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Preface

This book describes the sampling and statistical methods used most often by
behavioral ecologists. We define behavioral ecology broadly to include behav-
ior, ecology and such related disciplines as fisheries, wildlife, and environ-
mental physiology. Most researchers in these areas have studied basic statistical
methods, but frequently have trouble solving their design or analysis problems
despite having taken these courses. The general reason for these problems is
probably that introductory statistics courses are intended for workers in many
fields, and each field presents a special, and to some extent unique, set of prob-
lems. A course tailored for behavioral ecologists would necessarily contain
much material of little interest to students in other fields.

The statistical problems that seem to cause behavioral ecologists the
most difficulty can be divided into several categories.

1. Some of the most difficult problems faced by behavioral ecologists
attempting to design a study or analyze the resulting data fall between
statistics – as it is usually taught – and biology. Examples include how
to define the sampled and target populations, the nature and purpose
of statistical analysis when samples are collected nonrandomly, and
how to avoid pseudoreplication.

2. Some methods used frequently by behavioral ecologists are not covered
in most introductory texts. Examples include survey sampling,
capture–recapture, and distance sampling.

3. Certain concepts in statistics seem to need reinforcement even though
they are well covered in many texts. Examples include the rationale of
statistical tests, the meaning of confidence intervals, and the interpreta-
tion of regression coefficients.

4. Behavioral ecologists encounter special statistical problems in certain
areas including index methods, detecting habitat ‘preferences’, and
sampling behavior.
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5. A few mathematical methods of use to behavioral ecologists are
generally not covered in introductory methods courses. Examples
include the statistical properties of ratios and other nonlinear combina-
tions of random variables, rules of expectation, the principle of
maximum likelihood estimation, and the Taylor series approximation.

This book is an attempt to address problems such as those above adopt-
ing the special perspective of behavioral ecology. Throughout the book,
our general goals have been that behavioral ecologists would find the
material relevant and that statisticians would find the treatment rigorous.
We assume that readers will have taken one or more introductory statistics
courses, and we view our book as a supplement, rather than a substitute, for
these courses.

The book is based in part on our own research and consulting during the
past 20 years. Before writing the text, however, we undertook a survey of
the methods used by behavioral ecologists. We did this by examining every
article published during 1990 in the journals Behavioral Ecology and
Sociobiology, Animal Behavior, Ecology, and The Journal of Wildlife
Management and all the articles on behavior or ecology published in
Science and Nature. We tabulated the methods in these articles and used the
results frequently in deciding what to include in the book and how to
present the examples.

Chapter One describes statistical objectives of behavioral ecologists empha-
sizing how the statistical and nonstatistical aspects of data analysis reinforce
each other. Chapter Two describes estimation techniques, introducing several
statistical methods that are useful to behavioral ecologists. It is more
mathematical than the rest of the book and can be skimmed by readers less
interested in such methods. Chapter Three discusses tests and confidence inter-
vals concentrating on the rationale of each method. Methods for ratios are dis-
cussed as are sample size and power calculations. The validity of t-tests when
underlying data are non-normal is discussed in detail, as are the strengths and
weaknesses of nonparametric tests. Chapter Four discusses survey sampling
methods in considerable detail. Different sampling approaches are described
graphically. Sample selection methods are then discussed followed by a
description of multistage sampling and stratification. Problems caused by non-
random sample selection are examined in detail. Chapter Five discusses regres-
sion methods emphasizing conceptual issues and how to use computer
software to carry out general linear models’ analysis.

The first five Chapters cover material included in the first few courses
in statistical methods. In these Chapters, we concentrate on topics that
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behavioral ecologists often have difficulty with, assuming that the reader
has already been exposed to the basic methods and ideas. The subsequent
Chapters discuss topics that are generally not covered in introductory
statistics courses. We introduce each topic and provide suggestions for
additional reading. Chapter Six discusses the difficult problem of pseudo-
replication, introducing an approach which we believe might help to resolve
the controversies in this area and focus the discussions on biological, rather
than statistical, issues. Chapter Seven discusses special statistical problems
that arise in sampling behavior. Chapter Eight discusses estimating and
monitoring abundance, particularly by index methods. Chapter Nine dis-
cusses capture–recapture methods, while Chapter Ten emphasizes the
estimation of survival. Chapter Eleven discusses resource selection and
Chapter Twelve briefly mentions some other topics of interest to behavioral
ecologists with suggestions for additional reading.

Appendix One gives a detailed explanation of frequently used statistical
methods, whilst Appendix Two contains a set of tables for reference. They
are included primarily so that readers can examine the formulas in more
detail to understand how analyses are conducted. We have relegated this
material to an appendix because most analyses are carried out using statis-
tical packages and many readers will not be interested in the details of the
analysis. Nonetheless, we encourage readers to study the material in the
appendices as doing so will greatly increase one’s understanding of the
analyses. In addition, some methods (e.g., analysis of stratified samples) are
not available in many statistical packages but can easily be carried out by
readers able to write simple computer programs. Appendix Three contains
detailed notes on derivation of the material in Appendix One.

This book is intended primarily for researchers who wish to use sampling
techniques and statistical analysis as a tool but who do not have a deep
interest in the underlying mathematical principles. We suspect, however,
that many biologists will be interested in learning more about the statistical
principles and techniques used to develop the methods we present.
Knowledge of this material is of great practical use because problems arise
frequently which can be solved readily by use of these methods, but which
are intractable without them. Basic principles of expectation (by which
many variance formulas may be derived) and use of the Taylor series
approximation (by which nearly all the remaining variance formulas
needed by behavioral ecologists may be derived) are examples of these
methods. Maximum likelihood estimation is another statistical method
that can be presented without recourse to complex math and is frequently
of value to biologists. We introduce these methods in Chapter Two and
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illustrate their use periodically in the rest of the book. These sections,
however, can be skipped without compromising the reader’s ability to
understand later sections of the book.

Another approach of great utility in developing a deep understanding of
the statistical methods we present is to prepare computer programs that
carry out calculations and simulations. We encourage readers to learn some
programming in an elementary language such as Basic or the languages
included in many data bases or statistical packages and then to write short
programs to investigate the material we present. Several opportunities for
such projects are identified in the text, and all of the examples we mention
are listed in the Index under the heading ‘Computer programming, exam-
ples’. We have found that preparing programs in this manner not only
ensures that one understands the fine structure of the analysis, but in addi-
tion frequently leads one to think much more deeply about how the statisti-
cal analysis helps us understand natural systems. Such efforts also increase
one’s intuition about whether studies can be carried out successfully given
the resources available and about how to allocate resources among different
segments of the study. Furthermore, data management, while not discussed
in this book, frequently consumes far more time during analysis than carry-
ing out the actual statistical tests, and in many studies is nearly impossible
without recourse to computer programs. For all of these reasons, we
encourage readers strongly to learn a programming language.

The authors thank the staff of Cambridge University Press for their
assistance with manuscript preparation, especially our copy editor, Sarah
Price. Much of the book was written while the senior author was a member
of the Zoology Department at Ohio State University. He acknowledges the
many stimulating discussions of biological statistics with colleagues there,
especially Susan Earnst, Tom Grubb, and John Harder and their graduate
students. JB also acknowledges his intellectual debt to Douglas S. Robson
of Cornell University who introduced him to sampling techniques and
other branches of statistics and from whom he first learned the value of
integrating statistics and biology in the process of biological research.
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1
Statistical analysis in behavioral ecology

1.1 Introduction

This Chapter provides an overview of how statistical problems are formu-
lated in behavioral ecology. We begin by identifying some of the difficulties
that behavioral ecologists face in deciding what population to study. This
decision is usually made largely on nonstatistical grounds but a few statisti-
cal considerations are worth discussing. We then introduce the subject of
making inferences about the population, describing objectives in statistical
terms and discussing accuracy and the general ways used to measure it.
Finally, we note that statistical inferences do not necessarily apply beyond
the population sampled and emphasize the value of drawing a sharp
distinction between the sampled population and larger populations of
interest.

1.2 Specifying the population

Several conflicting goals influence decisions about how large and variable
the study population should be. The issues are largely nonstatistical and
thus outside the scope of this book, but a brief summary, emphasizing sta-
tistical issues insofar as they do occur, may be helpful.

One issue of fundamental importance is whether the population of inter-
est is well defined. Populations are often well defined in wildlife monitoring
studies. The agencies carrying out such studies are usually concerned with a
specific area such as a State and clearly wish to survey as much of the area
as possible. In observational studies, we would often like to collect the data
throughout the daylight hours – or some portion of them – and throughout
the season we are studying.

Sampling throughout the population of interest, however, may be
difficult for practical reasons. For example, restricting surveys to roads and
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observations to one period of the day may permit the collection of a larger
sample size. A choice then arises between ‘internal and external validity’. If
surveys are restricted to roadsides, then smaller standard errors may be
obtained, thereby increasing ‘internal validity’, but we will worry that
trends along the roads may differ from trends for the entire area, thus
reducing ‘external validity’. A similar problem may occur if observations
are restricted to certain times of day or portions of the season. When the
population of interest is well defined, as in these cases, then the trade-off

between internal and external validity is conceptually straightforward,
though deciding how to resolve it in specific cases may be difficult.

When there is no single well-defined population of interest, then the
situation is a little more complex conceptually. Consider the following
example. Suppose we are investigating the relationship between dominance
and time spent watching for predators in groups of foraging animals.
Dominant individuals might spend more time foraging because they
assume positions of relative security from predators. Alternatively, they
might spend less time foraging because they obtain better foraging posi-
tions and satisfy their nutritional requirements more quickly. Suppose that
we can study six foraging groups in one woodlot, or two groups in each of
three woodlots. Sampling three woodlots might seem preferable because
the sampled population would then be larger and presumably more repre-
sentative of the population in the general area. But suppose that dominant
individuals spend more time foraging in some habitats and less time for-
aging in others. With three woodlots – and perhaps three habitats – we
might not obtain statistically significant differences between the foraging
time of dominants and subdominants due to the variation among wood-
lots. We might also not have enough data within woodlots to obtain statisti-
cally significant effects. Thus, we would either reach no conclusion or, by
averaging over woodlots, incorrectly conclude that dominance does not
affect vigilance time. This unfortunate outcome might be much less likely if
we confined sampling to a single woodlot. Future study might then show
that the initial result was habitat dependent.

In this example, there is no well-defined target population about which
we would like to make inferences. The goal is to understand an interesting
process. Deciding how general the process is can be viewed as a different
goal, to be undertaken in different studies. Thus, while the same trade-off

between internal and external validity occurs, there is much less of a
premium on high external validity. If the process occurs in the same way
across a large population, and if effort can be distributed across this
population without too much reduction in sample sizes, due to logistic
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costs, then having a relatively large sampled population may be worthwhile.
But if such a plan increases logistic costs, or if the process varies across the
population, then restricting the population in space, time or other ways
may be preferable.

Studies conducted in one location or within 1 year are sometimes crit-
icized on the grounds that the sample size is 1. In some sense, however,
nearly all studies have a sample size of 1 because they are carried out in one
county, state, or continent. Frequently, those arguing for a distribution of
the study across two or more areas or years are really arguing that two or
more complete studies should have been conducted. They want enough
data to determine whether the results hold in each area or year. This is
desirable of course. Two studies are nearly always better than one; but, if
the sample size is only sufficient to obtain one good estimate, then little may
be gained, and much lost, by spreading the effort over a large area or long
period of time.

Superpopulations

Sometimes a data set is collected without any formal random selection –
this occurs in many fields. In behavioral ecology, it is most likely when the
study is conducted within a well-defined area and all individuals (typically
plants or animals) within the boundaries of the area are measured. It might
be argued that in such cases we have taken a census (i.e., measured all
members) of the population so that calculation of standard errors and sta-
tistical tests is neither needed nor appropriate. This view is correct if our
interest really is restricted to individuals in the study area at the time of the
study. In the great majority of applications, however, we are really inter-
ested in an underlying process, or at least a much larger population than the
individuals we studied.

In sampling theory, a possible point of view is that many factors not under
our control operate in essentially a random manner to determine what indi-
viduals will be present when we do our study, and that the individuals present
can thus be regarded as a random sample of the individuals that might have
been present. Such factors might include weather conditions, predation
levels, which migrants happened to land in the area, and so on. In sampling
theory, such hypothetical populations are often called ‘superpopulations’
(e.g., Cochran 1977 p. 158; Kotz and Johnson 1988). We assume that our
sample is representative of the superpopulation and thus that statistical
inferences apply to this larger group of individuals. If the average measure-
ment from males, for example, is significantly larger than the average from
females, then we may legitimately conclude that the average for all males that
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might have been present in our study area probably exceeds the average for all
females. If the difference is not significant, then the data do not support any
firm conclusion about which sex has the larger average value. Note that
asserting the existence of a superpopulation, describing the individuals it
contains, and modeling its relation to our sample require biological or
ecological arguments as much as or more than statistical arguments.

The superpopulation concept can also be explained by reference to an
‘assignment process’. The word assignment refers to the underlying biolog-
ical process, not to randomization carried out by the investigator. To illus-
trate the concept, imagine that we are comparing survival rates of males
and females. We might view the individuals of each sex as being ‘assigned’
to one of two groups at the end of the study, alive and dead, and the process
may be viewed as having random elements such as whether a predator
happens to encounter a given individual. The question is whether members
of one sex are more likely than the other to be assigned to the ‘alive’ group.
The superpopulation is then the set of possible outcomes and inferences
apply to the underlying probabilities of survival for males and females. This
rationale is appealing because it emphasizes our interest in the underlying
process, rather than in the individuals who happened to be present when we
conducted the study.

Justifying statistical analysis by invoking the superpopulation concept
might be criticized on the basis that there is little point in making inferences
about a population if we cannot clearly describe what individuals comprise
the population. There are two responses to this criticism. First, there is an
important difference between deciding whether sample results might have
arisen by chance and deciding how widely conclusions from a study apply.
In the example above, if the sample results are not significantly different
then we have not shown that survival rates are sex specific for any popula-
tion (other than the sample we measured). The analysis thus prevents our
making unwarranted claims. Second, describing the sampled population,
in a particular study, is often not of great value even if it is possible. The
main value of describing the sampled population is that we can then gener-
alize the results from our sample to this population. But in biological
research, we usually want to extend our findings to other areas, times, and
species, and clearly the applicability of our results to these populations can
only be determined by repeating the study elsewhere. Thus, the generality of
research findings is established mainly by repeating the study, not by pre-
cisely demarcating the sampled population in the initial study.

Statisticians tend to view superpopulations as an abstraction, as opposed
to a well-defined population about which inferences are to be made.

4 Statistical analysis in behavioral ecology



Behavioral ecologists thus must use care when invoking this concept to
ensure that the rationale is reasonable. For example, one would probably
not measure population size in a series of years and then declare that the
years could be viewed as a random sample from a superpopulation of years.
Population size at one time often depends strongly on population size in
recent years so consecutive years could not legitimately be viewed as an
independent sample. Nonetheless, in many studies in the field of behavioral
ecology we can imagine much larger populations which we suspect our
samples are representative of and to which we would like to make infer-
ences. In such cases statistical analysis is appropriate because it helps guard
against unwarranted conclusions.

1.3 Inferences about the population

Objectives

Although biologists study a vast array of species, areas, behaviors, and so
on, most of the parameters estimated may be assigned to a small number of
categories. Most quantities of interest in behavioral ecology are of two
types: (1) means, proportions, or quantities derived from them, such as
differences; and (2) measures of association such as correlation and regres-
sion coefficients and the quantities based on them such as regression equa-
tions. Estimates of these quantities are often called ‘point estimates’. In
addition, we usually want an estimate of accuracy such as a standard error.
A point estimate coupled with an estimate of accuracy can often be used to
construct a confidence interval or ‘interval estimate’, an interval within
which we are relatively confident the true parameter value lies. Frequent use
is made later in the book of the phrase ‘point and interval estimates’.

Definitions

One of the first steps in obtaining point or interval estimates is to clearly
understand the statistical terms. In behavioral ecology, the connection
between the terms and the real problem is sometimes surprisingly difficult
to specify, as will become clear later in the book. Here we introduce a few
terms and provide several examples of how they would be defined in
different studies.

The quantity we are trying to estimate is referred to as a parameter.
Formally, a parameter is any numerical characteristic of a population. In
estimating density, the parameter is actual density in the sampled popula-
tion. In estimating change in density, the parameter is change in the actual
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densities. The term random variable refers to any quantity whose numerical
value depends on which sample we happen to obtain by random selection.
The sample mean is thus a random variable as is any quantity calculated
from the sample such as a standard deviation or standard error.

A numerical constant is typically a known quantity that is not of direct
interest and whose value does not depend on the particular sample selected.
For example, if we estimate density per m2 but then multiply the estimate by
10,000 to obtain density per hectare, then the 10,000 is a numerical con-
stant. On the other hand, a parameter is an unknown constant whose value
does not depend on the particular sample selected but is of direct interest.

In any analysis, one must identify the units in the sample and the
measurements taken on each unit. Thus, we may define the sample mean,
with respect to some variable as � �yi/n where n is the sample size and yi,
i�1,...,n are the measurements. In this book, we generally follow the tradi-
tion of survey sampling in which a distinction is made between the popula-
tion units and the variables measured on each unit in the sample.
Population units are the things we select during random sampling; variables
are the measurements we record.

If we capture animals and record their sex, age, and mass, then the
population unit is an animal and the variables are sex, age, and mass. If we
record behavioral measurements on each of several animals during several
1-h intervals, then the population unit is an animal watched for 1 h, an
‘animal-hour’, and the variables are the behavioral data recorded during
each hour of observation. In time-activity sampling, we often record
behavior periodically during an observation interval. The population unit
is then an ‘animal-time’, and the variables are the behaviors recorded. In
some studies, plants or animals are the variables rather than the population
units. For example, if we record the number of plants or the number of
species in each of several plots, then the population unit is a plot, and the
variable is ‘number of plants’ or ‘number of species’. In most studies
carried out by behavioral ecologists, the population unit is: (1) an animal,
plant, or other object; (2) a location in space such as a plot, transect, or
dimensionless point; (3) a period or instant of time; or (4) a combination
involving time such as an animal watched for 1 h or a location sampled at
each of several times.

Nearly all sampling plans assume that the population units are nonover-
lapping. Usually this can be accomplished easily in behavioral ecology. For
example, if the population units are plots, then the method of selecting the
plots should ensure that no two plots in the sample will overlap each other.
In some sampling plans, the investigator begins by dividing the population

y
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units into groups in such a way that each population unit is in one and only
one group. Subdivision in this manner is called a partition of the popula-
tion. Sample selection is also usually assumed to be without replacement
unless stated otherwise. Sampling without replacement implies that a unit
cannot be selected twice for the sample, while units could be included two
or more times when sampling is with replacement. The names are derived
from the practice of physically removing objects from the population, as in
drawing balls from an urn and then replacing them or not replacing them.

Application of the ‘population unit/variable’ approach may seem
difficult at first in estimating proportions. If we select ‘n’ plants and record
the proportion that have flowers, what is ‘the variable’? Statisticians usually
approach such problems by defining the population unit as an individual
and the variable as 0 if the individual does not have the trait or condition of
interest and 1 if it does. The proportion is thus the mean of the variables in
the sample. For example, let yi refer to the i th plant (i�1,...,n) and equal 0 if
the plant does not have flowers and 1 if it does have flowers. Then the pro-
portion may be written as �yi/n. This principle – that proportions may be
thought of as means (of 0s and 1s) – is useful in several contexts. For
example, it shows that all results applicable to means in general also apply
to proportions (though proportions do have certain properties – described
in later Chapters – not shared by all means). Notice that it matters whether
we use 0 to mean ‘a plant without flowers’ or ‘a plant with flowers’. The
term ‘success’ is commonly used to indicate which category is identified by a
1. The other category is often called ‘failure’. In our example, a ‘success’
would mean a plant with flowers.

In most studies we wish to estimate many different quantities, and the
definitions of population units and variables may change as we calculate
new estimates. For example, suppose we wish to estimate the average
number of plants/m2 and seeds/plant. We use plots to collect plants and
then count the number of seeds on each plant. In estimating the average
number of plants per plot, the population unit is a plot, and the variable is
the number of plants (i.e., yi�the number of plants in the i th plot). In esti-
mating the number of seeds per plant, the population unit is a plant, and
the variable is the number of seeds (i.e., yi�the number of seeds on the i th

plant).
The population is the set of all population units that might be selected for

inclusion in the sample. The population has the same ‘dimensions’ as the
population units. If a population unit is an animal watched for an observa-
tion interval, then, by implication, the population has two dimensions, one
for the animals that might be selected, the other for the times that might be
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selected. The population in this case might be envisaged as an array, with
animals that might be selected listed down the side and times that might be
selected listed across the top. Cells in the array thus represent population
units and the entries in them are the variables. This approach of visualizing
the population as a two-dimensional array will be used extensively in our
discussions of ‘Survey sampling methods’ (Chapter Four) and ‘Pseudo-
replication’ (Chapter Six).

Biologists often think of the species as ‘the population’ they are studying.
The statistical population, however, is the set of population units that
might enter the sample. If the population units are plots (in which we count
animals for instance), then the statistical population is a set of plots. If the
population unit is a trap left open for a day, then the statistical population is
the set of trap-days that might enter the sample, not the animals that we
might catch in them. This is just a matter of semantics, but confusion is
sometimes avoided by distinguishing between statistical and biological
populations.

Measures of error

The term error, in statistics, has approximately the same meaning as it does
in other contexts: an estimate likely to be far from the true value has large
error and one likely to be close to the true value has small error. Two kinds
of error, sampling error and bias, are usually distinguished. The familiar
‘bull’s eye’ analogy is helpful to explain the difference between them.
Imagine having a quantity of interest (the bull’s eye) and a series of esti-
mates (individual bullets lodged on the target). The size of the shot pattern
indicates sampling error and the difference, if any, between the center of the
shot pattern and the bull’s eye indicates bias. Thus, sampling error refers to
the variation from one sample to another; bias refers to the difference (pos-
sibly zero) between the mean of all possible estimates and the parameter.

Notice that the terms sampling error and bias refer to the pattern that
would be observed in repeated sampling, not to a single estimate. We use the
term estimator for the method of selecting a sample and analyzing the
resulting data. Sampling error and bias are said to be properties of the esti-
mator (e.g., we may say the estimator is biased or unbiased). Technically, it
is not correct to refer to the bias or sampling error of a single estimate.
More important than the semantics, however, is the principle that measures
of error reveal properties of the set of all possible estimates. They do not
automatically inform us about how close the single estimate we obtain in a
real study is to the true value. Such inferences can be made but the reason-
ing is quite subtle. This point, which must be grasped to understand the
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rationale of statistical inference, is discussed more in Chapter Three, ‘Tests
and confidence intervals’.

The quantity most widely used to describe the magnitude of sampling
error is called the standard error of the estimate. One of the remarkable
properties of modern statistical methods is that standard errors – a measure
of the variation that would occur in repeated sampling – can usually be
estimated from a single sample. The effects of sampling error can also
be described by the coefficient of variation (CV) which expresses the
standard error as a percentage of the estimate [i.e., CV�(standard
error/estimate)�100%]. Calculation of CV values facilitates comparison
of estimates, especially of quantities measured on very different scales. For
example, an investigator might report that all the CV values were less than
20%. Sampling error is also sometimes measured by the variance of the esti-
mate, which is the square of the standard error.

Three sources of bias may be distinguished: selection bias, measurement
bias, and statistical bias. Selection bias may occur when some units in the
population are more likely to be selected than others or are selected but not
measured (but the investigator is using a procedure which assumes equally
likely selection probabilities). Measurement bias is the result of systematic
recording errors. For example, if we are attempting to count all individuals
in plots but usually miss some of those present, then our counts are subject
to measurement bias. Note that measurement errors do not automatically
cause bias. If positive and negative errors tend to balance, then the average
value of the error in repeated sampling might be zero, in which case no
measurement bias is present. Statistical bias arises as a result of the pro-
cedures used to analyze the data and the statistical assumptions that are
made.

Most statistical textbooks do not discuss selection and measurement bias
in much detail. In behavioral ecology, however, it is often unwise to ignore
these kinds of error. Selection of animals for study must often be done
using nonrandom sampling, so selection bias may be present. In estimating
abundance, we often must use methods which we know do not detect every
animal. Many behavioral or morphological measurements are difficult to
record accurately, especially under field conditions.

The statistical bias of most commonly used statistical procedures is
either zero or negligible, a condition we refer to as ‘essentially unbiased’,
meaning that the bias, while not exactly equal to zero, is not of practical
importance. When using newer statistical procedures, especially ones devel-
oped by the investigator, careful study should be given to whether statistical
bias exists. When estimates are biased, then upper bounds must be placed
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on the size of the bias or the estimates are of little value. This is often possi-
ble using analytical methods for statistical bias. Bias caused by nonrandom
selection or measurement errors, however, usually cannot be estimated with
statistical methods, a point which has important implications for under-
standing tests and confidence intervals (see Chapter Three).

A few examples will help clarify the distinctions between sampling
error and the various types of bias. Leuschner et al. (1989) selected a
simple random sample of hunters in the southeastern United States of
America and asked them whether more tax dollars should be spent on
wildlife. The purpose was to estimate what proportion of all hunters in
the study area would answer yes to this question. Sampling error was
present in the study because different random samples of hunters would
contain different proportions who felt that tax dollars should be spent on
wildlife. Selection bias could have been present because 42% of the people
selected for the sample were unreachable, gave unusable answers, or did
not answer at all. These people might have felt differently, as a group, than
those who did answer the question. There is no reason to believe that
measurement bias was present. The authors used standard, widely
accepted methods to analyze their results, so it is unlikely that their
estimation procedure contained any serious statistical bias. Note that the
types of error are distinct from one another. Stating, as in the example
above, that no measurement or statistical bias was present in the estimates
does not reveal anything about the magnitude of sampling error or selec-
tion bias.

Otis et al. (1978) developed statistical procedures for estimating popula-
tion size when animals are captured, marked, and released, and then some
of them are recaptured one or more times. The quantity of interest was the
total number of animals in the population (assumed in these particular
models to remain constant during the study). Sampling error would occur
because the estimates depend on which animals are captured and this in
turn depends on numerous factors not under the biologists’ control.
Selection bias could occur if certain types of animals were more likely to
be captured than others (though the models allowed for certain kinds of
variation in capture probabilities). In the extreme case that some animals
are so ‘trap wary’ as to be uncapturable, these animals would never appear
in any sample. Thus, the estimator would estimate the population size of
capturable animals only and thus systematically underestimate total
population size. Measurement bias would occur if animals lost their marks
(this was assumed not to occur). The statistical procedures were new, so the
authors studied statistical bias with computer simulations. They found
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little statistical bias under some conditions, but under other conditions the
estimates were consistently too high or too low even if all required assump-
tions were met.

Two other terms commonly used to describe the different components of
error are precision and accuracy. Precision refers solely to sampling error
whereas accuracy refers to the effects of both sampling error and bias.
Thus, an estimator may be described as ‘precise but not accurate’ meaning
it has a small standard error but is biased. Accuracy is defined as the square
of the standard error plus the square of the bias and is also known as the
mean squared error of the estimator.

1.4 Extrapolation to other populations 

Statistical analysis allows us to make rigorous inferences about the statisti-
cal population but does not automatically allow us to make inferences to
any other or larger population. By ‘statistical population’ we mean the
population units that might have entered the sample. When measurements
are complex or subjective, then the scope of the statistical inferences may
also be limited to the ‘conditions of the study’, meaning any aspect of the
study that might have affected the outcome. These restrictions are often
easy to forget or ignore in behavioral ecology so here we provide a few
examples.

If we record measurements from a series of animals in a study area, then
the sampled population consists of the animals in the study area at the time
of the study and the statistical inferences apply to this set of animals. If we
carry out a manipulation involving treatments and controls, then ‘the pop-
ulation’ is the set of individuals that might have been selected and the infer-
ences apply only to this population and experiment. Inferences about
results that would have been obtained with other populations or using
other procedures may be reasonable but they are not justified by the statisti-
cal analysis. With methods that detect an unknown fraction of the individ-
uals present (i.e., index methods), inferences apply to the set of outcomes
that might have been obtained, not necessarily to the biological popula-
tions, because detection rates may vary. Attempts to identify causes in
observational studies must nearly always recognize that the statistical
analysis identifies differences but not the cause of the differences.

One sometimes hears that extrapolation beyond the sampled population
is ‘invalid’. We believe that this statement is too strong, and prefer saying
that extrapolation of conclusions beyond the sampled population must be
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based on additional evidence, and that this evidence is often largely or
entirely nonstatistical. This does not mean that conclusions about a target
population are wrong: it only means that the protection against errors
afforded by the initial statistical methods is not available and everyone
should realize that. For example, if we measure clutch size in one study area
and period of time, then the statistical analysis only justifies making infer-
ences about the birds in the study area during the study period. Yet every-
one would agree that the results tell us a good deal about likely clutch size in
nearby areas and in future or past years. The extent to which conclusions
from the study can be extrapolated to larger target populations would be
evaluated using biological information such as how clutch size varies in
space and time in the study species and other closely related species. This
distinction is often reflected in the organization of journal articles. The
Results section contains the statistical analysis, whereas analyses of how
widely the results apply elsewhere are presented in the Discussion section.
Thus, in our view, the reason for careful identification of the sampled
population and conditions of the study is not to castigate those who extrap-
olate conclusions of the study beyond this population but only to empha-
size that additional, and usually nonstatistical, rationales must be
developed for this stage of the analysis.

1.5 Summary 

Decisions about what population to study are usually based primarily on
practical, rather than statistical, grounds but it may be helpful to recog-
nize the trade-off between internal and external validity and to recognize
that studying a small population well is often preferable to studying the
largest population possible. The superpopulation concept helps explain
the role of statistical analysis when all individuals in the study area have
been measured. Point estimates of interest in behavioral ecology usually
are means or measures of association, or quantities based on them such as
differences and regression equations. The first step in calculating point
estimates is defining the population unit and variable. A two-dimensional
array representing the population is often helpful in defining the popula-
tion. Two measures of error are normally distinguished: sampling error
and bias. Both terms are defined with respect to the set of all possible
samples that might be obtained from the population. Sampling error is a
measure of how different the sample outcomes would be from each other.
Bias is the difference between the average of all possible outcomes and the
quantity of interest, referred to as the parameter. Three types of bias may
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be distinguished: selection bias, measurement bias, and statistical bias.
Most statistical methods assume the first two types are absent but this is
often not a safe assumption in behavioral ecology. Statistical inferences
provide a rigorous method for drawing conclusions about the sampled
population, but inferences to larger populations must be based on addi-
tional evidence. It is therefore useful to distinguish clearly between the
sampled population and larger target populations of interest.
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2
Estimation

2.1 Introduction

This Chapter describes some of the statistical methods for developing point
and interval estimators. Most statistical problems encountered by behav-
ioral ecologists can be solved without the use of these methods so readers
who prefer to avoid mathematical discussions may skip this Chapter
without compromising their ability to understand the rest of the book. On
the other hand, the material may be useful in several ways. First, we believe
that study of the methods in this Chapter will increase the reader’s under-
standing of the rationale of statistical analysis. Second, behavioral ecolo-
gists do encounter problems frequently that cannot be solved with ‘off the
shelf’ methods. The material in this Chapter, once understood, will permit
behavioral ecologists to solve many of these problems. Third, in other cases,
consultation with a statistician is recommended but readers who have
studied this Chapter will be able to ask more relevant questions and may be
able to carry out a first attempt on the analysis which the statistician can
then review. Finally, many behavioral ecologists are interested in how esti-
mators are derived even if they just use the results. This Chapter will help
satisfy the curiosity of these readers.

The first few sections describe notation and some common probability
distributions widely used in behavioral ecology. Next we explain
‘expected value’ and describe some of the most useful rules regarding
expectation. The next few Sections discuss variance, covariance, and
standard errors, defining each term, and discussing a few miscellaneous
topics such as why we sometimes use ‘n’ and sometimes ‘n�1’ in the for-
mulas. Section 2.10 discusses linear transformations, providing a
summary of the rules developed earlier regarding the expected value of
functions of random variables. The Taylor series for obtaining estimators
for nonlinear transformations is developed in Section 2.11, and the
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Chapter closes with an explanation of both the principle and mathemat-
ics of maximum likelihood estimation. Examples of how these methods
are used in behavioral ecology are provided throughout the Chapter. The
mathematics is elementary, mainly involving simple algebra. Derivatives
and the solution of simultaneous equations are briefly mentioned in the
last few sections.

2.2 Notation and definitions

Throughout this book, we use lower-case letters for quantities associated
with the sample and the corresponding upper-case letters for quantities
associated with the population. Thus, sample size and population size are
typically denoted by n and N respectively, and the sample mean and
population mean are typically denoted by and respectively. The same
convention is used for other quantities. Thus, se and cv are used for the esti-
mated standard error and coefficient of variation, derived from the sample,
while SE and CV are used for the actual values calculated from all units in
the population.

Many estimates have the same form as the parameter they estimate,
although they involve only sample values and are represented by lower-case
letters. The sample mean, , is generally used to estimate the population
mean, ; the proportion of ‘successes’ in a sample, p, is generally used to
estimate the proportion of successes in the population, P. Estimates calcu-
lated from samples, which have the same form as the parameter, are referred
to as sample analogs. For example, if we are interested in the ratio of two
population means, and , we might define the parameter as

. (2.1)

The sample analog of this parameter is

. (2.2)

In nearly all cases, we denote means by bars over the symbol as in Eqs. 2.1
and 2.2. In a few of the tables in Appendix One, however, this causes nota-
tional problems and a slightly different approach is used (explained in Box
3). A final convention (Cochran 1977 p. 20) is that measurements from
single population units are generally symbolized using lower-case letters
(e.g., yi ) regardless of whether they are components of an estimate or a
parameter. Thus, the sample mean and population mean both use yi

 y 
x

 Y 
X

YX

Y
y

Yy
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� yi and � yi, (2.3)

although with the following distinction. In the sample mean y1,...,yn repre-
sent the n sample observations (random variables) while for the population
mean y1,...,yN represent a list of the values (fixed numbers) corresponding
to the population units. Thus yi has a different meaning in the two formulas.
It will be clear from the context which is appropriate.

In some cases, particularly with nonrandom sampling and in experi-
mental situations, ‘the population’ is not well defined. Thus, if we select the
first n animals encountered for our sample, or if we carry out ten tests on
each of five animals, then ‘the population’ may be difficult to define which,
in turn, causes difficulty in thinking about what the parameters represent.
In such cases, we often find it easier to think of the population as a ‘much
larger sample’ (i.e., infinitely large), selected using the same sampling plan,
or the parameter as ‘the average in repeated sampling’. In most studies we
can imagine having obtained many different samples. The notion of a much
larger sample or the average of repeated samples may be easier to visualize
than a well-defined population from which our data set was randomly
selected.

Variables can be classified in several ways depending on the number and
kinds of values they take. The broadest classification is discrete or continu-
ous. Discrete variables most commonly take on a finite number of values. In
some instances it is convenient to treat discrete variables as though any
integer value 0, 1, 2, 3, … is possible. Even though the number of possible
values is infinite in such cases, these variables are still considered to be dis-
crete. The simplest discrete variable that can be measured on a unit is a
dichotomous variable which has only two distinct values. Common exam-
ples include male/female, young/adult, alive/dead, or present/not present
in a given habitat. As already noted, dichotomous variables are usually
recorded using ‘0’ for one value and ‘1’ for the other value. When the values
of a variable are numerical the variable is said to be quantitative, while if the
values are labels indicating different states or categories the variable is called
categorical. For a categorical variable, it is often useful to distinguish
between those cases in which the categories have a natural ordering and
those cases that do not. Examples of categorical variables include sex, which
is also a dichotomous variable, and types of behavior or habitat. Position in
a dominance hierarchy does imply an order, or rank, and could be consid-
ered an ordered, categorical variable. Discrete quantitative variables are
often counts, such as number of offspring or number of species in a plot.

1
N

 �
N

i�1

Y
1
n

 �
n

i�1

y
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Technically, continuous variables are quantitative variables that can take
on any value in a given range to any number of decimal places. In practice,
of course, such variables are only recorded to a fixed number of decimal
places. Examples include age, mass, and duration of a behavior. In each of
these examples, the number of possible values for the variable is limited
only by the accuracy of our measuring device.

The goals of a study may dictate whether a given variable is treated as
categorical or quantitative. For example, year might be used purely as a cat-
egory in one analysis but as a continuous variable in another analysis (e.g.,
studying how abundance changes through time).

2.3 Distributions of discrete random variables

The distribution of a discrete variable can be described by a list of the pos-
sible values of the variable and the relative frequency with which each value
occurs in the population with which the variable is associated. For example,
the distribution of a dichotomous variable such as sex just refers to the pro-
portion of males, and of females, in the population. The age distribution in
a population may be visualized as a list of ages and the proportion of the
population that are each age. Continuous distributions are described by a
curve, such as the familiar normal curve. The area under the curve for a
given interval is the probability that a randomly selected observation falls in
this interval.

In describing distributions, statisticians typically do not distinguish
between the population units and the value of the variable measured on
each unit. Thus, they may say that a population is normal, or skewed, or
symmetrical. Viewed in this manner, the population is the collection of
numbers that we might measure rather than the population units (i.e.,
animals) we might select.

Here are three examples of discrete distributions, each of them devel-
oped around the notion of flipping a thumbtack. This tack may land on
its side, denoted by 1, or point up denoted by 0. The distribution gives
us the probability of obtaining each of the possible results. We will use
the letter ‘x’ to denote a random variable representing the outcome of a
flip and the letter K for a specific outcome. Thus, P(x�K) means ‘the
probability that we get the result K ’. In our example, if K�0, then P(x
�K) means the probability that the tack lands point up. We will denote
the probability that the tack lands on its side as P, an unknown para-
meter. Thus P(x�1)�P and P(x�0)�1�P. Note that the italic letter
P is a parameter (the probability that the tack lands on its side) and that
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P is an abbreviation meaning ‘the probability of …’ Consider the
expression

P(x�K)�PK(1�P)1�K. (2.4)

This expression gives the distribution for the case we are considering. Two
outcomes are possible, K�0 and K�1. If K�0, then the expression
reduces to P(x�0)�1�P (because P0�1), which is the probability that the
tack lands point up. If K�1, the expression reduces to P(x�1)�P which is
the probability that the tack lands on its side. A random variable that can
take on only two possible outcomes is often called a Bernoulli random vari-
able, and is said to have a Bernoulli distribution.

Second, suppose we flip the tack n times and count the number of times it
lands on its side. The possible outcomes are now K�0,…,n. This distribu-
tion is called the binomial; its characteristics are that a series of n inde-
pendent ‘trials’ occur. On each trial, only two outcomes are possible, often
referred to as ‘success’ and ‘failure,’ and the probability of a success is the
same on each trial. The distribution for a binomial random variable such as
x in our example is

P(x�K)� PK(1�P)n�K, (2.5)

where the term in large parentheses means ‘n choose K’, the number of dis-
tinct ways to select K items from n items. The formula for n choose K is

� , (2.6)

where ! means factorial, n!�n(n�1)(n�2) … (2)(1) and 0! is defined to be
1. Notice that Eq. 2.5 reduces to Eq. 2.4 if n�1. Thus, statements later
about the binomial distribution also apply to the Bernoulli distribution
already described with n�1. See Moore and McCabe (1995, Chapter 5,
Section 1) or Rice (1995, Chapter 1) for a derivation of Eq. 2.6.

Many problems in behavioral ecology can be phrased in terms of the
binomial distribution. Notice that the outcome of a single trial is a dichoto-
mous (two-valued) variable. As noted in Section 2.2, behavioral ecologists
frequently study dichotomous random variables such as female/male,
young/adult, alive/dead, infected/not infected, and so on. Random sam-
pling, in these cases, can be viewed as a series of ‘trials’. The probability
that the measurement on each unit in the sample is ‘success’ is the same and
equals the proportion of the population that has the attribute of interest.
Also, the sample result may be phrased as ‘K successes in the sample of

n!
K! (n � K )!�n

K�

�n
K�

18 Estimation



size n’. Thus, the outcome of sampling is a binomial random variable. For
example, if we select n individuals from a very large population (so that
selections are essentially independent) and record how many are female,
then the probability that our result equals any specific value K is given by
Eq. 2.5 with P�proportion of the population that are female. As noted
above, once the distribution of a sample is known, then one can calculate
numerous quantities of interest. In this case, knowing that the distribution
is binomial, we can easily obtain such quantities as the estimator for P and
its standard error (Appendix One, Box 5).

Some of the most interesting applications of the binomial distribution in
behavioral ecology involve cases in which it may not be immediately
obvious that the data should be treated as binomial. For example, suppose
we are studying habitat preferences by recording the habitat type for a series
of randomly selected animals. Assume that a single survey is made, and that
we want to estimate the proportion of the animals in a given habitat. A
sighting may be viewed as a ‘trial’ and the outcomes as ‘success�in the
habitat of interest’ or ‘failure�in some other habitat’. The proportion of
animals in the habitat is estimated as the number of successes divided by the
total number of trials (i.e., animals observed). Thus, these data can be ana-
lyzed using methods based on the binomial distribution.

In other cases, complex measurements may be made on animals, plants,
or at sites, but interest centers on the proportion of sites in which a particu-
lar pattern was observed or some threshold was exceeded. For example, in a
study of northern spotted owls (Thomas et al. 1990), one of the questions
was whether the owls showed a statistically significant preference for old
growth forests as compared to other habitats. The data were collected by
radio telemetry and analysis involved a complex effort to delineate home
ranges, calculation of the proportion of the home range covered by old
growth and determination of whether the owls occurred more often in old
growth than would be expected if they distributed themselves randomly
across the landscape. This analysis, while complex, yielded a single answer
for each owl, ‘yes’ or ‘no’. Once the answer was obtained for each bird, the
rest of the analysis could thus be based on the binomial distribution with
n�number of animals and K�number of ‘yes’ answers.

The binomial distribution is sometimes useful when more complex and
efficient methods exist but entail questionable assumptions. For example,
suppose we select pairs of animals and record some feature such as size for
each member of the pair to determine whether the average value for females
in the population is larger than the average value for males. Such data can
be analyzed using the actual measurements and a t-test or nonparametric
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test (Chapter Three), but in some cases the required assumptions may not
be met. A simpler, albeit less powerful, method is simply to classify the
outcome from each pair as ‘success’ (value for the female was larger) or
‘failure’. The data are thus binomial and a very simple procedure (the sign
test), based on the binomial distribution and involving fewer assumptions,
may be used for the analysis. Note, however, that this analysis addresses a
slightly different question. The question addressed by the sign test is
whether more than half the paired females are larger than their mates, not
whether the mean size of paired females exceeds the mean for their mates. It
is possible (though perhaps not likely) that �50% of the females might be
larger than their mates but that the average size of females might be less
than the average size of their mates. The biologist must decide whether this
distinction is important in the investigation. If it is not, then the sign test
may provide a useful alternative to tests requiring more assumptions.

The third distribution we wish to discuss is a generalization of the bino-
mial to more than two outcomes. To explain it, imagine that a ‘trial’, in our
tack flipping example, involves flipping two tacks and counting the number
landing on their side. Three outcomes are now possible 0, 1, and 2. Let us
use the symbols P0, P1, and P2 for the probabilities of these outcomes. If we
select n pairs and determine the number of successes in each, then we will
obtain some number of 0s, 1s, and 2s. We will use K0, K1, and K2 for specific
numbers of each outcome. This distribution is multinomial; its density is

P0
K0P1

K1P2
K2. (2.7)

This expression gives the probability that we would obtain K0 pairs with no
successes, K1 pairs with 1 success and K2 pairs with 2 successes. If more than
3 outcomes are possible, then the formula has additional K and P values fol-
lowing the same pattern above.

The multinomial distribution is particularly useful, in behavioral
ecology, in capture–recapture studies. This application will be explained in
more detail in Chapter Nine but, in brief, animals are marked and recap-
tured on several occasions. In the analysis, marked animals are divided into
groups assumed to have similar survival and recapture probabilities. These
probabilities may vary through time, but they are the same, at any given
time, for all members of the group. The data consist of the numbers of each
group recaptured on each occasion or never recaptured. These numbers are
the Ki where i refers to a specific group at a specific time. Under the assump-
tion that members of a group have the same survival and recapture proba-
bilities, one may write down the probability of recapturing each individual

n!
K0!K1!K2!
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in each group on each sampling occasion. These are the Pi. The numbers
recaptured thus have a multinomial distribution. Methods based on the
multinomial distribution can therefore be used to obtain the point and
interval estimates of survival or other quantities of interest.

The multinomial distribution may also arise in many other situations.
For example, birds are often assigned to the categories ‘hatching year’,
‘second year’, and ‘after second year’. Animal sightings may be categorized
according to the habitat in which the individual was spotted. The number of
fertilizations may be restricted to a narrow range such as 0 to 4. The sample
outcome, in all of these cases, may follow a multinomial distribution and
methods based on this distribution may be useful. Many of these cases,
however, are also handled easily by successive application of binomial
methods, as indicated by the example of habitat use already discussed.
Furthermore, in quantitative cases such as ‘number of fertilizations’, we are
often interested in the mean outcome, rather than the proportion of the
outcomes in each category. Thus, use of the multinomial distribution seems
to be less common in behavioral ecology with a few conspicuous exceptions
such as capture–recapture methods. Other cases in which the multinomial
distribution may apply are noted in later Chapters.

Note that the multinomial includes the binomial as a special case in
which just two outcomes are possible. If that is true, then P1�1�P0 and
the expression with factorials may be written ‘n choose K0’. The expression
thus reduces to Eq. 2.5 for the binomial distribution. The three distribu-
tions, Bernoulli, binomial, and multinomial, are thus an increasingly
general series, all involving the same notion of independent trials on which
the possible outcomes and the probability of each outcome are the same
from trial to trial.

2.4 Expected value

Many concepts discussed in this book involve the concept of ‘expected
value’. We explain the meaning of expected value here briefly, and only for
discrete values, and provide a first few useful properties. This material may
prove difficult for readers who have not previously encountered the
concept. It can be skipped during a first reading of the Chapter. Study of
expected value at some point, however, will increase one’s understanding of
statistical procedures and make the answers to many problems that behav-
ioral ecologists encounter in real work easier to derive and understand.

The idea of an expected value is most easily understood in the context of
sampling from a finite population consisting of the values y1,…,yN. The
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expected value of a statistic, y, calculated from a sample, y1,…,yn, is simply
its average value in repeated sampling. More precisely, suppose that the
number of possible distinct samples that could be drawn from a specified
population with a specified sampling plan is N*, and that the N* different
samples are all equally likely. The expected value of y, denoted E(y), is

E(y)� i, (2.8)

where yi�the value of the statistic calculated from the i th sample.
The term ‘distinct sample’ refers to the set of population units that is

included in the sample (not the values of the response variable). As a simple
example, if the population size was 4 and we selected a sample of size 2
without replacement, then the number of distinct possible samples is 6
(units 1,2; 1,3; 1,4; 2,3; 2,4; and 3,4). More generally, if we sample randomly
without replacement, ensuring each time we select a unit that every unit still
in the population has the same probability of being selected (i.e., we select a
simple random sample), then the number of samples is 

N*� . (2.9)

If the distinct samples are not all equally likely, as occurs with some sam-
pling plans (see Chapter Four), then we define the expected value of y as the
weighted average of the possible sample results with the weight, fi , for a
given sample result, i , equal to the probability of obtaining yi

E(y)� fi i. (2.10)

Notice that Eq. 2.10 is a more general version that includes Eq. 2.8. In the
case of equal-probability samples all fi�1/N*, and Eq. 2.10 reduces to Eq.
2.8. The expected value of is thus a particular type of ‘average’, the special
features being that all possible samples are included in the average and that
weighting is equal if the samples are equally likely and equal to the selection
probabilities if the samples are not all equally likely.

Here is a simple example of calculating expected value. Suppose we flip a
coin once and record ‘0’ if we obtain a head and ‘1’ if we obtain a tail. What
is the expected value of the outcome? The notion of ‘all possible samples’ is
not readily applicable to this example, but if the coin is ‘fair’ then the prob-
ability of getting a 0 and the probability of getting a 1 are both 0.5. The ex-
pected value of the outcome of the coin flip is therefore (0.5�0�0.5�1)�
0.5, the sum of the possible outcomes (0 and 1) weighted by the probabili-
ties with which they occur.
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Rules

A few useful rules regarding expected values are now given.

1. The expected value of a constant, a, times a random variable, y, is the
constant times the expected value of the random variable

E(ay)�aE(y).

2. The expected value of a sum is the sum of the expected values. For
example, with two random variables, y and x

E(y�x)�E(y)�E(x).

3. The expected value of the product of random variables, the ratio of
random variables, or of a random variable raised to a power other than
0 or 1 is, in general, not equal to the same function of the expected
values. For example

E(yx)�E(y)E(x)

E(y/x)�E(y)/E(x) 
3. and

E(ya)�[E( )]a
,

3. if a � 0 or 1. The term ‘in general’ means that we cannot assume that
equality always holds. It might hold in a specific case, depending on the
values or other attributes of y and x, but often it does not hold. One
special case of rule 3 is worth noting. If two random variable, x and y,
are independent then E(xy)�E(x)E(y).

The above rules help identify conditions under which estimators are
unbiased. For example, suppose we have measured numbers per 1–m2 plot
and we wish to express the results on another scale, for example numbers
per hectare. We will use the subscript ‘m’ to indicate number per meter
and ‘h’ for number per hectare. Also, assume that our sample mean / 1-m2

plot, m, is an unbiased estimate of the population mean per 1-m2 plot, m,
that is E( m) � m. A hectare equals 10,000 square meters, so the true mean
per hectare is

h�10,000 m.

According to rule 1, if we multiply our estimate, m by 10,000, then we may
write

E(10,000 m)�10,000 E( m)�10,000 m� h.YYyy

y
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This demonstrates that changing the scale at which an unbiased estimate is
reported (i.e., multiplying the estimate by a constant) produces an unbiased
estimate of the original parameter multiplied by the same constant. The same
reasoning shows that if we have an unbiased estimate of density per plot in a
study area, then we can obtain an unbiased estimate of population size by
multiplying our sample mean times the number of plots in the study area. In
this example, the term ‘a’ becomes the number of plots in the study area.

Rule 2, i.e., that the expected value of the sum is the sum of the expected
values, shows that if we have unbiased estimates of two quantities, we can
simply add the estimates to obtain an unbiased estimate of the sum of the
parameter values. For example, if a study area is divided into two habitats and
we have unbiased estimates of the number of animals in each, then we can add
them to obtain an unbiased estimate of total population size. The principle is
also useful in evaluating expressions such as E( ). Thus, according to this
principle, E( )�1/n �E(yi) which is often easier to evaluate than E( ).

The third principle indicates the situatons in which we may not be able to
use the kind of reasoning already discussed. One of the most common
examples in which this is important for behavioral ecologists is in estimat-
ing ratios. For example, suppose we want to estimate proportional change
in population size between two years, 2/ 1, where 1 and 2 are the true
population sizes in years 1 and 2. Assume that we have unbiased estimates,

1 and 2, of 1 and 2. It would be natural to assume that 2/ 1 would be an
unbiased estimate of actual change, 2/ 1. In this case, however, rule 3 cau-
tions us that the expected value of this quantity may not be equal to the
same expression with parameters in place of estimates. That is, 2/ 1 may be
a biased estimator of 2/ 1, and we must be careful if we use this estimator
to ensure that the bias is acceptably small. Later in the Chapter we describe
a method (the Taylor series approximation) for estimating the magnitude of
the bias in specific cases such as this one.

2.5 Variance and covariance

Consider a population consisting of N numbers, yi, where i�1,…,N. The vari-
ance of the yi, referred to as the ‘population variance’, is usually defined as

V(yi)� , (2.11)

where is the mean of y1,…,yN (Cochran 1977 p. 23). Variance is thus the
average of the ‘squared deviations’, (yi – )2.Y
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The variance of random variables is usually defined using expectation.
The variance of a random variable, y, with expected value Y, is E[(y–Y)2]
where expectation is calculated over all possible samples. If N* distinct
samples are possible, all of them equally likely, then 

V(y) � , (2.12)

where yi, i�1,..., Nx, is the value of the random variable from sample i.
If the samples are not equally likely, as occurs with some sampling plans

(Chapter Four), then E[(y–Y)2] is calculated by weighting each distinct
sample by its selection probability as indicated in Eq. 2.10

,

where fi�the probability of drawing sample i.
The random variable, y, may be a single population unit, the mean of a

sample of units, or a derived quantity such as a standard deviation or stan-
dard error. For example, the variance of the sample mean, (assuming
simple random sampling from a ‘large’ population) is

V( ) � . (2.13)

where i is the mean from sample i, is the population mean and is known,
in this case, to be the expected value of .

Now suppose our population consists of N pairs of numbers, (x1,y1),
(x2,y2), (x3,y3),…,(xNyN). The covariance of the pairs (xi,yi) is usually
defined as

, (2.14)

where is the mean of x1,…,xN and is the mean of y1,…,yN. Covariance
is thus the average of the ‘cross-products’, (xi� ) (yi� ).

The covariance of random variables, like the variance of random vari-
ables, is defined using expectation. Cov (x,y)�[E(x� )(y� )] where 
and are the expected values of x and y [E(x)� and E(y)� ], andYX Y

XYX

YX
YX 

Cov(xi,yi) �
�

N

i�1
[(xi �X ) (yi �Y )]
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Cov (x,y) is calculated as the simple average of the cross-product terms
(xi� ) (yi� ) in repeated sampling if all samples are equally likely, and as
a weighted average if the samples are not all equally likely.

Covariance formulas are often complex because they involve two
random variables. We present one result that is useful in many contexts.
Suppose a simple random sample of n pairs is selected from the population
and the sample means of the x values and y values are denoted and .
Then

. (2.15)

2.6 Standard deviation and standard error

The standard deviation of any random variable, y , is the square root of the
variance of y

. (2.16)

If the random variable is a sample mean, , then we have

. (2.17)

The same relationship applies to quantities derived from samples such as
correlation and regression coefficients.

The standard deviation of an estimate is frequently referred to as the
standard error. Thus, the standard error of an estimate is its standard
deviation (in repeated sampling) which is the square root of its variance.
For example, with sample means

, (2.18)

and if b is the usual least-squares estimate of the slope in simple linear
regression

(2.19)

2.7 Estimated standard errors

Formulas in the preceding sections define parameters which are important in
sampling theory. We now turn to the estimation of these quantities.
The general approach is to rewrite the formula for the true standard error,
SE( ), in a simpler form, and then to derive an estimator that is unbiased. We
omit proofs but include enough details so that the meaning of the various

y

SE(b) � SD(b) � �V(b)

SE(y) � SD(y) � �V(y)

SD(y) � �V(y)

y

SD(y) � �V(y)

Cov(x,y) �
1

N* �
N*

i�1

 (xi �X ) (yi �Y )
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quantities can be explained. This also lets us explain, at the end of this section,
why ‘variances’ are defined as ‘average squared deviations’ but are then often
written with N�1 or n�1, rather than N and n, in the denominator.

It can be shown (e.g., Cochran 1977 p. 23) that the variance of the sample
mean, with simple random sampling from a finite population, can be written

, (2.20)

where N and n are the population and sample size, respectively. Thus, we do
not have to obtain all N* different samples to calculate the variance of these
means, we can use the simpler formula in Eq. 2.20. Notice that V( ) is a
simple function of the quantity �(yi� )2/(N�1). It is customary to use
the term S2 for this quantity

. (2.21)

It also can be shown (e.g., Cochran 1977 p. 26) that the sample analogue
of S2, s2��(yi� )2/(n�1), is an unbiased estimate of S2. That is

, (2.22)

or more compactly E(s2)�S2. The quantity s2 is often referred to as the
sample variance. Note, however, that E(s2)�S2 is not the population vari-
ance (Eq. 2.11) which has N, not N�1, in the denominator.

From Eqs. 2.20 and 2.22, and since n and N are known constants, we may
write

. (2.23)

Thus, the term on the left is an unbiased estimator of V( ) and we may use
it to estimate the standard error of

(2.24)

In most cases, population size, N, is so much larger than sample size, n,
that (N–n)/N�1–n/N is very close to 1.0 and may be omitted. This leads to
a simple formula for the estimated standard error

se(y) � �v(y) ��N � n
Nn

s2

y
y

E�N � n
Nn

s2��
N � n

Nn
E(s2) �

N � n
Nn

S 2 � V(y)

E��
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, (2.25)

where s is the sample standard deviation

. (2.26)

We emphasize that these equations do not necessarily apply to sampling
plans other than simple random sampling. This issue is discussed at greater
length in Chapter Four.

In writing computer programs to calculate variances and covariances,
two algebraic identities are useful

, (2.27)

and

. (2.28)

Thus, for example

,

and

.

Readers may be interested to note that while s2 is an unbiased estimate of
S2 [and thus v( ) is an unbiased estimate of V( )], the same cannot be said
of s and S (or se( ) and SE( )]. The reason for this can be seen by recalling
the discussion of expected values. We noted there that, in general, the
expected value of a random variable raised to a power other than 0 or 1 is
not equal to the parameter raised to the same power. Thus, for any random
variable g, with expected value G, E(g0.5)�G0.5. In this case, g�s2 and thus
we have E[(s2)0.5]�(S2)0.5 or E(s)�S. Thus, the usual estimators of the
standard deviation and standard error are slightly biased. This does not
affect the accuracy of conclusions from tests or construction of confidence
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intervals, however, because the effect of the bias has been accounted for in
the development of these procedures. Readers able to write computer pro-
grams may find it instructive to verify that sample estimates of the variance
of a sample mean are unbiased but that estimates of the standard error of
the mean are slightly biased (Box 2.1).

Box 2.1 A computer program to show that the estimated variance of the sample
mean is unbiased but that the estimated standard error is not unbiased.

The steps in this program are: (1) create a hypothetical population, (2) deter-
mine the true variance and standard error of the sample mean, and (3) draw
numerous samples to determine the average estimates of these quantities. We
assume that the reader knows a programming language and therefore do not
describe the program in detail. A note about Pop1() and Pop2() may be
helpful however. Sample selection is without replacement, so we must keep
track, in drawing each sample, to ensure that we do not use the same popula-
tion unit twice. This is accomplished by the use of Pop2. The program below
is written in TruBasic and will run in that language. It can be modified easily
to run under other similar languages and could be shortened by calling a sta-
tistical function to obtain the mean and SD.

!Program.1 – Creates a population of size N1 and takes nreps
!samples, each of size n2, to evaluate bias in the estimated 
!variance and standard error of the sample mean.

Let N1�1000 !Declare pop’n and sample sizes
Let n2�10
Let nreps�1000 !Number of samples
Dim Pop1(0), Pop2(0), y(0) !Declare arrays
Mat Redim Pop1(N1), Pop2(N1), y(n2) !Dimension them
Randomize !New random seed
For i�1 to N1 !Create the pop’n
Let Pop1(i)�rnd ! rnd�a random number (0–1)

Next i
For i�1 to N1 !Calculate the pop’n S2

Let sum�sum�Pop(i)
Let ssq�ssq�Pop(i)^2

Next i
Let PopMn�sum/N1 
Let PopS2�(ssq – N1*PopMn^2)/(N1–1)
Let TruVarMn�[(N1–n2)/(N1*n2)] * PopS2 !True v(M¯)
Let TruSEMn�TruVarMn^.5 ! and SE(M¯)
For k�1 to nreps !Begin drawing samples
Mat Pop2�Pop1 !Complete pop’n
Let ct, sum, ssq�0 !Set counters to 0
DO !Draw a sample w/o repl
Let v1�int(rnd*N2)�1 !A random integer, 1–N2
If Pop2(v1) 	� 0 then !Use this unit only if it
Let ct�ct�1 has not been selected.
Let y(ct)�Pop2(v1) Track sample size and
Let Pop2(v1)�0 exit when it�n2
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Box 2.1 (cont.)
If ct�n2 then exit DO

End if
Loop
For i�1 to n2 !sample s2

Let sum�sum�y(i)
let ssq�ssq�y(i)^2

Next i
Let SamMn�sum/n2
Let SamS2�(ssq —n2*samMn^2)/(n2–1)
Let EstVarMn�[N1–n2)/(N1–n2)]*SamS2 !Est’d v(ȳ)
Let EstSEMn�EstVarMn^.5 ! and se(ȳ)
Let SumEstVarMn�SumEstVarMn�EstVarMn !Keep totals
Let SumEstSEMn�SumEstSEMn�EstSEMn ! of the ests.

Next k
Let AveEstVarMn�round(SumEstVarMn/nreps,4) !Get ave. ests
Let AveEstSEMn�round(SumEstSEMn/nreps,4) !round
Print “ Actual Ave. est.“ !Print results
Print “ Variance “; TruVarMn, AveEstVarMn
Print “Standard error ‘; TruSEMn, AveEstSEMn
END

Two traits of s2 and se( ) with simple random sampling are worth
noting. First, s2 is an unbiased estimate of S2 regardless of sample size.
Thus, we do not expect s2 to change in any consistent manner with increas-
ing sample size. On the other hand, se( )�s/ , does change with sample
size; it declines, with the decline being proportional to . Many people
confuse s and se( ) or at least do not understand that s is: (1) a measure of
variability in the population; (2) an ingredient in se( ); and (3) a quantity
whose expected value does not change with sample size, whereas se( ) is a
measure of precision (how much would vary in repeated sampling), and
thus its value does change (decreases) with increasing sample size.

