases [11], making it highly suitable
as the divisor. This is also consistent with the idea of using a conserved element to
model igneous processes [25, 32]. Table1 shows the results of the classification using
the first three principal components derived from the alr transformed data using Ga
as the divisor. The overall accuracy is over 91%with minimal overlap. This is shown
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Fig. 2 PCA biplot of PC1-PC2 for the logcentered Star kimberlite geochemical data. Three distinct
trends are displayed: kimberlite fractionation, crustal contamination, andmantle contamination. The
screeplot shows that most of the data variation is contained in the first two components. The five
phases are each enclosed by an elliptical hull to indicate distinctiveness, and overlap

Table 1 Classification accuracy of the Star kimberlite phases based on linear discriminant analysis
of the first seven principal components

Count accuracy

Cantuar eJF lJF mJF Pense

Cantuar 20 0 0 0 2

eJF 0 146 0 4 4

lJF 0 0 24 4 0

mJF 0 2 1 37 0

Pense 1 4 0 0 22

% accuracy

Cantuar 90.91 0.00 0.00 0.00 9.09

eJF 0.00 94.81 0.00 2.60 2.60

lJF 0.00 0.00 85.71 14.29 0.00

mJF 0.00 5.00 2.50 92.50 0.00

Pense 3.70 14.81 0.00 0.00 81.48

Overall
accuracy (%)

91.88
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Fig. 3 Plot of linear
discriminant function scores
1 and 2 for the Star
kimberlite geochemical data.
The five phases are each
enclosed by an elliptical hull
to indicate distinctiveness,
and overlap. This is
summarized in Table1

graphically in Fig. 3 where the linear discriminant scores are plotted on the first two
discriminant axes.

The effectiveness of process recognition using principal component analysis
enables the identification of distinct groups of observations associated with dif-
ferent processes. In this example, the relative proportion of kimberlite magma, and
crustal and mantle contamination components are identified, in addition to magma
fractionation processes. Furthermore, these processes are clearly identified with spe-
cific element associations, which in turn are characteristic of the mineral(s) that are
associated with a specific process.

3.2 Predictive Mapping Regional Geology Using Lake
Sediment Geochemistry

3.2.1 Process Discovery

Reanalysis of lake sediments was carried out over three 1:250,000 scale map areas
(NTS 65A, 65B, 65C) in southern Nunavut Territory, Canada [19]. The geology of
two of the NTS sheets (65A, 65B) had been mapped at 1:250K by Eade [5, 6] and
is shown in Fig. 4 along with the lake sediment sampling sites. NTS sheet 65C was
compiled at a regional 1:500Kscale [33] from1960s reconnaissance onemillion scale
maps by Tella et al. [33] although they did not distinguish between two important
granitic intrusion types; the Hudson granite (1.83 Ga) and the Nueltin granite (1.75
Ga) suites as identified and characterized by Peterson et al. [27, 28].
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Fig. 4 Geology and lake sediment sample sites for NTS 65A/B/C. The geology of NTS65C has
not been mapped in enough detail to distinguish the two Proterozoic granitoid suites, namely the
Nueltin granite (orange Pp-Ng) and Hudson granite (light purple Pp-Hgr)

The three map sheets are located within the southern Hearne Province, a poorly
understood terrane located between the central Hearne supracrustal terrane (to the
north), which is dominated by ca. 2.7–2.65Ga mafic-to-felsic, oceanic volcanic
rocks, and younger tonalite to granite plutons, and the Trans-Hudson orogen (to
the south), which forms the northern boundary of the Superior Province. The south-
ern Hearne domain is dominantly comprised of Archean tonalitic and charnokitic
gneisses, approximately 2.8Ga in age. However, strong evidence for fragments of
much older crust, up to 3.3Ga, has been found in the form of inherited Archean
zircons and Sm–Nd model ages obtained from Proterozoic post-orogenic plutons of
the Hudson granite, intruded at about 1.83Ga. Nueltin rapakivi granite (ca. 1.75Ga)
is also present in the area. Previously, van Breemen et al. [36] distinguished Protero-
zoic plutons in this area on the basis of archived hand samples, field descriptions,
and reconnaissance geochronological data. West of Nueltin Lake (NTS 65C), how-
ever, identification of individual plutons was hampered by poor exposure and a lower
frequency of archival material.

In this study, the lake sediment geochemistry from two of the map sheets (NTS
65A, 65B) were tagged based on the known bedrock lithology derived from the
detailed geology by Eade ([5, 6]; Table2) of the sample site for the purpose of
predicting the geology of NTS65C. The lake sediment sample sites from NTS 65C
were tagged as “unknown.”Asuite of 45 elements (Ag,Al,As,Au,Ba,Be,Bi,Ca,Cd,
Ce,Co,Cr,Cs,Cu, Fe,Ga,Hf,Hg,K,La,Li,Mg,Mn,Mo,Na,Nb,Ni, P, Pb,Rb, S, Sb,
Sc, Se, Sn, Sr, Th, Ti, Tl, U, V,W, Y, Zn, Zr) were determined by inductively coupled
plasma emission spectroscopy/mass spectrometry (ICP-ES/MS) after an aqua regia
partial digestion [19]. The mineralogy of these rocks are dominantly quartz (Si),
feldspars (K, Na, Ca, Al, Si), micas (muscovite, biotite) that contain varying amounts
ofKandFe and ferromagnesianminerals (e.g., pyroxene, olivine, hornblende,)whose
compositions are controlled by varying amounts of Fe, Mg, Ca, Mn, Ti, Cr. The two
significant granitoid suites of the area are the Nueltin and Hudson granites [29]. The
Nueltin suite of intrusions range from alkali granite, syenogranite and monzogranite,
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Table 2 Dominant lithologies used for study in NTS 65A/B

Legend #Sites Description

Ar_mu 50 Archean mafic rocks

Ar_c 131 Archean carbonate rocks

Ar_dt 266 Archean diorite

Ar_t 221 Archean tonalite

Ar_s 111 Archean sediments

Pp_Hgr 266 Paleoproterozoic Hudson granite

Pp_Hu 49 Paleoproterozoic Hurwitz sediments

Pp_Nq 178 Paleoproterozoic Nueltin Granite

Qt 189 Quaternary sediments

Pp-Wps 27 Paleoproterozoic psammitic gneiss

Unknown 833 Sample sites from NTS 65C

and are comprised of quartz, alkali feldspar with strongly enrichment in Zr–Y–U–
Th and rare earth elements (REE: La–Ce–Pr–Nd–Sm–Eu–Gd–Tb–Dy–Ho–Er–Tm–
Yb–Lu). The granitoid rocks representing the Hudson granite are of similar major
element composition and although there is compositional overlap between the two
granitoid suites, the Hudson granite contains lesser amounts of heavy rare earth
elements (HREE), notably Tb, Dy, Ho, Er, TmYb, Lu, Y, which from amineralogical
perspective suggests lower modal xenotime and/or allanite contents as compared to
Nueltin granitoids.

Initially, the data were transformed using the centered logratio [1] from which
a principal component analysis was carried out as part of the “discovery process”
approach. A tabular summary of results documents that the first seven components
account for 72.8% of the overall variation in the data (Appendix A). This is also illus-
trated in Fig. 5, where a “screeplot” of the ordered eigenvalues are shown. The first
seven components display a steep decay indicating that these components account
for most of the variability of the data. Appendix A also shows R-score values for
each element over each principal component. Themagnitude and sign of the R-scores
indicate the relative significance of a given element with respect to each other for
a given component. The significance of the R-scores is directly associated with the
magnitude of each eigenvalue. The relative contributions shown in Appendix A indi-
cate the relative significance of an element over the principal components and the
absolute contributions indicate the relative significance of an element within a given
principal component. Furthermore, AppendixA details that many elements with high
loadings are observed in the first five components. However, some elements such as
Au, Bi, Sb, and S have a significant amount of variability accounted for in lesser
components (PC5, 7, 9, 10) which likely represent significant, but under-sampled
processes. These components could be highly useful vectors for Au mineral explo-
ration follow-up. The content of Appendix A, for the first three principal components
is graphically expressed in Fig. 6a, b.
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Fig. 5 Ordered eigenvalue
plot (“screeplot”) of from the
principal component analysis
of the lake sediment
geochemistry sample suite

Figure6a shows a principal component biplot of PC1-PC2. The R-scores for
each element are located throughout the plot and correspond to the scores shown
in Appendix A. The scores of the individual observations (sample sites) are plotted
with a symbol and color that indicates the lithology at the sample site. The legend
displays the coding for the sample scores. The two lithologies of interest in this
study, the Hudson granite (Pp-Hgr) and Nueltin granite (Pp-Ng), are demarcated by
ellipses that describe convex hulls for these bedrock geology units. The sample sites
from NTS 65C are shown as gray dots throughout the figure. Importantly, many
sample sites tagged as Nueltin granite (Pp-Ng) occur in the negative PC1—negative
PC2 quadrant and show relative enrichment in Ag–Zn–Mo–Y–La–Ce–Be–P–U. For
greater clarity, Fig. 6b, c show biplots of the PC scores for the lake sediment sites
coded as Hudson and Nueltin granites, respectively. The relative positions of these
scores with respect to the principal component loadings of the elements shows that
the sample sites associated with the Hudson granite (Fig. 6b) show a contrast in
relative enrichment of K–Ga–Rb–Li–Cs–Sn–Th and Ca–Sr–Sb–Hg–S–Ba–Cu. The
latter group of elements likely reflects the influence of supracrustal rocks in the lake
sediment composition. Figure6c shows the PC scores of the lake sediment sample
sites coded with the Nueltin granite. The trend of the elliptical hull that encompasses
the Nueltin observations in Fig. 6c is approximately orthogonal to the Hudson ellip-
tical hull in Fig. 6b. The relative enrichment trend and contrast for the Nueltin granite
sites are Ag–Zn–Mo–Y–La–Ce–Be in contrast withMg–Cr–Sc–Ti–As–Nb–Th–Co–
Au. The biplot of PC2-PC3 displayed in Fig. 6d shows a distinct trend of relative
enrichment of U–La–Ce–Sn–Th–Rb, which is associated with the Nueltin granite.
In summary, the lake sediment data shows a strong, 1 to 1 correspondence between
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Fig. 6 a Principal
component biplot of
PC1-PC2 for the lake
sediment geochemical data.
Elliptical hulls are shown for
the Nueltin granite (Pp-Ng)
[red] and the Hudson granite
(Pp-Hgr) [magenta].
b Principal component biplot
of PC1-PC2 for the lake
sediment geochemical data.
Only the Hudson granite
(Pp-Hgr) scores are shown in
this biplot. c Principal
component biplot of
PC1-PC2 for the lake
sediment geochemical data.
Only the Nueltin granite
(Pp-Ng) scores are shown in
this biplot. d Principal
component biplot of
PC2-PC3 for the lake
sediment geochemical data.
Elliptical hulls for the
Nueltin granite (Pp-Ng) and
the Hudson granite (Pp-Hgr)
are shown in this biplot.
Many of the “unknown”
sample sites show relative
uranium enrichment within
the ellipse that defines the
range of compositions
associated with the Nueltin
granite
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the Nueltin granite and positive lake sediment anomalies in specific incompatible
elements, notably REE and Y, in the well-characterized area around Nueltin Lake.

Sample sites tagged with the Hudson granite lithology (Pp-Hgr) occur near the
center of the biplot. The ellipsoid hull that surrounds these points displays a trend from
the negative PC1–positive PC2 quadrant (Ba–Cu–Ca signature) to the positive PC1–
negative PC2 quadrant (Nb–Th–K–Ga–Sn–Cs–Li–Rb signature). The association of
Archean sediments (Ar-s) in the negative PC1–positive PC2 quadrant of the biplot
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Fig. 6 (continued)
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may be indicative of some mixing of the bedrock lithologies in the lake sediments,
although this associationmay also be the result of contamination or partial melting of
Archean sediment. The biplots also show that there is significant overlap of principal
component scores for most of the sample sites over a wide range of lithologies.
Thus, it is difficult to define distinct element associations and trends for many of
these lithologies, using the methodologies outlined above.

Following procedures outlined by Grunsky et al. [15], a thorough geostatistical
analysis of the principal component scores was carried out using the R-package,
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“gstat.”Modeled semivariograms and variogrammaps (semivariograms createdwith
an azimuthal range of 0–359◦ at 1◦ increments) were examined from which kriged
images of the principal components were created. Figure7a shows a variogram map
for the first principal component. The image shows a moderate anisotropy with a
maximum sill at 75◦ East of North and a minimum sill at 145◦ East of North. A
semivariogram was modeled at 75◦ east of north and shown in Fig. 7b. This model
was used to generate the kriged image shown in Fig. 7c, which was integrated into
the Quantum GIS package [30]. High values of PC1 represent relative enrichment

Fig. 7 a Variogram map of
the first principal component
derived from the lake
sediment geochemical data.
The map demonstrates
anisotropy trending in a
south-easterly direction.
bModeled semivariogram of
the first principal component
derived from the lake
sediment geochemical data.
The semivariogram is
derived from an anisotropic
search direction with a
combined short-range and
long-range model.
c Interpolated image of the
first principal component
using the modeled
semivariogram as illustrated
in Fig. 7b. Grid is meters.
The range of PC scores cover
most of the dominant rock
types and the variability
appears to be independent of
underlying lithologies

(a)

(b)
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(c)

Fig. 7 (continued)

of K, Ti, Ga, Rb, Cs, Li, Sn, Sc, Mg and Th. This relative enrichment overlies
Quaternary sediments (Qt), Archean tonalite (Ar-t) and Archean carbonate (Ar-c)
rocks. Negative PC1 scores represent relative enrichment of Cd, Se, S, Hg, Ag and
overlie a range of Archean lithologies including tonalite and diorite (Ar-t, Ar-dt) and
Quaternary sediments (Qt). The lack of direct correspondence of the first principal
component with any specific lithology is not unexpected as it represents the dominant
geochemical variability that is typical of the major lithologies throughout the area.

The variogrammap of the second principal component (Fig. 8a) shows anisotropy
with a minimum sill trending at 170◦ and a maximum sill trending at 45◦. A modeled
semivariogram (Fig. 8b) modeled at 45◦ east of north was used to create the kriged
image of Fig. 8c. The positive values of PC2 are associated with Archean sediments
and carbonate (Ar-s, Ar-c) and the negative values are associated with the Nueltin
granite (Pp-Ng) as is shown in Fig. 6a. Note the excellent correspondence between
the negative PC2 scores around Nueltin Lake, and the spatial distribution of Nueltin
granite as shown in Fig. 4.

Although not shown, the third principal component has positive scores associated
with Archean diorite (Ar-dt) and Nueltin granite (Pp-Ng), and the negative scores
have a distinct association with the Hurwitz Group sediments (Pp-Hu). Positive val-
ues of principal component four are distinctly associated with the Nueltin granite
and there is no clear association of negative PC4 scores with any specific lithology.
The linear combinations of elements that represent variability and association within
the metric space defined by PCA is governed solely by the stoichiometry of min-
eralogy, which is only partly dependent on the underlying lithology. In some cases
(PC2, PC3, PC4) there is a clear association with principal component scores and
specific lithologies. In other cases (PC1, PC5, PC6) there are no obvious associa-
tions between lithology and PC scores. Principal component analysis is an effective
method for discovering processes that influence the relationships of the variables
within geochemical survey data. Dominant eigenvalues followed by a low rate of
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Fig. 8 a Variogram map of
the second principal
component derived from the
lake sediment geochemical
data. bModeled
semivariogram of the second
principal component derived
from the lake sediment
geochemical data. The
semivariogram model is
derived from a short-range
spherical model and a longer
range linear model.
c Interpolated image of the
second principal component
using the modeled
semivariogram shown in
Fig. 8b. Grid is in meters.
Sites associated with the
Nueltin granite show as
negative (dark blue) areas

(a)

(b)

decay as exhibited in Fig. 5 demonstrate that there is structure in the data. Given
this structure, the application of classification methods can be applied to validate the
structure.

3.2.2 Process Validation

The ability to use lake sediment geochemical data for predictive mapping of under-
lying lithology requires evaluation in the effectiveness of discriminating between
the lithologies. To test the predictive map, we apply ANOVA using the logcentered
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(c)

Fig. 8 (continued)

elements, or the principal components derived from the logcentered elements. An
ANOVA was carried out on the logcentered data using 10 classes (Ar-c, Ar-dt, Ar-
mu, Ar-s, Ar-t, Pp-Hgr, Pp-Hu, Pp-Ng, Pp-Wps, and Pp-Qt) with the elements, and
another ANOVAwas carried out using the principal components. Figure9a shows an
ordered plot of elements and the associated F-value that provides a measure of class
separation. The elements Be–Y–Ni–Ce–La–As–Cr have high F-values and account
for much of the lithologic separation (Fig. 9a). ANOVA was also applied to the prin-
cipal components derived from the logcentered data and Fig. 9b shows a plot of
F-value for each principal component. The second principal component accounts for
the majority of lithologic separation, followed by PC10, PC14, PC3, PC9, PC18,
PC8, PC13, PC7, and PC16 (Fig. 9b). The steep decay of F-values in Fig. 9b sug-
gests that the principal component scores are more effective in the application of
classification procedures. The advantage of PC scores derived from logcentered data
is that they are orthogonal and represent a linear combination of elements that reflect
stoichiometry, thereby making themmore realistic in the application of classification
methods.

LDA was carried out on ten principal components (PC2, PC10, PC14, PC3, PC9,
PC18, PC8, PC13, PC7, and PC16). Cross-validation was used to determine an aver-
age accuracy of the classification and the results are shown in Table3. The first
table shows the classification counts for each of the 10 lithologies in a matrix form.
The matrix diagonal provides the actual counts that were correctly assigned. The
off-diagonal matrix element counts indicate where there is overlap in the classifi-
cation of the lithologies. These counts are expressed as percentages in the second
table. In the second table the classification accuracy for each lithology can be seen
along the diagonal and the accuracies range from 28% (Ar-mu) to 82% (Ar-c). Both
the Hudson granite (Pp-Hgr) and the Nueltin granite (Pp-Ng) show high predic-
tion accuracy (70 and 77%, respectively). The overall accuracy of the classifica-
tion is 59%. The off-diagonal matrix elements of the table indicate the percentage
overlap or “confusion” in the classification. It is significant to note that there is



Recognizing and Validating Structural Processes in Geochemical Data … 103

(a)

(b)

Fig. 9 aOrdered plot of F-value and elements as ameasure for class separation from the logcentered
lake sediment geochemical data. b Ordered plot of F-value and principal components as a measure
of class separation derived from the logcentered lake sediment geochemical data. The dominance
of PC2 over PC1 is reflected in the maps of the principal components. PC2 clearly outlines the two
distinct granitic phases (Nueltin and Hudson) whereas these are not recognizable in the map of PC1

little overlap between the Hudson and the Nueltin granites, for example 1.1% Nu
are classified as Hudson, and 0% Hudson are classified as Nueltin. Both of these
granitic rocks show overlap with the Archean tonalite and diorite classes (Ar-t, Ar-
dt). These relationships are expressed graphically in Fig. 10 which is a plot of the
linear discriminant scores of the sample site observations that are coded accord-
ing to the initially assigned lithology (symbol) and the lithology assigned from the
classification (color). It is clear that many of the sites from NTS65C (“unknown”)
are classified as Nueltin granite (Pp-Ng), Archean tonalite (Ar-t) and sediment
(Ar-s). Convex hull ellipses are drawn for Pp-Ng and Pp-Hgr.
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Table 3 Classification accuracy of the lithologies fromNTS sheets 65A/B based on linear discrim-
inant analysis of the first seven principal components

Ar-c

Ar-

dt

Ar-

mu Ar-s Ar-t

Pp-

Hgr

Pp-

Hu

Pp-

Ng Qt

Ar-c 107 11 0 1 0 11 0 0 1

Ar-dt 23 127 6 9 39 23 3 5 31

Ar-mu 3 10 14 10 5 3 1 0 4

Ar-s 10 5 4 50 14 13 3 0 12

Ar-t 7 34 2 4 133 9 5 14 13

Pp-Hgr 12 24 0 5 8 187 2 0 28

Pp-Hu 0 6 1 5 6 4 22 0 5

Pp-Ng 0 8 0 0 21 2 1 137 9

Qt

Ar-c

Ar-dt

Ar-mu

Ar-s

Ar-t

Pp-Hgr

Pp-Hu

Pp-Ng

Qt

1 28 4 10 18 32 5 11 80

% Accuracy

Ar -c

Ar-

dt

Ar-

mu Ar-s Ar-t

Pp-

Hgr

Pp-

Hu

Pp-

Ng Qt

81.7 8.4 0.0 0.8 0.0 8.4 0.0 0.0 0.8

8.7 47.7 2.3 3.4 14.7 8.7 1.1 1.9 11.7

6.0 20.0 28.0 20.0 10.0 6.0 2.0 0.0 8.0

9.0 4.5 3.6 45.1 12.6 11.7 2.7 0.0 10.8

3.2 15.4 0.9 1.8 60.2 4.1 2.3 6.3 5.9

4.5 9.0 0.0 1.9 3.0 70.3 0.8 0.0 10.5

0.0 12.2 2.0 10.2 12.2 8.2 44.9 0.0 10.2

0.0 4.5 0.0 0.0 11.8 1.1 0.6 77.0 5.1

0.5 14.8 2.1 5.3 9.5 16.9 2.7 5.8 42.3

Overall 

Accuracy 

(%) 58.7

Posterior probabilities for each of the lithologies were estimated in the application
of the linear discriminant analysis. The probability estimates are based on alloca-
tion of assignment for each sample site to at least one of the classes based on the
Mahalanobis distance to each class multivariate compositional mean based on the
10 principal components used for the analysis.
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Fig. 10 Plot of linear
discriminant function scores
1 and 2 for the lake sediment
geochemical data based on
selected principal
components shown in
Fig. 9b. Convex hulls are
enclose the Nueltin and
Hudson granite values as
defined by their initial
assignment

Variogram maps and modeled semivariograms (not shown) were created for each
of the predicted lithologies. Four of the predicted lithologies, determinedby cokriging
the posterior probabilities (after an alr transform) and discussed previously, are shown
in Fig. 11a–d. Figure11a displays a predictivemap forArchean carbonate rocks in the
form of posterior probabilities. The outline of the Archean carbonate lithologies are
shown by the black line surrounding posterior probabilities in the southeast portion
of the map, but can also be visualized by comparing with the spatial distribution of
carbonate rocks as shown in Fig. 4. Posterior probabilities greater than 0.5 are shown
on the West side of the map in NTS sheet 65C, where the lithologies are unknown.
Figure11b shows a posterior probability map for Archean tonalite (Ar-t) that has
a strong resemblance to the distribution of tonalite in NTS sheets 65A and 65B,
as shown in Fig. 4. An area of increased posterior probability greater than 0.5 also
occurs in NTS sheet 65C. Figure11c show a map of posterior probabilities for the
Hudson granite (Pp-Hgr) that closely follows the distribution of the Hudson granite
in the East part of the area as shown in Fig. 4. TheWest portion of the predictive map
suggests that theHudson granitemay also be present inNTS 65C. Figure11d shows a
map of posterior probability for the Nueltin granite (Pp-Ng), with high probabilities
(greater than 0.8) in NTS 65B, where it closely follows the mapped boundaries
(see Fig. 4), as well as a high probability in the southwest part of NTS 65C. Grunsky
et al. [14] and Peterson et al. [28] have verified the predicted presence of this lithology
in NTS 65C by examining archival bedrock samples.
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(a)

(b)

(c)

(d)
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Fig. 11 a Predictive map of Archean carbonate rocks based on cokriging of alr-transformed pos-

terior probabilities derived from the linear discriminant analysis shown in Fig. 10. The partial distri-

bution of Archean carbonate is outlined in black. b Predictive map of Archean tonalite rocks based

on cokriging of alr-transformed posterior probabilities derived from the linear discriminant analysis

shown in Fig. 10. The spatial distribution of Archean tonalite is outlined in black. c Predictive map

of Paleoproterozoic Hudson granite based on cokriging of alr-transformed posterior probabilities

derived from the linear discriminant analysis shown in Fig. 10. The spatial distribution of Protero-

zoic Hudson granite is outlined in black. d Predictive map of Paleoproterozoic Nueltin granite based

on cokriging of alr-transformed posterior probabilities derived from the linear discriminant analysis

shown in Fig. 10. The spatial distribution of Proterozoic Nueltin granite is outlined in black

�

4 Discussion

The examples presented in this manuscript demonstrate the significance and value of
compositional data analysis when applied in conjunction with multivariate statistical
procedures and geospatial analysis and presentation. In the case of the Star kimberlite
lithogeochemical analyses, the identification of three distinct geochemical trends in
the data is illustrated through the combined use of principal component analysis and
linear discriminant analysis. Principal components generated from the geochemical
data also reflect linear combinations of the elements that are controlled by mineral
stoichiometry. This is an important concept in the use of multielement geochemi-
cal data for process discovery and validation. The application of this approach for
diamond exploration and mining will result in increased efficiencies in both the
exploration of, and beneficiation for diamonds.

