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Preface 

The story starts in Cologne with the conference on Recent Developments and Ap- 
plications of Correspondence Analysis and the subsequent publication of the book 
Correspondence Analysis in the Social Sciences by Academic Press, London, in 
1994. This book contained 16 chapters written by a total of 24 authors and edited by 
ourselves. 

The idea was to bring together social science researchers and statisticians in a 
collaborative project to bridge the gap between theory and practice in social science 
methodology. We are happy to report that the exercise proved to be so successful 
that we acquired enough energy to try it once again. This time, however, the subject 
would be put into a wider context, defined by three keywords: data, categorical, and 
visualization. 

The keyword data stresses the central importance of application, the need for 
methodology to be illustrated in a particular data context and not isolated as theory 
for theory's sake. The method is judged essentially by its applicability to data. 

The data context is categorical, that is, classified, grouped, categorized, or ranked. 
Wherever observations can be put into boxes and counted, this is what we are inter- 
ested in. This puts us into the realm of social science observation without the need to 
specify it. 

The context of the categorical data is visualization. We are interested in explor- 
ing categorical data through graphical displays, be they maps, trees, custom-designed 
computer graphics, or geometric shapes. We are also interested in models for categor- 
ical data and especially in the potential to use visual tools to aid in the interpretation 
of models and the modeling process. Hence the title: Visualization of Categorical 
Data. 

In 1995 the Zentralarchiv fiir Empirische Sozialforschung (Central Archive for 
Empirical Social Research) in Cologne again hosted an international conference, this 
time on the visualization of categorical data. The response was double that of the 
previous conference and 21 countries were represented--clearly the topic was of 
wide interest. Selected papers as well as specially invited contributions, totaling 35 
chapters by 63 authors, have been refereed, edited, and~to  be sure--categorized to 
bring to you a state-of-the-art collection on how to achieve visual summaries and 
presentations of categorical data. In our editing we have tried to reduce the material 
as much as possible to accommodate as many contributions as possible. We have 

xi 
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also introduced cross-referencing between the chapters, tried to unify the notation as 
much as possible, and established a common reference list and index. We hope that 
the book forms a coherent whole and that the collection proves worthy of the patient 
and long-suffering work of all the authors who have contributed to it. 

As a prologue we are pleased to have a "keynote chapter" written by Jan de 
Leeuw, titled "Here's Looking at Multivariables," with his personal view on data 
visualization. After this initial chapter, we have divided the book into four parts: 
Graphics for Visualization, Correspondence Analysis, Multidimensional Scaling and 
B iplot, and finally Visualization and Modeling. 

The first part concentrates on a variety of graphical methods, ranging from very 
simple graphical displays to sophisticated computer graphics. This part will give you 
a flavor of the wide variety of visualization approaches inspired by a diversity of data 
contexts, such as contingency tables, questionnaire responses, and event histories. 

The second part deals with correspondence analysis, some "classic" applications 
to social science data, and some interesting new developments, especially in the inter- 
pretation of correspondence analysis of multivariate data. This part can be considered 
the continuation of the story started in the 1994 book mentioned earlier. 

The third part is devoted to multidimensional scaling and biplot methods, which 
visualize data in the form of distances and scalar products, respectively. Here there 
are various chapters dealing with issues of interpretation, diagnosis of structure, 
applications, and new methods. 

Finally, the fourth part aims to demonstrate the visualization possibilities in 
categorical data modeling such as latent class analysis, ideal point discriminant 
analysis, latent budget analysis, and general log-bilinear models. In many cases, the 
complementary nature of the modeling and exploratory visualization approaches is 
illustrated. 

Many of the methods in this book are associated with what are known as "ex- 
ploratory" methods as opposed to "confirmatory" methods. We believe that both these 
approaches have a place in our understanding of social science phenomena and that 
visualization techniques have an important role to play in every approach to data 
analysis. 

Exploratory methods are often criticized as having no "traditional" social science 
hypothesis such as "income is dependent on sex and education." Researchers working 
with correspondence analysis or other exploratory methods often have no strong 
conclusions such as "females earn significantly less money than males" or "there is a 
significant relationship between education and social status." But solutions like these 
are usually not the aim of the researchers who prefer exploratory techniques; they 
would very often argue that they like to describe the structure of the data only and 
that they have no need for modeling the relationships between the variables. 

A typical research question for these researchers would be to describe movements 
in the "social space." In the theoretical part of a work one could express assumptions 
about the closeness of variables to each other in this social space. In the empirical part 
of such a work, using correspondence analysis, for example, one could see whether 
or not the variables that should be close to each other belong to a common cluster. 
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Visualization can considerably enhance the modeling process. Before running a 
bivariate regression analysis, for example, a simple scatl~erplot between the variables 
would tell us whether the relation between both variables is linear. On the basis 
of this solution, one could decide whether a linear model is appropriate or what 
other relationship holds. The same concept holds for categorical data--before the 
modeling process starts, visualization techniques will help to understand the structure 
of the data, which categories can be combined without affecting the analysis, for 
example, or what interactions are present. Visualization can also be used to give 
further information after the data are modeledmfor example, to search for possible 
structure in the residuals from the model or to investigate which additional effects 
have to be considered in the model. 

A novel aspect of this book is the section with color illustrations. We felt that it 
was necessary to see some figures in their original colors rather than shades of gray. 
Color adds a tremendous benefit to the potential of any visualization, as is clearly 
demonstrated in these examples. We feel that use of color should be encouraged as 
an essential component of visualization methods. I 

We wish to thank all our authors for participating in this project and for repeatedly 
revising their papers with patience, dedication, and timeliness. We would also like 
to thank all the authors who helped to review their peers' contributions. In addition, 
there were many other colleagues who assisted us in the anonymous reviewing pro- 
cess: many thanks to Hans-Jiirgen AndreB (University of Bielefeld, Germany), Phipps 
Arabie (Rutgers University, New Jersey), Gerhard Arminger (University of Wupper- 
tal, Germany), Johann Bacher (University of Linz, Austria), Hans Hermann Bock 
(University of Aachen, Germany), Jiirgen Friedrichs (University of Cologne), Hel- 
mut Giegler (University of Augsburg, Germany), Werner Georg (University of Kon- 
stanz, Germany), Jacques Hagenaars (Tilburg University, The Netherlands), Wolf- 
gang Jagodzinski (Zentralarchiv fiir Empirische Sozialforschung, Cologne), Walter 
Kristof (University of Hamburg), Ulrich Kockelkom (University of Berlin), Stef- 
fen Ktihnel (University of GieBen, Germany), Warren Kuhfeld (SAS Institute, Cary, 
North Carolina), Rolf Langeheine (Institute for Pedagogics in the Natural Sciences, 
Kiel, Germany), Herbert Matschinger (University of Leipzig, Germany), Ekkehard 
Mochmann (Zentralarchiv fiir Empirische Sozialforschung, Cologne), Jost Reinecke 
(University of Mtinster, Germany), G6tz Rohwer (Max Planck Institute for Edu- 
cational Research, Berlin), Jo~e Rovan (University of Ljubljana, Slovenia), Cajo 
ter Braak (University of Wageningen, The Netherlands), Karl van Meter (LASMAS/ 
IRESCO-CNRS, Paris), Wijbrandt van Schuur (University of Groningen, The Nether- 
lands) and Ken Warwick (Ken Warwick Associates, New York). 

This project could never have been undertaken without the continual encourage- 
ment and financial support of the Zentralarchiv in Cologne, and we would like to 
thank the executive manager, Ekkehard Mochmann, for his and his organization's co- 
operation in every aspect of the venture. We thank the secretaries at the Zentralarchiv, 
Friederika Priemer and Angelika Ruf, as well as Hanni Busse and Bemd Reutershan 
from the administrative staff, and our students Udo Dillmann, Gabriele Franzmann, 
Ulla Laser, and Rainer Mauer for their assistance. We would like to make a special 
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mention of Friederika Priemer's invaluable contribution in editing the reference list 
and the section "About the Authors," as well as all her proofreading and handling an 
endless stream of inquiries and problems on our behalf. 

To finalize the manuscript, several trips were made between Barcelona and 
Cologne. For generously supporting Michael's travel to Cologne and J6rg's to 
Barcelona, we thank the Zentralarchiv fiir Empirische Sozialforschung as well as 
the Universitat Pompeu Fabra and appreciate partial support from Spanish DGICYT 
grant PB93-0403. The Christmas "break" was spent working in the German spa town 
of Bad Orb, with walks in temperatures of - 15 ° C to clear the mind for another three- 
hour session working on a chapter. And we both agree that it is worth mentioning the 
small 48-seater Lufthansa jet operating between Barcelona and Cologne, with visits 
to the flight cabin to witness spectacular views of the Alps and excellent meals and 
personal service. 

Our final thanks go to Karen Wachs, Julie Champagne, and all the Academic 
Press staff involved in this project. 

It is with sadness that we have learned of the recent death of one of the contributors 
to this book, Frans Symons, of Leuven University in Belgium. A few lines about 
Frans' work, written by his friend and colleague Jaak Billiet, have been included in 
the "About the Authors" section at the end of the book. 

This book is dedicated to Cliff Clogg, who was to have been one of the keynote 
speakers at our conference but who died unexpectedly ten days before the meeting 
began. Cliff was one of the most prominent researchers in both statistics and soci- 
ology and embodied the spirit of this project in bridging the gap between these two 
disciplines. His contribution to this book, finished by his friend Tam,is Rudas, is one 
of the last he worked on. For this reason and as a tribute to his work in the areas of 
statistics and sociology, we and all the authors join together in dedicating this book 
to his memory as a colleague and friend. 

J6rg Blasius and Michael Greenacre 
Cologne and Barcelona 

October 1997 



Chapter I 

Here's Looking 
at Multivariables 

Jan de Leeuw 

1 Introduction 

I don't really understand what "visualization of categorical data" is about. This is a 
problem, especially when one is supposed to write the opening chapter for a book on 
this topic. One way to solve this problem is to look at the other chapters in the book. 
This empirical, data analysis-oriented, approach is based on the idea that the union 
of all published chapters defines the topic of the book. 

For this book, the approach of looking at the titles of the chapters produced 
somewhat disappointing results. Whatever "visualization of categorical data" is, it 
consists of about 50% correspondence analysis, about 10% multidimensional scal- 
ing, about 10% cluster analysis, about 20% contingency table techniques, and the 
remaining 10% other ingredients. It is unclear from the titles of the chapters what 
they have in common. When writing this introduction I assumed, and I have since 
then verified, that every author in this book shows at least one graph or one plot. But 
this is a very weak common component. Not enough to base an opening chapter on. 

Thus the empirical approach fails. Alternatively, I can try to define my way out 
of the problem. This is intellectually a more satisfying approach. 

We start with data, more precisely categorical data, and these data are analyzed 
by using a (data-analytical or statistical) technique. 

Such a technique produces an image or a smooth or a representation of the data. 
The title of the book indicates that we are particularly interested in visual smooths or 
representations of the data. 
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Thus our course is clear; we have to define data, technique, and representation 
and then single out categorical data and visual representations. After that exercise, 
we can go back and see if and how the contents of the conference fit in. 

This paper can be seen as the next member of the sequence of de Leeuw (1984, 
1988, 1990, 1994). The general approach, in an early form, can also be found in the 
first chapter of Girl (1990). 

2 Data 

The data D are an element of the data space D. The design of the experiment, where 
both "design" and "experiment" are used in a very general sense, defines the data 
space. 

If you distribute a particular questionnaire to 1000 persons and your questionnaire 
has 50 items with 7 alternatives each, then the data space has 1000750 possible 
elements, and if you allow for missing data and nonresponse, it has even more. 
In general, these data spaces, which are the sets of all possible outcomes of our 
experiment, tend to be very large. 

The same thing is true if you make measurements in a particular physical experi- 
ment, or if you plant a number of seeds in a number of pots, or if you watch a number 
of infants grow up. Even with a limited number of variables, the possible number of 
outcomes is very, very large. 

In all these cases the data space is defined before the observations are actually 
made, and the possible outcomes of the experiment are known beforehand as well. Is 
it possible to be surprised? I guess it is, but that is a flaw in the design. 

2.1 Coding 

We do not find data on the street. Data are not sense impressions, which are simply 
recorded. Data are coded, by which we mean that they are entered into a preformatted 
database. This is not necessarily a computerized database; it could simply be the 
codebook given to interviewers or to data-entry persons, or it could be an experimental 
protocol. 

The important notion is that data are already categorized and cleaned and that the 
protocol tells us how to reduce data from a data space of quadri-zillions of elements 
to one of trillions of elements. We know, for instance, that we can ignore the look on 
the face of the person filling in the questionnaire, and the doodles on the student's 
examination forms are not counted toward the grade. 

Another key point is that usually the greatest amount of data reduction goes on in 
this coding stage. The really important scientific decisions, and the places where the 
prior knowledge has the greatest impact, are not necessarily the choice between the 
normal distribution and Student's t or between frequentist and Bayesian procedures. 
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2.2 Example 

This could perhaps be illustrated by an actual example. One of the clients of University 
of California Los Angeles (UCLA) Statistical Consulting is the California Department 
of Corrections. There is a gigantic project set up to study whether the classification of 
prisoners into four security categories actually reduces within-prison violence. The 
data for answering this study are the prison careers of all individuals who were in 
one of the state prisons in California in the last 10 years. It will not surprise you to 
hear that these are hundreds of thousands of individuals. Many of them have been 
in and out of prison for 20 or more years. They have been shifted between security 
levels many times, often on the basis of forms that are filled in and that have objective 
cutoffs, but often also on the basis of "administrative overrides" of these objective 
results. 

It is generally known that propensity to violence in prison is related to age, 
to previous prison career, and to gang membership. Clearly, there are potentially 
thousands of variables that could be coded because they might be relevant. Wardens 
and other prison personnel observe prisoners and make statements and judgments 
about their behavior and their likelihood to commit violent acts while in prison. 
Presumably, many of these judgments and observations change over time for a given 
prisoner and maybe even for a given prison guard. 

The observations and classifications of the prison personnel, however, are not data 
and not variables. They become data as soon as they are organized and standardized, 
as soon as variables are selected and it is decided that comparable information should 
be collected on each prisoner, over time, over changing security levels, and perhaps 
over changing institutions. It is decided that a study will be done, a database will be 
constructed, and the integrity and completeness of the database become so important 
that observations in different institutions and time periods by different observers on 
the same individual are actually coded uniformly and combined. Without reducing 
the chaos of impressions and judgments to a uniform standard and format, there really 
are no data. 

2.3 Categorical Data 

Classically, data are called categorical when the data space is discrete. I think it 
is useful to repeat here that all data are categorical. As soon as we have set the 
precision of our measurements, the grid on which we measure, and the mesh of our 
classifications, then we have defined a discrete and finite data space. 

Statistics has been dominated by mathematics for such a long time that some 
people have begun to act as if "continuous" data is the rule. Continuous data is a 
contradiction. Continuity is always part of the mathematics, that is, of the model 
for the data. The question whether continuity "really" occurs in nature is clearly 
a metaphysical one, which need not concern us here. We merely emphasize that 
continuity is used mostly to simplify computations, in the same way as the normal 
distribution was first used to simplify binomial calculations. 
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The codebook, or the rules for entry into the database, also contains rules for 
coding numerical information. It has to be categorized (or rounded), because our data 
entry persons and our computers cannot deal with infinite data spaces. 

Thus: 

All Data Are Categorical 

although perhaps some data are more categorical than others. This suggests that, in 
a strict sense, it is impossible to distinguish "categorical data" from "other data." 
In actual practice, however, we continue to use the distinction and speak about 
categorical data when our variables are non-numerical and/or have only a small 
number of discrete values. 

2.4  M u l t i v a r i a b l e s  

The most important type of data that science has been able to isolate is the variable or, 
if you like, multivariable. This is closely related to the "fluents" in Newtonian physics, 
the random variables of statistics, and the variables in mathematical expressions. For 
some useful philosophical discussion of these concepts we refer to Menger (1954, 
1955, 1961) and quite a few other publications by the same illustrious author. 

In the case of a multivariable, the data space is the product of a number of 
functions defined on a common domain, with different images. Table 1 shows a 
simple example of a bivariable, describing the nine faculty members in the new UCLA 
statistics department. Two variables are used: department of origin and country of 
origin. 

If we look at the types of data spaces most frequently discussed at this confer- 
ence, we find the multivariable in various disguises. In formal concept analysis mul- 
tivariables are called many-valued contexts (mehrwertige Kontexte), the variables are 
attributes (Merkmale), and the domain of the variables is the objects (Gegenstdnde)m 
see Wolff and Gabler (Chapter 7) and Frick et al. (Chapter 6). 

In cluster analysis, multidimensional scaling, contingency table analysis, and 
multivariate analysis, the multivariable is often preprocessed to form a distance 

Table 1: A Multivariable 

Department Born in the United States 

Ferguson Mathematics Yes 
Li Mathematics No 
Ylvisaker Mathematics Yes 
Berk Sociology Yes 
De Lee u w S tatisti cs N o 
Mason Sociology Yes 
Bentler Psychology No 
Muthrn Education No 
Jennrich Mathematics Yes 
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matrix, a covariance matrix, or a cross-table. This often involves data reduction, 
although sometimes the map is one-to-one. This particular step in the data reduction 
process can be thought of as either the last step of coding or the first step of the 
statistical analysis. 

Also, in some cases, we observe dissimilarities or measure distances directly. 
This can be coded as a single real variable on I @ I or as three variables, the first two 
being labels. 

3 Representation 

The process of coding maps the possible outcomes of an experiment into the data 
space, which is defined by the design. Although in some experiments coding may be 
relatively straightforward, in others it involves many decisions. 

The mappings used in coding are not often studied in statistics, although perhaps 
they should be analyzed more. Design in the narrow sense is generally seen to be a 
part of statistics, but codebooks and experimental protocols are usually assumed to 
be part of the actual science. 

What definitely is a part of statistics is the next phase, the mapping of data into 
representations. We take the data, an element of the data space, and we compute the 
corresponding element of the representation space. This mapping is called a statistical 
technique (see Figure 1). 

1 3 
2 _4 

" " 1  I I I r -  

- 2  - 1  0 1 2 

Figure I 



6 Chapter 1. Here's Looking at Multivariables 

Not surprisingly, many types of representations are used in statistics. In formal 
concept analysis, data are represented as lattices or graphs; in cluster analysis as 
trees, hierarchies, or partitionings; in correspondence analysis (CA), multidimen- 
sional scaling (MDS), and biplots as maps in low-dimensional spaces. In regression 
analysis and generalized linear modeling we find many types of scatterplots, either 
to picture the structural relationships (added variable plots, smooths) or to portray 
the residuals and other diagnostics. There are very many variations of these mapped 
plots, and new ones are continually being invented. 

In contingency table analysis we now also have graphical models, familiar from 
path analysis and structural equation modeling. Residuals from contingency table 
analysis are modeled with Euclidean techniques. We should remember, however, that 
500 pages of computer output also defines a representation space and that people look 
at the tables in CROSSTABS output from SPSS as primitive visualizations as well. 

4 Techniques 

We have seen that techniques map data space into representation space. What are the 
desirable properties of the techniques? We mention the most important ones. 

• A technique has to be as into as possible; that is, it should be maximally data 
reducing. 

• A technique should incorporate as much prior knowledge from the science as 
possible (this could, however, be prejudice or fashion). 

• A technique should separate the stable and interesting effects from the background 
or noise. 

• A technique should show the most important aspects of the data. 

• A technique should be stable, that is, continuous and/or smooth. 

Some qualifying remarks are in order here. Data reduction cannot be the only 
criterion, because otherwise we could replace any data set with the number zero, 
and this would be a perfect technique. In the same way, stability cannot be the only 
criterion either (same example). 

We also need some notion of fit, and this is embedded in what we think is 
interesting (i.e., in our prior knowledge). In homogeneity analysis (or multiple cor- 
respondence analysis) we apply a singular value decomposition to a binary matrix 
of indicators (also called dummy variables). In analyses using the ordinary singular 
value decomposition, fit is defined as least-squares approximation to the observed 
matrix by a matrix of low rank. But in homogeneity analysis we do not want to 
approximate the zeros and ones, we want to make a picture of the qualitative relations 
in the data. Thus we look at partitionings, coded as star plots (Hoffman and de Leeuw, 
1992). 

Also observe that continuity of a technique requires a topology on 29 and R, 
and smoothness in the sense of differentiability even requires a linear structure. This 
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already provides so much mathematical, in fact geometrical, structure that we can 
almost say we are visualizing the data. 

Tentatively, we could maintain the working hypothesis: 

All Statistical Techniques Visualize Data 

There seems to be some idea that visualization takes place by using representations 
that are geometrical and that maybe even have the geometry of Euclidean space. This 
is certainly suggested by the contents of this book, given the predominance of CA 
and MDS. 

But this point of view is certainly much too narrow, because the notions of 
geometry pervade much of analysis, algebra, discrete mathematics, topology, and 
so on. Even the real numbers (the real line) are geometrical, and computing a one- 
dimensional statistic means mapping the data space into the real line (think of con- 
fidence intervals, for instance). Again, as with the notion of categorical data, all 
analysis is visualization, but some analyses are more visual than others. 

As we mentioned earlier, it is difficult to draw the line between coding and 
analysis. Both involve data reduction, and both involve following certain rules. But 
usually there is a decision to ignore a pan of the process and to consider the outcome 
of this ignored pan of the data, which will be fed into the technique. 

Very often the technique has multiple stages. We start by reducing the data to 
a contingency table, or a covariance matrix, or a set of moments, or an empirical 
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distribution function. This stage is often formalized by the optimistic concept of 
sufficient statistics, which gives conditions under which we do not lose information. 

Only after this stage of preliminary reduction, the serious data analysis starts. 
Such a serious analysis is often based on a model. 

5 A d d i t i o n a l  Tools  

We have discussed data and the forms they take, emphasizing multivariables. We have 
also discussed the most common types of representations, including simple statistics, 
tables, graphs, plots, lattices and other ordered structures, partitions, and Euclidean 
representations. And finally, we have discussed the maps of the data space into the 
presentation space, which associate the outcome of the statistical analysis with the 
data in the study. 

There are some ideas that can guide us in the construction of visualizations. If 
the data themselves are spatial, we do not need such guides (and this is recognized 
more and more often in the use of geographical information systems, or GISs). But 
otherwise we can use models, and we can try to represent properties of the data as 
well as possible in our visualizations (using some notion of fit). 

5.1 Role of Models 

Figure 3 illustrates the use of a model. In this particular case, the model is that gender 
and size of the ego are independent. The data P are in the upper left-hand comer; 

Male Female 
Large .45 .15 
Small .05 , .35 

p~ / I I  

\\\\\\\\ / ~  

Male Female 
] '  Large .30 .30 

Small .20 .20 

Figure 3 
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they are proportions in a 2 X 2 table. The model is the set of all 2 × 2 tables with 
independence, a curved surface in three-dimensional space, represented in the figure 
by the curved line II. To find out whether the model fits the data, we look at the 
distance between the model and the data. The statistical technique actually projects 

A 

the data P on the model II and comes up with the fitted (or reduced) data P. 
Models are convenient tools with which to capture prior information and to 

construct statistical techniques. The idea is that a model is some subset of the repre- 
sentation space R and that prior information tells us that the data, suitably reduced 
perhaps to a table or covariance matrix, should be close to the model. 

This discussion of the role of models covers maximum likelihood methods, 
the linear model, the t-test, and much of nonparametric statistics as well. It works, 
provided we are willing to specify a model in the representation space, that is, a 
subset of that space that we are particularly comfortable with (for scientific reasons, 
but often only for aesthetic reasons). 

5.2 Fit 

Figure 3 illustrates one notion, the distance between suitably reduced data and the 
model. More generally, we may want to know how good or faithful a visualization of 
the data is. Sometimes representations are very faithful, in fact one-to-one. 

Some of this is also illustrated in the pictures that follow, where we first make a 
graph of the data (Figure 4) and then modify the graph by using multiple correspon- 

II Stat is t ics  

Jennr ich 
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Bentler  
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DeLeeuw 
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Li 

Ferguson 

Figure 4 
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dence analysis (to "make the lines shorter"), shown in Figure 5. As long as the lines 
are still there, we do not lose information. If we leave them out and interpret on the 
basis of proximity, we have to guess, and we'll sometimes guess wrong. 

In Figure 5 the distances between the statisticians approximate the "chi-squared 
distances," while the categories of the variables are plotted using the "centroid prin- 
ciple." 

6 Visualization of Statistics 

Due to the fast personal computer and the bitmapped screen, our day-to-day use of 
statistics is changing. We can replace assumptions by computations and long lists of 
tables by graphs and plots. 

But, even more profoundly, our interpretation of statistics has been changing too. 
Moving away from specific calculation-oriented formulas has led to a much more 
geometrical approach to the discipline (most clearly illustrated in the differential 
geometric approach, but also in the more applied graphical models approach and of 
course in the use of GISs). 

In a sense, this is nothing new, because modem analysis has been thoroughly 
geometrized as well. And even in the area of the greatest rigor, that of proofs, a 
picture is sometimes worth a thousand numbers. 

To close with an example of this, an illustration is shown in Figure 6. This is a 
familiar picture, and it can be used to illustrate many of the basic regression principles. 
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In my regression course, I use it perhaps in 10 of the 30 lectures. It portrays projection, 
orthogonality ~ la Pythagoras, the regression coefficients, the residuals, the predicted 
values, the multiple correlation coefficient, and the residual sum of squares. Thus it 
provides a picture of the basic regression statistics that are printed out by all packages, 
in a form in which we can use quite a few lectures, of 1000 words each, to explain to 
the students what is actually going on. 
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PART I 

Graphics for Visualization 

Visualization of data is a vast subject with a long tradition in the social sciences. 
Pictures are easier to understand than numbers, especially when there are many 
numbers to understand. 

Different visualization techniques are appropriate to the measurement level of 
the data, and special methods have been developed to handle univariate, bivariate, and 
multivariate data. Even in the simplest case in which we have only one variable, there 
is a wide range of techniques: various types of histograms, bar charts, stem-and-leaf 
displays, box plots, and pie charts (for an overview, see Tukey, 1977). Most of these 
techniques are available in widely used spreadsheet packages and thus have found 
their way into the popular media. We often see graphics of a single set of observations 
in newspapers and on television, for example, a pie chart of the number of seats for 
each political party in a parliament after an election, or a plot of a sequence of values 
over time of a continuously scaled variable such as the interest rate. Sometimes one 
method of visualization is clearly better than another. From perception psychology 
one knows, for example, that it is easier to recognize differences in the data when 
using bar charts than using pie charts--in bar charts differences are visualized in one 
dimension, and small differences in the data are easy to discern. Pie charts include 
two dimensions, and one has the more difficult task of judging arc lengths or areas. 
Another example is the use of a Q-Q (quantile--quantile) probability plot to diagnose 
normality in a set of data: it is easier to see whether a set of points lies in a straight line 
than to judge whether a histogram of the observations looks like a normal density. 

In the bivariate case the number of possibilities for visualizing the data is even 
larger as we consider the different cases: both variables continuous, one continuous 
and one categorical, or both categorical. When one is categorical with only a few 
categories we can juxtapose univariate displays, for example, two histograms "back 
to back" for a comparison of age distributions of males and females, often used 
in demographic studies, or different pie charts showing the state of the political 
parties before and after the election. Scatterplots are used when both variables are 
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continuous, for example, income and age, and allow one to diagnose the nature of the 
relationship between the two variables. In the case of two categorical variables with 
many categories we may wish to compare observed frequencies of co-occurrence 
with the marginal frequencies of the cross-tabulation. We shall see many original 
ways of exploring such cross-tablulations in the intial chapters after this introduction. 

For three or more dimensions, visualization demands more sophistication and 
even more originality. In the case of three continuous variables, there are several 
praiseworthy attempts to see data in three-dimensional space involving real-time 
computer graphics. For many variables some methods try to depict all the data 
exactly in a way that allows interpretation of all variables simultaneously, for example, 
Chernoff faces and star plots. The advantage of visualizing all information in the data 
is often outweighed by the disadvantage of the complexity of the displays and their 
interpretation. However, once we recognize that there is a certain level of redundancy 
in multivariate data, it is possible to exploit this surfeit of information to simplify 
the problem to one of few dimensions, where we can again resort to the existing 
graphical tools. This aspect of "dimension reduction" is one of the main themes of 
this book. 

In the first part of the book we will start with a range of examples of what we 
might call "straight" visualization of bivariate and multivariate data. In most cases 
these will be innovative displays of the original data or transformed versions of 
the data, specially developed for a particular context. Some methods are especially 
useful for the analysis of small data sets. Formal concept analysis (Chapters 6 and 
7) permits the visualization of every item of information in the data; the solution is a 
display considering all connections between all variables and between all subjects as 
well as between subjects and variables. In event history analysis, which has strongly 
increased in the social sciences in the nineties, Lexis pencils can be used to visualize 
the information for each subject (Chapter 4). In other examples of visualization, the 
type of picture will be used to diagnose a model or the picture will be the model itself. 

Visualization is often improved using the tools used by graphical artists, for 
example, shading and colors. We have included color graphics in some cases to 
illustrate the use of this important aspect of visualization. As color printing becomes 
cheaper and more accessible, we expect to see more widespread and routine use of 
color graphics. 

Chapter 2, by Michael Friendly, gives an overview of different ways of visualizing 
a contingency table. So-called sieve and mosaic displays rely on displaying observed 
frequencies or expected frequencies under independence as areas of rectangles drawn 
in the same row-column positions as in the original table. Differences between 
observed and expected frequencies can be visualized using shading and color, and 
it also helps to reorder the rows or columns if they represent unordered (nominal) 
categories. Friendly shows how these ideas extend to multiway tables and uses 
interesting analogies with physical concepts such as pressure and energy to make the 
visualizations even more interpretable. Another type of diagram, the fourfold display, 
is used for comparing sets of 2 X 2 tables and also relies on depicting cell frequencies 
by areas, but in such a way that the odds ratios are displayed. 
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In Chapter 3, Jean-Hugues Chauchat and Alban Risson demonstrate the applica- 
tion of the ideas of Jacques Begin, the French graphical "semiologist," to visualizing 
the rows and the columns of a contingency table. Bertin's graphics remain true to 
the original data, using only permutations of the rows and the columns of the data 
matrix. The authors use different data sets from the social sciences and also show 
how the same ideas can be used to visualize solutions obtained by cluster analysis 
and correspondence analysis. 

Chapter 4, by Brian Francis, Mark Fuller, and John Pritchard, is dedicated to the 
visualization of event history data. Event history studies usually involve the collection 
of large and complex amounts of information on a set of individuals over time. A 
typical event history study consists of records of individual job careers over a number 
of years, including other information such as income and family status. The aim of 
event history analysis is to find common events in time, for example, getting married 
and having the first child a specific number of months later. Using the Lexis diagram, 
the authors introduce a visualization technique that allows the representation of both 
duration and state transitions in all variables relevant to an analysis. In their empirical 
example, the authors visualize data from the British Social Change and Economic 
Life Surveys using a three-dimensional Lexis diagram with the duration variables 
date of marriage, female age, and time since marriage. The Lexis diagram includes 
a "pencil" for every subject indicating the time duration. Coloring the pencils shows 
the individual status at every time point, for example, indicating the work status or 
number of children. 

In Chapter 5, Tom?~s Aluja-Banet and Eduard Nafria discuss generalized impurity 
measures and data diagnostics in decision trees. Decision trees are a specific means 
of displaying a set of multivariate categorial data in which one variable is of special 
interest and is regarded as a response. The decision tree is the visualization of a 
simple rule for predicting the response from the other variables, which are regarded 
as predictors. Using a survey of mobility preferences of the inhabitants of Barcelona, 
the authors show in descending order the different importance of the predictors for 
the decision if one prefers to have "no change" or to move to "another district," to 
the "surroundings," to the "rest of Catalonia," or to the "rest of Spain." It turns out 
that the most important variable for this decision is the district of residence. Other 
variables that define the nodes of the decision tree are socioeconomic status of the 
household, age of head of the household, and years living in the neighborhood. The 
authors also discuss the stability of the results according to split and stop criteria. 

Chapter 6, by Ulrich Frick, Jtirgen Rehm, Karl Erich Wolff, and Michael Laschat, 
describes obstetricians' attitudes on prenatal risks by using formal concept analysis 
(FCA). FCA simultaneously groups both objects and attributes and reveals depen- 
dencies between attributes and between objects. In one of their empirical examples, 
the objects are heads of obstetrics departments in Vienna and the attributes are fetal 
risks. The data are binary according to whether or not the risks are accepted by the 
departments. By applying FCA to these binary data, the authors arrive at line dia- 
grams from which one can read the position of each of the departments and which 
fetal risks they accept. The solution provides both an ordering of the acceptance of 
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fetal risks and an ordering of the departments according to the risks they accept. 
The display is exact: at every position of the line diagram one gets full information 
on the departments (which risks they accept) as well as on the fetal risks (in which 
departments they are accepted). 

In Chapter 7, Karl Erich Wolff and Siegfried Gabler also discuss FCA, here in 
comparison with correspondence analysis. Whereas FCA displays all information 
in the data, correspondence analysis is a data reduction technique in which loss of 
information is incurred. Applying both methods to the same data, the authors show 
that the solutions are quite similar. Discussing the advantages and the disadvantages 
of both methods, Wolff and Gabler suggest that FCA should be used only when there 
is a relatively small number of attributes. For the visualization of a higher number 
of attributes they suggest applying correspondence analysis to find some interesting 
attribute clusters that might serve as a starting point for the data analysis with FCA. 
In addition to the comparison of both methods, the chapter gives some background 
information on FCA as well as some rules for reading a correspondence analysis 
map. 

Chapter 8, by Vartan Choulakian and Jacques Allard, describes the Z-plot as a 
graphical procedure for contingency tables with an ordered response variable. For 
such contingency tables, the proportional odds models of McCullagh and Goodman's 
R or C model are often used. The authors discuss the use of the Z-plot as a preliminary 
aid to screen the data before applying formal statistical analysis. If the Z-plot does 
not reflect the ordinal order of the response variable, then the preceding relatively 
simple models do not describe the data well, and a more complex model such as 
the RC association model should be applied (the latter model is also known as the 
log-bilinear model; for a description of this model see de Falguerolles, Chapter 35). 



Chapter 2 

Conceptual Models for 
Visualizing Contingency 
Table Data 
Michael Friendly 

1 Introduction 

For some time I have wondered why graphical methods for categorical data are so 
poorly developed and little used compared with methods for quantitative data. For 
quantitative data, graphical methods are commonplace adjuncts to all aspects of sta- 
tistical analysis, from the basic display of data in a scatterplot, to diagnostic methods 
for assessing assumptions and finding transformations, to the final presentation of 
results. In contrast, graphical methods for categorical data are still in their infancy. 
There are not many methods, and those that are discussed in the literature are not 
available in common statistical software; consequently, they are not widely used. 

What has made this contrast puzzling is the fact that the statistical methods for 
categorical data are in many respects discrete analogues of corresponding methods 
for quantitative data: log-linear models and logistic regression, for example, are such 
close parallels of analysis of variance and regression models that they can all be seen 
as special cases of generalized linear models. 

Several possible explanations for this apparent puzzle may be suggested. First, 
it may be that those who have worked with and developed methods for categorical 
data are just more comfortable with tabular data, or that frequency tables, represent- 
ing sums over all cases in a data set, are more easily apprehended in tables than 
quantitative data. Second, it may be argued that graphical methods for quantitative 
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data are easily generalized so, for example, the scatterplot for two variables provides 
the basis for visualizing any number of variables in a scatterplot matrix; available 
graphical methods for categorical data tend to be more specialized. However, a more 
fundamental reason may be that quantitative data display relies on a well-known 
natural visual mapping in which a magnitude is depicted by length or position along 
a scale; for categorical data, we shall show that a count is more naturally displayed 
by an area or by the visual density of an area. 

2 Some Graphical Methods for Contingency Tables 

Several schemes for representing contingency tables graphically are based on the fact 
that when the row and column variables are independent, the expected frequencies, 
mij, are products of the row and column totals, divided by the grand total. Then each 
cell can be represented by a rectangle whose area shows the cell frequency, hi j, o r  

deviation from independence. 

2.1  S i e v e  D i a g r a m s  

Table 1 shows data on the relation between hair color and eye color among 592 
subjects (students in a statistics course) collected by Snee (1974). The Pearson X 2 
for these data is 138.3 with nine degrees of freedom, indicating substantial departure 
from independence. The question is how to understand the nature of the association 
between hair and eye color. 

For any two-way table, the expected frequencies mij under independence can 
be represented by rectangles whose widths are proportional to the total frequency in 
each column, n.j, and whose heights are proportional to the total frequency in each 
r o w ,  ni.; the area of each rectangle is then proportional to mij. Figure 1 shows the 
expected frequencies for the hair and eye color data. 

Riedwyl and Schtipbach (1983, 1994) proposed a sieve diagram (later called a 
parquet diagram) based on this principle. In this display the area of each rectangle 

Table 1: Hair color, eye color data 

Hair color 
Eye 
color Black Brown Red Blond Total 

Green 5 29 14 16 64 
Hazel 15 54 14 10 93 
Blue 20 84 17 94 215 
Brown 68 119 26 7 220 
Total 108 286 71 127 592 
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Figure 1: Expected frequencies under independence 

is proportional to the expected frequency and the observed frequency is shown by 
the number of squares in each rectangle. Hence, the difference between observed 
and expected frequencies appears as the density of shading, using color to indicate 
whether the deviation from independence is positive or negative. (In monochrome 
versions, positive residuals are shown by solid lines, negative by broken lines.) The 
sieve diagram for hair color and eye color is shown in Figure 2. 

2.2 M o s a i c  D i s p l a y s  for n - w a y  T a b l e s  

The mosaic display, proposed by Hartigan and Kleiner (1981) and extended by 
Friendly (1994a), represents the counts in a contingency table directly by tiles whose 
area is proportional to the cell frequency. This display generalizes readily to n-way 
tables and can be used to display the residuals from various log-linear models. 
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Figure 2: Sieve diagram for hair color, eye color data 

Condensed Mosaic Displays One form of this plot, called the condensed mosaic 
display, is similar to a divided bar chart. The width of each column of tiles in Figure 3 
is proportional to the marginal frequency of hair colors; the height of each tile is 
determined by the conditional probabilities of eye color in each column. Again, the 
area of each box is proportional to the cell frequency, and complete independence is 
shown when the tiles in each row all have the same height. 

Enhanced Mosaics The enhanced mosaic display (Friendly, 1992b, 1994a) 
achieves greater visual impact by using color and shading to reflect the size of 
the residuals from independence and by reordering rows and columns to make the 
pattern more coherent. The resulting display shows both the observed frequencies 
and the pattern of deviations from a specified model. 

Plate 1 shows the extended mosaic plot, in which the standardized (Pearson) 
residual from independence, dij = (nij - m i j ) / ~ ,  is shown by the color and 
shading of each rectangle: cells with positive residuals are outlined with solid lines 
and filled with slanted lines; negative residuals are outlined with broken lines and 
filled with gray scale. The absolute value of the residual is portrayed by shading 
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Figure 3: Condensed mosaic for hair color, eye color data 

density: cells with absolute values less than 2 are empty; cells with Idijl ~ 2 are 
filled; those with Idijl -> 4 are filled with a darker pattern. Color versions use blue 
and red with varying lightness to portray both sign and magnitude of residuals. 
Under the assumption of independence, these values roughly correspond to two- 
tailed probabilities p < .05 and p < .0001 that a given value of Idijl exceeds 2 or 4. 
For exploratory purposes, we do not usually make adjustments for multiple tests (for 
example, using the Bonferroni inequality) because the goal is to display the pattern 
of residuals in the table as a whole. However, the number and values of these cutoffs 
can be easily set by the user. 

When the row or column variables are unordered, we are also free to rearrange 
the corresponding categories in the plot to help show the nature of association. For 
example, in Plate 1, the eye color categories have been permuted so that the residuals 
from independence have an opposite-corner pattern, with positive values running 
from the bottom left to the top fight comer and negative values along the opposite 
diagonal. Coupled with size and shading of the tiles, the excess in the black-brown 
and blond-blue cells, together with the underrepresentation of brown-eyed blonds 
and people with black hair and blue eyes, is now quite apparent. Although the table 
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was reordered on the basis of the dij values, both dimensions in Plate 1 are ordered 
from dark to light, suggesting an explanation for the association. In this example the 
eye color categories could be reordered by inspection. A general method (Friendly, 
1994a) uses category scores on the first principal axis of a correspondence analysis. 

Multiway Tables Like the scatterplot matrix for quantitative data, the mosaic plot 
generalizes readily to the display of multidimensional contingency tables. Imagine 
that each cell of the two-way table for hair and eye color is further classified by 
one or more additional variables: sex and level of education, for example. Then each 
rectangle can be subdivided horizontally to show the proportion of males and females 
in that cell, and each of those horizontal portions can be subdivided vertically to show 
the proportions of people at each educational level in the hair-eye-sex group. 

Fitting Models When three or more va~ables are represented in the mosaic, we 
can fit several different models of independence and display the residuals from each 
model. We treat these models as null or baseline models, which may not fit the 
data particularly well. The deviations of observed frequencies from expected ones, 
displayed by shading, will often suggest terms to be added to an explanatory model 
that achieves a better fit. 

• Complete independence: The model of complete independence asserts that all 
joint probabilities are products of the one-way marginal probabilities: 

'Tl'i j k " -  '11"i.. "l'g. j .  q'l'. . k (1) 

for all i, j ,k  in a three-way table. This corresponds to the log-linear model 
[A] [B] [C]. Fitting this model puts all higher terms, and hence all association 
among the variables, into the residuals. 

• Joint independence: Another possibility is to fit the model in which variable C is 
jointly independent of variables A and B, 

"lTij k -~  "trij .  "l'g.. k .  (2) 

This corresponds to the log-linear model [AB] [C]. Residuals from this model 
show the extent to which variable C is related to the combinations of variables A 
and B, but they do not show any association between A and B. 

For example, with the data from Table 1 broken down by sex, fitting the model 
[HairEye][Sex] allows us to see the extent to which the joint distribution of hair 
color and eye color is associated with sex. For this model, the likelihood ratio G 2 is 
19.86 with df = 15 (p = .178), indicating an acceptable overall fit. The three-way 
mosaic, shown in Plate 2, highlights two cells: among blue-eyed blonds, there are 
more females (and fewer males) than would be the case if hair color and eye color 
were jointly independent of sex. Except for these cells, hair color and eye color appear 
unassociated with sex. 



2. Some Graphical Methods for Contingency Tables 23 

2.3 Fourfold Display 

A third graphical method based on the use of area as the visual mapping of cell 
frequency is the "fourfold display" (Friendly, 1994b, 1994c) designed for the display 
of 2 x 2 (or 2 X 2 x k) tables. In this display the frequency nij in each cell of a 
fourfold table is shown by a quarter-circle, whose radius is proportional to V/h-q, so 
the area is proportional to the cell count. 

For a single 2 X 2 table the fourfold display described here also shows the 
frequencies by area, but scaled in a way that depicts the sample odds ratio, 0 = 
(nll/nl2) + (nzl/n22). An association between the variables (0 4= 1) is shown by the 
tendency of diagonally opposite cells in one direction to differ in size from those in 
the opposite direction, and the display uses color or shading to show this direction. 
Confidence tings for the observed 0 allow a visual test of the hypothesis H0 : 0 - 1. 
They have the property that the tings for adjacent quadrants overlap if and only if the 
observed counts are consistent with the null hypothesis. 

As an example, Figure 4 shows aggregate data on applicants to graduate school 
at Berkeley for the six largest departments in 1973 classified by admission and sex. 

Sex" Male 
1198 t 1493 

557 4--- 1278 

>.- 
&- 

E 
< 

0 
z 
6-" 
, m  

E 
< 

Sex: Female 
Figure 4: Fourfold display for Berkeley admissions 
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At issue is whether the data show evidence of sex bias in admission practices (Bickel 
et al., 1975). The figure shows the cell frequencies numerically in the comers of the 
display. Thus there were 2691 male applicants, of whom 1198 (44.4 %) were admitted, 
compared with 1855 female applicants, of whom 557 (30.0%) were admitted. Hence 
the sample odds ratio, Odds (Admit [ Male) /(Admit I Female) is 1.84, indicating 
that males were almost twice as likely to be admitted. 

The frequencies displayed graphically by shaded quadrants in Figure 4 are not 
the raw frequencies. Instead, the frequencies have been standardized by iterative 
proportional fitting so that all table margins are equal, while preserving the odds ratio. 
Each quarter-circle is then drawn to have an area proportional to this standardized 
cell frequency. This makes it easier to see the association between admission and sex 
without being influenced by the overall admission rate or the differential tendency of 
males and females to apply. With this standardization the four quadrants will align 
when the odds ratio is 1, regardless of the marginal frequencies. 

The shaded quadrants in Figure 4 do not align and the 99% confidence tings 
around each quadrant do not overlap, indicating that the odds ratio differs significantly 
from 1. The width of the confidence tings gives a visual indication of the precision 
of the data. 

Multiple Strata In the case of a 2 X 2 X k table, the last dimension typically 
corresponds to "strata" or populations, and we would like to see if the association 
between the first two variables is homogeneous across strata. The fourfold display 
allows easy visual comparison of the pattern of association between two dichotomous 
variables across two or more populations. 

For example, the admissions data shown in Figure 4 were obtained from a sample 
of six departments; Figure 5 displays the data for each department. The departments 
are labeled so that the overall acceptance rate is highest for Department A and 
decreases steadily to Department E Again, each panel is standardized to equate the 
marginals for sex and admission. This standardization also equates for the differential 
total applicants across departments, facilitating visual comparison. 

Figure 5 shows that, for five of the six departments, the odds of admission are 
approximately the same for both men and women applicants. Department A appears 
to differ from the others, with women approximately 2.86 [= (313/19)/(512/89)] 
times as likely to gain admission. This appearance is confirmed by the confidence 
tings, which in Figure 5 are joint 99% intervals for 0c, c = 1 . . . . .  k. 

This result, which contradicts the display for the aggregate data in Figure 4, is 
a nice example of Simpson's paradox. The resolution of this contradiction can be 
found in the large differences in admission rates among departments. Men and women 
apply to different departments differentially, and in these data women apply in larger 
numbers to departments that have a low acceptance rate. The aggregate results are 
misleading because they falsely assume men and women are equally likely to apply in 
each field. (This explanation ignores the possibility of structural bias against women, 
e.g., lack of resources allocated to departments that attract women applicants.) 
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Figure 5: Fourfold display of Berkeley admissions by department 
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3 Conceptual Models for Visual Displays 
Visual representation of data depends fundamentally on an appropriate visual scheme 
for mapping numbers into graphic patterns (Bertin, 1983). The widespread use of 
graphical methods for quantitative data relies on the availability of a natural visual 
mapping: magnitude can be represented by length, as in a bar chart, or by position 
along a scale, as in dot charts and scatterplots. One reason for the relative paucity 
of graphical methods for categorical data may be that a natural visual mapping for 
frequency data is not so apparent. And, as I have just shown, the mapping of frequency 
to area appears to work well for categorical data. 

Closely associated with the idea of a visual metaphor is a conceptual model that 
helps you interpret what is shown in a graph. A good conceptual model for a graphical 
display will have deeper connections with underlying statistical ideas as well. In this 
section we consider conceptual models for both quantitative and frequency data that 
have these properties. 

3.1 Quantitative Data 

The simplest conceptual model for quantitative data is the balance beam, often used 
in introductory statistics texts to illustrate the sample mean as the point along an axis 
where the positive and negative deviations balance. 

A more powerful model (Sail, 1991a) likens observations to fixed points con- 
nected to a movable junction by springs of equal spring constant, k --~ 1/o-. For 
example, least-squares regression can be represented as shown in Figure 6, where 
the points are again fixed and attached to a movable rod by unit length, equally stiff 
springs. If the springs are constrained to be kept vertical, the rod, when released, 
moves to the position of balance and minimum potential energy, the least-squares 
solution. The normal equations, 

ei = ~ (Yi -- a -  b x i )  -~ 0 

i=1 

(3) 

Xi ei = ~ (Yi - a - b x i )  x i  : 0 

i=1 

(4) 

are seen, respectively, as conditions that the vertical forces balance and the rotational 
moments about the intercept (0, a) balance. 

The appeal of the spring model lies in the intuitive explanations it provides for 
many statistical phenomena and the understanding it can bring to our perception of 
graphical displaysmsee Sail (1991 a) and Farebrother (1987) for more details. 

3.2 Categorical Data 

For categorical data, we need a visual analogue for the sample frequency in k mutually 
exclusive and exhaustive categories. Consider first the one-way marginal frequencies 
of hair color from Table 1. 
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Figure 6: Spring model for least-squares regression 

40  

Urn Model The simplest physical model represents the hair color categories by urns 
containing marbles representing the observations (Figure 7). This model is sometimes 
used in texts to describe multinomial sampling and provides a visual representation 
that equates the count ni with the area filled in each urn. In Figure 7 the urns are 
of equal width, so the count is also reflected by height, as in the familiar bar chart. 
However, the urn model is a static one and provides no further insights. It does not 
relate to the concept of likelihood or to the constraint that the probabilities sum to 1. 

Pressure and Energy A dynamic model gives each observation a force (Figure 8). 
Consider the observations in a given category (red hair, say) as molecules of an 
ideal gas confined to a cylinder whose volume can be varied with a movable piston 
(Sail, 1991b), set up so that a probability of 1 corresponds to ambient pressure, with 
no force exerted on the piston. An actual probability of red hair equal to p means 
that the same number of observations are squeezed down to a chamber of height p. 
By Boyle's law, which states that pressure X volume is a constant, the pressure is 
proportional to 1/p.  In the figure, pressure is shown by observation density, the 
number of observations per unit area. Hence, the graphical metaphor is that a count 
can be represented visually by observation density when the count is fixed and area 
is varied (or by area when the observation density is fixed as in Figure 7). 

The work done on the gas (or potential energy imparted to it) by compressing 
a small distance 6y is the force on the piston times 6y, which equals the pressure 
times the change in volume. Hence, the potential energy of a gas at a height of p is 

f l ( 1 / y ) d y ,  which is the in this model to - - l o g ( p )  ~ SO energy corresponds negative 
log-likelihood. 



28 Chapter 2. Conceptual Models for Visualizing Contingency Table Data 

7T1 7T2 "tT3 7T4 

t ) t ) 

0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  

XXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 
XXXXXXXXXX 
X X X X X X X X X X  
X X X X X X X X X X  
X X X X X X X X X X  
X X X X X X X X X X  
X X X X X X X X X X  
X X X X X X X X X X  
X X X X X X X X X X  
X X X X X X X X X X  
X X X X X X X X X X  
X X X X X X X X X X  
X X X X X X X X X X  

0000000 
OOOOOOOOOO 
OOOOOOOOOO 
0000000000 
0000000000 
0000000000 
0000000000 
0000000000 
0000000000 
OOOOOOOOOO 
O00000000O 
0000000000 
DOOODOOOOD 

Black Brown Red Blond 
108 2 8 6  71 127 

Figure 7: Urn model for multinomial sampling 

Fitting Probabilities: Minimum Energy, Balanced Forces Maximum likelihood 
estimation means literally finding the values, ¢'ri, of the parameters under which the 
observed data would have the highest probability of occurrence. We take derivatives 
of the (log-) likelihood function with respect to the parameters, set these to zero, and 
solve: 

0 log L n 1 n2 nc ni 
- 0  ~ . . . . . . .  ~ ~i -- ~ - P i  

O'n'i 'rrl "tr2 "trc n 

Setting derivatives to zero means minimizing the potential energy; the maximum 
likelihood estimates (MLEs) are obtained by setting parameter values equal to cor- 
responding sample quantities, where the forces are balanced. 

In the mechanical model (Figure 9) this corresponds to stacking the gas containers 
with movable partitions between them, with one end of the bottom and top containers 
fixed at 0 and 1. The observations exert pressure on the partitions, the likelihood 
equations are precisely the conditions for the forces to balance, and the partitions 
move so that each chamber is of size Pi - n i /n .  Each chamber has potential energy 
- l o g  Pi, and the total energy, - ~ c  ni log Pi, is minimized. The constrained top and 
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Figure 8: Pressure model for categorical data 

bottom force the probability estimates to sum to 1, and the number of movable 
partitions is literally and statistically the degrees of freedom of the system. 

Testing a Hypothesis This mechanical model also explains how we test hypotheses 
about the true probabilities (Figure 10). To test the hypothesis that the four hair color 

1 simply force categories are equally probable, H0 • 7rl = Ir2 = Ir3 = 7T 4 --~ ~ ,  

the partitions to move to the hypothesized values and measure how much energy is 
required to force the constraint. Some of the chambers will then exert more pressure, 
some less than when the forces are allowed to balance without these additional 
restraints. The change in energy in each compartment is then - ( log  Pi - -  log 7 r i )  - -  
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Figure 9: Fitting probabilities for a one-way table 

--log(pi/Tri), the change in negative log-likelihood. Sum these up and multiply by 2 
to get the likelihood ratio G a. 

The pressure model also provides simple explanations of other results. For ex- 
ample, increased sample size increases power, because more observations mean more 
pressure in each compartment, so it takes more energy to move the partitions and the 
test is sensitive to smaller differences between observed and hypothesized probabili- 
ties. 

Multiway Tables The dynamic pressure model extends readily to multiway tables. 
For a two-way table of hair color and eye color, partition the sample space according 
to the marginal proportions of eye color, and then partition the observations for each 
eye color according to hair color as before (Figure 11). Within each column the forces 
balance as before, so that the height of each chamber is nij/ni.. Then the area of each 
cell is proportional to the MLE of the cell probabilities, (hi./n) (nij/ni.) - ni j /n  = 
Pij, which again is the sample cell proportion. 

For a three-way table, the physical model is a cube with its third dimension 
partitioned according to conditional frequencies of the third variable, given the first 
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Figure 10: Testing a hypothesis 

two. If the third dimension is represented instead by partitioning a two-dimensional 
graph, the result is the mosaic display. 

Testing Independence For a two-way table of size I × J,  independence is formally 
the same as the hypothesis that conditional probabilities (of hair color) are the same in 
all strata (eye colors). To test this hypothesis, force the partitions to align and measure 
the total additional energy required to effect the change (Figure 12). The degrees of 
freedom for the test is again the number of movable partitions, (I - 1)(J - 1). 

Each log-linear model for three-way tables can be interpreted analogously. For 
example, the log-linear model [A] [B] [C] (complete independence) corresponds to 
the cube in which all chambers are forced to conform to the one-way marginals, 
7rijk - 7ri.. 7r.j. 7r..k for all i, j, k. G 2 is again the total additional energy required to 
move the partitions from their positions in the saturated model in which the volume 
of each cell is Pijk -- n i j k / n  (so the pressures balance) to the positions where each 
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Figure 11: Two-way tables 

cell is a cube of size 7ri.. x 9"r.j. X 7r.. k. Other models have a similar representation in 
the pressure model. 

Iterative Proportional  Fitting For three-way (and higher) tables some log-linear 
models have closed-form solutions for expected cell frequencies. The cases in which 
direct estimates exist are analogous to the two-way case, in which the estimates under 
the hypothesized model are products of the sufficient marginals. Here we see that 
the partitions in the observation space can be moved directly in planar slices to their 
positions under the hypothesis, so that iteration is unnecessary. 

When direct estimates do not exist, the MLEs can be estimated by iterative 
proportional fitting (IPF). This process simply matches the partitions corresponding 
to each of the sufficient marginals of the fitted frequencies to the same marginals 
of the data. For example, for the log-linear model lAB] [BC] [AC], the sufficient 
statistics are nij., ni.k, and n.jk. The conditions that the fitted margins must equal 
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F i g u r e  12: T e s t i n g  i n d e p e n d e n c e  

these observed margins are 

n i j .  _ n i . k  _ n.jk - -1  (5) 
l~lij, rhi.k tPFl.jk 

which is equivalent to balancing the forces in each fitted marginal. The steps in IPF 
follow directly from equation (5). For example, the first step in cycle t + 1 of IPF 
matches the frequencies in the [AB] marginal table, 

/ \ 
?n(t+ l) ^ (t) I nij" 

ijk -- m i j k  " ,, ( t )  
~k mij. / 

(6) 

which makes the forces balance when equation (6) is summed over variable C: 
r~/(t+ 1) ij. = n i j . .  The other steps in each cycle make the forces balance in the [BC] and 
[AC] margins. 
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The iterative process can be shown visually (Friendly, 1995), in a way that 
is graphically exact, by drawing chambers whose area is proportional to the fitted 
frequencies, thijk, and which are filled with a number of points equal to the observed 
nijk. Such a figure will then show equal densities of points in cells that are fitted well 
but relatively high or low densities where nijk > Pnijk or nijk < thijk, respectively. The 
IPF algorithm can in fact be animated, by drawing one such frame for each step in 
the iterative process. When this is done, it is remarkable how quickly IPF converges, 
at least for small tables. 

Likewise, numerical methods for minimizing the negative log-likelihood directly 
can also be interpreted in terms of the dynamic model (Farebrother, 1988; Friendly, 
1995). For example, in steepest descent and Newton-Raphson iteration, the update 
step changes the estimated model parameters ~ ( t +  1) in proportion to the score vector 
f(t) of derivatives of the likelihood function, f(t) --  O~ logL/O/3 = XT(n -- m (t)) to 
give/3 (t+ 1) = ~( t )  _~_/~f(/). But f(/) is just the vector of forces in the mechanical model 
attributed to the differences between n and m (/) as a function of the model parameters. 

4 Conclusion 

This chapter started with the puzzling contrast in use and generality between graphical 
methods for quantitative data and those for categorical data, despite strong formal 
similarities in their underlying methods. In this chapter we have seen that categorical 
data require a different graphical metaphor and hence a different visual representation 
(count ~ area) from that which has been useful for quantitative data (magnitude *--, 
position on a scale). The sieve diagram, mosaic, and the fourfold display all show 
frequencies in this way and are valuable tools for both the analysis and presentation 
of categorical data. 

We then showed that physical models for both quantitative and categorical data 
and their graphic representation can yield a wide range of interpretations for statistical 
principles and phenomena. Although the spring and pressure models differ funda- 
mentally in their mechanics, both can be understood in terms of balancing of forces 
and the minimization of energy. The recognition of these conceptual models can 
make a graphical display a tool for thinking, as well as a tool for data summarization 
and exposure. 

Finally, we can see two areas needing improvement in the future development of 
graphical methods for categorical data. First, much of the power of graphical methods 
for quantitative data stems from the availability of tools that generalize readily to 
multivariable data and can make important contributions to model building, model 
criticism, and model interpretation. The mosaic display possesses some of these 
properties, and other chapters in this book attest to the widespread utility of biplots 
and correspondence analysis. However, I believe there is need for further development 
of such methods, particularly as tools for constructing models and communicating 
their import. Second, I am reminded of the statement (Tukey, 1959, attributed to 
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Churchill Eisenhart) that the practical power of any statistical tool is the product of 
its statistical power and its probability of use. It follows that statistical and graphical 
methods are of practical value to the extent that they are implemented in standard 
software, available, and easy to use. Statistical methods for categorical data analysis 
have nearly reached that point. Graphical methods still have some way to go. 
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Chapter 3 

Bertin's Graphics and 
Multi dimensi onal 
Data Analysis 

Jean-Hugues Chauchat and Alban Risson 

1 Introduction 

The objective of this chapter is to show how Bertin's graphics are a straightforward and 
accurate method for communicating the results of some multidimensional statistical 
methods such as principal components analysis, correspondence analysis, and cluster 
analysis. These graphics remain true to the original data, using only permutations of 
rows and columns of the data matrix. 

The idea of permuting the rows and columns of a matrix for the purpose of 
revealing hidden structure in a data matrix is an old one: the pioneering work was 
done by Sir W. M. Flinders Petrie almost a century ago. He was looking for a 
"sequence in prehistoric remains," that is, a chronological "seriation." As noticed by 
Arabie et al. (1978), Caraux (1984), and Marcotorchino (1987), this idea is having 
an increasing influence in applied mathematics, especially in the behavioral sciences. 
Bertin (1967, 1981) laid histograms side by side, using an appropriate scale, and 
permuted the elements to reveal underlying structures in the data. 

We consider two types of statistical methods that can help us to discover rapidly 
the best pair of permutations of the rows and columns of the table among the n! x p! 
possible solutions: (1) identification of a diagonal pattern when it exists, for example, 
a predominant factor in correspondence analysis or principal components analysis, 
and (2) classification of rows and columns by cluster analysis. 
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The first type of solution (diagonal pattern) is known as "seriation" or "ordi- 
nation," the second type as "block seriation" or "cliques." In both cases, Bertin's 
graphics gives an easily understandable visual representation of the results of the 
statistical data analysis; each bit of information, each entry of the table is presented 
in its original form, with only the order of the rows and columns changed. 

We present a new exploratory method that integrates multidimensional data 
analysis and graphical methods and is implemented in the software program AMADO 
(Risson et al., 1994). This methodology can be applied to any matrix consisting of 
positive values: contingency tables, logical tables representing a response pattern or 
a graph, symmetric tables of similarities, and so on. 

2 Bertin's Rules of Graphical Syntax 

Contrary to a table, with which the aim is to make every cell available to the reader, a 
graph should be read in an instant--similarities and differences should be immediately 
apparent. Let the rows of a table be the horizontal dimension (say X) and the columns 
of the table be the vertical dimension (say Y). A color variation or shading in light 
intensity can induce a third visible dimension (say Z); this third dimension is used to 
represent the numerical values of the data table. 

During the 1960s, Bertin and his team worked with groups of wooden cubes 
covered with paper on which were drawn rectangles from histograms; rows (or 
columns) were then moved by hand until a diagonal structure, or a "block model," 
was obtained. Later, the use of numerical multivariate descriptive statistical analysis 
methods (Lebart et al., 1984) replaced this purely visual approach. 

Looking for a unidimensional ordering, one may use correspondence analysis 
(CA) to find the optimal ranking of the row and column variables. The first axis of 
the CA solution gives the numerical scale for the rows and columns so that each 
individual may be characterized in a scatterplot by the coordinates of the individual's 

Table 1: The (0/1) matrix, logic table that represents Jan De Leeuw's UCLA statistics 
program graph 

Born in Born out 
Mathematics Sociology Statistics Psychology Education the U.S.A. of theU.S.A. 

Ferguson 1 0 0 0 0 1 0 
Li 1 0 0 0 0 0 1 
Ylvisaker 1 0 0 0 0 1 0 
Berk 0 1 0 0 0 1 0 
De Leeuw 0 0 1 0 0 0 1 
Mason 0 1 0 0 0 1 0 
Bentler 0 0 0 1 0 0 1 
Muthrn 0 0 0 0 1 0 1 
Jennrich 1 0 0 0 0 1 0 
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categories i and j. There a r e  rtij individuals at the same position, so the number nij 
can be used as the third dimension Z. The correlation coefficient between the two 
scaled row and column variables is the square root of the eigenvalue associated with 
this first principal axis (Nishisato, 1980, chap. 3; Tenenhaus and Young, 1985), also 
called the canonical correlation (see, for example, Greenacre, 1993a, chap. 7). 

Bertin's graphics (see Figure 3) can be seen as a type of scatterplot: coordinates 
from CA become ranks, and the area of each rectangle is proportional to the number 
of observations/cases with those ranks. With this interpretation, the best permutation 
of rows and columns would maximize the Spearman rank correlation coefficient. 
Looking for a block seriation, one may use any appropriate cluster analysis method 
on rows and/or columns. 

3 A Simple Example of Bertin's Graphics 

In Chapter 1 of this book, de Leeuw presents a small data set on the UCLA statistics 
department. The data are given in Table 1; Figure 1 shows the corresponding display 
using Bertin's graphics. From this display it is easy to see that both sociologists as 
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Figure 1: Bertin's graphic from de Leeuw's graph. 
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well as three of the four mathematicians were born in the United States, whereas the 
fourth mathematician, the psychologist, the statistician, and the educator were born 
outside of the United States. 

4 Livestock Slaughtered in the European 
Community in 1995 

The data in Table 2 were obtained from the European Community Statistical Of- 
fice (EUROSTAT) in Luxembourg. Here, we consider the number of livestock (in 
thousands) slaughtered in 1995 in EEC countries. 

4.1 C o r r e s p o n d e n c e  A n a l y s i s  and  Bertin's  G r a p h i c s  

Such a contingency table can be displayed via correspondence analysis. The first 
factorial plane is shown in Figure 2. This map might be hard to read: many people 
will read that "Adult Bovines" are mostly found in Italy, because these two points 
appear near one another on the plot, or that there are more pigs in Finland than 
in Denmark because the former is closer to "Pigs" than the latter. These erroneous 
conclusions are quite common. 

Table 2: Livestock slaughtered in the European Community in 1995 (1000 animals) 

Austria Belgium Denmark Finland France Germany Greece 

Heifers 69 67 57 51 577 674 31 
Adult bovines 533 711 703 382 3968 4251 235 
Calves 130 336 55 10 2042 501 80 
Pigs 4954 11294 19873 2066 24859 39353 2268 
Sheep 280 22 69 74 7696 2057 7712 
Caprines 0 0 0 1 1058 12 4819 

Ireland Italy NL Portugal Spain  Sweden UK 

Heifers 487 558 48 53 591 52 940 
Adult bovines 1514 3411 1181 325 1965 501 3266 
Calves 0 1321 1198 71 25 30 26 
Pigs 3002 11992 18616 4209 27539 3743 14376 
Sheep 4298 7960 626 1083 20085 189 19311 
Caprines 0 483 17 205 1891 0 30 

Source: EUROSTAT. 
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Figure 2: The European Community's livestock correspondence analysis. 

Such errors are impossible with graphics in Figures 3 and 4. Figure 3 depicts 
the raw data after rows and columns have been permuted with respect to their order 
on the first CA axis. The seven northern and eastern countries (Denmark, Belgium, 
Netherlands, Germany, Finland, Sweden, and Austria), where pigs and beef are the 
most important products, are opposed to the western and southern countries (Portugal, 
France, Italy, Spain, Ireland, United Kingdom, and Greece), which produce sheep 
and goats rather than pigs. In Figure 4 the row and column reordering is maintained 
but the conditional distributions are shown: first of countries, given species (i.e., 
row profiles), and second of species, given countries (i.e., column profiles). Figure 
4a shows that the larger part of pigs produced in the European Community comes 
from Germany and then from Spain, France, The Netherlands, and so on, whereas 
Figure 4b shows that the countries in which pigs are the main product are Denmark, 
Belgium, The Netherlands, Germany, and so on. 

These Bertin's graphics represent the original data perfectly, but contrary to 
correspondence analysis, they are limited in their ability to display more than one 
factor at a time. Figure 5 is similar to Figure 4 after permutation of rows and columns 
with respect to the second principal axis; beef- and sheep-producing countries are 
opposed to those producing pigs or goats. These graphics show the additional infor- 
mation carried by the second axis, as well as the peculiar position of "Greece" and 
"goats." 

4.2 Cluster Analysis and Bertin's Graphics 

Usually, results from hierarchical clustering are depicted by a "tree"; the tree shows 
how the clusters were formed but it distorts the distances between the clustered rows 
or columns into "ultrametric" distances. Moreover, the tree does not give information 
on why two rows, or two columns, were found to be "close" or "distant." Bertin's 



42 Chapter 3. Bertin's Graphics and Multidimensional Data Analysis 

I I  

(It) .¢:: 
0 

Q . .  ¢..- ( l )  
Q) (D "~" 

"~  ..=_ ~ ca. 

< "r- cO ¢0  

m ,,,, 

I I  

Denmark 
Belgium 

N.L. 

or} 

m . 

m ,| ,,, 

iii i i i  ii 

Germany 
Finland 
Sweden 
Austria 
Portugal 

~ France 
Italy 

Spain 
Ireland 

U.K. 
~ Greece 

Figure 3: The European Community's livestock Bertin's graphic after reclassification 
according to the ranking of values on the first axis of correspondence analysis. 

graphics can be applied to the original data, where rows or columns are ranked 
according to their location in the tree. Clustering of the countries is performed by 
Ward's method (Ward, 1963) using the chi-squared distance (Greenacre, 1988a; 
Jambu, 1989). Figure 6 shows the hierarchical clustering tree, revealing the main 
geographic and cultural ensembles of Europe: the British Isles, the Roman world 
(Italy, France, Spain, Portugal), Greece on its own, and northeastern Europe around 
Germany, where the three countries Belgium, Netherlands, and Denmark stand out. 

Figure 6b shows the profile for each country, and it is now apparent what 
links countries of the same cluster and what separates those in different clusters. 
Northeastern countries produce pigs, no goats, and hardly any sheep; large bovines 
and sheep are produced in the British Isles, but no goats or calves, and so on. One sees 
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how the two methods complement each other: clusters are found "automatically" and 
give a good classification of countries, and Bertin's graphics assist in the interpretation 
of the clusters by returning to the original data. 

5 Conclus ion 

Bertin's graphics provide a visual complement to the solutions of correspondence 
and cluster analyses. Data matrices are represented by a matrix of histograms, all on 
the same scale, where rows and columns are optimally permuted. This permutation 
is defined in terms of either progressive variation or sedation, or by homogeneous 
groups distinct from one another, or block modeling. These permutation criteria, 
which Bertin defined empirically, are the very criteria of the multivariate statistical 
methods: the diagonal sedation corresponds to the maximum correlation permutation 
of rows and columns in CA, and the block criteria correpond to the homogeneity of 
groups in cluster analysis, for example, Ward's minimization of intracluster variance. 

Here, we can quote Arabie et al., (1978): 

"It is intuitively convincing that row-column permutations of a matrix 
leave the raw data far more chaste than do data analysis techniques 
requiring a priori replacement or aggregation, e.g. taking ranks, or re- 
placing subsets of the data by various summary statistics (...). For this 
reason, permutation methods are an important member of the small but 
growing family of data analysis methods following the philosophy that 
aggregation is to be inferred at the end of the analysis, not imposed at 
the beginning." 

Software Note: AMADO 

The program AMADO is an implementation of Bertin's method. AMADO is dis- 
tributed in Windows and Macintosh versions by CISIA (1 av. Herbillon, 94160 
Saint-Mandr, France). A user's guide (Risson et al., 1994) is available in French, and 
Italian and English versions will become available in 1998. 
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Chapter 4 

The Use of Visualization 
in the Examination of 
Categorical Event Histories 

Brian Francis, Mark Fuller, and John Pritchard 

1 Introduct ion  

Graphical displays of multivariate data provide much insight into the nature of a 
data set before statistical analysis. Such displays identify unusual observations, po- 
tential clusters of observations, and possible relationships between variables and 
thus can suggest appropriate statistical models in later analysis. Everitt (1978), for 
example, described a collection of graphical techniques for certain types of mul- 
tivariate data. The primary aim in producing such displays was well summarized 
by Andrews (1972), who described exploratory data analysis as "the manipulation, 
summarisation, and display of data to make them more comprehensible to human 
minds, thus uncovering structure in the data and detecting important departures from 
that structure." 

Event history studies usually involve the collection of large and complex amounts 
of information on a set of individuals. A typical work history for an individual consists 
of records of that individual's employment state containing the start and end dates of 
each period of employment or unemployment, social class and industrial classifica- 
tion, number of hours worked, and so on. Life history data contain further records of 
other life events such as the individual's marital history, residential history, educa- 
tional history, criminal history, medical history, and other demographic information 
such as the dates of birth of children and the size and composition of the individual's 

47 



48 Chapter 4. The Use of Visualization in the Examination of Categorical Event Histories 

household over time. Life histories are special cases of event histories, which could 
also include shorter term studies such as the medical history of an individual since 
the first onset of an illness such as Acquired Immunodeficiency Syndrome (AIDS). 

Although in many short-term studies, event history data can be collected prospec- 
tively, it is common when assembling life histories for information to be collected 
retrospectively through questionnaire or interview, leading to problems of recall for 
both dates of state changes and associated covariate information. Such data are there- 
fore characterized for an individual by a set of multiple durations in each of a number 
of states, with additional complex covariate information varying over time. Fu~her- 
more, censoring may be present for some durations in some states, and data may be 
missing. 

Our aim in developing visual techniques for event history data is therefore to 
allow the representation of both durations and state transitions in all variables relevant 
to an analysis. Such displays should allow both the examination of a single event 
history and the comparison of multiple event histories. 

Scientific data visualization (McCormick et al., 1987) has developed over the 
past decade and is characterized by highly interactive computer software with a 
comprehensive set of tools for viewing scientific data. Scientific visualization has 
traditionally been used to display data in such areas as engineering (computational 
fluid dynamics), medicine (computed tomography displays), and meteorology (pres- 
sure, wind, and cloud systems). These applications typically represent the coordinates 
of real physical three-dimensional (3D) objects. Further information can be added 
to the 3D representation by using color and superimposed symbols, Applications in 
which there is no underlying 3D physical representation are rare, although visualiza- 
tion has been used, for example, in geography (Hearnshaw and Unwin, 1994), where 
pollution measures supply the third dimension on a 2D map, and for the examina- 
tion of stock exchange data (Koh, 1993), where the graphical representation has no 
underlying physical model. 

The use of the term visualization in this chapter is perhaps different from that in 
other chapters in this book. "Visualization" in statistics is often t~en  to be simply 
a static representation of a set of data. We prefer to reserve this term for the highly 
interactive displays just described, using the term "graphical displays" for static 
representations of data. It is clear that visualization software can aid the statistical 
practitioner both in exploring complex data before analysis and in the presentation 
of the results of a fitted model. The problem with event history data is that there is 
no unique 3D representation of such data, and we confront this issue in the following 
sections. 

2 Graphical Representations of Event Data 

Francis and Fuller (1996) reviewed existing methods for graphically representing 
event history data. The methods fall into two categories: those summarizing a col- 
lection of event histories by defining a set of ranked key events present in a large 
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proportion of the histories (Blossfeld et al., 1989) and those attempting to graph a 
single, complex event history in its full detail. Methods in the first category cannot 
usually represent the full complexity of a data set, and a proportion of the data needs 
to be excluded from the display. Although useful as presentational displays illustrat- 
ing the progress of individuals through a sequence of states, they are not considered 
further here. 

Methods that take the first route have commonly used a straight line to represent a 
single history, with various forms of textual annotation or shading to represent events. 
In his book on the principles of graph construction, Cleveland (1994) considers one 
example of an event history chart showing the activities of a woman and her baby 
from the African !Kung tribe over a 12-hour period, moving into and out of four 
different activities: sleep, nursing, fretting, and holding. As more than one activity 
can occur at the same time, the single-line model suggested by Konner and Worthman 
(1980), with different forms of shading on a line to represent different variables, is 
rejected. Instead, Cleveland is in favor of a simple diagram with time on the horizontal 
axis and with four horizontal bands stacked one above the other representing the four 
activity states. Where a particular activity is present, the band is shaded, giving a 
"block diagram." Cleveland's graph is essentially similar to a tulip plot (Barry et al., 
1989), in which a circular rather than a linear block diagram is used, with concentric 
tings representing the variables. 

The foregoing ideas are suitable for examination of a single or a small number of 
event histories. However, we are concerned here with displays that might be applied 
to larger collections of histories and also with methods that can deal with all types 
of variables, which extend from simple binary state variables to cover all types of 
variables encountered in event history analysis. Variables can belong to one of five 
possible types: 

1. Time variables: variables directly related to time, which measure the progress of 
an individual in time, such as age or calendar year. 

2. Time-varying variables: variables that vary within histories as well as between 
histories. Examples are the number of hours worked per week (continuous), 
highest academic qualification (ordinal), and marital status (nominal). 

3. Time-constant variables: as above, but constant within a history. Examples include 
sex, ethnicity, and place of birth. 

4. Internal events: events directly related to the individual, which will vary from 
individual to individual, such as the date of death of a parent and the date a 
driving licence was gained. 

5. External events: these affect the whole sample under study at the same calendar 
time. Examples include a change of government or the closure of a major factory 
in a locality. 

Naturally, many variables can belong to more than one type. For example, age 
can be thought of as a time-constant variable if treated as "age at entry to study," 
and number of children can be represented as time-varying continuous, ordinal, or 
nominal. 
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3 Lexis Pencils for Event Histories 

We now consider possible objects or glyphs that can be used as a model for the 
display of event history information. The object needs to be compact, to allow 
many such objects to be displayed simultaneously, and also needs to have many 
faces, to allow a suitable selection of event history variables to be displayed. A 
linear object seems more suitable than a circular object, as variables on the outside 
of a circle carry a different visual impact compared to those on the inside--an 
undesirable characteristic. A linear pencil-like object therefore seems appropriate as 
a means of representing an event history. A suitable time variable such as calendar 
time or age would be measured along the length of the pencil. Each time-varying 
variable required would be represented by a different face of the pencil. Continuous 
or ordinal time-varying variables can be represented either by continuous changes in 
color or alternatively by protuberances from faces of the object, with the height of 
the protuberances representing the values of the variable. Categorical time-varying 
variables can be represented by changes in color or texture. Events can be marked 
by solid tings around the object, with different types or colors of tings for different 
event types. Time-constant variables can be represented by different colors or glyphs 
at the end of each pencil or by additional faces to the object. 

These pencils can be displayed side by side in case number or other order 
(perhaps sorted by the length of the history or by a suitable time-constant variable), 
thus providing a full, informative display for viewing the data. However, it is possible 
to go further, and to do this, we turn to the demographic literature. 

The Lexis diagram (Lexis, 1875) provides a graphical method of displaying 
demographic data. The modified form of the diagram used today is based on work 
by Pressat (1961) and is shown in Figure 1. The x-axis represents calendar time t, 
and the y-axis represents age a. Each individual is represented by a distinct line on 
the diagram. An individual born at calendar time T and dying at age A will die at 
time T + A. The individual will therefore be represented in the diagram by a 45 ° line 
joining the time and age at birth (T,0) to the time and age at death (T + A,A). The 
Lexis diagram is also commonly used in survival analysis studies to represent the 
progress of individuals through a study. In these diagrams, the x-axis still represents 
calendar time but the y-axis represents the time in the study. An individual entering 
a study at calendar time T will stay in the study for a period of length A, either 
until an event of interest occurs (uncensored) or until the end of the study (censored). 
Symbols placed at the end of the lines are used to indicate the presence or absence of 
censoring. 

Keiding (1990) described some statistical properties of the Lexis diagram. For 
example, if death intensities/x(t, a) are assumed to be constant within some principal 
set in the Lexis diagram and varying between principal sets, with a multiplicative 
age-period model for the death intensities/z(t, a) = og t ~3a, then this gives a piecewise 
constant intensity model. A Poisson-type likelihood can be derived, which can be 
fitted as a special case of a generalized linear model. The diagram thus has a good 
statistical rationale. Keiding also describes a continuous form of this model. 
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Age 

T T+A 

Calendar time 

Figure 1: ALexis diagram. 

One method of analyzing event history data is through multiple duration survival 
analysis models, and the standard Lexis diagram could straightforwardly be adapted 
for complex event history data, with pencil objects replacing the Lexis lines. However, 
the complexity of the resulting diagrams with more than one time-varying variable 
and the strong likelihood of pencils overlapping suggest that this 2D approach would 
be suitable only for simple data sets. If the pencils could instead be placed in 3D 
space, this approach would be more attractive. A 3D version of the Lexis diagram was 
also suggested by Lexis, to represent irreversible changes of state such as termination 
of marriage during the lifetime of an individual. He noted that such data from studies 
usually have an extra time dimension, with individuals entering this new state at 
varying ages. This led him to suggest a 3D extension to his diagram, where the x - z  

base plane had two dimensions, namely year of birth and age upon entering the new 
state. The vertical y-axis would then represent time spent in the new state. In effect, 
this approach would generate 3D age-period--cohorts displays of the raw data, and 
it provides us with a suitable spatial framework for visualization, with pencils again 
replacing the Lexis lines. 

How should the pencils be angled? In the original work by Lexis, the Lexis 
lines arose vertically from and perpendicular to the x - z  base plane. However, we 
can also angle the lines at 45 ° to the x-axis, to the z-axis, or to both the x-axis and 
z-axis. The choice of display depends on the method chosen for representing the 
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time variables. For example, age can be represented either as a constant for each 
individual (e.g., age of the individual when entering the study) or as a continuously 
changing variable over the individual's time in the study. Similarly, calendar time can 
be represented as constant for an individual (time of entry to study; date of marriage) 
or as a continuously changing variable. There are four possible ways to represent 
the two age options and the two calendar time options, giving four possible displays 
that can be constructed, with suitable orientations of the pencils for each display. For 
example, when both age and calendar time are continuously varying, the resulting 
display will consist of angled pencils, at 45 ° to both the age and time axes. Choosing 
an appropriate orientation will be guided to some extent by the data analyst's proposed 
statistical model and the representation of time and age in that model. Alternatively, 
displaying the data in more than one orientation can often be useful. If there is no 
suitable secondary time axis, then a variable indexing the individuals may be used as 
a substitute. This will space the histories equally along the z-axis. Variations on this 
display would sort the individuals into date, age, or other order before construction 
of the index variable. 

Once the display has been constructed, standard visualization tools such as 
rotation, panning, zooming, and slicing can be used to explore the data. Both the 
location of the pencils and the interrelationship of the faces of the pencil are of 
interest. Dynamic statistical graphics (see, for example, Cleveland and McGill, 1988) 
provide flexible graphical tools, for example: 

1. Identification. The ability to identify case number or the values of other displayed 
variables on screen. Some visualization systems such as AVS (see Software Notes) 
provide a method of identifying case number by defining each pencil as a separate 
object labeled by the case numbermthe pencil can be identified by clicking with 
a mouse. 

2. Selection and brushing. Case selection in dynamic statistical graphical systems is 
highly interactive and general, using a combination of simple mouse operations 
and a graphical toolbar. Selection is also available in visualization systems but 
would usually be available by specifying ranges of the data through sliders or 
interactive gauges. 

3. Linked displays. The linking of two or more displays, with highlighted objects in 
one display also highlighted in the remaining displays, is desirable. Visualization 
software can offer several different views of the same object and also linkage 
between different geometrical views of the same object, but this requires extra 
programming effort by the user. 

4 An Example 

Davies et al. (1992) used data from the Social Change and Economic Life Surveys 
to reexamine the "employment shortfall" effect noted in cross-sectional studies, in 
which the wives of unemployed men are less likely to be working than the wives 
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of employed men. The data, collected in six UK localities, consisted of work and 
life histories collected retrospectively for 1171 partnerships existing in 1987, The 
partnership histories started at the month of last marriage and continued until the date 
of the survey. Various hypotheses have been suggested to explain this shortfall. Dilnot 
and Kell (1987) argue that it may be a financial effect related to the payment of benefit. 
Alternatively, Barrere-Maurisson et al. (1985) suggest that wives may be reluctant to 
work because this could damage their unemployed husband's self-esteem. A further 
hypothesis suggested by Dilnot and Kell is that women married to unemployed men 
may have personal characteristics that make them less likely to find work or may live 
in areas with few jobs available. 

A binary logistic regression was carried out by Davies et al. (1992) on the monthly 
employment state of each wife (1 = employed, 0 = unemployed) separately for each 
of the six localities. Heterogeneity was allowed for by including an individual-specific 
error term, which was assumed to have a normal distribution, and by the incorporation 
of two end points at infinity and minus infinity, to allow for women with very low and 
very high probabilities of taking paid employment. The authors fitted a main-effects 
model with number of children, husband's length of unemployment (grouped into 
four duration categories), and a set of dummy variables measuring the age of the 
youngest child as covariates. Also included in the model were linear and quadratic 
effects of the husband's age, wife's age, and calendar time. The first column of Table 
1 contains the parameter estimates for Kirkcaldy, one of the six localities. From 
188 partnership histories and 40,960 partnership months, this model gives a value 
of minus twice the log-likelihood of 30,987.2 with 40,942 degrees of freedom. Note 
that the degrees of freedom are used solely to determine the change in the number of 
parameters between competing models and are not used to assess goodness of fit. 

Examination of the parameter estimates and their associated standard errors 
shows that there is little effect of a husband's unemployment on his wife's employment 
status for the first 12 months, then a highly significant effect thereafter. The effect 
of the age of the youngest child is as expected, with strongly significant negative 
effects for all age groups. The effect of a child under 1 year old is particularly strong 
(-4.48), formed from the sum of the estimates for <1, <5, and <11 years old. 
However, combined with this is a positive effect for the number of children. All 
quadratic and linear terms representing age and calendar time were also significant. 

We can now reexamine these data using the visualization ideas described earlier. 
The Lexis pencils were chosen to have three faces, representing, in clockwise order, 
the variables of husband's and wife's employment state and a composite variable 
representing the age of the youngest child in the family. The angle between faces of 
the pencil is set to be 45 °. A simple color representation of state changes was chosen. 
For employment state, light blue is used for employed and dark blue for unemployed 
for both the male and female in the partnership. Similarly, color is again used for 
the age of the youngest child, with green representing no children in the household, 
yellow representing under 1 year, red under 5 years, magenta under 11 years, and 
white under 16 years. We choose the x-axis to be age at marriage, the z-axis to be 
calendar year, and the vertical y-axis time since marriage. 
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Table  1: Pa rame te r  es t imates  (with  s t anda rd  errors  in parentheses)  and  log- 
l ike l ihoods  for the Kirkcaldy female  u n e m p l o y m e n t  da ta  fitting the logis t ic-normal  
m o d e l  wi th  end  points  

A. B. C. D. 
Davies et al. Model A with Model B for Model B for 
model additional pre- 1962 1962-1987 

pregnancy factor marriage cohort marriage 
included cohort 

Intercept -0.25 (0.02) -0.004 (0.02) -0.12 (0.05) 0.67 (0.04) 
Husband's unemployment 

duration: 
1-6 months -0.05 (0.06) 0.03 (0.06) -0.70 (0.17) 0.37 (0.08) 
7-11 months -0.19 (0.12) -0.02 (0.13) 0.57 (0.71) -0.29 (0.17) 
1-2 years -0.81 (0.10) -0.67 (0.10) 0.41 (0.28) -0.85 (0.17) 
>2 years -2.71 (0.03) -2.65 (0.03) -2.76 (0.11) -0.93 (0.12) 

Age of youngest child: 
< 1 year -1.08(0.03) -1.32(0.03) -0.51 (0.06) -1.66(0.04) 
< 5 years -2.09 (0.01) -2.18 (0.01) -1.95 (0.02) -2.23 (0.02) 
<11 years -1.31 (0.01) -1.45 (0.01) -1.02 (0.02) -1.87 (0.02) 

Number of children 0.63 (0.01) 0.52 (0.01) 0.50 (0.01) 0.17 (0.01) 
Age: 

Husband's age 0.01 (0.01) 0.03 (0.01) 0.09 (0.01) -0.01 (0.01) 
(Husband's age) 2 x 10 -2 -0.05 (0.01) -0.06 (0.01) -0.09 (0.01) 0.07 (0.01) 
Wife's age -0.10 (0.01) -0.10 (0.01) -0.29 (0.01) 0.36 (0.01) 
(Wife's age) 2 x 10 -2 0.14 (0.01) 0.10 (0.01) 0.32 (0.01) -0.73 (0.02) 

Time: 
Calendar year x 10 -1 6.08 (0.06) 6.31 (0.06) 7.56 (0.12) 3.30 (0.19) 
(Calendar year) 2 x 10 -3 -3.60 (0.04) -3.74 (0.04) -4.60 (0.08) - 1.59 (0.13) 

Pregnancy: 
2nd trimester - 1.25 (0.07) - 1.03 (0.14) - 1.66 (0.10) 
3rd trimester -3.29 (0.08) -2.15 (0.11) -4.29 (0.12) 

Scale parameter for normal 1.03 1.05 1.29 1.41 
End point probabilities: 
P0 (at minus infinity) 0.062 0.060 0.058 0.056 
Pl (at infinity) 0.034 0.030 0.019 0.010 

- 2 log-likelihood 30987.2 30127.7 13842.2 15819.7 

Plate  3 shows the resul t ing rendered  display of  all 188 histories.  At  this v iewpoin t  

dis tance,  it is difficult to see changes  in e m p l o y m e n t  and family  state wi th in  event  

his tories ,  but  the structure of  the sample  becomes  clear. For  example ,  w o m e n  w h o  

mar r ied  in the 1950s were  over  50 at the t ime of  the survey and contr ibute  long 

Lexis  penci ls  to the display. In addit ion,  w o m e n  f rom all mar r iage  cohorts  contr ibute  

part ial  his tor ies  to the 1980s. It is poss ib le  to use this plot  to search for influential  

his tor ies  that  m igh t  have an influential  effect on the regress ion  pa ramete r  es t imates  
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of the calendar time and age variables. As each history is represented by a different 
graphical object, it is easy to identify the case number by clicking on the pencil of 
interest. In this data set, there is no obviously influential history, and we proceed to 
examination of the display in greater detail. 

By zooming into the histories, further features of the data become apparent. 
Plate 4 illustrates some typical histories for women marrying at the age of 25 in 1967 
and 1968. Following the histories through time, from the bottom to the top of each 
pencil, changes of state in the middle face of the pencil from light blue (employed) 
to dark blue (unemployed) on the female employment history usually occur before 
changes of state from green (no children) into yellow bars (child under 1 year) on 
the child history. In other words, the female partner usually stops work before, not at, 
the introduction of a child under 1 year old into the household. Further examination 
of the histories also shows evidence of differences between women marrying earlier 
(before 1960) and those marrying later (after 1970). Plate 5 shows a close-up view 
of the histories where marriage occurred before 1955. Using the transparency and 
selection tools, histories with a date of marriage in 1951 or 1952 are highlightedm 
all other histories are ghosted, making them visually less important. Women in this 
cohort appear to have fewer state changes in female employment (the center face of 
the displayed pencils), either working until the first child or not working at all after 
marriage, and also appear to be less likely to reenter work than those in later marriage 
cohorts. 

Two features of interest have therefore been found in the event histories. We have 
observed that women in work often stop work a number of months before the "arrival 
of a child under one" in the partnership. Therefore, we can assume that the wives stop 
work because of their pregnancies. This effect is expected but was omitted from the 
original analysis. The second observation is that women in the survey who married 
prior to 1960 seem to have a different pattern of female employment history, either 
not working at all or stopping work when the first child arrives in the household. 

We investigate these features of the display by statistically reanalyzing the Kirk- 
caldy data set. Three further analyses are performed. The first introduces a new 
three-level factor representing pregnancy: not pregnant or in first trimester of preg- 
nancy, in second trimester, and in third trimester. There is a dramatic increase in twice 
the log-likelihood of 859.5, with 2 degrees of freedom. The parameter estimates from 
this model are shown in Table 1, column B. Most parameter estimates remain close 
to the Davies et al. estimates, but those for the effect of husband's unemployment 
show a change, with the effect of unemployment duration between 1 and 2 years less 
strong than before. The effects of pregnancy are dramatic, with the strongest effect, 
as expected, in the third trimester. The estimate of -3.29 in this category is nearly 
equivalent to the effect (-3.63) of the youngest child being under 5 (the sum of the 
estimates for <11 and <5). 

The second and third analyses repeat the first analysis, but on subsets of the 
data. We divide the histories into two marriage cohortsmthose marrying before 1962 
(52 individuals) and those marrying in 1962 or later (136 individuals). In terms of 
partnership-months, however, the data are divided approximately equally. The results 
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are shown in columns C and D of Table 1. For the whole data set, there is a further 
decrease in minus twice the log-likelihood of 465.8, with 18 degrees of freedom. 
More important, the parameter estimates differ substantially between the two groups. 
The effect of male unemployment on female unemployment in the pre- 1962 marriage 
cohort can be neglected for all categories except for male long-term unemployment 
of over 2 years. In contrast, the later marriage cohort shows the "12 month" effect 
discussed earlier. There are also substantial differences between the two cohorts in 
the effect of the youngest child and number of children on female unemployment. 

5 Conclusions 

We have illustrated that graphical techniques for exploring event history data can lead 
to important model improvements, changing the substantive conclusions of a data 
analysis. Scientific data visualization seems to offer a suitable environment in which 
to explore such data, allowing the user to examine the whole data set, as well as to 
explore small subsets of histories in greater detail. The use of Lexis pencils allows 
the researcher to examine both the changes of state and the relationship between 
selected time-varying variables of interest, and the pencils can be positioned in 3D 
space using axes appropriate to the study. There are some difficulties that need to be 
addressed. One is the question of user perception, such as the best choice of colors to 
represent changes of state; an initial investigation has been made by Travis (1991). 
Another issue is the number of histories and variables that can usefully be visualized 
in a single display. Displays with more than 250 histories appear very cluttered, and 
our experience suggests that with larger numbers of histories, disjoint subsets of 
histories can be examined in sequence. In addition, we would recommend that users 
not attempt to display all potential variables in a Lexis pencil but choose several 
smaller selections, keeping the number of faces of the pencil small. 
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Software Notes 

Modem visualization computer systems such as AVS (Advanced Visual Systems, 
1992) and Explorer (Silicon Graphics, 1993) provide a set of highly interactive 
graphical tools, such as rotation, panning, and zooming; clipping (allowing portions 
of the display either above, below, or intersecting a clipping plane to be deleted); 
and color redefinition, transparency, texture, and lighting. Most systems also have a 
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modular graphical programming environment. Modules are assembled on the screen 
in a graphical environment, with graphical links added interactively to define the data 
flows from one module to another; this forms a network or map. In this way, new 
applications and displays can generally be assembled without the need for extensive 
programming. 

Francis and Fuller (1996) considered the implementation of their ideas in Ex- 
plorer. The work reported here was done with AVS, which we have found offers better 
tools and functionality for the investigation of complex statistical data. In this appli- 
cation, the need for the user to specify and change interactively certain features of the 
display led to the development of a customized module called Lexis plot. This gives 
the user control over the variables to be assigned to the axes and whether these are 
time varying or not; the pencil geometry, such as the number of faces of the pencils, 
the variables to be assigned to them, the pencil thickness, and the angle subtended 
between adjacent faces; and the color map to be used and whether any selection and 
clipping required. 

AVS is available in the UK from AVS / UNIRAS Ltd. Montrose House, Chertsey 
Boulevard, Hanworth Lane, Chertsey, Surrey KT16 9JX. Telephone: +44 (0)1932 
566608. E-mail: sales@avsuk.com. 
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Chapter 5 

Generalized Impurity 
Measures and Data 
Diagnostics in 
Decision Trees 
Tombs Aluja-Banet and Eduard Nafria 

1 In troduc t ion  

The objective of tree-based methods is to provide a simple rule for predicting a 
response variable from a set of predictors. The response variable can be either con- 
tinuous or categorical, leading to what are called "regression trees" or "classification 
trees," respectively. The well-known Classification and Regression Trees (CART) 
method (Breiman et al., 1984) and associated computer program perform both types 
of tree construction. In this chapter we concentrate on classification trees and essen- 
tially follow the CART methodology. Classification trees have the same objective as 
such multivariate methods as discriminant analysis and logistic regression or more 
recent techniques such as neural networks, which are being used increasingly in deci- 
sion making in financial institutions. The main advantage of tree-based classification 
is the simplicity of the results, given visually in the form of a decision tree. The 
branchings of the tree follow the human process for decision making very closely. 

The heart of the tree-growing process is the splitting criterion used at each node 
of the tree. The general idea is to split the cases into two or more subgroups at each 
node so that the heterogeneity between the subgroups is maximized each time in a 
certain predefined sense. In Chapter 22 Siciliano and Mola use a criterion related to 
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the predictability index ~" of Goodman and Kruskal to measure the heterogeneity. In 
CART, binary splits are made at each node to minimize a so-called impurity index. 
We present a general formulation for the impurity of a node as a function of the 
proximity of the individuals in the node to its "representative." We also show how 
this impurity, or heterogeneity, measure can be decomposed into contributions that 
can be used to assess the stability of the split at each node. 

Although the results of trees are in general attractive and clearly meaningful, 
a major problem is the stability of the results obtained. Small fluctuations in data 
may cause a major change in the tree-growing process, although the predictive power 
may remain the same. We distinguish internal stability from external stability, in the 
same sense as described by Greenacre (1984, sec. 8.1). External stability refers to the 
tree sensitivity with respect to independent random samples and can be assessed by 
means of a test sample, cross-validation, or a bootstrap technique, whereas internal 
stability refers to the influence of each observation of the learning sample on the tree 
construction. Our use of diagnostics at each node enhances internal stability in the 
tree-growing process and hence increases the predictive power. 

We apply our methodology to a survey of the mobility preferences of the in- 
habitants of Barcelona. From past censuses it has been detected that Barcelona's 
population is decreasing and the objective is to explain this behavior in terms of 
several socioeconomic, biographic, and living status variables. We take as a response 
variable the question "If you could change your residence, where would you like to 
move?" The labels of the possible responses were: 

1. No change: I want to stay in the same place or neighborhood. 

2. Other district: I want to move to another district of the city. 

3. Surroundings: I want to move to the surroundings of Barcelona. 

4. Rest of Catalonia: I want to move to the rest of Catalonia. 

5. Rest of Spain: I want to move to the rest of Spain. 

The list of predictors, all of which are categorical variables (we indicate the number 
of categories in each case and whether the variable is nominal or ordinal), is the 
following: 

Nominal Ordinal 

district of residence 10 
region of origin 13 
socioeconomic status 

of household 13 
tenancy of the house 3 
job stability 4 

age of head of household 
level of studies 
years living in the neighborhood 

7 
10 
6 

m 2 of apartment 6 
family income per capita 8 

The classification tree procedure will identify which variables and which combina- 
tions of categories of the variables are related to predicting each of the five response 
categories. 
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2 The CART Methodology 

Originating in the pioneering work of Automatic Interaction Detection, or AID (Son- 
quist and Morgan, 1964), tree-growing methodology consists of a recursive splitting 
of each group of individuals into two subgroups, starting from the total sample and 
continuing until the subgroups contain mostly individuals giving similar responses, 
without allowing these subgroups to become too small. The core of the procedure is 
the identification of the variable that optimally splits a group into two at each node 
of the tree. The following steps are taken at each node: 

• Defining the set of possible splits 

• Selecting the best split according to a statistical criterion 

• Verifying a stopping criterion, based on a statistical threshold 

Most research has been concentrated on the splitting and stopping criteria. Kass 
(1980) developed tree methodology for a categorical response using a chi-squared 
criterion, leading to the technique called CHAID (chi-square automatic interaction 
detection). Celeux and Lechevallier (1982) proposed a splitting criterion based on a 
measure of distance between distribution functions. Ciampi (1991) proposed instead 
using the measure of deviance for a generalized linear model. Although the results 
obtained were an improvement, they still suffered from the criticism of the optimality 
of the tree and its dependence on the actual data. 

The main innovations of CART are: 

• Unification of the case of the categorical response variable (classification tree) 
and that of the quantitative response variable (regression tree) within a similar 
framework 

• Use of an impurity index to measure the heterogeneity of each node 

• Pruning from a maximal tree instead of using a stop criterion 

• Giving honest estimates of the misclassification error 

2.1 Notat ion 

Let t represent a node of the tree. Let nt be the number of individuals associated 
with this node and let ntj be the number of individuals of node t with response 
category j, where j = 1 . . . . .  J. For a particular node t, called the parent node, with 
nt individuals, we distinguish its descendants tt and tr, left and fight nodes with nt! 
and ntr individuals, respectively. A terminal node is a leaf of the tree, whereas the 
initial node, consisting of all the individuals, is the root of the tree. A branch is 
formed by a particular path from the root node to a leaf. 

For a particular parent node t and for each predictor there exists a set of admissible 
splits, depending on the nature and coding of the predictor: a binary predictor, with 
one split; a nominal predictor with k categories, having 2 k- 1 _ 1 admissible splits; 
an ordinal predictor with k categories, having k -- 1 splits; and a continuous predictor 
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with r distinct values, having r - 1 admissible splits. For example, for the job stability 
variable with four categories, we can define up to seven possible splits by different 
groupings of these categories into two sets: four splits in which one category is 
split off from the other three, and three splits of two categories each. For an ordinal 
variable, we can make only splits consistent with the ordering of the categories. For 
example, for age of the head of the household, with age groups 18-25, 26-35, 36--45, 
and so on, we can just split individuals into groups younger and older than a specified 
age, up to age 25 and older than 25, up to age 35 and older than 35, and so on. 

2.2 The Impurity Index 

CART uses an impurity index to assess the split at a node. For a categorical response 
variable, the impurity index can be written as a function of the probabilities of the 
response classes: 

i(t) = F(p(j l t ) )  for j = 1 . . . . .  J (1) 

where p( j  I t) is the relative frequency of class j at node t. 
A node is pure when it contains individuals of just one class, in which case 

i(t) = 0. At the other extreme, when a node contains all classes with equal relative 
frequency, then i(t) = MAX. An essential property of the impurity measure is that it 
decreases across the splitting process, that is, 

i(t) >- ai(tr) + (1 - a)i(h), 0 ----- a ----- 1 (2) 

Any measure that follows properties (1) and (2) can be considered an acceptable 
impurity index. The indices available in CART are: 

Gini i(t) = ~ ~ p( j  l t)p(i l t) 
i4:j 

Misclassification i(t) = 1 - maxj P(j l  t) 

Entropy i(t) = - ~ p( j  l t)log(p(j I t)) 
J 

Twoing i(t) = PlPr ( ) ---4-- ~ Ip(j l tt) - P(j l tr)l 
J 

In practice, the most commonly used index is the Gini index, which may be written 
equivalently as 

i(t) = 1 - ~ p( j  l t) 2 
J 

2.3 Splitting Criterion 

For a given node and for all predictors and admissible splits, the predictor and split 
are chosen that maximize the impurity reduction between the parent node and its 
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descendants: 

Ai(t) = i ( t ) -  nt---~li(tt)- ntri(tr) (3) 
nt nt 

This criterion is applied recursively to the descendants, which become the parents of 
successive splits, and so on, until we arrive at the final nodes, or leaves. 

Applying the CART methodology with the Gini index of impurity to the sample 
of 2492 Barcelona inhabitants in our study, we obtained the tree shown in Figure 1. 
We can see that the variable that explains most of the geographical mobility is the 
district of residence, which is, of course, correlated with social class. District of 
residence splits the total sample of 2492 individuals into two groups, one of 1688 
individuals and the other of 804 individuals. Below the number of individuals at 
each node, the proportion of the five response classes is indicated. Thus, district of 
residence defines two groups, one aiming to change their actual residence and the 
other (the minority) preferring to stay in the same place. Then the former group is 
split according to socioeconomic status into a group of 814 people (the upper classes), 
who want to move mainly to another district of the city, the surroundings, or the rest 
of Catalonia, and another group of 874 who prefer to stay in the same place or move 
to the rest of Spain (the lower classes). In this way we can continue explaining all the 

9 t 9 ~ 9 ~  

years living in the neighborhood 
<---4 

socio-economic status of hh. 

~ I,12,13} 

age of head of household 

region of origin 

{ 1 , 2 , 3 , 5 , 7 , 8 , 9 , 1 0 , 1 3 ~  

Figure 1: Mobility tree of citizens of Barcelona. 
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splits of the tree; for instance, the latter group of 874 individuals is split according 
to the age of the head of the household, those younger than 65 years old wanting 
to move out of their actual residence, whereas the older ones prefer to stay in it. 
Finally, there is a split according to their region of origin, and we identify a small 
group with a very high percentage wanting to return to the rest of Spain. A question 
that arises is when to stop the splitting process. This is intimately connected with the 
error rate of the tree. Every leaf of the tree is assigned to one response class, currently 
the predominant class of the leaf; then the error rate is the proportion of individuals 
misclassified by the tree. In general, we can have costs of misclassification, in which 
case we assign the leaves to the class with minimum risk. 

2.4 Defining the Right-Sized Tree 

The problem of when to stop the splitting process is solved, rather than by having 
a threshold defined upon the splitting criterion, as in other techniques, simply by 
growing a maximal tree (a tree with every terminal node pure or with, say, five 
individuals or fewer) and from this maximal tree defining a sequence of optimal trees 
by successively removing noninformative subtrees of the maximal tree, minimizing 
an error complexity measure, and thus obtaining a sequence of nested trees with a 
decreasing number of terminal nodes. This is done by measuring for each subtree 
of the maximal tree, its worth, that is, the relative decrease of the error rate relative 
to the size of the subtree. Then the problem is transformed into one of choosing the 
fight tree of the sequence. This problem is connected with giving honest estimates of 
the error rate. 

In fact, the error rate C (T) decreases with the size of the tree. Any split produces 
a monotone reduction of the error rate, thus giving an optimistic measure of the 
goodness of the tree. For that reason, CART proposes to use a test sample or a 
cross-validation technique to evaluate the error rate of every tree of the sequence. 

Then the honest criterion is to select the smallest tree of the sequence with min- 
imum error rate in the test sample or, alternatively, in the cross-validation procedure. 
Notice that the criterion we use for selecting the tree, that is, the error rate, which is 
usually the percentage of misclassification, is different from that for growing it (the 
impurity measure adopted). 

Although this approach is neutral in the sense that it gives the fight-sized tree 
with an honest estimate of the error rate, the growing process is still very dependent on 
data. In other words, the split criterion can be very dependent on data, which implies 
that the overall tree is also unstable. This is particularly true when using the Gini 
impurity index, because the Gini index attempts to favor small but very pure nodes 
rather than equal-sized but less pure ones. To tackle this problem, we have studied 
the relationship of the splitting criterion with the contribution of each observation to 
the reduction of impurity, that is, the internal stability of a split. In order to do this, 
we first present a general formulation of the impurity, from which we will compute 
the contribution per individual to the reduction of impurity. 
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3 General Formulation of the Impurity 

For a given node t, with nt individuals to classify according to J classes of the 
response variable, we generalize the notion of impurity, using a geometric approach 
in which each response class defines a J-dimensional point, for example, (1,0, 0 . . . .  ) 
for the first response class. Hence, a node is identified with the set of unit points of R J, 
at which the individuals are located depending on their response class, for example, 
ntl individuals at unit point (1,0, 0 . . . .  ), r/t2 at unit point (0, 1,0 . . . .  ), and so on. 

For a particular node we take its representative point (we represent it by mt), 
defined as the point of the convex polygon of R J, with vertices on the stated unit 
points, that minimizes the impurity measure i(t). 

Then we define the impurity as a function of the squared distance between each 
individual in the node and its representative. 

i(t) = ~-~--1 ntjd2(j, mt) 
nt 

(4) 

where d(j, mt) is the distance of an individual of class j and mt (obviously, all 
individuals of the same response class share the same distance). For example, for 
three response classes, the geometrical picture would be as shown in Figure 2. In 
formula (4) we can define the distances d (j, mt) in several different ways. In particular, 
we could use the L2 norm or the L1 norm. 

I 
0,0,1) 

nt3 

d 

/ , , ' J  
/,,2/ 

" (1,0,0) 

\ m t  • 

" ' " ' " - . . . . ~ .  (0,1,0) 

nt2 

Figure 2: Geometrical representation of a node. 
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3.1 The Impurity Measure with Lz Norm 

Then the proximity d (j, m) is equal to the Euclidean norm between two points. It 
can be shown that the representative of the node that minimizes expression (4) is the 
multinomial vector of probabilities for a given node {p(j I t), j = 1 . . . . .  J} (or the 
mean of the response variable for that node, in the quantitative case). 

i(t) = ~-~=1 njtd2(j ,  mt) 
nt 

~-']/=1 njt ( 1 -  2 m j t +  ~--~/=1 m2) 

nt 

Oi(t) _ 2 (--njt  + mjtnt) = 0 :=~ mjt - njt 
Omjt nt nt 

Then the impurity index (4) is equal to the Gini index defined previously: 

( 2) 
i(t) = ~--]~=1 njtd2(j ,  mt) _ _ ~--~=l njt (1 - p(jlt)) 2 -k- ~--]~l~j P(llt) 

nt nt 

J 
2 

= 1 -- E P j t  = E E  pitpjt 
j=l i4:j 

or the variance index for the quantitative case. 

3.2 The Impurity Measure with L1 Norm 

If we consider the L1 norm to measure the proximities, then the representative of the 
node is the unit point ej with maximum probability p ( j  I t) in node t (or the median 
for the quantitative case). 

J J 
i(t) = ~--~'~=1 ntj lej - mtjl = 1 - 2 ~ mt jp( j  l t) + E mtj 

nt j=l j=l 

Then minimizing this expression leads to 

{ } } min 1 - 2 mjtp( j  ] t) q- mjt ~ max mjtp( j  ] t) 
j=l "= j=l 

J 
E mjt = 1, >--O, j = 1 k mjt 
j=l 

The solution is all mtj equal zero, except for the class where p ( j  I t) is maximum. 
Then it can be shown that the impurity index is equal to twice the misclassification 

index (or the absolute deviation for the quantitative case). 
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= = P( j l  t) X 1 -- m j t  + mtt  
nt .= 14=j 

= 2 Z p ( j l t )  
j4:max 

4 Contributions to the Impurity Reduction 

The contribution of each observation to the reduction of impurity depends on the 
metric used to evaluate the proximities. Developing expression (3), 

Ai(t) = ~ i E t  6(i, mt) _ C i E h  3(i, mt,) _ CiEtr  ~(i, mtr) (5) 
nt nt nt 

Then we can express the impurity reduction as a sum over all the individuals of the 
parent node. 

ntAi(t) = Z [ ( a ( i , m , ) -  a(i, mt,)) x It, + (6(i, m t ) -  a(i, mtr)) X ltr] 
iEt 

where 1 t*  is the Kronecker delta to express membership in one of the successors of the 
parent node. Finally, the contribution of any individual to the reduction of impurity is 
simply the difference between its distance from the representative of the parent node 
and the distance from the representative of its successor. 

Ci -- 6 ( i ,  m t ) -  ~ ( i ,  m t , )  (6) 

This quantity is positive or negative when the individual increases its distance from 
the representative of the offspring. We can compare this measurement to the average 
contribution. We find that, taking into account formula (5), this average coincides with 
the impurity reduction. This gives us another interpretation of the impurity reduction. 

-fit = ~-~iEt Ci = A i(t) 
nt 

Then the ratio 

Ai(t) 
(7) 

allows the control and diagnosis of splits with high dependence on data. This ratio 
is easy to compute and hence provides a measure of the internal stability for a given 
split. Then between two splits with similar reduction of stability, we can choose the 
split with more homogeneous contributions to the impurity reduction. That is, we 
think that the best strategy is not to follow the best split but to take into account its 
stability as well. 
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Table 1: Split 1 (region of origin), Ai(t) = 0.005817 

Proportions mt Distances 6(j,  mt) 

Parent Left Right Parent Left Right 
node node node node node node 

Contributions 
to reduction Contributions 
of impurity over Ai(t) 

Left Right Left Right 
node node node node 

No change 0 . 5 1  0 .53  0 . 3 8  0.32 0 .31  0.53 0.02 
Other dist. 0 . 2 3  0.24 0 . 1 7  0 . 8 8  0 . 8 8  0.96 0.00 
Surround. 0.06 0 .05  0 . 0 9  1 . 2 4  1 .26  1 .12  -0.02 
Rest Catal. 0 . 0 3  0 .03  0.02 1 . 2 9  1 . 3 0  1 .27  -0.01 
Rest Spain 0.16 0.14 0.34 1 . 0 2  1 .07  0.62 -0.05 

-0.21 2.81 -35.93 
-0.08 0.39 - 13.75 

0.12 -3.42 21.18 
0.02 - 1.44 3.05 
0.40 -8.62 68.88 

Size 661 596 65 

For example, in the mobility tree for the citizens of Barcelona, we found a split 
at the fourth level of 661 individuals into two groups of 596 and 65 individuals, 
according to their region of origin (Table 1). The reduction of impurity of this split is 
0.005817, very low. Thus, computing the contributions to the impurity reduction in 
every split, we find for this one a concurrent split, dividing the 661 individuals into 
groups of 305 and 356 depending on their level of studies (Figure 3, Table 2). For this 
second split, the reduction of impurity is very similar, 0.00538. Thus, we compute 
the contribution of individuals of both splits to its reduction of impurity. 

We can see that the contribution to the reduction of impurity is clearly more 
homogeneous in the second split, whereas for the first split it is highly dependent on 
the 22 individuals of the fight child, moving to the rest of Spain, with a contribution 
to the reduction of impurity 68.88 times higher than the average. The first split is a 

age of head of household age of head of  household 

{1,2,3,5,7, 

region of origin level of studies 

Figure 3: (a) Split 1. (b) Split 2. 
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Table 2: Split 2 (level of studies), Ai(t) = 0.00538 

Proportions mt Distances 6(j, mt) 

Parent Left Right Parent Left Right 
node node node node node node 

Contributions 

to reduction Contributions 
of impurity over Ai(t) 

Left Right Left Right 

node node node node 

No change 0 .51  0.56 0 .47  0.32 0 .28  0.37 0.05 -0.05 8.43 -9.08 
Other dist. 0 . 2 3  0.20 0.26 0 . 8 8  0.99 0.80 -0.11 0.08 -20.38 15.60 
Surround. 0.06 0.02 0 .08  1 .24  1 .35  1.15 -0.11 0.09 -21.05 16.18 
RestCatal. 0 .03  0 .01 0 . 0 5  1 .29  1 .38  1 .22  -0.09 0.07 -16.93 12.65 
Rest Spain 0.16 0.20 0 .13  1 .02  0.99 1.06 0.03 -0.04 6.06 -7.05 

Size 661 305 356 

high candidate to be eliminated in the pruning phase. Thus, it is advisable for these 
types of splits to consider more stable ones. 

Of course, one way to prevent unstable splits is to consider other impurity 
measures, different from the Gini index, in particular those based on L1, which are 
more robust and tend to present more homogeneous contributions to the reduction 
of impurity. Anyway, the misclassification impurity index needs a local weighting 
of individuals at each node to give the same probability to every response class, that 
is, to put all possible splits in a neutral context. Otherwise, if one class is clearly 
predominant, it can be very unlikely for a split to change the final assignment of a 
node and hence to decrease the impurity measure. 
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Chapter 6 

Obstetricians' Attitudes on 
Perinatal Risk: The Role of 
Quantitative and Conceptual 
Scaling Procedures 

Ulrich Frick, Jiirgen Rehm, Karl Erich Wolff, 
and Michael Laschat 

1 Introduction 

Perinatal health outcome of newborns is dependent primarily on the medical condition 
of their mothers during pregnancy and birth and on their own physical constitution. 
Especially in cases of medical complications during pregnancy or birth, the outcome 
is also dependent on the level of health care facilities available at the time of birth 
(LeFevre et al., 1992). Contemporary concepts of perinatal medicine try to minimize 
this secondary risk by allocating mothers to different levels of perinatal care before 
delivery according to prenatal diagnosis. For this purpose, screening programs for 
pregnant women have been established in nearly all developed health care systems. 

A pivotal position in the process of allocation of a mother-child dyad at risk to 
an appropriate health care facility belongs to physicians in obstetrics departments. 
Of special interest is the risk acceptance of departments offering all usual medical 
facilities for delivering mothers (e.g., obstetrical surgery) but offering few or only 
intermediate possibilities for treating ill newborns (Shenai, 1993). Many authors (for 
example, Modanlou et al., 1980; Obladen et al., 1994) have shown that antenatal 
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referral of high-risk neonates from departments with low-level pediatrics to high- 
level perinatal centers decreases mortality, length of hospitalization, and morbidity 
of transferred neonates. In any case, it is of great interest to examine physicians' 
perinatal referral decisions in order to obtain background information for quality 
assurance measures. 

Two components of prenatally recognizable risk for the fetus can be distinguished 
(Renwick, 1992; D'Alton and DeChemey, 1993). On the one hand, a pregnant mother 
may suffer from one or more conditions of a series of pathological processes during 
pregnancy. On the other hand, the fetus may develop irregularly due to genetic 
disposition or due to external noxes. Whereas for the former quantifications of the 
mortality risk associated with different levels of perinatal care have been investigated 
by a series of studies (Rudolph and Borker, 1987; Miller et al., 1983), no comparable 
risk evaluations taking into consideration intensity of perinatal care can be given for 
fetal anomalies. 

One aim of this chapter is to demonstrate the merits of a scaling method in a 
situation in which unidimensionality of the theoretical concept, which in our case 
is subjective risk perception (see Johnson and Tversky, 1984), cannot be expected, 
Whereas "objective" epidemiological risk in the case of mothers' complications con- 
stitutes a homogeneous (in the sense of Wottawa, 1980) risk scale, onto which a 
physician can be placed according to his or her acceptance of a list of known risks, in 
the case of fetal risk acceptance one exclusively has to deal with subjective risk per- 
ceptions of individuals. No method for a unidimensional representation of physicians' 
decisions on an "objective" scale can be given in the latter case. Nevertheless, the 
referral decisions of different obstetrics departments should be compared in a man- 
ner that simultaneously analyzes possible disagreement of risk policies and ranks 
perceived health risks of the abnormalities in question. 

2 Data and Methods  

The heads of all obstetrics departments in the city of Vienna (18 wards in eight public 
and nine private hospitals) were asked to respond to a self-administered questionnaire 
containing items concerning their technical equipment and the level of experience of 
medical and nursing staff. The survey took place in November 1994 and was part 
of a statewide health planning project of the local government. For various reasons 
two wards could not complete the questionnaire, so our study is concerned with the 
responses of 16 wards. The questionnaire consisted of two lists reflecting the two 
categories of risk just described: maternal risks and fetal risks. 

2.1 Maternal Risks 

The Maternal Transport Index (MTI) of Strobino et al. (1993) was used to measure 
decisions about risk with regard to medical conditions of pregnant women. This in- 
strument consists of 32 detailed descriptions of hazardous situations with potentially 
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lethal outcomes for the unborn baby. For each situation the responsible departmental 
medical director was asked to decide whether or not she or he would accept the re- 
spective mother for delivery in her or his own ward or would transfer her antenatally 
to another hospital of higher service level. 

The MTI is thus based on an existing classification of pediatric facilities into 
three levels according to technical equipment and skills of medical staff. Each level 
can be regarded as optimal for coping with certain maternal risk factors. Referral of 
high-risk mothers to insufficient service levels increases all kinds of complications 
including mortality. For example, if a level II facility accepts a mother with heavy 
vaginal bleeding during the 27th week of pregnancy instead of transferring her to a 
level III perinatal center, which is designed to react to all possible complications, it 
causes an increase in the probability that her child will die. Instead of an estimated 
crude mortality rate of 0.15 at level III, an estimated crude rate of 0.36 prevails 
at level II. The MTI sums up the ratios of logged mortality rates for all 32 risky 
conditions. Overall, the MTI can be interpreted as a measure of "risk proneness" of 
the respective hospital. The minimum value is 32 and is reached by all tertiary level 
hospitals by definition. 

2.2 Fetal Risks 

A second list of eight prenatally recognizable defects of the fetus (see Table 1, p. 77) 
was partly selected from an overview by Shulman et al. (1993). Three questions 
on skeletal deformations, chromosomal aberrations, and blood incompatibility were 
added on the basis of expert advice. Departmental directors were again asked to decide 
whether they rated these anomalies as manageable at their hospital or whether they 
would antenatally transfer the mother of that child to a perinatal center. In contrast 
to the list of maternal risks, the expected neonatal mortality rates for different levels 
of care are unknown for all anomalies. Thus, no scaling based on epidemiological 
reasoning similar to that for the maternal risks was possible. Instead, the dichotomous 
decisions of "accepted" (y/n) served as the basis for comparing obstetricians' risk 
perceptions. 