We once encountered a biologist who spent an entire summer estimating the
proportion of twigs on a large study area browsed by moose. He consistently
made the error described above of calculating the standard deviation instead
of the standard error, so that he was estimating s, rather than se( ). With each
few additional weeks of data he expected his estimated ‘standard error’ to
decrease, since his sample size was getting larger. But it never did, and he finally
abandoned the project, a remarkable example of why it is important to under-
stand the difference between the standard deviation and the standard error.

2.8 Estimating variability in a population

Sometimes we are interested in how variable the observations in a popula-
tion are. Suppose, for example, that we are studying the time required to
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immobilize animals using different chemicals. We want this time to be as
short as possible because animals may injure themselves or escape if the
chemical requires a long time to take effect. In evaluating different chem-
icals, one must estimate the mean immobilization time, but also must know
how consistent the time is from animal to animal.

Various approaches exist for describing the spread or variability in a
population. The simplest approach is to use percentiles such as the 0th,
25th, 50th, 75th, and 100th. The pth percentile is the quantity such that p % of
the values are less than or equal to the quantity. Notice that the 0th per-
centile is the smallest value in the population, the 50th percentile is the
median, and the 100th percentile is the largest. Reporting the 0th and 100th

percentiles identifies the interval encompassing all of the values. The
difference between them is referred to as the range. Reporting the 25th

(called the first quartile) and 75th (called the third quartile) percentiles
identifies the interval containing the middle 50% of the values. When a
sample is used to estimate these population parameters, the population
percentiles are typically estimated by the corresponding sample per-
centiles. With small samples, specifying a given percentile may require
some care in order to avoid ambiguity. For example, in a sample of size 10,
the 25th percentile is often found by interpolation.

If the distribution of values in the population is approximately normal,
then the population percentiles can be calculated using only the standard
deviation and the mean. One uses a table showing percentiles from the stan-
dard normal distribution. For example, 68% of the area under a normal
curve lies within 1 standard deviation of the mean, 80% lies within 1.28
standard deviations of the mean and 95% of the observations lie within
1.96 standard deviations of the mean. Thus, given estimates of the mean
and standard deviation (sd), and assuming that the population is normal,
one can conclude that approximately 68% of the population values are in
the interval (mean
1 sd), 80% are in the interval (mean
1.28 sd), and 95%
are in the interval (mean
1.96 sd). Methods of determining whether
observations follow a normal distribution and of calculating intervals esti-
mated to contain any given proportion of the observations in the popula-
tion are provided by many computer packages and statistics texts (e.g.,
Moore and McCabe 1995 pp. 67–78). We emphasize that this approach
depends strongly on assuming that the population values have a normal
distribution.

For normal populations the coefficient of variation can also be used to
express variability in the observations. For this purpose, its formula is stan-
dard deviation/mean rather than standard error/mean. A report that the cv
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of the observations was 15% would tell us that approximately 68% of the
observations were within 15% of the mean and approximately 80% of them
were within 19% (1.28�15%) of the mean. Thus the same multipliers are
used as in the previous paragraph, with the coefficient of variance replacing
the standard deviation.

2.9 More on expected value 

In Section 2.4 we presented three general rules regarding the expected
values of random variables. Since V(yi )�E(yi� )2 we can apply these
rules to obtain a parallel set of principles about variances:

1. The variance of a constant (a) times a random variable (y) is the square
of the constant times the variance of the random variable

V(ay)�a2 V(y), (2.29)

3. and therefore

SD(ay)�a SD(y).

3. Similarly, if the random variable is a mean, then SE(a )�a SE( ). A
similar rule holds for covariances

Cov (ax,by)�abCov (x,y), (2.30)

3. where a and b are constants and x and y are random variables.
2. The variance of the sum of random variables is the sum of the vari-

ances plus twice the covariances. For example, with two variables, y
and x

V(x�y)�V(x)�V(y)�2Cov(x,y). (2.31)

3. The covariance terms include all pairwise covariances. Thus, with three
random variables, x, y, and z, we have

V(x�y�z)�V(x)�V(y)�V(z)�

2[Cov (x,y)�Cov (x,z)�Cov (y,z)]. (2.32)

3. In general, with k terms in a sum, the number of pairs is ‘k choose 2’
�k(k�1)/2 so the number of covariance terms increases rapidly with
k. This point will become important when we consider sampling plans
in which selection of some units is not independent. When estimates
are independent, their covariance is 0.0 so the covariance terms drop
out. Thus, for independent estimates, the variance of the sum is the sum
of the variances. Note, however, that the analogous statement about
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standard deviations or standard errors is not true. Instead, the stan-
dard deviation or standard error of a sum must be defined using the
square root of the corresponding variance

, (2.33)

3. and

, (2.34)

3. The variance of the product of random variables (or more generally of
a nonlinear function of random variables) is not easily expressed as a
function of the variances and covariances of the random variables. For
example, in general

,

,

3. and 
.

3. if a�0 or 1. One special case is worth noting. If two random variables,
x and y, are independent and have expected values X and Y respec-
tively, then

. (2.35)

The principles above are useful in calculating variances (and thus stan-
dard errors) of several simple quantities of interest to behavioral ecologists.
For example, we discussed changing the scale at which results are reported
in Section 2.4, noting that if the initial estimate of density is unbiased then
the usual estimate of density at the new scale is also unbiased. The first
principle shows that multiplying an estimate by a constant produces a cor-
responding change in the standard error of the estimate. Working through
this result for a particular case may be helpful. Recall that we used the sub-
scripts m and h to denote density on a per m2 and per hectare basis. The
conversion of the density/m2 to density/ha was

h�10,000 m,

so we may write

V( h)�V(10,000 m)�10,0002 V( m),yyy

yy

V(xy) � X 2V(y) � Y 2V(x) � V(x)V(y)

V(ya)�[V(y)]a

V(y / x)�V(y) / V(x)

V(y x)�V(y)V(x)

� �V(x) � V(y) � 2Cov(y,x)

SE(x � y) � �V(x � y)

� �V(x) � V(y) � 2Cov(y,x)

SD(x � y) � �V(x � y)
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and therefore 

SE( h)� �10,000 SE( m).

The second principle is widely used because sums of random variables
are widely used (e.g., in calculating means). Furthermore, the standard
error of a difference, � , for example, can be derived using this result as
shown below:

, (2.36)

and (using rule 1)

(2.37)

.

Therefore

. (2.38)

If and are independent then their covariance is zero, so we obtain

. (2.39)

Computer packages sometimes give standard errors of means but not their
variances. In such cases, a slightly different version of Eq. 2.39 may be
helpful

. (2.40)

The third principle tells us when not to use the sample analogs in calcu-
lating standard errors. Thus, the variance of / is not V( )/V( ) and so we
cannot use the corresponding expression with sample estimates v( ) and
v( ) even if these estimates are themselves unbiased estimates of V( ) and
V( ). More complex methods (Section 2.11) must be used.

2.10 Linear transformations

The principles listed in Section 2.9 can be used to identify two broad classes
of functions of random variables that have fairly simple statistical proper-
ties. The classes are referred to as ‘linear transformations (or linear
combinations) of random variables’ and ‘affine transformations of random
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SE(y � x) � �SE(y)2 � SE(x)2

SE(y � x) � �V(y) � V(x)

xy

SE(y � x) � �V(y) � V(x) � 2Cov(y,x)
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variables’. Here, we will define the terms linear transformation and affine
transformation, contrast them with nonlinear transformations (which
usually have more complex statistical properties), and begin to explore the
statistical properties of each group. The subject will be taken up again in
later sections.

The formula for an affine transformation, X (say), involves a set of
random variables, y1, y2, y3,…,yk and two sets of constants, a1, a2, a3,…,ak,
and b1, b2, b3,…,bk. The general equation is

. (2.41)

For a linear transformation the general equation is

. (2.42)

These equations are designed to include cases that may be quite complex. In
most cases of interest to behavioral ecologists k, ai , and/or bi take on
simple values such as n (� sample size), 1 or 0. For example, the sample
mean is a linear transformation of the units in the sample (yi ) with k�n,
and all bi�1/n. The estimated population total, N , is a linear transforma-
tion of the sample mean with k�1, and b1�N. In contrast, the sample vari-
ance

is not a linear or affine transformation of the units in the sample (yi)
because of the squared terms. There is no way to rearrange v(yi) so that it
has the form of Eq. 2.41.

The rules of expectation previously used to discuss bias and standard
errors of transformed estimates can now be applied to provide very general
results pertaining to linear or affine transformations. First, however, we
need two other results. If a is a constant, then in repeated sampling E(a)�a
and V(a)�0. Both statements just say that a does not vary from sample to
sample. The value of these results will be made clearer below. Three rules
regarding linear or affine transformations are:

1. E(a�bY)�a�b E(y). Thus, if y is an unbiased estimate of Y, then
a�by is an unbiased estimate of the corresponding transformation of
the parameter, a�bY.

v(yi) �
�

n

i�1
(yi � y)2

n � 1

y

X ��
k

i�1

biyi

X ��
k

i�1

(ai � biyi)
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2. V(a�by )�0�b2V(y), and thus SE(a�by)�bSE(y). Thus, the stan-
dard error of a linear or affine transformation of an estimate equals the
multiplicative constant (if any) times the standard error of the esti-
mate.

3. In contrast, no simple, general principles apply to nonlinear trans-
formations. As noted previously, in general, the expected value of the
function is not equal to the function of the expected values and the
variance of the function is not equal to the function of the variances. In
other words, sample analogs of the parameters are likely to produce
biased point and interval estimates; other quantities must be used.

These results are simply a restatement, in briefer form, of the three rules
about expected values in general (Section 2.4) and expected values of vari-
ances (Section 2.9). They consolidate this information into a compact form
and will be referred to many times in later Chapters.

2.11 The Taylor series approximation

The preceding Sections raise the question of how one approximates the bias
and estimates the variance when using nonlinear combinations of random
variables as estimators. Several approaches are possible, but one, called the
Taylor series expansion or the Delta Method, is particularly useful and is
therefore described below. It is somewhat complex both algebraically and
conceptually and requires knowledge of elementary calculus. Some readers
may wish to skip this section and later sections in which examples of using
the approach are presented.

The steps in using this approach are

1. Express the estimator of interest as a Taylor series.
2. Use lower-order terms to obtain expressions for approximate bias and

variance.
3. Replace parameters in the expressions with sample estimates to obtain

the desired estimate of the bias or variance.

Consider a collection of random variables xi each with expected value Xi.
In most cases of interest to behavioral ecologists, the xi values are estimates
and we have only one or two in the collection. We present the method in
general notation however. Assume that the random variables are combined
in some nonlinear manner. The formula might be a single random variable
raised to a power, xa, a ratio, x1/x2, a product of three variables, x1x2x3 or
any other nonlinear expression. If n random variables, x1,…,xn, are
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involved, then f(x1,…,xn) will denote the nonlinear function of interest and
f(X1,…,Xn) will denote this function evaluated at the expected values. Thus,
if f(x)�xa, then f(X)�Xa, or if f(x1,x2)�x1x2 then f(X1,X2)�X1 X2.

In the following, all partial derivatives are evaluated at (Xi,…, Xn). The
Taylor series expansion of the random variables is

(2.43)

The ellipsis on the right indicate the presence of additional terms. The next
term involves three deviations multiplied together and third-order derivatives,
and so on. If xi is an estimate of, and hence fairly close to, Xi then the higher
order terms should be sufficiently small that we can ignore them in approxi-
mating the bias and variance. In most cases of interest to behavioral ecolo-
gists, this assumption is reasonable. Nonetheless, scrutiny of the higher order
terms is a part of using this method (which is why we present the derivation).

With a single variable [e.g., f(x)�xa] all of the sums drop out and the
expression becomes

. (2.44)

With more than one variable, all sums extend over all variables. In the
double sum, when i�j we take the derivative twice with respect to the same
variable, and the deviations become (xi�Xi )2. We can therefore re-write the
expression in Eq. 2.43 as

(2.45)

Step 2 involves eliminating the higher-order terms. The terms eliminated
vary depending on whether approximations for the bias or variance are to
be developed. For the bias approximation, we customarily ignore terms of
third or higher order. To develop the approximation, first move f(X1…,Xn)
to the left side of Eq. 2.45 and then take expected values of both sides.

��
i
�
j�i

� �2f
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This gives us E[ f(x1,…,xn)–f(X1,…,Xn)], which is bias, on the left. On the
right side, E(xi�Xi )�0 (since E(xi )�Xi ), E(xi�Xi )2�V(xi ) and
E(xi � Xi) (xj�Xj )�Cov(xi xj ). The expression for approximate bias is thus 

Bias�E[ f(x1,…,xn)�f(x1,…,xn)]. (2.46)

This estimate of bias is often referred to as the ‘leading term’ in the bias
because only the first (nonzero) term in the Taylor series expansion is used
in its derivation. When the function has a single parameter X, then Eq. 2.44
simplifies to

. (2.47)

Incidentally, note that if f(x1,…,xn) is a linear or affine combination of the
random variables x1,…,xn, then the second derivative of f(X1,…,Xn) is zero.
All higher derivatives are also zero. This provides another demonstration
that linear or affine combinations of random variables provide unbiased
estimates of the corresponding functions of the parameters.

To obtain the approximate variance we consider only the first term (not
any of the higher-order terms), and re-write the expansion, collecting con-
stants, as 

, (2.48)

We thus may write

, (2.49)

because the constants drop out (variance of constant is 0). Using expres-
sion 2.31 for the variance of a sum, the approximate variance thus becomes

(2.50)
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Note that the expression contains squared deviations (variances) and cross-
products (covariances). If we had included higher-order terms then the
expression for variance would include deviations to the fourth order (or
higher). We noted above that third-order and higher terms are generally
ignored in the approximation. When the function has a single parameter X,
then Eq. 2.49 simplifies to

. (2.51)

While the right-hand side of Eq. 2.49 gives an approximate expression
for the desired variance, it depends on the unknown parameters V(xi ) and
Cov(xi ,xj ). Thus the third step is to replace these quantities with sample
estimates. Since in many cases appropriate sample estimates are compli-
cated, it is probably best to consult a statistician concerning what sample
estimates should be used. As usual, standard errors of the estimates are
simply the square roots of the variances of the estimates.

Examples

Here are two examples of applying this method to obtain expressions for
approximate bias and variance. Suppose we are studying nesting success
using the ‘Mayfield method’ (see Chapter Ten) in which survivorship is
assumed to be constant through time and an estimate is made of the daily
survival rate, p say. Survival to fledging, or throughout some shorter period
of interest such as incubation, is thus pk where k equals the average length
of a successful attempt and is known or estimated from other information
and is thus treated as a constant. The same problem might arise in studying
contests or efforts to avoid predation. Our interest might center on the
probability of succeeding in all k trials. In these cases, assuming a constant
probability of success might be more questionable but we might initially
model success as constant. Sometimes interest centers on producing ‘at
least one success’. In such cases, we can define p as a failure and estimate
the probability of 1�pk, that is 1 minus the probability of failing all k times
which is the probability of succeeding 1 or more times. This is essentially
the same problem since the bias and variance of 1�pk can easily be calcu-
lated from estimates of the bias and standard error of pk. We now derive
expressions for the approximate bias in pk used to estimate Pk and for
V( pk).

We assume that p is an unbiased estimate of the true probability, P [i.e.,
E( p)�P], we have an estimate of V( p), and our objective is to obtain point
and interval estimates of Pk. To obtain expressions for the estimated bias

V [ f ] � � df
dX�

2

V(x)
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and standard error we need the first and second derivatives with respect to
the parameter, P

, (2.52)

and

. (2.53)

The estimated bias from Eq. 2.47 is thus

, (2.54)

and the estimated variance from Eq. 2.51 is

, (2.55)

so that 
. (2.56)

Note that bias decreases at a rate proportional to n [because v( p) decreases
at this rate]. This is frequently – though not always – the case with bias, a
relationship described as ‘the leading term in the bias is of order 1 over n’.

The effects of bias are generally negligible if bias/SE is less than 10% and
of relatively little importance if bias/SE is less than 20% (Cochran 1977 pp.
12–15). We may therefore be interested in how large a sample size is needed
for bias/SE to be less than 10% or 20%. V( p) is needed for both bias and SE
and depends on the sampling plan used to collect the data. If p is estimated
by observing a series of n trials and recording the number of successes then
(Appendix One) V( p)�P(1�P)/n so

(2.57)

If bias/SE is going to less than a given value, R say, then n must satisfy

, (2.58)

or

. (2.59)n � �0.5
R �

2
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In nesting studies the daily survival rate (P) is often about 5% so (1�P)/
P�1/19. If the period length is 20 then k�1 is 19 so n must satisfy

(2.60)

Obtaining R	0.2 thus requires n�118. Virtually all studies of nest success
using the Mayfield approach achieve n (�number of ‘nest days’, not nests)
�118. Thus, bias is seldom a problem in these studies, even though the esti-
mators are slightly biased.

For our second example, consider the ratio of sample means, / . This
case arises in so many situations that we give the formulas for bias and stan-
dard errors in Appendix One. Nonetheless, we derive the equations below
as an example.

The first and second derivatives with respect to the parameters and are

, (2.61)

and

(2.62)

and thus the estimated bias, from Eq. 2.46, is

, (2.63)

,

and, from Eq. 2.50

v (2.64)

.

This expression is rather complex but if advance estimates of the needed
terms are available they may be substituted to obtain the minimum sample
size needed for bias to be safely ignored.
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2.12 Maximum likelihood estimation

In some applications we can write down the probability distribution for
the set of possible sample outcomes. Sample outcomes that have
Bernoulli, binomial, and multinomial distributions provide examples
(Section 2.3). Whenever the distribution can be written out, then a
method known as maximum likelihood estimation may provide a useful
way to obtain point and interval estimates. Although maximum likeli-
hood estimators are sometimes quite difficult to derive and may require
special numerical methods to calculate, the principle of the method is
simple and elegant. In this section we explain the principle and provide a
few examples, restricting our attention to discrete distributions. Our goal
is that readers understand the rationale for the use of maximum likeli-
hood estimates. Consultation with a statistician is advised for deriving
maximum likelihood estimators.

The conceptual basis of the method is explained with a simple
example. Suppose we were told that a computer program had been pre-
pared to generate 0s and 1s with a constant probability, P, of producing
a 1. In addition, imagine that a sample of 10 0s and 1s contained 6 1s,
and we were asked to make our best guess about the value of P. Given
only this information, we would probably select 0.6 as our guess,
perhaps noting our uncertainty given the rather small sample. Now con-
sider the question, ‘why is 0.6 a better estimate, in this case, than some
other value, such as 0.3?’ The answer to this question may not be
obvious, but consider the following rationale. If the value of P is actu-
ally 0.3, then it seems unlikely that we would get as many as 6 successes
in a sample of size 10. In contrast, the probability of getting 6 1s if P�

0.6 is considerably higher. Furthermore, if we calculated the probability
of getting 6 1s for all possible values of P, we would find that the
maximum probability occurs with P�0.6. Thus, the estimate 0.6 is the
value that maximizes the probability of obtaining the observed
outcome.

The rationale above summarizes the maximum likelihood approach:
write down the probability distribution for the possible sample outcomes.
The expression, called the ‘likelihood’, will include one or more unknown
parameters (P in our example). Find the values of the unknown parameters
that maximize the likelihood and take those as the parameter estimates.
Since the likelihood is a distribution, and thus gives the probability of
obtaining various sample outcomes, we may replace the symbols for spe-
cific values with the more general symbol for any outcome. In this example,
we replace X with x. The likelihood is thus the probability of obtaining x
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successes in n trials with constant probability of success P, which, from
Section 2.3, is

. (2.65)

Various approaches may be used to find the maximum of the likelihood.
One approach is to take derivatives, set them equal to zero, and solve the
resulting equations for the unknown parameters. Recall from calculus that
the solutions are either maxima, minima, or saddle points. To determine
which, additional methods (such as checking second derivatives) must be
used. In practice, statisticians usually take the natural logarithm (ln) of the
expression before calculating the derivatives. This gives the same maximum
and simplifies the mathematics.

In our example, the ln of the likelihood is

, (2.66)

and taking derivatives with respect to P yields

. (2.67)

Setting this expression equal to zero and solving for P, we obtain P�x/n. It
is easily verified that this is a maximum by checking second derivatives.
Thus, if p is our symbol for the estimate, then p�x/n is the maximum likeli-
hood estimate of the parameter P.

This procedure, while fairly general, does not always work. For example,
in some cases the maximum is at one of the extreme values of the parameter
and the derivative is not equal to 0. However, anytime we can write down an
expression for the probability of obtaining each possible sample result,
expressed in terms of unknown parameters and perhaps some constants,
then we can use maximum likelihood methods to obtain expressions for the
estimates. The mathematics are complex in some cases, and consultation
with a statistician is definitely recommended. The important point for
behavioral ecologists is to understand how maximum likelihood can be
used to develop estimates.

Standard errors

One other feature of maximum likelihood estimation should be
described. Formulas for the asymptotic variances (i.e., variances if the
sample size is ‘large’) can usually be obtained from the second derivatives of

x
P

�
n � x
1 � P

 ( � 1)

ln�n
x�� xln(P) � (n � x)ln(1 � P)

�n
x�Px(1 � P)n�x
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the likelihood. The calculations can easily become complex, and are usually
carried out by computers, so we do not describe them in detail. Behavioral
ecologists sometimes consider cases with only one or two parameters,
however, and may be interested in writing short computer programs to
obtain the estimates so we outline the procedure briefly. With a single para-
meter, R say, and maximum likelihood estimator r, the formula for V(r), is 

(2.68)

where L is the likelihood. In words, this expression says, take the second
derivative of the log of the likelihood with respect to R, calculate the
expected value of this expression, and then invert it. The result is V(r). In
our first example, with R�P and r�p, the second derivative is

. (2.69)

The only random variable is x, which has expectation nP (this is easy to
prove using the principles of expectation in Section 2.4). Thus

. (2.70)

Taking the negative of this expected value and inverting the result yields the
large-sample variance of p

. (2.71)

Notice that this is also the formula for the actual variance although this
need not be the case in general. The formula for an unbiased estimate of the
variance is not necessarily the sample analogue. In this case, the sample
analog [p(1–p)/n] would be a biased estimate. An unbiased estimate may be
obtained by replacing n with n–1. This should not be surprising given that
proportions may be viewed as means (Section 2.2) and that the unbiased
estimate of the variance of a sample mean has n–1, not n, in the denomina-
tor (Section 2.7).

When the likelihood has more than one parameter, the method for
finding maximum likelihood estimates and their asymptotic (i.e., large
sample) variances is more complex. If calculus is used partial derivatives
with respect to each parameter must be taken, set to 0, and the resulting
system of equations solved. For finding variances the second derivatives of
the ln of the likelihood must be taken with respect to all possible pairs of

V( p) �
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n

E �d2lnL
dP2 ��� nP�1 � n(1 � P)�1

d2lnL
dP2 �� xP�2 � (n � x) (1 � P)�2

V(r) � 	�E �d 2lnL
dR2 �
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parameters. This yields a matrix of second derivatives. We calculate (–1)
times the expected value of each element in the matrix and invert the result-
ing matrix. The result is the asymptotic ‘variance–covariance matrix’, an
array in which the diagonal elements are the variances and the rest of the
elements are the covariances. For more information on maximum likeli-
hood methods see textbooks on statistical theory such as Mood et al. (1974,
Chapter 7) or Rice (1995, Chapter 8).

As already noted, the critical requirement for maximum likelihood
estimation is specifying the probability distribution for the sample out-
comes. To do this, assumptions must be made about the distribution of the
observations. In the example given this meant assuming that the probability
of ‘success’ on each trial was the same. This allowed us to write down the
expression (Eq. 2.65) for the probability of any number of successes, x,
x�0,…,n, in the n trials.

Capture–recapture methods generally use maximum likelihood methods.
In these studies, animals are marked and resighted on several occasions. For
the analysis, the marked individuals are divided into groups that are
assumed to have similar survival and recapture probabilities. These proba-
bilities may vary through time, but they are the same, at any given time, for
all members of the group. Under this assumption, one may write down a
general, multinomial expression for the probability of re-sighting each indi-
vidual in each group on each sampling occasion. Examples are provided in
Chapter Nine. Another example is provided by the Mayfield method for
estimating nesting success mentioned earlier. In this case the observations
are ‘success’ or ‘failure’ of nests during observation intervals which vary in
length. The ‘trials’ thus have different probabilities of success, depending
on their length, yet, under the assumption of constant daily survival, we
can write down an expression for the probability of observing any set of
successes given a set of n trials of lengths li , i�1,…,n. Maximum likelihood
methods can then be used to obtain the estimates (though this is not the
way that Harold Mayfield originally approached the problem).

2.13 Summary

Four approaches for calculating point and interval estimates are discussed
in this Chapter. First, and in the great majority of cases encountered by
behavioral ecologists, reasonable estimators have already been worked out
and are available in books or other publications. Many of the most useful
ones are found in this book in Appendix One. Second, for linear combina-
tions of random variables, Section 2.4 provides simple rules that anyone
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can learn with a little practice. Third, the Taylor series approximation can
be used to derive estimators for nonlinear combinations of random vari-
ables. This approach is more complex, and we recommend consultation
with a statistician to be sure that there are no errors and for assistance in
evaluating higher-order terms (see Section 2.11). Fourth, when a reason-
able parametric model expressing the probability of obtaining each possi-
ble sample outcome can be written down, then maximum likelihood
methods can be used to obtain the estimators. As with the Taylor series, we
recommend seeking assistance from a statistician in using this method, but
anyone who studies the material in this Chapter can learn to recognize cases
when the method may be applicable and to make a good first attempt at the
derivations. Frequent references are made later in the book to cases in
which each of these approaches might be useful.
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3
Tests and confidence intervals

3.1 Introduction

We begin this Chapter by reviewing the meaning of tests and statistical sig-
nificance and providing guidance on when to use one- and two-tailed tests
in behavioral ecology. Confidence intervals are then discussed including
their interpretation, why they provide more complete information than
tests, and how to decide when to use them. We also discuss confidence inter-
vals for the ratio of two random variables such as estimates of population
size in two consecutive years. Sample size and power calculations are then
reviewed emphasizing when and how they can be most useful in behavioral
ecology. The rest of the Chapter discusses procedures for carrying out tests.
We first discuss parametric methods for one and two samples including
paired and partially paired data. A discussion is included of how large the
sample size must be to use t-tests with data that are not distributed nor-
mally. The Chapter ends with some simple guidelines for carrying out
multiple comparisons.

3.2 Statistical tests

Carrying out hypothesis tests to determine whether a parameter is different
from a hypothesized value, or to determine whether two parameters are
different from each other, is undoubtedly the most common statistical tech-
nique employed by behavioral ecologists. Understanding what these tests
reveal is thus important, but is also surprisingly difficult. In this section we
review some general principles briefly and identify a few subtleties that are
easily overlooked in behavioral ecology. These principles are introduced in
the context of testing hypotheses about a proportion. Procedures for carry-
ing out these tests are reviewed briefly in this section and described in more
detail in Sections 3.6 and 3.7

47



Suppose we are studying costs of parental care in swans. As part of the
study we wish to determine whether pairs with young (i.e., families) have an
advantage (or disadvantage) in fights with pairs that do not have young. We
are studying a flock of several hundred swans including many families and
pairs. To collect the data, we use scan sampling, watching each family
encountered until it fights once with a pair (without young). We repeat the
scans until we have watched 100 fights, and we view the data as a simple
random sample. If the probability of winning is the same for pairs with and
without young, then families should win about 50% of the fights we observe.
In fact, in our sample families win 66% of their fights with pairs. The follow-
ing question now arises: Do these results show that the probability of a
family winning a fight with pairs is different from 50%? Using the language
of hypothesis testing, we can phrase our question as a test of H0: P�0.5
versus H1: P�0.5, where P is the probability of a family winning a fight with
pairs, H0 is the null hypothesis and H1 is the alternative hypothesis.

A significance test provides a way of answering this question by deter-
mining the probability of observing a difference as large as the one we
observed if, in fact, overall, families win 50% of their fights with pairs. In
other words, how unusual or how difficult is it to explain our observed data
under the null hypothesis? If data such as ours would occur only rarely
under the null hypothesis, then we regard this as strong evidence in favor of
the alternative. The quantity we are going to compute is commonly called
the p-value, or occasionally the observed significance level of the test.

The p-value is the probability of getting a result that deviates from the
value specified by the null hypothesis as much as, or more than, the value we
actually obtained. Deviations can be either positive or negative in our
example. The set of positive deviations, in this example, includes 66 or more
wins. The set of negative results that deviate as much as, or more than, the
sample outcome, includes 34 or fewer wins. The p-value in this case is thus
the probability of 0 to 34 wins, or 66 to 100 wins, if the true probability of
winning is 0.5. The probability of 66 to 100 wins, if the probability in each
trial is 0.5, turns out to be 0.0009. The probability of 0 to 34 wins is the
same (since P�0.5 and so the distribution is symmetrical about 50) so the
overall value is 2(0.0009)�0.0018. Thus, if the null hypothesis is true, then
the probability of obtaining a proportion that deviates from 0.5 as much as,
or more than, our sample did is only 0.18%, less than one-fifth of 1%. Thus
we have two possible explanations for our data. Either we have observed a
rare event, or the null hypothesis is not true. The choice of explanation is
ours, and should be based on our scientific knowledge regarding the
problem, as well as these computations. Using the computations alone,
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0.18% would typically be considered quite small and we would therefore be
inclined to believe that the data are better explained by assuming that fami-
lies in the population we watched had a higher probability of winning fights
than pairs. Typical thresholds for concluding that the p-value is implausibly
small, and thus the null hypothesis should be rejected, are 5% and 1%. The
rationale for these choices will be given shortly.

Another possible approach for the analysis, given the relatively large
sample size of 100, is to use the normal approximation to the binomial.
Most statistical packages include this option. The steps involved in decid-
ing whether the sample size is large enough and, if so, in carrying out the
test are explained in the Boxes in Appendix One. We are testing a propor-
tion so the key in Box 1 directs us to Box 5. Part A of Box 5 defines terms.
From Part B we find that the sample size is large enough that the normal
approximation may be used. The test statistic as

. (3.1)

In our example, p�0.66, P�0.5, n�100 and c is defined in Box 5, Part
C1b as depending on the fractional part of n |p–P | which in our case is 16.0.
The ‘fractional part’ of n |p–P | is zero so c also equals zero. Thus, the com-
puted value of the test statistic is 3.2, and the area to the right of 3.2 on the
normal curve is 0.0007. The large sample approximation to the p-value is
then 2�(0.0007)�0.0014, which is in fairly good agreement with the exact
value of 0.0018 based on calculations using the binomial distribution. The
reason for this is that the sample size is large enough for the normal distrib-
ution to provide a good approximation to binomial probabilities.

The computation of a p-value is probably the most common approach
for summarizing the results of a statistical test. It may be regarded as a
measure of the strength of the evidence against the null hypothesis.

A second approach is typically referred to as fixed �-level testing. The
two approaches are not completely unrelated and their relationship will be
explained shortly. In fixed �-level testing the experimenter chooses an �, or
significance level, for the test before collecting the data. The significance
level corresponds to the probability of incorrectly rejecting the null hypoth-
esis if it is true, and is also referred to as the probability of a type I error.
The rejection region, corresponding to this significance level, is then
defined and if the test statistic falls in the rejection region the investigator
concludes that the result is statistically significant at this �-level.

In the swan example, if we selected a 5% level of significance then the null
hypothesis would be rejected if the computed value of the test statistic

| p � P |
�P(1 � P) / n

�
c

�nP(1 � P)
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exceeded 1.96. Since the test statistic equals 3.2, we would reject H0. The
reader may wonder why we chose 0.05 rather than 0.01 or some other value
for �. Choosing a particular value of � corresponds to setting the
maximum type I error rate we are willing to tolerate, and is usually more
appropriate in a decision-making context, than in the type of problems
considered by a behavioral ecologist. In addition, the choice of levels such
as 0.05 and 0.01 is arbitrary and corresponds to what we might think of as
‘unlikely’ to occur by chance under H0: namely less than one in 20 times or
less than one in 100 times.

The use of fixed �-levels is probably most appropriate in behavioral
ecology as a first step in the analysis. Thus, the Methods section of a paper
may assure readers that null hypotheses were not rejected unless the
observed p-value was smaller than 0.05 or 0.01. This approach is particu-
larly useful when a substantial number of test results are being reported but
reporting each one separately is not warranted. A simple statement such as
‘all differences were significant’ then provides a convenient capsule
summary of the results.

For more important results, however, noting only that H0 was rejected at
� �0.05 is unsatisfactory to most behavioral ecologists since the evidence
against H0 may have been much stronger than ��0.05. In the example
above, we would reject H0 at ��0.01 and even at ��0.005.

An interpretation of the p-value related to the �-level is that it is the
smallest �-level at which we would reject H0. Since the p-value is 0.0018, we
would reject at any �-level larger than 0.0018 and fail to reject at any
smaller �-level. So, just from knowing the p-value it follows immediately
that we would not reject at ��0.001 since this is less than 0.0018, but we
would reject at ��0.005. Since the p-value both measures the strength of
the evidence against the null hypothesis, and tells you what your decision
would be at any �-level, it is the number given by most computer packages
when conducting a statistical test. Note that the p-value is a sample result.
It varies depending on which sample we happen to select. In contrast, the �-
level is not dependent on the sample; it is chosen prior to sample selection.

Interpretation of significance

Having described the basis for deciding whether or not to reject the
null hypothesis, we now discuss what conclusion is appropriate if the null
hypothesis is rejected in favor of a two-sided alternative. Two interpreta-
tions are possible. The first is simply that the true value is different from the
value specified by the null hypothesis. In our example, we would conclude
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that the probability that families win fights is different from 0.50 which cor-
responds to the alternative hypothesis. In response, however, biologists are
likely to say that this is not what they want to know. What they want to
know is whether families are more likely, or less likely, to win fights than
pairs without young. The second possible conclusion, after rejecting the
null hypothesis, is that the sample results provide a reliable indication of
whether the parameter’s actual value is larger or smaller than the value
under the null hypothesis (i.e., the sample results allow us to specify a direc-
tion in rejecting H0). In our example, we would conclude that families are
more likely to win fights than pairs without young. This sort of conclusion
is more useful because it tells us something we really did not know – or at
least could not demonstrate convincingly – before doing the test.

There is a possible objection, however. If families actually win more
fights than pairs without young (i.e., P�0.5), we might obtain a sample
which suggests statistically that families won fewer fights (i.e., P	0.5). This
introduces a new type of error, deciding P	0.5 when in fact P�0.5. If we
interpret the sample results as indicating that the parameter is smaller than
50% then we would be correct in rejecting the null hypothesis but incorrect
in our conclusion that P	0.5. The chance of making this error depends on
how different the parameter is from the value under the null hypothesis. For
example, if families really win 60% of their fights, then the probability of
obtaining a sample result in which the number of fights won is significantly
less than 50% is quite small. The chance of making this type of error
increases as the true difference between the parameter and its value under
the null hypothesis decreases. The limiting case occurs when the two values
are essentially equal. Suppose the true value is larger than 50% but so close
to it that we can evaluate the case by assuming it equals 50%. Also, let us
assume that p-values of less than 5% will be declared statistically signifi-
cant. Since the true value and the value under the null hypothesis are essen-
tially equal, the probability of obtaining a significant result is only 0.05.
Furthermore, we have a 50:50 chance of obtaining a significantly positive
result – in which case we reach the correct conclusion. Thus, the chance of
making the type of error we are discussing is only 0.025. Keep in mind that
this is the worst possible scenario. With true differences large enough to be
interesting, the chance of making this type of error about whether the para-
meter is larger or smaller than its value under the null hypothesis is
extremely small. It is always less than �/2 and typically is close to 0.

The issue of whether one can legitimately conclude that the parameter is
larger than, or smaller than, its value under the null hypothesis, in the two-
sided case when a statistically significant result has been obtained, has
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always been a source of concern among practitioners. Those involved in
practical uses of statistics tend to encourage analysts to assume that statis-
tically significant sample results do indicate the direction of the true value
(e.g., Snedecor and Cochran 1980). In behavioral ecology, the null hypothe-
sis is usually known to be wrong and thus uninteresting (e.g., in our
example it is unlikely that families and pairs without young would have
exactly the same probability of winning fights), so the test is of little use if
we can only conclude what we already knew – that the null hypothesis is
false. This fact, in combination with the rarity of incorrect conclusions
about whether the parameter is larger or smaller than its value under the
null hypothesis, leads us to recommend that investigators view statistically
significant outcomes as indicating whether the parameter is larger or
smaller than its value under the null hypothesis. Thus we would interpret
the example as showing that families win more fights than pairs without
young in this population.

Two-sample tests

We now turn to the rationale of two-sample tests, again using an example.
Suppose we are trying to determine whether juvenile males differ from juve-
nile females in how much time they spend in close proximity to a novel stim-
ulus. We record the time for ten juveniles of each sex, and find that the
average for females is 35 s more than the average for males. Individuals
varied in how much time they spent close to the stimulus, and this raises the
possibility that we might have obtained very different results had we been
able to test a different sample. Perhaps the mean for females, in a different
sample, would be equal to or even smaller than the mean for males.

To investigate this possibility, we calculate the probability of obtaining
our observed difference (or a larger one) if the true means (the population
means or the means from an indefinitely large sample) were equal. If this
probability is sufficiently small, then we reject the null hypothesis that the
true means are equal and conclude that the true mean for females is almost
certainly larger than the true mean for males, as suggested by the sample
data. As with one-sample tests, the significance level may be set beforehand
at 0.05 or 0.01 or we may report the p-value and thereby indicate the small-
est �-level at which the null hypothesis would be rejected.

The rationale in the two-sample test is similar to that in a one sample test.
If the true means are equal, then obtaining a difference as large as the one
we observed would be very unlikely, whereas if the true mean for females
really is larger than the true mean for males, then a difference similar to the
one we observed could be quite likely to occur. Therefore, we choose to
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assume that the mean for females really is larger. The statistical analysis
does not prove that the mean for females is larger. Perhaps the mean for
females is actually less than the mean for males and we just happened to
obtain a rare sample in which the reverse was true. There might even be
additional information suggesting that such a rare event really did happen,
in which case it might be reasonable to doubt the statistical analysis. But if
no other information is available, then the rationale above seems reasonable
as a way of deciding whether the observed results provide a reliable indica-
tion of which parameter is larger.

These calculations, done in practice by software packages, may also be
illustrated using Appendix One. We start again with Box 1. Let us assume
that we will use a t-test. We thus are directed to Box 6. Part A explains the
notation. The test statistic is

(3.2)

where 1 and 2 are the estimates of 1 and 2, and 1� 2 is 0.0 under the
null hypothesis that 1� 2. The standard errors and degrees of freedom
are calculated with the formulas in Box 2 since we used simple random sam-
pling to obtain the data. As explained in Chapter Four, if a different sam-
pling plan had been used, then other formulas for the means and standard
errors might be needed. Some latitude exists in precisely what formulas to
use in the test (see Section 3.5), and it is thus important to ensure that the
computer is using the formulas you want it to.

Additional issues

A few other, miscellaneous points about statistical tests and significance are
worth mentioning. Investigators sometimes describe the results of tests
without making reference to the population values (i.e., the parameters).
Thus, they may report that ‘the sample means were not different’. In fact, of
course, the sample means probably were different. The summary statement
is an abbreviated way of saying that the difference between the estimates
was not statistically significant, and thus the statistical analysis does not
support a strong conclusion about which parameter was larger. It is well to
keep in mind, however, that the purpose of the test is to make inferences
about the parameters not the samples.

Biologists often decide whether two estimates are significantly different
by examining plots that show the means (or other estimates) and error bars.
In most cases the error bars either represent one standard error or the 95%
confidence interval. It is widely assumed that these plots are a kind of

YY
YYY Yyy

| y1� y2 | � ( |Y 1 �Y 2 | )
se(y1� y2)

3.2 Statistical tests 53



graphical t-test, and that the difference is significant if and only if the bars
do not overlap. This belief, however, is mistaken. If the estimates are based
on paired data, then virtually nothing can be deduced about whether the
difference is significant merely on the basis of the error bars (see Section
3.5). Even if the estimates are independent, one cannot easily determine
whether the difference is significant using a t-test from whether the bars
overlap. For example, if the bars represent 95% confidence intervals and do
overlap, it is still possible that the difference is significant. Conversely, if the
bars represent one standard error and do not overlap, it is still possible that
the difference is not significant. A rule we have occasionally found useful is
that if the difference between estimates exceeds three times the length of the
larger standard error, then the difference is significant at the 95% level. The
rule holds only if the estimates are independent and the total sample size
(n1�n2) is at least 16. This rule, however, is hard to remember unless one
examines bar plots frequently. The best rule to remember about whether
differences are significant is that only the t-test or nonparametric alterna-
tive tells for certain.

Two other points about tests should be kept in mind. First, p-values pro-
duced by statistical tests do not provide any information about how much
larger one parameter is than another. The true difference could be
extremely small – so small, for instance, that it is of little biological impor-
tance. But we still might obtain a statistically significant result. Further-
more, if one comparison is just significant and another is highly significant,
we should not assume that the first difference is smaller than second
because other factors, in addition to the size of the true difference, influence
p-values.

Second, failing to detect a statistically significant difference does not
mean that no difference exists. As already noted, population means are
usually different; we may simply have too small a sample to detect the
difference. Furthermore, failing to find a significant difference does not
mean that the two populations are similar enough to each other that no
difference of biological importance exists. It is entirely possible for two
populations, for example males and females, to differ in biologically impor-
tant ways, but for this difference to be undetectable from the data collected.
The most direct way to decide how similar two parameters are is by con-
structing a confidence interval for the difference (see Section 3.3).

These two errors – assuming that statistical significance indicates bio-
logical significance and that nonsignificance indicates equality of para-
meters – are extremely common in behavioral ecology (and other fields).
Focusing on the practical use of tests – deciding which mean (or other
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statistic) is larger – may be helpful in this regard. Under this line of
reasoning, failure to reject the null hypothesis leads to the conclusion ‘we
have not demonstrated which population mean is larger’ rather than the
(nearly always incorrect) conclusion, ‘the population means are equal’.
Similarly, when a statistically significant result is obtained, it might be
more appropriate to use statements such as ‘analysis indicated (p�0.032)
that the average size of males was larger than the average size of females
in this population’ rather than statements such as ‘males in this popula-
tion were significantly (p	0.05) larger than females’. The second state-
ment is more impressive because the word ‘significant’ is used, but it runs
the risk that statistical significance will be mistaken for biological signifi-
cance and it may imply that males ‘in general’ were larger than females
whereas inferences extend only to the average values not to how consis-
tently males outweighed females.

Degrees of freedom

In this Section we explain why degrees of freedom arise in tests and confi-
dence intervals, and provide some level of insight into the way they work. For
purposes of discusssion we consider only two-sided tests. First, consider an
unrealistic example in which we are testing a hypothesis about the mean of a
normal population and know the true population standard deviation, and
thus the true standard error of the estimate. Let the sample value be and
the population value, under the null hypothesis, be . The test statistic is

,

where SE( ) is the actual standard error under the null hypothesis. The crit-
ical value for the test statistic is 1.96, meaning that if the null hypothesis
were true, then the probability of obtaining a test statistic larger than 1.96 is
5%, assuming all statistical assumptions are met. Now consider the more
usual case in which the standard deviation is estimated from the sample
data. Because the standard deviation (and hence the standard error) is esti-
mated, it might be too small, which would increase the value of the test sta-
tistic, for a given value in the numerator. Of course, it might also be too
large, which would have the opposite effect. This uncertainty about the
standard deviation increases the uncertainty in the test statistic, or, to put it
another way, makes the test statistic more variable. Thus, it will no longer be
the case that the probability of obtaining a test statistic larger than 1.96 is
5%. An adjustment to the critical value must be made which accounts for
the additional variation in the test statistic.
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The required adjustment arises from the need to incorporate the varia-
tion introduced by using an estimate of the standard deviation. The esti-
mate is a random variable. The distribution of this random variable (or,
more precisely, the square of this estimate, which is just the sample vari-
ance) is proportional to the chi-square distribution which in turn depends
on the sample size, n, and the number of additional parameters (in this case
the sample mean) that must be estimated to compute the variance. In par-
ticular, the distribution depends on the sample size minus the number of
additional parameters that must be estimated. In this case, this quantity is
n–1 and is called the degrees of freedom of the distribution. In other cases,
such as regression, the number of parameters estimated is equal to the
number of regression parameters (including the intercept) and the degrees
of freedom are n–(number of regression parameters). Readers familiar with
matrix and linear algebra may wish to consult Seber (1977, Chapter Two)
for a more precise development of the chi-square distribution and the
notion of degrees of freedom.

Returning to our example, our test statistic contains an estimate of the
mean in the numerator and an independent estimate of the variance (in the
form of the standard error) in the denominator. The sample mean is nor-
mally distributed, and the sample variance has a distribution proportional
to the chi-squared distribution with n–1 degrees of freedom. A statistician
can show that, as a result, the distribution of the test statistic has the t dis-
tribution with n–1 degrees of freedom (and, more generally, the degrees of
freedom are the same as those of the chi-squared distribution associated
with the term in the denominator). For a given significance level, the t-value
increases as the degrees of freedom decreases. For example, with ��0.05
and a large sample size (so our estimate of the standard deviation should be
essentially equal to the population standard deviation), the t-value is 1.96,
the same as the critical value when the population standard deviation is
known in the test statistic (and which is the critical value for the normal dis-
tribution). With smaller sample sizes and thus fewer degrees of freedom,
the t-value increases. For example, with 50 degrees of freedom the t-value is
2.008, with 20 degrees of freedom the t-value is 2.086, and with 5 degrees of
freedom it is 2.571. With fewer degrees of freedom, its value increases
rapidly, reaching 12.706 with just one degree of freedom.

Degrees of freedom are also used with other distributions that are associ-
ated with random variables based on samples from normal populations and
which are functions of the sample variance. An example is the F distribu-
tion, which arises from random variables that are ratios of independent
sample variances. Also, the t table is sometimes used for test statistics that
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follow very complex distributions that can be approximated by the t distrib-
ution. In such cases, an ‘effective’ number of degrees of freedom may be cal-
culated which permits use of the t table as an approximation. The formulas
for effective degrees of freedom in such cases may be very complex.

One- and two-tailed tests

In most one-sample tests, the alternative hypothesis is two-sided, i.e., that
the true value is either smaller or larger than the value under the null
hypothesis. Similarly, in most two-sample comparisons, the alternative
hypothesis is two-sided, i.e., that the difference between population means
is either positive or negative. Occasionally, however, investigators feel that
only one of the alternatives to the null hypothesis is realistic or interesting,
i.e., we have a one-sided alternative. For example, in comparing survival
rates of animals with and without a radio transmitter, the investigator
might assume that animals with transmitters would not survive at a higher
rate than those without. In such cases, the alternative hypothesis may be
restricted to the values (either positive or negative) deemed possible. The
test is then called ‘one-tailed’ in contrast to the more typical ‘two-tailed test’
under which the true value may be either larger or smaller than the value
under the null hypothesis. One-tailed tests are more powerful than two-
tailed tests, because we have (or are claiming to have) more information
about the range of possible values for the parameter. We account for this
additional information by adjusting the threshold value of the test statistic
at which the null hypothesis will be rejected. The procedures are explained
in Box 2 (t-tests) and Box 8 (nonparametric tests) in Appendix One.

One-tailed tests should only be used if one is certain that the true
difference between the parameter and its value specified under the null
hypothesis cannot be positive (or that it cannot be negative). This assump-
tion is rarely justified in behavioral ecology. In the telemetry example
already described, for instance, the one-tailed test might at first seem rea-
sonable. We know of a case, however, in which birds with transmitters
sharply restricted feeding activities. As a result, they were less subject to
predation and, during the course of the study, survived at a higher rate
(later on they fared poorly due to malnutrition). The assumption that trans-
mitters would not increase survivorship during the study period was thus
invalid.

One-tailed tests are sometimes appropriate when only one result is inter-
esting. In testing a new procedure (e.g., a drug), the purpose may be to
decide whether it should be adopted, and this might only be appropriate if
it performs better than existing options. Such reasoning might lead to
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adoption of a one-tailed test procedure. In our experience, however, cases
such as this one are in rare in behavioral ecology. In nearly all cases, two-
tailed tests are more appropriate. One check to use before employing a one-
tailed test is to ask, ‘suppose I obtain a result that would be significant in
the unexpected direction – would I want to report it as significant?’ If the
answer is ‘yes’, then the two-tailed test should generally be used.

3.3. Confidence intervals

Confidence intervals provide a way of describing how precisely we have
estimated a parameter – the population quantity of interest. Having con-
structed a 95% confidence interval for a mean, for example, we would like to
say that there is a 95% probability that the mean lies within the computed
interval. We must be clear, however, about what is meant here by probabil-
ity. To define probability in the context of confidence intervals, consider a
large series of additional samples selected from the same population using
the same sampling plan. A 95% confidence interval could be calculated for
each of these samples. If the statistical assumptions are met, then 95% of
these confidence intervals would include the true mean and 5% would not
include it. Thus, probability refers to the proportion of times in repeated sam-
pling that the confidence interval would contain the true mean. Once an inter-
val is calculated it either does or does not contain the mean. Hence
statisticians prefer to use the word confidence rather than probability in
referring to a particular interval.

Construction of a confidence interval begins with deciding how confi-
dent one wants to be that the interval will contain the value of the parame-
ter of interest. The most common level of confidence is 95%, but any other
level can be selected. The higher the level of confidence the more likely the
resulting interval will contain the true value of the parameter. A higher
level of confidence, however, tends to increase the width of the interval.
With a given confidence level, increasing the sample size is the primary way
to reduce the width of the resulting intervals.

Confidence intervals can be constructed for any population parameter
including means, population totals, survival rates, and parameters repre-
senting relationships such as the slope from a regression analysis. The
approach depends on several factors including whether the data are
continuous or discrete, the underlying distribution of the data, the parame-
ter to be estimated, and the sample size. Detailed guidance is provided in
Appendix One. For example, suppose the data can be viewed as a series of
independent trials in which the outcomes are of only two types, success or
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failure, and the probability of success is the same on each trial. We wish to
construct a confidence interval for the probability of success. In this case,
and if the sample size is not too large, exact methods, which guarantee that
the coverage probability is at least the value specified, based on the bino-
mial distribution may be used. Alternatively, approximate methods based
on the normal distribution may be used (see Box 5, Appendix One). Note
that with approximate methods we are only guaranteed that the coverage
probability will be close to the correct value for large sample sizes. For any
given sample size we do not know whether the coverage probability will be
too small or too large.

For moderate to large samples sizes, if the parameter of interest is a
mean, proportion, or, more generally, any parameter which is estimated by
an average or weighted average of data (this includes regression parame-
ters), a simple formula is usually sufficient. A (1��)�100% confidence
interval for G is

, (3.3)

where g is the estimate of the parameter G, se(g) is the estimated standard
error of g, � is the level of significance, and crit

�
is the critical value which

depends on the sampling distribution of g. For example, when sampling
from normal populations crit

�
is often t

�,df . Formulas for the standard error
and the appropriate crit

�
, for the situations encountered most often in

behavioral ecology, are given in Chapter Four and in Appendix One. Many
statistical packages provide estimates and their standard errors and, in
conjunction with Eq. 3.3, can be used to obtain confidence intervals.

For an example of a confidence interval that does not have the form of
Eq. 3.3, consider the swan data discussed in Section 3.2. The data in this
example are dichotomous and might be treated as binomial with n�100.
The parameter of interest, P, is the true proportion of times that families
win fights with pairs. Suppose we wish to construct a 95% confidence inter-
val for this proportion. The endpoints are 

lower endpoint�[1�F(� / 2,|
1,
2)
(q�1/n)/p]�1,

where 
1�2(nq�1) and 
2�2np, and

upper endpoint� (3.4)

where 
1�2(np�1), 
2�2nq and q�1�p. In this example, ��0.05,
p�0.66, and q�1�p�0.34. For the lower endpoint, 
1 and 
2 are 70 and
132, F(�/2|70,132)�1.4909, and the value of the lower endpoint is 0.56. For the
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upper endpoint, 
1 and 
2 are 134 and 68, F(�/2|134,68)�1.5369, and the value
of the upper endpoint is 0.76. The resulting 95% confidence interval is
0.56	p	0.76. Most statistical packages provide values of F(�/2|
1,
2)

and are
necessary for larger sample sizes. The package MINITAB (Minitab Inc.,
PA, USA) was used to obtain the values of F(�/2|
1,
2)

above.
Confidence intervals may also be calculated for the difference between

two population means. The meaning of the interval may be difficult to
grasp at first, but it has exactly the same interpretation as the confidence
interval for a single estimate. Each of the two populations has a true but
unknown mean (or other quantity of interest); we are estimating the
difference between these means, and may refer to it as the ‘true difference’.
We consider a large series of samples selected from the same populations
using the same sampling plan. A 95% confidence interval for the true
difference could be calculated from each of these samples. If the statistical
assumptions are met, then 95% of these confidence intervals would include
the true difference and 5% would not include it. As with confidence inter-
vals for single population parameters, ‘probability’ in the two-sample case
refers to the proportion of times in repeated sampling that the confidence
interval would contain the true difference. Once an interval is calculated it
either does or does not contain the true difference. Hence statisticians
prefer to use the word confidence rather than probability in referring to a
particular interval.

The explanation above may help show the importance of bias in statisti-
cal analysis. If our point estimate is biased, then a nominal 95% confidence
interval of the form (3.3) would probably cover the population mean less
often than 95% in repeated sampling. Thus, construction of confidence
intervals entails the assumption that the point estimate is unbiased.

Utility

Confidence intervals have two practical uses. When the null hypothesis of
no difference has been rejected, the confidence interval tells us the largest
and smallest-values that are realistic for the true difference. Such a conclu-
sion can be of great-value. For example, suppose masses of males and
females were 12 kg and 8 kg, and the difference was statistically significant.
Given only this information, we cannot determine whether the study shows
that males are much heavier than females, or whether they might be only
slightly heavier. But suppose we were also told the confidence interval on
the difference was 
3.5. The difference was 4.0, so the lower endpoint for
the confidence interval is 0.5. The average mass for males might be only 0.5
kg more than the average for females. In contrast, a confidence interval of
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0.7 would show that the average for males was at least 3.3 kg more than
the average for females. Thus, providing the confidence interval helps the
reader, and perhaps the investigator, to evaluate the biological importance
of the observed difference.

Confidence intervals can also be useful when the estimates are not signifi-
cantly different. Suppose, for example, that the masses in this example were
12 kg for males and 11.8 kg for females and the result was not significant. Do
these results show that males and females have about the same average mass?
Again, the reader cannot answer this question without additional informa-
tion. But if the confidence interval on the difference was 
3.5 kg, then the
confidence interval would be �3.3 to 3.7 kg. The study thus only shows that
the difference in masses is less than 3.7 kg, which we might have known
before starting the study. Conversely, if the confidence interval was 
0.3,
the confidence interval would be �0.1 to 0.5 kg, so we could conclude that
the average weights of males and females were within about half a kilogram
of each other, a conclusion which might represent a gain in knowledge.

In reporting estimates, researchers commonly provide the standard error
rather than a confidence interval. Readers can then construct their own con-
fidence interval (if the statistical assumptions are met) at whatever level of
confidence they feel is appropriate provided intervals of the form in Eq. 3.3
are applicable. In many cases knowledge of the standard errors also allows
one to construct a test of whether two estimates are significantly different.
Alternatively, particularly in describing the precision of several estimates,
authors may report the coefficient of variation (cv�standard error/mean).
Using the cv readers can quickly determine how large the confidence inter-
val is compared to the estimate. For example, if the cv is 10%, and if we
assume the t-value is 2, we may infer that the 95% confidence interval is the
mean plus and minus 20% of the mean [because CI�mean 
 2 se�(1
2 se
/mean)mean�(1
2 cv)mean]. This gives us a very different picture of how
accurate the estimate is than, say, a cv of 40% which tells us that the 95%
confidence interval is approximately the mean plus and minus 80% of the
mean.

Relationship to hypothesis tests

In many cases (1��)100% confidence intervals and two-sided hypothesis
tests give consistent results if all statistical assumptions are the same. If the
test leads to rejection of the null hypothesis, then the confidence interval will
not include the value of the parameter specified under the null hypothesis. If
the test does not lead to rejection of the null hypothesis, then the confidence
interval will include the value specified under the null hypothesis.
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However, there are cases where we choose to make slightly different
assumptions about the population variances in carrying out tests and con-
structing confidence intervals. Under the null hypothesis that two popula-
tion means are identical, we may actually believe that the two populations
have the same distribution and hence that the variances are also identical.
We thus must only estimate one variance (generally accomplished by the
‘pooled’ estimate of variance). If we reject the null hypothesis and conclude
that the population means are different, then we often will no longer wish to
assume that the variances are equal because in behavioral ecology means
and variances are generally related (i.e., populations with larger means have
larger variances). Under the assumption that the variances are not the
same, we have two variances to estimate, and this causes a slight loss in pre-
cision. It is thus mathematically possible to reject the null hypothesis (using
a pooled estimate of variance) yet obtain a confidence interval (estimating
separate variances for each population) that includes the parameter value
under the null hypothesis. As already noted, this only happens due to the
slightly different statistical assumptions and procedures used. Of course,
one could use the separate variance approach for the test as well as in con-
structing the confidence interval. This approach gives slightly less precision
for the test (due to estimating an extra parameter) but always yields consis-
tent results. This approach is also favored by many statisticians because the
approach using separate variance estimates is more robust to failures in the
assumption that the two populations have the same variance, especially
when sample sizes are small and/or unequal.

The relationship between one-sided tests and two-sided confidence inter-
vals is more complex. If we wish to test

H0: parameter�constant versus H1: parameter�constant

at level � and the constant specified in the hypotheses is smaller than the
values in the corresponding (1��)�100% confidence interval, we would
reject the null hypothesis at level �/2. An analogous result holds for testing

H0: parameter�constant versus H1: parameter	constant.

If a one-sided hypothesis is actually of interest, statisticians recommend
that should one construct one-sided confidence intervals. these are, for
example, of the form ‘we are 95% confident that P�0.02’.

The connection between results using confidence intervals and two-sided
tests suggests that confidence intervals are more informative than the corre-
sponding tests. Confidence intervals ‘include’ the results of tests in the sense
that we can determine from the interval what the outcome of the test would
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have been at a particular significance level. Reporting confidence intervals
for differences is generally much more informative than just reporting test
results. This is particularly true for paired data (or any other noninde-
pendent estimates) because in such cases one cannot calculate the confi-
dence interval on the difference even if the two standard errors are
reported. The covariance between the estimators is also needed (Section
2.9, expression 2.38).

Although confidence intervals have important advantages over tests, the
results of tests can be reported more compactly and this is sometimes advan-
tageous. For example, in many studies several comparisons are made, and
the main conclusions of the study hinge on the pattern of results, rather
than on the size of the difference observed in any single comparison. In such
situations, investigators usually rely on hypothesis tests, rather than confi-
dence intervals. The rationale is that we are interested in determining if there
is a consistent pattern in the direction of the differences rather than in esti-
mating the magnitude of these differences. Furthermore, if the differences
are nearly all significant, then we have good reason to conclude that the
pattern did not happen by chance. If there are actually no differences (i.e., if
the population parameters being compared are actually all equal), then the
chance that all would be declared significant at individual level � is smaller
than � (generally much smaller). In contrast, if most of the differences are
not significant, the data provide no grounds for such an expectation. A com-
pletely different pattern of results – perhaps leading to different biological
conclusions – might have been obtained had different samples been selected
from the populations. When several comparisons are made, reporting which
were significant is relatively simple, especially if they all were significant and
if the direction of the differences were all consistent with a single biological
explanation. In contrast, reporting and interpreting the sizes of the confi-
dence intervals for each comparison may be cumbersome.

Ratio of two random variables

In some studies, the ratio of two estimates is a more appropriate measure of
how different the two values are than their difference. For example, in stud-
ying change in abundance through time, it often seems more meaningful to
estimate the percentage increase or decrease, rather than the absolute
change. Thus, if numbers/km2 increased from 10 to 12, the investigator may
prefer describing the change as a 20% increase rather than an increase of
two animals/km2. Weight gain, difference in reproductive success between
dominant and subdominant individuals, and many other quantities seem
better described by proportional change than by absolute change.
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If the goals of the statistical analysis are restricted to showing whether
the change is positive or negative, then the significance test for a difference
provides the answer. There is no need to structure the test around the ratio
of estimates because testing whether this ratio equals 1.0 is equivalent to
testing whether the absolute difference equals 0.0. If confidence intervals
are to be constructed, however, then it is worth considering which measure
of change – absolute change or proportional change – is more meaningful,
because procedures for calculating the confidence intervals on differences
and ratios are not the same. Methods for proportional change (i.e., ratios)
are explained in Appendix One, Box 9.

Consider this example in which estimating the confidence interval for a
ratio of estimates would be appropriate. Suppose we have recorded the
number of animals per survey route in each of 2 years. An index method of
some sort was used to collect the data. We assume that the same proportion
of the animals present in each year was detected (aside from effects of sam-
pling error), but we do not know what this proportion is. Thus we could not
estimate the absolute change in density even if we wished to; proportional
change is the only option. We find that the number per survey route was
15% higher in year 2. After following the guidelines in Box 9, we summarize
the results with a statement such as ‘numbers increased 15% between years
( p�0.027, 95% CI�9–21%)’.