The lake sediment geochemical survey data from NTS sheets 65A/B/C demon-
strate that the use of principal component analysis identifies distinct lithologic dif-
ferences between the two major Proterozoic granitoid suites (Hudson and Nueltin).
The use of principal components derived from the logcentered data for use in clas-
sification results in more effective discrimination between the classes. For the lake
sediment data, low posterior probabilities can be influenced by significant compo-
sitional overlap of the classes, or low initial prior probabilities. Low initial prior
probabilities can also indicate a limited geospatial presence in the sampled area.
The use of geostatistical procedures to describe, model and display the geospa-
tial features of the predicted lithologies is an important part of the process valida-
tion approach. As demonstrated in Figs. 7 and 8, the use of variogram maps and
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modeled semivariograms can be used to define spatially coherent patterns as shown
in the kriged images of the first two principal components. Although not shown, the
samemethodology was applied to generate the kriged images of Fig. 11a–d. The pre-
diction of the Nueltin granite with a very high posterior probability, in the southwest
part of NTS65C, is sufficient evidence that the geochemical uniqueness and spatial
coherence of such patterns are valid.

Other variables aside from principal components might also be used including
selected isometric log ratio balances or distinct elemental subcompositions. For
example, variables derived from the application of multidimensional scaling or inde-
pendent component analysis (seeVenables andRipley [37]) could be used for process
discovery and process validation.

Grunsky [9] provides a suggested methodology for the systematic evaluation of
geochemical data. This study uses a subset of that methodology as follows:

Process Discovery
• Examine the marginal distributions of each element with histograms, boxplots,
Q–Q plots, scatter plot matrix and summary tables.

• Examine the patterns in geographic space using tools such as a geographic infor-
mation system.

• Investigate outliers for each element; analytical error, or atypical values? Remove
such outliers if necessary.

• Adjust data for censored values if required.
• Apply log-ratio transformations (logcentered, isometric log ratio) so that compo-
sitional data can be evaluated without the effect of “closure”.

• Tag the geochemical analyses with a categorical variable of interest (lithology,
ecosystem, alteration signature, etc.) using a GIS or similar spatial tools to create
groups or classes of data.

Process Validation
• Apply ANOVA to the data based on the categorical variables of interest. The
ANOVA can be applied to the elements (logratio transformed) or another suitable
metric such as principal components.

• Examine the plots of ordered F-value versus variables to determinewhich variables
contribute to maximum discrimination between the groups/classes.

• Apply methods such as linear discriminant analysis to determine the likelihood
(probability) of class membership for each observation.

• Generate an accuracy/confusion matrix to indicate the accuracy of prediction for
each class and where class overlap occurs.
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• Create maps of posterior probability and/or typicality to examine the spatial coher-
ence of the probabilities. In the case of posterior probabilities, the probabilities sum
to a constant (1.0) and therefore require a suitable transformation and the use of
cokriging with a subsequent back-transformation to create a map of probabilities
for each class.

5 Conclusions

The two examples provided in this study provide evidence that the structure of geo-
chemical data is controlled by mineral stoichiometry and when multielement geo-
chemical data are used, the structure of the data is revealed. Multivariate statistical
methods, such as principal component analysis that was used in this study shows
that distinct lithologies can be identified as part of the discover process in evaluating
geochemical data in a compositional paradigm. Classification procedures can take
advantage of structure in data to yield classifications that are geochemically distinct
and geospatially coherent.
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Appendix A: Summary of the First Seven Principal
Components Derived from the Logcentered Lake Sediment
Geochemistry

Eigenvalues PC1 PC2 PC3 PC4 PC5 PC6 PC7
λ 10.63 8.21 4.21 3.17 2.87 2.07 1.58
λ% 23.63 18.25 9.36 7.05 6.38 4.60 3.51
� λ% 23.63 41.89 51.25 58.29 64.67 69.28 72.79
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R-Scores PC1 PC2 PC3 PC4 PC5 PC6 PC7

Ag -0.6896 -0.3600 -0.0652 -0.4082 -0.0948 -0.0645 0.0484

Al 0.0052 -0.6932 -0.2858 -0.3682 0.2255 -0.0028 0.1103

As 0.0964 0.5020 -0.3098 0.4631 -0.0386 0.1031 0.1433

Au 0.0156 0.2721 0.0718 0.1991 -0.4514 -0.2032 0.5678

Ba -0.3232 0.3548 -0.2361 -0.0453 0.1789 0.3024 -0.0069

Be -0.2746 -0.7159 -0.0015 0.1360 0.2290 0.0835 0.0305

Bi 0.2276 -0.3891 0.0465 -0.0911 -0.0228 0.0542 0.3678

Ca -0.4743 0.6147 0.1971 -0.0488 0.0305 0.3787 -0.1139

Cd -0.8030 -0.0510 -0.1399 -0.1633 0.0176 0.0774 -0.1275

Ce -0.3449 -0.6510 0.2431 -0.1650 0.4263 -0.1341 0.1134

Co 0.0241 0.2584 -0.6991 -0.1210 0.1971 -0.2916 -0.1694

Cr 0.4005 0.3444 -0.5225 -0.4324 0.1579 -0.0254 0.1304

Cs 0.6925 -0.4570 0.0460 -0.2453 -0.2714 0.0779 -0.0128

Cu -0.4470 0.1815 -0.0648 -0.5171 -0.2777 -0.4290 0.0366

Fe 0.0820 -0.1493 -0.5839 0.3819 0.4700 -0.1869 -0.1537

Ga 0.7319 -0.2796 -0.1433 -0.4141 0.1087 0.1728 0.0884

Hf 0.3365 0.6999 0.3523 0.0863 0.2250 -0.1225 -0.1581

Hg -0.5653 0.4059 0.0649 -0.2984 0.0992 0.0415 -0.0768

K 0.8470 -0.1086 -0.0075 -0.2016 -0.2658 0.1034 -0.1063

La -0.3857 -0.6293 0.3271 -0.1658 0.3479 -0.1474 0.1056

Li 0.7502 -0.4464 0.0044 -0.2162 -0.2853 0.0690 -0.0848

Mg 0.6934 0.4307 -0.1744 -0.1494 -0.1714 0.2361 -0.0460

Mn -0.0738 -0.0796 -0.5872 0.5283 0.0159 0.1597 -0.0231

Mo -0.4525 -0.5731 0.0191 0.2718 -0.1175 -0.0892 -0.3368

Na 0.0236 0.0595 0.1551 -0.2829 -0.2194 0.4713 -0.4132

Nb 0.4089 -0.0611 0.4859 -0.3059 0.3879 0.0059 -0.1595

Ni -0.0469 0.4945 -0.4123 -0.4900 -0.0553 -0.3776 0.0277

P -0.2586 -0.4128 -0.5709 0.0324 0.0914 0.4426 0.1062

Pb 0.0266 -0.0242 0.2412 -0.1052 0.5382 0.2861 0.2982

Rb 0.8060 -0.3750 0.1331 -0.2019 -0.2013 0.0807 -0.0855

S -0.6413 0.3283 0.2189 -0.2093 -0.1775 -0.0567 -0.3736

Sb -0.3693 0.5554 0.0347 -0.0039 -0.1051 0.2420 0.0315

Sc 0.6690 0.1889 -0.0053 0.1187 0.3886 -0.2306 -0.2066

Se -0.7685 0.0353 0.0363 -0.1865 -0.0536 0.0686 -0.1227

Sn 0.6104 -0.4045 0.2635 -0.0518 0.1928 0.3464 -0.0125

Sr -0.3994 0.5417 0.1022 -0.2750 0.4482 0.2338 0.0405

Th 0.5716 -0.0714 0.3269 0.4279 0.3280 -0.3448 -0.1567
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Ti 0.9094 0.1670 0.0073 -0.1135 0.1189 0.0252 -0.1138

Tl 0.3195 -0.5839 -0.1892 -0.0986 -0.2403 -0.2824 -0.2146

U -0.2758 -0.4211 0.4373 0.2342 -0.3026 -0.0621 -0.0397

V 0.3048 -0.0219 -0.6501 -0.1289 0.3147 0.0346 -0.0835

W -0.1031 -0.4562 -0.1866 0.3853 -0.1297 0.2744 -0.2798

Y -0.4994 -0.6529 0.2535 -0.0544 0.2755 -0.0378 0.0049

Zn -0.4385 -0.4681 -0.3566 -0.1699 -0.0125 -0.0915 -0.2943

Zr 0.3283 0.7017 0.4047 0.0199 0.2670 -0.1594 -0.1600

Relative Contributions

PC1 PC2 PC3 PC4 PC5 PC6 PC7

Ag 47.5809 12.9652 0.4254 16.6696 0.8983 0.4168 0.2346

Al 0.0027 48.0709 8.1692 13.5636 5.0854 0.0008 1.2181

As 0.9304 25.2093 9.6036 21.4559 0.1488 1.0626 2.0554

Au 0.0243 7.4055 0.5161 3.9643 20.3829 4.1312 32.2588

Ba 10.4501 12.5913 5.5757 0.2049 3.2023 9.1515 0.0047

Be 7.5460 51.2669 0.0002 1.8513 5.2475 0.6982 0.0930

Bi 5.1816 15.1480 0.2164 0.8298 0.0520 0.2944 13.5354

Ca 22.5056 37.8040 3.8882 0.2382 0.0930 14.3466 1.2989

Cd 64.5047 0.2603 1.9584 2.6671 0.0309 0.5992 1.6258

Ce 11.8979 42.4009 5.9103 2.7225 18.1834 1.7998 1.2867

Co 0.0582 6.6789 48.8894 1.4643 3.8847 8.5044 2.8721

Cr 16.0471 11.8655 27.3116 18.7029 2.4933 0.0643 1.7021

Cs 47.9793 20.8972 0.2121 6.0197 7.3714 0.6069 0.0165

Cu 19.9867 3.2940 0.4201 26.7503 7.7156 18.4129 0.1338

Fe 0.6720 2.2290 34.1040 14.5916 22.0995 3.4942 2.3621

Ga 53.5866 7.8207 2.0547 17.1519 1.1811 2.9856 0.7809

Hf 11.3276 49.0005 12.4140 0.7444 5.0637 1.5008 2.5013

Hg 31.9687 16.4852 0.4211 8.9087 0.9847 0.1727 0.5906

K 71.7801 1.1798 0.0056 4.0661 7.0695 1.0704 1.1295

La 14.8804 39.6189 10.7020 2.7486 12.1102 2.1722 1.1165

Li 56.3047 19.9365 0.0019 4.6778 8.1438 0.4759 0.7200

Mg 48.1002 18.5566 3.0432 2.2334 2.9397 5.5783 0.2119

Mn 0.5443 0.6341 34.5010 27.9216 0.0254 2.5506 0.0534

Mo 20.4828 32.8594 0.0366 7.3922 1.3819 0.7954 11.3483

Na 0.0558 0.3543 2.4078 8.0043 4.8150 22.2186 17.0774

Nb 16.7311 0.3733 23.6240 9.3641 15.0570 0.0035 2.5462

Ni 0.2201 24.4641 17.0040 24.0195 0.3059 14.2657 0.0767

P 6.6900 17.0471 32.6053 0.1050 0.8358 19.5941 1.1274

Pb 0.0710 0.0588 5.8193 1.1079 28.9736 8.1893 8.8933
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Sr 15.9626 29.3557 1.0451 7.5633 20.0953 5.4695 0.1639

Th 32.6887 0.5099 10.6924 18.3150 10.7648 11.8954 2.4556

Ti 82.7357 2.7906 0.0053 1.2893 1.4152 0.0637 1.2961

Tl 10.2129 34.1041 3.5828 0.9716 5.7767 7.9797 4.6067

U 7.6113 17.7408 19.1341 5.4896 9.1582 0.3852 0.1575

V 9.2929 0.0481 42.2819 1.6611 9.9078 0.1199 0.6981

W 1.0627 20.8222 3.4840 14.8545 1.6826 7.5351 7.8332

Y 24.9539 42.6497 6.4278 0.2956 7.5932 0.1426 0.0024

Zn 19.2395 21.9176 12.7235 2.8888 0.0156 0.8381 8.6661

Zr 10.7850 49.2607 16.3838 0.0398 7.1294 2.5410 2.5620

Absolute Contributions

PC1 PC2 PC3 PC4 PC5 PC6 PC7

Ag 4.4737 1.5783 0.1010 5.2564 0.3133 0.2016 0.1486

Al 0.0003 5.8518 1.9387 4.2770 1.7735 0.0004 0.7714

As 0.0875 3.0688 2.2791 6.7657 0.0519 0.5139 1.3017

Au 0.0023 0.9015 0.1225 1.2500 7.1085 1.9981 20.4294

Ba 0.9825 1.5328 1.3232 0.0646 1.1168 4.4262 0.0030

Be 0.7095 6.2409 0.0001 0.5838 1.8300 0.3377 0.0589

Bi 0.4872 1.8440 0.0514 0.2617 0.0181 0.1424 8.5719

Ca 2.1160 4.6020 0.9228 0.0751 0.0324 6.9389 0.8226

Cd 6.0649 0.0317 0.4648 0.8410 0.0108 0.2898 1.0296

Ce 1.1187 5.1616 1.4027 0.8585 6.3414 0.8705 0.8149

Co 0.0055 0.8130 11.6026 0.4617 1.3548 4.1133 1.8189

Cr 1.5088 1.4444 6.4817 5.8976 0.8695 0.0311 1.0779

Cs 4.5111 2.5439 0.0503 1.8982 2.5707 0.2935 0.0105

Cu 1.8792 0.4010 0.0997 8.4352 2.6908 8.9056 0.0847

Fe 0.0632 0.2713 8.0937 4.6012 7.7071 1.6900 1.4959

Ga 5.0383 0.9520 0.4876 5.4085 0.4119 1.4440 0.4946

Hf 1.0650 5.9650 2.9461 0.2347 1.7660 0.7259 1.5841

Hg 3.0058 2.0068 0.0999 2.8092 0.3434 0.0835 0.3740

K 6.7489 0.1436 0.0013 1.2822 2.4654 0.5177 0.7153

La 1.3991 4.8230 2.5398 0.8667 4.2234 1.0506 0.7071

Li 5.2939 2.4269 0.0005 1.4750 2.8401 0.2302 0.4560

Rb 64.9861 14.0714 1.7719 4.0761 4.0526 0.6510 0.7311

S 41.1495 10.7839 4.7924 4.3827 3.1523 0.3215 13.9660

Sb 13.6422 30.8653 0.1203 0.0016 1.1053 5.8572 0.0996

Sc 44.7749 3.5709 0.0028 1.4102 15.1108 5.3222 4.2716

Se 59.0890 0.1249 0.1319 3.4799 0.2870 0.4708 1.5067

Sn 37.2800 16.3731 6.9460 0.2681 3.7187 12.0059 0.0157
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Se 5.5557 0.0152 0.0313 1.0973 0.1001 0.2277 0.9542

Sn 3.5052 1.9932 1.6484 0.0845 1.2969 5.8068 0.0100

Sr 1.5008 3.5736 0.2480 2.3849 7.0082 2.6454 0.1038

Th 3.0735 0.0621 2.5375 5.7753 3.7542 5.7533 1.5551

Ti 7.7790 0.3397 0.0012 0.4066 0.4935 0.0308 0.8208

Tl 0.9602 4.1516 0.8503 0.3064 2.0146 3.8595 2.9174

U 0.7156 2.1597 4.5410 1.7310 3.1939 0.1863 0.0998

V 0.8737 0.0059 10.0345 0.5238 3.4553 0.0580 0.4421

W 0.0999 2.5348 0.8268 4.6841 0.5868 3.6444 4.9607

Y 2.3462 5.1919 1.5255 0.0932 2.6481 0.0690 0.0015

Zn 1.8089 2.6681 3.0196 0.9109 0.0054 0.4053 5.4882

Zr 1.0140 5.9967 3.8882 0.0125 2.4864 1.2290 1.6225

Mg 4.5225 2.2590 0.7222 0.7042 1.0252 2.6980 0.1342

Mn 0.0512 0.0772 8.1879 8.8045 0.0089 1.2336 0.0338

Mo 1.9258 4.0001 0.0087 2.3310 0.4819 0.3847 7.1868

Na 0.0053 0.0431 0.5714 2.5240 1.6792 10.7463 10.8151

Nb 1.5731 0.0454 5.6065 2.9528 5.2511 0.0017 1.6125

Ni 0.0207 2.9781 4.0354 7.5740 0.1067 6.8998 0.0486

P 0.6290 2.0752 7.7380 0.0331 0.2915 9.4769 0.7140

Pb 0.0067 0.0072 1.3811 0.3493 10.1044 3.9609 5.6321

Rb 6.1101 1.7130 0.4205 1.2853 1.4133 0.3149 0.4630

S 3.8690 1.3128 1.1374 1.3820 1.0994 0.1555 8.8446

Sb 1.2827 3.7573 0.0285 0.0005 0.3855 2.8329 0.0631

Sc 4.2098 0.4347 0.0007 0.4447 5.2698 2.5741 2.7052
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Space-Time Compositional Models:
An Introduction to Simplicial Partial
Differential Operators

E. Jarauta-Bragulat and J.J. Egozcue

Abstract A function assigning a composition to space-time points is called a com-
positional or simplicial field. These fields can be analyzed using the compositional
analysis tools. In order to study compositions depending on space and/or time, refor-
mulation and interpretation of traditional partial differential operators is required.
These operators such as: partial derivatives, compositional gradient, directional
derivative and divergence are of primary importance to state alternative models of
processes as diffusion, advection and waves, from the compositional perspective.
This kind of models, usually based on continuity of mass, circulation of a vector
field along a curve and flux through surfaces, should be analyzed when composi-
tional operators are used instead of the traditional gradient or divergence. This study
is aimed at setting up the definitions, mathematical basis and interpretation of such
operators.

Keywords Compositional derivative ·Aitchison geometry ·Mass continuity ·Gra-
dient · Gauss divergence theorem
1 Introduction

In a large number of processes studied in Sciences and in Engineering, magnitudes or
variables involved can be modelled by a vector. This vector may be a function of one
or several variables. Furthermore, in many cases the studied vector is a composition.

A study of linearmodels for evolutionary compositions depending onone variable,
usually time, was formulated by Egozcue and Jarauta-Bragulat [3] in terms of the
so-called simplicial linear differential equations. The foundations of differential and
integral calculus for simplex-valued functions of one real variable, was presented
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by Egozcue et al. [4]. The present work focuses on compositions whose evolution
depends on several variables; in many cases, these variables are spatial coordinates
and time. For example, the study of the evolution of a pollutant carried by a fluid
stream.

For spatial coordinates, a subset S ∈ R
d of a d-dimensional real space is consid-

ered and identified with a physical domain; consequently d = 1, d = 2 and d = 3
are the common choices of that dimension. A location in this space is denoted s ∈ S
and represented in a Cartesian coordinate system; for d = 1 the spatial coordinate is
usually denoted s = x ; for d = 2, s = (x, y) and so on. For time, a subset T ⊆ R is
considered and a point is denoted t ∈ T . For spatial and time evolutionary processes,
a domain S × T ⊆ R

d × R (d = 1, 2, 3) is considered.
A space-time vector-valued field with positive components Z is a function Z :

S × T ⊆ R
d × R → R

n+ that assigns a positive component vector Z(s, t) ∈ R
n+ to

a space-time point (s, t) ∈ S × T . If closure operation is then applied: CZ(s, t) =
z(s, t) a space-time simplicial field z (STSF) is obtained. Consequently, a STSF
is a function z : S × T ⊆ R

d × R → S
n , that assigns a composition z(s, t) in the

n-part simplex Sn to any space-time point (s, t) ∈ S × T . Throughout this paper, the
existence of derivatives or integrals of any field is assumed.

2 Derivatives and Integrals of a Space-Time
Simplicial Field

In the following, definitions and properties are developed for d = 2 and extension
to other values of d are natural. Based on the definition of (ordinary) simplicial
derivative [4] and the real calculus, natural definitions for partial simplicial derivatives
of a STSF follow.

Definition 1 (Spatial and time simplicial derivatives) Let z : S × T ⊆ R
2 × R →

S
n be a STSF and (x, y) ∈ S. The spatial-partial simplicial derivatives of z are

∂⊕
x z(x, y, t) = lim

h→0

(
1

h
� (z(x + h, y, t) � z(x, y, t))

)

,

∂⊕
y z(x, y, t) = lim

h→0

(
1

h
� (z(x, y + h, t) � z(x, y, t))

)

.

The time-partial simplicial derivative is

∂⊕
t z(x, y, t) = lim

h→0

(
1

h
� (z(x, y, t + h) � z(x, y, t))

)

.

Definition 2 (Directional simplicial derivatives) Let z : S × T ⊆ R
2 × R → S

n be
a STSF. Let (x, y) ∈ S and u = (ux , uy) be a vector in R2. The simplicial derivative
of z with respect to u is
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∂⊕
u z(x, y, t) = lim

h→0

(
1

h
� (

z(x + hux , y + huy, t) � z(x, y, t)
)
)

.

If u is a unit vector, the derivative is called the directional simplicial derivative of z.

Spatial-partial and time-partial simplicial derivatives are computed as they were
ordinary simplicial derivatives of a single variable simplex-valued function as devel-
oped inEgozcue et al. [4].Consequently, they canbe computed as ordinaryderivatives
of the log transformation of the STSF, and then transformed back into compositions.
The same scheme works for clr and ilr transformations of z [1, 5]. The following
proposition summarize this kind of computation.

Proposition 1 Partial simplicial derivatives of z(x, y, t) can be computed as

∂⊕
x z(x, y, t) = C exp (∂x log(z(x, y, t))) = C exp

⎛

⎜
⎜
⎝

∂x z1(x,y,t)
z1(x,y,t)

...
∂x zn(x,y,t)
zn(x,y,t)

⎞

⎟
⎟
⎠ .

Additionally

clr
(
∂⊕
x z(x, y, t)

) = ∂xclr(z(x, y, t)); ilr
(
∂⊕
x z(x, y, t)

) = ∂x ilr(z(x, y, t)) .