The comparison method chosen is based on the representation of conceptual 
knowledge by line diagrams of concept lattices within the framework of formal 
concept analysis (FCA). It has been described in detail by Ganter and Wille (1996) 
and an introduction is also given by Wolff and Gabler (Chapter 7). FCA represents 
the relationships between objects and attributes for a given data table. Objects in our 
case are the obstetrics departments, and their attributes consist of accepted anomalies. 
Relationships can be displayed either as a table of logical implications or graphically 
by line diagrams of concept lattices. For this volume the latter method was chosen. 

Consider the example in Figure 1. Sixteen departments (labeled with capital 
letters A,B, C . . . .  ) are displayed with respect to three attributes (= decisions of 
acceptance): gastroschisis, myelomeningocele, and diaphragmatic hernia. The data 
are in columns 2 to 4 of Table 1. Departments E, J, L, and N did not accept cases with 
either condition, department S accepted only children with diaphragmatic hernia, 
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J m 

Figure 1: Reading example of a simple decision matrix analyzed by FCA. 

department R only children with gastroschisis, and department K only children with 
myelomeningocele. Two conditions were accepted by department H (gastroschisis 
and myelomeningocele) and by department I (myelomeningocele and diaphragmatic 
hernia), whereas departments A, B, C, F, O, W, and Z accepted all three risks. 

Generally, a line diagram of a formal context represents its formal concepts by 
nodes in the plane such that all the information of the given context is preserved. 
Each object name (respectively, each attribute name) is indicated in the line diagram 
a little bit below (respectively, above) its concept node. An object has an attribute if 
and only if there is an ascending path from the node of the object to the node of the 
attribute. The "extent" of a concept contains all objects that can be reached in the 
line diagram by descending paths from the concept node, and the "intent" contains 
all attributes that can be reached by ascending paths. 

In Figure 1, for example, the concept of all departments accepting gastroschisis 
includes the departments R, H, A, B, C, F, O, W, and Z. All departments accepting 
gastroschisis and myelomeningocele (departments H, A, B, C, F, O, W, and Z) consti- 
tute a subconcept to both concepts represented by the nodes labeled "gastroschisis" 
and "myelomeningocele." As can be seen, the superconcept-subconcept relation is 
directed from top to bottom, building a conceptual hierarchy. 

The aim of our analysis is to describe the interrelations between risk decisions 
of all obstetrics departments in Vienna. FCA simultaneously groups both objects and 
attributes and reveals dependences between attributes and between objects. In our 
application, rank ordering of perceived risk of fetal complications is visualized by the 
drawing direction of the graph. The lower the position of an attribute in a line diagram, 
the greater is the reluctance of physicians to accept this risk at their department, and 
the greater therefore can be regarded the perceived risk of that fetal abnormality. This 
is concluded from the fact that very few hospitals accept such a risk. 

The possibly multidimensional nature of perceived risk can be inspected by the 
degree of branching out required in the line diagram. The greater the number of 
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concepts  required to represent  such a data table, the smal ler  is the ag reement  on 

acceptable  risk policies  be tween  the hospi tals  quest ioned.  

3 Results 

3.1 Acceptance of Maternal Risks 

Figure  2 shows a plot  of  MTI  scores, where  it should be noted  that a value of  32 

const i tutes  the m i n i m u m  value on the scale. This m i n i m u m  level can be reached 

ei ther by transferr ing all mothers  at risk (true for depar tment  N) or by definit ion for 

all perinatal  level III centers,  true for depar tments  A, B, C. 

The  MTI  a l lowed a quanti tat ive representa t ion  of  all depar tments  on a single 

d imens ion  that can easi ly be t ransformed into potent ia l ly  accepted addit ional  neonata l  

deaths. Such a procedure  also al lows graphical  representa t ion  on b id imens iona l  plots 

as can be seen in Figure  2. Here,  the number  of  del iveries observed  in 1993 within 

each depar tment  is plot ted against  the MTI  score, and one can see, for example ,  the 

high risk in admit t ing pregnant  w o m e n  for depar tments  where  many  lives are at stake. 
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Figure  2: Depa r tmen ta l  MTI score (risk of chi ld 's  death)  p lo t ted  against  n u m b e r  of 
del iveries  in 1993. 
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3.2 Acceptance of Fetal Risks 
Table 1 summarizes the raw data for the analysis of fetal risks. Analyzing this matrix 
of 16 hospitals and 11 variables (=fetal anomalies) resulted in a complex line diagram 
(see Figure 5) that will be interpreted later. The complexity of this structure is not an 
artifact of the method: if the logical structure of the concept lattice is very simple, 
that is, if the decisions of all hospitals agreed to a great amount, the resulting line 
diagram would show an easily interpretable form. To facilitate the inspection of the 
hospitals' risk-taking patterns in a first step, fetal anomalies were divided into two 
subgroups requiting two different kinds of precautions to be taken for the delivery: 
"immediate" and "delayed" action, as shown in Table 1. 

Figure 3 represents the decisions of Vienna's obstetrics departments concerning 
the six fetal anomalies that would require immediate and often serious medical action 
if a child with one of these anomalies is born, that is, the subgroup "immediate action." 

Three departments (E, L, J) were placed at the top of the line diagram because of 
their refusal of all six immediate action anomalies for delivery. Five departments (the 
three perinatal centers A, B, C; department W offering a level II neonatal care unit; 
and department Z) would accept any of these anomalies and therefore were placed 
at the bottom of the line diagram. Three departments (K, N, R) would accept exactly 
one of these fetal risks. As each department accepted a different anomaly, the line 
diagram splits up into different branches showing this disagreement on acceptable 
risks. Department I accepted two risks, and departments O, H, and S rated three 
of six risks as manageable at their wards. Only the two most extreme risk policies 
(complete acceptance and complete refusal of immediate action risks) are shared by 
more than one department. All observed intermediate positions are held by only one 
single decision maker. 

The second subgroup of the remaining five fetal anomalies was called the "de- 
layed action" subgroup, for therapeutic actions either were not necessary immediately 
after birth or could be decided on only after a postnatal diagnosis of the intensity 
and quality of the anomaly. In contrast to Figure 3, the concept lattice of the delayed 
action anomalies resulted in a very simple line diagram (Figure 4). 

If one disregards department O, all departments and risks could be placed on 
a simple "pearl necklace" without any branching out of the lines and nodes of this 
figure (omitting department O would move the risk "omphalocele" to the last node 
at the bottom of the line diagram). The conceptual structure of a pearl necklace 
is equivalent to a so-called Guttman scale (Guttman, 1944) formed by these items. 
Again, department L accepted no single fetal anomaly and therefore was placed at the 
top of the line diagram. Department E accepted only "chromosomal aberrations" on 
the first step of this scale. The two items "skeletal deformation" and "hydronephrosis" 
defined the second rank of this risk order and were accepted by departments J and K. 
"Esophageal atresia" on the third rank was also accepted by departments I, N, and 
R. The "highest" risk was associated with "omphalocele." Eight departments (A, 
B, C, F, H, S, W, Z) accepted omphalocele as well as the other four anomalies. 
Only department O deviated from this hierarchical ranking of risks by accepting an 
omphalocele but refusing hydronephrosis and esophageal atresia. 



Table 1: Acceptance of Fetal Risks b y  Obstetrics Departments: Data Matrix 

Fetal Risk (accepted: y/n) Requiring: 

Immediate action Delayed action 

Department Blood Tkansposition Hypoplastic 
care group Diaphragm Myelo- Gastro- of great left Chromosomal Skeletal Hydro- Esophageal 
level incompatibility hernia meningocele schisis vessels heart aberration deformation nephrosis atresia Omphalocele 

A (111) ya Y Y Y Y Y Y Y Y Y Y 
B (111) Y Y Y Y Y Y Y Y Y Y Y 
c (111) Y Y Y Y Y Y Y Y Y Y Y 
E (1) n n n n n n Y n n n n 

F (1) Y Y Y Y n n Y Y Y Y Y 
H (1) Y n Y Y n n Y Y Y Y Y 
1 0 )  n Y Y n n n Y Y Y Y n 
J (1) n n n n n n Y Y Y n n 
K (1) n n Y n n n Y Y Y n n 
L (1) n n n n n n n n n n n 

N (1) Y n n n n n Y Y Y Y n 
0 (1) n Y Y Y n n Y Y n n Y 
R (1) n n n Y n n Y Y Y Y n 
s (1) Y Y n n Y n Y Y Y Y Y 
w (11) Y Y Y Y Y Y Y Y Y Y Y 
z (1) Y Y Y Y Y Y Y Y Y Y Y 

"y, unborn child accepted for delivery; n, decision to transfer this child's mother antenatally. 
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blood group 
incompatibility 

myelomeningocele 

A,B,C,W,Z 

Figure 3: Acceptance of "immediate action" fetal risks at obstetrics departments in 
Vienna. 

Figure 5 gives the joint conceptual structure of risk acceptance (11 attributes) and 
departments' service levels. Departments of service level I display a heterogeneous 
variety of all empirically observable risk policies from complete refusal (department 
L) to complete acceptance (department Z) of fetal risks. The four departments of 
the higher service levels II and III, of which one is at level II, would all accept the 
complete list of fetal risks and do not differ in their risk policies according to their 
service levels. Graphically, this can be depicted from the fact that all fetal risks occur 
between the node labeled "level 1" and the node "level 2" in Figure 5. 

Interpreting the relationships between the attributes in Figure 5 is not easy, 
because of the observed heterogeneity of referral decisions. With the exception of the 
perinatal centers A, B, and C no two departments accept the same risks; that is, each 
department follows its own singular "risk concept" (node). But risk concepts can be 
arranged in a meaningful chain (Guttman scale) because there is a remarkably strong 
dependence between the attributesmthere exists a very long chain of 10 attribute 
concepts in Figure 5 forming a strictly hierarchical line. This can be seen more easily 
in Figure 6, which, as a reduction of Figure 5, represents exclusively the order of all 
attribute concepts without the departments. 

Within the central chain of Figure 6 the concepts of the delayed action risks chro- 
mosomal aberration, skeletal deformation, hydronephrosis, and esophageal atresia are 
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chromosomal aberration 

E 

skeletal deformation 

dronephrosis 

~ I N,R 

A,B,C,F,H,S,W,Z 

Figure 4: Acceptance of "delayed action" fetal risks at obstetrics departments in 
Vienna. 

all superconcepts of the following immediate action risks: blood group incompatibil- 
ity, transposition of great vessels, and hypoplastic left heart. The other four attributes 
(omphalocele from subgroup delayed action and gastroschisis, diaphragmatic hernia, 
and myelomeningocele from subgroup immediate action) are incompatible with one 
another in the sense that none of these attribute concepts is a subconcept of any other 
of these. 

If we study the subcontext of all departments and only the attributes of the 
central chain, we obtain the concept lattice drawn in Figure 7. Figure 7 can be seen 
as the "interpretative core" of the whole context of all 11 fetal risks, as it shows only 
the attributes for which agreement on their logical order is unanimous among the 
physicians of this study. 

4 Discuss ion  

Three wards (A, B, and C) were part of perinatal centers and thus could offer the 
highest possible level of care (level III) for neonates. As a consequence, their MTI 
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iroup incompatibility 
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[] 
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Figure 5: Complete line diagram of immediate and delayed risks' acceptance and 
departmental service levels. 

scores could by definition not exceed the minimum value of 32. All three wards in 
perinatal centers would accept all mothers listed. One hospital (N) handles births 
strictly on an outpatient basis. In accordance with that principle, almost no avoidable 
risks were accepted: mothers having a symptom of perinatal risk would be transferred 
to a perinatal center by this hospital. Thus, its MTI score is very low (33.5). 

One hospital (W) offers services of a level II neonatal unit in addition to its ob- 
stetrics ward. The MTI score for this hospital therefore reached a relatively moderate 
level of risk acceptance (50.0), although all listed mothers' complications would be 
accepted at this hospital. Six additional hospitals (F, I, L, O, S, Z) also accepted 
nearly all maternal complications. But because they offered no additional neonatal 
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Figure 6: Acceptance of fetal risks: order of attributes. 

services (not exceeding level I care), their MTI values were very high (> 85). The 
MTI scores of these six hospitals represent in the hypothetical case of 3200 risky 
mothers (100 × 32 symptoms) delivering in one of these hospitals about 700 addi- 
tional neonatal deaths to be expected due only to this misallocation. The remaining 
hospitals (E, J, K, R) had MTI scores of an intermediate level. They accepted only a 
subset of the described maternal complications. 

All in all, willingness to take risks reported by heads of obstetrics departments in 
Vienna showed little awareness of the problems associated with postnatal transport. 
Obstetricians too often rated their own department capable of managing medical 
problems of pregnant women, disregarding the amount and quality of their facilities 
for newborn infants. This tendency toward "overconfidence" based only on the condi- 
tion of the mother could be shown for nearly all departments with one exception: the 
outpatient hospital (N). If decisions of departmental heads were similar to decisions 
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Figure 7: Reduced context of fetal risks with perfect Guttman structure. 

of their subordinate physicians, a considerable amount of perinatal risk should have 
resulted from the described referral preferences. Indeed, Vienna's hospital discharge 
statistics for obstetrics departments show that the recommended cumulation of risky 
deliveries within perinatal centers has not been established yet: the rates of multiple 
birth, cesarian sections, and preterm infants do not differ significantly between ob- 
stetrics departments inside and outside perinatal centers (Frick et al., 1995). Thus, 
self-reported risk acceptance is correlated with empirical indicators of risk dispersion 
over hospitals. 

The quantification of the subjective variable "risk acceptance" used a risk scale 
in which the weight of each item was given by the "objective" epidemiological risk a 
priori. Problems of "homogeneity" of our risk scale thus were not relevant. No matter 
how a physician perceived and subjectively weighted maternal risk during a cognitive 
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evaluation of the transferral decision, we were able to place him or her on a single, 
homogeneous dimension with a substantially meaningful interpretation: "number 
of additional deaths that are possibly accepted by the respective referral pattern." 
The MTI enabled governmental authorities to prioritize quality assurance measures. 
Figure 2 showed a visualization of the product of risk attitude and annual number of 
deliveries. Pressured by administrative authorities, departments situated at the upper 
right corner of this figure were those that had to start first with quality discussions on 
their referral decisions, because changing their attitudes meant a greater reduction in 
absolute risk for Vienna's newborns. 

One should not withhold the fact that the chosen quantitative scaling of subjective 
risk attitudes according to epidemiological risk also has an important disadvantage: 
the reasons and processes underlying perinatal "overconfidence" cannot be analyzed 
by studying the composite MTI score. Different patterns of risky decisions could 
result in very similar or identical MTI scores (and thus are homogeneous in the 
sense of "additional deaths") but nevertheless would require different directions of 
attitudinal change. Thus, the decomposition and analysis of the global MTI value into 
its single decisions are necessary when planning and discussing quality assurance 
measures with medical experts. 

For the case of fetal anomalies, a comparable objective interpretation of the 
acceptance of a single item could not be given. Therefore the scaling of fetal risks 
inevitably means an analysis of subjective risk perceptions by the medical experts 
who were questioned. Under these circumstances, a homogeneous, quantitative scale 
would be an unrealistic expectation (Yates and Stone, 1992). On the contrary, dif- 
ferent obstetricians would possibly categorize fetal anomalies into qualitatively dif- 
ferent risk groups. FCA seems to be the method of choice for dealing with that 
problem. 

Substantively it could be shown that departments willing to accept the risk of 
(nearly) all maternal complications (A, B, C, F, I, L, O, S, W, Z) reacted differently in 
regard to fetal anomalies. The level III centers (A, B, C), department W (with a level 
II neonatal unit integrated), and department Z (level I) accepted all fetal anomalies 
for treatment as well. However, department Z cannot offer any specifically pediatric 
facility for treatment of these anomalies. Intensive care (required for a child with a 
hypoplastic left heart, for instance) would also exceed the capabilities of the level II 
unit in department W. 

Departments F, I, L, O, and S also accepted all maternal risks, but showed more 
restrictive attitudes toward pediatric risks. F and S accepted major, although different 
risks, and I and O were still more conservative (but again on qualitatively different 
options). Department L was not willing to accept any pediatric risk but accepted all 
maternal risks. No medical argument can be cited to support such a policy. Outpatient 
clinic N, on the other hand, accepted no maternal complications but did accept some 
fetal anomalies; mostly delayed action risks. Among the immediate action risks, N 
accepted only blood incompatibility. This is a risk requiting a "standard" procedure 
(blood exchange) that is the least invasive procedure of the immediate actions and 
seems acceptable from the viewpoint of quality assurance management. 
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FCA showed some very helpful features for interpreting the results. When sub- 
jects agreed in their risk policies as measured by specific items, FCA revealed common 
patterns of perception twice in a very effective way. First, delayed action risks were 
perceived on a nearly perfect Guttman scale. The seriousness of subjective delayed 
action risks can thus be measured at least on an ordinal level for these data. Second, 
the distinction between immediate and delayed action risks was shared by Vienna's 
departmental directors with regard to four out of five delayed action risks and three 
out of six immediate action risks. This seems noteworthy, especially because the 
questionnaire was not designed to give any hints about this distinction. 

Immediate action risks were perceived as more serious and disagreement on 
acceptability of these risks was much greater. Therefore quality assurance measures 
should focus on the outlier risks of Figure 6 as a first step toward clarifying the reasons 
for the deviating perceptions. If we weremas a result of discussions within a quality 
circlemable to extend the central chain of Figure 7 into a pearl necklace comprising 
all fetal risks (this could also mean positioning more than one risk at a single node 
of the current chain), a second step in quality assurance should scrutinize whether 
the position of each department on this "perinatal risk ladder" can be justified by its 
technical equipment and the medical expertise of its staff. 

For the discussion of the disagreeing referral decisions (e.g., Figure 3), FCA 
enabled us to raise meaningful questions about the reasons for this heterogeneity: Is 
there a medical rationale for accepting a diaphragmatic hernia in departments I, O, S, 
F, A, B, C, W, and Z but not in departments E, H, J, L, N, K, and R? What are possible 
common elements of staff or equipment of both groups? Does it depend on the 
capacity to cope with other fetal complications requiting immediate action? It does 
not, as one can see: diaphragmatic hernia is no subconcept of any other risk in Figure 3. 
On the other hand, hypoplastic left heart was accepted only by departments that would 
also accept all other fetal anomalies (including all delayed action risks). It can be 
concluded that hypoplastic left heart is perceived as a very serious complication, 
even if we do not know enough about the expected epidemiological outcome of this 
anomaly. Even if different hospitals do not agree about whether they should accept 
this anomaly, they would perhaps agree on the seriousness of this risk. Thus, even if 
the objective risk of the referral decisions is unknown, FCA enables the discussion and 
construction of adequate measures to be taken for standardization and improvement 
of medical care. 

Overall, the study showed serious discrepancies between risk attitudes toward 
maternal and pediatric complications. Some attitudinal sets were shown to be in- 
consistent with accepted standards of care in the field. As a result of this study, the 
Viennese government formed a perinatal quality assurance committee to develop 
guidelines for acceptance and referral of perinatal risk conditions. 
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Chapter 7 

Comparison of 
Visualizations in Formal 
Concept Analysis and 
Correspondence Analysis 

Karl Erich Wolff and Siegfried Gabler 

1 In troduct ion  

The development of formal concept analysis (Wille, 1982; Ganter and Wille, 1996) 
led to a new possibility for the visualization of data by line diagrams of conceptual 
hierarchies: in contrast to methods such as correspondence analysis, which represent 
data approximately in planar displays, line diagrams visualize data without any loss 
of information. For a survey of nine graphical data analysis methods the reader is 
referred to Wolff (1996); for an application to medical data see Frick et al. (Chapter 6). 

The purpose of the present chapter is to compare the visualizations in formal 
concept analysis (FCA) and correspondence analysis in its two variants: simple 
correspondence analysis (CA) and multiple correspondence analysis (MCA). In the 
following chapter we compare these methods as to the same data sets, and discuss 
their respective advantages and disadvantages. 

85 
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2 Examples 

2 .1  A R e p e r t o r y  G r i d  o f  a n  A n o r e x i c  Y o u n g  W o m a n  

The following data are from an investigation of anorexic young women by Spangen- 
berg (1990). Using the Repertory Grid Technique, each patient was asked to name 
her most important persons including herself and her ideal self. The patient evaluated 
each of these persons according to seven bipolar constructs on a rating scale from 
1 to 6; for example, one such construct is "resolute-insecure," where 1 means very 
resolute and 6 means very insecure. The seven constructs were as follows: 

peaceful-conflicting 
lively-theoretical 
being in want of warmth-unfamiliar 
lonely-loved 

(pe-co) self-confident-weak (sc-wk) 
(li-th) dependent-independent (dp-id) 
(ww-uf) resolute-insecure (re-is) 
(lo-lv) 

One of the patients generated the repertory grid in Table 1 with the persons SELF, 
IDEAL, FATHER, and MOTHER. 

To visualize these data by FCA and by CA, we first analyze the data by selecting 
the extreme responses with marks 1 or 2 and 5 or 6, which leads to the incidence 
matrix of Table 2. For example, SELF and MOTHER are lonely (lo), the IDEAL 
is loved (Iv), and FATHER has none of these attributes, which implies that he has 
one of the intermediate values 3 or 4 of the construct lonely-loved. It is possible to 
construct tables that represent all the information of the grid, but the chosen coding is 
very close to the language used in conversation between the patient and the therapist. 
This table will be visualized now by FCA and CA. 

Table 1: The data table of an anorexic young woman 

pe-co sc-wk li-th dp-id ww-uf re-is lo-lv 

SELF 1 6 2 1 1 6 1 
IDEAL 5 1 2 6 3 1 5 
FATHER 4 1 1 5 2 2 3 
MOTHER 5 1 6 6 6 1 1 

Table 2: The table of the extreme responses 

pe co sc wk li th dp id ww uf re is !o iv 

SELF X X X X X 
IDEAL X X X X X 
FATHER X X X X X 
MOTHER X X X X X X 

X X 
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2.2 Line Diagram of the Concept Lattice 

We start with the standard graphical output of FCA, namely the line diagram in 
Figure 1. For each person and for each attribute there is a solid circle in the line 
diagram and there are additional, unlabeled, solid circles. A person has an attribute 
in the data table if and only if there is an ascending path from the circle of the person 
to the circle of the attribute. 

Hence SELF is peaceful, weak, dependent, insecure (and no other person has 
these attributes); SELF also has the attributes being in want of warmth like the 
FATHER (and nobody else), and lively like IDEAL and FATHER, and lonely like 
the MOTHER (and nobody else). The FATHER is self-confident, independent, and 
resolute like IDEAL and MOTHER. The IDEAL is the only person who is loved, 
the IDEAL is conflicting like the MOTHER, and the MOTHER is theoretical and 
unfamiliar and nobody else has these attributes. This is the complete information 
from the data in Table 2. 

Further valuable information can be recognized easily from the line diagram. 
First, there are several meaningful partitions (called extent partitions) on the set of 
persons, meaningful in the sense that each class (cluster) of a partition is described by a 
subset of attributes, for example, the two-class partition consisting of the conflicting 
persons {MOTHER, IDEAL} and the persons {FATHER, SELF} being in want of 
warmth. There is another remarkable two-class partition, namely the partition SELF 
versus the others, with SELF described by the attributes peaceful, weak, dependent, 
insecure and the others by self-confident, independent, resolute. It is clear that this 

resolute 
independent 
self-confident lively 

conflicting 

unfamiliar 
theoretical 

MOTHER 

being'tn~ant of warmth 

~ l  insecure 
dependent 
weak 

~/ peaceful 

FATHER ~ SELF 

Figure 1: A line diagram representing the conceptual structure of the extreme re- 
sponses of an anorexic young woman. 
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partition is very important for this patient (SELF), because three different bipolar 
constructs are used by the patient to describe this partition. 

2.3 Correspondence Analysis Map 

To apply CA to these data we construct from Table 2 the corresponding 0-1 matrix 
N; that is, we replace each cross by 1 and fill each empty cell with 0. Figure 2 shows 
the CA map of the table coded in this way. 

In the map each attribute point lies in the barycenter of the points of the persons 
having this attribute. Using this barycenter reading rule, we see from the map very 
clearly that only SELF is peaceful, weak, dependent, and insecure; MOTHER is 
theoretical and unfamiliar; IDEAL is loved. We further see that only SELF and 
MOTHER are lonely, because the point lonely is the barycenter of the points of 
SELF and MOTHER (and of no other pair of object points); SELF and FATHER are 
being in want of warmth; IDEAL and MOTHER are conflicting. 

The FATHER is the only person who shares each of his attributes with other 
persons. The point representing lively does not lie on a line between two person 
points; hence this attribute is associated with at least three persons. It cannot be 
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Figure 2: The asymmetric map in which attributes are at the barycenter of their 
objects. 
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associated with MOTHER, otherwise it would lie much lower on the vertical axis. 
Hence lively must be at the barycenter of the points of SELF, FATHER, IDEAL. The 
same argument shows that the common point of resolute, independent, self-confident 
is the barycenter of MOTHER, FATHER, IDEAL. Hence we have again been able 
to reconstruct the original table, but with a little more difficulty compared with the 
FCA diagram. In CA there are maps with more objects and attributes; however, it 
may happen that barycenters of different subsets of objects are very close together 
or even coincide, which makes it difficult or impossible to reconstruct the data from 
the map. Finally, we mention that the large value of 86.5% for the explained inertia 
indicates relatively good quality of this map in the sense that the (multidimensional) 
points lie close to the plane shown in Figure 2. 

2.4 Comparison of Both Visualizations 

We compare the FCA line diagram (Figure 1) and the CA map (Figure 2) first with 
respect to their intentional similarities and then with respect to their graphical differ- 
ences. In Figure 2 one can see the persons and attributes in an arrangement similar 
to that in the line diagram of Figure 1: the unfamiliar and theoretical MOTHER, 
connected by the attribute conflicting with the loved IDEAL, both connected with the 
FATHER by the attributes self-confident, independent, resolute; IDEAL, FATHER, 
and SELF are the lively persons with the subgroup FATHER, SELF both being in 
want of warmth; the SELF, which is by itself peaceful, weak, dependent, and inse- 
cure, shares the attribute lonely with the MOTHER. This circular story starting from 
MOTHER over IDEAL, FATHER, and SELF back to MOTHER can be seen in both 
visualizations. 

A CA map is a representation of the rows and columns of the table in a mul- 
tidimensional metric vector space, obtained by a linear projection onto a suitable 
plane. It should be mentioned that the whole CA process produces not only a two- 
dimensional display but also extensive numerical output that can be used for analyzing 
the data. 

In contrast to this metric vector space approach, line diagrams represent concep- 
tual hierarchies that are combinatorial ordinal structures obtained from the data table. 
To represent these hierarchies in the plane one needs only the usual order of real 
numbers in the y-direction of the plane and ascending lines connecting two points 
to represent the relation that a formal concept is a lower neighbor of another formal 
concept in the conceptual hierarchy. 

2.5 Interordinal Scales and the Guttman Effect 

An example that shows the difference between FCA and CA displays more dramati- 
cally is the so-called interordinal scale given in Table 3. 

This cross table represents a "language" about the numbers {1,2, 3, 4, 5, 6} (i.e., 
the values in Table 1) using the attributes -< 1 . . . . .  -< 6, -> 1 . . . . .  -> 6, which 
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Table 3: An Interordinal scale 

I(6) -<1 --<2 < 3  < 4  --<5 -<6 --> 1 -->2 ->3 ->4 > 5  ->6 

1 X X X X X X X 
2 X X X X X X X 
3 X X X X X X 
4 X X X X X 
5 X X X X 
6 X X X 

X 
X X 
X X 
X X 

X 
X X 

are needed to describe intervals, for example, the set of all numbers x satisfying 
3 - x - 5, which is just {3, 4,5}, the intersection of the sets {x I x >- 3} and 
{x I x - 5}. The concept lattice of this interordinal scale is shown in Figure 3 and the 
asymmetric CA map of the indicator matrix (Table 3) is shown in Figure 4. 

The CA map (Figure 4) shows the well-known Guttman effect (or "horseshoe 
effect"), namely the parabola-shaped configurations of the set of numbers 1 to 6 as 
well as the "attribute" points -< i (i = 1, 2, 3, 4, 5, 6) on the left side and >- i on the 
fight side (see also Greenacre, 1984, secs. 8.3 and 8.8.2). This CA map shows how 
difficult it is to reconstruct the data using only the barycenter reading rule. A parabola- 
shaped configuration in a CA map occurs not only in ordinal and interordinal scales 
but also in many data with a certain "trend." The line diagram in Figure 3 allows the 
data to be reconstructed exactly. 

<6 >1 

_<5/ \ > 2  

< 4 /  \ / \ > 3  

<3/ \ / \ / \>4 

_<2/ \ / \ / \ / \>5 

__<I/ \ / \ / \ / \ / \>6 
g ~  2 

Figure 3: Line diagram of the concept lattice of the interordinal scale. 
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Figure 4: CA map of the interordinal scale. 

Data Representations in Formal 
Concept Analysis 

FCA was introduced by Wille (1982) "based on the philosophical understanding of 
a concept as a unit of thoughts consisting of two parts: the extension and the inten- 
sion (comprehension); the extension covers all objects (or entities) belonging to the 
concept while the intension comprises all attributes (or properties) valid for all those 
objects." For detailed introductions the reader is referred to Ganter and Wille (1996) 
and Wolff (1994). FCA is the central theory in the field of conceptual knowledge pro- 
cessing with two main branches: namely, conceptual knowledge systems (see Wille, 
1992) and conceptual data analysis (see Wille, 1987; Spangenberg and Wolff, 1991; 
Wolff et al., 1994). 

Here we give a short overview of the main ideas in conceptual data analysis. We 
start with the formal representation of data tables by many-valued contexts. Data are 
usually collected in tables with many rows and columns and possibly empty cells. 
Hence such a table can be described formally as a partial mapping from G × M 
into W, where G is called the set of objects ("Gegenst~inde" in German), M the 
set of many-valued attributes ("Merkmale"), and W the set of values ("Werte"). 
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Attributes usually describe variables such as age, temperature, and time. Conceptual 
data analysis unfolds a given many-valued context in a certain conceptual frame that 
represents the conceptual meaning of the values, where "conceptual" is understood 
in the sense of "formal concepts" introduced by Wille (1982). 

An example of a formal context is given in Table 2. This table can be described 
by three sets, namely the set G of the four persons, the set M of the 14 attributes, and 
the set I of all the person-attribute pairs, which are indicated by crosses in the table. 
In general, a formal context (or briefly a context) is defined as a triple (G,M,I) of 
sets where I is a subset of all possible pairs (g, m), denoted by G × M. The elements 
of G are called objects and the elements of M attributes. If (g, m) ~ I, we say that 
g has the attribute m. Each "cross-table" describes a formal context uniquely. The 
central definition of formal concepts and their hierarchy is formulated with respect 
to a given formal context. A formal concept of a context (G,M,I) arises in a natural 
way from a "database question" consisting of a subset Q of M by constructing first 
the "answer" A of all objects having all attributes of Q and second the set B of all 
attributes that are valid for all objects of A. Then the pair (A,B) is called a formal 
concept of (G,M,I). The set A is called the extent and B the intent of the concept 
(A,B). 

In the context of the interordinal scale of Table 3 the pair (A1,B1) = ({3, 4, 5}, 
{-- 5 , -  6,--> 1, >-- 2,-> 3}) is a concept of this context. Another concept is 
(A2,B2) = ({1,2,3, 4,5}, { -  5 , -  6,-> 1}). The first concept has a smaller extent 
and a larger intent than the second, which demonstrates the well-known fact that the 
more conditions there are, the fewer objects fulfill them. This leads to the definition 
that for any two concepts (A1,B1), (A2,B2) of a given context the concept (A1,B1) is 
called a subconcept of (A2,B2), briefly (A1,B1) ~< (A2,B2), if A1 C A2. The ordered 
set of all concepts of a context is called the concept lattice of the context. Concept 
lattices can be represented in the plane by line diagrams. 

Line diagrams are specially labeled Hasse diagrams of concept lattices. One can 
show that every finite ordered set can be represented without any loss of information 
by a Hasse diagram in the plane (see Davey and Priestley, 1990). There are two 
main steps in the construction of a Hasse diagram of a finite ordered set, denoted by 
(P, _) .  In the first step each element p of P is represented by a planar point h(p), 
called the Hasse point of p, such that smaller elements in the ordered set (P, - )  are 
represented by lower points in the plane. In the second step two Hasse points h(p), 
h(q) are connected by a line if and only if p is a lower neighbor of q, that is, p --- q, 
and there is no other element of P between p and q. It is clear that an ordered set can 
be represented by many graphically quite different looking Hasse diagrams, and it is 
an art to draw "nice" Hasse diagrams. 

The line diagram in Figure 1 is a Hasse diagram of the ordered set for the context 
represented in Table 2. In general, a line diagram is a Hasse diagram of a concept 
lattice labeled in the following way. The name of each object g of the given context 
is written a little bit below the Hasse point of the object concept of g and the name of 
each attribute m is written a little bit above the Hasse point of the attribute concept 
of m. The object concept of an object g is the smallest concept having g in its extent, 
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and the attribute concept is the greatest concept containing m in its intent. Then the 
following reading rule for line diagrams holds: an object g has the attribute m if and 
only if there is an ascending path from the point labeled with g to the point labeled 
with m. Hence a context is reconstructable from any of its line diagrams. 

Using the reading rule in the line diagram of Figure 1, one can see that the 
FATHER has the attributes self-confident, independent, resolute, being in want of 
warmth, and lively, but he does not have the attribute lonely, for example, because 
there is no ascending path from FATHER to lonely. Finally, we mention the role of 
unlabeled circles in a line diagram. Each of these represents a concept that is neither 
an object concept nor an attribute concept. The unlabeled circle in the middle of the 
line diagram in Figure 1 represents the concept ({IDEAL, FATHER}, {self-confident, 
independent, resolute, lively}). In general, a circle in a line diagram represents the 
concept with the extent consisting of all objects reachable from the circle by descend- 
ing paths and the intent of all attributes reachable from the circle by ascending paths. 
Hence the circle at the top denotes the concept having all objects in its extent, and 
the circle at the bottom denotes the concept having all attributes in its intent. Top 
and bottom concepts may or may not be object or attribute concepts. To represent a 
many-valued context by a line diagram, we construct a "meaningful" formal context 
from the given many-valued context. This process is called conceptual scaling in 
FCA (see Ganter and Wille, 1989, 1996; Wolff, 1994) and is a generalization of the 
construction of the so-called indicator matrix in MCA (e.g., Greenacre, 1994) and 
the process of coding in multivariate analysis (see Girl, 1990). 

4 Data Representations in 
Correspondence Analysis 

4.1 A Common Background for CA and FCA 

To have a common background for both CA and FCA, we discuss briefly the meaning 
of some fundamental key words in CA. Categorical data are obtained in the process 
of describing some part of the "reality" by classifying "objects" with respect to certain 
"aspects" into "categories." Each aspect (e.g., age) has several categories (e.g., age 
groups) into which the objects are classified. The categories of an aspect are often 
ordered in a certain hierarchy. The two most useful, very simple, and extreme types 
of orders are "chains" and "antichains." In a chain (e.g., the chain of ages from 
0 to 100 with the usual order) any two elements are comparable; in an antichain 
any two elements are incomparable in the given order relation (e.g., the antichain 
of the age groups [0, 17], [18, 64], [65,100] regarded as sets with respect to the 
order of set inclusion). In conceptual scaling the corresponding scale types are called 
one-dimensional ordinal scales and nominal scales. The classification of objects into 
categories of several aspects is usually described in a "data table," in which the rows 
are indicated by names of the objects, and the columns by names of the aspects; the 
cell (i, j) in row i and column j is filled with the name of the category into which 
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object i is classified with respect to aspect j, and this cell is empty if object i is not 
classified into a category of j. The mapping of the objects to the categories of a given 
aspect is usually called a "variable" in statistics. It is obvious that categorical data can 
be represented by many-valued contexts. The hierarchy of categories is represented 
in the concept lattices of the conceptual scales. 

Contingency tables are constructed from a many-valued context without missing 
values by selecting two attributes ("variables") a and b and by indicating the rows 
and the columns of the contingency table with the names of the values of attributes 
a and b, respectively. The entry in cell (x, y) is defined as the number of objects g in 
the many-valued context such that a(g) = x and b(g) = y. Contingency tables do not 
represent the hierarchies of the categories of a and b, in contrast to FCA, in which 
both hierarchies and the contingency numbers are represented in nested line diagrams 
(see Wolff, 1994) of the formal context obtained from the many-valued context of the 
data table restricted to the categories a and b by scaling a (respectively b) with a scale 
for the hierarchy of a (respectively b). The same holds true for multidimensional 
contingency tables with more than two categories. They represent only the numbers 
of objects of the contingency classes of the corresponding concept lattice but not its 
conceptual structure. 

Matrices are special many-valued contexts without missing entries. If all matrix 
entries are real numbers, one can use matrix algebra, but then the question arises 
of whether the algebraic operations have a meaning. To circumvent these problems 
(which are discussed from a general viewpoint in measurement theory by Krantz et 
al., 1971), CA does not work with the given many-valued context directly, even if 
it is a real matrix. Instead, new matrices are generated in which all entries have the 
same meaning as a frequency or all entries are values of binary (dummy) variables. 
This leads to two main strategies in CA: simple CA, which works with contingency 
tables, in which all entries have the same meaning of frequencies, and MCA, where 
the given many-valued context is transformed into an indicator matrix Z of zeros 
and ones. This transformation is exactly the same as the conceptual scaling of this 
many-valued context with nominal scales for each many-valued attribute. 

In its typical form CA generates a map in the usual Euclidean plane from a 
two-dimensional contingency table. The main steps in the construction of this map 
are described in the introduction to Part 2 later in this book. 

MCA is the application of CA to the indicator matrix Z. As an example we 
choose the data table given in Table 1 and apply the nominal scaling to these data. 
This results in a table with four rows for the persons and 7 X 6 = 42 columns for the 
attributes. Table 4 shows the first six columns of this indicator matrix corresponding to 
the peaceful-conflicting attribute. Please note that the full table contains many empty 
columns, all of which have to be removed before CA can be applied. The asymmetric 
map of the nominally scaled Table 1, with attribute points at the barycenter of their 
object points, is shown in Figure 5. 

The most remarkable impression in Figure 5 is that the points IDEAL and 
MOTHER coincide, hence seem to have exactly the same attributes, whereas they have 
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Table 4: The 'peaceful-conflicting' part of the nominally scaled Table I 

pe.1 pe.2 pe.3 co.4 co.5 co.6 

SELF 1 0 0 0 0 0 
IDEAL 0 0 0 0 1 0 
FATHER 0 0 0 1 0 0 
MOTHER 0 0 0 0 1 0 

the same values only at four of the seven constructs. Also the points of the attributes 
lively 2 and lonely 1 coincide, but they are the projections of two different points in 
the multidimensional space. In addition, MCA places the attributes loved 5, resolute 
1, and theoretical 6 at the same projected position, even though they are different 
points in the full space. This can be checked without using the multidimensional 
space by looking at the line diagram in Figure 6, which represents the same indicator 
matrix without loss of information. 
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Figure 5" The asymmetric MCA map of the nominally scaled Table 1. 
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tl 
conflicting 5 
independent 6 conflicting 4 

lively 2 resolute I lively 1 
independent 5 

l ~ being in want of warmth 2 
resolute 2 

peaceful 1 lonely 3 
weak 6 | 
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Figure 6: Line diagram of the information-preserving nominally scaled Table 1. 

5 Conclusion 

In contrast to CA, the data evaluation in FCA starts with a many-valued context 
given by the original data and represents an ordinal structure on the values of each 
many-valued attribute by the scaling procedure. The graphical representation of the 
line diagrams of the concept lattice of the derived context contains all the information 
of the derived context. Hence FCA has an exact graphical data representation in 
contrast to the metric approximation of the data in CA. The exact representation has 
the disadvantage that even small many-valued contexts may have concept lattices 
with thousands of concepts. Then the main strategy is to use first a very rough scale 
and later a finer one. The main technique is the use of nested line diagrams that can 
be automatically generated from the small diagrams of the scales. 

From our experience with both methods, we suggest using FCA for data with 
a small number of many-valued attributes. For data with more than 20 many-valued 
attributes one should first apply MCA to the suitably scaled context to find some 
interesting attribute clusters that may serve as the starting point for a data analysis 
with FCA. 
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Software Notes: The Programs TOSCANA and JOSICA 

TOSCANA is a conceptual data management and retrieval system that uses the 
relational data base system MS-ACCESS. It generates nested line diagrams from a 
conceptual file containing the information about the scales. The conceptual file is 
generated with the program ANACONDA. Both programs are available from the 
EmstSchr6derZentrum ftir Begriffliche Wissensverarbeitung e.V., Schlossgartenstr. 
7, D-64289 Darmstadt. E-mail: esz@mathematik.th-darmstadt.de. 

JOSICA is a GAUSS program written by Siegfried Gabler that enables the 
user to run simple, multiple, and joint correspondence analyses. All computations 
and graphics in this chapter concerning correspondence analysis are generated by 
JOSICA. For more information one may contact the second author. 
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Chapter 8 

The Z-Plot: A Graphical 
Procedure for Contingency 
Tables with an Ordered 
Response Variable 

Vartan Choulakian and Jacques Allard 

1 Introduction 

Analysis of contingency tables with an ordered response variable has received much 
attention during the past two decades. Two widely known and used models are 
McCullagh's (1980) proportional odds model and Goodman's (1979, 1985) R or C 
association models. To take into account the ordinal nature of the response variable, 
two main approaches are used: the first one consists of modeling the empirical distri- 
bution function as done in McCullagh (1980); the second one consists of assigning 
scores to the categories of the ordinal response variable as done in Goodman (1979). 
The graphical procedure proposed in this chapter combines both approaches. The 
Z-plot was proposed by Choulakian et al. (1994) in the context of goodness-of-fit 
statistics. We use it as a preliminary aid to screen the data, which is a first step before 
applying a formal statistical analysis. 

2 The Z-plot 

Let N = {nij} for i = 1 . . . . .  I and j = 1 . . . . .  J be a two-way contingency table, where 
the column variable is an ordinal response variable and the rows represent I different 
groups, I different time periods, or a combination of some explanatory variables. 
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Notice that the column variable j is a specified score as in Goodman's R association 
model. The row variable i need not be a score. Let us define h i .  - -  ~-'~J= 1 hi j, p ( j  I i) = 
nij/ni,  the conditional relative frequency of the jth column category given the ith 

row, and e ( j  I i) J = Y~m= 1 p(m I i), the conditional empirical distribution function 

given the ith row. Let us also define n.j = Y~=I nij, n.. = }-~=1 n.j, p ( j )  = n.j/n.. 
the marginal relative frequency function of the ordinal response variable, and P( j )  = 
~ J = l  p(m), the marginal empirical distribution function of the ordinal response 
variable. P( j )  will be used as a reference or baseline distribution. We note that 
the reference distribution could be any other empirical distribution function, such 
as the uniform P( j )  = j / J .  Finally, define Z ( j  I i) = P ( j  I i) - P( j ) .  Notice that 
Z ( j  ] i) is based on the empirical distribution function as in McCullagh's proportional 
odds model. The Z-plot is based on plotting for a fixed i = 1 . . . . .  I, Z ( j  ] i) for 
j = 1 . . . . .  J - 1, and interpreting the resulting curves. Two kinds of information 
can be obtained from Z ( j  I i). First, for an i fixed, Z ( j  I i) shows how the ith row 
behaves with respect to the reference distribution. In particular, if Z ( j  ] i) >- 0 for 
j = 1 . . . . .  J - 1, it means that the reference distribution stochastically dominates 
the conditional distribution of the ith row, which in turn implies that the quantiles 
and the mean of the ith row are less than or equal to the corresponding quantiles 
and the mean of the reference distribution. The opposite interpretation is obtained if 
Z ( j  ] i) <- 0 for j = 1 . . . . .  J - 1. Second, let us fix two rows i and i t and consider 
O ( j  l i, i') = Z ( j  l i) - Z ( j  l i') = P ( j  l i) - P ( j  l i') for j = 1 . . . . .  J - 1, the 
difference between two Z's. D ( j  ] i, i t) measures the difference between two con- 
ditional empirical distribution functions. If D ( j  ] i, i t) >- O, then the empirical dis- 
tribution function of the itth row stochastically dominates the empirical distribution 
function of the ith row; and the opposite happens if D ( j  ] i, i t) <- O. 

Goodman's R association model and McCullagh's proportional odds model im- 
ply the stochastic ordering of the rows, that is, D ( j  I i, i t) >-- 0 [or D ( j  I i, i t) <-- 0]. 
Therefore, if the Z-plot does not reflect this, then these simple models do not describe 
the data well and more complex models, such as Goodman's R + RC model or Mc- 
Cullagh's "nonlinear" model, should be fitted to the data. Now, let us present some 
examples. 

3 Examples 

3.1 Opinion of Youths on Military Service 

Table 1 is a contingency table of order 7 X 4, taken from Gilula and Haberman 
(1994). It represents the opinion on military service of a sample of youths aged 
14-22 in the United States who participated in the National Longitudinal Survey of 
Youth from 1979 to 1985. The data represent part of a panel study. One of the aims 
of the study was to see how the opinion of youths developed with time. Figure 1 
represents the Z-plot of the data. It is evident that the curves representing the years 
1979 through 1985 are almost ordered, and during this time period, on the average, 
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Table 1: Evolution of the opinion of a sample of youths on military service 

Response 

Year 
Definitely Probably Probably Definitely 

good good not good not good 

1979 1196 4,966 1370 578 
1980 930 5,441 1193 546 
1981 1048 5,693 967 402 
1982 1049 5,737 942 382 
1983 1208 5,898 735 269 
1984 1125 5,902 772 311 
1985 1143 5,996 703 268 
Total 7699 39,633 6682 2756 

the opinion of the sampled youths changed from "not good" to "good." We note that 
the conditional distributions of the middle years (1981 and 1982) are close to the 
reference distribution, because the conditional distributions are stochastically time 
ordered. 
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Figure 1: Z-plot of evolution of the opinion of a sample of youths on military service. 
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Table 2: Response frequency in a taste-testing experiment for five treatments 

Response 

Treatment Terrible 2 3 4 Excellent Total 

1 9 5 9 13 4 40 
2 7 3 10 20 4 44 
3 14 13 6 7 0 40 
4 11 15 3 5 8 42 
5 0 2 10 30 2 44 

Total 41 38 38 75 18 210 

3.2 Taste-Testing Experiment 

The data in Table 2 are taken from Bradley et al. (1962) and give the response 
frequency of judges in a taste-testing experiment. The five possible responses are 
on an ordered scale from terrible (1) to excellent (5), and the rows represent five 
unordered treatments. Figure 2 presents the Z-plot. We see that the curves are not 
ordered, which implies that McCullagh's proportional odds model does not fit the 
data well, as found by McCullagh (1980), who proposed a more complex "nonlinear" 
model to fit the data set. 
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Figure 2: Z-plot representing the results of a taste-testing experiment for five treat- 
ments. 
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3.3 Severity of Persistent Wheeze According to Age, City, 
and Maternal Smoking 

Table 3 is a four-way contingency table of order 3 x 3 × 4 × 2, taken from Stram 
et al. (1988). These data are from a panel study on the effects of indoor and outdoor 
air pollution on respiratory health. Indoor air pollution is represented by the maternal 
smoking (S) level, having the three categories S1 (less than 0.5 packets a day), $2 (from 
0.5 to 1.5 packets a day), and $3 (more than 1.5 packets a day). Outdoor pollution is 
represented by the two cities (C), where the first category is Kingston-Harriman in 

Table 3: Severity of persistent wheeze according to age, city, and maternal smoking 
status 

Maternal smoking 
(packets a day) Age 

Severity of wheeze 

1 2 3 

Kingston-Harriman, Tennessee 
1 Less than 

1 1 ~to17 

1 More than 1 

Portage, Wisconsin 
1 Less than 

1 1 ~to l~  

1 More than 1 

9 418 70 66 
10 465 83 67 
11 458 64 64 
12 467 71 59 

9 168 46 40 
10 177 43 35 
11 184 48 41 
12 172 45 36 

9 41 17 16 
10 64 9 15 
11 72 19 11 
12 35 12 16 

9 622 113 77 
10 788 104 91 
11 750 87 99 
12 652 56 65 

9 225 48 22 
10 251 45 37 
11 250 35 32 
12 209 24 31 

9 46 14 8 
10 49 15 11 
11 36 17 16 
12 56 12 11 
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Tennessee, a highly polluted metropolitan area, and the second category is Portage in 
Wisconsin, a city with a relatively low level of pollution. The response variable is the 
occurrence of a persistent wheeze in the previous year, graded in severity as 1 (none), 
2 (only with colds), or 3 (apart from colds). The data are gathered at examination of 
children of ages (A) from 9 to 12. In this example, for fixed categories s, c, and a of 
maternal smoking, city, and age, Z ( j  l s, c, a) = P ( j  ] s, c, a) - P( j )  for j = 1, 2. 

Figure 3 presents six groups of parallel Z-plots, the last three pertaining to the 
polluted city of Kingston-Harriman and the first three pertaining to the relatively less 
polluted city of Portage. For the city of Kingston-Harriman, we see that the persistent 
wheeze deteriorates as the maternal smoking level increases and the three maternal 
smoking levels are clearly separated. For the city of Portage, the effects of the first 
two levels of maternal smoking are less distinguishable, and the persistent wheeze 
deteriorates when the maternal smoking level increases to $3 (more than 1.5 packets 
a day). 

To compare the cities, let us fix the smoking level. For low-level maternal 
smoking, the figure shows a slight difference in wheezing level between the cities. 
For the medium level of maternal smoking, the difference is greatest. Finally, for 
the highest level of maternal smoking, the figure does not suggest a difference in 
wheezing level. 
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Figure 3: Parallel Z-plots for the severity of persistent wheeze according to age, city, 
and maternal smoking status. 
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We also notice that the figure does not suggest an age trend. However, we note 
that, during the 4 years, the variability of the persistent wheeze relative to age is 
greatest in both cities when the maternal smoking level is more than 1.5 packets a 
day ($3). 

4 Conclus ion  

The Z-plot is a simple graphical procedure for visually displaying a contingency 
table having one ordered response variable. It is used as an exploratory data analytic 
tool to screen two-way and multiway contingency tables, but no formal inferential 
conclusion can be deduced from it. However, it may help to choose between formal 
statistical approaches, such as Goodman's R or R + RC association model, McCul- 
lagh's proportional odds model, or more complicated models for ordered categorical 
data that are available to analyze such data sets. 



This Page Intentionally Left Blank



PART II 

Correspondence Analysis 
The following 14 chapters are concentrated on the theory and practice of correspon- 
dence analysis (CA). On the more practical side, we will see CA used as a method 
for interpreting political data in countries as different as Bulgaria and Luxembourg; 
as a method for analyzing textual data to understand American social attitudes and 
attitudes of French pupils to mathematics; and as a sociological tool in mapping 
themes used in political campaigns in Germany and comparing groups of visitors to 
art exhibitions in Vienna, Hamburg, and Paris. On the more theoretical side, we have 
a panorama of chapters that deal with aspects of interpretation, diagnostics, miss- 
ing data, and three-way and nonsymmetric forms of CA. These theoretical chapters 
all contain substantive applications as well, again in a variety of contexts in many 
different countries: for example, the French Worker Survey, the German General 
Survey Program, the Canadian National Election Study, changes in the workforce in 
the Languedoc-Roussillon region of France, a survey of British premarital and ex- 
tramarital relationships, and a survey of Italian parents of adopted children. Clearly, 
CA has come a long way since it was called a "neglected multivariate method" in the 
1970s. 

The variety and richness of CA can be attributed to several factors. First, it 
has been rediscovered and developed in various forms by researchers in different 
countries and has a history marked by cultural richness and diversity (see Nishisato, 
1994, for a comprehensive historical overview). Second, its powerful visualization 
capability, based on a simple and familiar geometric paradigm, finds substantive 
applications in discovering the dimensions of "social space" (see Bourdieu, 1979, 
1984), the scales of psychological traits, environmental gradients in ecology, and 
time ordinations in archeology. Third, the method is applicable to different forms 
of categorical data: counts, preferences, ratings, and zero/one "dummy" variables, 
which make it a versatile technique in many areas of research. 

Although difficult to read for the uninitiated, the book by Benzrcri and collab- 
orators (1973) is a rich source of basic results and applications of CA. A simple 
introduction to CA is given by Greenacre (1993) in the form of structured, nontech- 
nical explanation aimed specifically at an audience interested primarily in practical 

107 



108 Part H. Correspondence Analysis 

aspects. Different approaches to the theory and practice of CA can be found in Lebart 
et al. (1984), Greenacre (1984), Girl (1990), and Nishisato (1996). The present book's 
antecedent, edited by Greenacre and B lasius (1994a), gives a thorough explanation 
of the simple and multiple forms of CA, including a step-by-step guide to all the 
computations and many different applications in a social science context. The fol- 
lowing 14 chapters can be considered to be a continuation of that book and reflect 
developments in the subject over the past four years. 

In a nutshell, CA may be described as a special type of principal component anal- 
ysis of the rows and/or columns of a table, especially applicable to cross-tabulations. 
The most typical result of CA is a planar map on which each row and each col- 
umn are depicted by a point. It is the values in each row or column relative to their 
respective row or column totals that are analyzed and displayed, and these vectors 
of relative values are called "profiles." A standardization is introduced consistent 
with the assumption that the elements of each profile have variances proportional to 
their respective means. This assumption engenders what is called the "chi-squared 
distance" between profiles and gives CA its particular algebraic and geometric prop- 
erties, notably its symmetric treatment of rows and columns. Indeed, the results of CA 
are unaltered by transposing the data matrix. This property has caused a good deal 
of controversy, because there are only few occasions when the rows and columns 
are considered to be completely interchangeable. In a typical sociological cross- 
tabulation, for example, the rows might be family status groups used to explain the 
difference between different attitudes as columns, for example, attitudes to abortion, 
and this immediately implies an asymmetry in the two modes of the table. Neverthe- 
less, it is true that for many cross-tabulations it makes sense to interpret both the row 
percentages and column percentages of the table, that is, the row and column profiles, 
in which case the symmetry inherent in CA is appropriate. A good example of this 
is a square table in which the rows and columns are the same categories applied to 
related groups, for example, a table of preferred leisure activities of husbands and 
wives, or the cross-tabulation of two multiresponse variables. 

As in the case of principal component analysis, CA can be defined algebraically 
as the singular value decomposition of a centered and standardized form of the 
original data matrix. This is the matrix of standardized residuals that can be obtained 
by computing the difference between observed and expected frequencies, divided 
by the square root of the respective expected frequency. The left and fight singular 
vectors provide the unscaled coordinates of the rows and the columns along respective 
principal axes, and the singular values define scaling factors for the rows and/or the 
columns on respective axes. The singular values are square roots of eigenvalues that 
decompose the total variation of the table, called the "total inertia." In the case of a 
cross-tabulation, the total inertia is equal to the usual Pearson chi-squared statistic 
divided by the total of the table. 

In the so-called symmetric map, the row and column coordinates are both scaled 
by the singular values. The coordinates are called principal coordinates in this case, 
and both row and column points displayed in principal coordinates are projections 
of the row and column profiles onto the visualization space, usually a plane formed 



Part II. Correspondence Analysis 109 

by the first two principal axes. In an "asymmetric map," either the row or the column 
coordinates are scaled by the singular values, leaving the other set of coordinates, 
called standard coordinates, unscaled. In a map these latter points are the projections 
of unit vectors, analogous to the projections of unit vectors onto principal components 
to obtain component loadings. Also similar to principal component analysis is the fact 
that the asymmetric map is a biplot where the set of points in standard coordinates is 
thought of as a set of directions onto which the other points (in principal coordinates) 
can be projected to approximate the values in the original matrix. 

Apart from issues surrounding the geometric interpretation, there has been a great 
deal of interest in the extension of CA to situations in which more than two categorical 
variables are cross-tabulated. Two types of generalizations have been investigated, 
multiple correspondence analysis (MCA) and joint correspondence analysis (JCA) 
(see, for example, Greenacre, 1994). In both cases attention is usually focused on 
the positions of the category points and their joint two-way interactions. Although 
it is possible to represent a point for each individual response as well, this usually 
leads to so many points that it is not a practical strategy---often group mean points 
of individuals according to a relevant explanatory variable are interpreted instead. 
An interesting development, reflected by several of the following chapters, is in 
the interpretation of patterns of responses in MCA. This turns out to be useful in 
understanding the patterns of independence among the variables. Chapter 20 by 
Meulman and Heiser is a pioneering contribution to this development, as they show 
that appropriate forms of visualization of MCA results yield information about all 
the interactions in the multiway table, not just the two-way interactions as supposed 
up to now. 

Let us look at the chapters in this part more closely. There are several chapters 
that apply CA to political data, and the first chapter in this part, Chapter 9, written by 
Ivailo Partchev, is about the Bulgarian political scene after the 1994 general elections 
and leading up to the presidential elections in October 1996. This chapter is a classic 
example of simple CA applied to a medium-sized cross-tabulation, just too large to 
be easily interpreted by scanning the values in the table itself. Here the visualization 
given by CA provides compact descriptions of the data in the form of maps of the 
candidates and their relationships to voter groups supporting the different political 
parties. The chapter includes the use of a clustering of the political parties in terms 
of their voters' profiles of support for the candidates, which neatly complements the 
CA results. 

Chapter 10, by Bernd Martens and J/Srg Kastl, looks at themes in the media 
leading up to and during the so-called "Superwahljahr" (super election year) in 
Germany in 1994. Here there are three categorical variables of substantive importance 
as well as four distinct periods of interest. CA shows how the thematic issues develop 
and dissipate during the election campaigns. This chapter also illustrates how a 
number of variables, four in this case, can be analyzed together by appropriate 
stacking of two-way cross-tabulations. 

Chapters 11 and 12 deal with the analysis of textual data, by Ludovic Lebart and 
M6nica Brcue Bertaut, respectively. Lebart gives a comprehensive overview of ways 
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of preparing and coding textual data for statistical analysis. He shows how effective 
CA is in visualizing similarities and differences between groups of texts in terms of 
their word or "segment" content, where groups are often defined by socioeconomic 
variables relevant to the study. In his example, open responses to a survey question 
concerning the most important things in life are compared among nine groups defined 
by combining three categories of age and three categories of education. 

In Chapter 12, Brcue Bertaut applies lexicometric methods to a survey of French 
pupils' attitudes to mathematics, in which pupils have replied freely to a question 
about why they do or do not like mathematics. Again, the art of textual analysis 
seems to lie in the coding system adopted, and she proposes a more complex lexical 
unit called a "quasi-segment" composed of several words that are not necessarily 
consecutive. In this example the groups of interest are boys and girls at different 
levels of mathematical proficiency. Rather than directly comparing these groups, she 
performs a cluster analysis in the subspace defined by these groups and compares the 
resulting clusters. 

Chapter 13, by Fernand Fehlen, is another application of simple CA to political 
data. Luxembourg has an unusual electoral system in which voters indicate their 
preferences in two different ways: first, a preferred list of candidates belonging to a 
particular party is chosen, giving each candidate on the list a single vote; second, each 
voter distributes a number of votes among the candidates of choice (the "panachage" 
system). CA shows visually which candidates deviate from their respective party 
positions and how their personal influence among the voters compares with their 
party's influence. 

In Chapter 14, Christian Tarnai and Ulf Wuggenig use a combination of latent 
class analysis (LCA) and CA to analyze responses from visitors to major art exhibi- 
tions in three European cities: Vienna, Hamburg, and Paris. LCA is applied to data on 
basic value orientations to identify distinct classes of visitors in each city. Then the 
authors follow a classic strategy in interpreting the latent classes: they cross-tabulate 
the classes against a categorical variable that describes the visitors and use CA to 
visualize the tables. In addition, they add supplementary points to represent special 
groups in the art world, thereby enriching the interpretation of the maps. 

Chapter 15, by Shizuhiko Nishisato, is the first of a set of chapters dealing with 
aspects of geometric interpretation. Nishisato starts by describing dual scaling of rank 
order data and stresses that to recover the ranks it is necessary to use the asymmetric 
map for the solution. When it comes to dual scaling of multiple choice data, that is, 
multiple correspondence analysis (MCA), he recommends coding the subject points 
by their response patterns, at least by the parts of their response patterns that are 
relevant to the interpretation. 

Brigitte Le Roux and Henry Rouanet also look more closely at the interpretations 
of MCA in Chapter 16 and give a methodical way to interpret all the contributions to 
inertia by the variables themselves and by the different response categories. They give 
a thorough step-by-step interpretation of an MCA of four questions from the French 
Worker Survey, conducted in 1969, and interpret as far as the fourth dimension of the 
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solution. They also indicate important response patterns on each dimension in order 
to interpret the positions of individuals with respect to the response categories. 

In Chapter 17, Michael Greenacre looks at the geometric interpretation of the 
category points in MCA. He considers the biplot and unfolding models, based on the 
scalar products and distances, respectively, which underlie the CA interpretation. A 
measure of quality of this interpretation is proposed that measures the recovery of 
the scalar products and distances in a nonmetric sense and generalizes to the multiple 
case, both MCA and JCA. By using this type of nonmetric diagnostic, the differences 
between MCA and JCA results as well as between the biplot and unfolding approaches 
are eliminated and a more consistent measure of quality is obtained that is directly 
related to the interpretation. 

In Chapter 18, Victor Thiessen and J/Srg B lasius examine the degree to which 
responses in social surveys such as "no difference" or "unsure" can be regarded 
as substantive. They use MCA to interpret the structure of such responses to a set 
of questions in a survey of political parties in Canada, where the response "no 
difference" indicates that the respondent does not distinguish the political parties on 
a specific issue. They find a clear distinction between the nonsubstantive responses 
"don't know" and the other substantive responses, with the "no difference" responses 
uncorrelated with this distinction. They also display supplementary variables such 
as "political interest," "education," and "age" to explore their correlations with the 
substantive-nonsubstantive distinction, as well as the "no difference" categories. 

Chapter 19, by Andr6 Carlier and Pieter M. Kroonenberg, is a thorough de- 
scription of a three-way generalization of CA, with an application to a three-way 
contingency table of regions in southern France by occupational classes by time 
points, that is, a regions-by-occupations table observed at four different time points. 
The central idea is to decompose a measure of global dependence in the three-way 
table into components for the marginal (two-way) dependences and for the three-way 
dependence. A three-way matrix decomposition is fitted to account for these differ- 
ent components. Finally, visualization of different sources of dependence is possible 
thanks to a biplot of all three modes in a single map, where two modes (in this case, 
the regions and time points) have been combined to enable the biplot interpretation 
(between the region-time points and occupational class points). 

In Chapter 20, Jacqueline J. Meulman and Willem J. Heiser come to grips 
with the elusive question: how can homogeneity analysis (alias MCA) shed light on 
interactions of order higher than two-way? As in Chapters 15 and 16, the answer 
lies in displaying the individual response patterns, which they call profiles, but also 
the centroids of the response patterns that represent various category combinations 
as well as the categories themselves. Using an example of four variables with two 
categories each, they show how structures in the odds ratios implied by different 
models of independence for the multiway table turn out as ratios of distances between 
the profiles and the centroids. Interactions can be studied by identifying additivity in 
the inertia contributions of the profiles and their centroids. The independence models 
can be diagnosed by certain patterns of parallel lines in the map. 



112 Part II. Correspondence Analysis 

The last two chapters of this part both deal with a variant of CA called nonsym- 
metrical correspondence analysis (NSCA). Whereas CA is invariant to the transpo- 
sition of a data matrix, NSCA treats the sets of rows and columns differently, one 
being the predictor and the other the response. In Chapter 21, Simona Balbi gives an 
overview of NSCA and describes the geometric interpretation of NSCA maps as well 
as their differences from CA maps. She shows that the row and column points have 
different geometries in accordance with their nonsymmetric roles in the analysis. 
NSCA is also extended by three-way tables when two variables are considered to be 
predictors by combining the categories of these two variables to form a single one. 

In Chapter 22, Roberta Siciliano and Francesco Mola use NSCA as a way to 
develop a prediction rule when there are several categorical predictors of a categorical 
response variable. Their approach is in the family of decision tree methods such as 
CART (see Aluja-Banet and Nafrfa, Chapter 5) and CHAID, where the prediction 
rule is determined by successively partitioning the observations according to the 
categories of a predictor. These authors propose splitting the observations into three 
groups at each stage, and NSCA is used to decide which predictor variable is chosen 
and how the splitting is performed. 



Chapter 9 

Using Visualization 
Techniques to Explore 
Bulgarian Politics 

Ivailo Partchev 

1 Introduction 

Political studies provide a particularly good playground for data visualization tech- 
niques. Temptations to extract far-reaching conclusions from simple displays are 
less strong here than in, say, sociology or psychology, and we can use visualization 
techniques in the way they are intended: as efficient tools for the reduction of data. 

Political life in a country is shaped by a small number of fairly invariant factors: 
the political parties; a not so numerous elite of leading politicians; several influential 
newspapers; and the electorate, classified into various social and demographic groups. 
Of course, we must ask many questions before we can relate these factors to one 
another. At which end of the political spectrum is a party situated? Who votes for it? 
What are the political messages of the leading newspapers? Many of these questions 
can be answered by running a few correspondence analyses on a survey that simply 
asked people about the newspapers they read, the politicians they trust, and the party 
they vote for. This may be the quickest way to become familiar with the political 
scene. 

This chapter shows how visualization techniques helped to analyze Bulgarian 
public opinion data at different stages of the presidential race in 1996. Of the many 
possible data sets, we have chosen two simple cross-tabulations. In this way the 
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political part can be kept short while still sufficiently detailed. In both tables, the 
intended vote for president was cross-classified against the self-reported actual vote 
in the most recent general election. 

2 The Data 

The first table comes from a public opinion poll conducted by mail in Bulgaria in 
February 1996. At that time, it was known only that the presidential election had to 
take place in autumn and that the president in office, Dr. Zheliu Zhelev, intended to 
run again. None of the political parties had come up with a candidate yet, and the 
survey tried to identify any names that were "in the air." To that end, an open-ended 
question asked, "Can you name a person who is most worthy to become president of 
Bulgaria?" 

The sample and the questionnaire of the February survey were prepared by the 
author. A total of 2397 questionnaires were mailed to every eighth person over 18 
years of age and born on a certain date; of these, 523 were returned complete. At a 
response rate of barely over 20%, the adequacy of the sample should be defended 
by practical experience rather than by the theory of random sampling. In situations 
in which results could be verified by a subsequent election, our practice has found 
similar samples to perform at least averagely compared with face-to-face interviews. 
Moreover, we are primarily interested in data structures, and there is no reason to 
believe that associations between variables could be seriously biased by nonresponse. 
The data have been poststratified to match self-reported voting in the latest general 
election in December 1994 with the actual election outcome. 

The second table is based on a survey that was done in October 1996---a week 
before the real election--by the Laboratory of Political Behaviour, Sofia University. 
It used face-to-face interviews and a two-stage cluster design, sampling 160 clusters 
with a probability proportional to their size and then 10 persons out of each cluster. 
The response rate (80%) was much higher than that of the mail poll, but the question 
on intended voting had a flaw, reversing the percentages for the candidates who 
ended up second and third in the election. This may be due partly to the layout of the 
question but mostly to bad luck or some subtle bias in the selection of clusters. For 
this chapter, the table of counts has been adjusted to the real outcome of both elections 
by iterative proportional fitting (see Bishop et al., 1975, pp. 97-102, and Friendly, 
Chapter 2 in this volume), a procedure that changes the marginals but preserves the 
association. 

3 The Politics 

Visualization techniques can indeed shed light on the political identity of parties and 
politicians, but some preliminary information will help in understanding results and 
evaluating the new insights gained. 
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3.1 Parties 

The Bulgarian Socialist Party (BSP) is the direct descendant of the Bulgarian Com- 
munist Party, the undisputed ruler in an effectively one-party system that lasted from 
1944 to 1989. Because the destruction of civil society after 1945 was more radical 
in Bulgaria than in, say, Poland or Czechoslovakia, it may be observed that the BSP 
stands farther apart from other parties, has undergone less change, and faces less 
political challenge than similar parties in other ex-communist countries. Apart from a 
short period in 1991-1992, it has had the greatest influence in ruling the country since 
1989 and returned to power by winning 43.5% of the votes in the general election of 
1994. 

The Union of Democratic Forces (UDF) is a coalition of anticommunist parties 
that gained much popular support after 1989. It formed a short-lived government in 
1991 after winning 34.4% of the votes in the general election but lost some of its 
backing later (24.2% in 1994). Still, it remains the second most influential political 
force in the country. The parties within the UDF are either new or belonged to the 
leftist parties that coexisted with the Communist Party after 1944 (the bourgeois par- 
ties having been immediately destroyed), until eliminated in their own turn. Although 
BSP propaganda tends to describe the UDF as extreme fight, it is in fact supported by 
intellectuals, poorer people, and by those who managed--or still hopemto get back 
properties confiscated in the 1940s. 

The Movement for Rights and Freedoms (MRF) is predominantly a party of 
ethnic Turks, although it claims to support human fights in general. The MRF became 
particularly important as a political ballanceur after the general election of 1991 (with 
7.6% of the votes, it was the only parliamentary party except the BSP and the UDF) 
but fared less well in the election of 1994, winning only 5.4%. 

The Popular Union (PU) is the union of the Democratic Party and one of the 
many Bulgarian agrarian parties. Both split from the UDF in 1991, made it back into 
parliament in 1994 with 6.5% of the votes, and are now attempting some political 
cooperation with the UDE 

3.2 Polit icians 

The president in office, Dr. Zheliu Zhelev, was born in 1935, joined the Communist 
Party in 1960, and was expelled in 1965 for "antileninism, antimarxism, antima- 
terialism, and antisovietism." Two years later, he wrote Fascism, a treatise on the 
totalitarian state. The book was published in 1982, then banned and confiscated, but 
the copies that circulated underground led many Bulgarians to reflect on the true 
nature of their society. Zhelev was among the founders of the UDF and became its 
first leader. He was elected president by parliament in 1990 and reelected by popular 
vote in January 1992, winning 44.7% in the first round and 52.8% in the runoff. 
Relations with the UDF withered in September 1992 after a press conference in 
which Zhelev criticized the UDF government. The government eventually failed a 
vote of confidence and resignedma fact that the UDF somehow attributed to Zhelev's 
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criticism. Apart from this episode, Zhelev persisted in his anticommunistic, free- 
market, pro-Western orientation and did not win any lasting sympathy among BSP 
supporters. 

Simeon II became king of Bulgaria in 1943 with the sudden death of his father, the 
highly popular monarch Boris III. Exiled in the late 1940s, Simeon made his fortune 
as a financial and political consultant and remained a stable if not too visible influence 
in Bulgarian political life. His home in Madrid has been visited by politicians of all 
colors, and his popularity among the population became evident in May 1996, when 
his visit to Bulgaria made world news. Simeon did not try to run in the election and 
would have been prevented by the constitution from doing so. He appears here mostly 
because so many Bulgarians would name him their "most worthy candidate." 

Georges Gantcheff is a populist figure that could be described as a Ross Perot 
without the money. His aggressive campaigning is not taken seriously by some but 
seems to appeal to many. Gantcheff appears to have easy access to television and 
uses it quite skilfully, attacking both the BSP and the UDF in some rather unrefined 
language. However, his role in politics is less than perfectly neutral. His party, the 
Bulgarian Business Block (BBB, 4.7% of the vote in 1994), consistently backs the 
BSP in parliament, ensuring a majority and safeguarding the BSP leadership against 
internal dissent. Gantcheff's attacks against the alleged "big deal" between the BSP 
and the UDF may appeal to many Bulgarians who failed to see the improvement in 
life conditions they had hoped for, but it is also in tune with the voices within the 
BSP who challenge the democratic change in principle. Gantcheff seriously hopes to 
become president and was third in 1992 (16.8%) and 1996 (21.9%); in either case, 
he carefully avoided telling his supporters how to vote in the runoff. 

Against this colorful trio, the persons who actually contested the presidential 
election in October may pale by comparison. 

The BSP initially put forward the man identified as the BSP favorite by our Febru- 
ary poll: Georgi Pirinski, the minister of foreign affairs. His name was mentioned 
in about 12% of all returned questionnaires and by some 23% of BSP supporters. 
However, it turned out that Pirinski did not qualify as a "natural-born citizen" in the 
sense adopted by the constitution. He was replaced by Ivan Marazov, a professor of 
ancient cultures and minister of culture in the BSP government. Practically unknown 
to the general public until then, Marazov came in second in the October election, 
winning 27% in the first round and 40.3% in the runoff. 

The democratic opposition opted for a strange version of the American primaries 
that took place in June and produced an even more unexpected result. The Popular 
Union, the MRF, and some smaller parties not represented in parliament supported 
the president in office, while the UDF put forward Petar Stoyanov, a fairly unknown 
lawyer who had served as vice-minister in the UDF government of 1992. Back 
in February, Zhelev's name had been mentioned in 14% of all questionnaires, and 
Stoyanov's in less than 1% (3% among UDF supporters). Capitalizing on widespread 
and mounting dissatisfaction with the worsening conditions in the country, Stoyanov 
eliminated Zhelev in the primary and was elected president in October: he won 44.1% 
in the first round and 59.7% in the runoff. 
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Finally, Alexander Tomov is a professor of economics and a former economic 

advisor in the last BCP government before 1989. He split from the BSP and ran in 
the general elections of 1991 and 1994 with various formations intended to fill up the 
missing political center with a social-democratic alternative, but he could never make 
the 4% threshold. Tomov tried his luck in the presidential election and got 3.2%. 

4 February 1996 

The cross-tabulation of the questions "Can you name a person who is most worthy 
to become President of Bulgaria?" and "For which party did you vote in the 1994 
general election?" is shown in Table 1. About 6% of all responses on the most worthy 
candidates could not be classified into any of the seven categories in Table 1, and 
it was decided to drop them altogether rather than create a new group that would 
be sparse in numbers and scarce in meaning. This raised the percentages for other 
candidates--for instance, Zhelev now has 15% overall rather than 14%. 

Table 1 shows column percentages because they are easier to compare across 
parties; correspondence analysis was actually applied to the table of counts. By 
choosing a display that has parties in principal coordinates and candidates in standard 
coordinates, we can concentrate on the same aspect of the relationship as in Table 1: 
the choices made by groups of a known previous electoral behavior (Figure 1). 

The plot reveals a roughly triangular shape. One quadrant is empty, another is 
taken by the BSP and the BBB, a third one is left to the opposition parties, and the last 
one is clearly the province of those disaffected with politics, refusing to vote, voting 
for small or obscure parties, believing that nobody is worthy to be the president, or 
putting all hope in the king. 

Table 1: Cross-tabulation of the questions "Can you name a person who is most 
worthy to become President of Bulgaria?" and "For which party did you vote in the 
1994 general election?" Frequencies are tabulated as column percentages. 

Did not 

Candidate BSP UDF PU MRF BBB Other vote Total 

Zhelev 7 32 40 63 4 0 9 15 
Simeon 3 22 28 3 4 33 13 14 
UDF persons 1 17 12 3 8 3 6 6 
BSP persons 56 3 4 13 21 14 20 27 
Gantcheff 14 7 4 3 59 8 8 11 
Nobody 8 11 4 6 0 14 17 11 
Left blank 11 8 8 9 4 28 27 16 
Total 100 100 100 100 100 100 100 100 
n = 156 87 23 19 17 56 123 481 
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Figure 1: CA of the data in Table 1: parties in principal coordinates, candidates in 
standard coordinates. 

The principal axes have a clear interpretation. Axis 1 is defined by the potential 
BSP candidate as mainly opposed to Zhelev, Simeon, and the UDF persons. Axis 2 
seems to oppose the president to the king or, to put it another way, those who still 
believe in the existing political structure to those who have lost faith in it. 

Keeping in mind that the Popular Union was the main political party that backed 
Zhelev in the primary, it is somewhat surprising to find PU supporters actually closer 
to UDF persons. In fact, MRF supporters seem to be the only group markedly in 
favor of Zhelev. This is explained by his personal involvement in defending the 
human fights of ethnic Turks, such as restoring their names after the unfortunate 
renaming campaign of 1984-1985, and restitution of properties lost during the mass 
emigration in 1989. Another explanation has to do with the prorepublican stand of 
MRF supporters, which places them far from the king. 

The plot shows President Zhelev in an uncomfortable position. He competes 
with the still unknown candidate of the UDF for the anticommunist vote, but his 
placement along axis 2 puts him in a less favorable position to attract voters among 
the disaffected. This is in line with political logic and was confirmed by the primary. 
Widespread dissatisfaction with the conditions of life turned against the president in 
office, even if he had little influence in producing these conditions. The June primary 
was won by Stoyanov under the slogan of a fresh anticommunist start. 
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Zhelev, on the other hand, could enjoy the support of the MRF, which was 
important in the 1992 presidential election. Other opposition candidates would have 
to pay a higher political price for the same votes. 

The quality of representation can be further raised to 93% of the total inertia 
by taking into consideration the third principal axis. This carries 13.9% of the total 
inertia and is defined primarily by one row and one column point: the Bulgarian 
Business Block and its leader, Georges Gantcheff. They are also the only points not 
sufficiently well represented on the two-dimensional plot. Because CA solutions are 
"nested," we may stay with the observations made so far while keeping in mind that 
the BBB and Gantcheff "stick out" of the plane of projection. This may be regarded 
as a statistical illustration of populism as a challenge to the established ways of doing 
and discussing politics. 

Greenacre (1993, pp. 111-118) describes a way to cluster the row and the column 
categories in a cross-tabulation. The idea is to merge successively the two rows (or 
columns) that would lead to the smallest decrease in the chi-squared statistic (hence, 
preserve most of the association). The height of each merge in the dendrogram is 
determined by the difference in the chi-squared statistic before and after the merge. 

Figure 2 shows the clustering of the columns of Table 1 (or rather, of the counts 
from which Table 1 has been calculated). The dendrogram has been enhanced by 
making the branches thick in proportion to the number of people represented. 

The clustering translates the triangular structure in Figure 1 into a tree with 
three well-defined branches: the BSP and the BBB; the newly formed united oppo- 
sition block, consisting of the UDF, the PU, and the MRF; and those undecided or 
disaffected. 

Most elections are decided by the last of these three categories. Rather alarmingly 
for the opposition, this merges with the BSP in Figure 2. Of course, the process of 
clustering columns is different from the process in which people decide how to vote. 
The greater the distance from the most recent merge, the less likely are the persons 
in a branch to vote in the same way. Hence, the dendrogram does not necessarily 
say that the opposition parties must do badly in the presidential election: it would be 
safer to predict a highly contested election in which every vote will count. 

00F ~. 
PU 

MRF 

Other party -~ 
Did not vote 

BSP ~ i  

BBB 

Figure 2: A clustering of the columns in Table 1. 
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5 October 1996 

When the BSP regained executive power in 1994, it had won at least an extra 10% over 
its "normal" electoral support. During its first year in office, the socialist government 
managed to sustain modest economic growth. Evidently, this was achieved largely 
by pouring money into inefficient businesses, which eventually led to a collapse in 
the financial system and other mishaps too long to be discussed here. Our February 
data may still reflect relative satisfaction with the early record of the government; 
however, by June popular discontent was strong enough to turn the tables on Zhelev, 
a long-proven anticommunist who happened to be in office and was hence seen as 
belonging to the establishment. 

In October, even the notoriously united BSP was shaken by strife and mutual 
suspicions as one of its top men, former prime minister Andrei Lukanov, was assas- 
sinated weeks before the presidential election. There seems to have been bad blood 
between Lukanov and other prominent figures in the BSP over financial interests, and 
the many nervous reactions to the killing exposed the magnitude of conflict within 
the party. 

Table 2 shows the cross-tabulation of intended voting in the presidential election 
against self-reported voting in the general election of 1994. It is very similar to 
Table 1, except that it comes from a fully developed electoral situationmthe data 
were collected a week before the election. 

One row and one column have been dropped from Table 2. These correspond 
to the Bulgarian Communist Party, the BCP, which won about 1% of the vote in 
the 1994 general election, and its candidate, Vera Ilieva, who obtained 0.8% in the 
presidential election. The combination of low masses and perfect association would 
have made for a CA map with virtually two points: the BCP as an extreme outlier, 
and everyone else. 

Table 2: Cross-tabulation of the questions "For which candidate do you intend to 
vote in the forthcoming presidential election?" and "For which party did you vote in 
the 1994 general election?" Frequencies are tabluated as column percentages. 

Did not 
Candidate BSP UDF PU MRF BBB Other vote Total 

Stoyanov 9 69 73 51 17 11 20 28 
Marazov 45 2 5 2 4 2 5 17 
Gantcheff 15 9 2 10 46 17 13 14 
Tomov 1 1 2 1 1 8 1 2 
Other 2 1 2 1 3 7 2 2 
Will not vote 28 18 16 35 29 55 59 37 
Total 100 100 100 100 100 100 100 100 
n = 386 216 57 47 41 139 304 1190 
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Figure 3: CA of the data in Table 2: parties in principal coordinates, candidates in 
standard coordinates. 

The CA map of Table 2-nOr rather, of the counts from which it has been 
producedmis shown in Figure 3. The plot is broadly similar to Figure 1. The tri- 
angular shape is even more pronounced; this time, it shows Marazov (and the BSP) 
opposed to everyone else. 

Again, axis 1 is defined by the polarity between BSP and the united opposition. 
This looks almost identical to axis 1 in the February plot--even the share of explained 
inertia is the same. 

Axis 2 opposes the "protest vote" to those voting for the candidates of the 
two largest parties. The vertex is taken by Alexander Tomov, largely because of the 
relatively low mass. The important thing to note here is the general similarity between 
voting for Gantcheff, voting for Tomov or some other minor candidate, and not voting 
at all. These are all symptoms of dissatisfaction with the political establishmentmthe 
"blue-red mist," to quote from Gantcheff's favorite political imagery. 

In CA of tables matching parties with politicians, MRF invariably produces a 
separate axis whenever its leader figures among the politicians. This is because of the 
ethnic factor, which is distinct from all other sources of political opposition. Traces 
of the same effect were evident in the CA from February, even if Zhelev is not an 
MRF man but just popular among MRF supporters. Now that the MRF does not have 
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Other party 

Figure 4: A clustering of the columns in Table 2. 

a candidate of choice, it plots in the middle, which allows a clearer interpretation of 
axis 2. 

Clustering of the data in Table 2 leads to Figure 4. The tree has three branches, 
which correspond to the triangular shape on the CA map but are different from 
the three branches observed in February. The three parties making up the united 
oppositionmUDF, PU, and MRFmnow merge much earlier: back in February, they 
formed a cluster more heterogeneous than the one produced by the merge of "Other 
party" with "Did not vote." The BBB, "Other party," and "Did not vote" also form 
a relatively homogeneous cluster with respect to their intended votingmthe "vote 
of protest." Last but not least, the BSP now forms a cluster on its own, which is 
indicative of its isolation in current public opinion. 

The latter could be demonstrated with regression analyses of election data (not 
shown here). According to these, Marazov was backed in the first round by about 
two thirds of those who voted for the BSP in 1994 and by virtually nobody else. 
Marazov's votes in the runoff could be explained statistically with his votes in the 
first round, about 35% of the votes cast for Gantcheff, and the votes for Vera Ilieva, 
the candidate put forward by the BCP. 

6 Conclus ion 

Data visualization techniques have proved to be useful tools in following and ana- 
lyzing Bulgarian surveys in 1996. The resulting displays were easier to understand 
and present to others than were the underlying cross-tabulations and provided many 
valuable insights into the general structure and some finer aspects of the data. 

In the context of earlier work (Partchev, 1995), the plots presented here are 
quite typical and reveal some of the basic tensions in Bulgarian society. Comparing 
plots from early and late stages of the campaign, it is possible to identify stable 
and changing elements. Of the former, the most important one is the extreme polarity 
between the BSP and the larger opposition parties. Of the latter, it is worth mentioning 
the consolidation of the opposition, the crystallization of a vote of protest, and the 
deepening isolation of the BSP. 



Chapter 10 

Visualization of Agenda 
Building Processes by 
Correspondence Analysis 
Bernd Martens and Jiirg Kastl 

1 I n t r o d u c t i o n  

Public "themes" have become an important topic in the social sciences and espe- 
cially in political sociology in the past decades. In the context of media research on 
agenda setting, important questions of research are the effects of media on political 
opinions, the development of themes in the public, the strategies of political actors 
when launching thematic issues, and the selection of different thematic topics by 
actors, the so-called framing of situations. By such framing processes, situations, 
events, and facts acquire a structure that is recognized in society. This framing also 
has consequences for the set of themes for which decisions of the political system 
are expected. Furthermore, certain themes become relevant or irrelevant and public 
debates can be described as struggles about the importance of issues. In recent soci- 
ological concepts of the public, the development and institutionalization of themes 
possess an important status. According to Lang and Lang (1981), we use the term 
"agenda building" for such processes of launching and stressing issues during which 
a hierarchy of relevant themes in the public evolves. 

Prominent examples of such launching and rejection of thematic issues are 
election campaigns. The decision for and the maintenance of certain themes are 
apparently crucial points during election campaigns, at least to the way political 
actors see themselves. It is stressed by political managers that such themes should be 
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"repeated continuously, but in an intelligent manner" (Bergsdorf, cited by Mathes and 
Freisens, 1990, p. 552; Radunski, 1980). These opinions are supported by scientific 
conjectures about a so-called priming effect according to which thematic priorities of 
political parties and candidates primarily influence the decisions during the elections. 
Budge and Farlie (1983, p. 84) even assert that the results of elections can be predicted 
by the structure of themes during election campaigns. 

Public themes are extremely short-lived and certain trends of such issues can 
be distinguished (Luhmann, 1983). Therefore it can be supposed that the last weeks 
before an election are essential in order to exploit the priming effect. For example, 
Iyengar and Kinder (1987) emphasize that undecided voters can be influenced by 
short-term launching of controversial topics. The last weeks before an election should 
thus be the most important time period of the whole campaign. During this time 
significant activities of all relevant actors should be noticeable, in order to launch 
their specific themes. 

In this context the year 1994 is an interesting case that can be used to prove 
the conjectures about the timing of thematic activities during election campaigns, 
because in 1994 an unusually high number of elections on all political levels occurred 
in Germany. The whole year and the sequence of elections were referred to in 
German newspapers as the "Superwahljahr" ("super election year"). It included nine 
communal elections, eight state elections, and the European parliament election and 
concluded with the national election in October 1994 [analyses and reports of the 
super election year are given by Buerklin and Roth (1994) as well as Falter (1995)]. 

Owing to the large number of elections, the interesting questions are: Did the 
intensity of thematic activities by political actors increase during the super election 
year in Germany? And, if that happened, when did such intensified activities start? 

2 Data 

This contribution is part of a research project dealing with the media coverage of 
the super election year. The main goal of this work was to give broad and feasible 
insight into the thematic development of the election campaigns. Fortunately, we 
were able to use a simple but presumably very meaningful indicator of such thematic 
trends during the time frame in question. The broadcasting station "Stiddeutscher 
Rundfunk" in Stuttgart (Germany) allowed us access to its database "Venus." This 
database offers exhaustive information about different thematic issues, because all 
news items of important national and international news agencies are stored in it. 
Items can be retrieved via key words that occur in the texts. In our case, we chose all 
news items in which the words "Wahlkampfthem/a/en" (themes or issues in election 
campaigns) occurred. 

We started from the assumption that the launching of themes would probably 
be more visible in items of news agencies than in the contents of other media (for 
example, articles of newspapers). This view is partially supported by the fact that 
most news items are related to concrete events that can be concisely described by 



2. Data 125 

40 

e- 

~ 2o 

E 

z o 

Months of the "super election year" 

Figure 1: Distribution of the news items referring to issues in election campaigns 
stored in the database Venus, aggregated by months. The letters a-d refer to the 
points in time when elections took place. The numbers of elections were (a) one 
communal and one state election; (b) seven communal, one state, and one election to 
the European parliament; (c) three state elections; and (d) one communal, three state, 
and one national election. 

key words. The texts cover the time span between June 1993 and October 1994. The 
retrieval yielded almost 600 news items (Figure 1). 

Approximately one third of all news items are commentaries written by journal- 
ists of different newspapers. The collection of the commentaries is a special service 
of the news agencies. Journalists can be seen as actors on their own part in election 
campaigns, because they launch, take up, and stress issues by themselves. Thus, 
we regard the commentaries as indicators for the activities of media itself. The fre- 
quencies in these texts produced by journalists can be taken as a measure of the 
importance of a certain thematic issue. Because the database provides an exhaustive 
sample of available news agencies in Germany, it can be assumed that the collection 
of commentaries and the other news items are representative and valid for the issues 
in question and the specific time period. The remaining two thirds of the news items 
are related to statements on events, press conferences, interviews, or declarations. 

In comparison with other sociological research about thematic developments and 
agenda setting processes, our empirical material is special in two respects: 

• It is not confined to the last weeks before the national election. Instead, it includes 
a time span of 17 months of different election campaigns in Germany (the whole 
super election year and the months before it). 
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• The empirical material allows a "backstage glimpse" of media coverage, because 
we are dealing with the material that was used by newspaper and broadcast 
journalists. This material provides an overview of the thematic issues primarily 
before the selection processes of journalists take place. Therefore, we assume that 
it will be possible to detect thematic strategies used to launch or to reject thematic 
issues in the public debate by actors in the public and political sectors as well as 
those from the media. 

In order to make the material feasible for statistical analyses, we followed classi- 
cal content analytic approaches (Schrott and Lanoue, 1994), categorizing the textual 
data using a coding scheme. In the following, we will merely use three nominal 
variables of the whole scheme (thematic topics, assessments of the topics by the actor 
in question, and the type of actor) with altogether 20 categories (shown below). The 
categories comprise 12 thematic issues, 3 assessments given by the actors mentioned 
in the texts, and 5 types of actors. The abbreviations given here are used in Figures 2 
and 3: 

Thematic topics of the news items in question 

pds Party of Democratic Socialism, its role in the political system of the Federal 
Republic of Germany (FRG) 

asyl Right of asylum and foreigners in the FRG 

unem Unemployment 

insu Social insurance for nursing old and disabled people 

eco Economic conditions and development concerning the FRG 

secu Internal national security of the FRG 

abort Legalization of abortion 

social Social topics (for example, social welfare and conditions) 

scandals Political scandals (for example, corruption) 

taxes Taxes and economic situation of the state 

unific Problems of the German unification process 

other Other topics (for example, presidential election, armed forces) 

Assessments of topics by actors 

POS The topic should become a theme during the election campaigns. 

NEG The topic should not become a theme in the election campaigns. 

NEU It will not matter if the topic becomes or does not become a theme during the 
campaigns. 

Type of actor that occurs in the news 

PARTY Members of a political party 

MEDIA Journalists 
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GOVERNMENT Members of government 

PARLIAMENT Members of parliament 

NGO Nongovernmental agencies 

All variables refer to the main or first topic of the news item. The resulting data set 
has 596 cases. 

With respect to agenda building processes, the dynamic developments of thematic 
issues are of special interest. The topics of the news items were coded by key 
words that occurred literally in the basic texts. This coding procedure seems to be 
advantageous for our purposes, because most news items can be well summarized by 
these concrete terms. The thematic categories that constitute the basis of the following 
analyses are confined to the first or the main topics of the news items. However, second 
or third themes that were not taken into consideration in the following analyses 
appeared in only 15% of the cases. 

3 Results 

The distribution of the news items over time is very uneven, as Figure 1 reveals. Four 
time periods can be distinguished: 

1. In the months before the super election year (June to October 1993), 104 news 
items with the relevant key words occurred. 

2. A first boom in media activities took place between November 1993 and February 
1994. The number of news items rose to 249. 

3. A period of stagnancy was indicated by rather small frequencies of issues related 
to election campaigns (March to June 1994; the number of cases is 103). 

4. A second, only temporary peak of news items' occurrences can be detected during 
the summer, which was followed by a decline in launching themes that continued 
until the national election in October 1994 (the number of news items in the last 
four months is 141). 

The main activities occurred at the end of the year 1993 and in the beginning 
of 1994. In the light of the conjectures about the timing of thematic activities during 
election campaigns mentioned earlier, this distribution of news items is unexpected, 
because it does not show an increase in thematic activities. 

In contrast to other theoretical statements about agenda building and agenda 
setting in election campaigns, our empirical material indicates that political actors 
often avoid launching a theme positively but try instead to prevent a topic from 
becoming an issue in the campaigns. In almost 40% of all cases the assessment by the 
political actors mentioned in the news item is negative. The issue in question should 
not become an issue in election campaigns. Only in 32% of the cases is the reference 
to the theme positive in the sense that the actor is in favor of actively supporting the 
launching of a thematic issue. In 29% of the cases no explicit judgment about the 
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theme as a topic in election campaigns is given. In these cases, the statement "x is an 
election theme during a campaign" is given without further assessment of it. 

In light of these results, the assumption that political actors are keen on launching 
themes in a positive way seems to be too simple. It is obviously more realistic, at least 
in the case of the German super election year, that a process of selection of relevant 
themes took place during the run-ups to the elections. This impression is supported 
by the analyses described in the following, in which the thematic issues and the four 
periods of the super election year are simultaneously taken into consideration. 

Figure 2 shows the plot of a correspondence analysis (CA) of the thematic issues 
by the four time periods. The first axis is determined primarily by the contrast between 
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Figure 2: Correspondence analysis of the thematic issues by the four time periods 
(indicated by numbers), showing the asymmetric map. 
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periods 2 and 4. This axis represents 65% of the total inertia and two thirds of the axis' 
dispersion can be explained by period 4. The squared correlations of the two time 
categories with the first principal axis are 0.97 and 0.74, respectively. This contrast 
between earlier and later periods is associated with themes such as "asylum" (the 
squared correlation is 0.64), "social insurance" (0.81), "political scandals" (0.97), and 
"pds" (0.95). The theme "pds" makes a large contribution to the geometric orientation 
of the axis, and the last period is strongly associated with the "pds" theme. 

The Party of Democratic Socialism (PDS) is the successor organization of the 
former communist party in the German Democratic Republic. Because of this history, 
the political assessment of the PDS is rather controversial in Germany and the support 
by voters differs extremely between East and West Germany. Also, in the beginning 
of the year 1994 the PDS participated in both East and West German state elections. 
However, the PDS emerged as a leading theme only at the end of the yearmFalter 
(1995, p. 28) even suggests that this topic was decisive for the national election. 

The second axis of the correspondence analysis represents 22% of the total 
inertia. It is essentially related to the first period (with a contribution of 47% and a 
squared correlation of 0.63) and the themes "abortion" and "internal national security" 
(squared correlations of 0.78 and 0.53, respectively). 

The main result is that the last period before the national election was deter- 
mined chiefly by the theme "pds." This was a rather formal issue, because it focused 
on election strategies and assumed intentions of the Social Democratic Party (SPD). 
It essentially dealt with the fear raised and stressed by the conservative party, CDU, 
that the SPD could build coalitions or would cooperate with the Party of Democratic 
Socialism. The news items did not treat the chances of the PDS to be successful in 
elections (which were indeed partially very small), but the supposed willingness of 
other parties to cooperate with it was thematized. It was not a controversy about dif- 
ferent solutions of political problems. Themes that are connected with such problems 
could be detected in the beginning of the super election year. However, none of these 
themes survived during the course of the year 1994. Most of these early themes that 
are located at the fight side of the first principal axis in Figure 2 are polarizing and 
politically controversial. It could be assumed that these themes would be the main 
topics of the following election campaigns during the course of the yearmbut this 
assumption is shown to be false by the data. 

In a more detailed dynamic analysis, the connections between the thematic 
issues, the judgments given by the political actors, the actors themselves, and the 
periods of time were simultaneously taken into account. Owing to small frequencies 
of some categories, the data set comprises only seven thematic issues (pds, asylum, 
unemployment, insurance, economy, security, abortion) and 407 cases. The thematic 
issues, separated for each time period, form the rows of the input table, whereas 
assessment and actors form the columns of the table to be analyzed. 

For example, the following four rows of the input matrix show the distributions 
of the thematic issue "unemployment" differentiated between the assessment by the 
actor, the type of actor, and the four periods: 
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GOVERN- PARLIA- 
Label POS NEG NEU PARTY MEDIA MENT MENT NGO 

unem_l 0 5 1 1 1 4 0 0 
unem_2 7 21 1 20 5 1 1 0 
unem_3 2 3 0 3 2 0 0 0 
unem_4 5 16 0 16 4 1 0 0 

In order to give an impression about the development of themes in time, rows 
such as those just shown were concatenated for the seven topics. Thematic issues that 
did not occur during a certain period were excluded from the analysis. The resulting 
table with 26 rows and 8 columns was the input matrix of the next CA (Figure 3). 
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Figure 3: Correspondence analysis of the thematic developments during the time 
frame of the super election year. The numbers refer to the time periods. Abbreviations 
in capital letters refer to the categories of the column variables. Again, an asymmetric 
scaling is used. 
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The first two principal axes represent 71% of the total inertia. The first axis 
of the map is determined mainly by (1), the difference between governmental and 
political party actors who were mostly members of the SPD, the largest party in 
opposition to the federal government, and (2), by the difference between positive and 
negative assessments given by the respective actors. The inertia of the axis explained 
by the categories amounts to "GOVERNMENT" 0.21, "NEG" 0.34, "PARTY" 0.13, 
"POS" 0.27. Almost all the dispersion along the axis is therefore attributable to the 
dichotomy between these categories. 

The vertical axis is highly correlated with the contrasting points "GOVERN- 
MENT" and "MEDIA" (squared correlations 0.40 and 0.73 and contributions to the 
inertia of 0.35 and 0.21, respectively). The category "neutral assessment" of the 
election themes also correlates with this axis (the squared correlation is 0.47 with 
an explained inertia of 18%). Other actors---especially the categories "PARLIA- 
MENT" and "NGO"mare represented poorly in the map (quality of 0.14 and 0.26, 
respectively). 

The map in Figure 3 enables one to visualize the development of themes over 
the course of time. (A few paradigmatic developments are illustrated by arrows.) 

1. Governmental actors were relatively successful in rejecting issues that were con- 
troversial topics in public debates (for example, the "abortion" and the "asylum" 
topics), which should not become themes during the election campaigns according 
to the opinion of political actors. 

2. On the other hand, actors who appeared in their function as members of political 
parties were rather busy in launching the theme "unemployment," but this was not 
recognized by the media. If the association between this topic and the political 
parties is also taken into account, it becomes clear that the SPD tried to push 
this theme, which was evidently not recognized by the media. Nearly 60% of the 
unemployment topics refer to the SPD. The thematic restraint of the journalists 
seems to be a serious drawback that could not be compensated by the SPD. 

3. The media itself stressed the "pds" issue, which became a prominent topic of 
the usual media coverage during the last weeks before the national election in 
October 1994. One third of the frequencies for this theme are attributable to 
the conservative party CDU, whereas two thirds are essentially associated with 
journalists. For this reason, it seems that the SPD was not able to build its own 
agenda but was forced to deal with topics that are not favorable to the party. 

4. One general empirical pattern of the agenda building processes during the super 
election year is a remarkable dethematization. The "theme cycle" of the political 
debate about the "social insurance" is an example of this kind of pattern. It was an 
actual political topic during the first period. In later periods of the year it seems 
that it became only an issue for the media. However, in the last time period the 
topic totally vanished. 

5. In general, polarizing and highly controversial themes (such as the questions 
of abortion, asylum for foreigners, and internal national security) have a strong 
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affinity to negative assessments given by political actors. These topics, which 
should obviously not become themes during election campaigns, were rather 
successfully avoided by the political actors. 

4 Conclus ions  

Correspondence analysis was used to illustrate the development of thematic issues 
during election campaigns. The possibilities for visualizing the data provide good 
opportunities for displaying the evolution of themes over time. The distribution of the 
news items depicts a sequence of efforts to launch issues and thematic withdrawals 
(dethematization) over the course of time. Dethematization does not verify common 
models of agenda building and agenda setting processes during election campaigns. 
These models are based on the notion of increasing activities. Our exploratory anal- 
yses suggest that, at least according to the empirical example of the German super 
election year, a sequence of agenda building processes and more often an elimination 
of themes by political actors can be detected. Political struggles over thematic issues 
took place months before the national election, in the beginning of the year 1994. 
During this early period highly controversial themes appeared, but the political ac- 
tors were very busy emphasizing that these issues should not become themes during 
the later election campaigns. At the end of the year, whether the SPD and the PDS 
would cooperate after the elections emerged as a theme. This theme is to a certain 
extent self-referential, because no political problems are dealt with, but a hypothetical 
outcome of the election is used in order to influence the voting. 

One important finding is the active role of the media in these processes. The 
analyses reveal that the agenda building efforts of the SPD were not adopted by the 
media, and therefore it can be reasoned that this agenda building was not successful. 
On the other hand, the "pds" topic became a theme pushed by the media themselves 
in the last time period before the national election, and political actors were forced 
to deal with it. 

Finally, our data show only short sequences of thematic polarization. Instead, 
attempts to reject certain topics were partly successful and pronounced time periods of 
dethematization can be seen. A thematic polarization was not the main strategy during 
the German super election year. On the contrary, the data reveal processes of rejecting 
certain themes as the essential strategy of political actors. It is an open question how 
these findings can be explained. One could imagine that possible explanations may be 
offered by the specific historical situation in Germany after unification, by a special 
German political culture, by structural developments of the political system, or by a 
more adequate sociological model of the functions that themes have during election 
campaigns. 



Chapter 11 

Visualizations of 
Textual Data 

Ludovic Lebart 

1 Textual Data and Meta-information 

Our aim here is to show how correspondence analysis (CA) can help to visualize the 
profiles of a series of texts, whether they be literary texts, documents, or responses 
to open questions grouped into artificial texts (groupings based on age categories, 
profession, educational level, or any other relevant criterion). Which texts are most 
similar with respect to vocabulary and frequency of use of words? Which words are 
characteristic of each text, through either their presence or absence? 

The reader may recognize these questions as the types of questions that may 
be answered with the CA of a lexical table (a table that cross-tabulates words and 
texts; see B6cue Bertaut, Chapter 12). In the case of responses to open questions in 
surveys, the approach we present here assumes that the responses have already been 
grouped according to socioeconomic variables, but we shall also briefly discuss other 
approaches. 

Meta-information or meta-data is particularly abundant in the case of textual 
data. Briefly, meta-information is the information concerning a data matrix that does 
not appear in the matrix itself. This meta-information, which is relatively easy to 
formalize, is used routinely to check and clean files or to carry out consistency 
tests in processing survey data [see Hand (1992) and, in the context of information 
retrieval, Froeschl (1992)]. Attempts to formalize meta-information have been carried 
out by Diday (1992) in the framework of symbolic (as opposed to numeric) data 
analysis. The development of exploratory analyses and work done on databases have 
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Figure 1: Textual data and external information. 

accentuated interest in the concept of meta-information. In the case of textual data, 
every word is allocated several rows or several pages in an encyclopedic dictionary. 
Words belong to semantic networks that dictionaries of synonyms and partially 
automated morphosyntactic analyzers attempt to take into account. The rules of 
grammar obviously constitute basic meta-information (see Figure 1). The main issue 
is whether these different levels of meta-information are relevant to the problem under 
consideration. 

On the other hand, in some information retrieval applications, for example, it 
is possible to work with key words that are treated as classical presence-absence 
qualitative variables and thus to construct tables that are wholly analogous to those 
encountered in other statistical applications. Then the data table obtained is no longer 
a text but a bundle of words, without order or syntax. 

2 About Responses to Open Questions 

Sociologists such as Lazarsfeld (1944) suggested the use of open questions in the 
preparatory phases of a study; their principal use is in developing a battery of re- 
sponse items for a closed question. There are three typical situations in which open 
questions must be used: to shorten interview time, to gather spontaneous information, 
and to probe and understand the response to a closed-end question (for example, the 
follow-up question, why?). The importance of the latter has been advocated by many 
sociologists who specialize in surveys, such as Schuman (1966), who alluded to in- 
ternational surveys in which problems of comparability and wording comprehension 
are acutely present. In international studies, it is important to know whether people 
interviewed in different countries understand the questions in the same way. In fact, 
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Figure 2: Status of frequency in the case of open-ended questions. 

one could raise the same issue with respect to regional, generational, or sociocultural 
differences. 

Responses to open questions, or free responses, are very specific elements of 
information. Observed lexical frequencies are artificial for the most part, because 
the same question is asked of hundreds or thousands of people. The juxtaposition 
of the responses results in a redundant text by construction where stereotypes are 
not uncommon. However, open questions become an essential part of questionnaires 
when the scope of research goes beyond a simple tally and when a complex and new 
topic is being explored. 

A thousand responses to the question "Did you use your car yesterday?" consti- 
tute a text in which the words yes and no are predominant and the relative frequencies 
of these words have a simple interpretation that is familiar to survey specialists. 
Responses to an ancillary question "Why?" asked after a closed question have an 
intermediate status. Because they constitute 1000 identical stimuli, these responses 
can be stereotypical, or they can include original and unexpected contents and ex- 
pressions. Even if expected word differences are taken into account, simple counts 
are notoriously inadequate. 

On the other hand, when responses are grouped within categories (for example, 
age, gender, profession), comparisons of the mean lexical profiles of these cate- 
gories can be productive. The most common approach consists of "closing" the open 
question a posteriori. This practice is called postcoding, a time-consuming but often 
irreplaceable technique. This technique, unfortunately, contributes to maintaining the 
dangerous illusion that closed questions asked during the interview are not different 
from questions that have been closed for coding purposes. 

2.1 Open Questions Versus Closed Questions 

Open and closed questions are not really comparable (see Schuman and Presser, 
1981). An example of these two types leading to big differences is found in a survey 
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on living conditions and aspirations of the French (Lebart, 1987) in which people 
were asked to give their comments on, "What types of people does the government 
spend the most money on?" The question was asked in open form in 1983, 1984, and 
1987 and in closed form in 1985 and 1986 to a sample of size 2000 each year. The 
closed question was constructed on the basis of the main items given in the preceding 
years. The response item migrant workers obtained 4% in 1983 and 5% in 1984, 
when the question was open; 28% in 1985 and 30% in 1986, when the question was 
closed; and then 8% in 1987, when the survey reverted to an open question. The fact 
that the items were specified most probably had an effect on the range of responses 
considered "acceptable." Even though there was an increase in percentages of those 
choosing this item between 1983 and 1987 (4%, 5%, then 8%), the 2 years in which 
the question was closed gave percentages (28% and 30% in 1985 and 1986) whose 
order of magnitude is by no means comparable to those of the corresponding open 
questions. The closed form is, however, more valid if a recollection is involved in 
the question. It is well known that lists of items can play a positive role in such a 
case, according to an experiment performed by Belson and Duncan (1962), in which 
subjects identified newspapers read in the course of preceding days. 

2.2 Grouping Responses 

As free responses are entered into the computer in their original form, they can be 
matched with interviewees' demographic characteristics as well as their responses to 
closed questions. Then they can undergo data management procedures that are both 
useful and elementary, such as categorizations and groupings, without being altered. 

For example, responses can be grouped by socioprofessional categories. Thus, 
responses given by farmers, housewives, workers, and executives can be examined 
separately. There might be categories or combinations of categories that are relevant 
with respect to each open question. By grouping responses within categories, "artifi- 
cial speeches" are obtained that are all the more meaningful when the categories are 
carefully chosen. Reading and interpretation are made easier because repetitions and 
concentrations of certain issues appear within each category. 

However, this rearrangement of raw information can be carried out in many 
different ways. The questions are how to group responses in a relevant manner and 
then how to facilitate interpreting the groupings thus generated. 

First, one can use the criteria that are thought to be the most discriminating 
through prior knowledge of the theme being analyzed, with or without the use of 
cross-tabulations. If, for example, the questions are related to the evolution of the 
family, and if an age effect combined with a sociocultural effect is suspected, a 
variable combining age and educational levels can be used. 

Second, a partition can be sought that is as universal as possible, within the limi- 
tations of sample size; this is the principle behind working demographics. The major 
characteristics that are judged to be relevant (for example, age, gender, educational 
level, region) are brought together through an automatic clustering technique into a 
single partition. This amounts to replacing several thousand individuals with about 
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30 or 50 groups that are as homogeneous as possible with respect to the foregoing 
criteria. 

Third, a direct typology of responses can be carried out (without preliminary 
grouping) on the basis of their lexical profiles. Then categories that have the highest 
association with this typology can be selected before proceeding to groupings (see 
Lebart and Salem, 1994). To satisfy these needs, the textual material has to be 
prepared and segmented in such a way as to define new elements that are likely to be 
recognized and treated by computer software. 

3 Choos ing  Units  in a Text 

Different counts have different degrees of relevance in each particular field of re- 
search. They also have different advantages as far as practical implementation is 
concerned. For instance, a researcher exploring a set of articles assembled from a 
database in the field of physics might require that the noun particle and its plural 
particles be grouped into the same unit, in order to be able to query all of the texts 
at once on the presence or absence of one or the other word. However, in the field of 
political text analysis, researchers have observed that singular and plural forms of a 
noun are often related to different, sometimes opposite, concepts (for example, the 
opposition in recent texts of defending freedom and defending freedoms, referring to 
distinct political currents). In the latter case, it could often be preferable to code the 
two types of elements separately and to include both in the analysis. 

3.1 Analyses Based on Words 

A particularly simple way to define textual units in a corpus of texts is to analyze 
words (or types). This approach can be used for various purposes depending on the 
objectives of the analysis: verification of data entry, inspection of vocabulary, or 
creation of a database for subsequent statistical comparisons. 

To obtain an automatic segmentation of a text into occurrences of words, a subset 
of characters must be specified as separators. A series of characters whose bounds 
at both ends are separators is an occurrence (or a token). Two identical series of 
characters within separators constitute two occurrences (tokens) of the same word 
(type). The entire set of words (types) in a text is its vocabulary. 

3.2 Lemmatized Analyses 

In the lexicometric approach, the words resulting from automatic segmentation may 
be lemmatized. This means that identification rules must be established in order to 
group together words arising from the different inflections of one lemma (usual entry 
in a dictionary). The main steps in lemmatizing the vocabulary of a text written in 
English are to put verb forms into the infinitive, to put nouns into the singular, and 
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to remove elisions. Although these steps are relatively easy in principle, the actual 
lemmatization of the vocabulary of a corpus involves some unavoidable problems 
that may be difficult to resolve. 

3.3 Homography, Disambiguation 

A systematic determination of the lemma to which each word belongs in a text 
often requires prior disambiguation, involving a morphosyntactic analysis and often 
a pragmatic analysis (see Kelly and Stone, 1975; Gale et al., 1992; Charniak, 1993; 
Weischedel et al., 1993). Some ambiguities might be the result of two words that 
happen to be homographs being inflections of clearly different lemmas (for example, 
can could be a verb and a noun). In other cases several derivations may exist from the 
same etymological source (the different meanings of the word state, for example). 
In some cases, ambiguities concerning the syntactic function of a word have to be 
removed, requiring a grammatical analysis. Some ambiguities of a semantic nature 
can be removed through simple inspection of the immediate context. Others require 
examining several paragraphs or even the text in its entirety. Sometimes ambiguities 
can exist between several meanings of a word. 

4 Numeric Coding of Text 

Computer-based processing of textual data is greatly simplified by giving a numeric 
code to each word to be used during calculations. This code is associated with each 
occurrence of the word. Codes are stored in a dictionary of words that is unique 
for each application. We illustrate our approach using the following open question, 
which was asked in a multinational survey conducted in seven countries (Japan, 
United States, United Kingdom, Germany, France, Italy, and Netherlands) in the late 
1980s (for more details, see Hayashi et al., 1992): "What is the single most important 
thing in life for you?" It was followed by the probe "What other things are very 
important to you?" 

Our example is limited to the American sample of size 1563. Some aspects of 
this multinational survey concerning general social attitudes are described in Sasaki 
and Suzuki (1989). 

Examples of answers to the first question were: 

1. Family, being together as a family 

2. Mother, money, peace of mind, peace in the world 

4.1 Tagged Corpora 

It is possible to obtain an automatic tagging of the words in such a text of responses. 
Some taggers provide an indication of the lemma with which each word can be 
associated as well as its grammatical category. In most cases the information furnished 



4. Numeric Coding of Text 139 

by categorizers must be subjected to careful checking before being used, because the 
process of automatic categorization may generate some errors. 

The main grammatical codes used in this categorization are NN, noun singular; 
NNS, noun plural; NP, proper noun; DT, determiner; VB, verb, base form; VBD, verb, 
past tense; VBG, verb, gerund or present part; JJ, adjective; PRP, personal pronoun; 
RB, adverb; and IN, preposition or subordinating conjunction. 

Examples of tagged responses, showing the grammatical category code for each 
word, are as follows: 

1. Family/NN being/VBG together/RB as/IN a/DT family/NN 

2. Mother/NN, money/NN, peace/NN of/IN mind/NN, peace/NN in/IN the/DT 
world/NN 

Note that such lists of tagged responses provide the user with new categorical 
variables related to the same individuals. These variables can play alternately the 
roles of active and supplementary variables. They allow one to obtain a syntactic (or 
grammatical) point of view over the set of texts (see Salem, 1995). 

4.2 Repeated Segments 

Even after setting aside words with a purely grammatical role, the meaning of words 
is linked to how they appear in compound words or in phrases and expressions that 
can either inflect or completely change their meanings. For example, expressions 
such as social security and living standard have a meaning of their own that cannot 
be construed from the meaning of the words of which they are composed. It is thus 
useful to count larger units consisting of several words that could be analyzed in the 
same ways as words. These units are called repeated segments (Salem, 1984, 1987). 
Like the syntactic categories mentioned previously, these units can play the role of 
supplementary variables in the visualizations involving words. Such projection of 
segments as supplementary elements enables the reader to grasp the most frequent 
contexts of certain words. 

4.3 Basic Lexical Tables 

We saw that responses can be coded numerically in a way that is completely "trans- 
parent" to the user. The result of this numerical coding can take two different formats, 
coded in two tables R and T. 

Table R has as many rows as there are respondents, say n. There can be missing 
responses, but it is convenient to reserve a row for each respondent to ensure easy 
merging with responses to closed questions given by the same individuals. The 
number of columns of R is equal to the length (number of tokens) of the longest 
response (i.e., the number of occurrences in this response). For individual i, row i of 
table R contains the addresses of the words that constitute his or her response, while 
respecting the order and the possible repetitions of these words. These addresses refer 
in the vocabulary that is inherent in the response. Table R thus makes it possible to 
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reconstitute the original responses integrally. In practice, table R is not rectangular, 
because each row is of variable length. The integers of which table R is composed 
cannot be bigger than the size of the vocabulary, say V. 

Table T has the same number of rows as table R but it has as many columns as 
the number of words used by all of the individuals. The cell defined by row i and 
column j of T contains the number of times word j is used by individual i in his or 
her response. This table of frequencies is called a lexical table. Table T can easily be 
derived from table R, but the converse is not true: information related to the order 
of the words in each response is lost in table T. Specific algorithms using R instead 
of the large sparse matrix T can lead to enormous computational savings (Lebart, 
1982a). 

4.4 Aggregated Lexical Tables 

Isolated responses are often too sparse to be the object of direct statistical treatment, 
and then it is necessary to work on grouped responses. Let us designate by Zq the 
indicator matrix with n rows and Jq columns that describes the responses of the 
n individuals to closed question q with Jq possible response categories, where the 
responses are mutually exclusive. In other words, each row of Zq has only one 1 and 
(Jq - 1) 0s. Table Cq, obtained through the matrix product Cq = TTZq, is a table 
with V rows and Jq columns whose general term Cij is the number of times word i 
is used by the set of individuals having chosen response j. Each table Cq offers a 
different viewpoint, namely the viewpoint of the closed question q on the distribution 
of the lexical profiles of the responses to the open question being analyzed. 

4.5 Frequency Threshold for Words 

These comparisons of lexical profiles become meaningful from a statistical point of 
view only if the words appear with a certain minimum frequency. Frequency distri- 
butions of vocabularies are such that choosing a frequency threshold often drastically 
reduces the size of the vocabulary without reducing the size of the remaining corpus 
too much. 

The counts for the first phase of the numeric coding were as follows. Out of 
n = 1563 responses, there were 13,999 occurrences (tokens), with 1378 distinct 
words (types). When the words appearing at least 16 times are selected, the vocabulary 
is reduced to 126 words, occuring 10,752 times in total. 

Table 1 shows the alphabetical list of the 126 words that appear at least 16 times 
in the set of 1563 responses and their frequencies of occurrence. Note that graphical 
forms such as I'm and don't are considered words because the apostrophe is not 
designated as a separator in this example. 

4.6 Grouping Responses 

As an initial step it is appropriate to find groupings of responses that are pertinent to 
the phenomenon being analyzed. By grouping responses within categories, "artificial 
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Table 1: Words appear ing  at least 16 times (alphabetic order) in the 1563 responses to 
the open quest ion 

Word Frequency Word Frequency Word Frequency 

I 111 getting 29 of 289 
I 'm 17 God 64 on 31 
a 254 good 422 other 24 
able 46 grandchildren 52 others 29 
about 22 happiness 228 our 44 
all 40 happy 100 out 20 
and 389 have 71 own 19 
are 22 having 81 parents 18 
as 36 health 794 peace 112 
at 17 healthy 74 people 63 
be 112 helping 24 personal 22 
being 159 home 102 relationship 37 
better 18 house 22 relationships 18 
can 30 husband 69 religion 84 
car 21 important 22 respect 19 
care 37 in 128 safety 19 
children 230 income 17 satisfaction 31 
children's 18 is 48 secure 17 
Christ 21 it 28 security 137 
Christian 18 Jesus 24 self 28 
church 77 job 209 so 18 
comfortable 22 just 21 stay 21 
comfortably 26 keeping 24 staying 24 
country 22 kids 48 that 55 
day 19 know 51 the 191 
do 42 life 160 things 17 
doing 25 like 24 time 50 
don't 57 live 86 to 439 
education 69 living 84 travel 18 
enjoy 18 Lord 20 up 19 
enough 59 love 53 want 28 
faith 19 making 24 we 18 
family 935 marriage 22 welfare 36 
family's 27 me 34 well 53 
financial 47 mind 50 what 36 
food 23 money 199 wife 76 
for 168 more 40 with 118 
free 20 mother 17 work 108 
freedom 63 my 1000 working 20 
friends 197 myself 29 world 35 
future 22 no 23 you 29 
get 27 not 44 your 19 



142 Chapter 11. Visualizations of Textual Data 

speeches" are obtained that are all the more meaningful when the categories are 
carefully chosen. However this rearrangement of raw information can be carried out 
in many different ways. In the particular case of our example, the individuals are 
grouped into nine subgroups that differ with respect to age in three categories [less 
than 30 years (denoted AGE1), between 30 years and 55 years (AGE2), over 55 years 
(AGE3)] and education at three levels [no degree or low (denoted El), medium (E2), 
and high level (E3)]. 

The two combined criteria had the advantages of being common to the seven 
surveyed countries and having a straightforward interpretation (it is much more 
difficult, for example, to compare socioprofessional categories from one country to 
another). However, it must be kept in mind that this particular partition provides a 
specific (and not unique) viewpoint on the set of responses. 

To read the information contained in this table effectively, the row profile and col- 
umn profile tables are calculated, and the distances between words, on the one hand, 
and between age-education categories, on the other, are displayed. It is precisely the 
purpose of correspondence analysis to provide the user with such a dual visualization. 