Care is sometimes needed in deciding whether a quantity is the ratio of
two random variables. The sample mean, �yi /n, is not a ratio of random
variables because n would not vary in repeated sampling. On the other
hand, suppose we select several plots and record some measurement on
several plants in each one as a way of estimating the population mean. If the
number of plants varies from plot to plot, then the total number of plants is
a random variable. Methods for this case are explained in Section 4.5.

As noted in Section 2.4 ratios are nonlinear combinations of random
variables and, accordingly, have more complex statistical properties. In par-
ticular, point and interval estimates for ratios based on the ratio of unbi-
ased estimators are generally biased. Recall that is unbiased for estimating

. Suppose we plan to estimate 1/ using 1/ . Consider a population of
just three values, 1, 5, and 9, and suppose we have drawn a sample of size 1
to estimate the quantity 1/ . The parameter, 1/ , equals 1/5�0.20. The
possible estimates are 1/1, 1/5, and 1/9 whose average is 0.43. Thus 1/ is a
biased estimator of 1/ in this case.

The bias in ratio estimates tends to be small in cases encountered by
behavioral ecologists. Here, bias is proportional to the reciprocal of the
sample size and thus decreases as sample size increases. In the example

Y
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above, if the sample size is 2, then the possible estimates are (1,5), (1,9), and
(5,9), producing estimates of 0.33, 0.20, and 0.14. The mean of these esti-
mates is 0.22, so the bias is only 0.02, compared to 0.23 when n�1. The dra-
matic decrease by factor of about 10 is, in this case, largely due to the fact
that a sample of size 2 is nearly a sample of the entire population. If the
population had been larger, the decrease would not have been as dramatic.

Box 9, Appendix One gives the formula for the estimated standard error
of the ratio of two random variables. The formula is based on the Taylor
series expansion and provides only an approximate estimate (Section 2.11).
When the estimates are ‘typical’ quantities, such as means, proportions, sur-
vival rates, or slopes from regression, and when the estimates are precise
enough to be interesting, then the formula nearly always works quite well.
Care (and consultation with a statistician) is needed, however, in some
cases. For example, if 0 is a possible value in the denominator then the
expected value (the mean of all possible values) is not even defined.

3.4 Sample size requirements and power

Investigators planning to carry out statistical tests often wonder how large
their sample sizes should be. The answer to this question depends on several
quantities including the purpose of the study, attributes of the populations
being compared, and the magnitude of the effect one wishes to detect. In
practice, investigators often have a ‘feel’ from past experience or studies
carried out by other researchers for how large the sample sizes should be to
detect an effect or difference of practical significance, and frequently little
gain is achieved by employing formulas to estimate sample size require-
ments. For the ‘standard’ methods to be exactly valid, they must be used at
the beginning of a study, although they require estimates of unknown
population parameters. However, they are often used when a study is partly
completed and the investigator is trying to decide how long to continue the
study or whether to change sample sizes during the remainder of the study.
The data already collected can be viewed as a pilot study and used to esti-
mate unknown population parameters. These estimates can then be used in
formulas for power in place of the unknown population parameters. This
section explains the procedures in cases most likely to be needed by behav-
ioral ecologists. Box 10, Appendix One, provides the needed formulas and
additional guidelines.

Sample size requirements are difficult to discuss without first discussing
the concept of power in more detail. We do this in the context of testing
whether the parameters for two populations differ. Power is the probability
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of obtaining a significant result in a statistical test when the null hypothesis
is false and a particular alternative is true. Thus power is a function of the
actual difference in the parameters plus other quantities such as sample size
and population variances. If the difference is increased, power increases. It
is thus unwise (or at least incomplete) to say that the power of a test is, for
example, 0.8 because power depends on the actual difference.

As noted in Section 3.2, population means (or other parameters being
compared) are seldom exactly equal. The question is, what magnitude of
the difference do we wish to detect? Suppose that we decide, at the start of a
study, to sample two populations whose means actually differ by D, and to
test whether the difference between sample means is significant. We might
obtain many different pairs of samples some of which would be signifi-
cantly different and some of which would not. Power equals the proportion
of the differences that we could obtain in which the sample means are sig-
nificantly different when the actual difference is D. To put this another way,
we can imagine a population of differences, somewhat like a jar full of green
or white marbles. Each green marble represents two samples that produce a
significant difference; each white marble represents two samples that
produce a nonsignificant difference. Selecting the two samples in our study
is like drawing one marble from the jar after the marbles have been mixed
thoroughly. Power is the probability of drawing a green marble.

Power is higher when: (1) the true difference between the parameters is
larger; (2) the sample size is larger; and (3) the populations being sampled
are more uniform (i.e., have smaller variances and hence estimates have
smaller standard errors). Power also increases if we increase the signifi-
cance level. Thus, it is harder to obtain significance at ��0.01 than when
��0.05. There is an exact mathematical relationship between the true
difference, the sample size, variability in the two populations, level of signif-
icance, and power. The relationship can be solved either for power or for
sample size if all the remaining values are known. Power and sample size
are often discussed at the same time because of this close relationship
between them.

Estimating sample size requirements is useful when some flexibility exists
in how large a sample to collect. For example, suppose you are comparing
responses to playbacks using conspecific songs of a neighbor and a non-
neighbor. You score the results of each trial as ‘did’ or ‘did not’ respond.
The objective is to determine whether individuals respond more often to
the familiar or unfamiliar song. You have collected 20 trials using each song
type, the difference in response rates is biologically – but not statistically –
significant, and you wish to estimate how much more data are needed to
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give a high probability that the difference will be significant if the true
difference is as large as the difference in your sample. In examples like this
one, the pilot study can be used to estimate the true difference and the other
quantities needed for the calculations (see Box 10, Appendix One). You
might calculate the required sample size using a few different powers – for
example 75% and 90% – before selecting the final sample size.

Power calculations are sometimes useful in deciding whether to continue
a study. For example, suppose you have studied a species for 2 years and are
trying to decide whether to continue for another year. One of your goals is
to compare time spent foraging by males before and after they obtained
mates. You could use power calculations to help decide whether collecting
data for another year was worthwhile. To carry out the calculations, you
would need to estimate how many more individuals you could watch during
another year, and you would need to make some assumption about the
value of the true difference between the proportion of time spent foraging
before and after pair formation. One possibility would be to assume that
the true difference equalled the difference observed in the data already col-
lected. To be conservative, you might decrease this difference by one stan-
dard error. You would also need to estimate how variable males are with
respect to time spent foraging (see Box 10, Appendix One), and decide on
the significance level. These data could then be used with the formulas in
Box 10 to calculate power. You might find, for example, that currently you
have relatively little power, say 40%, for detecting a particular difference
deemed to be biologically significant, but that with one more year of addi-
tional data, the power would increase appreciably, say to 80%. These
calculations are only approximate – for example the true difference might
be larger or smaller than your estimate – and the decision on how much
data, or more data, to collect seldom hinges solely or even primarily on
power calculations. Nonetheless, power calculations often provide useful
information when one is trying to decide how much data to collect.
Numerous authors have advocated that power calculations be carried out
more often in behavioral ecology (e.g., Cohen 1988; Greenwood 1993;
Taylor and Gerrodette 1993; Steidl et al. 1997).

Power and sample size calculations can be made on software designed
specifically for this purpose. Typically one estimates the desired sample size
or power for many different combinations of the quantities of interest. This
process is of great-value in understanding which quantities have the great-
est impact on power and gives one an excellent basis for making a final deci-
sion about total effort and allocation of effort among different segments of
the study. Those who know a programming language can easily produce the
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needed code, and may find this option easier than understanding exactly
what the packages are doing.

Calculating power after the data have been collected

The use of power calculations, when the null hypothesis was not rejected,
has occasionally been used as a way to determine how large the true
difference might be. If only a very large difference could have been detected
with high probability, then we might conclude that the study should be
regarded as inconclusive. The objective of using the power formula in this
way is thus identical to the objective of calculating a confidence interval for
the difference (Section 3.3). If the observed difference is positive, then the
upper endpoint of the confidence interval gives us the largest plausible
value for the true difference. We may infer, with 95% confidence of being
correct (if ��0.05), that the true difference is less than this value. Inverting
the power calculation, however, does not always yield the same values as
obtained by the confidence interval calculations and has little theoretical
justification. We therefore recommend that you do not use power analysis
in this way. Stick with confidence intervals when you want to know how
large the true difference might be.

3.5 Parametric tests for one and two samples

Section 3.2 described the purpose, rationale, and interpretation of statisti-
cal tests in general. In this Section we discuss procedures for one category of
tests – parametric tests for one and two samples – in more detail.
Subsequent Sections discuss nonparametric tests for one and two samples
(Section 3.6), and discuss tests for comparing more than two samples
(Section 3.7). Most of the discussion in this section pertains to t-tests.

Suppose we have an estimator, g, for a parameter, G, and are testing the null
hypothesis H0: G�Go where Go is a specified value. Let se(g) be the estimated
standard error of g assuming the null hypothesis is true. The importance of
the phrase, ‘assuming the null hypothesis is true’, will become clearer later.

Many estimators, including maximum likelihood estimators, are approx-
imately normal with large sample sizes. In such cases, an approximate test
of H0, based on the statistic

, (3.5)

is obtained by comparing t to the appropriate critical value found in a stan-
dard normal table. The degrees of freedom depends on the sampling plan

t �
g � G0

se(g)
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and the random variables used to calculate g. For example, if g is the mean
of a simple random sample, then degrees of freedom are one less than the
sample size. In general we refer to the standardized (or Studentized) form in
Eq. 3.5 as a t-statistic, even in those cases where the critical value comes
from a standard normal table.

Depending on the goals of a study, the quantity estimated and its stan-
dard error may vary widely. In many cases the value of the parameter, G,
under the null hypothesis is zero, i.e., G0�0, and thus drops out of the
formula for the t-statistic. The estimate, g, may be a single quantity such
as a mean, proportion, or correlation coefficient, or it may be the
difference between two random variables such as means or proportions.
There may also be a ‘correction for continuity’ (see later) which slightly
modifies the general formula. The critical value in the t-table depends on
the significance level (usually 0.05 or 0.01) and the sample size, sampling
plan, and quantity being estimated through the degrees of freedom. If we
know the true value of the standard error (assuming the null hypothesis is
true) then we set degrees of freedom equal to infinity. This is equivalent to
using the critical value of the normal distribution and the resulting test is
sometimes referred to as the normal-theory test or z-test. This situation
arises when we know that g is approximately normally distributed as
already discussed.

Single estimate

In behavioral ecology, the t-statistic based on a single estimate is probably
used most widely to test whether an observed proportion differs signifi-
cantly from 0.5. A particularly common example involves observing con-
tests between members of different groups (e.g., male/female, old/young,
resident/intruder) to determine whether members of one group tend to win
more often. It might seem that we are comparing two groups in these cases,
and, from a biological standpoint, we are. But from a statistical standpoint,
it is easiest to focus on the members of one group. In each trial, the member
of this group either wins or loses the encounter (assuming there are no ties).
The population unit is thus an encounter, the variable is ‘won’ or ‘lost’, and
we view the observed encounters as a simple random sample from a large
population. The quantity of interest is the proportion of encounters that
would be won in a very large sample (i.e., the ‘probability’ of winning). Our
estimate of this quantity is the proportion of fights in our sample that
members of our group won. Under the null hypothesis, the two populations
are equally likely to win these encounters. The true value of the proportion
under the null hypothesis is thus 0.5.
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The formula for the standard error in this case (see Box 5, Appendix One)
is P(1�P)/n or 0.25/n. Note that we calculate the standard error under the
null hypothesis, and thus use P�0.5 rather than p�the observed propor-
tion in our sample. One unusual feature of the t-statistic in this situation is
that under the null hypothesis we know the value of the standard error, and
we do not have to estimate it. We therefore set degrees of freedom equal to
infinity (equivalently, use the critical value of the normal distribution). This
one-sample t-test, used with an estimated proportion, is often called the
binomial test, the approximate binomial test, or the binomial test based on
the normal approximation.

The t-test requires either that the distribution of the observations is
normal (which is rare in practice) or that the sample size is ‘large’ so that the
estimator (a mean or proportion) can be assumed to be approximately nor-
mally distributed. Guidelines are presented in Box 5, Appendix One, for
deciding how large the sample size must be to use the t-test. The t-test
assumes that the distribution of the estimate (in repeated sampling) is
continuous, whereas the estimate of a proportion can take only a finite
number of values (n�1 values where n�the sample size) and hence is dis-
crete. A ‘correction for continuity’ is therefore recommended by many
authors. There is some controversy about whether this correction is needed
or useful; we follow the recommendations of Fleiss (1981) and Snedecor and
Cochran (1980). Instructions for including the correction for continuity, and
for deciding whether the observed value is significantly different from the
value under the null hypothesis, are included in Box 5, Appendix One.

We now return to the question of why we should not treat the data from
‘encounters’ as two separate estimates. For example, if one group wins 30%
of the encounters and the other wins 70%, why would it be improper to test
whether 0.3 is significantly different from 0.7 with a two-sample t-test? The
reason is that the usual two-sample t-test requires the assumption that the
two estimates are independent of each other. But if one estimate is 0.3, then
we know that the other estimate has to be 0.7; there is no other possibility.
The t-test for independent estimates thus could not be used. If we devel-
oped the appropriate version of a t-test acknowledging the dependence
between estimates, it would turn out to be identical with the t-test for one
sample, as already explained. This point may be clearer after we have
explained procedures for a t-test with paired data.

Single estimate t-tests may be used to test proportions other than 0.5. In
genetics experiments, for example, one can often calculate the expected fre-
quency (generally different from 0.5) of a genotype based on the assump-
tion of random mating and perhaps other assumptions. It may be of
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interest to determine whether the observed frequency is significantly differ-
ent from the expected frequency. Single estimate t-tests are also often used
to test whether the slope in a linear regression is significantly different from
zero. In such an analysis, we must estimate the standard error – we do not
know its value exactly even if we assume the null hypothesis of zero slope is
true. The degrees of freedom are set to account for the additional uncer-
tainty introduced by having to estimate the standard error by first estimat-
ing the intercept and the slope. More generally, the one-sample t-test is
likely to be appropriate anytime we wish to test whether an observed value
of an estimator is significantly different from some hypothesized value
established on a priori grounds. Statistical textbooks often present exam-
ples in which a new treatment of some kind (e.g., a drug or fertilizer) is
being compared to an established one of known effectiveness. Such situa-
tions seem to occur rarely in behavioral ecology.

Two independent estimates

The t-test for comparing two independent estimates is probably the most
widely used statistical method in behavioral ecology. It may be used to
compare means, proportions, survival rates, regression or correlation
coefficients, and many other quantities. The only requirements for the test
are that the estimates are based on random sampling from a normal
population (but not necessarily one-stage or simple random sampling), or
that the sample size is large enough. ‘Large enough’, as explained later in
this Chapter, varies according to the distribution of the variable measured,
but for estimating a mean or proportion in many cases encountered by
behavioral ecologists sample sizes of 10–15 are sufficiently large for the t-
test to be valid.

Statistics texts present the formulas for carrying out a t-test in a variety of
ways. Some of them apply only if the estimates are sample means and
simple random sampling has been used to collect the data. Other formulas
may be difficult to understand if the reader has not recently studied a statis-
tics text. Our formulas (Boxes 6 and 7, Appendix One) are general in the
sense that they describe how to carry out the test regardless of what quan-
tity is being estimated or what sampling plan was used to collect the data.
The formulas are expressed in terms of the standard errors of the two esti-
mates. Of course, the specific formulas for these standard errors and the
associated degrees of freedom do depend on what quantity is being esti-
mated and what sampling plan is used. Calculation of these values, with
different parameters and sampling plans, is explained in other boxes (espe-
cially Boxes 2 and 3, Appendix One).
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Special methods are needed for comparing proportions estimated with
simple random sampling. With small sample sizes Fisher’s Exact test is rec-
ommended (see Box 7, Appendix One). With larger samples, the t-test may
be used. Two alternatives to the t-test are the chi-square test, which is iden-
tical to the t-test, and the G-test (see Sokal and Rohlf 1981) which, while
not identical to the others, usually yields similar results. We prefer the t-test
because it extends more easily than the chi-square approach to construc-
tion of confidence intervals on the difference. One disadvantage of the t-
test approach is that it does not extend as nicely to comparing more than
two proportions, whereas the chi-square approach does. Most statistics
texts (e.g., Section 7.11 in Snedecor and Cochran 1980) discuss the chi-
square approach as well as the t-test approach.

Paired data

The phrase ‘paired data’ usually means that two observations were col-
lected on every population unit in the sample. The quantity of interest
usually is the difference between the means of the two variables being mea-
sured. In behavioral ecology, most examples of paired data seem to involve
measuring the same animal, plot, or other subject at two times, such as
before and after a treatment, or in two periods such as years. Data may also
be paired in space, as for instance when we record two measurements from a
series of randomly selected plots (e.g., number of males, number of
females). In these examples the data are clearly paired in the sense that we
have a single random sample of units from the population of interest, two
random variables are measured on each unit in the sample, and the goal is
to estimate the difference between the population means of these variables.

Two classes of paired data account for most cases one is likely to
encounter in practice. The first case is dichotomous data. Methods for this
case are explained in Box 7, Appendix One. The second case is where the
mean of the difference of the paired observations is of interest. In this
setting we proceed as follows: (1) create a new variable for each unit in the
sample defined as the difference between the observations for the unit; (2)
calculate the mean and standard error of this variable; and (3) use the guide-
lines in Boxes 2–4 to test the null hypothesis that the true mean is 0.0. If the
null hypothesis is rejected (or the confidence interval does not cross 0.0),
then the means of the two variables measured are significantly different.

Partially paired data

Occasionally, some of the observations are paired and others are not. This
can arise when the initial sampling plan calls for all data to be paired, but in
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collecting the data some observations (e.g., one member of a pair) are
missing. For example, abundance may be estimated in 2 years with the same
survey routes, but some routes might not be used each year, or data might
be collected on animals in summer and winter, but some of the animals
might die before winter. Numerous other examples could be cited in which
the observations are largely, but not completely, paired. Several approaches
are available for analyzing such data. We provide some general
recommendations. Partially paired data often require careful analysis so
consulting a statistician for advice may be worthwhile.

The most important consideration in analyzing paired data with missing
observations is whether the missing differences would have been larger or
smaller, on average, than differences that were recorded. To consider an
obvious example, imagine that we are trying to determine whether sub-
stantial weight loss occurs in a species during the winter. At the start of the
winter we weigh and mark a sample of individuals. At the end of the winter
we recapture most but not all of them. We also capture and weigh some
unmarked individuals at the end of the winter. The data set is thus largely, but
not completely, paired. We should be suspicious, in this case, that some of the
individuals we failed to recapture died of starvation or some other weight-
related cause. If these are the reasons for the missing data then our estimate
of weight loss based on the observed data is likely to be biased, perhaps
severely. There is no easy answer to what one should do in such cases but it
may be best to admit that weight loss cannot be estimated from this data set.

On the other hand, suppose we believe that missing individuals did not
differ, as a group, in weight loss. For example, they may have emigrated or
died of causes unrelated to weight loss, or they may have been present but
were not captured just by chance. If such an assumption is reasonable, then
we can proceed with the analysis. We discuss three different ways to analyze
the data. They vary in complexity and in how efficiently they use the data.

First, we could ignore the animals captured only once and base the
analysis solely on the paired data as explained in Appendix One, Box 7. We
would then calculate a new variable from each individual (the difference in
weights in our example), calculate the mean of these differences and its
standard error, and test the null hypothesis that the true mean was equal to
0.0. This is the simplest and safest approach, but fails to use all the data col-
lected.

The second approach makes use of the general formula for the difference
between two random variables (Section 2.9). Calculate the two means, 1

and 2, using all the data available from each sample and then take the esti-
mated difference as 1� 2. Let n1 and n2 be the number of observationsyy
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used in computing 1 and 2 respectively. The standard error of the
difference (Eq. 2.38) is,

(3.6)

where, in this case, se( 1) and se( 2) are calculated using n1 and n2 observa-
tions respectively and the usual formula for one-stage sampling (Eq. 2, Box
2 in Appendix One). The covariance term in this case is

(3.7)

where the subscript p indicates that only the paired observations are used.
Thus, np is the number of units measured twice, p1 is the mean of the first
observations from this group, and p2 is the mean of the second observa-
tions from this group. If all units are paired, then np�n1�n2 and this
formula reduces to the usual formula for cov( 1, 2) (Section 2.5, Eq. 2.14).
Most calculators and statistical software provide the covariance for pairs of
data. Check to make sure that yours uses n–1 in the denominator.

The third approach is more complex but uses the data in the most
efficient way. Calculate one estimate of the mean difference, dp, using only
the paired data, and another estimate, du, using only the unpaired data. In
the notation of the previous paragraph, dp� p1� p2 while du� 1u� 2u,
where 1u is the mean from the units measured only on the first occasion and

2u is the mean from the units measured only on the second occasion. The
final estimate is then taken as a weighted average

, (3.8)

where the estimated weight is

(3.9)

The standard errors are calculated with the usual formula for simple
random sampling (Eq. A1.2, Box 2, Appendix One). For se(dp), based on
the paired data, the terms in the standard deviation are the differences, and
for the other two standard errors they are the individual (unpaired)
observations.
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Most introductory tests do not present the derivation (Eq. 3.9) so we
explain it briefly. Since dp and du are both unbiased estimates of the true
difference, assuming observations are missing at random, the weighted
average of dp and du is also unbiased with any constant W. To find the value
of W which minimizes the variance of the estimated difference we write the
formula for the variance of the weighted average

. (3.10)

There is no covariance term because dp and du are independent. We wish to
find the value of W that minimizes this expression. We therefore
differentiate the right-hand side with respect to W, set the derivative equal
to zero and solve for W. This yields

(3.11)

To obtain an estimate, w, we use sample estimates of the variances.
Substituting the more detailed formulas for V(dp) and V(du) yields Eq. 3.9.

Decide beforehand which approach you intend to use. Trying all three
and using the one which happens to produce the smallest standard error is
not appropriate. The first approach, ignoring the unmatched observations,
is the easiest and performs well if the unused data comprise a small propor-
tion of a large sample. The second approach uses all the data, can be
carried out easily with a pocket calculator, and will often be nearly as
efficient as the third method. The third method, which uses the data in the
most efficient way, may appeal most to investigators who are familiar with
computer programming and are thus able to calculate Eq. 3.9 with relative
ease.

Performance when assumptions are not met

As noted in Section 3.2, the conditions under which t-tests are exactly valid
are seldom met in real data sets collected by behavioral ecologists. In this
section we discuss validity of the t-test with non-normal data. In the context
of hypothesis testing, validity refers to the true significance level. Although
we claim to be testing a hypothesis at a value such as ��0.05, when the statis-
tical assumptions underlying the procedure are not met the actual probability
of rejecting the null hypothesis (H0) may be different from 0.05. In the context
of confidence intervals, validity refers to the actual proportion of the confi-
dence intervals (in repeated sampling) that would include the parameter.
Because of the close relationship between hypothesis tests and confidence

W �
V(du)

V(du) � V(dp)
�

1

1 �
V(dp)
V(du)

V [Wdp� (1�W )du] � W 2V(dp) � (1�W )2V(du)
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intervals, many statements made regarding the validity of hypothesis tests
refer to the validity of the associated confidence intervals as well.

Concern over the validity of t-tests when the data do not have a normal
distribution is probably the most common reason that biologists turn to
nonparametric analyses. On the other hand, statistics texts point out that
with a sufficiently large sample, t-tests about means are valid regardless of
how non-normal the underlying population is (e.g., Lehmann 1975 p. 77).
We wish, therefore, to gain some impressions of how large the sample must
be, with specific distributions, before t-tests are valid.

In the Sections that follow, we first consider one-sample and paired-data
procedures, and then consider the case of two independent samples. The
one-sample and paired-data cases are similar in that both involve a series of
observations, y1,…,yn. In the one-sample problem the yi values are single
measurements made on the units in the sample whereas in the paired data
case the yi are the differences between the observations made on each unit in
the sample. In both cases, however, the validity of the t-test depends on
sample size and the distribution of the yi in the population. Note that in the
paired-data case, validity does not depend directly on the distributions of
the two variables measured on each unit.

Validity is difficult to evaluate theoretically, so statisticians often use
simulations with hypothetical populations and various samples sizes. We
illustrate this approach with a series of populations similar to those we have
encountered in consulting and in personal research. Our hypothetical
populations are illustrated in Fig. 3.1. In Fig. 3.1a 10% of the response vari-
ables are distributed evenly between 0.0 and 0.99; 20% are distributed evenly
between 1.00 and 1.99, and so on. In each plot, the sum of areas under the
curve equals 1.0. We shifted the curves horizontally in different simulations
to create differences between populations. We arbitrarily considered sample
sizes acceptable if they produced true significance levels no higher than 6%.

For one-sample tests, the simulation showed that in symmetrical (Fig.
3.1a,b,e,f ) or nearly symmetrical (Fig. 3.1c) populations, sample sizes as
small as five or ten achieved satisfactory levels of significance (Table 3.1).
With highly skewed populations (Fig. 3.1d), a sample size of 20 was
required before significance fell to 6%. Populations even more skewed
would require larger sample sizes for t-tests to be valid.

For independent estimates, the distribution of the difference between
sample means (under the null hypothesis that the two populations have the
same distribution) is symmetrical regardless of the shape of the underlying
distribution. To understand this, imagine drawing two samples from the
population. Let the difference in their means be a specific value, d. Since the
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Fig. 3.1. Artificial populations used to investigate the validity of t-tests with small
sample sizes. The distribution of values is shown for each population (e.g., in the
bell-shaped population 10% of the values are uniformly distributed between 0.0 and

0.999, 20% are uniformly distributed between 1.0 and 1.999 and so on.



samples come from the same population, there is an equal chance that d will
be positive or negative. Furthermore, in a large number of samples, one
would get equal frequencies of positive and negative values of d. The same
can be said for any value of d; positive and negative values are equally likely.
This shows that the distribution of the difference between sample means
must be symmetrical if the null hypothesis is true. As was pointed out in the
discussion of paired data, this symmetry alone ensures that levels of signifi-
cance will be close to the nominal levels.

To illustrate this point empirically, we drew two samples from each of our
populations and tested the null hypothesis of no difference. As before, we
recorded the frequency with which the null hypothesis was rejected. In no
case was this frequency greater than 5%.

In conclusion, in our populations t-tests were valid with independent
samples (if n�5) and with paired samples unless populations were drasti-
cally non-normal and sample sizes were less than 20. With only minor depar-
tures from normality, sample sizes of ten or even five also performed well. On
the other hand, t-tests cannot be expected to perform well on populations
with extreme outliers. For example, if the distribution was similar to any of
the ones we studied except that a small fraction of the population had
extreme values (e.g., �10), then we could not expect t-tests to perform well.

3.6 Nonparametric tests for one or two samples

Nonparametric or ‘distribution-free’ methods provide alternative pro-
cedures for the one- and two-sample problems which were described in
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Table 3.1. Validity of t-tests for single samples or paired data. Entries are
the probabilities of rejecting the null hypothesis (with ��0.05) when it was
true (i.e., the true mean was 0.0). The populations are shown in Fig. 3.1a

True
Sample size (n)

Minimum n for
Population mean 5 10 20 40 ��0.06

Bell-shaped 0.0 0.05 0.05 0.05 0.05 �5
Uniform 0.0 0.07 0.06 0.05 0.05 10
Moderately skewed 0.0 0.07 0.06 0.06 0.05 10
Highly skewed 0.0 0.08 0.07 0.06 0.05 20
Moderately bimodal 0.0 0.07 0.05 0.05 0.05 10
Highly bimodal 0.0 0.07 0.06 0.05 0.05 10

Note:
a Each estimated probability is based on 10,000 replicates.



Section 3.5, as well as for some more complicated problems. They are
particularly useful when populations are distinctly non-normal and sample
sizes are so small that t-tests are unlikely to perform well. One- and two-
sample nonparametric tests are relatively simple to understand and carry
out. This section makes several general points about nonparametric
methods; details of how to carry out the tests are provided in Box 8,
Appendix One. Nonparametric methods are included in most statistical
computer packages.

The most familiar nonparametric methods are for testing hypotheses but
confidence intervals can also be constructed. Nonparametric methods do
not generalize easily to more complicated experimental designs or sampling
plans. For example, exactly valid nonparametric methods do not exist for
multiple regression problems or the two-factor analysis of variance with
interaction.

In contrast to t-tests, which permit inferences about means, many non-
parametric tests permit inferences about quantities related to medians. The
median of a group of numbers (e.g., a sample or a population) is the
‘middle number’, the value such that half the values are smaller and half the
values are larger. If the group contains an odd number of distinct numbers,
then a single value fulfills this condition; when the group contains an even
number of numbers, the median is usually taken as the average of the two
middle values. For example, the median of the numbers 2, 3, 4 is 3, and the
median of the numbers 2,3,4,5 is 3.5.

Sometimes the median represents our concept of average – in the sense of
‘middle’ – better than the mean. For example, suppose we expose animals to
a stimulus and record how close each of several individuals approaches. If
most individuals approach quite closely, but a few stay far away, then the
sample of distances might be 1, 3, 2, 4, 25. In this case, the mean, 7.0, is
considerably larger than all but one of the measurements, and the median,
3, may seem to provide a more useful measure of the middle or ‘typical’
value.

Despite the utility of medians in some cases behavioral ecologists con-
templating use of a nonparametric method should think carefully about
the distinction between means and medians. Means (and proportions) are
often much more useful than medians as a foundation for further analysis.
For example, from knowing the mean number present per unit area, total
population size can be calculated. Knowing the mean number of young
produced per adult means that demographic analyses can be carried out.
Medians, in general, do not support this type of analysis. Furthermore, one
should not assume that statements about the relative size of population
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medians can automatically be extended to analogous statements about
means. For example, consider the following two populations. One popula-
tion consists of the numbers 2, 3, and 4 in equal frequencies; it has a mean
of 3 and a median of 3. The second population consists of the numbers 1, 2,
and 9 in equal frequencies; it has a mean of 4 and a median of 2. Thus, in
the second population, the mean is larger, but the median is smaller, than in
the first population. Clearly in this case one would not wish to assume that
deciding which population has the larger median reveals which population
has the larger mean.

With paired data, it is also important to recognize that inferences apply
to the median of the differences and this is not, in general, equal to the
difference of the medians. Thus, if the population of paired observations
consisted of the pairs (1,5), (3,2), and (2,0) in equal frequencies, then the
differences would be �4, 1, and 2, with a median of 1. The population
medians, however, are each 2 so the difference in medians is 0.0. This issue
does not arise with t-tests; the mean of the differences is equal to the
difference of the means. In the example above, both values are �0.33.
Notice the range in values depending on which definition of ‘typical’ or
‘middle’ value is used: difference of the means (�0.33), difference of the
medians (0.0), median of the differences (1.0). This example also shows that
care must be exercised before assuming that conclusions about medians can
be extended to conclusions about means.

A common misconception regarding nonparametric methods is that no
assumptions are required (except no selection or measurement bias). In the
one-sample and paired-data cases, the sign procedures require that the
population is continuous (rather than normal as in the parametric case).
The signed rank procedures require that the population is symmetrical as
well. In the two-sample case, the populations do not have to be normal (as is
required for exact validity in the t-test), but they must both be continuous,
have the same variance, and their distributions must have the same shape
differing only by a ‘shift’. As with t-tests, small departures from these
assumptions are not serious, and large sample sizes help reduce errors
caused by failure of the assumptions.

Two other caveats about the interpretation of results from non-
parametric tests should be made, though we do not discuss them in
detail. First, when the assumptions (e.g., equal variance) are not met, but
a nonparametric test is employed anyway, then the definition of the para-
meter about which inferences are being made can be surprisingly
complex. Second, when assumptions are met and the null hypothesis is
rejected, the exact nature of the conclusion one should reach is more
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difficult to understand. In practice, one usually assumes that the test
indicates which population has the larger median (Snedecor and
Cochran 1980 p. 145).

Useful additional comments on nonparametric methods in behavioral
ecology are provided by Johnson (1995), Smith (1995), and Stewart-Oaten
(1995).

3.7 Tests for more than two samples

In most behavioral ecology studies, investigators are interested in making
comparisons between several populations and drawing overall conclusions
from these multiple comparisons. Weights of males and females may be
compared at each of several times, home range size may be compared in
several different cohorts (e.g., older versus younger, paired versus unpaired),
density of a species may be compared before and after a treatment on each
of several plots, and so on. Several issues warrant consideration in such
cases. First, investigators must guard against reaching unwarranted conclu-
sions simply because of the number of tests carried out. Even if no
differences actually exist, we would still expect about 1 in 20 comparisons
(made at the 5% level of significance) to be statistically significant. That is
the meaning of the 5% significance level: even if populations are not
different, there is a 5% probability of (incorrectly) rejecting the null hypoth-
esis. Thus, there is a difference between the level of significance for each
individual comparison (say 5%) and the overall level of significance or
probability of incorrectly deciding that one or more of several comparisons
are statistically significant when, in fact, none of them differs. When many
comparisons are to be made, the overall level of significance can be sub-
stantially higher than the level of significance used for individual compari-
sons.

To further complicate matters, the notion of the overall level of signifi-
cance can be defined in several ways. As already described, it might be
defined as the probability of incorrectly deciding that one or more of the
comparisons made are statistically significant when, in fact, none are.
Alternatively, it could be defined as follows. Among only those compari-
sons which do not actually differ, it is the probability of incorrectly deciding
that one or more of these comparisons are statistically significant. In the
first definition, we are protecting against incorrectly deciding that two of
the populations differ when in fact no populations differ. In the second
definition we are only interested in protecting against incorrectly deciding
that two populations differ among those subsets of the populations which
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do not differ. The difference between these (and other possible) definitions
is subtle, but many of the methods for multiple comparisons differ in what
sort of overall level of significance they guarantee.

The second issue to keep in mind is the ability of a procedure to detect
differences that actually exist, that is, the power of a procedure. Several
methods (described later) guarantee that the overall level of significance
(when in fact no populations differ) will be less than or equal to a prespeci-
fied value such as 5%. However, these methods differ in their overall power
and generally we would prefer to use the method with the highest power.

Many different procedures have been suggested for maintaining the
overall significance level when several comparisons are made. Some of the
most widely used methods are Tukey’s procedure, the Student–Neuman–
Keuls procedure, Duncan’s multiple range test, and the Bonferroni pro-
cedure. These and other methods differ in a number of ways, including the
assumptions they make, the type of overall level of significance they
provide, and the power of the procedure (in other words, how much protec-
tion they give against various types of errors). Because of these differences,
some of which are quite subtle, it is difficult to compare the methods. We
suspect that many biologists would welcome a simple and general guideline
as to which multiple comparison procedure to use. With this in mind, we
describe two approaches.

The simplest method, and the one requiring the fewest assumptions, is
the Bonferroni method. If M comparisons (hypothesis tests) are to be made
and one wishes to guarantee that the overall level of significance is no more
than �, carry out each comparison using a significance level of �/M. This
method is very general and works regardless of the nature of the individual
comparisons. For example, some of these may be t-tests, some may involve
nonparametric procedures, and some may be exact binomial tests. The
drawback is that the actual overall level of significance is usually less than �
and the power is low if more than a few tests are made. However, the overall
level of significance associated with the Bonferroni test is the ‘second
definition’ (bottom of p. 81) which is preferred by many statisticians.

A second approach is to begin with a comprehensive test of whether all
populations are equal. This test is often made using a one-way analysis of
variance (ANOVA), a chi-square test, or the Kruksal–Wallis test. If the
result is nonsignificant, then no further tests are carried out and the investi-
gator concludes that the samples do not permit detection of any differences
between the populations. If the comprehensive test statistic is significant,
then pairwise tests are made using the same level of significance as was used
in the comprehensive test.
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If the level of significance used for the overall test of equality is �, then
we are guaranteed that the overall level of significance of this method is
also �. This is because the overall test will be significant with a probability
of � if none of the populations differ. Thus, if none of the populations
differ, we will only proceed to carry out the pairwise comparisons (and thus
perhaps incorrectly reject one or more of the null hypotheses) with a proba-
bility of �. The method is referred to as the ‘protected’ least significant
difference (LSD) method.

Occasionally in behavioral ecology, the pairwise tests of interest are inde-
pendent. When this is true, the comprehensive test may be carried out using
a very simple procedure based on the binomial distribution. The procedure
may have smaller power than an ANOVA or chi-square test, but may be
easier to apply if a complex sampling design was used to obtain the point
estimates. The procedure makes use of the fact that if all null hypotheses are
true, in the pairwise tests of interest, then the probability of achieving a sig-
nificant result in each test is �. Suppose that we carry out n tests and that k
of them yield significant results. The probability of achieving exactly k sig-
nificant results, when the probability of a significant result is � on each test,
is

, (3.12)

and the probability of achieving k or more significant results is

. (3.13)

Thus, if the test statistic in Eq. 3.13 is large, we would be inclined to view the
various significant results (pairs declared significantly different) as arising
by chance. If the value of Eq. 3.13 is small, say less than �, then we may
regard the comprehensive test as having been rejected and the pairwise tests
may be interpreted in the same way as if we had carried out a comprehen-
sive test such as an ANOVA and obtained a significant result. We empha-
size that this approach may be invalid if the tests are not independent.
Consultation with a statistician to decide whether this requirement is satis-
fied in a particular application may be advisable.

Biologists often combine the two approaches described here, first apply-
ing a comprehensive test and then, if results are significant, using the
Bonferroni approach to adjust � for the pairwise comparisons. As already
note, however, if the Bonferroni approach is used, there is no need to carry
out an initial comprehensive test (e.g., Neter and Wasserman 1974 p. 146;
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Seber 1977 p. 465, Snedecor and Cochran 1980 p. 116). This point is impor-
tant because carrying out the comprehensive test, when complex survey
designs (Chapter Four) have been used, can be quite difficult. Use of the
Bonferroni approach avoids this difficulty.

In specific situations, a particular multiple comparison procedure (such
as Tukey’s procedure) may be preferred to either of the procedures
described here. However, because of the many subtleties associated with
multiple comparisons, we refrain from making further recommendations
about other procedures here. If you wish to use other procedures, we
suggest that you first consult a statistician. Review of Steward-Oaten
(1995), who questions the utility of most multiple comparisons in behav-
ioral ecology, may also help provide a deeper understanding of the
complexities.

3.8 Summary

Statistical tests provide one way to determine whether a parameter, such as
a population mean, is larger or smaller than a hypothesized value, or which
of two parameters, such as two population means, is larger. Confidence
intervals provide similar information and also establish upper bounds on
the difference between the value under the null hypothesis and the true
value. Sample size and power calculations provide a method for estimating
how large a sample is needed, or how likely we are to obtain a statistically
significant result given a specified difference between the null hypothesis
and the true parameter values. The t-test for one or two samples applies to
numerous cases in behavioral ecology, though exact procedures depend on
many factors including whether the data are paired, partially paired or
independent. In most cases the test may be safely used, even when the data
are distinctly non-normal as long as sample sizes exceed five or ten.
Nonparametric alternatives to the t-test are attractive when the median is a
more meaningful measure of the ‘middle’ or ‘typical’ measurement than the
mean or when the distribution is highly skewed and sample size is extremely
small. When several pairwise tests are to be made, a procedure should be
followed that protects the investigator from reaching unwarranted conclu-
sions simply because numerous tests have been made. We note that this
issue is complex but provide a general recommendation that is simple to
follow and will suffice in most cases.

84 Tests and confidence intervals



4
Survey sampling methods

4.1 Introduction

Consider the following sampling problem, taken from a real consulting
session we encountered. A biologist was studying the density of a large
mammal in different habitats in a large study area. He had defined eight
habitat types. The species was always close to water bodies, so the biologist
viewed water bodies as the sampling unit. He had delineated the habitats
along each water body in the study area. During each of three field seasons,
aerial surveys of most or all of the study area were flown two to four times
per year. Individual animals were plotted on maps and the habitat each was
in, at the time it was sighted, was subsequently determined. The biologist
wished to determine which habitats were used disproportionately. More
specifically, he wished to estimate density in each habitat and then test the
null hypothesis that actual density was the same in each habitat. Ideally, this
step would be carried out using a comprehensive test. If the null hypothesis
was rejected, then pairwise comparisons would be made as explained in
Section 3.7.

This example presents us with a host of problems from an analytical
standpoint. Habitat patches varied in size and care must be taken in defin-
ing the population units if density is the characteristic of interest. It is prob-
lematic whether we have a random sample of habitats since the entire study
area was covered in at least some of the surveys. The variable, number of
individuals, was recorded at specific times so the population unit is an area-
time, but we do not have a simple random sample of area-times within each
year because there were only two to four surveys per year. Thus, the biolo-
gist probably should not assert that the sample of area-times is a simple
random sample, and if he does his colleagues are likely to accuse him of
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pseudoreplication (Chapter 6). But he does not see how else the data could
have been collected, and, in any case, he already has the data and wants to
analyze it in a way that will produce meaningful statistical results.

The example above is typical of the data sets that behavioral ecologists
often need to analyze. No simple analytical approach seems completely jus-
tified, and deciding how to analyze the data is difficult. Part of the difficulty
in this example is that we clearly do not have a simple random sample. It is
also unclear which parts of the sample selection were random, or should be
viewed as random sampling.

This Chapter provides the background needed to better understand the
problems presented in this example. We explain alternatives to simple
random sampling, provide guidelines on when they are most useful, and
describe how these techniques can be used to understand problems caused
by nonrandom sample selection. In general, we approach problems of this
sort in two stages: (1) decide what assumptions will be made in analyzing
the data, and (2) identify the appropriate analytical techniques given the
assumptions. If the material in this Chapter is understood, then there
should usually be little doubt about the appropriate analytical techniques,
given the set of assumptions adopted. This means that debate about the
analysis is restricted to the assumptions. Such debates frequently hinge
almost entirely on biological rather than statistical issues. Reasonable
people may disagree, but we have found it helpful to distill out the statistical
issues since there is often little if any controversy over them once assump-
tions have been separated from the rest of the analysis. Thus, biologists can
argue about biology, rather than about statistics.

4.2 Overview

In Chapter 2, it was assumed that the sample is a simple random sample
(see also Section 4.4) from the population, although the issue of how such a
sample would be selected was not discussed. Simple random sampling,
however, is only one of several possible ways to obtain a sample, and in
behavioral ecology this approach is often impractical or inefficient. This
Chapter discusses simple random sampling in more detail, and then consid-
ers several other sampling plans widely used in behavioral ecology. We
begin by defining several terms used in describing sampling plans.

Survey sampling plans can be classified by the number of stages, by the
method of sample selection used in each stage, and by whether each stage is
preceded by stratification. A stage, in survey sampling terminology, is any
point in the sample selection process at which population units or groups of
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units are selected. The selection may be carried out using simple random
sampling or various other sample selection methods described in the next
Section. Sampling plans with more than one stage are called multistage
sampling. Stratification means that prior to selection we divide the popula-
tion, or the portion of it that we are sampling from, into groups of popula-
tion units, which we call strata, and we then select units or groups of units
from each stratum. The sampling plan is the entire scheme used to select the
sample.

Developing an ability to describe sampling plans accurately is important
because different plans have different formulas for calculating estimates
and standard errors. On the other hand, as noted above, many real exam-
ples involve nonrandom sampling, and deciding which sampling plan pro-
vides a suitable approximation for purposes of identifying an appropriate
statistical analysis in such cases is often difficult. We approach this subject
in three stages. In this Section, we provide several artificial examples, not
involving nonrandom sampling or specific biology. These examples are
intended to clarify the terms and kinds of sampling plans. Later in the
Chapter, in the detailed discussions of each technique (Sections 4.4–4.8),
we provide partially realistic examples, generally not involving any nonran-
dom sampling, intended to illustrate the situations in which behavioral
ecologists may find each technique particularly useful. At the end of the
Chapter (Section 4.10) we take up fully realistic examples, including the one
given at the start of this Chapter.

Suppose we are interested in estimating the density of some biological
entity in plots. The study area is square and contains 900 plots. We are
content to express density, initially, as mean number per plot. Conversion
to other scales will be accomplished later (Section 2.4). Since the popula-
tion units are plots, the sampling plan is the scheme for deciding how to
select the plots for the sample. A simple random sample (without replace-
ment) would be obtained by drawing plots in such a manner that every plot
not already in the sample had an equal chance of being selected each time
we drew a new unit for the sample. Any spatial arrangement of the plots is
possible, but in many samples they would be distributed rather unevenly
across the study area. Figure 4.1 shows an example of a simple random
sample we selected using a computer. Another approach would be to
distribute the plots evenly across the study area (Fig. 4.2). This approach to
sample selection is referred to as systematic sampling and is considered in
more detail in Section 4.2. A third approach to sample selection is nonran-
dom selection, a term that refers to any plan in which formal random selec-
tion is not employed. Nonrandom sampling is uncommon when selecting
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Fig. 4.1. A simple random sample of 12 population units (small squares) selected
from a population of 900 units.

Fig. 4.2. A systematic sample. Note that spacing is not equal between rows and
columns.



objects like plots as in examples such as the one we are considering.
Selection of animals, however, often uses nonrandom methods. To select a
sample of size ‘n’, we may just use the first n animals we encounter.
Alternatively, we may include all the animals (of a given species) we can see
from a blind. Simple random, systematic, and nonrandom selection
methods are the most common sample selection methods in behavioral
ecology. We discuss each of them in the rest of this Chapter in more detail
along with a few other selection methods that are used less often in behav-
ioral ecology.

Now consider a fundamentally different kind of plan for selecting the
sample. First we delineate groups of plots. Next we select some of these
groups. Finally, we select population units within the chosen groups. Many
different sampling plans are possible using this general approach. For
example (Fig. 4.3), we might delineate nine groups, each with 100 plots,
then select four groups using simple random selection, and then select five
plots within each group, again using simple random selection. Sample size
is thus 20 population units. Notice, however, that this plan is not equivalent
to taking a simple random sample of size 20. A simple random sample of
size 20 would tend to cover the population more evenly than a plan in which
all units in the sample are in just four of the nine groups.
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Fig. 4.3. A two-stage sample with four primary units and five secondary units per
primary unit. Simple random selection was used at both stages.



This plan illustrates the concept of a ‘stage’ in sampling. As already
noted, the word ‘stage’, in survey sampling terminology, means selecting
groups of population units with the understanding that subsequent sample
selection will be restricted to the chosen groups. In the example just given,
delineating groups of 100 units each and selecting a sample of these was the
first stage in the sampling plan. Subsequently, we selected population units
in each group; this was the second, and final, stage, in this ‘two-stage’ sam-
pling plan.

The groups selected at the first stage are called primary sampling units, or
just primary units. In this example, we used simple random selection at
stage one to select the primary units and simple random selection again at
stage two, to select population units. Other plans, however, may be used.
For example (Fig. 4.4), suppose we delineated square primary units with six
population units on a side. This produces 25 primary units, each with 36
population units. At the first stage, we select eight of these primary units by
simple random selection. At the second stage, we select nine population
units in each primary unit using systematic selection. Note that selection in
Fig. 4.4 was independent in different primary units: the population units in
the sample do not occupy the same position in different primary units.
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Fig. 4.4. A two-stage sample with eight primary units and nine secondary units per
primary unit. Primary units were selected with simple random selection. An inde-
pendent systematic sample of population units was selected in each primary unit.



As noted previously, nonrandom selection is also used frequently in studies
of animals. For example (Fig. 4.5), suppose we select the first ‘n’ animals
encountered, as in the example of one-stage sampling described above, and
then randomly select six times to watch each animal. The population unit in
this case is one animal watched for one observation period. Two-stage sam-
pling is employed with nonrandom selection in the first stage (selection of
animals), and simple random selection at the second stage (selection of
observation times). We can represent the population with a two-dimen-
sional array in which each row represents one animal (or the set of times at
which it might be watched) and columns represent times (Fig. 4.5). In this
case, we may, on the basis of additional assumptions about the process that
produced the first n animals encountered, view the animals as a simple
random sample, even though they were actually selected nonrandomly. In
practice, observation times would be restricted to a certain portion of the
day. Statistical inferences extend only to those times, and the columns are
thus labelled ‘observation periods’ not just ‘time’.
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Fig. 4.5. A two-stage sample in which population units are animal-times and
primary units are the sets of times at which each animal might be watched. An inde-
pendent, simple random selection of times was made within animals. Although the
plan is simple statistically, it does not distribute intervals across the temporal

dimension well and it requires that up to four animals be watched at once.



The concept of multistage sampling can be generalized in three ways, and
it is important for the reader to keep these extensions of the basic concept
distinct. First, more than two stages can be employed. For example (Fig.
4.6), suppose in the example involving animals that we selected days to
watch each animal but also sample within days. The observation period on
each day might be 3 h, and we might actually watch animals for two 30-min
periods during these 3 h. This would allow us to gather data on up to three
animals per day. The population unit in this case is an animal watched for
30 min. We now have three-stage sampling: selection of animals, selection
of days (i.e., groups of 30-min intervals), and selection of the population
units, 30-min periods. In this example, the days are second-stage sampling
units or just secondary units. Selection is nonrandom at the first stage and
systematic at the second and final stages. Note that in this example selection
of days and time periods within days is not independent. Three animals are
always watched on the same days, and when one of these animals is being
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Fig. 4.6. A plan similar to that in Fig. 4.5, but with modifications to accommodate
practical constraints. Rows are divided into secondary units of six population units
each and three animals are watched each day. Observation periods are divided into
five groups of six each. Three animals are watched in periods 1, 2, 3, and 4 with two
systematically selected intervals per period. In the last period, each animal is

watched once, intervals again being selected systematically.



watched the other two are not being watched. The issue of independent
versus nonindependent selection is discussed in Section 4.5.

The second way to extend multistage sampling is by letting the sample size
vary within selected groups. For example, we might employ two-stage sam-
pling as illustrated in Figs. 4.3–4.5 but select different numbers of population
units within primary units. Unequal samples might be selected within groups
at any stage. Figure 4.6 provides an example: we selected two population
units on days one to four but only one population unit per animal on day five.

The third way to extend multistage sampling is by letting the group size
vary. For example, we might delineate unequal-sized groups as shown in
Fig. 4.7 and then select five of these groups using simple random sampling.
With three-stage sampling, the second-stage units might vary in size.
Letting group size vary is often useful when we wish plots to follow natural
boundaries.

Sometimes the investigator has a choice of how to define the popula-
tion units and sampling plan. Suppose that we select groups of ten small
plots, but then count the number of individuals in all ten plots in each
selected primary unit. Figure 4.8 portrays this plan with systematic selec-
tion of the groups. If we define population units as the small squares in
Fig. 4.8 we could describe the plan as involving 100% sampling of the
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Fig. 4.7. Division of a population into unequal-sized primary units.



primary units (i.e., measuring all populations units in each primary unit).
This plan is referred to as cluster sampling. Alternatively, we could define
the groups of ten small plots as the population units and then describe the
plan as one-stage systematic sampling. In either case, results could be
expressed on a different scale, for example density per hectare, at later
stages in the analysis. Statistical results such as significance levels in tests
or whether a confidence interval covers a particular density value are
unaffected by how the population unit and sampling plan are defined in
this case.

To summarize the discussion so far, one of the fundamental ways in
which sampling plans differ is by having different numbers of stages. A
stage means selection of groups of population units. At each stage, the
groups may be of equal or unequal size, and the sample sizes selected
within groups may be equal or unequal. In discussing real examples, it is
easy to confuse unequal group size with unequal sample sizes per group.
Figures 4.1–4.8 provide several examples illustrating this distinction.

We now turn to another fundamentally different approach in sampling,
stratification. Stratification, like multistage sampling, involves subdivision
of the population units into groups. In multistage sampling, we select a
sample of the groups and confine subsequent selection to units in this
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Fig. 4.8. An illustration of 100% sampling within primary units (which were
selected systematically).



sample. In stratification, in contrast, we subsequently select a sample from
every group. The groups in stratification are referred to as strata. Figure 4.9
portrays an example in which we first delineate four strata, and then select
five population units within each stratum using simple random selection.
Note that this is one-stage sampling because population units are only ran-
domly selected once within strata. This plan is often called stratified, simple
random sampling, or more commonly just stratified random sampling.
Other sample selection plans can be used. For example, we might use
systematic selection within strata in which case the plan would be referred
to as stratified, systematic sampling. Different sample selection plans can be
used in different strata. For example, simple random selection might be
used in two strata and systematic selection in the other two strata. This
seems to occur only rarely in behavioral ecology but such plans are per-
missible (i.e., obtaining unbiased point and interval estimates is possible
with such plans).

Stratification can be carried out prior to any stage in sampling. The
examples above involve one-stage sampling preceded by stratification.
Figure 4.10 portrays an example of two-stage sampling with stratification
prior to the second stage. In this example, two strata are delineated in each
primary unit and two population units are then selected independently in

4.2 Overview 95

Fig. 4.9. An example of stratified, simple random sampling.



different strata with simple random sampling. Plans of this sort are
sometimes useful when density varies considerably between habitats, and
habitats can be mapped within groups but have not been mapped across the
entire study area.

The final stage of any sampling plan is selection of the individual
population units. If a sampling plan is described solely by the sample selec-
tion method, then one may assume that there was only one stage and that
stratification was not employed. Thus, the phrases simple random sam-
pling, or systematic sampling, with no additional description, include the
unstated qualifiers ‘one-stage’ and ‘without stratification’.

These examples are intended to define and illustrate the sample selection
methods, multistage sampling, and stratification and to indicate the multi-
plicity of sampling plans that can be devised using these techniques. While
complex plans can be designed, real sampling plans in behavioral ecology
usually are relatively simple. Furthermore, under certain, commonly
encountered conditions (explained in Section 4.5) second and subsequent
stages can be ignored so one does not have to wrestle with defining stages
and the exact plan used at each stage. However, this is not always true;
sometimes one does have to consider each stage carefully. Furthermore, the
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Fig. 4.10. An example of two-stage sampling with systematic selection of primary
units, stratification of primary units into two strata, and simple random selection of

two population units per stratum.



concepts illustrated above must be understood in many real situations,
particularly ones involving nonrandom sample selection. We therefore urge
readers to study the examples given here until the basic terms are clear.

4.3 The finite population correction

In most introductory textbooks the formula for the standard error of the
mean from a simple random sample is given as

, (4.1)

where s is the sample standard deviation and n is the size of the sample.
Technically, this formula only applies to infinite populations. In survey
sampling, the populations are often finite and sometimes are small enough
that the sample includes a substantial fraction of the population. When this
is true, an adjustment to Eq. 4.1, known as the finite population correction,
is needed. We first explain why the adjustment is needed, then provide the
formula for the adjustment in various sampling plans, and then discuss the
use of this adjustment in behavioral ecology. We will conclude that the
correction is normally not needed, thus this whole issue can usually be
ignored by behavioral ecologists. Occasionally, however, use of the correc-
tion is advantageous. Furthermore, the adjustment clarifies certain rela-
tionships a few of which are noted at the end of the Section.

To see why a correction is needed in Eq. 4.1 when the sample includes a
substantial fraction of the population, consider the extreme case of includ-
ing the entire population in the sample. In this case, repeated sampling
would generate exactly the same estimate, and the standard error of the
estimate should thus be 0. Expression 4.1, however, would not be 0.
Although this is the most extreme case, the same point could be made by
imagining that all but one member of the population was included in the
sample. In this case estimates would vary slightly from sample to sample
according to which member of the population was excluded. But Eq. 4.1
would take no account of the fact that the sample included nearly the whole
population, and would again overestimate the true standard error. Readers
able to prepare simple computer programs can easily verify that the same
principle holds even when smaller fractions (such as 0.5 or 0.25) of the
population are included in the population: Eq. 4.1 always overestimates the
actual standard error.

The finite population correction is 1�n/N for v( ) and the square root of
1�n/N for se( ). Thus, with finite populations, we usey

y

se(y) �
s

�n
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. (4.2)

The correction is often abbreviated to fpc for finite population correction,
and 1�n/N is often written 1�f, meaning one minus the fraction of the
population included in the sample. If a small fraction of the population is
included in the sample, then including the fpc makes little difference. For
example, if the fraction is 5%, then 1�f�0.95, so v( ) is only reduced 5% by
including the fpc and se( ) is only reduced 2.5% (1� ). Since including
the fpc reduces the standard error, ignoring it is conservative. In practice, the
fpc is usually ignored if the fraction sampled is less than 5–10%.

In behavioral ecology the population is usually much larger than the
sample, so including the fpc makes little difference. Occasionally, the
sample does include a large fraction of the population as in studying some
endangered species or other small populations. Another case in which
including the fpc might seem appropriate arises when all the individuals in a
study area have been measured. In such cases, however, investigators nearly
always wish to extrapolate their findings to the other animals that might
have been there, or other outcomes that might have occurred; for example,
by invoking the superpopulation concept (Section 1.2). The fpc is thus not
appropriate.

Deciding whether to include the fpc is sometimes difficult. For example,
Cochran (1977 pp. 72–6) discusses a hypothetical anthropologist studying
the frequency of blood types in a small population. The sample includes a
substantial fraction of the population, and Cochran suggests including the
fpc since, if we are only interested in estimating the frequency of blood
types in this small population, the fpc reduces our estimate of the variabil-
ity by the proper degree. It might be argued, however, that the anthropolo-
gist is probably interested in the underlying gene frequencies, of which the
current members in the population are but one of many possible manifesta-
tions, hence the actual population of interest is quite large, and the fpc
should not be included.

The fpc may be used to clarify the distinction between multistage and
stratified sampling. They were treated, above, as completely separate plans,
but suppose we delineate ten groups and then sample within eight of them.
Technically, this is not stratified sampling which would require selecting
population units from all ten groups (in which case they would be called
strata). Yet it does not seem too different from stratified sampling. The fpc
provides the link between the two plans. When the fpc is included in the for-
mulas for multistage sampling, but samples are taken within all groups,

�0.95y
y

se(y) � ��1 �
n
N� 

s
�n
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then the formula reduces to the formula for stratified sampling (Appendix
One, Box three, expression A1.14).

4.4 Sample selection methods 

In this Section we describe the basic sample selection methods used most
widely by behavioral ecologists. Each of the methods may be used to select
population units, primary sampling units, secondary units, or units at any
stage in a multistage design. We emphasize their use in one–stage designs
without stratification. Additional comments on their use in multistage and
stratified designs are provided in Section. 4.5 and 4.6.

Simple random sampling

The phrase simple random sampling has been used frequently in previous
Sections but we have not defined it carefully. Here we provide a formal
definition. A simple random sample of size n, selected without replace-
ment, is one in which all possible samples of size n from the population are
equally likely to be selected. Alternatively, we could define it as a sample in
which the population units are selected one at a time, and all units not in the
sample have the same probability of being selected on each draw. Notice
that this probability changes between successive draws as the number of
remaining units shrinks. Thus, in drawing a simple random sample without
replacement from a population of size 100, each unit has a selection proba-
bility of 1/100 on the first draw. The 99 units still available for selection
after the first draw each have a selection probability of 1/99 on the second
draw, and so on.

An important feature of simple random samples drawn without replace-
ment is that the expected value of any statistic, g say, calculated from the
sample, such as the sample mean or variance, can be written simply as

, (4.3)

where N* is the number of distinct (equally likely) samples that might be
drawn and gi is the statistic obtained from the i th sample. This fact is used in
later Sections of this Chapter. Incidentally, the same statements may be
made about sampling with replacement but the set of possible samples (N*)
is larger since each unit can enter the sample more than one time.

Behavioral ecologists sometimes mistakenly assume that sampling plans
under which all units have the same selection probabilities automatically
produce simple random samples. As an example in which this is not true,

E(g) �
1

N*�
N*

i�1

gi
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suppose that individual animals – males or females – are the population
units, but we randomly select pairs of animals for the sample. Each individ-
ual does have the same chance of being selected for the sample. Under this
plan, however, all possible combinations of units are not equally likely.
Many combinations, in fact, are not possible at all. For example no sample
including the male from a given pair, but not including the female, is possi-
ble. This plan is actually two-stage, random sampling with selection of
groups of size two at the first stage, and then selection of all (i.e., both)
units in every selected group. The distinction might initially seem unim-
portant to the reader, but as shown in Section 4.5 this plan has quite
different statistical properties from true simple random sampling. In par-
ticular, the sample size is best viewed as the number of pairs in this plan,
not the number of animals, as would be the case with true simple random
selection of animals. Why this so will be discussed in more detail in Section
4.5.

One way to select a simple random sample is by numbering all the units in
the population from 1 to N, and then selecting n different numbers from a
table of random numbers, or generating the n numbers on a computer using
a random number generator. The population units corresponding to the
selected numbers comprise the sample. This is equivalent to putting N
tickets numbered 1 to N in a hat and ‘randomly’ removing n of them.