Similar expressions hold for ∂⊕
y z(x, y, t) and ∂⊕

t z(x, y, t).

Let f : I ⊆ R → S
n be a continuous simplex-valued function of real variable; a

differentiable function F : I ⊆ R → S
n is a simplicial antiderivative of f on I if, and

only if, ∂⊕F(ξ) = f(ξ), ξ ∈ I . Other definitions and properties related to integral of
simplex-valued functions of one variable have been stated in Egozcue et al. [4]. Some
of them are summarised in the following proposition:

Proposition 2 Let f : I ⊆ R → S
n be a continuous simplex-valued function of real

variable.

• ∫ ⊕ dξ � f(ξ) = C exp
(∫

log(f(ξ))dξ
)
.

• ∫ ⊕
[a,b] dξ � f(ξ) = C exp

(∫ b
a log(f(ξ))dξ

)
.

• clr
(∫ ⊕

[a,b] dξ � f(ξ)
)

= ∫ b
a clr(f(ξ))dξ .

• ilr
(∫ ⊕

[a,b] dξ � f(ξ)
)

= ∫ b
a ilr(f(ξ))dξ .

Some natural extended definitions and properties can be stated for double and line
integrals.

Definition 3 (Double integrals) Let z : S × T ⊆ R
2 × R → S

n be aSTSF.Thedou-
ble integral of z in S is a composition in S

n given by

∫∫ ⊕

S
(dξdη) � z(ξ, η, t) = C exp

(∫∫

S
log(z(ξ, η, t)) dξdη

)

.
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Proposition 3 Properties of double integrals are

clr

(∫∫ ⊕

S
(dξdη) � z(ξ, η, t)

)

=
∫∫

S
clr(z(ξ, η, t))dξdη ,

ilr

(∫∫ ⊕

S
(dξdη) � z(ξ, η, t)

)

=
∫∫

S
ilr(z(ξ, η, t))dξdη .

Definition 4 (Line integrals) Let z : S × T ⊆ R
2 × R → S

n be a STSF. The line
integral of z along a regular curve of finite length Γ associated with the function
s : [a, b] ⊂ R → S, is

∫ ⊕

Γ

ds � z(x(u), y(u), t) = C exp

(∫ b

a
log(z(x(u), y(u), t)) s ′(u) du

)

,

where γ1 = (x(a), y(a)), γ2 = (x(b), y(b)) are the end points of the curve Γ and
s ′(u) denotes the ordinary derivative of s with respect to the parameter u.

Proposition 4 Properties of line integrals are:

clr

(∫ ⊕

Γ

(ds � z(x(u), y(u), t))

)

=
∫ b

a
clr(z(x(u), y(u), t)) s ′(u) du ,

ilr

(∫ ⊕

Γ

(ds � z(x(u), y(u), t))

)

=
∫ b

a
ilr(z(x(u), y(u), t)) s ′(u) du .

3 Compositional Mass Continuity Equation
and Differential Operators

When n species are mixed in a continuum, a common assumption is that the mass of
each species changes according the input–output of it through the border of a fixed
control volume V .Whenworking in a space of dimension d = 2, volumemeans area,
or alternatively, for d = 1 is just a length. Notation V is used both for referring to the
volume itself and for indicating its magnitude in some volume unit. The continuity
of mass for each species is normally described by the continuity equation [6, 8]. It
can be written as

∂tρk + div(ρkvk) = 0, k = 1, 2, . . . n , (1)

where ρk is the mass density of the k-species, and vk = (vkx , vky) is its velocity in a
planar movement. Attention should be paid to the definition of ρk . It is the ratio of
the mass mk to the volume Vk occupied by the mass of the k-species. Accordingly,
ρk = mk/Vk and the units can be, for instance, g/cm3. Interest is centred in the
behaviour of (mass) concentration ck = mk/M of each species, which is given as the
ratio of the mass of the k-species to the total mass M = ∑

mk within some given
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control volume V . Note that depending on the assumptions about the material, Vk

may be equal to V (perfect gasses) or not. For instance, V = ∑
Vk for solid materials

or non reactive liquids. The overall density is ρ = M/V which leads to a convenient
expression of ρk in terms of concentrations

ρk = mk

Vk
= mk/M

Vk/ρV
= ρ

mk/M

Vk/V
= ρ

ck
ak

= ρdk, k = 1, 2, . . . , n , (2)

where ak = Vk/V is the volume fraction or volume concentration of the k-species. If
Vk = V for all the species, then ak = 1 in all cases. The ratio ofmass concentration to
volume concentration is denoted dk = ck/ak . Note that the continuity equations hold
for each species but not for the overall density ρ, as the change of concentrations
modifies the mass content of V and the diffusion or selective transport of some
species may change the overall density ρ. Continuity equation (1) does not hold for
the overall density ρ if ρ and vk are different and space-time dependent. For a planar
flow, the fields of densities are considered functions of space location s ∈ S ⊆ R

2

and time t ∈ T ⊆ R. The explicit dependence is suppressed unless it is necessary,
for instance, ρ(s, t) is denoted ρ.

Substituting in Eq. (1) ρk = ρdk (Eq. 2) and developing the divergence

∂t (ρdk) + div(ρdkvk) = ∂t (ρdk) + ∂x (ρdkvkx ) + ∂y(ρdkvky) = 0 ,

for k = 1, 2, . . . n. In order to introduce logarithmic derivatives, the equation is
divided by ρdk

∂t (ρdk)

ρdk
+ ∂x (ρdkvkx )

ρdk
+ ∂y(ρdkvky)

ρdk
= 0, k = 1, 2, . . . n .

This equation is transformed into

∂t log(ρdk) = − (
vkx∂x log(ρdk) + vky∂y log(ρdk)

) − (
∂xvkx + ∂yvky

)

= −〈vk, grad log(ρdk)〉 − div(vk)

= −∂vk log(ρdk) − div(vk) , k = 1, 2, . . . , n , (3)

where 〈·, ·〉 is the standard Euclidean inner product in R
2 and known properties

of derivatives of functions of several variables have been applied. Equation (3) for
k = 1, 2, . . . , n can be placed in an array as

⎛

⎜
⎜
⎜
⎝

∂t log(ρd1)
∂t log(ρd2)

...

∂t log(ρdn)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

−∂v1 log(ρd1)
−∂v2 log(ρd2)

...

−∂vn log(ρdn)

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

−div(v1)
−div(v2)

...

−div(vn)

⎞

⎟
⎟
⎟
⎠

. (4)
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Logarithmic derivatives in left-hand side of Eq. (4) are transformed into a simpli-
cial derivative by taking clr−1

C exp

⎛

⎜
⎜
⎜
⎝

∂t log(ρd1)
∂t log(ρd2)

...

∂t log(ρdn)

⎞

⎟
⎟
⎟
⎠

= C exp

⎛

⎜
⎜
⎜
⎝

∂t log ρ

∂t log ρ
...

∂t log ρ

⎞

⎟
⎟
⎟
⎠

⊕ C exp

⎛

⎜
⎜
⎜
⎝

∂t log d1
∂t log d2

...

∂t log dn

⎞

⎟
⎟
⎟
⎠

= ∂⊕
t d , (5)

where d is a n-part composition obtained by the closure of the R
n-vector which

positive components are the dk’s. Note that a composition with equal components is
the neutral element in S

n and this is the reason for cancelling the array containing
the terms ∂tρ in Eq. (5). Vectors in the right-hand side of Eq. (4) need additional
definitions and properties. In the standard vector field analysis, the (spatial) gradient
and divergence are useful differential linear operators. Previous Eqs. (3–4) suggest
that similar concepts can be defined for space-time simplicial fields. Definitions and
some properties of such operators for d = 2 follow.

Definition 5 (Simplicial (spatial) gradient) Let z : S × T ⊆ R
2 × R → S

n be a
STSF. The simplicial (spatial) gradient is defined as a bivariate STSF, taking val-
ues in Sn × S

n , given by

grad⊕z(s, t) = (
∂⊕
x z(s, t) , ∂⊕

y z(s, t)
)

.

Directional derivatives can be expressed as a kind of Rd -inner product of the
simplicial gradient and the direction in which the directional derivative is taken.
However, the fact that simplicial derivatives are in S

n and spatial directions are in
R

d , introduces notational intricacies.

Proposition 5 (Simplicial gradient and directional derivatives) Let z : S × T ⊆
R

2 × R → S
n be a STSF and u = (ux , uy) ∈ R

2 be a vector. Directional deriva-
tive and gradient satisfies

∂⊕
u z(s, t) = u � grad⊕z(s, t) ,

where � is interpreted as a perturbation-linear combination [2]

u � grad⊕z(s, t) = ux � ∂⊕
x z(s, t) ⊕ uy � ∂⊕

y z(s, t) ,

and grad⊕z has been decomposed in their two components ∂⊕
x z and ∂⊕

y z.

Definition 6 (Simplicial derivative along a multiple vector field) Let z : S × T ⊆
R

2 × R → S
n be a STSF with positive components zk (k = 1, 2, . . . , n). Let v =

(v1, v2, . . . , vn) be a multiple vector field, being vk = (vkx , vky), k = 1, 2, . . . , n.
The simplicial derivative of z along the multiple vector field v is
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∂⊕
v z(s, t) = C exp

⎛

⎜
⎜
⎜
⎝

∂v1 log(z1(s, t))
∂v2 log(z2(s, t))

...

∂vn log(zn(s, t))

⎞

⎟
⎟
⎟
⎠

,

where ∂vk log(zk(s, t)) = vkx∂x log zk + vky∂y log zk is an inner product of vk and
grad(log zk) in R2.

The simplicial derivative along a multiple vector field is not linear in the simplex.
A linear combination of compositions like (α1 � z1) ⊕ (α2 � z2) is not equal to the
perturbation-linear combination of the two derivatives. However, it is linear in the
simplex for linear combinations of multiple vector fields.

Definition 7 (Simplicial divergence) Let z1, z2 : S × T ⊆ R
2 × R → S

n be two
STSFs. The simplicial divergence of the pair (z1, z2) is a composition in S

n given
by

div⊕(z1, z2) = ∂⊕
x z1 ⊕ ∂⊕

y z2

= clr−1
[
∂xclr(z1) + ∂yclr(z2)

]
.

In Eq. (4) the clr-inverse of vectors in right -hand side of this equation can be
computed. According to definition of simplicial derivative along a multiple vector
field, the first term produces

C exp

⎛

⎜
⎜
⎜
⎝

−∂v1 log(ρd1)
−∂v2 log(ρd2)

...

−∂vn log(ρdn)

⎞

⎟
⎟
⎟
⎠

= ∂⊕
v (ρd) = ∂⊕

v (d) , (6)

where d = C (d1, d2, . . . , dn) ∈ S
n . According to definition of simplicial divergence,

the second term gives

C exp

⎛

⎜
⎜
⎜
⎝

−div(v1)
−div(v2)

...

−div(vn)

⎞

⎟
⎟
⎟
⎠

= div⊕(wx ,wy) , (7)

where wx = clr−1(vx ), wy = clr−1(vy); moreover, vx , vy are R
n-vectors grouping

the first and second components of vk for k = 1, 2, . . . , n, respectively. Note that
clr(wx ) = vx − vx0, where vx0 is a constant-component vector which components
are the arithmetic mean of the components of vx ; and similarly for clr(wy).

Considering Eqs. (5)–(7), the compositional mass continuity equation can be
written as
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∂⊕
t d = ∂⊕

v d ⊕ div⊕(wx ,wy) . (8)

An important feature is that the overall density ρ does not appear in Eq. (8),
therefore, this equation is purely compositional. Note that, in general, this is not a
linear equation in the simplex due to the non-linearity of ∂⊕

v d with respect to d.
Furthermore, if for each species ρk is constant, then Eq. (8) reduces to

div⊕(wx ,wy) = n, n = C(1, 1, . . . , 1) ,

quite similar to standard continuity equation for an incompressible fluid flow [8].
In some cases the simplicial fields z1 and z2 can be the two components of a

simplicial gradient, that is, there is a simplicial fieldw such that (z1, z2) = grad⊕w =
(∂⊕

x w, ∂⊕
y w). In these cases, the bivariate simplicial field (z1, z2) is said to derive from

the potential compositionw, again following the ideas of the standard vector analysis.
An important differential operator in this situation is the LaplacianΔ = ∂2

x + ∂2
y . The

compositional counterpart of the Laplacian can be defined as follows:

Definition 8 (Simplicial Laplacian) Let x be a location in a plane domain R and
let w be a STSF defined in a neighbourhood of (x, t) = (x, y, t). The simplicial
Laplacian of w is a composition in S

n given by

Δ⊕w = div⊕(grad⊕w) = ∂⊕2
x w ⊕ ∂⊕2

y w ,

where the symbol ∂⊕2 is the second order simplicial derivative [4].

To show the relevance of previous definitions, it is worth to state a compositional
extension of the Gauss divergence theorem, here stated in for plane space.

Theorem 1 Let z1, z2 : S × T ⊆ R
2 × R → S

n be two STSF’s, differentiable up to
second order. Let R be a bounded and connected domain in the plain with piecewise
regular and closed boundary Γ . Consider x, y as the Cartesian plain coordinates,
and a piecewise regular parametrization x = x(u), y = y(u) of the boundary Γ .
Then,

∫∫ ⊕

R
(dxdy) � div⊕(z1(x, y, t), z2(x, y, t))

=
∫ ⊕

Γ

ds � (
∂nx z1(x(u), y(u), t) ⊕ ∂nyz2(x(u), y(u), t)

)
,

where nx = −y′(u)/
√
x ′(u)2 + y′(u)2, ny = x ′(u)/

√
x ′(u)2 + y′(u)2 are, respec-

tively, the vector fields of the first and second components of the normal direction to
the boundary Γ ; and ds = √

x ′(u)2 + y′(u)2 du.
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4 Conclusions

The study of space-time simplicial fields reveals some interesting aspects and proper-
ties for applications in problems related with space-time evolutionary compositions.
The present contribution is not complete and needs to be developed further.

It is possible to define, in a natural way, simplicial differential operators, similar
to standard equations appearing in fluid mechanics and vector fields in general. The
continuity equation of mass in fluid mechanics has been studied in some detail as
a motivation to introduce some definitions. However, one of the needed simplicial
differential operators, is not linear in the simplex, thus introducing features which
are not dealt with in the standard formulation. It seems possible and useful to study
the simplicial version of some important equations in Fluid Mechanics and other
parts of Physics, such as advection–diffusion, Navier–Stokes and others in their
compositional formulation.
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A Regression Model for Compositional Data
Based on the Shifted-Dirichlet Distribution

G.S. Monti, G. Mateu-Figueras, V. Pawlowsky-Glahn and J.J. Egozcue

Abstract Using an approach based on the Aitchison geometry of the simplex, a
Shifted-Dirichlet covariate model is obtained. Allowing the parameters to change
linearly with a set of covariates, their effects on the relative contributions of dif-
ferent components in a composition are assessed. An application of this model to
sedimentary petrography is given.

Keywords Dirichlet regression · Simplicial regression · Model selection

1 Introduction

Compositional data are vectors of parts of some whole which carry relative infor-
mation. They are frequently represented as proportions or percentages, which are
subject to a constant sum, κ , i.e., κ = 1 or κ = 100. Their sample space is then
represented by the simplex, denoted by
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S D = {x = (x1, . . . , xD), xi > 0,
D∑
i=1

xi = κ}.

Compositional data occur in many applied fields: from geology and biology to elec-
tion forecast, from medicine and psychology to economic studies.

We recall briefly the essential elements of simplicial algebra, as it will be used
later. For any vector of D strictly positive real components,

z = (z1, . . . , zD) ∈ R
D
+ zi > 0, for all i = 1, . . . , D,

the closure operation of z is defined as

C (z) =
(

κ z1∑D
i=1 zi

, . . . ,
κ zD∑D
i=1 zi

)
∈ S D . (1)

where κ is the sum of the components, i.e., the constraint.
The two basic operations required for a vector space structure of the simplex are

perturbation: given two compositions x and y ∈ S D ,

x ⊕ y = C (x1y1, . . . , xD yD) , (2)

and powering: given a composition x ∈ S D and a scalar α ∈ R,

α � x = C
(
xα
1 , . . . , xα

D

)
. (3)

Furthermore, an inner product 〈·, ·〉a is defined as

〈x, y〉a =
D∑
i=1

ln
xi

gm(x)
ln

yi
gm(y)

, (4)

where gm(x) denotes the geometric mean of the components of x [4, 22]. As shown
in Pawlowsky-Glahn and Egozcue [22] the simplex (S D,⊕,�, 〈·, ·〉a) has a (D −
1)-dimensional real Euclidean vector space structure called simplicial or Aitchison
geometry.

Let (e1, e2, . . . , eD−1) be an orthonormal basis of the simplex and consider the
(D − 1) × D matrix Ψ which rows are Ψi = clr(ei ), (i = 1, . . . , D − 1). Note that
clr is the centered log-ratio transformation, a function from S D to RD defined as

clr(x) =
(
log

x1
gm(x)

, . . . , log
xD

gm(x)

)
,
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where gm(x) is the geometric mean of the D components of x. TheΨ matrix is called
contrast matrix associated with the orthonormal basis (e1, . . . , eD−1). Each row is
called a (log)contrast.

The isometric log-ratio transformation, ilr for short, of x is the function ilr :
S D → R

D−1, which assigns coordinates x�, with respect to the given basis, to the
composition x. The vector x� contains the D − 1 ilr-coordinates of x in a Cartesian
coordinate system. The inverse of the ilr-transformation is denoted by ilr−1. The
function ilr is an isometry of vector spaces. The ilr transformation is computed as a
simple matrix product:

x� = ilr(x) = ln(x)Ψ ′ .

Inversion of ilr, i.e., recovering the composition from its coordinates, is given by

x = ilr−1(x�) = C
(
exp(Ψ x�)

)
.

Given an orthonormal basis of the simplex, any composition x ∈ S D can be
expressed as a linear combination,

x = (x�
1 � e1) ⊕ (x�

2 � e2) ⊕ · · · ⊕ (x�
D−1 � eD−1)

=
D−1⊕
i=1

(x�
i � ei ),

where the symbol
⊕

represents repeated perturbation. The coefficients of the linear
combination, for a fixed basis, are uniquely determined, given that in a Euclidean
space any point can always be represented in a unique way by its coordinates with
respect to an orthonormal basis. Once an orthonormal basis has been chosen, all
standard statistical methods can be applied to coordinates and transferred to the
simplex preserving their properties [15].

A natural measure onS D , called Aitchison measure, can be defined using ortho-
normal coordinates [21, 23], that is, the Aitchisonmeasure of a subset on the simplex
is the Lebesgue measure of the subset in the space of orthonormal coordinates. This
measure is compatible with theAitchison geometry and is absolutely continuous with
respect to the Lebesgue measure on the D-dimensional real space. The relationship
between them is

√
Dx1x2 . . . xD . The change of the reference measure has some

important implications, for example to compute the expected value (see [16] for an
in-depth discussion).

Historically, there are essentially two different approaches to regression models
which relate a compositional response variable with a system of covariates: Sim-
plicial regression and Dirichlet regression. The former is based on the Aitchison’s
theoretical result that if a compositional vector follows an additive logistic normal
distribution, the log-ratio transformed vector will follow a normal distribution [2, 3,
8]; the latter follows the stay-in-the-simplex approach. It assumes that the response
variable follows a Dirichlet distribution whose parameters are a log-linear function
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of a set of covariates [6, 12, 14, 17]. Other solutions, present in the literature but less
used, involve models based on the generalized Liouville distribution [25].

The Scaled-Dirichlet distribution is an extension of the Dirichlet one. Given that
we work here with the Aitchison geometry of the simplex, and that within this
framework it is a perturbation of a standard Dirichlet [18], we will refer hereafter
to it as the Shifted-Dirichlet distribution. The reason to change this terminology is
twofold. On the one hand, working within the Aitchison geometry implies a change
of the reference measure; on the other hand, scaling in this geometry is achieved
using a power transformation, which allows another extension already studied in
Monti et al. [19]. In summary, the name of the distribution indicates the sample
space of the corresponding random vector and its structure. For the Scaled-Dirichlet
distribution this is the simplex as a subset of real space with the induced Euclidean
geometry, while for the Shifted-Dirichlet distribution it is the simplex as a Euclidean
space endowed with the Aitchison geometry. Although in the first case the Lebesgue
reference measure is used, and in the second the Aitchison measure, the probability
assigned to any measurable subset of the simplex is the same.

The Shifted-Dirichlet covariate model is an extension of the Dirichlet one,
based on the algebraic geometric structure of the simplex. The assumption is that
x = (x1, . . . , xD) is a compositional response vector, with D components having a
Shifted-Dirichlet distribution, in which the parameters α are allowed to change with
a set of covariates.

The paper is structured as follows. Section2 defines the two existing approaches:
Simplicial regression and Dirichlet regression. Section3 gives a brief overview of
theShifted-Dirichlet distribution anddescribes theShifted-Dirichlet covariatemodel,
dealingwith the issue of parameter estimation. Section4presents an example of appli-
cation of the proposed regression model to sedimentary petrography, in particular
bulk petrography and heavy-mineral data of Pleistocene sands (Regione Lombardia
cores; Po Plain); this dataset is described in Garzanti et al. [11].

2 Regression Models for Compositional Response Variable

2.1 Simplicial Regression

Linear regression with compositional response variable can be stated as follows.
A compositional sample of n independent observations, denoted by x1, . . . , xn , is
available. Each data point, x j , ( j = 1, . . . , n) is associatedwith one ormore external
variables or covariates grouped in the vector s j = (s j0, s j1, . . . , s jm, . . . , s jp), where
s j0 = 1 by convention.

The basic idea of Simplicial regression [8] relies on the principle of working on
coordinates: once a basis is chosen, the associated ilr coordinates are computed and
the classical regression of the ilr coordinates on the covariates is performed. Through
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the inverse ilr-transformation, the back-transformed coefficient vectors, as well as
predictions and confidence intervals are obtained.

The general model can be expressed as

x̂(s) = (s0 � δ0) ⊕ (s1 � δ1) ⊕ · · · ⊕ (
sp � δ p

) =
p⊕

m=0

sm � δm . (5)

Note that there are p + 1 coefficient vectors δm , as many as covariates, and that they
are vectors with (D − 1) components, asmany as coordinates. The goal of estimating
the coefficients δ of a curve or surface inS D is solved by translating it into a (D − 1)
least square problem, i.e., for each coordinate

x̂�
i (s) = δ�

0i s0 + δ�
1i s1 + · · · + δ�

pi sp, i = 1, . . . , D − 1, (6)

where δ�
m = (

δ�
m1, . . . , δ

�
m,D−1

)
is the coordinate vector associated with δm . In the

case of simple regression m = 1 and s = s, which is a straight-line in the simplex.

2.2 Dirichlet Regression

The Dirichlet distribution is one of the well known probability models suitable for
random compositions. A random vector X = (X1, . . . , XD) ∈ S D has a Dirichlet
distribution, indicated by X ∼ DD(α), with α = (α1, . . . , αD) ∈ R

D+ , when its den-
sity function (with respect to the Aitchison measure) is

f (x;α) =
√
DΓ (α+)∏D
i=1 Γ (αi )

D∏
i=1

xαi
i , (7)

where α+ = ∑D
i=1 αi , and Γ denotes the gamma function [18]. The Dirichlet distri-

bution has D parameters αi , which are assumed to be positive. Note that the density
(7) is obtained by changing the measure to a Dirichlet density with respect to the
Lebesgue measure.

In theDirichlet regressionmodel theαi parameters are reparameterized in terms of
explanatory variables and coefficients through an exponential function as described
in Eq. (12). The log-likelihood of the reparameterized Dirichlet distribution can be
optimized via an iterative method such as the Newton–Raphson algorithm.