5 Correspondence Analysis of the Lexical Table 

Figure 3 shows the plane of the first two principal axes of the correspondence analysis 
of the aggregated table C with 126 rows and 9 columns. The first two eigenvalues are 
0.054 and 0.028, respectively, and account for 32.6 and 16.9% of the total inertia. In 
Figure 3, categories belonging to the same level of education are connected by a bold 
line, and categories belonging to the same age category are connected by a dashed 
line. The arrangement of the column points is remarkably regular: on the basis of 
purely lexical information (elements of column profiles), the composite character of 
the partitioning of the individuals into nine categories is recreated. Individuals with a 
higher educational level are situated toward the upper part of the graph; whatever their 
educational level, the older respondents appear along the fight side of the horizontal 
axis. 

Thus, these vectors that describe the frequency of 126 words (chosen according 
to a simple frequency criterion) for each category can reconstitute approximately 
the gradations of ages (within each educational level category) and the gradations of 
educational levels (within each age category). It is more difficult to obtain a clear-cut 
distinction between the first two age categories. However, within each age group, the 
level of education increases from the bottom to the top of the graph. 

This visualization can be enhanced through further modulations of the original 
display: adjectives, verbs, and pronouns could be identified. The graphical display can 
also be enriched by identifying the words according to general semantic categories. 
For example, it appears that all words related to general concerns (country, others, 
world, religion, welfare) characterize older well-educated respondents located in 
the upper left part of the display, whereas words such as Lord, church, Christian 
are more frequently encountered in the responses of older less educated persons. 
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Figure 3: Correspondence analysis of Table C (126 x 9). 

Words describing a secure and happy family life (marriage, secure, security, happy, 
happiness, comfortable, comfortably, safety, family) concentrate in the left-hand side 
of the map, with the younger age groups. 

The automatic indexing of words and frequency computations purposely ignore 
much information of a semantic or syntactic nature that is available to any reader. 
Neither synonyms nor homonyms are accounted for. Applications of this type of 
analysis to large samples, such as the present study involving 1563 responses, show 
that these objections can easily be waived in the case of artificial texts constructed by 
juxtaposition of responses, where the main purpose is to find repeated elements. 

In this statistical context, analyzing words often gives more interesting results 
than analyzing lemmas or groups of words established on a semantic basis. The words 
h a p p y  and h a p p i n e s s  occupy similar positions in Figure 3 (upper left), which shows 
that it would have been possible to combine them beforehand for substantive reasons. 

One may think that including function words such as for,  in, of, and as  burdens the 
analysis. In fact, these words appear to be significant in a CA only if their distribution 
is not uniform in the texts, in other words, if they are characteristic of some grouping 
of responses; if this is the case, it is interesting to place them among the other words. 
For instance, the word as is located in the fight part of the display, close to the 
horizontal axis. It thus appears frequently in responses of older interviewed persons. 
Examples of such responses are "that we have as good of health as we have" and "to 
continue to work as long as I can." 
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Again, with analyses based on frequencies, finding repeated segments makes 
it possible to take into account occurrences of units that are richer at the semantic 
level than isolated words. The selection of modal responses (Lebart, 1982b; Lebart 
and Salem, 1994), which is discussed later, also answers several of the preceding 
objections by highlighting the most frequent contexts of some of these words. 

An internal lemmatization procedure and elimination of the function words 
applied to the subcorpus make it possible to evaluate the stability of the structures 
obtained. The question is whether the observed pattern (i.e., in Figure 3, the relative 
positioning of the nine category points) depends on the presence of distinct inflections 
of the same lemma and of particular grammatical words. If that were the case, the 
categories would be distinguished primarily through their use of certain parts of 
speech and not solely through the content of their responses. 

We thus eliminated the following function words: a, and, at, for, in, of, on, the, 
to. In addition, we concatenated into single units the following words: be, are, is, 
being into be; live, living into live; and so forth. The vocabulary is then reduced from 
126 words to 101 "pseudolemmas." In this particular example, a description of the 
new reduced table through correspondence analysis produces a pattern of category 
points similar to that of Figure 3. The point of view selected for this experiment is to 
test the internal stability of the results. We may consider this transformation of the 
data set as a perturbation allowing the user to assess the patterns obtained. 

We have seen that the category points are positioned in a way that respects the 
order of the age and educational level categories. This adds to the conjecture (but 
does not prove) that there is a connection between the categories and the content of 
the responses. 

6 Characteristic Words and Modal Responses 

6.1 Characteristic Words 

It is useful to complement the visualizations provided by correspondence analysis 
with a few parameters of a more probabilistic nature: the characteristic words. These 
are words that are abnormally frequent (or abnormally rare) in the responses of a 
group of individuals (see, for example, Lafon, 1981). 

A test value measures the deviation between the relative frequency of a word 
within a group and its global frequency calculated on the entire set of responses or 
individuals. This deviation is normalized so that it can be considered as an (asymp- 
totically) standardized normal variable under the hypothesis of random distribution 
of the word in the groups. Under such a hypothesis, the test value lies between - 1.96 
and + 1.96 with a probability of .95. However, since this calculation depends on a 
normal approximation of the hypergeometric distribution, it is used only when the 
counts are not too small. 

For example, the most characteristic words of the category El-AGE1 (lowest 
level of education, age less than 30) are (with the corresponding test values in 
parentheses) car (3.3), mother (2.9), house (2.6), job (2.4), money (2.3), parents 
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Figure 4: Some characteristic words from the margin Figure 3. 

(2.1). For the opposite category E3-AGE3 (highest level of education, age over 55), 
the sequence of characteristic words is country (3.6), our (3.1), of (2.9), be (2.5), more 
(2.4), to (2.3), others (1.96). For illustrating the characteristic words we concentrate on 
four peripheral categories of Figure 3 (E 1-AGE 1, E3-AGE2, E 1-AGE3, E3-AGE3). 
The words are connected to their respective categories in Figure 4. 

On the one hand, there is a large compatibility between the proximities observed 
on the map and the links induced by the computation of the characteristic words 
(obviously, these characteristic words are not distributed at random on the display); we 
note that these characteristic words are situated around their corresponding categories, 
which is also consistent with the usual simultaneous representation in CA. On the 
other hand, many proximities on the map have no counterpart in terms of characteristic 
words; for instance, me, faith, people, religion do not specifically characterize the 
group E3-AGE3. In this sense, indicating characteristic elements complements the 
usual display of CA. 

6.2 M o d a l  R e s p o n s e s  

A simple technique simultaneously addresses a number of objections that could be 
raised concerning the fragmentation inherent in any analysis that is limited to isolated 
words without placing them in their immediate context. This technique consists of the 
automatic selection of modal responses. There are two ways in which modal responses 
can be chosen: (1) on the basis of calculations that make use of characteristic elements 



146 Chapter 11. Visualizations of Textual Data 

and (2) on the basis of distance computations according to simple geometric criteria, 
for example, the chi-squared distance. 

Modal Responses Based on Characteristic Elements A modal response of a 
grouping is a response that contains, as much as possible, the most characteristic 
words of this grouping. For each grouping, these words are ranked by degree of 
significance: the greater the test value of a word in this ranking, the more significant 
it is. A simple empirical formula consists of associating with each response the mean 
test value of the words it contains: if this mean test value is large, it means that the 
response contains only words that are very characteristic of the grouping. 

This calculation mode (criterion of characteristic words) has the property of 
favoring short responses, whereas the chi-square criterion described next tends to 
favor lengthy responses. 

Modal Responses Based on Chi-squared Distances These distances express the 
deviation between the profile of a response and the mean profile of the group to which 
the response belongs. The preferred distance is the chi-squared distance, because of 
its distributional properties. For each grouping, these distances can be sorted in 
increasing order. Thus the most representative responses with respect to the lexical 
profile, that is, those whose distances are the smallest, can be identified. Whatever 
the mode of calculation, several characteristic responses are printed out for each 
grouping. It is indeed highly improbable that there should exist among all of the 
original responses a single response that summarizes by itself all of the properties of 
a category. 

Examples of modal responses for the group (El-AGE1) are: 

• my children, the car, the house, my family (my parents, grandparents, whole 
family) 

• live well. Having house and car, job with a future where I can hope to earn more 
money 

• my daughter, a decent home, money, decent neighbors, my husband, my mother, 
my cat, my nephew 

Examples of modal responses for the group (E3-AGE3) are: 

• my family, the welfare of our country, the welfare of the individual, that's all 

• inner peace, family, health, moral stability of our country 

• health, to know more, to be more compassionate, more understanding, more 
tolerant, more forgiving 

We can find in these responses most of the characteristic words mentioned previously 
(car, house, money, job, parents, mother for the group El-AGE1; country, our, of, 
to, more, be for the group E3-AGE3). Such listings of modal responses summarize 
each of the main themes for each category. 

In summary, by combining the three approaches (visualization of proximities 
between words and categories through correspondence analysis, selection of char- 
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acteristic words, selection of modal responses) we can obtain, without any need for 
preprocessing and without precoding, the main features of the differences between 
responses or texts. 
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Chapter 12 

Visualization of Open 
Questions: French Study 
of Pupils'Attitudes 
to Mathematics 

M6nica B4cue Bertaut 

1 I n t r o d u c t i o n  

Lexicometric methods, including multidimensional descriptive statistical methods 
such as correspondence analysis and cluster analysis, constitute a tool for analyzing 
textual corpora. Lexicometry concerns the count of lexical units and the distribution 
of these units in the various parts (or texts) of the corpus (see Lebart and Salem, 
1994). The usual unit for dividing the textual chain is the word, defined as a suc- 
cession of characters delimited by blanks or punctuation marks. Other units, such as 
a lemma or complex units (consisting of several words or lemmas), can be selected 
but must be invariant and identifiable without either ambiguity or the intervention of 
the researcher. In effect, the aim is to produce a formal treatment, without subjective 
interpretation prior to the analysis, enabling the text producedmnot the text received 
by the readermto be studied and to relegate subjectivity to the later stage of interpre- 
tation. This objective makes it impossible, at the initial stage, to take into account the 
"meaning" of the words, that is, the content of the texts. The procedure is systematic 
and requires counts to be exhaustive. Everything must be counted, as there is no way 
to know a priori which words are significant. 

149 
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Descriptive statistical methods such as cluster analysis and correspondence anal- 
ysis allow us to synthesize these counts from a large corpus of textual data in an 
exhaustive and systematic way (Benzrcri et al., 1981; Lebart and Salem, 1994). They 
offer visualizations of similarities or dissimilarities between texts and/or words and 
also of associations between vocabulary and authors' characteristics. 

The application of the same methods to corpora of responses to open ques- 
tions in surveys raises specific problems, because the texts analyzed in this way are 
usually very short (a few lines at the most for each individual). To obtain larger 
texts, individual responses are usually amalgamated according to characteristics of 
the individuals, which are known through their responses to closed questions. It is 
then possible to study the relationship between individuals' characteristics and their 
"language." However, there is still interest in studying the full spectrum of individual 
responses, and constructing typologies based on similarities and differences between 
individuals constitutes a powerful tool. 

Several authors have attempted to apply cluster analysis to open questions 
(Haeusler, 1984; Establet and Felouzis, 1993). To reduce the dimensionality of the 
table, a correspondence analysis (CA) is first performed on the table of counts of 
words used by each individual. Then the individuals are clustered according to their 
coordinates on the first principal axes, using a hierarchical clustering algorithm. 
Ward clustering (Ward 1963; Lebart et al., 1995, pp. 191-195) is a commonly used 
procedure in which cluster analysis is performed in a reduced space. The partition 
thus obtained is improved by means of several iterations of the K-means algorithm, 
which reassigns the individuals to their closest centroids in an attempt to increase 
the variance between clusters. This strategy is not entirely satisfactory: in particular, 
it often leads to clusters that are determined solely by the use of one very frequent 
word. Furthermore, the role of single words in isolation is more important the greater 
the number of axes preserved in the original CA solution (Haeusler, 1984). The dif- 
ficulty lies in the nature of the data analyzed; in effect, comparing individual lexical 
profilesmprofiles of word frequenciesmwhen the responses are short is quite dif- 
ferent from comparing lexical profiles of long texts or comparing average profiles 
of groups of individuals. Responses are distinguished by the presence or absence of 
a word rather than differences between frequency profiles. Indeed, responses with 
similar meanings may have no unit in common. Conversely, two responses may differ 
only in the negation included in one of them, thus altering the meaning of the ut- 
terance completely. The problem lies in the inherently sparse structure of the lexical 
table (Lebart and Salem, 1994, pp. 152-154). 

Our approach to this problem is new in two respects. First, because many words 
can have a very different meaning depending on the context, we will define a complex 
lexical unit, called a "quasi-segment," composed of several words, not necessarily 
consecutive, in order to force the words into a context. Second, we will find subspaces 
that are directly related to specific individual characteristics judged to be most relevant 
with regard to the objective of the study. In these subspaces, the better differentiated 
the use of a lexical unit in different groups, the greater the importance of that unit in 
defining distances between individuals for eventual clustering. 
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2 Data 

To illustrate the method, we will use a corpus of responses to an open question, 
collected by Baudelot (1990) for a research project on differences in attitudes observed 
in boys and girls when choosing what to study at university. Baudelot based his work 
on the fact that in French secondary education selection according to performance in 
mathematics leads to sexual and social selection. He was interested in ascertaining 
why so few girls, whose results in mathematics are as good as those of boys in the 
third-last year of secondary education, choose degrees demanding mathematics. 

Among other studies, a survey was conducted by means of a questionnaire in 
the city of Nantes; 974 secondary school pupils were interviewed 2 years before 
the academic year in which they write the final examination for this level of educa- 
tion. The questionnaire included a closed question asking them how they felt about 
mathematics, followed by an open question to elucidate their choice from among 
the possibilities provided as responses to the closed question. The two questions are 
reproduced in Table 1. 

Some of the responses are reproduced in their entirety in Table 2. The 974 open 
responsesmsome of them empty--make up a corpus with 16,851 occurrences and 
1496 different words. Some of the most frequent words are listed in Table 3. 

In his research, Baudelot compared boys and girls taking into consideration their 
real level in mathematics, classified as bad, medium, and good. By studying the 
responses to the open question, Baudelot singled out the most characteristic lexical 

Table 1- Questions regarding feelings about mathematics 

Quel est, parmi les sentiments suivants, celui dont tu te sens le plus proche ? 

1. Je dgteste les maths 

2. J'aime peu les maths 

3. J'aime bien les maths 

4. J'adore les maths 

Pourquoi ? Peux-tu indiquer dans les lignes qui suivent les principales raisons pour lesquelles 
tu aimes ou tu n'aimes pas les maths ? Essaye en particulier de pr~ciser les aspects de cette 
discipline quite plaisent ou te d~plaisent le plus. 

(in English: 
Among the following expressions, which is the one which you feel closest to ? 

1. I hate math 

2. I like math a little 

3. I like math 

4. I adore math 

Why ? Can you describe in the following lines the main reasons for liking or disliking mathe- 
matics ? Try to specify the aspects of  this discipline that please you or that displease you.) 



152 Chapter 12. Visualization of Open Questions 

Table 2: Some examples of responses 

C'est int6ressant. 

J'aime les maths parce que c'est m6thodique, c'est amusant; il faut beaucoup creuser pour 
trouver. 

J'ai toujours 6t6 terroris6e par mes profs de maths. L'enseignement lui-m~me est assez 
r6barbatif. 

Le langage employ6 par les professeurs de maths ne me convient pas. Je ne trouve pas les raisons 
de ma motivation et de ma passion. Pour appr6cier une mati~re, j'ai besoin de la comprendre 
et de faire des liens logiques et je n'en trouve aucun en maths. On ne peut me fournir des 
explications sens6es dans ce cours. Je n'y trouve aucune utilit6. Elles ne m'apportent rien en 
connaissances et en logique. 

Les maths sont: parfois int6ressants, souvent ennuyeux, ils vous font coucher tard. 

Table 3: Examples of words and, in parentheses, number  of repetitions in the corpus 

abstrait (21) comprendre (37) intdressant (57) me (152) 
adore (17) ddteste (34) je (570) moi (28) 
aim (488) difficile (22) jeu (13) problkme (16) 
algkbre (99) esprit (36) logique (205) que (439) 
apprendre (16) faut (73) logiques (13) rdfldchir (32) 
avoir (33) gdomdtrie (146) matiOre (162) vois (19) 

features of boys and girls and the attitudes these features reflected, according to their 
level in mathematics. 

In this work we shall attempt to detect whether groupings exist beyond groups 
preconstituted according to sex and mathematics level. In particular, in order to 
answer a question that is implicit in the hypotheses formulated by Baudelot, we will 
study the existence of a subgroup of girls who are good at mathematics and display 
a language similar to that of boys at the same level. 

3 Methodology and Results 

3.1 Repeated Quasi -segment  Definit ion 

A quasi-segment is defined as a repeated ordered succession of words, not necessarily 
consecutive, but within the same sentence and not separated by any punctuation 
mark. Table 4 shows all the sequences of the corpus that contain the quasi-segment 
il . . . faut. . ,  logique and also the frequency of each sequence. 

An algorithm has been elaborated to identify and list all the repeated quasi- 
segments of any length (B6cue and Peir6, 1993). Each interval length between words 
is limited by a maximum value; for example, il faut beaucoup de logique has an 



3. Methodology and Results 153 

Table 4: Corpus sequences containing the quasi-segment 
"il. . .  faut. . ,  logique" 

Sequence Frequency 

il faut  avoir de la logique 1 
il faut  avoir beaucoup de logique 1 
il faut  avoir l 'esprit de synthkse, de logique 1 
il faut  avoir un esprit logique 1 
il faut  avoir un esprit droit et logique 1 
il faut  avoir une logique 1 

il faut  constamment d~.montrer ce qui est logique 1 
il faut  beaucoup de logique 3 

il faut  de la logique 3 
il faut  d.norm~ment de logique 1 

il faut  ~tre logique 4 

il faut  procd.der avec m~thodes, avoir de la logique 1 
il faut  toujours avoir la m~me logique 1 

interval length of two. Specifying a maximum of two limits the sequences to those 
underlined in Table 4, in which the quasi-segment i l . . . f a u t . . ,  log ique  is repeated 
1 + 3 + 3 + 1 + 4 = 12 times. A second parameter, which is important for applying 
statistical methods, in particular cluster analysis, is the frequency threshold, the 
minimum number of times a quasi-segment is repeated. Finally, the total length, 
that is, the number of words in the quasi-segment, can be fixed. The values of these 
parameters are chosen depending on objectives and previous knowledge of the corpus. 
The stability of the results can be investigated for different parameter values. 

In the results that are presented in the following, the maximum interval length is 
two words long, the frequency threshold is fixed to be seven, and, finally, the quasi- 
segments are three words long. With these parameter values, a total of 717 repeated 
quasi-segments are identified. Table 5 shows some of the more frequent repeated 
quasi-segments. 

Table 5: Some of the more frequent quasi-segments (in parentheses, number of repe- 
titions) 

aime bien algkbre (12) il faut ~tre (7) je aime pas (80) ne comprends pas (11) 
aime la logique (14) il faut logique (12) je ne pas (99) ne m'int~resse (13) 
aime les car (122) j'ai toujours (9) je ne suis (29) ne vois pas (17) 
aime les maths (247) je ai jamais (9) les maths sont (42) peu les maths (51) 
c'est une (69) j'aime bien (167) logique des maths (1 O) pour plus tard (7) 
d~teste les maths (11) j'aime les (247)  m'int~resse pas (12) que je suis (7) 
il faut avoir (12) j'aime maths (213) mais j'aime (14) suis pas bonne (7) 
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To apply cluster analysis, the corpus is represented by a table with 717 columns 
whose ith row contains the relative frequencies of these 717 quasi-segments in the 
ith response, that is, the lexical profile of the ith response over the quasi-segments. 
This Individuals X Quasi-segments table is very large and sparse. The total inertia 
of the row points, when using chi-squared distance and weighting each row by the 
relative frequencies of quasi-segments in the response, is equal to 49.2. 

3.2 P r o j e c t i o n  o n t o  a R e f e r e n c e  S u b s p a c e  

A subspace is now sought such that the projection of the individual responses on the 
subspace assists the interpretation of the responses. One way to reduce the dimen- 
sionality is to group the individuals according to some characteristics related to the 
objective of the study. For example, the pupils can be placed in six groups corre- 
sponding to the six combined categories of the variable Sex x Mathematics. Table 6 
shows the composition of these groups, together with the number of responses given 
in each group. 

The centroids of each group can be represented by the average lexical profile of 
the individuals belonging to it, that is, by a vector that contains the relative frequency 
of the 717 quasi-segments in the corresponding amalgamated responses. The subspace 
generated by the six centroid vectorsmwhich has dimensionality five---constitutes a 
reference subspace. The position of an individual response profile, as projected onto 
this subspace, depends on its similarity to each group average profile. 

The inertia of individual responses projected onto the reference subspace is equal 
to 1.6. It is well known that the subspace with dimensionality five accounting for 
the greatest part of the inertia would be generated by the first five principal axes 
obtained from the CA of the Individuals x Quasi-segments table. In fact, the inertia 
accounted for in the five-dimensional CA solution is equal to 3.1. As shown in Lebart 
and Salem (1994, p. 91), the percentage of explained inertia contitutes a pessimistic 
measure of explained variance. Many examples show that low values can still lead 
to a satisfactory representation and interpretation of the information with respect to 
these principal axes. 

Table 6: Groups according to sex and level at mathematics 

Sex x Mathematics Number of indivs. Responses given 

Boys good at mathematics 
Girls good at mathematics 
Boys medium at mathematics 
Gifts medium at mathematics 
Boys bad at mathematics 
Girls bad at mathematics 
Total 

52 40 
83 62 
144 101 
221 166 
195 136 
279 222 
974 727 
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3.3 C l u s t e r  A n a l y s i s  o f  P r o j e c t e d  T a b l e  

The distance between individuals in the reference subspace is the chi-squared dis- 
tance between projected profiles. A hierarchical clustering is performed using Ward's 
criterion. The hierarchical tree is cut, so as to obtain a relatively fine partition. Given 
the great number of lexical units, it is very rare to find big homogeneous clusters. 
The partitions consisting of between 13 and 16 clusters were studied and we decided 
to retain the partition consisting of 15 clusters. 

The intercluster inertia is equal to 65% of the projected inertia of 1.6. The 
partitions can be improved by means of several K-means clustering iterations that 
reassign individuals to their closest centroids. This increased the intercluster inertia 
percentage to 68%. The number of individual responses per cluster varies from 33 
to 73. 

3.4 C h a r a c t e r i z a t i o n  o f  t h e  C l u s t e r s  

The partition can be interpreted by cross-tabulating the individuals according to 
cluster and characteristics (Table 7). For example, of the 33 individuals assigned 
to cluster 14, 14 are boys good at mathematics. From other question responses 
not repeated here, we find that 17 want to choose a mathematics speciality in the 
secondary school final examination, and 13 estimate they have a good or very good 
level at mathematics. It is possible to summarize the vocabulary of each cluster in 
terms of the quasi-segments (and/or words) over---or undermused in it, using the 
marginal relative frequencies of the quasi-segments as a reference value. 

But the most important result is the list of the "modal responses," complete 
responses selected according to a criterion that measures their power to characterize 
the cluster (Lebart and Salem, 1994; Lebart, Chapter 11). For example, the chi- 
squared distance can be calculated between each response profile and the average 
profile of the cluster; and the responses can be ordered by increasing magnitude of 
distance. It is useful to reorder all the responses within each cluster according to this 
criterion, thereby returning to the data when interpreting the clusters. 

Table 7: Results for each sex × mathematics category in each of the 15 clusters 

Clusters 

Groups 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Boys, good 0 0 0 3 0 0 0 1 4 1 1 0 1 14 14 
Girls, good 2 0 2 2 1 1 2 21 4 0 6 0 10 9 1 
Boys, medium 0 3 1 0 2 18 4 1 15 5 9 18 14 7 3 
Girls, medium 22 5 2 7 4 4 29 10 19 16 15 8 8 9 8 
Boys, bad 15 22 23 3 6 3 0 7 14 8 7 10 5 10 2 
Girls, bad 17 7 16 22 42 23 24 12 17 5 5 3 9 11 5 
Total 56 37 44 37 55 49 59 52 73 35 43 39 47 60 33 
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Table 8: Modal responses for groups of boys and girls good at mathematics 

Boys good at mathematics in cluster 15 Girls good at mathematics in cluster 8 

• C'est un peu un jeu, et cela peut ~tre tr~s 
int6ressant si l'on comprend 

• Exercice de la logique, du raisonnement, 
d6veloppement des facult6s intellectuelles. 
Mati~re int6ressante 

• On ne peut pas s'exprimer par soi-m~me, 
on est oblig6 de suivre des r~gles strictes 
et ennuyeuses (...) 

• Les maths sont repr6sentatives de la 
logique, donc bonnes 

• J'aime les maths parce que c'est une 
gymnastique de l'esprit 

• J'adore les maths ~t cause de la logique 
(...) 

• Je trouve cette discipline int6ressante, car 
vari6e. Elle fait travailler la logique plus 
que la m6moire (...) 

• On peut arriver ~ de bons r6sultats en ne 
retenant pas grand chose 

• I1 faut beaucoup de logique, de rigueur, 
de pr6cision 

• I1 faut de la logique pour la g6om6trie et 
j'aime les chiffres 

• Les maths n6cessitent un esprit de 
logique (...) 

• Positif: je pr6f'ere la g6om6trie et j' adore 
trouver les exercices. N6gatif (...) 

• Les aspects qui me plaisent le plus sont 
ceux de la logique, l'analyse, l'intuition 
(...) 

• J' adore 1' alg~bre car il faut &re logique. 
J' aime aussi la g6om6trie (...) 

• J'aime les maths car je trouve cela 
int6ressant et pour l'instant ce n'est pas 
trop difficile 

• J'aime 1' alg~bre car je trouve (...) 

• J'aime car c'est logique 

• J'aime l'alg~bre car je trouve cela facile 

• J'aime bien cette mati~re (...) 

We can also group the ordered list of responses according to the categories used 
to build up the reference subspace. For example, Table 8 lists the modal responses of 
clusters 15 and 8, respectively, for boys and girls good at mathematics. 

4 Interpretation of Results 

To interpret the results, we compare modal responses between clusters or between 
subgroups of clusters of interest (e.g., Table 8). We also visualize proximities between 
clusters and position these clusters relative to all quasi-segments. To achieve the latter, 
the contingency cross-tabulating quasi-segments with Sex × Mathematics groups 
can be submitted to CA and then the centroids of the 15 clusters projected onto the 
resulting principal as supplementary points (Figure 1). 

In accordance with the objective of studying the differences between boys and 
girls who are good at mathematics, we must study the clusters with a high proportion 
of pupils who are good at mathematics. Boys and girls who are good at mathematics 
are located mainly in clusters 8, 13, 14, and 15 (see Table 7). Cluster 14 is the 
only one that contains a significant number of both boys (14) and girls (9) good at 
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Figure 1: Principal plane resulting from the correspondence analysis of the contin- 
gency table Quasi-segments (Sex × Mathematics). The centroids of the clusters are 
projected as illustrative elements. 

mathematics. We can, therefore, draw a preliminary conclusion: the great majority 
of boys and girls who are good at mathematics do not use the same language. 

Furthermore, beating in mind their position in relation to the centroids of these 
clusters (Figure 1), boys good at mathematics in cluster 15 and girls good at mathe- 
matics in cluster 8 can be regarded as the most typical subgroups of these two groups. 
From Table 8, which lists the most characteristic responses of these two subgroups, 
we can deduce the following. Girls use "Je" ("I") and "J'aime" ("I like"), although 
less so the rather weaker '3' aime bien" ("I quite like"), they qualify their responses 
with "Je trouve" ("I find") or "Je pense" ("I think"), and they consider that "I1 faut de 
la logique" ("You need logic") or "Les maths n6cessitent un esprit de logique" ("Math 
needs a feel for logic"). In other words, the ego, one's own qualities, abilities, and 
tastes, have a high profile. Boys are more neutral: "C'est" ("It's"), "Les maths sont" 
("Math is"), "Les maths sont repr6sentatives de la logique" ("Maths is representative 
of logic"), "Cette discipline est int6ressante" ("This discipline is interesting"), "On 
n'a pas" ("You don't have to"). The ego is not totally absent, but it is expressed 
through the form "On" ("One," or the impersonal "you"). Any qualities mentioned 
pertain to mathematics rather than to themselves. 
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Among girls belonging to clusters 14 and 15 (nine in cluster 14, but only one in 
cluster 15), we find a language more typical of boys (the model responses of these 
subgroups are not reported here). They say "C'est stimulant, c'est int6ressant" ("It's 
stimulating, it's interesting"), "C' est logique" ("It's logical"), "J' aime les maths parce 
que c'est (.. .)" ("I like math because it's (...)"), "J'aime bien les maths car c'est 
int6ressant" ("I quite like math because it's interesting"), "J' aime bien parce que c'est 
logique, on n'a pas besoin de r6fl6chir" ("I quite like math because it's logical, you 
don't need to think"), "On n'a pas ~ retenir les dates" ("You don't have to remember 
dates"), "Parce que c'est vivant" ("Because it's alive"). 

Although also not reported here, cluster 10 contains the responses with the great- 
est breadth of vocabulary and expression. The use of nouns is more frequent, which 
tends to indicate verbal richness. Rather than "C'est int6ressant" ("It's interesting"), 
we find "C'est une mati~re int6ressante, logique, qui fait appel. . ." ("It's an inter- 
esting, logical subject that appeals"), "C'est une mati~re qui apprend ~ avoir un 
raisonnement rigoureux" ("It's a subject that teaches you to use rigorous reasoning"), 
"C'est une mati~re, une discipline" ("It's a subject, a discipline"). The responses are 
longer and better thought out. It is a cluster that contains many girls with a medium 
mathematics level (16 of the 35 belonging to this category), often with favorable 
opinions of mathematics, but not always. This cluster contains no girls who are good 
at mathematics and only one boy at that level. In Figure 1, this cluster occupies a 
position close to clusters 14 and 15, reflecting certain similarities of language. Clus- 
ter analysis, however, distinguishes this group of responses, which are particularly 
rich in the quality of their expression and precision, and differentiates them from the 
responses in clusters 14 and 15. 

5 Conclus ion  

The clustering method presented here highlights the existence of groups of individuals 
with a relatively similar language, thus facilitating the identification of significant 
features of the discourse. In the example used, it can be seen that the results obtained 
complete Baudelot's study, giving it a finer edge. "Logique" ("logical") is a word that 
is used by pupils with a good level, but whereas girls find that "I1 faut de la logique" 
("One needs logic"), boys say that "C'est logique" ("It's logical"). For girls it is a 
quality of the individual; for boys it is a feature of mathematics. Pupils who use richer 
forms of expression involving nouns, for example, "C'est une mati~re, une discipline" 
("It's a subject, a discipline"), are often females with a medium mathematics level. 

An essential aspect of our approach is the projection of the individuals onto the 
subspace generated by the centroids of the groups defined by combining the variables 
Sex and Level of Mathematics. Even though a relatively small part of the inertia of the 
individual profiles across lexical units is contained in this subspace, the computation 
of distances between individuals and the subsequent clusters will be directly related 
to the differentiation of the Sex × Mathematics groups. 



Chapter 13 

The Cloud of Candidates. 
Exploring the Political Field 

Fernand Fehlen 

1 I n t r o d u c t i o n  

In this chapter correspondence analysis is used as a tool of exploratory data analysis 
to investigate voting results, allowing identification of the mechanism ruling the 
political field of Luxembourg and revealing capital specific to this field (Bourdieu, 
1981). We shall analyze the results of the 1989 parliamentary elections for the city 
of Luxembourg. 

The structure of the voting system is a determining factor in the functioning of 
the political field because it defines the rules that allow admittance to power, which 
ultimately is the justification for the existence of the political field. One could think, 
for instance, of the various majority systems that lead to bipolarization. Luxembourg 
introduced a proportional system of universal suffrage for men and women in 1919. 
This replaced a system of census suffrage (in which a minimal level of tax assessment 
was required in order to vote), which had hitherto guaranteed political power to a 
small group of leading citizens. Faced with a challenge to the very existence of the 
Luxembourg state, the liberal party accepted universal suffrage only on the condition 
that an essential characteristic of the previous system, namely the direct bond between 
the voter and "his" representative, would be maintained in the new system (Fehlen, 
1993). This feature was seen as a desirable weakening of the role of political parties. 

As it is applied today in Luxembourg, the panachage system remains unusual. 
Elsewhere it can be found only in Switzerland and in Germany at some local levels. 
Every voter has as many votes to distribute as there are seats to represent his or her 
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constituency. Each of the four constituencies in Luxembourg directly elects its own 
representatives. The number of representatives of each constituency is related to the 
number of inhabitants of the constituency. In all, there are 60 seats to be distributed in 
the Luxembourg parliament. Every voter can spread his or her votes over all parties, 
giving a candidate up to two votes. Therefore the same ballot can carry votes for 
candidates belonging to different parties. 

The data we use here are the results for Luxembourg City which belongs to 
the constituency center, where each voter has 21 votes to distribute. The panachage 
system allows three different types of votes: 

• List votes" each party presents a list that generally includes as many candidates as 
there are seats to be distributed in the constituency. By choosing a party list, the 
voter gives one vote to each candidate on that list. 

• Intraparty panachage: the voter can also distribute his or her votes unevenly over 
the candidates of one list by giving one or two votes to some individual candidates. 

• Interparty panachage: the voter can also distribute his or her votes over the lists of 
different parties. 

Of course, the voter cannot distribute more votes than of fight, otherwise the 
ballot is not valid. But by not using all of his or her votes, it is possible for the voter 
to practice a very subtle form of gradual abstention, which is widespread, especially 
because voting is compulsory in Luxembourg. 

Since the introduction of the panachage system, the political life has been dom- 
inated by the Christian democratic party (ChrEschtlech Vollekspartei), which, with 
only some minor exceptions, has participated in the government ever since. Since 
1984 the socialist worker party (LEtzebuerger Sozialistesch Arbechteer Partei) has 
formed a coalition government with the Christian democratic party. The most im- 
portant opposition party is a liberal party (Demokratesch Partei), which in the past 
formed several coalitions with the Christian democratic party. The communist party, 
which can look back on a great history, has lost its influence and has not been repre- 
sented in the parliament since 1994. Since the 1984 election, some new parties have 
made their appearance on the political scene, such as the "Aktiounskomitee 5/6 Pen- 
sioun," a rural and "poujadiste" protest party, as well as two ecologist parties, "Greng 
Alternativ Partei" and "Greng LEscht Ekologesch Initiativ," which have unified in the 
meantime, and a nationalist party, (National Bewegong), which dissolved itself after 
the 1994 elections. 

2 Correspondence Analysis and Voting Behavior 

Correspondence analysis (CA) provides a natural framework in which to analyze 
voting behavior as it is associated with the sociological approach of Pierre Bourdieu. 
CA features a twofold congruence with Bourdieu's understanding of society as a 
social space of relative positions and as a series of partly autonomous but homologous 
fields. First, there is the relational aspect, which is reflected in Bourdieu's own words: 
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CA "is essentially a relational procedure, whose philosophy corresponds completely 
to what in my opinion constitutes social reality. It is a procedure, that 'thinks' 
in relations" (Bourdieu, 1991; English translation by Wuggenig and Mnich, 1994, 
p. 304). Second, there is the correspondence between the analysis of the row profiles 
and the column profiles that has given CA its name: the understanding of the structure 
of the space of the rows leads to the comprehension of the space of the columns and 
vice versa. Or, to take the example in "La Distinction" (Bourdieu 1979), the space 
of the social positions reveals the space of the lifestyles. This approach transcends 
the deterministic view of society that is often incorporated in statistical models with 
their limited number of variables classified as either dependent or independent. See 
also The BMS (1994) and their attempt to reconcile what they call the "French data 
analysis" and statistical modeling approaches. Another development of the "French 
approach" is represented by Rouanet and Le Roux (1993), who try to reorganize 
the whole range of the multidimensional data analysis in the light of Benzrcri's 
geometrical formalism using the work of Bourdieu as epistemological background. 

The results of an election, presented in contingency tables with the parties as 
columns and the different districts of the constituency as rows, seem well suited to 
CA. This approach will result in two spaces that will mutually explain each other. 
The column points will materialize the space of the parties and the row points will 
materialize the socioadministrative space. For Luxembourg, at the national level 
we find four voting wards: the industrialized south, the central region surrounding 
Luxembourg City, and two rural districts. 

The main result for all elections we have analyzed, either for communal or for 
national elections, is that the first axis always represents the left-fight opposition, that 
is, the socialist and communist parties on the one hand and the Christian democratic 
and liberal parties on the other. This is also true for the study presented here, which 
analyzes the 31 polling wards of the city of Luxembourg. As a rule, these wards have 
very distinct but subtle social characteristics. 

3 The List Votes 

The data we analyze are the number of list votes obtained by eight parties in the 31 
polling wards of Luxembourg City in the 1989 parliamentary election. The numerical 
results of the CA of this 31 x 8 contingency table can be found in Table 1. Figure 1 
shows the first axis, containing 47.2% of the total inertia, as a vertical axis. The 31 
ward points are labeled on the left side and the eight parties on the right. Both are 
positioned by their coordinates on the axis (the horizontal shift of the labels is done 
only to improve readability of those that have similar coordinates). Concentrating on 
the wards, along this axis we can identify the opposition of working class areas with 
wealthier neighborhoods. This outcome confirms the existence of a political duality, 
which today is often denied, especially for an economically booming city such as 
Luxembourg, whose inhabitants at first sight seem to be all wealthy middle class. As 
far as the parties are concerned, the first axis is defined by the opposition between 
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T a b l e  1: N u m e r i c a l  o u t p u t  f r o m  C A  of  t he  l ist  v o t e s  (8 p a r t i e s  a n d  31 w a r d s )  

ROWS 

Name K = 1 COR CTR K = 2 COR CTR K = 3 COR CTR 

beg 107 207 13 -193  668 145 63 70 16 
bel -181  683 99 23 11 5 83 143 72 
bis 296 340 24 379 557 132 - 6 1  14 3 
bon 230 965 84 - 1 2  2 1 - 1 7  5 2 
bos 136 800 97 - 4 9  105 43 2 0 0 
cer -161  200 6 7 0 0 1 3  1 0 
ces -111  214 16 16 5 1 108 203 54 
cls 152 155 8 291 569 106 - 1 2 7  109 21 
con -113  227 3 -125  276 14 - 1 2  2 0 
dom 142 517 12 - 8 4  182 14 - 5 9  90 7 
eic 31 25 1 78 155 14 39 38 3 
epa - 1 2 6  362 12 73 123 14 - 1 1 9  326 38 
fet - 1 4 7  437 36 - 9 4  179 50 111 249 71 
gas - 5 0  164 5 - 1 9  23 2 - 9 2  553 57 
ham 393 633 103 -103  44 24 70 20 11 
hol - 4 6  176 5 21 38 3 32 86 8 
kay - 1 7 7  239 18 190 277 70 204 318 81 
kir - 173  234 15 112 98 21 -248  481 108 
kie 111 178 5 87 108 11 - 5 7  47 5 
lic - 2 9 6  679 102 - 6 8  36 18 - 4 0  12 6 
lih - 2 3 2  902 107 - 2 7  12 5 62 64 26 
mer - 1 4 2  497 30 - 2 3  13 3 - 1 1 4  318 65 
muh - 4 3  15 1 - 7 5  47 9 -261  563 109 
neu 221 827 66 - 3 7  23 6 1 0 0 
paf 56 24 2 276 571 170 115 99 30 
pes - 3 7 2  335 53 13 0 0 -341  282 155 
rol 5 1 0 - 5 7  139 11 - 1 1 9  604 51 
s~ 106 444 30 69 187 43 3 0 0 
w~ 124 791 14 21 23 1 8 3 0 
wei 193 765 32 16 5 1 - 4  0 0 
yol 59 41 2 201 474 62 - 5  0 0 

COLUMNS 
Name K = 1 COR CTR K = 2 COR CTR K = 3 COR CTR 

CO 153 159 42 231 362 326 -165  184 169 
LP - 6 9  187 41 101 400 297 88 305 231 
CD - 1 2 9  576 173 - 2 3  18 18 - 8 7  264 274 
SO 268 904 502 - 6 9  60 114 8 1 2 
GL - 1 7 3  314 68 - 6 9  50 37 57 34 26 
NB 293 657 150 66 33 26 20 3 2 
GA - 5 1  35 4 - 1 1 5  181 78 - 1 2 4  211 92 
AD - 7 5  93 19 - 9 7  151 104 134 291 204 
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The polling wards: 
label name of the ward votes/21* 
beg Beggen 793 
bel Belair 2432 
bis Salle des f~tes Bisserwee 163 
bon Bonnevoie-Nord 1054 
bos Bonnevoie-Sud 3542 
cer Cercle Municipal 209 
ces Cessang.e 1054 
cla Clausen 230 
con 6cole rue de la Congr6gation 206 
dom Dommeldange 380 
eic Eich 410 
epa 6cole rue Pierre d'Aspelt 561 
fet Fetschenhof 1448 
gas Gasperich 1343 
ham Hamrn 475 
hol HoUerich 1635 
kay 6cole primaire rue A. Kayser 468 
kiem domaine du Kiem 318 
kir ancienne 6cole Kirchberg 381 
lie Limpertsberg (bas) 1007 
lih Limpertsberg (haut) 1510 
mer Merl 1060 
muh Mtihlenbach 395 
neu Neudorf 966 
paf Pfaffenthal 353 
pes Fondation Pescatore 221 
rol Rollingergrund 652 
str Gate, 6cole rue de Strasbourg 1613 
wal 6cole primaire rue Fort Wallis 564 
wei Weimerskirch 556 
yol pavilion scolaire rue Yolande 328 

* The number of total votes divided by 21 gives 
the approximated number of voters, it is 
smaller then the real number as it does not take 
in account total and partial abstention. 
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Figure 1: One-dimensional CA map of list votes for 8 parties and 31 wards. CD, 
Chr6schtlech Vollekspartei (Christian-democratic party); LP, Demokratesch Partei 
(liberal party); GP, Greng Altemativ Partei (left-ecologist party); GL, Greng L6scht 
Ekologesch (Initiative ecologist party); CO, Kommunistesch Partei L6tzebuerg (com- 
munist party); SO, L6tzebuerger Sozialistesch Arbechteer Partei (socialist party); NB, 
National Bewegong (nationalist party); AD, Aktiounskomitee 5/6 Pensioun (rural 
and 'poujadiste' protest party). 
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the socialist party at the top (SO: CTR = 502) and the Christian democratic party 
and the ecologist party (GLEI) at the bottom (CD: CTR = 173 and GL: CTR = 68). 
On the same side of the axis as the socialist party, we find south and north Bonnevoie 
(bos: CTR = 97 and bon: CTR = 84), a neighborhood behind the railway station 
where railroad workers used to live and which today is generally a cheap but decent 
area. At the same extreme we find Hamm (ham: CTR = 103), a formerly rural area 
with an industrial past rooted in the last century and a large workers' colony built 
before World War II. At the other extreme of the axis, we find the two polling wards 
of the Limpertsberg (lih: CTR = 107 and lic: CTR = 102), as well as Belair (bel: 
CTR = 99), some very pleasant neighborhoods with many small family houses near 
the center, an agreeable but expensive area. Thus this first axis represents the rich- 
poor hierarchy of the neighborhoods, which can be confirmed by the positions of the 
other polling districts. 

While this axis identifies the local roots of the different parties, which are also 
their socioeconomic roots, it also appears to reproduce the classical left-fight spec- 
trum, at least for the parties that are well represented on this axis. One exception is 
the "National Bewegong" (NB: COR = 657), a fight-wing, nationalist party that can 
be identified as getting its votes from the same working class, "leftist" neighborhoods 
as the socialists. One of the extremes on the bottom of the first axis is taken by the 
voting district "Fondation Pescatore" (pes). This is a very small bureau situated in an 
old people's home, where the overwhelming majority of the voters are the inhabitants 
of this residence. The extreme position of this point reflects the exceptional success 
of the Christian democrats in this bureau, where they won 55% of the votes. 

Axes two and three (Figure 2) have almost equal contributions to the total inertia 
(13.9% and 13.6%). We have plotted all parties, but only the wards that are well 
represented in this display (COR2 + COR3 > 500). 

Along axis one, both the communist and liberal parties were not well represented 
(CO: COR = 159 and LP: COR = 187). However, both parties have a high contribu- 
tion to axis two (LP: CTR = 297 and CO: CTR = 326) and are situated on the same 
side, which suggests that they share some common strongholds. At first sight this 
seems paradoxical. But the districts Clausen, Bisserwee, and Pfaffenthal, which are 
well represented on this axis (cls: COR = 569, bis: COR = 557, paf: COR = 571), 
do indeed have a common characteristic: they are situated in the Alzette valley, 
which is populated by modest families, often considered more subproletarian than 
workers. Their adherence to the liberal party reflects the small jobs they hold at the 
lowest levels of the municipal services and may also express their protest against the 
larger established parties. But this is only one element shared by the electorate of 
the communist and liberal parties. Axis three differentiates these two parties, as we 
find the communist party at one side (CO: CTR = 169) and the liberal party (LP: 
CTR = 230) and the rural protest party (AD: CTR = 204) at the other. 

It is interesting to note that the two ecologist parties seem quite distinct in the 
factorial space: although they are both on the political fight on the first axis, the 
GAP is closer to the center than the GLEI. On axis two they have roughly the same 
position, but on the third axis the GLEI is on the same side as the liberal party, while 
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Figure 2: List votes for 8 parties and 31 wards. Two-dimensional display (axes 2 
and 3). 

the GAP is on the same side as the communist party. So we can assume that they 
have somewhat different electorates. 

4 The Personal Votes 

So far, we have considered only party list votes. But as we said at the beginning, list 
voting is only one possible way of voting in Luxembourg. In Luxembourg City, of 
the 28, 412 valid ballots counted, 41% were completed using some sort of panachage. 
In all, there were 212 candidates on 12 lists. However, we will limit ourselves to the 
eight largest parties, who put forward 168 candidates and who received 98.5% of all 
votes. 

To investigate the phenomenon of panachage, we can analyze two different 
168 x 31 matrices. Each cell corresponds to the votes one of the 168 candidates 



166 Chapter 13. The Cloud of Candidates. Exploring the Political Field 

gained in one of the 31 polling districts. The first data set considers only the personal 
votes, and the second also includes the list votes. 

There was a total of 227,075 personal votes. The sum of each row represents the 
total number of personal votes obtained by a candidate. For instance, the candidate 
who received the most personal votes is Jacques Santer, the former prime minister 
of Luxembourg, with 10, 497 votes. At the other end of the distribution we find an 
unknown candidate of the right-wing party with 38 personal votes; the median for 
the 168 candidates was 400 votes. 

Turning to the list votes, there were 15, 513 list votes given to the eight parties, 
summing to 15, 513 X 21 individual votes that can be distributed equally to all the 
candidates of the relevant list. We call the sum of the personal votes and the distributed 
list votes the total votes for a candidate. For example, as the Christian democratic 
party, to which Jacques Santer belongs, had 4378 (X21) list votes to distribute, 
Jacques Santer had 10, 497 + 4378 = 14, 875 total votes. 

The panachage system is especially criticized by politicians bound to the party 
organization, who like to disparage panachage as an immature habit consisting of 
haphazardly spreading votes on disparate candidates. If this were true, there would 
be no systematic pattern to the voting results. But our CA of the personal votes 
established the contrary: the first axis, with its contribution to the total inertia of 
26.3%, can be identified as the same opposition between working class areas and 
wealthier neighborhoods found in the analysis of the list votes. In fact, the overall 
structure of the 31 wards was practically identical to the structure revealed in Figure 1. 
This shows, therefore, that voting behavior according to the panachage system follows 
the same logic as list votes. In fact, a direct investigation of a sample of polling 
cards (CRISP, 1989) revealed that the normal behavior of the panachage voter is to 
concentrate his or her votes on one or two parties. Often, one party gets the majority 
of the votes, while a few remaining votes are cast elsewhere. Although we have only 
aggregate data in the 168 X 31 matrix, we can confirm the results of the CRISP 
research. For instance, candidates that often gained panachage votes on the same 
ballot according to the study cited are close in the factorial space. As a rule, the 
row points of the candidates are attracted by the column points of the districts where 
their party has its strongholds. Exceptions to this rule can often be explained, as can 
be shown by an almost caricatural example. Thrid Stendebach of the liberal party 
has an atypical position in the socioadministrative space: he is clearly situated in the 
direction of working class neighborhoods and finds himself together with candidates 
of the socialist party and the national movement. The results show that, unlike the 
rest of his party, he obtains his personal votes in this area. In fact, he is well known 
in this neighborhood, where he owns a garage and has won the esteem of the locals 
as a former football player. 

We shall not concentrate on this CA, as the next consists of its superposition 
with the CA of the parties presented in Section 2. By the way the matrix of the total 
votes is defined, the candidates of a party are represented by points that are weighted 
averages of the points representing the personal and list votes gained by the party. 
The data set of total votes is clearly structured, because the 21 candidates of each 
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party have gained the same list votes in each case. Therefore it is not surprising that 
the inertia for the first axis is 44.5%, a value near that of the CA for the list votes. 
We will present the CA of the total votes by two charts: Figure 3 representing axis 
one and Figure 4 representing axes two and three. The cumulated percentage of the 
inertia of these three axes is 65%. 

Figure 3 shows the first axis vertically with the labels in a rather unusual format. 
The 31 polling wards appear on the left side of the plot and the 168 candidates on the 
right. The points are symbolized by triangles pointing to their coordinates on the first 
axis. The labels on the left have been shifted horizontally to improve readability, as 
before. On the right-hand side the candidates of each party have been aligned under 
the denomination of their party. Two sorts of supplementary row points have also 
been added: the total votes gained by the 21 candidates of each party are represented 
by empty squares and the sum of the list votes of each party is represented by a solid 
square. 

Note that the first axis reveals the same left-right opposition that we found for 
the first CA, with the 31 polling wards in about the same order. The socialist party 
candidates are the most stretched out on this first axis. In fact, this shows that the 
candidates of this party belong either to a "worker" faction or to a circle of social- 
liberal lawyers and intellectuals, partly from the leading citizens of the town. As 
the latter group draws their personal votes from the bourgeois neighborhoods, these 
points are attracted by the clouds of the Christian democratic and liberal candidates. 

Comparing the two sorts of supplementary points (the sum of all votes won by 
a party and the sum of the list votes won by that party) shows the different local 
origins of the parties. The greater the distance between these two squares, the more 
candidates of the given party gain their personal votes out of the party strongholds. 
This is especially true for the socialist party. The general shift toward the wealthier 
neighborhoods seems to indicate that panachage is more frequent in these areas. 

Figure 4 presents all the row points (i.e., the 168 candidates) each symbolized by a 
point. The 21 candidates of each party are surrounded by a convex hull. The acronyms 
of the eight parties have been added to identify the eight separate candidate clouds. The 
column points are displayed with the height of the labels proportional to the quality 
of representation on the two axes shown. The advantage of this pseudoperspective 
plot is illustrated by the position of Beggen (beg) on the far left: even though it is 
very close to axis two, it is at some distance to the other axes that are not represented. 

Axis two opposes the candidates of the communist party on the fight to the 
candidates of the ecologist GLEI and the poujadist ADR on the left, while the third 
axis opposes some Christian democrats at the bottom to some candidates of the liberal 
party at the top, relativizing the overlapping of these two clouds of points on axes one 
and two. This is due to the exceptional performances of some Christian democrats at 
the bottom of the graph in Rollingergrund (rol) and Muhlenbach (mul) and to a lesser 
extent in the "Fondation Pescatore" (pes). 

Axes two and three confirm in some sense what we have seen for the parties in 
Figure 2: once again the voting districts of the Alzette valley (cls and bis on axis two 
and paf on axis three) have a high contribution to the definition of these axes and 
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many candidates of the communist party and some of the liberal party are attracted in 
their direction. On axis two we have an overall shift to the left of the supplementary 
points, that is, toward the more "bourgeois" neighborhoods, which confirms the result 
for axis one. 

5 The Panachage Capital 

Our mapping approach can uncover many examples in which the personal reputation 
of the candidate or even the presence of his or her family in a certain neighborhood-- 
whether in the present or in the pastmhas a great influence on the voters. Apart from 
regional or local affinities, there are other strategies used by candidates to obtain 
panachage votes. These range from traditional political activities to attending spe- 
cific, clientele-like groups or to participation in sports and the like. Sometimes, such 
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activities, although they are not on a local level, are reflected in the socioadminis- 
trative space: for instance, if a candidate is famous for a certain popular sport, like 
Stendebach, his panachage votes will probably come from more working class wards. 

Certainly, the CA map of the polling results is not a photograph of the political 
field, but it represents the starting point for the construction of the political field. 
Appealing to the general laws of fields (Bourdieu, 1980) and the specific aspects of 
the political field (Bourdieu, 1981), we could combine our CA with other quantitative 
and qualitative work to construct the political field, that is, to identify the agents, the 
factors of differentiation, the distribution of the various forms of capital, and, most 
important, the specific capital of this particular field. 

CA emphasized the central role played by panachage in the political field in 
Luxembourg. The divergence of individual candidates from the barycenter of their 
party cloud required an explanation. This led us to consider the different strategies that 
candidates adopt to gain personal votes and helped us to understand how the political 
field is influenced by these strategies. We identified panachage capital as the specific 
capital of this particular field. The capacity of a politician to attract personal votes 
can even decide the composition of the government, as this traditionally consists of 
the candidates who won the most personal votes. As our analyzes have demonstrated, 
influential statesmen have a large proportion of interparty panachage votes. This 
confirms the existence of a large, state-supporting electorate and partly explains the 
success of a policy aimed at consensus politics. In fact, since World War II, the three 
major parties (the Christian democratic party, the liberal party, and the socialist party) 
have alternated in two-party coalitions. The smallness of a country that counts only 
400,000 inhabitants is a fundamental characteristic of Luxembourg society and the 
panachage capital is a logical transposition of this smallness to the political field. 

Software Notes  

CA and the graphics of this contribution were produced with CORA-library, a set 
of S-Plus functions written to perform computer-aided interpretation of CA. Further 
information is available from the author. 
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Normative Integration of the 
Avant-garde? Traditionalism 
in the Art Worlds of Vienna, 
Hamburg, and Paris 

Christian Tarnai and Ulf Wuggenig 

1 In troduc t ion  

Contemporary fine arts is a field largely unexplored by sociology. One of the factors 
that impeded research was a distrust of sociology on the part of many people in the art 
world, who see the social sciences as disciplines "bent on depriving art of its sacred 
status" (Moulin, 1987, p. 3). 

In the nineties, however, there emerged a neoconceptualist movement that shows 
a critical attitude in the manner of sociology. This movement around avant-garde 
artists based in New York such as Andrea Fraser, Clegg & Guttman, Cristian Philipp 
Miiller, and Ren6e Green emerged in leading institutions of the international art world 
in 1993, for example, in the 45th Biennale of Venice and the Whitney Biennial in 
New York, and was soon labeled "contextual art" (Weibel, 1994). Contextual art, 
which was a kind of fad in the art world up to 1995, explores the artistic field and its 
institutions. Some of these "artist-researchers" even directly borrow methods from 
the social sciences, for example, interviews, questionnaires, and photo elicitation 
method (see von Bismarck et al., 1996). 

This artistic movement created a climate more favorable for doing sociological 
field research in the world of visual art than ever before. It is the background for our 
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empirical study, which explores habits, preferences, and value orientations of people 
who belong to this social world. 

The empirical investigations took place in three well-known cities of the West. 
One is Vienna, the former center of the Habsburg monarchy, which has a long 
tradition in the arts. It is famous for its turn-of-the-century art nouveau modernism 
and notorious for its actionist art in the sixties, which--from a sociological point 
of viewmwas perhaps the most deviant and radical art movement the world had 
seen in this century. The second is Hamburg, the second biggest city of Germany, 
which is nearly the same size as Vienna. Hamburg is widely known as a center of 
trade and commerce. In the more recent past Hamburg postmodernized in a rather 
quick way, extending its media, entertainment, and service sectors and also building 
up an institutional structure for showing contemporary visual art, the "Kunstmeile," 
which is now one of the most important in Europe. The third is Paris, the city where 
the "dealer-critic" system emerged at the end of the last century (White and White, 
1993). It was the center of aesthetic modernism up to the fifties. At this time New York 
"stole the idea of modem art"(Guilbaut, 1983) and Pads began to lose its position 
as a center of artistic production. Pads, however, remained one of the world's most 
important places for the distribution and consumption of art (see Moulin, 1992). 

The study is based on random samples of visitors at important exhibitions with 
international contemporary art in these three cities in 1993 (Vienna), 1993-94 (Ham- 
burg), and 1995 (Pads). These exhibitions, such as the show "The Broken Mirror" 
curated by Kasper K6nig and Hans Ulrich Obrist and presented in Vienna as well as 
in Hamburg, attracted a public of specialized insiders (artists, critics, curators, and 
dealers), as well as a general art public, which to a high proportion is an intellectual 
and academic population. Comparability between exhibitions is, of course, always 
a problem. We tried to solve it by concentrating on the same kind of art and on 
institutions that stand in a relation of homology. Comparability was improved by the 
fact that one of the exhibitions was shown in Vienna as well as in Hamburg. Thus, 
about half of the sample in Hamburg and about a third of the sample in Vienna were 
taken at the same exhibition. In Pads, the curator Obrist, who cocurated "The Broken 
Mirror," was also responsible for the show "1 - 1 = 2" of Fabrice Hybert in the 
ARC, the department of contemporary art of the Musde d'Art Moderne de la Ville de 
Paris, where our investigation took place. 

It has to be emphasized that our study is not representative of the whole field 
of contemporary art. Verger (1991) demonstrated empirically that one of the field's 
main oppositions is the contrast between the national and the international market. 
Our study refers to the international market only. The economists Rouget et al. 
(1991) subdivide the field from a somewhat different perspective, which is more 
in line with Bourdieu's (1996, p. 141 ft.) distinction between autonomous and het- 
eronomous production and consecrated and (as yet) nonconsecrated art. They suggest 
four submarkets, each with its own laws. With regard to this theory of art market 
segmentation, the study is aimed at the group of people who produce, broker, buy, 
or sell the art of the submarket termed the "market of the mediated avant-garde" or 
who at least are attracted by this kind of art to the extent that they go to exhibitions in 
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galleries or public institutions. It is the market about which the bourgeois press and 
the specialized art journals write the most, the part of the dealer-critic system where 
artists of"high visibility" (Moulin, 1996, p. 160) are struggling for status after death, 
that is, a place in international art history. 

Samples of the visitors at the exhibitions in the three cities were approached 
and asked to participate in the research. The questionnaires were completed at home. 
Compared with past experience, the response rates for the largely standardized in- 
struments were relatively high. They amounted to 42% in Vienna, 55% in Hamburg, 
and 36% in Paris. The samples were restricted to Austrians, Germans, and French in 
the three respective cities: n = 616 in Vienna, n = 583 in Hamburg, and n = 358 in 
Paris. 

We use latent class analysis (LCA) to reduce the complexity of the manifest 
attitude space, to test the ordinality of the response format of the attitude items, and 
to differentiate between subgroups, for whom the items have different meanings. 
Correspondence analysis (CA) is also used to explore in a visual way whether some 
assumptions about associations between social positions in the art field and value 
orientations are valid. Both LCA and CA lead to visualizations of results, which can 
be communicated to members of the social worlds we are investigating. 

DiMaggio (1996) drew on the General Social Survey (GSS)of 1993 of the NORC 
to test the hypothesis that visitors to art museums have the same social and political 
attitudes as everyone else. Even on the basis of a highly inclusive definition of the 
boundaries of the art world (historical, modem and contemporary art, avant-garde 
and commercial art, self-report of art participation), it turned out that the art public 
generally takes more politically liberal positions and is significantly more secular, 
more tolerant of nonconformists, and more open to other cultures and lifestyles. 

In our research we are interested in a similar question, restricted to the much 
smaller world of contemporary art and to the intemal differentiation of that field. With 
regard to internal social differences, a distinction between "center" and "periphery" 
is often drawn in art criticism as well as in economics and sociology of art (Frey and 
Pommerehne, 1989; Anheier et al., 1995). If an avant-garde subculture still exists, 
the values and preferences that are thought to be constitutive for the social system of 
avant-garde art, for example, individualism, antitraditionalism, moral agnosticism, 
antieconomism, should be clearly more widespread in the "center" than in the loosely 
involved "periphery" of the art field. Bourdieu (1993) refers to the center of the field 
and not to the general public when he underlines the ascetism, the moral agnosticism, 
and the negation of bourgeois and petit bourgeois values and tastes. The same is 
true of Bell's (1976) descriptions of the radical individualism, the hedonism, and 
the hostility toward bourgeois values of postmodernist art and culture. On the other 
hand, if it is true that producers and mediators of avant-garde art are also socially 
integrated and conformist to the extent that writers such as Gablik (1985) or Crane 
(1987) assume, differences in value orientations between center and periphery should 
more or less have vanished. 

In this context we will concentrate on one of our scales developed to represent 
value dimensions, in order to judge these controversial assumptions on an empirical 
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basis. This scale, labeled "traditionalism," consists of six items referring to tradi- 
tional bourgeois and petit bourgeois social values and symbols of status. Four of 
the items represent such communitarian or altruistic values as partnership, children, 
religion, and nation in the sense of Durkheim (1961), and the other two items refer 
to mainstream status symbols, the importance of owning an apartment or house and 
of owning a car. Persons high on individualism and with antibourgeois tendencies 
should identify less with these values and objects. 

The specific question referring to basic value orientations posed to the art publics 
of Vienna, Hamburg, and Paris was: "What makes life worth living? What do you 
find especially important and what less important?" The six items of the traditional- 
ism scale read as follows: "Having children," "Having a strong religious conviction," 
"Having a motherland," "Involvement in a partnership," "Owning an apartment or 
house," and "Owning a car." For each of the six items the three art world samples 
were asked to rate importance on a four-point Likert-type scale with four categories: 
(1) very important, (2) fairly important, (3) fairly unimportant, and (4) totally unim- 
portant. 

2 Latent Class Analysis 

Latent class analysis is used to identify subgroups of persons, called classes, who are 
homogeneous in their value structures (see, for example, McCutcheon, 1987b, and 
Chapter 32). LCA for ordinal data, an extension of the pioneering work of Lazarsfeld 
(1950) and an integration of latent trait and latent class models by Rost (1988a, 
1988b), opens the possibility of checking to what extent the gradations of the four 
response categories of the six items of the traditionalism scale are interpreted in the 
same way. 

The basic concept of LCA for ordinal data is the concept of thresholds. A 
threshold is the point at which the probability of two adjoining response categories 
is equal. The category probabilities are parameterized by the thresholds. A high 
response probability corresponds to a large difference between threshold values. 
Different models are distinguished by their restrictions on the thresholds. We use 
the program LACORD (Rost, 1990) to estimate the threshold parameters and also to 
search for the appropriate number of classes. 

Ordinality of the manifest response categories is given empirically if the esti- 
mated thresholds are ordered. Similarly, the latent classes can be ordered if a rank 
order is observed for all items between the classes. LCA was applied to the individ- 
uals with no missing values on the six items of traditionalism, leading to reduced 
sample sizes of Vienna, n = 501; Hamburg, n = 524; and Paris, n = 306. 

On the whole, the results show a remarkable similarity for the art worlds of 
Vienna and Hamburg. For both samples the method identifies three latent clas- 
ses, whereas for Paris only two classes are identified. Figure 1 gives the expected 
scores in each class for the six items as well as the item means in each of the three 
samples. 
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Figure 1: Traditionalism in the art worlds of Vienna, Hamburg, and Paris. Profiles of 
expected values. Latent class analysis (n = 1311). 

Figure 1 shows that the expected item scores for all classes in each of the three 
samples have the same order across all six items of the scale. This means that the 
classes themselves are ordinal. Thus for the art worlds of Vienna and Hamburg it is 
possible to speak of these classes as being characterized by "high" (I), "middle" (II), 
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Figure 1: (continued) 

and "low" (III) traditionalism. The sizes of the latent classes, which are estimates of 
the proportions in the populations, are given as percentages in Figure 1. The class 
sizes are rather similar in both art worlds. The largest groups are those with low 
traditionalism. The Vienna art world is characterized by a larger "middle class" of 
traditionalism than the art world of Hamburg (35.4% vs. 28.5%). Both latent middle 
classes display a profile that is similar to the profile of the manifest item means. 
The class with low traditionalism, which represents best the values ascribed to the 
avant-garde by Bourdieu or Bell, is a bit larger in Hamburg than in Vienna (42.3% vs. 
38.3%). The rank order of the expected mean scores for the six items is approximately 
the same in the three cities, the only differences lying in the ordering of the two least- 
valued items in all three art worlds, nation and religion. In Vienna and in Paris nation is 
valued higher than religion; in Germany the reverse holds true. With regard to Austria 
and Germany, these differences may reflect the divergent political reactions of the 
two countries to the experience of National Socialism, which also had far-reaching 
implications for the reconstruction of the art systems in these countries. Germany 
was decentralized and national identification deemphasized, whereas in Austria the 
political parties in power tried to construct a new national identity especially in 
contrast to the former widespread German one. The biggest difference between the 
two art worlds of Vienna and Hamburg is the degree of national identification. In 
Vienna, the importance of nation in the middle class, II, is as high as in the high- 
traditionalism class I of the Hamburg sample. In a similar but less pronounced manner, 
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this is also true for holding a strong religious conviction and for owning an apartment 
or house. 

In Paris the group with low traditionalism (II) amounts to nearly two thirds of 
the art world (65.4%). In comparison with the low-traditionalism groups of Vienna 
and Hamburg, there is no difference with regard to partnership or car. Children and 
ownership of a house or apartment, however, are clearly more important for the 
low-traditionalism group in Paris. On the other hand, religion is even less important. 
It nearly reaches the extreme value of 4 ("totally unimportant"). Identification with 
the "motherland" is extremely unpopular in this group as well. In this respect, the 
difference from Vienna is stronger than that from Hamburg. Since this group is much 
larger in Paris than in Vienna and Hamburg, one of the main differences between the 
French- and the two German-speaking art worlds is the greater number of persons 
who do not identify at all with religion, nation, the church, and the state. Group I, with 
high traditionalism, is also different from the high-traditionalism groups in the other 
art worlds in being less traditional with regard to partnership, children, car, nation, 
and religion. The group in Paris, characterized by a higher degree of traditionalism, 
is less conservative than group I in Hamburg and group I in Vienna. LCA shows 
that the Paris art world is much more homogeneous with respect to social values and 
symbols of status than those of Hamburg and Vienna. 

3 Results of Correspondence Analysis 

Statistical models imply a certain philosophy of the social, of action, and of causality. 
CA is a method that, as Bourdieu (1991, p. 277) put it, "thinks" in relations. CA is 
especially attractive for our purposes, because it allows us to represent and explore 
the relations between social positions and value orientations in a graphical way at a 
low level of abstraction. Apart from the study of the basic relations between center 
and periphery with regard to high, middle, and low traditionalism, the inclusion of 
secondary factors that might differentiate between the value orientations (e.g., center 
and periphery in a geographical sense) is possible. The rows of the tables analyzed by 
CA are the latent classes identified by LCA and our additional group reincorporating 
respondents who gave no answer to one or more of the attitude items. Thus there are 
four rows in the case of Vienna and Hamburg and three rows for Paris. 

The column variable in our analyses is based on the four categories combining 
two dichotomous measures. One refers to the social position in the art world. We 
differentiated between social center and periphery on the basis of a question that asked 
how intensively one is occupied with contemporary fine arts. Those who responded 
"almost every day" were classified as center, the rest as periphery. The validity of this 
measure was tested with the help of many indicators, such as being an artist, having 
studied fine arts, having many artists as friends, or attending many openings. All these 
indicators turned out to be highly correlated with that measure. The other variable 
differentiates those living in the city where the exhibition was shown from those 
coming from outside. Exhibitions of international art attract not only local residents 
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but also visitors from all over the country. The proportions of those coming from 
outside (but from the same country) amount to about a third (34.6%) of the audience 
in Vienna, to 39.5% in Hamburg, and to 38.8% in Paris. 

The proportion specializing in contemporary art and thus classified as center is 
lowest among the local residents of Hamburg (22%) and the highest among the local 
population of Paris (46%), with the Viennese in between (30%). The proportions of 
the center persons among the external visitors are 34% for Hamburg, 24% for Vienna, 
and 39% for Paris. Thus, in Paris and Vienna there are more professionals among 
the locals, whereas for Hamburg, which has no comparable position of structural, 
strategic, and cognitive dominance in the country (see DiMaggio, 1993, p. 195 ft.), 
this relation is reversed. 

The CA visualization can be enriched by the inclusion of supplementary points 
(e.g., Greenacre, 1993a, p. 96 ft.). Thus, in addition to the four general social positions, 
we consider four special art world groups as supplementary points: artists, art critics, 
curators, and collectors. Most of the members of these groups belong to the center 
of the art world. Because they represent the spheres of production, distribution, and 
consumption of art, or, in a different theoretical frame, the fractions of cultural capital 
(artists, critics, curators) and of economic capital in the field of art, some differences 
between them on the level of value orientations are to be expected. Bourdieu's 
theory of the homologies of social position, habitus, attitudes, signs, and practices 
(Bourdieu, 1984, p. 128 ft.) implies that the cultural capital groups should identify less 
with traditional values than the collectors. In social space most collectors represent 
the art-consuming part of the class fractions with high economic capital. 

The biggest of these groups is the artists. The cumulative sizes of the four art 
world groups selected reveal the high degree of self-referentiality of contemporary 
art in a social sense. Consumers are at the same time producers and mediators of art 
to a high extent. Seen from a comparative perspective, the Paris audience with these 
four groups constituting 52.2% of the total sample is clearly the most specialized 
and the Hamburg audience with 28.5% the least (Vienna, 36.2%). The position of 
Paris corresponds to Fleck's (1996, p. 25) description of the Paris art field as a 
"self-referential system" and a scene "nearly exclusively turning around itself." The 
percentages for the single groups are: (1) artists: Hamburg 16.9%, Vienna 20.2%, 
Paris 24.6%; (2) collectors: 2.9%, 5%, 10.5%; (3) art critics: 3.8%, 6.7%, 8.7%; 
(4) curators: 4.9%, 8.8%, 8.4%. Collectors we term the small self-defined part of 
the buyers of art in the audience who indicate that they are buying art objects not 
spontaneously or temporarily only but in a systematic way in order to build up a 
"collection." 

3.1 The Art World of Vienna 

Figure 2 refers to the Vienna art world. It is a symmetric display based on a simple CA. 
The four social positions in the art worldmVienna and center in the art world (labeled 
VIENNA CENTER), Vienna and periphery in the art world (VIENNA PERIPHERY), 
other Austrian cities and center in the art world (ELSE CENTER), and other Austrian 



3. Results of Correspondence Analysis 179 

Active column points: 

[] SOCIAL POSITIONS 

Active row points: 

[] Classes I-III of traditionalism 
o No answer 

Supplementary  column points: 

/~ Art world groups 

middle 

-0.5 high [] II 
I [ ] I  

[] ELSE 
PERIPHERY x7 

collectors ELSE [] 
CENTER 

~2 = .011 (14.7 %) 

0.5 

VIENNA PERIPHERY critics 

low traditionalism 
[] III 0.5 

I 
v v 

~L 1 = .061 (84.6 %) 
curators artists 

VIENNA CENTER 

o no answer 

-0.5 

Figure 2: Correspondence analysis of traditionalism (three latent classes) with center 
and periphery of the art world in Austria (Vienna vs. else). First and second axes, 
99 .3% of  t o t a l  i n e r t i a  r e p r e s e n t e d  ( V i e n n a  1993,  n = 616). 

cities and periphery in the art world (ELSE PERIPHERY)mare represented as black 
squares. High, middle and low traditionalism are represented as white squares with 
numbers corresponding to the labeling in Figure 1, and "no answer" is indicated by 
an empty circle. The four art world groups projected in as supplementary column 
points are represented by empty triangles. 

Nearly all the total inertia is represented in the plot. The first axis is much more 
important than the second, explaining about 85% of the total inertia. The first axis is 
determined on the left side by high traditionalism (CTR = 0.36) and on the fight side 
by low traditionalism (CTR = 0.54), thus showing the opposition between high and 
low traditionalism in which we are mainly interested. Correspondingly, both groups 
of visitors living in the Austrian provinces are situated on the left side, opposing the 
Viennese visitors on the fight side. That means that center and periphery matter in 
a social as well as in a geographical sense; the effect of center versus province is 
stronger than the effect of center versus periphery of the art world. Within the two 
geographical groups, the center art world subgroups are both farther to the fight in 
the direction of low traditionalism, especially VIENNA CENTER. 
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The projection of the four special art world groups shows that groups with high 
specific cultural capital are situated on the fight side of the first axis, tending toward 
low traditionalism, whereas collectors are on the left side, where traditionalism is 
high. In their value orientations collectors are similar to nonspecialized visitors from 
the province. Curators, artists, and critics represent the low degree of traditionalism 
characteristic of the center of the Viennese art world. Among them, art critics are the 
least traditionally orientated group. Curators and artists in the Austrian art world are 
"neighbors," indicating a high degree of similarity with regard to traditionalism. 

3.2 The Art World of Hamburg 

In the Hamburg sample (Figure 3), again almost all of the inertia is represented by 
the first and second axes. It also shows the contrast of high and low traditionalism. 
On the left side it is strongly determined by high traditionalism (CTR = 0.73) and 
on the fight side by low (CTR = 0.18). An important difference from the Vienna 
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Figure 3: Correspondence analysis of traditionalism (three latent classes) with center 
and periphery of the art world in Germany (Hamburg vs. else). First and second axes, 
97.9% of total intertia represented (Hamburg 1993-94, n = 583). 
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sample concerns the amount of variation in the data. In the Austrian sample the inertia 
explained by the first and the second axes amounts to 0.072, in the German sample 
only to 0.016. This indicates that the associations in Hamburg are much weaker than 
in Vienna. 

Otherwise, the basic results are quite similar, with the center of the Hamburg 
art world on the side of low traditionalism, a greater contrast being between the 
geographical groups, and, as in Austria, the differences between center and periphery 
in the art world more pronounced among those living in the city. 

Considering the supplementary art world groups, there are signs of inhomogene- 
ity of the center again, in this case explaining the low associations between center 
versus periphery and value orientations. Collectors are clearly the most traditional 
group. In contrast to Vienna, critics and curators do not differ much from the average 
of the members of the art world. Only among artists is traditionalism low. 

3.3 T h e  Ar t  W o r l d  of Paris 

For Paris, represented in Figure 4, all the inertia is explained, because the data are 
two-dimensional. The first axis explains 95.8% of the inertia, but its value (0.014) 
is nearly as small as in Hamburg. This axis, however, is determined not by one of 
the latent classes of traditionalism but by the group "no answer" (CTR = 0.83). 
The tendency not to respond to all six attitude items is highest among the specialized 
individuals living in Paris. There is nearly no differentiation of value orientations with 
respect to social position in the art world, apart from the tendency to express these 
clearly in a questionnaire. The "no answer" proportions are higher among artists and 
collectors than among curators and critics. 

The second axis shows a very small difference between low and high tradition- 
alism. In contrast to Vienna and to Hamburg, in Paris the collectors are not the group 
that shows the highest degree of traditionalism. It comes perhaps as a surprise as 
well that artists in Paris are not less conservative than the average of the members 
belonging to the "community of taste" (Becker, 1986, p. 76). Fleck (1996, p. 25), a 
well-informed art critic, in his report on the Parisian subfield that we investigated, 
hints at processes of "self-provincialization" in the Paris art world since the end of 
the eighties due to state intervention, which might partly explain these results. 

4 Conclus ion 

The assumptions, mainly based on the American experience, regarding the assimila- 
tion of the artistic and intellectual milieu of avant-garde art to the values of the "middle 
class" Crane (1987) or to the "predominant values" Gablik (1985) were reformulated 
and applied to three European art worlds. Whereas the assumption of a dissolution 
of the boundaries between art and society is clearly refuted by DiMaggio's (1996) 
analyses of the GSS data in the American case, we found mixed evidence concerning 
the internal differentiation of the European art worlds. Our findings show that Vienna 
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Figure 4: Correspondence analysis of traditionalism (two latent classes) with center 
and periphery of the art world in France (Paris vs. else). First and second axes, 100% 
of total inertia represented (Paris 1995, n = 358). 

is still characterized in its center by the individualistic and antibourgeois tendencies 
described by Bell and Bourdieu, for example. On the other hand, social position does 
not differentiate the Paris art world in this respect. In view of the small weight of the 
vertical distances between center and periphery in the Paris sample, the hypothesis 
that the center of the art world forms a subculture, in which Durkheimian egoism is 
much higher and negation of communitarian bourgeois values and mainstream status 
symbols is much lower than in the groups much less involved in art could not be 
confirmed in any convincing way. 

The Hamburg art field is neither as strongly differentiated as the Vienna field nor 
as homogeneous as the field of Paris. The basic associations about differences between 
center and periphery are supported by systematic distinctions in value orientations 
among special art world groups. The opposition between cultural and economic 
capital in the field of visual art, emphasized by Bourdieu, is still characteristic for the 
Hamburg art world, at least when producers and economic appropriators of art are 
considered. Art mediators (critics and curators) in that social world, however, do not 
differ from the average. 
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What can be learned from our findings is that specifications of the "death of 
the avant-garde" proclamations according to social and cultural context are of great 
importance. One reason for the differences found might be that the German and the 
French art worlds show more features of postmodernism, with traditional "symbolic 
boundaries" (see Lamont and Fournier, 1992) being eroded to a higher extent than 
in Austria, which culturally is a rather conservative country. Another reason might 
be connected to the histories and the structural frames of the art worlds themselves. 
Whereas in Austria the central state intervenes heavily in the art system, in Germanym 
because of the experiences with National Socialist cultural centralism--state funding 
as well as control of the visual arts is still rather negligible. Because especially in 
Vienna much public money goes into the arts, Austrian artists and their constituencies 
are public persons much more under social and mass media control than those in 
Germany. The history of Austrian avant-garde art after World War II is also a history 
of artistic scandals and revolts against bourgeois society--from Viennese activism 
in the sixties, to criticism of the actions of former President Kurt Waldheim and the 
restrictive immigration laws of the nineties (e.g., "Art and Politics," an exhibition in 
1994 in the hall of the Austrian parliament in Vienna, partly censored by the state), 
and neoactivist sexual transgressions in exhibition spaces funded by public money 
(e.g., "Jetztzeit," Kunsthalle Wien, 1994). Nothing comparable could be observed in 
the past two decades in Hamburg, an autonomous town, where the art institutions 
represent only the local community, not the central state. Thus confidence in our 
findings in this respect is enhanced by external, historical data. 

One might argue that the field of Paris is characterized by a high degree of state 
intervention, too. In Paris, however, modem art and its symbolic transgressions have 
a long history. It is much more absorbed and tolerated than in Austria, where nothing 
like the "reeducation" of Germany, including taste (e.g., the "documenta" exhibitions 
at Kassel), took place. That there are no differences between local and external visitors 
in Paris seems to be more difficult to explain. Fleck (1996) emphasizes that due to 
heavy cultural political interventions since the early eighties (the era of Mitterand 
and Jack Lang), France had constructed "the best decentralized exhibition landscape 
in Europe." This diffusion of contemporary art and its institutions all over the country 
(e.g,. the 22 FRAC--"Fonds Rrgionaux d'Art Contemporain"mand the network of 
"Centres d'Art"), which Chirac and the conservatives have begun to stop recently, 
might partly explain that the old distinction between capital and province, at least in 
the field of visual art, was not as important in the last decade as before. We conclude 
that pure social-structural explanations are relevant and fruitful but that cultural and 
historical factors have to be considered as well. 
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Software Notes 

The models of LCA for ordinal data are programmed in the computer program 
"LACORD" (Rost, 1990), available from I. R N. Kiel, Olshausenstr. 40, D-24098 
Kiel, Germany. 



Chapter 15 

Graphing Is Believing: 
Interpretable Graphs 
for Dual Scaling 

Shizuhiko Nishisato 

1 In troduct ion  

Visual display of quantified rows and columns in a joint space has been an almost 
routine procedure for data analysis. As mentioned several times in this book, there 
are three widely accepted choices of coordinates: 

1. Asymmetric mapping: standard (normed) coordinates for rows and principal (pro- 
jected) coordinates for columns 

2. Asymmetric mapping: principal coordinates for rows and standard coordinates 
for columns 

3. Symmetric mapping: principal coordinates for both rows and columns 

The first two are true joint maps in that they are visualizations of projections of 
row and column points in the same space and that column points in 1 (respectively, 
row points in 2) are at average positions of row points (respectively, column points). 
The third choice is often used for the reason that row points and column points 
have the same norm for each axis. The fourth possible choice, which uses standard 
coordinates for both rows and columns, must be rejected because joint display can 
neither reproduce input data nor reflect the relative importance of axes. 
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No matter which one of the three acceptable choices one may adopt, the ultimate 
goal of visual display must be to facilitate an interpretation of quantified outcome. 
Furthermore, the graph should be such that it enhances the meaning of the old 
adage "seeing is believing." To this end, we will consider the joint graphical display 
for dual scaling of two types of categorical data, dominance data (e.g., rank order, 
paired comparison, successive category data) and incidence data (e.g., multiple- 
choice data, sorting data, contingency tables) (Nishisato, 1993). As typical examples 
of the respective data types, we will look at rank order and multiple-choice data. 

2 An Interpretable Graph for Rank Order Data 

Coombs (1950) proposed a model for analyzing rank order data, called the unfolding 
model, in which he postulated a unidimensional continuum, called a J scale, along 
which both subjects and objects are located. The decision rule is that a subject 
ranks first the stimulus that is located closest to him and ranks the rest of the objects 
according to the order of their distances from him. In this model, a given set of objects 
ranked by a subject, called an I scale, can be regarded as the ranking of the objects on 
the continuum folded at the subject's position, called his ideal point. Depending on 
the location of an ideal point, it is easy to see that a folded continuum results in 
a different ranking of the objects. Coombs extended the underlying continuum to 
multidimensional space, leading to the problem of multidimensional unfolding, in 
which the main task is to determine subject's positions and positions of objects in 
such a way that the rank order of distances from each subject to the objects is the 
same as the ranking of the objects by that subject. 

Historically, the problem of multidimensional unfolding has been investigated by 
a number of researchers (e.g., Coombs, 1964; Coombs and Kao, 1960; Sch6nemann, 
1970; Gold, 1973; Heiser, 1981). The same problem has also been handled as a 
quantification problem of rank order data by such investigators as Guttman (1946), 
Slater (1960), and Nishisato (1978, 1994, 1996). In particular, it was noted (Nishisato, 
1994, 1996) that dual scaling of subject-by-object rank order data always recovers the 
data perfectly in the full space solution provided that asymmetric mapping is used. 
The unfolding framework can therefore be used as one in which the joint graph is to 
be interpreted. 

Following Nishisato (1978), the ranking of objects j and k by subject i is coded 
as follows: 

1 if subject i judges j > k ]  
~,jk = 0 if the judgment is j = 

- 1  if the judgment is j < 

The basic unit of analysis is called the dominance number of object j for subject i, 
eij, which is defined as the number of times object j is ranked earlier than the other 
(n - 1) objects minus the number of times it is ranked after them by subject i. For 
N subjects and n objects, the N × n dominance matrix is denoted by E, with (i, j)th 
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element 
n 

eij --- ~ fi,jk 
k=l 

In the case of rank order data eij c a n  be simplified to the following form (de Leeuw, 
1973; Nishisato, 1978): 

eij - n + 1 - 2Kij 

where Kij is the rank of object j given by subject i. 
Assuming that each element eij is the outcome of (n - 1) comparisons, the 

optimal score vector (in standard coordinates) for subjects and the corresponding 
score vector for objects on dimension k are given by 

where 

C C 
xk = - - E y  k, Yk = --ETxk 

Pk Pk 

c = Nn(n  - 1)2 

and Pk is the square root of the eigenvalue for dimension k. 
It is known (Nishisato, 1994, 1996) that only the asymmetric mapping of 

(xk, PkYk) for all dimensions k provides a perfect solution to the problem of mul- 
tidimensional unfolding and further that the existence of a perfect solution does not 
depend on the relative sizes of the number of subjects, N, and the number of objects, n. 
The last statement may be difficult to accept, considering that a number of papers 
on the problem of multidimensional unfolding have discussed the conditions under 
which a perfect solution might be obtained. Let us look at an example to see what a 
"perfect solution" means. 

Ten subjects ranked the following six plans for a Christmas party according to 
the order of their preference: 

1. Potluck in the group room during the day 

2. Pub/restaurant crawl after work 

3. Reasonably priced lunch in an area restaurant 

4. Evening banquet at a hotel 

5. Potluck at someone's home after work 

6. Ritzy lunch at a good restaurant 

Table 1 contains the 10 × 6 input data, the dominance matrix E, and the first two 
solutions, each consisting of two columns: standard coordinates of subjects and the 
corresponding positions of the six Christmas party plans in the principal coordinates. 
The first two solutions account for 72% (45% and 27%, respectively) of the total 
information. Figure 1 shows the plot of those subjects and the party plans using the 
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Table 1: Rank order data, dominance table, scores 

Data 

Subjects (rows) Objects (columns) 

Dominance table Sol. 1 Sol. 2 Sol. 1 Sol. 2 

6 1 5 4 3 2  
2 6 3 5 4 1  
6 1 5 4 2 3  
3 5 2 4 1 6  
3 4 2 6 1 5  
5 3 1 4 6 2  
1 2 4 5 3 6  
4 3 2 6 5 1  
2 1 4 5 3 6  
6 1 4 3 5 2  

- 5  5 - 3  - 1  1 3 
3 - 5  1 - 3  - 1  5 

- 5  5 - 3  3 - 1  1 
1 - 3  3 - 1  5 - 5  
1 - 1  3 - 5  5 - 3  

- 3  1 5 - 1  - 5  3 
5 3 - 1  - 3  1 - 5  

- 1  1 3 - 5  - 3  5 
3 5 - 1  - 3  1 - 5  

- 5  5 - 1  1 - 3  3 

1.06 0.84 
-0 .16 -1 .74 

1.17 1.16 
- 1.28 0.04 
-1.11 -0.08 

0.89 -0.93 
-0 .99 0.93 

0.63 -1.11 
-0 .67 1.29 

1.40 0.53 

-0.63 -0.11 
0.38 0.57 

-0.15 -0 .37 
0.24 0.17 

-0.48 0.20 
0.63 -0 .46 

Solution 2 (27%) 

II 3 

9 m 

Pub/Rest Crawl 

Pot-luck (after work) 10 

Lunch 
Lunch (ritzy) 

(reasonable) 

• Party Plans 

| Subjects 

2 

1 

1 

m 6 

8 

Figure 1 :Rank-2  approximation.  
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coordinates listed in Table 1. Solution (axis) 1 divides the parties into those that are 
expensive (ritzy lunch, banquet, pub/restaurant crawl) and those that are inexpensive 
(potluck in group room, potluck in someone's home, reasonably priced lunch), and 
may therefore be called the cost factor. Solution 2 categorizes the plans into daytime 
parties (ritzy lunch, reasonably priced lunch, potluck in the group room) and evening 
parties (potluck after work, banquet, pub/restaurant crawl), indicating the time factor. 
Considering that 72% of the total information is accounted for by these solutions, 
one may conclude that subject's rankings largely reflect those two underlying factors, 
cost and time. 

Table 2 contains Euclidean distances, calculated from Figure 1, between sub- 
jects and party plans and the rankings of these distances within each subject, which 
is referred to as the rank-2 approximation to the input ranking. Without further in- 
vestigation, the rank-2 approximation looks good, corroborating that the first two 
solutions account for a substantial amount of information. 

We can explore other possible approximations, starting with the rank-1 approxi- 
mation, using only the first solution, all the way up to the rank-5 approximation to the 
input data. Because the rank of the dominance matrix is five, the rank-5 approxima- 
tion is the highest degree we can consider. To indicate goodness of approximations, 
let us calculate the sum of squared discrepancies between the input data and the 
approximated ranks for each subject and each approximation. Table 3 shows the 
summary. It is interesting to note that goodness of the approximation shows individ- 
ual differences. For example, subject 3 needs only the first two solutions to recover 
the ranking, and subjects 8, 9, and 10 can fit perfectly in the three-dimensional space. 
Notice also that the rank-5 approximation perfectly reproduces the input ranks. In 
other words, it is a perfect solution to the problem of multidimensional unfolding. 

In conclusion, when we have an N × n rank order matrix, we can always map 
subjects and objects in (n - 1)-dimensional space or N-dimensional space, whichever 
is the smaller, in such a way that the rankings of the distances between subjects and 
objects are exactly the same as those in the input data, provided that asymmetric 

Table 2: Euclidean distances and ranking 

Distances Ranking of distances 

1.94 0.73 1.72 1.06 1.67 1.37 6 1 5 2 4 3 
1.72 1.58 1.18 1.27 1.77 0.54 5 4 2 3 6 1 
2.20 0.98 2.02 1.36 1.91 1.71 6 1 5 4 2 3 
0.67 1.75 1.21 1.53 0.81 1.98 1 5 3 4 2 6 
0.49 1.63 1.01 1.38 0.69 1.79 1 5 3 4 2 6 
1.70 2.38 1.37 1.95 1.96 1.51 3 6 1 4 5 2 
1.10 1.42 1.55 1.45 0.89 2.14 2 3 5 4 1 6 
1.61 1.70 1.07 1.33 1.71 0.65 4 5 2 3 6 1 
1.40 1.28 1.74 1.45 1.11 2.18 3 2 5 4 1 6 
2.13 1.02 1.79 1.21 1.91 1.25 6 1 4 2 5 3 
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Table 3: Sums of squares of discrepancies in ranks between input ranks and rank-K 
approximation 

Subject K = 1 2 3 4 5 

1 8 6 6 6 0 

2 42 22 6 4 0 
3 8 0 0 0 0 
4 6 6 6 0 0 
5 12 12 8 0 0 
6 14 14 4 4 0 
7 12 8 6 0 0 
8 18 14 0 0 0 
9 20 8 0 0 0 

10 2 2 0 0 0 

mapping is used. In contrast, symmetric mapping does not provide a perfect solution 
even when the inertia is comparatively high. 

When the researcher has biographical information about subjects (e.g., gender, 
age group, socioeconomic class), the mapping of subjects provides an opportunity 
to identify any clusters of them in terms of such information. Although traditionally 
many researchers may be interested only in the configuration of objects, there exists 
a definite opportunity for finding additional clues for interpreting the outcome by 
looking at joint graphs of both subjects and objects. 

As for other examples of dominance data such as paired comparisons and suc- 
cessive categories data, the same idea of the joint graph can be extended to them 
because dual scaling of those data can be formulated by handling ranking informa- 
tion or, more specifically, ordinal information contained in pairwise and between-set 
rankings (Nishisato and Sheu, 1984). 

3 An Interpretable Graph for Multiple-Choice Data 

Within the framework of Coombs' multidimensional unfolding analysis the asym- 
metric graph for rank order data, discussed earlier, can be characterized as the only 
legitimate graph. When we consider multiple-choice data, however, there seem to 
be more possibilities for choosing a graph than in the case of dominance data, and 
the problem of interpretation therefore becomes even more relevant to and important 
than that of dominance data. 

Suppose that we adopt symmetric mapping with principal coordinates, because 
this is one of the most widely used methods. With this assumption, Nishisato (1988) 
presented some 20 measures of badness of joint graphical display. Greenacre (Chap- 
ter 17) shows that the graph can be evaluated on how many items of input data are 
recovered by identifying which option in standard coordinates from each question 
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lies closest to the subject point in principal coordinates. These ideas are helpful for 
evaluating a given choice of mapping, that is, the symmetric mapping, but what 
if some of those measures indicate that symmetric graphs are problematic most of 
the time? What if asymmetric mapping, too, suffers from similar problems? What 
characteristics should a graph for multiple-choice data possess? 

In the current chapter, we will look at a different approach to an interpretable 
graph, which meets some desiderata for graphical display of multiple-choice data, as 
summarized by Nishisato and Nishisato (1994, p. 124): 

1. From the graph, we should be able to see the information contained in the data 
matrix--for example, plot subjects and response options of a given data set, and 
ask if the graph can tell you which options a particular subject has chosen. 

2. The position of each point in the graph should not be unduly influenced by the 
frequency of the data point. 

3. The space for the graph should be a well-defined one such as Euclidean space; 
overlaying two different spaces onto one is out of the question. 

What appears to be a plausible method satisfying these points is the one used in 
Nishisato (1990). Since the method is not well known, let us use a numerical example 
to introduce it, discuss its possible criticisms as well as justifications, and reassess its 
potential as an interpretable graph for multiple-choice data. 

The method considers information contained in subject's response patterns for 
graphical display. Bahadur (1961) presented a model for binary response patterns, 
in which he expressed the probability of each response pattern over n binary items 
as the sum of the item means, two-item interactions, three-item interactions, and all 
the way up to the n-item interaction. His model shows an example in which response 
patterns contain all conceivable multiway associations of the variables. To see how 
informative response patterns are, try to rearrange the rows (subjects) of the input data 
matrix in order of their coordinates on axis 1 and see a systematic change of response 
patterns as a function of the coordinates (see Nishisato, 1994, p. 159). Noting this, 
one can consider an informative graph as plotting subjects only and labeling them by 
their response patterns. 

This simple method was used by Nishisato (1990). Notice that subjects are 
plotted in multidimensional Euclidean space using principal coordinates and that the 
label of each subject tells us which options the person has chosen and which subjects 
have chosen a specific option. 

Example: Before evaluating this simple idea critically, let us look at an application 
of the method to the data in Table 4. Because there are four items with three options 
per item, one can expect 12 - 4 = 8 solutions. Of these solutions, three show a 
correlation ratio greater than the expected value, that is, 1 /n  (Nishisato, 1980, 1994). 
The correlation ratios are 0.65, 0.45, and 0.29, respectively. For illustrative purposes, 
we will examine only the first two solutions, which account for 79% of the total of 
the three values. Figure 2 shows the plots of subjects in principal coordinates in the 
two-dimensional solution. Boundaries of clusters are determined by common sets 
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Table 4: Adults '  views of children (Singapore data) 

Data 

Item 

Questionnaire Subject 1 2 3 4 

[Item 1]: 
How old are you? 
(1) 20-29 1 3 1 2 1 
(2) 30-39 2 2 1 3 2 
(3) 40 or older 3 2 1 2 2 
[Item 2]: 4 1 2 2 3 
Children today are not 5 3 1 2 2 
as disciplined as when I 6 1 3 1 2 
was a child. 7 2 1 2 2 
(1) agree 8 2 1 1 2 
(2) disagree 9 1 2 3 1 
(3) I cannot tell 10 3 1 2 1 
[Item 3]: 11 1 2 2 3 
Children today are not 12 2 1 1 1 
as fortunate as when I 13 2 1 3 3 
was a child. 14 3 1 2 1 
(1) agree 15 1 1 2 3 
(2) disagree 16 3 1 2 1 
(3) I cannot tell 17 3 1 1 1 
[Item 4]: 18 2 3 2 2 
Religions should be 19 3 1 2 1 
taught at school. 20 2 1 2 2 
(1) agree 21 1 3 3 3 
(2) disagree 22 2 1 2 2 
(3) indifferent 23 1 3 3 3 

of response patterns. In other words, the subjects in a cluster share the same subset 
of identical responses, a source of information used to maintain interpretability. 

As illustrated in Nishisato (1994), subjects who have chosen particular options of 
an i tem are distinctly and tightly clustered if the i tem is highly correlated with 
the two graphed solutions. This is clearly shown in [A] and [B] in Figure 2. Age 
groups 20-29  (1"**), 30-39  (2"**), and 4 0 +  (3***) are distinctly separated in 
[A], where an asterisk indicates a choice of any option of the corresponding item. 
Similarly, patterns (***1), (** '2) ,  and (***3) clearly partition the subjects in [B], 
indicating that those are subjects who agree with teaching of religions, disagree, and 
are indifferent, respectively. By the same token, if the item has low correlations with 
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(1"**), (2"**), (3***) 
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(1"'3), ('3"2), (21"*) 
(31"*), (21"2), (31"1) 

Figure 2: Examples of clustering response patterns. 

the two solutions, subjects cannot be cleanly clustered in terms of the options of the 
item. 

From this finding, we can go one step further and find a set of items that cluster 
subjects into comparatively tight subgroups in terms of combinations of their options, 
as shown in [C]: 

• Age 20-29 and indifferent to teaching religions (1"'3) 

• Unsure if children are less disciplined but against teaching of religions (*3*2) 

• 30-39 years of age and children are not disciplined (21"*) 

• Age 40+ and children are not disciplined (31"*) 

• Age 30-39, children are not disciplined, but are against teaching religions (21"2) 

• Age 40+, children are not disciplined, and religions should be taught (31"1) 
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These are only several of many possible examples, which include overlapping clusters 
such as (21"*), (1"'3), and (*'33), the last one overlapping with the first two clusters. 

Criticisms of this method are not so much from the theoretical point of view but 
more in terms of the implementation of the method in practice. The following are 
some of the conceivable criticisms and possible remedies for them: 

1. When the number of items is large, the use of response patterns as labels is too 
cumbersome, if not impossible. This criticism is right, and it can be mitigated by 
introducing a key consisting of a set of codes to replace long strings of chosen 
options, such as A = (12"3"11"*'5) and B = (* '33"'111"*).  

2. There are too many ways to cluster subjects in terms of their responses to a 
particular set of items. This is also fight. An alternative to the subjective clustering 
is to use a method of cluster analysis that provides an objective way to partition 
subjects into groups. 

3. The method allows one to look at two or three solutions at a time, and for higher 
dimensional solutions there are too many combinations for a single graph (e.g., 
solution 1 versus solution 2, or 1 versus 3). This criticism is fight, too. But, 
what alternatives do we have for a single graphical display of multidimensional 
solutions? To mention a few, there are Andrews curves (Andrews, 1972), the 
alternating monotone graph, the parallel graph, and the semicircular incremental 
radial graph (see examples of these in Figure 3). These graphs indeed show 
multiple solutions in the two-dimensional plane, but they are difficult to interpret 
and are typically used to depict only one set of variables, rows or columns. In 
other words, these are not for joint graphical display. It is nearly impossible to 
infer the relation between row variables and column variables, not to mention 
the communicability between the graphs and the input data. Therefore these 
multidimensional graphs are currently at best only of theoretical interest, and 
their interpretability aspect needs to be investigated further. 

4. What if there are some missing responses? As long as the number of missing 
responses is very small, say a few percent, missing responses will not affect 
the respondents' positions in any serious way. With more missing data, one 
would have to employ a method of imputation for missing responses or include 
special categories for missing responses (see, for example, van Buuren and van 
Rijckevorsel, 1992; Nishisato and Ahn, 1994; and Chapters 16 and 18 in this 
volume). 

4 Discussion and Conclusion 

We have looked at two kinds of interpretable graphs. The asymmetric mapping of rank 
order data can be extended without difficulty to paired comparison data and successive 
categories data. We often collect only ranking of objects by subjects, btrt it would 
be particularly useful to obtain some background information about the subjects and 
supplementary information about objects. For instance, consider collecting not only 
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Figure 3: Multidimensional graphs: [A] the Andrews curves, [B] alternating mono- 
tone graph, [C] parallel graph, [D] semicircular incremental radial graph• 

ranking of political issues from subjects but also information about subjects' political 
affiliations. In the asymmetric map of the political issues and subjects, we can now 
introduce a coding system that identifies the subjects' political affiliations. Similarly, 
ranked objects can also be coded to enrich the interpretations. 

We have also looked at a graph that allows us to examine the relations between 
subjects and chosen options without overlaying two spaces (i.e., one for subjects and 
the other for options). The study shows that the graph usually provides interpretable 
clusters in terms of common options that characterize them; that is, the interpretation 
comes directly from those options. One can envisage computer software that can plot 
subjects who choose individual options of a given item as well as plot subjects who 
share specified response patterns. Such a program would be useful when the graph is 
intended for exploratory investigation of the data. Our experience suggests that the 
method presented here can easily be implemented for practical use and should be 
preferred to the popular method of joint mapping in principal coordinates. 
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In concluding, let us pose a final question. Can we replace "seeing is believing" 
with "graphing is believing"? No matter what answers we may hear, let us hope that 
it should be a goal for quantification research. 

Acknowledgment 
This study was supported by a research grant from the Natural Science and Engineer- 
ing Research Council of Canada to the author. 



Chapter 16 

Interpreting Axes in Multiple 
Correspondence Analysis: 
Method of the Contributions 
of Points and Deviations 
Brigitte Le Roux and Henry Rouanet 

1 Introduct ion  

In geometric data analysis, once a "cloud" of points has been constructed, as the out- 
come of correspondence analysis (CA), for example, or principal component analysis, 
the phase of interpretation follows. This phase is always a delicate one; at this point, 
the need to fill the gap between theory and practice appears essential--a need well 
reflected in the book edited by Greenacre and Blasius (1994a). In the French tradition 
of data analysis, aids to interpretation have been devised, such as the familiar table of 
contributions and supplementary elements. The method we will present in this chap- 
ter, namely the method of the contributions ofpoints and deviations, directly extends 
the existing aids to interpretation. It stems from the following remark: in analysis 
of variance (ANOVA) terms, contributions of points to an axis are simply parts of 
variance accounted for by points. This leads to considering other parts of variance 
that are also used in ANOVA; for example, those that express contrasts among groups 
of observations. That is, it leads us to study the contributions of deviations between 
points. Indeed, all those who practice geometric data analysis are accustomed to think 
intuitively in such terms ("axis 1 opposes rich vs. poor, axis 2 old vs. young, etc."). 
From a theoretical viewpoint, the statistical interpretation of CA in ANOVA terms is 
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well known; see Fisher (1940) and Tenenhaus and Young (1985). But we feel that 
the idea deserves to be fully elaborated. 

This chapter will be devoted mainly to the first and basic phase of interpretation, 
namely that of the principal axes, in the case of multiple correspondence analy- 
sis (MCA). Henceforth we assume the data structure of a questionnaire in standard 
form; that is, there is a set of questions, together with, for each question, a set of 
response modalities (also called response categories)mincluding nonresponse when- 
ever relevantmand each individual chooses one (and only one) modality of each 
question. Then consider the following two ideas taken from nested designs in ANOVA: 

1. With each modality is associated one and only one question; in ANOVA terms, this 
means that the set of all modalities is nested in the set of questions. This prompts 
us to investigatemin addition to contributions of modalities~the contributions of 
questions to axes and also the contributions of modalities to questions. 

2. For each question, each individual chooses one and only one modality, which 
means that for each question the set of individuals is nested in the set of the 
observed modalities of the question. In other words, each question generates 
a partition of the individuals indexed by the modalities of the question. This 
suggests that we investigate the cloud of individuals and its subclouds associated 
with modalities of interest. 

The method of the contributions of points and deviations will be illustrated with 
data taken from the French Worker Survey. 

2 The French Worker Survey 

2.1 T h e  S u r v e y  

The French Worker Survey (Adam et al., 1970) was conducted in July 1969 on a 
representative sample of French workers--unskilled, specialized, and techniciansm 
using a thorough battery of 70 questions, with the overall objective of "analyzing the 
political and social behavior of the working class." 

At the time of the survey, presidential elections had just taken place, opposing the 
candidates of the four main political families, along the traditional range from left to 
fight: Communist (Duclos), Socialist (Defferre), Center (Poher), Gaullist (Pompidou, 
who won the election). One objective of the survey was to inquire about this traditional 
dimension in the specific population of workers; other objectives were to identify 
and interpret other important dimensions, possibly specific to this population. For 
instance, the communist dominance among workers was beyond doubt (although 
already on the decline), but the influences and roles of the noncommunist left and 
of center were not so well delineated. Also, what needed to be clarified were the 
relations and interplay between political attitudes and attitudes toward trade unions. 
The leading trade unions were the CCT (with notorious links with Communist party), 
thenmfar behind---CFDT, FO (both loosely linked with the noncommunist left), and 
"autonomous" (inclined toward fight wing). 
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Table 1: The four basic questions and their relative frequencies 

Professional elections (ql). In professional 
elections in your firm, would you rather vote 

Union affiliation (q2). At the present time, 
are you affiliated to a Union, and in the affir- 

for a list supported by: mative, which one: 
1. CGT .3298 1. CGT .2107 
2. CFDT .0877 2. CFDT .0524 
3. FO .0782 3. FO .0229 
4. CVTC .0248 4. CVTC .0048 
5. Autonomous .1077 5. Autonomous .0210 
6. Abstention .1525 6. c6c .0114 
7. Nonaffiliated list .1049 7. Not affiliated .6663 
8. NR .1444 8. NR .0105 

Presidential election (q3). On the last pres- 
idential election [1969], can you tell me the party do you feel closest to, as a rule? 
candidate for whom you have voted? 1. Communist [PCF] .1935 
1. Jacques Duclos (Comm) .2221 2. Socialist [SFIO+PSU+FGDS] .1697 
2. Gaston Defferre (Soc.) .0467 3. "Left" ("Party of workers",...) .0429 
3. Alain Krivine .0095 4. Center [+MRP+RAD.] .1192 
4. Michel Rocard .0286 5. RI .0086 
5. Alain Poher (Center) .1420 6. Right [+INDEV.+CNI] .0381 
6. Louis Ducatel .0067 7. Gaullist [UNR] .1335 
7. Georges Pompidou (Gaullist) .2336 8. NR .2946 
8. NRAbst .3108 

Political sympathy (q4). Which political 

Note. Within union questions q 1 and q2, there are correspondences between modalities (except 
6), reflected by label numberings. Similarly for modalities 1, 2, 7, and 8 of political questions 
q3 and q4, the other label numbers being arbitrary. There are no such correspondences between 
union and political parties, except for the well-known affinities between CGT and Communist 
(modalities 1). 

The analysis to be presented in this chapter is based on 1049 respondents and 
concentrates mainly on two questions about trade unions and two questions about 
political preferences. The four basic questions, each with eight modalities of response, 
are presented in Table 1, together with the associated relative frequencies. In Table 2 
the 319 observed response patterns are given, along with their frequency counts. 

(Let us briefly comment on the one-way tables.) From the union questions (ql 
and q2), we see that 63% of workers vote for a list sponsored by some union (q l, 
modalities 1-5 and 7), more than half of them for CaT; 67% of workers, however, are 
not affiliated with any union (q2, modality 7). From the two political questions (q3 
and q4), we see the high percentages of nonresponses, NR (31% and 29%). Among 
expressed sympathies, the communist  party indeed comes first (19%) but is exceeded 
by noncommunist  left-wing sympathies pooled together (21%, q4, modalities 2 and 
3); also, the Gaullist pooled with other fight-wing parties (q4, modalities 5 and 6) 
come up to 18%. Duclos'  (22%) score is exceeded by Pompidou's  (23%), and so on. 
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T a b l e  2 : 3 1 9  r e s p o n s e  p a t t e r n s  w i t h  f r e q u e n c y  c o u n t s  

1111 81 
1112 9 
1113 7 
1114 2 
1118 7 
1122 5 
1126 1 
1128 2 
1132 1 
1142 4 
1146 1 
1148 2 
1151 3 
1152 3 
1153 2 
1154 2 
1158 3 
1161 1 
1162 1 
1171 1 
1172 3 
1177 5 
1178 3 
1181 10 
1182 7 
1183 5 
1184 1 
1188 13 
1218 1 
1272 1 
1288 1 
1311 1 
1381 1 
1418 1 
1481 1 
1552 1 
1611 1 
1673 1 
1677 1 
1711 33 

1712 4 
1717 1 
1718 7 
1721 1 
1722 5 
1728 1 
1738 1 
1742 2 
1748 1 
1751 3 
1752 5 
1754 3 
1757 1 
1758 4 
1771 1 
1772 3 
1774 3 
1775 1 
1776 2 
1777 7 
1778 5 
1781 8 
1782 9 
1783 3 
1784 4 
1786 1 
1787 2 
1788 26 
1858 1 
1881 2 
2111 1 
2132 1 
2154 1 
2178 1 
2211 2 
2214 1 
2218 1 
2222 7 
2223 1 
2224 1 

2234 1 3356 1 4722 1 
2242 2 3357 1 4732 1 
2251 1 3358 1 4753 1 
2252 6 3374 1 4756 1 
2254 8 3377 2 4766 1 
2258 2 3378 1 4773 1 
2261 1 3384 1 4774 2 
2274 3 3388 2 4777 7 
2276 2 3554 1 4778 3 
2282 3 3614 1 4782 1 
2284 1 3662 1 5113 1 
2285 1 3711 2 5132 1 
2286 1 3712 1 5142 1 
2287 1 3713 1 5161 1 
2288 1 3714 2 5174 1 
2711 3 3722 3 5184 2 
2728 3 3724 1 5187 1 
2737 1 3732 1 5354 1 
2738 1 3751 1 5382 1 
2742 3 3752 2 5512 1 
2744 1 3754 4 5513 1 
2752 1 3755 1 5518 1 
2754 3 3756 1 5522 2 
2756 2 3758 5 5548 1 
2772 1 3774 4 5574 2 
2774 3 3775 2 5575 1 
2777 7 3776 1 5577 4 
2778 5 3777 7 5584 1 
2782 1 3778 4 5588 1 
2784 1 3782 3 5672 1 
2787 2 3783 1 5674 1 
2788 3 3784 3 5677 1 
3122 1 3787 1 5711 1 
3182 1 3788 6 5712 5 
3277 1 4241 1 5713 2 
3311 2 4254 1 5722 1 
3312 1 4274 1 5728 1 
3322 3 4441 1 5732 1 
3342 2 4477 2 5742 1 
3354 1 4712 1 5744 1 

5751 1 
5752 3 
5754 10 
5756 3 
5757 3 
5758 7 
5772 1 
5774 5 
5775 1 
5776 2 
5774 14 
5778 4 
5781 2 
5782 2 
5784 1 
5787 3 
5788 9 
5876 1 
6116 1 
6172 1 
6178 1 
6181 1 
6182 1 
6188 2 
6528 1 
6676 1 
6711 8 
6712 1 
6714 1 
6718 5 
6722 3 
6742 2 
6752 3 
6753 3 
6754 6 
6756 2 
6758 4 
6771 1 
6772 3 
6774 5 

6776 4 
6777 19 
6778 5 
6781 1 
6782 5 
6783 4 
6784 8 
6786 4 
6787 4 
6788 50 
7111 2 
7112 1 
7154 1 
7177 1 
7181 1 
7522 1 
7582 1 
7588 1 
7711 9 
7712 2 
7713 1 
7716 1 
7718 1 
7722 2 
7742 2 
7752 2 
7754 6 
7756 1 
7758 5 
7772 1 
7774 1 
7775 1 
7776 2 
7777 22 
7778 11 
7781 2 
7782 3 
7783 2 
7784 3 
7786 1 

7787 4 
7788 16 
8111 1 
8113 1 
8152 1 
8154 1 
8181 2 
8182 1 
8188 2 
8288 1 
8322 1 
8588 1 
8677 2 
8678 1 
8711 3 
8712 4 
8713 1 
8718 4 
8741 1 
8742 1 
8751 1 
8752 1 
8753 1 
8754 1 
8757 1 
8758 4 
8765 1 
8774 2 
8776 2 
8777 12 
8778 9 
8781 2 
8782 2 
8783 5 
8784 3 
8788 37 
8822 1 
8878 1 
8888 5 

W e  m i g h t  c o n t i n u e  b y  c o m m e n t i n g  on  t w o - w a y  a n d  h i g h e r  w a y  t ab les .  L o o k i n g  

at  t he  f o u r - w a y  t ab l e  a m o u n t s  to c o n s i d e r i n g  r e s p o n s e  p a t t e r n s  (Tab le  2). T h e  m o s t  

f r e q u e n t  p a t t e r n  (81 i n d i v i d u a l s )  is 1111, d e s c r i b i n g  the  C G T - c o m m u n i s t  " h a r d  c o r e " :  

CGT v o t e  a n d  af f i l i a t ion ,  D u c l o s  v o t e  a n d  c o m m u n i s t  s y m p a t h y .  N e x t  c o m e s  the  p a t t e r n  

6788 (50  i n d i v i d u a l s ) ,  t ha t  is, a b s t e n t i o n  a n d  n o n a f f i l i a t i o n  fo r  u n i o n  q u e s t i o n s  a n d  



2. The French Worker Survey 201 

nonresponse for the political ones. The 14 most frequent patterns together represent 
about one third of the total number of respondents. 

In the book by Adam et al. (1970), the reader will find one-way and two- 
way tables for the most important questions, with extensive sociological comments, 
organized by topicsmfor example, attitudes toward unions, electoral behaviormbased 
on careful examination of tables. The alternative approach that we will follow in this 
chapter, along the line of geometric data analysis, is to construct a relevant "social 
space" (as Bourdieu would call it), a "union-political space" for the French workers 
in 1969, applying MCA to the responses to the four questions. The study of maps 
yielded by MCA amounts to a synthesis of analyses of the conventional kind. 

2.2 M u l t i p l e  C o r r e s p o n d e n c e  A n a l y s i s  

From the responses of the individuals, we construct the disjunctive table (Benzrcri, 
1992, p. 392; Lebart et al., 1995, p. 108), also called an indicator matrix, crossing 
the 1049 individuals and the 8 × 4 -- 32 modalities. The principle of construction of 
this table is recalled by Table 3. 

Correspondence analysis of the disjunctive table, that is, multiple correspondence 
analysis, yields two clouds of points, namely the cloud of 32 modalities, and the cloud 
of 1049 individuals--or equivalently of 319 weighted response patterns. In numerical 
terms, each cloud is defined by a table of principal coordinates, where for each axis 
the weighted average of the squares of principal coordinates is equal to the eigenvalue 
associated with the axis. 

Here we will interpret the first four axes; the corresponding eigenvalues are given 
in the first row of Table 4. For the cloud of modalities in the plane 1-2 (Figure 1): 

• On the left, a compact group of four modalities emerges: vote and affiliation CGT, 
Duclos, Communist. 

• On the lower fight, there are the various NR and abstention modalities, together 
with the two nonaffiliated modalities, Pompidou and Gaullist. Moving up, we find 
Center and Poher, Socialist and Defferre, and then CFDT vote and affiliation. 

Table 3: Disjunctive table 

Patterns ql q2 q3 q4 

1111 ~ 10000000 10000000 10000000 10000000 
"'" / 81 . . . . . . . . . . . .  

1111 10000000 10000000 10000000 10000000 
Disjunctive encoding 

8888 ~ 000000001 000000001 000000001 000000001 
"'" / 5 . . . . . . . . . . . .  

8888 00000001 00000001 00000001 00000001 
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Figure 1: C l o u d  of 32 modal i t ies  in p lane  1-2. Modal i t ies  that  cont r ibute  mos t  to axes 
I and  2 are in large characters;  modal i t ies  of the two  u n i o n  ques t ions  are r ep resen ted  
by  circles and  those of the two political ques t ions  by  squares,  w h o s e  areas are propor-  
t ional  to frequencies.  CGT vot ing  is deno t ed  VCGT, as dist inct  f rom CGT affiliation, 
d e n o t e d  CGT, and  so on. 
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3 Contributions of Points and Deviations 

3.1 Basic Formulas 

A cloud of weighted points being given, the variance (also called inertia) of the cloud 
is the weighted mean of the squares of the distances between the points and the mean 
point of the cloud (Benz6cri, 1992, p. 36). The absolute contribution of a point to the 
cloud is defined as the product of the weight of the point by the square of its distance 
from the mean point (Benzrcri, 1973a, p. 38; 1992, p. 61). In this chapter, we will be 
mainly interested in contributions to an axis; accordingly, distances will be measured 
along the axis under consideration. 

1. Contribution of a point (Cta). Let us consider a point of weight, or mass, p and 
coordinate y along the axis. The absolute contribution of the point to the axis will 
be denoted Cta; it is given by the formula (Benz6cri, 1992, p. 340; Greenacre, 
1984, p. 67): 

Cta = pye (point) 

2. Contribution of the deviation between two points (Cti). Let us now consider two 
points. Let p and p~ denote the weights of the points and y and y~ their coordinates 
along the axis. The absolute contribution of the deviation, also called the intra 
(within) contribution, will be denoted Cti and is given by the following formula 
(Rouanet and Le Roux, 1993, p. 268): 

Cti - PP~ (y _ y~)e (deviation) 
p + p l  

These notions of contribution readily extend to a subset of points, or subcloud. 
With a subcloud are associated its weight (sum of the weights of its points), its 
weighted mean point (barycenter), and its variance, and the following three types of 
contribution: 

• Its (global) contribution (Cta), which is the sum of the contributions of its points 

• The absolute contribution (Cta) of its mean point, which is the product of its 
weight by the square of the principal coordinate of its mean point 

• Its intra-contribution (Cti), which is the weighted sum of squares of distances from 
the points to their mean point 

By the classical Huyghens property, the Cta of a subcloud is the sum of its Cti 
and the Cta of its mean point, which shows that Cta and Cti are equal if and only if 
the mean point of the subcloud coincides with the mean point of the cloud (Rouanet 
and Le Roux, 1993, p. 118). 

3.2 Application to the Cloud of Modalities 

In MCA the weight of a modality is the relative frequency of the modality divided by 
the number of questions. Hereafter we illustrate the calculations for axis 1. 
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• Contribution ofmodality (Cta). Taking CGT vote (denoted VCGT) as an example: the 
relative frequency is 0.3298 (Table 1), hence the weight p = 0.3298/4 = 0.0825. 
The coordinate along axis 1 is y = -1 .090  (see Table 5). Hence the absolute 
contribution of VC6T: py2 = 0.0825 × (1.090) 2 = 0.0980. 

• Contribution of deviation between modalities (Cti). Take VCGT (coordinate y = 
-1.090, weight p = 0.0825) on the one hand and VAuto and VAbst on the 
other hand; the barycenter of VAuto and VAbst has a weight equal to p~ = 
0.0269 + 0.0381 = 0.0650 (weights add up), and its coordinate is y~ = (0.0269 X 
0.659 + 0.0381 X 0.513)/0.0650 = 0.573 (coordinates average up). One has 
pp~/(p + p~) = (0.0825 x 0.0650)/(0.0825 + 0.0650) = 0.0364. Hence the 
absolute contribution of the deviation ( -  1.090 - 0.573) 2 × 0.0364 = 0.1014. 

• Contribution of modality to axis (Ctr). Let us divide the contribution of VCGT, 
namely 0.0980, by the sum of the contributions of all modalities, that is, A1 = 
0.6113; we get 0.0980/0.6113 = 0.160, which means that VCGT contributes to 
16% of axis 1. This ratio is often denoted by Ctr. 

We further define two other ratios that will be directly useful in the interpretation 
process; for clarity, we will always express them as percentages. 

• Contribution of question to axis. By definition, the Cta of a question is the sum of 
the Ctas of its modalities. For example, the Cta of ql (Professional Elections) for 
axis 1 is the sum of the eight Ctas: 0.0980 + . - .  + 0.0041 = 0.1482 (see Table 
5). If we now divide the contribution of q l by the sum of the contributions of 
questions, that is, )k 1 = 0.6113, we get 0.1482/0.6113 = 0.24; accordingly, we 
state that question 1 accounts for 24% of axis 1. 

• Contribution of modality (and of deviation) to question. If we divide the contri- 
bution of VC6T by the contribution of the question it belongs to, namely Pro- 
fessional Elections (ql), we get 0.0980/0.1482 = 0.66; therefore we state that 
VCGT contributes to 66% of question ql (for axis 1). Similarly for the contribu- 
tions of deviations. The deviation VCGT versus VAuto and VAbst contributes to 
0.1014/0.1482 = 68% of question ql (for axis 1). 