With populations that can be represented in two dimensions, a method
similar in principle but easier to apply in practice is to produce a picture of
the population overlain by a grid such that each cell of the grid covers one
population unit. For example, if the population units were one-hectare
plots and we had a map of the study area, then the grid would be scaled so
that each cell covered one hectare on the map. To select units for the sample,
we would use a table of random numbers to independently choose values
along the X-axis, and along the Y-axis. The cell in the grid identified by each
X,Y combination would be selected for the sample. Since the sampling is to
be done without replacement, if a cell has already been selected, then a new
X,Y combination is chosen. If the study area was irregularly shaped, X,Y
points could arise which did not correspond to any cell in the study region.
If this occurs, these X,Y points would be ignored and we would continue
drawing pairs of random numbers until the required sample size had been
obtained. In reality, a full grid is not needed, one just has to work out the
proper intervals on the X and Y-axes so that a unit square covers an area on
the ground equal to one hectare.

This procedure is most useful for sampling spatial populations, but in
principle it can be used for other populations. For example, one could select
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times at which animals would be watched by listing animals down the side
of a page and potential observation times across the top of the page. This
same process could then be followed to select a simple random sample of
animal-times. In practice, however, this method may be difficult to imple-
ment as our sample of times may require us to sample more animals at a
given specific time than we have resources for. More ‘balanced’ methods of
sample selection such as systematic sampling are often used instead.

One-stage, simple random sampling is seldom employed in behavioral
ecology for at least two reasons. When the population units are animals, we
seldom know the true population size. Even if we did, numbering all the
animals so that we could randomly select the ones for our sample is almost
never practical. Instead, typically some form of nonrandom selection is
used; for example, taking the first n individuals that we encounter. On the
other hand, although formal simple random sampling could often be
applied to select plots or periods of time, investigators nearly always prefer
to use systematic selection of units so that the sample is more evenly distrib-
uted across the entire population. This practice is discussed in more detail
later (see ‘Systematic sampling’, p. 102).

Even though simple random sampling is rarely used to select the units in
a one-stage sampling plan, when computing standard errors of the esti-
mates practitioners often use the formula appropriate for simple random
sampling. The consequences of using the formula appropriate for simple
random sampling even when such sampling is not used are discussed in
greater detail later in this Chapter.

The estimated mean, with simple random sampling, is just the sample
mean. The standard error with simple random sampling is discussed in
Section 2.6. The equations for the point and interval estimates are given in
Box 2, Appendix One.

Nonrandom sampling

As already noted, selecting units with a well-defined, random sampling
plan is often not practical. As a result, nonrandom sampling is widely used
in behavioral ecology, especially to select animals. Although nonrandom
sampling is often unavoidable, interpretation of the estimates and their
standard errors is often difficult. With random selection we obtain an unbi-
ased estimate of the population mean and a nearly unbiased estimate of its
standard error. When nonrandom sampling is used, we lose both of these
properties. The sampling method may tend to capture animals that are
young or nonterritorial, for example, and these individuals may differ from
older or territorial individuals with respect to the variable being measured.
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If all animals in one area are studied, they may be more like one another
than those in a random sample from the region, due to effects of habitat. In
this situation, standard errors will be underestimated. Instances in which
the standard error will be overestimated can also be imagined. Nonrandom
samples should thus be avoided whenever possible. When this is not possi-
ble investigators should recognize the limitations of their statistical infer-
ences.

Semantic difficulties occasionally arise in deciding whether a sample
selection method should be called random or nonrandom. For example,
suppose the population units are plants of a particular species. We select
the sample by first selecting a set of points on a map using simple random
selection. We then select the plant nearest each point for inclusion in the
sample. The question at this point is whether we have selected a simple
random sample of plants of the particular species. The plan includes simple
random sampling and involves a set of well-defined rules for determining
which population units to include in the sample. However, if the plants
occur in groups, then plants at the edge of a group have more chance of
being included in the sample than plants in the interior of the group. We
therefore cannot legitimately claim to have selected a simple random
sample of plants. Furthermore, notice that it would be extremely difficult to
calculate the selection probabilities for the plants in our sample. In this
book, we include under the category nonrandom selection any method in
which selection probabilities vary and are unknown.

Systematic sampling 

Systematic selection of units is widely used in behavioral ecology. As the
name implies, the units in the sample are distributed ‘systematically’ or
evenly across the population rather than randomly. This fact has several
consequences, some useful, others troublesome. We first discuss ways of
selecting a systematic sample and then describe some of the special statisti-
cal issues that arise in using this method. Guidelines are then provided for
deciding when and how to use systematic sampling. We use a spatially
defined population to illustrate many of the points in this Section but they
generalize easily to temporal populations. Consider a small population of
just 36 units (Fig. 4.11) and imagine that we want to select nine of these for
the sample. In the example, we imagine the units to be population units, but
in practice they might also be primary (or other) units in a multistage
design. The most common approach used by behavioral ecologists to select
the sample is to delineate groups as indicated by the heavy lines. In this
example, since we want nine units in the sample and population size is 36,
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each group has four units. One of the population units is then selected ran-
domly. The sample consists of all the units in the same position as the ran-
domly selected unit. In the figure, these units are indicated by shading.
Various methods can be used to select the position. As described above, a
single number may be selected from 1 to 36 and then all units in the same
position comprise the sample. Instead, positions within a group could be
numbered 1 to 4 and one of these values selected with all nine units that
occupy this position comprising the sample. Finally, a particular group
could be selected and then one of the units in it randomly selected with all
units in the same position comprising the sample. In practice, the last
method is probably most common, especially with large, spatially defined
populations. Investigators can determine group size, randomly select a
starting point in the first group, and then follow simple rules to find the rest
of the units such as ‘travel north placing plots every 30 m until reaching the
border of the study area; then go 50 m west and place a plot at that location;
then work back to the south placing plots every 30 m’ and so on. More
complex methods for choosing a systematic sample can be imagined (e.g.,
employing a ‘knight’s move’ between units) but are seldom used in behav-
ioral ecology.

Biologists sometimes wonder whether the interval between units should
be measured exactly. In most situations there is little need for this. It is
important, however, that the value of the variable to be measured does not
affect the placement of plots. For example, in counting the number of
plants in small plots, slight differences in where the plot is placed may have a
large effect on the count obtained. Consequently, it is important that we
avoid any tendency to place plots in high- or low-density areas. Using
sophisticated surveying instruments to measure distances and bearings
exactly does result in unbiased selection of plot locations, but is likely to be
difficult and time consuming especially in rough terrain. A more practical
method is to pace between units and take the last few steps without looking
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at the ground. The plot is then located exactly at the tip of one’s toe or some
constant distance from it. If terrain is so rough that even this approach
might result in some bias in plot placement, then one might pace to within
some short distance – for example 5 m – of each plot and measure the
remaining distance.

The point estimate from systematic samples is unbiased as long as the
starting point is selected randomly (when this is not done, technically there
is no random sampling at all). This feature is relatively easy to see by exam-
ining Fig. 4.11. Four samples are possible and between them they include
all the population units. The mean of the four sample means is thus exactly
equal to the population mean so the estimate is unbiased.

This intuitive reasoning can be made more exact for readers who have been
following the use of expected values. Let the population be of size N and be
divided into n groups each of size M (i.e., Mn�N). There are thus M possi-
ble means, k, say, k�1,…,M. The Mn population units may be designated
yki where k indicates the group and i the number within the group. We may
thus demonstrate that E( )� by writing

E . (4.4)

The precision and estimated precision of systematic samples are more
problematic. From the first Sections of this Chapter, it can be seen that
systematic sampling is actually multistage sampling with selection of just
one primary unit and then 100% sampling of the selected population units.
Thus, in the example given in Fig. 4.11, one of the primary units consists of
all the shaded plots. There are three other primary units: the nine plots
directly below the shaded ones, the nine plots directly to the left of the
shaded ones, and the nine plots to the lower left of the shaded ones. We
might not initially recognize this as multistage sampling because we typ-
ically think of primary sampling units as groups of adjacent units.
Furthermore, we typically envisage sampling within the primary units
rather than selecting all population units. Nonetheless, on reflection the
reader should be able to see that systematic sampling really is multistage
sampling with n�1 primary unit selected. And this fact should immedi-
ately make us wonder, ‘how are we going to estimate standard errors with
n�1?’

The answer is that no general unbiased estimator is known for the vari-
ance of the mean from a systematic sample. In practice, investigators

(y) �
1
M�

M

k�1

yk �
1
M�

M

k�1
�1
n�

n

i�1

yki��
1

Mn�
M

k�1
�

n

i�1

yki �Y 

Yy

y

104 Survey sampling methods



almost always use the formula for a simple random sample as an
approximation. While the approximation is often quite good, cases also
arise in practice when this approach leads to substantial errors.
Understanding when systematic sampling does and does not work well
requires that we make a clear distinction between actual and estimated pre-
cision. We consider these separately in the following text.

With respect to actual precision, systematic samples are usually more
precise than simple random samples of the same size. The reason for this is
that variables studied by behavioral ecologists tend to exhibit trends across
space (or time in sampling from temporal populations) so that adjacent
units tend to have similar values. A systematic sample covers the population
evenly whereas a random sample has a more patchy distribution. Units are
usually concentrated in some areas and sparse in others. We may even draw
a sample in which no units are selected from large areas that have particu-
larly high or low values of the variable. These problems are avoided with
systematic samples.

Systematic samples, however, are not necessarily more precise than
simple random samples. If the value of the variable varies in a cyclic or peri-
odic way, and the period corresponds to the interval used in selecting the
systematic sample, then the systematic sample may be much less precise
than a random sample. For example, in Fig. 4.11, if the variables in the
upper two cells in each box of four cells happened to be large and the two
values in the lower part of each box happened to be small, then this particu-
lar systematic selection plan would not work well at all. Two of the possible
samples would have only large values and two would have only small values.
Whichever sample we happened to draw, it would not provide a very good
estimate of the population mean. Thus actual standard errors, that is the
sample-to-sample variation, would be high. With a random sample we
would be likely to obtain a much more representative set of population
units. Although it is important to understand the potential for this sort of
problem, we have seldom seen it occur in practice. In the great majority of
cases, systematic sampling in behavioral ecology yields more precise esti-
mates than simple random sampling.

We now turn to the issue of estimating precision with a systematic
sample. As already noted, no unbiased method is known for estimating the
variance of the mean of a systematic sample. It can be shown, however, that
precision is generally overestimated when the formula for simple random
sampling is used. Thus, confidence intervals will tend to be too long. More
specifically, it can be shown that the bias in estimating V( ) is positive (esti-
mates tend to be too high) when the systematic sample is actually more

y
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precise than the simple random sample, and negative when the reverse is
true.

To illustrate these points, we assigned numbers to the 36 units in Fig. 4.11
and sampled from them using simple random and systematic sampling.
Values were assigned to the population units by numbering the large
squares sequentially from 1 to 9. Values for individual units were then
obtained by randomly adding 1 to these values, not changing them, or sub-
tracting 1 from these values. Thus, the numbers in the first square were 0, 1,
or 2; those in the second square were 1, 2, or 3; and so on (Fig. 4.12). This
produced a population of numbers with a clear trend but also with local
variation. We wrote a short computer program to sample from the popula-
tions using simple random and systematic selection. The actual variance
and standard error of the simple random sample were calculated with
expressions 2.13 and 2.18; the actual values for systematic sampling were
calculated from the four possible sample means using this plan. The average
estimates were calculated by obtaining 10,000 samples for the simple
random method and by calculating the average of the four possible esti-
mates obtainable using systematic sampling.

The means of the four possible systematic samples were quite similar:
5.11, 5.00, 5.33, and 5.11. The means from simple random sampling were
much more variable. For example, the first ten values were 4.22, 4.22, 4.89,
4.44, 6.00, 4.00, 5.56, 5.22, 4.89, and 6.33. The results (Table 4.1) illustrate
the points made above. For simple random sampling, the estimated vari-
ance was unbiased to three decimal places whereas the estimated standard
error had slight negative bias as expected (see Section 2.7). Systematic
sampling was much more precise than simple random sampling but the esti-
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mators of variance and standard error, based on the formula for simple
random sampling, both had substantial positive bias. The effect of this bias
is that test results might turn out to be nonsignificant that should have been
significant had an unbiased estimate of variance been available.

Although the difference in precision between simple random and system-
atic sampling, and the bias in systematic sample estimates were consider-
able, we emphasize that this was purely a result of the way we constructed
the population and sampling plan. We encourage readers familiar with
computer programming to carry out similar investigations with other hypo-
thetical populations. Doing so will give you a better understanding of when
systematic samples perform well and poorly. You might also try to develop
an unbiased variance estimate for systematic sampling (even though you
probably will not succeed). Some authors discuss taking several systematic
samples at random and using these to estimate variance. This approach is
occasionally feasible but tends to have low precision because sample size is
the number of systematic samples. (see Section 4.5 Multistage sampling).

Selection with unequal probabilities

In this method population units have different probabilities of being
selected for the sample rather than equal probabilities, as in simple random
or systematic sampling. As an example, suppose we wish to estimate density
or total population size of something that lives in woodlots. The population
unit is viewed as a unit of area such as a hectare. Woodlots are the groups of
population units. Travel time between woodlots is significant, so we want to
include more large woodlots in the sample, thereby increasing the total
number of individuals detected. We accomplish this by selecting points at
random on a topographical map of the study area which indicates wood-
lots. Points falling outside a woodlot are ignored. We continue selecting
points until we have the desired number of woodlots. This plan is not simple
random sampling, because larger woodlots have a greater chance of being
included in the sample.
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Table 4.1. Actual and estimated (Ave. est.) precision of simple random and
systematic sampling (n�9) from the population depicted in Fig. 4.12

Variance of Standard error of

Sampling plan Actual Ave. est. Actual Ave. est.

Simple random 0.558 0.558 0.747 0.738
Systematic 0.015 0.812 0.121 0.899
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Sampling without replacement using unequal selection probabilities
raises fairly difficult statistical issues. The basic problem is that selection
probabilities change in a way dependent on which units are already in the
sample. As a trivial example, suppose the group sizes in the population are
10, 20, 30, and 40 and that selection probabilities are proportional to the
sum of the group sizes still in the population. Thus, on the first draw, the
probability of selecting the first group is 10/100, the probability of selecting
the second group is 20/100 and so on. After we have drawn one group, the
selection probabilities will be different depending on which group was
selected on the first draw. For example, the probability of obtaining group
one on the second draw would be 10/80 if the first draw yielded group two
but 10/60 if the first draw yielded group four. With simple random sam-
pling, selection probabilities on any given draw depend only on how many
groups have been removed from the population, not on which particular
groups have been selected.

Notice that the complexity described above does not occur if we sample
with replacement. In our example, the probability of drawing unit one is
always 10/100 regardless of which units have already been selected. As a
result of this difference, sampling is sometimes carried out with replace-
ment when selection probabilities vary. Alternatively, investigators may
assume their population is so much larger than their sample that they can
treat the sample as having been selected with replacement even if in fact it
was not. With sufficiently large populations this practice causes little error.
Formulas for means and standard errors with unequal sampling with
replacement are provided in Appendix One (Box 3, Part D). As noted there,
the selection probabilities may be replaced by numbers proportional to
these probabilities. Thus, in the woodlot example, we may use woodlot size
in place of the selection probabilities. This is helpful because we do not then
need to measure the size of every group in the population. For a description
of sampling without replacement, we recommend Chapter 9A of Cochran
(1977) or Chapter 6 of Thompson (1992). The Horvitz–Thompson estima-
tor is probably the most widely used method for sampling without replace-
ment using unequal selection probabilities.

Sampling with unequal probabilities has not been widely used in behav-
ioral ecology, though cases like the woodlot example above occur occasion-
ally. One reason may be that when the groups do vary substantially in size,
we are often interested in comparing different size categories. We may there-
fore prefer to stratify the population, putting units of different size into
different strata. We can then compare means from different strata as well as
obtain an overall estimate.
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Line transect methods sometimes employ unequal probability sampling.
For example, suppose we randomly select transects and then walk along
each one until we encounter an object such as a bush, tree or pond. We then
measure some attribute of the object encountered. If the objects are of vari-
able size, and if we include each object traversed by our transect line, then
we have unequal probability sampling. The selection probabilities depend
on the maximum width of the object perpendicular to the transect. These
widths are therefore proportional to the selection probabilities (and may be
used as the zi , i.e., probability of selecting the i th primary unit, in Appendix
One, Box 3, Part D).

Finally, we note that sampling with unequal probabilities sometimes
occurs but is unnoticed by investigators. Some biologists might treat the
examples above as simple random sampling. However, any time that selec-
tion probabilities vary and can be calculated, then the formulas for unequal
probability sampling should be used. Failure to do so may lead to seriously
biased estimates, a point that can be verified easily by means of a simple
computer simulation.

4.5 Multistage sampling

This method is described and illustrated in Section 4.2. Briefly, in multi-
stage sampling the population units are first divided into groups called
primary units, and then several primary units are selected using one of the
basic selection methods described in Section 4.4. Subsequent sampling is
confined to the selected primary units. If population units are selected from
these groups then we have two-stage sampling. The ‘stages’ are: (1) selection
of primary units; and (2) selection of population units within the primary
units. Alternatively, groups of population units may be selected within
primary units. These are then defined as secondary units and subsequent
sampling is confined to them. In this case we have three or more stages in
the design.

Multistage sampling is widely used in habitat studies, behavior studies,
wildlife surveys, and other branches of behavioral ecology. For example,
many surveys of animals involve repeated coverage of several randomly
selected survey routes. In such studies the population unit is a route-time,
and the primary unit is a survey-route, or more specifically the group of
times at which the route might be run. In behavior studies with individually
recognizable individuals, investigators often select several animals and then
make repeated observations on each. The population unit in these cases is
an animal-time, and each primary unit consists of the possible times at
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which the animal might be observed. Most applications of multistage sam-
pling in behavioral ecology involve either (1) selecting ‘plots within plots’
as illustrated at the beginning of this Chapter, (2) selecting animals or
plants and then recording measurements on each at several times, or (3)
selecting locations and then recording measurements on each at several
times.

Sample selection methods

Primary units are generally selected with nonrandom methods to choose
animals or systematic methods to choose plots or periods in time. Simple
random sampling is seldom used for the reasons given in discussing one-
stage sampling (Section 4.2). The primary units are nearly always treated as
though they had been selected with simple random sampling. All of the
cautions regarding this practice in one-stage sampling (Section 4.2) apply
to multistage sampling as well. Selection of primary units with unequal
probabilities is uncommon.

The later stages of a multistage design do sometimes involve simple
random sampling. For example, subplots may be selected using simple
random sampling within plots or if groups of animals are selected as
primary units, then simple random selection of individuals within groups
may be made at the second stage of the plan. Systematic selection, however,
is much more common than simple random selection, and nonrandom
selection at the second and later stages is widespread.

The standard formulas developed for multistage sampling assume that
selection of secondary units is independent in different primary units.
Independence implies that selection of secondary units in one primary unit
has no effect on which secondary units in any other primary unit are
selected. Lack of independence does not affect the expectation of standard
(linear) point estimates of means and totals. The usual estimates of stan-
dard errors, however, are biased when sampling is not independent in
different primary units.

The assumption of independent sampling within primary units is often
violated in behavioral ecology due to practical constraints. For example,
suppose that we want to watch several marked animals from a blind 2 days a
week, and we record the number of an activity such as fights or displays. We
select Mondays and Thursdays and watch each animal on each day. The
animals would probably be viewed as primary units and the days as sec-
ondary units. Secondary units, however, are not selected independently in
different primary units because all animals are watched on the same set of
days. To further illustrate the problem we consider a similar example with
actual numbers. To keep the example simple, suppose we watch five animals
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and the study will last just 4 days. The actual number of fights or displays by
each animal on each day is shown below:

Day

Animal 1 2 3 4

1 1 3 4 2
2 2 5 3 1
3 1 2 4 0
4 0 4 5 1
5 1 3 3 1

In this example, the counts for all animals are low on days 1 and 4 and
higher on days 2 and 3. Now suppose we only take observations on 2 days
for each animal. If selection of days was independent within animals, then
the sample would probably include both high and low values. On the other
hand, if we select 2 days at random and observe all five animals on these
same 2 days, then there is a one-third chance that we would select days 1 and
4 (and thus have all low counts) or days 2 and 3 (and thus have all high
counts). As already noted, the lack of independence does not cause any
bias in the estimate of the mean (i.e., the mean of all possible estimates
exactly equals the true mean). Precision and estimated precision, however,
are affected. In this example, the plan is less precise than a plan with inde-
pendent selection of days for each animal. Furthermore, use of a formula
that assumes independent sampling would produce biased estimates of the
standard error. The direction of the bias depends on whether units in the
sample are more similar, or less similar, to each other than would be true
with independent sample selection. When the units are more similar to each
other – the most common case in behavioral ecology – then the bias is nega-
tive. We tend to underestimate standard errors and conclude that we have
more precision than we really do. This would be the case in our example.

Lack of independence, however, does not always cause this sort of problem.
As a trivial example, suppose the animals were thumbtacks which were tossed
once on each of the 4 days. The activity measured was a 1 if the tack landed on
its side and a 0 otherwise. Results obviously would not be influenced by adopt-
ing a plan such as the one above in which data collection was restricted to
certain days. The reason is that the measurements are unaffected by time; that
is, we expect the same result regardless of what day we record the data.

Returning to the animal example, the critical issue is thus whether a ‘day
effect’ exists, meaning that the expected outcome is different on different
days. If it is, then independent sampling in different primary units is impor-
tant. Biological considerations may help one decide how serious the day
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effects are likely to be. In our example, the effects might seem less important
if the animals were far apart and thus unlikely to be affected by a given
stimulus such as a predator or potential mate, or if they were watched
sequentially and for long periods rather than simultaneously.

Correct estimation of standard errors accounting for dependent sam-
pling in different primary units is more complex. The standard survey sam-
pling formulas can be modified by the addition of covariance terms and
further assumptions about the nature of the dependence. Another
approach is to use multivariate methods which incorporate the correlation
structure into the analysis (e.g., Crowder and Hand 1990). We recommend
consulting a statistician when dependent sample selection in primary units
cannot be avoided for practical reasons and is likely to have large effects on
precision. For the rest of this Section, we assume that sampling is inde-
pendent in different primary units.

Weighting of estimates from primary units

Multistage sampling is generally used to estimate the mean of the results
from the primary units, and usually a ‘simple’ or ‘unweighted’ mean,

� yi, is calculated, where yi is the estimate from the ith primary unit

and n is the number of primary units. Unequal weighting means that we 

wish to use a different formula. Instead of yi we wish to use

��wiyi, where the wi do not all equal . This situation probably arises

most often in behavioral ecology when population units are individuals
(plants, animals, other objects) and the first-stage unit is a plot. In such
cases, the number of individuals per plot often varies and simple means of
the estimates from each primary unit will not, in general, yield an unbiased
estimate of the mean of the population units. For example, suppose that we
count the number of flowers per plant in each of four plots. The number of
plants, flowers, and flowers/plant in each plot are as shown below:

Plot No. of plants No. of flowers Flowers per plot

1 5 20 4.0
2 10 60 6.0
3 2 5 2.5
4 8 40 5.0
Totals 25 125 —

The mean number of flowers per plant is 125/25�5.0. Now suppose that

1
n

y

��1
n�y

1
n

 �y
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we calculated the mean/plant in each plot and then the simple mean of
these numbers. The result would be (4.0�6.0�2.5�5.0)/4�4.4. Thus, the
simple mean per plant, and the simple mean of the means per plot are not
equal. In general, with unequal sized groups, the simple mean of the
primary unit means is a biased estimator of the mean per population unit.
Unequal weighting of the means must be used to obtain an unbiased esti-
mate of the mean per population unit. Procedures for cases like this one are
discussed later in this Chapter (see p. 118).

When sample sizes within primary units vary it may be tempting to
weight the means per primary unit by sample size (i.e., wi�number of
observations on primary unit i). For example, suppose we are using telem-
etry methods to study habitat use by some species. The population unit is an
‘animal-time’, and the variable, with respect to any given habitat, is ‘yes’ (in
the habitat) or ‘no’. The sampling plan is multistage with animals (or more
precisely the set of possible times for each animal) as primary units. In
defining the parameter, we would probably weight animals equally on the
basis that each provided an equally useful opportunity to study habitat use.
Suppose, however, that some animals are harder to detect than others. For
example, we might get 60 locations on some individuals but only 10 on
others. We get more precise estimates from the first set of animals so it is
tempting to give them more weight in the analysis. Weighting estimates by
sample size would accomplish this. Unfortunately, however, weighting by
sample size tends to yield biased estimates. The dangers of this approach
can perhaps best be seen with an example. For simplicity, suppose we have
just two animals with actual and sample values as shown below:

Expected Expected
Proportion no. of proportion

of time No. of No. of times of times
spent in attempted times found in found in

Animal habitat 1 locations found habitat 1 habitat 1

1 0.6 100 100 60 0.6
2 0.2 100 50 10 0.2

With just two animals the value of the parameter, assuming they are
weighted equally, is (0.6�0.2)/2�0.4. The expected value of the estimate
from each animal is equal to the true mean for that animal and thus the
expected value of the estimate is unbiased. That is, using the rules for
expectation in Section 2.4

(4.5)

.� 0.5[0.6 � 0.2] � 0.4

E[(p1 � p2) / 2] � 0.5[E(p1) � E(p2)]
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Suppose, however, we weight the estimates by sample size, that is the
number of times each animals was detected. The estimate is [100(0.6)�

(50)(0.2)]/150�0.47, rather than 0.40. Thus, the estimate is biased. The
magnitude of the bias depends on several factors including the difference
in actual values among primary units, the difference in sample size, and
(especially) the correlation between the value of the parameter for the
primary unit and sample size in the primary unit. In the example just given,
the actual values varied substantially (threefold for true values, sixfold for
sample size) and the correlation was high (1.0 actually), and even so the
bias was relatively small. This is often the case with simulated, but plausi-
ble, data (which we encourage readers to verify with simulation programs).
Nonetheless, using a weighted average, the estimate is biased for the simple
mean of the values of the population units. We therefore generally recom-
mend against weighting estimates by sample size unless there are convinc-
ing reasons for believing that the correlation between the true value of the
primary unit and sample size is close to zero. A statistician may be able to
provide advice on these issues in specific applications. Incidentally note
that this case provides an example of statistical bias (Section 2.2) – bias
results solely from the way the estimates are calculated.

Equally weighted primary units

In this Section, we first discuss the definition of the parameter to be esti-
mated and the form of the point estimate. We then discuss the actual vari-
ance of the estimate and how it is affected by allocation of effort between
primary and secondary units. The formulas for the estimated variance and
standard error are then discussed. The formulas have different forms so the
reader needs to be clear about which quantity – true variance or estimated
variance – is being discussed.

We assume in this Section that the parameter is defined as the simple
mean of the actual values from the primary units

, (4.6)

where N is the number of primary units in the population and Yi is the para-
meter from the i th primary unit. In most cases of practical interest to behav-
ioral ecologists, Yi is a mean, for example the mean per plot, or mean per
animal. Proportions are also frequently of interest (e.g., the proportion of
animals surviving, producing offspring, etc.) but as noted in Section 2.2,
they are treated throughout this book as a mean. Cases do arise, however, in
which the quantity of interest is more complex such as a diversity index or
other measure of community structure. These cases can usually be analyzed

Y �
1
N�

N

i�1

Yi
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using the methods of this Section as long as we are interested in the mean of
these quantities over the primary units. The appropriate estimate of , in
this case, is simply the sample analogue

, (4.7)

where n is the number of primary units and yi is the unbiased estimate of Yi

from the i th primary unit in the sample.
The actual variance of depends on the variation between and within the

primary unit means and on the sampling plan. With two-stage sampling to
estimate the population mean per unit ( ) and primary units of equal size,
M,

, (4.8)

where n�the number of primary units in the sample, m�the number of
secondary units measured in each primary unit, N�the number of primary
units in the population, f1�n/N and f2�m/M. S1

2 is the variance (with N�1
weighting) among true values per primary unit,

where �the true mean for primary unit i and is the average variance
within the primary units

with

,

where yij is the value for population unit j in primary unit i. As usual, the
standard error of the estimate is the square root of V( ).

As noted in Section 4.3, the first-stage finite population correction, f1, is
usually small. If, in addition, f2 is small, then V( ) is approximately

. (4.9)

It can be seen from Eqs. 4.8 and 4.9 that increasing either n or m decreases
V( ), but that the law of diminishing returns affects m. Eventually, as my
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increases, a point is reached at which V( ) is essentially S1
2/n, and further

increase in m has little affect on V( ).
We now turn to formulas for estimating V( ). Notice that the parameter,

the true variance, is a nonlinear transformation of the population units. It
should thus not be completely surprising that the sample analogue of Eq.
4.8 above would be a biased estimate of V( ). A different formula is thus
needed. The usual estimator can be written in several ways. The most
common form is 

(4.10)

where

,

�the mean of the sample from primary unit i, �� yi/n, and

An alternative form, obtained from 4.10 by substituting n/N for f1, is

(4.11)

As noted many times previously, in behavioral ecology N is usually large so
the right-hand term drops out and we obtain the very simple formula 

(4.12)

Furthermore, it can be shown (e.g., Cochran 1978 p. 279) that use of Eq.
4.12 tends to overestimate the actual variance, the bias being S1

2/N. Thus,
use of Eq. 4.12 is conservative. Virtually all studies in behavioral ecology
that use multistage sampling employ Eq. 4.12 to obtain the standard errors,
i.e,

. (4.13)

If N is not large relative to s1
2�(1�f2) /m then use of the complete expres-

sion 4.10 may be preferable.
s2

2

se(y) �
s1

�n

v(y) �
s2

1

n

v(y) �
s2

1

n
�

1
N

 �s2
1 �

(1 � f2)s
2
2

m �

s2
2 �

1
n
 �

n

i�1

s2
2i �

1
n

 �
n

i�1
��

m

j�1

(yij � yi)
2

m � 1 �
yyi

s2
1 �

�
n

1

(y
i
� y)2

n � 1

v(y) �
1 � f1

n
 s2

1 �
f1(1 � f2)

nm
 s2

2

y

y
y

y

116 Survey sampling methods



The fact that V( ) can usually be estimated solely from the estimates
obtained from each primary unit has several consequences. First, if
primary units are selected using simple random sampling, then the variance
is unbiased even if systematic sampling (with an independent random start
in each primary unit) is used within primary units. Thus the problems
caused by systematic selection with one-stage samples generally do not
occur with multistage sampling. This is why, in discussing systematic sam-
pling earlier (Section 4.2), we stressed that the discussion applied only to
one-stage systematic sampling, not to all uses of the method.

Second, the estimate for each primary unit does not have to be a mean, it
can be any quantity as long as the goal is to estimate the grand mean of the
estimates from each primary unit. For example, in studying vegetation
along transects, a measure of foliage height diversity or horizontal patchi-
ness might be calculated for each transect. These quantities are often non-
linear. Working out the formula for their standard errors would often
require use of the Taylor series expansion (Section 2.11) and would be quite
complex. If the investigator is interested in the mean of the estimates,
however, and f1 is small then the standard error of the mean is calculated
quite simply using Eq. 4.13.

Third, when f1 is small, second-stage finite population corrections have
minor effects on the standard error even if they are large; thus, they can be
ignored. The same is true of all subsequent finite population corrections in
plans with more than two stages.

If sample sizes vary among primary units but the estimated population
mean is calculated as an unweighted mean (as suggested above – See
‘Weighting of estimates from primary units’) then no change is needed in
the formula for the standard error as long as the simple version (Eq. 4.13) is
used. If the more complex form is used, then Eq. 4.11 must be modified to
acknowledge the variation in sample size. With two-stage sampling we use

4.14

where mi�sample size in primary unit i, f2i�mi /M, and

Constructing primary units

In many applications, practical constraints leave the investigator little
choice in how to construct primary units. For example, primary units may
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be animals (e.g., the set of times at which each could be observed), survey
routes, or days, and no way to alter the sampling plan may be feasible. In
other cases, however, choices do exist. For example, when data are collected
using transects, investigators may have a choice of whether to orient the
transects north–south or east–west. The general principle to follow, in such
cases, is that each primary unit should be as representative of the entire
population as possible. This results in each primary unit mean having about
the same value, and, as a result, the variance of the primary unit means is
small. Thus, suppose density varied from north to south, across a popula-
tion, but was about the same east to west. Other factors being equal, we
would orient transects north to south and thus capture as much of the
population variability as possible within each transect.

Unequally weighted primary units

Procedures for unequally weighted primary units are complex and the case
seldom arises in behavioral ecology so we discuss it only briefly. Readers are
referred to Cochran (1977) or Thompson (1992) for a more extensive dis-
cussion. In this Section we assume two-stage sampling to estimate the mean
per population unit, .

Terminology can be confusing when primary units, and perhaps sample
sizes within primary units, vary. By way of review, N and n�the number of
primary units in the population and sample, Mi�the size of (i.e., number of
population units in) primary unit i, and mi�the sample size (i.e., number of
population units measured) in primary unit i.

When primary units vary in size, the population mean can be expressed
in several ways

, (4.15)

where is the mean of the Mi , yij is the value of the variable for the j th

population unit in the i th primary unit, and i is the true mean from the i th

primary unit. Each term in the expression above can be used to make a
different point. The left-hand expression for (the one with a double sum)
is the simplest definition of the population mean. It is the sum of the values
of all the population units divided by the total number of population units.
It is often called the ‘simple mean per unit’. The middle expression shows
how the parameter can be expressed as a function of means. Both numer-
ator and denominator use the fact that a sum may be written as the number
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of items times their mean. The right-hand expression indicates how the
parameter may be viewed as a ‘weighted’ mean of the primary unit means.
The weights are Mi / , the ratio of the size of the primary unit i to the mean
primary unit size. When all primary units are the same size, then all the
weights equal 1.0 and they drop out reducing the expression to Eq. 4.6 for
equal-sized primary units.

The weights can be expressed in other ways. For example, from the right-
hand expression, we could write

(4.16)

where Wi�Mi /N . We prefer defining weights as Mi / because this defini-
tion makes the relation to sampling with equal-sized primary units clearer.

The formula for the actual variance of the population mean may be
written as

, (4.17)

where the subscript w indicates ‘weighted’ and Wi�Mi / . The resem-
blance of this case to the case of equal-sized primary units and sample sizes
is worth noting. Expression 4.8, with the subscript u added to indicate
‘unweighted’, may be written

.

Thus with unequally weighted primary units, the only difference from Eq.
4.8 is that we add the weights, Wi . Expression 4.17 is more general in the
sense that if all primary units are the same size, and all samples within
primary units (mi ) are the same size, then Eq. 4.17 reduces to Eq. 4.8.
Expression 4.17 also applies when sample sizes within primary units are
constant (in that case simply replace mi with m).

An approximate formula for the estimated variance is
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where wi�Mi /(�Mi/m). This expression can be re-written as

, (4.19)

which closely resembles Eq. 4.14 for equal-sized primary units except for
the weights, wi, which make the expression more complicated. If all primary
units are the same size and all sample sizes are equal then Eq. 4.19 reduces
to Eq. 4.14. As with Eq. 4.14, the right-hand term in Eq. 4.19 usually can be
omitted because N is large. In this case, we have

. (4.20)

Use of Eq. 4.20 produces a conservative (i.e., ‘safe’) estimate of v( ).
Expression 4.20 also applies to sampling plans with three or more stages as
long as N is large; i is the estimate obtained from primary unit i and, as
usual, must be an unbiased estimate of the primary unit mean. If N is not
large relative to the difference between the two terms in Eq. 4.19 then use of
Eq. 4.19 may be preferable.

Cases occasionally arise in behavioral ecology in which the population
mean of the primary unit sizes, �Mi/N, is known. For example, imagine
flying transects across an irregularly shaped study area to estimate the
density of an animal. The transects are primary units and will often vary in
size. In this case, �Mi is just the sum of the areas covered by all of the tran-
sects, which is the size of the study area, and N is the number of transects.
When �Mi /N is known, one has a choice of using it, rather than the sample
mean, �Mi /n, in defining the wi. Appendix One, Box 3 provides guidance
on which approach to follow and formulas for v( ) using the population
mean in defining weights.

Problems caused by having too few primary units 

If only a few primary units are measured, and if their means are rather
different from each other, then the standard error will be large. As a result,
there will be little power to detect differences, and confidence intervals will
be large. In other words, the study is likely to be inconclusive. These state-
ments unfortunately are true even if a large sample is collected within
primary units because standard errors in such cases are dominated by the
variances of the primary unit means.

This point is quite important in behavioral ecology because obtaining
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enough primary units is often difficult. The following example may help
show the importance of the issue. Suppose we are studying the ‘inside
strength’ of several species’ eggs to compare hatching difficulty among
species. The trait may vary across each species’ range so eggs are obtained
from more than one locale. Suppose that the actual puncture resistance is
45g and that the way ‘locales’ are defined the variance of locale-specific
means (S1

2) is 30 and the average within-locale variance ( ) is also 30 (these
are realistic values). Finally, suppose another species has a mean puncture
resistance of 54g (20% more than the first species) and the same variances.
Table 4.2 shows several hypothetical allocations of effort between primary
and secondary units. The total sample size increases as the number of
primary units decreases to reflect decreasing travel costs.

The right-hand columns of the table provide several measures of how
efficiency is affected by reducing the number of primary units. With ten
primary units all the measures of efficiency indicate that samples sizes are
adequate to estimate parameters with considerable precision and to deter-
mine which population mean is larger with acceptable power (89%). As the
number of primary units decreases, however, the situation deteriorates.
Standard errors increase moderately as the number of primary units
decreases. The t-values also increase, especially as the number of primary
units drops below four or five. The width of the 95% confidence interval
increases even faster because it is the product of the standard error and t-
value. Power also decreases steadily but most dramatically when the

S2
2
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Table 4.2. Effect of few primary units on precision and power1

Primary Secondary Population 95% CI Power
units (n) units (m) units (nm) SE ( ) on 

10 25 250 1.9 24.3 0.89
28 28 264 2.1 24.9 0.83
26 12 272 2.3 25.9 0.70
25 18 290 2.5 26.9 0.59
24 25 100 2.8 28.9 0.43
23 40 120 3.2 13.8 0.21
22 75 150 3.9 50.0 0.00

Note:
1 Power for testing Ho: 1� 2 when actually 1�45 and 2�54g. In each popula-
tion, S 1

2�0.003, S 2
2�0.003. Confidence interval, CI�t0.025,df SE ( ); power

obtained using methods in Appendix One with two-tailed test and level of
significance�5%.
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number of primary units falls below four or five. Notice that these trends
occur even though the total sample size is much larger with few primary
units. This situation, while certainly not universal in behavioral ecology, is
quite common. The major point of the example is that many studies which
do have enough data if the effort is distributed among seven or more
primary units do not have enough data when the sampling is restricted to
just a few primary units. Readers who know a programming language may
find it interesting to carry out similar simulations using realistic values and
sampling plans for their own studies.

As a practical matter, one should usually avoid multistage sampling with
fewer than five to seven primary units. Sometimes it is nearly as easy to
select several primary units (and measure relatively few population units in
each) as to select only a few primary units and measure many more popula-
tion units in each. When this is true, we recommend selecting eight to ten
(or more) primary units.

Alternative definitions of the population

In some studies, logistic constraints preclude having more than a few
primary units in the sample. When this is true, it is sometimes possible to
restrict the population to which statistical inferences are made and
thereby maintain adequate power. In this Section we discuss three general
approaches using the following example. Suppose we are studying some
aspect of breeding behavior or ecology of males such as the incidence of
cuckoldry, level of parental care, or influence of territory quality on
reproductive success. Due to practical constraints we can carry out the
work in one to three, but not more, study areas. Studies such as this one
often involve nonrandom selection, and this raises several conceptual
issues. These will be discussed in Section 4.10. For the present we will
assume that the study areas really could be selected randomly and we
could thus legitimately make statistical inferences to males in a larger
region. As noted above, however, our ability to reach any conclusions
with so few primary units is extremely small so we may prefer another
approach.

The three strategies to be discussed all entail restricting the spatial extent
of the target population to the area(s) in which we actually collect data. The
‘size’ of the sampled population – and thus the population about which we
can make statistical inferences – is thus much smaller. As will be seen,
however, these methods often provide a means of obtaining much higher
power for statistical tests. Another advantage of these approaches is that the
statistical analysis does assume that the study areas were randomly selected.
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First, we might carry out the study on only one area. Sample size would
then be the number of males. If all males in this area were studied, then we
would probably argue that these individuals could be viewed as a sample
from a hypothetical superpopulation (Section 1.2). The population would
thus be limited spatially to the single study area but would include all males
that might have been present in it during the study or all outcomes that
might have occurred with the males. As noted in Section 1.2, this approach
may be advantageous if the parameter or process under study varies spa-
tially. A possible disadvantage is that even the largest of the available areas
might not contain enough males for the study.

A second option is to carry out studies in two or three areas but treat
results from each area as a separate study. Results would then take the form,
‘in each of two areas, a statistically significant relationship…’. Statistical
inferences still extend only to the studied areas. This approach is sound sta-
tistically but like the first approach requires that enough males be present in
each study area to provide satisfactory precision. Also, the total number of
males that must be studied is much higher than if they could all be treated
as a single sample.

The third option has been used less often in behavioral ecology but
seems legitimate to us. Viewing the study areas as sampling units is
natural because they are separated in space. From a statistical point of
view, however, there is no necessity for doing this. Suppose instead that we
define the spatial dimension of the sampled population as including all
three study areas. We collect data from all three of them. If we actually
measure all of the males in these areas, then we invoke the superpopula-
tion concept and argue that the males or results may be regarded, for sta-
tistical analysis, as a random sample from a much larger, hypothetical
population. Alternatively, we randomly select which males to study. In
either case, we have a single, random sample of males and carry out our
analysis accordingly. We do not treat the study areas as primary units and
thus cannot make statistical inferences to other areas; such inferences are
based on nonstatistical reasoning (Section 1.4). Sample size, however, is
the number of males not the number of areas and precision thus may be
much higher.

There is, of course, an issue in this third option as to whether the mean
from a potentially internally variable population is interesting on biological
grounds. If the means in 2 years, for example, are sufficiently different biol-
ogists might feel that little can be learned from the combined mean. An
example involving the spatial dimension was provided in Section 1.2. As
noted there, however, the issue is a purely biological one.
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Each of the examples above involves a trade-off between the ‘size’ of the
sampled population and the precision or power of the statistical analyses.
They show that, with a given data set, we may be able to identify different
populations about which inferences may be made. The sampling plan may
thus be different, and, as a result, analytical methods and precision may
differ. The concept of alternate populations about which inferences may be
made with a given data set will be critical in Section 4.10 on nonrandom
sampling and in Chapter Six on pseudoreplication. The conceptual issues
in those contexts are less clear cut, so we encourage readers to study the
example in this Section as a prelude to the later discussion.

Investigators sometimes wonder whether certain variables should be
used to subdivide the population. One of the most common examples is
whether data collected in different years can be treated as a single sample or
not. Most behavioral ecologists are not familiar with survey sampling ter-
minology and thus do not express the question as whether they should
define years as primary units, but that, essentially, is the question. In nearly
all cases, the answer is that years should not be defined as primary sampling
units. The years are sequential and thus are not selected randomly from a
larger set of years. Furthermore, in many studies consecutive years are
likely to have similar values for the parameters being estimated so they are
more alike than two randomly selected years. Also, and of more impor-
tance, even if we could define years as primary units we would not want to,
since this would generally cause us to have a small sample size. Investigators
generally recognize this but often feel for some reason that they ‘have to’
separate years if the mean value of the variable differs significantly between
years. There is no statistical reason for this, however, any more than one has
to separate males from females in estimating average weight just because
the two groups’ mean weight is different. In an example involving males and
females, one may want to separate them (e.g., by stratification) to increase
precision, but there is no necessity for doing so.

4.6 Stratified sampling

In stratified sampling the population units are divided into groups so that
each unit is in exactly one group and units are then selected from each group
according to some sampling plan. In multistage sampling, we also begin by
dividing the population units into groups. The distinction is that in multi-
stage sampling we then select a random sample of the groups, and confine
subsequent sampling to these groups, whereas with stratification we select
units from each group. We call the groups strata to distinguish them from
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primary sampling units. As with multistage sampling, sample selection
must be independent in different strata.

Stratified sampling is often used in wildlife surveys that cover large areas.
Use of stratification ensures that the sample is distributed throughout the
area, permits heavier sampling in some areas, and lets the investigator
obtain separate estimates for each portion of the study area (i.e., for indi-
vidual strata). The Breeding Bird Survey, coordinated by the U.S. Fish and
Wildlife Service, provides a typical example of stratified sampling. The
survey area (much of North America) was first subdivided into 1° lati-
tude–longitude blocks (the strata). Roadside survey routes were then drawn
randomly from within these strata. Waterfowl surveys to estimate abun-
dance and production on the breeding grounds are designed in the same
way except that the strata are larger, and survey lines are located systemat-
ically within each stratum. The distance between survey lines varies from
stratum to stratum, thus the sample is not equivalent to a single, systematic
sample covering the entire study area. National surveys of woodcock and
mourning doves, and numerous state and provincial surveys also use strat-
ified sampling to select routes.

Estimation

We follow the same procedure as in previous Sections, first defining the
parameter, then discussing the usual estimate of it. We next discuss the
true variance, and finally present the estimated variance and standard
error. We first consider formulas to estimate the population mean with
one-stage sampling in each stratum. The results are then generalized to
include estimating other quantities and employing multistage sampling in
some or all first-stage strata. In multistage sampling, the case of equal-
sized groups was discussed first. In stratified sampling, strata are seldom of
equal size, and analytical methods are not much simpler even if they are,
so we proceed immediately to the more general case in which stratum size
varies.

Stratified sampling is almost always used to estimate means, including
proportions, or functions of means such as densities and totals. The para-
meter can be defined with the same notation used for multistage sampling.
With one-stage sampling in strata, the population mean is
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where N is now the number of strata in the population, Mi is the size of (i.e.,
number of population units in) the ith stratum, , is the mean of the Mi, yij

is the value of the variable for the jth population unit in the ith stratum, and

i is the true mean from the ith stratum.
This parameter may also be written as

(4.22)

where Wi � Mi /N and is the proportion of the population covered by
stratum i. Thus, ‘stratum size’ does not have to mean the actual number of
population units; it is sufficient to know what proportion of the population
falls in each stratum. This point will be important later when we discuss
methods based on estimated stratum sizes.

The point estimate of the population mean is just the sample analogue of
Eq. 4.21

(4.23)

where i is the estimate of i and is assumed to be unbiased. Readers who
have been following the use of expectation will be able to see that is an
unbiased estimate of . Thus, by successive application of the rules regard-
ing the expected value of a constant times a random variable and the
expected value of the sum of random variables (Section 2.4), we may write

(4.24)

� .

With a little practice, one quickly develops the ability to skip most of the
steps in the equations above. The point estimate is a linear combination of
the variables in the sample, so we expect that an unbiased estimate of the
parameter will be provided by the sample analogue.

Notice that as with multistage sampling and primary units of unequal
size, we would not wish to use the simple mean of the units in the sample as
our estimate (Section 4.5). They must be combined in a way that properly
reflects variation in stratum size and sample size within strata.

The actual variance of the point estimate, , is
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Thus, the actual variance of the estimated mean in each stratum is calcu-
lated using whatever methods are appropriate, and then these variances are
combined in a weighted average, with weights equal to the square of relative
stratum sizes, to obtain the overall variance.

The estimated variance is just the sample analogue

. (4.26)

Thus, to obtain the estimate, we first obtain an unbiased estimate of the
variance of the point estimate, i, within each stratum, v( i ). These are
then combined in a weighted average with weights equal to the square of
(Mi / ) to obtain the overall variance. The standard error of the estimate,
as usual, is just the square route of v( ) 

. (4.27)

The rules of expectation in Section 2.9 can also be used to show that the
estimated variance is unbiased. Note that we have defined v( ) as an unbi-
ased estimate of V( ). This being true, we may write

(4.28)

As with multistage sampling, the point estimate (in repeated sampling)
does not have a t distribution so, strictly speaking, t tables are not appropri-
ate. An approximate method has been worked out, however, under which
one calculates an ‘effective number’ of degrees of freedom. A t-value is then
obtained from a t-table using this number of degrees of freedom and then
standard procedures based on the t-table are used to construct confidence
intervals and carry out tests. With one-stage sampling in strata, the formula
for effective degrees of freedom is usually calculated using Satterthwaite’s
approximation (Cochran 1977 p. 96) which is

, (4.29)
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Construction of strata

In constructing strata, one tries to form groups so that the units within each
group are similar. This reduces standard errors within strata and thus the
overall standard error is small. As an admittedly trivial example, suppose
that the entire population consisted of just six population units and the
values for them were 1, 2, 3, 8, 9, 10. We wish to estimate the population
mean using a sample of size two. Notice that there are three small values (1,
2, 3) and three large values (8, 9, 10). With simple random sampling there is
a 40% chance that both units in our sample would come from the group of
small values or the group of large values. In either case, the point estimates
would be far from the true mean. Thus, the precision of a simple random
sample, in this case, is fairly low. Now suppose that we could assign the first
three units to one stratum and the second three to a second stratum. We
could then select one unit from each group thus avoiding any possibility of
the very poor estimates that might be obtained with simple random sam-
pling. This example illustrates the point that stratification works well when
one can assign similar units to the same strata. Note, too, that the method
works especially well when the stratum means are very different. Thus,
stratification in our example would pay even bigger dividends compared to
simple random sampling if the second group of numbers was 98, 99, 100.

Readers may be interested to note the difference in the principles used to
construct the groups for multistage sampling and for stratified sampling. In
multistage sampling, we sample the groups and estimate precision from the
variation among group means. We therefore try to keep this variation as small
as possible by including as much of the population variability within each
group (i.e., primary unit). In stratified sampling, we measure all groups; sam-
pling occurs only within groups and precision is estimated by the sample-to-
sample variation within groups. We therefore try to keep this variation small by
making the population units within each group as uniform as possible.

Use in behavioral ecology

Although most texts on sampling methods stress the utility of stratifica-
tion, the method is seldom used by behavioral ecologists. We suspect there
are at least three reasons for this. First, it is clear from the above formulas
that stratum sizes must be known or at least estimated (see later), and this
may take time away from the collection of data. Second, if it is anticipated
that the means will differ greatly between strata (the case in which stratifica-
tion is most effective), the biologist may prefer to think of the strata as
separate populations and make comparisons between them. Third, many
biologists like the way that systematic samples cover the population

128 Survey sampling methods



uniformly, whereas this is not guaranteed with stratified random sampling
unless the population is partitioned into a large number of small strata.

Despite these points, stratification is sometimes useful in behavioral
ecology. For example, as discussed previously, the approach is widely used
in wildlife surveys so that sampling effort can be concentrated in certain
areas. Furthermore, while systematic samples have small actual variance,
no way is known to obtain unbiased estimates of this variance, and the
usual estimates (based on simple random sampling) often suggest that pre-
cision is much lower than it really is. Stratified sampling, on the other hand,
avoids this problem. The estimate of variance is unbiased. Here is an
example showing the potential utility of stratification. We once encoun-
tered a biologist studying habitat preferences of radio-collared gray fox. He
wanted to monitor their use of habitat throughout the 24-h day. During the
night he checked each animal once every 4 h, and felt comfortable with the
resulting data. During the day, however, the sampling plan seemed too
labor intensive because the fox seldom moved during the day and used the
same resting area day after day. The biologist believed, however, that he
should standardize procedure by sampling uniformly throughout the day,
so he continued to record locations every 4 h day and night. If he had
defined daytime and nighttime strata, he could have greatly reduced sam-
pling intensity during the daytime period because there was virtually no
variation in habitat use during the day. His standard error for day would
have been small despite the smaller sample size. Furthermore, if habitat use
during the day and night differed, then the standard error of his overall esti-
mate would probably have been even smaller than the standard error he
actually obtained because, with stratified sampling, the overall standard
error comes solely from the variation within strata.

Poststratification

In typical stratified sampling, one selects units from the first stratum, then
the second stratum, and so on. In poststratification, one selects units from
throughout the population and then assigns them to the appropriate
stratum after selection. The main difference is that with poststratification
sample sizes within strata are not predetermined. As an example of this
technique, suppose we are estimating the average value of a quantity which
differs between males and females. It might be weight, for example, or time
spent in a given habitat or behavior. Our objective is to estimate the mean
for the population (we may also wish to estimate means for each sex, but
that is a different problem). Suppose we select a sample of 15 individuals,
and that by chance we obtain 4 males and 11 females despite the fact that
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the sex ratio is known to be 50:50. The simple average of the 15 measure-
ments is not a very satisfactory estimate because females dominate the
sample. As an alternative, we could calculate the mean for the males and the
mean for the females and then use the simple mean of these two values as
our estimate. This amounts to viewing the plan as one-stage sampling with
poststratification into two strata, males and females. Stratum sizes are
known to be equal under the assumption of a 50:50 sex ratio.

The true variance of the estimate with poststratification can be written in
two ways. The most obvious approach is to acknowledge that the sample
sizes within strata would vary from sample to sample. Some authors (e.g.,
Schaeffer et al. 1979) adopt this approach which then also has implications
for how the variance is estimated. Another approach (e.g., Cochran 1977)
involves a rationale under which variation in sample size per stratum does
not have to be recognized. The rationale is a little complex but is worth
understanding because it may occasionally be invoked in other applications
in behavioral ecology.

Suppose that sampling has been completed and the application involved
one-stage, simple random sampling within strata. Let the number of units
that we obtained in the ith stratum be denoted as mi, i�1,2,…,N,
N�number of strata. We now wish to calculate the actual variance, an
unbiased estimate of it, and, from this, the estimated standard error. The
variance of , as always, refers to the sample-to-sample variation in the
point estimate, . Normally, in calculating the value of V( ) we would con-
sider all possible samples. Suppose, however, that we restrict our attention
to those samples with the same sample size in each stratum as the sample
that we actually obtained. This set includes all possible ways to select m1

units from the first stratum, and the mean of these samples is thus exactly
equal to the true mean for that stratum. The same can be said of each
stratum. As a result, the overall mean of the estimates from this restricted
set of samples is exactly equal to the true population mean. We can thus
substitute this restricted set of samples for the full set (in which sample sizes
per stratum vary) because the two groups have the same parameter of inter-
est. In the restricted set, however, the sample sizes within strata do not vary,
and we thus treat them as constants. We therefore use the usual formula for
v( ) (Eq. 4.26) in which sample sizes really are predetermined. This type of
rationale is often described by saying that we calculate variances ‘con-
ditioned on’ the values of the sample sizes in our particular sample.

As noted above, this rationale, while complex, is sometimes useful to
behavioral ecologists in other contexts. To be sure it is clear, consider why
the rationale would not apply to multistage sampling with unequal-sized
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primary units. The cases are somewhat similar in that both seem to involve
size as a random variable: sample size per stratum in the case of poststrat-
ification, and size of primary units in the case of multistage sampling. The
question thus arises, ‘with multistage sampling, could we condition on
primary unit size and thereby treat the mean of the primary unit sizes in our
sample ( in Section 4.5) as a constant?’. In this case, however, we cannot
condition on the particular set of primary units we happened to select
because their mean, in general, is not equal to the population mean. Thus
the rationale does not work. This entire issue is a particularly good one to
work through using a computer simulation, though it would be a little more
difficult to program than some of the previous examples.

Estimated stratum sizes

In some applications, stratum sizes are not known exactly but must be esti-
mated. For example, suppose that we are handling or examining a large
number of individuals (plants or animals) and that we classify them into
cohorts using age, sex, or other attributes. A subsample of each cohort is
selected and some relatively expensive measurement (e.g., involving analy-
sis of a blood sample) is recorded. One of the goals is to estimate the
population mean for this variable. We would generally not want to use the
sample mean as our estimate. Instead, we would weight the cohort means
by the relative abundance of each cohort. In other words, we would view
the data as a stratified sample, with each cohort comprising one stratum. A
difficulty now arises, however. We do not know stratum sizes, we only have
estimates of them since we did not examine all members of the population.

Examples such as this one may be viewed as involving two samples, one
to estimate stratum sizes, and one to estimate means (or other quantities)
for each stratum. The plan is referred to as ‘double sampling’ for stratifica-
tion in recognition of the fact that two samples were selected. The addi-
tional uncertainty caused by estimating stratum sizes is incorporated into
the analysis by the addition of an extra term in the formula for the standard
error (see Appendix One, Box 3, Part C). The effect of this additional term
depends on how well stratum sizes are estimated. In the limiting case of
measuring all members of the population in the first sample, the formula
reduces to the equation for stratification with known stratum sizes.

4.7 Comparison of the methods

Comparing the precision of different estimators using computer simula-
tions and a small population is an effective way to gain additional insights
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into the strengths and weakness of the various sampling methods. In this
Section, we illustrate the technique and provide results from one such
simulation. We urge readers to carry out similar analyses on their own.

We compared precision and bias of simple random, systematic, and strat-
ified sampling in an artificial population (Fig. 4.13). We used sample sizes of
16, 36, and 64 (Table 4.3). Simple random sampling was least precise, followed
by systematic sampling, followed by stratified sampling. The estimators for
standard errors with systematic samples had a positive bias of 10–20%
(compare columns c and e in Table 4.3), a much smaller bias than in our
example with systematic sampling in Section 4.4. As noted there, results such as
these depend heavily on fine details of the population. Stratified sampling with
only a few units per stratum is seldom used in behavioral ecology but it would
be interesting to see this sampling plan evaluated in more field situations.

4.8 Additional methods

This Section considers a final few methods from survey sampling theory
which have been little used in behavioral ecology but which we have occa-
sionally found useful.
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Fig. 4.13. Hypothetical population from which the simulation results in Table 4.3
were obtained. The variable had the values 3 to 8, as indicated
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Ratio and regression estimators

We have already considered the estimation of ratios, such as population size
in two different years. We pointed out that when differences are expressed
on a proportional basis (e.g., ‘older females had 20% more young than
younger females’), the estimate is a ratio and this needs to be recognized in
the analytical methods. In this Section, we consider methods for estimating
means or functions of them using an approach that involves a ratio. The
same methods must be used for the analysis as were presented earlier, but
the conceptual basis for estimating means using ratio methods has not been
previously described. Thus we concentrate in this Section on the rationale
of this approach.

Suppose that we are interested in estimating the mean value of a trait that
is rather difficult to measure exactly, but that is closely correlated with some
other variable which can be measured quickly and easily. For example,
suppose we are measuring the age of trees by coring and counting rings.
Age in some stands is fairly closely correlated with tree diameter and we will
assume that this is true for our population. Below, we develop a method to
improve our estimate of mean age by using information about diameters.

Suppose that we measured diameters of the trees in our sample as well
as age. We denote the mean age, , and the mean diameter, . In repeated
sampling we would obtain pairs of values ( , ). If diameter is closely
related to age, then a plot of these pairs might look something like Fig.
4.14. With most real populations the set of all samples would be too large
for a scatterplot to be useful, but we can imagine that the plotted dots
indicate the distribution of the complete set of samples. We have also
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Table 4.3. Precision of different sampling plans used to estimate the mean
of the population illustrated in Fig. 4.13

Actual standard errors
Ave. est’d se ( )

Sample Simple random Systematic Stratified among the syst.
size samples samples samplesa samplesb

(a) (b) (c) (d) (e)

16 0.30 0.25 0.21 0.30
36 0.19 0.15 0.09 0.19
64 0.14 0.13 0.05 0.14

Notes:
a Two units per stratum.
b Values were slightly larger than those in column b.
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plotted the population means of the diameters and ages on the figure, and
we have drawn vertical and horizontal lines through these values.
Obviously, with only one real sample (one point on the plot), we do not
have the ability to draw these lines. Suppose, however, that we somehow
knew that our particular sample had a mean diameter less than the
population mean. By inspecting the figure, one can see that most samples
with i	 also have i	 . This is a result of our assumption that diame-
ter is correlated with age. Thus, if we did know that in our single sample 
was less than , we would naturally wish to adjust our estimate of the
mean age upwards.

Ratio and regression estimators provide a method for making this sort of
adjustment and thereby increasing the precision of the estimator. In their
simplest form, they require that the population mean of the xi to be known.
For the ratio estimator r, the adjustment is 

, (4.30)

where is the population mean and is the sample mean. This approach is
used when the slope of a regression line through the sample means is
believed to pass through the origin. When this is not true, then a regression
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Fig. 4.14. Artificial distribution of sample means when two correlated variables,
age and diameter, are measured on each unit. Each dot represents one sample.
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estimator can be used which accounts for a nonzero intercept (see Cochran
1977, Chapter Six).

The standard error of the ratio estimate is easily obtained since the esti-
mate is a constant ( ) times a random variable ( / ). As a result, we may
write

, (4.31)

(see p. 32) and se( / ) may be calculated using the equations introduced on
p. 41 and summarized in Appendix One, Box 9. As already noted, ratios, in
general, are biased estimators of the corresponding parameters, but the
bias is generally negligible. We therefore refer to ratios as essentially unbi-
ased.

An important point in understanding ratio and regression estimators is
that they are essentially unbiased regardless of the true relationship
between and . Thus, even if the relationship between the two variables is
much weaker than that in Fig. 4.14, the point estimates are still valid. In
such cases, the use of the auxiliary variable may not increase precision, and
in some cases their use may even decrease precision. Both point and interval
estimates, however, remain essentially unbiased.

In the example of the trees, we first suggested that all trees in the stand
must be measured to use the ratio estimator. A natural response might be
that measuring all trees would often be impractical and that a large sample
should be sufficient to estimate the population mean, . This is a reason-
able approach but the additional uncertainty caused by not knowing
exactly must be incorporated into the formula for the standard error. The
sampling plan when is estimated is similar to double sampling for strat-
ification in which a large initial sample is selected to estimate stratum sizes.
With the ratio estimator, the sample is selected to estimate the population
mean of the auxiliary variable. The plan is referred to as double sampling
for ratio estimation. Thompson (1992, Chapter 14) provides formulas for
the point and interval estimates.