When the variable of interest is continuous and restricted to the unit interval (0, 1),
i.e., when D = 2, the Dirichlet regression is called Beta regression [10].
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3 Shifted-Dirichlet Covariate Model

3.1 Shifted-Dirichlet Distribution

One of the generalizations of theDirichlet distribution is the Shifted-Dirichlet distrib-
ution. A random vectorX ∈ S D has a Shifted-Dirichlet distribution with parameters
α and β = (β1, . . . , βD) ∈ S D if its density function is

f (x, ;α,β) = Γ (α+)
√
D∏D

i=1 Γ (αi )

∏D
i=1

(
xi
βi

)αi

(∑D
i=1

xi
βi

)α+ , (8)

The density (8) is expressed with respect to the Aitchison probability measure [21].
See Monti et al. [18] for a detailed discussion about the reasons and implications to
use the Aitchison measure. This distribution will be denoted by X ∼ SDD(α,β).

The number of parameters of this model is 2D − 1, since β ∈ S D . The Shifted-
Dirichlet distribution can be obtained by normalizing a vector of D independent,
scaled (in the Euclidean geometry of real space), gamma r.v.s Wi ∼ Ga(αi , βi ),
i = 1, 2, . . . , D; i.e., if X = C (W), with W = (W1, . . . ,WD) ∈ R

D+ , then X ∼
SDD(α,β) [18]. For this reason, in the literature, when working with the Lebesgue
reference measure, the distribution is called Scaled-Dirichlet. This distribution can
also be obtained as a perturbed random composition with a Dirichlet density. Recall
that perturbation is, in the Aitchison geometry of the simplex, a shift. Therefore, here
it is called Shifted-Dirichlet distribution, understanding that the density is expressed
with respect to the Aitchison measure.

Indeed, let X̃ ∼ DD(α) be a random composition defined inS D , and let β ∈ S D

be a composition. The random composition X = �β ⊕ X̃ has aSDD(α,β) distri-
bution (note that � is the inverse operation of ⊕). Observe that using the Aitchison
measure and geometry, β can be interpreted as a parameter of location, instead of
as a measure of scale. The expected value of X ∼ SDD(α,β) with respect to the
Aitchison measure is

Ea(X) = �β ⊕ Ea(X̃) , (9)

where Ea(X̃) is the expected value of a Dirichlet composition with respect to the
Aitchison measure

Ea(X̃) = C (eψ(α1), . . . , eψ(αD)) , (10)

with ψ the digamma function. The metric variance of X coincides with the metric
variance of a Dirichlet composition, because this measure of dispersion is invariant
under perturbation

Mvar(X) = D − 1

D
(ψ ′(α1), . . . , ψ

′(αD)) , (11)

with ψ ′ the trigamma function [1].
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3.2 Shifted-Dirichlet Regression

Given a sample of n independent compositional observations (x1, . . . , xn), we
hypothesize that each observation x j follows a conditional Shifted-Dirichlet distri-
bution, given a set of covariates. Polynomial regression on a covariate s is included
as a particular case taking s jm = smj .

In order to incorporate the covariate effects into the model [6, 14], we reparame-
terize each parameter αi of the density written in Eq. (8) in terms of covariates and
regression coefficients via the following log-linear model

αi j = αi j (s j ) = exp

{
p∑

m=0

δims jm

}
, (12)

where s j is the covariate vector recorded on the j-th observed composition ( j =
1, . . . , n), and δim are the coefficients for the m-th covariate. The parameter δim the-
oretically can vary by component, and the covariates may or may not be the same
set of explanatory variables for each αi j . We augment each vector s j with 1 as first
position for notation simplicity. Thus, given a sample of independent compositional
observations of size n, x1, . . . , x j , . . . , xn the log-likelihood function for the repa-
rameterized Shifted-Dirichlet, given the covariates s and ignoring the constant part
that does not involve the parameters, is equal to

l(β, δ|x, s) =
n∑
j=1

{
logΓ

⎛
⎝

D∑
i=1

exp

{ p∑
m=0

δims jm

}⎞
⎠ −

D∑
i=1

logΓ

(
exp

{ p∑
m=0

δims jm

})

−
D∑
i=1

exp

{ p∑
m=0

δims jm

}
logβi +

D∑
i=1

exp

{ p∑
m=0

δims jm

}
log xi j

−
⎛
⎝

D∑
i=1

exp

{ p∑
m=0

δims jm

}⎞
⎠ log

⎛
⎝

D∑
i=1

xi
βi

⎞
⎠

}
.

(13)

Equation (13) can be estimated using the maximum likelihood method via some
optimization algorithm, e.g., the Newton–Raphson algorithm. The choice of the
starting values for the algorithm is of fundamental importance to get fast convergence.

For the Dirichlet regression in Hijazi and Jernigan [14] a method based on resam-
pling from the original data is proposed; for each resample a Dirichlet model with
constant parameters is fitted and the mean of the corresponding covariates is com-
puted. After that, D models of the form

∑p
m=0 δims jm are fitted by least squares. The

fitted coefficients δ̂im are used as starting values. For the Shifted-Dirichlet covariate
model we have followed the same principle; as starting point for the vector β we
have chosen the closed geometric mean of the components of x given by
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g(x) = C

⎛
⎝

⎛
⎝

n∏
j=1

x1 j

⎞
⎠

1/n

, . . . ,

⎛
⎝

n∏
j=1

xDj

⎞
⎠

1/n⎞
⎠ , (14)

Model selection is performed by testing

H0 : δim = 0 , (15)

for somepair (i,m), i = 1, . . . , D andm = 1, . . . , p. For it, the traditional likelihood
ratio test is implemented.

4 Example from Sedimentology

4.1 Data Description

In Garzanti et al. [11] the authors studied the paleogeographic and paleodrainage
changes during Pleistocene glaciations of Po Plain by compositional signatures of
Pleistocene sands. In particular we consider here Cilavegna and Ghedi cores of
Regione Lombardia, with 18 and 19 compositional observations, respectively. In
this section we compare the above-mentioned approaches to regression with a com-
position as dependent variable. The goal is to model the effect of the depth covariate
on compositional signatures of Pleistocene sands taking the fact into account that the
cores may have separate effects on the response. The three compositional parts are:
Q (= quartz), F (= feldspar), and L (= lithic grains) represented in the usual ternary
diagram in Fig. 1.

4.2 Estimated Models Comparison

For each of the three components we have fitted a regression model considering the
depth as covariate, including in the model one dummy variable representing the core
provenance (0 for Cilavegna and 1 for Ghedi), as well as the interaction term. The
categorical covariate core has been included to account for variation in proportions
that is a function of a group-specific factor. The Dirichlet and Shifted-Dirichlet
covariate models are expressed with respect to the Aitchison measure.

Tables1 and 2 summarize the estimated regression coefficients, together with
results from the inference for the Dirichlet and Shifted-Dirichlet covariate model,
respectively.
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Fig. 1 Quaternary Po Plain sediments: ternary plot. Points are distinguished by core

Table 1 Regression output of the Dirichlet covariate model for Quaternary Po Plain sediments

Regressors Coefficient S.E. z value Pr(> |z|)
δ-coefficients for variable Q (= quartz)

(Intercept) 3.8695 0.8536 4.5329 0.0000

Depth 0.0027 0.0063 0.4304 0.6669

Core −4.6905 0.5509 −8.5137 0.000

Depth ∗ core 0.0243 0.0038 6.4577 0.0000

δ-coefficients for variable F (= feldspar)

(Intercept) 2.2494 0.7975 2.8205 0.0048

Depth 0.0015 0.0058 0.2495 0.8030

Core −4.3685 0.6012 −7.2662 0.0000

Depth ∗ core 0.0190 0.0039 4.9164 0.0000

δ-coefficients for variable L (= lithic grains)

(Intercept) 2.0708 0.7773 2.6641 0.0077

Depth 0.0091 0.0058 1.5794 0.1143

Core −2.3527 0.3583 −6.5655 0.0000

Depth ∗ core 0.0076 0.0021 3.5803 0.0003
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Table 2 Regression output of the Shifted-Dirichlet covariate model for Quaternary Po Plain sedi-
ments

δ-coefficients for variable Q (= quartz)

Regressors Coefficient S.E. z value Pr(> |z|)
(Intercept) 3.1275 0.7534 4.1510 0.0000

Depth 0.0035 0.0053 0.6649 0.5061

Core −3.5720 0.8824 −4.0481 0.0001

Depth ∗ core 0.0171 0.0069 2.4658 0.0137

δ-coefficients for variable F (= feldspar)

Regressors Coefficient S.E. z value Pr(> |z|)
(Intercept) 3.2542 0.7161 4.5442 0.0000

Depth 0.0023 0.0050 0.4549 0.6492

Core −4.5289 0.7993 −5.6664 0.0000

Depth ∗ core 0.0187 0.0064 2.9332 0.0034

δ-coefficients for variable L (= lithic grains)

Regressors Coefficient S.E. z value Pr(> |z|)
(Intercept) 1.4002 0.6546 2.1390 0.0324

Depth 0.0098 0.0049 2.0100 0.0444

Core −1.2044 0.8589 −1.4022 0.1608

Depth ∗ core 0.0004 0.0068 0.0516 0.9589

β-coefficients

Q 0.4693 0.1362 3.4466 0.0006

F 0.0789 0.0397 1.9895 0.0467

Table 3 Model fit statistics for the nested Shifted-Dirichlet covariate models, where ΔG2 =
−2 log L(reduced model − current model)

Criterion Intercept only Depth covariate Full model

AIC 210.1447 187.4468 122.5

BIC 218.1993 200.3341 145.053

logL −100.0724 −85.7233 −47.25

df 5 8 14

ΔG2 28.697 76.947

Pr > ChiSq <0.0001 <0.0001
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Table 4 Regression output for the first and second coordinate of Simplicial regression for the
Quaternary Po Plain sediments

Regressors Coefficient S.E. z value Pr(> |z|)
x�
1 coordinate

(Intercept) −1.1867 0.1264 −9.3862 0.0000

Depth −0.0008 0.0011 −0.7209 0.4760

Core −1.0654 0.1886 −5.6487 0.0000

Depth ∗ core 0.0032 0.0015 2.1193 0.0417

x�
2 coordinate

(Intercept) −0.8479 0.2903 −2.9212 0.0062

Depth 0.0061 0.0024 2.5012 0.0175

Core 2.7908 0.4330 6.4454 0.0000

Depth ∗ core −0.0174 0.0035 −4.9827 0.0000

The p-value of the likelihood ratio tests to compare the intercept-only model
(e.g., no predictors) with the fitted Shifted Dirichlet covariate model is essentially
zero (<0.0001), which provides evidence against the reduced model in favor of the
current model, as well as the model with only depth as covariate (see Table3).

In Table2 it can be seen that the z-values for the first two components are highly
significant, implying that the use of the dummy variable is important; the models
appear to have a definite nonzero slope. This consideration is confirmed by the fitted
regression lines reported in Fig. 2.

Akaike information criterion (AIC) and Bayesian information criterion (BIC) are
usually used to compare adequacy of models of the same family, the preferred model
is the one with the minimum AIC value or BIC value. For the Dirichlet regression
we obtained that AIC = 131.2837 and BIC = 150.6148, while, for the Shifted-
Dirichlet regression the two measures are AIC = 122.45 and BIC = 145.053 (see
Full model in Table3). Therefore we can conclude that the improvement of themodel
compensates the additional parameters in the Shifted-Dirichlet model.

In order to apply the Simplicial regression, ilr coordinates of the Quaternary Po
Plain sediment dataset are computed (Table 4). The canonical basis in the clr plane
was used as ilr transform, so that, the two coordinates or balances are expressed as:

x�
1 = 1√

2
log

x2
x1

, x�
2 = 1√

6
log

x23
x1 x2

. (16)

Predictions of the three coordinates can be back-transformed with the inverse ilr,
to obtain a prediction of the proportions themselves.

In order to assess the adequacy of the different regression approaches, we examine
some goodness of fit measures. One suitable determination coefficient for the regres-
sion model to evaluate the proportion of explained variation in the compositions by
the covariate is connected with the total variability [2, 13], based on the variation
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Fig. 2 Observed and fitted compositions for Quaternary Po Plain sediments using the three models
for each level of the core variable (Shifted-Dirichlet covariate model: solid line, Dirichlet covariate
model: dashed line; Simplicial regression: dotted line). Red colors refers to Cilavegna core data
and blue color refers to Ghedi core data

matrix of the transformed log-ratio data,

T(x) = [tir ] =
[
var

(
ln

xi
xr

)]
i, r = 1, . . . , D. (17)

Each element tir is the usual variance of the log ratio of parts i and r . Aitchison’s
total variability measure totvar(x), a measure of global dispersion of a compositional
sample, is defined as

totvar(x) = 1

2D

∑
i,r

var

(
ln

xi
xr

)
= 1

2D

∑
i,r

tir , (18)
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The determination coefficient R2
T is defined as

R2
T = totvar(x̂)

totvar(x)
; (19)

it compares the total variability of the observed with the fitted data.

Table 5 Goodness of fit measures for the three different regression models

R2
T R2

A KL-div

Dirichlet regression 0.6914 0.5624 1.6472

Shifted-Dirichlet
regression

0.5733 0.5965 1.6209

Simplicial regression 0.5907 0.5907 1.657

0 5 10 15 20 25 30 35

−
0

.6
−

0
.2

0
.2

0
.4

0
.6

0
.8

Index

e
1

−2 −1 0 1 2

−
0

.6
−

0
.2

0
.2

0
.4

0
.6

0
.8

Normal Q−Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

0 5 10 15 20 25 30 35

−
1

0
1

2

Index

e
2

−2 −1 0 1 2

−
1

0
1

2

Normal Q−Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

Simplicial regression

Fig. 3 In the left column coordinate residual plots associated to the estimated simplicial regression.
In the right column Q–Q plots for residuals of the corresponding regression models are displayed
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Moreover, the Aitchison distance of any two compositions x and y ∈ S D is
defined as

da(x, y) =
√√√√ 1

2D

D∑
i=1

D∑
r=1

(
ln

xi
xr

− ln
yi
yr

)2

. (20)

Similarly to the standard least squares regression analysis, the compositional total
sum of squares (CSST) and the compositional sum of squared residuals (CSSE) are
given by CSST = ∑n

j=1 d
2
a (x j , gm(x)) and CSSE = ∑n

j=1 d
2
a (x j , x̂ j ). In this way

another R2-measure based on the compositional sum of squares [13] is

R2
A = 1 − CSSE

CSST
. (21)
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Fig. 4 In the left column coordinate residual plots associated to the estimated Dirichlet regression.
In the right column Q–Q plots for residuals of the corresponding regression models are displayed
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In Table5, KL-div refers to the Kullback–Leibler divergence calculated as

n∑
j=1

3∑
i=1

x ji log
x ji

x̂ j i
.

The measures of goodness of fit reported in Table5 show a good performance of
the Shifted-Dirichlet model with respect to the other two models. The coefficient of
determination based on the Aitchison norm shows that 60% of the total variability
is captured by the Shifted-Dirichlet regression model.

In order to check for absence of trends in central tendency and in variability, diag-
nostic plots are useful. We have expressed all the regression models in orthonormal
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Fig. 5 In the left column coordinate residual plots associated to the estimated Shifted-Dirichlet
regression. In the right column Q–Q plots for residuals of the corresponding regression models are
displayed
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coordinates (see Eq. (16)) which is making it possible to apply the standard battery of
testing hypotheses for linear regression models, such as testing marginal normality
of each coordinate residual. Coordinate residual plots and associated normal Q–Q
plots for the three different regression models are displayed in Figs. 3, 4 and 5.

Except for the tails of the distribution (see Fig. 5), the assumption of normality
seems to be reasonable. For the first coordinate residuals, whose points are displayed
in the upper left of Fig. 5, the p-values of the Anderson–Darling test and of the Lil-
liefors (Kolmogorov–Smirnov) test for normality are 0.19 and 0.4789, respectively,
so that the hypothesis of normal distribution cannot be rejected, while for the second
coordinate residuals, lower left of Fig. 5, the two p-values of the two mentioned nor-
mality tests are 0.0009 and 0.003, respectively, due to the presence of an upper outlier
(25th observation). If we omit such outlying point, normality is confirmed, i.e., the
p-value of Anderson–Darling test equals 0.431 while the Lilliefors test p-value is
0.115.

5 Conclusions

Regressionmodelswith compositional responsewere proposed in the eighties. In this
work, using the Shifted-Dirichlet distribution a new covariate model on the simplex
is proposed. The Shifted-Dirichlet distribution is a generalization of the Dirichlet
distribution obtained, within the Aitchison geometry, after applying a perturbation
to the standard Dirichlet one. As a probability distribution, it is the same as the
Scaled-Dirichlet distribution but the density is expressed with respect to the Aitchi-
son measure on the simplex, and not with respect to the Lebesgue measure in the
induced Euclidean geometry from the real space. Consequently, the Shifted-Dirichlet
regression model is a generalization of the Dirichlet regression model. Even though
the number of parameters to estimate increases, we see that it is a feasible and more
flexible model. Using a real data set, we obtain results comparable to those obtained
using the Simplicial regression.
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Relationship Between the Popularity of Key
Words in the Google Browser and the
Evolution of Worldwide Financial Indices

R. Ortells, J.J. Egozcue, M.I. Ortego and A. Garola

Abstract The purpose of this contribution is to evaluate whether there is enough
statistical basis to establish a relationship between the popularity of certain terms in
theGoogle browser and the evolution of several worldwide economic indices the sub-
sequent week. A linear model trying to predict the evolution of 19 financial indices
from all over the world with the information of how many times a selected group of
200 key words are looked up online the previous week is proposed. The linear model
that is proposed takes a compositional approach due to two reasons. First, the infor-
mation contained in the values of the financial indices has a compositional nature.
The strongest proof supporting this idea is that in case all values for the indices on a
certain week were multiplied by a factor, the information would remain unchanged.
In fact, the value for a certain index is irrelevant by itself, since it is its evolution with
respect to the rest of indices that indicates whether it is performing well. Therefore,
this idea suggests that the numerical values of the 19 indices for a certain week can
be understood as a vector of the simplex and be analyzed accordingly. Second, the
explanatory variable has to be understood as a vector of the simplex as well, for a
similar reason as before. For instance, let us imagine that the number of times the
words are looked up online in a certain week was multiplied by a factor. Indeed, the
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information contained in this vector would be exactly the same. Moreover, it seems
intuitive as well how the absolute value for the number of searches is irrelevant by
itself, since we will be interested in the relationships amongst variables. For the rea-
sons we have just set, a compositional approach seems necessary in order to address
the problem successfully, since both the explanatory and predicted variables present a
compositional nature. In other words, despite not adding up to a constant, the compo-
nents of the vectors of both the explanatory and predicted variables seem to be closely
related in terms of giving information of a part of a whole, so tackling the problem
through a compositional perspective seems appropriate. The analysis consists of an
exploratory analysis of both response (indices) and explanatory (searches) variables
and a compositional linear multiple regression between both sets of variables.

Keywords Financial markets · Google searches · Stock market indices · Compo-
sitional data · Multiple linear regression

1 Introduction

The scope of the project is to analyze whether the weekly evolution of the popularity
of a group of words in the Google browser is explicative of the behavior of the finan-
cial markets on the following week. By the term financial markets, we understand a
selection of economic indicators from all over the world, including the main stock
market indices, sovereign bond yields, and commodity prices. This selection of indi-
cators has been made assuming that the characterization of what we understand as
global markets can be done through the most relevant financial centres of the world.
To do so, we have used a data set containing the evolution of the popularity of 200
words and the performance of 19 financial indices during the period 2004–2014 (554
weeks).

The potential usefulness of the searches in the Google browser1 has been widely
studied in the past. For example, Preis et al. [25] tried to approach the correlation
between the popularity of a group of selected words and the Dow Jones Indus-
trial Average Index performance. Other economic-related lines of investigation have
tried to address the correlation between the popularity of certain words in an Inter-
net browser and other variables such as the stock market volume [7–9]. However,
the information of the popularity of certain words in Google has also been used
in multiple other fields apart from the economic world; for instance, Ginsberg
et al. [18] focused on the potential correlation of such popularity and the spreading of
epidemics. According to the state of the art, the key message is that the information
on the patterns of searches in the Google browser can be explicative of the behavior
of multiple indicators, as well as it can anticipate future trends. Indeed, according
to the current lifestyle in most developed countries, the use of Internet seems to be

1The information on the searches of different words is provided by Google Trends, subsidiary of
Google, Inc. From now on, we will refer to Google Trends simply as Google.
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extremely useful to understand not only how society behaves at present time but also
to anticipate how it will behave in the future.

With reference to what the present document intends to add to the state of the
art, we have tried to address a similar problem to the one considered in Preis et al.
[25] taking into account a compositional approach, both for the information of the
popularity of the words as well as the economic indices. First, a justification on why
such an approach is appropriate has been made. After that, a regression model has
been proposed. Finally, the results have been analyzed critically, in order to evaluate
whether the compositional perspective has worked as expected.

2 Explanatory and Predicted Variables

2.1 Selection and Treatment of the 200 Terms
in the Google Browser

The database containing the words that have been selected does not only include
economic terms. Previous research such as Preis et al. [25] exclusively considered
words from the economic world; we have decided to include additional words to
evaluate whether they can be explicative as well. These 200 words are presented in
Table1, and include the words that were used in Preis et al. [25] plus an additional
group that has been considered by the authors. Not all the words that have been
included are expected to be useful; indeed, the point of adding totally unrelatedwords
and see that they do not have explanatory power is something we have deliberately
done in order to check that the methodology works as expected. It is important to
point out that we have deliberately chosen universal terms. For example, we have
avoided using words like subprime or Lehman Brothers because even though their
popularity would have certainly been explanatory of the behavior of the markets
during the period 2004–2014, they would have biased the results of our project.

Regarding the information provided by Google, a few comments have to be made.
First, the information on the number of searches on the browser is not the absolute
number of searches of each word. For every word, the database associated to it has
been normalized in such away that the historicalmaximumappears as 100, so there is
no way to know the true absolute popularity of the words. Therefore, the information
of the number of searches every week is expressed as a fraction of the historical
maximum. Second, the information on the number of searches has been rounded
to the nearest integer value. For example, in case after the normalization the value
associated to one week is 62.3, Google returns the rounded value 62. Provided that
no further information is provided by the browser, there is uncertainty on how the
raw big data has been previously treated by Google, Inc.

The database containing the information on weekly amount of searches for the
200 words has been treated in order to, first, address the compositional nature of the
data, and, second, reduce the dimension according to a principal component analysis.
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First of all, the zeros on the database have been identified and addressed in the way
that was proposed by Martín-Fernández et al. [21]. The decision of approaching the
presence of zeros in thisway comes from the strongbelief that such zeros are rounding
zeros (very small amount of searches compared to the historicalmaximum that appear
as zeros even though they are not). After dealing with the zeros on the database, a
compositional approach is considered. There are many explanations supporting the
compositional nature of the database. First, in case the number of searches were
all multiplied by a factor k, the information would remain unchanged. Second, the
information for a certain word is irrelevant by itself since it is only explicative when
compared to the rest. For instance, in case thewordbankruptcy increases in popularity
for a certain week and the other words present a similar increase, it seems that not
much has happened. However, in case the searches increase for suchword and remain
quite the same for the rest, this may be relevant. For this reason, it seems appropriate
to understand the number of searches for a certain word as a part of a whole and
apply a compositional treatment accordingly. However, we should be aware that the
sum of the searches for a certain week is not constant, and is unknown. Indeed,
the total number of times that the 200 words are looked up is different every week,
but this is irrelevant because we are not interested in working with the raw data. It
is important to highlight that this detail makes the present study slightly different
from the traditional compositional analysis, since even though it seems intuitive to
understand the information as parts of a whole the actual whole is not only variable
for each week but also unknown.