3.3 Cloud of Individuals and Cloud of Modality Mean Points 

In the cloud of individuals, with each observed modality is associated the subcloud of 
the individuals who have chosen that modality. The mean point of this subcloud will 
be called the modality mean point. For each axis, the coordinate of the modality mean 
point is the mean of the principal coordinates of the individuals who have chosen 

this modality, and this can be shown to be equal to V ~ y, where y is the principal 
coordinate of the corresponding modality (Benz6cri, 1992, p. 410). 

The cloud of all modality mean points can be obtained from the CA of the Burt 
table, which has as eigenvalues the squares A2. As a consequence, if one divides the 
contribution of a modality mean point--or of a deviation between modality mean 
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points--by A 2, one again finds the relative contribution (Ctr) of modality, or of 
deviation, and consequently, the relative contribution (Ctr) of a question to an axis. 

Each question q induces a partition of individuals into as many subclouds as there 
are observed modalities for that question. Consider the derived cloud of the modality 
mean points for question q. For each axis, the inertia of this cloud, or interclass 
(between-class) inertia, is equal to A times the absolute contribution (Cta) of question 
q in the cloud of modalities. As a consequence, if one divides the contribution of 
a modality mean point----or of a deviation between modality mean points--by the 
interclass inertia, one again finds the relative contribution of the modality--or of the 
deviation--to the question. 

As a conclusion, it will be equivalent to interpret axes in the cloud of modalities 
or in the cloud of modality mean points. 

4 Interpreting Axes 

Benzrcri (1992, p. 405) gives the following guideline: "Interpreting an axis amounts 
to finding out what is similar, on the one hand, between all the elements figuring on 
the fight of the origin and, on the other hand between all that is written on the left; 
and expressing with conciseness and precision, the contrast (or opposition) between 
the two extremes." The method of contributions of points and deviations has been 
devised as a guide along this line. 

4.1 The Method of Contributions of Points and Deviations 

As far as MCA is concerned, the method consists of the following four steps. 

Step 1. Important questions. In the cloud of modalities, look for the questions whose 
contributions to the axis are important. This leads to a first overall interpre- 
tation of the axis. 

Step 2. Important modalities. Select modalities--or groups of modalities of the 
same question that are close on the axis--whose contributions to the axis 
exceed some threshold (average contribution is a rule of thumb, but when the 
cumulated amount is not sufficient, a less severe threshold may be in order). 

Step 3. Contributions ofmodalities to questions. For each question retained at step 1, 
calculate the relative contribution to the question (on the axis) accounted for 
by the modalities retained in step 2. When for the question under study, those 
modalities separate into several groups---often, for the first axes, into two 
groups on the two sides of the origin--determine the barycenters of groups, 
then their intra-contribution, and express this contribution as a percentage 
of the contribution of the question. For each question, the content of groups 
is a concise summary of the interpretation of the axis, whereas the relative 
intra-contribution to the question is a quantitative appraisal of the precision 
of that summary. 
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Table 4: Contributions (Cta) of the four questions 

Axis 1 Axis 2 Axis 3 Axis 4 

Eigenvalue A 0.611 0.491 0.416 0.373 

q 1 Professional elections 0.148 0.149 0.078 0.162 
q2 Union affiliation 0.137 0.141 0.049 0.162 
q3 Presidential election 0.157 0.105 0.148 0.024 
q4 Political sympathy 0.169 0.096 0.141 0.026 

Step 4. Composite modalities or patterns. The interpretation will be usefully com- 
plemented by the examination, in the cloud of individuals, of the composite 
modalities or patterns brought out at step 3. When interpreting a specific 
response pattern, be aware that its frequency count can be quite low. 

4.2  F irs t  O v e r v i e w  

In the cloud of modalities, the contributions of the four questions to the first four 
axes are given in Table 4. The relative contributions of q l through q4 to axis 1 lie 
between 22% and 28%; for axis 2, they lie between 19% and 31%. Therefore the 
interpretation of axes 1 and 2 will be based on the four questions. For axis 3, questions 
q3 and q4 contribute to 70% of the axis; therefore the interpretation of axis 3 will be 
based predominantly on the two political questions. For axis 4, ql and q2 contribute 
to 87% of the axis; therefore the interpretation will be essentially based on the two 
trade union questions. 

4.3  I n t e r p r e t a t i o n  o f  A x i s  1 

The interpretation of axis 1, in the cloud of modalities, is based on the results shown 
in Table 5, which may be used for checking the numerical values, with Figure 1 
serving as an intuitive guide. 

Step 1. Important questions. All four questions are important for axis 1; axis 1 is a 
general axis, that is, its interpretation involves all four questions. 

Step 2. Important modalities. There are four very important modalities, namely 
Communist (Cta = 0.1111, i.e., 18% of axis), CGT (17%), Duclos (17%), 
VCGT (16%). Those four modalities together account for 69% of axis 1. They 
are all on the left side of axis 1. Three other modalities have contributions 
exceeding average (0.6113/32 = 0.0191), namely Pompidou (7%), Gaullist 
(5%), and NotAff (3%), all three on the fight side of the axis. The previous 
seven modalities together contribute to 84% of axis 1. Let us add to them the 
two modalities VAuto and VAbst, which are close to each other on the axis 
and together contribute 3%; with the nine modalities we come up to 87%. 
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Table 5: Axis 1" weights, coordinates, and absolute contributions (Cta) of modalities 
(A, = 0.61132) 

Professional elections Union affiliation 

ql Weight Coord. Cta q2 Weight Coord. Cta 

1. VCfT .0825 --1.090 .0980* 1. COT .0527 --1.425 .1069, 
2. VFDT .0219 0.605 .0080 2. CFDT .0131 0.602 .0047 
3. VFO .0195 0.578 .0065 3. FO .0057 0.356 .0007 
4. vcvrc .0062 0.824 .0042 4. CF'rC .0012 --0.040 .0000 
5. VAuto .0269 0.659 .0117+ 5. Auto .0053 0.741 .0029 
6. VAbst .0381 0.513 .0100+ 6. cGc .0029 0.557 .0008 
7. VNonAff .0262 0.463 .0056 7. NotAff .1666 0.355 .0210. 
8. VNR .0286 0.377 .0041 8. NR .0026 0.186 .0001 

.2500 .1482 .2500 .1373 

Presidential election Political sympathy 

q3 Weight Coord. Cta q4 Weight Coord. Cta 

1. Duclos .0555 -1.387 .1069- 1. Comm. .0484 -1.516 .1111- 
2. Defferre .0117 0.114 .0001 2. Soc. .0424 -0.069 .0002 
3. Krivine .0024 0.221 .0001 3. "Left" .0107 -0.460 .0027 
4. Rocard .0072 -0.108 .0001 4. Center .0298 0.687 .0140 
5. Poher .0355 0.461 .0075 5. RI .0022 0.950 .0019 
6. Ducatel .0017 -0.452 .0003 6. Right .0095 0.705 .0047 
7. Pompidou .0584 0.826 .0398* 7. Gaull. .0334 0.926 .0286* 
8. NRAbst .0777 0.156 .0019 8. NR .0737 0.286 .0060 

.2500 .1568 .2500 .1690 

Stars (,) refer to modalities whose contributions exceed the average of the axis (.61132/32 = 
.0191). Plus (+) refers either to modalities close (on the axis) to a starred modality or to 
clustered modalities whose grouped contribution exceeds average. 

Step 3. Contributions of modalities to questions. 
Professional elections (q 1). The sum of the Cta of VccT (on the left side), 

VAuto, and VAbst (on the fight side) is 0.0980 + 0.0117 + 0.0100 = 0.1197; 

that is, those three modalities contribute to 0 .1197/0 .1482 = 81% of the 

question on the axis. The intra-contribution (Cti) of the deviation VCCT vs. 

VAuto with VAbst is found to be 0.1006; that is, it accounts for 68% of the 

question on the axis. 

Union affiliation (q2). Ct3T (left) and nonaffiliated (fight) together con- 

tribute 93% to the question on axis 1. The opposition between these two 
modalities accounts for 92% of the question. 



208 Chapter 16. Interpreting Axes in Multiple Correspondence Analysis 

Presidential election (q3). Duclos (left) and Pompidou (fight) contribute 
to 94% of the question. The opposition Duclos vs. Pompidou accounts for 
89%. 

Political sympathy (q4). Communist (left) and Gaullist (fight) contribute 
to 83% of the question. The opposition Communist vs. Gaullist accounts for 
70%. 

Step 4. Relevant patterns. The foregoing results suggest considering the composite 
modalities that emerge for axis 1. Since all (four) questions are involved in 
the interpretation of the axis, the relevant composite modalities are patterns 
obtained by combining the cells of Table 6. 

Hence the three relevant patterns (with frequency counts, out of a total of 1049): 
1111 (81); 5777 (14); 6777 (19). Figure 2 gives the simultaneous representation of 
relevant modalities and patterns for axis 1. It provides a graphical summary of the 
interpretation of axis 1, and the summary in words may read as follows. Axis 1 
opposes the left profile VcGT-CGT-Duclos-Communist (1111) vs. the fight profile 
[VAuto or VAbst]-nonaffiliated-Pompidou-Gaullist (5777, 6777). 

4 .4  I n t e r p r e t a t i o n  o f  A x i s  2 

Applying our four-step interpretation to axis 2 leads to the following results. 

Step 1. Axis 2 is also a general axis (involving all four questions). 

Step 2. Important modalities are CFDT, VCFDT, Socialist, and Defferre (upper side of 
axis), then NR to q4, NRAbst, Poher, VNR (i.e., NR to q 1), Center. Adding 
VAbst and NotAff (which are nearly average) and Gaullist (near NR to q4 
on axis), one arrives at 90% of axis 2. 

Step 3. For q 1, q2, and q4, there are well-marked oppositions: VCFDT (upper side) vs. 
VNR and VAbst (lower side) (92% of q 1); CFDT (upper) vs. NotAff (lower) 
(92% of q2); Socialist and Center (upper) vs. NR and Gaullist (lower) (97% 
of q4). 

Question q3 (presidential election) calls for a more detailed interpreta- 
tion. Defferre, Poher, and NRAbst together contribute 74% of q3. However, 
Poher lies halfway between Defferre and NRAbst, which means that those 
three modalities do not lend themselves easily to a grouping into two opposed 

Table 6: Relevant modalities for axis 1 

Prof. vote Union aft. Pres. vote Polit. symp. 

Left 1. VCGT 1. CGT 1. Duclos 1. Comm. 

5. VAuto 
Right 6. VAbst 7. NotAff 7. Pompidou 7. Gaull. 
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Figure 2: Axis 1: simultaneous representation of relevant modalities and patterns. 

classes. This difficulty is confirmed by the weakness of the contribution of 
the opposition Defferre and Poher vs. NRAbst (only 65%). To get a more 
substantial contribution to the question, one must resort to the "ternary" 
comparison Defferre vs. Poher vs. NRAbst, which accounts for 74% of 
question q3. 

Step 4. The composite modalities that emerge from the analysis of axis 2 are obtained 
by combining the cells of Table 7. 

Hence there are eight patterns (with frequency counts): 2222 (7); 2224 (1); 2252 
(6); 2254 (8); 6787 (4); 6788 (50); 8787 (0) (a nonobserved pattern!); 8788 (37). Figure 
3 gives the simultaneous representation of relevant modalities and patterns for axis 2. 
On the whole, axis 2 reflects the opposition between noncommunist left workers, 
with CFDT vote and affiliation, and nonrespondent nonaffiliated workers. 
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Table 7: Relevant modalit ies  for axis 2 

Prof. vote Union aft. Pres. vote Polit. symp. 

Above 2. VCFDT 2. CFDT 2. Defferre 2. Socialist 
5. Poher 4. Center 

Below 
6. VAbst 
8. VNR 

7. Gaull. 
7. NotAff 8. NRAbst 8. NR 

CFDT 

VCFDT 

Defferre 

Socialist 

Center 
Poher | 

NotAff O 

NRAbst 
Gaullist d 

N R ~  
VAbst 

VNR 

~2222 
2224 

2252 
,2254 

I 0.5 

6787 
5 6788 

"v 8788 8787 

Figure 3: Axis 2: s imultaneous representation of relevant modalit ies  and patterns. 
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4.5 Interpretation of Axis 3 

We summarize the results. 

Step 1. Axis 3 is predominantly a political axis. 

Step 2. The important modalities are Gaullist, Pompidou (on one side of the axis), 
NRAbst, and NR (on the other side), all four belonging to q3 and q4; then 
come three modalities of q l: VCFTC and VAuto (on the Gaullist side) and 
VNR (on NR side). Those seven modalities together account for 76% of 
axis 3. 

Step 3. The opposition Pompidou vs. NRAbst contributes to 90% of q3, the opposi- 
tion Gaullist vs. NR to 89% of q4. 

Step 4. In the cloud of individuals, the important modalities of questions q3 and 
q4 induce a subcloud of 114 Pompidou-Gaullists (patterns xx77), and a 
subcloud of 177 "political nonrespondents" (patterns xx88). Figure 4 shows 
the simultaneous representation of important modalities and of those two 
subclouds with their mean points. As may be seen, the separation between 
the two subclouds is perfect. Notice the "union-committed" patterns 4x77 
and 5x77 (among Pompidou-Gaullists), and the noncommitted patterns 8x88 
(among political nonrespondents). 

Axis 3 is predominantly political and opposes politically committed Pompidou- 
Gaullist workers to political nonrespondents. 

4.6 Interpretation of Axis 4 

Step 1. Axis 4 is predominantly a union axis. 

Step 2. The important modalities are FO, VFO (on one side of the axis), VCFDT and 
CFDT (opposite side), Socialist, and Defferre: together 87% of the axis. 

Step 3. The opposition VFO vs. VCFDT contributes to 86% of ql, FO vs. CFDT to 91% 
of q2. 

Step 4. The important modalities of q 1 and q2 induce a subcloud of 19 Fo-affiliated 
voters (patterns 33xx) and a subcloud of 47 CFDX-affiliated voters (22xx). Fig- 
ure 5 shows the simultaneous representation. Again, the separation between 
the two subclouds is perfect. 

Axis 4 is union dominated and opposes CFDX-affiliated voters to FO ones. 

4.7 Synopsis 

The synopsis is shown in Table 8. 

4.8 Plane 1-2 

The interpretation of axes 1 and 2 leads to allocating the relevant modalities for 
those axes to three classes corresponding to three polar areas: A (communist left, C6T 
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Figure 4: Simultaneous representation on axis 3 with patterns Pompidou-Gaullist 
(xx77) and NRAbst-NR (xx88). 
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Figure 5: Simultaneous representation on axis 4 with patterns FO-VFO (33xx) and CFDT 
and V C F D T  (22xx). 
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Table 8: Synopsis 

Axis 1:A1 = 0.611 Axis 2:A2 = 0.491 Axis 3:A3 = 0.416 Axis 4:A4 = 0.373 

ql 24% of axis 30% of axis [19% of axis] 43% of axis 
VCGT VS. VAuto-Vabst: VCFDT VS. VAbst-VNR: VCFDT VS. VFO" 

68% of question 92% of question 86% of question 
q2 22% of axis 29% of axis [12% of axis] 43% of axis 

CGT vs. 7 NotAff:  CFDT VS. NotAff:  CFDT VS. FO: 

92% of question 92% of question 91% of question 

q3 26% of axis 21% of axis 36% of axis [6% of axis] 
VDuclos vs. Pompidou: Defferre vs. Poher vs. NRAbst Pompidou vs. NRAbst: 

89% of question 74% of question 90% of question 
q4 28% of axis 20% of axis 34% of axis [7% of axis] 

Commun. vs. Gaullist: Socialist-Center vs. Gaullist-NR Gaullist vs. NR: 
70% of question 97% of question 89% of question 

All comparisons are oppositions (1 d.1.) except the ternary comparison (2 d.1.) for question q3 
and axis 2. 

affiliated), B (Gaullist together with nonaffiliated and NR), and C (noncommunis t  
left, CFDT affiliated). 

The modalities in Table 9 lead to defining the 1 + 12 + 4 = 17 following response 
patterns (with their frequency counts, total 269): 1111 (81); 5777 (14); 5778 (4); 5787 
(3); 5788 (9); 6777 (19); 6778 (5); 6787 (4); 6788 (50); 8777 (12); 8778 (9); 8787 (0); 
8788 (37); 2222 (7); 2224 (1); 2252 (6); 2254 (8). 

Figure 6 shows the simultaneous representation on plane 1-2, with the relevant 
modalit ies and patterns used as landmarks. This figure shows all 1049 individuals in 
their 319 unique positions. 

T a b l e  9: Relevant modalit ies for plane 1-2 

Prof. vote Union aft. Presid. elect. Polit. sympathy 

A VCGT CGT Duclos Communist 

Auto Pompidou Gaullist 
B Abst NotAff NRAbs NR 

NR 

C VCFDT CFDT Defferre Socialist 
Poher Center 
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5 From Interpretation to Exploration 

Henceforth we place ourselves in the cloud of individuals. Considering this cloud 
opens new opportunities for interpretation--to begin with, the possibility of repre- 
senting any patterns of interest, for instance, those that contribute most to an axis 
or typical patterns chosen by the specialist as landmarks to enhance interpretation. 
Further, the interpretation of axes may be prolonged by the exploration of the cloud 
and enlarged to planes or higher order spaces, always making use of the structures of 
the questionnaire. In this section, we will suggest--without trying to be systematicm 
some lines for cloud exploration. Exploration will often be motivated by specific 
interrogations (i.e., pertaining to parts or to groupings of data), which may be raised 
either before gathering data or when examining results. 

5.1 Composite Modalities 

The cloud of individuals enables one to go farther than the cloud of modalities, 
because individuals carry all the information of the data (see Chapters 15 and 20). 
In particular, the concept of the subcloud associated with a modality also applies to 
a composite modality (also called an "interactively coded category"). That is, with 
each observed pair of modalities (k, k t) (with k belonging to question q and k ~ to 
question qt) is associated the subcloud of the individuals who have chosen both k and 
k t. The derived cloud of mean points now corresponds to the composite modalities 
of questions q and qt. 

For example, the two political questions q3 and q4 induce 51 subclouds (among 
82 = 64 possible subclouds). The derived cloud of 51 mean points contributes to 81% 
of axis 3. Now consider the deviation between the mean points of the two composite 
modalities: Pompidou-Gaullist vs. political nonrespondents (see Figure 4). It is found 
that this deviation contributes 73% to the inertia of this derived cloud (Rouanet and 
Le Roux, 1993, p. 295). This result reinforces and refines the interpretation of axis 3. 

5.2 Correlation Ratios and Supplementary Questions 

Every question of a questionnaire generates a partition of individuals, with a cloud of 
modality mean points, whose variance defines the interclass (between class) variance 
of the question. For each axis, dividing the interclass variance by the total variance 
yields a ratio denoted by r/2, which expresses the correlation between the question 
and the numerical variable of principal coordinates of individuals on the axis. The 72 
ratios can be calculated for active questions, as well as for supplementary questions. 

For example, for the supplementary question "personal political situation" with 
five modalities after recodingmleft communist (175), left noncommunist (237), cen- 
ter (254), fight (154), and NR (229)--the graphs of Figure 7 show, in plane 1-2, the 
derived cloud of the five mean points (Figure 7a) and the five subclouds (Figures 7b 
through 7f). 



5. From Interpretation to Exploration 217 

left 
communi s t  

Axis 2 
c 

left 
noncommunl s t  

center  

4 -  

O 
' O  right 

'NR 
i B 
I 

4- 
I 

I 

I 

I 

I 

Figure 7: Personal political situation (plane 1-2). (a) five mean points; (b) left com- 
munist (175). 
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Figure 7: Personal political situation (plane 1-2). (c) left noncommunist (237); (d) cen- 
ter (254). 

Along axis 1, the interclass variance of this supplementary question is found to be 
0.347. Dividing by A1 = 0.6113 yields ~/2 = 0.57. Then calculating the contribution 
of the deviation between the mean points left communist vs. fight and center yields 
the value 0.332; that is, this opposition accounts for 0.332/0.347 = 96% of the 
correlation ratio r/2 between axis 1 and this question. 
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Figure 7: Personal political situation (plane 1-2). (e) right (154); (f) NR (229). 

The exploratory process may extend beyond mean points. For instance, a look 
at the five subclouds reveals striking disparities among dispersions in plane 1-2. The 
most concentrated subcloud is left communist, whose variance (in plane 1-2) is equal 
to 0.395; the most scattered subcloud is left noncommunist, whose variance is equal 
to 1.018. 

5.3 Crossing Relationship and Interaction 

When all pairs of modalities of two questions (whether active or supplementary) are 
observed, it may be said (adopting ANOVA language) that there is a "crossing rela- 
tionship" between the questions. Then the concept of interaction between questions 
may be formally defined as in nNOVA with unbalanced designs (Bernard et al., 1989; 
Le Roux, 1991; Le Roux and Rouanet, 1984). 

For example, let F denote the question "personal political situation" and L 
denote the question "trust toward unions," with three modalities high, moderate, and 
low or none or NR. For any axis, a diagram akin to the interaction diagrams familiar in 
experimental data analysis can be constructed. Figure 8 shows the interaction diagram 
for axis 1. Abscissas correspond to the five modalities of question F. Ordinates are 
the coordinates along axis 1 of the 3 x 5 = 15 mean points corresponding to the 
crossing of questions F and L. For each modality of L, the points of the five modalities 
of F have been joined. The three lines appear to be nearly parallel, which means that 
there is virtually no interaction between the two questions F and L with respect to 
axis 1. The r/2 ratio associated with the crossing F X L for axis 1 is equal to 0.64; 
calculation shows that the interaction accounts for only 1% of r/2. 

In plane 1-2, the visualization of interaction---or the weakness of interaction, for 
that matter----can be performed similarly by constructing the modality mean points 
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Figure 8: I n t e r a c t i o n  for  axis  1. 

corresponding to the crossing and joining the points corresponding to one of the 
questions. In Figure 9, the points of the five modalities of question F have again 
been joined. The quasi-parallelism of the three lines now means that there is virtually 
no interaction between the two questions with respect to the plane. The 7/2 ratio 
associated with the crossing for plane 1-2 is equal to 0.45, and calculation shows that 
the interaction accounts for only 1% of this rl 2. 

6 Concluding Comments 

A f t e r  presenting this guide for interpretation of axes in MCA, several points are worth 
stressing, all directly bearing on the topic of the visualization of data. 
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~ ter Axis 1 

NR ~ R  right 

Figure 9: I n t e r a c t i o n  in  p l a n e  1-2.  
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1. The method of the contributions of points and deviations, developed in this chapter 
for MCA, readily applies, with appropriate modifications, to the interpretation of 
principal axes of all kinds of structured multidimensional data (Le Roux and 
Rouanet, 1984). 

2. The interpretation of axes of higher order may reveal important findings. 

3. Simultaneous representation in CA has been recognized as a most powerful visu- 
alization tool to sustain interpretations; see Benzrcri (1969, 1973a, especially pp. 
330-331 and pp. 468-469). This is all the more important in the case of MCA, 
where simultaneous representation brings together two radically different entities, 
namely individuals and modalities--or in other terms, objects and descriptors of 
objects. 

4. In MCA, investigating the cloud of individuals, together with its subclouds and 
derived clouds (modality mean points), leads to detailed interpretations, in the 
first place by the examination of composite modalities. 

5. A general claim underlying this chapter is that the use of specific comparisons, 
a tool borrowed from ANOVA, should considerably enrich the usual aids to inter- 
pretation in geometric data analysis. The method of the contributions of points 
and deviations provides a first step in this direction. Another step would be the 
investigation of the interactions between questions, a topic we have just touched 
upon in this chapter. 

Software Notes  

The strategy of data analysis that we have presented can easily be performed by 
combining any standard software for CA with the EyeLID software developed in our 
research group. 

For the data of this chapter, we performed MCA using ADDAD (Association pour 
le Drveloppement De l'Analyse des Donnres, 22 Rue Charcot, Paris 75013), then 
all subsequent analyses, such as derived graphs and computations of contributions 
and interaction effects, through EyeLID (Bernard, Rouanet & Baldy, Universit6 Ren6 
Descartes, 45 rue des Saints-Pbres, Paris 75270 Cedex 06. E-mail: eyelid@math- 
info.univ-paris5.fr). 

The EyeLID software combines the following two features: a Language for 
Interrogating Data (LID), which designates relevant data sets in terms of structuring 
factors, formally analogous to factors in an experimental design, and the visualization 
("Eye") of the derived clouds designated by a LID request. For detailed applications 
of the LID language to sociological examples, see Bernard et al. (1989), and Bonnet 
et al. (1996). A demonstration version of the software EyeLID applied to the data of 
the present chapter is available by f t p  at the address: 

f tp. mat h- inf o. univ-par i s5. f r 

under the directory/pub/MathPsy/EyeLID. 



Chapter 17 

Diagnostics for 
Joint Displays in 
Correspondence Analysis 

Michael Greenacre 

1 I n t r o d u c t i o n  

One of the main advantages of correspondence analysis (CA) is its simultaneous 
visualization of the row and column categories of a table or, in the multiple case, 
the simultaneous visualization of all the categories of a set of discrete variables. The 
visualization is achieved by projecting points that represent the categories in multidi- 
mensional space onto a subspace, usually a plane, resulting in an approximate map of 
the categories. We cannot tell from the projections of the points in the map whether 
the points are displayed accurately or notmsome points might be far from the planar 
map while others might be close to the plane and thus more accurately represented. 
Supporting the interpretation of such maps are sets of diagnostics that measure the 
overall quality of display of the points as well as the quality of individual points. 
These diagnostics, usually called "contributions," are based on the decomposition 
of inertia in CA. They measure how much each point contributes to the map and 
how much the map contributes to each point. We call these contributions "within- 
variable" diagnostics because they involve categories of a variable by themselves, 
without direct reference to categories of other variables. 

221 
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The intepretation of the map, however, goes beyond studying individual points. 
Although usually not stated explicitly, the interpretation of a joint CA map relies 
implicitly on one of two geometric concepts: either scalar products between category 
points for different variables, which we refer to as an underlying biplot model, or 
distances between such points, which is a type of unfolding model. In this chapter 
we look at a different way to measure the quality of display that is specifically aimed 
at the scalar-product or distance-based "between-variable" way we interpret the joint 
display. This is a "nonmetric" measure in that it is based on the rank ordering of the 
scalar products or distances, rather than their actual values. The properties of this 
measure make it suitable for simple CA as well as the variants of CA for the multiple 
case: CA of "stacked" tables, multiple correspondence analysis (MCA), and joint 
correspondence analysis (JCA). 

2 Data Set on Cultural Competences  

We shall illustrate our between-variable diagnostics using a set of categorical data 
from the ALLBUS '86 survey (ALLBUS stands for "Allgemeine Bevrlkerungsum- 
frage der Sozialwissenschaften," part of the German General Social Survey Program). 
Our interest here centers on 25 variables measuring what we call "cultural compe- 
tences": 

a dance waltz b put on bandage c fill in tax form 
d play chess e adjust quartz watch f play musical instrument 
g fix lamp h use PC i take photographs 
j hang wallpaper k swim 1 change spark plugs 
m read city map n read timetable book o use typewriter 
p knit q ride bicycle r cook 
s fix tire t use calculator u use video recorder 
v use tape recorder w sew on button x shorten trousers 
y dance to pop music 

Each of 3092 respondents was classified into one of four categories for each of 
these cultural competences: (1) yes, (2) somewhat, (3) no, or (4) don't know/missing. 
Thus n = 3092, Q = 25, Jq = 4 for all q, and J = 100. Notice that the fourth 
category of missing or "don't know" responses was generally of quite low frequency. 
Other variables in the survey available as explanatory variables were, for example, 
gender, religious affiliation, age group, income group, and type of housing. 

This data structure is frequently found in social surveys. First, we have a battery 
of questions, each with responses on the same scale, measuring some phenomenonm 
in this case cultural competencemand second, we have a number of biographical and 
demographical variables that we would like to relate to the battery of questions as a 
whole. To visualize these data we can form various cross-tabulations, or groups of 
cross-tabulations, to be analyzed by different forms of CA. 
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3 Diagnostics in Simple CA 

For the theoretical explanation we shall use the following standard notation: 

• N is an I × J contingency table with grand total n. 

• P = ( 1 / n ) N  is the correspondence matrix, or discrete bivariate frequency density. 

• r and c are the row and column margins of P, respectively. 

• Dr and Dc are the diagonal matrices with r and c on the diagonal. 

• F and G are the principal coordinates of the rows and columns, respectively, with 
normalization: FTDrF = GTDcG = Dx, where Dx is the diagonal matrix of 
principal inertias A1, A2 . . . . .  

• X and Y are the standard coordinates of the rows and columns, respectively, with 
normalization: XTDr x = YTDcY = I. 

The relationship between principal and standard coordinates of the same variable is 
F = XD 1/2, G = YD 1/2, while the "between-variables" relationship, or transition 
formula, between principal and standard coordinates of different variables is F = 
D~-IPY, G = Dc lpTx .  

Using the cultural competences data, we can choose one of the explanatory 
variables, say age with five categories, and cross-tabulate it with all 25 variables, 
giving a 100 × 5 matrix consisting of 25 contingency tables, each of size 4 × 5, stacked 
one on top of the other. The most basic diagnostic is the set of principal inertias 
in descending order. In this case the four principal inertias and their percentages 
of inertia are calculated as 0.05401 (80.3% of the total inertia), 0.01068 (15.9%), 
0.00175 (2.6%), and 0.00085 (1.3%). These values summarize the overall quality of 
the display of the profile points along the principal dimensions, which can be used 
to form a map of the category points. For example, if we choose a two-dimensional 
map, then the quality is 80.3% + 15.9% = 96.2%, which means that 96.2% of the 
inertia of the profile points is explained in the map (see Figure 1). 

The contributions to inertia provide a similar decomposition of inertia for in- 
dividual profile points; see, for example, Greenacre, 1984, p. 91; 1993, chap. 12; 
Blasius, 1994. Le Roux and Rouanet (Chapter 16) discuss how the contributions 
apply to MCA. When using these diagnostics we tend to think of the row points or 
the column points separately. An overall quality of 96.2% means that on average 
the row profiles (equivalently, the column profiles) have a quality of representation 
sometimes greater than this percentage, sometimes lower. Even if a profile has a dis- 
play quality of 100%, however, this does not mean that all other points are correctly 
interpreted with respect to this profile. Interpretation of a CA map, for example, the 
one in Figure 1, involves seeing how the row points lie relative to the column points. 
There are two customary ways of thinking of this between-variable (row-to-column) 
relationship: the biplot model, based on scalar products between points, and the un- 
folding model, based on interpoint distances. We shall look at each of these in turn 
and develop a diagnostic of the quality of the interpretation that is applicable to both 
of them. 
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Figure 1: Correspondence analysis of cultural competence categories by age groups, 
asymmetric map with age points (A1 to A5) in standard coordinates (many overlap- 
ping points indicated by o). 

4 CA as a Biplot  M o d e l  

A map is a biplot when the values xij in the data matrix, usually standardized in some 
way, are approximated by scalar products f/Tgj between the corresponding row and 
column points in the map (see Gabriel et al., Chapter 27). A scalar product between 
two point vectors is equal to the product of their lengths times the cosine of the angle 
subtended by the vectors. This is equivalent to projecting one of the vectors, say 
f, onto the other one, g, and calculating the scalar product as the projected length, 
multiplied by the length of g, with sign depending on the angle between the vectors. 
To interpret a column of the data matrix, we would interpret the projections of all 
the row points (points f representing the rows) onto the vector g through the column 
point, called a "biplot axis." Since each projection is multiplied by the same scaling 
factor, the length of g, the scalar products are proportional to their projections on the 
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biplot axis, so the axis can be calibrated in order to read off the values of the scalar 
products and hence the approximations to the data values. 

In CA the biplot relationship can be deduced from the so-called reconstitution 
formula for recovering the elements pij of the correspondence matrix from the row 
principal coordinates F and column standard coordinates Y: 

Pij = ricj 1 + fikYjk 
k=l  

[a similar formula in terms of the gjk and Xik is possible; see, for example, Blasius and 
Greenacre (1994, p. 76)]. When the first K* dimensions are retained (often K* = 2), 
then we replace the equality above by ~,  which denotes "is approximated by weighted 
least squares as": 

Pij ~ ricj 1 + fikYjk 
k=l  

In this case the weighting factor for the (i, j)th squared term is 1 / ( r i c j ) .  

Dividing (1) throughout by ri and rearranging terms, we obtain: 

K* 

ri k= 1 

(1) 

(2) 

T where f/V _ [J~l " " "  J~K*] and y j --= [Yjl " ' 'Y jK*].  Formula (2) shows that the differ- 
ence between the row profile element Pi j / r i  and its average cj, relative to the average 
c j, is approximated by the scalar product between the row point in principal coordi- 
nates and the column point in standard coordinates. In other words, the joint display 
of the fi's and the yj's, called the asymmetric  map (Greenacre, 1993b), constitutes a 
biplot for the matrix (D r 1p _ lcT)Dc 1. Further details of the biplot for simple CA 
are given by Greenacre (1992), who also shows how the directions defined by the 
yj's may be considered biplot axes that can be calibrated in profile units, that is, on 
a zero-to-one scale. This reduces the calculation of scalar products between points fi 
and yj to simply projecting the point fi onto the biplot axis and reading off the profile 
value on the scale. 

In the simple CA of the 25 cultural competences cross-classified with the five 
age groups, shown in Figure l, the age groups A1 to A5 are displayed in standard 
coordinates and the 100 cultural competence category points in principal coordinates, 
labeled al, a2, a3, a4, b 1, b2 . . . . .  and so on (where there are many overlapping points 
in the center, the positions of the points are indicated by a o, without a label). The 
roughly parabolic curve traced by the five age groups is a phenomenon often observed 
in a CA map, called the "horseshoe effect." In this case it is due to the gradual change 
in cultural competences as age increases. The competence category points fall roughly 
into an arch as well, with categories such as "use video recorder" (u l) and "use tape 
recorder" (v l) at the fight-hand end, associated with the youngest age group, and 
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categories such as "cannot ride bicycle" (q3) and "cannot use calculator" (t3) at the 
left, associated with the oldest age group. Between these ends the cultural competence 
categories form a continuum that gradually moves from the youngest to the oldest 
end of the spectrum. 

To interpret Figure 1 as a biplot, scalar products would be computed between 
the 100 cultural competence categories and the five age points, giving estimates 
(]3ij//Fi -- C j) of the deviations of the profile values from their respective averages. 
This can be performed equivalently by drawing an axis through each of the five 
age groups and calibrating it in profile units, so that the estimated profile values are 
obtained by projecting the cultural competence categories on the biplot axes. The 
total inertia is equal to the weighted sum of squares of the exact deviations, in the chi- 
squared metric (dividing each squared deviation by cj), and this can be decomposed 
into two parts: 

(Pij/?'i -- Cj) 2 (Pij/Fi -- Cj) 2 (Pij/ri --Pij/ri)  2 
~ - ~ - ~ r i  - - ~ ' ~ ~ r i  h - ~ ~ - ~ r i  

i j cj i j cj i j cj 

(3) 

The first part is the weighted sum of squares of the estimated deviations, which is equal 

to the sum ~k~ l  Ak of the first K* principal inertias, which is the inertia accounted 
for in the map. The second part is the total error, the weighted sum of squared errors 
(also in the chi-squared metric), equal to the sum of the remaining principal inertias. 
We can study the individual errors by expressing each term in the second summation 
on the fight-hand side of (3) as a percentage of the total error. Such an analysis 
of individual errors can help us to locate outliers in the data. For diagnostics more 
directly related to the way we interpret the map, we can consider the accuracy of 
recovering the ordering in the profile elements, rather than their actual values. We 
shall introduce such a criterion after discussing the unfolding interpretation of the 
joint map. 

5 CA as an U n f o l d i n g  M o d e l  

An alternative way to interpret the joint map is in terms of distances between points. 
When distances between one set of points approximate the data (or some transfor- 
mation thereof), the mapping technique is called "multidimensional scaling." When 
the distances in the map are between points from two different sets, this is a special 
case of multidimensional scaling called "unfolding." In an asymmetric CA map there 
is some justification in looking at row-to-column distances, since we can write the 
criterion in simple CA as 

minimize ~ ~P i j ( f i  - yj)T(f/ _ yj) (4) 
i j 

subject to the identification condition yTDcY = I on the standard coordinate vectors. 
In other words, we want to minimize the weighted squared distances between row 



5. CA as an Unfolding Model 227 

and column points, where the weights are the observed frequencies of co-occurrence 
and where the normalization of the column points has been fixed. For given y j the 
minimum of (4) with respect to fi is 

fi = ~-~j PijYj = E Pij y . (5 )  
E j  pij j ri J 

which is the usual barycentric property between rows and columns or transition 
formula. This formula can be used to substitute for fi in (4) so that the minimization 
is with respect to the yj only. 

To see that (4) is equivalent to the usual formulation of CA, we expand the 
unfolding criterion (4) and use (5): 

E E pij(fi -- y j ) T ( f i  _ y j )  _ E E pijfTifi (6 )  
i j i j 

+EE - 2 E E 
i j i j 

= Z rifTfi + E c j y ~ y j - 2  E r i ( f i  
i j i 

= K* - Er i fT i f  i 
i 

For example, when K* = 2, this criterion has a minimum value of 2 - A 1 - A 2 

corresponding to the maximum of Ei rifTfi being A1 + A2. Thus the unfolding 
objective of minimizing the row-to-column squared distances in the asymmetric 
map is equivalent to maximizing the row (or column) inertia displayed, and the 
minimum and maximum of the respective objective functions sum to a constant, the 
dimensionality of the solution. 

Notice in the preceding development the use of the identity: 

E E fT = ~ fTf/ (7) Pij i Yj ~ ri 
i j i 

The left-hand side of (7) is the biplot criterion, which is required to be maximized. 
From (6) and (7) we have 

E Y~Pij(fi - yj)T(fi _ yj) = K* - E E pqfTiyj (8) 
i j i j 

which illustrates the complementary objectives of the biplot and unfolding models. 
In words, we can say that the biplot criterion is "display rows by fi and columns by 
yj SO that their scalar products f/Vyj a r e ,  for high Pij, as  large positive as possible and 
for low Pij, as  large negative as possible" and the unfolding criterion is "display rows 
by fi and columns by yj so that their interpoint (squared) distances (fi - yj)T(fi _ yj) 
are, for high Pij, as  small as possible and for low Pij, as  large as possible." 
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6 A Nonmetric Graphical Diagnostic 

We first consider the full space geometry of simple CA where, in the case of the biplot 
model, the geometry is well known. The biplot axes, defined by the vertex points, are 
the original coordinate axes of the space, so that the projections of the profile points 
onto the biplot axes give the exact profile values. In the reduced space, the profile 
values are approximated by the projections onto the calibrated biplot axes. 

Let us consider the unfolding interpretation in a similar way by looking at the 
row-column distances in the asymmetric map in the full space. Let a = [al • • • a j] T 
be any profile point, where 1Ta = 1, and ej - [ 0 . . .  0 1 0 . . .  0] T any unit point, 
where the 1 is in the jth position. The squared chi-squared distance between the 
profile point and vertex point is 

I l a -  ejll 2 = ~ a2/ci + ( a j -  1)2/ /c j  = Ilall 2 + ( 1 -  2aj)/cj (9) 
i :/: j 

where II • • • IIc denotes the chi-squared metric with respect to the average profile point 
c, for example, I l a l l  2 -- ~ f _ ~  a 2/ci. We now compare the distance from two different 
profile points, a and b, to the same vertex point. Specifically, we want to know what 
we can infer about the profile values if the profile point a lies closer than profile point 
b to the vertex point. Using (9) we thus obtain the following equivalent inequalities: 

(2aj - 1) (2bj - 1) 
I l a -  ejllc 2 < l i b -  ejllc 2 ~ -I lal l~ > -I lbl l~ 

Cj Cj 

The terms Ilall 2 and Ilbll 2 are the squared distances of a and b from the origin 0 
of the multidimensional space. Especially if the inertias are low, these distances are 
practically the same, so that the following equivalence holds approximately: 

(2aj - 1) (2bj - 1) 
I l a -  ejl] 2 < l i b -  ejll 2 ~ > ~ aj > bj 

cj cj 

In words, if a is closer than b to the vertex point e j, then the jth profile element of a 
is greater than that of b. 

These results give some theoretical justification for the following general rule 
in the full profile space, where the rows are depicted as profiles and the columns as 
vertices: 

Use each column vertex point one at a time and refer the set of  row 
profile points to the column point. As the profile points come closer to 
the vertex point, the profile element with respect to that column category 
is increasing. 

This rule is very similar to the one that we had in the biplot case, because there is an 
almost monotonic relationship between the distances from a profile point to a vertex 
point and the position of the profile point projected onto the corresponding biplot axis. 
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The difference is that in the biplot situation the recovery of the profile elements is 
exact in the full space, whereas in the unfolding situation the recovery is approximate. 
It is apparent that the only difference between the biplot and unfolding criteria is that 
distance in the biplot model is measured along the biplot axis, whereas distance in the 
unfolding model is absolute distance between the profile and vertex points. Therefore, 
differences between the two criteria occur for points along perpendiculars to the biplot 
axis (Figure 2), for which the projections onto the biplot axis are identical, whereas 
the distances to the category point are different. 

In practice, when confronted with a joint representation, we are seldom interested 
in trying to recover the data exactly. Rather, we would be satisfied in knowing that the 
rank ordering of the positions of the profile projections on a biplot axis (in the biplot 
interpretation), or the distances from the profile points to the vertex points (in the 
unfolding interpretation), agrees with the rank ordering of the profile elements. This 
leads us to propose a simple nonmetric measure of rank correlation as a diagnostic 
for the joint display. 

Consider a vertex point j and I profile vectors in a joint reduced-space map 
(Figure 3). Suppose that the profile elements of the I vectors with respect to the 
vertex category point are a l, a2 . . . . .  ai (we omit a subscript j referring to the vertex 
category because this is fixed throughout the ensuing discussion). In the display 
we can consider either (a) the projections of the profile points onto the biplot axis, 
leading to values s l, s2 . . . . .  si on any scale that increases toward the vertex, or (b) the 
distances dl, d2 . . . . .  di between the profile points and the vertex point. In the case of 
the biplot interpretation (a), a correct display would require that as the ai's increase, 
so do the si's. Hence the display is exact in a nonmetric sense when for all i and i~: 

(biplot) (Si  - -  s i , ) ( a i  - -  a i , )  >-- 0 (10) 
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Figure 2: Biplot axis through a vertex point, showing that the projections of several 
points perpendicular to the axis can give the same approximate profile estimates, 
whereas the distances to the vertex vary. 
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Figure 3: Measuring the quality of interpretation of the joint map by comparing 
distances from the profile points to a specific vertex point. 

For the unfolding interpretation (b), the reverse is needed, that is, as the a i ' s  

increase, so the di's decrease. Hence the display is exact in a nonmetric sense when 
for all i and i~: 

(unfolding) (di - d i , ) (a i  - ai , )  <- 0 (11) 

In practice, of course, the scalar products s i and the distances di are not in a perfect 
monotonic relationship with the profile values ai ,  but we can measure the quality of 
the display by counting the number of unique pairs (i, i t) (say where i < i ~) for which 
either condition (10) or (11) is satisfied and expressing this count as a proportion of 
the total number ½I(I - 1) of pairs. In the language of nonparametric statistics, the 
pairs satisfying the particular inequality condition are called concordant  pairs, and 
those not satisfying the condition are called discordant pairs. Let C denote the number 
of concordant pairs and D the number of discordant pairs, where C + D = 1i( i  - 1), 

so that what we have proposed is to calculate C / 1 I ( I  - 1). If the projections of the 
profiles onto a biplot axis or the profile-to-vertex distances were random, then we 
would expect as many concordant pairs as discordant pairs in the respective cases, 
that is, C / I I ( I  - 1) = 0.5. To measure success we should therefore subtract 0.5 from 

C / 1 1 ( I  - 1), and then to allow the measure to have an upper bound of 1, we should 
scale this difference up by a factor of 2, leading to the following final form: 

number of concordant pairs 

2 × total number of pairs 

/ ( c ) 
- 0 . 5  = 2  1i(i_1)-0.5 (12) 

1I(I -- 1), this index can be shown to be identical to Kendall's tau Using C + D - 
coefficient ~" = (C - D ) / ( C  + D), a rank correlation coefficient defined by Kendall 
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Table  1: ~- indices of quality (× 1000) for each age group vertex point in Figure 3, for 
scalar products (biplot interpretation) and distances (unfolding interpretation), and 
the usual qualities (QLT) of display of the age group profiles as well as the age group 
vertices as supplementary points 

~- indices Qualities 

Scalar prods Distances Profiles Vertices 

A1 905 908 982 747 
A2 649 662 856 186 
A3 691 631 899 383 
A4 758 772 954 291 
A5 901 902 990 815 

(1948). The tau coefficient can also be written in the following convenient form: 

(°) ~-= 1 - 2  C + D  (13) 

In other words, the ~" index of success, or quality, lying between - 1 and 1, is 1 minus 
twice the ratio of discordant pairs to the total number of pairs. 

Considering again the asymmetric CA map in Figure 1, with the five age groups 
as vertex points in standard coordinates, we refer all 100 row profile points to one 
vertex point at a time and compute the ~- index to measure the quality of the biplot 
and unfolding interpretations respectively for each age group point. The results are 
summarized in Table 1. The extreme, most outlying, age group points A1 and A5 
show tau coefficients of over 0.9. These are also the points that have the highest 
quality of display in the two-dimensional map, according to the usual contributions, 
which are given in the third column of the same table for purposes of comparison. 
The profile qualities are all higher than the ~" indices. 

7 Extensions to MCA and JCA 

Here we consider the extension of the biplot and unfolding definitions of CA to 
the multiple case. We have seen two separate but equivalent versions of the biplot 
definition, namely the matrix approximation (2) on the one hand, based on the SVD, 
and, on the other hand, the function (7) to be maximized. We extend the latter version 
of the biplot and the unfolding criterion (4) to the multiple case. 



232 Chapter 17. Diagnostics for Joint Displays in Correspondence Analysis 

7.1 M C A  of Burt Matrix  

The Burt matrix B is: 

[D(1) P(12) "" il 

B = z T z  = n /P(21) D(2) J [ • i • 

where P(qs) is the cross-tabulation of the qth and sth variables, and D(q) = P(qq) is the 
diagonal matrix of marginal relative frequencies of the qth variable. MCA can also 
be defined as the CA of the Butt matrix, and it is known that the standard coordinates 
of the rows of B (or of its columns, B is symmetric) are identical to the standard 
coordinates of the columns of Z. It is also well known that the principal inertias of B 
are the squares of those of Z; see, for example, Greenacre, 1984, p. 140. 

Extending the biplot and unfolding definitions, (7) and (4), respectively, to B, we 
obtain similar criteria except that there is an extra double summation over the block 
matrices that constitute the Burt matrix: 

1 
m a x i m i z e  Qe Z Z Z Z P(qs)ijf(Tq) iy(s)j (14 )  

q s i j 

1 
m i n i m i z e  0 2 Z Z Z Z P(qs)ij(f(q)i - y(s)j)T (f(q)i - Y(s)j) (15 )  

q s i j 

where P(qs)ij denotes the ijth element of P(qs), and f(q)i and Y(s)j denote the principal 
and standard coordinate vectors, respectively, of the ith category of variable q and 
the jth category of variable s. 

Objectives (14) and (15) are similar in aspect to those of (7) and (4) for a single 
table, apart from the following three crucial differences. First, the single table has 
two sets of points for the categories of the row and column variable, respectively, 
and these points are vectors of "free parameters" whose estimates will capture the 
association between the row and column variables. In the case of the Burt matrix we 
have Q2 cross-tables; in fact, each categorical variable q is cross-tabulated with each 
of the other Q - 1 ones, as well as with itself. Separate CAs of these Q - 1 tables 
are possible but would proliferate the number of graphical displays so much as to 
defeat the object of the data reduction that the visualization hopes to achieve. Such 
analyses would lead to Q - 1 different solutions for the Jq categories of variable q. In 
analyzing the Burt matrix, however, we restrict the solution to just one set of category 
points for each variable, as can be seen in (14) and (15), where the coordinate vectors 
f(q)i and Y(s)j each contain only one index per variable. This means that we have a 
much simpler map with only one point per category, which can be considered as an 
average display of the individual association patterns. 

Second, the free parameters are not as numerous as they seem. Since B is a 
symmetric matrix, the row and column solutions are identical, so that there is a very 
simple relationship between the principal and standard coordinates for both rows and 
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columns, for example: 

= lr~l/2.  (16) f(q)j ~J )t ,Y (q)j 

where D~ is the diagonal matrix of K* principal inertias of B for the K*-dimensional 
solution. 

Third, (14) and (15) include terms for each variable cross-tabulated with itself, 
when q - s, for example, for the unfolding criterion (15): 

1 
Q2 Z Z Z P(qq)ij(f(q)i - y(q)j)T(f(q)i _ y(q)j)  

q i j 

1 
Q2 Z Z cj(f(q)j -- y(q)j)T(f(q)j _ y(q)j) 

q J 
(17) 

Here we have further simplified the summation by noting that P(qq) is a diagonal 
matrix with the marginal relative frequencies c j, j = 1 . . . . .  Jq, down the diagonal. 
This shows that in addition to trying to display all the associations between different 
variables, the category points f(q)j and y(q)j in principal and standard coordinates 
corresponding to the same category are being coerced to lie as close to each other 
as possible. From (16) this can be equated to coercing the principal inertias to 
be as high as possible, to display the perfect association between a variable and 
itself that is embodied in the diagonal tables P(qq). The terms (17) clearly have a 
very strong influence on the solution in MCA and explain the anomalies regularly 
noticed in MCA solutions--low percentages of inertia and low relative contributions 
(Greenacre, 1990, 1991). 

Figure 4 shows the two-dimensional CA map of the 100 X 100 Burt matrix formed 
of all the cross-tabulations of the 25 cultural competence variables, where all points 
are in principal coordinates. On the left-hand side of the map the inabilities to "read 
city map" (m3), "ride bicycle" (q3), "use calculator" (t3), and "take photographs" 
(i3) separate out, and on the right-hand side we have the ability to "play chess" (dl), 
"change spark plugs" (11), "use calculator" (t 1), and a nonresponse to "knitting" (p4). 
The dimensions of the map are somewhat difficult to interpret if there are no external 
variables such as age or sex to refer them to. The utility of such an analysis would 
rather be to reduce the dimensionality of the data set and to notice such aspects as the 
association of many of the nonresponse categories at the top of the map, indicating 
that nonresponses are confined mostly to a particular subgroup of respondents. The 
usual overall quality measure of the display would be the sum of the percentages of 
inertia on the two axes, namely 33.4% + 8.5% = 41.9%. 

To apply the tau coefficient to measure the success of the joint display, we do 
not have a variable such as age (see Figure 1) to which we refer the 25 cultural 
competence variables. Rather, each of the variables serves as a reference to the other 
24 variables, because the information in the data matrix is the association among 
all 25 variables. Thus we successively place the four categories of each of the 25 
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variables in their vertex positions and then verify scalar products and distances of the 
other 96 points with respect to these four vertices. For example, the four categories 
of the variable "use PC" (h) are starred and italicized in Figure 4. These should be 
placed in their vertex positions (not shown here) and the same procedure followed 
as before. The ~- indices for the four categories are found to be 0.660, 0.523, 0.734, 
and 0.467, respectively, for the scalar product interpretation and 0.653, 0.525, 0.744, 
and 0.456, respectively, for the distance interpretation. These and some other values 
can be inspected in Table 2, where we have also included the T's for one- and three- 
dimensional solutions. Notice that the qualities increase as dimensionality increases, 
although small exceptions can occur. Also notice, as in the case of category f4, that a 
~" index can attain a negative valuemrecall that the range of ~" is from - 1 to 1, where 
0 represents a completely random relationship between the profile elements and the 
scalar products (or distances). 
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Figure 4: Multiple correspondence analysis of Burt matrix of cultural competences, 
with all category points in prinicipal coordinates; categories of "use PC" are in italics. 
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Table 2: ~" indices of success (× 1000) for each category point, for MCA solutions 
dimensionality one, two, and three, and the usual quality measures from MCA (MCA 
analysis of the Burt matrix) 

Scal. prods Distances Qualities 

1-d 2-d 3-d 1-d 2-d 3-d 1-d 2-d 3-d 

el 848 850 864 848 844 822 818 819 838 
e2 33 107 543 216 232 551 4 12 284 
e3 736 752 804 736 751 796 817 821 837 
e4 284 480 527 300 476 521 16 62 114 
fl 405 586 661 405 571 653 154 306 324 
f2 374 384 561 374 390 569 31 38 97 
f3 439 692 693 244 589 588 196 256 259 
f4 -67 262 277 50 259 281 0 4 34 
gl 798 820 821 798 820 810 828 895 918 
g2 146 272 446 151 299 436 22 44 223 
g3 775 800 807 775 800 809 808 888 888 
g4 264 455 599 264 446 598 12 73 173 
hl 678 660 696 678 653 685 474 486 501 
h2 519 523 529 519 525 545 220 221 251 
h3 706 734 758 695 744 722 632 648 655 
h4 223 467 590 223 456 582 18 60 160 

7.2 J C A  o f  B u r t  M a t r i x  

JCA avoids the complication of the diagonal terms by excluding them from the 
objective criteria, biplot or unfolding. Because the tables above the diagonal of the 
Burt matrix are just transposes of those below the diagonal, we can express the 
objective criteria in terms of the ½ Q ( Q  - 1) tables in the upper or lower half-triangle 
of the Q x Q block matrix B. Thus, the JCA criteria for the biplot and unfolding 
models are, respectively, 

2 
P(qs)ijf(q)iY(s)j (18) maximize Q ( Q  - 1 ) Z  Z Z Z T 

q s>q i j 

2 
minimize Q ( Q  - 1 ) Z  Z E E p(qs)ij(f(q)i - Y(s)j)T(f(q)i - Y(s)j) (19) 

q s>q i j 

One of the advantages of this definition is that JCA has as an exact special case the 
simple CA problem (where Q = 2), because the summation in (18) and (19) involves 
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only one term corresponding to the single cross-tabulation P12 in simple CA, denoted 
previously as P. This is not so for the MCA definition, where the special case for 
Q = 2 does not reduce to the simple CA definition exactly. 

As in Section 6.1, we can apply the tau coefficient to measure the quality of each 
category's success in the joint map. Figure 5 shows the JCA of the same 100 × 100 
Burt matrix as before. Notice first how much the percentages of inertia explained 
have increased compared with the previous MCAmfrom 33.4% and 8.5% for the two 
axes in Figure 4 to 68.2% and 13.7% in Figure 5. The scale of the two displays is 
the same, and the cloud of points in Figure 5 is very similar to that of Figure 4, with 
a slight reduction in scale and a flattening of the cloud in the vertical direction. The 
computation of ~" indices, shown in Table 3, is done exactly as before, and because 
of the similarity of the two configurations, it is to be expected that these diagnostics 
will be quite similar to those computed for MCA. Comparing Table 3 and Table 2 
confirms that there is hardly any difference in the quality of the joint display when it 
is measured in this way. This demonstrates that evaluating the quality of the display 
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Figure 5: Joint correspondence analysis of Burt matrix of cultrual competences, with 
all category points in principal coordinates; categories of "use PC" are in italics. 
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Table 3: ~" indices of success (× 1000) for each category point, for JCA solutions dimen- 
sionality one, two, and three, and the usual quality measures from the JCA solution 
(including estimated diagonal blocks, perfectly fitted by JCA) 

S c a l .  prods Distances Q u a l i t i e s  

1-d 2-d 3-d 1-d 2-d 3-d 1-d 2-d 3-d 

el 844 853 858 844 859 875 969 973 983 
e2 207 249 559 33 100 550 20 38 284 
e3 730 749 802 730 744 802 969 976 985 
e4 291 479 492 286 474 493 178 270 381 
fl 397 601 670 397 620 681 487 862 893 
f2 369 395 584 369 388 586 298 359 680 
f3 251 599 629 431 676 696 538 879 883 
f4 51 213 258 -69  207 239 0 6 85 
gl 810 836 856 810 839 857 906 962 979 
g2 148 286 440 148 264 447 115 170 666 
g3 787 827 829 787 829 825 906 972 972 
g4 271 454 605 271 471 614 67 196 390 
hl 677 667 685 677 672 695 863 889 898 
h2 518 516 547 518 518 533 768 768 251 
h3 694 738 761 700 728 755 893 918 927 
h4 217 403 594 217 407 589 77 168 373 

i i i i i i i i i i 

in a nonmetric way avoids the issue surrounding the usual way of quantifying the 
map quality. 

8 Conclus ion 

The usual diagnostics in CA are based on the decomposition of the total inertia into 
components. These diagnostics suit the dimensional interpretation of CA; when the 
principal axes are interpreted one at a time, each point's contribution to an axis is 
evaluated as well as each axis' contribution to the points. 

Our distance interpretation of a map, however, is based on comparing relative 
positions of categories, and the tau index is proposed as a summary measure of the 
validity of this interpretation. If a profile point representing a specific category is well 
represented, then it follows that recovery of data values relative to this category will 

tend to be of higher quality than that of a category that is poorly represented. Thus, 
there will be a close monotonic relationship between the tau indices and the usual 
quality indices based on inertia contributions of points. 
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An advantage of the tau index is that it can be used across all types of CA. Since it 
is not concerned with recovery of data values, it quantifies the interpretational validity 
of MCA and JCA, which is independent of different scaling factors. Nishisato (1988) 
also proposes a measure for evaluating the quality of the joint display, but uses a 
metric criterion rather than a nonmetric one. Using a nonmetric quality measure is 
one way of showing that MCA and JCA can give similar results, even though the 
explained inertia in MCA is low. 

Finally, the same ideas can be applied to measuring quality of fit in an MCA 
where the rows and the columns of an indicator matrix are displayed. The data values 
are just zeros and ones, and the biplot and unfolding objectives would be, respectively, 
to ensure the largest scalar products and smallest distances between individuals and 
their response categories. The same tau index can be used to measure success of 
representation with respect to each vertex point j. Notice that we are not trying to 
approximate the values 0 or 1 in the map. As de Leeuw says in Section 1.4, we 
are not interested in approximating these values strictly but rather in the "qualitative 
relations" in the data. Total success in the map is therefore not measured in terms of 
percentage of inertia displayed, which has to do with approximating the zeros and 
ones, but rather by a criterion such as our tau coefficient, which does measure the 
success of recovering the qualitative relationships between rows and columns. 



Chapter 18 

Using Multiple 
Correspondence Analysis 
to Distinguish between 
Substantive and 
Nonsubstantive Responses 

Victor Thiessen and Jiirg Blasius 

1 I n t r o d u c t i o n  

More than a quarter-century ago, Bogart, in his presidential address to the American 
Association of Public Opinion Research, astutely remarked that "our opinions invari- 
ably transcend our knowledge" (Bogart, 1967, p. 337). This led him to conclude that 
the typical emphasis on substantive answers elicited from the public was fundamen- 
tally misguided: "We measure public opinion for and against various causes with the 
"undecided" as the residue. Often what we should be doing instead is measuring the 
degrees of apathy, indecision, or conflict on the part of the great majority, with the 
opinionated as the residual left over" (Bogart, 1967, p. 337). Our chapter aims to 
distinguish substantive from nonsubstantive responses (NSRs). 

Two traditions characterize research on opinion holding. The one attempts to dis- 
tinguish respondents who actually have an opinion from those who do not. Research 
in this tradition follows on the heels of the pioneering work of Converse (1964); it 
takes advantage of patterns of consistent and inconsistent responses in panel studies, 
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for example, to distinguish opinion holders from respondents who do not hold an 
opinion on the issue at hand. Models such as Converse's (1970) black and white 
(BW), which divides respondents into two groupsuthose holding opinions and those 
not having opinionsmare assessed in this tradition. With synchronic data, constraints 
between items are introduced to distinguish acceptable from unacceptable response 
patterns, along the lines of Guttman scales. 

Closer scrutiny of respondents classified as non-opinion holders reveals that 
their response patterns are far less random than implied by the theory. One reaction 
was to introduce some "gray" into the BW model (Brody, 1986). A second was to 
distinguish between several forms and/or sources of NSRs. Coombs and Coombs 
(1976) distinguished "don't know" (DK) responses they felt reflected item ambiguity 
from those indicative of item-specific equivocation (due to response uncertainty). 
Likewise, Duncan et al. (1988) documented what they call a "transitory response set" 
that operated to produce consistent responses within a given wave of a panel study 
but inconsistent responses between waves. In all of these models, the focus is on the 
latent distribution of opinion holding in a population. 

Researchers in the second tradition concern themselves more with the "problem" 
of NSRs. Here the focus is usually with the predictors of NSRs. Researchers in this 
tradition often regress a dependent variable (either the number or the proportion 
of DK responses) against respondent attributes such as sex, age, and education. In 
these approaches, only the number or the proportion, but not the structure of the DK 
responses, is considered. The implicit assumption is that tendency to use NSRs is 
a respondent attribute, essentially independent of substantive content of the issues 
being examined. Research such as Rapoport's (1985) finding of a correlation of 0.38 
between parent-child dyads in the frequency of using a DK response supports this 
assumption. 

2 Correlates of "Don't Know" Responses 

The literature is quite consistent with respect to the correlates of DK responses. The 
strongest predictor is political interest: the lower the interest, the greater the tendency 
to give an NSR (Faulkenberry and Mason, 1978; Rapoport, 1982). Education is the 
next strongest factor, having an inverse relationship with the tendency to respond 
with DK (Francis and Busch, 1975; Converse, 1976/77; Faulkenberry and Mason, 
1978). The third factor is sex: women more than men respond with DK (Ferber, 1966; 
Francis and Busch, 1975; Ferligoj et al., 1991). Part of this relationship may be due to 
the greater exclusion of women from the political process. Although the relationship 
was indeed reduced when education and political interest were controlled, the gender 
effect remained statistically significant (Francis and Busch, 1975). Ferber's (1966) 
study dealt with opinions about durable goods, which are likely to interest women 
more than men. Hence it is unlikely that the gender effect is totally a function of 
interest differences. 

Finally, age also seems to be a predictor of DK response, with older respondents 
more likely to utilize the DK response (Ferber, 1966; Francis and Busch, 1975; 
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Rapoport, 1982). But a careful review of the empirical findings suggests that age is 
only weakly related to DK at best. Ferligoj et al. (1991, p. 13), for example, find no 
age trends in DK responses up to the age of 60 in any of their four Slovenian national 
surveys. Likewise, Rapoport's (1982) data show that the only difference is essentially 
between those over and under 60 years of age. Also, in two of the three waves in the 
Francis and Busch (1975) analyses, age does not reach statistical significance, despite 
relatively large samples. Ferligoj et al. (1991, p. 16) provide evidence for a sex-age 
interaction effect: older women are consistently and significantly more likely than 
younger women to respond with DK. Among men, there is no comparable discernible 
age effect. 

In this chapter we start with the topic of distinguishing substantive responses from 
NSRs. This includes an examination of whether responses such as "no difference" 
(ND) or the middle category of attitude scales (such as "undecided" or "unsure") 
should be treated as substantive. In line with studies such as those of Converse 
(1970), Coombs and Coombs (1976), Brody (1986), and Duncan et al. (1988), we 
describe the latent structure that characterizes the response categories. This means 
we will assess whether the NSRs, such as don't know or not sure, are located close 
to each other in a multidimensional space. For example, if we want to describe how 
the categories of different items (including DK and ND responses) are related to 
each other on any topic, we have to create a common latent space in which each 
response category for each item in the analysis is located. Furthermore, this space 
should provide the possibility of interpreting distances between response categories as 
(dis)similarities of meaning. The difference between substantive responses and NSRs 
should manifest itself in the latent space by large distances between the respective 
categories. This means the substantive responses should be clustered at one point of 
the latent space and the DK responses in a quite different part. 

In the next stage we would like to incorporate the findings on the correlates of 
DK into a common model, which includes the assumptions of both research traditions 
we have mentioned. Thus we will describe how respondent attributes, such as age, 
education, and sex, fit into the space determined by the attitude and opinion items 
of the domain of inquiry. In this connection, we expect the probability of giving an 
NSR to decrease with interest in the topic at hand. Thus, the greater the interest in 
a topic, such as abortion, the lower the likelihood of responding with NSRs. In this 
extended model, the reported strength of association of the correlates of NSR should 
be replicated. This means that political interest should have the highest association 
with NSR in the latent space, followed by education and sex. We will examine these 
expectations using data from the 1984 Canadian National Election Study (CNES). 

3 Data 

The 1984 CNES is based on a large (N=3377) multistage weighted probability 
sample; provinces with low populations are oversampled (these data are available 
through the Inter-University Consortium for Political and Social Research at the Uni- 
versity of Michigan, Ann Arbor). Face-to-face interviews were conducted following 
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the 1984 federal election exploring a number of social and political issues. This study 
contains information appropriate to exploring distinctions between substantive and 
nonsubstantive responses. In this chapter we focus on questions concerning the per- 
ceived (in)competence of the federal political parties to deal with a number of issues: 
"Now I 'm going to ask you about a number of tasks that the federal government 
has to deal with. Forget for a moment the likelihood of each party getting elected to 
government. I'd like you to tell me which of the three major federal parties would 
probably do the best job and which would probably do the worst job on each task if 
it were the government." 

The tasks (together with the alphabetic characters used to identify them in sub- 
sequent graphical displays) were: 

controlling inflation (I) 

dealing with the USA (A) 

running the government competently (C) 

providing social welfare measures (S) 

limiting the size of government (L) 

working for world peace (P) 

dealing with the provincial governments (G) 

handling relations with Quebec (Q) 

dealing with unemployment (U) 

protecting the environment (E) 

dealing with women's issues (W) 

handling the deficit (D) 

No response categories were provided for the respondents. Rather, as the lead-in to 
the question indicated, they were expected to name one of the three federal political 
parties of Canada, which are the Progressive Conservatives, the Liberals, and the 
New Democratic Party. Most respondents did indeed name exactly one party as the 
best/worst for a given task. However, sizable numbers stated they did not know; 
another substantial group indicated they felt there was no difference between the 
three parties; and finally, a relatively small number of respondents felt that two of the 
three parties would be equally best/worst for the given task. From these responses we 
constructed the following categories: 

Differentiated (D): one of the three parties was named as best/worst. 

Semidifferentiated (SD; in the figures denoted by S only): two of the three parties 
were considered equally best/worst. 

No Difference (ND or N): the three parties were not considered to be distinguish- 
able on this task. 

Don't know (DK or K): it was not known which party would do best/worst on 
that task. 
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It is clear that respondents who named a given party provided a substantive 
response. Likewise, respondents who considered precisely two parties to be equally 
best/worst in dealing with a specific issue are providing substantive responses. On 
the other side, DK is by definition a nonsubstantive response. 

The ND response is potentially problematic. On the one hand, it may well be 
that knowledgeable observers of the political scene arrive at the conclusion that the 
political parties are not differentiated with respect to their ability to handle an issue 
such as working for world peace. That would indicate that an ND response is indeed 
a substantive response. On the other hand, a respondent could have insufficient 
information to discriminate between the political parties' abilities to deal with a 
given issue. In such instances, a response of ND would have a nonsubstantive meaning 
similar to that of a DK; only in the latter case could the two categories be combined. In 
the analysis that follows, the main question will be which of the two interpretations is 
more defensible. Practically speaking, is it permissible to combine the two categories 
or should they be kept separate? 

In addition to this question, we will extend previous findings on the correlates of 
DK responses. Variables used for this purpose are age, sex, educational level, political 
interest, and political knowledge. A measure of political knowledge was constructed 
by counting how many of the 10 Canadian provincial premiers a respondent could 
name. The individual mean of a battery of items on political participation (read- 
ing newspapers, watching programs, discussing politics, etc.) was used to measure 
political interest (response alternatives ranged from "never" [1 ] to "often" [4]). 

4 Results 

Table 1 shows the levels of differentiation and opinionation on the relative (in)ability 
of the Canadian federal political parties to deal with the foregoing tasks. Overall, this 
table shows that the number of DK responses is higher than the number of ND re- 
sponses, and both are higher than the number of semidifferentiated responses. When 
differentiating which party would handle a given task best, the highest incidence of 
DK response belongs to the item "protecting the environment," followed by "limiting 
the size of government," "dealing with women's issues," and "handling the deficit"; 
focusing on which party would be worst, the decreasing order starts with "working 
for world peace," "protecting the environment" "dealing with women's issues," "pro- 
viding social welfare measures," and "limiting the size of government." That is, the 
inner order of the two versions (best and worst) is similar. This suggests that the DK 
response is to some extent item specific: items on which there is a high proportion of 
DK responses as to which party would do best tend to be the issues on which there 
is also a high proportion of DK responses concerning which party would do worst. 
Although the inner order of the four response categories is quite similar, the levels 
of usage are quite different. In the extreme, for the item "working for world peace" 
17.2% of the respondents chose the DK response for which party would do best, 
whereas 38.5% gave this response for which party would do worst. 
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Table  1: Level of differentiation and opinion among Canadian federal parties on their 
ability to deal with various issues a 

Best Worst 

D b SD ND DK D SD ND DK 

Inflation 66.2 4.9 12.1 16.3 63.4 2.8 11.3 22.1 
Provincial governments 71.6 2.9 7.7 17.4 63.9 3.2 8.0 24.5 
U.S. 71.1 3.0 6.7 18.9 61.2 2.5 6.8 29.1 
Quebec 74.2 2.5 6.8 16.0 62.6 2.8 7.1 27.1 
Competent 68.8 3.1 9.1 17.7 60.2 3.6 9.7 26.1 
Unemployment 69.8 2.6 10.5 16.7 59.9 3.9 10.1 25.6 
Social welfare 70.4 2.9 8.0 18.2 55.4 3.5 8.6 32.0 
Environment 52.5 2.2 17.1 27.8 42.0 3.2 16.3 38.1 
Limit government 60.8 1.5 10.5 26.8 55.3 2.5 10.3 31.5 
Women's issues 62.5 2.3 11.4 23.4 48.5 4.0 11.7 35.4 
World peace 65.8 2.5 14.1 17.2 42.3 3.7 15.1 38.5 
Deficit 66.4 1.9 10.3 21.0 59.0 2.8 9.9 27.9 

aN=3377. However, there are either 14 or 15 cases of "no opinion" for each of the issues. 
These have been excluded from the table. 
bD, Differentiated; SD, Semidifferentiated; ND, no difference; DK, don't know. 

Turning to the ND responses, between 6.7% and 17.1% claimed the parties did 
not differ in their ability to deal with a given issue. Overall, the ND responses are 
consistently less likely to be used than the DK responses. Also, there is substantially 
less variation in the use of the ND response than of the DK response. 

We turn now to the correlates of DK and ND responses. For this purpose we 
counted the number of DK and ND responses separately for best, worst, and their 
total. The 1984 CNES data replicate almost perfectly the pattern of DK correlates 
found in the literature (see Table 2). Political interest has the strongest relationship 
with the number of DK responses and age has the weakest, with political knowledge, 

Table  2: Pearson correlations of "don' t  know" and "no difference" responses with 
selected respondent attributes 

Don't know No difference 

Attribute Best Worst Total Best Worst Total 

Political interest - .32  - .30  - .32 - .07 - .05 - .06 
Political knowledge - .24  - .25 - .25 - .01 .00 - .01 
Education - .23 - .24 - .24 -.01 .00 .00 
Sex (0 = male, 1 = female) .15 .18 .17 .05 .03 .04 
Age .08 .10 .10 .01 -.01 .00 
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education, and sex in between. In contrast to these patterns, the number of ND re- 
sponses shows no substantial correlation with any of the variables typically connected 
with NSRs. That is, the ND responses do not share any of the patterns of bivariate 
correlations typically found for DK responses. 

Although correlations are useful for finding associations, they cannot detect 
latent structures between a set of variables, which is the concern of our chapter. One 
of our main questions is whether a response tendency exists to answer the 12 tasks in 
one of the four ways: D, SD, DK, or ND? If so, a graphical display should mirror four 
clusters reflecting the four categories within both the "handle best" and the "handle 
worst" sections. 

The more individuals fluctuate between DK and ND responses within the item 
battery, the closer the clusters should be to each other. If ND and DK are inter- 
changeable responses of being an NSR, there should be a common cluster of DK 
and ND responses. If there is no tendency to answer the questions in any one of the 
four ways (D, SD, ND, DK), there will be no cluster constituted by one of the four 
categories. In addition, by simultaneously analyzing "best" and "worst" items we can 
determine whether there is a common structure between all 24 items or 96 categories, 
respectively. Finally, we will describe the association of political interest, education, 
political knowledge, sex, and age with the structure defined by the 2 x 12 x 4 = 96 
categories. 

An appropriate method for visualizing the 12 (respectively 24) items is either 
multiple correspondence analysis (MCA) or the "Netherlands version" of this method 
called homogeneity analysis, known as HOMALS in SPSS (see Girl, 1990; Meulman 
and Heiser, Chapter 20), which provides the same solution. Input data for MCA 
are either the indicator matrix containing all items or the Burt matrix, the cross- 
tabulations between all pairs of items to be included in the analysis concatenated in 
a square block matrix. In MCA, no distinction between independent and dependent 
variables needs to be made (see Greenacre and Blasius, 1994b). In our case, for 
example, all questions are on the theme of the perceived (in)competence of the three 
main Canadian political parties to handle various tasks. This situation is reminiscent 
of principal components analysis (PCA), which explores the structure of associations 
among a set of variables by identifying underlying dimensions. 

When using respondent-level data (using the indicator matrix as input data), rows 
describe respondents and columns provide the response categories in the form of 
dummy variables. A 1 in a given column means that the response category associated 
with that column was used, and a 0 means that it was not used. For each item there are 
four columns, one for each of the four possible response categories of D, SD, DK, and 
ND. If there are no missing data, each issue has to have a 1 in exactly one of its four 
columns, and a 0 in the remaining three. For our problem only the spatial positions 
of the variable categories are of interest; the spatial positions of the individuals will 
be ignored. The locations of all categories can be compared with each other, where 
short distances mirror high similarities and long distances high dissimilarities. 

Once the locations of the item categories have been computed, we can place axes 
into the space. These axes are chosen under a least-squares criterion. As in PCA, 
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the first axis is located so as to explain maximum variation in the data; the second 
axis is orthogonal to the first axis and is chosen so as to explain a maximum of 
the remaining variation, and so on. Again as in PCA, it is possible to interpret the 
variable categories in relation to the axes, which can be treated as latent variables. 
The closer the categories are to a given axis, the more they are determined by it (the 
cosines between the vector endpoints of the variable categories and the axes can be 
interpreted as factor loadings). 

Starting with the tasks handled best, we have a total of 48 columns (12 tasks 
with 4 response categories each) and 3362 rows (the number of respondents having 
ascertained responses on any of the tasks). This data matrix forms the input for the 
first MCA, which permits a maximum of 36 dimensions (number of categories mi- 
nus number of variables). The eigenvalue for the first axis is 0.51, which explains 
17.0% of the total variation; the corresponding values for the second axis are 0.40 
and 13.2%. Without discussing the statistical details, it can be shown that this under- 
estimates the amount of explained variances attributable to the first few axes. We will 
forgo recomputing the explained variances (for adjusting the explained variances see 
Greenacre, 1993) because the decreasing order of the axes including the variable cat- 
egories belonging to them is retained; differences in the maps using several possible 
adjustments are so small they can be neglected. Figure 1 provides a visualization of 
the locations of the 48 item categories for this MCA solution. 

Figure 1 shows a clear distinction between four clusters of variable categories, 
which indicates four patterns of response behavior. Projecting the categories onto the 
axes, on the left, or negative, side of the first axis are the DK responses. Negatively 
correlated with these categories are the items of the cluster "differentiated" and, to a 
lesser degree, the items of the cluster "semidifferentiated." Projecting the centroids 
or the range (not shown in Figure 1) of the four clusters onto the main axis, one gets 
a line from D through SD and ND to DK. This permits an interpretation of the first 
axis as the degree of differentiation, with D at the one extreme and DK at the other. 
This means that the higher the value on the first latent dimension, the higher the score 
along the scale ranging from NSR to substantive response. 

The second axis is populated mainly by the ND responses, which are located on 
the upper part of this axis. In addition to the reported differences along the first axis, 
the long distances between DK and ND responses imply that individuals frequently 
employing the ND responses are distinct from individuals answering relatively often 
with DK. Furthermore, individuals who differentiate between the competences of the 
three parties seem to be distinct from those who respond with ND. Between these 
two clusters are individuals who tend to differentiate partially between the federal 
parties; that is, who gave responses classified as SD. 

Focusing on the clusters themselves, Figure 1 shows that the responses character- 
ized as D are relatively close to each other. This indicates that there is an overlapping 
latent structure between all items: the tendency to differentiate parties is not item 
specific--either one does or does not distinguish between the competences of the 
parties. The cluster of DK responses is also relatively homogeneous, with only the 
three items protecting the environment, dealing with women's issues, and limiting 
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Figure 1: MCA of government tasks handled best. 

the government size positioned somewhat outside the cluster centroid. In any event, 
some respondents answered DK relatively consistently and an additional group failed 
to differentiate the parties only on these three issues (see also the higher proportion 
of DK responses for these three items in Table 1, column 4). 

In the two-dimensional solution, the variation within the ND cluster is much 
higher than that within the DK cluster. Therefore the likelihood of giving an ND re- 
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sponse to one item, given that an ND response was given to any other item(s), is lower 
than that for the DK responses. Furthermore, the order of the ND responses along 
the second axis reflects almost perfectly the frequency with which resondents indi- 
cated that there was no difference between the three parties (see Table 1, column 3). 
The clustering in conjunction with the variation along the second axis indicates that 
there is an increasing "difficulty" in differentiating the three parties on the issues that 
are closer to the centroid. Because the axes are orthogonal, it follows that the ND 
response tendency is independent of the DK response tendency. The categories be- 
longing to the SD cluster spread out; referring to the first two dimensions (Figure 1), 
the variation within this cluster seems to be higher than the variation within the D 
and DK clusters but less than that of the ND cluster. The high variation within the 
SD cluster becomes clearer when considering the third and fourth axes (not shown 
here), which explain 8.2% and 3.3% of total inertia, respectively: far away from the 
centroid the SD responses are clearly separated from one another. 

Parallel to which party would handle various tasks best, we performed an MCA 
for which tasks would be handled worst (see Figure 2). As in the previous MCA, the 
first axis (explained variation: 18.3%) is determined by the opposition of DK and D 
responses, the second axis (explained variation: 14.0%) can be described especially 
by ND responses, and the cluster SD is located between the clusters D and ND. In 
general, the solution for the response behavior of party incompetence is a near clone 
of that found for party competence: the overall structures of the two MCAs reveals 
only small differences. 

The purpose of the final analysis is to describe the responses to party competence 
(which party would handle the issues best) with those for party incompetence (which 
party would handle the issues worst) simultaneously, thus searching for a common 
latent structure between all 96 categories of the 24 items. In addition, we are interested 
in the associations of this structure with the respondent attributes discussed earlier. 
This allows us to describe which attributes, and in which forms, are related to the 
response categories ND, DK, SD, and D. The additional variables included in the 
model are sex (abbreviated by [F], [M]), age (subdivided into six categories, 18 to 
24 [A1], 25 to 34 [A2], 35 to 44 [A3], 45 to 54 [A4], 55 to 64 [A5], and 65 and 
older [A6]), education (five categories, from grade school or less [El] to university 
graduates [E5]), political knowledge (four categories, from none or one premier [K1 ] 
to five or more premiers [K4]), and political interest (four categories, from least 
interested [I1] to most interested [14]). The latter variables are to be included without 
influencing the geometric structure of the space formed by the 24 government tasks 
(12 best and 12 worst). This is accomplished in correspondence analysis with the 
projection of supplementary information into the space of a prior solution. In general, 
correspondence analysis permits a distinction between active variables (or variable 
categories), which determine the geometric orientation of the axes, and variables (or 
variable categories) used for supplementary information only. These supplementary 
variables have no effect on the geometric orientation of the axes (see Greenacre, 
1984, p. 73). The whole set of 24 government tasks supplemented by five respondent 
attribute variables (with a total of 21 categories) produces an indicator matrix of 3356 
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Figure 2: MCA of government tasks handled worst. 

rows (the number of cases without any missing values) and 117 columns. This matrix 
will be used as input data for the final MCA. The solution is given in Figure 3. 

Although the solution of the final MCA has 72 possible dimensions (96 cate- 
gories - 24 items), the first axis explains 16.2% (unadjusted) of the total variation, 
the second one an additional 13.1%. Because these values are almost as high as the 
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Figure 3: MCA of government task with supplementary variables. 

previous ones, one can assume a high similarity in the response structure of the "handle 
best" and the "handle worst" items. This conclusion is corroborated by the graphical 
displaymas in the previous solutions, there are four distinct clusters that include the 
respective categories. In the DK, D, and SD clusters there are only small differences 
between the competent (indicated by a star) and the incompetent (indicated by a circle) 
items. But these differences reflect mainly the different percentages of response: the 
DK responses are more pervasive for the incompetence question, whereas the SD and 
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the D responses have higher proportions in the competence questions (see Table 1). 
In the case of ND the order of the categories is item specific~if one felt that there 
was no difference among the three parties' abilities to handle a task best, then it is a 
foregone conclusion that none should be found for their inability to handle that task. 

Turning to the locations of the supplementary variables, Figure 3 shows that 
all 21 categories are either strongly connected with the first axis or located close 
to the centroid of the map. This means that the supplementary variables are not 
correlated with the second dimension. Therefore, sex, age group, education, political 
knowledge, and political interest are not recommendable predictors of ND responses; 
the supplementary variables can be used fruitfully only to distinguish individuals 
answering DK from those classified as either D or, to a lesser degree, SD. 

The most important variable for describing the group with above-average DK 
responses seems to be least political interest (I1), which has the shortest distance 
to this cluster (Figure 3). Furthermore, little political knowledge (knowing none 
or one premier only [K1]) and a low formal education (grade school or less [El]) 
are relatively good predictors for these variable categories. Two age categories are 
somewhat poorer indicators: persons 55 years and older (A5, A6) answered relatively 
often that they did not know which parties would handle the selected tasks best or 
worst, respectively. On the other side, especially persons with high political interest 
(14) differentiated between the parties. Furthermore, high formal education (university 
graduates [E5]) and high political knowledge (naming five or more premiers [K4]) 
are relatively good predictors for both D and SD responses. 

The orders of the categories of the supplementary variables along the first axis 
confirm the ordinality of education, political knowledge, and political interest with 
regard to the 24 items used in the analysis~projecting them onto the first axis, all 
categories belonging to these supplementary variables are in a line from high to 
low. Therefore, it can be concluded that the lower the political interest, the lower 
the political knowledge, or the lower the education, respectively, the higher the 
probability of a DK response. 

Also in line with the literature is the response behavior of males and females: 
men more often differentiated or partially differentiated; women answered relatively 
often with DK. The age groups are not ordered in one line along the first dimension: 
the youngest and the oldest age groups (A1, A5, A6) are relatively close to the DK 
cluster, and the remaining groups are close to each other on the positive part of the 
first axis. This indicates that the relationship between age and response behavior is 
not linear, which also explains the low correlation coefficients of age with DK in 
Table 2. 

5 Conclus ion 

Our analyses of DK and ND responsesmwhich is only one example for distinguishing 
NSR from substantive responsesmhave several theoretical ramifications. First, the 
MCA results show a clear distinction between NSRs and substantive responses. 
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Furthermore, the ND responses are primarily substantive ones; on the main axis, they 
are much closer to the D and SD clusters than to the DK one. In the given analysis, 
the ND and the DK categories form relatively homogeneous clusters that are located 
on different orthogonal axes. This independence suggests that if respondents are 
given the choice between admitting they have no opinion (by responding with a 
DK) and masking their nonopinionation in a relatively easy, socially acceptable way 
(by responding with a ND), few choose the masking route. Apparently, respondents 
did not feel pressured into giving substantive responses. Of course, it remains a 
hypothetical question whether respondents would choose the ND response if they 
had not been given the DK option. 

Our approach can also be used when the items tapping opinions in a given 
domain have a Likert response format. With such a format, the direction of opinion 
has to be removed from the intensity with which the opinion is held. That is, the 
response categories of "strongly agree" would be collapsed with those of "strongly 
disagree," as well as "agree" with "disagree." This is analogous to our ignoring which 
particular political party the respondent named. If the middle categories can be treated 
as substantive responses, in an MCA solution these substantive responses should be 
located in a different position from the NSRs. In general, in any case in which 
substantive responses with "less meaning" exist, these categories will be located in 
a different position from the DK responses in a common latent space. This implies 
that any substantive ND responses should be kept separate from DK responses. 

In our final analysis we included political interest, political knowledge, education, 
sex, and age as supplementary variables. By doing this we could show that political 
interest has the strongest association with the first latent dimension that distinguishes 
NSRs from substantive responses. This was followed by political knowledge, edu- 
cation, and sex, respectively. Overall, for our topic, individuals most marginal to the 
political process are also least likely to express opinions in that issue domain. In gen- 
eral, interest in and knowledge of the topic domain should most clearly distinguish 
respondents who hold substantive responses from those who do not. Sociodemo- 
graphic attributes can also be used as predictors, but their association with the main 
dimension is lower. 

In our analysis we found a nonlinear relationship of age with the first axis, 
whereby the youngest and the oldest gave the most NSRs. This nonlinear correlation 
is shown by the nonordinal positions of age groups along the first dimension. In 
general, if we expect a linear relationship of age with the "degree of differentiation" 
scale of a topic, then the MCA should confirm this by an ordinal order of the age 
groups along the axis that distinguishes NSRs from substantive responses. 



Chapter 19 

The Case of the French 
Cantons: An Application of 
Three-Way Correspondence 
Analysis 

Andr4 Carlier and Pieter M. Kroonenberg 

1 Introduction 

Getting insight into the structure of large contingency tables with multicategory 
variables has always been a difficult problem. Simple rejection of the hypothesis of 
independence of the variables does not bring the desired insight but only indicates 
that there is something to be investigated further. It is not sufficient to know that 
the distributions over occupations of a workforce changed over time and that these 
changes are different in different regions. The nature of the change in the regions is 
what should be the focus of an investigation. Graphical displays that depict both the 
general patterns and the details are desired to provide both an overview and a micro- 
scopic view of the regional changes. By applying three-way correspondence analysis 
(CA) to a 42 (regions) by 9 (occupational classes) by 4 (time points) contingency table 
about the workforce in the Languedoc-Roussillon area (southern France), we will 
demonstrate how such an investigation may proceed and what types of conclusions 
about the structure in the table can be made. 

Thus the major aim of this chapter is to provide an overview of the capabilities 
of CA of three-way tables to investigate the structure of large three-way contingency 
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tables. Biplots will be used rather than the usual simultaneous displays (Benzrcri, 
1973a) because of their more attractive properties in revealing the relationships 
between rows and columns. To evaluate the dependence in three-way contingency 
tables, special biplots have to be used, because the information of all three modes has 
to be displayed simultaneously. 

2 Overview of Two-Way Correspondence Analysis 

CA is a technique that is applied to contingency tables in order to depict the de- 
pendence between the row and column categories. The matrix of deviations from 
independence is decomposed into two sets of components, one for the rows and one 
for the columns, in such a way that the dependence can be portrayed as well as pos- 
sible in low-dimensional space. To this end, the best low-rank approximation to the 
matrix with dependences is sought, and this approximation is displayed in a biplot. 

2.1 Measuring Dependence 

Let us consider an I × J table of relative frequencies Pij,  with marginal row and 
column sums Pi. and p. j ,  respectively. A global measure of dependence is given by 
dP 2 = x 2 / n  where X 2 is Pearson's chi-squared statistic and n the total number of 
observations. ~2 is Pearson's mean-square contingency coefficient, called the total 
inertia in CA: ( )2 

~ 2  = Z (Pij -- Pi.P.j)  2 = Z Pi.P.j Pij  -- Pi.P.j 

i,j Pi.P.j i,j Pi.P.j 
= Z  rI2 Pi.P.j ij (1)  

i,j 

The m e a s u r e  1-Iij may also be written 

i-ii j __ p i j -  p i .p . j  _ p i j  _ 1 = Pr[i l j] _ 1 = Pr[j  l i] _ 1 (2) 
Pi.P.j Pi.P.j Pr[i] Pr[j] 

where, for example, Pr[i ] j] = pij /P.j  is the conditional probability of row category 
i given column category j and Pr[i] = Pi. is the unconditional probability of i. 
Equation (2) shows that 1 + 1-Iij is equal to both the ratio of Pr[i [ j] to Pr[i] and the 
ratio of Pr[j  I i] to Pr[j]. Therefore, Ilij measures the attraction between categories 
i and j if 1-Iij > 0 and the repulsion between the two categories if 1-Iij < O. It is the 
m a t r i x  I I  = (IIij) that is to  be decomposed into its components and displayed in a 
biplot. 

2.2 Modeling Dependence 

In order to inspect the dependence in a contingency table graphically, we have to find 
an optimal representation in low-dimensional space. The appropriate tool for this is 
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based on a generalization of the singular value decomposition (see, e.g., Greenacre, 
1984, p. 39). 

If we indicate the rank of the matrix II by So, then the generalized singular value 
decomposition (GSVD) of the matrix II is defined as 

S o  

Hij = Z Asaisbjs 
s=l 

(3) 

where the scalars {As} are the singular values arranged in decreasing order of mag- 
nitude, and the ais and bjs are the elements of the singular vectors, or components 
as and bs, respectively. The set of components {as} are pairwise orthonormal with 
respect to the inner product weighted by (pi.), and a similar property holds for {bs} 
with respect to the weights (p.j). 

If we want a small number, S, of components that explain most of the dependence 
and thus approximate the full solution as well as possible, we should choose them 
such that we get the best low-dimensional approximation to II. This means that we 

A 

have to use II (s), which is the sum of the first S terms of equation (3) (Eckart and 
Young, 1936), that is, 

S 

lift) = Z Asaisbjs 
s=l 

(4) 

The result of this choice is that the total ~2 can be split into a fitted part and a residual 
part. This can be used to assess the overall quality of a solution via the proportion 
explained ~2. 

2.3 Plotting Dependence: Biplots 

Given that we have decomposed the dependence, we want to use this decomposition 
to graph the dependence. The appropriate graph is the biplot (Tucker, 1960; Gabriel, 
1971). In CA the biplot displays in S dimensions markers for the rows and columns 

A 

of the matrix II. Using the positions of the markers of the ith row and the jth column, 
A A 

it is possible to approximate the value of the element 1-Iij of  I I  and to interpret 
geometrically the directions of the markers in the plot. 

In the simultaneous representation of CA, the markers are often presented in a 
symmetric way with (two-dimensional) coordinates (/~1 ail, )t2ai2) for the row markers 
i and coordinates (Albjl, A2bj2) for the column markers j. However, the biplot tech- 
nique generally uses one of two asymmetric mappings of the markers. For example, 
in a "row-metric preserving" two-dimensional biplot (Gabriel and Odoroff, 1990) 
the row markers have so-called principal coordinates (Alail, h2ai2) and the column 
markers have standard coordinates (bjl, bj2) (see Greenacre, 1993, chap. 4). The ad- 
vantage of the asymmetric over the symmetric representation is that the relationships 
between the row and column markers can be more precisely interpreted. 
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3 Three-Way Correspondence Analysis 

Important properties of three-way CA are that the dependence between the variables 
in a three-way table can be measured and displayed. Previous work on extending CA 
to three-way tables mostly reduced such tables to two-way tables, using so-called 
"interactive coding" to define "composite variables"; see Van der Heijden (1987) and 
Van der Heijden, et al. (1989) as well as Le Roux and Rouanet (Chapter 16) for 
overviews of this approach. Papers in which three-way tables were analyzed without 
reducing them to two-way tables are by Choulakian (1988), Kroonenberg (1989), 
and Carlier and Kroonenberg (1996). 

3.1 Measuring Dependence 

Whereas in two-way tables there is only one type of dependence, in three-way tables 
one can distinguish (1) global dependence, which is the deviation from the three-way 
independence model; (2) marginal dependence, which is the dependence due to the 
two-way interactions; and (3) three-way dependence, which is due to the three-way 
interaction. 

Measuring Global Dependence Three-way contingency tables have orders I, J, 
and K with relative frequencies Pijk. Dependence in the table is again measured by 
~e,  which is defined in the three-way case as 

rb 2 = ~ ~ ~ (Pijk -- Pi..P.j.P..k) 2 

i j k Pi..P.j.P..k 

Pijk -- Pi..P.j.P..k I 2 
= ~ ~ ~ Pi..P.j.P..k - -  

i j k l Pi..P.j.P..k 

-- ~ ~ ~pi..P.j.P..k(1-Iijk) 2 (5)  

i j k 

¢2 is based on the deviations from the three-way independence model, and it con- 
tains all two-way interactions and the three-way interaction. The measure for the 
dependence of cell (i, j ,  k), Ilijk, may be rewritten as 

Pr[i j  l k] Pr[ij] 
Ilijk = Pr[ij] " Pr[i]Pr[j] - 1 (6) 

The quantity 1 + IIij k is the product of, first, the ratio Pr[i j  I k]/Pr[i j] ,  which 
measures the relative increase or decrease in the joint probability of the categories 
i and j given category k, and, second, the ratio Pr[ij]/Pr[i]Pr[j] ,  which measures 
the relative increase or decrease in the deviation from the marginal independence. 
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If the conditional probability for all k is equal, Pr[i j  I k] = Pr[ij] and the first 
ratio is 1. Then 1-Iij k -- I-Iij., and the three-way table could be analyzed with ordinary 
two-way CA. The symmetric statement after permutation of the indices holds as well. 
Therefore the Hijk measure the global dependence of the cell (i, j ,  k). 

The elements of the two-way marginal totals are defined as weighted sums over 
the third index. Thus for the I × J margins these elements are 

Pijk -- Pi..P.j.P..k Pij. -- Pi..P.j. 
Hij. = ~ P..kHijk = Z P..k = (7) 

k k Pi..P.j.P..k Pi..P.j. 

The elements of the other two-way margins, I-[i.k and I-I.jk, are similarly defined. 
One-way marginal totals are summed over two indices and they are zero due to the 
definition of ]-Ii jk;  hence the overall total is zero as well. For instance, in the case of 
the one-way row margin i: 

Hi.. = Z ZP'J'P"kHij k = 0 (8) 
j k 

Measuring Marginal and Three-Way Dependence The global dependence of the 
cell, Ilijk, can be split into separate contributions of the two-way interactions and the 
three-way interaction, 

_ ijk (9) 1-Iijk _ Pij. - Pi..P.j. _+_ Pi.k - Pi..P..k _+_ P.jk - P.j.P..k _+_ Pijk P* 
Pi..P.j. Pi..P..k P.j.P..k Pi..P.j.P..k 

where Pi~k = Pij.P..k + Pi.kP.j. + P.jkPi.. -- 2pi..P.j.P..k. The terms referring to the 
two-way margins are equivalent to those defined by expression (2). The quantity 
P i j k  - -  Pijk measures the size of the three-way interaction for cell (i, j , k ) .  Darroch 
(1974) provides a comparative discussion of this additive definition of interaction 
and the multiplicative definition as used in log-linear analysis. 

Due to the additive splitting of the dependence of individual cells, ~2, the 
measure for global dependence of the table can be partitioned (see Lancaster, 1951) 
as  

~2  ( )2  (Pi.k--Pi..P..k) 
= Z Z pi''p'j" P i , . -  Pi..P.,. _~ Z Z pi''p''k \ PT.~..k 

i j Pi..P.j. i k 

( )2  (Pijk --PiJk) 
+ ÷ ZZZ i , , - - -  

j k P.j.P..k i j k \ Pi..P.j.P..k 

(10) 

The importance of decomposition (10) is that it provides measures of fit for each of 
the interactions and thus their contribution to the global dependence. 
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3.2 Modeling Dependence 

Given measures for global dependence, marginal dependence, and three-way depen- 
dence, a model for these measures has to be found with which it will be possible 
to construct graphs depicting the dependence. For the three-way case, a three-way 
analogue of the GSVD is desired. There are, however, several candidates, of which 
we will consider only the so-called Tucker3 model (see Carlier and Kroonenberg, 
1996, for other possibilities). This model is also referred to as the "three-mode factor 
analysis model" (Tucker, 1966; see also Kroonenberg, 1983). 

Modeling Global Dependence A three-way version of the GSVD will contain at 
least an additional term for the third variable. In the Tucker3 model each of the modes 
has its own components and the generalized singular values are different in that they 
are indexed by the components of all three modes. 

P Q R 

I-Iij k -- y ~  ~ ~ gpqraipbjqCkr -1- e ij k. (11) 
p = l  q= l  r = l  

In this decomposition, the aip are the elements of the components {ap}, which are 
pairwise orthonormal with respect to the weight (Pi..). Similarly, the bjq are the 
elements of the components {bq}, which are pairwise orthonormal with respect to 
(p.j.), and the Ckr are the elements of the components {Cr}, which are orthonormal 
with respect to (P..k). The gpqr are the three-way analogues of the singular values, and 
they are often referred to as elements of the core matrix. The eijk represent the errors 
of approximation. In three-way CA, a weighted least-squares criterion is used: the 
parameters gpqr, aip, bjq, and Ckr are those that minimize ~-'~i ~"~j ~-~k Pi..P.J.P..ke2k • 

As in two-way CA, ~2 can be split into a part fitted with the three-way SVD or 
three-way model and a residual part. 

Modeling Marginal Dependence One of the attractive features of the additive 
partitioning of the dependence in Section 3.1 is that the single decomposition of the 
global dependence can be used to model the marginal dependence as well. 

The marginal dependence of the rows i and columns j is contained in a matrix 
l l i j  with elements 1-I/J = (Pij.--Pi..P.j.)/(Pi..P.j.) = ~-~k P..kI-Iijk [see (7)] with similar 
expressions for the other two matrices IIIK and I I j r .  

By performing the weighted summation over k for 1-Iijk in the Tucker3 model 
(11), we obtain the model for marginal dependence: 

P Q R 

1-I IJ ": ~ y ~  y ~  g pqr a ip b j q e. r -1- e ij. 
p = l  q= l  r = l  

(12) 

where C.r -~ ~'~k P..kCkr and eij. - ~-~k P..keijk. Inspecting this formula leads to the 
conclusion that the marginal model is derived from the overall model by weighted 
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averaging of the appropriate components, in this case Cr. This will turn out to be 
extremely effective in the displays we intend to make. 

Modeling Partial Dependence In our application the mode k is a time mode, and 
we are interested in investigating the part of the dependence that explicitly depends 
on time. Thus the dependence not associated with time, that is, the dependence due 
to the I × J margin, has to be removed from the global dependence. In our particular 
case, this partial dependence has the form 

1-Iij k - I--[:: = E gpqraipbjq(Ckr -- C.r) d- (eijk -- eij.) (13) 
p ,q,r 

As this equation shows, the modeling of the partial dependence is achieved by 
centering the components of one of the modes, here the time mode Cr. In Carlier and 
Kroonenberg (1996) we discuss what happens when one wants to remove more than. 
one marginal dependence. 

3.3 Plotting Dependence: Interaction Biplots 

With respect to dependence and its modeling, the three ways of the contingency 
table behave in an entirely symmetric fashion. This symmetry can, however, not be 
maintained when graphing the dependence, because no spatial representations exist 
to portray all three ways simultaneously in one graph. To display the dependence 
or its approximation in three-way CA, two kinds of biplots may be considered: the 
joint biplot, discussed by Carlier and Kroonenberg (1996), and the interaction biplot, 
discussed here. 

The interaction biplot aims to portray all three modes in a single biplot. As a 
biplot has only two types of markers, two modes have to be combined into one. In 
our application each pair of indices of the canton and time modes, (i,k), will be 
represented by a single marker. We refer to this as interactive coding. The remaining 
occupation mode supplies the other set of markers j and will be called the reference 
mode. The choice of reference mode depends on the research objective. Given that 
an ordered mode (in this case, time) will always be coded interactively, the choice 
between the remaining two depends on which of two modes produces the clearest 
patterns in their changes over time. 

A 

The construction of the biplot for the global dependence I-[ij k follows directly 
from the three-way SVD of the global dependence: 

[[ijk = ~ ~gpqra ipCkr  bjq 
q=l p=l r=l 

Q 

: ~ d(ik)qbjq (14) 
q=l 
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If we replace the composite index (ik) with a new index I we see that the coordinates 
of the lth row markers are the dlq and those of the jth column markers are the bjq. 
Note that the gpqr a r e  absorbed in the coordinates of the row markers I. Therefore, it 
can be shown that the interaction biplot is a row-metric preserving one with respect 
to the weights p.j.. The number of two-dimensional biplots depends not on P or R but 
only on Q, the number of components of the reference mode. The choice between 
three or four components in the reference mode could be guided by whether it is 
easier to inspect a three-dimensional plot or two independent two-dimensional plots. 

The interaction biplot is especially useful when the number of elements in I X K 
is not too large or when one of the two modes is ordered. Assuming k is an ordered 
mode, for example time, trajectories can be drawn in the biplot by connecting, for 
each i, the points (i, k) in their given order. 

4 Changes over Time in the Languedoc Workforce 

During the censuses of 1954, 1962, 1968, and 1975, the people of the cantons 
in Languedoc-Roussillon (southern France) were asked to state their occupations. 
The occupations could be grouped into nine major occupational classes: farmers 
(AF), agricultural laborers (AL), owners of small and medium-sized businesses (SB), 
professionals and senior managers (PS), middle managers (MM), employees (white- 
collar workers, WC), laborers (blue-collar workers, BC), employees in the service 
sector (SE), and other occupations (OO). The present data consists of 42 rural cantons 
or rural parts of cantons in the Languedoc-Roussillon region. Cities (or communities) 
of more than 5000 inhabitants (in 1954) have been excluded from the cantons in which 
they are located. For example, for cantons such as Montpellier, Nimes, Narbonne, 
Perpignan, and several others, only the suburban communities and the more rural 
communities of these cantons are included. Full details as well as the data themselves 
can be found in Bernard and Lavit (1985), and another detailed analysis of these 
data can be found in Carlier and Ewing (1992). It is evident that in the period in 
question major changes took place in the workforce, which we aim to describe using 
three-way CA. The three factors or variables of interest are cantons (42 categories), 
occupations (9 categories), and time (4 categories). 

4.1 Measuring Dependence 

Table 1 shows the partitioning of X 2 according to the different interactions. Of the total 
variability in the table, the largest amount is in the canton-by-occupation interaction 
(57%), followed by the occupation-by-time interaction (22%). If the degrees of free- 
dom (df) are taken into consideration as well, the occupation-by-time interaction has 
by far the largest contribution per df, which indicates that the occupational distribu- 
tions have undergone considerable changes over time. Also the canton-by-occupation 
interaction has a sizable contribution per df, showing that there is considerable diver- 
sity among the cantons. The smaller contribution of the cantons-by-time interaction 
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Table 1: Decomposition of X 2 

261 

X 2 components of 

42 X 9 X 4 table 

X 2 components for 

5 x 4 x 2 Tucker3 model 

% of % of % of X~t / 
Source df X2otal total ,][,2 X2rror total X 2 total X2rror X2otal 

Main effects 0 0.0 31 0.0 0.2 m 
Two-way interactions 

Canton x Occupation 328 114307 57.4 9471 4.8 47.8 92% 
Canton x Time 123 16278 8.2 1061 0.5 5.4 94% 
Occupation x Time 24 43469 21.8 2306 1.2 11.6 95% 

Three-way interaction 984 25249 12.7 6954 3.5 35.1 73% 
Total 1459 199303 1 0 0 . 0  19823 9.9 100.0 90% 

suggests that, even though for the cantons there are changes in the overall size of 
their workforce over time, this is not the main feature of the data. This interaction 
contains the differential increase and decrease of the workforce in the cantons. The 
three-way interaction is not large, and it has by far the smallest contribution per df. 

To describe the patterns in the data set, we have fitted a Tucker3 model (11) 
with P = 5 components for the cantons, Q = 4 components for the occupations, 
and R = 2 components for the time mode. The number of components to retain 
was guided by the search for a large amount of explained variability coupled with 
a reasonable parsimony. As the occupations were chosen to be the reference mode, 
retaining four occupation components meant that two interaction biplots could be 
constructed, one for the first two dimensions and one for the last two dimensions. 
The numbers of components for the time mode and the cantons mode do not have an 
influence on the dimensionality of the biplots but only on the amount of smoothing 
of the results or equivalently the amount of structural information included in the 
solution [see (14)]. 

The 5 X 4 X 2 model fits very well, leaving only 10% unexplained, and Table 
1 shows that canton-by-occupation and occupation-by-time interactions are very 
well explained (92% and 95%, respectively). The relatively unimportant three-way 
interaction has the smallest fit (73%). This points to the fact that in this example 
it could be sufficient to examine the two-way margins. Using a two-way approach, 
two separate two-way CAs could be performed on the canton-by-occupation and 
occupation-by-time margins. 

4 . 2  P l o t t i n g  G l o b a l  D e p e n d e n c e  

As already explained, before the results of a three-way CA can be plotted, a reference 
mode has to be selected. As we intended to study the changes in the distribution of 
the cantons over time, the occupations have to be chosen as the reference mode, so 



262 Chapter 19. The Case of the French Cantons 

that the changes in workforce of the cantons over time can be plotted. Figures 1 and 
2 show the results for the first two dimensions, and Figures 3 and 4 show the results 
with respect to the third and fourth dimensions. In Figures 1 and 3, the four time 
points of each canton are connected by a line ending in an arrowhead for 1975, called 
a trajectory. Only the 16 most characteristic trajectories are displayed in the graphs. 
Trajectories can be interpreted in terms of the distributions of occupations in the 
cantons at each occasion. If we take Chateauneuf de Randon (M3) as an example, we 
see that the trajectory begins in 1954 with a high proportion of independent farmers 
(AF) but that over the years the canton moves away from the AF point and ends up in 
1975 much closer to the origin or mean point. Nevertheless, M3 and M4 continue to 
be the cantons that have the largest proportions of independent farmers. Furthermore, 
the category agricultural laborers (AL) also has a sizable but diminishing projection 
on the trajectory. 

The first interaction plot showing the first two occupation axes (Figure 1), ex- 
plaining 71% of the inertia, is based on the first two terms of the decomposition 

o f l l  

2 4 

rIij k = ~ d(ik)qbjq d-- ~ d(ik)qbjq 
q = l  q = 3  

(15) 

AL 

PS 

WC 
MM 

SE 

C ~ B  O 0  

AF 
BC 

I I 1 I 
-1.0 0.0 1.0 

Figure 1: Global dependence of cantons, occupations, and time (axis I versus axis 2). 
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Figure 2(a): Marginal dependences displayed in the graph of the global dependence 
(axis I versus axis 2). Cantons × occupations. 

with d(ik)q = ~--~5p= 1 ~--~=1 gpqraipCkr [see (14)1. The column markers (j) in the inter- 
action biplot have coordinates (bjl, bj2), and the row markers (i, k) have coordinates 
(d(ik)l,d(ik)2). The second interaction biplot (Figure 3) explains an additional 19% 
of the inertia and is based on the third and fourth terms of the decomposition (15). 
Due to the additivity, the information in the second biplot can be considered as a 
correction or refinement of the major part of the information contained in the first 
biplot, because the terms in the second sum of equation (15) are on the average four 
times smaller than those in the first sum. The information of both plots is necessary 

A 

to reproduce the estimated dependence 1-Iijk, a s  is evident from equation (15). 
In principle, the figures display the global dependence, but they can also be used 

to study the three two-way interactions, because these interactions can be derived 
from the global dependence by weighted averaging and then displayed and inter- 
preted in the same display (Figures 2 and 4). In the present data set the three-way 
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(b) Occupations - Time 
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Figure 2(b): Marginal dependences displayed in the graph of the global dependence 
(axis I versus axis 2). Occupations x time. 

interaction is rather small, and therefore the main patterns of the biplot can be inter- 
preted via the three two-way interactions. In our approach we will analyze the global 
dependence within the perspective of the two-way dependence, in order to visualize 
what information the three-way display adds. 

To inspect the patterns of dependence, we present two plots displaying the global 
dependence, namely Figure 1 for the first and second axes (q = 1, 2) and Figure 3 
for the third and fourth axes (q = 3, 4). To facilitate the inspection of the two-way 
marginal dependences we have reproduced each of these figures three times, once for 
each marginal dependence (Figure 2a,b,c and Figure 4a,b,c, respectively). To avoid 
clutter on each of these plots, we have deleted the features not relevant for inspecting 
the two-way dependences, and have added markers for the centroids and/or lines and 
vectors to facilitate the interpretation. Please note, however, that the plots in Figures 2 
and 4 display the same space as the ones in Figures 1 and 3 respectively. 
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Figure 2(c): Marginal dependences displayed in the graph of the global dependence 
(axis 1 versus axis 2). Cantons × time. 

4.3 P l o t t i n g  M a r g i n a l  D e p e n d e n c e  

Canton-by-Occupation Interaction The canton-by-occupation interaction (I X J) 
in the interaction biplot is based on the weighted mean of equation (15) with respect 
to k: 

4 4 

[Iij" -- Z d(i')qbjq with d(i.)q = Z P..kd(ik)q 
q = l  k = l  

The term on the left-hand side is an approximation of the I-[ij used in two-way CA of 
the I X J margin. The occupations have the same markers as in the global dependence 
biplot, but the cantons have as coordinates those of the centroids of the trajectories. 

One of the interesting aspects of the description of the two-way interactions 
within the framework of the global dependence is that the centroids of the cantons 
can be displayed in the same graph as the global dependence itself. In Figure 1 
this is done by marking these centroids with the abbreviations of the cantons on the 
trajectories. Thus the label M3 is at the centroid of the trajectory for M3. The biplot 
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Figure 3: Global dependence of cantons, occupations, and time (axis 3 versus axis 4). 

with only the canton centroids and the occupations (i.e., Figure 2a and Figure 4a) can 
be interpreted exactly as the comparable biplot from two-way CA. To assist in the 
interpretation of the patterns of the canton-by-occupation interaction, the canton-by- 
occupation margin with the occupations expressed as percentages of the workforce 
in the cantons is presented in Table 2. 

This table has been arranged to highlight the patterns emerging from the 
interaction--high percentages are indicated in boldface. Some of the more extreme 
features of the interaction as evident from Figure 2a are the following. 

1. The strong rural nature of the cantons Fournels (M4) and Chateauneuf de Randon 
(M3) with, respectively, on the average 81% and 78% of the people employed in 
agriculture (overall 35%) with a heavy emphasis on independent farmers (AF). 

2. The similarly agricultural nature of Lrzignan-Corbi~res (C8), Narbonne (C9), 
and Capestang (H7) with, respectively, on the average 66%, 58%, and 53% of 
the workforce employed in agriculture, but with a larger number of agricultural 
laborers (possibly due to the viticulture in those areas) (AL). 

3. The strong industrial nature of La Grand'Combe (D8), St Ambroix (El), Ganges 
(K3), Sum~ne (G9), and Albs (D3), which is indicated by high percentages of 
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Figure 4(a): Marginal dependences displayed in the graph of the global dependence 
(axis 3 versus axis 4). Cantons x occupations. 

blue-collar workers (71%, 58%, 56%, 54%, and 54% respectively); the overall 
percentage of blue-collar workers is 30%. 

4. The strong tertiary sector in Montpellier (K8), Nimes (F1), and Les Matelles (K5) 
(a suburb of Montpellier) with, respectively, 38%, 30%, and 29% employed in the 
tertiary sector (i.e., services, SE; middle management, MM; white collar workers, 
WC; professional and senior management, PS) compared with 21% overall. 

In Figure 4a all but two cantons are located close to the origin, indicating that the 
higher dimensions do not contribute to their interactions. Primarily the distributions 
from Chateauneuf de Randon (M3) and Fournels (M4) need adjustment, with positive 
corrections for the categories professional and senior management (PS), middle 
management (MM), and white collar (WC) that correct too large negative values read 
on the first biplot. Furthermore, the corrections emphasize the differences between 
the two agricultural categories and indicate that in these cantons the proportion of 
independent farmers (AF) is even larger and the proportion of agricultural laborers 
(AL) slightly smaller than one would have deduced from Figure 2a. 



Table 2: Row percentages of cantons b y  occupationsa averaged over time (high percentages are  indicated i n  boldface) 

Agriculture Tertiary sector 

Blue Far- Agric. Total Small White Middle Ser- Profes. Total Other Cantons 
collar mer labor. agric. business collar manag. vices sen.m. tertiary occup. 

La Gr'Combe 
St. Ambroix 
Ganges 
Sumbne 
Albs 
Quillan 
GCnolhac 
Le Vigan 

Fournels 
Ch.n.Randon 
Mende 
Lodbve 
Claret 
Uzbs 

LCzignan-C. 
Narbonne 
Capestang 
Montagnac 
Lunel 
Agde 



TOTAL 

BCziers 
Castelnaudary 
Fanjeaux 
Lassalle 
St. Andrt5 d.V. 

Montpellier 
Arles-smech 
Les Matelles 
Nimes 
Argeles s/Mer 
Castries 
Frontignan 
Florac 
Mauguio 
Perpignan 

St. Hyppolyte 
St. ChCly d'A 
Vauvert 
St Pons 
Pont-St-Esprit 
Langogne 
MCze 

"For a further explanation of the occupational categories, see Section 19.5. The equivalent French abbreviations in Bernard and Lavit (1985) are: 
AF = EA; AL = O A ;  SB = AC;  PS = PL; MM = C M ;  WC = EM; BC = OU; SE = SE; 00 = C P .  
bA religious community settled in Fanjeaux at the beginning of the period. 
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Figure 4(b): Marginal dependences displayed in the graph of the global dependence 
(axis 3 versus axis 4). Occupations x time. 

Occupation-by-Time Interaction The occupation-by-time interaction (J X K) can 
be visualized in a similar manner by displaying centroids of the row markers (i, k) 
for each fixed value of k, that is, weighted averaging performed on the canton points. 
The four time centroids constitute the average trajectory, which is displayed as an 
arrow in Figure 2b, rather than the original trajectories. A dotted line has been added 
to emphasize the direction of the centroid trajectory. To interpret this interaction, 
one has to project the occupations on this average trajectory. It shows the contrast 
between the two agricultural classes (farmers, AF, and agricultural laborers, AL), 
which are decreasing, and the tertiary occupations (especially professionals and 
senior managers, PS), which are increasing. Occupations such as owning a small 
business (SB) and blue-collar workers (BC) have only a small increase, as their 
projections on the average trajectory are close to the origin. 

As before, Figure 2b and Figure 4b contain different visual information and one 
has to "add" their contributions. Figure 2b shows that both the class of independent 
farmers (AF) and that of agricultural laborers (AL) are decreasing, but Figure 4b 
shows that the decline is even more serious for the agricultural laborers than for the 
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Figure 4(c): Marginal dependences displayed in the graph of the global dependence 
(axis 3 versus axis 4). Cantons x time. 

independent farmers because of its large projection on the negative side of the time 
axis in Figure 4b. Furthermore, the class of blue-collar workers (BC) shows a small 
increase over time in Figure 2b. Figure 4b shows a small decrease for this category, 
but it does not reverse the trend observed in Figure 2b, because the average trajectory 
of the second biplot is much shorter than that of the first biplot. Finally, Figure 4b 
shows that the proportion of people working in the service sector is even stronger 
than one would have derived from Figure 2b alone. 

Canton-by-Time Interaction The canton-by-time interaction (I × K) reflects the 
overall changes in the workforce of the cantons. It shows which cantons decrease 
and which cantons increase in working population. As the occupations constitute the 
reference mode, the centroid consists of the vector (b.1, b.2, b.3, b.4) as can be seen by 
averaging expression (15) over occupations j, 

4 

rIi'k = Z d(ik)qb.q 
q=l 

(16) 
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In Figure 1 and Figure 2c the vector (b.1, b.2) is indicated by an arrow with the letter 
g, and in Figure 2c it is extended in two directions by a dashed line to indicate the 
axis defined by this vector. In Figure 3 and Figure 4c the vector (b.3, b.4) is similarly 
indicated. The small size of the mean vector (b.1, b.2) in Figure 2c, with respect to that 
of (b.3, b.4) in Figure 4c, indicates that the contribution to the change, described by 
the first two dimensions displayed in Figure 2c, is much smaller than that of the third 
and fourth dimensions shown in Figure 4c. Therefore, for most cantons, the larger 
part of the changes over time is better represented in the latter graph, and the former 
one will be used as a correction. The complete canton-by-time interaction of a canton 
is derived from the projection of its trajectory on the axes g [see equation (15)]. As 
an example of such a projection, that of Chateauneuf de Randon (M3) is shown in 
Figure 2c. 

Figure 4c separates the cantons in two classes. The first is a small class of 
more urban cantons with a large overall growth, for example, Montpellier (K8), Les 
Matelles (K5), Nimes (F1). The second class is larger and contains both industrial 
cantons such as La Grand'Combe (D8), St. Ambroix (El), and Ganges (K3), and 
Sum~ne (G9) and rural cantons with an overall decrease of population over time, 
such as Chateauneuf de Randon (M3) and Fournels (M4). 

To make more precise our conclusions about Chateauneuf de Randon, for ex- 
ample, we see in Figure 2c that it has a small increase in its working population, 
but in Figure 4c we see that the canton has a much larger projection on g pointing 
in the other direction. Thus the sum of the projections indicates that there was an 
overall decline in population in this canton. Numerically, applying expression (16) 
and measuring graphically these projections, we obtain the contribution in Figure 2c 
as the product of 0.2 (length of g) and 0.5 (length of the projection of the trajectory 
of Chateauneuf de Randon). Similarly, the contribution in Figure 4c is approximately 
1 X -0.9.  Thus the overall change for this canton is 0.1 - 0.9 = -0.8,  estimating 
an overall decline in the working population. 

Three-Way Interaction As mentioned before, the three-way interaction is rela- 
tively small, and it will not be analyzed on its own but in conjunction with the 
interactions involving time, which are investigated in the next section. 

4.4 Plotting Partial Dependence: Analysis of Change 
The analysis of the complete Figure 1 leads to the study of the global dependence as 
expressed in the IIijk. By using the difference between I-Iij k and 1-Iij., w e  may remove 
the part of the dependence that is not influenced by time, that is, the interaction 
between the cantons and occupations (I x J). This allows the study of only the part 
of the global dependence that depends on time. This difference has the form [see 
equation (6)] 

Pr[ij] ( Pr[ij I k] 
Ilijk -- IIij. = Pr[i] Pr[j] Pr[ij] - 1) (17) 
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The difference is the product of (1 + I-[i j) with the factor in parentheses, which can 
be considered as a growth index for the canton-occupation category (i, j). If there 
is no dependence on time, that is, the distribution of occupations among the cantons 
remains the same over time, then the conditional probability of (i, j) given time k, 
Pr[ij I k], is equal to Pr[ij], and the difference in equation (17) is zero for all 
canton-occupation combinations i and j. In such a case each trajectory will consist 
only of its centroid. Instead of removing the interaction (I x J), that is, centering 
the trajectories, we analyze the variations of a trajectory around its centroid. These 
variations take into account all interactions involving change. The advantage is that 
on the same graph the average situation of a canton can be interpreted along with 
the changes around these average positions. The importance of the change of the 
workforce in a canton, as defined by equation (17), is indicated by the length of its 
trajectory; the nature of the change is indicated by the direction of its trajectory. In the 
graph, the interpretation of the changes of a canton-occupation category (i, j) over 
time can be obtained by projecting the associated trajectory onto the axes defined by 
the occupation markers j. The increase is proportional to the product of the length of 
the vector of the jth marker and the component of the projected trajectory onto the 
biplot axis defined by this marker. If the vector and the trajectory point in the same 
direction, there is an increase over time; if they point in opposite directions, there is 
a decrease over time. 