Although ratio and regression estimators are rather complex and have
seldom been used in behavioral ecology, they are sometimes extremely
useful. We suggest Chapters 7, 8, and 14 in Thompson (1992) for readers
interested in learning more about them.

Visual estimates

Some variables of interest in behavioral ecology can be measured quite
accurately and quickly by eye, but are much harder to measure exactly.
Examples include estimates of vegetation cover (e.g., against the sky,
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ground or a density board), abundance (e.g., of seeds in small plots), and
flock or herd size. In cases such as these, accurate measurement may require
methods such as taking photographs, enlarging them, and then making
time-consuming counts or measurements. On the other hand, visual esti-
mates alone may be unsatisfactory because of potential bias. Double sam-
pling provides an excellent method for combining the visual estimates with
the exact measurements. The initial sample of visual estimates may be used
either in a stratified estimate or a ratio estimate. Below, we provide an
example of using visual estimates for a stratified estimate and then discuss
how the same data could be used in a ratio estimate.

Suppose we are counting something such as the number of seeds per plot,
eggs or larvae per nest, or invertebrates per water sample. The number per
population unit is often large so complete counts are time consuming.
Surveyors, however, can quickly assign population units to broad categories,
on the basis of visual inspection. We use the categories ‘few’, ‘medium’,
‘many’, and ‘very many’. To gather the data, an initial large sample of units
is examined, and the surveyor assigns each unit to one of these categories by
visual inspection. This is the first sample in double sampling. A random
number is then obtained from a hand calculator and if the value is equal to
or less than some threshold (e.g., 0.20), then the unit is measured exactly.
This gives us a second random sample from each stratum.

In this plan, a stratum consists of all the plots that would be assigned to a
given category such as ‘few’. Stratum size is thus the number of units of this
type. Recall from Section 4.6, expression 4.22 (p. 126), that we do not need
actual stratum sizes, the proportion of the population units that would be
assigned to a given stratum is all we need, and our first sample gives us this
estimate. The methods of double sampling for stratification thus are applica-
ble. Incidentally, the reason for deciding which units to measure exactly after
assigning them to categories is to ensure that these assignments are not made
with greater care than other assignments (i.e., the second sample must be a
random subsample of the first sample). As pointed out earlier, this approach
produces unbiased estimates of means even if the visual estimates bear little
relationship to actual abundance, in which case the stratum means would
differ little. In this case, the stratification would provide little or no gain in pre-
cision over just using the exact measurements, but the estimates are still valid.

We now turn to using this general approach for a ratio estimator.
Suppose that the surveyor made an estimate of actual abundance in each
unit rather than simply assigning them to broad categories such as ‘few’ or
‘many’. We could then view these estimates as auxiliary information and
use them in a ratio or regression estimator. In this event, we would have an
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estimate of the population mean of the visual estimates, not its true value
which would have required that we visually inspect all possible units.
Formulas for double sampling would therefore be used. If the visual esti-
mates were closely correlated with actual abundance, this estimator might
have substantially greater precision than use of just the exact measures. As
was the case when using this approach for stratification, no assumption is
made that the visual estimates are accurate; the ratio or regression estimate
remains essentially unbiased even if the visual estimates are poorly corre-
lated with the actual values.

4.9 Notation for complex designs

With certain multistage or stratified designs, calculation of the means per
group (primary units or strata) is a little complex. This happens when the
means should not be calculated as the simple average of all the observations
in the primary unit or stratum. For example, suppose we are estimating
some quantity using three-stage sampling with plots, subplots, and
quadrats as the primary, secondary, and tertiary units. We stratify subplots
(using habitats as strata for example) and sample some habitats more inten-
sively than others. Plots are all the same size, as are subplots. How should
we calculate the estimated mean per plot? We should not use the simple
mean of the quadrats because we stratified the subplots and sampled more
intensively in some strata than others. Similar problems occur often in
behavior studies. For example, suppose we divide the nesting attempt of a
bird into incubation and nestling periods and then record some aspect of
the male’s behavior each time it visits the nest. The number of visits will
vary between observation intervals, and we may collect more data during
some periods of the attempt than others. How should we calculate the
mean per visit so that it will be unbiased?

Problems such as these are basically issues of how to weight the observa-
tions. In simple cases, the correct approach is often obvious. In more
complex cases, it may be helpful to have formal guidelines and to write out a
formula that will be used to calculate the means per primary unit. The
formula can then be inspected one part at a time to make sure that no errors
have crept in. The biggest problem in deriving such a formula is developing a
workable notation. In this Section we explain one procedure for deriving a
formula to calculate unbiased means per primary unit. We use the example
above in which we selected plots, subplots, stratified the subplots, and then
selected quadrats within each stratum. Plots and subplots were each the
same size, sampling intensity varied between strata, and strata varied in size.
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The first step is deciding how many subscripts will be needed and what
each should mean. In most studies, the number of subscripts equals the
number of stages in the design plus the number of times we stratify. Here we
have three stages and stratification prior to selection of quadrats. We will
use i, j, k, and l as subscripts referring to plots, subplots, strata, and
quadrats respectively. Thus, yijkl is the measurement from the lth quadrat in
stratum k in subplot j of plot i. Next, we need symbols for the sample sizes
for each subscript except the last one – plots, subplots/plot, and quadrats/
stratum in this case. We will use n, m, and g respectively. Thus, n is the
number of plots, mi is the number of subplots in plot i, and gijk is the
number of quadrats in stratum k in subplot j of plot i. Finally, we need sub-
scripts to indicate stratum sizes and a symbol for the number of different
strata. We will use H for the number of strata and W to indicate stratum
size. Wijk�the proportion of the j th subplot in plot i that is covered by
stratum (i.e., habitat) k.

Summarizing,

yijkl�measurement on the lth quadrat in the kth stratum in subplot j of plot i.
gijk�number of quadrats in habitat k in subplot j of plot i.
Wijk�proportion of subplot j in plot i that is covered by stratum k.
mi�number of subplots in plot i.
n�number of plots.

The next step is to decide how we should combine observations indicated
by the last subscript (quadrats within a given habitat, subplot, and plot in
this case). The basic principle is to combine observations in such a way that
we obtain an unbiased estimate of the true mean for the group. We have
one-stage sampling within habitats, so we use the simple average of the
observations as the estimate. Thus, within a given habitat and subplot, our
estimate of the mean/population unit will be

. (4.32)

Next we consider how to combine these estimates to obtain an unbiased
estimate of the mean per subplot. Since we have stratified sampling within
subplots, we need to weight the means/habitat by the proportion of the
subplot covered by each habitat. The estimate of the mean/population unit
within the j th subplot (of plot i) is therefore

. (4.33)yij � �
H

k�1

 Wijkyijk

yijk �
1

gijk

 �
gijk

l�1
 yijkl
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The last step, combining subplots to obtain means/plot is relatively
simple because subplots were all the same size. The formula is thus

. (4.34)

These i are then used (since plots were all the same size) to estimate the
population mean as �� i /n. A single equation for the i may be obtained
by combining the equations above

. (4.35)

Since the means per primary unit ( i) are combined using equal weighting
( ��

i
/n), the se( ) is just se( i)/ (see expression 4.13, p. 116 or

Appendix One, Box 2).
Note that if we had a different number of stages, if the number of sub-

plots/plot had varied, or if stratification had been used prior to other
stages, then a different set of symbols and equations would have been
needed. The number of different formulas that may be needed in different
studies is thus very large.

4.10 Nonrandom sampling in complex designs

In Section 4.4 (pp. 101–2), we discussed the fact that nonrandom sample
selection is often unavoidable in behavioral ecology, emphasizing the
difficulties that may result. Section 4.4, however, was restricted to one-stage
sampling. We now extend this discussion to designs that involve multistage
sampling, stratification, or both.

In this Section we use the phrase ‘nonrandom sampling’ broadly includ-
ing cases in which selection is supposed to be independent (e.g., in different
primary units) but in fact is not independent.

Analysis of samples collected with nonrandom selection involves assum-
ing that the sampling plan actually followed produces estimates with essen-
tially the same statistical properties as some other sampling plan which is to
be used as the basis for point and interval estimation. This assumption is
usually based largely on biological, rather than statistical, considerations.
For example, with one-stage, systematic sampling, we use the formulas for
simple random sampling and hope that any errors are not too serious. We
have shown, in that case, that the point estimate remains unbiased but that
standard errors are usually overestimated, sometimes substantially
(Section 4.4, pp. 102–7).
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With one-stage sampling there is generally little choice in how to analyze
the data: the formulas for simple random sampling are used. With more
complex designs, however, more than one alternative may exist, and
different investigators (biologists or statisticians) may not agree on the best
course. While this potential for disagreement must be recognized, it is still
helpful in such cases to clarify the assumptions inherent in each approach
and to reach agreement that if those assumptions – wise or not – are
adopted, then the rest of the analysis is appropriate. This process at least
reduces the scope of the disagreement to whether the assumptions are rea-
sonable, a topic that is often evaluated on the basis of biological evidence
rather than statistical analysis. As noted in the first Section of this Chapter,
biologists can then argue biology, not statistics, which is presumably pre-
ferred by all participants in the discussion.

A common example of nonrandom sampling in behavioral ecology is
systematic sampling in two ‘dimensions’, where dimension refers to a
spatial or temporal variable or to individuals such as animals or plants.
First, consider an example of sampling solely in space. Suppose we lay out n
transects spaced across a study area at equal intervals, and then place m
plots along each transect using the same spacing as between transects. This
produces a regular grid of plots (Fig. 4.15a). We would probably treat this
as a one-stage systematic sample with sample size equal to nm. Now
suppose that the distance between transects was greater than the distance
between plots along transects as in Fig. 4.15b. This design begins to look
like two-stage sampling with transects as primary units and plots as sec-
ondary units. We might thus be tempted to analyze the data this way, calcu-
lating means per transect and thereby obtaining a sample of size n rather
than nm. As noted in Section 4.5, if the number of transects is small, this
approach may result in substantially lower power than viewing the data as a
one-stage sample of size nm.

Viewing the sample as two-stage is probably more conservative, which
may be desirable, but in that case we should recognize two additional prob-
lems. First, analysis of multistage samples assumes simple random selec-
tion of the primary units (transects in this case) but in our example they
were selected systematically. Second, independent selection of the sec-
ondary units in different primary units is also assumed, but this was not the
case; secondary units are lined up in rows. Finally, having recognized that
this systematically selected sample may be better viewed as a multistage
sample, one might wonder whether the same is true of a regular grid pattern
as in Fig. 4.15a. Thus, we might select either rows or columns and designate
them as primary units. It is easy to show that with real data sets of this sort,
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Fig. 4.15a,b. Two arrangements of sample stations along transects.
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estimated standard errors and power may vary substantially according to
which of these approaches one follows. Obviously, choosing the approach
on the basis of which one happens to produce the best results is not
legitimate. The decision should based on considerations such as those in
Section 4.5 on evaluating nonindependence.

Other cases of sampling in two dimensions generally involve time as one
of the dimensions. Thus, we may visit each of several routes, plots or loca-
tions at regularly spaced intervals, or we may record measurements on a
given sample of plants, animals, or other objects at regularly spaced inter-
vals. In such cases, it is customary to view time as the second dimension,
thus considering the plot or individual as the primary sampling unit. For
example, if the number of animals seen, heard, or captured on several,
regularly spaced occasions at each of several fixed locations is recorded
then the natural tendency among behavioral ecologists seems to be to
regard the number of locations as ‘the sample size’, which, by implication,
establishes locations as primary units. If we make repeated measurements
on plants or animals, then they are generally thought of as the basic units
for analysis, that is, as the primary units.

These customs are probably useful because a detailed quantitative
evaluation of the issue is quite complex and will usually require making
difficult estimates of quantities that behavioral ecologists are unfamiliar
with. Note, however, that the guideline may be rather arbitrary. For
example, if ten plots are each visited three times, then we obtain an effective
sample size of ten. But if we selected ten times and visited the three plots
each time, then our sample size would be three. The population diagrams
would appear identical (except for being rotated 90°) but, as noted in
Section 4.5 (pp. 120–122), the second approach would probably have far
less power. In fact, in many real situations a study with such a small sample
size would not be worth conducting. This seems a heavy price for what is in
reality a largely arbitrary choice about which dimension is used to designate
the primary units. Perhaps the best lesson from this example is to avoid
systematic sampling in two dimensions whenever possible. If this is not pos-
sible then we advise deciding, while designing the study, which dimension
will be used to define primary units and ensuring that the plan provides an
adequate number of primary units.

Another difficult situation involves measuring all units in a given study
area. We begin with a case that is fairly easy to resolve, and proceed to more
difficult cases. Suppose we record repeated measurements on all the individ-
uals of a mobile species in a study area. We have already noted (Section 1.2)
that the individuals can usually be viewed as having been (self-)selected
from a larger superpopulation. With repeated measures, the sampling plan
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is viewed as multistage, and the individuals (or more precisely the set of
measurements that might be recorded on them) become primary units.
With animals (or other objects) that move around, it is often not too
difficult to imagine the existence of a superpopulation and to feel that the
statistical analysis is useful. If test results are significant we will generally
feel that the sample results can be extrapolated to a larger population,
though the spatial or temporal limits of the population may be difficult to
establish. On the other hand, if the result is nonsignificant, then we have
good reason for not generalizing the results at all. The analysis thus serves
the usual purpose: it tells us whether the study has revealed which popula-
tion parameter is larger or was inconclusive.

Now, however, suppose we are studying long-lived objects that do not
move around much, such as trees or ponds, and suppose further that the
study area is fairly distinctive or unusual, rather than being one example of
a widespread type. In these cases, extrapolation to larger populations may
be more tenuous and less interesting. If all of the subjects were measured,
and there is no temporal variation, then no statistical analysis is needed or
appropriate because the data set does not represent a random sample from
a larger population of interest. In many studies, however, sampling still
occurs in time, and our interest lies in means across the entire study period.
For example, we may need to estimate average water temperature during
July in a series of ponds but lack a continuous record. The population unit
is then a ‘pond-time’. Even though all ponds were measured, sampling still
occurs in time, and thus statistical analysis is needed to estimate one mean
or to compare means.

In this case, as usual, the formulas depend on the sampling plan. If all
units were measured on the same days, then a population diagram would
look like that in Fig. 4.16 and the sample should probably be viewed as one-
stage systematic with sample size equal to the number of sampling occa-
sions (five in the example). Most behavioral ecologists would probably view
ponds as determining the sample size (because the importance of inde-
pendent selection in different primary units is generally not recognized),

4.10 Nonrandom sampling in complex designs 143
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but the population diagram makes it clear that viewing the plan as one-
stage systematic is more appropriate. Now suppose that an independent
systematic sample was taken from each pond with the constraint that no
more than two units were measured on a single day. An example of this plan
is shown in Fig. 4.17. This plan is actually stratified systematic sampling
(ponds are strata) with the qualification that starting times were not
selected completely independently. Most analysts would probably feel that
the dispersion of units (pond-times) across the population was sufficiently
even that the formulas for simple random sampling (Appendix One, Box 1)
could be used. Other approaches might be imagined; for example, the
number of measurements might differ between ponds in which case the for-
mulas for stratified sampling (Appendix One, Box 3) might be preferable.

The approach described here seems reasonable on the basis that the
superpopulation concept is not invoked when doing so is questionable or
unsatisfying. Furthermore, the population is well defined and each alterna-
tive above represents application of well-accepted sampling theory. It must
be acknowledged, however, that editors and referees, not used to the
implied flexibility, may object to this type of rationale which must therefore
be explained with particular care. In many real cases, unfortunately,
authors may be better served by invoking the superpopulation concept and
thus treating individuals as primary units, even if the rationale for this
approach is questionable, rather than risking rejection of their work simply
because the approach above is less familiar.

At this point in the discussion, readers may be growing weary of the need
for close reasoning and tenuous assumptions and the danger that such
efforts may not be viewed favorably by others. We completely agree.
Nonrandom sampling, particularly in two dimensions or with multistage
designs, causes numerous problems that are difficult or impossible to
resolve in a satisfactory manner. The real point of this Section is thus to
stress the importance of delineating populations large enough to be inter-
esting, and to develop well-defined sampling plans that avoid nonrandom
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and nonindependent selection. In particular, decide how the population
and sampling plans will be defined before data collection begins, or at least
be sure that this process will not lead to unpleasant surprises if it is carried
out after the data collection.

To end this Section on a more optimistic note we return to the example
posed at the start of the Chapter (p. 85). As noted there, the investigator
probably had few options in this case and, even though it raises difficult
issues, a meaningful analysis should nonetheless be possible. We therefore
outline how the analysis might be carried out.

The example involved studying habitat preferences by flying aerial
surveys across most or all of a study area several times and recording which
water bodies had animals near to them and what habitat they were in.
Recording water bodies suggests that the investigator wanted to view them
as part of the definition of the population unit (and this was in fact true).
On reflection, however, it may be best to ignore water bodies and simply
view the habitat patches as sampling units. Since they are unequal in size,
they must be viewed as groups of arbitrarily defined (but smaller) units,
such as hectares. In this particular case, the study area was distinctive, and
viewing the sampled patches as coming from a superpopulation was not
appealing. Statistical inferences were thus restricted to the study area
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(during the period of study). The population diagram for a single habitat
type would thus appear as in Fig. 4.18 in which rows represent the spatial
dimension and columns represent the temporal dimension. The finer, hori-
zontal lines indicate a single unit of area (e.g., a hectare), the heavier lines
indicate patch borders. Black squares indicate population units (patch-
times) that were measured. They are lined up in columns because they were
all measured on each survey. There would be eight such pictures, one for
each habitat type, to fully represent the study. Normally, with this type of
diagram, separate measurements would be made for each unit in the
sample. Thus for each of the smaller squares (population units) we would
record a 1 if an animal was observed in the square and a 0 otherwise. In this
case, however, it does not matter which particular hectare, within a given
patch, an animal was in; recording in which patch it occurred provides all
the information needed for the estimates. Fig. 4.18 suggests that the data set
be viewed as a one-stage sample of times from the entire 3-year period
study. In comparing densities between two habitats, the paired nature of the
data should be recognized since each habitat patch was observed at the
same time and, as a result, the correlation between observed densities must
be taken into account. This could be done by calculating the differences, for
each day, between densities and using these differences as the measurements
(e.g., in testing whether the sample mean of the differences was significantly
different from 0.0). For example, to compare densities in habitats 1 and
2, we could define d12i�y1i�y2i, where y1i and y2i are the densities in
habitats 1 and 2 on survey i. We would then calculate

and use these quantities in a t-test to
determine whether the observed difference in densities was statistically
significant.

4.11 Summary

Survey sampling theory provides alternatives to one-stage, simple random
sampling. Choosing a sampling plan, or identifying the plan after data have
been collected, is often difficult but may be assisted by a ‘population
diagram’ which portrays population units and units in the sample. Several
examples are provided in this Chapter. Systematic selection of units often
provides better coverage of the population than simple random selection.
Unfortunately, no unbiased estimate of variance is known and estimates
based on the formula for simple random sampling usually have positive
bias (i.e., tend to overestimate standard errors). Nonrandom selection is
also common in behavioral ecology studies and, while frequently unavoid-

d12 � �d12i / 8 and se(d12) � sd12i / �8

146 Survey sampling methods



able, usually causes uncertainty over what population is really being
sampled. Multistage sampling and stratification both involve partitioning
the population into groups. In multistage sampling some of the groups are
selected randomly and subsequent selections are made only in the selected
groups, whereas in stratified sampling population units are selected from
every group. Multistage sampling is widely used in behavioral ecology. In
nearly all cases, point and interval estimates are based on the estimates from
primary units. As a result, systematic sampling within primary units does
not cause any difficulty in error estimation. In most studies, the estimates
from primary units are weighted equally, and calculations are quite simple.
Occasionally, however, the estimates need to be weighted by primary unit
size in which case investigators have some options and calculations may be
somewhat more complex. Stratification has not been widely used in behav-
ioral ecology, except in wildlife monitoring studies, perhaps because some
of the same benefits may be obtained using systematic sampling. Unbiased
estimation of standard errors, however, is possible with stratified designs
that closely resemble systematic samples; thus, this approach may also be
useful to behavioral ecologists. Other designs such as double sampling,
poststratification, ratio and regression estimators, and sampling with
unequal selection probabilities are discussed briefly. Multistage sampling
with nonrandom selection poses particularly difficult problems because
estimated precision may depend strongly on subjective decisions about
what assumptions to adopt. Examples include systematic sampling in two
dimensions and multistage sampling when all individuals in a study area
are sampled. While these problems are often unavoidable in practice, the
difficulty of treating them rigorously indicates the great benefit of using
well-developed sampling plans whenever possible. This Chapter describes
many opportunities for achieving this goal, some of which have not been
widely used by behavioral ecologists.
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5
Regression

5.1 Introduction

This Chapter reviews methods for studying the relationship between two or
more variables. We begin with a brief description of scatterplots and simple
summary statistics commonly calculated from them. Emphasis is given to
examining the effect of outliers and influential points and to recognizing
that measures of association such as the correlation coefficient only describe
the linear (i.e., straight line) relationship. Simple linear regression is then
described including the meaning of the slope, the basic assumptions needed,
and the effects of violating the assumptions. Multiple regression is then
introduced, again with emphasis on quantities of direct value to behavioral
ecologists rather than on the analytical methods used to obtain these results.

We make a slight notational change in this Chapter. In prior Chapters,
we have used lower-case letters for quantities associated with the sample
and upper-case letters for quantities associated with the population. In dis-
cussions of regression, upper-case letters are generally used for individual
values and their means regardless of whether they are associated with the
sample or population. Regression coefficients for the population are gener-
ally identified by the symbols � (e.g., �o, �1 …) and the corresponding
sample estimates are denoted bo, b1 and so on. These practices are so well
established in the statistical literature that we follow them in this Chapter
even though it introduces some inconsistency with other Chapters.

5.2 Scatterplots and correlation

Among the simplest and most commonly used methods for studying the
relationship between two quantitative variables are scatterplots and
correlations. A scatterplot is produced by plotting the pair of measure-
ments on each sample unit as a point on a graph with the vertical axis
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representing one of the variables (the dependent variable if one of the
variables is so designated) and the horizontal axis the other (the inde-
pendent variable if one is so designated). The result is a plot that looks like a
scattering of points. For example, Gese et al. (1988) used a scatterplot (Fig.
5.1) to describe the relationship between coyote home-range size (the depen-
dent variable) and the percentage of available pinyon-juniper habitat (the
independent variable). The scatterplot suggests that home range size tended
to decrease as percentage pinyon-juniper habitat increased.

When a categorical variable is used to explain changes in a quantitative
variable a scatterplot can also be constructed. The categories of the categor-
ical variable are represented as equally spaced points on the horizontal axis
and the resulting scatterplot looks like a series of vertical bars above these
points. One may wish to display the mean or median of the quantitative
variable at each value of the qualitative variable on the plot. For example,
Diernfeld et al. (1989) plotted the mean of plasma vitamin E (the dependent
variable) from peregrine falcons versus the categorical independent variable
month (Fig. 5.2). One could suppress the individual data points and show
only the mean and a bar representing the standard deviation of the data
points for a given month to keep the plot from appearing overly cluttered.
Among other things, we see that in July mean plasma vitamin E is highest.

It is customary to attempt to quantify any relationships that appear in a
scatterplot. The simplest possible relation is when the points in a
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Fig. 5.1. Example of a scatterplot showing coyote home-range sizes versus per cent
available pinyon-juniper habitat. (From Gese et al. 1988.)
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scatterplot appear to be centered along a straight line. When above average
values of one variable tend to accompany above average values of the other
variable we say that the variables are positively associated. When above
average values of one variable tend to accompany below average values of
the other the variables are said to be negatively associated. The more tightly
the points appear to be clustered about a straight line, the more highly asso-
ciated they are. A numerical measure of this degree of association is the
(Pearson product moment) correlation coefficient. Suppose we have a
sample of n observations on two variables X and Y denoted

(X1,Y1), (X2,Y2),…,(Xn,Yn)

The sample correlation coefficient, r, may be expressed in several ways

(5.1)

.�
�(Xi �X ) (Yi �Y )

��(Xi �X )2�(Yi �Y )2

�
1

n � 1
 �

n

i�1
�Xi �X 

sd(Xi)� �Yi �Y 
sd(Yi)�

r �
cov(Xi,Yi)

sd(Xi)sd(Yi)
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Fig. 5.2. Example of a scatterplot involving a categorical independent variable. The
plot displays both the mean of plasma vitamin E per month and a bar representing

the standard error of the means. (From Dierenfeld et al. 1989.)
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The first expression describes r as the ratio of the covariance of Xi and Yi to
the product of their standard deviations. The second versions expresses r as
a function of the products of deviations, Xi� and Yi� , each standard-
ized (divided by) its standard deviation. The third expression shows that r
may be calculated solely from the appropriate sums of squares rather than
mean squares.

If whenever Xi takes on a value above its mean Yi tends also to be above
its mean, then the products of the deviations in the summation tend to be
positive and r is positive. Likewise, if whenever Xi takes on a value above
its mean the corresponding value of Yi tends to be below its mean, then
the products of the terms in parentheses in the summation tend to be neg-
ative and r is negative. Positively associated variables will therefore have a
positive correlation and negatively associated variables will tend to have a
negative correlation. It can be shown that the correlation coefficient must
take on a value between �1 and �1, achieving the values 
1 only if all
the observations fall exactly on a straight line. Data that fall exactly on a
horizontal line are defined as having a correlation coefficient of 0.0 (Yi has
constant value independent of the value of Xi). The correlation
coefficient is undefined for data that fall perfectly on a vertical line (Xi has
constant value). In these latter examples, either Xi or Yi is constant and
hence questions concerning how changes in one variable relate to changes
in the other cannot be answered, because one of the variables does not
change. Some sample scatterplots and the associated value of r are given
in Fig. 5.3.

Y X 
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Fig. 5.3. Examples of scatterplots and their associated correlations. (From Moore
and McCabe 1979.)

(a) Correlation r = 0.01 (b) Correlation r = 0.28 (c) Correlation r = 0.43

(d) Correlation r = 0.73 (e) Correlation r = 0.91 (f) Correlation r = 0.99



Two subtle points about the relation between scatterplots and the
correlation coefficient are worth mentioning. First, the correlation
coefficient depends on the vertical distances between the observations and
the line rather than on the perpendicular distances to the line. The
differences between these two distances can be large if the line is very steep.
Thus, two scatterplots may appear to be equally tightly clustered (in the
sense of perpendicular distance) about a line, yet have quite different values
of r because the lines have quite different slopes. Second, a scatterplot can
show a very distinct trend or pattern and yet the correlation can be 0. This is
because the correlation coefficient indicates only whether there is a straight
line relation between two variables. When a scatterplot displays a relation-
ship other than a straight line, the ‘strength’ of the relationship can be mea-
sured through other measures such as the coefficient of multiple
determination using a multiple regression model (Section 5.4) or by investi-
gating whether a straight line relation exists between transformations
(functions) of the two variables. An example of this latter method is given
in Section 5.3 on simple linear regression.

A few words of caution concerning correlation may be useful. The pres-
ence of correlation between two variables, even a substantial correlation
(near �1 or –1), does not imply that a cause and effect relationship exists
between the two variables. The correlation may be present because both
variables are responding to changes in some third variable. Correlation may
also be present but impossible to interpret when a cause and effect relation
exists between two variables, but this effect is ‘mixed up’ or ‘confounded’
with the fact that changes in several other factors are also causing changes
in the two variables.

Additional features of scatterplots that one should be aware of are outli-
ers and influential points. An outlier is a point that lies well above or below
the ‘band’ or ‘cloud’ formed by the rest of the points. An influential point is
one that has a strong effect on the impression that a trend is present in the
data, i.e., removal of this point would have a significant effect on our
impression of the trend present. Isolated points at the margins of a scatter-
plot are often influential.

In the scatterplot in Fig. 5.4 from Fryxell et al. (1988), the circled point
would be considered an outlier as it lies well above the ‘band’ formed by the
other points. This point is also influential. In the scatterplot in Fig. 5.5,
adapted from Renecker and Hudson (1989), the circled point is influential.
The trend suggested by the plot with the point present is much steeper than
that when the point is removed.

152 Regression



5.2 Scatterplots and correlation 153

Fig. 5.4. Example of an outlier (circled) in a scatterplot. The plot displays moose
density (per km2) versus moose seen per hunter-day. (From Fryxell et al. 1988.)
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Fig. 5.5. Example of an influential observation (circled) in a scatterplot. The plot
displays the time a female moose spent ruminating cell wall constituents (CWC) in
the diet dry matter (DM) for selected times from December 1982 to January 1984 at
Ministik Wildlife Research Station, Alberta, Canada. (From Renecker and

Hudson 1989.)
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When outliers are present, it is worth investigating whether the observa-
tion corresponding to the point is special in some way. If it is, analyzing it
separately from the remaining data may be worthwhile. When a point is
influential, the data should be analyzed twice, once with the point present
and once with the point absent. Thus, conclusions based on analysis with
the point present must be regarded with caution if they differ from conclu-
sions based on analysis with the point absent. Conclusions whose validity
rests on a single observation cannot be made with confidence.

5.3 Simple linear regression

Formal models

If the scatterplot or correlation coefficient suggests that the relation
between bivariate data (i.e., data in which two variables are measured on
each sample unit) is a straight line trend (recall that the equation of a
straight line is Y�b0�b1X, where b0 is the Y-intercept and b1 is the slope),
often one will want to explore this apparent relation further. The method
for such exploration is called simple linear regression. The word ‘regression’
was coined by the English scientist Sir Francis Galton (1822–1911) and was
based on his study of the relation between the heights of fathers and their
sons. He found that tall parents tended to produce offspring that were taller
than average, but not as tall as their parents and called this phenomenon
‘regression toward mediocrity’.

In behavioral ecology, the question most commonly of interest is whether
the apparent straight line trend indicates that a true straight line trend exists
in the population from which the data were drawn. To answer this question,
one must think about the population from which the sample (X1,Y1),
(X2,Y2),…,(Xn,Yn) comes. If one thinks of the Xi as independent variables
and the Yi as dependent variables, a formal regression analysis assumes that
the distribution of all Yi in the population, having a given value on the X-axis
(X), is normal with mean �0��1X and variance �2. Thus the population units
are scattered around the line Y��0��1X, and �2 describes how tightly the
points cluster around the line. In particular, the proportion of population
units within a given vertical band about the line Y��0��1X is determined
by the normal distribution. Notice that the variance �2 of the population of
y-values for a given X is independent of X. This is referred to as the assump-
tion of homogeneity of variance. One makes no assumptions about the distri-
bution of the Xi in the population. If neither the Xi nor Yi values are regarded
as independent variables and both are regarded as random, the bivariate
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normal distribution may provide an adequate description of their joint distri-
bution. The bivariate normal distribution has the property that for a given
value on the X-axis (X) the distribution of the Yi for i is such that Xi�X is
normal with mean �0��1X and variance �2. In addition, the Xi are also
assumed to be normally distributed in the population with mean �x and vari-
ance �2, and in the population of all units the correlation coefficient between
the Xi and Yi is assumed to be �. Discussion of the bivariate normal distribu-
tion is beyond the scope of this Chapter. The interested reader is referred to a
text on regression or multivariate analysis (e.g., Neter et al. 1983). Although
this description of the population is rather complicated, the validity of infer-
ences depends on the extent to which this description holds.

Inference

In behavioral ecology, researchers usually wish to make inferences about
the slope �1, generally testing whether the slope is 0 (which under the
assumption of simple linear regression is interpreted as equivalent to
testing whether or not there is a relation between Y and X). One may also
wish to make inferences about the intercept �0, the variance �2, the correla-
tion � (when the population is bivariate normal), and predictions of future
values of Y for a given X based on the line Y��0��1X. The first step is to
obtain estimates of the slope �1 and intercept �0. This is generally done by
the method of least squares. This method finds the equation of the straight
line (called the least-squares regression line) with the property that it mini-
mizes the sum of the squares of the vertical distances of the individual data
points from the line. If we have n observations on two variables X and Y,
denoted (X1,Y1), (X2,Y2),…,(Xn,Yn), using calculus one can show that the
least-squares line has the equation Y�b0�b1X where

(5.2)

Notice in the denominator of b1 that if all the Xi are equal the denominator
will be 0 in which case �1 is undefined. Hence we must take observations at
two or more different values of Xi (and hence at least two observations) to
estimate b0 and b1. It also turns out that at least three observations involving
at least two different values of the Xi are necessary to estimate variances

b0 �Y � b1X .

bi �
�

n

i�1

(Xi �X ) (Yi �Y )

�
n

i�1

(Xi �X )2
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and make statistical inferences. If the pairs (X1,Y1), (X2,Y2),…,(Xn,Yn) in
the sample are independent (this will be true if sample units were selected
by simple random sampling), one can show that unbiased estimates of �0

and �1 are given by the least-squares estimates b0 and b1.
An unbiased estimate of �2 is given by the mean square error (MSE)

(5.3)

and, if appropriate, � is estimated by the correlation coefficient, r, for the
sample data. In addition b0 and b1 have normal distributions with means �0

and �1 and actual standard errors

(5.4)

respectively. Estimates of these standard errors, denoted se(b0) and se(b1),
are obtained by replacing � by its estimate . MSE, se(b0), and se(b1)
all have n�2 degrees of freedom. Confidence intervals and hypothesis tests
for �0 and �1 based on normal theory are applicable and the general pro-
cedures discussed in Sections 3.2 and 3.3 can be used. For example, a
(1��)�100% confidence interval for the true slope �1 of the regression
line is

, (5.5)

and an �-level test of the hypotheses H0:�1�0 versus H1:�1�0, i.e., a test
of whether the slope differs from 0, is to reject H0 if

. (5.6)

Rejection of H0 implies there is evidence that a straight line relation
between X and Y explains some of the variability in Y and hence that the
correlation, �, is nonzero. In fact one can show that the test of H0:�1�0
versus H1:�1�0 is equivalent to testing H0:��0 versus H1:��0.

|b1| � tn�2,�/2se(b1)
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(Yi � b0 � b1Xi)
2

156 Regression



Examining assumptions

The validity of any inference one makes depends on the extent to which our
formal model describes the population from which the data were drawn.
Thus, a complete regression analysis should include examination of the
assumption that the data follow a normal distribution, have homogeneity
of variance, follow a straight line, and are independent. ‘Unusual’ observa-
tions, such as outliers or influential points, should also be identified and
their effect on conclusions should be investigated. Examination of assump-
tions is often carried out by examining the residuals ei�Yi�b0�b1Xi .
Notice that the residual is simply the difference between the value of Y
actually observed and the value Y would have if it fell exactly on the least-
squares line (Fig. 5.6).

Two ways in which the residuals are used to examine assumptions are as
follows. First, recall that the scatter of the population units (of which our
data are a sample) about a line is determined by the normal distribution. In
particular, the proportion within a given vertical band about this line is
determined by the normal distribution. One consequence of this is that the
residuals, which measure how far a particular observation is from the least-
squares line, should behave approximately as though they have a normal
distribution with mean 0. If one calculates all the residuals (many statistical
software packages that do regression will calculate residuals), one can use
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Fig. 5.6. The least-squares line superimposed on a scatterplot. Also shown for a
particular point are the observed value of the Y, the predicted value of Y, and the

residual as the vertical distance from a point to the regression line.
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statistical procedures to investigate whether the residuals appear to have a
normal distribution. Second, the homogeneity of variance assumption
implies that the population units should display the same magnitude of
variability about the regression line for any point on the x-axis. As a conse-
quence, the magnitude of the residuals should not display any tendency to
increase or decrease as the associated value of x increases or decreases.
Such tendencies may indicate a violation of the homogeneity of variance
assumption.

Corrective action may be necessary if the assumptions are not met.
For example, if the data do not appear normal or do not satisfy the
homogeneity of variance assumption (violations of these two assump-
tions often occur together), one may try replacing (transforming) the
values of Y1,…,Yn by some function of these values, i.e., by
f(Y1),…, f(Yn). Common functions, f, are the logarithm, square root,
reciprocal, or arcsin. Often, the transformed Y-values will satisfy the
assumptions of normality or homogeneity of variance and regression
can proceed on the pairs [X1, f(Y1)],…,[Xn, f(Yn)]. One must proceed
with caution, however, because conclusions will now refer to the trans-
formed data. For example, if a reciprocal transformation is used and
one determines that the relation between 1/Y and X is 1/Y��2X, it is
incorrect to conclude that increases in X are associated with decreases in
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Fig. 5.7. Example of a violation of the homogeneity of variance assumption. The
scatterplot displays the relationship between the concentration of selenium in the
liver of female mallards and the concentration in the eighth eggs for females fed
diets containing 1, 2, 4, 8, or 16 ppm selenium as selenomethionine. (From Heinz

et al. 1989.)

25

20

15

10

5

0
109876543210

1 ppm
2 ppm
4 ppm
8 ppm
16 ppm

Selenium in diet 

Y = –1.10 + 2.60x
R 2 = 0.83
P <  0.01

Selenium in liver (ppm, wet wt)

S
el

en
iu

m
 in

 e
gg

 (
pp

m
, w

et
 w

t)



Y. In fact, the relation between Y and X is Y��1/(2X ) and Y increases
(becomes less negative) as X increases.

Although a formal discussion concerning the effects of violations of
assumptions on the resulting inference is quite mathematical, a few com-
ments can be made. If the expected value of Y at a given X is in fact �0��1X
(i.e., on average the value of Y at a given X is �0��1X ), then the least-
squares estimates of �0 and �1 are unbiased even if the assumptions of
homogeneity of variance, normality, and independence do not hold. If the
expected value of Y at a given X is in fact �0��1X and the assumptions of
homogeneity of variance and independence hold, then MSE is an unbiased
estimate of the variance even if the assumption of normality does not hold.
For testing hypotheses or constructing confidence intervals all assumptions
must hold, although these procedures are felt to be ‘robust’ to departures
from the assumption of normality, i.e., these inferences are still valid even if
the assumption of normality is somewhat suspect.

The above discussion of simple linear regression is rather sketchy. The
important thing to remember is that simple linear regression is a statistical
tool for studying possible straight line relationships between pairs of vari-
ables. A thorough discussion of simple linear regression, including checking
of assumptions, can be found in any book on regression analysis (e.g., Neter
et al. 1983). Many introductory texts on statistics also contain discussion of
simple linear regression (e.g., Moore and McCabe 1993)

5.4 Multiple regression

Formal models

The techniques used in simple linear regression can be extended to provide
methods for examining relationships other than straight line relationships
between two variables. The general method is called multiple regression
analysis and applies to ‘linear models’. Suppose a sample of n units is
selected from some population, and for each of these units one records a
dependent variable Y and p independent variables X1,…,Xp. One allows
some of the X-variables to be functions of the others; for example, one
might allow X2 to be the square of X1. Let Yi and X1i ,…,Xpi be the values of
the variables for unit i. One is said to have a linear model if the population
from which the units are drawn and the method of selecting units are such
that the relationship between Y and the X values can be written as

Yi��0��1X1i��2X2i�…��pXpi��i. (5.7)
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The �i represent the effects of measurement error and independent vari-
ables not included in the model whose individual effects are considered to be
small relative to those of the X values. The Yi are assumed to be independent
(this is reasonable if units are selected by simple random sampling). The Yi

of units having a given X value, X1,…,Xp, are assumed to be normally
distributed with mean �0��1X1i��2X2i�…��pXpi and constant variance
denoted by �2 (this is called the homogeneity of variance assumption
because this variance is the same regardless of the values of the X-vari-
ables). These last three assumptions concern the population from which the
data are drawn. �0, �1,…, �p are unknown constants (parameters) that one
wishes to make inferences about. The assumptions imply that the �i are inde-
pendent. Each �i has mean 0, variance �2, and is normally distributed. Thus,
a given value, Yi , of the dependent variable will generally not equal
�0��1X1i��2X2i�…��pXpi exactly, but discrepancies average to 0,
i.e., will yield 0 when averaged over all units in the population for
which the X-variables�X1i,…,Xpi. In mathematical language, one says
the expected value of Yi is �0��1X1i��2X2i�…��pXpi. The quantity
�0 � �1X1i��2X2i�…��pXpi is called the multiple regression function. As
with simple linear regression, the validity of inferences in multiple regres-
sion depends on the extent to which the above assumptions hold. Thus,
checking whether the assumptions hold reasonably well is an important
component of any multiple regression analysis.

The �k are often interpreted as the ‘effects’ of the X-variables in the sense
that a unit change in Xk, holding the other X-variables fixed, is accompa-
nied by a change of size �k in Y, on average. In practice, the observed
changes due to Xk (as reflected by the bk, the least-squares estimate of �k)
may be directly caused by Xk or may occur because a change in Xk causes
changes in other variables, which in turn cause a change in Y. If �k is 0,
changes in Xk, with the other X-variables fixed, produce no change in Y and
so Xk has no ‘effect’ on Y. Testing the hypothesis that �k�0 is one way to
examine whether Xk has an ‘effect’ on Y. In practice, however, one may
encounter the following problem. In many experiments, the researcher has
little or no control over the values of the X-variables. This occurs in
observational studies, for example, when units are selected from some
population by simple random sampling and the X-variables are character-
istics of the unit (i.e., age, sex, mass). In such cases, the X-variables are likely
to be correlated and so a change in Xk is associated with changes in some of
the other X-variables , which in turn affect Y through the other �s. One
never observes a set of units in which only Xk varies and all the other X-
variables are constant. Roughly, this means that we get no ‘direct’ informa-
tion about �k, only ‘indirect’ information that is subject to the additional
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variation in the other X-variables. If the correlation among the X-variables
is large, this additional variation is large and one’s uncertainty about �k is
increased. This state of affairs is called multicollinearity, and can lead to
uncertain inferences about �k, i.e., estimates will have large standard errors.

The term ‘linear’ in linear model is borrowed from a branch of
mathematics called linear algebra, and refers to the fact that such an equa-
tion says that the expected value of Y is a linear function of the �i. This
means that the model is a sum of terms of the form

(parameter)�(some function of the independent variables).

It does not mean that Y is a straight line function of the Xi . For example, if
only a single independent variable X is measured, one can define Xj�Xj, so
that the linear model is

Yi��0��1Xi��2X
2
i�. . .��pX

p
i��i, (5.8)

i.e., Y is a polynomial function of X. Models that are not linear functions of
�i , such as

Yi��0��1Xi
�2 (5.9)

are called nonlinear models.

Inference and interpretation

Analysis of a linear model proceeds in a manner analogous to that used for
simple linear regression. The method of least squares can be used to obtain
estimates, bi, of the �i. A word of caution is needed here. Recall from the dis-
cussion of simple linear regression that one needed at least two different values
of the independent variables to estimate the two parameters �0 and �1. In
multiple regression a similar problem arises. One needs at least p�1 different
sets of values of the independent variables (and hence at least p�1 observa-
tions) to be able to estimate the p�1 parameters �0, �1,…,�p. If, in addition,
one wants to get estimates of variances one needs at least p�2 observations on
at least p�1 different sets of values of the independent variables.
Furthermore, to evaluate the fit of the model, via a so-called lack of fit test (see
Neter et al. 1983 for details), one needs at least one repeat observation at a
fixed set of values of the independent variables. Of course, the more observa-
tions taken, the better, and, for purposes of inference, the wider the range of
values of the independent variables at which observations are obtained (with
several repeat observations at several sets of values of the independent vari-
ables), the better. Unfortunately, the cost or difficulty of obtaining observa-
tions may place severe limits on the number of observations one can obtain. It
is therefore difficult to give guidelines concerning how many observations to
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take, and perhaps the best advice is to consult a statistician knowledgeable in
design of experiments.

If one can estimate the �i and if the errors, �i, are assumed to be normal,
formulas for the standard errors, se(bi), and of the estimates, bi , can be
derived and used to construct confidence intervals and test hypotheses with
the normal theory methods discussed in Chapter Three. The formula for
degrees of freedom is n�p�1. Unfortunately, these formulas are rather
complex and a knowledge of matrix algebra is necessary for their derivation
(see, for example, Neter et al. 1983 for details). In practice, these estimates
and standard errors are obtained with statistical software.

Interpretation of results can be complicated. The following example
illustrates this. Bergerud and Ballard (1988) used multiple regression to
study the effect of snow depth (mean depth in cm over an 8-month winter
period), wolf numbers (in winter after birth), and total caribou numbers
as an index of caribou recruitment in south central Alaska. The index was
defined as the percentage of 2.5-year-old caribou among all caribou �2.5
years old. Several multiple regression models were run. One result was

recruitment�20.980�0.128 snow depth – 0.064 wolves.

This model would predict, for example, that for a mean snow depth of 50
cm and 200 wolves in the winter after birth, recruitment would be
20.980�0.128�50 �50.064�200�14.58%. Notice that this model has a
positive coefficient for the snow depth term, which would seem to suggest
that increased snow depth (indicating a more severe winter) increases
recruitment. This is counterintuitive and is undoubtedly due to multi-
collinearity, i.e., number of wolves and snow depth may be correlated and
so the coefficients are somewhat difficult to interpret. The presence of
multicollinearity is further indicated by the fact that a simple linear regres-
sion of recruitment on snow depth yielded the model

recruitment�23.261�0.166 snow depth.

In this model, the coefficient for snow is negative, i.e., less snow yields
higher recruitment, which would seem more plausible. When the coefficient
of a term in a multiple regression model changes sign or changes in size
dramatically when other independent variables are added to the model,
multicollinearity is often present, and interpretation of individual
coefficients must be done with care, if at all.

In a multiple regression analysis one often reports more than simply
least-squares estimates and standard errors of parameters. Several
measures of how well the model fits the data and generalizations of the
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correlation coefficient discussed in simple linear regression may also be
reported. For the model

Yi��0��1X1i��2X2i�…��pXpi��i, (5.10)

these include the following:

1. The sum of squares total (SSTO). This measures the total variation in
the dependent variable Y and is given by the formula

SSTO��(Yi� )2. (5.11)

2. The sum of squares for error (SSE). This measures how much the values
of the dependent variable vary about the fitted multiple regression
model b0�b1X1�…�bpXp, where bk is the least-squares estimate of �k.
The formula for SSE is

SSE��(Yi�b0�b1X1I�…�bpXpi)
2. (5.12)

1. Additionally, one can define the mean sum of squares for error (MSE) to
be SSE/(n�p�1), where n is the number of observations. MSE is an
unbiased estimate of �2, the variance of the errors ei, and provides a
measure of how well the model fits the data; the smaller the value of MSE
the better the fit. As already pointed out, the number of observations (n)
must exceed p�1 for MSE to be defined. If n is less than p�1 then one
can show that SSE is 0. In addition, the denominator of MSE will be �0.

3. The sum of squares for regression (SSR). This measures how much of
the variation in the dependent variable is accounted for by the multiple
regression model and is given by the formula

SSR�SSTO�SSE. (5.13)

4. The coefficient of multiple determination, denoted R2. This measures
the fraction of the variation in the dependent variable accounted for by
the multiple regression model and is given by the formula

R2�SSR/SSTO. (5.14)

1. R2 is always between 0 and 1 and is similar to SSR in interpretation. One
shortcoming of SSR as a measure of how well a multiple regression model
fits a set of data is that whether or not SSR is sufficiently large depends on
how large SSTO is, i.e., SSR must be interpreted relative to SSTO. R2

accomplishes this automatically by taking the ratio of SSR and SSTO; as
such, it is a unitless quantity. In simple linear regression, one can compute
R2 and it turns out to equal the square of the usual correlation coefficient.

Y
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For this reason R, the positive square root of R2, is often perceived as the
generalization of the correlation coefficient from simple linear regression
to multiple regression and is called the multiple correlation coefficient.

These four measures are routinely reported by statistical software for
regression and form the basis for comparing various multiple regression
models. Such comparisons are formally conducted as follows. To determine
whether the ‘full’ regression model

Yi��0��1X1i��2X2i�…��pXpi��i (5.15)

is necessary to explain the variation in the dependent variable Y, or if the
‘reduced’ model

Yi��0��1X1i��2X2i�…��qXqi��i, (5.16)

involving only the independent variables X1, X2,…,Xq (q	p), which are a
subset of X1, X2,…, Xp, is adequate to explain the variation in the depen-
dent variable, calculate SSR and SSE for the full model and for the reduced
model. Let SSR(X1,…,Xp) and SSE(X1,…,Xp) denote SSR and SSE for the
full model and SSR(X1,…,Xq) and SSE(X1,…,Xq) denote SSR and SSE for
the reduced model. The quantity

SSR(Xq�1,…,Xp | X1,…,Xq)�SSR(X1,…,Xp) – SSR(X1,…,Xq) (5.17)

is called the extra sum of squares and measures how much better the full
model fits the dependent variable compared with the reduced model. If this
is sufficiently large, more precisely if [SSR(Xq�1,…,Xp…|X1,…,Xq)/( p�q)]
/[SSE(X1,…,Xp)/(n�p)] exceeds the appropriate critical value of the F sta-
tistic with p�q numerator and n�p denominator degrees of freedom, one
decides that the full model is necessary. Otherwise one decides that the
reduced model is adequate. Formally this tests the hypothesis of whether
the independent variables Xq�1,…,Xp have a significant effect on the depen-
dent variable after accounting for the effects of the independent variables
X1,…,Xq. This method is purely statistical and does not take into account
the scientific ‘reasonableness’ of the full or reduced model. The statistical
decision must be modified by scientific considerations in any final decision
concerning an appropriate model.

An informal test of the above hypothesis is often carried out by simply
comparing the R2 values for the full and reduced models and selecting the
full model if the R2 is appreciably higher, although how much higher is
‘appreciably higher’ is rather subjective. The formal hypothesis test is prob-
ably the better way to make comparisons.
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In Bergerud and Ballard (1988), the two multiple regression models men-
tioned on p. 162  i.e.,

recruitment�23.261�0.166 snow depth,
and

recruitment�20.980�0.128 snow depth�0.064 wolves,

have R2 values of 0.10 and 0.79, respectively. These values suggest that snow
depth is not a particularly significant predictor of recruitment, but wolf
numbers, when added to a model containing snow depth, is a significant
predictor of recruitment. The authors also fit a model using only wolf
numbers as an independent variable and obtained

recruitment�24.379�0.057 wolves,

with R2�0.75. This suggests that wolf numbers are a significant predictor
of recruitment but that the addition of snow depth to a model containing
wolf numbers is not particularly significant (R2 increases only to 0.79).
Unfortunately, no information about formal tests of hypotheses are men-
tioned in the paper so these conclusions are somewhat subjective.

Several general observations can be made from this example. First, the
value of R2 increased in the above models when an additional independent
variable was added. This always occurs in multiple regression, i.e., the addi-
tion of an independent variable will always cause R2 to increase (or at worst
stay the same). This is intuitively plausible, because the addition of inde-
pendent variables provides extra information and cannot detract from our
predictive ability. One could always ignore the extra information. Because
R2 can be inflated by adding independent variables, one must be careful to
avoid adding extra independent variables simply to get a large R2. A
balance between reasonable R2 and relatively few independent variables
(simplicity of the model and hence ease in interpretation) is the goal. This is
called parsimony.

Second, notice that interpretations were a bit awkward. For example, in
comparing the model with snow depth and wolf numbers as independent
variables to the model with only snow as an independent variable, we
concluded that wolf numbers added predictive power to a model already
containing snow depth as an independent variable. This ‘conditional’ inter-
pretation is a bit different than merely saying that wolf numbers are a signif-
icant predictor of recruitment. This illustrates the care needed to interpret
the results of a multiple regression analysis.

Third, we mentioned that the model with only snow depth as an inde-
pendent variable had an R2 of 0.10, which did not seem to be particularly
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significant. Actually it is possible in multiple regression to have a very low
R2 (any value �0, even 0.000001) and yet have statistical significance in a
formal hypothesis test. Conversely, it is possible to have a large value of R2

and not have statistical significance. For this reason it is good practice to
conduct formal tests of hypotheses in addition to reporting R2 values.

Fourth, again examining the model with only snow depth as an inde-
pendent variable, we were tempted to conclude that snow depth was not
useful as a predictor of recruitment. Technically one can conclude only that
a straight line relationship between snow depth and recruitment has not
been demonstrated. One might find that a multiple regression model, such as

recruitment�constant�b1�snow�b2�snow2�b3�snow3

has a fairly high R2 and is statistically significant, indicating that snow depth
is useful for predicting recruitment, but the prediction relation is more com-
plicated (here a cubic polynomial) than a simple straight line relation.
Bergerud and Ballard (1988) reported that a three-way analysis of variance
(ANOVA) was conducted and neither the main effect of snow depth nor its
interaction with other variables was significant. This kind of analysis does
suggest that snow depth is not useful as a predictor of recruitment (although
the authors do not make it clear exactly how the variable snow depth was
categorized so as to make it a classification variable suitable for ANOVA). In
general, multiple regression tends to provide information about the specific
way in which an independent variable is useful for predicting a dependent
variable. ANOVA (or regression with indicator variables – see later) is more
suitable for determining whether an independent variable is useful in some
way (no specific functional form specified) for prediction.

Fifth, notice that the dependent variable, being a percentage, is con-
strained to lie between 0% and 100%. For the model with snow depth as the
only independent variable, a snow depth of 150 cm would predict recruit-
ment at –1.639% which is, of course, nonsense. Examination of the authors’
data shows that actual snow depth never exceeded 75 cm. Substituting a
value of 150 cm, therefore, involves extrapolating to data outside the range
used to estimate the multiple regression model. Such extrapolation should
be avoided and multiple regression models should be considered valid only
for the range of data used to establish the model.

Partial correlation

The coefficient of partial correlation is often reported in multiple regression
analyses. Consider once again the multiple regression model

Yi��0��1X1i��2X2i�…��pXpi��i. (5.18)
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The amount of additional variability explained by adding Xj to a model
already containing the r variables Xk1,…,Xkr is called the coefficient of
partial determination between Y and Xj given Xk1,…,Xkr and is defined to be

r2
j.k1,…,kr�SSR(Xj |Xk1,…,Xkr)/SSE(Xk1,…,Xkr),

where SSR(Xj |Xk1,…,Xkr) is defined as in Eq. 5.17. The corresponding
coefficient of partial correlation is the square root of r2

j.k1,…,kr with the sign
equal to that of bj in the fitted model

Y�b0�bjXj�bk1Xk1�…�bkrXkr. (5.19)

The relationship between the coefficient of partial determination and the
coefficient of partial correlation is analogous to that between the coefficient of
multiple determination (R2) and the correlation coefficient (r) in regression. In
particular, the coefficient of partial determination is easier to interpret than
the coefficient of partial correlation. Compton et al. (1988) fitted a multiple
regression model, with number of deer (ND) observed at various locations
along the lower Yellowstone River as the dependent variable. Amount of
riparian cover in hectares (RC) and amount of riparian cover with cattle in
hectares (GR) were the independent variables. The fitted model was

ND��3.69�0.92RC�0.50GR,

with an R2 of 0.57. The coefficient of partial correlation of GR for a model
already containing RC was �0.53. Notice the sign matches that of the
coefficient of GR in the fitted model. The coefficient of partial determina-
tion is (�0.53)2�0.28. We conclude that the addition of GR to a model
already containing RC accounts for an additional 28% of the variance
[SSE(RC)] still remaining.

Examining assumptions

In any multiple regression one should thoroughly check whether the model
assumptions seem reasonable, i.e., whether the errors are normally distrib-
uted with mean 0 and constant variance �2. For example, in Bergerud and
Ballard (1988) the plot of the observed and calculated (from the fitted model)
values of the dependent variable shows that the early data tend to have
observed values above those predicted by the model, whereas in later years
the observed values are below the predicted values (Fig. 5.8). This suggests
that the errors do not have mean 0, but a mean dependent on time. Time
should probably be included in the model as an additional independent vari-
able. This is good practice for any data collected over time and may require
the use of time series analysis for a thorough statistical investigation.
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Because the dependent variable in the Bergerud and Ballard (1988)
models is constrained to lie between 0% and 100% it cannot technically be
considered normally distributed. This problem may not be serious if the
values of the dependent variable do not tend to cluster near the extremes of
0% or 100% [they do not seem to cluster near the extremes in the example
given by Bergerud and Ballard (1988)] and appear approximately normal
over the range of values observed. In such a situation, the multiple regres-
sion analysis is probably satisfactory.

A multiple regression analysis may be statistically valid in the sense that
all assumptions seem reasonable and the calculations are done properly,
but it may be criticized on other grounds. For example, Van Ballenberghe
(1989) criticized the multiple regressions of Bergerud and Ballard on the
grounds that wolf numbers were obtained artificially and the apparent rela-
tion between recruitment and wolf numbers might have been partly due to
something in the artificial method of estimating wolf numbers rather than
actual wolf numbers, which were not measured.

Categorical variables

Categorical variables can be incorporated into multiple regression models in
a number of ways. To illustrate this, suppose one records eye colors of human
subjects as brown, blue, or other. Eye color is thus a categorical variable with
three categories. One way to quantify this variable might be to denote it by
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Fig. 5.8. Example of a possible violation of the assumptions of multiple regression.
The plots display actual recruitment at 2.5 years of age in the Nelchina caribou
herd, south-central Alaska, versus predicted recruitment using first snow depth and
then both snow depth and caribou numbers as independent variables, for the years

1952–66. (From Bergerund and Ballard 1988.)
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the letter Z and write Z�1 if eye color is brown, Z�2 if eye color is blue, and
Z�3 if eye color is other. Suppose we now proceed to use multiple regression
to determine the relation between eye color and blood pressure (Y ). Treating
eye color, Z, as the independent variable and blood pressure, Y, as the depen-
dent variable, we would get a regression equation of the form

Y�b0�b1Z. (5.20)

Unfortunately, this equation predicts that blood pressure for brown-eyed
people is b0�b1, that blood pressure for blue-eyed people is b0�2b1, and
that blood pressure for those with other eye colors is b0�3 b1. Regardless of
the values of b0 and b1, our coding scheme used to define Z forces the pre-
dicted value of blood pressure, Y, for blue-eyed individuals, as given by the
regression equation, to take on a value between that for brown-eyed indi-
viduals and that for individuals with other eye colors, even if the data indi-
cate otherwise. Furthermore, the difference in predicted blood pressure,
based on the regression equation, between brown- and blue-eyed individu-
als is automatically the same as that between blue-eyed individuals and
those with other eye colors. The way in which Z was defined automatically
imposes these relations (possibly incorrect) between eye color and blood
pressure as predicted by the regression equation. The above way of quanti-
fying eye color leads to inappropriate models in multiple regression.

A better way to quantify eye color in the example is to define two indica-
tor variables, Z1 and Z2, as follows. Let

Z1�1 if the subject has brown eyes
Z1�0 if the subject does not have brown eyes

and let
Z2�1 if the subject has blue eyes
Z1�0 if the subject does not have blue eyes.

A variable such as Z1 or Z2 which takes on only the values 0 and 1, 1 if a
certain characteristic is present and 0 if the characteristic is not present, is
called an indicator variable. Notice that for a brown-eyed subject Z1�1 and
Z2�0, for a blue-eyed subject Z1�0 and Z2�1, and for a subject with some
other eye color Z1�0 and Z2�0. There is thus a unique pair of values for
each eye color and hence no need to define a third variable, Z3. If one fits a
multiple regression model as before, one will obtain an equation of the
form

Y�b0�b1 Z1�b2Z2. (5.21)

If a subject has brown eyes, the regression equation predicts a blood
pressure of b0�b1. If the subject has blue eyes, the regression equation
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predicts a blood pressure of b0�b2. For subjects with other eye colors,
the regression equation predicts a blood pressure of b0. Notice that b1

and b2, the coefficients of Z1 and Z2 respectively, represent the difference
in the effects of brown and blue eyes, respectively, from the effect of
other eye colors on blood pressure; thus, b0, the effect of other eye
colors, becomes a sort of reference value. Because b0, b1, and b2 can take
on any values, the equation has the flexibility to predict any blood pres-
sures for the different eye colors.

The example above indicates that one must exercise care in quantifying
the values of a categorical variable. The second method indicated is the best
way to proceed. In general, if a categorical variable is an independent vari-
able, one quantifies it for use in multiple regression by means of indicator or
zero-one variables. If a categorical variable can take on c possible values,
one defines the c�1 indicator variables

Zi�1 if the categorical variable has the ith possible value
Zi�0 otherwise

for i�1,…,c–1. If Z1,…,Zc–1 are all 0 then obviously the categorical vari-
able has the value c. There is no need to define Zc because it is redundant.
Notice the ith indicator variable ‘indicates’ whether or not the categorical
variable takes on the ith value. The c�1 indicator variables are all added to
the multiple regression equation to represent the (main) effects of the cate-
gorical variable. If the coefficient of any of these indicator variables in the
fitted multiple regression model is found, in a hypothesis test, to be signifi-
cantly different from 0, the effect of that value of the categorical variable
differs significantly from that of the cth value. The cth value becomes the
reference value. By clever use of indicator variables and their cross products
one can represent ANOVA models as multiple regression models and test
all the standard hypotheses of ANOVA. Mixing quantitative independent
variables with indicator variables allows one to represent analysis of covari-
ance models as multiple regression models. Additional discussion of the
regression approach to ANOVA and analysis of covariance can be found in
Neter and Wasserman (1974). Use of indicator variables makes multiple
regression models more general than might first appear and illustrates the
fact that regression, ANOVA, and analysis of covariance have much in
common. In fact they are all special cases of general linear models for
which an extensive theory exists.