Once the compositional treatment has been justified, we have addressed the fact
that the information on the number of searches has been normalized in such a way
that the historical maximum has become 100. For a certain week i , we have a 200
component vector containing the information of the popularity of each word:

Xi = [x1, ..., x200].

We have already proved how this vector belongs to the simplex space [15, 23] due
to its compositional nature. However, we can see how each component of the vector
represents the absolute number of searches multiplied by an unknown normalizing
factor such that the historical maximum becomes 100. This operation is equivalent
to a perturbation in the simplex for each one of the 200 components, so the relative
information contained in the vector remains undamaged (for further information on
how perturbation does not alter the information of the vector see Aitchison [1, 2]
and Pawlowsky-Glahn et al. [23]). It is important to point out that the value for this
normalizing factor is irrelevant, since we are not interested in obtaining the absolute
number of searches.

The compositional treatment has consisted in computing the CLR coordinates
(centered logratio coordinates) of the dataset, according to Pawlowsky-Glahn
et al. [23].After that,wehave applied a singular value decomposition andobtained the
principal components of the space. The ultimate scope of performing such operation
is to reduce the dimension of the vector sowe can decrease the number of explanatory
variables in the regression. Regarding the regression, we will only consider the first
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Table 2 Cumulated explained variance by the first 20 principal components of the data set

Component Cumulated variance (%) Component Cumulated variance (%)

Comp. 1 53.3 Comp. 11 89.5

Comp. 2 65.2 Comp. 12 90.4

Comp. 3 72.3 Comp. 13 91.3

Comp. 4 76.7 Comp. 14 92.0

Comp. 5 79.6 Comp. 15 92.6

Comp. 6 82.2 Comp. 16 93.1

Comp. 7 84.2 Comp. 17 93.5

Comp. 8 85.8 Comp. 18 93.9

Comp. 9 87.2 Comp. 19 94.3

Comp. 10 88.4 Comp. 20 94.6

Source Results of the principal component analysis made on the data with R software

15 components of the vectors resulting from the principal component analysis. The
percentage of the cumulated explained variance up to the 20th component is detailed
in Table2.

To sum up, the database containing the information on the searches of the words
has been treated as compositional (through a CLR transformation2), and has been
simplified according to a singular value decomposition criterion. The final result
has been a new database, where each week is characterized through a vector of 15
components (since we have limited the number of explanatory variables to the 15 first
components of the vectors), which will be our explanatory variables in the regression
model we will propose. All computations have been made with R software.

2.2 Selection and Treatment of the Indices

The evolution of the financial markets has been modeled through studying 19 key
indices, which are representative of stock market indices and sovereign bond yields
from all over the world, as well as the most important commodity markets. The
information on the values of the indices has been obtained from Yahoo Finance3

and Investing.com.4 In fact, in order to make a thorough analysis of the worldwide
financial markets we could have taken into consideration every stock market, fixed

2It is arguable whether we could have used an ILR transformation, as we have done for the predicted
variable. Provided that a principal component analysis will be applied, it is unnecessary to define a
binary partition and an ILR transformation. Given that in the end we will work with the orthogonal
base that we get from the principal component analysis, we can work directly with a standard CLR
procedure.
3Yahoo Finance, owned by Yahoo!, Inc. Information consulted in 2013.
4Investing.com, owned by Fusion Media Limited. Information consulted in 2014.
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Fig. 1 World map with the main areas that have been studied through the selected market indices

income index and commodity that is currently traded in the planet. By doing this,
we would certainly be able to see how the worldwide resources move along what we
understand as global markets. However, the difficulty of doing so is that this method-
ology would be prohibitively expensive in terms of computational cost; therefore, a
simplification has had to be made.

The approach we have taken consists in considering the major financial centres
of the world. This simplification is equivalent to assume that the evolution of the
worldwide financialmarkets can bemodeled through the stock exchangeswith higher
trading volume on the planet. Even though such assumption may not be strictly true,
it seems a good simplification of the reality, since any major change in the evolution
of anymarket in theworldwill certainly affect thesemajor financial hubs, so it will be
perceived somehow in our model. In Fig. 1 we present the countries that are directly
studied through the selected financial indices. A list containing the 19 indices is
presented in Table3.

The information of the indices has been converted into one single currency, US
Dollar, in order to have a trustworthy representation of the price of the indices. Such
transformation has been done through the spot currency exchange (value for the
currency exchange in the foreign exchange market at the end of the week). In case
we did not do it, the information provided by the indices would be partial, since
the actual value of the index would depend on the exchange currency rate (which
varies every day). Once this dollarization has been carried out, we can discuss the
compositional nature of the indices.
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Table 3 List of the 19 indices that have been considered for the study

Name of the index Location of the market Currency of issue

Dow Jones Industrial Average (DJIA) New York, USA US Dollar (USD)

Eurostoxx50 (EUSTX) Frankfurt, Germany Euro (EUR)

Milano Italia Borsa (MIB) Milano, Italy Euro (EUR)

Footsei100 (FTSE) London, UK Great Britain Pound (GBP)

Nikkei225 (NIKKEI) Tokyo, Japan Japanese Yen (JPY)

Hang Seng Index (HSI) Hong Kong, Hong Kong Hong Kong Dollar (HKD)

Bovespa Sao Paulo, Brazil Brazilian Real (BRL)

Australian Stock Exchange (ASX) Sydney, Australia Australian Dollar (AUD)

10year bond USA USA US Dollar (USD)

10year bond Japan Japan Japanese Yen (JPY)

10year bond Germany (BUND) Germany Euro (EUR)

10year bond Spain Spain Euro (EUR)

10year bond Hong Kong∗ Hong Kong US Dollar (USD)

10year bond UK UK Great Britain Pound (GBP)

10year bond Australia Australia Australian Dollar (AUD)

Gold (futures due earliest date) New York (NYMEX) US Dollar (USD)

Brent (futures due earliest date) London (ICE) US Dollar (USD)

Cocoa (futures due earliest date) London (ICE) US Dollar (USD)

Corn (futures due earliest date) London (ICE) US Dollar (USD)
∗In fact, the indexwe have used is not explicitly the 10year HongKong bond, we have used an index
containing a group of Asian bonds issued in US Dollars. However, the evolution of such index can
be understood as the evolution of the fixed income market in that region, though not being strictly
Chinese

The key argument supporting the fact that the information of the indices is com-
positional is that in case these indices were multiplied by a factor k, the information
would remain unchanged. In other words, the actual numeric value of an index is
irrelevant by itself, the important information is how it performs with respect to the
rest of indices. However, even though the set of values for the 19 indices can be
understood as a vector of the simplex, the sum is not constant, so our compositional
approach will slightly differ from the classical compositional analysis, thoroughly
explained in Aitchison [2] and Egozcue and Pawlowsky-Glahn [16]; provided that
the actual sum of the components is unknown and variable we will not be able to
define the closure operation. Anyway, the fact of not being able to perform the closure
operation, which requires to know the actual value for the sum, will not be necessary,
since we will be exclusively interested in the evolution of the indices with respect to
the rest.

It is especially relevant to highlight that since the sum of the indices is variable
and unknown we will not be able to predict actual numeric values for the indices.
From a traditional point of view where the most relevant information of the model is
the predicted value for every index, this may seem disappointing; it is certainly not,
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Fig. 2 Scheme of how the 19 indices have been separated in order to create the binary partition
needed to compute the ILR coordinates. The divisions have been numbered in red so the corre-
sponding ILR coordinate is easy to identify

because in case such algorithm was used for trading purposes, with the information
on the relative expected behavior of the indices we would be able to get a position
in the markets.

The compositional approach has consisted in defining a sequential binary partition
and computing the corresponding ILR coordinates (isometric logratio coordinates),
as it was developed in Egozcue et al. [17] and Egozcue and Pawlowsky-Glahn [14].
The definition of such partition is not random; in fact, according to the information
that we had a priori, we have created a partition with several ratios that are of interest.
This partition is presented schematically in Fig. 2. Before moving onto the definition
of the coordinates, a few remarks have to be done regarding why we have considered
such divisions. First, we have distinguished between two types of indices: in one
group we have the traditional, highly liquid indices, which are present nearly in
every portfolio of any investment firm of the world. These indices include the high
quality sovereign bonds (bonds issued by the US, Germany, the UK, or Japan) as well
as the most liquid stock market indices (New York, London, Frankfurt, Japan, and
Hong Kong). We have also included in this group the Brent and Gold futures because
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they represent highly liquid assets that are very common as well in any investment
portfolio. In the other group, we have included the rest of indices, including Southern
Europe assets as well as Emerging Markets indicators, such as the Sao Paulo Stock
Exchange. It is especially relevant to point out that even though alternative divisions
based on, for example, the location of the indices, would have been correct as well,
they would not have represented this clear binomial between high-quality assets
versus riskier assets, which is the one assumed to be closely related to the Google
searching pattern. The underlying hypothesis under this procedure is that investors
are risk averse: in other words, risky assets will decrease in value when uncertainty
arises because their expected returnswill not compensate anymore the associated risk
that must be taken when investing in them (for further information on risk aversion
see Arrow [5] and Pratt [24]).

Once this first division has beenmade,wehaveproceeded similarly for eachgroup.
For instance, we have divided the high-quality assets group into two subgroups, safer
assets versus stock market indices. After that, we have made subsequent divisions
according to the same criterion. In the same way, we have divided the indices con-
tained in the riskier assets group. Overall, the key message is that we have tried to
separate the indices in such a way that makes sense in terms of the decision that
any rational investor would have to make. For example, in case the perspectives
for the future worsen, any rational investor would decide to invest in highly liquid,
conventional assets, and liquidate any position in the riskier, more volatile indices.
Therefore, the partition that we have to create has to represent such decision in order
to be meaningful.

To sum up, the treatment of the financial indices through an ILR coordinate
transformation has been performed because the nature of such data expresses relative
information. In order to do so, a strategic sequential binary partition has been defined
and the standard procedure to compute the ILR coordinates that was proposed by
Egozcue et al. [17] has been applied. The information containing the sequential
binary partition is presented in Table4. These computations have been made through
Codapack and R software.

After havingdefined the corresponding treatments onbothdata sets, an exploratory
analysis has been performed. We present the compositional biplots that have been
built in Figs. 3 and 4 (more information on compositional biplots in Aitchison and
Greenacre [3]). It is especially relevant to point out how both biplots appear to follow
a cyclical pattern: it seems that both the explanatory and response variables evolve in
a way where there is a somewhat cyclical pattern. However, there is something that
makes the situations over time different from the past. Indeed, the fact of observing
a cyclical pattern in economic data is something we might have expected, yet the
specific shape of the biplots remains unexplained.
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Fig. 3 Compositional biplots of the data containing the popularity of the 200 words, built through
Codapack software

Fig. 4 Compositional biplots of the data containing the 19 financial indices, built throughCodapack
software
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3 Regression Model

Themodel that has been built consists in amultiple linearOLS regression,where both
the explanatory and predicted variable have had a previous compositional treatment.
This model has been built with R software. In total, we have predicted 18 ILR
coordinates with a linear combination of 15 variables (which are the first 15 principal
components of the vector containing the CLR transformation of the searches). The
expression of the model is presented in Eq.1.

I L R j = β0 j +
i=15∑

i=1

βi j xi , ∀ j ∈ [1, 18]. (1)

The normality on the residuals has been analyzed on the 18 regressions, through
carrying out theKolmogorov-Smirnov test [22], theAnderson-Darling test [4] and the
Shapiro-Wilk test [26]. Since we are dealing with a large database, the KS test is not
appropriate because it rejects the normality hypothesis easily (for further information
on the suitability of the KS test for large databases see Babu and Rao [6]). The results
of the corresponding p-values have been presented in Table5. We have rejected
the hypothesis of normality on the residuals unless both the AD and SW test have
provided p-values above 0.05 and 0.10, respectively (limits imposed according to
Anderson and Darling [4] and Royston [26]). We have concluded that normality on
the residuals can be rejected for all the regressions except ILR7, ILR8, and ILR11.

It is relevant to point out a few details with regard to the results of the regression.
First, recall that no collinearity may be expected, since the variables come from a
principal component decomposition so they are orthogonal by definition. Second,
no leverage problems have been observed due to the data, by evaluating all the
points of the model with the Cook distance, according to Cook [10] and Kim and
Storer [19]. Finally, potential autocorrelation patterns on the residuals have been
evaluated through the Durbin–Watson test [11, 12], and the conclusion has been that
no first order autocorrelation may be expected from the present model. However, the
fact that we are dealing with econometric time series suggests that more complex
autocorrelation patterns might be present.

The goodness of fit of the model has been evaluated through the R2 coefficient.
The values for the R2 are presented in Table6. Provided that we are fitting 554 points
with a 15 variable model the results seem highly positive. It would be arguable
whether 15 variables are too many, and whether a simplified model would be more
appropriate. Indeed, since we are performing 18 regressions and each one requires
fitting 16 coefficients, our model, which was aimed to be simple, demands nothing
less than 288 coefficients. However, since the database we count on is considerably
large the present solution seems adequate.

A relevant conclusion of the results is that the F test we have performed in the 18
regressions has proven the linear model we have defined makes sense; provided that
the p-value for the F test in all 18 cases is 2.2 · 10−16 we can infer that the modeling
of the evolution of the financial indices through an isometric log-ratio transformation
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Table 5 Results of the tests checking the normality of the residuals

Coordinate p-value KS p-value AD p-value SW Normality

ILR1 2.20E−16 0.000 0.000 NO

ILR2 2.20E−16 0.009 0.003 NO

ILR3 2.20E−16 0.052 0.057 NO

ILR4 2.20E−16 0.069 0.058 NO

ILR5 2.20E−16 0.000 0.003 NO

ILR6 2.20E−16 0.000 0.000 NO

ILR7 2.20E−16 0.528 0.203 YES

ILR8 2.20E−16 0.338 0.354 YES

ILR9 2.20E−16 0.003 0.000 NO

ILR10 2.20E−16 0.002 0.000 NO

ILR11 2.20E−16 0.141 0.108 YES

ILR12 2.20E−16 0.032 0.121 NO

ILR13 2.20E−16 0.076 0.023 NO

ILR14 2.20E−16 0.000 0.003 NO

ILR15 2.20E−16 0.122 0.073 NO

ILR16 2.20E−16 0.000 0.000 NO

ILR17 2.20E−16 0.000 0.000 NO

ILR18 2.20E−16 0.098 0.002 NO

The criterion to reject the hypothesis on the normality of the residuals is that either the Anderson–
Darling (AD) or the Shapiro–Wilk (SW) test provides a p-value below the significance level of 0.05
and 0.10, respectively. The Kolmogorov–Smirnov (KS) test has proved to be too strict when dealing
with large databases, so its result has not been considered. Hypothesis of normal distribution on the
residuals rejected for all regressions except ILR7, ILR8, and ILR11
Source Computations made through R software

Table 6 Goodness of fit indicators for the regression on the 18 coordinates

Coordinate R2 Coordinate R2

ILR1 0.801 ILR10 0.889

ILR2 0.791 ILR11 0.609

ILR3 0.950 ILR12 0.933

ILR4 0.949 ILR13 0.838

ILR5 0.724 ILR14 0.385

ILR6 0.844 ILR15 0.872

ILR7 0.507 ILR16 0.773

ILR8 0.818 ILR17 0.740

ILR9 0.845 ILR18 0.660

Source Results obtained through computations with R software

(ILR) is undoubtedly meaningful. Several ideas can be confirmed from such strong
results. First, modeling the indices through a binary partition approach is appropriate.
Even though we had thoroughly justified why the relevant information on the indices
is on the relative performance with respect to the rest rather than on their absolute
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evolution, we confirm that this intuitive idea is correct. Second, we can also confirm
that the compositional approach we have taken for the information on the popularity
of the words is appropriate as well. Indeed, even though the compositional treatment
looked adequate according to the nature of the data,we can confirm that byproceeding
this way the model is meaningful. Last, we have also confirmed that a linear model is
a correct approximation. In fact, even though both compositional treatments on the
variables seemed reasonable, we did not have any information on whether a linear
model would be enough, which has been the case.

4 Discussion of the Results

Even though the 18 regressions we have proposed have turned out to be meaningful,
the fit coefficients R2 differ, with values that oscillate between 0.385 and 0.95. It
is especially relevant to address such differences and whether this is a situation we
could have expected. There are three regressions with a fit coefficient above 0.93,
and provided that we are adjusting 554 points this is an extremely powerful result.
The balances associated to these regressions are the following comparisons: triple A
assets versus double A assets, triple A bonds versus Gold and European risky assets
versus Emerging Markets assets.

If we take a closer lookwe can see that it is extremely intuitive that these particular
ratios are fitted better than the rest with the data from the Google searches, since they
represent relationships between assets that behave systematically in the same way
regardless of the time period we consider. Let us consider the example, where there
is a sharp increase in uncertainty and turmoil arises in the markets. In that case, the
AAA assets will recurrently perform better than AA assets, so the ratio between
them will increase (unless AAA assets stop being more secure than AA). However,
in case we think of another ratio different from the previous ones, the behavior is not
that predictable; for instance, in case turmoil arises it is not clear whether the Nikkei
(Tokyo Stock Market) will perform better than the Hang Seng (Hong Kong Stock
Market), so it seems reasonable that the R2 drops to 0.609. Therefore, from the results
we obtain from the R2 we can infer that there are several combinations of assets that
recurrently in a behave predictable way when certain situations happen, whereas
there are other combinations of assets where the behavior is not easily predictable.

On the other extreme of the goodness of fit, we have the ratio between the Milano
Stock Exchange and the 10year Spanish bond, where the R2 is 0.385. This seems
to prove that the popularity of the terms in Google cannot explain the relationship
between these two types of assets, or in case it does the goodness of fit is not accu-
rate. This is a result that might seem shocking in the beginning, but it is not. It is
widely assumed that there is an inverse correlation between the stock markets and
the sovereign bond yields: once uncertainty arises, funds tend to move to safer assets
(bonds), and avoid risky assets (stocks) until confidence is restored. Therefore, it
would seem sensible to expect a good goodness of fit in the regression, since bonds
should systematically behave better than stocks at rough periods and the other way
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Fig. 5 Evolution of the ILR14 and ILR4 coordinates, corresponding to the ratios involving the
Milano Stock Exchange versus the 10year Spanish bond yield and the AAA assets performance
versus AA assets in the time period 2004–2014. Each year has been marked with a vertical line
(each year is equivalent to 52 weeks)

around in case the optimism is restored. However, that is not what happened in
Southern Europe in the time period we have studied. In Fig. 5 we have presented the
evolution of ILR14 (Milano Stock Exchange versus 10year Spanish bond) and the
evolution of ILR4 (AAA assets versus AA assets). If we look closely at the evolution
of Milano stocks versus Spanish bonds we will see that there are localized discrep-
ancies between the fitted values and the real values: in other words, it is not that the
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model consistently fits badly the data, the fact is that there are certain time periods
where the prediction is clearly different from the real situation. If we look carefully at
these discrepancies, we can easily understand what has happened. The first discrep-
ancy arises in 2010, which corresponds to the Eurozone debt crisis: in that situation,
the model gets information of uncertainty, and predicts that bonds should perform
better than stocks, but this is not the case, since in this period Southern Europe bonds
were assumed to be extremely risky as well, so all the funds were escaping both from
the stock market and the sovereign bond market.

The second result we can comment on is that despite having different values
for the R2 on the 18 regressions, the information from the Google browser users
is clearly explicative of the behavior of the relationships amongst different market
indicators the following week, even though the knowledge of such users on these
market indicators might be (very) limited. In other words, even though the Google
usersmay not be individually able to infer an accurate prediction on how, for example,
AAA assets will performwith respect to Gold the subsequent week, they collectively
provide an extremely good approximation of such behavior. This phenomenon was
first introduced in Surowiecki [27] and referred as Wisdom of Crowds (for further
information on this concept see Surowiecki [28] andKoohang et al. [20]). The present
project has not been aimed to address this phenomenon, yet it has proven that the
information of the popularity of certain words that are looked up by people who
not necessarily have thorough financial background is highly correlated with the
performance of several economic indices the subsequent week. It has not been the
purpose of the present study to assess whether a cause-effect relationship can be
established. Rather, we can exclusively confirm that there is strong correlation.

Regarding the accuracy of the results, it has been found that there are several
coordinates that are extremely well described through the Google search patterns,
while there are others that appear to be quite independent. As misleading as this
might have seemed in the first place, it has been proved how this is something that in
fact might have been anticipated. On the one hand, there are certain coordinates (we
should recall that coordinates are nothing more than a logratio between indices) that
reproduce extremely well the flow of capital that appears when perception of risk
is modified. These are the coordinates that present highly accurate fit coefficients,
since they recurrently behave in the same way when similar circumstances arise.
The clearest example of that is the coordinate that stands for the ratio of AAA assets
versus AA assets (R2 = 0.95); as long as AAA assets are more secure than AA ones,
investorswill always prefer them in times of financial turmoil anddislike themas soon
as the perception of risk disappears. On the other hand, there are other coordinates
where the ratio does not reflect as clearly the pattern we have just described, since it
is not straightforward to infer whether the indices on the numerator will outperform
the ones on the denominator in times of volatility. The example that has been used
to exemplify this fact is the coordinate ILR11, which is the ratio between the Tokyo
Stock Exchange market (Nikkei225) and the Hong Kong Stock Exchange market
(Hang Seng Index). Indeed, it seems unclear to determine whether one or the other
will perform better in times of financial instability. In fact, it could be the case that
depending on the nature of the crisis it is one or the other which behaves better. For
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this reason, as long as this coordinate does not reflect the flow of capital that moves
according to the risk that investors perceive, it is highly reasonable to see that the
correlation with the popularity of the words in Google is weaker than in other cases.

Perhaps the most interesting conclusion has been to acknowledge how accurate
the information of Google searches can be with respect to future evolution of certain
relationships betweenfinancial indices. Indeed, it is remarkably interesting to see how
Google users, whomight have very limited knowledge on the evolution of worldwide
financial indices, can collectively build up a highly accurate predictor.We have to say,
however, that, this tool has been proven extremely powerful on average: this means
that Google search patterns have recurrently predicted well the primary trend of the
coordinates, even though they do not offer protection against variance. Indeed, the
fact of considering weekly periods makes predictions inaccurate in terms of value,
but consistently good in average terms. The ultimate implication of this conclusion
is that this would probably a poor tool in case it was used for trading purposes, even
though there has been clear evidence of association between variables.

It is especially relevant to focus on the nature of the wisdom of crowds, since their
potential implications are highly relevant. If we stop to think about all information
that is currently available with respect to economic activity all over the world, we
will realize that it is virtually impossible to gather it all, nor updating it at the pace it
keeps appearing. For that reason, we shall conclude that it is not humanly possible
to have complete information on the evolution of the financial markets in all its
global dimension, so any opinion or knowledge an individual investor might have is
undeniably limited and biased by his own personal situation. The fact that a collective
network, who has incomplete information on the situation of the markets, is smarter
than potentially experienced individual investors seems to be, at least, not surprising.
It is true that a lot can be said on the fact that individual actors might be able to
protect themselves from variance; however, the fact that the model is dealing with
weekly information should be kept in mind. Overall, the results of the present project
have merely brought up that the Google community, which is formed by extremely
diverse people (in terms of culture, background, education, and income level) has
been proven capable of predicting on average what the immediate future is going to
look like in the financial markets.