The major pattern in Figure 1 is a general shift of all cantons toward the urban 
categories and away from the independent farmer (AF) category. The tertiary sector 
is rapidly increasing, especially in cantons such as Montpellier (K8), Les Matelles 
(K5), and Nimes (F1). Many other cantons have a similar but smaller growth in the 
tertiary categories (Al~s, D3; Ganges, K3). The position of the tertiary categories PS, 
WC, MM, and SE on a single line through the origin indicates that these categories are 
more or less proportional but that the ones farther away, such as PS, are much more 
important in size than the others (SE). The trajectories of the industrial cantons La 
Grand'Combe (D8) and St Ambroix (El) move toward the origin, which indicates that 
their populations become more uniform over time. They lose their specific industrial 
characteristic; that is, their blue-collar (BC) population is decreasing. 

Figure 3 corrects the previous interpretations in two ways. Some of the cor- 
rections could be called "technical." As an example, the move of some agricultural 
cantons, in Figure 1, away from the independent farmer category is also a move in the 
direction of the tertiary categories. The strict interpretation of Figure 1 would imply 
an increase in these categories for such cantons. In Figure 3, the move of the two 
rural cantons M3 and M4 away from the tertiary categories corrects this interpreta- 
tion. Another example is related to cantons such as La Grand'Combe (D8). Its move 
toward the origin on Figure 1 is also a move toward the agricultural laborers (AL), 
which would imply that this category becomes more numerous. This interpretation 
is clearly negated in Figure 3. Other corrections, with respect to the interpretation 
of the first biplot, are the greater decrease of the cantons La Grand'Combe (D8) and 
St Ambroix (El) in blue-collar workers, the greater increase of the urban cantons 
(Montpellier, K8; Les Matelles, K5; and Nimes, F1) in the tertiary categories, and 
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the stronger decrease in the two rural canons M3 and M4 of the population of inde- 
pendent farmers (but not of the agricultural laborers, as the latter vector is more or 
less perpendicular to the trajectory of M3 and M4 in that figure). 

5 Conclusion 

In this chapter we have made a case for analyzing large three-way contingency tables 
with three-way CA. Two major aspects of the technique stick out. First, as with log- 
linear modeling, it is possible to assess the relative sizes of the marginal dependences 
and that of the three-way interaction, and it is also possible to assess how well the 
model fits those two-way and three-way interactions. Second, in contrast to log-linear 
analysis, the dependence can be analyzed as a whole, and the marginal dependence can 
be directly assessed from the global one without further models or decompositions. In 
log-linear modeling there are no facilities in the model for inspecting or evaluating the 
interaction parameters, which would have to be done separately for each interaction. 
Third, biplots provide a visual analysis of the nature of the dependence in the data, 
and both the global dependence and the marginal dependence can be portrayed and 
evaluated in the same graph in a completely natural way. Finally, special problems 
can be handled within this framework, such as analyzing change after partialing out 
those parts of dependence not related to change. 

In our analysis of the changes in the workforce of the Languedoc-Roussillon we 
have shown that the large-scale patterns can be presented in an insightful way by using 
various biplots. In addition, several smaller patterns can be discerned. Obviously, for 
a full-fledged analysis of these data, we should look at the relationships of the patterns 
found with external information about the actual events in several cantons. 

Appendix: Computational Aspects and Software 

Two-Way Correspondence Analysis 
As explained, for instance, by Greenacre (1984, p. 40), the estimated parameters in 
two-way CA can be computed via the regular SVD by pre- and postmultiplying 1-Iij 

with p]/2 and pl/2, respectively. Thus the SVD is applied to 
• . j  

pl /2p l /2 i - i i "  Pij - Pi.P.j 
i. .j J : pl-~p----~ -- Xi j  

i. .j 

where Xij  is the standardized residual from the model of two-way independence for 
cell (i, j). If we write the regular SVD for Xij as 

Xij  -- E '~s~lisbjs 
s 



5. Conclusion 275 

then the coefficients for the generalized svo are ais = { t i s / ~ t .  and bjs = [~js/ 
with the same As. 

Three-Way Correspondence Analysis 

In three-way CA the procedure is completely analogous. Regular three-way models 
may be used to calculate the estimates for the parameters of the generalized three-way 
SVD. In particular, 

- I Pijk -- Pi..P.j.P..k 
i.. 11.j. lJ..k ijk -- - - ~ 1 ~ . . ~  = Xijk 

1~i.. k'.j. 1L.k 

where Xij k is the standardized residual from the model of three-way independence 
for cell (i, j, k). If we use the Tucker3 model for Xijk, 

Xijk = Z Z Z gPqr~lip[)jqCkr 
p q r 

then the coefficients for this version of the generalized three-way SVD are aip = 
~lip / ~ and bjq = [gjq / ~ . ,  Ckr = C.kr / v/P..k with the s a m e  gpqr. 

In the two-way case, the way As are associated with the row or column markers 
determines whether biplots are row-metric preserving or column-metric preserving 
graphs. The situation is more complicated in the three-way case, especially for the 
Tucker3 model, because several kinds of biplots can be made. 

Software Note 

The methods and graphical procedures described above have been programmed by 
the first author in S-Plus (see, for example, Becker et al., 1988) and can be supplied 
upon request. A FORTRAN implementation is being developed and will be included in 
the next release of the three-way data analysis package 3WAYPACK available from the 
second author (see Kroonenberg, 1996). The technical basis for the algorithms can 
be found in Kroonenberg (1983). 
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Chapter 20 

Visual Display of Interaction 
in Multiway Contingency 
Tables by Use of 
Homogeneity Analysis: 
the 2 x 2 x 2 x 2 Case 

Jacqueline J. Meulman and Willem J. Heiser 

1 I n t r o d u c t i o n  

Multiway contingency tables express the relationships between the categories of 
several categorical variables A, B, C . . . .  at several levels of complexity. In the body 
of the multiway table, all these relationships are confounded. By adding over all 
variables except A and B, we obtain a bivariate marginal table, showing the bivariate 
relationship between A and B; by adding over all variables except A, B, and C, we 
obtain a trivariate marginal table, showing the trivariate relationship between A, B, 
and C, and so on. Of course, it is of interest to know whether these relationships, 
once separated, perhaps are still simpler than they look; in particular, to ask whether 
or not the higher order ones are simple combinations of the lower order ones. From 
this question, several natural forms of dependence and independence arise. 

Suppose for the moment that we restrict ourselves to the case of three categorical 
variables, with ha, riB, and n c  categories. Lack of independence implies the presence 
of interaction between the categories. Let ,71"ij k denote the probability that an individual 
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unit of observation (in the sequel denoted by the neutral term object) falls in category i 
of variable A, in category j of variable B, and in category k of variable C. We consider 
rrijk as a probability defined over all cells of the three-way contingency table, which 
implies that the to ta l  ~-~i ~ j  ~-~k 7riJ k = 1. AS will be demonstrated in the next 
section, we can discuss several concepts of independence structure without referring, 
for example, to log-linear modeling, which is perhaps the most common approach 
to analyzing data of the present type, or to any other form of modeling. The reason 
is simple: models involve assumptions to relate concepts of structure to observed 
counts, but the concepts exist regardless of the additional assumptions. Modeling is a 
way to smooth empirical frequencies, that is, to replace them by frequencies satisfying 
certain regularities. Log-linear modeling just uses various types of independence as 
a set of possible structures for the expected values Id, ijk o f  a multinomial sampling 
process with na X n8 X nc categories. Then, by a famous result of Birch (1963), 
the maximum likelihood fitted values f-~ijk are smoothed versions of the counts in 
the observed multiway contingency table that match them in specified marginal 
distributions but have higher order interactions that satisfy the chosen independence 
patterns. For choosing between submodels with a different independence structure, 
the likelihood ratio statistic G 2 or Pearson's chi-squared X 2 are used. 

Once we know the most likely (in)dependence structure among the variables, 
how do we interpret the interactions? In log-linear modeling, interactions correspond 
to groups of model parameters. To interpret the model parameters of a log-linear 
model, we have to express them in terms of odds and odds ratios (also called cross- 
product ratios; see Fienberg, 1980), which are ratios of (smoothed) frequencies or 
probabilities. This reformulation is not easy; it involves taking the exponential of a 
model parameter and describing the corresponding odds verbally. A verbal description 
of a three-way interaction can become incomprehensible rather quickly, because it 
consists of a nesting of conditional statements. The main thesis of this chapter is that 
the (in)dependence structure can also be represented in a spatial model, in which 
categories are mapped as points and variables as groups of points. It will be shown 
that in this spatial representation odds are ratios of distances, a property that offers 
the possibility of visual display of interaction. 

The spatial representation will be obtained through the use of homogeneity 
analysis (Girl, 1990, chap. 3 and sect. 8.6), also called multiple correspondence 
analysis (Benzrcri, 1973a; Greenacre, 1984), or dual scaling (Nishisato, 1994). In 
the present context, the technique will be regarded as a method that maps the rows 
of a profile frequency table into points in a low-dimensional space (often, but not 
necessarily, a two-dimensional space). The profile frequency table is the multiway 
contingency table turned inside out: it codes the cells by listing, in some predetermined 
order, which category of each variable is involved (forming the profile) and attaches 
to each profile the cell frequency. Points representing the profiles are called profile 
points, and category points are obtained as centers of gravity of certain subsets of 
profile points. 

Homogeneity analysis was developed with a focus on bivariate marginal tables. If 
all variables are mutually independent, all eigenvalues (the usual summary statistics) 



2. Independence Structures and Odds Structures 279 

will be equal to 1/m, and an analysis result in which the first p eigenvalues deviate 
substantially from 1/m implies that the first p dimensions account for all two-way 
interactions. It is asserted in Girl (1990) that homogeneity analysis relies on the 
assumption that in most cases the total structure in the data can be sufficiently captured 
in the joint bivariate (first-order) interactions. This assumption can be considered 
equivalent to assuming a log-linear model that includes the pairwise associations 
only. If, however, these are not sufficient to produce a decent fit, the conclusion 
would be that homogeneity analysis should be discarded in favor of a log-linear 
analysis that includes the higher order interactions. The major purpose of the present 
chapter is to show thatmin contrast to this widespread ideamhomogeneity analysis 
includes the representation of the higher order interactions as well; an important idea 
is the balanced use of cross-classification variables. 

To conclude the introduction, we briefly describe the data that will be used 
throughout for empirical illustration. The data pertain to a sample of men and women 
who had petitioned for divorce; a similar number of married people were asked the 
following questions: 

1. "Before you married your (former) husband/wife, had you ever made love with 
anyone else?" 

2. "During your (former) marriage, (did you have) have you had any affairs or brief 
sexual encounters with another man/woman?" 

The variables in the 2 x 2 x 2 X 2 cross-tabulation (with total sample size N = 
1036) are gender (G), premarital sex (P), extramarital sex (E), and marital status (M). 
The associated profile frequency matrix will be given in the following. The multiway 
contingency table is analyzed in Agresti (1990, sect. 7.2.4); the original British study 
was reported by Thornes and Collard (1979) and described by Gilbert (1981). 

2 Independence Structures and Odds Structures 

The following cases of simplification of a three-way contingency table are commonly 
distinguished (e.g., see Agresti, 1990). Three variables A, B, and C are called mutually 
independent if 

7rij k = 'wi+ + "d'+j+ 71"++ k (1) 

for all categories i of A, j of B, and k of C, where, as usual, 7ri+ + indicates that we have 
summed over j and k, giving the univariate marginals for variable A. Under mutual 
independence, there is no association whatsoever, and all cells of the three-way table 
can be constructed by the simple product of the univariate marginals. Variable A is 
called jointly independent of B and C when, again for all categories, 

7rij k - -  7ri+ + "IT+j k. (2) 

This decomposition corresponds to ordinary two-way independence for A and a new 
variable, called the cross-classification variable BC, which is composed of the n8 X nc 
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combinations of the categories of B and C. Under joint independence, the association 
between two variables is distributed proportionally over the levels of the third variable 
to obtain the three-way probability. 

Next, consider the relationship between A and B, controlling for the contribution 
of C. Here the concept of control implies that we study the conditional probability 
that two categories, say i of A and j of B, are present in the same object, given the 
fact that we know the object is in category k of C. The usual notation for this event 
is "a'ijlk, defined as 7rijlk = "trijk/Tr++k, where the division by the univariate marginal 
7r++k ensures that the "n'ijlk fo rm a proper set of probabilities summing to one within 
the subtable indexed by k. From this definition it follows that the cell probabilities 
can be expressed in terms of conditional probabilities as 

,-a.i j k - -  ,W + + k ,l-ri jlk . 

Now if, for all k, the conditional probabilities "a'ijlk are  independent, we must have 
the marginal decomposition 

7rij[k = ( T r i + k / , ' l r + + k )  ( T r + j k / q ' g + + k )  

and therefore we obtain, combining the last two equations, conditional independence 
of A and B given C when 

7rij k = ("lri+k Tr+jk )  ~"IT++ k. (3) 

Under conditional independence of A and B, each of this pair of variables is associated 
with C; these associations, together with the univariate marginal, completely account 
for the apparent association between A and B in the original table and in the bivariate 
marginal 7rq+. 

Note that cases (3), (2), and (1) are fundamentally different only in terms of 
the number of two-way cross-classification variables that are needed to account for 
the cell probabilities. For conditional independence we need two cross-classification 
variables, for joint independence we need one such variable, and for mutual indepen- 
dence we need none. Conversely, it is also useful to think of the situation in terms 
of conditionally dependent variables. The strongest case is (1), in which there are no 
conditionally dependent variables. In case (2), B and C are conditionally dependent 
given A, implying that the conditional probability 7rjkli = 7r+jk does not simplify, 
while 7rijlk = 71"i+ + 'wjl k and "triklj = 'wi+ + 7rkl j are independent. In case (3), only the 
conditional probability 'rrijlk = 7ril kTrjl k can be decomposed into the product of its 
marginals, while "a'jkli and "triklj depend on rr+jk and 7ri+k, respectively; so both B and 
C and A and C are conditionally dependent. 

It is natural also to consider the case where 'rrij, depends on three double sub- 
scripted quantities, 

7Fijk = Olij [~ik'~jk, (4) 

a case for which no closed-form expression in terms of marginal probabilities ex- 
ists. Here, none of the pairs of variables is conditionally independent, yet there is 
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Table 1: Odds structures in a three-way table under different forms of independence 

Oi _ 7rill "/~'i22 Oj = 7Tljl '/1"2j2 Ok ---- 7r l lk '~22k  

7Ti12 "/~ri21 ~Tij2 '~'2j 1 '/'gl2k 7T21k 

I Mutual independence 1 1 1 

'/T+ 11 "if+ 22 
II Joint independence 1 1 

7r+ 12"ff+21 

7r+ 11 'w+ 22 7rl + 1 'w2 + 2 
III Conditional independence 1 

IV No three-way interaction 

'/'g+ 12 7r+21 7r l+27r2+l  

711 722 /3111322 

712 721 /3121321 

Og 11 Ol22 

Og120921 

still a typical form of simplification: odds ratios between two variables are identical 
for each (given) category of the third variable. The odds ratio is a classic way of 
measuring association (Yule, 1912) that compares two ratios of probabilities (odds) 
by forming a ratio again. Thus, the odds of being in category 1 of A rather than 
in category 2 of A are compared for those who are in category 1 of B against 
those who are in category 2 of B. In a 2 X 2 table, the odds ratio 0 is defined as 
0 - (77"11 " f f 2 2 ) / ( T r 1 2 ' w 2 1 ) .  For three variables, with 7rij k satisfying the stated condition, 
we find Ok = (7rllk7T22k)/(7r12kTrZlk) = ( O ~ 1 1 0 ~ 2 2 ) / ( 0 g 1 2 0 ~ 2 1 ) ,  showing that Ok is inde- 
pendent of the chosen category k (by symmetry, the effect is the same if the categories 
of the other variables are kept fixed). After Bartlett (1935), this case is usually called 
"no three-way interaction." 

In summary, all cases of independence have a typical odds structure, which is 
shown in Table 1, displaying the result of inserting (1)-(4) into the definition of the 
odds ratio. Under mutual independence, all odds ratios are equal to one. Under joint 
independence (of A with respect to B and C), there is one set of odds ratios that 
does not become equal to one: all Oi become equal to the marginal odds ratio, that is, 
the two-way tables conditioned on category i are equal to the marginal table. Under 
conditional independence (of A and B upon C), both the Oi's and the Oj's become 
equal to the marginal odds ratio, while Ok = 1 for all k. Under lack of three-way 
interaction, all odds ratios for different categories of the same variable are equal, but 
unequal to one. Finally, three-way interaction implies that all odds ratios are different, 
both within and across variables. As we shall see shortly, these various odds structures 
each have a distinctive spatial pattern. 

3 O d d s  as Di s tance  Ratios 

In this section it will be shown that odds are distance ratios between category points 
and how this leads to additivity of category quantifications. Homogeneity analysis 
finds the spatial representation of the profile frequency table by projection. Projection 
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is a linear transformation that intuitively involves dropping points onto a line (or 
plane), along a direction perpendicular to the line (or plane). We will first describe 
what is projected (a high-dimensional representation of the table), then show some 
of the properties that hold in this high-dimensional space, and next indicate which 
properties remain (approximately) preserved under projection. For more technical 
details on projection, the reader is referred to Girl (1990) or van de Geer (1993). 

In the high-dimensional representation of the profile frequency table, all objects 
with the same profile coincide in one point, called the profile point zijk.... We associate 
with each profile point a mass (also called weight), equal to the cell frequency "n'ijk... 
of that profile. Note that our starting point is the cells of the multiway contingency 
table itself, not any of its marginal tables. We also assume that the number of variables 
is much smaller than the number of objects, N ~ m, a condition similar to what is 
required for a log-linear analysis, and that all frequencies are strictly greater than 
zero (although this is not necessary for the spatial method). If ha, nB . . . . .  nm are the 
number of categories of the m variables, this construction generates na  X nB ×" " • × nm 

profile points. In the following discussion, we limit ourselves to the 2 × 2 × 2 case. 
In the binary case, the 2 m profile points are the vertices of an m-dimensional 

(hyper)cube associated with some probability mass. Thus, three variables are repre- 
sented as eight profile points on a cube in three dimensions. Focusing on the edges 
between the two faces of the cube that correspond to the categories 1 and 2 of vari- 
able A, we may locate on each edge between the vertices Zljk and Z2jk the point Z.jk, 
defined as 

7rl jk 7r2jk 
Z.jk = Zljk + Z2jk (5) 

77"1jk q- 7r2jk 7I"1jk d- "ff 2jk 

which is the center of gravity (or centroid) of all objects in category j of B and k of 
C, of which there are "n'ljk in 1 of A and "n'2jk in 2 of A. Because we know that the 
points Zljk, Z.jk, and ZEjk are located on a line, in that order [because (5) is a convex 
combination], we may write d(Zljk,  Z2jk) = d(Zljk,  Z.jk) -t- d(Z2jk, Z.jk), where the 
notation d(x, y) is used for the ordinary Euclidean distance between two points x 
and y. So the edge between two profile points is divided by the center of gravity into 
two parts. Using (5), the lengths of these two segments are 

d(Zl jk ,  Z,jk) = 7r2jk d(Z l jk ,  Z2jk) (6) 
~l jk  ~ ~2jk 

71"l j k 
d (z2jk, z,jk) = d (Zljk, Z2jk). (7) 

71"1jk "q- "l'l'2 jk 

From (6) and (7) it follows that the odds of being in category 2 of A against being in 
category 1, given the fact that the object is in j of B and k of C, are equal to: 

7r2jk _ d(Zljk,  Z,jk) (8) 

"l'gljk d(Z2jk, Z,jk) 
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that is, the odds are displayed in the spatial representation of the profile frequency 
table as a reverse distance ratio (larger probabilities corresponding to smaller distances 
between Z,jk and the profile point). From (8) we can now derive novel expressions 
for the odds ratios in subtables of a three-way table; for example, for the association 
between A and C given category j of B we obtain, by putting k = 1 and k = 2 and 
dividing the odds, 

Oj -- 7rljlTr2j2 = d (Zl j2' Z*j2)d (Z2jl ' Z*Jl ) . (9) 

7rljzcr2jl d ( Z l j l , Z , j l ) d ( z z j z ,  Z,j2) 

Thus, the odds ratio Oj is a multiplicative combination of four distances, defined 
between four profile points and two centroids. It is well known that the odds ratio 
is invariant under permutation of the rows and columns of the fourfold table. This 
property implies here that Oj may also be derived from the ratio of 71"ij 2 and 7rijl, 
which leads to an alternative expression for (9) in terms of the centroids Z/j,, defined 
analogously to Z,jk in (5). We shall have a closer look at this duplication when we 
illustrate the spatial relationships with an example. 

What is the spatial representation of independence? The reader is advised to 
draw a square with vertices Zlj l ,Zl j2 ,  Z2j2, and Z2jl; when Z,jk and Zij, are added 
to this figure, the following relationships are verified easily. If variable A is jointly 
independent of B and C, we know (see Table 1) that Oj = l, SO from (9) we derive 
d(Zlj2,z , j2)d(Z2jl ,Z, j l )  = d(Zl j l ,Z, j l )d(z2j2,z , j2) .  But we also know, by the con- 
struction of the spatial representation, that the interprofile distances are equal, that is, 
d(Zl j l ,Z2j l )  = d(Zlj2, z2j2), from which we derive d(Zl j l ,Z , j l )  + d(Z2jl ,Z, j l )  = 
d(Zlj2, z,j2 ) + d(z2j2, z,j2 ). Taken together, and after some algebraic manipula- 
tion, these two equalities imply that the four  distances are equal in opposite pairs: 
d(Zl j l ,Z , j l )  = d(Zlj2,z, j2) and d(Z2jl ,Z, j l )  = d(z2j2,z, j2).  If we consider the in- 
tersection line connecting Z,jl with z,j2, it must be parallel to the edges (Zljl, zlj2) 
and (Z2jl,Z2j2). A similar relation holds for the intersection line between Zlj, and 
z2j, with its corresponding edges. So we conclude that independence is a necessary 
condition for the intersection lines to be parallel to the edges. 

It is natural to assign to each centroid z,jk a mass, 7r+jk, indicating the proportion 
of objects that has a profile with j of B and k of C. Similarly, the marginal proportion 
7rij + will be assigned to Z/j,, that is, the sum of the masses of which it is the balancing 
point. The two intersection lines (Z, j l ,Z , j2)  and (Zl j , ,Z2j , )  themselves intersect in 
a point z,j,,  called the category point (the coordinates of which are called category 
quantifications) of category j, which is easily shown also to be a center of gravity (of 
all objects in category j, calculated in any of a number of different ways) with mass 
7r÷j+. Continuing in this way, the intersection lines connecting the category points, 
(Zl**,Z2**), (Z,I , ,Z,2 , )  and (Z**l,Z**2), intersect in z***, the centroid of all objects, 
with mass 1. 

Our high-dimensional spatial representation of the profile frequency table is now 
complete. For the 2 × 2 × 2 case, it contains the eight original profile points, 3 × 4 
added one-asterisk centroids, three added two-asterisks centroids, and the overall 
three-asterisks centroid. The masses of these points correspond exactly to all the 

0 



284 Chapter 20. Visual Display of Interaction in Multiway Contingency Tables 

cell probabilities and the complete set of marginal probabilities of the three-way 
contingency table. Just as the centroids of the form z,j, are called category points 
of B, centroids of the form z,jk are called the category points (quantifications) of 
the cross-classification variable BC (similarly, we have category points for AB and 
AC). So all cells of the bivariate marginal tables can be viewed as categories of some 
cross-classification variable, which is quantified by centroids located on the edges of 
the cube of profile points. 

As we have seen, lack of interaction implies parallel intersection lines, and 
this has important further implications for the relationship between the category 
quantifications of the bivariate marginals with the profile points, on the one hand, 
and with the univariate marginals on the other hand. We suppose that the origin of 
the space is chosen as z***. Considering vectors in the face of the cube corresponding 
to category j of B, which are obtained from the original ones by translation with an 
amount-z, j , ,  parallelism implies additivity: 

(Zijk--Z*j* ) = (Zi j , - -Z, j  , )  + (Z, jk- -Z, j ,  ) (10) 

which follows from the definition of vector addition in terms of the parallelogram 
formed by the points z,j,, z,jk, zijk, and Zij, ( this  is in fact a rectangle, but we want 
to use only the parallelism, not any properties of the angles). Thus, conditional 
independence must manifest itself by the fact that one of the three possible pairs of 
cross-classification variables has additive quantifications when viewed with respect 
to the univariate centroid, as in (10). Under joint independence, we must have two 
pairs of cross-classification variables with additive quantifications with respect to 
their joint univariate centroid. Similarly, it can be shown that, when variables B and 
C are independent, we have a marginal odds ratio ( T r + l l T l ' + 2 2 ) / ( T r + 1 2 7 r + 2 1 )  = 1, 
which implies 

Z,jk = Z,j, + Z**k, (11) 

that is, the quantifications of the cross-classification variable are equal to the sum of 
the quantifications of the categories of the original variables. Combining (10) and 
(11), we obtain the spatial representation of mutual independence: 

Zij k : Zi** -+-Z,j ,  -a t- Z** k. (12) 

In this case, the category points of all three cross-classification variables form a 
parallelogram. So there is a clear one-to-one correspondence between odds structures 
in the three-way table and additivity structures in the spatial model. 

All relationships described so far are exact in the original cube, and we may 
wonder how well they remain intact in the projected configuration that constitutes the 
usual result of a homogeneity analysis. Angles and distances are not preserved under 
projection: squares and rectangles become parallelograms. Projection does preserve 
parallelism, so (10), (11), and (12) remain completely valid in a low-dimensional 
representation of the profile frequency table. 
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4 Some Special Properties of 
Discrimination Measures 

We will now propose and illustrate a general procedure for studying interaction in 
higher way contingency tables that allows us to distinguish the various additivity 
structures in a low-dimensional representation of the profile frequency table. Our 
procedure simply amounts to a homogeneity analysis of a profile frequency matrix 
including all cross-classification variables that can be formed from the original vari- 
ables in a completely balanced way. If there is reason to expect a three-way interaction 
(for example, as indicated by a model search in a preliminary log-linear analysis), we 
include all bivariate and trivariate cross-classification variables. It is essential for our 
procedure to introduce the additional variables in blocks and not to make some selec- 
tion among them. First, we will focus on the so-called discrimination measures (Girl, 
1990, sect. 3.8.4), which are quantities that show how well a variable is represented 
as a group of category points in low-dimensional space. 

Let P be the projection matrix that defines the optimal projection; the sth row of 
P, which produces the projection on component (or dimension) s, is denoted by Ps. 
We introduce a different but consistent notation for the projected points to distinguish 
them from the high-dimensional ones. The projected profile points xijk are defined 
by Xijk = PZijk; the projected centroids are defined by yi** = Pzi**, Yij, = Pzij,, and 
so on. The scalar value Yij,(Ps) = T Ps Zij* is the coordinate of the projection of the 
centroid for category ij of cross-classification variable AB on the component defined 
by Ps. Discrimination measures then measure the dispersion of the projected category 
points as 

r/2(ps) = ~ 7ri++(yi**(ps)- y***(ps)) 2 (13) 
i 

rt2B(Ps) = ~ ~ 7rij+(Yij,(Ps)- y***(ps)) 2 
i j 

(14) 

for the original variables and cross-classification variables, respectively, where it will 
be clear how to continue for the higher order interactions. Thus, rt 2 (Ps) is a weighted 
sum of squares of the category quantifications of variable A with respect to the overall 
center of gravity along component s. Since the weights (being probabilites) sum to 
one, it is the variance of the quantified categories in dimension Ps of the spatial model. 
The average discrimination measure across all variables on component s is denoted 
by A 2, the eigenvalue. We are now ready to look at the results for our example. 

The profile frequency matrix including all cross-classification variables is given 
in Table 2, where the observed count has been supplemented with the expected 
count under the hypothesis of mutual independence. Five different homogeneity 
analyses were performed, always in two dimensions. The first analysis pertains to the 
original set of variables (G, P, E, M); the second uses the two-way cross-classification 
variables (GP, GE, GM, PE, PM, EM) only. The third analysis includes both the main 



Table 2: Profile frequency table for marital status data  with all possible cross-classification variables, observed count a n d  expected 
count under  the  hypothesis of independencea 

G P E M GP GE GM PE PM EM GPE GPM GEM PEM GPEM Obs. Exp. 

" G ,  gender (1 =female, 2=male); P,  premarital sex (1 =yes, 2=no); E, extramarital sex (1 =yes, 2=no); and M, marital status (1 =divorced, 
2=married). GP, two-way cross-classification gender X premarital sex (1 =female/premarital sex, 2=female/no premarital sex, 3=male/premarital 
sex, 4=male/no premarital sex), etc. GPE, three-way cross-classification gender X premarital sex X extramarital sex (l=female/premarital 
sedextramarital sex, 2=female/premarital sedno extramarital sex), etc. 
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effect variables and the two-way interactions (G, P,  E, M, GP, GE, GM, PE, PM, 
EM), the fourth analysis adds the four three-factor cross-classification variables and 
the four-factor interaction to the second analysis, and finally the whole set (G, P,  
E, M, GP, GE, GM, PE, PM, EM, GPE, GPM, GEM, PEM, GPEM) was analyzed. 
The resulting discrimination measures are given in Table 3, along with the associated 
eigenvalues. 

In the first panel of Table 3, we see that all variables contribute to the first 

component ,  premarital  sex and extramarital sex being the most  important,  whereas 
the second component  is determined predominant ly by gender and marital status. 

The second panel reports the analysis with the bivariate cross-classification variables 
only, and the third panel reports the combined analysis. 

Comparing the third with the first and second panels, we see a remarkable simi- 
larity between the solutions: the first four discrimination measures of the combined 

analysis are about equal to those of the analysis with the original variables only, while 
the last six discrimination measures are about equal to those of the analysis with the 

Table  3: Discrimination measures  rl 2, eigenvalues A 2, and average discrimination 
measures  for partit ions from five different homogenei ty  analyses with increasing 
number  of cross-classified variables 

Analysis 1 Analysis 2 Analysis 3 Analysis 4 Analysis 5 

dim 1 dim 2 dim 1 dim 2 dim 1 dim 2 dim 1 dim 2 dim 1 dim 2 

G 0.259 0.525 0.254 0.510 0.252 0.501 
P 0.538 0.055 0.553 0.059 0.558 0.061 
E 0.432 0.092 0.428 0.094 0.425 0.095 
M 0.319 0.365 0.314 0.373 0.312 0.377 
GP 0.656 0 .502  0.650 0 .512  0.660 0.494 0.654 0.505 
GE 0.610 0 .655  0 .615  0.664 0 .605  0 .648  0 .611 0.657 
GM 0.560 0 .883  0 .566  0 .887  0 .558  0 .878  0 .563  0.883 
PE 0.808 0 .213  0.804 0.206 ' 0.810 0.220 0 .806  0.213 
PM 0.733 0.522 0 .729  0 .513  0 .738  0.530 0 .733  0.520 
EM 0.602 0 .415  0 .606  0 .407  0 .599  0.420 0 .603  0.412 
GPE 0.888 0.680 0.886 0.685 
GPM 0.845 0.916 0 .843  0.918 
GEM 0.789 0 .945  0 .795  0.948 
PEM 0.910 0 .593  0 .908  0.581 
GPEM 1.000 1.000 1.000 1.000 

A 2 0.387 0 .259  0 .662  0 .532  0 .552  0.422 0.764 0.666 0 .663  0.557 

1 ~--]~ r12 0 . 3 8 7  0.259 0.387 0.259 0.387 0.258 

~ ~--~° r12 0.662 0.532 0 .662  0 .532  0 .662  0.532 0 .662  0.532 

1 ~-'~1151 "02 0.886 0 .827  0.886 0.826 

r/2 1.549 1 .037 3 .972  3 .192  5.520 4.220 8 .402  7 .323  9 .948  8.356 
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bivariate cross-classification variables only. To be completely clear, we stress that we 
obtain not perfectly identical results but very similar ones. 

Since eigenvalues are averages of discrimination measures, the eigenvalues of 
the combined analysis are about equal to 0.4 times the eigenvalues of the first panel 
plus 0.6 times the eigenvalues of the second panel, or, equivalently, the sum over all 
discrimination measures per dimension in the first and second analyses together is 
about equal to the sum over all discrimination measures in the third analysis, and 
so on. The overall similarity between the results for cross-classification variables 
included or excluded is obtained only if cross-classification variables are included in 
a completely balanced way. Otherwise, the similarity would be lost. 

How do we recognize independence from these tables? We discuss this question 
in two steps. First, for a precise judgment we need a standard of comparison, because 
the expected level of a discrimination measure depends on the number of categories. 
As our standard, we choose the expected value of a discrimination measure under 
the hypothesis of mutual independence (alternatively, the quantities that we call 
expected value could also be interpreted as the mean discrimination measure across 
all components). When we consider all higher order cross-classification variables, 
including the highest one corresponding to a saturated model, starting with m original 
variables we will have 2m-1 analysis variables. If the total number of categories of 
the original variables is denoted by q = na  + n8 + nc + " " ,  then there are q - m 
nontrivial components to consider. Under the hypothesis of mutual independence, 
these components will have equal eigenvalues. We derive the expected discrimination 
measure r/2(.) for one of the original variables a s  (ha  --  1)/(q - m), the expected 
discrimination measure r/28(.) for one of the two-way analysis variables a s  (ha -~- n8 - 

2 , 2)/(q - m), the expected discrimination measure ~qasc( ) for one of the three-way 
analysis variables a s  (ha  -4- n8 + nc - 3)/(q - m), and so on. In our example, where 
the variables G, P, E, and M have two categories each, under mutual independence 
r/2(ps) . . -  r/2(ps) will be equal to 0.25, T/2p(ps) -- 2 " ~eM(Ps) will be equal to 0.50, and 

2 ~q2pe(ps)"" r/2eM(Ps) will be equal to 0.75. The discrimination measure ~I~pEM(Ps) 
will be equal to 1.00, representing perfect fit, which corresponds to the saturated 
model in a log-linear analysis. 

Second, in the previous section we have seen that independence implies additivity 
of category quantifications. We will now show that under two-way independence the 
discrimination measures are additive, too. For instance, the fact that gender and marital 
status are independent (X2M = 0.031) is reflected in the discrimination measures 
r/2M(Ps) = (0.563,0.883) being approximately equal to r/2(ps) = (0.252,0.501) 
plus r/2(ps) = (0.312, 0.377). Geometrically, departure from independence can be 
depicted as a distance between two vectors that represent the discrimination measures 
in two-dimensional space, the first vector (with coordinates 0.563, 0.883) displaying 
the observed discrimination measure and the second vector (0.565, 0.878) displaying 
the expected discrimination measure when G and M are independent. For GM, this 
distance is 0.005; for the other two-way interactions, these distances are 0.167 (GP), 
0.090 (GE), 0.186 (PE), 0.161 (PM), and 0.146 (EM), respectively. This pattern shows 



4. Some Special Properties of Discrimination Measures 289 

a very close resemblance to the results from the log-linear analysis with two-way 
interactions only, as can be seen from Agresti (1990, Table 7.4). 

To show that additivity must hold in any component, we first note that additivity 
in high-dimensional space (e.g., Zij ,  -- Zi** -t-- Z , j , )  carries through to low-dimensional 
space by virtue of the distributive character of projection: psTZij* __ psTZi** + psTZ*j*" 

Looking at marginal independence, then by substituting "rrij+ = 'rri+ +'tr+j+ and 
Yij,(Ps) = Yi**(Ps) + Y,j,(Ps) into (14), we obtain 

rl2s(Ps) = ~ ~ "ffi++ "IT+j+ [ (Y i** (Ps )  - Y***(Ps))+ (Y,j,(Ps) - y***(p~))]2 
i j 

= ~ 7ri++(yi**(ps)- y***(ps)) 2 + ~ 7r+j+(y,j,(Ps)- y***(ps)) 2 
i j 

: rl2(ps) + rl2(ps), (15) 

where the cross-product vanishes because 

y ~  7ri++(Zi** -- Z***) = ~ 7g+ j+ (Z , j ,  -- Z***) -- 0 
i j 

by definition of z***, and therefore any projected value must be 0. In a similar way 
we obtain, for the case in which variable A is jointly independent of B and C, 

2 2 rlAsc(Ps) = r]2(ps) + rlBc(Ps) (16) 

and when A and B are conditionally independent given C 

n ~ s c ( p s )  = 2 2 2 "OAc(Ps) + rIBc(Ps)  -- r lc (Ps) -  (17)  

Although these relationships are exact when the stipulated type of independence is 
exactly fulfilled, for the "no three-way interaction" case, we must do something dif- 
ferent. One possible idea would be to settle for an approximation. For instance, using 
Darroch's (1962) condition of a "perfect" table (which does not exhibit paradoxes), 
no three-way interaction implies that 'Wij k --- ("ffij -Jc- 7Ti+kTT+jk)/('TTi+ + 7F+j+ "IT++k) , 

and from this condition we may derive the approximate relationship 

2 r128c(Ps) = r128(ps) + rl2c(Ps) + rlec(Ps)- rl2a(Ps)- r l2 (ps) -  2 7/c(Ps). (18) 

At this point, some experimentation indicated that this is not the way to go; instead, 
it seems that to test the no three-way interaction case, we should rely on a higher 
order statistic as well, in contrast to the discrimination measure, which we could 
argue is a two-way statistic. The suggested diagnostics would then be the category 
quantifications, and in the next section these will be used to demonstrate that they 
indeed display three-way interactions. 
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5 Visual Display of Odds Ratios as Distance Ratios 
Between Category Points 

In Section 3, we have seen how odds are represented as ratios of distances, so that an 
odds ratio of one corresponds to parallel lines. Two-way association leads to nonpar- 
allel lines and three-way association leads to different nonparallel lines, conditional 
upon one fixed variable. At this point we will display the results from the extended 
homogeneity analysis in two dimensions, including the first- and second-order cross- 
classification variables. The category quantifications will be labeled with their level; 
for instance, gl and g2 denote the female and male categories, respectively. Similarly, 
the label plel  denotes respondents who reported both premarital and extramarital 
sex. In the second-order interactions, glPle2 denotes the category of women who 
did report premarital sex but no extramarital sex, and p2elml denotes respondents 
who did not report premarital sex, did report extramarital sex, and are divorced. This 
notation will also be used in the following equations that give the distance ratios 
between selected category points to study two particular higher way interactions, that 
is, the three-way interaction between premarital sex, extramarital sex, and marital 
status (PEM) and between gender, premarital sex, and extramarital sex (GPE). We 
already know that G and M are independent, so all higher order interactions that 
include GM are not very interesting. 

According to Agresti (1990, p. 221), the PEM interaction seems vital to ex- 
plaining relationships in the data. To describe this PEM interaction, Agresti uses the 
estimated odds ratios for the log-linear model (GP, GM, GE, PEM) and concludes: 
"Given gender, for those who reported pre-marital sex, the odds of a divorce are 
estimated to be 1.82 times higher for those who reported extra-marital sex than for 
those who did not; for those who did not report premarital sex, the odds of a divorce 
are estimated to be 10.94 times higher for those who reported extramarital sex than 
for those who did not." We translate this estimated EM odds ratio for the two levels 
of P in a spatial model (see Figure 1); in this figure we have used only the category 
points relevant for this particular interaction. For the two different levels of P, Pl 
and P2, category points for levels of E and M are connected to form two diamond 
shapes. Along the edges of each diamond, the distances are given between the four 
three-way points and their centroids, the two-way points. The closer a two-way point 
to a three-way point, the more respondents are in that particular three-way point. So 
we see in Figure 1 that plm2 (premarital sex, married) is closer to Pl e2m2 (no extra- 
marital sex) than to plelm2 (extramarital sex) and that p2e2 (no premarital sex, no 
extramarital sex) is closer to p2e2m2 (married) than to p2e2ml (divorced). From this 
we would deduce that extramarital sex is not beneficial to marriage. If we compute 
the distance ratio for Pl with respect to the plel and pie2 centroids, 

d (pl e l m2, pl el )d (pl e2ml , pie2) 

d(plelml,  plel)d(19 le2m2,ple2) 
1.20 × 0.54 

= 1.76 "" (19) 
0.40 × 0.92 
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Figure 1: Display of three-way interaction PEM: category points for extramarital sex 
and marital status connected for the two levels of premarital sex. 

(where "~ denotes equality up to rounding errors) and with respect to centroids plm2 
and Plml, 

d(plelm2, plm2)d(ple2ml, plml) 
d (pl e2m2, pl m2)d (Pl el ml, Pl ml) 

1.25 × 0.41 
= 1.76 "~ (20) 

0.28 × 1.05 

we note that the equality between the two different ratios is preserved. So, in the 
sequel we need to look at only one of each pair of ratios. We also remark that the 
estimated odds ratio of 1.82 reported by Agresti (1990) is indeed close to 1.76. If we 
now inspect the distance ratio for the P2 category (respondents who did not report 
premarital sex), we obtain 

d (p2el m2, p2m2)d (p2e2ml, p2ml) 

d (p2e2m2, p2m2)d (pzel ml, p2ml) 

1.67 × 0.26 
= 10.62 "~ (21) 

0.03 × 1.40 

and the estimated odds ratio 10.94 reported by Agresti is again very close to this figure. 
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So the main conclusion of the log-linear analysis, that the effect of extramarital sex on 
divorce is much greater for respondents who did not report premarital sex, is displayed 
graphically in the homogeneity analysis solution. As usual, there are two companion 
pairs of odds ratios; we first look at the distance ratios for the two categories of 
the variable extramarital sex. The diamonds for levels el and e2 are to be found in 
Figure 2, accompanied by the associated distances. 

The distance ratio for those who did report extramarital sex is obtained from 

d(plelm2, elm2)d(p2elml, elml) 

d (p2el m2, el m2)d (Pl elml, el ml) 

0.58 X 0.81 
= 0.45 "" . (22) 

1.09 x 0.96 

Agresti gives the estimated PM odds ratio for category el as 0.50, so among those 
who reported extramarital sex, divorce is about two times more likely for respondents 
with no premarital sex than for those who had premarital sex. For those who did not 
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Figure 2: Display of three-way interaction PEM: category points for premarital sex 
and marital status connected for the two levels of extramarital sex. 
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report extramarital sex, 

d(ple2m2, e2m2)d(p2e2ml, e2ml) 1.52 X 0.47 
= 2.73 "~ . (23) 

d(p2e2m2, e2m2)d(ple2ml, e2ml) 1.17 X 0.23 

The estimated PM odds ratio for category e2 is reported as 3.00 by Agresti (1990, p. 
222): among those who did not report extramarital sex, divorce is much more likely 
for respondents who had premarital sex than for those who had no premarital sex. 
Finally, with respect to the levels ml and m2, Agresti reports the PE estimates as 1.82 
for divorced and 10.95 for married respondents; from the distances, we recover the 
odd ratios 

d(p2elml,p2ml)d(ple2ml,plml) 1.40 × 0.41 
= 2.10 "" (24) 

d(pzezma,pzml)d(plelml,plml) 0.26 × 1.05 

d (p2el m2, p2m2)d (Pl e2m2, plm2) 
d (p2e2m2, p2m2)d (Ple lm2, Pl m2) 

1.67 X 0.28 
= 12.65 "~ (25) 

0.03 × 1.25 

for m l and m2, respectively. The corresponding diamonds are given in Figure 3. 
As a final illustration of this very special property of category quantifications 

in terms of three-way interactions, we inspect the GPE interaction as well, which 
should be identified, following Agresti, as a "no three-way interaction" case. The 
GP distance ratio was obtained as 0.283 for those who reported extramarital sex and 
0.286 for those who did not. So there is only two-way interaction, to the effect that 
about 3.6 times more men than women had premarital sex. The GE distance ratio is 
0.695 for those who reported premarital sex and 0.704 for those who did not. Again, 
there is only two-way interaction: 1.4 times more men than women had extramarital 
sex. Finally, the PE distance ratio is 3.56 for women and 3.61 for men: those who had 
premarital sex were 3.6 times more likely to have extramarital sex than those who 
had not, but gender has no effect on the relation between P and E. 

6 D i s c u s s i o n  

A major point of this chapter is that the use of homogeneity analysis does not need 
to rely on the assumption that the higher order interactions among the categorical 
variables are nonsignificant. We first proposed a procedure that uses homogeneity 
analysis to display the higher order interactions in a 2 × 2 x 2 X 2 contingency 
table directly. The multiway contingency table was first transformed into a profile 
frequency table. Then higher way cross-classification variables were added in a 
completely balanced way. We demonstrated from the solution of such an extended 
homogeneity analysis how the higher way interactions are represented in the visual 

display. 
It was shown that the condition "no two-way interaction" could be expressed 

exactly in terms of the discrimination measures; if two variables are independent, 
their discrimination measures add up to the discrimination measure of their cross- 
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Figure 3: Display of three-way interaction PEM: category points for premarital sex 
and extramarital sex connected for the two levels of marital status. 

classification variable. No two-way interaction is also expressed in ratios between 
distances between particular category points. If there is no two-way interaction, 
the latter ratio is equal to 1. These distance ratios were then shown to be the major 
diagnostic for identifying three-way interaction. If the second-order interaction is sig- 
nificant, the distance ratio based on each pair of two variables will differ substantially 
for the different levels (categories) of the third variable. 

To simplify the computation while using existing software, we would recom- 
mend not using standard multiple correspondence analysis or homogeneity analysis 
programs (as in the SPSS HOMALS procedure). This would amount to an analysis 
of a much larger matrix than is actually required, because the number of profiles is 
much smaller than the total number of individual objects. 

Instead, simple correspondence analysis could be applied, for example, the SPSS 
ANACOR procedure. To apply simple correspondence analysis, we would have 
only to replace each column in the profile matrix by its indicator matrix, collect 
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Table 4: Weighted indicator supermatrix for marital status data to be used as input 
for simple correspondence analysis 

17 0 17 0 17 0 17 0 
4 0 4 0 4 0 0 4 

54 0 54 0 0 54 54 0 
25 0 25 0 0 25 0 25 
36 0 0 36 36 0 36 0 
4 0 0 4 4 0 0 4 

214 0 0 214 0 214 214 0 
322 0 0 322 0 322 0 322 

0 28 28 0 28 0 28 0 
0 11 11 0 11 0 0 11 
0 60 60 0 0 60 60 0 
0 42 42 0 0 42 0 42 
0 17 0 17 17 0 17 0 
0 4 0 4 4 0 0 4 
0 68 0 68 0 68 68 0 
0 130 0 130 0 130 0 130 

the indicator matrices in an indicator supermatrix, and premultiply the latter with a 
diagonal matrix, containing the corresponding profile frequency on its main diagonal. 
Table 4 is such a table for the four original variables in our example. 

In the empirical cases we have analyzed so far, the row scores in an analysis 
with only the main effect variables were always very similar to those with all cross- 
classification variables added. This suggests that in practice we would not need to 
include all the cross-classification variables, but could derive the higher order category 
quantifications from a simple analysis, by computing the appropriate centroids of 
profile points afterward. The resulting visual displays of interaction through the use 
of diamonds must be very similar as well. In fact, although the diamonds may be 
slightly different (due to a somewhat different projection from high-dimensional 
space), the distance ratios they display are identical. 

From the row scores of a simple correspondence analysis of a table as shown in 
Table 4, the higher way centroid for the category point for g lP le l ,  for example, is 
obtained as 17 times the first row score (for profile 1111) plus 4 times the second row 
score (for profile 1112) divided by 21; the category point for g l e l m l  is 17 times the 
first row score (for profile 1111) plus 36 times the fifth row score (for profile 1211) 
divided by 17 + 36, and so on. Which combinations should be taken follows from 
the associated columns in the extended profile frequency matrix in Table 2. 

To compare our procedure with already existing ones, the following observations 
are important. First, our spatial representation is totally different from the usual 
geometric model used in the theory of log-linear analysis (Fienberg and Gilbert, 
1970), which considers the distribution of mass over the cells of the table as one point 
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in a regular polygon. Relationships among the two would be a subject for further 
study. Second, there are at least two other approaches to the use of cross-classification 
variables, which are, however, different from ours. In Girl (1990), it is proposed to 
replace two of the original (main effect) variables by one cross-classification variable, 
with the aim of removing "uninteresting" association with respect to the main object 
of study. Van der Heijden and de Leeuw (1985) use the idea of cross-classification 
variables with the aim of studying residuals from higher order independence models. 
They apply simple correspondence analysis to a matrix of order, say, na X nBC; as 
they remark, it is often not obvious which two out of three variables should be cross- 
classified. We have shown in this chapter that when using our method, no such choice 
has to be made, and at the same time possible effects can be identified. 

Bishop et al. (1975, p. 24) remark about the possibility of a linear (additive) model 
in the cell probabilities instead of their logarithms: "We conclude that the difficulty 
of relating the additive model to the concept of independence makes it less attractive 
than the loglinear model." The profile scores from homogeneity analysis are additive 
combinations of category quantifications, and we have seen that they are related to 
the concept of independence in a rather simple way. The apparent contradiction is 
resolved once we realize that the scores from homogeneity analysis do not represent 
the cell probabilities but the cell itself (the profile). The spatial representation aims 
at predicting an answer pattern given the profile score, not a probability given the 
answer pattern. 

We have not elaborated on the case in which variables contain more than two 
categories. Some experimentation has shown that the special properties in terms of 
discrimination measures are preserved for the multicategory case. With respect to the 
much more complicated distance ratios, the promising results obtained by applying 
the general approach proposed in this chapter to the multicategory case are currently 
being scrutinized. 



Chapter 21 

Graphical Displays 
in Nonsymmetrical 
Correspondence Analysis 

Simona Balbi 

1 I n t r o d u c t i o n  

The aim of this chapter is to show how a nonsymmetric version of correspondence 
analysis can be useful for dealing with survey data. The method was first proposed by 
Lauro and D'Ambra (1984), as an alternative to correspondence analysis, when the 
dependence structure between two categorical variables has to be analyzed. Coding 
two qualitative variables as indicator matrices, Lauro and D'Ambra display the dis- 
tribution of the dependent variable, given the explanatory one, in a suitable factorial 
subspace. Moreover, the method has been extended to multiway tables (D'Ambra and 
Lauro, 1989) and developments have been proposed in relation to models (Lauro and 
Siciliano, 1989; Balbi and Siciliano, 1994) and inferential issues (Siciliano, 1990; 
Balbi, 1992, 1994). 

In this chapter we give special attention to the graphical representations of 
nonsymmetrical correspondence analysis (NSCA) and stress the conditions in which 
NSCA is preferred to ordinary correspondence analysis (CA) in exploring data. 

297 
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2 Outl ine of the Method 

Let P be an I × J correspondence matrix, a cross-tabulation of two categorical 
variables where all frequencies are divided by the total n of the table. Pearson's 
mean-squared contingency coefficient ~2, called the total inertia, is defined as 

(I)2 - -  X 2 _ Z Z (Pij Pi.P.j)2 ( 1 )  

n i j Pi.P.j 

where n is the number of observations and Pi. -- ~ j  Pij, P.j = ~-~i Pij. 
CA aims at visualizing the association structure among the row and column 

categories in a suitable subspace by decomposing ~2 along principal axes in the 
style of principal component analysis. However, many other indices, which measure 
different kinds of departure from the independence hypothesis, have been proposed. 
Among them, there is the predictability index ~'b" 

~-'~i ~"]~j [(Pij -- Pi.P.j) 2/p.j] __ ~-~j P.j ~ i  [(Pij/P.j) -- Pi.] 2 
"rb = (1 - y ~ i p  2) - ( 1 -  y]~ip 2) 

(2) 

introduced by Goodman and Kruskal (1954), arguing that "measures of associa- 
t ion . . ,  should be carefully constructed in a manner appropriate to the problem at 
hand." 

The applicability of % (hereinafter denoted simply by ~') is related to what 
Goodman and Kruskal call "proportional prediction," that is, the relative decrease in 
the proportion of incorrect prediction of one categorical variable, given knowledge 
of the other categorical variable. 

Note that the denominator of ~" is the heterogeneity measure proposed by Gini 
(1912). It is a normalizing factor, as it represents the value assumed by the numerator 
of ~- when the knowledge of p.j completely determines pi.. Lauro and D'Ambra 
(1984) show how, dealing with conditional distributions, the numerator of ~- can be 
decomposed along principal axes, just as CA decomposes ~2. Thus, when the two 
ways of a contingency table seem not to be in a symmetric relation (e.g., the row 
variable depends on the column variable), it could be convenient to visualize the 
influence of the column variable categories j on the row variable categories, that 
is, on the empirical conditional d i s t r i b u t i o n s  Pij /P. j ,  i = 1 . . . . .  I, relative to the 
hypothesis of absence of influence, given by the marginal frequencies pi.. 

2.1 The Adoption Survey 

At present, in Italy there is a wide debate concerning adoption. New laws have been 
proposed, and interest is focused mainly on the methods for choosing and matching 
adoptive parents and children. Thus, a sample survey was carried out (Balbi et al., 
1995) by interviewing a sample of 100 adoptive parents. The survey was part of a 
wider collaborative project between judges, psychologists, sociologists, and people 
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working with adoptive families. One of the main goals was to understand when an 
adoption can be judged successful and why. As a first approximation, the difficulties 
met by parents, compared with expectations, were considered as a clue. In Italy there 
is a heated controversy about parents' ages and their importance for the child's fitting 
into social life. Thus, the first question was, "Can difficulties met by adoptive parents 
be related to the mother's age?" 

A table cross-classifying difficulties (three categories: more than expected, less 
than expected, equal to expected) and age of mother at the adoption (three categories: 
less than 36 years old, 36-40 years old, more than 40 years old) was constructed 
(Table 1). 

Performing a CA on such a table might appear superfluous because of its small 
size. However, it can be useful in showing the reason for choosing NSCA in preference 
to CA. 

2 .2  T h e  M e t h o d  

Let P be the relative frequency table, centered with respect to the independence 
hypothesis ( f i i j  - -  P i j  - Pi.P.j); Dc is the diagonal matrix of the column marginal 
frequencies p.j. eDc 1 is the centered column profile matrix [with general element 

(Pij/P.j) - -  P i . ] .  Each row of [~Dc 1 represents the departure from the hypothesis 
of conditional independence of the corresponding category of I on J. Following 
Greenacre (1984), NSCA can be seen as a special case of a general analysis based 
on the (generalized) singular value decomposition" [~Dc 1 = UA1/zv T, with the 
orthonormalizing constraints u T u  = VTDcV = I. A 1/z is the diagonal matrix of the 
square roots of the eigenvalues As of the matrix A=PDclP T, sorted in decreasing 
order. The columns of U and V are respectively the left and fight (generalized) 
singular vectors of PD c 1. 

Table 1: Difficulties met by parents and mother's age at adoption (column percentages 
in parentheses) 

Less than 36 36--40 More than 40 Total 

More than expected 4 8 4 16 
(11.1) (21.6) (14.9) 

Less than expected 18 21 9 48 
(50.0) (56.8) (33.3) 

Equal to expected 14 8 14 36 
(38.9) (21.6) (51.8) 

Total 36 (100) 37 (100) 27(100) 100 
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Notice that in NSCA the metrics assumed for the row and column spaces are Dc 
and I, respectively, whereas in CA they are Dc I and Dr 1 (the chi-squared distances). 
Furthermore, note that: 

i=1 a = l  

where M is the rank of [~D-1 [M = min(/, J) - 1]. 
c 

The ith row conditional distribution can be decomposed as 

M 

Pij __ Pi. + Z ~aUaiVa j  ( j  = 1 . . . . .  J) (3) 
P.j ct=l 

Replacing M with a lower value M*, a low-rank approximation is obtained. The 
descriptive index based on the explained inertia }-~* = 1 A ~ / y ~  = 1A~ is usually 
adopted in choosing a suitable M*. A more detailed presentation of the algebra of 
NSCA can be found in Lauro and Balbi (1995). 

2.3 G e o m e t r y  of  N S C A  

NSCA looks for the orthonormal basis accounting for the largest part of variability 
(here in the sense ofpredictability, measured by ~'). Let us consider the/-dimensional 
space, spanned by the columns of PDc 1 . The origin of this space is at r, the average 
column profile. The J centered columns of PDc 1 are contained in a subspace with at 
most ! - 1 dimensions. As in ordinary CA, we are interested in displaying distances 
between column profiles, but in this case unweighted Euclidean distances, not chi- 
squared distances: 

d2j, = ~ Pij _ Pij, (4) 

i PJ P'J' 

The projections of the column profiles on the ath principal axis give coordinates: 

q~a = Dclp l -uc~  (5) 

Note that, for measuring the predictability in the table, we have to take into 
account the marginal distribution of the explanatory variable, in the example mother's 
age. Here the weighting system is defined by Dc. 

As in principal component analysis, row points and column points have different 
geometries. The distance of each row point from the origin is a measure of its 
expectancy, given the column variable distribution. The distance between two row 
points indicates their different ways of depending on the explanatory variable: 

( P i j ) ( P i t j  )1 2 di 2, = ~ P.j - Pi. - - Pi,. (6) 
j \ P.j \ P.j 
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In such a distance it is important to take into account the marginal distribution 
of the explanatory variable, because its categories contribute differently to the total 
variability measured by ~-. Thus a weighted Euclidean metric, defined by Dc, is 
adopted in defining the metric structure of the row space. Each row is assigned an 
equal weight in its contribution to the total variability. 

As an additional consequence, the distributional equivalence property in NSCA 
is preserved only when two categories of the explanatory column variable, having the 
same profile, are merged into one, with the same profile and weight equal to the sum 
of the weights of the two merged categories. In such a case, as in CA, distances among 
row points are not modified. The property does not hold in merging two categories 
of the dependent variable, although, from practical evidence, Lauro and D'Ambra 
(1984) assert that there is little consequence in merging row categories with equal 
profiles. 

NSCA row coordinates on the ath principal axis are 

~k,~ = Pv,~ (7) 

2.4 S o m e  Rules  for Interpret ing N S C A  Factorial Planes  

Coming back to the adoption data, CA has been performed together with NSCA. As 
in CA, the results of NSCA are presented in maps that show the configuration of 
points in projection planes formed by the major principal axes. 

Table 1 does not present a strong association structure, having a chi-squared 
value of X 2 = 7.2 (p = 0.12). The value ~- = 0.04 means that, knowing the mother's 
age, we can better predict the difficulties adoptive parents would meet in only 4% of 
cases (the approximate X2-test for ~- has a p-value of 0.08). Figure 1 shows the maps 
obtained by CA and NSCA, both representing 100% of the variability. 

In both analyses there is strong evidence that mothers of 40 years and older have 
a better awareness of adoption difficulties: the first axis (explaining 89% of the total 
variability in CA and 93% in NSCA) opposes women 36--40 years old (on the left) 
versus women over 40 (on the fight), the latter characterized by difficulties equal to 
expected. The second axis (explaining 11% of the total variability in CA and 7% 
in NSCA) opposes the youngest mothers, for whom adoption has been easier than 
expected, versus the middle age class, who have more difficulties than expected. 

The differences between the CA and NSCA displays can be understood by 
considering the following aspects of the NSCA interpretation: 

The scattering of the difficulties category points around the origin displays the de- 
pendence strength of difficulties on mother's age; the position of the ith dependent 
variable category with respect to the origin displays how well the explanatory vari- 
able predicts the category (for example, the category MORE is less predictable, 
being closer to the origin). 

The scattering of mother's age categories around the origin also displays the depen- 
dence strength of difficulties on mother's age: the position of the jth explanatory 
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F i g u r e  1: D i f f i c u l t i e s  m e t  b y  p a r e n t s  a n d  m o t h e r ' s  a g e  a t  t h e  a d o p t i o n .  (a) C . A .  f i r s t  

f a c t o r i a l  p l a n e ,  (b)  N S C A ,  f i r s t  f a c t o r i a l  p l a n e .  
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variable category with respect to the origin displays how strongly it predicts the 
behavior of the dependent variable (for example, the age group mother > 40 is a 
better predictor, being farther from the origin). 

If two dependent variable categories are close on an axis (e.g., MORE and LESS, 
as opposed to EQUAL), their dependence structure with respect to the explanatory 
variable is similar, according to the feature of that axis. 

When two predictor variable categories are close on an axis, they similarly influ- 
ence prediction of the response categories contrasting on that axis; for example, 
all mothers 36 years or older have a similar influence on predicting the category 
MORE. 

Keeping these rules in mind, we can interpret the NSCA map for Table 1 (Fig- 
ure lb) and compare it with the CA map (Figure la). The graphical displays include 
the complete information in the table, because the dimensionality of the table is equal 
to 2. 

2.5 A ids  to the Interpretat ion of N S C A  Maps  

Coordinates are not the only elements to be taken into account when one reads 
NSCA maps. As in principal component analysis, row points' coordinates show 
the contribution of each category i to the orientation of the relative axis, because 
the contribution, CTRk(i) = @2i/i~a, does not involve weights. For the column 
contributions, however, the situation is as in CA, where the weighting system must 
be taken into account: for the jth column, the contribution is CTRk(j) = p.j(q~2j/A,~). 

Table 2 shows these contributions, and we can see, for example, that mothers 
younger than 36 years do not contribute to the first axis. To evaluate how a category is 
represented on each axis, as in CA, squared factor loadings (or squared cosines) can 
be computed (Table 3): for the ith row, 

cos c~(i) = 
2ai 

}-~j P.j((Pij/P.j)  -- Pi.) 2 

Table 2: Contributions of Table I categories to the first two NSCA factorial axes 

Contributions (CTR) First axis (x 1000) Second axis ( ×  1000) 

More than expected 39 628 
Less than expected 345 321 
Equal to expected 616 51 

Less than 36 years old 6 634 
36--40 years old 479 151 
More than 40 years old 515 215 
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Table 3: Squared factor loadings of Table I categories to the first two NSCA factorial 
axes 

Squared factor loadings 
(cos) 

First axis (x 1000) Second axis (x 1000) 

More than expected 448 552 
Less than expected 933 67 
Equal to expected 994 6 

Less than 36 years old 117 883 
36--40 years old 976 24 
More than 40 years old 969 31 

and for the jth column, 

cos a ( j )  = 
2 ~aj 

Ei((Pij /P. j )  - Pi.) 2 

Thus, we can see that difficulties equal to expected is almost perfectly represented 
on the first axis, whereas mothers less than 36 is badly represented on it (as it is an 
exact two-dimensional representation, squared factor loadings of each category sum 
to 1 for the two axes). Furthermore, Balbi (1994) proposes evaluating the importance 
in NSCA of each cell in the table by means of influence functions. 

2.6 J o i n t  P l o t s  in  N S C A  

It is worth noting that an NSCA joint plot is not a true biplot of PD c 1, because both 
rows and columns are expressed in so-called principal coordinates (Greenacre, 1984). 
As a matter of fact, the centered column profiles matrix is given by 

M 
~ 1 

%Dc (8) e o c l  __ ~ ~_~a l~  T 1/2 

o~=1 

As an altemative to the joint plot, Lombardo and Kroonenberg (1993) proposed 
the use of a "column isometric" biplot (Gabriel, 1971) to enhance asymmetry in 
displaying points (this is also known as an asymmetric map with column points 
in principal coordinates). Thus, row coordinates are given by 0~,  while column 
coordinates are given by ( 1 / ~ ) D c  1/eq~. The different choice is related to different 
objectives of the joint plot, either displaying the dependence structure or displaying 
and graphically reconstructing the centered column profile matrix. 
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An Extension to the Analysis of 
Multiway Tables 

In the adoption survey, we were interested in going deeper into the socialization 
problems of adoptive children. The variable "performance at school" can be chosen 
as an indicator of their fitting into social life. In our questionnaire, we asked parents 
to give an opinion on school performance, subjectively using a three-point scale 
(high, medium, and low). Because there are strong indications that the age at which 
a child was adopted influences his or her future life, we cross-tabulate school perfor- 
mance with child's age at adoption (Table 4). The additional explanatory variable of 
mother's age at adoption is also included. To generalize NSCA to three-way or even 
more complex data sets, multiple NSCA and partial NSCA have been introduced by 
D'Ambra and Lauro (1989). 

Multiple NSCA consists of transforming a multiway table into a suitable two- 
way table. For example, in the case of a three-way table, let us suppose that the first 
variable, with I categories, is the dependent variable "performance at school," and 
the other two variables, with J and K categories, respectively, are the explanatory 
variables "child's age" and "mother's age" at adoptions. 

The proposed flattening procedure consists of combining the JK elements of the 
two explanatory variables and constructing an I X JK table. The computation of I 
and the implementation and interpretation of NSCA are otherwise identical, applied 
to the flattened table. 

In multiple NSCA we deal with a new compound explanatory variable. The 
dependent variable may be highly conditioned by one of the two explanatory variables, 
say the second one with K categories. In this case, it can be interesting to analyze 
a single category K, referring to the conditional independence hypothesis P i j k  = 

Pi.k/P..k,. This is called a partial NSCA. 
From a geometric viewpoint (Figure 2b), partial NSCA represents in a lower- 

dimensional space the K clouds of points centered with respect to the respective 
conditional independence model of the first two variables, given a level k of the third. 
In multiple NSCA, centering is with respect to independence of the first variable and 
the combined second and third variables. 

Table  4: Performance at school and child's age at the adoption (column percentages 
in parentheses) 

Less than 1 1-2 3-4 More than 4 

year old year(s) old years old years old Total 

High 19 (57.5) 4 (40.0) 7 (35.0) 4 (12.1) 34 (35.4) 
Medium 12 (36.3) 4 (40.0) 7 (35.0) 14 (42.4) 37 (38.5) 
Low 2 (6.2) 2 (20.0) 6 (30.0) 15 (45.5) 25 (26.1) 
Total 33 (100) 10 (100) 20 (100) 33 (100) 96 (100) 
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Figure 2: (a) Multiple NSCA, the analysis with respect to the common centroid, 
(b) Partial NSCA, the analysis with respect to the stratum centroid. 
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C<I = less than 1 year old child 
C1-2 = 1-2 year(s) old child 
C3-4 = 3-4 years old child 
C>4 = more than 4 years old child 

F i g u r e  3: Performance at school and child 's  age at the adoption:  s imple NSCA, first 
factorial plane. 

The different roles p layed by the two variables, cross-classified in Table 4, suggest  

the use of N S C A  (~" = 0.10, with performance dependent  on age, p = 0.003). The 

influence of the age at the adoption on school performance was confirmed by NSCA.  

The N S C A  map in Figure  3 shows children with a low level of  performance on 

the fight, predicted by "age at adoption greater than 4 years," opposing children with 

a high level on the left, predicted by "age at adoption less than 1 year  old." We now 

take into account  a second explanatory variable, "mother ' s  age at adoption." To avoid 

a large number  of cells with small  frequencies,  we aggregate children with ages at 

adoption of 1-4 years. Table 5 shows the three-way table of frequencies.  

Table 5: Performance at school and  child 's  age at the adopt ion  and mo the r ' s  age at 
the adopt ion  

Less than 36-40  More than 
36 years old years old 40 years old Total 

Less More Less More Less More 
than 1 1-4 than 4 than I 1-4 than 4 than I 1-4 than 4 

High 13 4 1 4 6 1 2 1 2 34 
Medium 6 6 2 4 4 5 2 1 7 37 
Low 1 2 1 1 5 3 0 1 11 25 
Total 20 12 4 9 15 9 4 3 20 96 
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A multiple NSCA was performed on the two-way table crossing performance 
at school with the compound explanatory variable child's age (three categories) by 
mother's age (three categories). The ' / ' (mother 's age .chi ld ' s  age) i s  equal to 0.127: 83% is 
accounted for by the first eigenvalue and the residual 17% by the second one. 

In Figure 4, the strong relation between age and performance at school observed 
along the first axis in the previous simple NSCA (Figure 3) is confirmed: performance 
at school is negatively related, first, with child's age at the adoption (T(child, s age) = 
0.096) and, second, with mother's age at the adoption ('r(mother, s age.) -- 0.052). These 
relationships are effective in the extreme categories: high performance at school is 
strongly dependent on the combined category "mother less than 35 with child less 
than 1" (both these points are in the top left quadrant of Figure 4), and a similar 
positioning relates "mother over 40 with child over 4" and low school performance 
in the top fight quadrant. 

Additional information due to the introduction of mother's age is given by 
comparing configurations: although all variables have ordered categories, the typical 
"horseshoe" effect is present only for the dependent variable categories and for classes 
with mother's age 36-40. The marginal distributions of the two explanatory variables 
can be projected onto the map as supplementary points. 

The multiple ~" is less than the sum of the two simple ~-'s, which implies that inter- 
actions exist between the two explanatory variablesmin Italy, it is almost impossible 
for parents more than 40 years old to adopt newborn babies. 
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Figure 4: Performance at school and child's age/mother's age at the adoption: mul- 
tiple NSCA, first factorial plane. 
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Figure 5: Performance at school and child's age/mother's age at the adoption: partial 
NSCA, first factorial plane. 

Partial NSCA has been performed (Figure 5) by considering the distribution of 
"performance at school" depending on "child's age" given "mother's age." While the 
first axis explaining 75% of the total variability shows again how important child's 
age at the adoption is in the child's school performance, we also see that children 
adopted at 1-4 years perform relatively well given that the mother's age at adoption 
is over 40. This second axis shows several combinations at the bottom that lead to 
medium performance, mainly opposing the combination "mother 36-40 years with 
child 1-4 years," which results in poor performance relatively often. 
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Chapter 22 

Ternary Classification Trees: 
A Factorial Approach 

Roberta Siciliano and Francesco Mola 

1 Introduction 

Several partitioning procedures have been proposed in the literature to construct 
decision trees, notably CART (Breiman et al., 1984), RECPAM (Ciampi and Thiffault, 
1987), and CHAID (Kass, 1980). In classification trees the data set consists of a large 
sample on which a categorical response variable and a high number of predictors 
have been observed. The idea is to use such a sample to "learn" how to predict the 
response variable from known observations of the predictors. This leads to defining 
a rule in the form of a decision tree in order to classify new cases of unknown class 
on the basis of observations of the given predictors. 

In this chapter we are concerned with the case in which all predictors are cat- 
egorical, like the response variable. Our main aim is to construct exploratory trees 
in order to emphasize the most significant predictors at each level of the tree. For 
this purpose a factorial approach is used to grow classification trees, especially the 
method of nonsymmetrical correspondence analysis (NSCA). Some new insights 
into the graphical displays of NSCA are presented in order to define a partitioning 
criterion into three classes. Factorial coordinates and predictability measures are used 
to distinguish between categories with strong and weak predictive power. 

311 
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2 Nonsymmetrical Correspondence Analysis 

NSCA is a factorial method for the analysis of the dependence in a two-way con- 
tingency table (Lauro and D'Ambra, 1984; D'Ambra and Lauro, 1989; Lauro and 
Siciliano, 1989; Balbi, 1992; Siciliano et al., 1993). In the following we describe 
the factorial model and we give some insights into the interpretation of graphical 
displays. These results are used to propose a tree-structured classification via NSCA. 

For a two-way contingency table let Pij be the observed proportion such that 
~-'~i ~"~j Pij = 1 (i = 1 . . . . .  I; j = 1 . . . . .  J)  where the column variable Y depends on 
the row variable X (notice that in contrast to that of Balbi, Chapter 21, our dependent 
variable defines the columns of the table). NSCA analyzes the centered matrix of 
row profiles, with general element (Pij/Pi.)  - p.j. The solutions can be obtained by 
generalized singular value decomposition, which can be written in scalar form as 

K 

Pij _ P.J = ~ OtkrikCjk (1) 
Pi. k = l  

where K ----- m i n ( I -  1, J -  1), and al -> "'" --- aK > 0. The score parameters of the 
row categories rik and of the column categories cjk satisfy the following centering 
and orthonormality conditions: 

pi.rik = O, ~ Cjk = 0 (2) 
i j 

~-'~ pi.rikrik, = ~kk,, ~ -- ~kk, (3) CjkCjk, 
i j 

where 6kk. is Kronecker's delta, the rows are weighted by the row margins, and the 
columns are weighted by ones. The objective is to approximate the matrix by using 
a reduced-rank decomposition with a number of factors K* lower than K, usually 
a two-dimensional factorial representation. For details on graphical displays and 
diagnostics for evaluating the quality of reduced-rank factorial representation, see 
Greenacre and Hastie (1987), Andersen (1995), Le Roux and Rouanet (Chapter 16), 
and Greenacre (Chapter 17). 

In NSCA the coordinates of the row categories are defined by otkrik and the 
coordinates of the column categories are defined by cjk. In this way, we ensure that 
the graphical display in the reduced space is a biplot and can be interpreted in a 
nonsymmetrical way, namely by using prediction and dependence criteria. 

Justification for NSCA lies in the predictability index ~" of Goodman and Kruskal, 
defined as: 

F ,  [(p,/pi.) - p.j]  pi. 
~'rlx = (1 - ~-~j p}) (4) 
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The denominator of the ~- index is the index hy of total heterogeneity of Y due to 
Gini, and the numerator of the ~" index is the part of total heterogeneity--called 
explained heterogeneity---due to the predictive power of the predictor categories. 
The ~- index varies between 0 (no predictive power of predictor categories) and 
1 (perfect prediction). If Trlx = 0, there is independence: Pij/Pi. = P.j for all i 
and j. If rYIX = 1, then for each row category i there exists only one category j 
such that Pij = Pi.. The index ~" can also be interpreted as the relative increase in 
correct predictions of the response variable when knowledge about the category of 
the predictor is used. 

NSCA decomposes the numerator of the ~" index along principal axes and also 
over the row categories and over the column categories: 

2 hYTYIX = Z Otk -- ~ Pi. Z (°tkrik)2= Z Z (°tkCjk)2 
k i k j k 

(5) 

We notice that for k = 1 . . . . .  K, the component ~ k  (°tkrik) 2 is equal to the squared 
distance of the row category to the origin (where the column marginal distribution 
is represented), the component ~-]~k (akCjk) 2 is equal to the squared distance of the 
column category to the origin; for k = 1, 2 we can approximate such distances in a 
two-dimensional factorial space by using the first two sets of scores. Using (5), we 
can define the following predictability measure of the row category Ri: 

~~k (Otkrik)2 
pred(Ri) = Pi. Z k  O~2 (6) 

k 

where ~-~i pred(Ri) = 1. Formula (6) allows one to distinguish which row categories 
have more predictive power on the response variable (and thus contribute more to 
the index ~'). Similar measures can also be defined for the column categories to 
understand which response categories are best predicted by the predictor. 

Furthermore, the row coordinates akrik are related to the column coordinates cjk 
by the following transition formula: 

Z (  pi----j-j ) J Pi. -- p'j Cjk = Z Pi___jj J Pi. Cjk -- Z p'jCjk = Otkrik (7) 
• . j 

The left-hand side of (7) consists of two terms" the first term ~-~j(Pij/Pi.)Cjk 
gives the weighted average of the column coordinates, where the weights are given 
by the conditional distribution Pij/Pi. (or profile) for row i; the second term subtracts 
~-~j p.jCjk, a constant term that all rows have in common. Formula (7) shows that the 
row coordinates are, apart from a constant term, the weighted average of the column 
coordinates. In the case of perfect prediction, (7) shows that for each column point j 
there exists at least one row point i with the same coordinates, that is, a~rik = cjk; 
thus the predictor category i and the response category j are projected into the same 
point. Under independence otkrik = 0 for all the rows, since Pij/Pi. = P.j for all i and 
j. In practice, the predictive power of the row categories is somewhere between the 
extremes of independence and perfect prediction. Row points far from the origin have 
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high predictive power on the response variable. A row category i with coordinates 
c~krik has high influence in predicting a particular column category j when the column 
coordinates Cjk are high and their signs agree with the signs of the respective row 
coordinates. In a factorial representation this means that the row point i is close to 
the column point j and these points are relatively far from the origin. 

3 Ternary Trees by NSCA 

Consider a data matrix with a categorical response variable (Y) and M categorical 
predictors (X1... XM) observed on a sample of N cases, often called the learning 
sample. A classification tree, or classifier, is constructed by recursive partitioning of 
the cases into two or more subsets, which correspond to the "nodes" of the tree. The 
partitioning procedure starts with N cases at the "root of the tree"and is performed 
until the current node is declared to be a "terminal node" according to a stopping 
rule. 

In Classification and Regression Trees (CART) the partitioning procedure is 
performed to grow the so-called maximal or exploratory tree with the highest number 
of terminal nodes (i.e., nodes with either a low number of cases or all cases belonging 
to the same class); then a pruning procedure allows a cutting back of some branches 
of the tree to provide the final classifier. To each terminal node is assigned the class 
with the highest proportion of cases. A test sample or a cross-validation procedure 
can be used to validate the final tree. 

Partitioning procedures usually construct binary trees that are simple to interpret. 
In this case a splitting criterion is defined to divide cases at each node into two disjoint 
subgroups that are internally as homogeneous as possible. A drawback of tree methods 
is the time required to grow the tree depending on the number of splits to be tried out 
at each node (see Mola and Siciliano, 1997, and Aluja-Banet and Naf15a, Chapter 5). 

CART considers the splitting criterion based on the concept of node impurity, 
and a commonly used impurity measure is given by the Gini index of heterogeneity 
for the response variable Y [i.e., the denominator hy of (4)]. Among all possible 
splits of each predictor, the best split in CART is found by maximizing the decrease 
in impurity when passing from one group to two subgroups. 

As an alternative approach, Mola and Siciliano (1994) provide a two-stage split- 
ting criterion with which a reduced number of splits is considered at each node, thus 
saving some computing time. The basic idea is that a predictor is not merely used as 
generator of splits but plays a global role in the analysis. Thus some variable selection 
is performed to choose one or more best predictors that generate the set of possible 
splits at a given node. Two-stage splitting criteria can follow three strategies with 
respect to the use of a statistical index such as the predictability ~" index (Mola and 
Siciliano, 1994, 1997), the use of a statistical model such as logistic regression (Mola 
et al., 1996), or the use of a factorial method such as NSCA (Mola and Siciliano, 
1996). Following the last strategy, we provide a classification tree procedure to grow 
ternary trees. 



3. Ternary Trees by N S C A  315 

We now describe the main steps of the proposed methodology as applied at the 
root node to all N cases of the sample. Then the procedure follows recursively for 
each subsample until the stopping rule declares nodes to be terminal. 

3.1 Table Selection 

We consider the set of M contingency tables by cross-classifying each predictor with 
the response variable. Then for each table we calculate the predictability index ~" and 
we select the predictor that provides the highest value. 

3.2 Visualizing Dependence 

We perform NSCA on the table cross-classifying the response categories with the 
best predictor identified in the previous step. Using the reduced-rank decomposition 
of (1) in two dimensions, we make a graphical display of the dependence structure 
between the response categories and the selected predictor categories. This map is 
used to explore the dependence structure in the subsample at the current node. 

3.3 Partitioning Criterion 

We define a classification criterion to find a partition of the N cases into three 
disjoint subgroups that are internally as homogeneous as possible with respect to 
their predictability of the predictor categories. The classification criterion is defined 
by using the predictor (row) coordinates in the first dimension, that is, the principal 
coordinates al ril, i = 1 . . . . .  I. From (2), (3), and (6) these coordinates are centered 
and the sum of their predictability measures pred(Ri) is equal to 1. The predictor 
categories having a negative coordinate will predict response categories different 
from those predictor categories having a positive coordinate, which would lead us to 
use their sign as a binary splitting criterion. 

In practice, however, we can have coordinates close to zero but with different 
signs, in which case using them to make different predictions does not make sense. 
Therefore, we use these intermediate predictor categories to define an additional 
split, leading to the ternary nature of our splitting criterion. To operationalize this 
idea, we use the predictability measures to distinguish between strong and weak  

categories. From (6) we can see that row i will make a proportionately higher or 
lower contribution to pred(Ri) if Ir/ll --- 1 or [r/l[ < 1, respectively. We say that 
category i is a strong category when Iri~l - 1, whereas category i is a weak  category 
when Irill < 1. As a result, we distinguish three subsets of predictor categories: (1) 
row categories such that ril --- 1 (strong fight categories); (2) row categories such 
that [rill < 1 (weak categories); (3) row categories such that ril ~ --1 (strong left 
categories). 

The partitioning of the predictor categories induces a partition of the current 
sample of cases into three subgroups. There can be an empty subgroup of cases in 
some situations, either when no category belongs to one of the preceding groups or 
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when the predictor itself is dichotomous. The weak or "middle" subgroup includes 
cases in which the response variable is not strongly characterized by any category 
of the best predictor. This subgroup probably needs further splitting to improve 
predictability, whereas the strong subgroups include cases in which the response 
variable is strongly predicted by some categories--such nodes often include a low 
number of cases so that strong nodes are often declared terminal nodes. 

3.4 S t o p p i n g  a n d  A s s i g n m e n t  R u l e s  

For stopping the recursive partitioning procedure we can use some natural rules, such 
as to stop when the percentage of cases at a node is below a certain value (e.g., 10%). 
This approach is recommended when the sample is not so large. We can also consider 
a stopping rule based on the CATANOVA statistic for the analysis of variation of 
categorical data, introduced by Light and Margolin (1971; see also Margolin and 
Light, 1974). Mola and Siciliano (1994) show how to check the strength of the 
dependence relation of the best predictor on the response variable. 

After node splitting is completed, a response category can be assigned to each 
terminal subgroup of the final partition for prediction purposes. This assignment is 
usually based on the response category having the highest proportion of cases within 
the subgroup. 

4 An Example 

We consider a data set concerning a sample of 286 graduates of the Economy 
and Commerce Faculty of the University of Naples over the period 1986-1989. 
The variables shown in Table 1 have been observed by means of a questionnaire. The 
variable "final score" is assigned by the final committee taking into account the grad- 

Table 1: Names and category descriptions of variables 

Categories 

Variables 1 2 3 4 5 6 

Final score Low (L) Medium- Medium-high High (H) 
Low (ML) (MH) 

Sex Male Female 
Origin Naples County Other counties 
Age - 25 26-30 31-35 + 36 
Diploma Classical Scientific Technical Magistral 
Study p lan  Official Managerial Economics Quantitative 
Time to 

graduate 4 years 5-6 years +7 years 
Thesis subject Economy Law Quantitative History 

Profes. 
Public 

Management 

Profes. 
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Figure 1: Classification tree where nodes are numbered (circles are for nonterminal 
nodes and boxes are for terminal nodes). Below a nonlerminal node the best predictor 
(in the box) with the partition into strong left, weak, and strong right categories (arcs) 
is indicated. Below a terminal node the assigned response category label is indicated. 
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uates' average examination scores and the final dissertation. The variable "origin" 
refers to the place of living, which plays an important role in terms of participation in 
university activities. A student applying to a university chooses a "study plan," which 
can be either the official plan suggested by the faculty or any specialized plan such 
as managerial, economics, quantitative, public, or professional. 

We are interested in identifying the variables that best predict the final score of 
each graduate. Figure 1 shows the final ternary tree, where as a stopping rule we have 
set a minimum node size of about 10% of the cases in the sample. Table 2 describes 
the partitioning into three subgroups of the categories of the best predictor with the 
percentage of explained inertia in terms of the index ~" retained by the first principal 
axis. Table 3 describes at each node the distribution of proportions of the response 
categories: in particular, the first column gives the node number as from Figure 1, the 

Table 2: Category partition of the best predictor at each nonterminal node of the tree 
in Figure I 

Best Explained Strong left Weak Strong right 
Node predictor ~-(%) categories categories categories 

1 Age 94 -25 years 26-30 years 

3 Diploma 89 Classical 

4 Study plan 87 

5 Origin 77 

6 Thesis subject 54 

11 Origin 
14 Study plan 66 

19 Origin 77 

21 Thesis subject 99 

23 Study plan 100 
24 Time to graduate 75 
28 Sex 100 
30 Thesis subject 100 

official 
Quantitative 
Public 

Quantitative 

Official 

Law 

4 years 

Economy 

Scientific 
Technical 
Magistral 
Economics 
Professional 

Naples 
County 
Economy 
Law 
Management 
Naples 
Economics 
Quantitative 

Naples 
County 
Economy 
Management 
Economics 
5-6 years 
Male 
Management 

31-35 years 
+ 36 years 
Professional 

Managerial 

Other counties 

History 

County 
Managerial 
Public 
Professional 
Other counties 

Quantitative 
+ 7 years 
Female 



Table 3: Response variable dis t r ibut ion of propor t ions  at each non te rmina l  node  of 
the tree in Figure I 

% of cases in responses 

% of 

Node cases L ML MH H 

1 100.0 18.9 27.3 28.3 25.5 
3 74.1 14.6 25.0 31.6 28.8 
4 16.4 44.7 40.4 14.9 0.0 
5 14.7 11.9 4.8 7.1 52.4 
6 52.1 14.8 27.5 32.9 24.8 

11 10.8 9.7 3.2 22.6 64.5 
14 42.7 14.8 29.5 29.5 26.2 
19 39.2 13.4 30.4 28.5 27.7 
21 29.0 8.4 27.7 33.7 30.2 
23 10.5 3.3 40.0 40.0 16.7 
24 18.5 11.3 20.8 30.2 37.7 
28 15.0 9.3 20.9 34.9 34.9 
30 11.9 5.9 23.5 41.2 29.4 

Table 4: Response variable dis tr ibut ion of propor t ions  at each terminal  node  wi th  the 
ass igned class label for the tree in Figure I 

% of % of cases in responses Class 

Node cases L ML MH H label 

2 9.4 7.4 22.2 25.9 44.5 H 
7 7.3 19.1 47.6 23.8 9.5 ML 
8 5.9 11.8 47.0 41.2 0.0 ML 
9 8.4 58.3 41.7 0.0 0.0 L 

10 2.1 83.3 16.7 0.0 0.0 L 
12 3.9 18.2 9.1 54.5 18.2 MH 
13 2.1 0.0 16.7 33.3 50.0 H 
15 7.3 19.1 19.1 52.3 9.5 MH 
16 8.0 0.0 0.0 26.1 73.9 H 
17 2.8 50.0 12.5 12.5 25.0 L 
18 0.7 0.0 50.0 0.0 50.0 ML 
20 2.8 37.5 12.5 50.0 0.0 NH 
22 10.1 27.6 37.9 13.8 20.7 ML 
25 8.7 4.0 36.0 48.0 12.0 MH 
26 1.8 0.0 60.0 0.0 40.0 ML 
27 1.8 0.0 20.0 0.0 80.0 H 
29 1.8 40.0 20.0 20.0 20.0 L 
31 3.2 22.2 11.1 11.1 55.6 H 
32 3.9 9.0 36.4 27.3 27.3 ML 
33 8.0 4.4 17.4 47.8 30.4 MH 
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second column gives the percentage of sample cases that fall in each node, and the 
remaining columns row by row give the distribution of proportions for the response 
variable at each node of the tree. Table 4 shows the terminal node information: 
for each terminal node we give the percentage of sample cases, the distribution of 
proportions of the response variable, and the assigned response category. 

The first table selected according the proposed methodology cross-classifies the 
response variable final score with the predictor age. In Figure 2 we present the two- 
dimensional map of NSCA applied to this table. The first principal axis explains 
a very high percentage of the ~- index (94%). We notice an opposition between 
older and younger graduates corresponding to an opposition between low and high 
scores, respectively. The age category 26-30 years is a weak category, close to the 
origin, generating a "middle" subgroup of 74.1% of the cases. The strong category, 
- 2 5  years, splits off a subgroup of 9.4% of the cases, which form a terminal node 
predicting a high score. The other strong categories, 31-35 and + 36 years, split off 
16.4% of the cases, associated with low scores, but will be split still further. Usually, 
the negative correlation between age and study performance is due to the fact that 

0 . 5 -  

m 

-0.5 - 

-1 

31-35 26-30 
@ 

L +36 +@ -25 
O @ ML @ 

O 

MH 
O 

H 
O 

I ' I ' E ' 

-1 -0.5 0 0.5 1 

F i g u r e  2: Nonsymmetrical correspondence analysis of cross-classification of age ver- 
sus final score at node 1. 
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Figure 3: Nonsymmetrical correspondence analysis of cross-classification of diploma 
versus final score at node 3. 

most of the old graduates are busy with working activity and aim to take the degree 
with any final score value. 

The middle subgroup at node 3 is split by the predictor "diploma" with a distinc- 
tion between classical, associated with high final scores, and professional, associated 
with low and middle-low scores. Figure 3 shows the NSCA map at node 3. 

Node 4 is split by the variable "study plan" and Figure 4 shows the correspond- 
ing map. We notice in particular the opposition between official, quantitative, and 
public, associated with medium-high final scores, and managerial, associated with 
low scores. Notice that in node 4 there are no graduates with high final scores. 

For brevity, we do not illustrate the factorial representations of the remaining 
nodes and we refer to Table 2 for further interpretation of the partitioning sequence 
in Figure 1. 

In Table 5 we show the misclassification matrix when we use the final tree as a 
classification rule: each proportion in the diagonal of the table gives the probability 
of correct classification of each response category. 
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Figure 4: Nonsymmetrical correspondence analysis of cross-classification of study 
plan versus final score at node 4. 

Table 5: Misclassification matrix for the response variable using the classification rule 
of Figure 1 

Predicted class 

True class L ML MH H 

L 46% 27% 20% 7% 
ML 17% 47% 24% 12% 
MH 2% 23% 55% 20% 
H 4% 19% 19% 58% 
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Conclusion 

This chapter provides a methodology for growing ternary trees via an exploratory 
multidimensional method, NSCA. The proposed approach can be particularly conve- 
nient when the sample is very large and many predictors are considered. We organize 
the analysis as a sequence of NSCAs that leads to the construction of a decision 
tree to classify new cases with unknown responses as well as to explore the data set 
by constructing maps at each node of the classification tree where splitting occurs. 
When the sample is very large, we can consider splitting nodes according to the cat- 
egory combinations of a pair of variables, in the style of multiple NSCA (see Balbi, 
Chapter 21, and Lauro and Siciliano, 1989). 
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PART 1II 

Multidimensional Scaling 
and Biplot 

Although they originated as specific methods and algorithms, multidimensional scal- 
ing (MDS) and the biplot are now generic terms for a wide variety of techniques 
for data visualization. In general, data suitable for MDS are in the form of a square 
symmetric matrix and are measures of similarity or dissimilarity between pairs of 
objects, for example, a correlation matrix between variables, paired comparison data, 
or the number of co-occurrences of responses in a multiple-choice test. MDS assumes 
that these data are related to distances between objects in pairs: if objects A and B 
are observed, or measured, to be more similar or "closer" to each other than objects 
C and D, for example, then A and B should be displayed closer in the map than C 
and D. The term MDS has its origin in the so-called nonmetric multidimensional 
scaling of Shepard and Kruskal in the early 1960s, in which a map of a set of objects 
is achieved by approximating the rank ordering of observed distances between the 
objects rather than the distances themselves. MDS includes metric scaling, a much 
older idea, in which a stronger condition is imposed on the map that the distances 
themselves be approximated, not just their ordering. Whichever variation of MDS is 
performed, the resulting map is interpreted in terms of the distances between points, 
which is the most intuitive way of interpreting a display of this kind. 

The term "biplot" was proposed by Gabriel in 1971 to describe methods that 
treat a rectangular matrix of metric data as if it contained scalar products between the 
row and column objects. The aim is to represent each row and column by a point so 
that the displayed row-column scalar products approximate the data values. Usually 
the data are centered and normalized before being "biplotted." The interpretation of 
the biplot in terms of scalar products might not seem straightforward at first, but 
becomes clearer when one thinks of a scalar product between points R and C as the 
projection of R onto the direction defined by C, multiplied by the length of C. Thus 
the projections of all the rows R onto the direction vector defined by C will give the 
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set of approximations for the (transformed) data of column C. When the columns 
are variables and the rows cases, then the column points define directions that can be 
thought of as axes, which can be calibrated in units of the variable. The row points 
can be projected onto this "biplot axis" to read off the approximate values directly. 

The following six chapters are a varied collection that take these ideas into 
the realm of categorical data analysis. Chapter 23, by Kimball Romney, Carmella 
Moore, and Timothy Brazill, first illustrates the use of CA as a metric MDS method 
for general similarity data, not necessarily frequencies. Their reason for using CA 
rather than MDS itself is that similarity matrices obtained from different individuals 
can be stacked and analyzed jointly with CA, rather than needing to use a different 
and more time-consuming methodology such as individual differences scaling or 
generalized Procrustes analysis. The empirical results presented here open up a new 
area of application of CA and demonstrate again that through appropriate coding CA 
can bring out the structure of interest in the data. 

In Chapter 24, Ingwer Borg and Patrick Groenen explain a way of interpret- 
ing an MDS solution, called facet theory, devised by Louis Guttman. Rather than 
the dimensional interpretation of the map, this approach concentrates on regions of 
the MDS solution called "facets." Facets are used to confront hypotheses from social 
science theory about the similarities between the variables of interest with the MDS 
display. The authors use an example of eight intelligence test items: according to 
psychological theories, they expect a subdivision along "language" (numeric versus 
geometric) as well as along "requirement" (application versus inference). This theory 
implies a certain pattern of points in the MDS display, in the form of patterns of con- 
centric circular bands. This is a more structured approach to the use and interpretation 
of MDS in which the geometry actually reflects the underlying substantive theory. 

Chapter 25, by Caries Cuadras and Josep Fortiana, deals with a particular situ- 
ation in which one has two sets of distance matrices for the same set of objects, for 
example, distances among a set of researchers in terms of their areas of interest as 
well as information related to their coauthorship of papers. Clearly, one can perform 
separate MDS analyses on these two sources of information and then compare them 
qualitatively, but the authors strive to achieve a common analysis in which these 
sources of information are related. The advantage of their approach is that two quite 
different types of data can be related in one analysis, via the distance matrices each 
one generates. 

Chapter 26 contains another application to electoral data, the third in this book. 
Magda Vuylsteke-Wauters, Jaak Billiet, Hans de Witte, and Frans Symons look at 
the voting and political attitudes in the Flemish region of Belgium. Their data consist 
of several attitude scales for each respondent as well as a discrete observation in 
the form of their voting behavior in the 1991 elections. The authors show how the 
attitudes and voting preferences can be related and mapped using what is called a 
canonical correlation biplot, where the political parties are represented as points and 
the attitude scales as vectors. The result is a compact expression of the data where it 
is possible to distinguish the voter's attitudes that separate the political parties. 
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In Chapter 27, Ruben Gabriel, Purificaci6n Galindo, and Jos6 Luis Vicente- 
Villardrn describe the use of the biplot to diagnose various forms of independence in 
contingency tables. For rectangular matrices, certain simple models result in certain 
patterns of points in the biplot map; for example, rows and columns in two perpendic- 
ular straight lines diagnose an additive model for the table. Applied to the logarithms 
of the frequencies in a two-way contingency tables, an additive model is equivalent 
to independence between the rows and columns. Moving to three-way contingency 
tables implies various types of independence, again diagnosed by straight line pat- 
terns. An important application is to diagnose independence in part of the three-way 
table by identifying subsets of points that fall on straight lines. 

Chapter 28, by John Gower and Simon Harding, treats the display of multivariate 
categorical data. In multiple correspondence analysis (MCA) all the cases and all the 
categories are represented in a joint display. As described in Chapter 17, in asymmetric 
maps we can look at distances (or scalar products) between row and column points 
to predict the categories to which each case belongs. This is not the only way to 
obtain a joint display. Gower and Harding's approach uses the extended matching 
coefficient to measure distance between cases, rather than the chi-squared distance. 
Instead of looking at row-column distances, they partition the full space of the points 
into regions according to the categories of each variable. By construction, each region 
predicts the corresponding category perfectly. When these prediction regions intersect 
with our low-dimensional display of the cases, then we have areas of the map where 
we can predict the categories accurately. 
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Chapter 23 

Correspondence Analysis as 
a Multidimensional Scaling 
Technique for Nonfrequency 
Similarity Matrices 

A. Kimball Romney, Carmella C. Moore, 
and Timothy J. Brazill 

1 Introduct ion  

This chapter is an empirical investigation of the validity of two somewhat novel gen- 
eralizations of correspondence analysis (CA). The chapter uses results from empirical 
data sets to explore the following issues: (1), the appropriateness of using CA as a 
general multidimensional scaling (MDS) technique for nonfrequency similarity data; 
and (2), the appropriateness of using CA to analyze stacked similarity matrices to 
obtain a common spatial representation of many individual matrices simultaneously. 

The first question we address is the appropriateness of using CA in a purely 
descriptive manner to obtain spatial representations of the interrelations among points 
from similarity data regardless of the level of measurement. For example, nonmetric 
MDS has been widely used since the 1960s to obtain Euclidean representations of 
square symmetric data matrices. If it could be shown that CA could be generalized 
for use in such contexts, it would make possible many applications that cannot be 
easily accomplished with nonmetric MDS, for example, the analysis of asymmetric 
similarity data or the comparison of multiple configurations by analyzing stacked 
similarity matrices (both symmetric and asymmetric). 
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The second question we address is the application of CA to stacked similarity 
matrices, where each matrix in the stack consists of a square symmetric similarity ma- 
trix obtained from a single individual. The aim would be to produce representations 
of several individuals (or cases) in the same space for comparisons among individuals 
and subgroupings of individuals. Current methods for comparisons among individual 
configurations [that do not, like INDSCAL (e.g., Carroll and Chang, 1970), impose 
a common group configuration] require a separate analysis of each case followed by 
some sort of rotation into a common orientation. The current method of choice (see, 
e.g., Borg, 1977; Borg and Lingoes, 1987) for such analysis of multiple representa- 
tions of fundamentally similar configurations is provided by generalized Procrustes 
analysis (Gower, 1975). We will demonstrate that CA of stacked similarity matrices 
provides a much simplified approach to such comparisons and gives representa- 
tions virtually identical to those obtained using an implementation of generalized 
Procrustes analysis called PINDIS (Borg, 1977; Lingoes, 1987). 

2 Historical Background of CA 
and Nonmetric MDS 

CA was originally derived for the analysis of contingency tables containing cross- 
tabulated frequency data. For example, in one of the earliest papers on CA, Fisher 
(1940) used a contingency table in which individuals were cross-classified on two 
categories, eye color and hair color, to illustrate the scaling of categorical variables. 
In that paper CA was treated in the context of discriminant analysis. In another 
early example, Guttman (1941) derived the method from the perspective of the 
indicator matrix form. The full application of many of the concepts in CA, such as 
the partitioning of chi-square, is based on underlying statistical theory and valid only 
when based on random sampling from multinomial populations. Detailed historical 
summaries of CA may be found in Nishisato (1980), Greenacre (1984), and Girl 
(1990). An elementary introduction to CA may be found in Weller and Romney 
(1990). 

Nonmetric MDS techniques developed in a very different methodological envi- 
ronment from CA. In the 1960s nonmetric MDS techniques began to replace metric 
MDS (e.g., Torgerson, 1958)and became available on mainframe computers. These 
methods were immediately put to use in a descriptive manner to represent in Eu- 
clidean (or other Minkowski) space the similarity (or distance) among a wide variety 
of observed "proximity" measures among a set of objects. The key to the early work 
in nonmetric MDS was to compute a configuration of points in which the interpoint 
distances "closely" approximated the experimentally observed ranked "proximities." 
The breakthrough consisted of optimizing a monotonic goodness-of-fit function, 
called "stress," which measured the discrepancy between input "proximities" and 
displayed "distances." The early papers by Kruskal (1964a, 1964b) and Shepard 
(1962a, 1962b) describe this work in detail, and a broader prospective may be ob- 
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tained from Shiffman et al. (1981), Young and Hamer (1987), Borg and Lingoes 
(1987), Shepard et al. (1972), and Romney et al. (1972). 

In the nonmetric MDS literature, there are examples of a large variety of kinds of 
"proximity" data. Examples include confusion data on the Morse code, airline miles 
among cities, and ratings of similarities among nations. Other than the assumption 
that the proximities represent some sort of similarity or distance among the points, 
there were no apparent limits on what sort of data might be used. Almost no attention 
was paid to the level or scale of measurement of the input data such as nominal 
(categorical), ordinal, interval, or ratio as outlined by Stevens (1968). In fact, the 
only input to a nonmetric MDS program was the rank order of the experimentally ob- 
tained pairwise proximities; thus the output was invariant under arbitrary monotonic 
transformation of the data. 

In the beginning period of nonmetric MDS, there was genuine skepticism about 
whether it "really worked." There were extensive tests against known patterns, usually 
Euclidean (see Borg and Lingoes 1987; p. 10, for example), and standard presenta- 
tions of the so-called Shepard diagram consisting of a scatterplot between the fitted 
distances and the input proximities. Simple examples of this strategy may be found 
in Kruskal and Wish (1978). Other criteria were used, such as interpretability of the 
dimensions or the overall configuration and replicability. 

In the spirit of the earlier justification of nonmetric MDS, we present in this 
chapter simple empirical demonstrations of how CA can be used to obtain descriptive 
MDS representations of similarity data. In the first example we check the validity 
of the results by comparison with the known "correct" answer. We also demonstrate 
that CA applied to stacked similarity matrices provides virtually the same descriptive 
results as those obtained by separate analysis of each case followed by generalized 
Procrustes analysis. The chapter does not provide mathematical theorems, although 
we refer to sources that contain them when relevant. 

3 CA as Descript ive  M D S  

The model for CA that we consider here is the simple case for contingency tables, 
where an I x J contingency table N is approximated by weighted least-squares by a 
matrix of lower dimensionality, using the low-rank approximation properties of the 
singular value decomposition (e.g., see Girl, 1990, p. 276 ft.). The results of CA are 
the matrices X and Y of standard coordinates for the rows and columns, from which 
maps are constructed by scaling one or both of these coordinate matrices by some 
function of the singular values. 

To simplify the discussion in the remainder of the chapter we define "similarity" 
data to include both distance (or dissimilarities) and similarities. These empirical 
measures were referred to as proximities in the nonmetric MDS literature. It is un- 
derstood that similarities may be derived from distances by subtracting each distance 
from some constant equal to or larger than the largest distance in the matrix (Girl, 
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1990, p. 281). Weller and Romney (1990, pp. 70-76) discuss some precautions that 
apply when using CA on nonfrequency data. 

It might be noted that the attempt to recover distances among cities was used early 
in the development of nonmetric MDS to demonstrate that the interpoint rankings of 
similarities were sufficient to recover the actual Euclidean distances in a satisfactory 
way, (e.g., Kruskal and Wish, 1978; Borg and Lingoes, 1987). Girl (1990, p. 280) 
used the analysis of a matrix of similarities derived from physical distances among 
23 cities in The Netherlands to illustrate that the application of CA "is not restricted 
to frequency data and to show its potential as an MDS technique." We depend heavily 
upon Girl's arguments and refer the reader to their mathematical and statistical defense 
for the use of CA for the analysis of similarity matrices. 

Despite these examples, however, there has been some concern that CA does not 
return actual Euclidean distances when they are input to the analysis. Researchers 
would usually choose metric scaling (Gower, 1966), which does recover Euclidean 
distances exactly. This shortcoming of CA has been addressed in a paper by Carroll 
et al. (1997) in which it is proved that a special variant of CA recovers Euclidean 
distances and in fact yields solutions equivalent up to a similarity transformation to 
those of classical MDS. 

We will not repeat the proof but will review the procedure of Carroll et al. (1997). 
They begin with a matrix D = {dij}, where dij are the distances among points in 
a known Euclidean space of r dimensions. The matrix S = {sij} is then calculated, 
where 

S = k - d  2, i , j =  1,2 . . . . .  n (1) 

and k is a number several hundred times greater than the maximum d 2. The matrix 
S is then analyzed with standard CA. At the singular value decomposition step the 
product, UAU T is obtained. Note that the input matrix is symmetric so that U = V 
and is a diagonal matrix of eigenvalues. 

Then the vector U is rescaled as follows: 

U s.. x = 

which is the usual transformation of standard to principal coordinates. 
A final rescaling of the principal coordinates, X, is then performed: 

Distances recovered in the CA solution are thus 

d i  j * 2 • = (Xir  - -  X j r  ) (4) 

As k approaches infinity the distances di~ tend to the true original distances dij. R 
is the number of positive, nonzero, nontrivial eigenvalues and corresponds to the 
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number of dimensions of the known original Euclidean distances, again depending 
on an appropriate choice of k. 

We want to emphasize that when we talk about using CA as a general tool for 
MDS we stress that we do not carry over any of the theoretical or inferential aspects 
of the CA model based on frequency data. Whereas nonmetric MDS optimizes a 
monotonic function, the procedures in CA optimize a bilinear function. The major 
question is whether a bilinear function is robust with respect to a number of possible 
distortions almost always encountered with empirical similarity data. 

The descriptive use of traditional concepts usually used in a more formal way is 
not limited to our extension of these concepts in applying CA to nonfrequency data. 
For example, in discussing the generalized Procrustes program PINDIS, Borg (1977, 
p. 620) comments: 

The reader might be somewhat surprised that we conceived of a configu- 
ration in terms of total variance and variance components, i.e., explained, 
common, unexplained, etc., variance. Of course, this is a purely formal- 
istic use of these terms: algebraically, the coordinate matrices (. . .)  are 
indistinguishable from data matrices associated with some random vec- 
tor; furthermore, since least-squares minimization is the standard proce- 
dure in estimating statistical parametersmas it is in the fitting problems 
in PINDISmwe use this familiar terminology in an entirely descriptive 
way. 

We should also note that we are not the first to use CA in the context of descriptive 
MDS applications. For example, both Meulman (1986) and Meyer (1992) consid- 
ered similarities between CA and various multivariate data analysis techniques by 
presenting these techniques within a general MDS framework. In the next section 
we show how CA can be used descriptively on various forms of similarity matrices 
derived from interpoint airline distances among selected U.S. cities. 

4 Correspondence Analysis and 
Non-Linear Transformations 

One of the concerns about CA as a general method for the analysis of similarity data is 
how robust the method is with respect to reasonably severe nonlinear transformations 
of the raw data. In this section we compare the results of the effects of a series of 
nonlinear transformations on data from Kruskal and Wish (1978, p. 8), who provide 
a matrix of airline distances among 10 U.S. cities. We have arbitrarily constructed 
six different 10 x 10 similarity matrices from the data by the application of distinct 
transformations as described in the following. We then analyze each of these six 
matrices separately with CA. After presenting the results, we stack the six matrices 
into a single 60 × 10 matrix and apply CA to the stacked data. This provides us with 
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a comparison, to a known standard, of each of the six separate analyses as well as 
with results from the joint analyses using the stacked representation. 

The values for each cell value, S i j  , for the six similarity matrices were constructed 
as follows: (1) A standard similarity transformation was applied by subtracting the 
airline distances from the largest distance in the matrix plus one. (2) A squared 
transformation was produced by subtracting the squared airline distance from 107 
and then dividing by 104. This emulates the procedure of Carroll et al. (1997) for 
obtaining Euclidean distances where k is given the value of 107. The division by 104 
is simply to reduce the values for numerical comparisonmresults from descriptive 
CA are invariant under multiplication of the raw data by a constant. (3) A natural log 
transformation was computed by subtracting the natural log of the airline distances 
from the largest value in the log matrix. (4) A square root transformation was com- 
puted by subtracting the square root of the airline distances from the largest value 
in the square root matrix. (5) A rank order transformation was calculated from all 
off-diagonal values of the airline distances, where the highest rank was assigned to 
the two cities closest (most similar) to each other and entered on the diagonal. (6) A 
Lickert-type rating on a scale of one to nine was constructed, with the value of nine 
being assigned to cities closest to each other and entered on the diagonal. 

Note that when CA is used on square symmetric similarity matrices, where a 
single object is represented by both a row and column score, we enter on the diagonal 
a number at least as large as the largest similarity score in any off-diagonal cell. From 
a commonsense point of view, this simply represents the fact that an object is at least 
as similar to itself as to any other object. 

The six transformations just outlined may be viewed as a kind of test of how 
robust CA is over a wide variety of monotonic transformations. From this perspective 
any differences among the results are seen as "accidental" or error variance in the 
sense that we would hope that the method is robust to such perturbations. Note that 
there is a wide disparity in both the absolute magnitude and the variability of the 
individually derived matrices. We first present a summary of the results obtained 
by separately analyzing each of the data sets produced by the various transforma- 
tions. 

The pertinent statistics for each individual data set and the selected results from 
individual CA of each set are shown in Table 1 (information in the table on results for 
stacked matrices will be discussed later). The statistics on the raw data sets were com- 
puted on the values produced by the transformations described earlier and are based 
on the off-diagonal lower half-matrix. The mean, standard deviation, and coefficient 
of variation were computed for each set. The table also includes information on the 
first two nontrivial singular values and the inertia associated with the first two non- 
trivial singular values, the squared correlation between the reconstructed similarity 
values from the two-dimensional CA solution with (1) the original airline distances 
between every pair of cities and (2) the appropriate transformed matrix of similarities 
described earlier. When using CA for descriptive MDS we suggest that this last figure 
may be taken as a least-squares linear approximation of goodness-of-fit that plays the 
role of "stress" in nonmetric MDS goodness-of-fit measures. 
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Table 1: Basic statistics on individual analysis of each of the six transformations 

Transformation 

Statistic Simil. Square Log Root Rank Rating 

Mean 1317.87 750.28 6.13 16.90 45.50 5.00 
Standard deviation 707.16 218.30 0.59 9.76 26.27 2.61 
Coefficient of variation 0.54 0.29 0.10 0.58 0.58 0.52 

1st singular value 0.51 0.26 0.10 0.55 0.53 0.47 
2nd singular value 0.12 0.05 0.04 0.17 0.14 0.12 
% cumulative inertia, 1-d 0.92 0.97 0.69 0.84 0.89 0.90 
% cumulative inertia, 2-d 0.98 0.99 0.82 0.92 0.96 0.96 

r 2 separate a 0.99 0.96 0.89 0.97 0.98 0.97 
r 2 stacked b 0.99 0.95 0.69 0.97 0.99 0.99 

r 2 separate c 0.99 1.00 0.94 0.98 0.98 0.98 
r 2 stacked d 0.99 0.99 0.57 0.97 0.97 0.95 

aSquared correlation coefficient between original airline distances and two-dimensional recon- 
structed similarities from correspondence analysis for the six separate analyses. 

bSquared correlation coefficient between original airline distances and two-dimensional recon- 
structed similarities from correspondence analysis for the stacked analysis. 

cSquared correlation coefficient between transformed input data matrices and two-dimensional 
reconstructed similarities from correspondence analysis for the six separate analyses. 

d Squared correlation coefficient between transformed input data matrices and two-dimensional 
reconstructed similarities from correspondence analysis for the stacked analysis. 

The following conclusions and observations may be drawn from the results in 
Table 1. The extent to which the reconstructed values from CA correlate with the 
input data reveals that for each of the six transformations the recovery is remarkably 
good. The worst squared correlation, 0.94, for the natural log data is still quite high. 

One interesting observation is that the singular values vary widely. The impli- 
cation of this is that they are not of much use in diagnosing a good solution from 
a bad solution as they depend on "accidental" features of the input data. The cu- 
mulative percentages of inertia are quite good in all cases, although they are lowest 
for the natural log data. We conclude from these results that in this example CA 
gives a very accurate representation of the data for the original cities across the six 
transformations. 

Before presenting the results for the comparison among the stacked data sets, it 
will be a useful check on stacking to compare the summary column scores with those 
obtained from an aggregated summary of the data. Historically, nonmetric MDS was 
normally performed on aggregate data. Individual data were summed across subjects, 
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resulting in a single square symmetric matrix for analysis. When analyzing a matrix 
obtained by stacking several replications, or unknown transformations, of what is 
assumed to be similar underlying data, we would expect to find that the column 
scores from the stacked matrix are a very close approximation of the scores resulting 
from a single square aggregated data matrix. Figure 1 shows the comparison; the 
circles represent the results from the aggregated data and the triangles represent 
the results from the column scores of the stacked data. This close similarity simply 
confirms that the two ways of summarizing a single aggregate representation are 
giving similar results. 

We will now illustrate the use of CA on the six transformed and stacked simi- 
larity matrices. When CA is applied to this 60 x 10 matrix, the first 10 row scores 
represent the configuration given by the first (similarity) transformation, the second 
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Figure  1: Comparison, based on the cities data, between (1) the overall results from 
scaling a single aggregated matrix obtained by adding six matrices and (2) the column 
scores from the stacked correspondence analysis of the same six matrices (the filled 
triangles represent the stacked correspondence analysis). 
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Figure 2: Plot of the unstandardized row scores for each of the cities from the stacked 
correspondence analysis with each of the six transformed data sets identified by 
number and with a .95 confidence ellipse of the mean of each city. 

10 row scores represent the configuration given by the second (squared) transforma- 
tion, and so on through the six transformations. We can then compare the resulting 
representation with those from the six individual analyses. 

Figure 2 shows the results from the stacked procedure where the six configura- 
tions for the cities are represented by a number for each transformation as defined 
earlier. In this and succeeding plots the ellipses are .95 Gaussian bivariate confidence 
regions on the centroid of the points (cities in this case). According to Wilkinson 
(1989, p. 214), each "ellipse is centered on the sample means of the X and Y vari- 
ables. Its major axes are determined by the unbiased sample standard deviations of X 
and Y, and its orientation is determined by the sample covariance between X and Y". 
In Figure 2 the ellipses are elongated toward the midpoint of the picture. This is be- 
cause the picture for the natural log transformation (points labeled "3"), for example, 
forms a dramatically "smaller" representation than the other points. The representa- 
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tion for the squared transformation (points labeled "2") forms an intermediate-sized 
representation. 

This difference in size produced by different transformations has nothing to do 
with the original magnitude of the values in the respective matrices. For example, the 
values in the squared transformation are the next to largest of the six transformations, 
and the logged values are near the smallest. The difference is related to the value of 
the coefficient of variability of the matrices. The larger the coefficient of variability 
of each matrix, the larger the overall configuration of the joint representation. This 
is not a special feature of stacked matrices but is a general characteristic of CA. In 
general, when examining the points in a cloud of row scores, for example, the points 
most distant from the centroid are those with the highest coefficients of variation. 
Table 1 shows that the natural log data has a coefficient of variation about one fifth, 
and the squared data about one half, of the size of the remaining four data sets. 

We view the differences in size among the representations of the different trans- 
formations as artifacts of the transformations. These differences are without sub- 
stantive interpretation beyond the difference in the coefficient of variation. In order 
to compare the configurations we need to correct for these sorts of differences. We 
recognize that there is no standard practice with respect to this situation. One solution 
that we have used is to standardize the xi scores for each subject to zero mean and 
variance equal to the singular values or the square root of the singular values. These 
standardization procedures worked very well in studies by Kumbasar et. al. (1994) 
and Romney et al. (1996). Note that programs such as PINDIS (Borg, 1977) do such 
rescaling as a standard routine inside the program. 

When applied to the cities data, such a standardization produces the configuration 
shown in Figure 3. In Figure 3 the points representing the six transformations are 
clustered into tight sets around the location for each city. We have plotted the 95% 
confidence ellipses about the means of the clouds for the cities. The size of each 
ellipse gives an idea of the "resolving power" of the method given the various sorts 
of transformations that enter into the calculations. In practice, this would be the 
resolving power of the measurements based on some particular sample or subsample 
of subjects. 

We can compare the results of the stacking procedure with the individual anal- 
yses presented earlier by reference to Table 1. The squared correlations between 
reconstructed distances based on the stacked results are compared with the original 
distances as well as each of the six transformed similarity matrices. The figures show 
that results are comparable to those of the individual analysis. The fact that in most 
cases the results are somewhat attenuated compared with the individual analyses 
demonstrates that the fit is not an artifact of stacking. 

Correspondence Analysis of 
Longitudinal Ranking Data 

In this section we present the results of an analysis of the classic Newcomb (1956, 
1961) fraternity data. The data were collected in 1955-56 for 17 previously unac- 
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Figure 3: Plot of the standardized row scores for each of the cities from the stacked 
correspondence analysis with a .95 confidence ellipse of the mean of each city. 

quainted students. The male subjects were provided room and board in a fraternity 
house in return for serving as subjects in an experiment on friendship. The data we 
report here were collected once a week for 15 weeks and consist of Newcomb's rank- 
ings (originally collected as ratings on a 100-point scale) of how well each subject 
liked each other subject. Each of the 15 weekly 17 x 17 matrices contains a row 
of rankings supplied by each subject indicating how well he likes each of the other 
subjects. Sample results of the study were published by Newcomb (1956, 1961), and 
the actual data are published by Nordlie (1958). The data have been reanalyzed many 
times, most recently by Nakao and Romney (1993). 

Nakao and Romney's research included a Procrustes analysis of the data for the 
15 weeks. They performed a nonmetric MDS on the data from each week based on a 
subject-by-subject correlation matrix. They then used a simple Procrustes procedure 
to rotate each week into the same orientation as the 14th week. The 14th week 
was selected as the target week because it was deemed the most representative 
configuration. We note that the new analysis of the Newcomb data, using CA of the 
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15 similarity matrices, presented in the following, is consistent with the nonmetric 
MDS results of Nakao and Romney (1993) in all aspects. 

As with the cities data, we carry out an individual analysis of each week as well as 
a single analysis of all 15 weeks treated simultaneously with the stacking procedure. 
We then compare these results with those of a PINDIS analysis in which results from 
individual correspondence analyses of each week are used as input. These procedures 
will facilitate a controlled comparison of the stacking procedure with the generalized 
Procrustes analysis. 

Our first step in the analysis is to transform the original data into similarity form. 
This is done by reversing the ranking and placing values equal to one plus the largest 
rank on the diagonal (Weller and Romney, 1990, p. 71). This means that the "closest" 
friend gets a rank of 16 (rather than 1) and 17 is entered on each diagonal. The overall 
results of the stacked data are given in Figure 4. 
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Figure 4: Plot of the 17 Newcomb subjects over the 15 weeks produced with row 
scores from stacked correspondence analysis and with a .95 confidence ellipse around 
the mean location of each of the subjects. 
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Figure 4 shows the scaled data with the 15 weekly positions of each subject 
summarized as a single .95 confidence ellipse of the mean position of that subject. 
The ellipses for the subjects with less well-defined social positions (i.e., subjects 
whose positions are more variable from week to week) are larger and represent a 
genuine phenomenon of the data. They tend to be social outliers. In the Nakao and 
Romney (1993) study, subjects 3, 10, 14, 15, and 16 were identified as outliers. It can 
be seen that these are the subjects with the largest ellipses. In addition to outliers, 
the earlier study distinguished two groups, namely numbers 1, 5, 6, 8, and 13 versus 
numbers 2, 4, 7, 9, 11, 12, and 17 (Nakao and Romney, 1993, p. 119). It can be seen 
that these subgroupings are fairly well defined in Figure 4. 

In the PINDIS analysis we used coordinates from CA of each individual week 
done separately for each of the 15 weeks. Figure 5 shows the picture produced by the 
generalized Procrustes procedure for comparison with Figure 4 based on CA of the 
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F i g u r e  5: Plot corresponding to Figure 4 except that scores are obtained with gener- 
alized Procrustes analysis (implemented with PINDIS) using 15 separate analyses of 
the week-by-week data. 
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stacked data. One can see that the pattern is very similar to that observed in Figure 4. 
The resolution is not quite as sharp as in Figure 4, but clearly virtually identical (with 
slightly different orientations) configurations are visible. 

A comparison of the "centroid" (Borg, 1977) and "consensus" (Gower, 1975) 
summary configuration from generalized Procrustes analysis with the column scores 
summary from the stacked CA illustrates just how similar the two procedures are. 
Figure 6 shows the two configurations with the results from the stacked CA shown 
with solid triangles and the results from the generalized Procrustes analysis shown 
with open circles. The conclusions drawn from the two figures would have to be 
identical; there are no differences of any practical import. 