If a categorical variable is the dependent variable, the assumption of nor-
mally distributed errors is clearly violated and methods other than multiple
regression are needed. Categorical dependent variables arise, for example,
in problems of classification such as estimating the sex of an animal based
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on a set of morphological measurements. Special sets of procedures exist
for classification, including discriminant analysis, which we will not discuss,
and logistic or loglinear models, which we now discuss briefly.

If the dependent variable takes on only two values, the natural tendency
is to treat it as a binomial (Bernoulli) random variable. For such binomial
dependent variables, logistic regression or loglinear models are typically
used to analyze the data. The basic idea is not to fit a regression model to
the dependent variables directly, but instead assume that a regression model
exists relating the independent variables to the probability, p, of observing a
particular value of the dependent variable {or more precisely to some func-
tion of p such as log[ p/(1�p)], which is called the logit of p}. To be more
explicit, one might assume that: (1) each observation, Y, is a Bernoulli
random variable with a probability of success p; and (2) the probability of
success p satisfies

log[ p/(1�p)]��0��1X1��2X2�…��pXp, (5.22)

where X1,…,Xp are the independent variables.
The method of maximum likelihood is used to estimate the parameters

�0, �1,…,�p. Formulas for these estimates cannot be obtained in closed
form (i.e., they are an infinite series), so numerical methods are used.
Elementary discussion of these topics can be found in Neter et al. (1983),
whereas more thorough treatment can be found in Cox and Snell (1989).
Many computer packages have subroutines to analyze such data. If the
dependent variable takes on more than two values, one again fits regres-
sion models to functions of the probability that the dependent variable
will take on a particular value, using multinomial logit models. Computer
packages that handle these models are somewhat less common, but a
package called GLIM enables one to analyze such models. In fact, GLIM
analyzes so-called generalized linear models of which linear models, log-
linear models, and multinomial logit models are special cases. Situations
for which the dependent variable follows a Poisson distribution are also
covered. For more information see McCullagh and Nelder (1989) or
Aitkin et al. (1989).

Holm et al. (1988) studied the effectiveness of certain chemicals in dis-
couraging deer mice from feeding on corn. These repellents were applied
to corn kernels that were then offered to deer mice for a number of days.
Each kernel was categorized as having or not having sustained damage.
This categorical variable was the dependent variable. The different chem-
icals were categorical independent variables. As part of the analysis the
authors also recorded when a kernel sustained damage, and a loglinear
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model was used to study how the probability of sustaining damage
changed over time.

Stepwise regression

Often in multiple regression many independent variables are measured.
Some of these variables may be significantly correlated with each other, and
part of the goal of the analysis is to produce a model that makes scientific
sense and fits the data well (has a high R2 or small value of MSE for
example) while retaining only a relatively small number of independent
variables. One way to find such a model is simply to fit every possible regres-
sion model with some or all of the independent variables and to choose the
one that strikes the desired balance between scientific sense, good fit, and
small number of independent variables. Several rules of thumb are avail-
able for deciding what constitutes a desirable balance [see Neter et al. (1983)
for a discussion of the balance between good fit and small number of inde-
pendent variables] but ultimately the choice is somewhat subjective. For
example, Nixon et al. (1988) wished to study the effect of 24 habitat vari-
ables (the independent variables) on the presence or absence of deer (the
dependent variable). After examining all possible regression models on the
basis of R2, the authors decided that a model involving only five of the inde-
pendent variables was satisfactory. Notice here that because the dependent
variable was categorical with two values a logistic regression might have
been more appropriate.

If one has p independent variables there are 2p�1 possible models
involving at least one independent variable, so the number of models gets
large very rapidly. For example, with p�24, as in Nixon et al. (1988), one
must examine 224�1, or 16,777,215 models. Even on modern computers
examining this many models is time consuming. For large p, therefore, algo-
rithms have been developed that ‘cleverly’ search for models with good fit
while examining only a fraction of the possible models. These algorithms
have been implemented in computer packages and are called stepwise
regressions. The forward stepwise regression algorithm starts by trying all
models with a single independent variable and selecting the one with
highest R2 or highest value of the F-statistic for testing whether the model
fits. If this highest R2 or value of F exceeds a prespecified cut-off; the algo-
rithm accepts this model and continues. It now adds the independent vari-
ables not currently in the multiple regression equation to the one it has just
accepted and finds the variable that increases R2 the most or has highest
value of F. If this exceeds the cut-off the algorithm accepts this model and
proceeds. The algorithm continues to add variables until there is inadequate
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improvement, at which point the computer stops and prints out the final
model accepted as best. Changing the user-specified cut-off values can
change the final model produced by the algorithm.

Backward stepwise regression works just the reverse of forward stepwise
regression. It begins with all variables in the model and determines which
one decreases R2 or F the least. If this decrease does not exceed a user-spec-
ified cut-off, the variable is dropped from the model and the algorithm is
repeated. This process continues until no more variables can be removed, at
which point it ceases and prints out the final model. The model resulting
from a backward stepwise regression may vary as one changes the cut-off

values and it need not agree with the model produced by a forward stepwise
regression.

The most popular stepwise procedure is the full stepwise regression,
which alternates between a forward and a backward stepwise approach.
Variables added at a given stage may be removed at a later stage and those
removed at a given stage may be replaced later. The user must supply two
cut-off values (one for the forward part and one for the backward part) and
the choice will affect the final result. The result of a full stepwise regression
need not agree with either a forward or a backward stepwise regression.
Johnson et al. (1989) used stepwise regression (presumably the full stepwise
algorithm) to examine the effects of 15 land-use variables on a variable
measuring bird damage to grapefruits in southern Texas. The final model
involved only three of the independent variables.

Although a stepwise regression will generally lead to a model with rea-
sonably good fit, some words of caution are in order. These algorithms do
not examine all possible models so they may miss models with better fit and
possibly fewer variables than that produced by the stepwise procedure.
Models produced by these algorithms need not make scientific sense nor
need they satisfy our regression assumptions. Any model produced by a
stepwise procedure should therefore be investigated further. In addition to
checking model assumptions, one may wish to add or delete variables to
produce a model that achieves a better balance between scientific sense,
good fit, and small number of independent variables. One may also wish to
compare the model produced by a stepwise procedure to other models. Use
of a stepwise procedure does not eliminate the need for additional
investigation before deciding on a final regression model. Examination of
all possible models is therefore recommended when feasible, i.e., when the
number of independent variables is not too large. Stepwise procedures
should only be used when this is not the case. For more information on step-
wise procedures see Neter et al. (1983).
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5.5 Regression with multistage sampling

As noted in Section 5.3, standard regression analysis is applicable to data
collected only by simple random sampling. Yet as emphasized in Chapter
Four, behavioral ecologists often collect data using multistage designs. Two
common cases may be distinguished. The first is easy to handle; the second,
unfortunately, is not. Both involve two-stage sampling with simple random
selection of primary and secondary units.

As an example of the first case, suppose we are studying some behavior
or other attribute of individuals as a function of the period during the
nesting attempt. In collecting the sample, we distribute effort more or less
evenly across the temporal dimension, and an independent sample of indi-
viduals is collected in each time period. Multiple measurements are made
on each individual within each time period. For example, in studying the
frequency of display songs as a function of period, we may record number
of display songs in several periods for each of several individuals within a
given stage. We thus have two-stage sampling within any given period with
selection of birds at the first stage and selection of listening periods at the
second stage. This case involves error in the measurement of the i because
we do not record songs for the ith bird throughout the period of interest.
Such cases, however, arise routinely in regression analysis. The analysis
must be based on the sample means per bird, i, but no other special steps
are needed. Failure to base analysis on the means amounts to pseudo-
replication and tends to cause standard errors to be underestimated, some-
times severely. Cases in which the Xi are only determined after sample
selection, and cases in which the Xi are also subject to uncertainty may be
analyzed in the same way.

As an example of the second case, suppose we are making repeated
surveys along the same routes to estimate temporal trends. The spatial
dimension of the population is the set of all routes that might be selected,
and the temporal dimension is the set of times at which counts might be
made. A simple random sample (in theory) of routes is selected for the first
period, but the same set of routes is then surveyed repeatedly. Since the
observations at different times are not independent, standard regression
does not apply. If the counts on the same route at two different times are
about as different as counts on two different routes would be, then little
error is caused by ignoring the lack of independence. In reality, however,
most surveys have a strong ‘place effect’, and substantial error may result if
standard regression analysis is used.

This problem arises any time that repeated measurements are made on
individuals for the purpose of studying relationships between two or more
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of the variables measured. For example, repeated measurements of marked
individuals to study the rate of displays in relation to weather, foraging
success in relation to group size, residence time in patches in relation to
patch size, and so on may raise these problems. In most cases, we cannot
simply calculate means for the variables for each individual because the
variation we are trying to study would disappear. For example, if each indi-
vidual is watched several times in a study of foraging height versus tempera-
ture, and we calculate mean height and mean temperature, then the means
would be very similar for different individuals so we would be left with little
variation to study.

Two general approaches exist for dealing with problems of this sort.
First, a regression can be carried out for each individual, and tests can then
be made on the set of resulting regression coefficients. This approach has
been developed extensively in the study of trend data from repeatedly sur-
veyed routes. Regressions are carried out for each route and statistical tests
to determine whether population size is increasing or decreasing are based
on whether the mean of the regression coefficients is significantly different
from 0.0. This approach is discussed more in Chapter Eight. In a study of
foraging height in relation to temperature, the same approach could be
used. A separate slope would be calculated for each bird and their mean
and standard error would be used to describe the relationship. This
approach is valid as long as the initial sample may be regarded as a simple
random sample. The process, however, does not estimate the same parame-
ter as the slope of the means per primary unit regressed against the inde-
pendent variable. Thus, the mean of slopes, even if all members of the
population were measured, does not necessarily equal the slope of the
means (per survey route, per individual, etc.) regressed against time, and the
two parameters may differ substantially. This rather complex point is dis-
cussed more in Chapter Eight, and examples are provided there. Another
problem with this approach is that it may be difficult to apply when more
than one regression coefficient is estimated and when sample sizes per indi-
vidual vary substantially.

The second approach is to carry out the analysis recognizing the depen-
dence in the data set. This is basically a repeated-measures analysis. It is
more complex and is available in many statistical packages (SAS, SPSS,
BMDP, S�). Since this type of data is collected quite frequently by behav-
ioral ecologists we describe one approach. In many cases, the X-values are
fixed constants as occurs, for example, in surveys (the X-values are years
and they would be the same in repeated sampling). The estimated slope –
using the standard regression formula – is unbiased in this case. The se(b) is

5.5 Regression with multistage sampling 175



biased, often severely. An essentially unbiased estimate may sometimes be
obtained by estimating the covariance terms that acknowledge the repeated
sampling of the routes. Statistical inferences apply only to the set of X-
values in the sample. Repeated sampling of locations across time is proba-
bly the most common example of this design in behavioral ecology.
Repeated measurements on the same individuals may be analyzed using the
same approach but inferences then extend only to the individuals in the
study, not to other individuals in the population. We advise consulting a
statistician for assistance and emphasize the importance of doing so before
collecting the data. The third approach is to use a bootstrap.

5.6 Summary

Scatterplots and summary statistics provide an excellent way to begin inves-
tigating the relationship between variables. Identifying outliers and influen-
tial points is particularly important. Simple linear regression provides a
quantitative measure of how – and how closely – two variables are associ-
ated. Statistical tests require assumptions about the variables that often are
not met in behavioral ecology, but moderate departures from these assump-
tions are not serious. Multiple regression is a natural extension of simple
regression, permitting the effects, in combination or alone, of several vari-
ables on a dependent variable to be studied. Proper analysis with multistage
sampling, unfortunately, may be considerably more complex and consulta-
tion with a statistician before collecting the data is recommended.
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6
Pseudoreplication

6.1 Introduction

The term pseudoreplication was introduced by Hurlbert (1984) to describe
analyses in which ‘treatments are not replicated (though samples may be) or
replicates are not statistically independent’. In survey sampling terms, the
problem arises when a multistage design is employed but the data are
treated as a one-stage sample in the analysis. For example suppose m sec-
ondary units are selected in each of n primary units. In most cases the nm
observations do not provide as much information as nm observations
selected by simple random sampling. The correct approach is to base the
analysis on the means per primary unit.

The initial point made by Hurlbert and soon thereafter by Machlis et al.
(1985) was incontrovertible. When multistage sampling is employed, ignor-
ing the sampling plan and treating the data set as though it is a simple
random sample can lead to gross errors during interval estimation and
testing. This point is emphasized in survey sampling books, and calling
attention to the error, which was quite common at the time, was a service to
the discipline. Subsequently, however, cases began to appear in which the
proper analytical approach was more difficult to agree on. These cases often
did not involve large, clearly described populations, and well-defined sam-
pling plans. Instead, they usually involved some combination of incom-
pletely specified populations, nonrandom sampling, nonindependent
selection, and small sample sizes. As noted in Chapter Four these issues are
inherently difficult and full agreement on the best analytical approach and
most appropriate interpretation cannot always be attained. Nonetheless,
we believe that progress may be attainable in some cases by applying the
ideas developed in Chapter Four. In this Chapter we examine a few of the
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published debates about pseudoreplication that have seemed particularly
difficult to resolve.

6.2 Power versus generality

We begin with the general conceptual point, made several times in previous
sections, that a given data set may often be viewed as being a sample from
more than one population. For example, suppose we have randomly
selected several areas and measured several individuals in each. We assume
independent selection within areas and that sample size per area varies. It is
natural to view this as a two-stage sample, to define the areas as primary
units, and to proceed with the analysis accordingly. Under this approach,
the statistical population is the set of individuals in areas from which our
primary units were selected. The population diagram for an example with
seven primary units and four to eight secondary units/primary unit is
shown in Fig. 6.1a. As noted in Section 4.5, (pp. 122–124), however,
another approach is also legitimate from a statistical point of view, i.e., to
define the statistical population as being restricted to the areas that we
studied. The sampling plan is then one-stage, preceded by stratification.
Each area is a stratum (Fig. 6.1b). We would calculate means per area and
use these in the formula for stratified estimates, weighting the study areas
equally or perhaps using some measure of their size as the weighting factor.
In this case, the statistical population is limited to the particular set of areas
we studied. Extrapolation beyond the borders of those areas must be based
on nonstatistical rationales. It is important to realize, however, that from a
statistical point of view there is nothing improper about this approach. The
biologist has clearly delineated a population, carried out a well-defined
sampling plan, and analyzed the data in a manner consistent with it.
Although this example used areas as strata, the same points could be made
if plants, animals, or any other entities were selected rather than areas.

The fundamental point here is that, from a statistical point of view, inves-
tigators often have an opportunity to trade statistical power for generality.
If they delineate a large population, then power is reduced but their infer-
ences are more general. Alternatively, if they delineate a smaller popula-
tion, then power is increased but their inferences are less general.

Hurlbert (1984) and others (e.g., McGregor et al. 1992) have described
pseudoreplication as an error involving statistical analyses inappropriate
‘for the hypothesis being tested’. From our perspective, it might be clearer
to substitute the phrase ‘for the population about which statistical infer-
ences are made’. Thus, the null hypothesis involving a mean , might beY

178 Pseudoreplication



H0: �0, regardless of whether investigators describe their statistical
population correctly or incorrectly. One might argue that entails a partic-
ular population, and it certainly does. Nonetheless, to us it seems a little
clearer to describe pseudoreplication as claiming that statistical inferences
extend to a different population than the one to which they really apply.
This view reflects our position, just described, that many data sets may
legitimately be used to make inferences to more than one population

Y
Y
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Fig. 6.1. Two ways of defining the statistical population. A. Seven areas were
selected randomly and then four to eight individuals were selected in each. The for-
mulas for multistage sampling (Appendix One, Box 2) are used for point and inter-
val estimation and statistical inferences extend to other areas. B. The seven areas
are viewed as constituting the spatial extent of the population. The formulas
for stratified sampling (Appendix One, Box 2) are used for point and interval
estimation,and statistical inferences extend solely to individuals in the seven areas.

a

b



(though the formulas used to estimate standard errors may differ). Clearly,
it is incorrect to use the formula appropriate for one population but then
claim that the statistical inferences apply to some other population. This, in
our view, is the essence of pseudoreplication.

Discussions of pseudoreplication also often phrase the issue in terms of
whether ‘replicates are independent’. In some cases, however, statistical
independence is a rather slippery concept. For example, with two-stage
sampling and simple random selection of secondary units, the secondary
units are a simple random sample with respect to the primary unit they are
in but not with respect to the population. Furthermore, with stratified sam-
pling valid inferences may be made even though the units in the sample are
not a simple random sample from the population (selection is carried out
one stratum at a time). Thus, we prefer to emphasize the more fundamental
issue that a one-to-one relationship exists between any given population
and sampling plan and the formulas used in the analysis. Thus, the analysis
determines to what population the inferences apply and claiming that sta-
tistical inferences apply to other, usually larger, populations, is incorrect.

We have used the phrase ‘from a statistical point of view’ to emphasize
that biologists have something to say about this issue too. Even if treating
the data set above as a one-stage sample does not violate any statistical
rules, one may still argue that it is inappropriate on the grounds that other
investigators do not really care about the individuals in the study area at the
time of the study. By the time the results are published, the individuals will
probably be dead anyway. This issue, however, is quite complex. In a study
of habitat preferences, in which densities are recorded by habitat, it might
be true that little interest exists in the areas actually studied. They are useful
only if we can extrapolate to other areas. In such a case, we may not be
interested in a population that extends no further than the borders of the
study area. If our interest is restricted to larger populations, then we may
insist that the investigator adopt an analytical approach which lets him or
her make inferences beyond the borders of the study area. If those infer-
ences are inconclusive due to low power then we may not have much interest
in the study.

The case above, however, is probably not very common. More often we
are interested in processes not simply patterns (e.g., relative density across
habitats), and we may well believe that a process occurring in one area
probably occurs in other areas too. Under this point of view restricting the
scope of inference to the particular study area may seem quite appropriate.
As argued in Section 1.2, it is often useful to concentrate a study in a rela-
tively small area because more can be learned about the process there.
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Restricting the statistical population to the area studied amounts to doing
exactly that, and the increased power appropriately reflects this.

As an admittedly artificial example of this point, suppose that three
studies of the same issue were carried out in different areas, and each was
able to make statistically significant inferences about a restricted popula-
tion but not about a larger population. In this case, the generality of the
conclusion begins to be established by repetition. But if each study
attempted to make inferences about the broader population and fell short,
then the only pattern would be that all studies of the issue had been incon-
clusive. One might note that all three obtained point estimates with the
same sign; however, such an outcome could readily occur by chance.
Furthermore, suppose that the signs differed. If one simply knew that all
three were inconclusive, this would strengthen the view that no differences
of biological importance existed, whereas if inferences were made to more
restricted populations and all three were significant, then one might con-
clude that the effect was real but that its sign differed according to local
conditions. This seems to be a real advance compared simply to conclud-
ing that all the studies were inconclusive. We do not claim that this is
always the case. For example, one could make significant inferences about
each of several individuals and then note that the effect in question varied
between them for unknown reasons, and this line of reasoning really might
not lead to any insights of value. The point, however, is that such issues
should be decided on the basis of which populations are interesting to
examine. Given a decision on that issue, the statistical analysis follows nat-
urally, and assuming that the analysis is consistent with the sampling plan
followed for the population, then no claim of pseudoreplication can be
sustained.

We are not trying, in this section, to resolve the issue of power versus
generality, and we doubt that a full resolution is possible. We are simply
emphasizing: (1) that the issue is real; (2) that it must generally be resolved
on the basis of biological, not statistical, reasoning; and (3) that it is quite
complex so reasonable people may disagree. Given these points, particu-
larly number (3), we believe that the best general advice is simply that
investigators should clearly specify the population to which their statistical
inferences apply. If that is done, and the analysis is consistent with this
decision, then there should not be any question about whether pseudo-
replication has occurred, although there certainly may be differences of
opinion about whether investigators have made the wisest choice in the
trade-off between power and generality. Basically, then, our view about
how to avoid pseudoreplication is ‘know thy population’. We now discuss
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three controversies involving pseudoreplication and attempt to explain
how each might be viewed, and perhaps resolved, using the perspective
developed here.

6.3 Fish, fish tanks, and fish trials

Dugatkin and Wilson (1992) captured 12 sunfish from Quaker Lake in
Pennsylvania and tested them repeatedly in their laboratory. The fish were
housed in two aquaria, six fish in each. Each fish was thus exposed to five
other fish, but not to the other six (except during brief experiments). One of
the tests involved exposing a focal fish to a familiar and an unfamiliar fish,
and recording which one the focal fish spent more time with. The results
were taken as a measure of preference for familiar – as opposed to unfamil-
iar – conspecifics. The study was carefully designed so that each fish was
tested the same number of times, the tests (or trials) were randomized and
so on. Below, we use the notation n�number of fish�12, and m�number
of trials per fish.

The authors viewed the trials as a one-stage sample and therefore used
formulas for simple random sampling with the sample size being nm and
degrees of freedom nm�1. This approach was criticized by Lamprecht and
Hofer (1994) who felt that the data set should be viewed as a two-stage
sample (though they did not use this phrase) with fish as the primary units.
With this approach sample size would be 12 and degrees of freedom 11.
Subsequently, Lombardi and Hurlbert (1996) criticized both of these
approaches, saying that the sample size really was 2, one for each tank, and
the degrees of freedom was thus just 1. The original authors replied to both
commentaries carrying out the analyses proposed, but not really accepting
the views of either critic that only one analysis was valid. Their final
response ended with the statement, ‘our main point is that statistical ques-
tions such as this are no more black and white than the biological issues
that they are intended to address’ (Wilson and Dugatkin 1996).

Let us consider each of the suggested analyses, asking the sorts of ques-
tions we have used in previous sections to define sampling plans and
appropriate analytical methods. Our basic questions are, ‘is each analysis
rigorous statistically?’, and, if so, ‘what population do the inferences apply
to?’. The original approach amounts to defining population units as ‘fish-
trials’ and to restricting the population to the 12 fish used as subjects. The
population diagram would thus have the 12 fish as rows and the set of possi-
ble trials as columns. Its appearance would be the same as that of Fig. 6.1b
(p. 179) except that rows would now be fish rather than ‘areas’, and columns
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would be trials rather than ‘individuals’. Features of the study such as the
lake from which all fish came, the date, the building in which the study was
carried out, and the various tanks in which the fish were housed or tested
are all part of the ‘conditions of the study’. Population units in the sample,
however, were not distributed randomly across this matrix because the
trials were carefully balanced. The plan thus more closely resembles strat-
ified sampling with fish as strata. The authors did not analyze their data this
way, they treated it as a simple random sample, but if they had used the
correct formula for stratified sampling (strata the same ‘size’ and all sample
sizes within strata equal) the results would not have been much different
from the results they obtained. Thus, other than this one relatively minor
quibble, their analyses, properly viewed, are statistically rigorous in the
sense that their point and interval estimates are unbiased, and their statisti-
cal tests (subject to the usual statistical assumptions) are valid. The infer-
ences extend only to the 12 fish studied, not to any other fish in Quaker
Lake, other aquaria, other buildings, etc.

The analysis proposed by Lamprecht and Hofer suggests that the 12 fish
should be viewed as having been randomly selected from a larger popula-
tion. While no formal selection plan was carried out, this is no different to
hundreds of other studies in behavioral ecology which consider that the
subjects may be viewed as a random sample. The population unit, in this
case, is still a fish-trial, but the population includes fish that the investiga-
tors might have captured. The population diagram would still have fish as
rows and trials as columns, but with this approach there would be many
more than 12 rows, and the selected rows would be viewed as a random
sample. The population diagram would have the same appearance as that in
Fig. 6.1a except that rows would be ‘fish’ and columns would be ‘trials’.
Each fish (i.e., the set of measurements that might be collected from each
fish) is a primary unit, and the analysis suggested is fully appropriate.
Statistical inferences extend to the set of fish that might have been captured.
As with the first approach, all results are conditioned on the particular
environment, including the two tanks.

The analysis proposed by Lombardi and Hurlbert (1996) amounts to
three-stage sampling with tanks as the first stage unit. A population unit
thus becomes a ‘tank-fish-trial’. The approach implicitly views tanks as
having been randomly selected from – or at least as being representative of
– a population of tanks. This is probably no more tenuous than viewing the
fish as a random sample. A population diagram might have ‘tanks’ as rows –
two of them selected at random – and ‘fish’ as columns, it being implicit
that a cell represents the overall result for one fish. Trials would thus
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disappear (or could be viewed as a third axis). The analytical approach is
statistically rigorous; inferences extend not just to other fish that might have
been tested but to other tanks as well. The study, however, involves a sample
size of two and thus has extremely low power and makes the greatest
number of distributional assumptions (due to the low sample size).
Nonetheless, many informed people would feel that the analysis provides
useful information.

It thus seems to us that each of these analyses provides information of
value. In the particular case, results were highly significant with fish viewed
as primary units. Inferences could thus legitimately be made to a larger
population than the 12 fish tested. To us, this seems a good reason for pre-
ferring this analysis. The analysis with tanks as primary units bothers us
because power is so low. If we were to pick a single analytical approach
before looking at the data, it would not be this one. We do not agree with the
claim that tanks ‘must’ be viewed as part of the population unit. This
amounts to saying that the population must always be defined in the broad-
est possible manner regardless of how this affects power. In this particular
case, suppose all fish had been in one tank. In that event statistical infer-
ences would have applied solely to that tank in the same way that they apply
solely to fish in Quaker Lake. But if making statistical inferences that are
restricted to one tank and one lake is acceptable, what is wrong with making
the same sorts of inferences to two tanks and one lake? As we have stated
previously (Section 1.4), generality is determined primarily by repeating the
study with other species in other areas. Expanding the limits of the statisti-
cal population as much as possible in a single study, and causing power to
decline almost to vanishing point, does not make much sense to us.
Nonetheless, our major purpose in this section is to suggest how a survey
sampling approach may help to clarify some of the issues related to pseudo-
replication. We do not expect that all readers will agree with our particular
preferences in this case.

In summary, statisticians rarely criticize biologists for defining their
population in a particular way. The statistical issues are largely limited to
whether the population and sampling plan are well defined and the analysis
is consistent with these definitions. Thus, we agree with the view of Wilson
and Dugatkin (1996) that some of these questions are inherently difficult.
The real difficulty, however, is in deciding what populations are most inter-
esting to make inferences about, not deciding how to make the inferences.
Pseudoreplication, in our view, occurs when formulas appropriate for one
population are used to make inferences about another, usually larger,
population, not when an investigator makes statistically rigorous inferences
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about one population and a colleague suggests that it would be more inter-
esting to make inferences about some other population – that is a non-
statistical issue, and one on which reasonable people will often disagree.
Furthermore, the solution in many cases will be to carry out both analyses
rather than trying to agree which of the analyses is most interesting.

6.4 The great playback debate

A series of publications in the field of behavioral ecology examined the
issue of how to design playback experiments and analyze the resulting data
without committing pseudoreplication. Kroodsma (1986) initiated the dis-
cussions in a paper describing what he viewed as common errors in this type
of research. He described a hypothetical experiment to determine whether
blue-winged warblers respond more strongly to local songs than to foreign
songs. He supposed that two ‘local’ songs were obtained from Amherst,
Mass., and two ‘foreign’ songs were obtained from Millbrook, New York.
Four tapes were made, as shown below:

Location

Song type Amherst Millbrook

I one tape one tape
II one tape one tape

Trials were conducted in Amherst, used either type I or type II songs and
involved playing the Amherst (local) and Millbrook (foreign) songs alter-
nately from speakers located 20 m apart to male blue-winged warblers. The
investigator estimated how close to each speaker each bird came. The
experiment used a total of ten color-banded males, but ‘trials’ not ‘birds’
were used as the sample size.

The experiments were carried out first with the type I song. After 20 trials
with 10 birds, the birds showed a statistically significant preference for local
songs. The experiment was then repeated with type II songs. This time, the
results were nonsignificant. The conclusion drawn from this hypothetical
experiment was that blue-winged male warblers have a preference for local
as opposed to foreign songs of type I but not type II.

Kroodsma then identified six weaknesses in his hypothetical study:

1. Distance estimates were subjective but were not done ‘blindly’.
2. For a given type (I or II), tapes were obtained from only one location.

Thus, there was no statistical basis for inferences about other areas.

6.4 The great playback debate 185



3. Similarly, for a given type, only one song was recorded from the ‘local’
and ‘foreign’ categories so no statistical basis existed for generalizing to
other songs in either group.

4. Birds, not trials, should have been the sample size.
5. Responsiveness may change seasonally and/or due to habituation but

all type I songs were played before any type II songs were played. The
design thus confounded time with the response variable.

6. Sample size should have been selected in other ways rather than contin-
uing the first set of trials until a significant result was obtained.

Suggestions for correcting these and other problems were made.
Subsequently, some authors (e.g., Catchpole 1989; Searcy 1989) argued

that designs such as this one, and real studies referred to by Kroodsma in a
subsequent paper (Kroodsma 1989a), probably have substantial external
validity despite these weaknesses. Kroodsma responded (1989b, 1990) with
increasingly more detailed defenses of his original views. There was little if
any debate, however, about the purely statistical issues. All, or at least most,
participants seemed to recognize that statistical inferences applied solely to
the sampled population, and if a single tape was used or work was done in a
single locality then statistical inferences did not necessarily extend beyond
that tape or location. This view was clearly expressed in a synthesis paper
(McGregor et al. 1992) on which most of the participants in the earlier
debate were authors. Thus, from the perspective developed in this Chapter,
the ‘playback debate’ really centered on questions of external validity and
were thus nonstatistical in nature, except for the caveat that authors should
clearly identify the limits in all dimensions (e.g., tapes, locations, birds) of
their statistical population. This being done, the subject-matter specialists
could debate the issue of external (i.e., nonstatistical) validity without help
from statisticians or recourse to statistical issues.

The debate, however, did involve one difficult statistical issue. Various
suggestions were made about how many different tapes should be used,
everyone agreeing that a new tape (i.e., song) should ideally be used in each
trial. When only one tape was used, then clearly the statistical inferences
apply only to that tape. When multiple tapes were used, then there was little
recognition that investigators have the choices outlined in Section 4.10: (1)
calculate means per male and use them in the standard formula for stan-
dard errors (i.e., Appendix One), in which case statistical inferences apply
only to the set of tapes used; (2) calculate means per tape and use these in
the standard formula for standard errors, in which case the statistical infer-
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ences apply only to the set of males used; (3) recognize the dependency in
the data and use an analysis that incorporates the correlation which is
present to make statistical inferences about the population of songs and
males. This issue, however, as noted in Section 4.10, has gone almost totally
unnoticed in behavioral ecology so it is not surprising that it was not men-
tioned in the papers discussed above.

6.5 Causal inferences with unreplicated treatments

In Hurlburt’s original paper, he took a rather strong stand against the use of
‘inferential statistics’ when the purpose is to identify causal relationships
and no replication or random assignment is present. He used, as an
example, a suggestion by Green (1979) for how to study whether waste dis-
charge affected downstream organisms. Green suggested that samples be
taken upstream and downstream of the discharge site both before and after
discharge began. Obviously, a significantly large change in the difference
(or ratio) between locations following commencement of the discharge
would suggest that the discharge caused the change. On the other hand, it is
also obvious that the statistical analysis alone cannot prove that the dis-
charge caused the changes because some other event might have occurred at
the same time as the discharges began.

This issue, in our view, is basically one of not inferring cause from correla-
tion (Section 1.4). Statistical analysis can properly be used to ask the ques-
tions: ‘did the difference in population levels, between locations, change
after discharge began? If so, in what direction and by how much?’. Deciding
whether any documented change was caused by the discharge requires addi-
tional evidence and a nonstatistical (or at least additional) rationale.
Nonetheless, the statistical analysis is useful because it may show that the
observed change in relative population levels was not statistically signifi-
cant, or if a significant change did occur, the analysis can be used to provide
a confidence interval for the change, and hence provide us with information
about the magnitude of the change. Thus, we agree that the statistical analy-
sis does not permit identification of what caused any observed change, but
feel that it is nonetheless useful as one part of the analysis.

6.6 Summary

Debates about how to avoid pseudoreplication (without stopping work
altogether) continue to occur regularly. Many investigators are proba-
bly uncertain whether to agree with a comment made by Dugatkin and
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Wilson (1994 pp. 1459) that in some studies one ‘must accept a risk of
pseudoreplication to do the study at all’ or whether, on the other hand,
to agree with Lombardi and Hurlbert (1996 p. 420) who disagreed,
saying that, ‘pseudoreplication is simply a type of incorrect statistical
analysis. For no study design, however weak, is pseudoreplication an
inevitable result’. We agree with Lombardi and Hurlburt that pseudo-
replication is simply a mistake, and that it always can and should be
avoided. On the other hand, we do not fully agree with what they seem
to imply, i.e., that for every data set there is one and only one appropri-
ate analysis. We would rephrase this by saying that for every data set
and population to which inferences are being made there is one and only
one analysis.

We suggest the following steps as a way to be certain that no legitimate
charge of pseudoreplication can be made:

1. Define the conditions of the study, specifying where random sampling
with more than one replicate occurred. Identify any nonrandom
samples that will be treated as simple random samples and justify the
assumption.

2. For a particular analysis, describe the limits of the statistical popula-
tion in all dimensions. In the example with fish tanks above, we would
describe the two tanks used as part of the conditions of the study, but
the fish as having been randomly selected from a larger superpopula-
tion in Quaker Lake at the time of the study.

3. Show that the formulas for point and interval estimates are appropri-
ate, paying particular attention to the issue of independent selection
within primary units. In general, if selection of secondary units was not
independent in different primary units, then do not claim that statisti-
cal inferences extend beyond the particular secondary units measured.
For example, in the playback experiments, one should not claim that
statistical inferences extend to other songs; songs are part of the
‘conditions of this study’. Imagining a ‘population diagram’ as illus-
trated in this Chapter and in Chapter Four may help clarify whether the
population is correctly defined and all assumptions of the nominal
sampling plan are met.

4. In discussing external validity, acknowledge that the inferences are not
based on statistical analysis (except that such analyses justify conclu-
sions about the statistical population).

If one follows all of these steps, others may still criticize a study for
delimiting the statistical population too sharply, but this is a nonstatistical
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issue and, in our view, should not be described as a pseudoreplication error.
Furthermore, in our opinion, those inclined to criticize the study should
recognize the inherent difficulty of the issue and that reasonable people
may disagree about it.
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7
Sampling behavior

7.1 Introduction

In this Chapter we discuss methods for estimating the time spent in
different behaviors. The Chapter is intended primarily for researchers who
collect behavioral data, and we have therefore felt justified in discussing
practical problems in some detail. We also assume a moderate familiarity
with the goals of behavioral sampling and the practical difficulties often
encountered. Lehner (1996) and Martin and Bateson (1993) discuss many
other aspects of measuring and describing behavior as well as some of the
points discussed here.

By ‘sampling behavior’ we mean that one or (usually) more types of
behavior have been defined, and the objective is to estimate how often they
occur. ‘How often’ may mean any of the following: proportion of time
spent in the behavior, frequency of the behavior (e.g., number/hour),
average duration of the behavior. All three estimates might be of interest
for some behaviors (e.g., fights with intruders) while for other behaviors this
might not be true. For example, it might be feasible to count the number of
pecks/minute but difficult, due to the speed with which a peck occurs, to
estimate either the average duration of a peck or the proportion of time
spent pecking.

7.2 Defining behaviors and bouts

A first task in designing the sampling plan is to define the behaviors. The
definitions should be specific enough that different observers would inter-
pret them the same way and that they can be explained clearly. Defining
positions of the body (head up/head down), type of movement (walking,
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running, flying), and different types of vocalizations generally meet these
criteria better than broader terms such resting, feeding or scanning for
predators. For example, when an animal stands in one place for a while but
occasionally looks around or pecks at the substrate, different observers
might classify the behavior as resting, feeding, or scanning for predators.

Once the data have been collected, it may be desirable to define ‘bouts’
(e.g. feeding bouts, singing bouts) so that the proportion of time spent in
each general behavioral type may be estimated. A bout is a period during
which some behavior is engaged in frequently, albeit not continuously.
Three situations may be differentiated. First, clear breaks may occur
between one behavior and the next. For example, a bird may sing from a
perch for a period, and then leave to forage (without singing) for a period.
In such cases, defining bouts presents no problems. Second, a single behav-
ior may be recorded that tends to occur in groups separated by intervals in
which the behavior does not occur. For example, the behavior may be
pecking the substrate, and series of pecks in quick succession may be separ-
ated by periods with few or no pecks. In such cases, bouts may be defined by
selecting a threshold time and stating that bouts begin when the behavior
occurs and end when more time than the threshold elapse after the behavior
occurs. Thus if the threshold is 10 s, and a bird pecks five times in quick
succession but does not peck during the following 10 s, then the bout con-
sists of the time during which it pecked five times. Various suggestions have
been made for selecting the threshold time. Lehner (1996 pp. 117–23) pro-
vides a good introduction.

In the third situation more than one behavior is recorded and changes are
not clear breaks. This case is probably the most common in behavioral
ecology. Intermittent time-activity sampling is generally used in which the
animal’s behavior is classified periodically. For example, suppose we clas-
sify an animal as head up (i.e., alert), head down (i.e., foraging), preening,
or resting. A feeding animal may spend much of its time with head up (e.g.,
scanning for predators) so ‘alert’ records will be interspersed with ‘foraging’
records. On the other hand, an alert bird may occasionally put its head
down to feed. Defining the proportion of time spent in either behavior
requires that a rule be devised to define foraging bouts and alert bouts.
Additional analysis may then be carried out to describe the amount of time
with head up during foraging bouts (e.g., in a study of mate guarding
behavior). Defining bouts in this case is not a trivial effort especially with
hundreds or thousands of observations. One approach is to declare that a
particular type of bout occurs anytime the behavior was recorded at least k
times in any n sequential observations. For example, if birds are recorded as
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feeding or not feeding every 60 s, the rule might be that anytime the animal
was recorded feeding in at least three of any six sequential observations,
then all six observations would be recorded as a feeding bout. To analyze
the raw data and define bouts, a computer would count the number
of feeding records in observations one to six. If there were three or more
feeding records, then observations one to six would be recorded as part of
a feeding bout. Then the computer would look at observations two to
seven. If three or more were feeding records, then observations two to seven
would be recorded as a feeding bout (of course two to six might already
have been designated as a bout in which case these observations would not
be changed). In this way, many observations when the animal was not
feeding would be declared parts of a feeding bout. Additional procedures
might be needed to ensure that every observation was assigned to one, and
only one, bout type. Once the analysis was completed, quantities such as the
proportion of time spent in each type of bout as well as the mean and stan-
dard deviation of the bout lengths could be calculated. A computer
program is most helpful in carrying out the assignments because it is then
easy to experiment with different values of k and n to determine what
combination provides the most biologically meaningful description of the
activities.

A simpler method, which requires less time in the field, is as follows. The
approach works best when only two behaviors are being recorded. We use
the example ‘feeding’ and ‘not feeding’ and assume that the behavior will be
defined for each of several consecutive 1-min intervals. Within each interval
the animal is watched for the entire 60 s or until it feeds (e.g., pecks) the first
time. If it pecks once, the entire minute is assigned to the ‘feeding bout’ cat-
egory and the observer does not have to continuously monitor the animal
for the rest of the interval. This approach is easy in the field, especially if the
behavior in question occurs frequently, and yields data with bouts already
defined. Note, however, that the definition of a bout (any 60 s with at least
one instance of feeding) cannot be altered in the analysis, for example to
‘any 30 s with at least one instance of feeding’.

7.3 Allocation of effort

The terms scan sampling and focal individual sampling are widely used in
the behavioral literature (Lehner 1996). The distinction has to do with
whether one or a few individuals are followed (focal sampling) or, on the
other hand, periodic scans of all or most individuals in a group are made
(scan sampling). The distinction between the two is not hard and fast. For
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example, if there are several family groups in view and we watch one of
them, keeping track of each member in the family, it may be a matter of per-
sonal choice whether the plan is called focal animal sampling (because only
a few individuals of those in view are watched), or scan sampling (because
the behavior of each member of the family is recorded at intervals).

Another distinction is between continuous and intermittent sampling.
Continuous sampling is just what the name implies. The starting and
ending times, or just the occurrence, of different behaviors are recorded
throughout the observation interval. With intermittent sampling, the
animal’s behavior is recorded at regular intervals. Continuous sampling
works best when only a few behaviors (e.g. sleeping, feeding, preening) are
of interest, they are easy to recognize (e.g. fights, displays), and they either
occur infrequently or last a long time. Continuous sampling is also easier
when frequency, rather than duration, is being estimated because starting
and ending times of the behavior then do not have to be recorded.
Intermittent sampling is easier – and may be the only practical choice – for
‘fine-scale’ behaviors such as position of the head (up versus down) or mea-
sures of locomotion (stationary, walking, running, flying) that may alter-
nate rapidly with each other.

A final distinction, or consideration, is whether individuals can be recog-
nized or not. Typically, they are kept separate in focal animal sampling. The
individuals may be recognizable because of location or by natural or artifi-
cial marks, but even if they are not recognizable, the observer may be able to
keep track of one or two individuals for the duration of the observation
interval. In scan sampling, individuals are not usually recognizable, though
occasionally all members of the group are marked so that data for each can
be maintained separately.

With these distinctions in mind, we turn to the issue of whether one
should obtain lots of data on a few animals or look at lots of animals but
obtain only limited data on each one. We first assume that animals are
watched one at a time and can be returned to at will (e.g., because they hold
known territories). We also assume that numerous animals are available so
a decision must be made about how many animals to include in the sam-
pling plan. The plan is multistage sampling (Section 4.5) with animals as
primary units. We assume that the total amount of time for observations
has been fixed and the problem now is to decide how many different animals
to watch and, by implication, how long to spend with each animal.

We suggest that a two-stage process may be helpful for deciding how to
allocate time in this sort of study. First, consider the purely statistical objec-
tive of estimating whatever parameters are of interest. Usually, the time
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required to switch attention from one animal to another can be estimated
fairly easily. The time may vary from essentially zero when all subjects are
visible from one blind, to very substantial amounts of time if the observer
must change locations. Some idea of how much individuals vary is also of
great value. For example, if feeding rates are being estimated, do some indi-
viduals consistently feed much less (perhaps because they are still in court-
ship) than others? The following guideline may be used to complete
consideration of the purely statistical issues. Watch more animals (and
spend less time on each one) to the extent that (1) it takes little time to select
a new animal, and (2) animals are likely to vary with regard to the variable
being measured. These qualitative suggestions can be converted into a
quantitative analysis if prior information on variability within and between
animals is available. We suggest Section 10.6 of Cochran (1977) for those
interested in such an analysis. In practice one estimates many different
quantities, and different allocations might be suggested by several of them.
Thus, some compromise must be reached, and this limits the utility of a
fully quantitative analysis.

A common misconception among biologists is that one somehow gets
‘bad’, presumably meaning biased, estimates of the frequency or propor-
tion of time spent in rare behaviors if only a little time is spent watching
each animal. The real issue is that the estimate for any given animal has high
variance but it is unbiased as long as random selection of observation inter-
vals is used, the observer does not influence the animal, and no measure-
ment error occurs. If any of these requirements is not met, then the estimate
may be biased regardless of how much time is spent with each animal.

The conviction above, expressed by many biologists, may actually be due
to a feeling that the animal does respond to the observer and that an accep-
tance period is needed before reliable data can be obtained. One common
response of animals is to become more wary, and such behavior may dis-
appear after the observer has been present for some time. Another response
is a reduced likelihood of engaging in certain behaviors such as aggressive
interactions. A more subtle observer impact is that animals which tend to
engage in long bouts of behavior may tend to change behavior type when
mildly disturbed. Even if the animals being watched are unaffected by the
observer the species’ predators or prey may be affected by the observer’s
presence. Any of these responses may compromise the quality of observa-
tions, and may be a good reason for minimizing disturbance and waiting a
substantial period before beginning observations (or at least analyzing the
data to measure – and exclude – the acclimation period). If such effects
occur, however, the corresponding periods should be excluded from the
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analysis completely rather than being used on the assumption that they will
somehow be ‘compensated for’ by having long observation periods.

Once the purely statistical issues have been considered, we suggest
putting the resulting conclusion aside and thinking about the biological
trade-offs involved in the allocation issue. If the sole goal of a program was
to estimate the proportion of time spent in some behavior, and if there was
no hope of obtaining any other insights while doing the field work, then the
statistical considerations described above would probably be sufficient to
resolve the allocation issue. But in reality, of course, progress in under-
standing animals may occur anytime field work takes place, and one goal of
a sampling plan should be to maximize the likelihood of making new dis-
coveries. It is our experience that such discoveries are least likely to occur
when biologists spend much of their time traveling from one sampling
station to the next, watching each subject for only a short time. In contrast,
when one comes to know a relatively few animals quite well, there is much
more chance that new insights about questions or answers will occur. Thus,
in many cases it seems best to watch fewer animals, but watch each one for
longer, than might be suggested solely on the basis of minimizing standard
errors of the resulting estimates. Furthermore, when animals can be identi-
fied from day to day, then repeated observations of a few animals, rather
than selection of new ones each day, permits a much broader range of ques-
tions to be investigated because relationships between activities separated
by many days (i.e., feeding activity as a function of time since nest failure)
can be investigated.

A final decision, with intermittent sampling, is how often within observa-
tion periods to record behavior. Frequently one combines intermittent
observations of some behaviors, continuous observation of others (e.g.,
fights, certain displays, copulations), and, if possible, general observations.
Increasing the frequency of intermittent sampling provides better estimates
of these variables but takes time and attention away from continuous
observations and the ability to watch interesting incidental events. Thus
this issue, like the question of how long to watch each animal, should be
resolved on the basis of both statistical and nonstatistical considerations.
The statistical considerations are that infrequent observations are sufficient
for behaviors that last a long time (e.g., sleeping) whereas more frequent
observations are valuable for behaviors that change rapidly (e.g., head up/
down). For the latter type, the precision is likely to be similar to that in a
simple random sample (even though the plan is actually systematic). The
standard error of the estimate within an observation interval thus declines
approximately as the square root of sample size so the same proportional
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increase in precision is accomplished by increasing the number of observa-
tions per interval from 16 to 25 as from 64 to 100. Note, however, that a
great deal more time for other activities is lost by increasing the observa-
tions from 64 to 100 than is lost by increasing them from 16 to 25. In prac-
tice, the behaviors monitored by intermittent sampling usually include
some that alternate rapidly but, even assuming this is true, it seems rare to
need more than 60 observations per interval (or one per minute if intervals
are longer than 1 h) or to have fewer than 20 per interval. With short inter-
vals, this may dictate that observations should be made as often as every
10 s.

In summary, statistical considerations indicate that more animals should
be watched (for shorter periods per animal) when little time is required to
select new animals and when animals vary substantially. Investigators may
wish to temper this advice by giving some priority to knowing a few animals
well. It is common to have 20–60 observations per interval or a maximum of
one per minute if interval lengths exceed 1 h.

7.4 Obtaining the data

We now discuss practical problems that arise in recording the data, empha-
sizing those that raise statistical issues. The most common problems stem
from the fact that in most studies the animals one wants to observe are fre-
quently out of sight. The individual one wants to watch may be completely
out of sight so no data are recorded at the scheduled time (selection bias) or
may be partially or completely out of sight during part of the observation
interval (measurement bias). Selection bias, arising because individuals
cannot always be found at will, is common and difficult to deal with. For
example, waterfowl often rest and preen on banks in plain view but forage
in thick vegetation where they cannot be seen. Obviously, a time budget to
estimate what fraction of their time is spent feeding is not feasible in such
cases (unless one knows how many individuals are present and can assume
that any out-of-sight bird is feeding). Probably the best that can be said of
such problems is, ‘don’t ignore them!’. Investigators are obliged to seriously
consider the maximum likely extent of bias in such cases and decide
whether the study is worthwhile.

Here is an example of how difficult the problem can be. In studying avian
mate guarding behavior, data were collected on males using time budget
methods to document the frequency of mate guarding, fights, copulations
and so on. Males could be located easily if they were on their territories and
gave aerial displays. Early in the season nesting was synchronized and most
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males were on their territories displaying. As nest failures and re-nesting
occurred, however, males spent more and more time off their territories and
by midway through the season observers usually needed 30–45 min to find
their bird and frequently lost it repeatedly due to the male flying off the ter-
ritory. In this case, time budget methods initially appeared feasible but
eventually had to be abandoned completely due to the selection bias prob-
lems. Ultimately, the sample selection method was re-designed to focus on
females, which usually did stay on territory. Examples such as this one, in
which a method initially appears feasible but gradually is revealed to be
unsuitable, are common in sampling behavior, and investigators must be
prepared to abandon the methods even though doing so is difficult when
substantial effort has already been investigated in data collection.

Here is an example in which measurement bias – rather than selection
bias – became problematic. In studying territorial tundra swans from
blinds, the birds could usually be located with enough work, but they were
often out of sight. For example, when sleeping or preening they were
usually in sight, but when feeding often only their heads could be seen as
they scanned for predators. The initial list of behaviors included various
types of feeding (head under, neck under, tip up, etc.) but these often could
not be seen. The solution to this problem was designing a data collection
form which indicated whether only the ‘primary’ behaviors (sleep, preen,
feed, etc.) could all be seen, or whether all the specific feeding behaviors
could be seen. If a feeding bird was in plain sight, then the specific feeding
behavior was recorded, but if it was not, then the ‘feed’ category was used.
Note that this scheme involves a hierarchy of behaviors with higher-level
ones always recorded and lower-level ones recorded only when the birds
were visible enough that all possible lower-level behaviors could be
detected. This general approach may be useful in many situations involving
animals that are difficult to keep in sight.

7.5 Analysis

Time-activity studies usually involve animals as primary sampling units.
All or most individuals within the study area may be watched, or the ‘first n’
animals encountered (or encountered in favorable situations) may be moni-
tored. As has been noted previously, investigators in such studies are nearly
always interested in making inferences about larger, hypothetical groups or
about the set of possible outcomes, so it is reasonable to view the data as a
simple random sample from a larger population. In this case, animals com-
prise the first dimension, time the second, and there may be additional
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stages in the selection of the population units. In any case, animals (i.e., the
set of times at which each animal might be watched) are the primary units.
Results for each animal are nearly always equally weighted on the basis that
each animal provides the same number of potential observations (primary
units are the same size) or that each animal provides an equally good
opportunity to study the behavior in question. Nonindependent selection
of units in the second dimension, caused for example by watching all
animals on the same days, is common and often unavoidable, but should be
avoided whenever practical.

Here is a typical example in which equal weighting was appropriate.
Clarke and Kramer (1994) studied scatter hoarding in eastern chipmunks.
Several chipmunks were allowed to create scatter hoards and several vari-
ables describing the chipmunks’ behavior were measured. Some animals
were observed making more than one scatter hoard, and the authors com-
puted means for each such animal and used the resulting statistics – rather
than the original data – in their analyses. They thus implicitly defined
animals as primary sampling units and weighted means per primary unit
equally. In this case, the ‘size’ of each primary unit (i.e., the number of
scatter hoards each animal might have been observed making) is not well
defined. Furthermore, and of more fundamental importance, each animal
provided an equally good opportunity to investigate hoarding behavior.
Thus, weighting the results from each animal equally seemed appropriate.

Animals also may be selected in groups, in which case equal weighting
may not be appropriate. For example, suppose that groups of animals are
located and watched for 1-h periods to record the frequency with which
individuals are involved in fights. For each interval, the number of animals
and the number of fights is recorded. Fights involving two animals are
counted as ‘2’ (because two animals are involved), fights involving three
animals are counted as ‘3’, and so on. The number of animals in the group
varies considerably (but for this example we assume that no animals enter
or leave the group during the observation period). The population unit in
this study is an ‘animal-hour’, the response variable is the number of fights
the animal participated in (0, 1, 2,…), and the quantity being estimated is
the population mean. The sampling plan depends on details not specified
above (e.g., whether sites are revisited) but the means per observation
period will probably be weighted by the number of animals present (Section
4.5).

Summarizing this section, equal weighting of the results for each
primary unit is recommended when primary unit size is constant, poorly
defined, or variable but unknown. When the size of primary units is well
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defined and variable, and is known for the units in the sample, then weight-
ing by primary unit size is appropriate. Weighting by sample size (when
sample size differs from primary unit size) is seldom appropriate (Section
4.5).

7.6 Summary

This Chapter describes issues that arise in estimating the duration or fre-
quency of behavior. Behaviors should be defined objectively in ways that
minimize measurement bias and maximize repeatability. Defining bouts is
often useful. The rules for doing so depend on whether behavior changes
sharply from one type to another and on whether more than one behavior is
recorded. In gathering data, careful attention is needed to avoid selection
bias. When this is a problem, defining a hierarchy of behaviors with more
general categories that are easier to record may be helpful. Allocation of
effort between the number of animals and the number of observations per
animal calls for consideration of both statistical and nonstatistical issues.
The statistical issues can be addressed using formulas, but doing so is often
little better than careful thought about the issue. The basic nonstatistical
issue is that valuable, if unanticipated, insights often result from prolonged
observation on each of a few individuals. The sampling plan in such studies
usually involves individuals as primary sampling units. Results per primary
unit are usually weighted equally. When groups of individuals are selected,
however, groups may be the primary units and weighting may then be by
group size.
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8
Monitoring abundance

8.1 Introduction

Monitoring abundance means estimating trends in abundance, usually
through time though occasionally across space or with respect to some
other variable. Estimating temporal trends in abundance of animal popula-
tions is a common objective in both applied and theoretical research. The
most common design involves surveys in the same locations run once or
more per year for several years. The data are often collected using ‘index
methods’ in which the counts are not restricted to well-defined plots or if
they are the animals present are not all detected and the fraction detected is
not known. Results are usually summarized by calculating the mean
number of animals detected per plot, route, or some other measure of
effort, during each period. These means are then plotted against time (Fig.
8.1). When the counts come from complete surveys of well-defined plots,
then the Y-axis is in density units. In the more common case of index data,
the Y-axis shows the number recorded per survey route or some other
measure of effort. We assume (or at least hope) that a 5% change in survey
results indicates a 5% change in population size but we have no direct
measure of absolute density.

The analysis of trend data raises several difficult issues. First, ‘the trend’
can be defined in different ways, and the choice among them may be difficult
and subjective. Second, statistical difficulties arise in estimating precision
because the same routes are surveyed each year so the annual means are not
independent. Third, use of index methods, rather than complete counts on
well-defined plots, means that change in survey efficiency may cause spuri-
ous trends in the data. These problems are often quite complex and
consultation with a statistician is often required for rigorous analysis of
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trend data. Our goal in this Chapter is to describe some of the difficulties in
enough detail that readers will be able to work effectively with a statistician.
We assume in the following text that surveys are conducted once per year to
estimate temporal trends, but the discussion generalizes easily to other
situations.

8.2 Defining ‘the trend’

Deciding how to describe the temporal trend in population size is surpris-
ingly difficult, and with many real data sets it must be acknowledged that
more than one reasonable definition exists. Regression of the means against
time may be used, though appropriate calculation of standard errors is
complex for reasons discussed in Section 8.3. Furthermore, several options
exist for calculating the regression line and results may differ substantially
depending on which option is used (e.g., James et al. 1996, Thomas 1996).
An alternative approach, which simplifies error estimation but may yield
different results from regression on the means, is ‘route regression’ (Geissler
and Sauer 1990), developed at the Patuxent Wildlife Research Center for
use with data from the Breeding Bird Survey. In this Section, we first
describe methods based on standard regression and then describe route
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Fig. 8.1. Example of a scatterplot used to portray temporal trend in abundance.
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regression, noting how it differs from regression on the means. Our main
purpose is to emphasize that ‘the trend’ may be defined in numerous ways
and that the choice among definitions should usually be based largely on
nonstatistical bases. In this Section we assume that exact counts from well-
defined plots are obtained. In reality, most surveys to estimate temporal
trends use index data, and such methods introduce additional complexities.
We address index methods in Section 8.5.

The usual approach for fitting a curve to a scatterplot is to use least-
squares regression as described in Chapter Five. Trends in abundance,
however, are often not linear, and even if they are approximately linear, an
exponential curve may provide a more useful description of the trend. If
this general approach (rather than route regression) is used, then we suggest
first fitting an exponential curve to the data (Fig. 8.2), and using that curve
unless good reasons exist to use some other curve. The reason for this
suggestion is that the exponential curve has a simple interpretation which
works well for index data and is meaningful to most biologists. The expo-
nential curve has the feature of changing by the same proportional amount
each year. Thus, if the curve increases 5% between the first and second year,
then it increases by 5% between any other two sequential years. One may
thus describe the trend by saying that the trend curve increased at an annual
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Fig. 8.2. A scatterplot in which an exponential curve fits the trend reasonably well.
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rate of 5%. Notice, however, that the trend curve is just an approximation to
describe population growth. Real populations almost never change in such
a smooth fashion.

The form of the exponential curve is

, (8.1)

where Xi is the year (e.g., 1992), b0 and b1 are values calculated using least
squares methods (see later) and Yi is the value of the trend curve in period i.
The annual rate of change in the value of the trend curve is exp(b1)�1. For
example, if exp(b1)�1.05, then the trend curve increases by 5% each year. If
exp(b1)�0.98, then the trend curve declines by 0.02 or 2% each year. Most
statistical packages will fit exponential curves to data sets either by taking
the ln of both sides of Eq. 8.1 and fitting a straight line to the transformed
data or by using a nonlinear procedure. In some cases the rate of change itself
may change through time, as when a population increases and then
decreases. When the goal is deciding whether populations are increasing or
decreasing at present – as is true in many monitoring studies – then one may
fit an exponential or linear curve to the most recent years, choosing as a cut-
off date the time when the exponential curve first fails to fit the data (Fig. 8.3).

Yi � b0e
b1Xi
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Fig. 8.3. A scatterplot in which the trend changed direction during the study but,
during the most recent years, is described reasonably well by a linear curve.
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When the exponential curve does not fit the data in the period of interest
well, then other curves may be considered. One approach is to add higher-
degree terms to the exponential curve. The exponential curve is a poly-
nomial curve of degree one (because time enters the equation raised only to
the first power). Using a subscript to indicate degree, the second- and third-
degree polynomials are 

(8.2)

.

The first-degree exponential curve only goes upward or downward, it
cannot reverse direction. The second-degree curve (Fig. 8.4) can reverse
direction once (though it does not necessarily do so), and the third-degree
curve (Fig. 8.5) can reverse direction twice. The second-degree, and espe-
cially the third-degree, curves tend to produce sharp changes in direction at
the start and end of the study period. This tendency can be illustrated with
real data by truncating the analysis a few years before the period actually
ended. In many cases, the curve based on truncated data will show an
upward or downward trend that is not followed when all the data are
included (Fig. 8.6). When part of the purpose of the analysis is to infer how
the population may change in the future, these tendencies should be recog-
nized, and the second- and third-degree curves should not be used if influ-
ential changes in the trend curve occur only a few years before the most
recent survey. These curves are usually drawn by taking logs of the annual

Y3i � b30e
b31Xi�b32X 2

i �b33X 3
i

Y2i � b20e
b21Xi�b22X 2

i
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Fig. 8.4. A trend described using a second-degree log-linear curve.
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means and then using linear regression to estimate the coefficients (which
are then back-transformed). The curves are therefore often referred to as
first-, second-, and third-degree log–linear curves.

A fourth curve that is sometimes helpful is the linear curve (Fig. 8.7)

, (8.3)

where L indicates ‘linear’. When either an exponential or a linear curve fits
the data well (as often happens) then we prefer the exponential curve

YLi � bL0 � bL1Xi

8.2 Defining ‘the trend’ 205

Fig. 8.5. A trend described using a third-degree log-linear polynomial curve.
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Fig. 8.6. A third degree log-linear trend fitted to years 1 to 17 inclusively (dashed line)
and to the entire data set (solid line). Note the upturn in the shorter curve, suggesting

a sharp change in population trend that is not confirmed by the larger data set.
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because the trend can be summarized easily and in terms (i.e., annual pro-
portional change) that biologists find more meaningful. A linear curve does
not change the same proportional amount each year. It does change by the
same absolute amount but change in absolute terms is usually not very sat-
isfactory as a description, especially with index data. Thus, saying that the
number of birds recorded per route declined by one each year leaves the
reader wanting to know what the percentage change was. That is, readers
want the proportional change.

As already mentioned and described in more detail in the next Section,
calculating standard errors for estimates of a trend calculated using the
methods here is difficult for statistical reasons. The ‘route regression’
method developed at the Patuxent Wildlife Research Center provides an
alternative approach which avoids this problem. In this approach, an
exponential curve is fitted to the counts from each route. The average of
the slope parameters, exp(b1), which measure annual proportional trend
for each route, is then used as the overall measure of trend and the usual
formulas for standard errors of means can also be used. This approach
has been generalized for use with stratified sampling and possibly
different sampling intensity between strata (as occurs in the Breeding
Bird Survey). Differences in skill between observers has also been incor-
porated into the analysis by assigning an indicator variable for each
different observer on a given route (Sauer et al. 1994). The approach thus
handles complexities that the regression methods already given here do
not handle well. Route regression is widely used to analyze Breeding Bird
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Fig. 8.7. A trend described using the linear curve.
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Survey data but is not generally available in standard statistical software
packages.