The model that has been proposed so far has tried to establish whether there is a
correlation between the two data sets of study. To do so, and taking into consideration
the amount of points and the dimension of the variables, a dimension reduction has
been considered in the explanatory variable through a principal component analysis.
However, such reduction has been made in the way that the minimum variance in
the data is lost. In other words, the selection of the components for the regression
has been chosen in order to lose the least amount of variance in the data, not to
maximize the goodness of fit of the predicted variable. Therefore, even though the
information we have eliminated through the reduction might not be relevant with
respect to the variance of the data set, it might be counterproductive with respect
to the results of the regression. There has been some research on this aspect, for
example Efron et al. [13] proposed an alternative way to build regression models,
called least angle regression. Even though we have not explored thoroughly these
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options, they are unable to tackle a dimension reduction, so even though they might
seem conceptually desirable techniques, they fail to address the excessively large
dimension of the explanatory variable.

5 Conclusions

The present project has approached the potential correlation between the popularity
of several keywords in theGoogle browser and the evolution of a selection of financial
indices which involve equities, sovereign bond yields and commodities during the
followingweek.However, a prior compositional treatment has been proposed on both
explanatory and predicted variables, since both data sets presented a compositional
nature (relative information, scale invariance, variables informative of a part of a
whole).

Regarding the results, there appears to be strong correlation between both data
sets, even though there is no evidence on whether this association can be explained
through a cause-effect relationship. As long as this association is acknowledged,
we might infer that the Google community search patterns are highly related to how
financial markets are going to perform in the subsequent week. This phenomenon has
been associated to the concept wisdom of crowds, which proves that even though the
information that any individual user of Google might have regarding the economic
situation might be limited (and even biased), the whole Google community is an
extremely powerful indicator of the current and immediate future performance of
the most important financial indices.

With reference to the compositional treatment, we have explored an example in
which the sum of the components of the vectors is not constant (and it is unknown).
It would be relevant to highlight that in this particular case the closure operation is
unavailable, and it is not possible to bring back the results to the simplex. Still, this
situation does not generate any methodological problem in terms of how the com-
positional approach is performed. Regarding possible future research, the stability
of the relationships through time should be assessed. For example, by adding future
data and evaluating whether the model is modified.
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Representation of Species Composition

V. Pawlowsky-Glahn, T. Monreal-Pawlowsky and J. J. Egozcue

Abstract The Aitchison geometry of the simplex, the sample space of composi-
tional data, allows statistical modelling and analysis of compositions without the
problems derived from spurious correlation. Here, it is used to show that it offers an
alternative to the de Finetti ternary diagram for representing variability of species
composition avoiding the problems typical of a standard analysis of proportions,
namely spurious correlation and limitation to three or at most four components. The
method is illustrated with data representing the species composition of Free and FAD
tuna school sets sampled in the Indian and Atlantic Oceans during the 2002–2008
period by purse seiners.

Keywords Simplex · Ternary diagram · Aitchison geometry · Tuna · Fisheries

1 Introduction

Difficulties for a visual illustration of the variability of species composition of sam-
pled sets landed by purse seiners in the Indian and Atlantic Oceans moved Fonteneau
et al. [14] to propose the use of ternary plots, named after de Finetti [7, 9], to solve
this problem. As summarised by Howarth [17], there has been an extensive use of the
ternary diagram in many different science fields. For example, ternary plots can be
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found in the Geosciences, known in this field as ternary diagrams [26], and they are
used to represent the Hardy–Weinberg law of equilibrium in the Biosciences [16].

The ternary diagram has a major drawback in that only three part compositions can
be visualised. A similar representation with four parts is possible using a tetrahedron.
More difficult it is to visualize compositions with more parts. Nevertheless, the most
important drawback is that, using standard statistical methods with proportions is
known to lead to spurious, nonsensical results [8, 31]. Thus, it appears desirable
to have tools that allow the visualisation and analysis of a larger number of parts.
These tools are available in the framework of compositional data analysis based
on the logratio approach. Here they are illustrated with real data corresponding to
species composition of tuna landings. In addition to this representation of species
composition, it is shown how different groups can be compared using an ANOVA
approach.

2 The Data

The data were kindly provided by Scientists from the IRD (Institut de Recherche
pour le Développement, France—http://www.ird.fr/). They correspond to species
composition of tuna landings. It is a subset of the so-called “SPECIES” files, i.e. of
the detailed species composition of all the sampled sets collected in the Indian and
Atlantic oceans. These data have been used and described in Fonteneau et al. [14] to
introduce the de Finetti ternary diagrams to show species composition. They corre-
spond to data collected during the period 2002–2008 on the landing or transshipment
operations of the EU and associated purse seiners.

The characteristics of the data are summarised in Table 1. The available data
correspond to 5784 operations in the Atlantic Ocean and 4947 in the Indian Ocean,
out of which a part has been obtained using a fish aggregating device (FAD), while
another corresponds to free schools (BL). For each ocean and each fishing mode
three species of tuna have been recorded, YFT = yellowfin, SKJ = skipjack, and
BET = bigeye. The data present a major number of zeros, which distribution is
summarised in Table 2. Once the two cases with three zeros have been removed, a
graphical representation in a ternary diagram is possible, as can be seen in Fig. 1.
Zero values appear in the border of the ternary diagram. If a single component is zero,
the data point appears on an edge. More precisely, each data point is placed so that

Table 1 Sample size of species composition of tuna landings by ocean and fishing mode

Fishing mode

N FAD BL

Atlantic Ocean (AO) 5784 3526 2258

Indian Ocean (IO) 4947 2857 2090

N = total sample size; FAD = fish aggregating device; BL = free schools

http://www.ird.fr/
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Table 2 Number of samples with zero and non-zero counts in species composition of tuna landings
(see text for details)

Ocean AO IO

Assoc FAD BL FAD BL

No zeros 3238 515 2452 98

Zeros only in YFT 15 7 4 2

Zeros only in SKJ 6 428 10 549

Zeros only in BET 237 164 340 147

Zeros in YFT and SKJ 0 0 0 6

Zeros in YFT and BET 22 182 19 310

Zeros in SKJ and BET 8 960 32 976

Zeros in YFT, SKJ and BET 0 2 0 2

Fig. 1 Representation in the
ternary diagram of
proportions of landed
species. Indian ocean in blue,
Atlantic ocean in red.
Data-points on the vertices
and edges of the triangle
correspond to data with two
or one zero-proportions

the edge is partitioned into two segments, according to the proportion between the
two non-zero species. When there are zero-proportions in two parts, the data point is
represented in the vertex corresponding to the only recorded species, independently
of the value of the single component: the proportion of this species is one. However,
Fig. 1 may be confusing, as data-points with small proportions in one or two species,
appear close or very close to those for which there is a zero proportion. This fact
redirects us to a deeper problem concerning the representation of proportions. It is
the question of the scale. For a couple of proportions like 0.01 and 0.005, it is clear
that the first doubles the second; consequently, their difference or distance should be
important. Compare it to the difference between 0.500 and 0.505; in this case, the
difference can be considered irrelevant. We say that proportions carry only relative
information and that the scale is relative. This relative scale is not shown in a ternary
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diagram, thus claiming for a change of scale for the representation of proportions. The
way out is to use logratio transformations of the data in proportions. They account
for the relative scale of compositional data and, at the same time, open up a way for
applying standard statistical analysis to logratio transformed data [3, 23, 30].

3 Methods

We base our approach on the fact that compositional data, understood as equivalence
classes [6], can be represented as proportions in a simplex; that the simplex is then a
representant of the sample space, and that it admits a Euclidean space structure [29],
which leads to the so-called Aitchison geometry. The approach is based on the use
of general scale invariant logratios, also called log-contrasts.

Denoting the abundances of D species by x = [x1, x2, . . . , xD], log-contrasts
appear as expressions like

ln
xα1

1 xα2
2 . . . xαk

k

xαk+1
k+1 x

αk+2
k+2 . . . xαD

D

,

k∑
i=1

αi =
D∑

j=k+1

α j ,

where xi can represent proportions of landed species in an arbitrary order, and D is the
number of considered species, which in the present example is D = 3. An important
property of such log-contrasts is that their value does not change when the data in
proportions is multiplied by any positive constant, e.g. 100 for obtaining percentages,
or by an arbitrary positive number when they are expressed in abundances. This is
useful in the case of the reference data, which are not given in proportions, but in
some non-homogenised units not adding to a prefixed constant. It does not matter,
log-contrasts maintain their values independently of the units in which data are
presented; in the present case, only ratios between the abundances of some landed
species are relevant. There are special cases of logratios which are useful for the
representation of compositional data: (a) simple logratios, like ln(xi/x j ), (b) centred
logratios, used in the centered logratio transformation, which is given by

clr[x1, x2, . . . , xD] =
[

ln
x1

g(x)
, ln

x2

g(x)
, . . . , ln

xD
g(x)

]
, (1)

with

g(x) = (x1x2 . . . xD)1/D =
(

D∏
i=1

xi

)1/D

,

and (c) balances, which take the form of a logratio of geometric means of groups
of components. In the case of the reference data, with D = 3, a possible choice of
balances is
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b1 =
√

2

3
ln

x3

(x1x2)1/2
, b2 =

√
1

2
ln

x1

x2
. (2)

They are Cartesian coordinates of the composition of the three species considered.
The use of logratios to represent compositional data impede the use of zero-

proportions, since logarithms of zero take negative infinite values. When zero values
in abundances or proportions are understood as values below a detection limit, it is
advisable to replace the zero values using some imputation criteria [20, 21, 24, 25].
In the present case, with D = 3 and a large number of zeros, all types of imputation
introduce serious distortions in the data set, as will be shown below.

An important exploratory tool in compositional data analysis is the clr-biplot [4].
It is based on the principal component analysis of compositional data [2] and is a
compositional version of the biplot for real data [15]. Elementary explanations can be
found in Pawlowsky-Glahn et al. [30] and Thió-Henestrosa et al. [32]. Construction
of a clr-biplot starts transforming the data set into their clr’s (Eq. 1); a second step
is centering the clr-components to place the origin of axes in the center of the data;
a singular value decomposition (SVD) of the centered clr-data is then carried out,
leading to orthogonal axes which show maximum variability of the data set; finally,
the data and the clr-variables are simultaneously represented in a bidimensional
plot. The bidimensional projection of the data set provided by the clr-biplot has
the advantage that the data can have a large number of parts or components, thus
performing a dimension reduction with the minimum loss of variability. In the present
case, where D = 3, the biplot will represent 100 % of the variability of the data.
Biplots can be scaled in several ways, being the so-called covariance and form
biplots the most used. Covariance biplots scale the directions of the clr-variables
proportionally to their standard deviations, and the components of data-points appear
in a standardised way. Covariance biplots are adequate to visualise relationships
between clr-variables. Form biplots normalise the representation of clr-variables,
leaving the data-points so that their inter-distances are the Aitchison distances in the
simplex [2, 3, 29]; thus, they are adequate to study the distribution of data-points.

To start with the analysis of the reference data set of landed tuna species, the zeros
have been substituted all by the value 0.00005 in proportions. This value is arbitrary
and is chosen to visualise the effect of this raw replacement in a clr-biplot. Figure 2
shows the covariance biplot where the data-points have been coloured according to
the appearance of zeros (Table 2). In the legend, a Z followed by the acronym of a
species indicates zeroes in that (or those) species. The biplot shows a clear sepa-
ration of the groups corresponding to samples with zeros, thus demonstrating that
replacement of zeros introduces artefacts in the data set. From a compositional per-
spective, this zero replacement respects the ratios between the non-zero parts. In the
present case, with D = 3, the dimension of the data set is 2 and, fixing one logratio,
the degrees of freedom of a replacement of one zero is one. This effect is shown in
Fig. 2, in which those cases with only one replaced zero appear dispersed and sepa-
rated from data-points with no-zeros (NZ, blue points), while those cases where the
replacement is carried out in two components, substitution has two degrees of free-
dom and the replaced data-points appear aligned (grey, pink and yellow points). This
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Fig. 2 Biplot of data after zero replacement; grouped by categories with zero counts (see text for
details). Explained variability 100 %

kind of artefacts due to zero replacements appear with any procedure of zero replace-
ment in a composition with three parts (D = 3); less rough replacement procedures
can reduce the separation of the replaced data-points from the data-points without
zeros, and even introduce a dispersion similar to that of data without zeros [21].

For the subsequent analysis, data with zeros have been omitted. The whole data
set is classified by ocean (Indian IO, Atlantic AO) and by fishing mode (FAD, BL).
Under this two-way classification, the biplot is computed assigning colours to the four
different groups of data points. Figure 3 shows the form (upper panel) and covariance
(lower panel) biplot. The form biplot (upper panel) is adequate to show the position of
the data-points. The length of rays is the projection of a unitary vector in the direction
of each clr-variable. As in this case D = 3, the represented variance is 100 %, and the
rays appear of equal length and unitary, thus telling that they are perfectly projected
on the plane of the two principal components. In cases of larger dimension, a short
ray points out that the clr-direction is not well projected on the plane. Looking at the
data, it can be observed that the classes clearly overlap, although a small shift to the
left of data from AO–FAD relative to IO–FAD can be observed. Other classes are
almost hidden by these two classes. As the first principal component is approximately
a logratio of the geometric mean of YFT and SKJ over BET, the shift to the left of
AO–FAD could be due to a difference in species composition in both oceans, leading
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Fig. 3 Biplots of data without zeros. Explained variability 100 %. Upper panel form biplot by
ocean and fishing mode. Lower panel covariance biplot by ocean and fishing mode
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to a higher effectiveness of FAD procedures in capturing BET, relative to YFT and
SKJ, in the Atlantic Ocean than in the Indian Ocean. However, this is only a visual
impression and this kind of conclusions should be confirmed statistically.

The lower panel is a covariance biplot. As D = 3, not many differences can be
seen in comparison to the form biplot (upper panel). In a covariance biplot attention is
focussed on the clr-variables represented as rays from the origin (in red). The length
of the rays is proportional to the standard deviation of each clr-variable corresponding
to the logratio of each landed species over the geometric mean of the other two. In a
covariance biplot, the main tool of interpretation relays on the segments linking the
extreme points of the rays, called links for short. The length of a link is proportional
to the standard deviation of the simple logratio between the species in the respective
labels. The links in the lower panel of Fig. 3 are quite similar, although the link
between clr(SKJ) and clr(YFT) is a bit shorter than the link between clr(SKJ) and
clr(BET), or the link between clr(YFT) and clr(BET). A very short link would imply
association between the two involved parts, suggesting that the proportions between
landed species is almost proportional across the sample [10, 18, 19].

Features observed in the covariance biplot of Fig. 3 are quantified in the variation
array [3], shown in Table 3. The three variances of simple logratios in the upper
triangle are of the same order of magnitude, indicating there is no special association
between parts. Their square roots, the standard deviations, are proportional to the
links visualised in the covariance biplot of Fig. 3. Mean values of the logratios are
shown in the lower triangle of Table 3. For instance, the sample mean of ln(BET/SKJ)
is−2.34 which indicates that, in overall mean, the landing abundance of BET is small
relative to SKJ landings. Variation arrays by ocean, by fishing mode, or by both, show
no significantly different features and are not shown here.

In the form biplot (Fig. 3, upper panel), the coordinates of data-points on the first
principal axis are approximately proportional to the following log-contrast

ln
(YFT)0.58(SKJ)0.21

(BET)0.79
, (3)

which corresponds to the projections of rays on the first principal axis. However,
the interpretation of such coordinates is not easy, specially when there are more than

Table 3 Variation array of data without zeros

Species YFT SKJ BET

YFT 1.66 3.56

SKJ 1.43 2.62

BET −0.91 −2.34

Upper triangle contains variances of logratios of species by row and column. Lower triangle shows
the mean of the logratios. Total variance is 2.61
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three species in the data set. Therefore, it is common to use more simple log-contrasts
to represent and analyse the compositions. This is done using balances, like those in
Eq. (2).

Within the Aitchison geometry of the simplex, it is advisable to work on ortho-
normal coordinates, called isometric logratio (ilr) coordinates [13] to which all the
standard statistical methods, devised for real-random variables, can be applied [23].
Those coordinates, shown in Fig. 3 (upper panel) or in Eq. (3), are ilr-coordinates
generated in the principal component analysis. However, in practice, the coordinates
used correspond to a sequential binary partition, as described in Egozcue et al. [13];
Egozcue and Pawlowsky-Glahn [11, 12] and Pawlowsky-Glahn and Egozcue [28].
The generated ilr-coordinates are then called balances and have a simpler form
(Eq. 2). For the reference data, a three part composition, the balance-coordinates
used here are

b1 =
√

2

3
ln

(
BET

(YFT · SKJ)1/2

)
, (4)

and

b2 =
√

1

2
ln

(
YFT

SKJ

)
. (5)

They can be visualised in a dendrogram like the one in Fig. 4. These kind of balance
dendrograms [28, 33] are designed to show graphically and simultaneously: (a) the
sequential binary partition used for designing the coordinates; (b) the decomposition
of the total variance by coordinates; (c) dispersion of balances using box-plots; (d)
mean values of balances; and (e) all these features for different populations or groups.
In Fig. 4, the horizontal junction from the group (SKJ, YFT) to BET corresponds
to the balance b1 (Eq. 4); the horizontal junction of SKJ and YFT corresponds to
the balance between these two species denoted b2 (Eq. 5). Note that in presence
of more species the dendrogram would have as many junctions as the number of
parts minus one. The length of vertical bars over the junction of each balance is
proportional to the variance of the balance, thus constituting a decomposition of the
total variance of the sample. The horizontal junction between groups of parts is used
to show the dispersion of the balance. All horizontal junctions represent the same
range and are scaled accordingly. The zero of the balance (equality of the numerator
and denominator of the balance) is the central point, independently of the length of
the junction. The boxplots under the junction visualize the dispersion of the sample
balances. In the scale of the horizontal junction, the fulcrum of the vertical bars is
the mean of the corresponding sample-balance. This is, when the mean balance is
placed at the left side, as is the case in Fig. 4, it points out that the parts on the left
have greater proportions than the parts placed at the right: it works like a lever in
equilibrium i.e. a balance in the plain sense. The whole structure is built up using
the whole sample, which corresponds to the black vertical lines. When the sample is
divided into different populations the variance decomposition of each sub-population
is superimposed, respecting the scales of the horizontal junctions. In this way, both
variances and mean of each balance can be visually compared.
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Fig. 4 Dendrogram for data without zeros grouped by ocean and fishing mode

In Fig. 4 the whole sample of landed species (no zeros) is divided by ocean and by
association, giving rise to a classification into four groups. As can be seen, variability
within each group is pretty similar and some differences might be significant in the
means of the balances. For example, the group of tuna landed in the Atlantic Ocean
using FAD (FADAO, red) seems to be different in b1, while the group of tuna landed
in the Indian Ocean from BL (BLIO, green) shows a more differentiated mean in
b2. Boxplots for b1 and b2 are reproduced with more detail in Fig. 5 (left and right
panels respectively).

Assuming the data to be obtained by simple random sampling from a statisti-
cal population, one can apply standard statistical methods to balance-coordinates,
including model adjustment or testing of hypothesis, e.g. testing equality of means
or performing an analysis of variance. Figures 6 and 7 represent the data in ilr-
coordinates (Eqs. 4 and 5), balances in this case, after removing samples with zeros.
Data have been split into four sets, crossing Atlantic Ocean (AO) and Indian Ocean
(IO) with the extraction techniques, FAD and BL. For illustration of our approach,
under the assumption of simple random sampling, a bidimensional normal distribu-
tion has been adjusted to the data represented by balances. Some isodensity contours
of the normal distribution are shown in these figures. Before carrying out a statis-
tical test on the goodness-of-fit, the normal distribution for the balance-coordinates
seems a first option for modelling. This corresponds to a normal distribution on the
simplex [1, 5, 22, 30]. For the whole sample a low, but significant, correlation coef-
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Fig. 5 Boxplots of balance b1 (left) and balance b2 (right) (enlarged)
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Fig. 6 Atlantic ocean data without zeros represented in balance-coordinates (b1, b2). Normal
contours (probabilities, 0.5, 0.75, 0.90, 0.95) fitted to data. Left panel, FAD-fishing mode; right
panel, BL-fishing mode

ficient of −0.23 is obtained when comparing b1 and b2. Separating the four groups,
the correlation coefficients were −0.25 for AO–BL, 0.33 for IO–BL, −0.26 for AO–
FAD, and −0.07 for IO–FAD, thus indicating a weak linear dependence between the
balances in the four groups.

A test on equality of means of each balance b1 and b2 gave p-values < 10−4,
indicating that the hypothesis of equality of means should be rejected. The groups
responsible of these significative differences for mean balances are those mentioned
when looking at the dendrogram in Fig. 4 and the boxplots in Fig. 5. For instance, the
whiskers of boxplots approximate 95 % confidence intervals on the mean values of
the balances. For balance b2 the only mean differing significantly from the others is
that of IO–BL. For balance b1, the mean differing significatively from the others is
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Fig. 7 Indian ocean data without zeros represented in balance-coordinates (b1,b2). Normal contours
(probabilities, 0.5, 0.75, 0.90, 0.95) fitted to data. Left panel, FAD-fishing mode; right panel, BL-
fishing mode

AO–FAD, specially when compared with IO–BL. This means that the proportions of
the three tuna species landed depend on the ocean and on the fishing mode, although
the difference in mean is not strong.