The question arises of whether adding a large number to the diagonal of each 
matrix biases the results of the stacking procedure. One would expect on an a priori 
basis that large numbers on the diagonal would, by themselves, produce clustering 
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centroid (or consensus) configuration from PINDIS (open circles). 
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among the items. In order to study this effect, we performed some simulations using 
similarity matrices of random data with a large constant on the diagonal. Indeed, large 
numbers on the diagonal do produce a measurable clustering in otherwise random 
data. The possible biasing effects deserve further study. The practical question is 
whether, in the case of empirical data where there is a strong signal, such as the 
Newcomb data, the stacking procedure biases the results when used to compare 
various individuals or subgroups within the stacked data. 

The most impressive evidence that the stacking procedure does not bias the data 
comes in a week-by-week comparison of the pictures produced by the stacked data 
compared with individual analysis of the week-by-week data. There is not sufficient 
space to show the stacked and unstacked results for each week here. However, a 
very careful examination of the week-to-week configurations shows virtually no 
differences in any of the comparisons. In each case the patterns are very similar and 
exhibit differences on the order of magnitude of the different transformations of the 
city data. In other words, the differences are in the range of individual measurement 
and sampling variability. We present a comparison figure for week 1, one of the most 
variable weeks. Figure 7 compares the results from the CA of week 1 only with those 
for the same week from the stacked data. 

In the figure the circles are the results of an individual CA and the filled triangles 
represent the positions given from the stacked data. The lines connect the same 
subject in the two representations. One can see that an investigator would draw the 
same conclusions from either picture. The positions of a given individual are within 
reasonable sampling variability of each other. Note that this week is a comparatively 
"bad" example of fit. Later weeks show much closer correspondence between the 
two configurations. 

6 D i s c u s s i o n  

We have illustrated the possible utility of CA as a general MDS technique for appli- 
cation to a variety of types of similarity data. Some have suggested extreme caution 
in terms of the level of measurement that is appropriate for generalizing CA beyond 
frequency data. In converting the airline distances into a variety of similarity matrices, 
we included examples, such as ranking and Lickert rating, that were not ratio scale 
measurements. Our own feeling is that any data that are appropriate for nonmetric 
MDS are legitimate for analysis with CA. The resulting representations should be 
just as valid as those resulting from nonmetric MDS. 

We have also demonstrated that the results from the stacking procedure can be 
used as a simple and accurate way to compare a series of individual configurations. 
The configuration for any single individual obtained from the stacked CA is, within 
sampling variability limits, the same as the configuration obtained from the analysis 
of that individual data matrix by itself. By extension, because generalized Procrustes 
analysis is limited to rotation, translation, and scaling transformations, the configu- 
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F i g u r e  7: Plot of the Newcomb data for week I comparing the position of each subject 
obtained from the stacked correspondence analysis (filled triangles) with that obtained 
by the correspondence analysis of the week I data taken by themselves (open circles). 

rations produced by the stacked CA would also be similar to results from generalized 
Procrustes. 

The stacked similarity matrices approach is of considerable practical utility. For 
example, Romney et al. (1996) analyzed 732 stacked 15 × 15 symmetric similarity 
matrices representing similarity judgments derived from triadic comparisons for 
15 English kinship terms. The purpose was to compare the effects of gender and 
linguistic background factors on the cognitive structure of the kinship terms. The 
use of generalized Procrustes analysis would have required 732 separate scalings 
to provide input coordinates for the analysis. The stacking procedure does all of 
this in a single step. We feel that this practical difficulty has discouraged the use of 
generalized Procrustes analysis for comparisons among individuals in large data sets. 
For example, the largest example we have found in the literature is that of the 41 
subjects analyzed originally by Green and Rao (1972) and reanalyzed with PINDIS 
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by Borg (1977, pp. 643-647) and Borg and Lingoes (1987, pp. 337-340). It also 
should be recognized that the fit statistics that are computed in PINDIS are very 
useful. Similar statistics need to be developed for the stacked CA results. 

There is still a great need for further research and discussion about the two main 
issues that we have introduced in this chapter. With respect to the use of CA as a 
general MDS tool in a purely descriptive manner, there is a need for the development 
of a consensus about the appropriate goodness-of-fit measures to describe the results 
of a single analysis. What is the appropriate analogue of the nonmetric MDS measure 
of stress? 

The very close correspondence between the centroid (or consensus) solution 
from generalized Procrustes and the column scores from the stacked CA shown in 
Figure 6 suggests that there may be a way to derive an analytic description of the 
relationship between the two (perhaps with limits on the discrepancy). 
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Chapter 24 

Regional Interpretations in 
Multidimensional Scaling 

Ingwer Borg and Patrick J.F. Groenen 

Dimensional and Regional 
Interpretations in MDS 

Interpreting solutions in multidimensional scaling (Kruskal and Wish, 1978; Borg 
and Lingoes, 1987; Borg and Groenen, 1997) means linking geometric properties 
of the MDS configuration to substantive (physical, psychological, semantic, logical) 
properties of the represented objects. Many geometric properties could be consid- 
ered, but one particular aspect of the point configuration, the points' coordinates 
on Cartesian coordinate axes, dominates the MDS literature. Indeed, the very name 
multidimensional scaling suggests that such "dimensions" play more than just a tech- 
nical role in MDS. This has historical reasons, because MDS was originally meant to 
generalize one-dimensional scaling to several dimensions. Although this introduced 
many new possibilities to relate the model representation to the physical parameters 
of the stimuli, the search for meaning remained exclusively focused on dimensions 
(see, e.g., Torgerson, 1952). 

Guttman (1977, p. 101) was among the first to note that this perspective turned 
things upside down, putting coordinate systems before the geometry that they are 
supposed to coordinate: "Euclidean space can be defined without a coordinate system. 
Indeed, this is how Euclid did it. Descartes came centuries later." What Guttman 
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stressed is that the focus on dimensions entails a shift of attention away from the 
geometric properties of the MDS configuration ("figure") and toward one particular 
coordination of its points. Geometric properties of a figure, according to Klein (1872), 
are just those properties that remain invariant under certain transformations, such as 
rigid motions or similarity transforms. The point coordinates do not satisfy this 
criterion. 

In most applications today, MDS is not used in a context in which the given 
objects can be coordinated in terms of physical or psychological dimensions. Rather, 
MDS is typically used for visually exploring the structure of similarities of"vaguely" 
described objects such as politicians, intelligence test items, or facial expressions. 
But although this vague prior knowledge does not lead to coordinations on which a 
meaningful distance function can be based, it typically allows a cross-classification 
of the stimuli. Politicians, for example, belong to party X or Y; are single, married, 
divorced, or widowed; have blue, brown, green, or other eye color; and so forth. 
Intelligence test items may require verbal, arithmetic, visual, or other abilities; they 
may require the subject to find a rule or use a known rule; they can be presented 
in writing or verbally; and so on. Facial expressions can be classified, a priori, into 
a whole range of impressions such as joy, disgust, friendly smiles, and anger; they 
can also be rated, for example, on a dimension of no to high ego involvement. Such 
cross-classifications are, in a sense, coordinations of the objects, but they do not 
have metric properties in general, because the criteria used for classification purposes 
(facets) are typically only qualitative or ordinal ones. The question, in any case, is how 
such a prior-knowledge facet system relates to empirically observed dissimilarities 
among the elements of its classes. The classes result from conceptually partitioning 
a monolithic domain of interest (such as politicians, intelligence items, or facial 
expressions) in different ways, and hence it seems natural to ask whether the MDS 
representation of the corresponding dissimilarity scores reflects this classification 
system in a geometric way. 

A general approach to formulating this question is to ask whether the MDS 
configuration can be partitioned into regions, facet by facet, so that all points in one 
region are equivalent on that facet. In a plane, a region is defined as a connected set 
of points such as the inside of a rectangle or a circle. More generally, a set of points 
is connected if each pair of its points can be joined by a curve all of whose points are 
in the set. Partitioning a set of points into regions means to split the set into classes 
such that each point belongs to exactly one class. For example, do all politicians with 
brown eyes lie in one region of the MDS space, all those with blue eyes in another 
region, and all those with another eye color in a third region? If such a regional 
correspondence holds, one may ask further questions about the particular shape of 
the regions. For example, the regions may be such that they cut an MDS plane into 
essentially parallel stripes. This obviously comes close to the notion of a dimension. 
But, of course, there are other regional patterns, such as a system of concentric bands 
around a common origin, that are not related to Cartesian dimensions. Thus, the 
regional approach is more general than the dimensional approach, including the latter 
as a special case. 
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2 Partitioning MDS Spaces Using Facet Diagrams 

Although regional interpretations are possible without prior studies on the objects of 
interest, in practice regionalizations are usually "confirmatory" ones. They are based 
on classification systems, mostly those using a facet-theoretical framework (Borg and 
Shye, 1995; Shye and Elizur, 1994). Consider the following example by Galinat and 
Borg (1987). 

In experimental investigations a number of properties of a situation have been 
shown, one by one, to have an effect on judgments of time duration. The following 
mapping sentence shows four of these properties within a design meant to measure 
symbolic duration judgments, that is, duration judgments on hypothetical situations: 

A = affective tone 
{ l=pleasant } 

Person {p} believes that the 2 =neutral situation with 
3 =unpleasant 

N = number V= variability 
{ l=many } {  l=monotonous } 

2=few 2=variable events that are 

D = difficulty reaction 
{ l=difficult } { very short in duration } 

2=easy to handle is felt as ---, to 
very long in duration 

In each particular way of reading the mapping sentence, one element from the 
population {p} is picked and crossed with one particular combination of the elements 
of the content facets. The content facets distinguish among different situations by 
considering four properties of its events: affective tone, number, variability, and diffi- 
culty. Altogether, the mapping sentence defines 24 different situation types (Table 1). 

Table 1: Twenty-four situation types with structuples and mean empirical duration 
ratings; greater value indicates longer duration (Galinat and Borg, 1987) 

Mean Mean Mean 
No. Structuple duration No. Structuple duration No. Structuple duration 

ANVD ANVD ANVD 
1 1212 3.29 9 1121 4.37 17 2221 4.66 
2 2112 3.54 10 1211 4.41 18 3112 4.70 
3 1221 3.87 11 2211 4.42 19 3211 4.93 
4 1112 3.90 12 1222 4.43 20 3221 4.94 
5 1122 3.95 13 3111 4.46 21 3122 5.00 
6 1111 4.00 14 2111 4.54 22 2222 5.08 
7 2212 4.03 15 2122 4.57 23 3212 5.15 
8 2121 4.05 16 3121 4.57 24 3222 5.67 
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For example, a situation with the "structuple" (3222) is defined to be a generally 
unpleasant one, where few but different things are happening and where one has no 
problems in coping with what is happening. 

How do persons judge the duration of these situation types? For each of the 
3 × 2 × 2 × 2 = 24 structuples, one vignette was constructed to illustrate a situation 
of that type. For example, the vignette used for the "pleasant-many-variable-easy" 
situation was this: "You are playing a simple card game with your children. It is quite 
easy for you to win this game because your kids are no serious opponents. The game 
requires you to exchange many different cards. The game is fun throughout the 3 
minutes that it lasts." This description is supplemented by the question: "What do 
you think, how long would this card game seem to last? Would it seem longer or 
shorter than 3 minutes?" 

The respondents were asked to rate each such vignette with respect to its likely 
subjective duration. The intercorrelations of these ratings are mapped into a four- 
dimensional MDS space (stress = 0.13). Figure 1 shows the plane spanned by the 
first two principal axes of the MDS configuration. The points in this plane are labeled 
by the item numbers of Table 1. 

We now ask whether this MDS configuration mirrors any of the design facets 
in the sense that points representing different types of situations fall into different 
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Figure 1: MDS plane of first two principal axes for duration data. 
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Figure 2: Facet diagram over Figure I for facet "affective tone." 

regions of the space. Let us begin with the affective-tone facet and try to partition 
the space into regions containing "pleasant," "neutral," and "unpleasant" points, 
respectively. This task is greatly facilitated by an appropriate facet diagram. A facet 
diagram is simply a reproduction of an MDS configuration plot where the points are 
labeled by their structuples or by their codings on a particular facet. Figure 2 shows 
the facet diagram for the affective-tone facet, plotted over the two-dimensional MDS 
plane from Figure 1. The points in Figure 2 are labeled - if they represent situations 
defined as unpleasant, + for pleasant, and o for neutral. 

The diagram shows that the three types of points are not distributed randomly. 
Rather, the plane can be partitioned into regions so that each region contains only 
or almost only points of one particular type. Figure 3 shows such a partitioning. It 
contains two minor errors: the two solid arrows indicate where these points should 
lie to be in the appropriate regions. Obviously, they are not far from these regions. 
There is also one major error, a "pleasant" point located in the negative region. The 
dashed arrow attached to this point indicates the direction of required shifting. 

Figure 4 represents an alternative partitioning that is error free. This partitioning 
depends, however, very much on the position of point 12 (marked by an arrow) and, 
thus, may be less reliable in further replications. 
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Figure 3: Facet diagram, for facet "affective tone" over Figure 1, with axial partition- 
ing. 

The two partitionings, moreover, imply different things. The concentric regions 
of Figure 4 predict that duration ratings on unpleasant situations correlate higher 
among one other, on the average, than those for pleasant situations. The parallel re- 
gions of Figure 3 do not restrict the correlations. Both partitions are similar, however, 
in splitting the plane into ordered regions, where the neutral region lies in between the 
pleasant and the unpleasant ones. Hence, the regions are ordered as the affective-tone 
facet itself. Neither the spatial organization induced by the straight lines nor that in- 
duced by concentric circular lines would therefore have problems in accommodating 
an affective-tone facet that distinguishes more than just three levels. 

We thus see that the affective-tone facet is reflected in the structure of the duration 
ratings. The decision on which of the two partitionings is ultimately correct requires 
further data. 

The plane spanned by the third and fourth principal components (not shown here) 
can be partitioned by the facet numbermwithout errormand also by variability~with 
two errors. The partitioning lines are almost straight and orthogonal to each other 
(Borg and Shye, 1995). The facet difficulty, on the other hand, does not show up in 
the MDS configuration; that is, the points representing easy and difficult situations, 
respectively, seem to be so scrambled that they cannot be discriminated by any but 
the most irregular partitionings. 
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Figure 4: Facet diagram, for facet "affective tone" over Figure 1, with modular parti- 
tioning. 

3 Facet Theory and Regions in MDS Spaces 
Partitionings are based on substantive classifications of the represented objects. The 
facets may be predicted to play a particular role in partitioning the MDS space, but in 
no case is a particular dimensional system (such as a Cartesian one) chosen a priori 
and then interpretationally forced onto the content. Rather, the opposite is true: the 
content leads to the approximation of a particular dimension system. 

To see this more clearly, consider a classic case, the cylindrex of intelligence 
items. The items in paper-and-pencil intelligence test batteries require the subject to 
find verbal analogies, solve arithmetic problems, or identify patterns that complete 
series of figures, for example. Hence, they can be classified by the facet "language of 
presentation" into numerical, verbal, and geometrical ones. At the same time, such 
tests relate to different abilities, which gives rise to a second facet, "required mental 
operation." It classifies tests into those in which the testee has to infer, apply, or 
learn a rule, respectively (Guttman and Levy, 1991). In combination, these two facets 
distinguish nine types of intelligence. 

Table 2 shows the intercorrelations of eight intelligence test items. For example, 
item 1 in Table 2 is coded as numeric (re language) and as application (re requirement), 
whereas item 5 is geometrical and inference. 
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Table 2: Intercorrelations of eight intelligence test items, together  wi th  content  cod- 
ings on the facets " language"  = {N = numerical ,  G = geometrical} and " requi rement"  
= {A = application, I = inference} 

Structuple 

Language Requirement 1 2 3 4 5 6 7 8 

N A 1 1.00 .67 .40 .19 .12 .25 .26 .39 
N A 2 .67 1.00 .50 .26 .20 .28 .26 .38 
N I 3 .40 .50 1.00 .52 .39 .31 .18 .24 
G I 4 .19 .26 .52 1.00 .55 .49 .25 .22 
G I 5 .12 .20 .39 .55 1.00 .46 .29 .14 
G A 6 .25 .28 .31 .49 .46 1.00 .42 .38 
G A 7 .26 .26 .18 .25 .29 .42 1.00 .40 
G A 8 .39 .38 .24 .22 .14 .38 .40 1.00 

2=NA 
O 

O 

I=NA 

3=NI 
O 

4=GI 
O 

O 
5=GI 

8=GA 
O 

O 
6=GA 

7=GA 
O 

Figure  5: Two-dimensional  MDS of correlations in Table 2. 
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Figure 6: MDS space with four regions resulting from G versus N, and A versus I 
distinctions. 

The correlations in Table 2 can be represented with stress = 0.015 in a two- 
dimensional MDS space (Figure 5). Figure 6 demonstrates that the MDS configuration 
can be cut such that each partitioning line splits it into two regions containing only 
points of one type: points of the N type lie above the solid line and points of the G 
type below that line. The dashed line separates I-type points from A-type points. 

One notes, however, that there is considerable leeway in choosing the partitioning 
lines. Why, then, was a curved line chosen for separating I-type points from A-type 
points? The reason is that this line yields a structure that looks like a slice from the 
universe of all possible item types discriminated by the given two facets. If items of all 
nine types (including "learning" and "verbal") had been observed, one can predict that 
the MDS configuration would form a pattern similar to a dartboard, a radex, shown 
schematically in Figure 7. If, in addition, one added another facet ("communication") 
that distinguishes among oral, manual, and paper-and-pencil items, one would obtain 
the three-dimensional cylindrex shown in Figure 8. In the cylindrex, "communication" 
plays the role of an axis along which the radexes for items using a fixed form of 
communication are stacked on top of one other. 
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Figure 7: Schematic radex of intelligence items. 

4 Regional Laws 

The cylindrex structure has been confirmed so often for intelligence test items that 
now it is considered a regional law (Guttman and Levy, 1991). What Figure 6 shows, 
therefore, is a partial replication of the cylindrex law. 

What does such a regional law mean? First of all, it reflects regularities of the 
data. For example, restricting oneself to items formulated in a particular language 
(such as paper-and-pencil tests) and, thus, to a radex as in Figure 7, one notes that 
inference items generally correlate higher among each other than application items, 
and learning items are least correlated. Thus, knowing that some person performs 
well on a given inference item allows one to predict that he or she will most likely 
also perform well on other inference items, whereas good performance on a given 
learning item says little about the performance on other learning items. One can 
improve the predictions, however, if one constrains them to learning tasks that use a 
particular language of presentation. 

One notes, moreover, that the MDS regions for inference, application, and learn- 
ing are ordered. This order cannot be predicted or explained from the properties of 
the qualitative facet "required mental operation." Nevertheless, it reliably shows up 
in hundreds of replications (Guttman and Levy, 1991) and, thus, asks for an expla- 
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Figure 8- Cylindrex of intelligence items (after Guttman and Levy, 1991). 

nation. Snow et al. (1984) reported a factor analysis that shows that items which 
relate to points in the center of the radex (i.e., inference tasks) are "complex" items 
and those represented at the periphery (such as learning tasks) are "specific" items. 
This repeats, to some extent, what the radex says: items whose points are closer to 
the origin of the radex tend to be more highly correlated with other items. Snow 
et al. (1984) add, however, that more complex tasks show "increased involvement 
of one or more centrally important components." Hence, their explanation for the 
inference-application-leaming order seems to be that these facet elements are, in 
fact, discrete semantic simplifications of a smooth gradient of complexity. 

One can ask the complexity question in a different way, and define a task tl as 
more complex than t2 if "it requires everything tl does, and more" (Guttman, 1954, 
p. 269). Formally, this implies an interlocking of content structuples, analogous to 
the perfect Guttman scale. Specifying such structuples requires one to identify basic 
content facets with a common range, where the concepts inference, application, and 
learning then become only global labels for comparable (hence ordered) content 
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structuples of these underlying facets. For a fixed element of the language facet, such 
a system would allow one to predict a particular order of regions (simplex). 

But, then, this leads to the question of what pulls the different simplexes---one for 
each type of required mental operation, that is, one for items that require application, 
learning, or inference of an objective rule, respectivelymto a common origin? To 
explain this empirical structure requires an additional pattern in the structuples. 
Formally, for the three directions of the intelligence radex, it would suffice to have 
an additional coding of the items in terms of the extent to which they require each of 
the three mental operations. 

In any case, with many points and/or differentiated facets, a simple correspon- 
dence between regions and structuples is a remarkable finding. Arbitrary assignments 
of structuples to the points do, in general, not lead to such lawfulness. Partitionings 
with relatively smooth cutting lines are generally also more reliable. Moreover, they 
help clarify the roles the various facets play with respect to the data. Such roles are 
reflected in the particular ways in which they cut the space. 

5 Alternative Facets 

A given object of interest can always be facetized in more than one way. Every new 
facet offers a new alternative. But does each new facet also have a new statistical 
effect? Consider an example. Work value items require the respondent to assess the 
importance of different outcomes of his or her work. Conceptually, two different 
kinds of facets have been proposed for organizing such items: one facet distinguishes 
the work outcomes in terms of the need they satisfy, and the other facet is concerned 
with the allocation criterion for rewarding such outcomes. Consider Table 3, where 
12 common work value items are coded in terms of seven facets. The facets and 
the structuples were taken from the literature on organizational behavior (Borg and 
Staufenbiel, 1993). 

Figure 9 shows a two-dimensional MDS representation for the correlations of 
the 13 work value items assessed in a representative German sample. The radex 
partitioning is based on the facets M (solid radial lines), R (dashed radial lines), and 
L (concentric lines). It is easy to verify that the other facets also induce perfect and 
simple partitionings of this configuration. These partitionings are, moreover, quite 
similar: the respective regions turn out to be essentially congruent, with more or with 
fewer subdivisions. Differences of the various wedgelike partitionings are primarily 
related to the outcome advancement, which is most ambiguous in terms of the need 
that it satisfies. Hence, one can conclude that all these theories are structurally quite 
similar in terms of item intercorrelations. This suggests, for example, that Herzberg's 
motivation and hygiene factors correspond empirically to Elizur's cognitive and 
affective/instrumental values, respectively. 

We note, moreover, that the similar partitioning of the MDS space into wedgelike 
regions, induced by different facets that are formally not equivalent, gives rise to 
a partial order of the induced sectors. The interlocking of the Herzberg and the 



6. Prototypical Roles of Facets 359 

T a b l e  3: Work va lue  i tems wi th  var ious  facet codings  a 

No. H M A E R L B Work value 

1 m a g k i g 3 

2 m a g k i g 3 
3 m a g k i g 3 
4 m a g k i n 4 
5 m r g k e i 1 
6 m r r a s i 1 
7 h b r a s n 4 
8 h b r a s n 4 
9 h b r a s n 4 

10 h s e i e i 2 
11 h s e i e i 1 
12 h p e i e n 4 
13 h p e i e n 4 

Interesting work 
Independence in work 
Work that requires much responsibility 
Job that is meaningful and sensible 
Good chances for advancement 
Job that is recognized and respected 
Job where one can help others 
Job useful for society 
Job with much contact with other people 
Secure position 
High income 
Job that leaves much spare time 
Safe and healthy working conditions 

aH(erzberg) = {h = hygiene, m = motivators}; M(aslow) = {p = physiological, s = security, 
b = belongingness, r = recognition, a = self-actualization }; A(lderfer) = {e = existence, r = 
relations, g = growth}; E(lizur) = {i = instrumental-material, k = cognitive, a = affective- 
social}; R(osenberg) = {e = extrinsic, i = intrinsic, s = social}; L(evy-Guttman) = {i = 
independent of individual performance, g = depends on group performance, n = not per- 
formance dependent}; B(org-Elizur) = {1 = depends much on individual performance, 2 = 
depends more on individual performance than on system, 3 = depends both on individual 
performance and on system, 4 = depends on system only}. 

Mas low facets implies ,  for example ,  that  the hyg iene  region contains  the subregions  
physio logica l ,  security, and be longingness ,  whi le  the mot ivators  region  contains  the 

subregions  recogni t ion  and self-actual izat ion.  Hence ,  the subregions  are forced into 

a cer tain ne ighborhood  re la t ion that would  not  be requi red  wi thout  the hierarchical  

nest ing.  

El izur  et al. (1991) report  fur ther  studies on work  values,  conduc ted  in different 

countr ies ,  which  show essent ia l ly  the same radex lawfulness .  Note  that  this does not  

imply  s imilar i ty  of  M D S  configurat ions  in the Procrus tean  sense in which  configura-  

t ions can be brought ,  by admiss ib le  t ransformat ions ,  to a comple te  match,  point  by 

point.  Rather,  what  is mean t  here  is that several  c o n f i g u r a t i o n s - - w h i c h  do not  even 

have to have the same n u m b e r  of  points-- -exhibi t  the same law of  format ion:  they 

can all be par t i t ioned in essent ia l ly  the same way (i.e., in the sense of  a radex) by just  

one fixed coding  of  the i tems,  thus showing  s imilar  cont igui ty  patterns.  

6 Prototypical Roles of Facets 

The  axial  par t i t ioning shown in F igure  3 can be seen as a pr imit ive  Car tes ian coor- 

dinate  axis. Wi th  more  and more  ordered categories  in the affect ive-tone facet, there 
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Figure 9: Radex partitionings of 13 work value items. 

should be correspondingly more parallel regions and thereby an ever closer approxi- 
mation to a Cartesian axis. Moreover, in the complete four-dimensional MDS space, 
the plane orthogonal to the one shown in Figure 3 is partitioned into four quadrants 
by the facets "number" and "variability." This further strengthens the hypothesis that 
these facets essentially suggest the usual (Cartesian) dimension system. 

Another coordinate system is suggested if we accept the circular partitioning 
shown in Figure 4. In this case, the three effective facets give rise to a cylindrical 
coordinate system. 

Mathematically, it is immaterial in which way a multidimensional figure is coor- 
dinated. In the given example, however, the coordination was not chosen arbitrarily. 
Rather, it was based on a priori distinctions of content. We stress this point here be- 
cause the data determine only the distances among the points, not any "dimensions." 
Dimensions are imposed on a distance geometry for different reasons. One reason 
is computational and serves the purpose of being able to replace ruler-and-compass 
construction methods by computation. The other reason is interpretational and builds 
on imposing content onto the geometry. 

The content facets often play one of three prototypical roles in this context. 
This is shown in the three panels of Figure 10. The panels exhibit schematic facet 
diagrams, whose points are labeled a, b, and c. In the panel on the left-hand side, 
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Figure 10: Three prototypical roles of facets in partitioning a facet diagram: axial 
(left), modular (center), and polar (right). 

the space is partitioned in an axial way. The panel in the center shows a modular 
partitioning. The panel on the right-hand side shows a polar facet. An axial facet is 
one that corresponds to the usual linear dimension, cutting the space into parallel 
stripes (axial simplex of regions). A modular facet leads to a pattern that looks like 
a set of concentric bands (radial simplex of regions). Finally, a polar facet cuts the 
space, by rays emanating from a common origin, into sectors, similar to cutting a pie 
into pieces (circumplex of regions). 

A number of particular combinations of facets that play such roles lead to 
structures that were given special names because they are encountered frequently 
in practice. For example, the combination of an angular facet and a radial facet in 
a plane, having a common center, constitutes a radex. Adding an axial facet in the 
third dimension renders a cylindrex. Another interesting structure is a multiplex, a 
conjunction of at least two axial partitionings. Special cases of the multiplex are 
called duplex (two axial facets), triplex (three axial facets), and so on. The multiplex 
corresponds to the Cartesian coordinate system as a special case if the facets are 
(densely) ordered and the partitioning lines are straight, parallel, and orthogonal to 
each other. 

There are also structures that are found less frequently in practice, such as 
the spherex (polar facets in three-dimensional space) and the conex (similar to the 
cylindrex, but with radexes that shrink as one moves along the axial facet). 

7 Regions, Clusters, and Factors 

The notion of a region is quite general. Clusters are just special cases of regions. 
Lingoes (1981) defined a cluster as a particular region whose points are all closer to 
each other than to any point in some other region. This makes the points in a cluster 
look relatively densely packed, with empty space around the cluster. For regions, 
such a requirement is generally not relevant. All they require is a rule that allows one 
to decide if a point lies within or outside the region. The points 5 and 6 in Figure 5 are 
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in different regions, but complete linkage clustering, for example, puts them into one 
cluster together with point 4, while it assigns points 7 and 8 to another cluster. For 
regions, the distance of two points---on which clustering is based--does not matter. 
Indeed, two points can be very close and still be in different regions. Conversely, 
two points may be far apart and yet belong to the same region. Moreover, clusters 
are usually identified on purely formal criteria, whereas regions are always based on 
substantive codings of the represented objects. Guttman (1977) commented therefore 
as follows: "theories about non-physical spaces . . .  generally call for continuity, with 
no vacuum or no clear separation between regions . . . .  The varied data analysis 
techniques going under the name of cluster analysis generally have no rationale as 
to why systematic clusters should be expected at all . . . .  The term cluster is often 
used when region is more appropriate, requiting an outside criterion for delineation 
of boundaries" (p. 105). 

Factors from factor analyses are not directly related to regions or to clusters. 
However, it is often asked in practice what one would have found if one had analyzed 
a correlation matrix by a factor analysis rather than by MDS. Factor analysis, like 
cluster analysis, is a procedure that is substantively "blind" or that, if used in a 
confirmatory way, forces a preconceived formal structure onto the data representation, 
namely factors. The factors are (rectilinear) dimensions that are run through point 
clusters, usually under the additional constraint of mutual orthogonality. For Table 2, 
a factor analysis yields three factors with eigenvalues greater than 1. After Varimax 
rotation, one finds that these factors correspond to three clusters in Figure 5, {1, 2, 3}, 
{4, 5, 6}, and {6, 7, 8}. Hence, in a way, the factors correspond to a polar partitioning 
of the MDS configuration in the given case, with three factors or regions in a two- 
dimensional MDS space. With positive correlation matrices, this finding is rather 
typical; that is, one can expect m + 1 factor-induced regions in an m-dimensional 
MDS space. The reason for this is that positive correlations are conceived of in 
factor analysis as a vector bundle that lies in the positive hyperoctant of the Cartesian 
representation space, whereas MDSmwhich does not fix the origin of the space m 
looks only at the surface that contains the vector endpoints. Thus, Figure 5 roughly 
shows the surface of a section of the sphere whose origin lies somewhere in the center 
of the points but behind (or above) the plane. The factors, then, correspond to a tripod 
fixed to the origin and rotated such that its axes lie as close as possible to the points. 
Hence, one notes that the location of this dimension system depends very much on 
the distribution of the points in space, while this is irrelevant for regions, although, 
of course, a very uneven distribution of the points in space will influence the MDS 
solution through the stress criterion. 

8 Discuss ion  

Partitionings of geometric configurations that consist of only a few points are easy 
to find but they leave the exact shape of the partitioning lines quite indeterminate. 
More determinacy and greater falsifiability are brought in by increasing the number 
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of items. Another principle for restricting the choice of partitioning lines is to think 
beyond the sample. In Figure 6, the partitioning lines were chosen, in part, by 
considering the universe of all intelligence items, a cylindrex (Figure 8). 

The system of partitioning lines should, in any case, not attend too much to 
the particular sample. "Simple" partitionings with relatively smooth cutting lines 
are typically more robust. But what is simple? Surely, a regionalization consisting 
of simply connected regions as in an axial or an angular system is simple, but so 
are the concentric bands of a circumplex. Hence, simple means, above all, that the 
partitioning is simple to characterize in terms of the roles of the facets that induce the 
regions. Naturally, if one admits greater local flexibility for the partitioning lines, then 
the number of errors of classification can generally be reduced. However, irregular ad 
hoc partitionings also reduce the likelihood to find similar structures in replications 
and in the universe of items. 

Admitting very irregular lines also makes it difficult to reject a regional hypoth- 
esis. Generally, partitionings become more unlikely to result from chance the more 
points they classify correctly, the more differentiated the system of facets is, the 
simpler the partitioning lines are, and the greater the stability of the pattern is over 
replications. 

In addition, the pattern of regions should make sense. Irregular lines are difficult 
to characterize and make it hard to formulate the role of the respective facet. For 
the intelligence items, in contrast, the radial order of inference, application, and 
learning is not only simple and replicable but also seems to point to an ordered facet 
"complexity," where inference is the most complex task (see earlier). If application 
items, then, come to lie in the radex center, such further search for substantive meaning 
is thwarted. 

It would be desirable to have an MDS procedure that not only represents the 
similarity data optimally by distances of an MDS space but also enforces certain 
regionalities onto the MDS solution. For axial facets one can enforce an appropriate 
regionality by linear constraints (de Leeuw and Heiser, 1980; Borg and Groenen, 
1997). A general solution, however, is not known. 

A correspondence between data and content categories can also be established 
a posteriori. One may recognize certain groupings or clusters in the points and then 
think about a rationale afterward to formulate new hypotheses. When the definitional 
framework is complex, one typically does not predict a full-fledged regional system 
(like a cylindrex) unless past experience leads one to expect such a system. Rather, 
one uses a more modest strategy with exploratory characteristics and simply tries to 
partition the space, facet by facet, with minimum error and simple partitioning lines. 
Even more liberal and exploratory is the attempt to identify space partitions according 
to new content facets, not conceived in advance. The stability of such partitions is 
then tested in replications. 

Establishing a regional correspondence is one thing, but researchers typically also 
want to "understand" such regularities. Why, for example, are work values organized 
in a radex? An answer to this question can be derived, in part, from reasoning 
in Schwarz and Bilsky (1987). These authors studied general values. One of the 
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facets they used was "motivational domain" = {achievement, self-direction, security, 
enjoyment . . . .  }. These distinctions were considered nominal ones, but there was an 
additional notion of substantive opposition. Four such oppositions were discussed, 
for example, achievement versus security: "To strive for success by using one's skills 
usually entails both causing some change in the social or physical environment and 
taking some risks that may be personally or socially unsettling. This contradicts 
the concern for preserving the status quo and for remaining psychologically and 
physically secure that is inherent in placing high priority on security values" (p. 554). 
Hence, the region of achievement values was predicted to lie opposite to the security 
region. If we use this kind of reasoning post hoc on the work value radex of Figure 9, 
we can explain the opposite position of the sectors "r" and "a" (in Maslow's sense) 
by a certain notion of "contrast" of striving for self-actualization and for recognition, 
respectively. 

To predict regional patterns requires one to clarify the expected roles of the facets 
in the definitional framework. This involves, first of all, classifying the scale level 
of each facet. For ordered facets, one predicts a regional structure whose regions 
are also ordered in some way, so that the statement that some region R comes 
"before" another region R ~ has meaning. The order of the regions should correspond 
to the order specified for the elements of the corresponding facet. For qualitative 
facets, any kind of simple partitionability of the point configuration into regions, 
each of whose points share the same facet element, is interesting. The distinction 
of facets into qualitative and ordinal ones represents a "role assignment" (Velleman 
and Wilkinson, 1994) that is "not governed by something inherent in the data, but 
by interrelations between the data and some substantive problem" (Guttman, 1971, 
p. 339), that is, by certain correspondence hypotheses linking the observations and 
the definitional system. Hence, if one can see a conceptual order among the facet's 
elements and hypothesize that this order is mirrored in the observations collected on 
corresponding items, then the facet "is" orderedmfor testing the hypothesis. Scale 
level, thus, remains context related. 

Consider as an example the facet "color" = {red, yellow, green, blue, purple}. 
One would be tempted to say, at first, that color "is" a nominal facet. Yet, with respect 
to similarity judgments on colors, "color" has been shown to be ordered empirically 
in a circular way. Furthermore, with respect to physical wavelengths of colors, "color" 
is linearly ordered. 
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Chapter 25 

Visualizing Categorical Data 
with Related Metric Scaling 
Caries M. Cuadras and Josep Fortiana 

1 Prelude: Metric Scal ing 

Measuring straight line distances on a map with a ruler is an easy task. From the 
map in Figure 1, showing the locations of four European cities, we obtain the given 
distances. Such arrays of distances are common in road maps. Data that can be 
likened to distances are common in multivariate statistics, where they are often called 
dissimilarities. A dissimilarity matrix is a square, symmetric matrix of nonnegative 
data and has zeros on its diagonal. 

Let us now consider the following question: given a dissimilarity matrix, such 
as the one in Figure 1, how can we reconstruct from it the map on which it is based? 

Metric scaling, also called principal coordinate analysis (although as a rule the 
first term is used in a more general sense), is a technique that allows us to construct 
a map, or Euclidean configuration, from a matrix of dissimilarities. Sometimes this 
construction is not possible: a necessary condition for it is that the dissimilarities 
must obey the triangle inequality, in which case they are called distances. 

Because the same set of distances can be obtained from several Euclidean con- 
figurations of points, one of them is selected as the usual metric scaling solution. The 
criterion used for this selection is explained in the following. In our example of four 
European cities, the solution is given in Figure 2. 

The main advantage of metric scaling becomes apparent when we process a 
dissimilarity matrix that has not been obtained from actual measurements from a 
map. For instance, our "dissimilarities" could be "time spent traveling by car from 
one city to another" or "number of daily flights between two cities." 
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Barcelona Berlin London Paris 

Barcelona 0 1550  1200  900 

Berlin 1550 0 1000  950 

London 1200 1000 0 350 

Paris 900 950 350 0 

Figure 1: Geographical interdistances between four European cities. We can measure 
distances on a map . . . .  

B e r l i n  

Barcelona -824 .6  255.8  

Berlin 720.9  373.0 

London 148.5 -445 .9  

Paris -44 .76  -182.9  

London 

Paris 

Barcelona 

Figure 2: ... or we can try to reconstruct a map from the distances between a set of 
objects. Euclidean configuration for four European cities obtained by metric scaling 
from the set of interdistances. In the left-hand side matrix of coordinates, the first 
column corresponds approximately to the N-S direction and the second column to the 
E-W direction; hence in the right hand diagram, the first and second coordinate have 
been plotted along the vertical and horizontal axes, respectively. 



2. Introducing Related Metric Scaling 367 

An exact Euclidean configuration for these general dissimilarities may require 
more than two dimensions. However, since a representation on a plane is still useful, 
from all exact Euclidean configurations we will choose one such that its first two 
coordinates give a best approximation to the original dissimilarities. More generally 
it is known that, if an exact Euclidean configuration requires p coordinates, the metric 
scaling configuration is characterized by the property that for each k, 1 <_ k --- p, its 
first k coordinates give the best k-dimensional approximation to the true distances. 

2 Introducing Related Metric Scaling 

Data often contain information that is duplicated in some sense: for example, (1) 
opinion polls before and after a political event, (2) results of elections classified by 
cities and geographical distances between the same cities, or (3) preferred leisure 
time activities of married couples, questioning husband and wife separately. For 1 
we have different observations obtained at different times for the same objects and 
variables. For 2 we have the same objects but a different kind of distance matrix. 
For 3 we have the same variables observed for paired individuals. 

Table 1 shows an artificial data set, consisting of the answers of six married 
couples A-a, B-b, C-c, D-d, E-e, F - f ,  to a survey on preferred leisure time 
activities. 

Using metric scaling, we can obtain graphical representations of men (Figure 3, 
left-hand diagram) and women (Figure 3, fight-hand diagram). We can observe that 
C and E share the same set of preferences whereas A and D differ widely, that for 
women a and b share the same preferences, and so on. 

How can we represent the set of couples so that the information for husbands 
and wives is in the same display? A straightforward method is to join the left and 

Table 1: Leisure time activity preferences expressed by six married couples (1 = "Yes, 
I enjoy," 0 = "I disl ike/try to avoid"), a 

Husbands Wives 

Traveling Home Sports Traveling Home Sports 

A 1 1 0 a 1 1 0 
B 1 0 1 b 1 1 0 
C 0 1 0 c 0 0 1 
D 0 1 1 d 0 1 1 
E 0 1 0 e 1 0 0 
F 1 1 1 f 1 0 1 

aEach row represents a married couple. Labels reflect this relationship, for example, the wife 
of A is labeled a. 
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C P B 
E 

Figure 3: Metric scaling graphical representations of Table 1. The diagram for men 
appears on the left (percentage of variance 86.7%), and the diagram for women appears 
on the right (percentage of variance 92.8%.) 

right halves of Table 1 and to perform a metric scaling with the resulting 6 x 6 data 
matrix containing all the data, yielding Figure 4a. For example, Aa now refers to the 
row of six elements corresponding to the first couple. 

Another possibility is to use related metric scaling, an extension of metric scaling. 
Its aim is to analyze two distance matrices together, taking into consideration the 

Cc 

Dd 

Ee 

Ff 

Aa 

Bb 

Cc 

Ee 

Dd 

Ff 

Aa 

Bb 

Figure 4: Metric scaling graphical representations of Table 1. The diagram for the 
whole data, using ordinary scaling (percentage of variance 72.3%), appears on the 
left, and the diagram obtained with related metric scaling, joining the two distance 
matrices (percentage of variance 65.7%), appears on the right. 
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Table 2: Average number of days per week on which pairs of wives meet 

a b c d e f 

a 7 6 1 2 4 3 
b 6 7 1 2 4 3 
c 1 1 7 2 3 4 
d 2 2 2 7 2 3 
e 4 4 3 2 7 2 
f 3 3 4 3 2 7 

possibility of redundant information. This leads to a related distance matrix, which 
can be represented using ordinary metric scaling. 

Figure 4b shows the result of performing related metric scaling from the two 
distance matrices obtained from the two halves of Table 1. It is not surprising that 
this diagram is very similar to the one on its left, because both are obtained from the 
same whole data set. 

To distinguish the differences, we note that the metric scaling representation 
of Aa . . . . .  F f  according to the whole data set is equivalent to considering the six 
columns of Table 1 as if they were associated with preferences in six different 
activities, which is not the case, because they are associated in pairs: activities 1 and 
4 (traveling), 2 and 5 (home), 3 and 6 (sports). For instance, it seems contradictory 
to admit that, for example, the F f  couple simultaneously prefers to stay at home and 
not to stay at home. 

There are circumstances in which a related metric scaling is not only advisable 
but also the only possibility. Suppose that we prefer to relate the husbands' leisure 
activities to the information about the wives in Table 2: the average number of days per 
week on which each pair of women meet each other. Taking these figures as measuring 
similarities, for example, the similarity of a and b is s(a, b) = 6, we can easily convert 
them into dissimilarities by subtracting them from 7, d(a, b) = 7 - s(a, b), giving 
Table 3. Now the data for the husbands and wives are of different types, which 
prevents us from performing ordinary metric scaling. 

By using related metric scaling, however, we can still obtain a representation 
of Table 3, as shown in Figure 5. More generally, related metric scaling can display 
any data consisting of, or convertible to, an associated pair of dissimilarity matrices. 
Since these two matrices are not independent of each other, we would like to relate 
them in the graphical display. 

3 Description of Methodology 

Metric scaling, or "classic scaling," originated in Schoenberg (1935), Young and 
Householder (1938), and Torgerson (1952, 1958) and was extended and related to 
other multivariate techniques by Rao (1964) and Gower (1966). Since then, it has 
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Table  3: Preferences expressed by six husbands for leisure time activities (1= "Yes, 
I enjoy," 0 = "I disl ike/try to avoid") and distance matrix between their wives, as 
explained in the text 

Husbands Wives 

Traveling Home Sports a b c d e f 

A 1 1 0 a 0 1 6 5 3 4 
B 1 0 1 b 1 0 6 5 3 4 
C 0 1 0 c 6 6 0 5 4 3 
D 0 1 1 d 5 5 5 0 5 4 
E 0 1 0 e 3 3 4 5 0 5 
F 1 1 1 f 4 4 3 4 5 0 

been widely applied in many disciplines and is considered a useful complement 
to cluster analysis. Descriptions of the method and its properties can be found in 
standard textbooks on multivariate analysis (Mardia et al., 1979, p. 397; Seber, 1984, 
p. 235) and monographs (Davison, 1983; Cox and Cox, 1994). 

Given n objects, {1, 2 . . . . .  n}, say, and a distance matrix between them, A = 
[~ij], the aim of metric scaling is to find, for each object i, a set of coordinates in m 

Ee 

Aa 

Cc 

Dd 

Bb 

Ff 

Figure  5: Related metric scaling graphical representation of Table 3 (percentage of 
variance 70.9%). 
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dimensions 

X i -" (Xi l  , Xi2 . . . . .  Xim) T ( 1 )  

such that ~ij  is equal to or closely approximated by 

~ m ~ 
dij = (Xik -- Xjk) 2 (2) 

k=l 

which is the Euclidean distance between xi and xj. In practice, a two-dimensional 
graphical display is often used. The n × m matrix of coordinates X = [x i j ]  is chosen 
in such a way that the first two coordinates give the best fit to the initial squared 
distance 

~ 2  ~ d i j ( 2 ) 2  = (Xil  _ Xjl)2 + (x i2  _ xj2)2 (3) 

where dij(2) is the Euclidean two-dimensional distance. 
To derive the formulas to compute X, with rows x~ . . . . .  Xn T, let us write (2) as 

3- x/Txj. (4) d 2 = [ I x / -  xjll a = x/I-x/+ xj xj - 2 

The n × n matrix S = [s i j ] ,  with sij = x/Txj, is called the inner product matrix 
associated with A = (~ij). With this notation, (4) becomes 

di2j = sii + s j j  - 2 s i j  (5) 

If we impose on X the condition ~iL1 x i ~- 0, in order to obtain a centred configu- 
ration, we have the equality 

~ - ~ S i j  - -  ~ S i j  -" 0 

i=1 j=l 

which allows us to solve (5) for sij by taking row, column, and overall averages, 
as is the usual procedure for analogous equations found in classical ANOVA and 
log-linear models. The result is 

1 (t~2 ~--~ i _~--~ +t~2 s i j  = - - -~  . . j . . ]  

where 82i., 82.j,  and 82.. are the row, column, and overall averages of the two-way 
table [82], respectively. Thus, sij is computed directly from the distances 8ij. 

The next step in metric scaling is to find the spectral decomposition S = UA U T, 
where U is the n × m matrix of orthonormal eigenvectors of the symmetric matrix 
S that correspond to the first m eigenvalues, ordered as )tl >- A2 >-- " '"  --/~m > 0, 
m --- n - 1, contained in the diagonal matrix A. The metric scaling solution is the 
matrix 

X = UA1/2, where A1/2 = diag(x/~l, X/~2 . . . . .  X/~m) (6) 
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Note that S=XX T is the matrix of scalar products Sij = X?Xj, implying that the set 
{x/T} of rows of X satisfies (4) and, equivalently, (2). 

On the other hand, each column Xj of X can be understood as a "variable," 
which takes the value Xij on  the set of individuals i, i = 1 . . . . .  n. The condition 
imposed, that the sum of rows of X is null, is equivalent to the column means being 
zero: Xj = 0, j = 1 . . . . .  m. In addition, taking into account the definition (6) and 
the orthonormality of the columns of U, we obtain the variances and covariances 

var(Xj) = X T X j / n  = Aj /n ,  j = 1 . . . . .  m 

T / n = O ,  j , k =  1 . ,m,  j=/==k Cov(X/ ,  X k) --  X j  X k , . .  

which allow us to interpret the variables Xj as principal components. 
Since the first two columns (Xl, X2) of the metric scaling solution (6) are associ- 

ated with the two largest eigenvalues (i.e., the two largest variances), they give the best 
two-dimensional approximation, as required in (3). A measure of the quality of the 
approximation is given by the percentage of variance" 100(A1 + A2)/()tl +"  • • + Am). 
For instance, in Figure 2 the percentage of variance is 99.5%, hence the picture is an 
accurate representation of the set of four European cities. 

Figures 2 to 4a were obtained by the methods described up to this point. The 
distance used in Figure 3 is deduced from the matching coefficient between individ- 
uals; that is, the squared distance equals the number of variables minus the number 
of coincident values of their coordinates, computed from Table 1. For example, the 

distance between A and B is ~(A, B) = V/3 - 1 = V/-2, since there are three coor- 
dinates, and A and B agree in one of them. Similarly, using the fight-hand part of 

Table 1, 3(a, b) = V/3 - 3 - 0, and for Figure 4a, using the six columns of Table l, 

6(Aa, Bb) = V/6 4 = X/~. 
Suppose now that we have two n x n distance matrices A A = (~A(i, j ) ) ,  A B ~- 

(rB(i, j)), which are defined either on the same finite set or on two different sets with 
the same number n of objects, paired between them. The two preceding examples 
cover both possibilities. Our objective here is to construct a joint n x n distance 
matrix AAB ~- (~AB(i, j)), which allows us to represent the n objects in a single 
graphic display, relating the displays obtained from A a and Z~B. 

The problem of constructing AAB is similar to that of constructing a joint proba- 
bility distribution given its marginals. These constructions must follow some compat- 
ibility rules and often a dependence structure is imposed (Cuadras, 1992). Another 
example of this type of construction is the iterative proportional fitting procedure for 
adjusting a multivariate contingency table by maximum likelihood to a hierarchical 
log-linear model, where the set of marginals is determined by the given model and 
their actual values are computed from the observed table (see, e.g., Bishop et al., 
1975, sect. 3.5). 

We propose the following properties for 6AB, with marginal distances ~a and 6B" 

1. If ~a ~-~ 0 then ~AB = 8B;if ~B : 0 then ~AB = ~A. 
Comment: if all the objects are identical under 8A, then this distance has no 
influence on the joint distance. 
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2. I f  6 A = 6B, t h e n  •AB = 6A = ~B. 
Comment: if the distances are the same under 6 A and 68, then the joint distance 
must maintain these values. 

3. If the principal coordinates obtained from 6 A and those obtained from 68 are 
orthogonal, then 628 = 62 + 62. 
Comment: this is Pythagoras' theorem. If XA is obtained from 6a and X8 is 
obtained from 68, the orthogonality condition is XArX8 = 0. 

There are many joint distances satisfying these conditions. Here we propose one. 
Let SA, S8 be the inner-product matrices associated with A A and As, respectively. 
Then the matrices of principal coordinates X A and X8 satisfy S~ = X~X~ v = 
U~A~U~ v, a = A, B. We define the joint distance 6AB between two objects i and j, 
whose coordinates are xi and xj with respect to 6a and Yi and y j with respect to 68, 
by 

where 

~2AB(i, j )  = ~2A(i, j )  + ~2B(i, j )  -- TAB(i, j )  (7) 

"tAB(i, j) = (Xi - -  xj)TAA1/2XTAXBAB1/2(yi  -- yj) (8) 

encapsulates the dependence between the A and the B variables. 
It can be proved that the joint distance defined by (7) satisfies properties 1, 2, 

and 3, provided that A a and AB have the same geometric variability, that is, if 

1 ~ ~ 2 ~ 8 2 ( i , j ) =  1 ~ ~ 8 2 ( i , j )  
n--5 

i=1 j = l  i=1 j=l 

(Cuadras and Fortiana, 1995a). Note that this condition can always be assumed to 
hold, because multiplying one of the marginal distances by an appropriate constant 
amounts to a change of measurement unit. In the illustrations of this chapter, the 
geometric variability of the second distance matrix has been equaled to that of the 
first distance matrix. 

In addition, the inner product matrix SA8 associated with the matrix AAB of joint 
distances is given by 

1 (~1/2~1/2 1/2 1/2) 
SAB = Sa "]- SB -- ~ ik,.., a OB "i" S B S a (9) 

w h e r e  ,~1/2 = |1 A 1 / 2 | I  v = X c z A ~ l / 2  T _,~ .,.,,~,~ ,.,,~ Xo,, o~ = A , B .  Finally, the related metric 
scaling solution XA8 is computed from the spectral decomposition of SAS. 

4 An Empirical Application 

We applied related metric scaling to a subset of data from a study about statistical 
research in Spain. The data matrix in Table 4 contains the number of papers published 
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Table 4: N u m b e r  of papers  publ ished by 11 Spanish authors  classified into 11 subjects 
of statistics, a 

ber cua gim gip gom mor oll par pen sal sat Total 

GE 4 0 0 0 0 0 0 0 3 0 2 9 
PT 9 1 0 0 0 5 0 0 0 0 0 15 
PD 1 6 0 0 0 2 0 0 0 0 3 12 
ID 0 0 21 11 0 0 0 33 0 13 0 78 
FS 0 0 16 9 0 0 0 5 0 0 0 30 
SI 3 2 0 0 11 5 2 0 2 0 0 25 
BS 27 0 0 2 0 8 0 8 8 0 0 53 
MA 5 6 0 0 0 0 0 0 0 1 12 24 
MS 0 6 0 0 0 0 9 0 0 0 0 15 
RE 2 6 0 0 5 0 1 0 8 0 0 22 
TS 0 0 0 0 1 0 0 0 15 0 0 16 

Total 51 27 37 22 17 20 12 46 36 14 17 299 

aAbbreviations for authors: ber = J. M. Bernardo, cua= C. M. Cuadras, gim = M. A. Gil, 
gip = P. Gil, gom = W. Gonz~ilez-Manteiga, mor = E. Moreno, oll = J. M. Oiler, par = 
L. Pardo, pen = D. Pefia, sal = M. Salicrfi, sat = A. Satorra. Abbreviations for subjects: 
GE = Mathematical methods, sampling, applications, general, PT = Probability theory, 
PD = Probability distributions, SI = Statistical inference, BS = Bayesian statistics, ID = 
Statistical information and divergences, FS = Fuzzy sets, MS = Multidimensional scaling and 
statistical distances, MA = Multivariate analysis, classification, RE = Regression, ANOVA, 
experimental designs, TS = Time series, modeling processes. 

by 11 representative authors (columns) on 11 subjects (rows). The data were collected 

from the Extended Current Index of Statistics (CIS) Database (Thisted, 1994). 
Figure 6a is the graphic display of the authors, obtained by ordinary metric 

scaling, f rom Table 4. To obtain a distance matrix, we computed first the profile of 
each author, that is, the proport ion of papers on each of the subjects considered. For 
example,  f rom Table 4 the profiles of ber and cua are 

GE PT PD ID FS SI BS MA MS RE TS 
ber: = [.078 .176 .020 .000 .000 .059 .529 .098 .000 .039 .000] 
cua: = [.000 .037 .222 .000 .000 .074 .000 .222 .222 .222 .000] 

The distance between authors i and j ,  with profiles Pi = [P i l  . . . . .  Pim] T, and 

Pj = [Pjl . . . . .  Pjm] T, where m = 11, can be computed,  for example,  using the 

Hel l inger  distance: 

k=l 

For example, 8H(ber, cua)= V/I.092 = 1.045. 
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p.ar 
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gim 
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gip  
par  
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ber 
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gom 

cua 
o l l  

Figure 6: Two-dimensional Euclidean representations of authors: (a) using only the 
first (Hellinger's) distance matrix (percentage of variance 60.5%) and (b) related metric 
scaling representation (percentage of variance 43.1%). 

The Hellinger distance is one of the classic distances between probability distri- 
butions. Rao (1995) proposed its application to represent graphically a set of rows or 
columns of a frequency table. Principal coordinate analysis of the matrix of Hellinger 
distances between a set of profiles is an alternative to correspondence analysis. Corre- 
spondence analysis can be defined as the metric scaling of the chi-squared distances 
between profiles, where each profile is weighted (Greenacre, 1984). Hellinger dis- 
tance is a sensible choice when, as is the case in Table 4, the frequency table has 
a product-multinomial structure, that is, each column contains measurements on a 
different individual or case. 

In Figure 6a, three clusters are apparent: center left, fight top, and fight bot- 
tom. These clusters can be associated with the subjects (ID,FS), BS and (MS,MA), 
respectively. However, this display is not a faithful representation, because several 
authors have published joint papers, the information on them is not independent, and 
we should correct for this fact. Therefore, in addition to Table 4, we consider, for 
each pair of authors the number of papers published jointly. 

Only six authors in the selected set have written joint papers, as shown in the 
lower triangle of Table 5. The raw information contained in the lower triangle and 
diagonal of Table 5 can easily be converted into dissimilarity data. For instance, we 
can define 

3(i, j )  = 1 - a i j /min{a i i ,  ajj} (10) 

where aij is the number of joint papers by authors i and j and aii is the number of 
individual papers by author i. For example, for i = 2 and j - 7 (authors cua and 
o11), we have ~(2, 7) = 1 - 5/min{27, 12} = 1 - 0 . 4 1 7  = 0.583. The upper triangle 
of Table 5 contains the resulting dissimilarity matrix. 
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T a b l e  5: Number of joint papers by 11 authors (lower triangle and diagonal) and 
distance matrix (upper triangle) computed from (10); total number of papers by each 
author on the diagonal 

ber cua gim gip gom mor on par pen sal sat 

ber 51 I 1 1 1 1 1 1 1 1 1 1 
cua 0 27 I 1 1 1 1 0.583 1 1 0.929 1 
gim 0 0 37 10.546 1 1 1 1 1 1 1 
gip 0 0 10 22 [ 1 1 1 1 1 1 1 
gom 0 0 0 0 17 ] 1 1 1 1 1 1 
mor 0 0 0 0 0 20 I 1 1 1 1 1 
oll 0 5 0 0 0 0 12 [ 1 1 1 1 
par 0 0 0 0 0 0 0 46 [ 1 0.571 1 
pen 0 0 0 0 0 0 0 0 3 6 [  1 1 
sal 0 1 0 0 0 0 0 6 0 14 [ 1 
sat 0 0 0 0 0 0 0 0 0 0 17 

Again, as in the artificial example in Section 2, we have two sources of informa- 
tion on the given set of individuals: Table 4 and the upper triangle of Table 5. These 
data are of two different types: Table 4 contains information on individuals, and 
Table 5 contains information on pairs of individuals. Related metric scaling pro- 
vides a way to mix these two types of information, taking into account possible 
redundancies. 

Figure 6b is the graphical representation of the set of authors by related metric 
scaling. We can appreciate that the pairs (cua, o11) and (gim, gip) are now slightly 
closer, as they have jointly authored papers, and gom now occupies a more isolated 
position, consistent with the fact that this author has produced no joint papers with 
the remaining authors in the analyzed set. The apparently larger displacement of sat, 
who also has no joint papers with other authors, and his approximation to gom are 
due to the loss of variability incurred when projecting on a plane. To see the isolation 
of gom and sat, more dimensions would have to be visualized. 



Chapter 26 

Contrasting the Electorates 
of Eight Political Parties: 
A Visual Presentation 
Using the Biplot 

Magda Vuylsteke-Wauters, Jaak Billiet, Hans de Witte, and 
Frans Symons ~ 

1 Introduct ion 

Belgian election studies of the Flemish voter's perceptions and attitudes revealed 
that the ecologist (green) party "Agalev" and the radical fight-wing party "Vlaams 
Blok" were each other's antipodes. In the 1991 general election in Flanders, these 
two electorates were polarized by their attitudes toward immigrants, materialism 
and postmaterialism, economic conservatism, and Flemish nationalism (Billiet and 
de Witte, 1995). These findings partially support both the thesis about the emergence 
of two new cleavages (universalism/particularism and postmaterialism/materialism) 
and the finding of a new fight-left cleavage. What happened to the "old" cleavages 
that divided Belgian society so sharply in the past (Lorwin, 1971)? Do the ideolog- 
ical conflicts between church and state, beween labor and capital, and between the 
linguistic communities (Dutch speakers and the Francophones) no longer play a role? 
Are these old cleavages no longer relevant and are the values on which they were 
built completely replaced by new value orientations (see van Deth 1995)? In order 
to determine the relevance and dominance of the hypothesized new and old cleav- 

1Frans Symons passed away in July 1997. 
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ages, we will analyze the distributions of the electorates with respect to 14 attitude 
scales expressing value orientations that are related to the old and new cleavages. 
We are using the term "cleavages" in the sense of value cleavages, because we will 
confine ourselves to attitudes and value orientations, neglecting social background 
variables and institutional ties (see Lipset and Rokkan, 1967; Knutsen and Scar- 
brough, 1995, p. 497). How well can these 14 attitude scales cleave the voters into the 
eight electorates, and how can we arrive at a clear visualization of the large amount of 
information? In a previous study, Billiet and de Witte (1995) used logistic regression 
in order to predict the odds ratios of voting for each party. They used the whole set of 
attitude scales as predictors. With logistic regression, however, the visualization of 
the results remains a real problem. In this chapter, we will offer a biplot representa- 
tion based on an original view of canonical correlation analysis as a combination of 
projection and rotation methods (Vuylsteke-Wauters, 1994). It is demonstrated that 
this approach is capable of displaying the complexity of the data containing two sets 
of variables. 

2 Data and Measurements in the 
Flemish Voters' Study 

In late 1991 and early 1992 a national survey was conducted of voting and political 
attitudes in Belgium involving 2691 interviews in the Flemish region. The sample was 
constructed with the equal probability method and was representative of all adults 
18-74 years old (Carton et al., 1993). A two-stage sample with equal probabilities 
was used. In the first stage, the municipalities were selected at random. About 120 of 
the 316 Flemish communities were included in the sample. In the second stage, a ran- 
dom sample of respondents was selected from the national population registers. The 
response rate was 64%. The interviewers were trained in an approved experimental 
training program developed by the research group. 

The 14 attitude scales that are used here are based on sets of items selected via 
tests of measurement models with confirmatory factor analysis (see, for example, 
Bollen, 1989). The confirmatory factor analysis was preceded by an exploratory 
factor analysis based on another part of the sample. The complete set of items and 
scales, as well as the measurement models, are documented by Billiet and de Witte 
(1995). 

The voters' study contained an index of religious identification and church 
attendance, which is related to a set of three attitude scales that can be identified 
as indicators of the concept "sociocultural conservatism" (Middendorp, 1991). These 
attitudes are the rejection of the liberalization of abortion (abbreviated henceforth as 
ABORTION), the preference for clearly distinct roles between men and women in 
society (SEXROLES), and an aversion to the free expression of opinions in public 
(NOFREEOP). Because of their relationship with church involvement, they can be 
used as attitudinal expressions of the value orientations behind the first old cleavage 
(Middendorp, 1991). 



2. Data and Measurements in the Flemish Voters' Study 379 

The second old cleavage refers to the conflict between labor and capital. This 
dimension was operationalized by four attitude items that constitute one scale re- 
garding socioeconomic conservatism (ECONCONS) in the sense of the rejection of 
socioeconomic equality and the wish to limit the influence of labor unions and the 
government. 

The linguistic conflict, the third old cleavage, was operationalized by a scale in 
which the respondents had to indicate whether they wanted Flanders (or Belgium) to 
decide everything itself (FLABELG). This scale was strongly related to a set of items 
that measured other aspects of Flemish nationalism but that were not presented to all 
respondents. 

The postmaterialist value orientation (POSTMAT) was measured by the number 
of postmaterialistic objectives the respondents chose from a list of 12 materialistic 
and postmaterialistic political objectives (see Inglehart, 1987, 1990). A particular 
aspect of postmaterialism is readiness to make social and financial sacrifices for the 
preservation of the sociophysical environment. This orientation was measured by 
a set of six items (MILIEU). Together with the postmaterialist value orientation, 
this ecological orientation is considered to be an operationalization of the first new 
cleavage: "postmaterialism versus materialism." 

The potential second new cleavage was operationalized by four attitude scales: a 
negative attitude toward immigrants in the sense of feeling threatened by the presence 
of immigrants in the acquisition of scarce goods such as jobs, social security benefits, 
housing, and culture (OUTGROUP); biological racism, or the idea that the white 
race is superior and has to be kept pure (SUPRACE); the emphasis on traditional 
values and principles, such as authority and respect for law and order (AUTHORIT); 
the idea that one is insufficiently protected against petty criminality (PETTYCRI). 
The authoritarianism scale is a short version of the California F-scale (Adorno et 
al., 1950) designed to measure "potential fascism" (see, for example, Meloen et al., 
1994). Previous research confirmed the relationship of biological racism with all 
other aspects of the extreme fight-wing ideology. 

The last relevant but more or less hybrid dimension refers to social and political 
indifference and distrust. Three scales were selected to operationalize this dimen- 
sion. One was a scale measuring political inefficacy (Campbell et al., 1954, p. 187) 
and expressing feelings of powerlessness in the domain of politics (POWERLES). 
The second was a scale measuring utilitarian individualism (Bellah et al., 1985): 
being driven purely by self-interest and personal material success are core elements 
of this kind of individualism (INDIVID). This attitude reflects a pessimistic and 
even misanthropic world view. The third was a scale measuring feelings of social 
isolation (SOCISO). This aspect reflects the experience of disintegration of the tra- 
ditional social networks. Each of these three scales is related to Srole's concept of 
"anomia" (Srole, 1956) and may be associated with protest voting. All scales were 
transformed into 11-point scales ranging from 0 to 10, with zero indicating the high- 
est level of disapproval with the scale content and 10 indicating the highest level of 
agreement. 
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The second set of variables deals with preferences, that is, the respondents' voting 
behavior in the 1991 general elections, which is recoded in a set of dummy variables. 
In the Flemish part of Belgium, there were seven major political parties in 1991: the 
Christian Democrats (CVP), the Liberal Party (PVV), the Socialist Party (SP), the 
traditional Flemish nationalists of the "Volksunie" (VU), the ecology party (Agalev), 
the extreme right-wing party the "Vlaams Blok," and the Libertarians (Rossem). 
Those who voted blank or turned in invalid votes can be considered as a specific 
electorate as well. Voting is compulsory in Belgium, but a number of voters (about 
7% in 1991) cast their ballots without filling them in (i.e., blank vote) or rendered 
them invalid by writing comments on them. 

The Christian Democratic Party (CVP) is the heir of the Catholic Party that 
originated from the ideological conflict between church and state at the beginning 
of the 19th century. The degree of church involvement and membership of Christian 
organizations are still important predictors of voting for this party. 

The conflict between labor and capital at the turn of the 19th century forced the 
liberal party at that time to split into two parties: the socialists and the liberals. The 
Socialist Party (SP) converted its ideology from Marxism to a broader progressive 
stand on socioeconomic issues in which the basic value of social equality is stressed. 
Its voters tend to be nonbelievers or marginal Catholics who participate in socialist 
organizations. The liberal Party for Freedom and Progress (PVV) takes a liberal- 
conservative stand on socioeconomic issues, with a focus on socioeconomic freedom 
and on the restriction of the influence of the state in this domain. This party appeals 
to the higher strata and the more highly educated. 

The Volksunie (VU), which promotes the interests of the Flemish, is a result of 
the third cleavage: the linguistic or communitarian conflict in Belgium between the 
Dutch-speaking and the French-speaking parts of the country. 

The ecological or "green" party Agalev is perceived as the result of the rise 
of a new value orientation in Belgian society that stresses postmaterialism (see, for 
example, Inglehart 1987, 1990). The electorate of this party is rather young and 
non-Catholic and originates from the higher strata and educational levels. 

Also, the rise of the extreme fight-wing party the Vlaams Blok has often been 
attributed to a new cleavage. More than 50% of the Vlaams Blok voters mentioned 
their aversion to immigrants as the main reason for their electoral choice (Swyn- 
gedouw, 1992). In explaining the rise of the Vlaams Blok, some studies refer to 
feelings of political inefficacy as part of a broader, more encompassing new align- 
ment of attitudes and value orientations such as individualism, ethnocentrism, and 
authoritarianism. 

Finally, the rise of a clear protest party, such as the Libertarians, Rossem, and 
the rather large number of blank or invalid votes could reflect feelings of political 
indifference and distrust in politics. These attitudes and feelings, of course, are not 
a new value orientation and certainly not a new political cleavage. Nevertheless, it 
is important to consider them here, as they may be of relevance in determining the 
voting behavior of certain electorates. 
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Attitudinal Differences Between 
the Eight Electorates 

Let us start the analysis by looking at a univariate comparison of the mean scores for 
each attitude for all the parties. In Table 1, the scales are classified according to the 
cleavages that were distinguished in the previous section. In an overall comparison of 
the mean scores for all the political parties, we generally find statistically significant 
(P < 0.001) differences between parties, the only nonsignificant difference being for 
"social isolation" (P = 0.015). A nonparametric Kruskal-Wallis test was performed 
because none of the attitudes had normally distributed data (Siegel and Castellan, 
1988, pp. 206-216). The number of tests performed was limited by comparing only 
the two most extreme parties with all the others. Because we had 13 tests for each 
attitude, the significance level for rejecting the null hypothesis for each test was set at 
.001, which corresponds roughly to an overall probability of .05 of a type I error. In 
Table 1, the parties that differed significantly from all the other parties because they 
had high or low mean scores are printed in boldface type. 

As was expected, the electorate of the Christian Democratic Party (CVP) scored 
on average significantly higher on the scales used as indicators for the first old 
cleavage; however, this is true only for two of the three scales. The second old 
cleavage is clearly built on the opposition between the Liberals (PVV) and the 
Socialists (SP). The indicator of the third old cleavage is capable of distinguishing 
the Volksunie significantly from the Vlaams Blok and both of these parties from all 
the others. 

Finally, Agalev is clearly the emanation of the new cleavages in its two possible 
components, but this electorate is only the antipode of the Vlaams Blok voters in 
the dimension of three extreme fight-wing orientations, especially ethnocentrism. 
The dimension of negative feelings concerning political powerlessness and utilitarian 
individualism contrasts the electorate of Agalev with those who voted blank or turned 
in invalid votes. 

The deficiencies of this way of looking at the data are manifold. First, we need 
a method that is capable of displaying the distribution for each electorate on all the 
attitudes without resulting in an overwhelming number of tables. Second, we also 
require an approach in which the attitudes in the electorates are analyzed simulta- 
neously. Third, the method should differentiate between the attitudes according to 
their relevance and dominance in creating cleavages into the electorate. This means 
that the method should be capable of stating the net contribution of each attitude and 
value orientation for joining each electorate. Fourth, it would be appropriate if the 
analytical method resulted in a visualization of the data, displaying which attitudes 
are capable of cleaving the electorate along the lines of the political parties. An ap- 
proach that satisfied these requirements is a combination of projection and rotation 
methods based on the biplot and canonical correlation analysis (Vuylsteke-Wauters, 
1994). 



Table  1: M e a n  scores on  the  14 a t t i tude  scales in the different  e lec tora tes  a 

Attitudes 

Party 

Agalev CVP PVV SP VI.Blok VU Rossem Null 

First "old" cleavage 

No liberalization of abortion 
(ABORTION) 3.28 

Differences in sex roles 
(SEXROLES) 1.59 

No freedom of opinion 
(NOFREEOP) 2.73 

Second "old" cleavage 

Economic conservatism 
(ECONCONS) 3.39 

Third "old"' cleavage 
Flanders must decide 

(FLABELG) 4.19 

First "new" cleavage 

Post-materialism b 
(POSTMAT) 

Sacrifices for milieu b 
(MILIEU) 

5.40 3.93 2.93 3.37 4.39 2.65 4.09 

2.73 2.48 2.55 2.54 2.16 2.71 2.91 

3.21 2.69 2.54 2.62 2.65 2.77 2.64 

3.68 4.79 2.92 3.48 4.03 3.94 3.21 

4.16 4.00 3.86 5.35 6.86 4.98 3.21 

6.64 4.25 4.29 4.88 4.50 5.09 4.92 4.40 

5.43 3.99 3.79 3.74 3.74 4.24 3.67 3.53 

Second "new" cleavage 

Insufficient protection 
(PETTYCRIM) 6.51 7.43 7.43 7.44 8.09 7.35 7.70 7.50 

Negative toward migrants 
(OUTGROUP) 3.76 5.37 5.70 5.32 7.09 5.16 5.69 5.90 

Superiority of white race 
(SUPRACE) 2.17 4.31 4.05 3.79 5.00 3.44 3.81 3.94 

Authoritarianism 
(AUTHORIT) 5.17 6.87 6.55 6.58 6.69 6.60 6.00 6.83 

Protest voting 

Political powerlessness 
(POWERLES) 4.71 5.25 5.26 5.45 5.83 5.12 5.87 7.54 

Utilitarian individualism 
(INDIVID) 2.53 3.54 3.72 3.92 4.01 3.10 3.62 4.23 

Social isolation c 
(SOCISOL) 2.28 2.54 2.32 2.60 2.87 2.35 2.25 2.98 

Total (N) 225 696 491 401 227 207 78 124 

aThe parties are the ecologists (Agalev), the Christian Democrats (CVP), the Liberal Party 
(PVV), the Socialists (SP), the right-wing party (V1. Blok), the traditional Flemish nationalists 
(VU), the Libertarians (Rossem), and blank or null votes (null). A number of voters are not 
included in the analysis: those who did not report their vote (133), those who did not vote for 
several reasons (51), and those who voted for other parties (26). 
bOriginal scales (materialism, no sacrifices) are reversed. 
CNot significant at the .001 level. The associations between political party and all the other 

scales are significant on this level. 
382 
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4 A Biplot Presentation by Means of Canonical 
Discriminant Analysis 

Visualizing the group structure in the different electorates with respect to the 14 atti- 
tudes can be done by various methods. A well-known graphical display of the group 
structure in the multivariate data is the scatterplot of the data produced by the canon- 
ical variables. A more informative plot would be obtained if we could characterize 
on the same plot which attitudes are most responsable for the discrimination of the 
groups. This leads us to vizualise not only the voters--in their group structure--but 
also the attitudes and their contribution to the separation between the electorates. This 
kind of graphical display is called a biplot (Gabriel, 1971), where both observations 
(voters) and variables (attitudes) are plotted. 

4.1 C a n o n i c a l  C o r r e l a t i o n  A n a l y s i s  

Canonical correlation analysis allows the researcher to examine patterns of rela- 
tionships between sets of variables. With this technique we are able to study the 
differences between the eight electorates with respect to the 14 attitudes simultane- 
ously. As a data reduction technique, canonical correlation analysis in many ways 
subsumes factor analysis. Rather than concentrate on the relationships within a single 
set of variables, the analysis tries to find pairs of unobserved latent variables under- 
lying two sets of variables. In our case, the first set of variables is the categorical 
variable "party choice" coded as a set of eight dummy variables with data value 0 
or 1. The second set of variables consists of the 14 attitude scales, measured on a 
quasi-interval scale. 

Notice that our objective is not to perform statistical tests on the relationship 
between the two sets of variables, for which various statistical assumptions on the 
data would be necessary, but rather to arrive at a visualization of the group structure 
in the different electorates with respect to the full spectrum of attitudes. 

Given two sets of centered and standardized variables and a sample of n observa- 
tions, called the X variables and Y variables, respectively, denote the first data matrix 
with p variables by X (n × p) and the second one with q variables by Y (n × q). 
The aim of canonical correlation analysis is to find two new sets of uncorrelated 
variables, called the U variables and the V variables, each with m variables, that are 
linear combinations of the original X and Y variables, respectively. The U variables 
and V variables are such that the first pair of variables, say U1 and V1, have maxi- 
mum correlation; then the second pair, U2 and V2, uncorrelated with U1 and V1, have 
maximum correlation, and so on (see, for example, Gittins, 1985). 

The solution is given by the following pair of generalized eigenvalue decompo- 
sitions: 

R111RlzR21RzlR111 = ARZA I where ATRllA = I 

R221R21RlllR12R21 = BR2B T where BlR22B = I 
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or equivalently by the following generalized singular value decomposition: 

Rl11R12R21 = ARB T where AT R 11 A = BT R2 2 B = I 

where Rll and R22 are the correlation matrices of the X and Y variables, respectively, 
l iE  is the p X q matrix of correlations between the two sets, and R21 = R1T2 • The 
singular values in the diagonal matrix R are the maximized correlations, called canon- 
ical correlations, arranged in decreasing order. The U and V variables themselves are 
obtained by linear transformations using the eigenvectors: U = XA and V = YB. 

Linear discriminant analysis, on the other hand, is a method designed to discrim- 
inate between groups on the basis of sets of multivariate observations observed on 
their group members [this method is often described as canonical variate analysis or 
multivariate analysis of variance (MANOVA) in textbooks on multivariate analysis]. 
This is indeed the situation we have here, where we have eight electorates and 14 
scale variables observed on the sample from each electorate. 

Vuylsteke-Wauters (1994) showed that linear discriminant analysis can be seen 
as a special case of canonical correlation analysis. In this special case when one of 
the sets of variables, say X, consists of dummy variables, the correlation matrix Rll 
is singular, and a generalized matrix inverse has to be used. The resulting canonical 
variables have the property that they are uncorrelated as well as standardized to have 
variance 1; in other words, the new variables are orthonormal and the correlation 
between the U variables and V variables is simply uTv .  Gabriel (1981a) gives appli- 
cations of the biplot in the context of MANOVA. The fact that canonical correlation 
analysis admits canonical variate analysis as a special case is also described by Gower 
(1989a). The biplot properties of canonical correlation analysis are discussed in detail 
by ter Braak (1990). 

The original X and Y variables and the new U and V variables can be related by 
computing correlation coefficients analogous to factor loadings, which in geometrical 
terms can be expressed as the projection of the unit vectors for the original sets of 
variables onto the unit vectors defining a new basis in the respective spaces: x T u  and 
y T v .  When X is the (centered, standardized) indicator matrix, then it is the second 
set of loadings YTV that gives the canonical coefficients which allow us to interpret 
the canonical variables which maximally discriminate between the groups. 

4.2 Correlation Biplots 

We use the results of canonical correlation analysis applied to the indicator variables 
and attitude scale variables as a basis for a correlation biplot display of the political 
parties and the attitude variables. In a two-dimensional biplot, we use the first two 
columns of V, denoted by V(2), as a basis for the subspace. The projections of the 
attitude variables in Y are then G = yTv(2). The rows of G are used to depict the 
attitude variables in the biplot, usually drawn as lines emanating from the origin of 
the display to the points (Symons et al., 1983). 

Individuals are displayed by the rows of F = V(2) and are thus displayed by 
their standardized canonical scores. In order to depict the eight political parties, the 
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corresponding subsets of individual points are averaged to find the mean points, or 
centroids, of each party. This process of averaging is the same as projecting the 
dummy variables in X onto the basis ¥(2). 

In interpreting the canonical correlation biplot, we can draw a unit circle, as is 
frequently done in the usual correlation biplot of a single set of variables. Variables 
whose points extend as far as the unit circle are very well reconstructed in the 
display, which means that they are important in explaining group differences. Short 
vectors, however, indicate poor display in the sense that they do not contribute to the 
explanation as far as the first two canonical dimensions are concerned. Otherwise, 
the interpretation is very much like that of the regular biplot; we look for large scalar 
products between party points and attitude scale points, which indicate that people 
voting for that party have high values on those attitude scales. 

can2 

MILIF.U 

POSTMAT 

ECONCONS 

AIL~OR_~  

I ~ i F i i i i i i I 

-1 .0  - 0 . 5  0.0 0.5 1.0 

oanl 

Figure 1: Global view 
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5 Interpreting the Biplot Presentations 

The biplot for the two first canonical axes (Figure 1) accounts for 53 % of the separa- 
tion between the eight electorates based on Pillai's trace. The attitudes with the largest 
distances from the origin are OUTGROUP, POSTMAT, MILIEU, and ABORTION. 
Agalev is the most outlying party and has the highest (absolute) mean scores on the 
canonical variable that represents POSTMAT and MILIEU. For the representation of 
the OUTGROUP variable, the Vlaams Blok has the highest score. These results con- 
firm the relevance and dominance of two new cleavages. One of the old cleavages, 
CVP, is best discriminated from other voters by the attitude toward ABORTION. 
This finding is in line with the important role of the church (Billiet and de Witte, 
1995). This figure also shows that the other attitudes used as indicators for the three 
cleavages that we have found are not adequately represented in the first pair of axes 
and seem of minor significance for separating the electorates. 

Another way of looking at the biplot is obtained by drawing a line through the 
origin and a particular group mean and projecting the group means on this line in 
order to obtain a ranking of the groups. This projection onto a biplot axis is illustrated 
for AGALEV in Figure 2. The projections of the parties approximate their order on 
the postmaterialist/materialist scale in the reduced spacee. We can see that AGALEV, 
for example, has a much higher value of POSTMAT than all other parties. 

The other two old cleavages, built around economic conservatism (ECONCONS) 
and linguistic conflicts (FLABELG), seem to be of little relevance in the reconstruc- 
tion displayed in Figure 1. We can find these attitudes in the display of the third and 
the fourth canonical axes (see Figure 3), which account together for another 30% 
of the separation between the groups. In Figure 1 CVP and VU are close together, 
whereas in Figure 3 VU separates out in the direction of FLABELG. 

Another attitude well displayed in Figure 3 is economic conservatism (ECON- 
CONS), which was intended to measure the labor-capital (or old fight-left) cleavage. 
It is apparent from this figure that the voters of the PVV are somewhat separated on 
that value orientation. 

The plots in the third and the fourth canonical axes sustain Elchardus' (1994) 
view about the old and the new fight-left cleavages, but with the restriction that the 
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Figure 2: Focus on AGALEV 
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social-economic cleavage is not as dominant as he stated. The Agalev and the SP 
voters belong to different segments of the so-called progressive value orientations. 

Finally, political inefficacy or powerlessness (POWERLES) is best represented 
by the fifth axis (not shown here), which accounts for 7% of the separation between 
the groups. As was expected, those who voted blank or turned in invalid votes are 
separated from the other voters on this dimension. 
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Figure 4: Scatterplot for AGALEV 

The group means on the normalized canonical variables do not provide infor- 
mation about the position of the individual voters. The idea of cleavages assumes 
that the group members are more or less concentrated around the means: the more 
they are concentrated, the more legitimate the use of the term, at least when the other 
conditions for cleavages are met. Figure 4 shows the positions of individual voters of 
Agalev on the first two canonical axes. 
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6 Conclusions  and Discuss ion  

Our graphic presentation of correlation biplots sustains the position that the "new" 
value orientations have not completely replaced the "old" value orientations as cleav- 
ing forces in the political landscape in Flanders. The image is rather one of fragmen- 
tation or pluralization as the new values are added to existing orientations (van Deth, 
1995, p.3). In the space shaped by the first and the second canonical axes, we could 
identify two new cleavages and one old cleavage, which were represented by attitude 
scales as indicators for value orientations. The Agalev voters were most clearly sep- 
arated from all the others not only because they scored high on postmaterialism but 
also because they scored low on ethnocentrism and on traditional value orientations. 
From other studies we know that the more educated professionals with jobs in educa- 
tion, welfare, and culture are strongly overrepresented among the Agalev electorate. 
As postmaterialists, the Agalev voters are not located in the traditional class structure 
but mainly take positions among the new middle class (Knutsen and Scarbrough, 
1995, p. 496; Inglehart, 1990, p. 332). 

The attitude toward immigrants was able to separate adequately the Vlaams 
Blok voters (10%) from the electorates of most other parties. At least one attitude, 
authoritarianism, seems ambiguous as an indicator of the value orientation that is rep- 
resented by the attitude toward immigrants. Its association with the traditional value 
orientation and with cultural conservatism may be responsible for this. Ethnocentrism 
seems an expression of feelings of being threatened, related to distrust of politics and 
feelings of being insufficiently protected by the authorities (see Figure 1). 

The traditional values are still relevant for a substantial part of the electorate. 
This was already displayed in the space of the first and second axes in which the 
CVP electorate (27% of the vote) was separated from the others by the traditional 
religious value orientation expressed by the attitude toward abortion. From our other 
studies, we know that the older part of the electorate (over 50 years old) is mainly 
responsible for the ongoing relevance of this old cleavage and that its dominance 
has been slowly declining over the years. Nevertheless, the orientation to traditional 
values, expressed here by the attitude toward abortion, is still an important factor. The 
other two old cleavages were discovered in the space of the third and second axes 
(Figure 3). The old fight-left cleavage was expressed by a value orientation called 
"economic conservatism," and it separated most obviously the voters of the SP from 
the PVV electorate. The third old cleavage, which is linked to the conflict between 
the linguistic communities and the demand for more autonomy for Flanders, also 
appeared in the space of the third and fourth axes (Figure 3). Both the Vlaams Blok 
and the Volksunie are perceived as Flemish nationalist parties but it is the Volksunie 
(9% of the vote in 1991) that grouped the largest number of Flemish nationalist 
voters. 

The canonical correlation biplot was used to study the differences between the 
eight electorates with respect to the 14 attitudes in a simultaneous display. This 
visualization provides an understanding that fits both the theoretical considerations 
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and the empirical evidence from other studies using attitudes and social-background 
variables. 

Software Note 

The biplots were programmed as a macro in SAS release 6.11, using only SAS 
Base and SAS/GRAPH. Input data can be any pair of orthogonal variables, such as 
principal components and canonical variables. This macro is available from the first 
author. 
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Chapter 27 

Use of Biplots to Diagnose 
Independence Models 
in Three-Way 
Contingency Tables 

K. Ruben Gabriel, M. Purificaci6n Galindo, 
and Jos4 Luis Vicente-Villard6n 

1 In troduc t ion  

An essential part of the analysis of contingency tables is testing for independence 
of classifications. In two-way tables this is straightforward, because there is a single 
hypothesis of independence. In three-way tables there are many possible indepen- 
dence hypotheses, each of which may be tested, but consistent inferences must take 
into account the implication relations between them (Roy and Mitra, 1956; Agresti, 
1990). Analyses of three-way contingency tables are therefore often difficult to in- 
terpret, especially because they produce too many acceptable models. That creates a 
need for methods that simplify the appraisal of the data and reduce the profusion of 
acceptable models (Whittaker, 1990). This chapter illustrates how this may be done 
by visualizing biplots of logarithms of frequencies of contingency tables. Because 
independence models for contingency tables become additive models for the loga- 
rithms of the frequencies and rules for visual diagnosis of additivity on biplots are 
known (Bradu and Gabriel, 1978), the corresponding rules can be applied to biplots of 
logarithms of frequencies to diagnose various types of independence in contingency 
tables. 
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Biplots (Gabriel 1971, 1981a, 1981b) are visual displays of matrices by vectors 
for each row and each column which are constructed so the inner product of vector 
ai for row i and vector bj for column j approximates the matrix element in cell 
(i, j). In the present discussion of contingency tables, it is the matrix of logarithms of 
cell frequencies that is biplotted and the approximation is by least squares weighted 
by the frequencies, as is appropriate if the frequencies are Poisson variables (see 
the description of software at the end of the chapter). Actually, the logarithms are 
centered before they are fitted and displayed, because this focuses the display on 
differences rather than on the general magnitude of the frequencies. An analogous 
centering of nonfrequency data has been explained by Bradu and Gabriel (1978). 

2 Diagnosis in Two-Way Tables 

In a two-way contingency table with frequencies fij 
independence is defined as 

( i =  1 . . . . .  l ; j =  1 . . . . .  J), 

i II j • Pij _ P i j '  for all i, i~; j ,  j~ 
Pilj Pi'j I 

where _L_t_ symbolizes independence (Dawid, 1979), i and j indicate the row and 
column classifications, respectively, i , i  ~ and j,  j~ their categories, and pij (i = 
1 . . . . .  I; j = 1 . . . . .  J) the probability of cell (i, j). Equivalently, by taking loga- 
rithms, one can write this definition as 

i _EL j • A.ii,,j j, = 0 for all i, i~; j ,  j~ 

where 

' ~ i i ' , j j '  = log(p/j) -- log(pi,j) -- log(Pij,) ÷ log(pi,j,) 

These tetrad differences have estimates 
^ 

Aii,,jj, = log(j~j) - log(fi,j) - log(j~j,) + log(fi,j,) 

and independence may be inferred if they are small. 
In our biplots of contingency tables it will be understood that we always ap- 

proximate centered logarithms of frequencies, not the frequencies as such. The biplot 
markers ai for the rows (i = 1 . . . . .  I) and bj for the columns (j  = 1 . . . . .  J) have 
vector inner products that satisfy 

log(fij) - log(f)  "~ a/Tbj (i -- 1 . . . . .  I; j -- 1 . . . . .  J) 

where ~ means "is approximated by" and log(f)  stands for an average of the loga- 
rithms of the frequencies. (Centering serves only to focus the display on differences 
and does not affect the diagnostic rules. Any convenient "average" can therefore be 
used for centering.) The tetrad difference ' ~ i i t , j j '  is visually approximated by 

a/Tbj - a/T, bj -- a/rbj, + a/r, bj, = (ai - ai,)T(bj -- bj,) 
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and so 

ffkii,,j j, ~ (ai -- ai,)T(bj -- bj,) 

Hence the biplot criterion for diagnosing independence i _1_1_ j is whether or not the 
inner products (ai - ai,)T(bj -- bj,) are close to zero for all i, i / and j,  j/. But two 
vectors have a zero inner product if, and only if, they are orthogonal, so this criterion 
is equivalent to (ai - ai,) being approximately orthogonal to (bj - bj,) for all i, i ~ and 
j,  j~. Clearly, this can occur if, and only if, the ai's and bj 's  are close to perpendicular 
straight lines. The visual diagnostic rule is therefore: 

"Diagnose i _l_t_ j if the ai's and bj 's  are close to perpendicular straight 
lines," and this will be referred to as the perpendicularity rule. 

This argumentation applies equally to any subtable of some of the rows and 
columns of the contingency table. The rule for such a subtable is to diagnose inde- 
pendence if the ai's and bj 's  for the subtable's rows and columns are on perpendicular 
lines or planes. These diagnostics are stated in terms of planes, rather than just lines, 
because more than two dimensions may be needed for closely fitting a biplot to a 
complete table in which there is no overall independence. 

This is illustrated in Figure 1 for a 3 × 4 table of large frequencies generated 
from Poisson distributions such that the first three columns are independent of the 
rows, but the fourth column is not. For these frequencies the biplot has the al, a2, a3 
markers for the rows roughly collinear and on a line that is perpendicular to another 
line which is close to markers bl, be, b3 for the first three columns; marker b4, on the 
other hand, deviates noticeably from the latter line. By the foregoing rule, this biplot 
pattern diagnoses independence only in the subtable of the first three columns, which 
is the correct diagnosis. 

A three-dimensional biplot provides a perfect fit, and interactive computer dis- 
plays (for example, SAS, 1994) can be used to rotate this and find a planar projection 
that has al, a2, a3 and bl, be, b3 very close to perpendicular straight lines (Figure 2). 

Subset independence may arise for a variety of reasons related to the properties 
of the classifications. It can also appear because unusually high or low counts occur 
in a few cells, and these are best treated as outliers from the general pattern (see 
Bradu and Gabriel, 1978, p. 48, for an analogous discussion). 

3 Diagnosis in Three-Way Tables 

Biplots display markers for the rows and the columns of a matrix, so that each matrix 
element (logarithm of frequency, centered on an average) is represented by the inner 
product of the corresponding row and column marker vectors. This does not readily 
generalize to three-way tables because no mathematically tractable "product" of three 
vectors is available. Biplot displays of a three-way table can, however, be constructed 
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Figure 1: Biplot of centered logarithms of frequencies of a table generated from Pois- 
son distributions with parameters corresponding to independence except in the last 
column. 

by first combining two of the table's classifications and thus reducing it to a two-way 
table, as shown next. 

A three-way contingency table with frequencies f ' jk and probabilities Pijk can 
be displayed by a biplot with markers ai (i = 1 . . . . .  I) and bj,k ( j  = 1 . . . . .  J; k = 
1 . . . . .  K) that satisfy 

log (~ jk ) -  log(f)"~ a~bjk (i = 1 . . . .  , I ; j  = 1 . . . . .  J ; k  = 1 . . . .  , K )  

for an average log(f). This biplot is analogous to that of Section 2, except that 
it uses the combination of the j and k classifications [with categories ( j , k )  = 

(1, 1), (1, 2) . . . . .  (J, K)], where the earlier biplot simply had classification j (with 



3. Diagnosis in Three-Way Tables 395 

bl 

Figure 2: Projection of 3D biplot of logarithms of frequencies of the table given in 
Figure 1, showing collinearity of markers for first three rows and markers for first 
three columns and perpendicularity of the two marker lines. (Lines joining markers 
are drawn to help examine patterns used for diagnosis.) 

categories j = 1 . . . . .  J). By analogy, it leads to the multiple perpendicularity rule: 

"Diagnose i II ( j ,k)  if the ai's and bjk'S are close to perpendicular 
straight lines." That is 

i _L_t_ ( j , k ) "  Pijk _ Pi j ' k '  forall i ,  i~;j , j~;k,k ! 
Pi ' j k  P i ' j ' k '  

which is known as multiple independence of i and (j,  k). 

It was noted earlier that independence can be diagnosed for a subtable if the 
markers for its rows and columns satisfy the perpendicularity criterion. Applying 
this to the bjk's for a particular category k of classification k leads to the conditional 
perpendicularity rule: 

"Diagnose i II j / k  if for a given k the ai's and bjk's are close to 
perpendicular straight lines," where 
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i ll j / k "  Pijk  __ Pi j 'k  

Pil jk  Pil j lk  
for all i, i~; j, j~; and given k 

which is known as conditional independence of i and j ,  given category 
k of classification k. 

More generally, if the preceding criterion applies to each k, it leads to the partial 
perpendicularity rule: 

"Diagnose i II i l k  if, for each k, the ai's and bjk's are close to 
perpendicular straight lines," that is 

i II j / k  • Pijk _ Pi j 'k  for all i, i~; j, j~; and all k 
Pi ' jk  Pi ' j ' k  

which is known as conditional independence of i and j ,  given classifi- 
cation k. 

These diagnoses are illustrated in Figure 3 for a 3 × 3 × 3 table of large frequencies 
generated from Poisson distributions such that i II j / k  for k = 1 and 2 but not for 
k = 3. Conditional independence i II i l k  therefore holds only in the subtable that 
excludes k = 3. On the biplot, the ai's are roughly collinear and both the bjl'S and 
the bj2's are very close to lines perpendicular to the a line: The bj3's, however, do not 
lie near any straight line. The visual rules therefore indicate i _L_l_ j / 1  and i I1 j / 2 ,  
but not i II j / 3 ,  and thus correctly diagnose the independence structure. 

Analogous visual criteria for conditional independence of i and k, given category 
j or classification j ,  can be obtained by permuting the roles of j and k in the preceding 
rules. 

Returning to the example in Figure 3, one may check i II k /1  by means of the 
markers bll, b12, and b13. These are not near a line perpendicular to the a line, so 
conditional independence i II k /1  is not diagnosed. The same applies to i !l k / 2  
and to i II k /3  because neither b21, b22, and b23 nor b31, b32, and b33 is anywhere 
near lines perpendicular to the a line. 

The consistency of these criteria may be noted by recalling that multiple inde- 
pendence i II ( j ,k)  holds if and only if conditional independences i I1 i l k  and 
i II k / j  both hold. This is reflected by the geometric equivalence of their diagnostic 
criteria. It is readily verified that occurrence of"the ai's and bjk's are close to perpen- 
dicular straight lines" is equivalent to simultaneous occurrence of both conditional 
perpendicularity criteria, that is, "for each k, the ai's and bjk's are close to perpen- 
dicular straight lines" and "for each j the ai's and bjk'S are close to perpendicular 
straight lines." 

The foregoing perpendicularity rules for diagnosis relate to independence of the 
i classification, which is represented by the biplot ai markers, from the j and/or 
k classifications, which are combined for representation by the biplot bj~ markers. 
Different geometric considerations are used for visual diagnosis of independence of 
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Figure 3: Biplot of centered logarithms of frequencies of a 3 × 3 × 3 table generated from 
Poisson distributions with parameters  corresponding to conditional independence of 
i and j given k = 1 and 2, but  not k = 3. (Lines joining markers  are d rawn to help 
examine patterns used for diagnosis.) 

the j and k classifications. Thus, for conditional independence of j and k, given i, 
which is 

j IIk/i" Pijk _ Pijk' 

Pifk PijW 
for all j ,  j~; k, k~; and all i 

the rule is 

"Diagnose j II k / i  if for each j ,  j~; k ,k  ~ the (bjk, bj,k, bjk,, bj,k,) are 
close to a parallelogram, that is, if bjk n t- bj,k, is close to bjk, + bj,k." This 
will be referred to as the parallelogram rule. 
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The parallelogram rule differs from the perpendicularity rules in that it tests 
independence of the two classifications that are combined in the biplot display. It is 
not an application of the two-way perpendicularity diagnostic but can be understood 
by rewriting the hypothesis as 

j II k / i "  )ki,jj,,k k, - -  0 for all i; j,  j ' ;  k, k' 

where i ~ i , j j , , k  k,  - log(pijk)- log(Pij,k) -- log(Pijk,) + log(Pij,k,). The latter are estimated 
by 

^ 

i~ i , j j ' , k k '  = log(3~jk) -- log(3~j,k) -- log(3~jk,) + log(j~j,k,) 

and approximated in the biplot by ~i,jj ' ,kk' "" a/T(bjk -- bj,k - bjk, + bj,k,). This 
quantity is small for all i if (bjk - bj,k -- bjk, + bj,k,) is close to zero, that is if 
bjk -- bj,k is close to bjk, -- bj,k,, which in turn corresponds to the figure formed by 
bjk, bj,k, bjk,, bj,k,, in that order, being close to a parallelogram. 

As in the case of a two-way layout, the three-way table diagnostics can also be 
applied to subsets of the categories of one or more classifications. No diagnostic rule 
is provided for conditional independence j _L_t_ k / i ,  that is, of j and k, given category 
i of classification i, since that is not easily visualized on the biplot. 

To illustrate the parallelogram rule for conditional independence j _l_t_ k / i ,  
consider again the three-way table of large Poisson frequencies, but interchange the i 
and k classifications, so that j _L_L k /1  and j II k /2 ,  but not j II k /3 ,  and hence 
not j _L_t_ k/ i .  Figure 4 shows the 2 × 3 × 3 subtable of frequencies excluding i = 3 
and its biplot marker. Consider the bjk markers for any given k: big is slightly above 
and to the fight of b2k, and b3k is well below b2k. And the same pattern holds for 
every k. It is readily seen that this entails that blk - b2k is the same for all k, b2k - b3k 
is the same for all k, and b3k -- blk is the same for all k, so the required tetrads of 
bjk's form parallelograms. The parallelogram rule correctly diagnoses j II k / i  for 
this subtable. Figure 5 shows the entire 3 × 3 × 3 table of frequencies and its biplot. 
Here the bjk markers do not display the same pattern for every k, and hence the rule 
would lead to the diagnosis that j II k / i  does not hold for this table. Again, that is 
the correct diagnosis. 

On a planar biplot, visualization of the diagnoses is quite straightforward, but 
it requires some care when the a's and b's are in a three-dimensional space. Any 
two-dimensional view will reveal a line in 3-D as a line or point, but a plane in three 
dimensions cannot be revealed by a single two-dimensional view. It requires two 
views of a 3D biplot to ascertain whether a set of points is close to a line or to a plane 
or to assess a parallelogram pattern. 

The preceding discussion is of biplots of three-way i × j X k tables in which 
the j and k classifications are combined. Alternative biplots can be constructed for 
the combination of classifications i and j ,  or of i and k, and all the above results 
apply after suitable permutation of the indices. Each of the three possible biplots 
can analyze all the types of independence except for conditional independence of 
the combined classifications given a category of the other classification. The rule of 
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Figure  4: Biplot of centered logarithms of frequencies of a 2 × 3 × 3 table generated 
from Poisson distributions with parameters corresponding to j 11 k/i .  (Lines joining 
markers are drawn to help examine patterns used for diagnosis.) 

diagnosis applied to any particular type of independence will, however, depend on 
what biplot is used. Thus, i 11 k / j  is diagnosed by the conditional perpendicularity 
criterion on the (ai, bjk) biplot but by the parallelogram criterion on the (aj, bik) 
biplot. 

4 An Applicaton--Danish Reemployment Data 

In a study of the determinants of reemployment of workers in Denmark, Andersen 
(1994) considered data for laid-off employees on length of employment (L in six 
categories), cause of layoff (K, two categories: closure of the company or replacement 
of the employee), and whether or not they had been reemployed (E, two categories)-- 
see Table 1. Hypotheses of independence of these three classifications were examined 
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Figure 5: Biplot of centered logarithms of frequencies of a 3 × 3 × 3 table generated 
from Poisson distributions with parameters corresponding to j II k / i  independence 
for i = 1, 2, but not for i = 3. (Lines joining markers are drawn to help examine 
patterns used for diagnosis.) 

with the help of biplots for two of the combinations of classifications, as shown in 

Figures 6 and 7. 
The (ae , bK,L) biplot of Figure 6 fits the data perfectly because it represents 

the log frequencies of a matrix with only two rows (and 6 × 2 columns). The ae 
line through the "no" and "yes" ae markers for reemployment is shown on the plot, 
so the diagnoses of conditional independence can proceed by checking the relation 
of the bK,L markers to this line. What is evident is that for workers laid off for 
closure the bK,L markers are close to a line (shown in Figure 6) that is perpendicular 
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Table 1: Survey of Danish workers who had been laid off 

Length of Cause of 
employment layoff 

L K 

Reemployment 
E 

Code Yes No 

Less than 1 month 

1 month to less than 3 

3 months to less than a year 

1-2 years 

2-5 years 

More than 5 years 

Closure C< 1 m 8 10 
Replacement R<I m 40 24 

Closure C 1 m 35 42 
Replacement R 1 m 85 42 

Closure C 3 m 70 86 
Replacement R 3 m 181 41 

Closure C 1 yr 62 80 
Replacement R 1 yr 85 16 

Closure C 2 yr 56 67 
Replacement R 2 yr 118 27 

Closure C>5 yr 38 35 
Replacement R>5 yr 56 10 

to the a line. That leads to the diagnosis E II L / C  of conditional independence 
of reemployment from length for workers laid off for closure (C). For employees 
laid off for replacement (R), the situation is not so simple since the b/~,L markers 
are on two separate lines, each of which is perpendicular to the ae line (both lines 
are shown in Figure 6). Hence E _l_t_ L / R  cannot be diagnosed for all lengths of 
employment, but one may diagnose E 11 L[<3m]/R as well as E II L[>_3m]/R: In 
other words, for replaced workers the association between length and reemployment 
depends on whether their employment was less than 3 months or at least 3 months 
but is independent of the exact length. 

In addition to this pattern, one may observe that the bK,L'S for all workers laid 
off for closure project onto the aE line closest to the "no" marker,  and the b/c,L'S for 
workers replaced after more than 3 months project onto the ae line farthest toward 
the "yes" marker. Thus, the chance of reemployment is least for workers laid off for 
closure and greatest for workers replaced after more than 3 months. 

Considering all the bK,L markers for each of the two length of employment 
groups, one could also say that reemployment is independent of length of employment 
both within the short employment group (less than 3 months) and within the long 
employment group (3 months or more), but not overall. 

Inspection of this biplot did not lead to a simple diagnosis of conditional inde- 
pendence of reemployment and length, given the cause of the layoff, but showed that 
for replaced employees the situation was more complex. Although an independence 
model did not fit the entire table, it did fit separate subtables and was useful for 
exploring the data. 
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Figure 6: (ae b/cz) biplot of centered logarithms of frequencies of data for Danish 
workers. (Lines joining markers are drawn to help examine patterns used for diagno- 
sis.) 

The same three-way contingency table can be biplotted for different combina- 
tions of two classifications. In Figure 7 reemployment is combined with length of 
employment, so the visual representation is by a (aK, be,L) biplot, the ar  line that 
goes through the C marker (for closure) and the R markers (for replacement) is not 
perpendicular to any particular sets of be,L markers, and therefore one cannot diag- 
nose independence of cause K from either reemployment E conditional on length L 
or length L conditional on reemployment E. However, the difference between the be,L 
markers for "yes, < l m" and "no, < l m" is pretty much the same as the difference 
between the be,z markers for "yes, l m" and "no, l m"mboth differences are marked 
by lines in Figure 7mand so the tetrad ("yes, < lm"  "yes, lm," "no, lm"  "no, 
< lm") of be,L markers is close to a parallelogram. It then follows from the paral- 
lelogram rule that, for lengths of employment below 3 months, there is conditional 
independence of reemployment and length given cause, that is, E II L t_<3m]//g. 

Similarly, the "yes, length" and "no, < length" differences~also indicated in 
Figure 7 by lines--are pretty much the same for all lengths from 3 months up, so 
the corresponding parallelograms exist and lead to the diagnosis E _U_ L[>_3m]/K. 
The "yes, length" and "no, < length" differences are not, however, the same for all 
six length categories, and therefore one may not diagnose conditional independence 
E II L/K,  that is, conditional independence for all lengths. 
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Figure 7: (a/c bE,L) biplot of centered logarithms of frequencies of data for Danish 
workers. (Lines joining markers are drawn to help examine patterns used for diagno- 
sis.) 

The same diagnoses were obtained from the biplot of Figure 7 as from that of 
Figure 6, even though different diagnostic rules were used. A third biplot, in which 
length of unemployment is in six rows of the contingency table and the combination 
of cause and reemployment is in four columns, cannot be fitted as closely in the plane, 
or in three dimensions, and has not been found as helpful for diagnosis. 

5 S o m e  C o m m e n t s  

This chapter proposes rules for visual diagnosis of independence that are based on 
patterns on biplots. Ideally, they allow diagnosis of one model for an entire table, 
but in practice they often indicate models for subtables, as in the unemployment 
application. That illustrates an important feature of visualization: it allows the eye to 
pick out unexpected patterns, such as those in various subtables, and to reveal features 
that would not be tested by standard methods because they were not anticipated. 

Random variation may hamper the identification of patterns on biplots and the 
consequent diagnosis of models. The schematic illustrative examples in Sections 2 
and 3 used very large samples to sidestep this difficulty, but for contingency tables 
based on empirical data it may be difficult to judge whether a pattern holds or the 



404 Chapter 27. Use of Biplots to Diagnose Independence Models 

deviations from it are significant. Such inferences have to be checked by formal tests 
of significance, although in some situations one may use an alternative type of biplot 
that incorporates approximate visual tests of independence (Gabriel, 1995). 

Identification of diagnoses from biplots is fairly straightforward in two dimen- 
sions, since the rules use only straight lines, fight angles, and repetitive patterns. It 
becomes more difficult when a three-dimensional display is used for improved fit to 
the data, because lines and angles and patterns in space may need to be visualized 
by real-time rotation of the three-dimensional biplot. The usefulness of the methods 
proposed here depends on how well the logarithms of the frequencies are approxi- 
mated and how easily users are able to discern and interpret patterns on biplots. The 
authors' experience suggests that this is not difficult to acquire and well worth the 
effort. 

Software Description 

The computational algorithm used is an adaptation of criss-cross regression lower 
rank fitting (Gabriel and Zamir, 1979). It is applied to the matrix of the log (3~j) - 
log(f) values with weights 3~j. A simple way to initialize the iteration is by using 
the Householder-Young (1938) rank 2 approximation to the matrix, or, if there are 
zero entries, doing so after substitution of j~j + 1/2 for j~j. If singularities arise, they 
may be circumvented by making small changes in the weighting, analogous to what 
is done in ridge regression (Hoed and Kennard, 1970). 

Computations were carried out by means of iterative routines programmed in 
MATLAB (Mathworks, 1995) and are available from the authors at Salamanca; an 
adaptation to SAS is also being prepared. Animated display and rotation have been 
carded out with JMP software (SAS, 1994). 



Chapter 28 

Prediction Regions for 
Categorical Variables 

John C. Gower and Simon A. Harding 

1 Introduction 

Quantitative information on two or more variables is often represented relative to 
coordinate axes. In this chapter we show how the familiar concepts associated with 
quantitative axes may be extended to categorical variables. We shall be concerned 
with low-dimensional approximations to high-dimensional representations relative 
to coordinate axes, and to understand the properties of the approximation we must 
first recapitulate the familiar properties of Cartesian coordinate axes. Figure 1 shows 
two coordinate axes referring to variables Xl and x2, marked with scales. 

The position of a sample with value two units of the first variable and one unit 
of the second variable is at the point P of Figure l a and is obtained as a vector sum, 
as shown. Of course, many people prefer to think of this as moving two units in 
an eastward direction followed by one unit north, but the vector-sum terminology 
embodies the mathematical concept that extends directly to cope with any number 
of coordinate axes. We term the operation of positioning a point with known sample 
values interpolation. Figure lb shows the inverse operation of associating the values 
of the variables that pertain to the point P. This is done by projecting from P onto the 
two axes and reading off the nearest scale value. Again, the notion of projection easily 
extends to any number of variables. Although we express this operation in terms of 
projection, or more precisely orthogonal projection, it is simpler to regard it as finding 
the nearest scale marker to P on each axis. We term the operation of determining the 
values of the variables to be associated with a given point prediction. The operations 
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Figure 1: (a) Positioning of the sample (2,1) at the point P. Co) The values of the two 
variables associated with the point P. 

of interpolation and prediction are inverses of each other and are consistent, in the 
sense that the values predicted for an interpolated point are those given initially. The 
reason for this terminology, which may seem perverse for exact representations, will 
become clearer when we discuss approximations. 

Coordinate systems are very often at the basis of the visualization of data. With 
n samples and just two variables, we get a scatter of n points whose coordinate values 
are the sample values. Indeed, this is how a scatterplot is defined. Visual interpretation 
consists of inspection for patterns, such as straight lines or other curves, clusters of 
points, and, when there are sufficient data, inspection for varying densities of sample 
points throughout the plot. Another important interpretive tool is the visualization 
of differences between a pair of samples as the distance between the corresponding 
plotted points. There are many mathematical ways to define distance, but throughout 
this chapter we shall use ordinary Euclidean distance as measured with a ruler. Even 
this is less straightforward than it might seem, for it is evident that by changing the 
scales on the two axes, perhaps merely to reflect changes in the units with which the 
variables are measured, we shall change distances between plotted points. A brief 
discussion of how scaling manifests itself with categorical variables is given in our 
concluding remarks. 

Two-dimensional scatterplots are familiar and their usefulness for initial data 
examination is recognized by all. With more than two variables we may examine all 
pairs of variables in a series of scatterplots. With p variables this gives l p(p _ 1) 
scatterplots. Thus with 4 variables we have 6 scatterplots and with 10 variables 
we have 45 scatterplots. As the number of variables grows, the greatly increased 
number of scatterplots becomes hard to assimilate, but for modest values of p all the 
scatterplots may be displayed as a p x p array. A useful supplement, often available 
in commercial software, is painting or brushing (see, e.g., Cleveland, 1985), whereby 
the points associated with specified values of a third variable, possibly categorical, 
are highlighted or colored. For example, if we plot height against weight, the points 
referring to male samples may be colored black and those referring to female samples 
white. In the height/weight scatter the generally taller and heavier males would 
show up in the appropriate region, whereas in an age/family-size scatter any such 
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relationship would be unlikely. Despite such refinements, multiple scatterplots are 
not ideal for visualizing relationships in multivariate data. 

Multidimensional scaling (MDS) (see, e.g., Cox and Cox, 1994) offers an alter- 
native generalization of the scatterplot. MDS starts by defining the distances between 
all pairs of samples. These distances may be observed values, but in the forms of 
MDS considered here, the distances are calculated as some simple function of the 
values taken by the p variables for each pair of samples. Then a set of points, one 
for each sample, is sought that generates the calculated distances. If this can be done 
at all, usually many dimensions are required for an exact representation, so MDS 
finds a representation in a few dimensions that approximates the given distances. 
Usually, few is two and will be so taken in the following. This is not a restriction 
on the methodology but reflects the difficulty of visualizing more than two dimen- 
sions except, perhaps, for three-dimensional models and with the aid of interactive 
graphics. In the two-way scatterplot arising from all forms of MDS, often called a 
"map," the axes are mathematical constructs that relate to the original variables in 
complicated ways. In contrast, biplots (see, e.g., Gower and Hand, 1996) relate the 
scatter of points representing samples directly to the values of the variables associated 
with those samples. Biplots are MDS maps representing the samples supplemented 
by information related to the variables. 

Visual Representations of Quantitative 
and Categorical Variables 

In this section we begin by briefly describing principal components analysis (PCA), 
which is the simplest form of MDS for quantitative variables. Similar methods may 
be used to represent a multivariate sample with p categorical variables. We describe 
a simple way to handle categorical variables based on what is known as the extended 
matching coefficient and close with the better known, but related, method of multiple 
correspondence analysis. Gower and Hand (1996) give all the technical details needed 
to construct all these biplots. In Section 3 we demonstrate the methodology using 
data from a survey of British sugar beet production. 

2.1 Principal Components Analysis 
In PCA, the plane of approximation is a subspace of an exact representation in 
p dimensions. The two-dimensional PCA approximation is especially useful when 
supplemented by nonorthogonal linear biplot axes (Gabriel, 1971) that represent the 
variables. Indeed, these biplot axes are the projections of the original coordinate axes 
onto the plane of approximation. When the biplot axes are endowed with scales, a 
practice that seems to be gaining acceptance (see Gower and Harding, 1988; Gabriel 
and Odoroff, 1990; Greenacre, 1991), then, although nonorthogonal, they may be used 
like familiar coordinate axes. The scales on these axes may be used to interpolate new 
samples by evaluating vector sums as in Figure 1 a. This justifies the term interpolation 
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because new samples may be interpolated into the map determined by the old samples; 
of course, the old samples interpolate into their correct positions in the map. The same 
axes, but with different scales, may be used for prediction. Thus, the position of any 
point in the PCA display may be orthogonally projected onto each biplot axis in turn 
and the corresponding p scale markers predict the values of the original variables that 
are to be associated with the sample represented by the point. It can be shown that 
this two-dimensional procedure gives the same results as projecting the point onto 
each of the original p-dimensional axes representing the variables, as in Figure lb, 
where p = 2. This justifies the term prediction because the values of the variables 
to be associated with any point in the map may be predicted. Reading scale markers 
by projecting onto the prediction axes is equivalent to evaluating an inner product 
and gives a graphical way of predicting the best two-dimensional approximation to 
the observed sample values. Here "best" is used in the sense of Eckart and Young 
(1936) as the set of predictions that minimize the sum of squares of the differences 
between the observed and predicted values of all the variables. The inner product 
interpretation figures largely in the literature on biplots, but we think it unnecessarily 
obfuscates what is essentially the familiar process of referring to coordinate axes. The 
directions of the horizontal, vertical, and any higher dimensional orthogonal principal 
axes that are used to construct the PCA display are often interpreted. The directions 
of the biplot axes offer an alternative basis for interpretation and, we believe, one that 
is better. Therefore, we recommend the retention of only the planar approximation 
with its linear biplot axes, discarding all other axes. 

In approximations the two sets of scale markers are inversely related, as in exact 
representations, but now interpolation and prediction are not consistent operations. 

2.2 Reference Systems for Categorical Variables 

First, let us see how the equivalent of coordinate axes may be defined for categorical 
variables. Because categorical variables take only a finite number of levels, they 
cannot be represented by an axis with a continuous scale. Instead, each categorical 
variable is represented by a set of points, one for each category level as shown in 
Figure 2. 

In Figure 2a we show three points representing the levels green, red, blue of a 
categorical variable "color." These points are at the vertices of an equilateral triangle 
and are known as category level points (abbreviated to CLPs). The set of CLPs 
for a categorical variable corresponds to a linear axis that represents a quantitative 
variable and the labels attached to the CLPs correspond to the markers that give the 
numerical values of a quantitative variable. Notice that this representation of a three- 
level categorical variable requires two dimensions as well as the origin. In general, 
a categorical variable with Lk levels is represented by Lk CLPs at the vertices of a 
regular simplex and therefore occupies Lk -- 1 dimensions. Thus the representation 
of two or more categorical variables tends to require many dimensions, which are 
difficult to show in the two dimensions that suffice in Figure 1 for two quantitative 
variables. The simplest case is for two variables each at two levels, which gives four 
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Figure 2: (a) Category level points for a single categorical variable, "color," with three 
levels--"green," "red," and "blue." (b) The prediction for the point P of the levels of 
two categorical variables, "sex," and "color," each with two levels shown in two 
dimensions. 

CLPs generally requiring three dimensions (one for each variable and one for the 
origin). However, to give an idea of things in two dimensions, we may show each 
variable as two CLPs on each of two orthogonal lines intersecting at an origin. This 
is shown in Figure 2b, where the variables are "sex" with levels "female", "male," 
and "color" with levels "black," "white." Interpolation proceeds as before by vector 
sums but now there are only 2 × 2 = 4 possibilities, which occur at the vertices 
of a square. The vertex corresponding to (female, black) is shown at the point P. 
Prediction cannot be obtained by projection because there are no axes on which to 
project. However, the more fundamental concept of finding the nearest  point survives 
and predictions are given by finding the nearest CLPs as shown in Figure 2b. Thus, 
we have the correspondences between coordinate representations of quantitative and 
categorical variables that are shown in Table 1. 

2.3 Placing the CLPs (the Extended Matching Coefficient) 

So far we have not seriously discussed the relative positions of the CLPs for different 
variables. There are several possibilities, but we shall mention only the two most 
important. The simplest definition of the CLPs is to place them on orthogonal axes a 
unit distance from an origin. Thus, the equilateral triangle of Figure 2a is obtained as 
in Figure 3. CLPs for other variables are obtained by extending this system by unit 
points on as many axes as there are category levels--Lk for the kth variable. This 
gives a total of L = L1 + Le + • • • + Lp axes and L unit points as CLPs. 

The word "axes" is used here merely for verbal convenience; in fact, only the 
simplices in mutually orthogonal spaces are essential and even the origin may differ 
for each set of CLPs. The vector sum method places a sample at one of L IL2 . . .  Lp 

points, giving a method for positioning any sample described by categorical variables. 
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Table 1: Representation of quantitative and categorical variables 

Quantitative variables Categorical variables 

Each variable is represented by a linear 
axis. 

A scale is marked on each axis and each 
mark is labeled with a numerical value. 

The position of a point relative to the axes 
is obtained as the vector sum of the labels 
giving the values of the variables. 

The values of the variables to be associated 
with a given point are obtained by 
orthogonal projection onto the axes and 
reading off the values given by the labels. 
This is the same as finding the nearest 
label to the given point on each axis. 

Each variable is represented by a set of 
CLPs. 

The CLPs are labeled with the names of 
the category levels. 

The position of a point relative to the set of 
all CLPs is obtained as the vector sum of 
the labels giving the relevant levels of the 
variables. 

The values of the variables to be associated 
with a given point are obtained by finding 
the nearest label in each set of CLPs. 

Thus, coordinate axes are associated with continuous variables, and the discrete 

sets of CLPs are associated with categorical variables. To refer to both kinds of 

representation, Gower and Hand (1996) propose the term "reference system" and give 
examples of reference systems that combine continuous and categorical variables. 
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Figure 3: A simple configuration of CLPs for a categorical variable color. 
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The squared distance between two samples is given by the number of category levels 
in which they differ; which is p - m, where m is the number of matching category 
levels; m/p is known as the extended matching coefficient (EMC), which for two- 
level categorical variables (i.e., L1 = L2 . . . . .  Lp = 2) becomes the well-known 
simple matching coefficient. The EMC has the usual property of similarity coefficients 
that it is nonnegative, has value zero when no category levels are common to the two 
samples, has value one when the two samples share the same category levels, and 
otherwise lies in the zero-one interval. 

Configurations of points generating the EMC may be approximated in two dimen- 
sions by PCA or, equivalently in this case, by classical scaling/principal coordinates 
analysis. As with PCA, we may project the "axes" to give biplot axes, but now there is 
only one scale point, corresponding to a category level, on each axis. Thus, projection 
gives L biplot axes, each with one marker corresponding to a CLP; other points on 
the axes have no direct meaning as they do for quantitative variables. These projected 
CLPs may be used for interpolating new points but there are difficulties in using 
them for the more important operation of prediction. This is because each variable is 
represented by several axes, three in the case of color in Figure 3. One could project 
onto each of these axes and predict the color corresponding to the projected CLP that 
was nearest a point of projection. Unfortunately, this does not necessarily give the 
one that is nearest the true CLP. In the exact representation, all points that correspond 
to a color, say red, are nearest the CLP for red. Therefore we can imagine the whole 
configuration as partitioned into regions containing the points nearest the CLP for 
red and similarly for green and blue. Such regions are called neighbor regions. The 
points in the approximation space that are in the neighbor region labeled red form a 
prediction region for the color red and similarly for the other colors and for all the 
other categorical variables. The geometry is illustrated in Plate 6. 