It is important to realize that ‘the trend’ for a given population may be
quite different according to which method for describing the trend is used
(Fig. 8.8), and no one of them will necessarily be clearly superior to the
others. This situation is similar to other cases in which summary statistics
are used to describe complex quantities. For example, in describing central
tendency (i.e., a ‘typical’ value) in a given case some investigators may
prefer the mean and others the median; in describing variability some inves-
tigators may prefer the standard deviation and others the mean absolute
deviation. Guidelines may be given for when each measure is most
appropriate but the choice is still partly one of personal preference. The
same is true in describing ‘the trend’.

This point may seem difficult because repeated reference has been made
here to use of regression methods and these methods, as described in
Chapter Five, often assume that the population means all fall on a given
line. If this assumption were true, then ‘the trend’ would be a precisely
defined quantity rather than a subjective quantity which different people
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Fig. 8.8. First-, second-, and third-degree log-linear curves and a linear curve fit to 
the same data. Note how different ‘the trend’ is with these different curves.
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might reasonably define in different ways. The problem with applying
standard regression logic is that animal populations seldom change in a
smooth manner. Population sizes are affected by numerous year effects
which move them away from the long-term trend. They thus ‘bounce
around’, and even if we had actual population sizes in each year, we would
not find that the means were all on any simple line such as those used in the
methods above. Thus, a summary statistic, such as the proportional change
in an exponential curve fitted to the annual means, is a descriptive statistic
of a complex, and poorly defined, quantity we call ‘the trend’ rather than
being a precisely defined quantity such as the variance of a mean or the
correlation coefficient for two variables. As a result, people may disagree on
the best way to summarize the trend, and in many cases it is difficult to give
statistical reasons for preferring one approach over another. One analyst
may prefer fitting an exponential curve to the annual means, another may
feel that a second-degree polynomial describes the curve better, even
though the description is more complex, and a third may prefer route
regression because it facilitates calculation of precision even though the
resulting curve may not fit the annual means as well as the other two
approaches. The problem is particularly difficult when an exponential curve
yields one trend for the population at the end of the study period (e.g.,
‘decreasing’) and a second-degree polynomial curve yields a different
description (e.g., ‘stable’). Users of the data are likely to want a simple
answer to the question, ‘is the population decreasing or stable?’ and may
find it difficult to understand that the answer may really depend on what
curve is used to describe the trend.

Given these complexities, a few guidelines may be helpful in choosing
which model to use. We begin by clarifying the difference between route
regression and regression on the means. Although route regression fits an
exponential trend line to each route, and then uses the average of these
values as the overall trend, it does not, in general, produce the same results
as fitting an exponential trend to the annual means. Route regression thus
estimates a different parameter or feature of the process compared with
regression on the means. The parameter, in the case of route regression, is
complex and may best be thought of simply as the result that would be
obtained with a very large sample. Alternatively, route regression may be
thought of as estimating the exponential trend in the population means, but
with some degree of bias.

When trends are clear and consistent through time, and sample sizes are
large, then route regression and exponential regression on the means tend
to give similar results. However, with smaller sample sizes, or very different
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trends on different routes, this may not be true, and it is helpful to under-
stand that the two methods really are estimating different quantities. It
should thus not be surprising that they sometimes lead to different conclu-
sions (e.g., one may indicate a significant change when the other method
does not).

We suspect that when describing trends biologists are usually interested
in a curve that fits the annual means. Thus, if the trend departs strongly
from exponential (e.g., Fig. 8.5) then we suggest either using only the most
recent years during which the trend was exponential or using a higher-
degree trend. If the means being analyzed do show an exponential trend,
then one might compare the exponential and route regression results. If the
two differ substantially, then we suspect that biologists will generally prefer
fitting a regression line to the means. On the other hand, if the two methods
produce similar results, the greater ease of variance estimation using route
regression may make this approach more attractive.

8.3 Estimating standard errors

When standard regression methods are used to fit curves to annual means,
the fact that routes are surveyed repeatedly each year must be acknowl-
edged in the formulas for standard errors and quantities derived from them
such as the estimated change in the trend line between two years. This can
be done by including covariance terms in the formula for the variance of the
regression coefficients. The sum of these terms must be estimated. Two
approaches are discussed in this Section though neither has been widely
used in behavioral ecology studies, many of which still inappropriately use
standard regression formulas. One is a ‘nonparametric’ approach based on
regression techniques developed in survey sampling; the other is a ‘para-
metric’ approach based on traditional regression methods. We recommend
consultation with a statistician for assistance in implementing either
approach.

In survey sampling, methods have been developed for estimating means
and totals using regression methods without assuming that the mean
response for a given X value falls on the regression line (Cochran 1977;
Thompson 1992). These methods can be extended to estimate the standard
errors of the regression coefficients without assuming that the annual
means are independent. The formulas, however, are complex and to our
knowledge are not available in any existing software package at the time of
writing, so users may have to write their own programs to carry out the
analyses.
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The parametric approach involves assuming that a relatively simple
model comes close enough to fitting the data that any errors caused by lack
of fit can be ignored. Thus, one assumes that the mean of all possible
counts for each year falls on the regression line, even though this is not
strictly true. The sum of the covariance terms may be estimated by assum-
ing that these terms also follow some simple pattern. For example, one may
assume that they are all constant or that they decline as a smooth function
of the time between years. One major advantage of this approach is that
some statistical packages (i.e., SAS, SAS Institute, Cary, NC, USA) permit
estimation using this approach.

Analysis with the route regression approach is simpler. Each route pro-
duces one regression coefficient; the mean of these coefficients is an unbi-
ased estimate of the population mean (i.e., the mean of the coefficients for
‘all possible’ survey routes), and the sample standard error it provides is an
appropriate estimate of precision (assuming sample sizes per route are the
same). No problem is caused by surveying the same routes each year
because each route produces only one outcome (the regression coefficient).
This approach can be incorporated into existing software such as SAS
fairly easily. One has only to obtain the regression coefficients from each
route and then treat these as a simple random sample.

8.4 Outliers and missing data

Outliers and missing data occur frequently in animal surveys. The mean for
one year may be far from the trend line, and may have a small standard
error indicating that the disparity is not due simply to sampling error. When
this is true, performing the analysis with and without the outlier may be
useful to indicate how much effect this single mean has on the trend
(Section 5.3, ‘Examining assumptions’). It is also useful to determine how
consistent the results were across routes in the outlier year. This sometimes
identifies recording errors (e.g., 5 may have been recorded as 50 during data
entry) and may help one decide what course to follow. Biological informa-
tion is often helpful here. For example, the study area might be on the edge
of a species’ range but a vagrant flock of the species might have been
observed on a single route in one year causing the mean per route for the
year to be abnormally high. An investigator might note the existence of this
record and that it had been excluded in the analysis.

In estimating precision, the effect of including outlier years differs
according to which analytical method is being used. Regression on the
means, using the nonparametric approach for variance estimation, and
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route regression make no assumption that the true means for each year fall
on the regression line. Thus, the existence of strong year effects in some
years does not indicate a failure of assumptions or any other purely statisti-
cal problem. In the parametric regression approach, one assumes that all
the annual means do fall on the regression line, and the calculation of stan-
dard errors relies on this assumption.

Missing data are also often encountered in these data sets. The main point
to consider is how evenly the missing data are distributed over the sample of
possible route-years. Ideally, missing data are few and are not concentrated in
any portion of the data such as one part of the study area early in the interval,
or on routes with low numbers of animals actually present. With surveys con-
ducted by volunteers, one problem is that routes with few animals present
may be covered less frequently than routes with many animals present. The
effect of such nonrandom distribution of the missing data varies according
to which method is being used, and careful thought may be needed to decide
how serious a problem is caused by the missing data.

Approaches for dealing with missing data include calculation of
expected results for missing route-years, exclusion of the missing route-
years from the analysis, and forming ‘super-routes’ which combine results
from several routes. The parametric approach for using standard regression
methods is complex with missing data in the sample because the route-years
matrix must be inverted. Problems also exist over how to reduce the degrees
of freedom appropriately in this case. The nonparametric regression and
route regression approach can both accept missing data. Missing data for a
series of consecutive years may have large effects on route regression, espe-
cially when the trend along the route departs significantly from an exponen-
tial curve. Thus, if the true trend is up and then down, but the ‘up portion’
of the data is missing, then the calculated regression coefficient for that
route will be far from the value that would have been obtained if all the data
were present. Super-routes are formed by combining results from routes
with missing data and calculating the mean/year, for each year, using what-
ever routes were surveyed. Super-routes may be formed by combining
routes in the same part of the study area. The resulting data may then be
used with any of the three analytical approaches described above.

8.5 Index methods

Index methods, in which counts do not involve thoroughly searched, well-
defined plots, are widely used to monitor population trends of animals.
Index methods raise a special set of problems which we discuss in this
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Section. We assume in the following text that the same routes are surveyed
each year (or at some other interval). This case – annual counts of animals
along the same routes – is by far the most common case in behavioral
ecology, but most of the ideas discussed in this Section also apply to varia-
tions of this situation, and some of these are briefly discussed at the end of
the Section.

Imagine a survey in which the animals are counted on several routes,
each with several stations, for several years. The animals might be detected
by visual or auditory cues, traps (e.g., snap traps, mist nets), or by signs
(e.g., tracks) that they leave. The number of detections per unit of effort
varies substantially during the study interval, and we believe this variation
reflects variation in population size. On the other hand, we do not detect
every animal present during the intervals; we may not even detect a large
fraction of them, thus variation in the numbers detected might be caused by
variation in how efficiently we sampled. High numbers caught might reflect
high efficiency rather than high numbers present, and so on. The example
illustrates both the essential feature of index methods (an unknown fraction
of the animals present is detected in surveys) and the primary concern
about them (how well does variation in the index reflect variation in
population size?).

The notion of how many animals are ‘present’ in examples like the one
just given may be confusing since no well-defined plots are established. We
can imagine, however, delineating a plot with boundaries sufficiently far
from the survey stations that no animal outside the boundaries will be
detected at the station. The number of animals ‘present’ at a station is then
the number of animals within this hypothetical plot. This hypothetical plot
is just a useful mental construct; its only point is to show that we can attach
a specific meaning to the notion of how many animals are ‘present’ at each
survey station. This, in turn, lets us talk meaningfully about the detection
rates. Our concern is not with absolute detection rates, which are arbitrary
since they depend on how large the hypothetical plots are, but rather with
how much the rates vary through time. Do they vary 10% or 500% through
time, and does a consistent trend exist for the rates to increase or decrease
through time? The answers to these questions would be the same regardless
of how large we imagined the hypothetical plots to be.

The critical issues in deciding how reliable a given index is involves the
ratio, for each year, (count)/(number actually present). We refer to this
quantity as the ‘index ratio’; it depends on the average detection rate for
animals. We emphasize average because the detection rates for individual
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animals or groups of animals nearly always vary greatly in these surveys but
this variation alone may not cause much variation from one year to another
in the index ratio. Biologists and others thinking about index methods fre-
quently confuse these issues. In particular, they often assume that high vari-
ation in detectability, from one animal to another, automatically means that
index methods are unreliable. This view, however, is incorrect. If the index
ratio is constant then the index yields results that are the same as complete
counts on well-defined plots. To some people, this seems intuitively
obvious. To others, however, it does not seem obvious so we present the fol-
lowing algebraic argument.

Let i�the mean number of animals recorded per survey in year i, i�

the mean number of animals that would be recorded if a complete count
was made at sampled stations in year i, and define p� i/ i as the index
ratio; p is not subscripted because we are assuming here that it is constant.
First consider estimating the ratio of counts in any two years i and j. With
the index survey, this ratio would be estimated by i / j. Since i�p i and
vj�p j, we have i / j�p i /P j� i / j which is the same estimate that we
would have obtained with complete counts. A more relevant case concerns
the ratio of values for the trend line fit to the data. Consider fitting a
straight line or an exponential curve to the data. Using the fact that i�p i,
it is easy to show that the ratio of the fitted curves at two times is the same
whether we used the index values, i, or the complete counts, i, to estimate
the fitted curves.

These arguments show that index surveys have the same reliability as
complete counts if no variation exists in the index ratio. In reality, however,
the index ratio always varies from year to year to some degree, and this
raises the question of how, and how much, such variation affects the valid-
ity of estimates of population changes based on indices. If the correlation
between the index ratio and time is 0.0, then estimates of the population
change based on indices are valid estimates of the true change in the
population. However, if detection rates are low and variable, then precision
of any estimates made from the index survey data will be correspondingly
low although this will be fully reflected in the analysis of the data.

On the other hand, any temporal trend in the index ratio reduces the reli-
ability of the analysis. This point is not complicated: if detection rates
steadily rise during a 10-year survey from, say 10% to 20%, then survey
results will tend to increase even if population size is stable during the 10-
year period. Clearly, in this case we would be misled by the index if we
accepted it at ‘face value’. Strictly speaking, the statistical analysis is still
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valid, but it does not answer the question we are really interested in. The
trend being estimated by the index numbers is not the same as the trend in
the population if detection rates change consistently through time. Thus,
the real problem, in this case, arises if we interpret change in the index as
being equal to change in population size.

Summarizing these points: (1) the critical issues in evaluating index
results involve the ‘index ratio’, average count in a given year/average
number present that year; (2) in real surveys the index ratio almost always
varies from year to year, though the amount of variation may be small if
many routes are surveyed under standardized conditions; (3) if no tempo-
ral trend exists in the index ratio [i.e., Cov(Pi,Xi)�0] then the statistical
analyses described above provide essentially unbiased estimates of trend
and precision; (4) any temporal trend in the index ratio does compromise
the statistical analysis of index results.

Having established the general principles to consider in evaluating an
index, we now briefly discuss factors that may cause the index ratio to
change consistently with respect to time or other factors of interest. As an
example, we use singing bird surveys, in which most detections are made by
hearing the songs of birds. The quantity of interest is nearly always the size
of the population at the time of the survey, usually the beginning of the
reproductive season. Many birds, including females of most species, non-
breeding males, and males whose females are incubating in many species,
sing little if at all and thus have low probabilities of being detected. If the
fraction of the population comprising these individuals varies sub-
stantially between years, then the index ratio will also vary substantially.
Furthermore, surveyors vary greatly in their ability on many singing bird
surveys; if their average ability varies between years then this will also
contribute to variation in the index ratio. Other factors such as change in
habitat, and corresponding change in detection rates, change in extraneous
noise, especially from traffic, and different trends along roads, where the
surveys are usually conducted, and throughout the region of interest may
also compromise the index. These problems often combine to cause sub-
stantial variation from year to year in the index (Ralph and Scott 1981;
Lancia et al. 1994), but in many cases they even out across years so that the
correlation between the index ratio and year is zero or negligible. Factors
that may change progressively include correlation between density of birds
and detection rate, progressive change in average observer skill, and
different temporal trends in habitat – and thus bird abundance – along
roads and throughout the region. Many if these issues have been investi-
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gated, and results indicate that small biases are often (probably always)
present but that major trends are often nonetheless detectable. For
example, Bart and Schoultz (1984) concluded that variation in detection
rates with density might cause trends to be underestimated by up to 25%.
Thus, if the true rate of annual change was 4%, the expected value of the
estimate would be 3% or more, a level of bias which, however regrettable,
would probably not be too serious in most applications. Opinions on the
reliability of index methods vary, however, with some researchers express-
ing considerable doubt about index methods in general (e.g., Lancia et al.
1994). Everyone can agree that careful scrutiny of index data is needed
before assuming that trends in the index reflect trends in the population of
interest.

A few additional points may be made about index surveys. The index
ratio does not have to be less than 1.0; even if some fraction of the animals
present are counted more than once, this does not compromise the index as
long as the index ratio has zero correlation with time. Furthermore, the
ratio does not need to be a true count of animals or their sign, it can be any
quantity as long as the index ratio does not have a temporal trend in magni-
tude. For example, wildlife agencies often use the number of complaints
from the public about deer damage as a very rough indication of change in
deer herd size. The index ratio, for a given year, in this case is number of
complaints/number of deer present, and clearly provides only a very rough
indication of population trends. Under some situations, however, the
correlation between the index ratio and time may be sufficiently small, and
the trend in deer population size sufficiently large, that the index does
provide useful information.

If a temporal trend in average observer skill is thought to be present, then
regression methods including indicator variables for different observers can
be used on each route to estimate the trend correcting for different observer
abilities (Sauer et al. 1994). This method was developed for the route regres-
sion approach. Analyses of Breeding Bird Survey data using this approach
generally include coefficients for all observers. An alternative approach
(Fancy 1997) is to include coefficients only if the regression with observer
coefficients included provides a significantly better fit than the regression
obtained without observer coefficients included. If observer coefficients are
included but regression on the means is to be employed, then the counts on
each route should be adjusted using the coefficients for each observer prior
to calculating the annual means.

Emphasis so far has been placed on estimating temporal trends because
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that is the most common use of index data. The counts, however, may be
plotted against any other variable such as geographical location, a measure
of productivity the previous year, deviation of last year’s index from the
trend line, etc. The critical question is still whether the index ratio, count/
actual number present, has zero correlation with whatever value is plotted
on the X-axis. For example, if geographical location (e.g., distance from the
center of the range) is plotted on the X axis, then the issue in evaluating the
index is whether the index ratio has zero correlation with the location
measure. A nonzero correlation could well occur. For example, habitat may
affect detection rate and may vary consistently across the range or observer
skill may tend to be better in one portion of the range than in others.

The examination of outliers is often particularly difficult with index data.
The reason for this is that many factors other than actual density may affect
the index ratio. For example, if surveys for breeding birds are conducted at
the same calendar time each year, it may happen in one year that the season
is far ahead of or behind the average and this may have a major effect on
survey results. Thus, many birds sing much more prior to incubation than
later. Suppose that the survey is timed so that in most years most birds are in
incubation, and thus have low detection rates, but in one year the season is
late so many birds have not begun incubation. The index results for that year
may be inflated solely due to the high detection rate. In many real surveys, it
is difficult or impossible to rule out such variation in detection rates for a
single year, so it may not be possible to decide whether an outlier is caused
by a true difference in population size or just a difference in the index ratio.

Emphasis has been placed in the preceding text on estimating long-term
temporal trends in abundance because this is the most common use of
index data. In designed experiments, however, biologists often use index
data gathered in only one or two periods. For example, a series of plots may
be surveyed before and after treatment with a pesticide. In such cases,
careful thought about how the index ratio may have varied is necessary. As
an obvious example, if one technician surveyed plots before treatment and
another surveyed them after treatment then the treatment is confounded
with the observer effect.

8.6 Pseudoreplication

Analyses ignoring the fact that the same plots or routes are surveyed each
year produce biased estimates of standard errors, and the bias is nearly
always negative (i.e., the standard error tends to be underestimated so
precision is overestimated). This error thus resembles pseudoreplication in

216 Monitoring abundance



the sense that inappropriate formulas are used to estimate standard errors
and precision is generally overestimated. The problem, however, is not one
of failing to recognize primary sampling units, but rather failing to recog-
nize the lack of independent sampling in primary units. Thus the error is
not really pseudoreplication.

True pseudoreplication is seldom a problem. If routes are not distributed
randomly across the study area, but instead are selected within primary
units which are themselves a sample from the area, then the two-stage
nature of the design needs to be recognized and failing to do so would
amount to pseudoreplication. We have seldom seen this error in behavioral
ecology however.

8.7 Summary

Estimating trends in abundance raises several difficult conceptual and
statistical issues. The true densities in each period seldom fall on a simple
line. Instead, ‘year effects’ are pronounced. As a result, no single definition
of ‘the trend’ exists and the choice between alternative definitions, and
the analytical approaches they lead to, may be largely subjective.
Unfortunately, however, different analytical approaches often give widely
divergent results, not because some are wrong but simply because they esti-
mate different parameters. Among standard regression methods, we recom-
mend first fitting an exponential curve to the data because this curve
changes by a constant proportional amount which makes possible a simple
summary of the trend. If the exponential curve does not fit the data well,
then we suggest adding a second-degree, and possibly a third-degree, term.
A straight line also sometimes provides a good description of the trend
though it lacks the simple interpretation of the exponential trend. Error
estimation is difficult with all of these approaches because the same routes
are surveyed in different years. An alternative is route regression in which a
single measure of trend is obtained from each route. The overall trend is
taken as the average of the trends on each route, and variance estimation is
straightforward. Route regression estimates a different parameter than
exponential regression on the means but results are often quite similar.
Most data on temporal trends in abundance are collected using index
methods in which counts are not complete and restricted to well-defined
plots. The critical question with index methods is whether any temporal
trend occurs in the index ratio, defined as (index value)/(actual number
present). If no such trend occurs, then point and interval estimates of trend
(however it is defined) are both essentially unbiased. This is true even if the
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index ratio varies substantially from year to year. Gaining confidence that
no temporal trend exists in the index ratio is usually difficult, calling for
intensive studies from which generalizations are difficult to make. Thus,
index results should generally be regarded as suggestive rather than conclu-
sive unless the estimated trend is substantially greater than the maximum
likely temporal trend in the index ratio.
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9
Capture–recapture methods

9.1 Introduction

The phrase ‘capture–recapture methods’ refers to studies in which a sample
of animals is marked and then some, but usually not all, of them are recov-
ered on one or more subsequent occasions. Goals of capture–recapture
studies include estimating population size, survival, and certain other vari-
ables discussed in this Chapter and studying associations between these and
other variables such as how survival rates vary with age or across years. In
this Chapter we review the basic concepts that underlie capture–recapture
studies, identify major branches of the field, and describe recent develop-
ments. Although the methods were originally used primarily to estimate
population size and survival rates, contemporary methods provide a rigor-
ous approach for studying a wide variety of other issues of interest in
behavior, ecology, and evolution (Nichols 1992). The methods, however, are
complex and new refinements appear constantly. We therefore suggest con-
sulting a specialist in capture–recapture methods before undertaking work
in this field, and we do not attempt to provide a comprehensive guide to the
methods.

9.2 Rationale

The basic rationale in capture–recapture methods is to estimate what frac-
tion of the animals marked and present in the study area was counted
during each sampling period. This fraction is then used to estimate quanti-
ties of interest. Two general approaches might be distinguished for estimat-
ing the fraction. First, suppose we can assume that all animals (marked and
unmarked) present at the start of the study are still present on each recap-
ture occasion. We will also assume that the marked and unmarked animals,
in a given cohort, have the same recapture probabilities. The fraction of a
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sample bearing marks is thus an unbiased estimate of the fraction of the
population bearing marks, and this lets us estimate the fraction of the
population that we counted in the sample. For example, if we mark 100
animals, then capture a subsequent sample of 200 animals and find that 50
of them are marked, then 50/200�25% is an unbiased estimate of the frac-
tion of the population that we marked. Accordingly, 100/0.25�400 is a
reasonable estimate of population size.

The second approach permits change in population size due to births,
deaths and movements. Assume, initially, that animals leaving the area do
not return, and animals entering the area do not leave again, during the
course of the study. Suppose we mark 100 animals on the first capture occa-
sion and recapture some of them on two subsequent occasions. We denote
the number of marked animals captured on occasions two and three as m2

and m3. In general, some of those with marks captured on the third occa-
sion will not have been recaptured on the second occasion. The proportion
of the m3 that were also captured on occasion two is an unbiased estimate of
what fraction of the marked animals were captured on occasion two. Thus,
the fraction of marked animals captured may be estimated by examining
how many marked animals were captured on a subsequent occasion but not
captured on the occasion of interest. Given an estimate of this fraction, the
total number of marked animals alive and in the study area may be esti-
mated, and from this survival rates can be estimated. In this case, ‘mortal-
ity’ actually means either dying or surviving but leaving the study area.
Mortality thus has the meaning ‘loss from the population’ through either
death or emigration.

While these comments are intended to show the conceptual basis of
capture recapture estimation, the actual calculations of point and interval
estimates are quite complex. It is thus important for behavioral ecologists
to become familiar with the methods and use one of the several comprehen-
sive software programs (see Sections 9.5 and 9.6) rather than attempting to
develop their own methods.

9.3 Capture histories and models

The results of a capture–recapture study are often summarized by a series
of capture histories. The summary is an array with rows representing indi-
viduals and columns representing capture and recapture occasions. In
the simplest case, the entries are either 0, meaning that the animal was not
captured or recaptured, or 1, meaning that the animal was captured or
recaptured. Thus, with four occasions for marking and recovery, the history
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1001 refers to animals that were captured on occasions 1 and 4 and not on 2
or 3. The results from a capture–recapture study may be summarized using
a separate line for each animal, or the number of individuals having each
history may simply be noted. For example, 1001 23 might mean that 23
individuals had the history 1001.

Corresponding to the capture history is a statistical model specifying the
probability of obtaining each row in the array. The statistical model
depends on what events are assumed to be possible. For example, suppose
all animals alive and in the study population at the start of the study remain
in the population throughout the study. Thus, there are no changes in
population size due to births, deaths, or movements. Suppose, too, that all
animals have the same probability, p, of being captured on each capture
occasion. The probability of obtaining capture history 1001 is then
p(1�p)(1�p)p. The probability of obtaining the history 1100 is
pp(1�p)(1�p). Given this type of description of each possible capture
history, statistical methods (based on maximum likelihood theory) can be
developed to estimate the parameters given the number of individuals
having each capture history. This is the basic analytical approach in
capture–recapture methods.

The simple capture histories described so far can be expanded to
describe many other situations and to estimate many other parameters.
For example, suppose that some individuals die or leave the population.
Let the probability of surviving and remaining in the study area be �,
and assume that it is the same for all animals during all intervals (i.e.,
between consecutive capture occasions). The probability of obtaining
capture history 1011 is then p�(1�p)�p�p. This expression, in words,
means the probability of being captured on occasion one (p), surviving
until occasion two (�), not being captured on occasion two (1�p) and
so on (where ‘surviving’ means surviving and remaining in the study
area). If the survival or recapture probabilities vary through time, then
subscripts can be used to indicate that the values are, or may be,
different, e.g., p1�1(1�p2)�2 p3�3 p4. In this case we would estimate
seven parameters rather than the two when rates were assumed not to
vary through time. Alternatively, if the rates are thought to vary in a
constant, for example linear, manner, then we may replace pt , where the
subscript t indicates time (1 to 4 inclusively in the example), with an
expression such as pt��0��1t in which recovery is viewed as a linear
function of time. The statistical methods would then estimate the two
parameters that define the recovery rate for any time rather than the
single rate or the time-specific rates.
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Probabilities of movement can also be incorporated into this approach.
For example, with two recapture sites the capture histories could be written
using A for ‘site one’ and B for ‘site two’. Thus, the capture history A0BA
would refer to animals caught on occasion one in site A, not caught on
occasion two, caught at site B on occasion three and caught at site A on
occasion four. The statistical model for this case is more complex because
so many different movements are possible. The approach, however, is
similar in principle (e.g., Brownie et al. 1993; Nichols et al. 1993).

9.4 Model selection

Much of the new work in capture–recapture methods during the past few
decades has been devoted to developing comprehensive models that can be
used to analyze and compare many different submodels. In the example
above, we described models in which capture and recovery rates were time
specific or constant. A model with both rates varying through time would
be considered a general model because it includes, as special cases, models
in which one or both rates were constant and models in which one or both
rates were the same for some but not all occasions. These models are thus
nested in the sense that the models with more assumptions (e.g., all recovery
rates the same) have the same structure as the general model but with some
constraints (e.g., all pt�a constant value, p). Nested models can be com-
pared using procedures similar to the ones used in multiple regression. For
example, a model with only a few parameters may be preferred to one with
more parameters unless the one with more parameters achieves a signifi-
cantly better fit to the data (generally evaluated use likelihood ratio tests
and a quantity known as Akaike’s Information Criterion or AIC). An
overall goodness-of-fit test is also often carried out. These procedures are
described in detail in reviews of capture–recapture methods such as
Burnham et al. (1987) and Pollock et al. (1990). We now briefly describe
some of the general categories of models and the factors they are designed
to study.

9.5 Closed population models

Closed population models assume that no births, deaths, or movements
into or out of the population occur during the study. Population size is thus
constant throughout the study. The parameter of interest in these models is
usually population size, though differences in capture probabilities are also
estimated by some of the models and are occasionally of interest. Models
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for this case were developed by Otis et al. (1978) and White et al. (1983) and
incorporated into the program CAPTURE. More recent refinements are
described by Rexstad and Burnham (1991), Nichols (1992) and White
(1996).

In closed population models, much emphasis is placed on variation in
recapture probabilities. Variation in capture probabilities can easily cause
serious bias in the estimates of population size unless models recognizing
the variation are used. For example, if some animals consistently have a
high probability of being captured, then the estimate of what fraction of
the population is captured could be seriously in error, leading to a seriously
biased estimate of population size. The same problem could occur if
capture probabilities change through time.

The program CAPTURE permits examination of three types of varia-
tion in capture probabilities: variation between individuals, variation
through time, and variation in response to being trapped. Models are pro-
vided for each type of variation and each pair of types (e.g., variation
through time and in response to being trapped). A model with no variation
is also provided, and a model with all three types of variation is discussed
but the parameters cannot be estimated.

9.6 Open population models

In open population models, births, deaths, and movements into or out of
the population are permitted. Population size thus may change during the
study. Early models developed in the mid-sixties by Cormack (1964), Jolly
(1965) and Seber (1965), often referred to as the Cormack–Jolly–Seber
model, assumed that arrivals to, and departures from, the population were
permanent. Thus ‘survival’ in these models should be interpreted as
meaning surviving and remaining in the study area and should not be inter-
preted solely as survival unless rates of emigration (and survival) are very
low.

SURGE

Several programs have been developed specifically for open population
models. One of the most widely used is SURGE (Lebreton et al. 1992)
which is reasonably easy to use and is extremely flexible. The user’s manual
for SURGE is rather difficult for beginners to understand but Cooch et al.
(1996) provide a detailed practical guide to using SURGE. Parameters are
specified in SURGE by describing arrays for each time period and group of
animals (classified by time of first capture). Separate arrays are declared for
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cohorts defined by age, sex, location and so on. For example, suppose we
captured males and females during each of 7 years, some as hatching year
birds, and others as adults of unknown age. We are interested in age-specific
rates for up to three age classes: hatching year (HY), second year (SY), and
after second year (ASY). Birds can be aged only in their hatching year. We
assume that all birds first captured after their hatching year are ASY
(though in reality some of them will be SY birds). Survival and recovery
rates are sex, age, and year specific. The parameter diagram for this model,
in SURGE format, is shown in Table 9.1. Parameters are numbered within
sex and age cohorts. Thus, parameters 1–6 refer to males first captured
during their hatching year. Parameters 7–11 refer to these birds during the
year after their first capture. Many of the parameters appear multiple times
in the arrays. For example, parameter 15, the survival rate of ASY males in
year 1993, appears 10 times.

This notation, while somewhat complex, provides the basis for evalu-
ating a great many models by specifying that certain parameters are equal
to each other. For example, to compare the model in Table 9.1 to one in
which survival rates for second year males are the same as those for adults,
we would include the following constraints: 8�12, 9�13, 10�14, 11�15.
SURGE prints the AIC for each model and, if we used this criterion for
model selection, we would simply adopt the model with the lowest AIC. A
little thought will suggest numerous other comparisons. For example, we
could set the survival rates of second year males equal to that of HY males,
thereby obtaining a third model which could be compared to the other two.
In a real evaluation of the general model above, applied to capture – recap-
ture data for Kirtland’s warblers, more than 40 submodels were evaluated.
The final model selected had just four parameters: survival for first year
birds, survival for all older birds, recovery rates for males (all ages), recov-
ery rates for females (all ages). SURGE provides various shortcuts and
additional information and runs on a personal computer. It does not,
however, carry out general goodness-of-fit tests and is thus often used in
combination with RELEASE (Burnham et al. 1987) which does perform
these tests.

Other parameters

Many other special cases have been investigated by specialists in
capture–recapture methods. For example, a ‘robust design’, combining
closed and open population models was introduced by Pollock (1982).
White (1983) developed a general program, SURVIV, that is more difficult
to use but permits estimation of parameters with numerous models includ-
ing ones that model survival rates in terms of external covariates. Models
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Table 9.1. Model of survival and recovery rates with separate rates for each
sex, age (HY, SY, ASYa), and calendar year. Row headings indicate year
of first capture; column headings indicate years of capture and recapture.
Entries indicate which parameters are assumed to have the same values.

1. Rates for males first captured during their hatching year 

Survival rates Recovery rates

’88 ’89 ’90 ’91 ’92 ’93 ’88 ’89 ’90 ’91 ’92 ’93

’87 1 7 12 13 14 15 35 41 46 47 48 49
’88 2 8 13 14 15 36 42 47 48 49
’89 3 9 14 15 37 43 48 49
’90 4 10 15 38 44 49
’91 5 11 39 45
’92 6 40

2. Rates for females first captured during their hatching year 

Survival rates Recovery rates

’88 ’89 ’90 ’91 ’92 ’93 ’88 ’89 ’90 ’91 ’92 ’93

’87 16 22 27 28 29 30 50 56 61 62 63 64
’88 17 23 28 29 30 51 57 62 63 64
’89 18 24 29 30 52 58 63 64
’90 19 25 30 53 59 64
’91 20 26 54 60
’92 21 55

3. Rates for males first captured after their hatching year 

Survival rates Recovery rates

’88 ’89 ’90 ’91 ’92 ’93 ’88 ’89 ’90 ’91 ’92 ’93

’87 31 32 12 13 14 15 65 66 46 47 48 49
’88 32 12 13 14 15 66 42 47 48 49
’89 12 13 14 15 37 43 48 49
’90 13 14 15 38 44 49
’91 14 15 39 45
’92 15 40

4. Rates for females first captured after their hatching year 

Survival rates Recovery rates

’88 ’89 ’90 ’91 ’92 ’93 ’88 ’89 ’90 ’91 ’92 ’93

’87 33 34 27 28 29 30 67 68 61 62 63 64
’88 34 27 28 29 30 68 57 62 63 64
’89 27 28 29 30 52 58 63 64
’90 28 29 30 53 59 64
’91 29 30 54 60
’92 30 55

Note:
a HY�hatching year, SY�second year, ASY�after second year.



for harvested birds were developed by Brownie et al. (1985). Methods for
accommodating temporary emigration have been studied by several
authors (e.g., Kendall and Nichols 1995, Kendal et al. 1997). Skalski and
Robson (1992) developed methods for testing hypotheses about differences
in population size with closed populations. Methods for separating
immigration from births were studied by Nichols and Pollock (1990). Other
developments prior to 1991 are described by Nichols (1992). During the
past several years, specialists in capture–recapture statistics have continued
to adapt these methods for studying such issues such as recruitment (Pradel
et al. 1997), individual variation in demographic parameters (Skalski et al.
1993), age-specific breeding rates (Clobert et al. 1994), detection of senes-
cence (Burnham and Rexstad 1993, Nichols et al. 1997), and estimating
population size in plants (Alexander et al. 1997). In general, however, theo-
retical studies of behavior, ecology and evolution have made little use of
modern capture–recapture methods (Lebreton et al. 1993), a situation that
may change rapidly during the coming several years as researchers working
on theoretical topics realize the great advances that are possible using these
methods.

9.7 Summary

Capture–recapture methods provide ways for converting index data per-
taining to population size, survivorship and other parameters into rigorous,
often essentially unbiased, estimates of the parameters. The basic principle
in capture recapture is that the fraction of the animals present on a sam-
pling occasion, but not detected on surveys, can be estimated from the
capture–recapture data and used to obtain parameter estimates.
Capture–recapture analysis involves summarizing the capture data in
capture histories and writing down expressions for all possible capture his-
tories in terms of the unknown parameters. Given this model, maximum
likelihood methods may be used to obtain point and interval estimates. In
recent years, a great deal of work has been carried out to develop powerful,
efficient, and flexible computer programs that provide maximum likelihood
estimates of population size and survival rates. These methods are begin-
ning to be used to estimate other demographic parameters such as move-
ment rates and measures of productivity. Furthermore, the methods are
suitable for studying how these variables are associated with other factors
such as weather and dominance status or for estimating derived quantities
such as the cost of reproduction or lifetime reproductive success. These
methods thus may be of great value to behavioral ecologists when counts
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are incomplete and the fraction of individuals missed on surveys may vary
and thus compromise the data set. They are now routinely used in fisheries
and wildlife but have been much less used by behavioral ecologists working
in theoretical research. We urge readers who must deal with incomplete
counts and the biases that may result to become acquainted with the litera-
ture in this exciting and rapidly developing field, learn the basic approaches,
and then contact one or more of the specialists working on capture–recap-
ture methods for further assistance.
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10
Estimating survivorship

10.1 Introduction

Survivorship, the proportion of individuals surviving throughout a given
period, may be estimated simply as p�x/n where n�the number alive at
the start of the period and x equals the number alive at the end of the
period, or it may be estimated using capture–recapture methods as dis-
cussed in Chapter Nine. Two additional issues, however, often arise in
behavioral ecology. One is that in many studies a measure of overall sur-
vival across several periods, each having a separate survival estimate, may
be desired. The second issue is that in studies of nesting birds or other
animals, information is often incomplete because many nests are not dis-
covered until well after they have been initiated and may not be followed to
completion. In this Chapter we discuss methods developed to handle both
of these cases. We focus on telemetry studies, which raise the first issue, and
studies of nesting success which raise both issues.

10.2 Telemetry studies

In telemetry studies, transmitters are attached to animals which are then
monitored for various purposes, including the estimation of survival rates.
The simplest case arises when all transmitters are attached at about the
same time and animals are checked periodically at about the same times
until they die or the study ends. Cohorts based on age, sex, or other factors
may be defined.

Data of this type are basically binomial (White and Garrott 1990;
Samuel and Fuller 1994). On any sampling occasion, t, the proportion of
animals still alive is the appropriate estimator of survivorship to that time.
The standard formulas (e.g., Appendix One) for proportions apply to the
calculation of standard errors and confidence intervals and to the carrying
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out of statistical tests. Thus, if time starts at 0, ends at T, and the number
still alive at time t�T is nt, then survivorship to time t may be estimated as
st�nt/n0 with standard error  [st(1�st)/n0]

0.5.
Suppose we calculate the survivorship each time animals are checked say

at times 1,…,t. As long as no animals have died, the estimated survivorship
will be 1.0. When the first animal dies, the estimate will drop to (n0�1)/n0.
When the second animal dies, the estimate will drop again to (n0�2)/n0 and
so on. The plot of estimated survivorship against time thus has a stair-step
appearance (Fig. 10.1), and provides a convenient graphical summary of
the data set. This approach is a simple case of the Kaplan–Meier method
(Kaplan and Meier 1958) which allows one to incorporate into the analysis
more complicated features such as animals which leave the study area.

A practical problem with using st�nt/n0 as the estimator of survivorship
to time t is that in most studies animals do not all enter the study at the same
time. Furthermore, in many cases animals drop out of the sample due to
causes other than death such as transmitter failure and emigration. Notice,
however, that we may rewrite nt/n0 as

(10.1)
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Fig. 10.1 Temporal decline in population size as portrayed using Kaplan–Meier
estimates. (Stair-step diagram.)
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in which the � sign indicates multiplication. Thus, with no additional
assumptions, we may express the overall survivorship from the start of the
study to any time t�T as the product of the proportions surviving the
separate intervals. This form of the basic binomial estimator, however,
accommodates changes in sample size during the study. We simply use
whatever animals are observed in each interval to calculate the estimate st

*.
With changes in sample size, we need a slightly different notation. Let
si

*�1�di /ni where di is the number of deaths during interval i and ni is the
number alive at the start of the interval. Then we may rewrite Eq. 10.1 as

. (10.2)

The Kaplan–Meier formula for survivorship to time t�T, with changes in
sample size, is generally presented in this form (e.g., White and Garrott
1990 p. 234, Samuel and Fuller 1994 p. 407, Bunck et al. 1995 p. 791). The
variance of st may be estimated as

. (10.3)

When animals enter or leave the sample (due to causes other than
death), then an adjustment to the variance formula is needed. Pollock et al.
(1989a,b) referred to this as the ‘staggered entry’ case and pointed out that
a formula in Cox and Oakes (1984 p. 51) is appropriate for this case. If no
changes in sample size occur, then st�nt/n0 and this formula reduces to the
familiar equation for a binomial proportion, v(st)�st(1–st)/n0. Many soft-
ware programs (e.g., SAS, BMDP) provide graphs and variance estimates
for each period using the Kaplan–Meier approach, but often under the
assumption that all animals enter at the start of the study. White and
Garrott (1990) provide a SAS program to compute estimates for the stag-
gered entry design. Tests for differences in survivorship between cohorts
have also been developed, primarily in the medical field. White and
Garrott (1990 pp. 232–50) and Samuel and Fuller (1994 pp. 403–9)
describe these methods and their utility in behavioral ecology. Bunck et al.
(1995) provide modifications for the case in which some tagged animals are
missed during surveys. The variance estimates described here assume that
all fates are independent. Flint et al. (1995) discuss application of the
Kaplan–Meier approach for estimating brood survival, and note that the
fates of individuals in a brood are usually not independent whereas the
traditional Kaplan–Meier approach assumes that all fates are inde-
pendent. They suggest treating broods as unequal-sized primary units, cal-
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culating separate survival estimates for each brood, and then using the
formula for multistage (i.e., in this case, cluster) sampling to obtain
standard errors for interval-specific survivorship. Standard errors for
overall survivorship are obtained using a bootstrapping approach (Efron
and Tibshirani 1993 pp. 43–56).

10.3 Nesting success

Studies of nesting success by birds and other animals are similar to telemetry
studies in that animals are visited periodically and the goal is to estimate
survivorship through one or more periods of interest. When all nests are
found upon initiation and followed until failure or successful completion,
then the simple binomial methods, including the Kaplan–Meier approach,
already described provide the best method of analyzing results. The exact
method depends on what measure of success is desired. If the average number
of young produced per nesting attempt is desired, then the data set may be
viewed as a simple random sample of nesting attempts with the variable
defined as ‘number of young produced’. The standard formulas for simple
random sampling are then used to obtain point and interval estimates. If the
objective is estimating what fraction of eggs survive to produce young leaving
the nest, then nesting attempts are best viewed as unequal-sized primary units
with primary unit size being the number of eggs and the variable being the
proportion of the eggs that produce young. The formula for multistage sam-
pling with primary units weighted unequally (Appendix One, Box 3) may then
be used to obtain unbiased point and interval estimates. Investigators some-
times estimate the proportion of nests that produce at least one young leaving
the nest (i.e., ‘successful nests’). In this case, the variable is dichotomous (0�

none produced/1�1�produced) and the formulas for proportions with
simple random sampling (Appendix One, Box 2) are used.

Finding all attempts, including those that fail rapidly, is often difficult or
impossible. However, in some of these studies successful attempts can be
counted because, for example, food-bearing adults can be detected. The
number of successful attempts per unit area can then be estimated. If the
number of pairs in the study area is known and the parents in successful
attempts can be identified, then pairs can often be defined as the population
unit (i.e., invoking the superpopulation concept, Section 1.2) and used to
estimate success/pair and its standard error. If successful attempts cannot
be assigned to pairs, the point estimate for success/pair or success/area can
still be calculated. If multiple sites are included in the study, and can be
viewed as a random sample of sites, then sites may be defined as primary
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units and used to calculate the standard errors. Sometimes nests can be
found after the season has ended and examined to determine how many
young left each nest successfully. This approach is widely used in studying
waterfowl, the estimates being based on counting membranes left in the
nest after the young have departed. If all nests in a study area are found,
then this approach yields success/attempt and success/area for the study
area and period. If the nests are not all found, but those that are found may
be viewed as a random sample from all nests, then the approach yields an
unbiased estimate of success/attempt. Thus, careful thought about possible
problems during data collection and about parameters of interest often
leads to the identification of parameters that can be estimated using bino-
mial formulas or other formulas from survey sampling theory.

In many studies, however, investigators wish to estimate success per
nesting attempt and cannot do so using any of the approaches described
here because attempts are not monitored from start to finish. Instead, many
nests are not found until well after initiation and some nests are not found
at all because they fail before they would have been found. As a result, the
quantity (number of eggs or young alive when observation ended)/(number
of eggs or young found) would underestimate mortality and overestimate
survivorship, often by a large but unknown amount. This summary statistic
would not even be a good index to survivorship in most cases because other
studies to which results might be compared might involve either more or
less intensive searching and thus more or less missed mortality.

Mayfield (1961, 1975) suggested a solution to the problem of incomplete
coverage, and Johnson (1979) provided a formula for calculating standard
errors of Mayfield estimates. Mayfield organized the analysis in a way that
facilitates addressing questions that are often of interest to behavioral ecol-
ogists. The cost of this flexibility, however, is that the method can appear
rather complex on first acquaintance. Consequently, we first present the
method in a simpler form than Mayfield did.

Let us consider the incubation period and assume that survivorship is
thought to be approximately constant, that is, that the same fraction of eggs
is lost on each day. We will call this fraction the daily mortality rate (DMR);
1–DMR is the proportion that survive each day which we will call the daily
survival rate, DSR. The probability of surviving the entire period, under
this set of assumptions, is DSRt where t is the length of the period. Thus, if
we could estimate the DMR we could estimate the proportion of eggs sur-
viving the entire period as DSRt�(1–DMR)t. Mayfield proposed a very
simple estimate of the daily mortality rate

, (10.4)DMR �
deaths
days
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where days means the number of days that eggs were alive and under observa-
tion. Thus, Mayfield proposed counting all deaths that were observed, divid-
ing this by the number of days for which the eggs were under observation,
which he termed ‘exposure days’, and using the ratio of these numbers as the
estimate of the DMR. The calculation of days is somewhat complex, however,
because nests are usually not visited daily. If they were visited daily, then obvi-
ously we would stop visiting them, and thus stop counting days, once mortal-
ity had occurred. When nests are visited only periodically, so we do not know
the exact time of death, Mayfield suggested using half the number of days in
the last observation interval, assuming that, on average, this would give a
good estimate of the number of days that would have been recorded if daily
visits had been made. Calculations for the incubation period with a small
hypothetical sample of nests using this approach are shown in Table 10.1.

When the attempt includes two or more periods, for example incubation
and nestling periods, then the overall rate of success is estimated as the
product of the period-specific rates. For example, if the DSRs for incuba-
tion and nestling periods are sI and sN, and the average durations of these
periods are TI and TN then overall survivorship (s), the proportion of eggs
at the start of incubation that survive until nest departure, is

,s � sI
TI sN

TN
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Table 10.1. Example of the Mayfield method for estimating survivorship
during a period in which survival rates are assumed to be constant

No. of Interval No. of
No of exposure days

Nest Date eggs length deaths Survivors Fatalities

1 May 21 4 — — — —
28 4 27 20 28 20
12 4 24 20 16 20

2 May 25 3 — — — —
29 0 24 23 20 26

3 May 27 4 — — — —
11 3 24 21 12 22
17 1 26 22 26 26

4 May 24 5 — — — —
11 5 27 20 35 20

Total 26 97 14

Notes:
Daily mortality rate: 6/111�0.054054.
Daily survival rate: 0.945946.
Estimated survival for 15-day period: 0.94594615�0.435.



and the average number produced per nesting attempt is s, where is the
average clutch size.

We now turn to the main additional feature that Mayfield suggested.
Biologists are often interested in whether nests failed completely or only
some of the eggs or young were lost. For example, complete failure may
indicate predation and partial failure may indicate starvation. Mayfield
therefore suggested dividing deaths and days into cases in which the
entire attempt failed and those in which only some of the eggs or young
died during the interval. To avoid double counting, deaths and days for
partial losses were only recorded when the nest (i.e., at least one egg or
young) survived. Calculations for this approach are illustrated in Table
10.2. The point estimates may vary slightly depending on whether
mortality is divided into nest and individual categories or defined as a
single category.

Various additional complexities may occur in applying the Mayfield
method. Investigators often want to estimate the success per egg laid, rather
than success per egg at the start of incubation. Visits during laying,

cc
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Table 10.2. Data from Table 10.1 presented with whole and partial mortal-
ity distinguished

Number of Interval
Nests Individuals

Nest Date eggs length Deaths Days Deaths Days

1 May 21 4 — — — — 2—
28 4 27 20 27 20 228
12 4 24 20 24 20 216

2 May 25 3 — — — — 2—
29 0 24 21 22 — 2—

3 May 7 4 — — — — 2—
11 3 24 20 24 21 214
17 1 26 20 26 22 212

4 May 4 5 — — — — 2—
11 5 27 20 27 20 235

Totals 21 30 23 105

Notes:
Daily mortality rate: nests 1/30�0.033333.
Daily mortality rate: individuals 3/105�0.028571.
Daily survival rate: individuals 1�0.033333�0.966667.
Daily survival rate: nests 1�0.02857�0.971429.
Overall daily survival rate: (0.966667)(0.971429)�0.939048.
Estimated survival for 15-day period: 0.93904815�0.389.



however, tend to cause abandonment in many species. If this visitor-
induced mortality is not excluded the estimated nest success may be seri-
ously biased. If visits during laying are feasible, then the approach for
counting days has to be adjusted because the number of eggs present
increases during the observation interval. Also, single egg loss during laying
is often difficult to detect because the egg may be laid and lost during a
single interval. Problems may occur at hatch too, caused, for example, by
uncertainty over to which period intervals spanning hatch should be
assigned and because hatching failure may cause mortality rates during this
time to be high (which calls into question the assumption of constant
mortality). Finally, visits near the end of the nestling period may cause pre-
mature nest departure which has undesirable effects on the nestlings and
means that mortality which would have occurred prior to nest departure is
missed. Careful consideration of problems such as these is thus needed in
designing a study of nesting success.

Various refinements and extensions to the basic Mayfield method have
been proposed. For example, Trent and Rongstad (1974) applied essentially
the Mayfield approach to telemetry data. Bart and Robson (1982) developed
maximum likelihood estimators under the assumption of constant survivor-
ship, evaluated sensitivity to these assumptions and presented models for
testing whether visitor impact occurred in collecting the data. Heisey and
Fuller (1985) extended the Mayfield approach to include more than two
(mutually exclusive) classes of mortality and developed a program, MICRO-
MORT, for obtaining maximum likelihood point and interval estimates of
nesting success. They also discuss related statistical issues such as bias, trans-
formations, and the relationship of precision to visitation frequency.

Estimating standard errors of Mayfield estimates has been problematic
because the method assumes that fates of eggs or young in nests are inde-
pendent. This is appropriate under the assumption of constant daily
survivorship (fates on each day are then analogous to flipping a coin), but
this assumption is not realistic, and while departures from the assumption
generally cause little if any error in point estimates, variance estimates are
generally underestimated. The error amounts to pseudoreplication. Nests,
not days, are selected randomly but days are used in variance calculation. A
more appropriate approach could be developed by viewing the population
units as individual-days and the variable as ‘survived/did not survive’. The
population diagram (Chapter Four) would be an array with eggs down the
side, separated into nests, and days across the top. Rows would be of
unequal length because not all individuals survive until nest departure. If
the cell entries are 0�died and 1�survived, then it is easy to show that the
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mean of the cells in the statistical population equals the DSR. If nests may
be viewed as a random sample from the population and observation inter-
vals a random sample from the possible intervals then the estimate deaths/
days is an unbiased estimate of the population mean. The sampling plan is
two stage with unequal-sized primary units (nests, or more precisely the set
of individual-days for each nest), and the formula for multistage sampling
would provide unbiased point and interval estimates. Essentially this
suggestion was made recently by Flint et al. (1995). The major problem
with this approach is whether the observation days for a given nest are
really an unbiased estimate of the mean of the variables for that nest. For
example, if the start of the observation interval is selected randomly but
nests are then followed until completion, then obviously days early in the
attempt have a much smaller probability of selection than later days. Thus,
more work is needed in this area, but the general approach of treating nests
as clusters of days seems promising.

Although the Mayfield approach is a great improvement over simply
reporting the success rate in the sample (Miller and Johnson 1978; Johnson
and Shaffer 1990), careful thought should be given to whether this
approach is necessary (White and Garrott 1990). Several examples have
been given in this Chapter in which simpler methods may be used to esti-
mate quantities of interest. Furthermore, success/attempt does not give
success/season if re-laying occurs, yet in many investigations (e.g., demo-
graphic analyses, forecasting population size) success/season is much more
useful than success/attempt. Thus, while the Mayfield method is certainly
preferable to simply ignoring the incomplete count of deaths, other
methods may be more feasible, and in some cases may yield more relevant
results.

10.4 Summary

Estimates of survivorship are often simple proportions (Chapter Four) or
are based on capture–recapture methods (Chapter Nine). This Chapter dis-
cusses two other methods that are widely used in behavioral ecology to esti-
mate survivorship. The Kaplan–Meier method is useful when individuals
are checked at about the same time and when time (e.g., date) is known. The
method permits graphic display of estimated survivorship through time,
even if new animals enter the sample after the beginning of the study and
other animals leave the study through causes other than death. Confidence
intervals and tests for a difference in survivorship between cohorts are also
available. The Mayfield method for estimating nesting success is useful
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when many individuals are not found at the beginning of the period of
interest and time (e.g., age of the nest) is not always known. It may also be
useful in telemetry studies when individuals are visited at different times.
Both the Kaplan–Meier and Mayfield methods have traditionally required
the assumption that fates of individuals are independent, but methods have
been suggested recently for removing this often unrealistic assumption. The
Kaplan–Meier method is nonparametric, making no assumption about
temporal trends in actual survivorship. In the Mayfield method, the overall
period of interest is divided into intervals during which survivorship is
assumed to be constant. This introduces an element of subjectivity into the
method since different investigators may delineate different intervals and
this may affect the overall survivorship estimate. Furthermore, if survivor-
ship varies during any of these periods, and monitoring effort is not distrib-
uted evenly, then the point estimate will be biased, sometimes severely. The
Mayfield method thus requires stronger assumptions than the Kaplan–
Meier method, a fact which has caused investigators to prefer the
Kaplan–Meier method when they have a choice between the two methods.
While the Mayfield method is a great improvement over ignoring incom-
plete coverage of nest attempts, practical difficulties often arise such as how
to estimate survivorship during laying. Furthermore, in some cases other
parameters, such as the number of young produced per pair, can be esti-
mated with less difficulty and may provide results that are nearly as useful –
or even more useful – than success per nesting attempt. We therefore recom-
mend that careful thought be given to goals and practical issues before
adopting the Mayfield approach.
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11
Resource selection

11.1 Introduction

We use the phrase resource selection to mean the process that results in
animals using some areas, or consuming some food items, and not consum-
ing others. In some studies, resources are defined using mutually exclusive
categories such as ‘wooded/nonwooded’ in a habitat study or ‘invertebrate/
plant/bird/mammal’ in a diet study. In other studies, resources are defined
using variables that are not mutually exclusive and that define different
aspects of the resource such as elevation, aspect, distance to water, and
cover type. In some studies, only use is measured. In many others, availabil-
ity of the resources is also measured and analyses are conducted to deter-
mine whether the resources are used in proportion to their availability or
whether some are used more – and some less – than would be expected if
resources were selected independently of the categories defined by the
investigator. In this Chapter, we concentrate on methods in which resources
are assigned to mutually exclusive categories because this approach has
been by far the most common in behavioral ecology. However, studies in
which resources are defined using multivariate approaches are discussed
briefly, and we urge readers to learn more about this approach since it can
be formulated to include the simpler approach but offers considerably more
flexibility.

The investigator has great flexibility in defining use. In the case of habitat
studies use may mean that an area is used at least once during the study or
(less often in practice) used more than some threshold number of times, or
used for a specific activity (e.g., nesting). When the population units are
possible prey items, used items might be those attacked, consumed, partly
consumed, etc. In nearly all studies of resource use, population units are
classified as used or not used. Methods can be developed in which use is
viewed as a quantitative variable (e.g., Manly et al. 1993, Chapter Ten), but
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relatively few studies have adopted this approach so we do not discuss it in
this Chapter.

11.2 Population units and parameters

In this Section we define population units and parameters for the case in
which only one animal is being monitored or individual animals are not dis-
tinguished. For example, data may be collected by making several surveys
and recording the type of habitat in which each animal is found, but indi-
vidual animals are not identified. In Section 11.3 we extend the discussion
to consider the case in which separate data sets are obtained for each animal
and the goal is to combine these data sets in a single analysis.

In some diet studies, prey are individuals which are either consumed or
not consumed during the study, and all prey are present at the start of the
study and do not leave during the study period (except as a result of preda-
tion). In these cases, population units are easily defined as the individual,
potential prey.

When prey enter and leave the study area, in diet studies of herbivores,
and in habitat use studies a slightly more complex approach is needed in
defining population units. We consider the case of habitat studies, but the
rationale developed applies easily to diet studies with immigration and
emigration.

Defining the population diagram may be helpful in thinking about the
parameters ‘use’ and ‘availability’. We suggest viewing population units as
area-times, with the areas being so small that they can hold only one individ-
ual at a time. Similarly, the intervals may be viewed as being too short for an
animal to enter or leave an area during an interval. This is equivalent to
viewing the population units as dimensionless points in space and time. In
defining use, the variable is (in use)/(not in use) by an individual. In defining
availability, the variable is (type of habitat). If the resource type in each
population unit does not change throughout the study, then the temporal
dimension is not needed in defining availability. On the other hand, allowing
the possibility of change provides a more general approach, and permits the
same notation for defining use and availibility. We therefore refer to the
population as the set of all ‘area-times’ in defining both use and availibility.

Let i�1,...,I denote the resource types and
U�number of used population units
Ui�number of used population units of type i (�Ui�U)
A�number of units available (population size)
Ai�number of units available of type i (�Ai�A).
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Many different parameters have been estimated in resource selection
studies. Some of the most common parameters of interest are discussed in
the following subsections.

Proportion of type i units that are used, Ui/Ai

In some diet studies the number of prey of each type is estimated or known
at the start and end of the study. For example, Bantock et al. (1976) released
known numbers of snails of different types (Ai) into an area in which they
were preyed upon by song thrushes. The number of prey of each type was
counted again at the end of the study period and used to obtain Ui.

The number of units of each type used and available provides the best
information on resource use. All of the quantities discussed in the following
text can be expressed in terms of these numbers. In habitat studies, however,
estimating Ui is usually not feasible. In general, when we obtain a count, ui

say, and wish to estimate a population total, Ui , we use ui /f, where 
f�fraction of the population in the sample (with complex sampling
designs a different approach may be needed). But in habitat studies, as
already noted, the population units are simply defined as being ‘very small’
in space and time so f is not well defined. The Ui could be estimated by mon-
itoring the study animals during randomly selected periods, recording their
habitat use continuously. The fraction of the study period contained in the
observation intervals would then provide a basis for estimating Ui (i.e., if
the observations comprised 1% of the study period we would multiply
sample results by 100). However, this is seldom practical. Furthermore, the
methods discussed here permit estimating most of the parameters in which
the behavioral ecologists are interested.

Proportion of units used, PUi�Ui/U

This quantity can obviously be estimated if estimates of Ui are available
since (�ui�u) as in the example of predation on snails by song thrushes.
More commonly, a random sample of used units is selected, for instance by
conducting a survey of animals and recording the resource type that each is
using. Any of the sampling plans discussed in Chapter Four might, in prin-
ciple, be used to obtain the point and interval estimates for PUi .

Proportion of the population comprising each type, PAi�Ai/A

In habitat studies, the Ai are often measured exactly from a cover map using
a planimeter or Geographic Information Systems methods. In other cases,
a sample of areas (or area-times if the type changes during the study
period) is used to estimate the Ai. Any of the sampling plans discussed in
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Chapter Four may be used, and point and interval estimates are calculated
accordingly.

Proportion used/proportion available, Wi�PUi/PAi

The Wi provide a way to account for availability when comparing
resources. If animals selected resources without regard to the types that the
investigator has defined, then we would expect all Wi to be 1.0 except for the
effects of sampling error. For example, if a particular habitat type covers
20% of the study area and animals distribute themselves randomly with
respect to the types, then we would expect them to be found in that habitat
type about 20% of the time. The same rationale holds for subsets of the
types. Thus, if we have five types and the study species does not distinguish
between types two and five, then W2 would be equal to W5 except for the
effects of sampling error. Type i is sometimes said to be ‘preferred’ if Wi is
shown to be above 1.0 and to be ‘avoided’ if Wi is shown to be below 1.0.
These terms, of course, only denote departure from the null model ‘selec-
tion is independent of type’. They do not imply that one habitat is more
important than another. Under many general models of habitat selection,
one would expect marked changes in Wi when Ai changes, so generaliza-
tions about which habitats are preferred or avoided usually require replica-
tion of the study in several locations and empirical demonstration that the
Wi tend to be about the same despite changes in availability of the type.
Even within the area and period studied, it may be difficult to derive conclu-
sions about which habitats are most and least important to the animal
simply from the Wi. Thus, an animal may be dependent on a particular
habitat (i.e., for escape from predators), but may not spend a great deal of
time in the habitat, thus causing Wi to be small. Thus, the results from use-
availability analyses may be difficult to interpret in the absence of addi-
tional biological information.