4 Conclusions

Representation of a composition of species in ternary diagrams, in this case landed
species of tuna, was proposed by Fonteneau et al. [14]. Here, we show that this rep-
resentation can be complemented using the exploratory and graphical tools of the
compositional data analysis. Ternary diagram representations have two main short-
comings: proportions are not represented in an appropriate scale; and they cannot be
generalised to more than four species. Logratio analysis overcome these shortcom-
ings. The visual tools proposed are: the compositional biplot, the balance dendro-
gram, and scatterplots of balance coordinates. Compositional biplots simultaneously
represent data in ilr-coordinates (form biplot) and allows a quite intuitive visuali-
sation (covariance biplot) of relationships between variables. Balance dendrograms
allow comparison of means and variances of balance-coordinates, selected by the
analyst, from different populations. They graphically show all the elements for an
ANOVA analysis to compare means of balances. Finally, representation of com-
positions by ilr-coordinates allow to construct all desired scatterplots. Statistical
modelling of balances or other ilr-coordinates is reduced to the standard statistical
multivariate techniques. Moreover, other sets of log-contrasts can be studied sepa-
rately using standard techniques. Finally, all these representations can be generalised
to a large number of parts. For a number of parts greater than 3, the clr-biplot is an
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optimal projection; the balance dendrogram grows as a tree; and the selection of inter-
pretable balance-coordinates gets more involved, but feasible. In summary, working
on coordinates of the simplex is a powerful tool for the representation and analysis
of compositional data.
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Joint Compositional Calibration:
An Example for U–Pb Geochronology

R. Tolosana-Delgado, K.G. van den Boogaart, E. Fišerová, K. Hron
and I. Dunkl

Abstract This contribution explores several issues arising in the measurement of a
(geo)chemical composition with Laser Ablation Inductively Coupled Plasma Mass
Spectrometry (LA-ICP-MS), specially in the case that the quantities of interest are
linear functions of (log)-ratios. These quantities are scale invariant, but in general
cannot be estimated without taking into account possible additive noise effects of the
instrumentation, incompatible with a purely compositional approach. The proposed
ways to a solution heavily build upon the multi-Poisson distribution, highlighting the
counting nature of the readings delivered by these instruments. The model can be fit-
ted using a generalized linear model formalism, and it allows for a joint calibration of
all components at once. Relevance of these considerations is shown with some simu-
lation studies and in a real case of multi-isotopic geochronological analyses. Results
suggest that the most critical aspect of this analytical technique is the assumption
that the amount of ablated mass per second between samples of unknown and known
compositions is similar (matrix matching): if this cannot be ensured, absolute esti-
mations of the abundance of each of these isotopes fails, while their (log)ratios are
perfectly estimable. This opens the door to using the model for a joint calibration by
loosening the condition of matrix matching and using several standards of different
composition.
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Abbreviations

Concept Abbreviation (definition)
Indices for variables i, j, l
Index for time slices k
Measuring interval Tk
Background time window Bk = [t kA, t kb ]
Signal time window Mk = [t kM , t kN ]
A time slice from interval Tk tk
Reading of variable i at time slice tn xi (tn)
Background level of variable i at interval Tk bki
Signal of variable i at tn �xi (tn) = xi (tn) − bki
Signal level of variable l at interval Tk ykl
Average readings of variable xi x̄i
Standard deviation of readings of variable xi sxi
Average background associated to variable xi bi
Standard deviation of the background bi sbi
Measuring channel i
Number of channels P
(Random) reading Xi

True composition Z = [z1, z2, . . . , zD]
Expected background counts per second at
channel i

λbi

i-th channel dwell time duration ω0i

Sensitivity of channel i to isotope j λi j

Matrix of sensitivities �

Total number of counts produced
by isotope j

λ j

Proportion of counts in each channel i
produced by isotope j

�∗
i j

Number of analytes analysed in this session K
Index for one analyte k
Set of indices for standard analytes Ks

Set of indices for sample analytes Km

Total set of analyte indices K = Ks ∪ Km

Composition-to-counts model �(· · · ; t)
Vector of expected background counts λb

Other parameters of the model θ

Whole measurement period T = ⋃K
k=1 Tk
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Concept Abbreviation (definition)
True composition of sample k Zk

Nominal composition, if sample k is a
standard

zk

Union of background windows of the
session

B = ⋃
k Bk

Calibration data set Xs

Prediction data set Xm

1 Introduction

Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) is
an in-situ analytical technique to quantify the abundance of some isotopes (or their
ratios) in a sample of unknown composition. The matter to analyse is ablated with
a laser and the resulting aerosol is introduced in a plasma, where its atoms’ part
with their most loosely bound electron to form a (+1)-charged ion. These are then
separated by an electromagnetic field, on the basis of their mass-charge ratio, each
colliding with a detector. The result is a vector of counts (number of detected ions
per unit of time) for several masses, which must then somehow be related to con-
centrations or relative abundances of the several isotopes. Usually unknowns (called
“samples”) and materials with known compositions (standard reference materials,
later shortly as “standards”) are used alternately. This common procedure is called as
unknown-standard bracketing and performed in order to derive the proportionality
factor between signal and composition. The detectors receive counts even when no
ablation happens, forming what is often called a background or blank. Moreover,
the signal received while analysing standards shows systematic drifts at several time
scales (along the day, during a measurement, etc.), even though the standards have ho-
mogeneous compositions. Thus, the desired ratios of abundances must be estimated
from data on counts, taking into account the noise in the signal and a proportionality
between ratios of signals and ratios of abundances along time, which is in general
non-constant. This problem is typically dealt with by establishing a calibration line
for each element; these are obtained by subtracting an additive noise to the signal
and fitting some parametric function of time to the proportionality values obtained
from dividing the readings for the standards by their normative value. Each isotope is
calibrated separately. Several functions have been reported to be used, though mostly
they are piecewise linear segments or polynomial fits [2]. It is important to mention
that conventional calibration procedure of LA-ICP-MS instruments is targetted to ob-
taining estimates of the amount of each element individually with the best precision
and accuracy possible, i.e. unbiased and with lowest variability in absolute terms.
However, these values are most often used to compute some informative (log)ratios.

None of the existing methods considers in any sense the possible compositional
nature of the problem [7], namely the fact that the target vector to estimate is a com-
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position, which introduces some modifications on the setting. Two definitions exist
of a composition, each with its own implications. The classical definition states that
a composition is a vector of positive components and a constant sum to 100 %. This
definition implies that results of the measurement procedure should deliver vectors
of amounts on all elements of the periodic system which are always non-negative
and sum to 100 %. Because of the lack of a joint calibration/measurement model,
one does not know whether this constant sum will be honored, or how can results be
corrected to satisfy it. The modern definition states that a (chemical) composition is
a vector of positive components reporting the relative abundance of (the set of all)
elements in a sample, or alternatively, which total sum is irrelevant (a property called
scale invariance). This definition begs the question of why should we spend efforts
in obtaining individually unbiased and lowest variability estimates of each of these
quantities in absolute terms, if we are going to interpret them jointly in terms of a
relative scale.

This contribution presents several models and methods to take the compositional
nature of the problem into account, in its two definitions and with all implications
outlined before. The paper discusses and shows the potential uses and limitations of
each of these models, compared with the classical approach. This work builds upon
materials on from Fišerová et al. [3] and the considerations regarding the background
noise in measuring geochemical compositions by van den Boogaart et al. [10]. The
keystone of our approach is given by the multi-Poisson distribution [11]. This dis-
tribution is chosen because it is the most parsimonious model able to describe the
number of counts observed in a series of categories when the total number of counts is
not known. The multi-Poisson distribution is an extremely simple model, with many
shortcomings (e.g., there is no way to model the dependence between the counts in
two categories; or the fact that the variance and the mean must be equal for each
component). However, its simplicity makes it a very good model when one does not
have enough information to model the actual physics of the phenomenon.

The paper is distributed as follows. Section 2 presents the fundamentals of the
LA-ICP-MS analytical technique and its current practice for the non-expert readers.
Section 3 puts forward two stochastic models of generation of LA-ICP-MS signals
that include both compositional considerations and simplified physics, and gives
reasons to the choice of the multi-Poisson model. Section 4 presents a statistical
method to work with each of these models, in both the calibration and estimation
settings. Section 5 uses a series of simulated scenarios to show the potentials and
limitations of these models, specially with regard to their ability to produce unbiased
estimates on absolute or relative terms under distortion from the model hypotheses.
Section 6 shows the usefulness of one of these models in a real case study. Finally
Sect. 7 discusses the main aspects raised by the simulation and real case studies, as
a form of preliminary conclusions. Two appendices are included: one summarizing
the several geometries involved, and one presenting other compositional calibration
models not fitting to the data but included for the sake of completeness.
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2 Basics of Laser Ablation Inductively Coupled Plasma
Mass Spectrometry (LA-ICP-MS)

2.1 Review of Poisson Distribution Properties

A random variable X is said to follow a Poisson distribution with intensity parameter
λ, denoted as X ∼ Po(λ) if and only if its probability mass function is

fX (x) = λx

x ! e
−λ, x = 0, 1, 2, 3, . . . .

The expected value and population variance of X are E[X ] = Var[X ] = λ, hence this
parameter is often called expected number of counts. Note that, in spite of this identi-
fication, X is an integer, while the parameter and these statistics are real positive val-
ues λ ∈ R+. Its dispersion coefficient is defined as D = Var[X ]/E[X ] = 1 always. If
D > 1 (D < 1), there is evidence of overdispersion (underdispersion) which implies
that there is more (less) variability around the model’s fitted values than is consistent
with a Poisson distribution. Note that this is not the coefficient of variation.

If λ is large, the Poisson distribution can be excellently approximated by a normal
distribution with mean and variance both equal to λ.

The sum of two independent Poisson distributed variates X1 ∼ Po(λ1) and
X2 ∼ Po(λ2) follows also a Poisson distributionY = X1 + X2 ∼ Po(λ1 + λ2). The
difference Z = X1 − X2 follows a Skellam distribution [8], but if λ1 � λ2, then
Y = X1 − X2 ∼ Po(λ1 − λ2) approximately.

A vector of D Poisson variates Xi ∼ Po(λi ) follows a multi-Poisson distribution
(van den Boogaart and Tolosana-Delgado 2013, p. 64) with parameter vector λ =
[λ1,λ2, . . . ,λD]. This is a vector of non-negative integer components characterized
by the following conditional construction:

1. the sum of these components XT = ∑D
i Xi ∼ Po(λT = ∑D

i λi ) gives a total
number of counts; note that this holds because the several components are inde-
pendent by the nature of the Poisson process;

2. conditional on a fixed total number of counts xT , the number of counts on
each category follows a multinomial distribution with parameters p = C [λ] and
n = xT . Here C [λ] means the closure of λ.

This construction allows to study the multi-Poisson distributions as the product of a
(classical univariate) Poisson distribution times a multinomial distribution.
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2.2 Technical Procedure

A laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) is an
in situ analytical instrument that is used for determining the elemental and isotopic
composition of micrometer-sized areas of solid materials such as minerals, glasses,
metal alloys, bones, teeth, calcareous shell and wood, and fluids trapped as inclusions
within solids. The analytes are polished and cleaned before introduction into the
laser cell. Typically an excimer UV laser (193 nm) is used for ablation, the generated
aerosol from the approximately 20 to 100µm diameter laser spot is transported by
a helion–argon gas mixture into the ICP-MS. Here the particles of the aerosol are
dried, atomized, and partly ionized by the plasma. The resulting positive ions are
accelerated and separated in variable electric and magnetic fields and the ions are
distinguished according to their mass-to-charge ratio.

One or more detectors is counting the ions at the end of the trajectories during
a certain time period (dwell time). Then the detectors move to different positions,
corresponding to other masses, and count impacts there. And so on, until the complete
set of masses has been visited. Afterwards the detectors come back to the starting
position and counts again, thus starting a new time slice. The dwell time can be
variable for the different analytes according to their abundance or importance Several
of such time slices occur during a second, producing a multivariate reading. In spite of
the sequential character of the measurements within a time slice, these are considered
simultaneous.

This reading procedure is applied in three different situations:

background the readings obtained with no material,
standard reference material the readings obtained with an analyte of known

composition (or short, standard),
sample (sensu stricto) with an analyte of unknown composition.

Given that the counts are registered for each analytes during a fraction of a sec-
ond, the resulting total counts per time window are linearly upscaled to counts per
second. The analytical sequences are usually organized as bracketing, i.e. samples
and standards are measured alternately.

2.3 Conventional Data Analysis Approach

Typically, each measuring interval Tk contains a period of background readings and
a period of sample or standard readings, with more or less sharp transitions between
them. The first step is the identification of time windows of background [t kA, t kB] ⊂ Tk
and of signal [t kM , t kN ] ⊂ Tk (see Fig. 8 later on, for an example), a task that is often
manually done by the lab analyst guided by some homogeneity statistics.

The second step is the characterization of the background. This is usually done
for each measuring period and for each isotope i separately. All readings in the



Joint Compositional Calibration: An Example for U–Pb Geochronology 187

background window, denoted {xi (t kA), xi (t kA+1), . . . , xi (t
k
B)}, are considered as inde-

pendent realizations of a Poisson distribution of unknown parameter λi . With the
standard assumptions of statistics of Poisson variates, this parameter can be esti-
mated as the mean readings of that variable in the background window, denoted as
bki . Some labs implement a quality control assessment on the dispersion coefficient
within the background window

D̂k = Var[xi (t kA), xi (t kA+1), . . . , xi (t
k
B)]

E[xi (t kA), xi (t kA+1), . . . , xi (t
k
B)] = s2

bi (Tk)

bki

with heuristic rules that suggest a too-strong non-Poissonal regime if the hypothesis
D = 1 is not acceptable. In this case, typically the analyst reconsiders the choice of
background window.

The third step is the definition of the expected readings for each signal win-
dow. This is sometimes applied to the absolute readings, sometimes to ratios be-
tween two readings. In particular, in U/Pb-geochronological studies the following
ratios of interest are commonly used: Pb206/U238, Pb207/U235, Pb207/Pb206 and even-
tually Pb208/Th232. A first approach would be to neglect fractionation effects on
those ratios and apply the same procedure of the background at the set of readings
{�xi (t kM),�xi (t kM+1), . . . ,�xi (t kN )} versus {�x j (t kM),�x j (t kM+1), . . . ,�x j (t kN )}.
Note that these values are obtained by subtracting the background levels bki and
bkj to the read counts. Some labs work with the arithmetic mean of the ratios
�xi (tm)/�x j (tm), while other work with the ratios of the count means �xi/�x j

within the signal window [4]. More elaborate approaches consider the fractionation
trend as a line or as a curve, and attempt several ways of extracting a representa-
tive average ratio. For instance, an option is to fit a linear regression trend to the
fractionation drift and extrapolate it to the time when the laser beam hit the sample.
Whichever method is used, at the k-th measurement interval Tk one has a background
value bkl and a signal value for each quantity of interest l (ratio or concentration) ykl .

The fourth step is to study the several measurements {ykl} available for the stan-
dards, which, due to their homogeneity, should be “equal”, i.e. ideally realizations
of the same random variable. If this can be assumed, then the average of all standard
readings ystdl is compared with the known nominal value μstd

l , and all measurements
for unknown analytes are upscaled conveniently as

ykl = μstd
l

ystdl

ykl .

Note that this equation has only sense if one can assume that the sample and the
standard behave in the same way during ablation, i.e. that the same amount of mass
per second has been ablated and sent to the mass spectrometre. To ensure that, it
is common to select standards of the same kind than the sample, something called
matrix matching [7].
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If the several readings of the standard show too obvious systematic drifts, then
it is common to assume some functional model for this drift, fit it to the available
measurements of the standard, predict its value ystdl (Tk) for a measuring interval Tk
and then upscale the value at that interval accordingly

ykl = μstd
l

ystdl (Tk)
ykl .

Some effort in these data processing steps is devoted to evaluating the “mea-
surement error” (statistical error, uncertainty). Denoting by x̄i , s2

xi and bi , s2
bi the

means and variances of the signal (no background correction) and of the background
(dropping the dependence on Tk for simplicity) of the isotope i , the variance of the
corrected signal is

s2
ci = s2

bi + s2
xi ,

under the hypothesis that the background and the corrected signal are considered
as independent Poisson distributions which sums to the uncorrected signal. These
concepts and statistics allow as well the definition of detection limit, also known as
level of detection (LoD). The detection limit is defined as that level of signal which
cannot be distinguished from the background. It is customary to take the detection
limit of each isotope counts as LoDi = bi + 3 · sbi .

3 A Compositional Calibration Model for ICP-MS

To build a compositional calibration model for this kind of measurements it is im-
portant to distinguish between the measurements, the several estimates of some
abundances of components of interest, and their actual abundances. In what follows,
we call a channel a particular position of the detector, which is (hopefully) placed
at the end of the trajectory taken by ions of one single charge/mass ratio. P denotes
the total number of channels available. The number of collisions counted by the
detector on the i-th channel is called a reading, and is denoted as Xi . The actual
vector of abundances of all D chemical elements in the sample is called its (actual)
composition, and is denoted by the vector Z = [Z1, Z2, . . . , ZD].

Following the ideas of the preceding chapter, we may assume the readings of the
background to be a vector of P components following a multi-Poisson distribution,
i.e. at each time slice while the sample is not being ablated,

Xi (t) ∼ Po(ω0iλbi ), t ∈ [tA, tB], (1)

where λbi is the expected counts per second of the background and ω0i is the length
of the dwell time of channel i , in seconds. At the moment that ablation starts, though,
that channel will produce readings assumed to follow the law
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Xi (t) ∼ Po

⎛

⎝ω0i

⎡

⎣λbi +
D∑

j=1

�i j (t) · (ṁ(t) · z j )
⎤

⎦

⎞

⎠ , t ∈ [tM , tN ], (2)

where ṁ(t) is the mass of sample per second escaping the spot, and �i j (t) is the ex-
pected number of counts per second produced by one gram of element j in channel i .
The sample composition is considered constant. The escaped mass per second is of-
ten observed to be an exponentially decaying function of time, ṁ(t) = ṁ0 · exp(θt t).
This model is called a full interaction model, because it allows that each isotope po-
tential influences all channels, in a varying way along time.

The quantities �i j (t) deserve a longer discussion. Each can be interpreted as a
sensitivity of channel i to element j . It is typically assumed that each channel i
corresponds to one single element j , i.e. that this matrix is diagonal. In this case,
P = D and �i j (t) := λ j (t)δi j , thus

Xi (t) ∼ Po (ω0i [λbi + ṁ(t) · λi (t) · zi ]) , t ∈ [tM , tN ]. (3)

Note that Eq. (3) implies that the process is partly non-compositional, as the intensity
of the Poisson process is not scale invariant. This effect can be seen later in the
application with true data, in Sect. 6. The expected vector of counts is

E[X(t)] = λb + ω0 · ṁ(t) · [λ1(t) · z1,λ2(t) · z2, . . . ,λD(t) · zD]

which is rather an object ofRD+ , the multivariate positive real space. The part produced
by the ablated mass ṁ(t) is related to the vector λ(t) ⊕+ z = [λ1(t) · z1,λ2(t) ·
z2, . . . ,λD(t) · zD], where ⊕+ denotes the component-wise product of two vectors
of positive components. This operation is the Abelian group operation ofRD+ [6], also
known as amount-perturbation [12]. Thus, this model will be further referred to as an
amount-perturbation upscaling model. Note that λ(t) = [λ1(t),λ2(t), . . . ,λD(t)] is
an amount vector of sensitivities. As functions of time, these sensitivities are reported
to show very complex and varying patterns at different time scales [2].

Between the full interaction model (Eq. 2) and the amount-perturbation upscaling
model (Eq. 3), an intermediate model can be considered. Here we consider the total
sensitivity of all channels to ions of type j as varying along time, denoted as λ j (t);
however, the way these counts are split among the P channels is considered time-
independent, and denoted as �∗

i j . Thus, �i j (t) = �∗
i j · λ j (t). The resulting model

Xi (t) ∼ Po

⎛

⎝ω0i

⎡

⎣λbi +
D∑

j=1

�∗
i j · λ j (t) · (ṁ(t) · z j )

⎤

⎦

⎞

⎠ , t ∈ [tM , tN ], (4)

is called (constant) matrix-interaction amount-perturbation model.
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4 Methods

4.1 Notation and Common Assumptions

Let us assume one particular model �(z(ti ),λb,θ; ti ) from those mentioned before,
with λb denoting expected counts from the background level and θ including the rest
of model parameters (dwell times ω0i , sensitivities λi , interactions λi j , eventually in-
cluding their own trend parameters). A set of readings of count vectors {x(ti ), ti ∈ T }
is available, obtained along a session T split in K intervals T1, T2, . . . , TK . Each in-
terval contains two non-overlapping windows, the background window Bk ⊂ Tk and
the measurement window Mk ⊂ Tk . All readings during the background window are
obtained with no material being analysed, i.e. after Eq. (1). During each measuring
window Mk an analyte of different composition was analysed, i.e. Z(ti ) = Zk . For
some of these compositions, very good estimates zk are available (those correspond-
ing to standards): each zk is called a nominal composition, to distinguish them from
the true composition Zk . Some other of these compositions are totally unknown, and
they constitute the actual target of this problem (the samples). Let the set of indices
K = {1, 2, . . . , K } be partitioned in two disjoint subsets Ks (corresponding to the
time intervals when a standard was analysed) and Km (corresponding to the intervals
when a sample of unknown composition was analysed). The goal is thus to estimate
all zk for k ∈ Km , given the set of all observations {x(ti ), ti ∈ T } and the nominal
composition of the standards zk for k ∈ Ks . The set of data can also be split in mea-
surements corresponding to all background periods B = ⋃

k Bk and measurement of
standards, the calibration set Xs = {x(ti ), ti ∈ B ∪ ⋃

k∈Ks
Mk}; and data correspond

to measurement windows of samples of unknown composition, the prediction set
Xm = {x(ti ), ti ∈ ⋃

k∈Km
Mk}. Given this setting, we will follow the multi-Poisson

assumption for the data {x(ti ), ti ∈ T }, with intensity model �(Z(ti ),λb,θ; ti ).

4.2 Generalized Linear Model (GLM)

To apply the formalism of generalized linear models [5] we need to further assume
that the composition of the standards is perfectly known and homogeneous, i.e. that
the nominal and actual values of the standards are the same, Zk = zk . In this case we
can consider the problem divided in two steps:

1. Calibration phase. In this phase we consider only the data available from all
background windows and the measurement windows of the standard.

2. Prediction phase. In this phase the model is used to estimate the composition
of the unknown samples, potentially with confidence intervals (instead of the
classical error). As extra results of this step, one can derive the largest component
zki which cannot be distinguished from 0 with a 99 % confidence interval (the DL
for variable i at observation k).
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4.2.1 Amount-Perturbation Model with Linear Time Drift

This case is the easiest to understand, as the lack of any form of interaction al-
lows to estimate each component separately. We first reparametrize Eq. (3) using
ṁ(t)λ j (t) := θ0 j + θ j ti , i.e. assumed a linear function of time. In this case we have

Xs
j (ti ) ∼ Po(ω0 j [(θ0 j + θ j ti )z j (ti ) + λbj ]).

To fit the parameters of this model, the GLM formalism establishes that a trans-
formation η(·) of the expected value of Xs

j (ti ) should be predicted with a linear
combination of explanatory variables, i.e. in the calibration phase, given that z j (ti )
and ti are known everywhere:

η(E[Xs
j (ti )]) = η(ω0 j [(θ0 j + θ j ti )z j (ti ) + λbj ]) = a j + b j z j (ti ) + c j z j (ti )ti .

This model can be readily solved if we choose an identity link, i.e. η(x) = x . This is
a non-canonical choice, but allows to trivially identify a j = ω0 jλbj , b j = ω0 jθ0 j and
c j = ω0 jθ j as the statistical versus physical parameters to be estimated. Moreover,
in the prediction phase, with estimates ã j , b̃ j , c̃ j set, the unknown is z j (ti ), i.e. the
model becomes again a generalized linear model

Xm
j (ti ) ∼ Po(ã j + [b̃ j + c̃ j ti ]z j (ti )),

where ã j is an offset and the predictor variable [b̃ j + c̃ j ti ] is known everywhere.
This model does not allow an intercept. These models can be estimated in both steps
with the GLM maximization likelihood procedures [5].

Note that the canonical choice of the Poisson family (the logarithmic link, η(x) =
log(x)) would give rise to a different model, called multiplicative perturbation-
scaling model, and explained in the appendix. It would easily allow the inclusion of
the exponential decay observed in ṁ(t), but then there would be no way to identify
the additive effect of the background with any parameter of the model.

4.2.2 Matrix-Interaction Amount-Perturbation Model with Linear
Time Drift

In this case, given the interaction between components it is not possible to consider
them totally independently any more. Considering Eq. (2) with ṁ(t)�(t) =: �0 +
�ti , the joint model is

X(ti ) ∼ Po(ω0⊕+[(�0 + �ti )⊕+z(ti ) + λb])
= Po(diag [ω0] · [(�0 + �ti ) · z(ti ) + λb]),
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or distributing

X(ti ) ∼ Po
(
diag [ω0] · �0 · z(ti ) + diag [ω0] · � · [tiz(ti )] + diag [ω0] · λb

)

∼ Po (a + B · z(ti ) + C · [tiz(ti )]) .

with intercept vector a = diag [ω0] · λb = ω0 ⊕ λb and two matrices B = diag [ω0] ·
�0 and C = diag [ω0] · �, respectively a K -amounts vector and two (K × D)-
matrices of coefficients. Arrived at this point, it is possible to split the problem in the
several components of the response, i.e.