The fight-hand side of the figure shows the CLPs in high-dimensional space 
and the left-hand side shows the low-dimensional approximation space. To reduce 
confusion, the two parts are shown as well separated, although in reality they may be 
more intermingled. The neighbor regions are completely determined by the CLPs but, 
generally, there is no set of points in the plane of approximation that determine the 
prediction regions. In particular, within the plane of approximation there is no set of 
points for which the prediction regions are neighbor regions. This is unfortunate, for 
if there were, we could make the great simplification of representing the prediction 
regions by their generating points. To determine in which prediction region a point 
lies, each CLP could be projected onto the plane of approximation, also recording the 
(squared) distance of each CLP from the plane. Then, in principle, the distance of any 
point in the plane of approximation from each CLP could be calculated and hence 
its membership of a neighbor region/prediction region determined, but this is too 
cumbersome for ordinary use. In practice, it is better to show the boundaries between 
the prediction regions in full and with one diagram for each categorical variable. The 
prediction regions associated with the kth categorical variable are analogous to the 
kth linear biplot of PCA and are used in a similar way. In PCA one finds the nearest 
point on the axis and this involves orthogonal projection; with categorical variables, 
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one finds the nearest CLP and this involves assignment to a prediction region. The 
prediction region diagrams may be superimposed, and occasionally this is a useful 
thing to do, but usually the picture becomes too complicated. To produce p separate 
diagrams diverges from the PCA biplot for quantitative variables, where all the linear 
axes may be shown on one diagram. 

Fixing attention on the kth categorical variable, the whole of space may be divided 
into Lk neighbor regions, each of which is an Lk -- 1 dimensional region extended 
orthogonally to the space of CLPs into the L-dimensional space. The approximation 
in few dimensions is a subspace of the full space, and where the subspace intersects 
the neighbor regions gives prediction regions, each labeled with a category name. In 
Plate 6 there are only three categories, so there are three prediction regions. With Lk 
categories there will be Lk prediction regions, some of which may be closed polygons 
and some may be hidden behind other regions, so the associated category level is 
never predicted. 

Plate 7 is an example of the end product of an analysis, showing the prediction 
regions for a categorical variable with four levels, together with the positions of 10 
samples, which have been numbered. The figure shows the convexity of the prediction 
regions and also shows a closed region for red. Prediction is obvious: sample number 4 
is predicted as being green, while number 9 is predicted as red, and similarly for the 
other colors. Some predictions may be wrong, but in a good approximation most will 
be correct. Predictions for points close to a boundary, as with sample number 9, are 
especially likely to be uncertain. A table can be made of correct predictions versus 
actual predictions and the percentage of correct predictions may be used as measure 
of the quality of the approximation to give a criterion analogous to the least-squares 
criterion of the Eckart-Young theorem. Multidimensional scaling (MDS) offers a 
global method for positioning all the samples irrespective of the prediction regions 
for particular categorical variables that may be shown, as in Plate 7. For some purposes 
it may be desirable to show the samples in positions that predict better for particular 
variables than for others, but this would require new forms of MDS. 

2.4 Multiple Correspondence Analysis 
A more usual multivariate display for categorical variables is given by multiple corre- 
spondence analysis (MCA). There are many ways in which the methodology of MCA 
may be developed but here we adopt the approach used by Gower and Hand (1996), 
which emphasises the close relationship with PCA. It turns out that this is almost 
identical to the preceding approach. Indeed, the only difference is in the definition of 
the CLPs, which in MCA are not equidistant from the origin. If in a sample of 169 
individuals, 9 are red, 16 are blue, and 144 are green, then, apart from a scaling factor, 
the corresponding CLPs are distant 1/3, 1/4, and 1/12 from the origin--these are 
the inverses of the square roots of the frequencies. The coordinates of the CLPs are 
modified from the unit values that pertain to the EMC by replacing each unit by the 
corresponding inverse square root. Thus, as in Figure 3, the CLPs for color still form 
a triangle but it is not equilateral. This applies in general. The difference is analogous 
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to using a quantitative scale with unequally spaced scale markers. With the MCA 
settings of the CLPs, the squared distance between a pair of samples is known as 
the chi-squared distance; the use of inverse square roots of frequencies gives greater 
weight to rare category levels than to common category levels. Chi-squared distance 
derives from the ordinary correspondence analysis of a two-way contingency table, 
where it has considerable justification (see, e.g., Greenacre, 1984), but its use in MCA 
has been criticized by Greenacre (1991). Certainly, the characteristic of chi-squared 
distance that gives rare categories greater weight than common categories is not al- 
ways what is required. In ordinary correspondence analysis two sets of chi-squared 
distance, one between the rows and the other between the columns of the contingency 
table, have equal status. In MCA, the relevant contingency table is binary (termed 
the indicator matrix), containing only units and zeros giving, for each sample, the 
presence and absence of the category levels. Then, intercolumn chi-squared distance 
gives a measure of the distance between different levels of the same or two different 
categorical variables. We agree with Greenacre that this has little interest. By working 
in terms of prediction regions and having only the row points, which represent the 
samples, our approach avoids difficulties of these kinds. 

Gower and Hand (1996) show that the extended matching coefficient (EMC) 
is monotonically related to many other distances (but not including chi-squared 
distance) that may be derived from comparisons among the rows of an indicator 
matrix. It follows that in the context of nonmetric MDS (see, e.g., Cox and Cox, 
1994) all such coefficients are equivalent. In metric MDS this equivalence vanishes 
but lends support to using the simplest form, the EMC itself, unless there are strong 
reasons for adopting some more complicated definitions of distance. If one insists on 
using a more complicated form, then prediction regions may still be constructed but 
the methodology is less straightforward (Gower and Hand, 1996). 

2.5 Computation of Prediction Regions 

As we have seen, prediction regions are the intersection of the plane of approximation 
with the neighbor regions determined by the CLPs. It follows that in two-dimensional 
approximations we may proceed for the kth variable as follows. Consider the plane 
of approximation as being made up of pixels, as it would be on a computer screen. 
For each pixel, compute its distance from the Lk CLPs and color the pixel according 
to the category level of the nearest CLP. When all pixels have been colored, the plane 
of approximation will be partitioned into the neighbor regions for the kth categorical 
variable. Although our example in Figure 3 is couched in terms of a variable "color," 
and hence the coloring of pixels is particularly apt, the method will work for any 
categorical variable. Indeed, the coloring is needed only to determine the linear 
boundaries between the prediction regions. Once the boundaries have been found, 
they may be shown as lines and the regions they enclose labeled as in Plate 7. 

The pixel coloring algorithm is simple but it is not very efficient. Gower (1993) 
has described the basis for an efficient algorithm that gives insight into the geometry 
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of prediction regions. In principle, this algorithm will work for any value of Lk and 
for any number of dimensions, but it is yet to be implemented. 

3 Prediction Regions for the Sugar Beet Data 

The data for this example are drawn from the British Sugar Crop Survey (1993). This 
survey is the principal means for collecting information on the UK sugar beet crop. 
For each farm, the survey collects data on the factory where the crop is processed, 
crop, sowing, fertilizer usage, disease, and pest control. The illustrations of prediction 
regions given in this section concern a subset of 53 farms, selected from the total of 
580 farms, and the following eight categorical variables: 

Region 
Factory 
Drill 
Soil type 
Variety 

Stubble cultivation 
Straw disposal 
Sugar content 

North, West, East 
N 1, N2, N3, W1, W2, El,  E2. E3, E4, E5 
D 1, D2, D3, D4, D5, D6, D7, D8, D9 
Sands, Sandy-loam, Silty-loam, Clay 
Regina, Amethyst, Hilma, Gala, Matador, Rex, Planet, 
Saxon, Celt, Giselle, Triumph, Zulu, Aztec, Cordelia 
No, Yes 
Left, Removed, Incorporated, No straw 
A quantitative variable grouped into an ordered 
categorical variable with three levels (low, medium, 
and high) 

In this list, the factory names are given in coded form, with the initial letter indicating 
the geographical region containing the factory; drill types are also coded. 

We do not attempt an exhaustive analysis here. The two-dimensional approxi- 
mation for the EMC accounts for only 16.7% of the total variation, which, in this 
case, occupies 39 dimensions (obtained as a total of 49 levels, less 8 variables less 
2 because region can be deduced from "factory"). However, the percentage of cor- 
rect predictions is 64.6%. The two-dimensional fit of the MCA at 32.0% was rather 
better when judged as percentage of the total variation, but the percentage of correct 
predictions at 62.3% was a little worse. Both sets of solutions were visually similar 
and we present diagrams only for the EMC. 

Plate 8 shows the two-dimensional plot for the variable "regions." The numbers 
refer to the positions of the farms. The usual projections of the CLPs are not shown, 
but when they are, they may be used for vector sum interpolation rather than for 
prediction. The three prediction regions shown correspond to the three geographical 
regions (North, West, East). The farms tend to cluster into three groups that are 
enclosed within prediction regions, which, with the exception of farm 34, correspond 
precisely with the geographical regions. Plate 9 shows similar plots on a reduced 
scale for regions and for the other variables. For factories we see that the prediction 
regions are very similar to those of Plate 8, reflecting that the factories occupy the 
same geographical space as the farms. However, there are 10 factories but only 
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three prediction regions appear. These are for the factories numbered El, W2, and 
N3, which are those with the highest frequencies. Inevitably, predictions are wrong 
for the farms that process their beet at the less popular factories and the correct and 
incorrect predictions are indicated in the figure by open and black circles, respectively. 
Comparison with Plate 8 verifies that, despite incorrect predictions, at least every farm 
is allocated to a factory in its own region. The CLPs for the factories that are not 
shown are farther away from all the pixels than the CLPs for the three factories that 
are shown and hence their prediction regions are hidden. 

With other variables, the picture is less clear-cut. For example, in Plate 9, for 
"straw disposal" there are only two prediction regions, corresponding to "straw 
removed" (37 farms) and "straw incorporated" (14 farms). The bulk of the 51 farms 
are not correctly classified, and in the figure the black circles denote the incorrect 
classifications. The remaining two farms--number 1, which is said to have "no straw," 
reasonably falls into the "straw removed" region, and number 38, recording "straw 
left," which is certainly not "straw removed" and is akin to "straw incorporated," as 
predicted. Recall that the open and black circles merely record correct and incorrect 
predictions; we could have colored every point by the color that correctly gives its 
recorded category level--correct predictions would superimpose a colored dot on 
the same background color and would be recognized as open circles, as in Plate 9. 
More in keeping with the painting and brushing of scatterplots would be to color 
the dots according to the category levels of some other variable. For example, if the 
dots representing farms in the plot for geographical region were colored according 
to their method of straw disposal, it would be seen that the Western region almost 
universally prefers straw removal (farm number 4 is an anomaly), as does the Eastern 
region, with a few exceptions; the Northern region would be seen to be divided in 
its methods for straw disposal. Similar remarks apply to the other variables, but the 
visualizations say everything that needs to be said. 

The linear biplot axes associated with the classical analysis of numerical vari- 
ables are usually displayed on a single diagram. The corresponding plot for categorical 
variables would require the superimposition of all the prediction regions. Thus, with 
the present example, all eight components of Plate 9 would have to be superimposed. 
Clearly, the resulting display would be highly confusing, so we do not attempt it; 
Gower and Hand (1996) give an example with four variables where superimposition 
is feasible. Superimposition can be helpful when there are only a few variables and 
when the different prediction regions tend to overlap, indicating association between 
the corresponding variables. The practical exploitation of such possibilities calls for 
interactive graphical facilities that permit one to modify a current set of superimpo- 
sitions by adding or removing the prediction region for a nominated variable. This 
example shows that prediction regions give a visual representation of categorical 
variables that can focus attention on the main features of a sample. 

The results for the EMC and MCA may be compared numerically by tabulating 
the prediction error rates as in Table 2. For EMC there are 274 correct predictions 
and 150 false predictions, slightly better than the corresponding figures for MCA of 



Table 2: Error rates for MCA and EMC 

Multiple correspondence analysis Extended matching coefficient 

True Predicted 

REGION 

N W E 

Predicted 

N W E 

18 0 0 
0 17 0 
0 0 18 

FACTORIES 

El  W2 N3 

others 

D3 
D6 
Others 

Sandy Loam 

DRILLS 

SOIL TEXTURE 

SiltsLoams Sandy Loam SiltsLoams Clays 

Sands 3 
Sandy Loam 17 
SiltsLoams 11 
Clays 3 



Multiple correspondence analysis Extended matching coefficient 

True Predicted 

Saxon Celt 

VARIETIES 

Predicted 

Saxon Celt Regina 

Saxon 
Celt 
Regina 
Others 

STUBBLE CULTIVATION 

No Yes No Yes 

No 
p Yes 
U 

STRAW DISPOSAL 

Removed Incorporated Removed Incorporated 

Removed 35 
Incorporated 12 
Left 1 
No straw 0 

SUGAR CONTENT 

Low Medium High Low Medium High 

Low 6 9 3 6 6 6 
Medium 4 16 1 4 11 6 
High 6 4 4 1 3 10 
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264 and 160. As with linear biplots, some variables are approximated better than 
others. Table 2 shows that the variables "region," "drills," "stubble cultivation," and 
"straw disposal" give better than 60% correct predictions for both EMC and MCA, 
so are reasonably well represented, whereas "varieties" are very poorly represented. 
However, for "straw disposal" MCA gets 35 correct predictions for the "removed" 
category with only 2 for "incorporated," while the corresponding figures for EMC 
are 29 and 13. Note that these numbers are computed values that, for EMC, may be 
compared with Plate 8. What may seem small discrepancies arise from the occasional 
coincidence of pairs of points in the figures and some ambiguity when a point lies on 
a line separating prediction regions. 

4 Conclusion 

The methods discussed here may be set within developments of biplot theory dis- 
cussed by Gower and Hand (1996), where the concept of biplot axes is extended 
to most forms of MDS. In general, quantitative variables require different sets of 
axes for interpolation and for prediction and, rather than linear axes, we may re- 
quire nonlinear axes, called trajectories. We have seen how biplot axes marked with 
scales for continuous variables correspond to prediction regions labeled with names 
for categorical variables. Gower and Hand (1996) show how both types of variables 
may be exhibited simultaneously. Ordered categorical variables may be treated by 
using linear axes with irregularly marked scales, which give prediction regions that 
are parallel bands of differing widths. Between the general disposition of CLPs in 
Lk -- 1 dimensions, as described earlier, and the unidimensional CLPs for ordered 
categorical variables, there is the possibility of dispositions of CLPs in intermedi- 
ate numbers of dimensions; one approach that gives suitable coordinates for CLPs 
can be found in the multiple solutions given by the homogeneity analysis program 
HOMALS described by Girl (1990) and available in SPSS. CLPs, once found, define 
neighbor regions and the methods described earlier remain valid for deriving the 
boundaries of prediction regions. The variant of MCA termed joint correspondence 
analysis (Greenacre, 1988b, and Chapter 17 in this volume) provides its own set of 
CLPs, to which Gower and Hand (1996) show how to add the sample points. 

Finally, we return to the introduction, where we drew attention to the effect 
of scaling quantitative variables on the distances in scatter plots and MDS. With 
categorical variables this problem manifests itself in the choice of coordinate positions 
for the CLPs. We have discussed two possibilities: (1) where with the EMC every 
CLP is at a vertex of a unit simplex and (2) where MCA places the CLPs at vertices 
whose positions depend on the category frequencies in the data. There is an analogy 
between (1) choosing equal scales for a set of quantitative variables and (2) scaling 
quantitative variables by data-derived quantities such as standard errors or ranges. 

We have seen how error rates are associated with prediction regions. In Plate 9 it 
is clear that a small change in the boundary between the East and North regions would 
remove the one incorrect classification. This verifies that the plane of approximation, 
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determined by least-squares fits to the samples positioned as vector sums of CLPs as 
we have used earlier, does not minimize the error rate; it is an interesting research 
problem to find what plane does. Further, can the positions of the CLPs be determined 
to minimize error rates while maintaining acceptable definitions of inter sample 
distance? 
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PART IV 

Visualization and Modeling 

In the fourth part of the book we turn our attention to statistical models for categorical 
data and how visualization can assist the modeling process and the interpretation of 
results. 

A traditional approach in the social sciences is to formulate a number of hy- 
potheses about the relationships between the variables of interest and to test them 
using a statistical model. Well-known models for categorical data include latent class 
models and log-linear and log-bilinear models such as Goodman's RC model. The 
combination of modeling and visualization ideas is the aim of the chapters in this 
part. Either the authors show how to visualize the residuals from a fitted model to 
search for structures in these residuals for improving the model, or they discuss sim- 
ilarities between modeling approaches and visualization techniques. Visualization 
techniques can also be used in situations in which models contain many parameters, 
where simple display methods can assist in the interpretation of the results. 

Chapter 29, by Clifford C. Clogg, Tam,is Rudas, and Stephen Matthews, intro- 
duces a new idea in contingency table modeling, based on a mixture model. The main 
idea is to split cell probabilities into two parts: one part that can be attributed to that 
part of the population where the model of interest holds and another part that can be 
attributed to that part of the population where the model does not hold. The model of 
interest can be any suitable one, for example, the independence model or the quasi- 
independence model, belonging to any kind of contingency table. Instead of applying 
the model to the whole population, which is the usual statistical approach, the model 
of interest is applied only to the respondents for whom this model holds, with all other 
persons belonging to the alternative model. It follows that all values in the alternative 
model, which can be treated as residuals, are positive. The visualization part in the 
chapter refers to different ways of displaying those residuals. 

In Chapter 30, Yoshio Takane gives an introduction to the visualization in ideal 
point discriminant analysis (IPDA) of contingency tables. IPDA is a model of the 
conditional probability of row i given column j in terms of the distances dij between 
row and column points in a low-dimensional Euclidean space. IPDA is one of the 
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best examples of the integration of visualization and modeling ideas, where the data 
are modeled directly as a function of the graphical elements, in this case, interpoint 
distances. Takane gives three applications of IPDA to illustrate its usefulness. 

Chapter 31, by Ulf Brckenholt, shows shifts in ideal points over time. According 
to the unfolding model, persons evaluate choice alternatives by comparing them to 
their ideal alternatives; they select their most preferred options, the ones that are 
closest (or least dissimilar) to their ideal option. An important constraint of unfolding 
theory is that, although persons may differ in terms of their preferences for the 
choice options, they agree on the similarity relationship among them. Thus, in the 
unidimensional case the choice options' positions along a common (latent) continuum 
are perceived homogeneously by all persons. The author uses an extension of this 
model to explain shifts in ideal points over time. Using two empirical data sets from 
marketing research Brckenholt demonstrates the possibilities of visualizing these 
shifts. 

In Chapter 32, Allan L. McCutcheon demonstrates how to use correspondence 
analysis complementary to latent class analysis (LCA) in comparative social research. 
Using data from the General Social Survey Program, the author introduces several 
LCA models for answering different research questions. In the given examples, LCA 
is used to account for the observed heterogeneity in a multiway cross-tabulation by 
characterizing a set of unobserved, internally latent classes; for example, McCutcheon 
examines a five-class model conducted from questions on religious beliefs in seven 
nations. The classes mirror the latent "levels of belief." One aim of LCA is to 
determine the proportion of respondents in each country belonging to each class. The 
solution is a matrix of positive numbers that can be visualized by applying CA. Thus, 
CA gives a quick understanding of the solutions of the LCA models. 

Chapter 33, by L. Andries van der Ark and Peter G. M. van der Heijden, discusses 
the visualization of latent class analysis and latent budget analysis (LBA), with special 
reference to correspondence analysis. Since the latent class model studies the joint 
probabilities of each cell of the contingency table to be analyzed, this approach should 
be used if the row variable and the column variable are both response variables or, in 
other words, if there is no causal interpretation in the table. The response variables are 
presumed independent given the latent classes. On the other hand, the latent budget 
model should be used if one of the variables is an explanatory variable and the other 
is a response variable. However, the authors show that LCA and LBA are equivalent 
techniques and that the parameters from the one model can be obtained from the 
parameters of the other. Van der Ark and van der Heijden also show how to project 
latent budgets onto a CA solution, thus providing a new way of interpreting these 
latent values. 

In Chapter 34, Jay Magidson proposes the use of general ordinal logit displays for 
the visualization of the effects in categorical outcome data. In the traditional approach 
of log-linear modeling with an ordinal variable, the solution consists of long lists of 
parameter estimates and related statistics, which are often difficult to interpret. Using 
examples in which the categorical outcome is either dichotomous or ordinal and the 
predictor variables are either nominal or ordinal, the author demonstrates the power 
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of graphical displays for interpreting the data. Together with the traditional statistics, 
which reflect the model fit and the significance of effects, the displays show which 
effects are minor and which are major. Thus, one can conclude from the display 
where there are possibilities for improving the log-linear model. 

Chapter 35, by Antoine de Falguerolles, discusses the visualization of the resid- 
uals in log-linear models. The general idea of this kind of model is that the model 
formula for the predictor consists of a linear term and an additional bilinear term 
of reduced rank that models the interaction between the rows and columns. The 
advantage of modeling the interaction in this way is that the fitted row and column 
parameters of the bilinear term can be plotted on orthogonal axes and interpreted as 
a biplot. The author illustrates the methodology with two examples, first a three-way 
contingency table of suicide behavior, treated as a two-way table where "causes of 
death" is cross-tabulated against the combined variable of sex and age group. The 
second example is a square mobility table illustrating the quasi-symmetric model with 
a bilinear term, which also leads to a biplot display of the fitted model parameters. 
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Chapter 29 

Analysis of Contingency 
Tables Using Graphical 
Displays Based on the 
Mixture Index of Fit 
Clifford C. Clogg, Tam,is Rudas, and Stephen Matthews 

1 Introduction 

We present here a new approach to the visualization of structure in categorical data. 
This approach assumes that a simple model is considered in order to define the 
structure of interest. We consider methods for the analysis of two-way contingency 
tables, and as an example of data of this kind we shall analyze the occupational 
mobility table given in Table 1. This contingency table is taken from the famous 
study by Blau and Duncan (1967), as condensed by Knoke and Burke (1980). This 
table cross-classifies American men in 1962 according to their current occupation 
category and their fathers' occupation category. The approach presented here is not 
limited to mobility, or other two-way tables, or to the models considered. It could 
be applied to any of the several models that have been suggested for the analysis 
of social mobility and related two-way tables (see Goodman, 1984; Goodman and 
Clogg, 1992; Clogg and Shihadeh, 1994; Luijkx, 1994). The method can also be 
generalized to higher dimensional contingency tables. 

Our approach relies on the following logic. First, a model H is proposed either as 
a baseline model or as a structural model. Second, this model is embedded in a special 
two-point mixture model. Third, the special residuals from this mixture representation 
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Table 1: A 5 x 5 occupational mobility table 

Son 

Father 1 2 3 4 5 

1 Professional and managerial 152 66 33 39 4 
2 Clerical and sales 201 159 73 80 8 
3 Craftsmen 138 125 184 172 7 
4 Operatives and laborers 143 161 209 378 17 
5 Farmers 98 146 207 371 226 

Source: Blau and Duncan (1967, p. 496), as condensed by Knoke and Burke (1980, p. 67). The 
cell frequencies in the Blau-Duncan table, as reported by Knoke and Burke and used here, are 
actually population estimates divided by ten thousand; the given sample size (n = 3396) is 
not the actual sample size used to estimate the population totals. 

are examined. These residuals summarize structure or unmodeled structure in relation 
to model H. The mixture-model residuals are very different from ordinary residuals in 
two important ways: they are always valid and always nonnegative. The new residuals 
may be described by tabular and graphical displays. 

When applied to the mobility data, this approach leads to splitting the cell 
frequencies or probabilities into two parts: one part that can be attributed to the part 
of the population where the model of interest holds and another part that can be 
attributed to the part of the population where the model does not hold. For example, it 
will be shown that the model of quasi-uniform association can describe the mobility 
process in about 95% of the population, and nearly half of the remaining 5% of the 
population is concentrated into one cell of the mobility table. 

The new approach offered here is one way to use models as a guide for the 
visualization of structure in categorical data. The approach specifies what can be 
compactly summarized with parameter values from some simple models and what 
needs to be summarized with graphical or tabular displays. Our methods can serve as 
a kind of rapprochement between modeling and graphical techniques for the analysis 
of categorical data. 

2 Some Models  

For the two-way contingency table cross-classifying variables R and C, let (i, j)  
denote a given cell and let jSj and Fij denote the observed and expected frequencies, 
respectively, for i = 1 . . . . .  I, j = 1 . . . . .  J. Let Pij = f i j /n  and Pij = Fij/n denote 
the observed (or empirical) cell proportions and the expected (or theoretical) cell 
proportions. 
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Our approach starts with specifying a model H for the table. Three models 
will be considered for illustrative purposes. These are the independence (I), quasi- 
independence (QI), and quasi-uniform (QU) association models. These three models 
form useful baselines in many cases in which two-way tables are considered. Written 
as log-linear models, these are 

l :log(Fij) = h + t~R(i) + hC(j) (1) 

QI :log(Fij) = h + l~R(i) '~ l~C(j) + l~RC(i,i ) (2) 

QU : log(Fij) - A + hR(i) + hc( j )  n t- hRC(i,i ) + dp i j (3) 

The QI model can be obtained from the I model by adding (on the logarithmic 
scale) special parameters to the cells on the main diagonal, supposing these are not 
structural zeros. The Q U model is a special form of quasi-symmetry and is useful 
when the variables have ordered categories (Goodman, 1984). This model assumes 
essentially that, except for the cells on the main diagonal, all the local odds ratios 
(Fi,jFi+l,j+l)/(Fi,j+lFi+l,j) have the same value. 

Now consider the sufficient statistics for the above models (see, for example, 
Agresti, 1990). These are 

I : {n, (fi+), (f+j)} (4) 

Q I  : {n, (j~+), (f+j) ,  (j~i)} (5) 

and 

QU" {n,(3~+),(f+j),(fii),Z ~ fijij } 
i j 

(6) 

where the ranges of the subscripts for sets of statistics have been suppressed for 
convenience. Note that these sets of sufficient statistics are not minimal, but they 
summarize all the relevant sample information for the respective model, assuming 
the model is true for the entire population. A more precise formulation of the sets 
of sufficient statistics would require the specification of the actual sampling scheme. 
Depending on this, the sample size n may or may not be a statistic observed from the 
data, and even if it is, its value could be easily obtained from the other statistics listed. 
The sample size is included here to facilitate generalizations later in this chapter. 

When any of the models I, QI, QU is analyzed by maximum likelihood proce- 
dures, the values of the sufficient statistics are fitted, or carried over from the data 
to the estimate. For the I model, these quantities are the sample size, row marginal 
distribution, and column marginal distribution. For the QI model, the same quantities 
plus the cell entries on the main diagonal are fitted, and for the Q U model there is 
one additional quantity, the observed cross product, using row scores i and column 
scores j. 



428 Chapter 29. Analysis of Contingency Tables Using Graphical Displays 

When a model is not true for the entire population, the "sufficient" statistics are 
not sufficient, for they do not capture all the information relevant in the data. Actually, 
the values of the preceding statistics in this case may be completely irrelevant. 
Traditional approaches to model fitting and testing assume that the model of interest 
is either true for the entire population or not and assess the likelihood of obtaining 
the given sample under the former assumption. In the next section we shall show how 
the idea that a model may be true for a part of the population can be used to measure 
the fit of the model. In this approach, the preceding sets of "sufficient" statistics will 
be sufficient for only that part of the population where the model holds. 

The I and QI models are often taken as baseline models, but the QU model might 
be viewed as an approximation for the model that generated the data in several cases. 
Using these models as a guide, we will present an approach that summarizes model 
misfit, either via tabular displays or via graphical displays in terms of the sufficient 
statistics for the models as well as in terms of other quantities. 

3 The 7r* Index of Structure 

The material in this section follows Rudas et al. (1994) and Clogg et al. (1995), where 
proofs of the assertions made here can be found. 

Consider a model H for the contingency table, for example, any of the models 
described earlier. Model H is embedded into the following model H~r 

H,rr :Pij = (1 - 7r)l-Ii(ij  ) + 7rl-I2(ij); 1-I 1 ~ H , l - I 2  u n s p e c i f i e d  (7) 

Model (7) can be given the following interpretation: A dichotomous latent variable, 
say X, is posited with P r (X=  1) = 1 - 7r and Pr(X = 2) = 7r, that is, with latent class 
proportions, or mixing weights 1 - 7r and 7r. Within the tth latent class (t = 1, 2), 
I-It(ij ) ~- Pr(cell(i, j)  I X = t); that is, the 1-It(ij ) denote the conditional probabilities 
of interest. 

Model (7) is different from the ordinary two-class latent structure model in 
two respects. First, the model H originally specified applies only to the first latent 
class. The second latent class is not modeled, or is unrestricted, or is estimated 
nonparametrically. The usual latent class model assumes independence or "local 
independence" in both latent classes. Second, model H need not be independence or 
some restricted version of independence. Any restricted or unsaturated model can be 
used to define H and hence the mixture model H~. 

For a given model H, the mixture representation H~ in (7) defines a class of 
models as 7r varies between zero and one. Note that H0 = H; that is, for 7r = 0 (7) 
is equivalent to H. The specific model with 7r = 0 says that model H is completely 
congruent with the data, or that model H applies to the entire population. When 
7r = 1, the data, or the true distribution that generated the data, would be said to 
be completely outside the model formulated initially. Also, H1 does not imply any 
restriction as to the true distribution. 
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The class of models in (7) has the following nesting property: for 7r < 7r ~, H~ C 
H~,. This means that if H = H0 does not contain the true distribution, then a value of 
7r with 0 < 7r --- 1 can always be found so that the model in (7) fits the distribution 
perfectly, since H1 is not restricted and therefore contains any distribution. Or, if 
H~ does not fit the distribution perfectly for a given value of 7r, then a value of 7r ~ 
with 7r < 7r ~ <- 1 can always be found so that model H~, contains the distribution. 
Because of this property, the class of models in (7), with 7r considered as a parameter, 
can be used to represent the lack of fit of model H. There is always a value of 7r 
for which H~ fits the underlying distribution perfectly; therefore this model can be 
used to quantify the lack of fit of H, that is, to summarize the structure in the true 
distribution in relation to H and to pinpoint cells where this lack of fit arises. For 
cases where model H serves as a definition of structure, the magnitude of the structure 
can be quantified in terms of 7r, and the local structure can be investigated using the 
entries in the table of the conditional probabilities for the second latent class (i.e., 

1-I2(ij)). 
For a specified model H, we define our index of structure (or of lack of fit) 

7r* as the smallest value of 7r for which the model in (7) contains (fits) the true 
distribution P. That is, the functional 7r*(P) is defined as 

7r*(P) = inf{Tr : P = (1 - 7r)II1 + 7rII2; 1-I1 E H, II2 unspecified} (8) 

where the cell subscripts have been suppressed. Because of the nesting property, H~ 
for any 7r* < 7r --< 1 will also fit P. It is important to recognize that the parameter 
7r* is the minimum value of the mixing proportion 7r for which H~ describes the 
distribution. The value of 7r* is unique, because it is a minimum. Also, the maximum 
likelihood estimator (MLE) of 7r* is obtained by substituting P = {Pij} = { f i j /n}  for 
P in the functional defined in (8). Iterative calculation of the MLE of 7r* is described 
by Rudas et al. (1994). Basically, the algorithmic problem is to find the smallest value 
of 7r for which the mixture representation in (7) produces perfect fit for the observed 
distribution. For other algorithms see Xi and Lindsay (1997). 

For a given model H, such as independence or "perfect mobility," suppose now 
that 7r* or ~r* is available. These quantities have the following simple interpretation: 
7r* is the minimum fraction of the population that is "outside" model H, and C'r* is 
the MLE of that fraction. 

Note that whereas in the traditional hypothesis-testing approach the null and 
alternative hypotheses may both be false, the representation in (7) is always possible 
with an appropriate value of 7r, and inference based on it is always valid. 

4 The 7r* Index Applied to the Mobility Data 

The framework outlined will now be applied to the data in Table 1. Standard chi- 
squared fit statistics as well as the MLE of 7r* appear in Table 2. The chi-squared 
values indicate that each model is unacceptable, although the Q U model provides a 
relatively good fit. The ~r* values for the three models are 0.310, 0.147, and 0.052, re- 
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Table 2: The usual fit statistics and the mixture index of structure ~r* for three models 
applied to the data in Table I a 

Mode l  X 2 L 2 d f  ~7" ~7 L 

I 875.10 830.98 16 0.310 0.282 
QI 269.07 255.14 11 0.147 0.123 
QU 30.78 27.82 10 0.052 NA 

a X 2, L 2 refer to the Pearson and the likelihood-ratio chi-squared statistics; df to the degrees 
of freedom; ¢rL denotes an approximate 95% lower confidence bound for 7r*. NA means that 
the confidence interval contains zero. See text for a description of the models. 

spectively. These quantities have the following interpretation. With the independence 
model we estimate that 31% of the population is outside the model, and this quantity 
can be taken as the amount of structure to be explained either by other models or 
by graphical summary. In other words, we estimate that 69% of the population can 
be described by independence and no special visualization techniques are required 
for this part of the population. For the QI model, nearly 15% of the population is 
estimated to be outside the model, or about 85% of the population can be described 
by quasi-independence and, again, no special visualization techniques are required 
for this part of the population. Alternatively, about half of the structure not described 
by the independence model, in terms of the fraction of the population where it is 
present, is accounted for by including special parameters for the cells on the main 
diagonal. Finally, for the QU model, only about 5% of the population is estimated to 
be outside the model, and this amount seems to be quite small. That is, in spite of the 
fact that the Q U model does not fit the data well using a strict interpretation of the 
chi-squared statistic, the model fits well in the sense that it is able to describe about 
95% of the population. 

It is well known that values of the chi-squared statistics are proportional to the 
sample size for sets of data with the same observed distribution P. Given that for the 
present set of data the cell frequencies are merely population estimates in ten thou- 
sands (the actual frequencies used to estimate these are not available in the source), it 
is not valid to rely on the chi-squared values as strict test statistics. Depending on the 
actual sample size, they may be substantially smaller or substantially greater than the 
values reported in Table 2. The ~r* values, on the other hand, do not depend on the 

^ 

sample size in the preceding sense; for a given model, these values depend on P only. 
Therefore, in this case, the inference based on the mixture index of fit 7r* appears to 
be more valid than inference based on the chi-squared values. 

The last column of Table 2 reports 95% lower confidence bounds for 7r*. For 
the QU model the resulting confidence interval contains the value zero. This implies 
that the hypothesis that the true value of 7r* is equal to zero, that is, the model 
describes the entire population, cannot be rejected at the 5% level. This test relies on 
the assumption that the true sample size is the one reported in Table 1. 
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Another interpretation of the quantity ¢'r* can be obtained by linking its value to 
the sufficient statistics. All of the models (1), (2), and (3) include the constant term A. 
The MLE of A for a table of fixed size under any of the models can be computed 
using the sample size n only from among the sufficient statistics listed under (4), (5), 
and (6), respectively. The sample size is sufficient for the constant term under any of 
the models (1), (2), or (3) (in fact, under any log-linear model assumed to hold for 
the entire population). In these cases, the constant term A in the model is a scaling 
factor making the estimated frequencies sum to the sample size (or, consequently, the 
estimated probabilities sum to 1). 

Consider now the following reparameterization of the mixture model (7) for the 
H = I model in (1): 

Fij = exp (/(1 + /(,R(i) + /(,C(j)) + exp (/(2 + /(2R(i) -[- /(2C(j) -[- /(2RC(ij)) (9) 

with the usual assumption that the /(1 and /(2 parameters summed in any of their 
arguments give zero. Then subject model (9) to the requirement that 

Z Z exp (K 1 -l- K1R(i ) -[- KIC(j))is maximal 
i j 

(10) 

Model (9) is the same mixture representation that appears in (7), but the independent 
and nonrestricted parts are now in log-linear representation, with the (1 - 7r) and rr 
mixing weights absorbed. Condition (10) means that the weight of the independent 
part [(1 - 70 in (7)] should be as large as possible. 

Then n-?r* is sufficient for the constant term K 2 in model (9)-(10), and n(1 - 4r*) 
is sufficient for K1. That is, under (1) n (= n 1) is sufficient for the constant term, 
while under (9)-(10), n(1 - 4r*) is sufficient for the constant term for the part of 
the population where (1) is supposed to hold. This reflects the fact that instead of 
the fraction 1 (i.e., the entire population), model (1) is supposed to be true only in a 
smaller fraction of size 1 - 7r*. 

This argument generalizes directly to any model that includes a constant term, 
not just to models (2) and (3), but to any log-linear model as well. 

Residuals  Based on the Mixture 

Representat ion of a Mode l  

We now consider some properties of the 1-I2 matrix, which is the unrestricted part of 
the mixture model (7). Suppose that H is the model of independence with ( I -  1 ) ( J -  1) 
degrees of freedom or, equivalently, I + J - 1 estimated parameters, or constraints on 
the fitted frequencies [wi th /J  - (I + J - 1) = (I - 1)(J - 1)]. The table of conditional 
probabilities for the unstructured latent class (II2) will have at least I + J - 1 zeros. 
Consequently, the number of nonzero entries in this matrix will be no greater than 
(I - 1 )(J - 1), which coincides with the number of degrees of freedom for the model I. 
In general, if model H has d degrees of freedom, then the number of nonzero entries 
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in H2 will be less than or equal to d, and there will be at least /J  - d zeros (see Xi, 
1996). 

The nonzero entries in H2 define residuals in the context of the mixture represen- 
tation. The pattern of nonzero entries summarizes the local misfit or local structure. 
The pattern and size of nonzero entries in this matrix may suggest ways to modify the 
original model. These entries can be examined using conventional tabular displays 
or by using simple graphical displays. Note that H might be either a model proposed 
as an "explanation" of the data, in which case 7r* summarizes lack of fit of this 
model and the pattern of nonzero entries in II2 describes cell-by-cell lack of fit of 
this model, or H might be a model used primarily to define structure (H is some 
standard baseline model), in which case 7r* measures the amount of structure not 
described by H and the pattern of nonzero entries in H2 describes the local structure 
not described by H. By considering the local misfit or local structure as summarized 
in the unrestricted matrix of probabilities H2, a new and fundamentally different kind 
of residual analysis is possible. 

To facilitate comparison, the entries in 1-~I2 can be multiplied by -tr*; when this is 
done, the decomposition corresponding to (8) or to (9) and (10) can be written as 

Pij = qij + rij (11) 

where Pij = ~j/n [the observed proportion in cell (i, j)], qij = (1 - -  ~ * ) H I ( i j ) "  is 
the component associated with the part of the population estimated to lie in H, and 

= ~ *  rij I~[2(ij) is the component associated with the part of the population estimated 
to be outside H. We shall call the rij quantities the mixture-model residuals, or MMRs 
for short. 

The MMRs are different from ordinary residuals in two very important aspects. 
First, the MMRs are always valid, in the sense that the representation (7) from which 
they are derived is always valid (for some value of ~r) in contrast to the usual residuals 
that are based on the assumption that model H is true for the entire population, which 
may or may not be correct. Moreover, when model H is not true, the meaning of the 
ordinary residuals is somewhat dubious. Second, the MMRs are always nonnegative, 
have the straightforward interpretation of being the distribution in the part of the 
population where H does not hold true, and therefore can be analyzed by methods 
similar to those that can be used to analyze the distribution of the estimates under 
model H. 

The decomposition in (11) leads to an analysis of local structure that is consistent 
with the index of overall structure in the following sense. Summing over i and j gives 

1 = ~ Z Pij-~ Z Z qij Jr Z Z ri j ----(1-  -?r*)+ Or* 
i j i j i j 

The MMRs sum to the "overall residual" Or*. The relative contribution of a given 
MMR to the overall residual is rij/~T*. 

In some cases the MMRs may be used to identify the parts of the population 
where H does not fit or does not fit well (Rudas and Zwick, 1997). 
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6 Analyzing Lack of Fit and Local Structure Using 
Tabular Displays 

Tables 3, 4, and 5 give the rij MMRs for the I, QI, and QU models, respectively. For 
such a simple table (i.e., a 5 × 5 table), these tabular displays go a long way toward 

summarizing the lack of fit of the models. They also describe the structure in the data 

not captured by the given model. Note that the sizes of the residuals decrease as we 

go from one model to the next. 
For the independence model, the residuals in Table 3 admit the following simple 

interpretation. Nonindependence arises from the upper left 3 × 3 subtable and the 
lower fight 1 × 1 subtable, that is, cell (5, 5). Contributions from cells (1, 1), (2, 1), 
(2, 2), and (5, 5) are dominant. The other entries in this table are virtually zero or 

Table  3: Mixture-model residuals for the independence model  applied to the data in 
Table I a 

Son 

Father 1 2 3 4 5 

1 0.042 0.015 0.003 0 0.001 
2 0.053 0.038 0.008 0 0.001 
3 0.027 0.017 0.026 0 0 
4 0.013 0.004 0 0 0.001 
5 0 0 0.001 0 0.062 

aThere are 9 zeros and 25 - 9 = 16 nonzero entries, corresponding to the number of parameters 
(or degrees of freedom) for the independence model. The values sum to the value of -f-r* (i.e., 
to 0.310), except for rounding error. See Table 1 for the definition of the categories. 

Table  4: Mixture-model residuals for the quasi-independence model applied to the 
data in Table I a 

Son 

Father 1 2 3 4 5 

1 0 0.012 0 0.001 0.001 
2 0.048 0 0 0 0.001 
3 0.017 0.002 0 0 0 
4 0.010 0 0 0 0.002 
5 0 0 0.005 0.047 0 

aThere are 14 zeros and 25 - 14 = 11 nonzero entries, corresponding to the number of 
parameters (or degrees of freedom) associated with the quasi-independence model. Apart from 
rounding, the entries sum to 4r*. See Table 1 for the definition of categories. 
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Table  5: Mixture-model residuals for the quasi-uniform association model applied to 
the data in Table I a 

Son 

Father 1 2 3 4 5 

1 0 0.005 0 0.004 0.001 
2 0.025 0 0 0.003 0.002 
3 0.001 0 0 0.006 0 
4 0 0 0.003 0 0 
5 0 0.003 0 0 0 

aThere are 15 zeros and 25 - 15 = 10 nonzero entries, corresponding to the number of 
parameters (or degrees of freedom) associated with the quasi-uniform association model. See 
Table 1 for the definition of categories. 

identically zero. The upper right 4 X 2 subtable and the lower left 2 X 4 subtable 
contribute very little to the lack of fit; that is, independence almost characterizes these 
subtables. 

Because the quasi-independence model fits the frequencies on the main diagonal, 
? ' i i  - -  0 for each cell on the main diagonal for this model in Table 4. The interesting 
local structure is thus confined to the off-diagonal cells. The (upward) mobility in the 
(2, 1) and the (upward) mobility in the (5, 4) cells are the most important contributors 
to the lack of fit here. These two cells account for nearly 65% of the total lack of fit 
of the QI model. 

The apparent patterns seen in the first two displays disappear once the quasi- 
uniform association model is considered, with one important exception. As seen in 
Table 5, r21 = 0.025, so this cell denoting upward mobility from the next-to-highest 
origin category to the highest destination category is not described well by the QU 
model. This cell is the only one having an MMR deserving much further comment, 
and it accounts for approximately half of the overall lack of fit. 

7 Some Elementary Graphical Displays 

A number of simple graphical displays suggest themselves as useful representations 
of the preceding analyses. Figures 1, 2, 3, and 4 present four of these for the models 
I, QI, and Q U. 

Note that the analyses based on Figures 1, 2, 3, and 4 would be the same whether 
carded out in terms of probabilities or in terms of frequencies. The sample size, of 
course, plays an important role in effecting the lower confidence bounds 4rL for 7r* 
reported in Table 2. But the estimates themselves do not depend on the sample size. 

Figure 1 shows the decomposition (11) for each of the models, giving for every 
cell the fraction of the probability or of the frequency that is estimated to have come 
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Figure 1: The I, QI, and QU models applied to the Blau-Duncan data. Decomposition 
into model part (qij mwhite) and residual part (rijmblack), as in (11). 

from the part of the population where model H holds (qij) and the fraction that is 
coming from the other part (rij). The model part is white and the residual part is 
black. Improved model fit, as one moves from the I model to the QI model and then 
to the QU model, is reflected by the reduced heights of the black bars, that is, of the 
residuals. The first panel of the figure indicates that there is a substantial amount of 
observations on the main diagonal of the table (that is, immobile population), which 
is not accounted for by the I model. The QI model reproduces the main diagonal 
entirely, and residuals are found only in the off-diagonal cells. With the QU model, 
the only substantial black (that is, residual) part is seen in cell (2, 1). 

The MMRs (rij) are presented in Figure 2; this figure contains the same informa- 
tion as Tables 3, 4, and 5. In other words, this figure gives the black bars from Figure 1. 
Residuals, or equivalently misfit, are concentrated to the upper left comer of the table 
when the I model is used; that is, except for the stronger than expected persistence 
in the farmer category, the I model fails to describe the data mostly because of status 
persistence in the upper strata of the society. The same status persistence is not seen 
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Figure 2: The I, QI, and QU models applied to the Blau-Duncan data. Mixture-model 
residuals (rij). 

in the lower strata of the society, except for the farmers. The third panel of the figure 
indicates that the Q U model gives a fairly good description of the data, except that 
it fails to account for a part of the mobility of the sons of fathers in the clerical and 
sales category into the professional and managerial category. Whether or not this part 
is substantial, can be investigated using the next figure. 

A comparison of the parts not explained by model H in the or* approach and 
of the parts explained by the model is facilitated by plotting rij/qij in Figure 3. The 
panels of this figure show for every model how the "residual" probability compares 
to the "explained" probability. This plot gives an impression about misfit, which is 
very different from the impression that one can gain from Figure 2. For the QI model, 
Figure 2 suggests that the two main sources (or locations) of misfit are cells (2, 1) and 
(5, 4). Figure 3 suggests that from among these, only cell (2, 1) is important, if the 
ratio of the residual to the explained part is considered. Similarly, for the QU model, 
the only major absolute source of misfit is cell (2, 1), but relative misfit here is much 
smaller than in the cells (1, 5) and (2, 5). That is, in "absolute terms" the fit of the 
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Figure 3: The I, QI, and QU models applied to the Blau-Duncan data relative. Resid- 
uals (rij /qij). 

QU model is poorest for the upward mobility of sons of fathers in the clerical and 
sales category; however, the part unexplained is not too big compared with the part 
explained in this category. In the upper right comer of the table the model strongly 
underestimates the frequency, relative to the observed frequency. This applies to 
cells with downward mobility: sons in the farmer category whose fathers are in the 
professional and managerial category or in the clerical and sales category. The small 
observed frequencies in these categories indicate that this type of downward mobility 
is rarely found in the population; however, the QU model still strongly underestimates 
its probability. The statistical reason for this is that the overall fit of a model depends 
more strongly on the fit in the cells with large observed frequencies than on the fit in 
the cells with small observed frequencies. Therefore, the relative fit is poorest in the 
cells with small observed frequencies. 

Finally, Figure 4 shows the relative contributions of the cells to the overall lack 
of fit of the models by plotting rij/¢r*. This figure is a rescaled version of Figure 2. 
For the QU model, nearly half of the total residual (that is, of "?r*) arises in cell (2, 1) 
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Figure 4: The I, QI, and QU models applied to the Blau-Duncan data. Contribution 
of the cells to Lack of Fit (rij ~Or*). 

representing the stronger than expected upward mobility from the clerical and sales 
category into the professional and managerial category. 

Further analysis of the MMRs including the application of various visualization 
techniques could be performed taking into consideration the special structure of the 
residual matrix. In fact, the residuals in the 7r* approach are always nonnegative and 
can be given a probability distribution interpretation and therefore any technique, 
computational or visual, can be used for the analysis of residuals that can be used to 
analyze any probability distribution. 
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Chapter 30 

Visualization in Ideal Point 
Discriminant Analysis 

Yoshio Takane 

1 I n t r o d u c t i o n  

Ideal point discriminant analysis (IPDA) was originally proposed as a technique for 
discriminant analysis with mixed measurement level predictor variables (Takane, 
1986; Takane et al., 1987). However, it was soon realized that it could also be used 
as a technique for analysis of contingency tables (Takane, 1987). It has also been 
extended to cover a wider range of data types (Takane, 1989a, b). In this chapter we 
focus on the second use of IPDA, demonstrating its advantages (and disadvantages) 
in the analysis of contingency tables. 

IPDA allows spatial representations of rows and columns of contingency tables. 
Specifically, it represents rows and columns of contingency tables as points in a 
multidimensional Euclidean space. By looking at distances between them, we imme- 
diately know which rows and columns are closely related to each other. IPDA also 
allows incorporating external information about the rows of contingency tables. This 
information serves as predictor variables for discriminating columns of the tables. 
Based on the statistical inference capabilities of IPDA, we can decide which predictor 
variables are useful for the discrimination. This in turn provides information about 
which attributes of the rows are important for them to have closer relationships with 
certain columns. 

As an example, let us look at the example data set in Table 1. This is a 16 X 2 
contingency table obtained in a clinical study involving cancer patients. Column cat- 
egories pertain to whether the patients lived less than 10 years or longer than 10 years 

441 
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Table  1: The data from Madsen (1976) 

Stage 

Type of 
operation 

Survival 
Radiation Pathology < 10 yr > 10 yr 

1. Low 

2. High 

1. Extensive 

2. Not extensive 

1. Extensive 

2. Not extensive 

1. No radiation 1. Localized 1 21 
2. Spread 9 20 

2. Radiation 1. Localized 0 23 
2. Spread 17 41 

1. No radiation 1. Localized 0 4 
2. Spread 1 9 

2. Radiation 1. Localized 1 2 
2. Spread 2 7 

1. No radiation 1. Localized 1 3 
2. Spread 37 3 

2. Radiation 1. Localized 1 4 
2. Spread 63 7 

1. No radiation 1. Localized 0 0 
2. Spread 3 1 

2. Radiation 1. Localized 0 1 
2. Spread 13 4 

after surgery. Rows of the table represent descriptions of the patients according to 
all possible combinations of four binary variables. The patients were cross-tabulated 
by the length of survival and their 16 combined categories, which we call "profiles." 
In analyzing a table like this, we are typically interested in finding out how the 
patient profiles are related to the survival rate and which variables or combinations 
of variables are specifically related to the survival rate. IPDA answers both of these 
questions. By spatial representation it will be immediately clear which profiles are 
more closely related to which survival categories. By variable selection it will become 
clear which main effects and/or interaction effects among the predictor variables are 
important for survival of the patients. 

In this chapter we demonstrate the use of IPDA through the analysis of this and 
two other data sets, emphasizing how effectively various visualization techniques can 
be used with IPDA for more comprehensive accounts of contingency tables. 

2 Outline of the Method 

Let us briefly explain what IPDA does. In IPDA, we represent both rows and columns 
of contingency tables as points in a multidimensional Euclidean space. We let Xia 
and Yja denote the coordinates of row point i and column point j ,  respectively, on 
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dimension a. The Euclidean distance between the two points is then given by 

dij -- ~ ~ a  (Xia--Yja)2 (1) 

Let nij denote the observed frequency of column j given row i. We assume, for the 
sake of parsimony and numerical stability, that the coordinate of the column point, 
Yja, is given by a weighted average of coordinates of row points, namely 

Yja -- ~ nijXia/n.j (2) 
i 

where n.j = E i  nij. We posit that the conditional probability of row i given column 
j is proportional to exp(-d/~), that is, 

Pilj ~ e x p ( - d i  2) (3) 

It is important to realize that this probability is a decreasing function of the distance 
between row i and column j. That is, the closer they are located, the higher is the 
probability that row i arises from column j, and the further apart they are, the less 
is the chance that row i arises from column j. Let pj denote the prior probability of 
column j. The joint probability of row i and column j is then given by 

Pij = Pj e x p ( - d 2 ) / C  (4) 

where 

C -- ~ ~ Pl exp(-d~) (5) 
k l 

and the conditional probability of column j given row i by 

Pjli = Pj exp(-di2j)/Ci (6) 

where Ci -- E k  Pk exp(-d/~). This conditional probability is fitted to nij so as to 
maximize the log-likelihood function, 

In L = ~ ~ nij In Pjli + constant (7) 
i j 

with respect to the coordinates of row points, Xia. The coordinates of column points, 
Yja, are simply calculated by (2), o n c e  Xia'S are obtained. 

The model allows spatial representations of rows and columns of contingency 
tables. It also allows incorporating external information in the representations. For 
example, we may represent locations of row points as linear combinations of known 
predictor variables. Let X denote the matrix of Xia'S and G a matrix of predictor 
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variables. Then 

X = G B  (8) 

where B is the matrix of weights. We estimate B directly, from which X is calculated 
from (8). 

We may compare goodness of fit of various models and specifications, including 
the dimensionality of the representation space and various specifications of G, and 
choose the best fitting model. Akaike's information criterion (AIC; Akaike, 1974), 
defined by 

AIC~ = - 2  In L~ + 2n~ (9) 

where 7r is a specific model fitted, In L~ is the log likelihood of model 7r maximized 
over its parameters, and n~ is the number of parameters in model 7r. The model that 
yields the smallest value of AIC is considered the best fitting model. AIC penalizes 
the maximum likelihood by the number of parameters used in a model to maximize 
its future predictability. 

The matrix of the negative expected Hessian (second-order derivatives of the 
log-likelihood function with repect to the parameter vector, 0), 

2,= _ E  (t92 lnL / 
0000 r (10) 

evaluated at the maximum likelihood estimates of O, is called the information matrix. 
The inverse of the information matrix provides variance-covariance estimates of the 
parameter estimates, which may be used to draw confidence regions or bands around 
the estimates to indicate the degree of their stability. 

The spatial representation in IPDA facilitates a holistic understanding of the 
relationship between rows and columns of a contingency table in a manner similar 
to correspondence analysis. Statistical evaluation of various constraints, on the other 
hand, facilitates an analytic understanding of structures in contingency tables much 
the same way as in the log-linear analysis of contingency tables. Confidence regions 
indicating the degree of stability of estimates of point locations can also be drawn, 
as already discussed, based on the asymptotic properties of maximum likelihood 
estimators. The conditional probability surface can be plotted for each criterion 
group (column) as a function of coordinates (locations) in the space. In this chapter, 
we demonstrate the use of these visualization techniques through the analysis of three 
example data sets from studies on ovarian cancer, merit distribution, and psychiatric 
symptoms. 

3 Analysis of Ovarian Cancer Data 

The data are a five-way contingency table (Table 1), binary each way, pertaining 
to the survival of patients who had surgical operations to remove ovarian cancer 
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(Madsen, 1976). Columns of the table represent criterion groups, representing two 
categories of survival, survival of less than 10 years (column 1) and survival of 
longer than 10 years (column 2) after the operation. The other four binary variables 
are deemed to be predictor variables: stage of cancer: 1 = low, 2 = high; type of 
operation: 1 = extensive, 2 = not extensive; radiation: 1 -- radiation treatment, 2 = no 
radiation treatment; pathology: 1 = localized, 2 = spread. By factorially combining 
the four binary variables, we obtain 16 profiles of patients corresponding to the rows 
of the table. In analyzing this data set we are specifically interested in finding out 
which profiles have prospects of longer survival and which predictor variables or 
combinations of the variables are closely related to the length of survival. 

We have tried a number of possible combinations of the four predictor variables 
and interactions among them to find the best representation of the row points. The 
representation is necessarily unidimensional because there are only two column cat- 
egories. Results of fitting various models are given in Table 2. Eleven models were 
fitted, including the saturated model and the independence model. The saturated 
model takes observed P j I i, that is, n i j / n i . ,  a s  the estimate of true P j I i" The inde- 
pendence model, on the other hand, assumes that there is no relationship between 
rows and colums of the table. These two models serve as benchmark models. The 
saturated model represents the most general model conceivable and the independence 
model the opposite extreme. Other models listed in the table are labeled by numbers 
representing predictor variables included in the models. For example, 1, 2, 3, 4 in the 
first row indicates a model in which all four predictor variables (all of them are main 
effects) are included, and 1,4, 2 X 4 in the fifth row designates a model in which 
variables 1,4 (both are main effects) and the two-way interaction between variables 2 
and 4 are included. The minimum AIC indicates that the model with the main effect 
of stage of cancer (variable 1), the main effect of pathology (variable 4), and the 

Table 2: Selection of predictor variables for Madsen's data 

Model Predictors AIC (# of parameters) 

1 1, 2, 3, 4 252.9 (5) 
2 1, 3, 4 254.3 (4) 
3 1, 2, 4 251.0 (4) 
4 1,4 252.3 (3) 
5 1, 4, 2 X 4 252.6 (4) 
6 1, 2, 4, 2 X 4 250.9 (5) 
7 1, 4, 2 x 4 *249.0 (4) 
8 4, 2 X 4 349.7 (3) 
9 1, 2 X 4 260.8 (3) 

10 Saturated model 263.5 (15) 
11 Independence model 416.8 (1) 

* Best fitting model. 
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interaction between the type of operation and pathology (variables 2 and 4) is the 
best fitting model (indicated by a star in the table). Note that in coding the interaction 
effect between variables 2 and 4, the nonextensive operation for localized cancer and 
the extensive operation for spread cancer were taken as category 1. The nonextensive 
operation for spread cancer and the extensive operation for localized cancer, on the 
other hand, constitute category 2. (There is one degree of freedom for this interaction, 
which is defined by the difference between the two categories.) The radiation variable 
(variable 3) did not have any significant effects. Compare models 1 and 3, where the 
difference between the two models lies in the absence of variable 3 in model 1. Model 
3 is found to be a better fitting model according to the minimum AIC, implying that 
the contribution of variable 3 is significant. The main effect of the type of operation 
seemed significant in the absence of the interaction effect between this variable and 
pathology (compare models 3 and 6), but once the interaction effect was included, it 
was no longer significant (compare models 6 and 7). These results should be taken 
with some caution, however. The sample size (N = 299) in this data set is a bit 
too small to rely completely on the asymptotic properties of maximum likelihood 
estimators. Preferably, we would like to have three times as many observations. 

Estimates of parameters and their standard errors are presented in Table 3. 
Categories associated with positive weights are supposed to have favorable effects on 
survival. The patient with a low stage and localized cancer has a better prospect of 
longer survival. A nonextensive operation is better when the cancer is still localized, 
but an extensive operation is better when the cancer has already spread. Locations 
of patient profiles are also given in the table. Because the radiation variable has 
no significant effects, we collapsed the original 16 profiles into eight patterns by 
ignoring this variable. Thus, for example, profile 111 indicates low stage (variable 1), 
extensive operation (variable 2), and localized cancer (variable 4). Figure 1 displays 
the locations of the eight patient profiles and the two column categories. The patient 
profiles are indicated at the top of the figure, and the column categories labeled 
Cl and c2 are indicated at the bottom. The profiles located more to the fight have 
better prospects of longer survival. Profile 111 has the highest prospect of longer 
survival, followed by 121, while profile 212 has the lowest prospect among all. 
Two curves labeled C l and c2 indicate the conditional probabilities of column 1 
(survival of less than 10 years) and column 2 (survival of more than 10 years) as 
functions of coordinates of patient profiles along the horizontal axis. These curves 
are similar to item characteristics in item response theory. They happen to be either 
monotonically increasing or decreasing in the entire range of the coordinate values. 
For example, the c2 curve is monotonically increasing even in the outside range of the 
column category 2, where the distance between a point and the column category point 
increases as the point moves away to the fight. However, this is the way it should be 
according to model (6), because what determines the conditional probability is the 
difference between the squared Euclidean distances from a point, say x, to the two 
column categories, that is, dx21 - dx~, but as the point moves away from c2 to the fight, 
the former becomes larger more quickly than the latter. Dotted curves enclosing the 
conditional probability curves indicate the 95% confidence bands for these curves. 
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Table  3: Estimates of parameters from Madsen's data 

Variable 

Estimate of 

category weight 

Standard 

error 

1 Stage 

4 Pathology 

2 X 4 (Operation type 
X pathology) 

1. Low .58 (.02) 
2. High - .65 (.05) 
1. Localized .66 (. 18) 
2. Spread - .  17 (.05) 
1. a .28 (.12) 
2)  - .13 (.05) 

Pattern 

number 

Predictor 

pattern Coordinate of 

(1, 2, 4) row point 

Standard 

error 

1. 111 1.53 (.13) 
2. 112 .28 (.07) 
3. 121 1.11 (.20) 
4. 122 .69 (.16) 
5. 211 .29 (.17) 
6. 212 - .95 (.06) 
7. 221 - .12 (.23) 
8. 222 - .54 (.15) 

Coordinate of 
Length of survival column point 

Standard 

error 

Less than 10 years -.61 (.03) 
Longer than 10 years .61 (.03) 

aExtensive operation for spread cancer or nonextensive operation for localized cancer. 
bExtensive operation for localized cancer or nonextensive operation for spread cancer. 

The true conditional probability curves lie within the bands with probability .95. 
The confidence bands were drawn from variance-covariance estimates of conditional 
probabilities as functions of point coordinates that can easily be derived from those 
of parameter estimates based on the delta rule (Rao, 1973, pp. 388-389). 

Although it is the difference between squared Euclidean distances that determines 
the conditional probabilities of column categories, certain between-row-and-column 
distances are still interpretable in probabilistic terms. The following three statements 
summarize the relationships between dij and various kinds of probabilities: Pilj (the 
conditional probability of row i given column j),  Pij (the joint probability of row i 
and column j), and Pjli (the conditional probability of column j given row i). 

1. According to (3), Pilj is inversely monotonic with dij within column j ,  so that 
dij > di,j ~ Pilj  < Pi, I j" Row i~ is more probable than row i in column j. For 
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Figure 1: Ovarian cancer data: conditional probability curves. 

example, the probability of profile 222 is greater than the probability of profile 
111 for j = 1 in Madsen's data, because the distance between profile 222 and 
column category 1 (cl) is smaller than that between profile 111 and cl. 

2. According to (4), Pij is not necessarily inversely monotonic with dij unless pj is 
constant across j. However, this is approximately true in Madsen's data, so that 
the joint probability of profile 222 and cl is greater than that of profile 111 and cl. 

3. According to (6), Pjli is inversely monotonic with dij within row i for different 
columns (j 's) only if pj is constant across j. That is, dij > dij, ~ Pjli < P j/l i" 
For example, profile 111 is more likely to belong to c2 than to C l in Madsen's 
data. (The conditional probability of c2 is greater than that of cl given profile 111.) 
H o w e v e r ,  Pjli is not inversely monotonic with dij within column j for different 
rows. For example, d12 > d32, but P211 > P213 in Madsen's data. Although the 
distance between c2 and profile 111 is greater than that between c2 and profile 
121, the conditional probability of c2 given profile 111 is greater than that of c2 
given profile 121. 

Interpretations of between-row-and-column distances are thus rather intricate, 
and care should be exercised when they are interpreted in probabilistic terms. 
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4 Analysis of Merit Distribution Data 

Table 4 shows the merit distribution data at McGill University in 1987. There are four 
merit categories in the amount of salary increase in that year: $2400, $1650, $750, 
and $0, which constitute columns of the table. The numbers of faculty members who 
received particular merit increases are tabulated within each of 14 faculties. In the 
faculty of science, for example, 64 professors received the $2400 merit increase, 74 
professors the $1650 increase, 43 professors the $750 increase, and 21 professors no 
merit increase. McGill University introduced the merit salary system for the first time 
in 1987, and high-rank university officials were interested in finding out whether the 
merit allocations were fair across different faculties. 

There are four criterion groups in this data set, so that up to three-dimensional so- 
lutions can be obtained. The data were analyzed by IPDA with dimensionality varied 
from one to three. Since there were no obvious predictor variables that "structure" the 
rows of the table, each faculty was treated as distinct without any particular relation- 
ships assumed among them. The unidimensional solution was found to be the best 
fitting solution according to the minimum AIC (Takane, 1989a). This solution yielded 
the AIC value of 3196.4 with 16 parameters estimated, while the two-dimensional 
counterpart yielded 3204.3 with 28 parameters. Two benchmark models resulted in 
AIC values of 3248.3 (the independence model) and 3225.6 (the saturated model) 
with 3 and 32 parameters, respectively. This indicates that there are indeed significant 
differences in the distribution of merit allocations across different faculties. 

Table 4: Merit distribution data across faculties of McGill University in 1987 

(1) (2) (3) (4) 
Faculty $2400 $1650 $750 $0 

1. Agriculture 13 27 19 15 
2. Arts 56 81 68 13 
3. Dentistry 7 9 3 1 
4. Education 30 32 27 11 
5. Engineering 36 42 32 15 
6. Graduate Studies 13 11 11 5 
7. Law 13 10 6 2 
8. Management 20 13 13 8 
9. Medicine 24 46 44 52 

10. Music 9 9 11 9 
11. Religious Studies 7 4 3 3 
12. Science 64 74 43 21 
13. Libraries 18 27 19 4 
14. Others 9 13 13 15 
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Estimates of parameters in the best fitting solution are provided in numerical 
form in Table 5 along with their standard errors. They are also presented graphically 
in Figure 2. In this figure, column categories are indicated at the bottom by numbers 
from 1 to 4. Despite the fact that no order constraints were explicitly imposed, they 
turned out to be in the order of the monetary value of the merit categories. The 
right-hand side of the figure points to more favorable evaluation. The row points 
representing the 14 faculties are indicated by numbers from 1 to 14 at the top of 
the figure. Dentistry (3) was found to be the faculty most lenient to its members, 
and the Medical School (9) was the most stringent. In fact, Dentistry was on the 
verge of being closed a few years ago due to lack of research productivity, while 
the Medical School at McGill is considered one of the top medical schools in the 
world. The vertical axis represents the conditional probabilities of particular merit 
categories. These conditional probabilities are functions of how lenient or stringent 
faculties were in their allocations of merit. The four conditional probability curves 
depict how they change as functions of the point coordinate along the horizontal 
axis. They are analogous to the category characteristic curves in mutiple-choice 

Table  5: Estimates of parameters for the merit distribution data 

Coordinate of Standard 

Faculty row point error 

1. Agriculture -.63 (.27) 
2. Arts .54 (.19) 
3. Dentistry 1.42 (.97) 
4. Education .18 (.30) 
5. Engineering .10 (.26) 
6. Graduate Studies .08 (.46) 
7. Law 1.21 (.72) 
8. Management .01 (.39) 
9. Medicine - 1.23 (. 13) 

10. Music -.79 (.37) 
11. Religious Studies -.06 (.69) 
12. Science .64 (.41) 
13. Libraries - 1.13 (.30) 
14. Others .38 (.20) 

Coordinate of Standard 

Merit category column point error 

1. $2400 .15 (.02) 
2. $1650 .07 (.01) 
3. $750 -.01 (.01) 
4. $0 -.42 (.02) 
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Figure 2: Merit distribution data: conditional probability curves. 

item response models. They are either monotonically increasing or decreasing for 
two extreme categories but are unimodal for intermediate categories. (Two column 
categories in the two-column case, as in the previous example, correspond to the two 
extreme categories in the multicolumn case.) As before, dotted curves enclosing the 
conditional probability curves indicate the 95% confidence bands. 

5 Analysis of Psychiatric Symptoms Data 

Both examples discussed so far involved only unidimensional spaces. The next ex- 
ample involves a two-dimensional space. Table 6 presents Maxwell's (1961) data, in 
which there are three criterion groups, SC (schizophrenia), MD (manic-depressive), 
and AX (anxiety state), constituting columns of the table, and four binary predictor 
variables, each indicating the presence (2) or absence (1) of a certain symptom: A, 
whether the patient is anxious; S, whether the patient is suspicious; T, whether the 
patient has the schizophrenic type of thought disorder; G, whether the patient has 
delusions of guilt. By factorially combining the four binary variables, we obtain 16 
symptom patterns, representing the rows of the table. 

IPDA was applied to the table with a number of possible structures for the 
rows and with varying dimensionalities. It turned out that the model with the main 
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Table 6: The data from Maxwell (1961) 

Predictor Observed frequency 

Pattern pattern in groups 

number A S T G SC MD AX 

1 1 1 1 1 38 69 6 
2 1 1 1 2 4 36 0 
3 1 1 2 1 29 0 0 
4 1 1 2 2 9 0 0 
5 1 2 1 1 22 8 1 
6 1 2 1 2 5 9 0 
7 1 2 2 1 35 0 0 
8 1 2 2 2 8 2 0 
9 2 1 1 1 14 80 92 

10 2 1 1 2 3 45 3 
11 2 1 2 1 11 1 0 
12 2 1 2 2 2 2 0 
13 2 2 1 1 9 10 14 
14 2 2 1 2 6 16 1 
15 2 2 2 1 19 0 0 
16 2 2 2 2 10 1 0 

Total 224 279 117 

effects of the four predictor variables yielded the best representation of the data in 
a two-dimensional space (see Takane, 1987, for more detailed comparisons among 
various model specifications). This solution is displayed in Figure 3. In this figure, 
the points corresponding to the three criterion groups are marked SC, MD, and AX, 
and those corresponding to the 16 symptom patterns are numbered from 1 to 16. The 
ellipses surrounding the points indicate the 95% asymptotic confidence regions. They 
were drawn under the assumption of asymptotic normality of maximum likelihood 
estimators whose variance-covariance estimates are obtained by the Moore-Penrose 
inverse of the information matrix (10), which happened to be singular due to the 
translational and rotational indeterminacies in the Euclidean space. These confidence 
regions indicate that the point locations are estimated fairly accurately in the solution. 
However, when the rows of the table are treated as completely distinct without any 
relationships assumed among them, they are estimated very poorly, as can be seen 
in Figure 4. Large confidence ellipses in Figure 4 indicate that point locations in 
this solution can vary rather drastically without impairing the overall goodness of 
fit of the model, showing the importance of proper constraints in deriving a reliable 
configuration, particularly when the data are weak in the sense that the sample size 
is small. 

Estimates of weights applied to the four predictor variables and coordinates of 
the 16 symptom profiles and the three criterion groups are given in Table 7 along 
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i 

Figure 3: Two-dimensional configuration derived from Maxwell's data with 95% 
asymptotic confidence regions when the main effects of the four symptom variables 
are used as row constraints. 

with their standard errors. Figure 5 shows conditional probability surfaces for the 
three criterion groups. They are Psclx, PMDIx, and PAXlx as functions of coordinate 
vector x. The functions are evaluated at equally spaced grid points of x. These surfaces 
are two-dimensional analogues of category characteristic curves in unidimensional 
multiple-choice item response models. The surface for PMOIx is high up in the front 
but goes down toward the back, although this may be a bit difficult to see in the figure. 

Figure 6a, b, and c display the same conditional probability surfaces in the form of 
three-dimensional isoprobability contour plots. As before, the vertical axis represents 
the conditional probability. The 16 symptom profiles are indicated by numbers from 
1 to 16. From these figures we can deduce the propensities of the three criterion 
groups given the symptom patterns. Regions (the set of x) in which P jig = maxk(Pklx) 
are indicated by + in the figures. We can immediately see which symptom patterns 
are likely to belong to which criterion groups. Patterns 3, 4, 5, 7, 8, 11, 12, 15, and 
16 are most likely to belong to SC. All these patterns except one (pattern 5) have 
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~ A~X 

2 ~ 

Figure 4: Two-dimensional configuration derived from Maxwell's data with 95% 
confidence regions: unconstrained case. 

thought disorder (T)--see Table 6. It seems that T is a rather decisive indicator of 
SC. Suspiciousness, on the other hand, is a weak indicator of SC. It is an indicator 
of SC (pattern 5) when no other symptoms suggest other categories. There are three 
other patterns (6, 13, and 14) that are characterized by suspicion but do not belong 
to SC. Patterns 6 and 14 are more strongly affected by delusions of guilt (G) and are 
classified into MD, while pattern 13 is affected by anxiety (A) and classified into AX. 
Patterns 1, 2, 6, 10, and 14 are likely to belong to MD. All these patterns except one 
(pattern 1) have delusions of guilt (G), indicating that this variable is a fairly good 
indicator of MD. However, thought disorder (T) is a stronger variable. Whenever T is 
also present, symptom patterns 4, 8, 12, and 16 tend to be classified into SC. Pattern 
1 does not have any of the four symptoms. It seems that this pattern is classified into 
MD simply because this category has the largest prior probability. Finally, only two 
patterns, 9 and 13, are likely to belong to AX. Anxiety (A) seems to indicate AX only 
when no other symptoms indicate otherwise. 
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Table  7: Estimates of parameters  for Maxwell 's  data 

Estimates of weights 

Standard Standard 

Variable Category Dim. 1 error Dim. 2 error 

A 1 .47 (.04) - .48  (.06) 
2 - .39  (.03) .40 (.05) 

S 1 - .16  (.03) - .10  (.05) 
2 .40 (.07) .25 (.12) 

T 1 - .29  (.02) - .10  (.04) 
2 1.11 (.08) .37 (.17) 

G 1 .00 (.03) .40 (.04) 
2 - .01 (.08) -1.13 (.11) 

Coordinates of row points 

Standard Standard 
Predictor Pattern Dim. 1 error Dim. 2 error 

1 1111 .02 (.07) - . 2 8  (.12) 

2 1112 .01 (.08) -1.81 (.10) 
3 1121 1.42 (.10) .18 (.16) 
4 1122 1.40 (. 11) - 1.34 (.23) 
5 1211 .58 (.10) .07 (.18) 
6 1212 .56 (.11) -1.45 (.16) 
7 1221 1.98 (.09) .54 (.11) 
8 1222 1.96 (.19) - .99  (.04) 
9 2111 - .83 (.05) .60 (. 10) 

10 2112 - .85 (.12) - .92  (.11) 
11 2121 .57 (.21) 1.07 (.14) 
12 2122 .55 (.29) - .46  (.09) 
13 2211 - . 2 7  (.09) .95 (. 16) 
14 2212 - .29  (.12) - .57  (.19) 
15 2221 1.13 (.10) 1.42 (.18) 
16 2222 1.11 (.13) - .10  (.27) 

Coordinates of column point 

Standard Standard 

Psychiatric category Dim. 1 error Dim. 2 error 

SC .79 (.03) .13 (.05) 
MD - .34  (.02) - .33 (.03) 
AX - .71 (.03) .55 (.04) 
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Figure 5: Conditional probability surfaces for the three criterion groups. 

6 Concluding Remarks 

We have seen three examples of IPDA analysis in which visualization plays a sig- 
nificant role. Interpretations of between-row-and-column distances in terms of vari- 
ous probabilities (conditional and joint), however, require special care, as has been 
discussed in Section 3. The between-row-and-column distances are inversely mono- 
tonically related to Pilj within column j and to Pjli only within row i only if pj is 
constant across all j 's. Although consistent with the general Bayesian framework, 
this may be considered as a weakness of the model in IPDA. In order to make all 
the between-row-and-column distances unconditionally inversely monotonic with the 
corresponding probabilities it may be necessary to fit the following model: 

P i j  - -  exp(-  d~ ) / ~ ~ exp(-  d~) (11) 
k 1 

This is similar to (4), but (11) does not have pj's. 
There are two other kinds of distances, within-row distances and within-column 

distances, that one may be tempted to interpret. These distances are not directly fitted 
and consequently do not allow any probabilistic interpretations. Still, the distances 
are comparable within each set. We may say, for example, that in Maxwell's data 
symptom patterns 1 and 14 are more similar to each other than symptom patterns 7 
and 14 in relation to the three criterion groups and that AX and MD are more similar 
to each other than SC and AX (see Figure 4). The similarity between criterion groups 
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Figure 6(a): Isoprobability contours for SC. 

is reflected in the probabilities of misclassification between them, although no formal 
relationship can be established between the two. 

The distances (including the between-row-and-column distances) are not com- 
parable across different sets. This is due to the restriction (2), which makes the 
variance among the coordinates of column points generally smaller than that of the 
row point coordinates. This is due to the regression effect. One may venture lifting 
this restriction to make all three kinds of distances strictly comparable, but that may 
incur a cost of less numerical stability in estimates of point locations in IPDA. 

Software Notes 

A Fortran program for IPDA and the program write-up can be obtained from the 
author. Figures in this chapter were drawn using MATLAB (Math Works, Inc., 
Natick, MA). 
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Figure 6(b): Isoprobability contours for MD. 
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Chapter 31 

Modeling Time-Dependent 
Preferences: Drifts 
in Ideal Points 
Ulf B/ickenholt 

1 In troduct ion  

An important objective in the analysis of preferential or attitudinal data is to obtain a 
graphical representation of the similarity structure that underlies the choice options 
while taking into account individual differences. Coombs' (1964) unfolding theory 
provides a conceptually simple yet powerful approach for accomplishing this goal. 
According to unfolding theory, persons evaluate choice alternatives by comparing 
them with their ideal alternatives. When asked to pick, for example, the most preferred 
option, individuals select the one that is closest or least dissimilar to their ideal option. 
A crucial constraint of Coombs' unfolding approach is that, although persons may 
differ in terms of their preferences for the choice options, they agree on the similarity 
relationships among them. Thus, in the unidimensional case the choice options' 
positions along a common (latent) continuum are perceived homogeneously by all 
persons; however, the positions of the individual ideal options may vary from person 
to person. 

Because it is frequently the case that individuals differ in their preferences but not 
in their perception of choice options, there are numerous applications of unfolding 
approaches that yield parsimonious and easily interpretable graphical representations 
of choice or attitudinal data (for example, see Bossuyt, 1990; Carroll and Pruzan- 
sky, 1980; Heiser, 1981; van Schuur, 1984). However, despite its usefulness in these 
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and other studies, the potential and generality of the unfolding approach have not 
been fully explored. In particular, the great majority of unfolding studies focused 
exclusively on the analysis of cross-sectional data. This is unfortunate because the 
unfolding model provides a promising framework for forecasting and modeling sta- 
bility and change in preferences over time by distinguishing between time-dependent 
changes in the similarity relationships of items and in ideal point positions. An ap- 
pealing feature of this framework for applied settings is its potential in predicting 
choice behavior when new options are introduced or existing ones are modified. For 
example, in marketing studies unfolding analysis can be an important methodological 
tool for the development of new products that are close to most of the consumers' 
ideal points (Horstman and Slivinski, 1985; Hubert and Busk, 1976). 

To some extent, the paucity of unfolding applications that focus on the analysis 
of longitudinal choice data may be attributed to lack of a comprehensive methodolog- 
ical approach. This chapter addresses this problem by demonstrating that straight- 
forward extensions of latent-class unfolding models proposed for the analysis of 
cross-sectional data by B6ckenholt and B6ckenholt (1990a, 1991) may also prove 
useful for the analysis of time-dependent data. A critical feature of the proposed 
approach is its ability to take into account that individuals may differ both in their 
preferences and in the way their preferences change over time. Two applications with 
different data types are presented to illustrate the usefulness of unfolding models 
for the analysis of time-dependent data. One application investigates effects of an 
information campaign on perceived environmental threats of car usage, and another 
one assesses the impact of a new product on preferences for established brands. In 
both applications it is shown that preferential or attitudinal changes over time can be 
explained solely by shifts in ideal-point positions. 

2 Individual-Level Unfolding Models for Pick 
any/m and Paired Comparison Data 

This section discusses unfolding models for two well-known data collection tech- 
niques, the pick any/m and paired comparison methods. The former method seems 
closest to actual choice behavior by asking respondents to select preferred items 
from a set of m items. In applications of the second technique, respondents are pre- 
sented with two items at a time and are asked to pick the preferred one. The paired 
comparison technique may be the method of choice in laboratory settings when an 
experimenter wants to impose minimal constraints on the response behavior of a 
respondent. 

When Coombs (1964) introduced the pick any/m procedure, he posited that 
persons select the items that are closest to the position of their ideal points. More 
formally, let the positions of item i and of the ath person's ideal point be ~i and/3a, 
respectively. A response of person a to item i is denoted by the binary variable Xai. 
Item i is selected when its distance to the ideal point is smaller than some threshold ~', 

Xai --- 1 when {~i - ~3a{ ~ T ( 1 )  
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and is not selected otherwise, 

Xai -- 0 when 18i-/3al > r 

In the case of paired comparison data, the response of person a is denoted by the 
binary variable Yaij ,  which takes on the value 1 when item i is closer to the person's 
ideal point and 0 otherwise, 

Yaij - -  1 when l ai - ~ 3 a l  ~ l aj - ~ 3 a l  (2) 

Because choice behavior is frequently inconsistent, it is necessary to formulate prob- 
abilistic versions of (1) and (2). Hoijtink (1990) proposed the following response 
function under the premise that a probabilistic unfolding model should reduce to its 
deterministic counterpart as a boundary case 

1 
Pr(Xai = 1) = Pai = 1 + l a i - /3a l  ~ (3) 

where 7 (3' --- 1) moderates the strength of the proximity relation on the choice 
probability whenever the distance between the ideal point and the item position 
differs from 0 or 1. This model predicts that an item is chosen with certainty when 
its position coincides with the one of the ideal point. 

An analogous model for paired comparison data is derived by Brckenholt and 
Brckenholt (1990a). According to their approach, the probability that item i is pre- 
ferred to item j by person a is given by 

Pr(Yaij = 1) = Paij = 
[/3a - ajl  v 

I /3a- 8il v + I/3a- 8jl v 
(4) 

This representation makes the strong prediction that item i is preferred to item j with 
certainty regardless of the position of item j if the position of item i coincides with 
that of the ideal point. Note that the unfolding paired comparison model has the same 
structure as the well-known Bradley-Terry-Luce (BTL) model (Luce, 1959), 

Pr(Yaij = 1 ) =  
OJia 

OJia -'1- (.Oja 

where O)ia represents the utility of item i for person a, E i  ('°ia = 1 and 0 < (.Oia < 1. 
Setting (.Oia = lisa - 8il -~, we obtain the paired comparison model in (4). This 
decomposition of an item's (dis)utility into an ideal point and an item parameter 
is nontrivial in the sense that the unfolding paired comparison model assumes that 
individual differences in the evaluation of the items can be explained solely by 
differences in the ideal point positions. Thus, whereas the BTL model allows for m! 
possible rank orders of the items in the population, the item scale estimated from the 
unidimensional unfolding model is consistent with only [m(m - 1)/2 + 1] of those. 
This shows that the unfolding model may be considerably more restrictive than the 
BTL model in an analysis of group-level paired comparison data because it requires 
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individuals to be homogeneous in their perception of the items. It is useful to fit 
both the BTL and unfolding models because the former model provides an important 
benchmark for the latter one. 

3 Modeling Stability and Change in Choice Data 

3.1 A Latent Class Representation 

This section presents a group-level representation of choice data by formulating 
latent-class versions of models (3) and (4). Instead Of estimating a different ideal point 
position for each individual, we assign individuals to classes such that members of a 
latent class are indistinguishable in their predicted response behavior. The approach 
is less restrictive than it may seem initially. The number of different responses, which 
typically is much smaller than the sample size, limits possible distinctions that can 
be made among the individuals (see Lindsay et al., 1991, for a related situation). 

The unobserved classes are determined by invoking the principle of local inde- 
pendence, which states that the latent-class membership variable accounts completely 
for any relationship among the observed responses (Lazarsfeld and Henry, 1968). 
Consequently, the probability of observing pick any/m responses given that person a 
is a member of latent class s is 

m 

Pr(xa l a ~ s) = IX psXi ai(1 - -  P s i ) l - - X a i  

i = 1  

and Xa = (Xal, Xa2 . . . . .  Xam). Each item i has a certain probability Psi of being selected 
by members of latent class s. The marginal probability of observing the responses of 
a randomly picked person in a pick any/m task is 

S m 

Pr(xa) = ~ "as 1-I pXi 'i(1 -Psi)l--Xai (5) 
s = l  i = 1  

where "as represents the relative size or proportion of class s and ~-~s "as = 1. 
Equation (5) corresponds to the unconstrained latent class models. Although this 

representation does not provide any information about the underlying scale of the 
items and the positions of the ideal points, this information can be extracted from 
the data by constraining the class-specific probabilities, Psi, to be a function of an 
unfolding model, 

Psi = P r ( X a i  = l la ~ s) = 
1 + I/5i-/3sl v 

and every member of latent class s is characterized by the class' ideal point posi- 
tion,/3s. 
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Similar results can be derived for the paired comparison data. In this case, we 
need to replace psi by Psij and Xai by Yaij in (5), 

S m - 1  m 

Yaij -Yaij PrO' a) -- ~ "as I ' I  ]-I Psij (1 - Psi j) 1 
s - 1  i = 1  j = i + l  

w h e r e  Ya = ( Y a l 2 ,  Yal3 . . . . .  Ya(m-1)m). The constrained version of psij for the BTL 
model is 

Psij = Pr(Yai j  = l la ~ s) = 
Okis 

OJis + tOjs 

and for the unfolding model 

I/3s-  6jl ~ 
psij = l [3s-  ~il v + I ~ s -  t~jl v 

Incorporating the response mechanism for the pick any/m and paired comparison 
tasks in latent class models has several advantages. First, by displaying individual 
differences and similarities among the items along a joint continuum, the interpreta- 
tion of the results is greatly simplified. Second, by estimating ideal points on the class 
level, a parsimonious description (and uncluttered display) of individual differences 
is obtained even when the number of respondents is large. Third, for a given number 
of latent classes we can compare the fit of the unconstrained and the constrained 
latent class models to determine whether the postulated response mechanism is con- 
sistent with the data. If the differences between both models are nonsignificant, the 
constrained model provides a more informative and parsimonious representation of 
the data. For example, instead of estimating mS class-specific probabilities in the case 
of pick any/m data and m(m - 1)S/2 class-specific probabilities in the case of paired 
comparison data, we need only estimate S ideal points, m - 1 item parameters, and 
one power parameter, 7. The number of item parameters is m - 1 as opposed to m 
because the origin of the item scale is arbitrary. Note that for the paired comparison 
data, one can also compare the fit of the unfolding model with the fit of the BTL 
model. This comparison is likely to be more powerful because the latent class BTL 
model is more parsimonious than the unconstrained latent class model. Fourth, a 
decision regarding the number of latent classes, which is usually unknown, is not 
dependent on the specification of the response mechanism. Instead, the decision may 
be based on the results of the unrestricted latent class analysis. 

3.2 Shifts in Ideal Points 

For the investigation of stability and change in preferential or attitudinal data, consider 
the situation of N individuals measured at T time points. If preferences or attitudes 
are stable, both item and ideal point parameters are time homogeneous. In contrast, 
systematic response differences at different time point positions may indicate changes 
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in the perception of (some of) the items and/or in the ideal points. Both hypotheses 
about the locus of change in choice data are of interest. However, because in the 
reported applications the time-dependent response variability can be accounted for 
by shifts in ideal point positions, the following discussion is restricted to this case. 

As in the previous section, we distinguish between unconstrained and constrained 
latent class models. According to unconstrained latent class models, individuals may 
switch among latent classes over time; however, the class-specific item probabili- 
ties are time homogeneous (Hagenaars, 1990; Langeheine and van der Pol, 1990; 
Poulsen, 1990). The same holds for constrained latent class models with the ad- 
ditional restriction that the class-specific probabilities are a function of the ideal 
point models. As a result, shifts in class memberships correspond to changes in 
ideal point positions. An important implication of this constraint is that a change in 
ideal point positions affects relative preferences for all items. Thus, in contrast to the 
BTL model, preference change is global in the sense that the utilities of all items are 
affected by an ideal point shift. 

Depending on the duration of a longitudinal study, it seems likely that some but 
not all members of a latent class change their ideal point positions. For example, when 
observing consumers over time, it is frequently useful to distinguish between loyal 
consumers and switchers (Brckenholt and Langeheine, 1996). The former group 
does not change its ideal point position, but the latter group may vary its ideal point 
position in systematic or unsystematic ways. In general, shifts in ideal point positions 
may follow certain patterns that can be incorporated in the latent class model. For 
example, pick any/m data observed at three equidistant time points may be modeled 
as 

Pr(x(at,), .t,a--(h', x(t3)) ~ ~ Z qrqrs Pr(x(tl)la ~ q) 
q r s 

× Pr(x(at~)la E r)Pr(x(at~) I a E s) (6) 

where the responses of person a at time point t are denoted by X(a t), and 'rrqrs refers 
to the probability of belonging to classes q, r, and s at time points tl, t2, and t3, 
respectively. A change in ideal point positions occurs whenever "trqrs > 0 provided 
q 4= r 4= s. A similar representation for paired comparison data is obtained when 
replacing X(a t) by y(a t) in (6). 

Many useful special cases of (6) can be derived by imposing constraints on "trqr~ to 
describe switches among the latent class or, more specifically, among the ideal point 
positions. For example, an important special case is the first-order Markov chain 
with stationary transition probabilities. This restriction was originally proposed by 
Wiggins ( 1973) 

~qrs -- "rrq ~rrl q ~slr 

where "n'rl q refers to the probability of being a member of class r given membership in 
class q during the previous time period (see also Langeheine and van de Pol, 1990). 
The no-change ideal point model is obtained by setting "rrrl q - -  0 and 7 r s l  r - -  0 when 
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r :/: q and s :/: r, respectively. Other constraints can be derived by imposing a log- 
linear structure on "a'qrs (Bishop et al. 1975; B6ckenholt, 1997). An obvious special 
case of (6) is the random change model with 'rrqrs = 'rrq 'rrr 'rr~, which describes 
changes over time as a function of the class sizes, which, in turn, are constrained to 
be equal over time. 

4 Applications 

4.1 A t t i t u d e  T o w a r d  C a r  U s e  a n d  E n v i r o n m e n t  

In this questionnaire study conducted by Doosje and Siero (1991) two independent 
samples of N = 300 respondents were asked about their attitudes toward car use 
and the environment before and after a proenvironment information campaign. To 
illustrate applications of the unfolding model, three procar and three proenvironment 
items were selected from this questionnaire: 

A. Instead of environmental protection measures with respect to car use, the road 
system should be extended. 

B. It is better to deal with other forms of environmental pollution than car driving. 

C. Considering the environmental problems, everybody should decide for themselves 
how often to use the car. 

D. A cleaner environment demands sacrifices such as decreasing car usage. 

E. Car users should have to pay taxes per mile driven. 

E Putting a somewhat higher tax burden on car driving is a step in the direction of a 
cleaner environment. 

Because the items are binary, a total of 26 = 64 response patterns can be observed 
for the pre- and postinformation campaign data. Table 1 contains the likelihood ratio 
(LR) tests obtained from the unconstrained latent class model fitted to both samples. 
The LR test is computed as 

V 

G 2 = 2 ~ fv l n ( f v / L )  
v = l  

Table 1: Goodness-of-fit statistics of unconstrained latent class models 

Precampaign Postcampaign Pre = post 

Number of classes G 2 df G 2 df A G 2 df 

1 295.5 57 271.8 57 21.5 6 
2 56.2 50 82.2 50 35.0 13 
3 35.7 43 61.5 43 44.3 20 
4 28.0 36 44.2 36 57.8 27 
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Table 2: Parameter estimates of unconstrained three-class model 

Class A B C D E F ff~l) ff~2) 

1 .75 .98 .91 .33 .14 .16 .43 .25 
2 .22 .74 .77 .84 .34 .32 .34 .51 
3 .06 .40 .37 .98 .91 .85 .23 .24 

where fv and fv denote the observed and expected frequencies of the vth response 
pattern, respectively. Provided standard regularity and identifiability conditions are 
satisfied, the LR statistic follows asymptotically a x2-distribution with degrees of 
freedom (df) equal to the difference between the number of response patterns (V) 
and the number of estimated parameters and sampling constraints. In this application 
the df for the latent class models are [64 - S(m + 1)]. 

According to Table 1, three classes are required for a satisfactory fit of the pre- 
and postcampaign data. However, the fit of the latent class model seems to be better 
for the pre- than for the postcampaign data. The last two columns of Table 1 contain 
LR statistics and their corresponding df under the hypothesis that the latent class 
parameters (class-specific probabilities and class sizes) are equal for both studies. 
For all latent class solutions this hypothesis can be rejected, which indicates that the 
information campaign had some effect on the respondents' attitudes toward car use 
and environment. 

The effect of the information campaign can be examined by testing which subsets 
of the latent class parameters, the class-specific probabilities or the class sizes, differ 
significantly between samples. Although not presented in detail here, these partitions 
indicate that the main reason for the differences between the pre- and postcampaign 
data is related to changes in the class size estimates. 

Table 2 contains the estimates of the three-class solution with class-specific 
probabilities constrained to be equal for the pre- and postcampaign data but different 
class sizes. With some minor exceptions, the latent class probabilities display a single- 
peaked structure. As a result, a more parsimonious and informative description of the 
data may be obtained by applying an unfolding model. This observation is confirmed 
by Table 3, which contains the parameter estimates of the three-class unfolding model. 

Table 3: Parameter estimates of three-class unfolding model 

Class A B C D E V /3s ~1) ~2) 

1 .72 .95 .92 .29 .13 .12 - . 9 6  .44 .26 
2 .22 .75 .80 .88 .40 .37 .00 .34 .52 
3 .10 .31 .34 .97 .88 .85 .72 .22 .22 
6i - 1.65 -.64 -.58 .46 1.18 1.23 
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Figure 1: Joint item and latent class ideal point scale with histograms depicting the 
estimated class sizes before and after the information campaign. 

Clearly, the class-specific probabilities differ little from the unconstrained latent class 
solution in Table 2. 

The results of the unfolding model are depicted in Figure 1 with the horizontal 
axis being the joint item and latent class ideal point scale and the vertical axis 
serving to depict the relative size of each latent class in the solution. The items are 
ordered along a continuum ranging from the position that "car use does not pose 
an environmental problem" to the position that "car use damages the environment 
and should be restricted by some governmental interventions." In both the pre- and 
postcampaign data, about 22% of the respondents (located between items D and E) 
favor a strong proenvironment position. Before the campaign a substantial number 
of the respondents (44% located between items A and B) did not consider car use 
to be an environmental problem. One effect of the campaign was to reduce the 
size of this group and to increase the number of respondents who acknowledge the 
negative influence of car usage on the environment (from 34% to 51%). However, 
the campaign did not increase the number of respondents favoring a tax increase as 
a means of reducing car usage. 

4.2 Product Introduction Study 

The second example is taken from a national marketing study. A sample of 211 
cigarette smokers were asked to compare a leading brand (A), a competitive brand 
(B), and a new brand (C) (developed by the manufacturer of the B brand) in a pretest 
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market study. The goal of the study was to investigate the reactions of A and B 
consumers to the new brand. It was hypothesized that the new brand C may appeal 
to some of the A consumers and that, as a result, the group of A consumers would 
split into two parts, one smaller group preferring the new brand over A and another 
larger group disliking the new brand. 

The study was conducted over three waves, which were roughly 4 weeks apart. 
In wave 1 respondents were asked to compare A and B and in waves 2 and 3 the same 
respondents compared the three pairs of brands (A, B), (A, C), and (B, C). Of the 
211 respondents who were initially recruited, a total of 83 participated in all waves 
of the study. Thus, in the analysis to follow we will refer to the 83 respondents who 
participated in all waves as the complete data (C) and to the responses of the 128 
respondents who participated in only the first two waves as the incomplete data (IC). 

The brands were compared by instructing participants to allocate 11 chips ac- 
cording to their preferences between two options. Because the number of chips is odd, 
participants could not express indifference. To reduce the sparseness of the original 
table, adjacent response categories were collapsed such that the direction but not the 
degree of preference was preserved. The data for the first two waves that were used 
in the analyses are displayed in Table 4. 

When applying the ideal point model, it seems plausible to assume that the new 
brand C falls somewhere on a continuum between the A and B brands. Because C 
was designed to appeal to consumers of the A brand, its position may be closer to 
the A than to the B brand with the result that more A than B consumers may prefer 

Table 4: Paired comparison data of product introduction study 

Wave 1 Wave 2 

YaB YAB YAC YBC N(c) NqC) 

0 0 0 0 12 4 
0 0 0 1 8 22 
0 0 1 0 2 1 
0 0 1 1 7 13 
0 1 0 0 10 8 
0 1 0 1 2 2 
0 1 1 0 3 2 
0 1 1 1 2 3 
1 0 0 0 7 6 
1 0 0 1 1 4 
1 0 1 0 1 2 
1 0 1 1 2 0 
1 1 0 0 14 3 
1 1 0 1 2 3 
1 1 1 0 8 41 
1 1 1 1 2 14 
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the new brand. The attraction effect of the new brand C can be further formalized in 
two ways. First, we can assume that at wave 1 there are two ideal point positions, 
one close to the A and another one close to the B brand. As a result of the new brand 
introduction, some of A and B consumers change their ideal point positions and move 
it closer to the position of the new brand. 

Alternatively, we can assume that initially there are at least three ideal point 
positions, two close to the established brands and a third one between the two 
brands corresponding to consumers who feel less strongly about their preferred 
brand. Appropriately positioned, the new brand may be of more appeal to this third 
group than any of the established brands. Thus, the first scenario postulates a switch 
in ideal point positions and the second scenario postulates a more heterogenous 
ideal point distribution. Because it is not possible to distinguish empirically between 
the heterogeneity and the switching hypothesis solely on the basis of the paired 
comparison data, the results of the latent class unfolding models are presented for 
both scenarios. It is shown that both approaches provide complementary views of the 
data. 

The following analyses also investigate possible differences between the com- 
plete and incomplete data. There is little reason to believe that in these types of studies 
attrition occurs completely at random. Instead, respondents who drop out of a study 
are likely to do so for specific reasons; for example, respondents may dislike the new 
product and instead of voicing their dislike, refuse to continue to participate in the 
study. Similarly, it seems reasonable to expect that respondents who are favorably 
disposed to the new product are likely to participate in all waves. To test this hy- 
pothesis, the data were analyzed under the constraint that the item positions are the 
same in the complete and incomplete data but the relative class sizes associated with 
the ideal points were left unconstrained. This parsimonious representation facilitates 
testing the hypothesis that differences between the complete and incomplete data are 
not related to the perception of the brands but a result of positive or negative reactions 
toward the new product. 

Heterogeneity Hypothesis Provided there is an attraction effect of the new brand, 
we expect at least three latent classes under the heterogeneity hypothesis where each 
class is characterized by an ideal point position that is close to one of the three 
products. This hypothesis was tested by first fitting the BTL model with one to 
three classes and then constraining the (dis)utilities of the best fitting BTL model to 
be a function of the ideal point and brand positions. The resulting LR statistics of 
the one-class, two-class, and three-class models are G 2 = 195.05 (df = 28), 78.1 
(df = 24), and 19.9 (df = 20), respectively. As expected, only the three-class BTL 
model provides a satisfactory fit of the data and the model's utility estimates are 
given in Table 5. Moreover, setting 3 /=  1, we obtain G 2 = 20.1 (df = 21) for the 
three-class unfolding model. Clearly, the decomposition of the (dis)utilities into an 
absolute difference between an ideal point and an item position is consistent with the 
data. The corresponding parameter estimates are given in Table 6. Note that according 
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Table 5: Class-specific utility estimates of three-class BTL model 

Class A C B ~'t (Ic) ~'t (C) 

1 .98 .01 .01 .42 .08 
2 .17 .69 .14 .25 .71 
3 .07 .08 .85 .33 .21 

Table 6: Parameter estimates of three-class unfolding model 

Class A C B ~a ~,l(IC) ,~(c) 

1 .99 .01 .00 1.01 .42 .08 
2 .18 .67 .15 -.02 .26 .72 
3 .06 .09 .85 -1.43 .33 .20 
~i 1.00 .25 - 1.26 

to both the BTL and the unfolding model the introduction of the new brand did not 
affect the relative preferences for the A and B brands. 

Depicting the parameter estimates of the unfolding model, the left panel of 
Figure 2 contains the brand positions and the corresponding ideal points with their 
relative sizes for the complete and incomplete data. We note that an ideal point is 
close to each brand and that the position of the new brand is closer to A than to B. 
Moreover, the relative class sizes indicate clearly that the main difference between 
the complete and incomplete data sets is related to the group with an ideal point 
closest to the new brand. This group has the smallest size in the complete data and 
the largest size in the incomplete data, which indicates that attrition may be strongly 
related to preferences for the new brand. 

Ideal Point  Switching  Hypothes i s  According to this hypothesis, there are two ideal 
points at wave 1, one corresponding to each brand, and when exposed to brand C some 
members of both classes move their ideal point toward the position of the new brand. 
Thus, we need to estimate the class sizes at wave 1 and a transition matrix that contains 
the proportion of A and B consumers who move toward brand C. Because no switching 
is expected between the A and B brands, the corresponding transition probabilities 
are set equal to 0. Within this framework it is straightforward to investigate whether A 
consumers are more attracted to the new brand than B consumers. This question can 
be tested by an LR statistic obtained from the difference between paired comparison 
models with unconstrained and equal transition probabilities. 

The G 2 statistics of the BTL and the corresponding unfolding model are 18.7 
(dr = 18) and 18.9 (dr = 19). When constraining the transition probabilities to be 
equal for both classes, we observe a nonsignificant increase in the G 2 statistics for 
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Figure 2: Joint item and latent class ideal point scale with histograms depicting the estimated class sizes. 
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Table  7: Class sizes and transition probabilities of unfolding model 

Class Wave 1 Wave 2 

~(IC) ~lt(IC) ~1,¢(IC) ~l,t(IC) 
lls 2Is 3Is 

1 .54 .76 .00 .24 
2 .46 .00 .76 .24 

¢r~ c) ¢r (c) ¢r (c) Or(c) 
lls 2Is 3Is 

1 .40 .29 .00 .71 
2 .60 .00 .29 .71 

the BTL model G 2 = 20.5 (df = 20), and for the unfolding model G 2= 20.7 (df = 
21). Because the differences between both models are very minor, we present only 
the unfolding model's estimates of the initial class sizes and transition probabilities 
of the complete and incomplete data in Table 7. About 76% and 29% of the A and 
B consumers are brand loyal in the incomplete and complete data sets, respectively. 
However, because the initial class sizes differ for the two data sets, a larger percentage 
of the A consumers is brand loyal and a larger percentage of the B consumers is 
attracted to the new brand. Thus, this analysis shows that although both A and B 
consumers have the same transition probabilities, more B than A consumers prefer 
the new product. 

This result is depicted graphically in the right panel of Figure 2. The bars 
with positive slope lines correspond to the ideal points' class sizes before the product 
introduction and the bars with negative slope lines correspond to the ideal points' class 
sizes after the product introduction. We note that slightly more A than B consumers 
switch to the new brand in the case of the incomplete data. However, for the complete 
data, a much larger percentage of B than A consumers is attracted to the new brand. 
In conclusion, these results indicate that the new brand may attract, as intended, some 
consumers of the A brand but at the price of a substantial cannibalization effect. 

5 Discuss ion  

One major problem in the analysis of cross-sectional choice data is to account for 
heterogeneity caused by individual taste differences. It is well known in the fields 
of attitude and preference analyses that individuals may perceive and evaluate the 
alternatives among which they choose in very different ways. Latent class models 
seem to be well suited to account for these taste differences by allowing for different 
subpopulations with distinctly different preferences (B6ckenholt and B6ckenholt, 
1991; Croon, 1990; DeSarbo et al., 1994; Formann, 1992). Moreover, the synthesis 
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of unfolding and latent class models provides a parsimonious and versatile framework 
for determining spatial representations of both individual taste differences and the 
similarity structure of items at a particular point in time. 

However, many decision problems are faced not once but repeatedly. For instance, 
the choice of a residential location, the selection of a travel mode for a trip to work, and 
the purchase of consumer brands within a product class are recurrent choice situations. 
Clearly, by investigating intertemporal choices we obtain valuable information about 
decision making and the inherently dynamic nature of choice processes that is not 
available when modeling individual choices at a point in time. A crucial feature of 
the presented framework is that it takes into account not only that individuals may 
differ in their preferences but also that they may differ in the way they change their 
preferences. Consequently, we can test a rich set of hypotheses about the loci of 
change in latent preferences as a result of an intervention. Modeling shifts in ideal 
positions may prove instrumental in testing psychological theories about systematic 
variations in the relationship between perception and choice over time (Loewenstein 
and Elster, 1992). 

By implementing Coombs' unfolding approach we obtain graphical displays 
that yield a concise summary of the data and are easy to interpret. In the reported 
applications it proved sufficient to represent the items unidimensionally. However, 
in other settings multidimensional spatial representations of the items may be more 
appropriate. Although not discussed in this chapter, it is straightforward to develop 
multidimensional counterparts of the presented unidimensional unfolding models 
(B6ckenholt and B6ckenholt, 1991). These extensions combined with the notion of 
shifting ideal points yield an important set of methodological tools for graphical 
representations of the separate effects of taste heterogeneity and preference changes 
over time. 
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Chapter 32 

Correspondence Analysis 
Used Complementary to 
Latent Class Analysis in 
Comparative Social Research 

Allan L. McCutcheon 

1 Introduction 

Latent class analysis and correspondence analysis share a common goal of data 
reduction for cross-tabulated data. One of the principal goals of latent class analysis 
(LCA) is to account for the observed heterogeneity in a multiway cross-tabulation 
by characterizing a set of unobserved, internally homogeneous classes. One of the 
principal goals of correspondence analysis (CA) is to represent graphically a multiway 
cross-tabulation in a reduced-dimensional space. In this chapter, we examine some 
of the uses of CA to display graphically the results of LCA, especially when these 
results are obtained for data from several groups simultaneously. The groups may 
be different nations, states, regions, cultural groups if the research focuses on cross- 
cultural comparisons, or separate samples drawn from the same population at two or 
more time points when the research focuses on social change (see, e.g., McCutcheon, 
1987b; Hagenaars, 1990). Indeed, the groups may be any mutually exclusive set of 
observations on which identical variables are measured. 

In the sections that follow, we first briefly examine the simultaneous LCA in 
which identical measures have been collected in cross-sectional samples from several 
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populations. The increasing availability of surveys with identical indicator variables 
(e.g., the International Social Survey Program, the European Values Studies, the 
Eurobarometer studies), as well as the increasing availability of trend studies with 
repeated indicator variables (e.g., the American, German, and Polish General Social 
Surveys, the British Social Attitudes Survey), now make it possible to explore the 
latent structures of many nations' values at several points in time. As an example 
of religious beliefs from the 1991 International Social Survey Program (ISSP) we 
will show, however, that communicating the findings from the simultaneous LCA 
for many samples may prove difficult. The graphical representation provided by CA 
offers an attractive alternative for presenting the research findings from simultaneous 
LCA and provides valuable insights for comparative social research. 

2 Correspondence Analysis Used Complementary 
to Multi-Sample Latent Class Analysis 

One of the principal goals of latent class analysis is data reduction for categorical 
data (McCutcheon, 1987b; Hagenaars, 1990). When several categorical variables are 
available for measuring an unobserved phenomenon, the information available in the 
associations among the observed indicators may be used to characterize the latent 
variable. Consider, for example, the responses to five questions regarding traditional 
(Christian) religious beliefs about "the afterlife" asked of respondents from several 
nations in the 1991 ISSP: 

A. Which best describes your beliefs about God? 

I don't believe in God now and I never have. 

I don't believe in God now, but I used to. 

I believe in God now, but I didn't use to. 

I believe in God now and I always have. 

B. Do you believe in life after death? 

C. Do you believe in the Devil? 

D. Do you believe in Heaven? 

E. Do you believe in Hell? 

Questions B-E allowed four response categories ("yes, definitely," "yes, probably," 
"no, probably not," and "no, definitely not"). Each of these five questions is di- 
chotomized into those who report (current) belief or nonbelief in God, life after 
death, the Devil, Heaven, and Hell. The cross-classification of k dichotomous items 
yields 2 k response patterns ranging from those who respond "yes" to all k items to 
those who respond "no" to all k items. In the case of these five dichotomies, there are 
(25 ) 32 possible response patterns. 

In comparative social research, the difficulties posed by the multiple combina- 
tions of indicator responses are multiplied by the number of nations (groups) from 
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which data are collected. In our first example, we examine the responses to the five 
questions for seven Western nations: Britain, Germany (old Federal states only), Ire- 
land, Italy, The Netherlands, Norway, the United States. Thus, the five dichotomous 
indicator items give 32 response patterns in each of the seven nations. 

LCA allows us to explore the question of whether the 32 categories produced 
by all possible combinations of response patterns can be represented by some lesser 
number of categories, without loss of information. As with other latent variable ap- 
proaches, LCA employs the axiom of local independence as the key principle to 
solve the data reduction problem (Goodman, 1974; McCutcheon, 1987b; Hagenaars, 
1990). In LCA, the axiom of local independence imposes the condition that observed 
indicators are statistically independent of one another within a set of latent (cate- 
gorical) classes. When this condition holds, the latent classes represent internally 
homogeneous types. The formal representation of an LCA model with five indicator 
variables may be expressed as: 

Tiijklm = Y ~  Tit Tiilt Tijlt Tiklt Tillt Timlt (1) 
t 

where the expected probability for each of the cells of the observed cross-tabulation 
(Tiijklm) is the product of the latent class probability (Tit) for the T latent classes of 
the latent variable X and the corresponding conditional probabilities for each of the 
indicator variables for the T latent classes (e.g.,Tiilt). 

In the usual LCA model, the latent classes are characterized by analyzing the 
associations among the indicator variables for observations from a single population. 
In comparative research, we often have identical indicator variables collected in each 
of the populations. If we define this grouping (population) variable as G and let S 
represent the number of populations from which independent samples are drawn, we 
can express the simultaneous (or multisample) latent class model (SLCM) as 

Tiijklms -- ~ Tits Tii]ts Tij]ts Tik]ts Til[ts Tim]ts (2) 
t 

where Tiilts, Tijlts, Tiklts, Titlts, and Timlts represent the conditional probabilities relating 
each of the indicator variables to the relevant latent class (t) in each of the S pop- 
ulations and Tits represents the joint distribution of the T latent classes and the S 
populations. 

When we engage in comparative (multisample) analysis, one of our first concerns 
focuses on the issue of model invariance, that is, the degree to which we can measure 
the same latent variable in each of the S populations. Essentially, we ask whether 
the 32 categories produced by all possible combinations of response patterns within 
each population can be represented by some lesser number of categories and whether 
these categories are the same (or similar) for each of the nations (groups). Using 
LCA, we test for model invariance by imposing across-sample equality restrictions 
on the conditional probabilities for each of the latent classes (e.g., T i i l l l  = T i i l l 2  = 

. . . .  Tiills). Often, such equality constraints are overly restrictive, and the fit of the 
model to the original data is eroded well beyond the limits of chance variability. In 
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Table 1: Likelihood-ratio (G 2) and Pearson (X 2) chi-squares for religious belief latent 
class models 

Model G z X z df 

Two class per country 1640.3 1839.7 140 
Three class per country 287.8 439.5 94 
Restricted five class per country 95.3 104.3 84 
Final model 123.5 149.8 140 

such instances, the researcher must decide how much invariance he or she is willing 
to accept before the latent classes in the S populations are no longer considered to 
represent similar latent types. 

In Table 1 the likelihood ratio and Pearson goodness-of-fit chi-squared statistics 
for several SLCMs are reported. We first test whether a two-class model can ade- 
quately represent the 32 response patterns observed for the 6254 respondents in the 
seven nations. As we see from the chi-squares, we must reject the hypothesis that 
the observed response patterns can be represented by two classes (G 2 = 1640.3, 
X 2 = 1839.7, df = 140). Next, we test the hypothesis that the 32 patterns can be 
represented by three classes. Once again, we see that we must reject this hypothesis, 
although the chi-squares are substantially reduced and an inspection of the residuals 
suggests that, in each of the seven nations, the "extreme" patterns for the indica- 
tors (i.e., the YYYYY and NNNNN patterns) are underfitted with the three-class 
model. In the third line of Table 1, we report the chi-squares for a five-class model 
in which two of the classes are deterministically restricted: one responds "yes" to all 
five items, while the other responds "no" to all five items. The two deterministically 
restricted classes represent respondents who take what Duncan (1979) and Duncan et 
al. (1982) refer to as "ideological" responses; we refer to these classes as the "com- 
mitted believers" and "committed nonbelievers," respectively. As these data indicate, 
this five-class model can be accepted. The final line of Table 1 reports the chi-squares 
for a five-class model in which (140 - 84 =) 56 across-nation equality restrictions 
have been imposed. As the data in line 4 of Table 1 indicate, the resulting model can 
be accepted within the limits of chance variability. Interestingly, we note in passing 
that the large difference between the G 2 and X 2 is attributable to two respondents, 
one from Great Britain and one from Norway, who report belief in Hell and the Devil, 
but not in life after death, God, or Heaven. 

The conditional probabilities of belief in each of the indicator items for each of 
the five classes across the seven nations are reported in Table 2. As the conditional 
probabilities for the first and fifth classes reflect, the probability of responding "yes" 
has been deterministically restricted to be 1.00 for the "committed believers" and 0.00 
for the "committed nonbelievers." Consequently, classes 1 and 5 exhibit complete 
invariance among the seven nations. Classes 2 through 4, on the other hand, exhibit 
some between nation variance in the likelihood that respondents will respond "yes" 



2. CA Used Complementary to Multi-Sample Latent Class Analysis 481 

Table 2: Conditional probabilities of responding positively to religious beliefs in 
seven nations (Source: 1991 ISSP) 

God Life after death Heaven Devil Hell 

1. Committed believers 
All seven nations 1.000 1.000 1.000 1.000 1.000 

2. Believers 
Britain .741 .694 .977 .778 .935 
Germany .811 .694 .977 .718 .935 
Ireland .957 .694 1.000 .718 1.000 
Italy .957 .694 1.000 .718 1.000 
Netherlands .811 .694 1.000 .612 .763 
Norway .811 .987 1.000 .939 1.000 
United States .957 .694 .977 .718 1.000 

3. Positive believers 
Britain 1.000 .902 .981 .094 .124 
Germany .923 .761 .485 .094 .000 
Ireland .992 .999 1.000 .188 .208 
Italy .992 .902 1.000 .094 .482 
Netherlands 1.000 .902 .872 .188 .000 
Norway .923 .902 1.000 .188 .124 
United States .992 .999 .954 .188 .000 

4. Nonbelievers 
Britain .556 .301 .147 .056 .010 
Germany .357 .140 .046 .000 .010 
Ireland .932 .425 .534 .056 .000 
Italy .855 .425 .046 .103 .000 
Netherlands .357 .425 .046 .024 .000 
Norway .357 .534 .046 .056 .010 
United States .932 .534 .534 .056 .000 

5. Committed nonbelievers 
All seven nations .000 .000 .000 .000 .000 

to each of the five indicator items. For example, whereas class 2 respondents have a 

high probability of responding "yes" to all five of the religious belief indicator items, 

class 2 respondents in Ireland, Italy, and the United States are estimated to have a 
0.957 likelihood of reporting belief in God and class 2 respondents in Britain are 
estimated to have a 0.741 likelihood of responding positively to this indicator item. 

The issue of model invariance is well illustrated by the data in Table 2. Although 
there are many within-class, between-nation equality restrictions on the conditional 
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probabilities, there remains some between-nation variance in these estimates. At 
this point, the comparative researcher must resolve for him- or herself how much 
invariance is to be tolerated before it is no longer plausible that the classes represent 
the same type of respondents in each of the nations (groups). As we have seen from 
the information in Table 1, the conditional probabilities of Table 2 are as restricted 
as possible; any additional between-nation equality restrictions on the conditional 
probabilities result in an unacceptably large erosion of the model fit. 

Consider the case in which we accept the model fit presented in Tables 1 and 2. 
Except for the relatively high probability of reporting a belief in God among class 4 
respondents in the United States, Ireland, and Italy, we might label the intermediate 
classes as follows. Class 2 respondents all have a relatively high likelihood of reporting 
belief in all five indicators; thus, we might label class 2 respondents "believers." 
Class 4 respondents all have a relatively low likelihood of reporting belief for any of 
the five indicators (given the exceptions noted earlier), so we might label this class 
"nonbelievers." And finally, class 3 respondents are likely to report a belief in life 
after death, God, and Heaven, but they are unlikely to report a belief in either the 
Devil or Hell; this class we will refer to as "positive believers," because they appear 
to be likely to believe in only the more positive, or rewarding, aspects of the afterlife, 
but not in the less rewarding aspects. 

Once we have accepted a particular model as representing similar (or identical) 
underlying latent classes in each of the several groups, the next step is to compare 
the distribution of types among the multiple groups (McCutcheon, 1987a, 1987b). 
The SLCM latent class probabilities (i.e., "rrts) expressed in (2) may be presented 
as a latent joint distribution, such as that presented in Table 3. The "latent cross- 
tabulation" presented in Table 3 represents the maximum likelihood estimates of the 
relative proportion of the original seven-nation sample that is likely to be classified 
in each of the five classes. 

The data reported in Table 3 illustrate a potentially important use of CA to 
complement the simultaneous latent class analysis of indicator items in cross-national 
research. The map presented in Figure 1 illustrates the results of a CA of the data 

Table 3: Latent class probabilities from the restricted five-class model 

Committed Positive 

Nation believers Believers believers Nonbelievers 

Committed 

nonbelievers 

Briton .0280 .0111 .0284 .0334 .0236 
Germany .0268 .0105 .0387 .0640 .0048 
Ireland .0451 .0209 .0402 .0249 .0039 
Italy .0415 .0172 .0209 .0474 .0120 
Netherlands .0275 .0121 .0337 .0546 .0434 
Norway .0244 .0071 .0276 .0274 .0363 
United States .0816 .0419 .0101 .0231 .0061 
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presented in Table 3. CA of a latent joint distribution provides a singular value 
decomposition of the divergence from independence: 

1-Its = Ets + DsSATTDt (3) 

where Fits is the two-way latent contingency table, Ds is a diagonal matrix with 
marginal row proportions Hs (these will also equal the actual observed proportions 
Ps), Dt is a diagonal matrix with marginal column proportions 1-It, Ets is the matrix 
with the independence proportions Ets = I I t  * 1-ITs, S are the row scores normalized 
so that STDsS = I, T are the column scores normalized so that TTDtT = I, and A 
is a diagonal matrix with the singular values. 

As is clear from (3), CA focuses attention on the departures from independence 
in the latent cross-tabulation presented in Table 3. Consequently, we can think of 
(3) as dividing the joint distribution into two parts: the unstructured (independence) 
portion and the structured portion. It is the structured portion of the distribution that 
CA allows us to represent graphically in data maps such as that in Figure 1. 

Inspection of the map in Figure 1 makes clear a set of relationships that is some- 
what more difficult to discern from the tabled data presented in Table 3. Figure 1 
indicates that the seven nations cluster differently with respect to these (latent) reli- 
gious beliefs. The U.S. population appears at the fight of the space, indicating that 

NW 

6B 

WG 

b 
cb 

US 

=. 1522 (65.9%) 
1 

8 

S c a l e  

=.0598 (25.8%) , - -  - 

2 . 2  

Figure 1" CA map for beliefs in seven nations. 
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there are relatively more believers and committed believers (b and cb, respectively) 
in the American sample, whereas the Dutch (NL) and Norwegian (NW) populations 
appear at the left of the space, indicating that there are relatively more committed 
nonbelievers (cn) among these populations. The Irish (IR) and Italian (IT) popula- 
tions are mapped into the center and, although nearer the United States, appear to 
have relatively more positive believers and nonbelievers (pb and n, respectively), as 
do the British (GB) and Germans (WG). Thus, Figure 1 illustrates graphically the 
relative locations of the seven nations with respect to the latent dimensions of these 
religious beliefs. 