X j (ti ) ∼ Po
(
a j + b′

j · z(ti ) + c′
j · [tiz(ti )]

)
.

where a = [a1, a2, . . . , aD] and where b′
j and c′

j are the j-th rows of the matrices B
and C respectively. They can be then arranged together in one single vector of counts
obtained on different channels, and a single GLM with a response of the Poisson
family and an identity link fitted. In this way, one single vector model is fitted,

X(ti ) ∼ Po (a + B · z(ti ) + C · [tiz(ti )]) .

As we did in the preceding case, in the calibration step we use the data Xs and
the known predictors {ti ∈ T } and {zk, k ∈ Ks} to obtain estimates ã, B̃ and C̃ of
the model parameters. In the prediction step, by fixing these parameters on their
estimated values, the model

X(ti ) ∼ Po
(

ã + Z(ti ) · [B̃ + ti C̃]
)

can be fitted with an offset ã and known predictors [B̃ + ti C̃] to obtain estimates of
the coefficient vector Z(ti ). Note that all channels of X are considered jointly.

4.3 Caveats

All methods mentioned before share several main limitations:

• perfectly known standard compositions are required;
• it is not possible to model inhomogeneities of the materials considered (standards

or samples);
• no solution exists for other more realistic and flexible models, like a multiplicative

interaction-perturbation model with additive error;
• if the hypothesis of Poisson distribution is verified to be inappropriate, the likeli-

hood cannot be computed exactly, and GLM fitting procedures might fail.

All these issues can be tackled with Bayesian estimation techniques. Though they
are not much more complex than the methods presented so far, these fall beyond
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the scope of this contribution and are left for future research. Interested readers can
consider the work of van den Boogaart et al. [13], dealing with a model that can
accommodate some of these effects.

5 Simulation

This section uses simulations from the several models and methods specified before
to illustrate their ranges of validity, as well as to show their behaviour when the
underlying hypotheses are not satisfied. In particular, it will be shown that estimation
of (log)ratios of components is more stable than estimation of the absolute values of
these components.

For this task, several scenarios follow. In each scenario, one parameter is left
to vary, and for each value of this parameter, we simulate 300 sets of 200 read-
ings of a three-channel instrument (P = 3) depending on a four-part composition
(D = 4), split in B = 100 background window readings and M = 100 measure-
ment window readings. Only K = 2 periods are considered, one for the standard
and one for the measurement. The standard is considered to have a nominal compo-
sition of z = [1, 2, 3, 94] %, while the sample has an unknown real composition of
z = [3, 2, 1, 94] %. As general settings, we consider a sensitivity of λi = 2 counts
per unit of mass, a background of λi = 2 counts per dwell time, and a mass of 1000
units ablated. Only results of the three first components are reported. The following
cases are considered: varying length of the measurement window; varying total sen-
sitivities and background levels; different masses ablated per unit of time between
standard and sample; a heterogeneous standard composition; the presence of a (non-
modelled) fractionation effect. These scenarios are built with an amount-perturbation
upscaling model. Finally, a constant amount-matrix upscaling-interaction model is
considered. In each case, we show boxplots of the (absolute) enrichment/depletion
factors zmi /zsi , i.e. the number with which one should multiply the nominal value
of component i on the standard to obtain an estimate of the absolute abundance of
that element on the sample of unknown composition. If results are not satisfactory,
we also report results of the corresponding perturbation, C[zm1 /zs1, z

m
2 /zs2, z

m
3 /zs3] or

some of their logratios, i.e. with either one or the other we can estimate the subcom-
position of the sample from the subcomposition of the standard, but not the absolute
abundances of these 3 components.

Figure 1 shows that varying width of the measuring window or varying the sensi-
tivity of one channel have the same influence on enrichment factors as the estimation
of an average with varying sample size: the larger the total number of counts reg-
istered, the less variance the enrichment factor shows. On the other hand, varying
the level of noise (i.e. the counts per unit of time of the background) does not affect
the variability of results significantly, at least as long as the background represents
less than 1:5 parts of the total signal. In any of the cases presented, estimates of the
enrichment factors appear to be unbiased. The same can be said of the associated
perturbations (results not shown).
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Fig. 1 Boxplots of enrichment factors obtained for: (left) varying lengths of the measuring window;
(right) several values of α, with background level λb = [1,α,α] and sensitivity λ = 100[α, 1,α];
in the middle right plot the X axis reports α/20 which corresponds to the percentage of expected
counts coming from the background compared with the total expected counts; on the contrary, the
X axis upper and lower right plots directly reports α

A different picture is obtained if the ablated mass per unit of time of standard
and of sample are not equal (Fig. 2). If the ablation rate is lower (higher) in the
sample than in the standard, less (more) counts of all elements will be produced per
unit of time, and the method will consequently estimate a lower (higher) absolute
abundance of each element of the subcomposition. Absolute enrichment factors will
therefore be strongly biased as long as the ratio of ablated masses differs from 1.
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Fig. 2 Boxplots of enrichment factors and perturbations obtained for several ratios of ablated mass
per unit of time from the sample and from the standard, denoted κ

On the contrary, perturbations remain fairly stable on a very wide range of this ratio
(results shown between 1:2 and 2:1). Note that the reference levels are in this case
C[3, 1, 1/3] = [9, 3, 1]/13. These facts are well known to geochronologists, who
typically work with ratios, but not so common in other geochemical communities
using LA-ICP-MS data.

Figures 3 and 4 show the obtained enrichment factors in absolute or relative scales
(as logratios) in the case that the real composition of the standard is assumed to vary
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Fig. 3 Boxplots of enrichment factors and of their logratios obtained for several variability levels
σ of the composition of the standard, which nominal value equal is taken as the closed geometric
mean

along the spot, i.e. that masses with different compositions are sent to the detector
during the measuring window of the standard. The actual composition is taken un-
der assumption of additive logistic normal distribution with a diagonal ilr-variance
matrix with variances σ within the subcomposition of the first three components,
and 10−10 on the balance of the fourth component against the other three. For the
parameters given, this distribution is undistinguishable from a univariate lognormal
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Fig. 4 Boxplots of enrichment factors and of their logratios obtained for several variability levels
σ of the composition of the standard, which nominal value equal is taken as the arithmetic mean

distribution on each of the first three components. The two figures differ in which
has been considered to be the nominal value: [1, 2, 3, 94] is taken as the composi-
tional mean (closed geometric mean) of the standard in Fig. 3, while in Fig. 4 the
arithmetic mean is forced to be the nominal value. Results show that a calibration
equating nominal value to the geometric mean is not appropriate for moderate to high
levels of standard heterogeneity (i.e. high values of σ) as both enrichment factors
and logratios show notable biases in this case: enrichment factors larger than one
tend to be underestimated, while those smaller than one tend to be overestimated. On
the other hand, a calibration equating nominal value to the arithmetic mean shows
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almost no bias even in cases of high variance, though ultimatively the same overesti-
mation/underestimation bias patterns occur. This highlights the importance of having
homogeneous standards. Interestingly, this arithmetic specification of the nominal
values delivers better (in the sense of less bias) results than geometric specifications
even regarding the estimation of logratios.

Figure 5 (right) shows the results from the case that the ablated mass show an ex-
ponential decay fraction ṁ(t) = ṁ0 exp(ln(1 − θt )t/�t) of 100θt % of the original
mass during the time period �t (which is considered equal to the measuring window
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Fig. 5 Boxplots of estimated compositions obtained: (left) with different levels of interaction;
(right) with different intensities of fractionation. See text for details
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length). Note that the fitting GLM algorithm suggested cannot take this effect into
account, thus we are dealing here with a model misspecification effect. In spite of
this, final estimates show no degradation: the same variability and no bias can be
observed, independently of the level of fractionation.

Finally, Fig. 5 (left) shows a case in which some interaction between compo-
nents exist. Simulations are obtained with a constant matrix-interaction amount-
perturbation model (Eq. 4), using the matrix

�∗ =
⎛

⎝
1 α

1+α
α

1+2α

0 1
1+α

α
1+2α

0 0 1
1+2α

⎞

⎠

for several values of α between α = 0 (no interaction) to α = 0.2 (notable interac-
tion). In the calibration phase, the model parameters cannot be estimated with the
classical setting (one single standard measured several times) because of collinearity.
It is required to measure several standards: in this case, we have assumed nominal
values in the subcomposition of interest [1, 2, 3], [1, 4, 9], [9, 4, 1] and [2, 3, 4], each
of which was shot for a period of N = 25 readings. Moreover, the model fitted is
rather the complete model, i.e. a matrix-interaction amount-perturbation model after
Eq. (2). Results show no bias and a constant variability with increasing interaction
parameter α.

In summary, the GLM methods proposed are applicable in the presence of mod-
erate variability in the standard composition (the nominal composition should be
the arithmetic expected value of the distribution of the composition of the standard),
and do very well filter out exponentially decaying fractionation effects. However, if
one cannot ensure that both sample and standard behave in the same way (similar
masses per second ablated, i.e. the “matrices match”) then only (log)ratios of the
components are reasonably estimated.

6 Application

To illustrate the presented concepts, models and solving techniques we use a data
set of geochronologically relevant isotopes. These are obtained ablating 35 zircons,
including 9 standards, analysed for 6 isotopes: Hg202, Pb204, Pb206, Pb207, Pb208,
Th232, U235, U238 (Fig. 6). The analysed sequences is composed of 3 blocks of 10
samples bracketed by 4 blocks of 5 standards (3 types of standards were used, coded
GJ1, FC1 and 915, see Fig. 9). It is also possible to see that, except for some outliers,
the isotopes are ordered in decreasing order of abundance as U238, then Th232
or Pb206, and finally U235, Pb208 and Pb207 in varying orders. The dwell times
considered are reported in Table 1.
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Fig. 6 Time series of counts obtained for each component considered, in raw scale (top) and in
log scale (bottom), for 35 analytes. The X axis reports the time at which each measurement was
obtained

Table 1 Dwell times for the several elements considered in ms

Hg202 Pb204 Pb206 Pb207 Pb208 Th232 U235 U238

4 4 2 8 4 2 2 2

A closer look at the last three measurement periods (Fig. 7), including one standard
and two samples, shows several remarkable aspects:

• First, Hg202 and Pb204 do not show up in the samples or in the standard in a way
significantly different from the background. These elements are used for analytical
quality control, and are not relevant for the problem itself.

• Second, several isotopes show clear exponentially decreasing trends while being
shot (linear in log scale), an effect of fractionation of the gas cloud while the laser
penetrates deeper in the material.

• Finally, a more relevant aspect for modelling, the variability of these time series
is neither additive nor multiplicative, because the background and the signal do
not have comparable levels of variability neither in raw nor in log scales. This is
the reason why purely multiplicative models (like those presented in Sect. A.2.1)
or purely additive models (like using linear regression directly to link counts with
composition, as done sometimes in the device calibration literature) are not real-
istic. This gives a diagnostic tool to decide whether a problem might be attacked
with linear regression on raw variables (raw Y -axis plots show similar variability
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Fig. 7 Time series of counts obtained for each component considered, in raw scale and in log
scale, for the last three samples. In particular, note that the variability of the data has neither a pure
additive nor a pure multiplicative structure

in the background and signal windows), with linear regression on log-transformed
variables (log Y -axis plots show similar variability in the background and signal
windows), or Poisson regression (neither one nor the other are satisfied).

Other aspects and relevant concepts are shown as well in Fig. 8. Beside the clear
fractionation effects occurring while the laser is shot (increasing trend, followed by
a shallow exponential decrease) or right after switching it off (pronounced decrease),
we see as well the presence of zonations of different composition, thus potentially
of different age. The figure also shows that readings have much stronger drifts and
variabilities than the relevant isotopic logratios in the measuring windows.

A further assessment on the possible structure of the variability of this series
is displayed in Fig. 9, which makes use of the property that Poisson distributed
variates should show dispersion coefficients of D̂ = 1. For the background windows,
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Fig. 8 Time series of counts obtained for each component considered, for a well-behaved sample
(left) and for a sample showing clear zonation (right). Upper plots show the counts (in log scale)
while lower plots show the naive logratios relevant for geochronological calculations. Note as well
the dashed vertical lines, showing the windows for background (between the first two lines) and
measurement (between the last two lines)

overdispersion is clear to see in the heavy ions (U238, Th232). Dispersion coefficients
for the measurement period are only reported for the sake of completeness, as they
are difficult to estimate due to the presence of the irregularities mentioned before: the
values reported in this case are obtained using the residual variance with respect to a
fitted exponential trend, which might deliver reasonable estimates for well-behaved
samples, but is completely inappropriate for zoned samples. Nevertheless, it shows
roughly a similar distribution with a certain bias towards underdispersion.

Given the considerations of this preliminary descriptive analysis, the natural con-
clusion must be that appropriate models for this dataset should be flexible enough to
consider at least the following three effects:

1. natural variability on the composition of the materials (i.e., lack of homogene-
ity), in particular including zonation of samples and random inhomogeneities of
standards and samples;

2. downhole fractionation (typically appearing as local exponentially decreasing
trends);
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Fig. 9 Dispersion coefficients of the background and measurement windows for each sample.
Vertical dashed lines mark the standards

3. Poisson overdispersion (something which is included in state-of-the-art GLM
fitting models);

4. additive background variability.

Unfortunately, none of the models presently implemented within the framework of
generalized linear models can deal with all these effects, the main limitation being that
one cannot simultaneously treat as linear the additive background and the exponential
trends. Nevertheless, as we have opted for leaving Bayesian methods for future work,
the following is an approximate set of results ignoring the first and third shortcomings
using a Poisson GLM regression with identity link (Sect. 4.2.1).

Results (Fig. 10) show several interesting patterns. The enrichment factors for
the standards (Fig. 10 lower plot) should be all 1. The standards show a remarkably
constant composition, suggesting that no long-range time drift is necessary. The
method proposed is quite robust, for instance showing no to minor influences of
the outliers of Pb208 in samples 915-005 or Z-025. If we order the elements by
decreasing abundance on the estimated composition and on the observed counts,
results are the same, which given the several shortcomings we had to take is a good
result.

Finally, using constant nominal values for the standard GJ1 as reported in Table 2,
the geochronologically relevant ratios (radiogenic 207Pb versus 235U, and radiogenic
206Pb versus 238U) of all 35 samples were computed. Given that no evidence of the
presence of non-radiogenic 204Pb is found (except perhaps in some zoned Zircons,
like Z-025, Fig. 8), all 207Pb and 206Pb detected were considered to be radiogenic.
Thus, the direct ratios 207Pb/235U and 2067Pb/238U were used to compute an age,

xPb
yU

+ 1 = exp(λyt),
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Fig. 10 Results of the analysis of counts for each isotope: (1) original data, (2) results for the
major components, (3) results for the minor components, and (4) enrichment factors with respect
to standard GJ1

Table 2 Nominal values of some isotopic ratios in standard GJ1 ()
206Pb/238U 207Pb/235U 208Pb/232Th 206Pb/207Pb Age (Ma)

GJ1 0.09761 0.8093 0.03011 0.06014 602
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Fig. 11 Results of the geochronological ratios obtained for each

which for 207Pb/235U uses the decay rate λ235 = 9.8485 · 10−10, and for 206Pb/238U
the rate λ238 = 1.55125 · 10−10. Figure 11 shows the so-called concordia
diagram [14], a graphical display of the agreement between the two ages. The plot
shows notable variability in the ages provided to the standards (especially, 915), and
two samples that are notably far from the concordia curve, corresponding to zoned
Zircons. But in general terms, the pair of ages show a satisfactory agreement for the
whole data set. The obtention of some confidence regions on these calculated ratios
within the scope of the GLMs used here remains to be done, and is left for future
research.

7 Discussion

The most obvious implication of these results is the fact that models without addi-
tive error cannot be accepted as reasonable descriptions of the physical LA-ICP-MS
measurement process. This is especially true when the target value is small because
then the contribution of the multiplicative error to the measurement uncertainty be-
comes irrelevant in comparison with the contribution of the additive error. This was
visible on the reduction of the estimated concentration of the minor isotopes of the
standards in the real case study. This mixed additive-multiplicative nature could also
be seen in the simulation studies with heterogeneous standard compositions: there
an arithmetic mean specification of the standard delivered better results even with
regard to the estimation of logratios. Though it is premature to extract conclusions
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of this single study, the additive nature of this kind of data perhaps comes from the
fact that the ICP-MS does actually count individual atoms/ions/isotopes, and matter
(or mass) is an additive property. Building a composition out of the obtained mea-
surements of the several isotopes is then a choice of the analyst, and not intrinsically
demanded by this kind of data.

A second family of implications relates to the fact that (log)ratios seem to be much
more robustly estimated than their numerator and denominator elements separately,
in particular if one cannot ensure that similar amounts of mass are ablated per second
in the standard and the samples, i.e. if no good matrix matching is possible. This might
be one of the reasons why many ICP-MS users do actually work with ratios, instead
of with the absolute abundances provided by the device.

Third, results have implications in the treatment of values below the detection
limit. Values below detection limit occur when the number of counts/sec. in the signal
window cannot be statistically distinguished from counts/sec. in the background
window, i.e. when the number of counts coming from the analysed mass is “low”. In
the authors’ opinions, this strongly suggests to avoid additive logistic normal (ALN)
models for BDLs, because the low number of counts does not allow the assumption
of a central limit related normal approximation of the distribution. Moreover, the
ALN totally disregards the additive effect of the background, which happens to
be dominant precisely for the low values. An appropriate alternative should take
somehow the counting nature of the problem into account.

Finally, to obtain a full joint compositional calibration model remains a difficult
task because of the need of several standards of different composition, which should
be each homogeneous, perfectly known and of the same kind of matrix than the
samples to analyse. Given the practical problems of fulfilling these conditions in
real-world applications even for a single standard, it is foreseeable that ICP-MS
calibration will remain univariate. Nevertheless, the fact that perturbation enrichment
factors (hence logratios) are notably robust to matrix mismatch opens the door to
the possibility to of calibrating devices with several standards of relatively different
matrices, and use the results for a full joint compositional calibration along the multi
Poisson model shown here.

Appendix A

A.1 Three Competing Geometries

In this paper, three of the compositional geometries gathered by van den Boogaart and
Tolosana-Delgado [12] are used, two on vectors of positive amounts (x ∈ R

D+), either
based on an interval or on a ratio scale; and a relative ratio scale on compositions s.s.
(x ∈ SD , the simplex). This section just summarizes their geometries.

The interval scale on R
D+ is captured by a geometry inherited from embedding

R
D+ on R

D with its Euclidean space operations, namely the classical vector sum +
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and multiplication by scalars ·. The fundamental isometric operation is the identity,
thus this geometry is optimally reproduced by linear models with an identity link
function.

The ratio scale on R
D+ is captured by equipping this set with the Abelian group

operation (amount)-perturbation ⊕+ and (amount)-powering 
+, respectively, the
component-wise product of the components of two vectors and the component-wise
powering of the components of one vector to the same scalar [6]. The fundamental
isometric operation is the component-wise log-transformation, thus this geometry is
optimally reproduced by linear models with a logarithmic link function.

The relative scale on SD is captured by equipping this set with the Abelian group
operation perturbation ⊕+ and powering 
+, respectively the closed component-
wise product of the components of two vectors [1] and the component-wise powering
of the components of one vector to the same scalar. The fundamental isometric
operation is the centered log-ratio transformation, thus this geometry is optimally
reproduced by linear models with a logratio link function.

In general terms, a raw scale should be preferred for one variable which absolute
differences are meaningful; a ratio scale for variable which meaningful differences
are relative; and a relative scale on the simplex should be the choice if several variables
show a ratio scale at the same time and their sum is either an artifact or a meaningless
constant. Nevertheless, sometimes the same variables can be studied in one way or
another, depending on the question that should be answered, i.e. the scale should be
chosen depending on the question and not only on the data.

A.2 Alternative Joint Models

A.2.1 Models Ignoring the Background or With Multiplicative Effects

From the point of view of the relative scale on SD , all models presented in this paper
are particularly complicated by the presence of the additive background. If this could
be ignored (e.g. because it is very small with regard to the signal), and the sum of
the components of Z equals one (i.e. a whole composition is analysed), then the
following models are derived:

• scalar upscaling: [X(tk)|n] ∼ Mu(Z; n) and n ∼ Po(ω0λ(tk));
• perturbation: [X(tk)|n] ∼ Mu(Z ⊕ λ(tk); n) and n ∼ Po(ω0

∑D
i λi (tk)),;

• interaction-perturbation: [X(tk)|n] ∼ Mu(C [
�∗ · (Z ⊕ λ(tk))

] ; n) and n ∼ Po
(ω01′ · (�∗ · (Z ⊕+ λ(tk)))).

This last model is still a mixture of additive and multiplicative geometries. The
following models are purely compositional alternatives, using in the compositional
part only operations on the simplex

• scalar upscaling: [X(tk)|n] ∼ Mu(Z ⊕ λb; n) and n ∼ Po(ω0λ(tk)
∑D

i λbi );
• perturbation: [X(tk)|n]∼ Mu(Z ⊕ λ(tk) ⊕ λb; n) andn∼ Po(ω0

∑D
i λbiλi (tk));
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• interaction-perturbation: [X(tk)|n] ∼ Mu(�∗ � (Z ⊕ λ(tk)) ⊕ λb; n) and n ∼
Po(ω01′ · (�∗ � (Z ⊕ λ(tk)) ⊕ λb)), in this case with ⊕ the perturbation on the
simplex.

In these expressions, we have used the notation � after Pawlowsky-Glahn, Egozcue
and Tolosana-Delgado ([7], Chap. 4) to denote a simplicial endomorphism operation,
i.e. one such that once expressed in any basis of the simplex becomes a simple
matrix-vector product. Note that these purely compositional models imply, among
other effects, that the noise induced by the background upscales with the signal, i.e.
larger signal should show more background variability.

In any of the cases presented, we finally have distributions for the number of
counts on each element class that belong to the multi-Poisson family, with an in-
tensity vector model ω0�(Z,λb,θ; tk) capturing the relationship between the ex-
pected partial counts and the composition of the analyte. Hence, we can always
consider that the total number of counts n(tk) follows a Poisson distribution with
λT
k = ω01′ · �(Z,λb,θ; tk); and, conditional on that total, the vector of counts for

each element follows a multinomial distribution with probability parameter vector
pk = C [�(Z,λb,θ; tk)].

A relevant minor modification for the examples presented in this paper (Sects. 5
and 6) consists of the case that the dwell times are not equal for all isotopes. If we
denote the vector of dwell times as ω0 ∈ R

D+ , then it is immediate to show that the
number of counts on each element class belong to the multi-Poisson family, with a
perturbed intensity vector model ω0 ⊕+ �(Z,λb,θ; tk), with perturbation on R

D+ .
Again, the total number of counts n(tk) will follow a Poisson distribution, albeit with
total expected counts λT

k = ω′
0 · �(Z,λb,θ; tk); and the vector of counts for each

element conditionally follows a multinomial distribution with probability parameter
vector pk = C [

ω0 ⊕+ �(Z,λb,θ; tk)
]
.

A.2.2 Implications for the Estimation of GLMs

The methods presented in the main part of this contribution were characterized by an
identity link function, a requirement of the additive nature of the background and the
signal. If this condition is removed, then the class of models can be extended to models
with logarithmic link function (actually, the canonical choice of Poisson GLMs). This
setting would be suitable to consider the multiplicative models mentioned in Sect.
A.2.1. The same structure as in Sect. 4 would then be used, namely a calibration
phase in which all parameters would be estimated with a GLM; and a prediction
phase in which another GLM with an offset (equal to the multiplicative background)
would be used to estimate the unknown composition of the samples.
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