CA Used Complementary to LCA 
with Panel Data 

It is also possible that a researcher might have survey responses to an identical set of 
indicator items in two or more waves of a panel of respondents in one or more nations 
(see also van der Heijden et al., 1994). For the following examples, we examine 
data from the Political Action Panel Study (Barnes and Kaase, 1979; Jennings et 
al., 1991). In this panel study, independent panels of American (N = 778), German 
(N = 846), and Dutch (N = 714) respondents were interviewed in 1973 and again 
in 1981. In each of these years, respondents were asked what their response would 
be if their government proposed passing a law that the respondent clearly opposed. 
The respondents were asked (1) whether they would or would not be willing to sign 
a petition opposing the proposed law, (2) if they would or would not participate in a 
legal demonstration opposing the proposed law, and (3) if they would or would not 
participate in a sit-in opposing the proposed law. 

We examine the patterns of responses to these three items in the 1973 wave (W1) 
and the 1981 wave (W2) as a set of latent classes. In the observed cross-tabulation, 
respondents can give one of eight possible response patterns (YYY to NNN) in each 
of the 2 years. Thus (82 =) 64 possible response patterns can be observed for each 
panel in the three nations. Consider the case in which the petition, demonstration, 
and sit-in questions (A, B, C, respectively) are asked in 1973, and the same three 
questions are asked again in 1981 (D, E, F). If we allow for one latent variable (Xt) 
at W1 and another (Yu) at W2, we can express the latent class model with two latent 
variables as 

7rijklmn = y ~  ~ "l'gtu 7ri[ t 7rjlt "J'gk] t "B'l] u 7rm] u 7rnlu 
t u 

(4) 

As in the multi s ample case, the first concern is whether the latent variable at W 1 

(X) is invariant with respect to the latent variable at W2 (Y). This model invariance 
may be tested by imposing a set of across-time equality constraints on the conditional 
probabilities relating each of the indicator variables to its respective latent variable. 
Thus, when there are equal numbers of classes at each panel wave (i.e., T = U) and 
a model with across-time equality constraints on the conditional probabilities (i.e., 
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"17"ilt : ~llu, 7rjlt : ~mlu, 7rklt -- 7rnlu) provides an acceptable fit to the observed data, 
we can represent the relationship between the latent variables X and Y as a latent 
turnover table. 

In the Political Action Panel example, a four-class-per-year model fits the data 
well (G 2 -- 40.0, df = 45), with the conditional probabilities restricted to fit a time- 
invariant, item-specific error rate model (.032, .020, and .011, respectively) with a 
Guttman ordering of the indicator variables (Clogg and Sawyer, 1981; McCutcheon, 
1987a). Thus, as we would expect, it appears "easiest" for respondents to say they 
would sign a petition (A and D), somewhat more difficult for them to say they would 
participate in a legal demonstration, and most difficult for them to say that they 
would participate in a sit-in. As a consequence of the Guttman ordering, we expect 
respondents with the highest latent protest potential to have a high probability of 
agreeing that they would participate in all three forms of behavior, while those with 
the lowest latent protest potential would have a low expected probability of saying 
that they would engage in any of these forms of behavior. 

The data in Table 4 represent the modeled latent class probabilities for the latent 
turnover table from the Dutch Political Action Panel. As these data show, the single 
largest latent class consists of respondents who were high on protest potential at both 
waves; approximately one quarter (.251) of the respondents had a high probability 
of reporting that they would engage in all three forms of protest in 1973 and again 
in 1981. Interestingly, however, although nearly half of the wave 1 Dutch population 
reported a high level of protest potential (0.251 + 0.163 + 0.045 + 0.005 = 0.464), 
a substantial segment of that number appears to have "migrated" to a lower level of 
protest potential by wave 2 (0.163 + 0.045 + 0.005 = 0.213). 

The latent proportions in Table 4 can also be graphically displayed using CA; 
the one-dimensional map for these data is presented in Figure 2. Although the four 
latent classes could be displayed exactly in a three-dimensional space, a high-quality 
approximation (86.9%) can be displayed in a one-dimensional subspace. Moreover, 
the display in Figure 2 provides some interesting insights into the possible changes 
in latent protest potential among the Dutch respondents. Although we must be cau- 
tious concerning "overinterpretation" of the graphical display, it appears that Dutch 

Table 4: Estimated latent turnover table for the Dutch sample 

Wave 2 

T1 =high T 4 =low 

Wave 1 

U1 = high .251 .163 .045 .005 
.064 .138 .080 .011 

.030 .059 .076 .012 
U4 --- low .011 .014 .031 .010 
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Profiles of Wave 1 Latent Classes 

Axis 1:.1890 (86.9=/0) 

4 3 2 1 
X X X X 

/ 
r - 3 - -  " - r ~ ~ ! - -  r . . . . . . . . . .  L ]  
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Vertices of Wave 2 Latent Classes 

Figure 2: CA map for Dutch political protest potential. 

respondents with "high" (X1, Y1) and "low" (X4, Y4) protest potential diverged some- 
what over the 8 years between the two panel waves. Also, the two highest protest 
potential classes of Dutch respondents at wave 1 (X1 and X2) appear to have become 
more similar by wave 2 (Y1 and Y2). 

A final example focuses on identical protest potential data collected on panels 
of American and German samples in 1973 and 1981. In this example, we may ask a 
set of questions similar to those posed with the Dutch panel data, although now with 
a comparative perspective in mind: Does the protest potential of respondents in these 
three democracies in 1973, a period of heightened activity, change by 1981 and does 
it appear to change in a similar manner for respondents in each of the three nations? 
We begin by modifying equation (4) as 

7 T i j k l m n  s ---- ~ ~ ~ 7Ttus'lTilts TTjlts TTklts'Tt'llus TTmlus TTnlus 
t U S 

(5) 

Table 5 reports the wave 1 by wave 2 protest potential latent class proportions 
for the German and American samples (Trtus/Trs). It is important to note that the 
conditional probabilities are restricted to fit a nation- and time-invariant, item-specific 
error rate model (0.032, 0.020, and 0.011, respectively) with a Guttman ordering of 
the indicator variables. Thus, the latent classes in the three nations (as well as the 
two panel waves) are invariant as represented by the relationship to the indicator 
variables. 

Unlike the case for latent protest potential for the Dutch sample (see Table 4), the 
information in Table 5 indicates that among both German and American respondents 
the highest likelihood is to be found among those who are at the second highest level 
of protest potential at both panel waves (0.280 and 0.335, respectively). Although a 
variety of approaches may be used to examine these data, we concatenate the matrices 
presented in Tables 4 and 5 to obtain a 4 × 12 matrix, with rows representing the 
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Table 5: Estimated latent turnover table for the German and American samples 

Wave 2 

German American 

T 1 =high T 4 = l o w  T 1 =high T 4 = l o w  

Wave 1 

U 1 =high .039 .064 .029 .008 .144 .094 .004 .001 
.054 .280 .192 .040 .109 .335 .060 .006 
.011 .058 .086 .034 .020 .108 .076 .009 

U4 =low .003 .036 .038 .028 .002 .010 .013 .009 

patterns of protest potential at wave 1 in the three nations and columns representing 
the nation-specific patterns of protest potential at wave 2. 

The map in Figure 3 graphically displays the results of the CA for the 4 X 
12 matrix of protest potential for the three nations. As this map indicates, a two- 
dimensional representation is required for a display of reasonable quality, although 
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Figure 3: C A  m a p  for protest potential in three nat ions .  
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the curved pattern of the points clearly forms the common "horseshoe effect" (see, 
e.g., Greenacre, 1984, pp. 226-232; Greenacre, 1993a, p. 127). 

Briefly, and again with caution against the overinterpretation of results, the 
patterns in the first dimension of Figure 3 indicate an interesting distribution of the 
latent classes at wave 1 (X1 to X4) with X1 (high protest potential at wave 1) to the left 
of the space and the lower protest potential classes closely spaced in the right-hand 
portion of the space. Thus, the first axis appears to represent a "protest axis." The 
pattern for the nation-specific latent classes is also interesting; whereas the highest 
protest potential class for the wave 2 German (G1) and American (A1) samples are 
located in the left portion of the space, the two highest protest potential classes for 
the Dutch sample (N 1 and N2) appear in this portion of the map. The remaining 
classes appear quite closely spaced in the right-hand portion of the space. Finally, the 
second dimension of Figure 3 also suggests an interesting difference between nations 
at wave 2; all of the instances of Dutch data (N 1 to N4) from wave 2 are located in the 
bottom portion of the figure, while three instances of the German data (G1 to G3) are 
located in the upper portion and the American data are evenly divided between the 
upper and lower portion. Thus, although we must remain cautious, we may wish to 
interpret this as an "intensity axis," because the extreme responses (e.g., X1 and X4) 
are lower than the intermediate responses (e.g., X2 and X3). 

4 D i s c u s s i o n  

The number of survey data sets that are collected cross-nationally has grown dra- 
matically in the past one to two decades. These survey data sets are often collected 
with the specific intent of facilitating comparative, cross-national survey research 
and typically include identical sets of indicator variables for latent variable analyses. 
Athough latent class analysis provides an attractive analytic technique for analyzing 
these data, the pattern of latent classes that results from such analyses may be difficult 
to represent. CA offers an attractive complement to simultaneous latent class analysis 
by providing a set of graphical displays that enables the visualization of the results 
of the simultaneous latent class analysis. Further, the results of latent class analysis 
of identical indicator variables in panel data, whether in a single panel or in multiple 
panels, can also be presented using CA. As the examples presented here indicate, 
the graphical displays provided by CA can be used as an attractive complement for 
presenting the results from complex latent class models. 
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Chapter 33 

Graphical Display of Latent 
Budget Analysis and Latent 
Class Analysis, with Special 
Reference to Correspondence 
Analysis 

L. Andries  van der Ark and Peter G. M. van der He i jden  

1 Introduction 

Latent budget analysis (LBA) and latent class analysis (LCA) are methods for the 
analysis of contingency tables. They are equivalent techniques that lead to an identical 
visualization of the results of the data analyses. It is not widely known that LBA 
and LCA results can be visualized. Aided by two clarifying examples, we will 
illustrate these visualizations, and we will also show the relation between the graphical 
representation of LBA and LCA and that of correspondence analysis (CA), another 
method for the analysis of contingency tables. 

The first set of data was originally published and analyzed by Guttman (1971). It 
is a two-way contingency table about the principal worries of Israeli adults (Table 1). 
The row variable is a combination of residence and father's residence, denoted by 
"residence," with I = 5 categories indexed by i. The column variable is the principal 
worry of the respondents, denoted by "worry," with J = 8 categories indexed by j. 

489 
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The frequency of the cell corresponding to the ith row category and the jth column 
category is denoted by nij. The marginal row and column frequencies are denoted 
by ni. - -  E j  nij and n.j : Y ~ i  nij respectively. The total number of respondents is 
denoted by n = ~-~i ~ j  nij ( :  1554). 

2 The Latent Budget Model 

From the data matrix of Table 1 we can construct the matrix of proportions P, 
with elements pij, by dividing each element of the data by n: Pij = n i j /n .  The 
marginal proportions of the rows and columns are denoted by ri =- Pi. = E j  Pij and 
cj = p.j = ~ i  Pij, respectively. Since "residence" is an explanatory variable and 
"worry" is a response variable, we investigate the conditional proportions of "worry," 
given "residence," denoted by Pjli ~ Pij/Pi.  = ni j /ni . ,  rather than the unconditional 
proportions Pij. This allows us to compare the categories of the variable "worry" 
between residence groups. If we collect the Pi. as entries of the I × I diagonal matrix 
Dr then the conditional proportions Pjli are found in the matrix Dr iP ,  which is 
presented in Table 2. 

The rows of D r i P  are vectors that contain only nonnegative elements and add 
up to one. We call such vectors budgets, in general, and the rows of D r i P  observed 
budgets (in correspondence analysis these rows are referred to as row profiles). 
Normally, D r i P  is of full rank, that is, rank(D r 1p) _ min(I, J), equal to 5 in this 
example. In the latent budget model D r i P  is approximated by Dr  1 H,  a matrix of 
conditional probabilities 7rjl i, of rank K [K --< min(I, J)], such that 7rjl i is a mixture of 
K conditional probabilities 7rjl k (k = 1 . . . . .  K). The mixing parameters are denoted 

Table  1: Principal worries of Israeli adults (Guttman, 1971)* 

Principal worries a 

Residence/ 
father's residence ENL SAB MIL POL ECO OTH MTO PER Total 

Asia/Africa 61 70 97 32 4 81 20 104 469 
Europe/America 104 117 218 118 11 128 42 48 786 
Israel; father 

Asia/Africa 8 9 12 6 1 14 2 14 66 
Israel; father 

Europe/America 22 24 28 28 2 52 6 16 178 
Israel; father Israel 5 7 14 7 1 12 0 9 55 
Total 200 227 369 191 19 287 70 191 1554 

aENL, enlisted relative; SAB, sabotage; MIL, military situation; POL, political situation; ECO, 
economic situation; OTH, other; MTO, more than one worry; PER, personal economics. 
*Reprinted by permission of the Psychometric Society. 
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Table 2: Observed budgets 

Principal  worries  a 

Res idence/  

father's  residence ENL SAB MIL POL ECO OTH MTO PER Total 

Asia/Africa .130 .149 .207 .068 .009 .173 .043 .222 1.000 
Europe/America .132 .149 .277 .150 .014 .163 .053 .061 1.000 
Israel; father 

Asia/Africa .121 .136 .182 .091 .015 .212 .030 .212 1.000 
Israel; father 

Europe/America .124 .135 .157 .157 .011 .292 .034 .090 1.000 
Israel; father Israel .091 .127 .255 .127 .018 .218 .000 .164 1.000 

aENL, enlisted relative; SAB, sabotage; MIL, military situation; POL, political situation; ECO, 
economic situation; OTH, other; MTO, more than one worry; PER, personal economics. 

by 'lT"kl i. The latent budget model can be written as 

K 

7rjl i = ~ 7rkli 7rjlk 
k=l 

(1) 

The parameters in (1) are subject to the equality constraints 

J K J 

Z 7rJ 'i = Z 7Tkli - Z "ITj ]k = 1  
j = l  k=l j = l  

(2) 

and inequality constraints 

0 ~ 7rjl i ~ 1, 0 <--- 7rkl i ~ 1, 0 <-- "tT"jl k ~ 1 (3) 

The idea for the latent budget model was introduced by Goodman (1974) and 
elaborated by Clogg (1981), de Leeuw et al. (1990), van der Heijden et al. (1992), and 
Siciliano and van der Heijden (1994). There are two ways to interpret the parameters 
of the latent budget model, which we will call the mixture model interpretation and the 
MIMIC-model  interpretation (Multiple Indicator Multiple Cause model; Goodman, 
1974). The mixture model interpretation is as follows. If we collect "n'jl i in an I X J 

matrix, then the rows of this matrix, denoted by ~r/T = [Trlli...Trjli...Trjli] , are vectors 
with nonnegative elements that add up to one. These vectors are called expected 
budgets. The latent budget model writes these expected budgets as a mixture of the 

~T vectors 7r k = (Trllk...Trjlk...Trjik) (k = 1 . . . . .  K), which are typical or latent budgets. 
We can write (1) as 

(4) 
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Hence, each expected budget is built up out of the K latent budgets, and the mixing 
parameters determine to what extent. If we interpret the latent budget model as a 
MIMIC model, then 7rk[ i denote what proportion of row category i belongs to some 
latent class k, and 7rjl k denote how the subjects in each latent class k respond to the 
column categories j. 

A schematic representation of a mixture model and a MIMIC model is given in 
Figure 1. For the mixture model the squares represent the expected budgets '/'gi and 
the circles the latent budgets ~k. The arrows represent 7rkl i and determine how each 
expected budget is built up in terms of the latent budgets. For the MIMIC model the 
squares on the left and fight represent the row and column categories, repectively. 
The arrows on the left-hand side represent "g'kli and the arrows on the fight-hand side 
represent 7rjl k. Hence the MIMIC model shows what proportion of each row category 
falls into each latent category and what proportion of each latent category responds 
to each column category. 

In general, the latent budget model is not identifiable if K > 1 and no constraints 
other than (2) and (3) are imposed on the model. Therefore different sets of parameter 
estimates may be obtained for different starting values, but they provide the same 
estimates of the expected budgets. For a discussion of identifiability in the latent 
budget model we refer to de Leeuw et al. (1990) and van der Ark and van der Heijden 
(1996). 
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Figure 1: Graphical display of a mixture model and MIMIC model. 



2. The Latent Budget Model 493 

Table  3: K = 1, K = 2, a n d  K = 3 l a t en t  b u d g e t  s o l u t i o n s  for  the  d a t a  of  Table  I 

K = 1 latent K = 2 latent K = 3 latent 
budget solution budget solution budget solution 

k = l  k = l  k = 2  k = l  k = 2  k = 3  

Mixing parameters 
Asia/Africa 1.000 .383 .617 .000 
Europe/America 1.000 .832 .168 .235 
Israel; father Asia/Africa 1.000 .424 .576 .116 
Israel; father Europe/America 1.000 .721 .279 .436 
Israel; father Israel 1.000 .576 .424 .205 

Latent budgets 
Enlisted relative (ENL) .129 .132 .123 .100 
Sabotage (SAB) 146 .147 .145 .105 
Military situation (MIL) .238 .286 .145 .021 
Political situation (POL) .123 .187 .000 .250 
Economic situation (ECO) .012 .106 .006 .016 
Other (OTH) .185 .180 .194 .508 
More than one worry (MTO) .045 .054 .028 .000 
Personal economics (PER) .123 .000 .359 .000 

Likelihood ratio X 2 121.5 29.23 
Degrees of freedom 28 18 
Probability .000 .050 

.477 .523 

.633 .133 

.402 .482 

.353 .210 

.447 .348 

.149 .109 

.170 .128 

.429 .011 

.145 .000 

.015 .004 

.000 .329 

.084 .000 

.009 .420 
6.490 

10 
.846 

The matrix D r i P  in Table 2 was analyzed using the maximum likelihood esti- 
mation procedure of de Leeuw et al. (1990). The results of the latent budget anal- 
ysis with K = 1, K = 2, and K = 3 latent budgets are presented in Table 3. 
We can see that the model with K = 1 latent budgets does not fit the data. In 
the model with K = 2 latent budgets, the goodness of fit has improved and now 
100(121.5 - 29.2)/121.5 = 75.9% of the dependence is modeled, but the fit is 
still not satisfactory. The model with K = 3 latent budgets fits the data very well, 
with 94.7% of the dependence modeled. We have transformed the parameter esti- 
mates such t h a t  "/~'j=glk=a = 7 r j= 4 lk=  2 - -  0 in the K = 2 latent budget model and 

~j=Vlk=l = ~'j=Slk=l -- ~j=61k=2 = ~j=Vlk=3 = ~j=4lk=3 = ~k=l l i= l  = 0 in the 
K = 3 latent budget model. These transformations were chosen so that as many 
parameter estimates as possible equal zero without altering the goodness of fit (see 
van der Ark and van der Heijden 1996). This facilitates the interpretation of the 
parameter estimates. 

We will now interpret the parameter estimates for the model with K = 3 latent 
budgets to get insight into the data. One can characterize the latent budgets by 
the values of their categories presented in Table 3, but it is more appropriate to 
characterize these relative to the average. Therefore we interpret the latent budgets 
by comparing the estimates ¢rjl k (k = 1, 2, 3) with the column marginals, p.j, which 
are also the elements of the latent budget in the K = 1 latent budget model, and 
attach a label to them. For example, the marginal proportion of MIL is 0.238. In the 
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K = 3 latent budget solution we can see that the estimated proportions of MIL are 
0.021,0.429, and 0.011, respectively, for the first, second, and third latent budgets. 
Hence the second latent budget is characterized more than the other two budgets and 
more than average by people who feel the military situation is their principal worry. 
When we attach a label to the second latent budget, this feature should be considered. 
Besides MIL, the second latent budget is characterized by ENL and SAB, also larger 
than their respective marginals, which also deal with the endangerment of daily life 
by war and the undetermined category MTO ("more than one worry"). Hence this 
latent budget can be labeled "concerns for safety." In a similar way, we find that the 
first latent budget is characterized by POL and OTH, while personal and military 
concerns (PER, ENL, SAB, MIL) have very low existence or are absent. Hence we 
can label this latent budget "political and other worries." The third latent budget 
is dominated by PER, worries about personal economics, with OTH also present. 
Categories that denote nonegocentric concerns (MIL, POL, ECO) are almost absent 
in the third latent budget, hence this latent budget can be labeled "personal worries." 

After the latent budgets are interpreted by the column categories we examine 
how the categories of the explanatory (row) variable are composed out of these latent 
budgets. For example, in the K = 3 latent budget solution, the category "residents 
from Europe and America" (EA) contributes 63.3% to the second latent budget. 
Hence EA can be described as a group whose principal worries are determined for 
the larger part by "concerns for safety." 

3 Latent Class Mode l  

The latent budget model is equivalent to the latent class model for two variables (see 
Clogg, 1981; van der Heijden et al., 1992). The latent class model can be written as 

K 

"lI'ij --  ~ "Irk ~i lk  ~ j l k  
k = l  

(5) 

For (5) we can write 

K K K 
"B'ik Trjk ~ - ~  "lrjk 7rij ~ Trik ql'jk 

,.h.ij --  7 . i . k ~  --  7rik ¢ : : ~  = 
,-d-k ,'t-i- k 7i- k ,1"1" i 7i-i ,Ti- k 

k=l  k=l  k=l  

(6) 

where the last expression is the equation of the latent budget model [see (1)]. Note 
that the latent budget model and the latent class model for two variables have the 
parameters 7rjl k in common. Equation (6) implies that, in the case of two variables, 
for each latent budget solution there is one corresponding latent class solution and 
vice versa. Therefore the estimation procedures and the unidentifiability of the model, 
mentioned in the previous section on LBA, apply to LCA as well (see van der Ark 
and van der Heijden, 1996). However, if we have an identified latent budget solution, 
such as presented in Table 3, we can get the corresponding latent class parameters 
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'rril k and 7rk by using Bayes'  theorem and the law of total probability 

I 

7ri 7rkl i and 'rrk : ~ 7ri 7rkl i 
"iT"ilk - -  ~-'~k L 1 "fl'i "a'kli i = 1 

(7) 

The latent class parameter estimates for Table 1, corresponding to the mixing 
parameter estimates from Table 3 and reparameterized through (7), are presented in 
Table 4. 

The reason for using either the latent class model or the latent budget model 
depends on the types of manifest variables. Since the latent class model studies 
the joint probabilities 'rrij, the model is more appropriate if the row variable and 
the column variable are both response variables. The response variables are then 
independent given the latent class. The latent budget model is more appropriate if 
one of the variables is an explanatory variable and the other a response variable. Only 
if we regard "residence" as a response variable, then it is appropriate to interpret 
the latent class solution of Table 4. This might be considered if one accepts that a 
person can choose the country in which he or she lives. In this case we have a latent 
variable with three classes that determines the "principal worries" and "residence" of 
the respondents. We did not find, however, an appropriate way to label the classes in 
this way. 

Since the latent class model comprises only response variables, the model can 
be extended easily to more than two variables. The latent class model with four 
variables, for example, is then 

K 

7rghij : Z ''Irk 'Tt'g Ik 7rhlk"a'ilk"trjlk 
k=l 

(8) 

From (8) we can see that the general latent class model is equivalent to the law of total 
probability where the response variables are independent conditional on the latent 
classes. 

Table 4: K = 1, K = 2, and K = 3 latent class solutions for the data of Table I 

K = 1 latent K = 2 latent K = 3 latent  

class solut ion class solut ion class solut ion 

k = l  k = l  k = 2  k = l  k = 2  k = 3  

Res idence  

Asia/Africa .302 .176 .544 .000 
Europe/America .506 .640 .248 .656 
Israel; father Asia/Africa .042 .027 .071 .027 
Israel; father Europe/America .115 .126 .094 .276 
Israel; father Israel .035 .031 .043 .040 

Worry See latent budgets Table 3 
Latent class probabilities 1.000 .658 .324 .181 

.268 .560 

.596 .238 

.032 .073 

.075 .086 

.029 .044 

.537 .282 
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Table 5: Cross-classification of four manifest variables (McCutcheon, 1987)* 

Cooperation 

Impatient 
Purpose A c c u r a c y  Understanding Interested Cooperative hostile 

Good Mostly true Good 419 35 2 
Poor/fair 71 25 5 

Not true Good 270 25 4 
Poor/fair 42 16 5 

Depends Mostly true Good 23 4 1 
Poor/fair 6 2 0 

Not true Good 43 9 2 
Poor/fair 9 3 2 

Waste Mostly true Good 26 3 0 
Poor/fair 1 2 0 

Not true Good 85 23 6 
Poor/fair 13 12 8 

*Reprinted by permission of Sage Publications, Inc. 

Table 5 contains the cross-classification of four response variables collected in 
the 1982 General Social Survey (see McCutcheon, 1987b, p. 31). The data comprise 
the evaluation of 1202 respondents in terms of the respondent's attitude toward the 
purpose of surveys and the accuracy of surveys in general and the respondent's 
cooperation and understanding of the survey. In Table 6 a latent class solution with 
three latent classes published by McCutcheon (1987b, p. 43) is presented. After 
performing latent class analysis, McCutcheon characterized the three latent classes 
by the type of respondent who belongs to each of them. Some of the parameters 
have been restricted post hoc to facilitate interpretation (see Table 6). The three 
respondent types (classes) are "Ideal," those who have a positive attitude toward 
surveys and understand the questions well; "Believers," those who have a positive 
attitude toward surveys but do not really grasp their content; and "Skeptics" those 
who mistrust surveys although they understand the questions rather well. For further 
discussion of LCA see McCutcheon (Chapter 32). 

4 Visualization of the Latent Budget Model 

Latent budgets are K vectors in the J-dimensional space of the response variable. 
For example, the K = 3 latent budgets of the latent budget model in Table 3 can be 
viewed as three vectors in an eight-dimensional space. The heads of these K vectors 
span a (K - 1) dimensional subspace; that is, if K = 1 then the head of the latent 
budget is a point, if K = 2 the heads of the latent budgets can be connected by 
a one-dimensional line segment, and if K = 3 the heads of the latent budgets are 
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Table 6: K = 3 latent class solution of the data of Table 5 (McCutcheon, 1987)* 

Mani fes t  Var iables  

Respondent types 

k = 1 (ideal) k = 2 (believers) k = 3 (skeptics) 

Purpose 
Good .887 a .887 a .110  

Depends .060 a .060  a .228 
Waste .053 .053 .661 

Accuracy 
Mostly true .617 a .617 a .000  b 

Not true .383 .383 1.000 
Cooperation 

Interested .943 .683 .649 
Cooperative .057 .260 .248 
Impatient/hostile .000 b .058 .103 

Understanding 
Good 1.000 b .338 .765 
Poor/fair .000 .662 .235 

Latent class probabilities (7rk) .619 .223 .158 

a Equality constraints imposed. 
o Exact indicator restriction imposed. 
* Reprinted by permission of Sage Publications, Inc. 

the vertices of a triangle (Figure 2). Because the expected budgets, 71"i, are mixtures 
of the latent budgets, #~ [see (4)], the expected budgets can be viewed as vectors 
whose heads lie in the space (point, line segment, triangle . . . .  ) spanned by the latent 
budgets. The precise position of the expected budgets in this space is the weighted 
average of the latent budgets, where the weights are the mixing parameters, "fl'kli" The 
mixing parameters serve as coordinates in a so-called barycentric coordinate system, 
which in the K = 3 case is also known as the "triangular coordinate system" (see 
e.g., Greenacre, 1993, p. 15). The models with K = 2 and K = 3 latent budgets can 
be visualized by depicting the space spanned by the latent budgets and plotting the 
expected budgets onto this space by means of their mixing parameters. 

In Figure 3 we show the graphical display of the K = 2 latent budget model 
(for the parameter estimates, see Table 3). Here the line segment spanned by the two 
latent budgets is presented, with the head of the first latent budget on the right-hand 
side and the head of the second latent budget on the left-hand side. Now the first 
expected budget (AA), with mixing parameter estimates 0.383 and 0.617, is made up 
38.3% by the first latent budget and 61.7% by the second latent budget. If we scale 
the line segment from 0 (the second latent budget) to 1 (the first latent budget), then 
the position of (AA) is .383, hence closer to the second latent budget than to the first 
latent budget. If the mixing parameter estimates were (1.000, .000), then the expected 
budget would be equal to the first latent budget and be positioned on the fight end of 
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Figure 2: Visualization of K = 1, K = 2, and K = 3 latent budget  model.  
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Figure 3: Graphical display of the K = 2 latent budget  model.  



4. Visualization of the Latent Budget Model 499 

the line segment. By depicting the K = 2 latent budget model in this way, we can see 
immediately that the expected budgets are composed of the latent budgets as their 
weighted average, where ~lli and ~21i (i = 1 . . . . .  5) denote the weights. 

In Figure 4 a graphical representation is given of the K = 3 latent budget model 
(for the parameter estimates, see Table 3). By convention, the vertices are at equal 
distance and the upper vertex of the triangle represents the head of the first latent 
budget, the right-hand vertex represents the head of the second latent budget, and the 
left-hand vertex represents the head of the third latent budget. The side opposite a 
vertex is the area where the corresponding mixing parameters are zero; for example, 
the first expected budget (AA) with mixing parameter estimates (0.000, 0.477, 0.523) 
lies on the bottom side of the triangle, because the first parameter estimate is zero. 
The scales of this triangular coordinate system are drawn as dotted lines parallel to 
the three sides of the triangle. The second mixing parameter estimate ~211 = 0.477 of 
AA positions the point between the fourth and the fifth dotted line that parallels the 
left side of the triangle. The third mixing parameter estimate ~r311 = 0.523 positions 
AA between the fifth and the sixth dotted line parallel to the fight side of the triangle. 

Figures 3 and 4 can be interpreted as a mixture model as well as a MIMIC model. 
The mixture model interpretation is a tool for understanding the composition of the 
expected budgets in terms of the latent budgets. The closer the expected budgets lie to 
the latent budgets, the greater the probability that a residence group will resemble the 
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F i g u r e  4:  Graphical display of the K = 3 latent budget model. 
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latent budget, and the distance between two expected budgets determines the relative 
similarity among them. The vector of marginal column proportions with elements 
7i'.j = ~-~i "lTiJ ( J  = 1 . . . . .  J) has also been plotted in Figure 4 as a solid square. This 
vector is the latent budget in the independence model and therefore represents the 
average budget. The vector of marginal proportions can serve as a reference vector for 
the expected budgets. Hence, if an expected budget is closer to a latent budget than 
the vector of marginal column proportions, then the expected budget resembles the 
particular latent budget more closely than average. The coordinates of the vector of 
marginal proportions are "rrk = ~-~i 7ri'lrkli, that is, 0.181,0.537, 0.282. For example, 
from Table 3 we can see that I/I has mixing parameter estimates (0.205, 0.447, 0.348) 
and is closer to the vector of marginal proportions than any other row category. Hence 
the Israeli residents whose fathers also live in Israel display the most average pattern 
of worries. 

The MIMIC model interpretation is a guide to an additional characterization 
of the latent budgets. We can consider Figure 4 such that the triangle displays the 
probability to enter the latent budgets; that is, the vertices denote the probability 1 that 
the subjects of a row category i belong to the corresponding latent budget ('n'kl i = 1) 
and a probability 0 that they belong to the other latent budgets. In this interpretation 
the picture shows how the marginal row probabilities are distributed over the latent 
budgets, and we can label the budgets by this distribution. The point that denoted the 
vector of marginal column proportions now represents the average distribution of all 
subjects in the contingency table. If a row category is closer to a latent budget than the 
point representing the overall average, then the latent budget is characterized more 
than average by that row category. If the distance between two points in the figure 
is large, then the distribution of those two categories over the latent budgets is not 
similar; if the distance is small, then the two categories are distributed over the latent 
budgets in more or less the same way. We can see that the first latent budget (1, 0, 0) is 
represented more than average by I/EA, EA, and lfl, the second latent budget (0, 1,0) 
can be interpreted as a budget typical for those who live in Europe or America, and 
the third latent budget (0, 0, 1) is represented more than average by AA, I/AA, and I/I. 

The categories of the column variable can also be represented graphically. This 
can be done if we rescale the elements of the latent budgets from "rrjl k into 7rkl j by 

7rkl j = (9) 
¢9 

[see (7)]. In Figure 5 a graphical representation of "n'kl j in the K = 3 latent budget 
solution is given for the data of Table 1 and the rescaled latent budget parameters 
[see (9)] are given in Table 7. 

Figure 5 cannot be interpreted in terms of the mixture model for the rows, 
but must be interpreted according to the MIMIC model; that is, the vertices denote 
7rjl k = 1 (k = 1, 2, 3) and the squares in Figure 5 are the column categories. Their 
position in the triangle determined by 7rkl j denotes how the marginal probability of 
a particular observed category j is distributed over the three latent budgets. If one 
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Figure 5: Graphical representation of the rescaled latent budgets in the K = 3 latent 
budget  solution. 

of the categories were positioned on a vertex, this category would be present only in 
the particular latent budget. Hence, MTO is present only in the second latent budget. 

1 
If a category were positioned in the center of the figure [i.e., coordinates are (½, 7, 

½)], then the responses to that category would be equally distributed over the latent 

Table 7: Rescaled latent budget  elements of Table 3 

Worries k = 1 k = 2 k = 3 

Enlisted relative (ENL) .141 .620 .238 
Sabotage (SAB) .129 .625 .247 
Military situation (MIL) .017 .969 .014 
Political situation (POL) .368 .632 .000 
Economic situation (ECO) .239 .669 .092 
Other (OTH) .498 .000 .502 
More than one worry (MTO) .000 1.000 .000 
Personal economics (PER) .000 .038 .962 
Latent class probabilities (7rk) .181 .537 .282 
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budgets. If two points were plotted close together, for example ENL and SAB, then 
these categories have a similar distribution over the latent budgets. In this way we 
visualize the characterization of the latent budgets that has been given in Section 2. 
In Figure 5 the point that denoted the average distribution of all subjects over the 
latent budgets, with coordinates 7rk (k = 1, 2, 3), is also plotted and now serves as a 
reference point for the column categories. 

Notice that if we examine 7rkl j instead of 7rjl k the marginal column effects have 
disappeared. This means that if a marginal column proportion is very small, for exam- 
ple, the marginal proportion of ECO (.012), and we examine the actual proportions 
of the latent budgets with elements 'rrjl k, then ECO hardly plays a role in the interpre- 
tation of the latent budgets, because of its low marginal frequency. Categories with 
large marginal column proportions, on the other hand, tend to dominate, for example, 
MIL, which has a marginal proportion of 0.238. These differences disappear if we 
examine 7rklj, where we see how each category is distributed over the latent budgets. 

Figures 4 and 5 can be overlaid. In this case the figure has to be interpreted 
according to the MIMIC model. Thus, the plot indicates to what extent the categories 
of the row and the column variables appear in a certain latent budget. This may help 
to interpret the latent budgets not only by means of the column categories but also by 
means of the row categories. 

5 Visual izat ion of the Latent Class Model  

The idea of rescaling the parameters 7rjl k into "ITkl j c a n  also be used to visualize the 
latent class parameters. If we have two response variables, we can depict "n'kl i (i = 
1 . . . . .  I) and "n'kl j ( j  = 1 . . . . .  J )  simultaneously. If we assume that the variables 
"residence" and "worry" from Table 1 are both response variables, visualization of 
the latent class model with three latent classes would be equivalent to Figures 4 and 5. 
The plot must be interpreted as a MIMIC model, however; that is, the picture reveals 
how the categories of the variables are distributed over the latent classes. In this way 
we can easily characterize the latent classes by the closeness of the category points to 
the comers of the triangle. If we overlay Figures 4 and 5, then we have a simultaneous 
representation of the row variable and the column variable. 

As mentioned in Section 3, the latent class model can easily be extended 
to more than two variables. If we have more than two variables, say four, with 
corresponding latent parameters 7rglk (g = 1 . . .  G),  7rhl k (h = 1 . . . H ) ,  "lT'il k (i = 
1. . .  I), and "rrjl k ( j  = 1 . . .  J) ,  [see (8)], they can be transformed into "rrklg (g = 

1 . . .  G),  7t'k[ h (h = 1 . . .  H) ,  7rkl i (i -- 1 . . .  I) ,  and 7rkl j ( j  = 1 . . .  J )  by 

7rk'n'glk ~k 7rhlk ~k'rrilk 7rk 7rjlk (1 O) 
~ k l g -  ; ~ k l h -  ; ~ k l i -  ; ~ k l j -  

~rg 7rh ~ri r 9 

A graphical display of Table 6 is given in Figure 6. The manifest variables are 
depicted simultaneously. The rescaled parameter estimates obtained with (10) are 
given in Table 8. 
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T a b l e  8: R e p a r a m e t e r i z e d  la tent  class so lu t ion  of Table 6 

Manifest Variables 

Respondent types 

k = 1 (ideal) k = 2 (believers) k = 3 (skeptics) 

Purpose  
Good .718 .259 .023 
Depends .429 .155 .416 
Waste .220 .079 .700 

Accuracy  
Mostly true .735 .265 .000 
Not true .493 .178 .329 

C o o p e r a t i o n  

Interested .696 .182 .122 
Cooperative .266 .438 .296 
Impatient/hostile .000 .443 .557 

U n d e r s t a n d i n g  

Good .759 .093 .148 
Poor/fair .000 .799 .201 

Latent class probabilities (7rk) .619 .223 .158 
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In Figure 6 the solid circles denote the variable "purpose," the open circles 
denote "accuracy," the solid squares denote "cooperation," and the solid triangles 
denote "understanding." Figure 6 displays the characterization of the latent classes 
according to the results in Table 4. The first class (ideal respondents) is characterized 
more than average by all most positive categories of the variables. The second class 
(believers) is mostly characterized by a fair to poor understanding of surveys, but 
they are more cooperative than average. The third class (skeptics) is characterized by 
negative categories of all variables. 

6 Relation of LBA and LCA to 
Correspondence Analysis 

A problem with the display of LCA and LBA is that only the relative distances are 
visualized; Figures 4, 5, and 6 are equilateral triangles, while there are always two 
latent classes (budgets) that are more similar to each other than to the third one. 
We are able to solve this problem by using correspondence analysis (CA), and the 
solution follows from the relation of LBA and LCA to CA. Because LBA and LCA 
are equivalent, we will refer only to LCA in this section. 

The relation between LCA and CA is rather close and has been studied before 
by, among others, Gilula (1979, 1983, 1984), Goodman (1987), de Leeuw and van 
der Heijden (1991), and van der Ark and van der Heijden (1996). Visualization of 
both models will give more insight into this relation. We recapitulate here first the 
analytic results of de Leeuw and van der Heijden (1991) and then illustrate the results 
by visualizing them. 

Consider a two-way matrix with observed proportion Pij of rank M. We define 
CA as 

Pij -- Pi.P.j 1 -b OtmrimCjm 
m=l  

(11) 

where the scores rim and Cjm are centered: ~-]~iPi.rim = ~"]~jp.jCjm = 0,  and 
2 2 

s t a n d a r d i z e d :  ~ i  Pi'rim -- ~ j P ' j C j m  = 1. T h e  parameters Ot m a r e  t h e  singu- 
lar values obtained from a singular value decomposition of the matrix with ele- 
ments ( P i j  - -  Pi.P.j)/v/(Pi.P.j) • When the matrix of proportions has full rank, then 
M = min(l - 1, J - 1). Decomposition (11) is also known as the canonical analysis 
of a contingency table (Gilula, 1984; Gilula and Haberman, 1986). In this context 
Og m is the mth canonical correlation between the quantified row and column variable, 
where the scores rim are used as quantifications for the rows, and the scores Cjm are 
used as quantifications for the columns. These scores are often called the "standard 
coordinates" of a CA solution. 



6. Relation of LBA and LCA to Correspondence Analysis 505 

Suppose that we use only M* (1 --< M* < M) dimensions of decomposition (11) 
to derive elements 

Pij = Pi.P.j 1 + OtmrimCjm 
m=l 

(12) 

and we collect these approximations Pi~ i n  a matrix P*. The matrix P* is a reduced 
rank matrix of rank M* + 1, and it provides an optimal approximation of the observed 
matrix in a least-squares sense (see, for example, Greenacre, 1984). Notice that P* 
need not be a probability matrix, that is, a matrix with nonnegative elements adding 
up to one. Although it can be shown t ha t  ~-~ij Pij = 1, some elements may be 
negative. 

Both CA and LCA are reduced rank models. If a matrix can be decomposed 
by a K-class LCA, then it can also be decomposed by a (K - 1)-dimensional CA. 
However, contrary to what was stated by van der Heijden et al. (1989), the reverse 
does not hold in general. This can be seen from the fact that the factorization provided 
by LCA consists of nonnegative parameters only, whereas the parameters of CA may 
be negative. There is one special case, though. De Leeuw and van der Heijden (1991) 
prove that LCA and CA are equivalent in the two-class, one-dimensional case and 
then provide a counterexample to illustrate that this is not true in general for higher 
dimensions. 

Let us now discuss the implications of these results for data analysis. Observed 
contingency tables that are of reduced rank seldom occur. If a matrix does not have 
a reduced rank, then we can still calculate the decomposition provided by (12). If 
we then consider only M* < min(I - 1, J - 1) dimensions, then P* need not be 
a probability matrix (see earlier). Therefore for CA estimated by least squares the 
above has limited practical relevance. It is relevant, however, for CA estimated by 
maximum likelihood, as proposed by Goodman (1985) and Gilula and Haberman 
(1986) (see also Siciliano et al., 1993). Their model is 

71"ij = aibj 1 -k- fmUimVjm 
m=l 

(13) 

where the parameters have identification restrictions identical to those in (11) and 
(12)" ~ i  aiUim = ~"~j bjl;jm = 0 and E i  aiU2m = ~ j  bjvj 2 -- 1. m choice of M* 
determines the rank of the matrix with elements 7ri~ and because (13) is estimated by 
maximum likelihood, this yields a probability matrix of reduced rank when M* < 
min(I - 1, J - 1). This shows that for K = 2 the estimates of expected probabilities 
of both models will be equal, and therefore the fit of both models will be equal as 
well. For K = 3 it turns out that often, but not always, LCA and CA have identical 
estimates of expected probabilities (see van der Ark and van der Heijden, 1996, for 
more details). This is relevant for the visualization of LBA and LCA. 
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7 Simultaneous Visualization of the 
Correspondence Model and the 
Latent Budget Model 

CA is usually employed to make graphical representations. The categories of the 
variables are plotted onto an M*-dimensional space with M* orthogonal axes. 

An important concept in the visualization of CA is the chi-squared distance. The 
chi-squared distance 82i , between rows i and i ~ of II* is defined as 

( )2 J - 

j=l 77") 
(14) 

From equation (14) we can see that the chi-squared distance is the squared difference 
between two expected row budgets 7r~j/Tr~' weighted by the marginal proportion of 
the column 7r~. Now we can plot each category of the row variable using rimOt m 

(m = 1 . . .  M*) as coordinates. Then the Euclidean distances between the rows in the 
plot are equal to chi-squared distances between the rows of II*. We can also plot each 
category of the column variable using Cjmam (m = 1 . . .  M*) as coordinates. Here the 
Euclidean distances between the columns in the plot are equal to chi-squared distances 
between the columns of II*. These two graphical displays that are often produced for 
CA estimated by maximum likelihood could be enriched by supplementing them with 
points for latent budgets, when CA and LCA yield identical estimates of expected 
probabilities, and this would lead to an interpretation of the CA solution from a 
different perspective. 

An example for the data in Table 1 is given in Figure 7. Let us denote the 
maximum likelihood estimates of the model by I]*. Now in Figure 7 the row profiles 
of I~1" are plotted onto the first two principal axes of the correspondence model, using 
rimOl m (i = 1. . .  5; m = 1, 2) as coordinates. The columns of H* have been plotted 
in the picture as well using standard coordinates Cjm (j  = 1. . .  8; m = 1, 2). We can 
project the latent budgets onto Figure 7 to illustrate the relation between LBA and CA. 
We find the coordinates of the latent budgets by projecting them as supplementary 
points in the CA space, that is, ~ j  7rjlkCjm (k = 1. . .  3, m = 1, 2). The coordinates 
are given in Table 9. The horizontal axis differentiates basically on the origins of 
the respondents with (AA) and (I/AA) on the left-hand side, (EA) and (I/EA) on 
the fight-hand side, and (I/I) in between, while the vertical axis differentiates on the 
actual residence of the respondents, residents of Israel on the upper side and citizens 
living abroad on the lower side. Notice that the triangle in Figure 7 is not the same 
as the triangle in Figure 4, because in Figure 4 by convention the distances between 
the latent budgets are unity, whereas in Figure 7 they are measured in the chi-squared 
metric. Also by convention, in Figure 4 the first latent budget is placed on top, whereas 
in Figure 7 the position of the latent budgets depends on the axes. Thus Figure 7 can 
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Figure 7: Latent budgets plotted in CA space. 

Table 9: Coordinates of the expected budgets and latent budgets in Figure 7 

D i m .  1 D i m .  2 

Row profiles (black dots) 
Asia/Africa 
Europe/America 
Israel; father Asia/Africa 
Israel; father Europe/America 
Israel; father Israel 

Column profiles (black triangles) 
Enlisted relative (ENL) 
Sabotage (SAB) 
Military situation (MIL) 
Political situation (POL) 
Economic situation (ECO) 
Other (OTH) 
More than one worry (MTO) 
Personal economics (PER) 

Latent budgets (black squares) 
First latent budget 
Second latent budget 
Third latent budget 

-.330 
.212 

-.285 
.069 

-.101 

.057 

.101 

.512 
1.227 
.687 

-.069 
.520 

-2.443 

.300 

.440 
-1.032 

-.051 
- . 0 5 8  

.089 

.326 

.100 

-.238 
- .288 

- 1.069 
.669 
.081 

1.779 
- 1.160 

- .268 

.997 
-.545 

.399 
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be viewed as a plot of the latent budget solution scaled in chi-squared distances, 
which allows a visual comparison of the similarities of the three latent budgets. 

8 Discuss ion  

We have shown how to visualize the results of LBA and LCA and how these visual- 
izations are related to the visualizations of CA. A K-budget LBA, that is, a K-class 
LCA, is equivalent to a (K - 1)-dimensional CA when they yield the same estimated 
expected frequencies. In such a case, the visualization of the results of LBA and LCA 
can be plotted onto the CA map and vice versa. 

LBA is a technique that can be used best when we have one explanatory and 
one response variable, and the question of interest is how the expected budgets can 
be composed of a smaller amount of typical or latent budgets. LCA can be used best 
when we want to study the relation between two or more discrete response variables. 
The question of interest is whether we can split up the sample into K latent classes 
such that the relation among the variables is satisfactorily explained by the classes. 

On the other hand, CA visualizes how row profiles can be explained by contin- 
uous axes, which can be interpreted as latent traits. If the row profiles are equivalent 
to expected budgets, then the difference between LCA/LBA and CA could be sum- 
marized as the choice between a trait or state explanation of the latent budgets. 

When the models have the same expected frequencies, plotting the latent budget 
solution or the latent class solution onto the CA map gives us the benefits of both 
models. On the one hand, we can see at a glance how the expected budgets are built up 
of prototypes, and on the other hand, we can assign latent trait scores to the expected 
budgets. An extra advantage is that the map allows a valid distance interpretation. 



Chapter 34 

Using New General Ordinal 
Logit Displays to Visualize 
the Effects in Categorical 
Outcome Data 
Jay Magidson 

1 Introduction 

This chapter presents a way to visualize the effects (odds ratios) in the analysis of 
categorical outcome data through powerful graphical displays. Previously, results 
from such analyses consisted only of traditional listings of parameter estimates and 
related statistics that are difficult for the less technical user to interpret. No concise 
and informative display of the effects was available. 

The choice of statistical model for analyzing a categorical response variable 
depends on whether the response consists of only two categories (dichotomous) or 
more than two categories (polytomous). In the former case, the model most used 
has been the multiplicative odds model, commonly expressed in additive form and 
referred to as the logit or log-odds model. In the latter case, the model choice depends 
further on whether or not the response categories are assumed to be ordered. Our focus 
here will be on situations in which the categorical outcome is either dichotomous 
or ordinal. Unless otherwise stated, we also assume that all predictor variables are 
categorical---either nominal or ordinal. 

Ordinal outcomes occur naturally in many applications. Examples in survey 
analysis are a three-point rating scale (favorable, neutral, unfavorable), a five-point 

509 



510 Chapter 34. Using New General Ordinal Logit Displays 

scale (strongly disagree, disagree, neutral, agree, strongly agree), and other ordered 
scales. In addition, any dichotomous (Yes, No) outcome may be expanded through 
the addition of a third response such as "Don't know/uncertain," which in some cases 
may represent a "middle response." 

Despite the preponderance of ordinal outcomes, no single statistical model has 
emerged as the analysis standard. The two leading candidates are based on competing 
generalizations of simple oddsmthe cumulative logit model (McCullagh, 1980) and 
the adjacent category logit model (Goodman, 1979). Models based on these alternative 
generalizations can provide different interpretations of data, and the user must choose 
between them. 

One advantage of the adjacent category model is that when scores are assigned to 
the outcome categories, the model is log-linear and hence current log-linear modeling 
software can be used to estimate the model parameters (Koch and Edwards, 1988). 
A second advantage of this model is that the maximum likelihood equations have a 
simple form, which permits various generalizations. Specifically, when scores are not 
known and hence cannot be assigned to all of the categories of the ordinal response, the 
model is log-bilinear and the maximum likelihood algorithm for log-linear modeling 
generalizes easily to enable estimation of the unknown scores simultaneously with 
the other parameters (Goodman, 1979). For further discussion and comparisons of 
these models, see Magidson (1996a), Agresti (1996), and Clogg and Shihadeh (1994). 

The graphs presented here are suitable for displaying results from either the 
simple logit model or the adjacent category model. These graphical displays present 
a complete "picture" and therefore can reduce the possibility of error in interpretation. 
The ability to choose a simple graph as a way of specifying a model and viewing the 
resulting effect estimates in an intuitive graphical form is a powerful asset. Use of 
the displays represents a marked improvement over the traditional approach, which 
consists of inspection of parameter estimates and significance tests that are often 
difficult to integrate to produce a global insight. 

Once the model is specified and the parameters estimated, the resulting graph 
can be examined visually along with traditional statistics that reflect the model fit 
and significance of the effects. If the user judges the model to be unsatisfactory, the 
current parameter settings may be altered through direct user manipulation of the 
graph and a new model can then be estimated that reflects the new settings. Thus, 
researchers can more readily and quickly implement the natural, interactive process 
that is prevalent in social science research. 

2 Illustration of the Logit Display 

To illustrate the benefits of visualizations of the effects in categorical data, we will 
first consider the data in Table 1 in which responses to the question "How much do you 
like your work?" are classified by two dichotomous personality characteristics. The 
EI variable categorizes respondents as either extroverts (E) or introverts (I) according 
to whether they indicate a preference for expressing ideas to others or for thinking 
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Table 1: Classification of job satisfaction by two personality characteristics 

How much do you like your work? 

EI JP Not much It 's OK A lot No response 

Extrovert (E) Judging (J) 255 2,698 10,215 1,265 
Extrovert (E) Perceiving (P) 268 2,031 4,693 839 
Introvert (I) Judging (J) 410 4,061 9,033 1,534 
Introvert (I) Perceiving (P) 366 2,281 3,684 795 

From Martin and Macdaid (1995). Reprinted by permission of the author. 

things out first before expressing ideas to others. The second characterization JP 
classifies persons as judging (J) or perceiving (P) depending on whether they indicate 
a preference for living a planned, decided, orderly way of life or one that is flexible 
and spontaneous. For more information on the EI and JP classifications see Myers 
and McCaulley (1985). 

Figure 1 contains a graphical display of the results of applying the adjacent 
category logit model with unknown response scores. Figure 1 displays the "joint 
effects plot" in which separate effects lines are displayed for each joint (El, JP) 

Fit = 17.6 df=4 p=0.0015 log(Odds-Ratios) 
EI,JP Sig = 923 df=5 p=2.5e-197 

0.6466 

i,po 

e, po 
i,jD 

e,j o 

6 

o 

/& A A /~ 
not much ok no response a lot 

How much do you like your work? 

0.3612 

0.0759 

-0.2095 

-0.4949 

Y-~iew 

Figure 1: Y-view of ordinal logit model for personality characteristics data. 
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category. The slope of each of these lines represents the magnitude of the relationship 
between each of the four joint categories and job satisfaction. The extroverted judging 
(E,J) type is seen to be most likely and (I,P) least likely to be satisfied with their 
jobs by noting that the largest slope is associated with the "e,j" and smallest (most 
negative) slope with the "i,p" effects lines. The slope for the e,j effects line includes 
the main effects associated with extroversion and judging, as well as the extroversion 
x judging interaction effect. 

The following information is embedded in the graphical display in Figure 1: 

The E1 effect: ~3 EI ---- 0.11 

The JP effect:/3 JP = 0.10 

The EI*JP interaction effect:/3 EI*JP =0.02 

The induced ordering for the response categories, which positions the no response 
category in proper proportion to the other categories 

Arrows on the horizontal axis depicting the predicted response for each (EI, JP) 
personality type group 

A comparison of the estimated expected odds ratios with the observed odds ratios 
to assess the model fit 

The relative sample sizes associated with each cell of the table 

The interpretation of each joint effect as a baseline odds ratio, to be described in 
the following 

Moderate effects for both extroversion-introversion (EI) and judgment-percep- 
tion (JP) variables can be ascertained from Figure 1 by noting the difference in slopes 
between two of the four effects lines in Figure 1. For example, the magnitude of the 
EI effect corresponds to the average of the distance between the "e,j" and "i,j" effects 
lines and the distance between the "e,p" and "i,p" effects lines. Formally, distance 
is defined as the difference between the slopes of the corresponding lines. The fact 
that the "e,j" and "i,j" lines are somewhat more distant than the "e,p" and "i,p" lines 
indicates the presence of a small EI*JP interaction effect. 

The triangular markers along the bottom of the graph designate estimates for 
the response category scores including the "no response" category. Based on the 
estimated "no response" score, a missing response seems to reflect positive job 
satisfaction, somewhere between the responses of "OK" and "Like a lot." 

Generalized odds ratios corresponding to the joint effects are calculated for each 
cell of the table. The 16 observed odds ratios for this example are represented by 
the circular, triangular, diamond, and square markers in Figure 1. The overall fit of 
the model is indicated by the relative closeness of these markers to the associated 
effects line, which represents the estimated effects expected under the model. The 
overall chi-squared lack-of-fit statistic assesses the extent to which the observed 
markers are distant from the corresponding lines. In this case, we have X 2 = 17.6 
with 4 degrees of freedom, which reflects a statistically significant difference at the 
0.01 level (p = 0.0015). However, through visual inspection we see that the observed 
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markers are fairly close to the corresponding lines, which suggests that the significant 
difference is not substantively meaningful. Hence, we accept the fit of this model. 

Upon further inspection, it can be seen that the markers farthest from the respec- 
tive lines are those associated with the "not much" response category. These markers 
are the smallest in diameter, which is indicative of relatively small sample sizes. 
Because greater variability exists in those observed and estimated effects that are 
based on cells with smaller frequency counts, the distance between the "not much" 
category and the associated line could be interpreted as normal sampling variation 
rather than lack of model fit. The ability to ascertain a "look and feel" of a good fit for 
this example is an especially valuable feature when the overall sample size is large as 
in this example (N = 44, 428). A large sample size contributes to a large chi-square 
statistic, which may often be used to judge a small effect estimate that is insignificant 
from a substantive perspective to be statistically significant. 

3 Description of Methodology 

For simplicity, we first describe the model associated with a two-way I X J table 
where a single predictor variable forms the I rows and an ordinal response forms the 
J columns. In this case, the adjacent category logit model can be presented in the 
following asymmetric form of generalized baseline logits (see Magidson, 1996a): 

a'I)'j, i = Olj n t- [ 3 i ( Y j -  Y0) i = 1,2 . . . . .  I; j = 1,2 . . . . .  J (1) 

where alil'j.i represents the expected generalized logit associated with response cat- 
egory j given category i of the predictor variable, yj  denotes the score for the jth 
response category, and Y0 is the score assigned to a designated baseline response 
category designated by 0. Formally, ~j.i  =- ln(Pij/Pio), where Pij is the probability 
of response j and predictor level i and thus (Pij / Pio) is the odds in favor of response j 
relative to the baseline response category given predictor level i. More generally, the 
baseline response may be a weighted average of the response categories, in which 
case Y0 is the weighted average of the y-scores. For example, when the observed 
proportions pj are used as the weights, Y0 is the mean of the y-scores. Figure 1, 
described further in Section 6, utilizes the observed proportions as weights in the 
definition of the baseline odds and odds ratios. 

The intercept for the jth response category, c~j, is the baseline logit, representing 
the generalized logit associated with the designated baseline predictor category; 
formally, ogj = ln(P0j/Poo). Since knowledge of the baseline categories is necessary 
to interpret both the odds of response and the associated effects, the baseline response 
and predictor categories should be selected on substantive grounds. 

The/3 parameters are log-odds ratios;/3i represents the logarithm of the change 
in the odds of response associated with a change from the baseline predictor category 
to predictor category i. By "odds of response" is meant the odds of a unit change 
in the response variable--say from the baseline category assigned the score Y0 to a 
category assigned a score Y0 + 1. When we generalize the model later to the case of 
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two or more predictors, each 13 parameter will correspond to a joint effect that can be 
decomposed into main effects and interaction effects. 

Note that model (1) is invariant with respect to any linear transformation on yj. 
/ That is, any scores yj = a + byj, where b :/: 0, can be used in place of yj without 

altering the statistical properties of the model. Although such a replacement will 
result in changes in c~ and/3, the generalized logits and all statistical tests (including 
n 0 : 13 i " -  0 )  will be unchanged. Thus, it is the relative distance between the response 
categories as displayed in the graph rather than their actual quantitative values that is 
the essential part in these models. 

4 Example 1: Clinical Trial Data 

Our first detailed example uses a 2 × 5 cross-tabulation based on a clinical trial 
(DeJonge, 1983) involving two treatments (test drug, placebo) and five possible 
outcomes (marked improvement, moderate improvement, slight improvement, sta- 
tionary, and worse). The "stationary" category is selected in this example as the 
baseline so that the odds of a positive change (i.e., improvement) will take on a value 
greater than 1 and the odds of a negative change will take on a value less than 1. 

The outcome categories are assumed to be equally spaced through use of the 
equidistant y-scores - 1 ,  0, 1, 2, and 3. Such a model is referred to as the equal 
adjacent odds ratio model by Koch and Edwards (1988). 

It is instructive to show how the/3 i effect estimates can be computed from the 
estimated expected frequency counts under this model. Table 2 displays the data and 
y-scores. Table 3 provides the estimated expected counts under the model. 

Table 2: Observed counts for clinical trial data* 

(X)Treatment Worse Stationary Slight Moderate Marked 

Test drug 1 13 16 15 7 
Placebo 5 21 14 9 3 
y-scores - 1 0 1 2 3 

*Copyright John Wiley & Sons Limited. Reproduced with permission from Statistics in 
Medicine, H. DeJonge, 1983. 

Table 3: Expected counts for clinical trial data 

Worse Stationary Slight Moderate Marked Avg. scores 

Test drug 1.58 12.78 15.10 15.12 7.41 1.3 
Placebo 4.42 21.22 14.90 8.88 2.59 0.7 
y-scores - 1 0 1 2 3 
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There are four steps in performing the calculations: 

1. Estimate the expected cell frequency counts under the baseline logit model; a 
computer program is required for this estimation, using maximum likelihood 
estimation. 

2. Select the reference point to serve as the baseline for the odds ratio. For this 
example the "stationary" category of IMPROVEMENT and the "placebo" cate- 
gory for the TREATMENT are selected as the reference points that will be used 
to define the origin of the associated graph. 

3. Calculate the expected odds by dividing each estimated expected count by the cor- 
responding base count associated with the dependent variable reference category 
"stationary." Table 4 provides the results of calculating the odds. 

4. Calculate the odds ratios by dividing each expected odds by the corresponding 
base odds associated with the predictor reference category "placebo." Table 5 
provides the corresponding odds ratios. 

Tables 4 and 5 illustrate how the odds and odds ratios are calculated from the 
expected counts. For example, for the "test drug" category of TREATMENT, the 
expected odds in favor of "marked" (vs. "stationary," the baseline reference category) 
IMPROVEMENT is 7.41/12.78 = 0.58 (see Table 4). Note that by definition the 
expected odds in favor of"stationary" improvement equals 1. Then, the expected odds 
ratio associated with the "test drug" and "marked" improvement cell, for example, 
is computed by dividing the expected odds in favor of "marked" (vs. "stationary") 
improvement given the "test drug" by the expected odds in favor of a "marked" 
improvement given the "placebo"mthat is, 0.58/0.12 = 4.75 (Table 5). 

Table 4: Expected (baseline) odds for clinical trial data; reference point: (improvement 
= stationary) 

Worse Stationary Slight Moderate Marked 

Test drug 0.12 1.00 1.18 1.18 0.58 
Placebo 0.21 1.00 0.70 0.42 0.12 

Table 5: Expected odds ratios for clinical trial data; reference points: (improvement 
= stationary, treatment = placebo) 

Worse Stationary Slight Moderate Marked 

Test drug 0.59 1.00 1.68 2.83 4.75 
Placebo 1.00 1.00 1.00 1.00 1.00 
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Table 6: Expected log-odds ratios for clinical trial data; reference points: (improve- 
ment = stationary, treatment = placebo) 

Worse Stationary Slight Moderate Marked 

Test drug -0.52 0.00 0.52 1.04 1.56 
Placebo 0.00 0.00 0.00 0.00 0.00 

The equal adjacent category odds ratio model is one for which the differences 
between the log odds ratios in adjacent categories are identical. The logarithms 
of the odds ratios in Table 5 are listed in Table 6. From these log odds ratios it 
can be verified that the difference associated with adjacent categories is 0.52. For 
example, the difference in log odds ratios associated with "slight" and "stationary" 
is 0.52 - 0 = 0.52; for "moderate" and "slight" it is 1.04 - 0.52 = 0.52, and 
for "marked" and "moderate" it is 1.56 - 1.04 = 0.52. The estimate of/31 to four 
significant figures is 0.5197. Since there are I - 1 = 1 nonredundant effects for 
this example, by definition/32 = 0. The odds of improvement, whether calculated 
from the adjacent categories "worse" to "stationary," "stationary" to "slight," "slight" 
to "moderate," or "moderate" to "marked," equals the odds ratio exp(0.5197) = 
1.682. As the odds ratio is the odds associated with the test drug divided by the 
corresponding odds associated with the placebo, the effect estimate states that the 
odds of improvement are 1.682 times as high (or 68.2% higher) for patients who 
received the test drug than patients who received the placebo. 

A simple graphical display can be used to represent each of the different baseline 
logit models, clearly showing the relative distances between the response categories 
indicated by the response scores. The origin of the graph represents the selected 
baseline reference categories so that the interpretation of the odds ratios is straight- 
forward. Hence, the slope of each line represents the change in the baseline odds 
associated with a change from the baseline predictor category. 

The key to reexpressing model (1) in a form that permits such a meaningful 
graphical representation is to subtract the intercept from both sides of model (1) to 
yield 

f ~ j . i  ~--- [ 3 i ( Y j  - Yo) (2) 

where f~ j . i  ~ ~/itj.i - -  Olj is the expected baseline log-odds ratio. 
Figure 2 displays the effects as slopes of lines and marks the placement of the 

estimated expected outcome associated with each predictor level (i.e., E[Y IX = xi]) 
as an arrow pointing onto the outcome score dimension. The baseline reference 
categories, "placebo" and "stationary," appear in the graph as the reference point 
(origin) for interpreting results. More generally, any contrast of the predictor and 
response categories may be used to define the baseline reference. For example, odds 
may be calculated relative to the weighted average of the y-scores. 
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Odds-Ratios 

4.75 

2.43 

1.24 

0.63 

0.32 

Fit = 0.524 df=3 p=0.91 
Sig = 7.58 df=l p=0.0059 

TREATMENT 
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placebo testl~ug 
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IMPROVEMENT 
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Figure 2: Y-view of the equal adjacent category odds ratio model for clinical trial 
data. 

Separate "effects" lines are present for each of the two levels of the predictor 
variable. The slope of each of these "effects" lines represents the odds ratios in 
logarithmic units (i.e., the graph is a semilog chart). The slope of the test drug effects 
line is [31 = 0.5197. The slope of the placebo effects line is/32 = 0 because the placebo 
was selected as a reference category. Since odds ratios are more easily interpretable 
than log-odds ratios, in contrast to Figure 1, the units displayed along the y-axis in 
Figure 2 are odds ratios. 

In summary, the plot of the expected log-odds ratio for the test drug (i = 1) as a 
function of the IMPROVEMENT y-scores falls on a straight line having slope/31, 
the "test drug effects line." Similarly, the plot of each expected log-odds ratio for 
the placebo (i = 2) falls on a straight line, the "placebo effects line." Because the 
placebo is selected as the baseline reference, the placebo effects line has a slope of 
z e r o .  

Each plot contains the following components: 

1. Vertical axis. The vertical axis represents a baseline response category or 
contrast used as the base in defining the generalized odds. In Figure 2, the vertical 
axis is aligned with the "stationary" marker, because this category is the selected 
reference category or base of the response variable. 

2. Horizontal axis. The horizontal axis represents a baseline category or contrast 
used in defining the odds ratio. In Figure 2 it corresponds to the placebo effects line 
because the "placebo" category was selected as the prediction reference category. 



518 Chapter 34. Using New General Ordinal Logit Displays 

3. Outcome scores. The scores assigned to or estimated for the response cate- 
gories, referred to as y-scores, are signified by triangular markers at the bottom of the 
plot. For example, Figure 2 displays triangle markers associated with each level of 
IMPROVEMENT. The relative distances between these markers are a consequence 
of the y-scores assigned by the statistical model. In Figure 2, the distances between 
adjacent markers are equal, corresponding to the equal adjacent category odds-ratio 
model. More generally, if these distances are unknown they are estimated under the 
general log-bilinear model (see de Falguerolles, Chapter 35). 

4. Effects lines. For each predictor category, the expected odds ratios are plotted 
on a logarithmic scale as a linear function of the y-scores. The resulting line is referred 
to as the effects line associated with that predictor level. 

5. Origin. The origin, the point of intersection between the vertical and horizontal 
axes, denotes the reference point (or base cell) for interpreting the odds ratios. In 
Figure 2, the origin is associated with the (placebo, stationary) cell. A logarithmic 
scale in odds-ratio units is given for the vertical axis on the left-hand side of the 
display. For example, it can be seen from the test drug effects line in Figure 2 that the 
odds of having a "slight" improvement (vs. "stationary") is about 1.7 times as high 
for patients who received the test drug than for patients who received the placebo. 
The odds ratios are given more accurately in Table 5. 

6. Observed generalized odds ratios. Observed odds ratios are calculated on the 
basis of the observed counts in Table 2 and appear in the plot as symbols, squares 
for the test drug and diamonds for the placebo. Larger symbols reflect cells that are 
based on larger sample sizes. The lack of fit of the model to the data is ascertained 
by examining how distant these symbols are from the corresponding effects lines. By 
construction, the baseline "stationary" category and the "placebo" points are on the 
effects lines. 

7. Model fit and significance chi-squared statistics. The chi-squared statistic 
reported at the top of the graph along with the p value represents how well the 
model fits the data; the smaller the chi-squared value, the better the fit. In Figure 2 
the fit is 0.524 with three degrees of freedom (p = 0.91), which indicates that the 
model provides a good fit to these data. The good fit is supported in the graph by the 
closeness of the observed log-odds ratio markers to the corresponding effect lines. 

The significance chi-squared reported beneath the fit assesses the extent to which 
the effects are significantly different from the null effect (odds ratio of 1). In Figure 2, 
we see that the treatment effect is highly significant (p = 0.0059). 

The sum of the fit and significance chi-square statistics always equals the in- 
dependence chi-squared statistic. The sum of the corresponding degrees of freedom 
from these tests always equals the degrees of freedom associated with the test for 
independence. Hence, the significance test used by the ordinal logit models in gen- 
eral will have fewer degrees of freedom and therefore will be more powerful than the 
chi-squared test for independence in assessing the significance of an effect. 

8. The predicted score associated with each predictor category is denoted by 
a vertical arrow pointing downward onto the horizontal axis at the particular point 
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(the "expected y-score") that corresponds to the maximum likelihood estimate for 
the expected value of the y-score conditional on that predictor level (E[Y IX = xi]). 
Note that the predicted outcome score for "placebo" falls between "stationary" and 
"slight" improvement, while for "test drug" it falls between "slight" and "moderate" 
improvement. The distance between the arrows associated with the test drug and 
placebo represents the difference in the estimated expected y-scores and is signifi- 
cantly different from zero according to the test of significance displayed at the top of 
Figure 2, discussed earlier. 

The estimated odds ratios provide relative measures of effect analogous to the 
correlation or regression coefficient. In addition, the predicted scores and the distance 
between them provide a visual measure of the absolute effect, an improvement 
from less than slight (the predicted score expected under the "placebo" condition) 
to somewhat more than slight (the predicted score expected under the "test drug" 
condition). Thus, the graphical display contains both relative and absolute measures 
of effect. 

Our clinical trial example was selected to illustrate the simplest type of logit 
display, associated with I = 2 predictor categories. In this case, when one of these 
categories is chosen to be the baseline reference for calculation of the effect (odds 
ratio), there is only one nonredundant odds ratio, that associated with the other 
category. Hence, there is only one nontrivial effects line and the reference category 
in this case is represented by the horizontal axis, which serves as a baseline or null 
effects line. 

5 Example 2: Nutrition Data 

In this section, we will provide more general displays associated with data where 
I > 2 predictor categories are present, as well as a further elaboration for the situation 
of multiple predictor variables. We conclude by providing two alternative views of 
these displays, which we refer to as the X-view and the XY-view. For the X-view, 
scores associated with each predictor category are displayed on the horizontal axis. 
In this case, each outcome category corresponds to an effects line. 

The XY-view differs from the view presented thus far (the Y-view) where scores 
associated with each outcome category are displayed on the horizontal axis and each 
predictor category corresponds to an effects line. The XY-view is analogous to the 
usual regression scatterplot, where scores are available for both X and Y. In this case, 
the regression curve E(Y IX) is plotted as a function of the predictor scores. 

Table 7 shows data from a national telephone survey of 1382 women conducted 
in the fall of 1980 and reported by Feick (1984). We consider the analysis of NUTRI- 
TION ("How much do you feel you know about nutrition?malmost nothing, not too 
much, some, quite a bit, a lot") as a function of READLABELS ("How often would 
you say you read nutrition and ingredient labels?infrequently, sometimes, never"). 

Unlike Example 1, where we restricted the outcome scores to be equidistant, this 
model involves no restrictions of any kind on the NUTRITION response scores. In 
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Table 7: Cross-classification of self-assessment of nutrition knowledge (NUTRITION) 
by reported frequency of reading labels and nutrition information (READLABELS) 

NUTRITION 

Almost Quite 

READLABELS nothing Not too much Some a bit A lot 

Frequently 6 57 302 243 70 
Sometimes 23 115 251 106 17 
Never 26 69 70 25 2 

Reprinted with permission from Journal of Marketing Research, published by the American 
Marketing Association, Lawrence Feick, 1984. 

this case, the scores are estimated simultaneously with the other model parameters. 
The results are displayed in Figure 3. Note that we now have separate effects lines 
for each of the three levels of the predictor variable. Each effects line is based on 
plotting the estimated expected odds ratios (see Table 10), which are calculated 
from the estimated expected counts (Table 8) using the "almost nothing" category of 
NUTRITION and the "never" category for READLABELS as the baseline references 
(Tables 9 and 10). 

The utility of the odds-ratio effects lines as a measure of effect is straight- 
forwardnthe higher the slope of the line, the greater the nutrition knowledge. For 
example, the "frequently" effect line in Figure 3 shows that those who frequently read 
labels are 154 times as likely to have "a lot" of nutrition knowledge than those who 
"never" read labels. In other words, the odds of having "a lot" of nutrition knowledge 
(vs. "almost nothing") is 154 times as high for people who "frequently" read labels 

Table 8: Expected counts for NUTRITION × READLABELS 

NUTRITION 

READLABELS 
Almost Not too Quite Average 
nothing much Some a bit A lot Scores 

Frequently 5.50 56.79 304.69 240.95 70.07 2.90 
Sometimes 24.19 115.51 2 4 4 . 6 3  110.84 16.83 2.36 
Never  25.31 68.71 73.68 22.21 2.10 1.83 
Estimated Scores 0.00 1.16 2.55 3.39 4.37 
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Table 9: Expected odds for NUTRITION × READLABELS 

NUTRITION 

Almost Not too Quite 

READLABELS nothing much Some a bit A lot 

Frequently 1.00 10.33 55.43 43.83 12.75 
Sometimes 1.00 4.77 10.11 4.58 0.70 
Never 1.00 2.71 2.91 0.88 0.08 

than for those who "never" read labels. Similarly, it can be seen in Figure 3 that those 
who "frequently" read labels are 50 times as likely to have "quite a bit" of nutrition 
knowledge than those who "never" read nutrition labels. 

The triangular markers on the horizontal axis in Figure 3 depict the relative 
spacing between the NUTRITION outcome categories that is obtained using the 
estimated scores shown at the bottom of Table 8. First, we note that this relative 
spacing results in an ordering of the outcome categories that correctly reproduces 
the original ordering. That is, the score estimated for the category "a lot" is higher 
than that for "quite a bit," and so forth. Second, note that the spacing is not quite 
equidistant. For example, the "some" category is somewhat more distant from the 
"not too much" category (i.e., 2.55 - 1.16 -- 1.39) than from the "quite a bit" category 
( 3 . 3 9 -  2.55 = 0.84). 

The arrows on the horizontal axis in Figure 3 compare the predicted NUTRI- 
TION outcome for each of the three READLABELS levels. Note that the average 
READLABELS score for "never" and "sometimes" falls between "not too much" 

Table 10: Expected odds ratios for NUTRITION × READLABELS 

NUTRITION 

READLABELS 

Almost Not too Quite 

nothing much Some a bit A lot 

Frequently 
Sometimes 
Never 

1.00 3.81 19.04 49.97 153.93 
1.00 1.76 3.47 5.22 8.40 
1.00 1.00 1.00 1.00 1.00 
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Odds-Ratios 
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Figure 3: Y-view of ordinal logit model for nutrition data. 

and "some" nutrition knowledge, while "frequently" falls between "some" and "quite 
a bit" of nutrition knowledge. The large difference between the lower average score 
for the base type "never" and the highest average score associated with "frequently" 
is displayed by the large distance between the two corresponding arrows in Figure 3. 
The predicted scores that are plotted are given in Table 8. 

The lack-of-fit statistic is 1.08 with 3 degrees of freedom, indicating that this 
model, which makes no restrictions on the spacing between the response categories, 
provides an excellent fit to these data. A more parsimonious model that assumes 
equidistant spacing between the outcome categories also provides a good fit to the 
datamX 2 = 5.46 with 6 degrees of freedom (p = 0.49). The difference between 
these model fit chi-squares (5.46 - 1.08 = 4.38) with 3 degrees of freedom provides 
a test of the validity of the equidistant spacing restriction imposed by the more 
parsimonious model. As the difference between the chi-squares is not statistically 
significant, the hypothesis of equidistant spacing cannot be rejected. 

Under either the unrestricted or equidistant spacing model, the effect of READ- 
LABELS on NUTRITION may be assessed by the chi-square significance statistic. 
For the equidistant spacing model in which scores are assumed to be equidistant, the 
significance X 2 = 205 with 2 degrees of freedom (p < 0.0001). Under the unre- 
stricted model, the resulting significance level is similar, as shown above the graph 
in Figure 3. 
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Now once again consider the data in Table 1, where we have two predictor 
variables. Let i subscript the EI categories, j the JP categories, and k the response 
levels : i=  1 , 2 ; j =  1 , 2 ; k =  1,2 ,3 ,4 .  

The model in this case becomes 

(~k . i j  = [~EI (yk  - -  Yo) + [3Je (yk  - -  Yo) + /3EI*JP(Yk - -  Y0) 

= ( R E I  JP ~EI*JPxz  
r"i -Jr- [~j -Jr- P i j  )tYk - YO) 

where/3 EI and/3 JP are the main effects for EI and JR respectively, and/3 EI*JP is the 
EI*JP interaction effect. The identifying conditions for this model, which yield the 
graphs in Figures 1 and 5, are 

1. Y0 is the mean of the y scores so that ZkPk(Yk -- YO) = 0 

2. The/3 parameters are defined such that ~iPi[~i  = ~ j P j ~ j  = ~ i ~ j P i j [ 3 i j  = 0 

Hence, the log-odds ratios plotted in Figures 1 and 5 are defined with respect 
to the origin, which is identified by the "average" row condition and the "average" 
response score, the baseline references. In addition to these joint effects plots, partial 
effects plots are available to display each of the three effects separately (see, for 
example, Magidson, 1996b). For more general models of this type see Goodman 
(1983). 

6 Alternative Views of the Model 

In symmetric form, model (2) can be expressed as 

( I ) i j [ - -  f~ j . i  --- f~ki.j] --- ¢~(Xi - -  xo)(Yj - Yo) (3) 

For the asymmetric form of the model given earlier in (1) we set ~ i  - -  ¢~ (Xi - -  XO). 

The graphical displays based on this form of the model are called Y-views. An 
alternative form, known as the X-view, plots the odds ratios as a function of the x- 
s c o r e s :  ~ i j  "- ~ j ( x i  - Xo)  where 39 - ck(yj - Yo). Figure 4 shows the X-view for the 
clinical trial data, and Figure 5 provides the X-view for the personality characteristics 
data of Table 1. One advantage of the X-view is that the predictor variable is plotted 
along the horizontal or x-axis as is usually done in regression analysis. A disadvantage 
is that arrows representing the predicted values associated with each predictor level 
are not available in this view. 

Another useful display is similar to the traditional regression view where the 
predicted value E ( Y  I X)  is plotted as a function of X. Plotted together with a scatterplot 
of quantitative (x, y) observations, we refer to this view as the XY-view. Since the 
curve E ( Y I X )  has many favorable properties, it is called the "universal" regression 
by Magidson (1996b). For example, the change in the predicted value of Y associated 
with a unit increase in X equals the product of two quantities--the association 
parameter ~b, which ranges from - ~  to 0% and the conditional variance of Y given X. 
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Figure 4: X-view of the equal adjacent category odds ratio model for clinical trial 
data. 
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Figure 5: X-view of ordinal logit model for personality characteristics data. 
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Hence, regardless of the value of X, the change in the expected value for Y is either 
always positive or always negative depending on whether + is positive or negative, a 
result that justifies calling the model a "monotonic regression" model: 

o~E(Y Ix) 
~X 

= # , v ( y  Ix) 

Since any given sample contains only a finite number of observations, even two 
continuous variables can be viewed as categorical, because at most they take on only 
a finite number of values. Figure 6 contrasts the universal/monotonic regression curve 
with the traditional linear regression line estimated by ordinary least squares for real 
continuous data so that both x-scores and y-scores are known. Is the true relationship 
linear or not? 

The model used in Figure 6 is the form appropriate for continuous (and discrete 
quantitative) variables where scores are available for both X and Y. In this case, the 
scores are set equal to the observed quantitative values. Magidson (1996b) generalized 
odds ratios further to apply to continuous variables and showed that model (3) holds 
true under the bivariate normal distribution itself. 
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Figure 6: Comparison of universal regression model and OLS linear regression model 
for two continuous variables. 
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7 C o n c l u s i o n  

Recently, much attention in the literature has been paid to adjacent category logit 
models of both the log-linear and the log-bilinear variety for analyzing dichotomous 
or ordinal response variablesmfor example, see Ishii-Kuntz (1994) and Clogg and 
Shihadeh (1994). In this chapter, we have presented some new graphical represen- 
tations for this important class of models and illustrated these graphs using several 
different data sets. 

Traditional tabular results from estimation of these models are often complex 
and the parameter estimates may be very difficult to interpret. Proper interpretation 
requires both knowledge of the choice of coding for the variables plus knowledge of 
the scores associated with the categories of the variables. By providing an integrated 
picture of the model results, the graphs provide valuable information to the researcher, 
which saves time and reduces the likelihood of errors in interpretation. 

The graphs can also be used as the basis of a graphical user interface to provide 
great simplification in the specification as well as the interpretation of results from 
such models. If the user judges the model to be unsatisfactory, the current parameter 
settings may be altered through direct user manipulation of the graph and a new 
model can then be estimated that reflects the new settings. Thus, researchers can 
more readily and quickly implement the natural, interactive process that is prevalent 
in social science research, in an active, participatory manner. Moreover, overlaying fit 
and significant statistics can supplement the powerful graph with important summary 
statistics. 
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Software Notes 

The software and related computer technology for producing the X-view and Y-view 
of the graphical displays are the subject of issued and pending patents, but the graph 
itself is not patented. Persons interested in computer programs that produce this graph 
should write to GOLDminer, P.O. Box 1, Belmont, MA 02178 USA. 



Chapter 35 

Log-Bilinear Biplots 
in Action 
Antoine de Falguerolles 

1 Introduction 

Generalized bilinear models aim at analyzing data arrays where one of the interac- 
tions can be described by a bilinear term. This leads to the ability to display the 
corresponding interaction visually by means of biplots (Gabriel, 1971; Gower and 
Hand, 1996). 

Bilinear (also called "biadditive") models have long been known in the area of 
analysis of variance (Tukey, 1949; Mandel, 1971; Dorkenoo and Mathieu, 1993; Denis 
and Gower, 1996). Factor analysis is referred to as a bilinear model by Kruskal (1978). 
Obviously, bilinear structures also encompass methods such as principal component 
analysis, correspondence analysis, and nonsymmetrical correspondence analysis (see 
Balbi, Chapter 21). All these methods can be formulated as statistical models defined 
by the reconstitution formula, where a row x column effect is modeled through a 
bilinear term or equivalently through an inner product in a low-dimensional subspace. 
The fixed effect model, discussed by Caussinus (1986) in the context of principal 
component analysis and of some extensions of the analysis of count data in two-way 
tables, provides further examples of bilinear models. 

It can be shown that all these statistical analyses implicitly assume a Gaussian 
distribution for the response variable. However, the association and correlation models 
considered by Goodman (1986) are interesting and useful examples of this modeling 
approach where Poisson or multinomial or product multinomial distributions are 
assumed for the counts of two-way contingency tables. The general bilinear model 

527 
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can be readily extended into other areas of application involving the more elaborate 
statistical settings discussed by Nelder and Wedderburn (1972) and McCullagh and 
Nelder (1989). Examples of such extensions can be found in Choulakian (1996), 
de Falguerolles and Francis (1992, 1994, 1995), and van Eeuwijk (1995). 

2 Generalized Bilinear Models  

2.1 Data Structure 

It is assumed that the data of interest may be cross-classified by two factors, which, 
for simplicity, will be called the row and the column factors, denoted by R and C. The 
row and column factors have levels i (i = 1 . . . . .  I) and j (j  = 1 . . . . .  J). The row 
(respectively, column) factor level for the sth observation is given by i(s) [respectively, 
by j(s)]. Obvious examples of such data structures are the counts Ys = y i j  of a simple 
two-way contingency table, or the counts of a more elaborate two-way table where 
the cross-classifying factors are themselves obtained by interactive coding of several 
polytomous variables. 

In accordance with generalized linear modeling, the response variable values, ys 
(s = 1 . . . . .  n), are assumed to be the observed values of independent random variables 
Ys with known distribution, expected values denoted by/Xs, and prior weights Ws. In 
practice, a variance function of the mean, possibly involving a scale factor, suffices to 
take into account the distributional assumptions. The expected values ~s are related 
to predictors r/s by a link function g(l~s) = rls. 

2.2 Bilinear Model  

The model formula for the predictor consists of a linear model (possibly null) and 
an additional bilinear term of reduced rank K that models the interaction between R 
and C: 

r 

= r/s = linear models + g(~s) O'k Oti(s),k [~j(s),k 
k = l  

The C~k form the row score vectors of order k and the/3k the column score vectors of 
order k, which are the analogues of the left and fight singular vectors in a singular 
value decomposition. The ok are the generalized singular values, which can be taken 
strictly positive and arranged in decreasing order. Once the model is fitted, estimates 
for the parameters and for the expected values (the so-called fitted values), as well as 
the usual goodness-of-fit statistics (G 2 and X2), are obtained. 

2.3 Identification 

Identification constraints are introduced in order to identify the scores; these may 
be centered and orthonormalized with respect to given metrics (usually defined by a 
diagonal matrix of weights). Centering can be specified for either the row or column 
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scores, for both the row and column scores, or not at all. Note that, for identification 
purposes, if a row effect (respectively, a column effect) is included in the linear part 
of the model, the column score vectors (respectively, the row score vectors) are to be 
centered. 

" for the columns) are assumed, If diagonal weights (w~ for the rows and w j  

centering provides the following constraints: 

I J 

Z W[Olik = O' Z t! , w j ~ j , k  = O, 

i=1 j = l  

k = l  . . . . .  K 

whereas orthonormalization provides the additional constraints: 

I J { z" { W[Oli kOli k' O, k 4: k ~ O, 
" ' 1, k = k ~ Wj[3j,k[3j, k, -" 1, 

i=1 j = l  

k 4 : k  ~ 
k = k I 

It must be emphasized that the choice of identification constraints affects the 
parameter values in the model and therefore may possibly distort the patterns in the 
associated graphical displays. However, this choice does not affect the fitted values 
for the data. 

In some instances, the score vectors are further restricted to belong to some linear 
subspaces generated by exogenous variables, the latter being sometimes referred to 
as "instrumental variables." Examples can be found in ter Braak (1988), Gilula and 
Haberman (1988), B6ckenholt and B6ckenholt (1990b), and B6ckenholt and Takane 
(1994). 

2.4 Biplots 

The bilinear structure of the predictor allows several biplots to be constructed: the 
rank K restricted interaction between level i of the row factor and level j of the column 
factor is equal to the inner product of the K-dimensional vectors [o~a i ,1  . . . . .  cr~cai,K] 

and [o-l-v/3j,1 . . . . .  o-l-v/3j,K] where 3' is any fixed value in the open interval (0, 1). 
These vectors provide the coordinates for plotting the row level i and the column level 
j ,  respectively, in the associated K-dimensional biplot. Note that a value 3' = 0.5 
reflects the equal treatment of the row and column factor in defining the interaction. 
It is the only one considered in the sequel. 

3 A Three-Way Table 

To illustrate the flexibility of generalized bilinear models, a three-way contingency 
table of suicide rates in West Germany is considered. It is shown how generalized 
bilinear models can be inserted in the hierarchy of possible linear models while 
allowing the visualization of the interesting interaction terms in the form of biplots. 



Table 1: Suicide behavior: age by sex by cause of death 

Men 
Cause of deatha 



Women 
Cause of death 

"cl,  suicide by solid or liquid matter; c2, suicide by toxification of gas at home; c3, suicide by toxification of other gas; c4, suicide by hanging, 
strangling, suffocating; c5, suicide by drowning; c6, suicide with guns and explosives; c7, suicide with knives. . .; c8, suicide by jumping; c9, suicide 
by other methods. 
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3.1 The Suicide Data 

The data, shown in Table 1, are frequencies of suicide classified by sex, method of 
suicide, and age group. Originally from Heuer (1979, Table 1), these data have been 
quite extensively used in statistical work (see van der Heijden and de Leeuw, 1985; 
van der Heijden and Worsley, 1988; Friendly, 1994a). The corresponding data are 
reproduced in Table 1. S, M, and A, respectively, represent the factor sex (2 levels), 
method of suicide (9 levels), and age group (17 levels). 

3.2 Correspondence Analysis Used Complementary 
to Log-Linear Analyses 

The entries in the three-way table can be assumed to be independent, Poisson dis- 
tributed with saturated model [AMS]: 

AMS A S AM AS _ AMS 
log(td,am s ) = 13-'}-1) a + U M + ' U  s + Y a m  q- l)as + G S + l)am s 

This model involves as many independent parameters as cell counts. Hence, unsat- 
urated models obtained by removing interactions terms in a hierarchical manner are 
of special interest. 

The all-two-way-interaction model is 

AMS A S AM AS 
log(t-Lams ) = V + V a + V~m + V s + D a m  -}- l)as q- l)Mmm S 

where the three-way interaction term V~a~ s has been removed. Note that, in the absence 
of missing data, the maximum likelihood fitted values for this model reproduce all the 
two-way margins of the observed table. As a consequence, all the one-way margins 
are also reproduced. It then follows that the fitted values from an all-two-way- 
interaction model have the same Burt table as the observed data. Therefore multiple 
correspondence analysis of the Burt matrix cannot reveal more structure in the data 
than this model. Accordingly, the all-two-way-interaction model and the value of its 
associated deviance can be used as benchmarks in modeling. 

A further restricted model is [AS] [M]: 

AMS A S AS 
l o g ( ~ a m  s )  = V + V a + t/~mlm + V s + Vas 

where the maximum likelihood fitted values reproduce the two-way margin [AS] and 
all one-way margins [A], [M], and IS]. 

Noting that none of the restricted log-linear models has an acceptable fit (see 
Table 2), the strategy of analyzing the residuals from a log-linear model by the 
correspondence analysis (CA) of an ad hoc two-way table can be considered (for 
further details see van der Heijden et al., 1989). Along that line, van der Heijden and 
de Leeuw (1985) perform the CA of a two-way table R X C in which the column factor 
C is the method of suicide (M) and the factor R is obtained by interactively coding 
the factors age (A) and sex (S), thus creating an R factor with 17 × 2 = 34 levels. As 
a result, van der Heijden and de Leeuw (1985) get reduced rank approximations of 
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Table 2: Log-linear models, associated degrees of freedom (df), and chi-squared 
goodness-of-fit statistics (G 2 and X 2) for the suicide data (although not necessary 
in our framework, we have added the value 0.1 to each level, following van der 
Heijden and de Leeuw, 1995) 

Model  df  G 2 X 2 

[A][M][S] 280 12337.14 12304.05 
[A][MS] 272 6857.76 6522.38 
JAM]IS] 152 7779.68 7198.33 
[AS] [M] 264 10313.80 9995.32 
[AM][AS] 136 5756.34 5369.09 
[AM][MS] 144 2300.30 2255.64 
[AS][MS] 256 4834.42 4518.90 
[AM][AS][MS] 128 429.19 435.63 

the residuals from model [AS][M]. They retain a rank K = 2 approximation, and the 
associated biplot is reproduced in Figure 1. 

3.3 A Log-Bilinear Analysis 

In the spirit of the two-stage analysis just outlined, the following log-bilinear models 
are considered: 

K 
AMS A S AS ~ - ~  _ AS c~M 

l o g ( p , a m  s ) = V + V a + V~m + V s + Vas + ~ Ork~as,kPm,k.  

k = l  

All these models include model ([AS][M]) as a baseline model, and Table 3 gives the 
chi-squared statistics corresponding to inclusion of a restricted bilinear interaction 
[ASM] of rank K = 1,2, 3. It appears that K = 3 is needed to obtain a better fit than 
that of the all two-way interaction model (see Table 3 and Table 2). 

To compare the scores in the bilinear term with those of CA, marginal proportions 
are used as weights in the identification constraints (see Section 2.3). The correspond- 
ing estimated generalized singular values are given in Table 4. The variation of the 
generalized singular values reflects the dramatic changes in the chi-squared statistics 
when successive bilinear terms are introduced (see Table 3 and Table 4). 

3.4 Biplot Interpretation 

It appears that the biplot (see Figure 1) provided by the first two scores in a log- 
bilinear model is somewhat similar to that obtained in the first two dimensions when 
using CA to analyze the residuals from the baseline log-linear model [AS][M] (see 
Figure 2). Roughly, both biplots stress the differences in methods of suicide between 
men and women and the different use of methods as age varies. In this example, the 
approach based on CA compares favorably with the log-bilinear modeling approach. 
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Figure 1: Biplot in the first two dimensions obtained by log-bilinear modeling with 
K = 3. Males are labelled ml  to m17 and females fl to f17, where the number refers 
to the age group. 

Table 3: Adding r e s t r i c t e d  [ASM] i n t e r a c t i o n s  to  the baseline model [AS][M] where 
AMS lOg(l~ams ) = 13 + V~a + V~m + VSs + V~as s 

Model df G 2 X 2 

V + V~a + Vl~m + vS + V~a s 264 

13 -t- l~a q- l~m Jr- l~s "q- l~a S q- ~ '~=1  "I" .AS o M  224 Ok tX as,k IJ m,k 

13 Jr- ~ "-[- ~ -Jr- 13s S + l~as S -1- ~ = 1  "" ,AS t2M 186 Ok tX as,k bJ m,k 

13 + 1~ a jr. 1 ~  m .~_ 13s S + l~a S + ~3k= 1 .-,... AS o M  150 Ok tX as,k IJ m,k 

10313.80 9995.33  

4534 .92  4313 .62  

622.20  624.58 

321.12 319.66  
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Table 4: Generalized singular values for K = 3 

Generalized Squared generalized 
singular values singular values 

10.40 108.23 
6.66 44.35 
2.96 8.78 

4 A Square Table 

The data (Clogg and Shihadeh, 1994, Table 4.1) derive from the National Survey 
of Black Families and consist of a 7 × 7 cross-classification of religion at age 16 
and actual religion (Sherkat, 1992) (Table 5). The data define a square contingency 
table where there is a one-to-one correspondence between the levels of the row factor 
and the levels of the column factors. Clogg and Shihadeh (1994) note that the cells 
on the main diagonal account for most of the structure of the table. Concerning the 

1.000 - 

0 .200 - 

-0 .600 - 

-1 .400 - 

c2 
c l  

f2 ...I3 

r ~ 6  f l  : i f~8 
m7 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , , , . ~ 0  .. . . . . . . . . . .  i ....... f g . o  ......... . ~ 4  . . . . . . . . . . . . . . . . . . . .  

m l  1 f l  1 
m12 f12 f13 

~ 4 n ~ ' 5  
m 16 c7 c5 

m l  

-2 .200 - 
i i i i 

-2.2 O0 - 1.400 -0.600 O. 200 1.000 

first dimension 

Figure 2: Biplot in the first two dimensions obtained by correspondence analysis. 
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Table 5: Cross-classification of religion by religion at age 16 

Religion at age 16 

Religion Li Me Ba Co Ot Ca No 

Liberal 41 8 14 1 0 1 1 
Methodist 0 212 23 5 3 2 2 
Baptist 4 58 980 15 9 7 10 
Conservative 2 20 103 120 6 5 6 
Other 2 5 42 4 19 8 5 
Catholic 5 7 20 0 1 97 2 
None 9 28 95 17 8 14 61 

off-diagonal cells, they show that there is some evidence for a symmetric row and 
column interaction. It follows that quasi-symmetric models (Becker, 1990) also allow 
the biplot visualization of the symmetrical interactions. 

Note that, like generalized linear models, generalized bilinear models can cope 
with missing entries and structural values: an observation can be excluded from a fit 
either by setting its prior weight to zero or by introducing a specific parameter in the 
linear term. This possibility is illustrated on the diagonal cells of the square table, 
which, from now on, are excluded in all fits. 

4.1 Log-Linear Modeling of Symmetry 

A quasi-symmetry model with Poisson distribution and log link can be fitted: 

1og(/_c/j) = v + 1~/ + v C + ~/jC 

where v~/j c = v~j/C (Caussinus, 1965). The model, which exactly fits the diagonal 
cells (or equivalently excludes them from the analysis), provides a reasonable fit to 
the data: the corresponding chi-squared statistics are G 2 = 25.97 and X 2 = 25.82 
with 15 degrees of freedom. This implies that the symmetry in this data set is worth 
looking at further. 

4.2 Goodman RC-Association Model 

A bilinear approach that does not imply symmetrical interactions for the off-diagonal 
cells can be considered. The Goodman RC-association model (Goodman, 1986, 1991) 
assumes a Poisson distribution for the cell counts with the following structure for 
their means: 

K 

1og(/.~ij) = v + v~i + v C + ~_~ OrkOti,k[3j, k 
k=l 
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Table 6: Log-bilinear models, degrees of freedom, and chi-squared statistics for K = 
0, 1, 2, 3, for the off-diagonal cells 

Model df G 2 X 2 

+ EL--  

29 57.01 59.47 

18 26.60 23.03 

9 8.05 6.41 

2 .88 .80 

The chi-squared statistics corresponding to increasing values of K are given in Table 6. 
It appears that the model with K = 2 provides a very good fit to the data. 

4.3 Quasi-Symmetric Bilinear Models 

Quasi-symmetry and symmetry models are obviously connected to the class of quasi- 
symmetric models considered by Becker (1990), and it turns out that this class of 
models is itself related to the class ofbilinear models. For a log link, a quasi-symmetric 
model assumes that 

K 

1og(~ i j )  -- l i n e a r  m o d e l i j  + ~ O'kai,kaj,k 
k=l 

where the oLi, k are the common row and column scores of order k, usually centered 
and orthonormalized. In this formula, the O'k cannot always be taken to be strictly 
positive. This is known as the problem of "inverse factors" (Benz6cri, 1973a). In this 
case, the biplot interpretation is preserved by constraining the corresponding row and 
column score vectors to have opposite signs: 

K K 

k=l k=l 

Typical linear model formulas in a quasi-symmetric setting are v + ~ + v c, v + 

4 nt- try n t- Idb~ij, and v + ~i + vc  + id'i~ij (where ~ij = 1 i f /  -- j,  otherwise 0), 
depending on the assumptions pertaining to the diagonal cells: no effect, constant 
effect, or specific effect, respectively. Note that the last formula is equivalent to the 
first with diagonal cells excluded from the fit. It is thus retained in following analyses. 

By using an adaptation of the three-dimensional representation of quasi- 
symmetry (Bishop et al., 1975), quasi-symmetric models for the off-diagonal cells 
can be fitted as a regular Goodman RC-association model. The data are replicated 
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Table 7: Quasi-symmetric models, degrees of freedom, and chi-squared statistics in 
the modeling of off-diagonal cells 

Model df G 2 X 2 

o- k v + vfi + v C + Ekr=__~ IO'klOti,k (I--~kl Olj'k) 
cr k v + ~ / +  v c + EkL~ 2 Icrkl Oli,k (]-~k~ Olj'k) 

29 57.01 59.47 
23 36.66 33.54 

18 28.59 28.54 

15 25.97 25.82 

twice with exchanged row and column indices in the restricted interaction term: 

K 

log(~ijl) = log(/~ij) = linear modelij + ~ O'kOli,k~j, k 
k=l 

K 

1og(/~ij2) = 1og(p, ij) = l inear  mode l i j  + ~ O'kOlj,k[~i, k 
k=l 

Indeed, the fit coerces the row score vectors (ak) and the corresponding column score 
vectors (/3k) to be equal (possibly up to a sign) and thus preserves the positivity of 
the associated generalized singular values (O'k). 

4.4 Biplot Interpretation 

Table 7 reports the statistics of fit obtained for K = 1, 2. The quasi-symmetric model 
of order two provides an acceptable fit. However, there is an inversion in the second 
dimension. The biplot of the corresponding symmetrical interactions is reproduced 
in Figure 3. It stresses the lack of mobility between conservative (4) and liberal (1), 
or conservative (4) and catholic (6), and the mobility between methodist (2) and 
baptist (3), or liberal (1) and catholic (6). It should be emphasized that this biplot 
visualizes the religious mobility as captured by the off-diagonal cells. Therefore the 
proximity between the row and column markers corresponding to a same category 
has no meaning in this context. 

5 Discuss ion  

The flexibility of bilinear models makes it easy to unify two methodological streams: 
the stream of exploratory data analysis methods (e.g., principal component analysis, 
correspondence analysis, multiple correspondence analysis, biplot decomposition of 
matrices) and the stream of data modeling in which probabilistic models are formu- 
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1.40 

0.40 

-0.60 

-1.60 

-1.60 -0.60 0.40 1.40 

f irst d i m e n s i o n  

Figure 3: Biplot in the first two dimensions provided by the quasi-symmetric model 
of rank K = 2. 

lated, fitted, and tested. The class of bilinear models allows multivariate descriptive 
techniques to be reformulated as models (see Gower, 1989b) and modeling can be 
performed in a descriptive way. A serious danger of this flexibility is that of overfitting 
the data. This can be partly alleviated by implementing model-selection methods and 
cross-validation procedures in this context. But this is another story. 

Computational Note 

Using an extension of the non-linear iterative partial least-squares (NIPALS) proce- 
dure introduced by Wold (1966), generalized bilinear models can be fitted in most 
software programs which can fit general linear models (de Falguerolles and Francis, 
1992). The overall measure of fit is the (quasi-)deviance, and standard procedures 
for assessing the adequacy of these models are currently available in this context 
(McCullagh and Nelder, 1989). The risk of reaching local optima in those fits is dealt 
with by considering several random initializations for the scores. 
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active variable 
compared to supplementary variable, 

248 
AIC. See Akaike information criterion 
Akaike information criterion (AIC), 444 
alternating monotone graph, 194, 195 
Andrews curves, 194, 195 
association model, 99, 100 
asymmetric map, 109, 185, 187, 

190-191 
attribute 

in formal concept analysis, 92 

barycenter, 203 
barycentric interpretation 

in correspondence analysis, 88-89, 
227 

Bertin's graphics, 37-35 
and cluster analysis, 41-45 
and correspondence analysis, 40-4 1 

biadditive model. See bilinear model 
bilinear model, 527-529 

generalized singular value, 528 
identification of, 528-529 
row and column score vectors, 528 

biplot, 325-326, 391-399 
applications, 385-388, 399-403, 

414-418 
axis, 224-225,407-408 
in bilinear model, 529 
canonical correlation, 384-385 
conditional independence, 396 

diagnosing independence in subtable, 
393,395,398 

diagnosing independence in 
three-way table, 393-399 

diagnosing independence in two-way 
table, 392-393 

interaction. See interaction biplot 
interpretation of correspondence 

analysis, 224-226, 229, 255 
multiple independence, 395,396 
neighbor region, 411-412 
parallelogram rule, 397-399 
partial independence, 396, 397, 398 
perpendicularity rule, 393, 395-396 
prediction error rate, 412, 416-4 17, 

419 
prediction region, 412-4 14 
reference system, 410 

Bradley-Terry-Luce (BTL) model, 
463-467 

BTL model. See Bradley-Terry-Luce 
model 

canonical analysis 
of a contingency table, 504 

canonical correlation analysis, 383-384 
canonical correlation biplot, 384-385 
canonical variate analysis, 384 
CART. See classification and regression 

trees 
Cartesian coordinate system, 405-406 
category level point (CLP), 408-4 13 
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chi-squared distance, 108, 146, 226, 
228, 30O 

chi-squared statistic 
decomposition of, 260-261 
dependence on sample size, 430 

classical scaling, 369. See also 
multidimensional scaling, metric 

classification and regression trees, 
59-69, 314 

application, 317-320 
splitting criterion, 59-60, 62, 64-69, 

314, 315-316 
stopping criterion, 316 
strong and weak categories, 315 

classification tree, 311, 314-323 
CLP. See category level point 
cluster analysis 

applications, 119, 122 
of contingency table, 119, 122 
of textual data, 155-158 

coding, 2-3 
component loading, 109 
concept lattice 

in formal concept analysis, 87, 92 
conditional probability 

in correspondence analysis, 254 
in ideal point discriminant analysis, 

443 
in latent budget analysis, 490 
in latent class analysis, 479 
in multiway table, 280 

conditional probability curve, 446-448, 
451 

conditional probability surface, 453, 
456--458 

content analysis, 126 
correspondence analysis, 88-89, 91, 

107-109, 254-255,298, 330 
applications, 117-119, 120-122, 

127-132, 142-145, 160-170, 
177-181,223-224 

applied to latent class probabilities, 
482-484, 487-488 

applied to similarity matrices, 
336-340, 343-345 

as a biplot, 224-226, 255 
asymmetric map, 109, 185, 187, 

190-191,225, 227 
barycentric interpretation, 88-89, 227 
Burt matrix, 232 
chi-squared distance, 108, 226, 228, 

506 
chi-squared statistic, 254, 298 
combined with Bertin's graphics, 

40-41 
compared to formal concept analysis, 

93-96 
compared to log-linear modeling, 274 
compared to nonsymmetrical 

correspondence analysis, 301-303 
contributions, 221,223 
correspondence matrix, 223, 298 
as descriptive multidimensional 

scaling, 331-333 
estimated by maximum likelihood, 

505 
map, 108 
mass, 282 
mean-square contingency coefficient, 

254, 298. See also total inertia 
nonsymmetrical. See nonsymmetrical 

correspondence analysis 
principal coordinate, 108, 223 
profile, 108, 282 
quality of display, 223 
reconstitution formula, 225 
relation to latent class and latent 

budget analysis, 504-505 
rules of interpretation, 226-231 
standard coordinate, 109, 223 
standardized residual, 108 
symmetric map, 108, 185, 190-191 
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three-way, 256-260 
three-way application, 260-274 
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as an unfolding model, 226-227 
used complementary to latent class 

analysis, 478-488 
used complementary to log-linear 

modeling, 532-533 
vertex point, 228-230 
visualization of latent budgets, 

506-508 

data set 
acceptance of fetal risks by obstetrics 

departments, 77 
adults' views of children, 192 
attitudes to surveys, 496 
Bulgarian elections, 117, 120 
Canadian election study (1984), 244 
Danish worker survey, 401 
effects of pollution on respiratory 

health, 103 
French Worker Survey, 200 
hair and eye color, 18 
Italian adoption, 299, 305,307 
job satisfaction and personality, 511 
leisure activities of husbands and 

wives, 367, 369, 370 
livestock slaughtered in European 

Union in 1995, 40 
marital status, 286, 295 
mean attitude scores for Flemish 

voters, 382 
measuring change in clinical trial, 514 
merit distribution at McGill 

University, 449 
nutrition information and knowledge, 

520 
occupational mobility table, 426 
occupations in French cantons, 

268-269 
opinions on military service, 101 
paired comparison data, 470 
papers published by Spanish authors, 

374, 376 
principal worries of Israeli adults, 490 

psychiatric symptoms, 452 
repertory grid, 86 
square table of religion, 536 
suicide behavior, 530-531 
survival of cancer patients, 442 
taste-testing experiment, 102 
word frequencies in open responses, 

141 
dependence 

global, 256-258, 261-265 
marginal, 256-259, 265-272 
partial, 259, 272-274 
three-way, 256-258 

discriminant analysis, 384 
disjunctive table, 201. See also indicator 

matrix 
dissimilarity, 365-367 
dual scaling, 185-196, 278. See also 

homogeneity analysis, (multiple) 
correspondence analysis 

eigenvalue, 108 
eigenvalue decomposition, 371 

generalized, 383 
EMC. See extended matching 

coefficient 
energy model. See pressure model 
entropy index, 62 
equal adjacent category odds ratio 

model, 514, 516 
computation of, 514-516 

Euclidean distance, 189, 282, 300, 371, 
406, 443 

weighted, 301 
event history data, 47-49 
extended matching coefficient (EMC), 

409-413 

facet theory, 349-364 
clusters in, 362 
conex, 361 
cylindrex, 355-357, 361 
facet diagram, 351 



590 Index 

facet theory (continued) 
factors in, 362 
multiplex (duplex, triplex), 361 
partition (axial, modular, polar), 361 
radex, 355-356, 358-359 
spherex, 361 

FCA. See formal concept analysis 
formal concept analysis (FCA), 4, 

73-84, 87-93 
attribute, 92 
compared to correspondence analysis, 

93-96 
concept lattice, 87, 92 
conceptual scaling, 93-94 
extent partition, 87 
formal concept, 92 
formal context, 92 
Hasse diagram, 92. See also line 

diagram 
Hasse point, 92 
line diagram, 87, 89, 90, 92 
many-valued contexts, 91 
object, 92 

fourfold display, 23-25 

generalized linear modeling, 528 
geometric data analysis, 197, 201 
geometric variability, 373 
Gini index, 62, 298, 313 
Goodman and Kruskal tau coefficient, 

298, 312 
Goodman RC-association model, 

536-537. See also log-bilinear 
model 

Guttman effect, 89-91 
Guttman scale, 76, 82, 357 

Hasse diagram, 92 
Hellinger distance, 375 
homogeneity analysis, 278-279. See 

also multiple correspondence 
analysis, dual scaling 

category point, 283 
category quantification, 283 

discrimination measure, 285-290 
eigenvalue as average discrimination 

measure, 285, 287, 288 
horseshoe effect, 225. See also Guttman 

effect 
Huyghens theorem, 203 

ideal point, 462-463, 465-467 
ideal point discriminant analysis 

(IPDA), 442--444 
applications, 444-456 
confidence regions in, 452-454 
rules of interpretation, 447-448 

impurity index, 62 
with L1 norm, 66 
with L2 norm, 66 

independence 
complete, 22 
conditional, 280, 281,284, 305 
diagnosis in three-way table, 393-399 
diagnosis in two-way table, 392-393 
diagnosis of, 288-289 
joint, 22, 279, 281,284 
local, 479 
mutual, 281,284 
spatial representation of, 283 

independence model, 427 
indicator matrix, 201,294-295 
interaction, 270-272 

in multiway table, 257 
three-way, 281 

interaction biplot, 259-260 
interordinal scale, 89-91 
interpolation, 405-406 
IPDA. See ideal point discriminant 

analysis 
IPF. See iterative proportional fitting 
iterative proportional fitting (IPF), 

32-34 

JCA. See joint correspondence analysis 
joint correspondence analysis (JCA), 

235-236 
application, 23.6-237 
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Kendall's tau, 230-231,235,237 

latent budget analysis (LBA), 
490-492 

application, 493-494 
budget, 490. See also profile, in 

correspondence analysis 
constraints in, 491 
equivalence to latent class analysis, 

494--495 
expected budget, 491 
latent budget, 491-492 
MIMIC model interpretation, 

491-492, 500-502 
mixture model interpretation, 

491-492, 499-500 
observed budget, 490 
relation to correspondence analysis, 

504-505 
visualization of, 496-502 

latent class analysis (LCA), 464, 
479--480, 494 

application, 174-177, 480-482, 
495-496, 497 

applied to panel data, 484-487 
equivalence to latent budget analysis, 

494--495 
relation to correspondence analysis, 

504-505 
and unfolding, 464--465 
used complementary to 

correspondence analysis, 
478-488 

visualization of, 502-504 
LBA. See latent budget analysis 
LCA. See latent class analysis 
lexical table, 133, 142 
lexicometric methods. See textual data 

analysis 
Lexis diagram. See Lexis pencils 
Lexis pencils, 50-52, 53-56 
likelihood ratio chi-squared test, 

467-468 
Likert scale, 252 

line diagram 
in formal concept analysis, 87, 89, 90, 

92 
log-bilinear model, 533 

biplot interpretation, 533-535, 
538-539 

for quasi-symmetry, 537-538 
log-linear model, 278, 427-428 

compared to correspondence analysis, 
274 

for quasi-symmetry, 536 
saturated model, 532 
two-way interaction model, 532 
used complementary to 

correspondence analysis, 532-533 
logit 

generalized baseline, 513 
logit model 

adjacent category, 510-514 
joint effects plot, 511-512, 517-519, 

524 

map 
asymmetric. See asymmetric map 
rules of interpretation, 190-194 
symmetric. See symmetric map 

mass, 282 
MCA. See multiple correspondence 

analysis 
MDS. See multidimensional scaling, 
metric scaling. See multidimensional 

scaling, metric 
MIMIC model. See multiple indicator 

multiple cause model 
misclassification index, 62 
mixture model for contingency table, 

428-429, 431 
application, 429-431,433-438 
index of structure, 428--429, 432 

mixture model residual (MMR), 
431-432 

mosaic display, 19-22 
condensed, 20 
enhanced, 20-22 
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multidimensional scaling (MDS), 325, 
407 

constraining of, 363 
facet theory in, 349-364. See also 

facet theory 
INDSCAL, 330 
interpretation of, 347-348 
metric, 325, 365-367 
nonmetric, 325, 330-331 
PINDIS, 330, 333, 340-343, 345 

multidimensional unfolding. See 
unfolding model 

multiple-choice data, 190-194 
multiple correspondence analysis 

(MCA), 94, 278, 412-413. See also 
homogeneity analysis, dual scaling 

application, 201-202, 206-215, 
233-235, 246-252 

of Burt matrix, 232-233 
chi-squared distance, 413 
compared to principal component 

analysis, 245-246 
composite modality, 216 
contributions, 203-204 
correlation ratio, 21 6-217 
inertia, 203 
interaction between questions, 

218-219 
interclass inertia, 205 
of respondent-level data, 245 
rules of interpretation, 205-206 
supplementary variable, 216-217, 248 

multiple indicator multiple cause model 
(MIMIC), 491 

multivariable, 4-5 
multivariate analysis of variance 

(MANOVA). See canonical variate 
analysis 

multiway table, 22, 277-278 

node 
of classification and regression tree, 

61-62 
in formal concept analysis, 74 

nonsymmetrical correspondence 
analysis (NSCA), 297-309, 
312-314 

biplot, 312 
compared to correspondence analysis, 

301-303 
contribution, 303-304 
factor loading, 303-304 
joint plot, 304 
multiple, 305-308 
partial, 305-309 
rules of interpretation, 301-304 
transition formula, 313 
used as splitting criterion in 

classification tree, 316-322 
NSCA. See nonsymmetrical 

correspondence analysis 

object 
in formal concept analysis, 92 

object name 
in formal concept analysis, 74 

odds ratio, 23-24, 281, 511-513 
as distance ratio, 281-284, 

290-293 
open question, 134-137 

compared to closed question, 135 
free responses, 135 
postcoding, 135 

paired comparison method, 462-463 
panachage system, 159-160 

list votes, 161-165 
personal votes, 165-169 

parallel graph, 194, 195 
parquet diagram. See sieve diagram 
passive variable. See supplementary 

variable 
PCA. See principal component analysis 
pick any/m method, 462-463,465 
prediction, 405-406 
pressure model, 27-30 

dynamic, 30-31 
testing independence, 31-32 
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principal component analysis (PCA), 
245-246, 407-408 

principal coordinate, 108, 255 
principal coordinate analysis, 365. See 

also multidimensional scaling, 
metric 

Procrustes analysis 
generalized. See multidimensional 

scaling, PINDIS 
profile, 490. See also latent budget 

analysis, budget 
in correspondence analysis, 108, 282 

proportional odds model, 99, 100, 102 

quasi-independence model, 427--428 
quasi-uniform model, 427-428 

rank order data, 186-190 
regression, 11, 26 
related metric scaling, 367-373 

application, 373-376 
repertory grid, 86 
response 

nonsubstantive, 243 
substantive, 243 

response category, 198 
response modality. See response 

category 
response pattern, 191-194, 199-200 

clustering of, 193 

semicircular incremental radial graph, 
194, 195 

sieve diagram, 18-19 
similarity, obtained from distance, 334 
simultaneous (or multisample) latent 

class model, 479-480 
equality constraints in, 479-480, 

484--485 
model invariance in, 479, 481-482, 

484 
singular value decomposition (SVD), 

274-275,299, 483,504 
generalized, 255, 312, 384 

singular value, 108, 255 
singular vector, 255 

social space (according to Bourdieu), 
160, 161,201 

cultural capital, 178 
economic capital, 177 
panachage capital, 169-170 
periphery, 177 
social center, 177 
social position, 177 

software 
3WAYPACK, 275 
ADDAD, 220 
AMADO, 38, 45 
ANACONDA, 97 
ANACOR, 294 
AVS, 56-57 
CORA, 170 
Explorer, 56-57 
EyeLID, 220 
GOLDminer, 526 
HOMALS, 245,294, 418 
IPDA, 457 
JOSICA, 97 
LACORD, 184 
MATLAB, 404, 457 
S-Plus, 170, 275 
SAS, 390 
SAS/JMP, 404 
TOSCANA, 97 

spring model, 26 
stability 

of classification and regression trees, 
60, 67 

standard coordinate, 109, 255 
standardized residual, 108 
supplementary variable, 21 6-217,248 
SVD. See singular value decomposition 
symmetric map, 108, 185, 190-191 

textual data, 126, 133-137, 151-152 
textual data analysis, 149-150 

homograph, 138 
lemma, 137 
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textual data analysis (continued) 
lexical table, 139-140 
modal response, 145-147, 156 
numerical coding, 138-142 
occurrence, 137 
quasi-segment, 137, 152, 156 
repeated segment, 139 
separator, 137 
tagged corpora, 138-139 
test value, 144 
token, 137 
type, 137 
using cluster analysis, 155-158 
using correspondence analysis, 

156-158 
vocabulary, 137 

three-mode factor analysis, 258. See 
also Tucker3 model 

total inertia, 108, 226, 254, 298 
trajectory, 262 
transitory response set, 240 
twoing index, 62 
Tucker3 model, 258, 261 

applications, 467--474 
in latent class model, 464--465 
interpretation of correspondence 

analysis, 226-227, 230 
unfolding model, 186-187, 

461--467 
urn model, 27 

weight. See mass 

Z-plot, 99-105 
parallel, 104 
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Plate 1" C
ondensed m

osaic, reordered and shaded. 
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Plate 3" A general view of the 188 life histories of married couples in Kirkcaldy. 

Plate 4" A close-up view of the Lexis pencil representation of couples marrying in 
1967 and 1968. The bottom face of each pencil represents the age of the youngest 
child (green, no child; yellow, child under 1; red, child under 5), the middle face the 
employment history of the women (light blue, working; dark blue, not working), and 
the top face the employment history of the man. The woman stops work before the 
birth of a child; this pregnancy effect can clearly be seen. 



Plate 5" A close-up view of the Lexis pencil representation of couples marrying before 
1955. Couples marrying in 1951 and 1952 are represented by solid pencils; other 
histories are represented by ghosted pencils. Women in this cohort tend not to work 
at all or tend not to return to work after the birth of a child. 
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eoloured prediction regions 
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Plate 6" The geometry of neighbor regions and prediction regions for a categorical 
variable ("color") with three categories ("blue," "green," "red"). The CLPs are de- 
noted by the three small circle-enclosed dots on three rectangular axes as in Figure 3 
and these define the dotted triangle. The perpendicular bisectors of the sides of the 
dashed triangle meet at the circumcenter C and are the boundaries of the neighbor 
regions in the plane of the triangle; CN is normal to the plane of the triangle. The 
full neighbour regions are obtained by sliding the triangular neighbor regions along 
CN, giving the separators between neighbor regions that are shown. The plane of 
approximation represents a sheet of paper or a computer screen showing the best 
approximation of the samples. This plane intersects the neighbor regions, giving the 
prediction regions shown. The prediction region for "red" is largely hidden behind 
the planes separating the blue/red and red/green regions and hence only two ends 
are shown, the remainder being indicated by the dashed line. 
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Plate 7" The prediction regions for a categorical variable "color" with four levels: 
"blue," "green," "red," "yellow." Also shown are the positions of 10 numbered sample 
points. 

Plate 8: Analysis of the EMC showing prediction regions for the variable "region." 
The numbers refer to the 53 farms. 
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Plate 9: EMC prediction regions for each variable. The farm numbers are omitted but 
may be found in Plate 8. Farms falling into the correct regions are indicated by open 
circles and those in incorrect regions are indicated either by circles colored according 
to the key or, for category-levels absent from the key, by black circles. 
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