The point and interval estimates of Wi are obtained from the point and inter-
val estimates of PUi and PAi. When simple random sampling is used to estimate
PUi and PAi is a known constant, then a chi-square goodness-of-fit test is gener-
ally used for a comprehensive test of the null hypothesis ‘all Wi are equal’.
When the PAi are also estimated, using simple random sampling, then a chi-
square test of independence is generally used for the comprehensive test.
Manly et al. (1993, Chapter Four) describe the procedure for these two cases in
detail. In either case, pairwise tests and tests involving groups of resource
types, may be carried out with further chi-square tests. Alternatively,
Bonferroni adjustments may be made to the significance level, in which case
there is no need to carry out the comprehensive test. As noted in Section 3.7,
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this point is important because when more complex sampling designs are used
to estimate PUi or PUi and PAi , then designing the comprehensive test may be
quite difficult. Use of the Bonferroni test avoids this difficulty.

In many studies, designs other than simple random sampling are
employed to estimate use. For example, if surveys are made on each of
several days, and habitats are recorded for all animals sighted, then we have
multiple stage sampling with days as primary units. The analysis of such
data depends on the details of the sampling plan and the parameter being
estimated. Tests concerning a single parameter (e.g., the null hypothesis,
H0: Wi�1.0) involve V(wi ), where wi is the estimate of Wi . When availabil-
ity, PAi , is known, then, as explained in Chapter Two, V(wi )�(1/PAi

2 )V(pUi ),
where pUi is the estimate of PUi. If PAi is estimated, then procedures for
ratios apply. Tests involving two parameters (e.g., H0: Wi�Wj or H0:Wi /Wj

�1.0) are more complex because covariance terms must be evaluated. The
formulas can be derived from the material in Chapters Two to Four, but
consultation with a statistician is recommended.

Other parameters

The Wi may also be ‘standardized’ by dividing each term by the sum of the
terms, e.g., Wi /�Wj . The results, which sum to 1.0, are often referred to as �i

(Chesson’s Index, Chesson 1978) or Bi (Manly’s standardized selection index,
Manly et al. 1972). These indices are sometimes viewed as ‘the probability
that a category i resource unit would be the next one selected if somehow it
was possible to make each of the types of resource unit equally available’
(Manly et al. 1993 p. 41). This interpretation, however, requires the assump-
tion that the quantities Ui /Ai would not change if we somehow made all the
types equally likely. Many other indices have been proposed using the basic
variables Ui, U, Ai and A. Manly et al. (1993 p. 10) provide a comprehensive
review. They note that many of the indices do not have a clear biological
interpretation and recommend use of Wi or quantities closely associated with
them (or the methods discussed in the remainder of this Chapter).

Defining availability

The definition of availability, which determines PAi, is often difficult and
subjective but, unfortunately, may have great effect on the parameters.
Including or excluding an area covered largely by type i habitat has an
obvious effect on PAi and on PUi if this area is either heavily or lightly used
relative to other type i areas. In many cases it is difficult to decide whether
whole types should be included or not. For example, if one habitat or one
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prey type is barely used, then investigators may have difficulty deciding
whether they want to consider it as ‘available’. The decision, however,
affects all of the Wi . For example, if an abundant type is not used, or only
rarely used, then all the other Wi may be above 1.0 when the type is included
but one or more of them may be below 1.0 when it is excluded. Thus,
whether a type is defined as ‘preferred’ or ‘avoided’ may depend on which
other types are included in the analysis. When deciding whether to include
one or more types is difficult and subjective, but has a large influence on
conclusions about which types are preferred or avoided, then it may be best
to recognize that use in relation to availability cannot be investigated in a
satisfactory manner and to concentrate instead on measures of use (PUi and
Ui ).

11.3 Several animals

In many studies, several animals are monitored and separate results are
obtained for each one. If animals are viewed as having been randomly
selected, with subsequent sampling being confined to the selected individu-
als, then the population unit is an ‘animal-time’ rather than an ‘area-time’
as described in Section 11.3. The population diagram should be visualized
as having animals, rather than areas, down the side, and times across the
top. The variable is ‘resource type’. Treating animals as primary units is
equivalent to imagining that we randomly select rows and then monitor the
animals to which they correspond.

Such data are usually analyzed by treating each animal separately and
reporting simple summary statistics to characterize the group. Thus, the
investigator may report that one type was used more (or significantly more)
often than another by eight of ten animals. Use, in this case, might be
defined either as PUi or as Wi . The mean wi may also be reported, along with
its standard error. In some studies availabilities, PAi , are calculated or esti-
mated for each animal separately; in others a single common value is used.
If animals actually have different Ai values but we use the same set of values
for all animals then the biological interest of the analysis will obviously be
compromised. The parameter Ai is still well defined, however, and may be
measured or estimated using reliable methods. The point to remember is
that if animals are treated as primary units, then the sample size is the
number of animals and statistical tests and other calculations are based on
the results per animal (i.e., these results become the ‘yi’ of Appendix One,
Box 2).
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Conducting a comprehensive statistical test, when animals are primary
sampling units, is often difficult. When simple random sampling is used to
select times at which animals will be observed, then chi-square methods
described by Manly et al. (1993, Chapter Four) may be used to conduct
certain tests. The Bonferroni approach may provide adequate power and
avoids the comprehensive test. Occasionally, the pairwise tests of interest
are independent in which case the approach in Section 3.7, based on the
binomial distribution, may be sufficient for the comprehensive test. An
example is now provided.

Suppose that eight cohorts of animals have been defined based on two
sex classes and four age classes. We have estimated PUi or Wi for each cohort
using a complex design and unequal sample sizes. Variances appear to
differ between cohorts. Our objective is to compare use of habitat ‘i ’ by
males and females within age classes. We will thus carry out four inde-
pendent pairwise tests, one for each age class, with ��0.05. The complex
sampling design, unequal sample sizes, and unequal variances all make
conducting a comprehensive test difficult. Bonerroni adjustments of the
�-level is one possibility but the tests may then have very low power, espe-
cially if we have only a few degrees of freedom. Since the tests are inde-
pendent, however, we may determine the probability of achieving two or
more significant t-values, if all null hypotheses are true. From expression
3.13, the probability of achieving two or more significant results with four
tests, is only 0.014 if all null hypotheses are true. We may thus reject the
comprehensive null hypothesis and use the results of the pairwise tests just
as we would if we had actually carried out an ANOVA and obtained a sig-
nificant result. Section 3.7 provides additional explanation of this ratio-
nale.

11.4 Multivariate definition of resources 

A different approach to studying resource selection is to define a model
specifying the degree of use or probability of being used as a function of the
variables measured on each population unit. In habitat use studies these
variables might be amounts of different habitats, distance to water, patch
size, and elevation. In diet studies these variables might be species, size,
color, and age of the prey. If use is a quantitative variable, then a multiple
regression model might be used; if use is a dichotomous variable, then
logistic multiple regression might be used. In either case, the regression
model (i.e., the ‘true’) model identifies which variables are related to
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resource selection and describes how they affect the degree of use. The
regression coefficients (including 0.0 for variables with no effect) thus con-
stitute the parameters using this approach. When sampling extends over a
considerable period, time can be included in the model as an explanatory
variable, and its effect on the selection process can be investigated. In some
diet or foraging studies that use this general approach, one or more counts
of prey still alive are made. The dependent variable is ‘number still alive’ or
‘probability of still being alive’ and is thus a measure of which resource
units are not used, rather than which ones are used. Manly et al. (1993,
Chapters Five to Ten) discuss many specific cases of using multivariate
methods in this manner.

Model-based parameters are usually estimated with standard regression,
logistic regression or other multivariate methods. The usual cautions and
procedures applicable to regression apply to the case of resource selection
(see Section 5.5). One caveat is particularly important. As noted in Chapter
Five, most regression analyses assume that the data comprise a simple
random sample. When the data are collected using multistage sampling
(e.g., selection of animals; selection of used items), substantial difficulties
may arise with using the model-based approaches (i.e., especially in vari-
ance estimation), so a statistician should be consulted for advice before
embarking on this approach if multistage sampling is to be used to gather
the data.

Several other multivariate approaches have been used in resource selec-
tion studies. Discriminant analysis may be used to classify population units
as used or unused. The methods, which are somewhat complex, are
described in texts on multivariate statistics (e.g., Johnson and Wichern
1982). Application of this method to resource selection studies is described
by Manly et al. (1993, Section 8.2). The discriminant function may be used
either to classify population units as used or unused or as a measure of
resource quality.

A related technique which employs only population units known to have
been used is described by Knick and Dyer (1997). These authors studied
jackrabbit habitat in Idaho. Surveys were used to identify used areas and to
identify habitat variables that appeared to be important in determining
habitat suitability. The means of each of these variables, among population
units known to have been used by rabbits, 1,…, k say, were then used to
obtain a single measure ( �� i /k) of habitat quality. The variables were
measured (using Geographic Information Systems methods) for each
population unit in the study area, and the mean of the variables was

xx
xx
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calculated ( h�� hi /k for population unit h). The difference, h� , was
then used as a measure of habitat quality. Population units with a small
difference were given high ranks (i.e., habitat was assumed to be of high
quality). To evaluate this measure of habitat quality, the authors conducted
a new survey of rabbits in the study area. The results showed a strong ten-
dency for rabbits to be found in high-ranked cells. For example, when the
cells were ordered by rank, the 30% with the highest ranks contained 75%
of the rabbit sightings. Thus, this procedure identified a small proportion of
cells (30%) that contained a high proportion (75%) of the sightings.

Arthur et al. (1996) and Elston et al. (1996) discuss additional extensions
and improvements in resource selection methodology.

11.5 Summary

Studies of resource selection usually involve monitoring habitat use or for-
aging behavior, recording which resource types, as defined by the investiga-
tor, are used. In many studies, resources are classified using a single series
of mutually exclusive categories such as ‘crop land/pasture/scrubgrowth/
woodland’. In other studies many different variables may be defined and
categories may not be mutually exclusive (e.g., elevation, cover type, patch
size, distance to water). Population units may be defined by imagining
small plots and periods of time, such that each plot at each time can hold at
most one animal and animals do not change areas during an interval. The
variable for defining use is ‘used/not used’. The variable for defining
resource availability is ‘resource type’. Studies in which resources are
defined with a single series of categories generally involve estimating the
use and availability of each resource type. For example, for resource type
‘i’ PUi is the proportion of the used population units that are classified as
resource type ‘i’, and PAi is the proportion of the study area classified as
type ‘i’. The PUi , and a measure of use in relation to availability, Wi�PUi /
PAi , may be compared using chi-square tests if simple sampling designs are
used, or methods from survey sampling theory (Chapter Four) if more
complex designs are used. The statistical methods for these cases have been
covered in Chapters Two to Five. Deriving the correct formulas for specific
cases, however, may be complex because some of the parameters involve
ratios of correlated variables, so consultation with a statistician may be
advisable. Studies in which numerous variables are recorded generally use
regression methods, including logistic regression, to identify combinations
of variables that have high power to separate used from unused population
units. We recommend Manly et al. (1993) for a detailed discussion of the

xxxx
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statistical issues. These approaches can be formulated to include the case
with mutually exclusive categories but provide more flexiblity and thus
may warrant attention from behavioral ecologists interested in resource
selection.
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12
Other statistical methods

12.1 Introduction

Several statistical methods not previously discussed are briefly described in
this Chapter. Our goal is to introduce the methods and indicate where more
information on them may be found rather than to present in-depth discus-
sions of the techniques. The first three Sections discuss relatively new
methods that have not been widely used in behavioral ecology, or at least
some of its subdisciplines, but that may be useful in a variety of applica-
tions. The subsequent three Sections discuss other branches of statistics
with well-developed methods that we have not had space in this book to
cover in detail.

12.2 Adaptive sampling

In conventional survey sampling plans, such as those discussed in Chapter
Four, the sampling plan and sample size are determined before collecting
the data and, in theory, all of the population units to be included in the
sample could be identified before data collection begins. This approach,
however, is sometimes unsatisfactory when the population units are
uncommon and clumped in space and/or time. For example, suppose we
are estimating the proportion of trees in an orchard damaged by rodents,
and the damage occurs in widely scattered patches. We select rows of trees
to inspect. Most trees are undamaged but occasionally we encounter an
area in which most trees are damaged. Under conventional sampling plans
we can only include trees in the selected rows in our sample. Yet we may be
able to see that the damage extends to nearby rows and feel that some way
should exist to include those trees in the sample as well. As a second
example, suppose we are observing animals for fixed observation intervals
to record some aspect of behavior such the outcome of fights. The behavior
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is uncommon but, when it occurs, may occur several times in fairly short
succession. With fixed observation intervals, a bout of the behaviors may
begin shortly before the end of the scheduled period. We thus may miss
several observations that would have added valuable information to the
sample if they could be included.

Adaptive sampling methods permit modification of the sample design so
that additional observations of the kind described above may be included
without causing bias in the point and interval estimates. The methods are
relatively new and have not been widely applied in behavioral ecology.
Thompson (1992, Chapters 23–26) provides an introduction to the subject
with many examples from behavioral ecology, particularly fisheries and
wildlife.

12.3 Line transect sampling

In line transect, or distance, sampling, an observer proceeds along a series
of randomly selected lines recording the number of items of interest
detected and the perpendicular distance to each item. The data are used to
estimate the density of the items. The method is generally used as an alter-
native to searching well-defined plots thoroughly. It applies when observers
can detect each item directly on the transect line, but cannot detect all items
away from the line. Thus, the proportion of items detected must be esti-
mated and used to correct the count. This is done by deriving a function
that describes the decline in numbers detected as a function of per-
pendicular distance from the transect line. Under the assumption that all
items are detected on the transect line, the overall proportion of items
detected out to any given perpendicular distance may be calculated and
used to correct the count. For example, suppose that all detections are
within 200 meters of the transect line and the function describing the
number detected is a straight line declining to 0.0 at a distance of 200
meters from the line. In this case, we would estimate that half the items
actually present within 200 meters of the transect line were observed and
the count would be multiplied by 2.0 to obtain an estimate of the number
actually present within 200 meters of the transect line. A special case of this
approach, in which counts are made from fixed points rather than by tra-
versing transects, is known as the variable circular plot method. Line tran-
sect and variable circular plot methods are described by Thompson (1992,
Chapter 17), Lancia et al. (1994 pp. 230–4), and Buckland et al. (1993).
Anderson and Southwell (1995) and Quang and Becker (1996) provide
examples of recent developments in this area.
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12.4 Path analysis

Path analysis is a method for evaluating how well a data set fits a specified
causal model and estimating the strength of the causal relationships in the
model. The model specifies variables that are linked by causal (as opposed
to purely correlative) relationships and the ‘directions’ of the relationships.
The method was developed by Sewall Wright (1921) for use in genetics
research. It has been widely used in some fields (e.g., business, sociology)
but relatively little in behavioral ecology. Some authors (e.g., Sokal and
Rohlf 1981) feel that it might be applied more widely in behavioral ecology
and a few applications using this approach have appeared recently (e.g.,
Thery and Vehrencamp 1995, Thomson et al. 1996).

The general approach in path analysis is to specify variables that are
involved in a causal network of relationships. As a simple example, con-
sider the issue of whether male pairing success, in a polygynous species, is
determined by a given male trait, a given territory trait, or a combination of
both. We assume that the male trait does not change during mate selection,
that the species is migratory and territorial, and that males arrive prior to
females. Thus, males arrive at the breeding ground and select territories,
perhaps in competition with other males, and females then arrive and
choose where to settle. Females may base their choices on the territory trait
(independent of the males present), on the male trait (independent of the
territory trait), or on a combination of both territory and male traits. The
causal model for this situation (Fig. 12.1) has arrows connecting male trait,
territory trait, and the number of females with which the male pairs. The
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Fig. 12.1. A path analysis model of the importance of male quality and territory
quality in determining male pairing success, defined as the number of females

paired with males.
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purpose of the analysis is to estimate the magnitude of each relationship.
The key contribution of path analysis is estimating the magnitude of the
indirect effects, in this model the extent to which males obtain females by
obtaining territories preferentially selected by females.

Causal models are evaluated using regression techniques. In the example
just given, a multiple regression analysis would be carried out with the
number of females as the dependent variable and territory trait and male
trait as the independent variables. The resulting equation provides esti-
mates of the amount by which the number of females increases when the
value of the territory trait increases but the male trait remains constant
(�tf.m) and the amount by which the number of females increases when the
value of the male trait increases but the territory trait is held constant
(�mf.t). The effect of the male trait on the territory trait (�mt) is estimated by
regressing territory trait on male trait. The resulting equation provides an
estimate of �mt. Variables are usually standardized (i.e., transformed by
subtracting the mean and dividing by the standard deviation) to facilitate
comparisons. On the transformed scale 1.0 means 1.0 standard deviation.
Standard regression methods are used to determine whether relationships
and coefficients are statistically significant.

The indirect effect of male trait on the number of females via territory is
the product of the two ‘pathways’, ‘male trait��territory trait’ and ‘terri-
tory trait��number of females’ and is estimated as bmtbtf.m where bmt is the
estimate of �mt and btf.m  is the estimate of �tf.m . This effect may be compared
to the direct effect of male trait on number of females, bmf.t, as a measure of
whether males obtain females primarily by obtaining favored territories,
primarily by possessing traits that females select preferentially, or by both
mechanisms. More complex models of the pairing process may also be
evaluated with path diagrams and compared to the rather simple model
described in Fig. 12.1. Cohen and Cohen (1983) and Li (1975) provide
extended discussions of path analysis and its application in behavioral
research.

12.5 Sequential analysis

The basic goal in sequential analysis is to reduce uncertainty about the
value of an observation by using information about past observations. The
word ‘past’ often refers to time, but observations can be ordered in any
other way; for example, by position in space. Here is a simple example, from
our own research, in which sequential analysis was useful. Tundra swans on
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their breeding grounds in northern Alaska usually rotate basic behaviors in
a predictable way. They forage for a few hours, then preen for an hour or
more, then sleep for a few hours, and then return to foraging. This pattern
seems to persist throughout the 24-h cycle (of continuous daylight).
Suppose we divide all behavior into these three types and let the propor-
tions of time spent in foraging, preening, and sleeping be pf , pp, and ps

respectively ( pf�pp�ps�1.0). If an instant in time is selected randomly,
then the probability that a given swan is foraging is pf. But due to the pattern
of behavior described above, if we knew the previous behavior of the swan,
then if that behavior was sleeping, we would be fairly sure that the current
behavior was foraging, and if the previous behavior was preening, we would
be fairly sure the current behavior was not foraging. Sequential analysis
provides a series of methods for investigating whether patterns of the sort
described above are present in a data set and for describing the strength of
the associations.

Sequential analysis may also be viewed as a means of understanding bio-
logical patterns in time, space, or with respect to some other dimension.
Thus, these analyses help us determine whether changes are predictable and
how other factors affect predictability. For example, change might be quite
predictable early in the season, but not later, or in one habitat but not
another. Alternatively, the nature of the pattern might vary between
cohorts being compared, such as territorial and nonterritorial individuals.
Sequential analysis is somewhat similar to regression in that an external
variable (e.g., time) is used to help understand or predict values of a vari-
able. Sequential analysis differs from regression in that no overall trend is
estimated or defined in the analysis. Instead, time (or whatever dimension is
involved) is used to identify population units occurring immediately prior
to a focal unit and the values of these units are used in the analysis.

Sequential analyses may be carried out in many different ways. We use, as
an example, recording a series of behaviors through time. The example
generalizes easily to other observations and dimensions (e.g., space).
Suppose the behaviors are coded as A, B, C, … Data are usually recorded
periodically, generating a data stream such as BBBACCBCAAA. The data
may then be reduced to show only changes in behavior, BACBCA in this
example. Most analyses involve comparing the unconditional frequency of
a given type with the proportion of the records that are the given type when
a stated prior event or set of events occurs. For example one might compare
the proportion of records that are type B with the proportion of the records
immediately following a type A record that are type B (i.e., nB,1/nA where nA
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is the number of type A records and nB,1 is the number of records immedi-
ately following a type A record that are type B). This pattern is referred to as
a first-order Markov chain, the phrase ‘first-order’ meaning that events are
modelled as a function of the most recent events. A second-order Markov
chain includes the two most recent events, and so on.

Statistical issues not previously considered arise for several reasons in
sequential analysis. Perhaps the major reason is that each record is used
more than once in calculating probabilities of different events. For example,
in a first-order Markov chain analysis each record is used twice, once as the
‘current’ event and once as the ‘immediately preceding’ event. Thus, the
proportions used to estimate probabilities are not independent. Other sta-
tistical issues include deciding whether to combine data from different indi-
viduals, whether the pattern changes through time (i.e., whether it is
‘stationary’), how to analyze data sets in which more than one behavior (or
other variable) is recorded, and how to compare different groups to identify
differences in pattern or the strength of relationships.

A large amount of literature exists on sequential analysis, particularly in
ethology and sociology. Bakeman and Gottman (1986) and a sequel by
Gottman and Roy (1990) provide comprehensive discussions of the statisti-
cal and nonstatistical aspects of sequential analysis. Lehner (1996 pp.
444–64) provides a brief review which also discusses the relationship of
information theory to sequential analysis. Haccou and Meelis (1992)
provide a much more detailed treatment of the statistical issues in sequen-
tial analysis.

12.6 Community analysis

Several multivariate statistical methods are commonly used by community
ecologists to identify environmental variables responsible for the distribu-
tion and abundance of plant and animal species and to study relationships
between species. Gauch (1982) distinguishes three approaches, generally
used in combination: direct gradient analysis, ordination, and classification
or cluster analysis.

Direct gradient analysis is essentially a regression technique for studying
the relationship between the abundance of a taxon in relation to a (possibly
composite) environmental variable. When the samples include only a small
portion of the range of the environmental variable, then the relationship
may be monotonic (constantly increasing or decreasing) or even linear.
More commonly, measurements are made across a wider range of the
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environmental variable, and the relationship is more complex, abundance
of the taxon increasing to a maximum and then decreasing. Statistical
analysis of such data thus requires fitting a model that permits such varia-
tion.

Ordination involves arranging samples along a small number of axes,
typically one to three, in such a way that samples with similar species and
species’ abundances are close together and samples with different species
are farther apart. The analysis is usually based solely on the occurrence and
abundance of species in the samples, not on environmental data, though
the results of the ordination are commonly interpreted using knowledge of
environmental features at the sites. Ordination techniques use a variety of
multivariate statistical methods including multidimensional scaling, com-
ponent analysis, factor analysis and latent-structure analysis (ter Braak
1995b).

Classification or cluster analysis results in species and/or locations being
assigned to classes, as when vegetation types are defined and a cover map
using these types is constructed. Like ordination, classification is generally
carried out using only the data on species occurrence and abundance.
Numerous methods have been proposed (Gauch 1982, ter Braak 1995b) but
most of them are nonstatistical in the sense that they do not involve explicit
consideration of random variables, estimation, and statistical inferences.

12.7 Summary

This Chapter briefly considers several statistical methods not discussed
elsewhere in this book. Adaptive sampling is a relatively recent develop-
ment in survey sampling theory that permits investigators to modify the
sampling plan part way through data collection. Distance sampling pro-
vides a way to estimate density when data are collected by either traversing
transects or at fixed points and when individuals away from the observer are
difficult to detect. Path analysis is a method based on regression techniques
for evaluating causal models and estimating the strength of causal (as
opposed to purely correlative) relationships. Sequential analysis provides
methods for determining whether the value of a variable depends on past
events; for example, whether the vocalizations by one individual tend to
occur in response to vocalizations from another individual. Community
analysis involves numerous multivariate techniques. Direct gradient analy-
sis is basically a regression technique for studying the relationship between
occurrence and abundance of a taxon and one or more environmental vari-
ables. Ordination, used to identify similar species or locations, uses a
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variety of multivariate techniques not discussed in this book, including
multidimensional scaling, component analysis, factor analysis and latent-
structure analysis. Classification, or cluster analysis, is used to assign
species or locations to classes. Numerous methods have been used in this
process but they generally make little use of statistical analysis.
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Appendix One
Frequently used statistical methods

This Appendix contains a summary of the statistical methods described in
Chapters One to Five. Table A1.1 contains a brief key to the methods. Box 1
contains a more detailed guide, arranged in the form of a dichotomous key
that may be helpful in deciding which analytical methods to use. Detailed
instructions for carrying out the analyses are contained in subsequent
Boxes and other Sections of the Book.

257

Table A1.1. Quick guide to statistical methods in this book.

A. Estimating means and standard errors 
1. Simple random sampling Box 2
2. Other survey sampling methods Box 3

B. Tests and confidence intervals 
1. For one parameter

a. Proportions estimated using the formulas for 
simple random sampling Box 5

b. Otherwise Box 4
2. For the difference between two parameters

a. Proportions estimated using the formulas for 
simple random sampling Box 7

b. Other quantities 
(1) Parametric methods 

(a) Paired data Sec. 3.5
(b) Unpaired data Box 6

(2) Nonparametric methods Box 8
3. For the ratio of two parameters Box 9
4. Multiple pairwise comparisons Sec. 3.7

C. Sample size and power calculations Box 10
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Box 1. A dichotomous key to statistical methods with emphasis on those
described in this Appendix.

A1. Calculations to decide how much data (or more 
data) should be collected (e.g., sample size and power 
calculations) Box 10

A2. Calculations to estimate quantities of interest or 
compare estimates B

B1. Purpose is to estimate a quantity (e.g., mean,
density, proportion, correlation coefficient) C

B2. Purpose is to construct a statistical test or 
confidence interval F

C1. Estimating means, proportions, survival rates,
totals D

C2. Estimating measures of relationship (e.g.,
correlation/regression coefficients Chapter 5

D1. Survey sampling methods used (e.g., simple 
random sampling, stratified sampling) E

D2. Other methods used (e.g., capture–recapture, line 
transect) Individual chapters

E1. Simple random sampling Box 2
E2. Other survey sampling methods Box 3
F1. For one estimate G
F2. To compare two estimates H
F3. Multiple pairwise comparisons Section 3.7
G1. Proportions estimated with simple random 

sampling Box 5
G2. Other estimates Box 4
H1. Difference between two estimates I
H2. Ratio of two estimates Box 9
I1. Proportions estimated with simple random 

sampling Box 7
I2. Other quantities J
J1. Parametric methods K
J2. Nonparametric methods Box 8
K1. Paired data Section 3.5
K2. Unpaired data Box 6
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Box 2. Formulas for means and proportions, and their standard errors, with
simple random sampling or multistage sampling with equally weighted

primary units (Chapter Four)

A. Definitions
For one-stage sampling, let

n�number of units measured (sample size)
yi�measurement from (or value of ) the i th unit

For multistage sampling, let
n�number of primary units measured (sample size)
yi�estimate from the i th unit

B. The estimated mean and its standard error are 

��yi /n (A1.1)

se ( )�sd( yi)/ (A1.2)
where

sd(yi)� (A1.3)

� (A1.4)

and all sums are from i�1 to n.

C. The degrees of freedom (df), used in tests and to constrict confidence
intervals, are usually calculated as

df �n�1 (A1.5)

Strictly, this formula is valid only if the population has a normal
distribution (see pp. 75–78).

D. Notes
1. The formula for se( ) assumes that the population is ‘large’ (Section

4.3). If this is not so, then multiply se( ) as calculated in Eq. A1.2 by
the square root of (1�n/N ), where N�number of units (primary
units for multi-stage sampling) in the population. This case seldom
occurs in behavioral ecology.

2. In estimating proportions with simple random sampling, the yi are

usually coded as 1 if the i th unit is in the category of interest and 0

otherwise. With this convention �yi /n� �the estimated propor-

tion, usually denoted by p. Furthermore, �yi
2��yi�n so that Eq.

A1.4 above may be written

sd( yi)� (A1.6)�ny(1�y) / (n �1)

y

y

y
y

�(�yi
2 � ny 2) /(n �1)

��(yi � y)2 /(n �1)

�ny

y



and Eq. A1.2 may be written 

se( )� (A1.7)

This expression is commonly written as

se(p)� (A1.8)

3. In hypothesis testing, with proportions we calculate SE( p) under the
assumption that the proportion equals the value specified by the null
hypothesis. In this case the SE( p) is known and is

SE(p)� (A1.9)�P(1 � P)
n

�p (1 �p)
n � 1

�y(1 � y)
n � 1

y
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Box 3. Formulas for multistage sampling with unequally weighted primary
units (Section 4.5) and stratified sampling (Section 4.6).

A. Notation
N�number of groups (strata or primary units) in the population 

(sometimes indefinitely large)
n �number of groups sampled
wi�number of population units, or proportion of the population, in 

the ith group
�average of the wi in the sample (except occasionally in C2 below)

yi �estimate from the ith group
Note: If primary units were selected with unequal probabilities (Section
4.4), see Part D below.

B. The estimated mean is 

� �wi yi (A1.10)

Note: if wi�proportion of the population in the ith group then 
n �1 and can be omitted.

C. The standard error and degrees of freedom (df ) depend on whether 
stratified or multistage sampling was used.
1. Stratified sampling, n�N (modified from Cochran 1977: p. 95).

se( )� (A1.11)

df � (A1.12)

where gi�wi
2[se(yi)]

2, ni�sample size within the ith stratum, and 
se(yi) is calculated as follows:
a. If one-stage sampling (or multistage sampling with equally 

weighted primary units) is used within strata (the most common 
case), then Eq. A1.2 in Box 2 can be used to obtain the se(yi) 

b. If multistage sampling with unequally weighted primary 
units is used within strata, then the se(yi) may be obtained with 
the formulas in Section C2 below.

c. The formulas above assume that stratum sizes are known. If
they are estimated from a sample of size n* (see Sec. 4.6), then 

se( )� (A1.13)

where N*�the number of population units in the entire 
population. N* is usually indefinitely large and is then ignored in 
the formula above. If the stratum sizes are known (i.e., n*�N*),

� 1
(nw)2 �w2

i [se(yi)]
2 � 	 1

n* �
1

N*
 �w2
i (yi � y)2y

(�gi)
2

�[g2
i / (ni � 1)]

� 1
(nw)2 �w2

i [se(yi)]
2y

w

1
nw

y

w
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then the right-hand term in the formula drops out (see Section 
4.6 for additional explanation).

2. Multistage sampling, n	N (modified from Cochran 1977, Eq.
11.30).
a. If n/N	0.1, then use

se( )� (A1.14)

df �n�1 (A1.15)

Note: if the average size of the primary units in the entire 
population is known, then one may use this value for in 
calculating (A1.10). For se( ), let yi

*�wi yi / ( �population 
average) and *�the simple mean of the yi

*. The formulas for 
simple random sampling are then used with these yi

* to calculate 
the standard error (Cochran 1977, Section 11.7). That is

se( )� (A1.16)

�sd(yi
*)/ (A1.17)

The number of degrees of freedom is n�1. In most studies this 
se( ) is larger than that in Eq. A1.11 (see Section 4.5).

b. If n/N�0.10 then use 

se( )� (A1.18)

where se1 is the se( ) calculated using Eq. A1.14 and se2 is the 
se( ) calculated using Eq. A1.11.

D. Multistage sampling when primary units are selected with unequal 
probabilities (and subsequent selection is by equal probability methods)
1. Additional notation.

�average wi in the population
zi �probability of selecting the ith primary unit
xi�estimate from the ith primary unit

2. Let 

yi� (A1.19)

3. The estimated population mean and standard error are 

� �yi (A1.20)
1
n

y

wixi

Nwzi

w

y
y

�(n / N )se2
1 � (1� n /N )se2

2y

y

�n

� 
�(y*

i � y*)2

n(n �1)
y

y
wwyy

w

� 1
(nw)2 �w2

i (yi � y)2 / (n � 1)y
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se( )�sd(yi)/ (A1.21)

df�n�1 (A1.22)

where, as usual,

sd(yi)� (A1.23)��(yi � Y )2 / (n � 1

�ny

Box 3 (cont.)
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Box 4. Statistical tests and confidence intervals for a single parameter.

A. Definitions (for paired data, see Part D below)
� the parameter estimate (typically a mean).

tdf(�/2)� value in Table A2.1, Appendix Two, with level of significance��
(use 2Q��) and degrees of freedom�df (see Boxes 2 or 3).

� the true value under the null hypothesis

B. Reject the null hypothesis if and only if

�tdf (�/2) (A1.24)

where se( ) is calculated following the guidelines presented in Boxes 2 
and 3.

C. The 1�� confidence interval for is


tdf (�/2)[se( )] (A1.25)

D. Paired data.
If pairs of population units have been randomly selected calculate as 
the mean of the differences between the measurements on the two units 
of each pair and then follow the procedures above with �the value 
of the difference in population means under the null hypothesis (often 
zero). For example, with a simple random sample of size n, and 
measurements x1i,x2i, i �1,…,n, would be

� (x1i�x2i)

For partially paired data, see Section 3.5.

E. The formulas above are exact if the population has a normal distribution.
Effects of non-normality are discussed on pp. 75–78

1
n

 �
n

i�1

y

y

Y 

y

yy

y

y

|y �Y |
se(y)

Y

y
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Box 5. Statistical tests and confidence intervals for proportions estimated
with one-stage sampling (Chapter 4).

A. Definitions 
p � the estimated proportion
q � 1�p
n � the sample size
P � the true proportion under the null hypothesis (often 0.5)
tdf (�/2) � the value in Table A2.1, Appendix Two, with level of

significance 
� (use 2Q��) and degrees of freedom�df (see below)

B. Guidelines for when to use the normal approximation (modified from 
Cochran (1977 p. 58).

p or 1�p, Minimum n for 
whichever is normal approximation
smaller to be used

0.5 2230
0.4 2250
0.3 2280
0.2 2200
0.1 2600
0.05 1400

C. Analysis using the normal approximation
1. p is significantly different from P if and only if

� �t
�
(�/2) (A1.26)

where c, the ‘correction for continuity’ (Snedecor and Cochran 1980,
Section 7.6, see note in Appendix Three), is defined as follows
a. For two-tailed tests, c depends on f�the fractional part of the 

quantity, n | p�P | . If f�0.5, then c�f; otherwise, c�f�0.5.
Examples: If n( p�P)�7.3 or �7.3, then f�0.3 so c�0.3
If n( p�P)�7.9 or �7.9 then f�0.9 so c�0.4.

b. For one-tailed tests (rarely used – see Section 3.2), c�0.5.
2. The 1�� confidence interval for p (Cochran 1977, Eq. 3.19) is

p
tn�1(�/2) (A1.27)

(See Appendix Three)
3. If the finite population correction is appropriate (which is rare – see 

Section 4.3) then in Eq. A1.26 replace ‘PQ/n’ with ‘(1�n/N)

� pq
n � 1

�
0.5
n

c
�nPQ

|p �P|
�PQ / n
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PQ/n’ and in Eq. A1.27 replace ‘pq’ with ‘(1�n/N)pq’ where 
N�population size.

4. Note that the significance test uses PQ/n for se( p) because under 
the null hypothesis, the standard deviation is known. When it is 
unknown, as in constructing the confidence interval, then (A1.27) 
is recommended (Cochran 1977 pp. 52, 57) however the expression
p
t

�,� is widely used.

D. Analysis when the normal approximation is not appropriate.
1. Hypothesis tests require tables of the binomial distribution (see 

Hollander and Wolfe 1973). An alternative (Steel and Torrie 1980 
p. 484) is to compute confidence intervals (see below) and reject the 
null hypothesis if the confidence interval does not include P.

2. Confidence intervals.
a. Approximate limits may be determined using Fig. A2.1,

Appendix Two, or by interpolation of values of binomial 
confidence limits (e.g., Steel and Torrie 1980, Table A.14).

b. Exact limits (modified from Hollander and Wolfe 1973 p. 24) 
may be calculated using a table of values from the F distribution 
(Table A2.2, Appendix Two). The F value depends on the level of
significance and ‘numerator’ and ‘denominator’ degrees of
freedom, 
1, and 
2, respectively.

lower endpoint�[1�F
� / 2|
1,
2 (q�1/n)/p]�1 (A1.28)

where 
1�2 (nq�1)


2�2np

upper endpoint� (A1.29)

where 
1�2(np�1)


2�2nq

(See note in Appendix Three.)

	1 �
q

(1 / n � p)F
� /2|
1,
2



�1

�pq/n
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Box 6. Parametric methods (t-tests) for comparing two population
parameters based on independent estimates. For paired data, see section 3.5.

A. Notation

1, 2 � the estimates from populations 1 and 2

1, 2 � the true but unknown values (i.e., the parameters)

se1, se2 � the standard errors of the estimates (obtained using the 
formulas in Boxes 2 or 3)

n1, n2 � sample sizes for the two estimates (see Boxes 2 and 3)

df1, df2 � the number of degrees of freedom for the estimates 1 and 2
(see Boxes 2 and 3)

tdf (�/2) � the value in Table A2.1, Appendix Two, with level of
significance � and degrees of freedom�df

Yd � value of 1� 2 under the null hypothesis (usually 0.0) 

B. General formulas for tests and confidence intervals
1. The null hypothesis that 1� 2 equals Yd is rejected if and only if

�tdf (�/2) (A1.30)

df�df1�df2. (A1.31)

2. The 1�� confidence interval on 1� 2 is

1� 2
tdf (�/2)[se( 1� 2)] (A1.32)

df� (A1.33)

C. Formulas for se( 1� 2)
1. Hypothesis testing when the data are from one-stage samples (or 

multistage samples with equally weighted primary units – see 
Section 4.5) and samples sizes, n1 and n2 are unequal.

se( 1� 2)�

(A1.34)

Note: Eq. A1.35 may be used for simplicity but usually yields a 
slightly larger value.

2. All other cases.

se( 1� 2)� (A1.35)

D. The formulas above are exact if the population has a normal distribution.
Effects of non-normality are discussed on pp. 75–78.

� [se(y1)]
2 � [se(y2)]2yy

� �n1 � n2

n1n2
��n1(n1 � 1)[se(y1)]

2 � n2(n2 � 1)[se(y2)]
2

n1� n2 � 2 �yy

yy

(se2
1 � se2

2)2

se4
1 /df1� se2

4 /df2

yyyy

yy

|y1� y2|� Yd

se(y1 � y2)

yy

Y Y 

yy

Y Y 
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Box 7. Comparison of two proportions estimated using one-stage sampling
(from Fleiss 1981).

A. Definitions
p1, p2 �the estimated proportions
n1, n2 �the sample sizes (n1�n2�n for paired data)
t

�(�/2) �value in Table A2.1, Appendix Two with level of significance �
�and degrees of freedom � (infinity)

c �the ‘correction for continuity’ (see Snedecor and Cochran 1980 
�p. 117). Let c�1/n if n1�n2 or 0.5(1/n1�1/n2) if n1�n2

B. Testing whether the proportions are equal.
1. The general formula for tests with large samples is to reject the null 

hypothesis that the proportions are equal if and only if

�t
�(�/2) (A1.36)

Specific guidelines for use of this formula are given below.
2. Independent estimates.

a. Use Fisher’s Exact Test (rather than the formula above) whenever 
possible. Table A2.3, Appendix Two, explains the test and gives 
critical values for samples sizes of n1, n2�15. Many statistical 
packages provide the exact p-values for larger sample sizes.

b. If sample sizes are too large to use Fisher’s Test, then use Eq.
A1.36 above with 

se( p1�p2)� (A1.37)

where p�( p1�p2)/n if n1�n2. If n1�n2, then let

p� (A1.38)

In either case, q�1– p.
3. Paired estimates. The two outcomes or measurements on each unit 

in the sample are classified as ‘success’ (or ‘in the category of
interest’) or ‘failure’ (or ‘not in the category of interest’). Let 
nsf�the number of units in which the two outcomes were ‘success,
failure’ and let nfs�the number of units in which the two outcomes 
were ‘failure, success’. Calculate the test statistic with Eq. A1.36 
letting

se( p1�p2)� (A1.39)

C. Confidence intervals for the difference between proportions.
1. Confidence intervals are difficult to calculate for small samples. The 

following large-sample approximation is appropriate if the smallest 
of n1 p1, n1q1, n2 p2, and n2q2 is �5. The 1�� confidence interval on 

1
n

 �nsf � nfs

n1 p1� n2 p2

n1� n2

�pq (1 / n1�1/n2)

| p1 � p2|� c

se( p1� p2 )
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p1�p2 is

p1�p2
t
�(�/2)[se( p1�p2)]�c (A1.40)

where se( p1�p2) is calculated as shown in 2 or 3 below.
2. For independent estimates

se( p1�p2)� (A1.41)

where q1�1�p1 and q2�1�p2.
3. For paired estimates,

se( p1�p2)� (A1.42)

where nsf and nfs are defined as in Part B3 above.

1
n
�nsf � nfs �

(nsf � nfs)
2

�n

� p1q1

n1� 1
�

p2q2

n2� 1

Box 7 (cont.)
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Box 8. Nonparametric methods for comparing two estimates

A. Paired data (Wilcoxon signed rank test).
1. Rank the nonzero differences, ignoring sign, giving the smallest 

difference a rank of 1. If two or more of the differences are equal,
assign to each of them the average of the ranks they would have 
received if they had differed slightly (e.g., if the four smallest 
differences were 3, 6, 6, 7, their ranks would be 1, 2.5, 2.5, 4 
respectively).

2. Compute the sum of the ranks assigned to the positive differences 
and the sum of the ranks assigned to the negative differences.

3. The test statistic, T
�

, is the smaller sum, and is used with the number
of nonzero differences (n) in Table A2.4, Appendix Two, to 
determine whether the median of the differences is different from
zero.

4. If n�20, a large sample approximation to the distribution of T
�

is 
used. The median of the differences is significantly different from 
zero at level � if and only if

�t
�(�/2) (A1.43)

where t
�(�/2) is the value in Table A2.1, Appendix Two, with 2Q��

and degrees of freedom � (infinity).

B. Unpaired data (Mann–Whitney test).
1. Rank the observations giving the smallest observation a rank of 1. If

two or more of the observations are equal, assign to each of them 
the average of the ranks they would have received if they had 
differed slightly (e.g., if the five smallest observations were 5.1, 6.0,
6.0, 6.0, 6.1, their ranks would be 1, 3, 3, 3, 5 respectively).

2. Calculate the test statistic, T1 as follows
a. n1�n2. Calculate the sum of the ranks received by the 

observations in each sample. T1�the smaller sum.
b. n1�n2. Calculate T, the sum of ranks for the sample with fewer 

observations, say n1. Next calculate T1�n1(n1�n2�1)�T.
T1�the smaller of T and T 1.

3. T1 is used with n1 and n2 in Table A2.5, Appendix Two, to test the 
null hypothesis that the populations are identical against the 
alternative that one population is shifted to the right of the other.

4. For values of n1 and n2 outside the limits of Table A2.5, Appendix Two,
a large-sample approximation to the distribution of T 1 is used.
The populations are significantly different at level � if and only if

[n(n � 1) / 4] � T
�

� 0.5

�n(n � 1) (2n � 1) / 24
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�t
�
(�/2) (A1.44)

where t
�
(�/2) is the value in Table A2.1, Appendix Two, with 2Q�� and

degrees of freedom � (infinity).

|n1(n1� n2 � 1) / 2 � T�� | � 0.5

�n1n2(n1� n2� 1) / 12

Box 8 (cont.)
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Box 9. Confidence intervals for the ratio of two parameters.

A. Definitions
y, x�the two estimates (e.g., means, regression coefficients, survival rates)

�the estimated ratio 

se(x), se(y)�the estimated standard errors of x and y
B. Continuous estimates (all cases except proportions estimated from one-

stage samples – Cochran 1977:156).
1. If n �30 and both se(y)/y and se(x)/x are 	0.1, then

a. Calculate se(y/x) as

(A1.45)

The cov term depends on the relationship between the two 
estimates, x and y, as follows:
(1) If x and y are independent estimates then cov(x,y)�0 so 

the term, 2cov(x,y)/xy, drops out.
(2) If x and y are the means of two measurements from each 

unit in a sample of size n, then

cov(x,y)� (A1.46)

cov(x,y)�cov(xi,yi)/n

where xi and yi are the measurements from the ith unit (or the 
means from the ith primary unit if multistage sampling was
used). Many calculators and computer printouts provide
cov(xi,yi); be sure to divide this quantity by n to obtain cov(x,y).

(3) For other cases see Chapter Two.
b. Calculate the confidence interval as

t
�
(�/2)se(y/x) (A1.47)

where ��the level of significance (usually 0.05).
2. If the conditions in point1 above are not met, then calculate the 

limits of the confidence interval as

(A1.48)

where cxx�[se(x)/x]2, cyy�[se(y)/y]2, cxy�cov(x,y)/xy and
cov(x,y) is as defined in Eq. A1.46 above.

�y

x�	
(1� t

�
(��2)2cxy)
 t

�
(��2)�(cyy� cxx� 2cxy)� t

�
(��2)2(cyycxx� c2

xy)

1 � t
�
(��2)2cxx




y
x




�
n

i

(xi yi �xy)

n(n � 1)

se�y
x����y

x�
2

	�se(y)
y �

2

� �se(x)
x �
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2cov(x,y)
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Box 10. Sample size and power calculations (modified from Snedecor and
Cochran 1980 pp. 102–4, 129–30 – see Section 3.4).

A The guidelines in this Box can be used for tests and confidence intervals
for evaluating a single estimate or for comparing two estimates. They 
assume that simple random sampling (or multistage sampling with 
equally weighted primary units – Section 4.5) has been used to estimate 
means or proportions. See Part F2 if a more complex plan (e.g.,
stratified sampling) has been used, or a different quantity (e.g., slope in 
a linear regression analysis) is being estimated.

B. Definitions
g1, g2 �the estimates (for a single estimate, g2 is the true value 

�under the null hypothesis)
� �the assumed true difference (�0 if a single estimate is 

�being evaluated). In many studies, � is the smallest 
�difference felt to be of biological importance.

� �the level of significance
P� �power, the probability of obtaining a significant difference 

�between g1 and g2 if the true difference is �
n1, n2 �the sample sizes. If a single estimate is being evaluated,

�then n2 is not defined. For power calculations, n1 and n2
�are the samples sizes you expect to obtain by the end of the 
�study. For sample size calculations, n1 and n2 are the 
�sample sizes required by the end of the study if power is to 
�equal P�

s1
2, s2

2 �estimates of the population variances (see Part B below). If
�a single estimate is being evaluated, then s2

2 is not defined
s2 �a measure of how variable the populations are (see Part C)
se(g1�g2) �the estimated standard error of the difference, g1�g2,

�assuming that the final samples sizes are n1 and n2 (or just 
�n1 if only one estimate is being evaluated)

C. Estimation of s2 (required for either sample size or power calculations)
1. Two independent estimates

a. Let

s2� (A1.49)

where s1
2 and s2

2 are calculated as explained below.
b. For means (or proportions estimated using multistage sampling) 

s1
2 and s2

2 are usually estimated with data from a pilot study or the 
first part of an ongoing study. Let

s1
2� (A1.50)

�
np1

i
(y1i � y1)

2

np1 � 1

1
2

 �s2
1 � s2

2

 
 �
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and

s2
2� (A1.51)

where y1i and y2i are the measurements on the ith unit in samples 
one and two respectively (or the means of the measurements 
from the ith primary units if multistage sampling was used); np1
and np2 are the sample sizes from the pilot study. If no 
preliminary data from the study area are available, data from 
other published studies may be used. If the ranges of the y1i and 
y2i can be predicted, an alternative method is to assume that s1

2

equals 0.25 times the range in population one and s2
2 equals 0.25 

times the range in population two (Snedecor and Cochran 
1980 p. 442).

c. For proportions estimated using one-stage sampling, let 

s1
2�p1q1 (A1.52)

and
s2

2�p2q2 (A1.53)

where p1 and p2 are estimates of the true proportions in the 
populations, and q1�1�p1, q2�1�p2. If p1 (or p2) is 
between 0.30 and 0.70, then p1q1 (or p2q2) is between 0.21 and 
0.25. Thus, even imprecise estimates of p1 and p2 often suffice to 
estimate s1

2 and s2
2. If data from a pilot or preliminary study are 

available, then the resulting values for p1 and p2 may be used in 
Eqs. A1.52 and A1.53.

2. One estimate
Let s2�s1

2, where s1
2 is calculated as in Part C1b or C1c above.

3. Paired estimates
a. Methods to use if data are available from a pilot study:

For means, let

s2� (A1.54)

where di is the difference between measurements on the ith unit 
and np is the sample size (number of pairs) in the pilot study. If
multistage sampling is employed, then di is the average 
difference for the ith primary unit. In either case, is the mean 
of the di.
For proportions (estimated using one-stage sampling), let

s2� (A1.55)�npd / np

 d

�
np

i
(di �d )2

(np � 1)

�
np 2

i
(y2i � y2)2

np2 � 1

Box 10 (cont.)
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where np is the sample size in the pilot study and npd is the 
number of the np units in which the two measurements (or 
outcomes) were different.

b. If no data from a pilot study are available, one possibility is to 
use the methods in Part C1 above for independent estimates. This 
will usually result in overestimating s2 (because the benefits of
pairing are ignored) which causes sample size requirements to be 
overestimated and power to be underestimated.

D. Sample size calculations [for estimating the sample size(s) required by
the end of the study]

1. One estimate or two estimates (paired or independent) with n1�n2
(n is then the required sample size for each estimate).
a. Determine K

�,P�
, a constant used below. If ��0.05, and the test 

is two-tailed, then K
�,P� 

may be determined from the following 
table:

Desired power K
�,P�

�
�

0.50 23.84 0.000
0.60 24.90 0.253
0.70 26.18 0.525
0.80 27.87 0.845
0.90 10.50 1.282
0.95 13.00 1.645

For other cases define K
�,P�

as (Z
�
�Z

�
)2, where Z

�
(whose value 

depends only on power) is obtained from the Table above, and Z
�

is obtained from the table below.

Level of significance (�)

Test 0.10 0.05 0.01

Two-tailed 1.645 1.960 2.576
One-tailed 1.282 1.645 2.326

Snedecor and Cochran (1980 p. 102) describe how to obtain 
other values of Z

�
and Z

�
.

b. The sample size required to achieve power P� if the true 
difference is �, is

n� �2 (A1.56)

The ‘�2’ in (A1.56) compensates for the fact that standard 
deviations will be estimated, not known. More detailed 

K
�,P�

s2

�2

Box 10 (cont.)
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procedures for making this compensation are contained in 
Snedecor and Cochran (1980 p. 104).

2. Two estimates, n1�n2
Sample size requirements are best calculated by trial and error using 
the power formula in Part E below. Select two sample sizes, calculate 
power, adjust n1 and n2 up or down, and then calculate power again.
A few iterations will identify combinations of n1 and n2 that achieve 
the desired level of power.

3. Sample size to achieve a specified confidence interval
The confidence interval is usually calculated as: (estimate)
(tdf (�/2))
[se(estimate)]. Let w�a desired half-width for the confidence 
interval.

w�tdf (�/2) se(estimate). (A1.57)

The general approach is to insert the formula for the standard error 
in Eq. A1.57, and then solve the equation for n. The standard error 
is

se(g1�g2)� , (A1.58)

and therefore

n� . (A1.59)

E. Power calculations [based on the sample size(s) expected by the end of
the study]
1. Calculate se(g1�g2)

The formula for a single estimate, paired estimates, or independent 
estimates with n1�n2, is 

se(g1�g2)� . (A1.60)

The formula for independent estimates with n1�n2 is

se(g1�g2)� . (A1.61)

2. Calculate �/se(g1�g2), where � is the assumed, or minimum 
important, difference between parameters

3. Calculate the degrees of freedom for the test (n1�n2– 2 for 
independent estimates or n�1 for paired estimates – see Boxes 6 
or 7) 

4. Power, for a two-tailed test with level of significance (�)�0.05, is 
given in the following Table

�s2
1

n1

�
s2

2

n2

�s2 / n

[tdf (��2)]2 s2

w2

�s2

n

Box 10 (cont.)



Frequently used statistical methods 277

Degrees of freedom

� se(g1�g2) 5 7 10 15 30 60 �

1.00 0.06 0.09 0.11 0.13 0.15 0.16 0.17
1.25 0.09 0.13 0.16 0.19 0.21 0.23 0.24
1.50 0.14 0.19 0.23 0.26 0.29 0.31 0.32
1.75 0.21 0.27 0.32 0.35 0.39 0.40 0.42
2.00 0.28 0.36 0.41 0.45 0.48 0.50 0.52
2.25 0.37 0.46 0.51 0.55 0.58 0.60 0.61
2.50 0.47 0.56 0.61 0.64 0.68 0.69 0.71
2.75 0.57 0.65 0.70 0.73 0.76 0.77 0.79
3.00 0.67 0.74 0.78 0.81 0.83 0.84 0.85
3.25 0.75 0.81 0.85 0.87 0.89 0.89 0.90
3.50 0.82 0.87 0.90 0.91 0.93 0.93 0.94
3.75 0.88 0.92 0.94 0.95 0.96 0.96 0.96
4.00 0.92 0.95 0.96 0.97 0.98 0.98 0.98

5. Power may be calculated more exactly as 

power�P Z�t
�
(�/2)� (A1.62)

where t
�,df is the critical value in Table A2.1 in Appendix Two (e.g.,

for a two-tailed test at ��0.05, use t
�
(�/2)�1.96). Calculate the 

quantity to the right of the �, and then use a table giving areas 
under the normal curve to determine the probability that a standard 
normal variable exceeds this value. The result equals power. For 
additional explanation, see Snedecor and Cochran, 1980 p. 68).

F. Notes
1. The formulas above assume that t-tests and confidence intervals 

based on the data having a normal distribution will be used. With 
proportions and small sample sizes, exact methods are preferred 
(Boxes 5 and 7), and may have slightly different power. The formulas 
above give adequate approximations for practical purposes.

2. For other sampling plans or estimates, the following procedures may 
be used. Calculate sample size requirements iteratively by 
calculating power as suggested in Part D2 above for n1�n2. To 
calculate power, estimate all quantities in the formula for the 
standard error (e.g., for stratified sampling, stratum sizes must be 
estimated), estimate the standard error and �, and then follow the 
guidelines in Part E4 or E5 above.

�

se(g1 � g2)
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Table A2.2. 5 Per cent points of the F distribution
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Table A2.2. (cont.) 2.5 Per cent points of the F distribution



Table A2.2. (cont.) 1 Per cent points of the F distribution



Taken from Table 12(b–d) of New Cambridge statistical tables, 2nd edn. (1996), edited by D.V. Lindley and W.F. Scott, with
permission of Cambridge University Press.

Table A2.2. (cont.) 0.5 Per cent points of the F distribution
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Reproduction of Table A-21 from Introduction to statistical analysis, third edition, by Dixon
and Massey, with permission of McGraw-Hill.
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Reproduction of Table A-19 from Introduction to statistical analysis, third edition, by Dixon
and Massey, with permission of McGraw-Hill.
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Table A2.6. The binomial distribution function
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Taken from Table 1 of New Cambridge statistical tables, 2nd edn. (1996), edited by D.V. Lindley and W.F. Scott, with permission
of Cambridge University Press.

Table A2.6. (cont.)
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Notes for Appendix One

Box 3

A1.10 This is the standard equation for stratified sampling. To show that
it also applies to multistage sampling with unequal-sized primary units,
consider Cochran (1977, Eq. 11.25), which gives his estimator for the
population total. Mo�the number of units in the population so dividing
his Eq. 11.25 by Mo gives the estimated mean per population unit. Also,
the estimated total for the ith primary unit equals Mi i. Changing to ‘w
notation’ yields our Eq. A1.10.

We also use Eq. A1.10 as the estimator for multistage sampling with
unequal-size primary units. Cochran (1977) presents two estimators of the
population total for this case, his Eqs. 11.21 and 11.25. To convert them to
estimates of the mean / population unit, we divide by the number of units in
the population, which may be written N . Dividing the middle expression
in Eq. 11.21 by N yields

� �Mi i. (A3.1)

Dividing Eq. 11.25 by N �Mo yields (from the middle expression of
Eq.11.25)

�

� �Mi i. (A3.2)

Thus, Cochran’s Eqs. 11.21 and 11.25 have the same form and this form is
the same as our Eq. A3.1.

y
1

nM 

�Miyi

�Mi

y

 M

y
1

nM 
y

 M
 M

y
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There is a possible difference, however. We may use either the sample
mean for the average size of primary units, or, if we know it, the population
mean. If we use the sample mean, then we have a ratio estimator since both
the numerator and the denominator would vary from sample to sample.
Cochran (1977) considers this case in Section 11.8, so we should derive our
variance from this Section if we use the sample mean for the average size of
primary units. If instead we use the population mean, then we should derive
our variance from Section 11.7 of Cochran (1977).

We expect the ratio estimator, with the sample mean for the average size,
to be a better estimator in general. If we happen to get large primary units,
then the numerator will probably be larger than average. By using the
sample average – which will also be larger than average – in the denomina-
tor, we get a good estimate of the mean per population unit. This advantage
would be lost if we used the population mean for the average size.
Furthermore, we usually do not know the population mean. Thus, for both
reasons, we stress the ratio estimator (i.e., we define as the sample mean,
except in C2a, Box 3).

A1.11 The standard formula for stratified sampling except that we replaced
Wh�Nh/N with Nh/n h and, substituted w for N. This allows us to define w
as either the number, or proportion, of units in a stratum.

A1.12 Equation 5.16 (Cochran 1977) for df is

nc� (A3.3)

Replace Nh�nh with Nh(1�nh/Nh) and then drop the finite population cor-
rection (fpc). Divide top and bottom by N2. This yields

nc� (A3.4)

which is our expression with gi�wh
2 se( h)2�wh

2 v( h).

A1.13 This formula for double sampling comes from Cochran (1977) Eq.
12.24� which has three terms. In the first, we replace sh

2/nh with [se( )]2 to
make the equation more closely resemble our version with stratified sam-
pling. We have omitted the second term because N is assumed to be large. In

y

yy

[�w2
hv(yh)]

2

�
[w2

hv(yh)]
2

nh�1

	�Nh(Nh� nh)
nh

s2
h


2

�	Nh(Nh� nh)
nh

s2
h


2

/ (nh�1)

 N

w
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the third term, we have replaced g�/n� with (1/n*�1/N*) which follows easily
if we let g��(N�n�)/N rather than (N�n�)/(N�1). The reason for our
version is to make it clearer that the difference between se( ) with double
sampling and se( ) with stratified sampling depends on how well we know
the stratum sizes (e.g., if n��N, the third term drops out). We use n* rather
than n�.

A1.14 and A1.15 Expression A1.14 is a special case of Eq. A1.18 so we
derive Eq. A1.14 first. It comes from Cochran (1977) Eq. 11.30 which is his
recommended estimate for the variance of the ratio estimator of the
population total (Eq. 11.25). To obtain the estimated mean/population
unit, we divided by Mo (see note about Eq. A1.10). We therefore divide his
variance (Eq. 11.30) by Mo

2�(N )2 getting

v( )� (A3.5)

� ,

where we use instead of his R. Moving (N )2 inside

v( )� ) (A3.6)

Multiplying the right-most term by n/n and changing to ‘w’ notation yields

v( )� (A3.7)

,

which is the square of Eq. A1.18 with the first part equal to our Eq. A1.14
and the second part equal to Eq. A1.11 (with se(yi) calculated as in Box 2,
including the fpc).

There remains one problem however. Cochran proved Eq. 11.30 for the
case of two-stage sampling and simple random sampling within primary
units whereas we want expressions for any kind of sampling plan within
primary units. We thus still have to show that Eq. 11.30 would hold for any
plan. Cochran invokes Theorem 11.2 to prove Eq. 11.30. The theorem
obtains the left term in Eq. 11.30 by writing out an unbiased estimator
from one-stage sampling (i.e., primary units censused – see text following
Eq. 11.26). This part of the proof would be the same for any plan as long as

� � n

N� 
1

(nw)2 �w2
i (1� f2i) 

s2
2i

mi

1
nw2

 � 
w2

i (yi � y)2

n �1�1 �
n
N�y

s2
2
i

mi

�M 2
i (1� f2i

1
nN M2�

M 2
i (yi � y)2

n �1
�

1
nM 2�1 �

n
N�y

 My–̂y

	N

n
 � 
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it yielded unbiased estimates within primary units. To this first term we add
�wis�̂ 2i

2 where wis depends only on the size of the ith primary unit and �̂2
2

i is
an unbiased estimate of the variance of Ŷi (text following Eq. 11.16). Thus,
the theorem proved by Cochran is general, requiring only that the esti-
mated means ( i) and variances {[se( i)]

2} within primary units be unbi-
ased.

A1.16 and ‘Note’ following A1.15 The ‘note’ states that if the mean size of
primary units in the entire population is known, then it may be substituted
in our Eq. A1.10 for the estimated mean/population unit. The statements
above show that when this is done, the estimator is equivalent to Cochran’s
estimator, Eq. 11.21, used to estimate the population mean, rather than
total, and that therefore the appropriate formula to estimate the variance is
Cochran’s equation from that section (Eq. 11.24) modified to estimate the
mean, rather than the total. We show below that with this modification,
Cochran’s Eq. 11.24 is the same as Eq. A1.16 ignoring the term in 1/N.

First divide his Eq. 11.24 by (N )2 (since we divided his estimate of the
population total by N to get the population mean).

The comments above show that Cochran’s Section 11.7 pertains to cases
in which the known mean size per primary unit for the population is used.
This gives

v( )� � (A3.8)

where Yi and u are estimates. The right term drops out since we consider N
to be large.

Now Yi, the estimated total for the ith primary unit, equals Mi i and u,
the average of the Yi, equals (1/n)�Mi i� since

� �Mi i. (A3.9)

where is the estimated population mean. Continuing

�(Yi� u)2��(Mi i– )2

� 2� , (A3.10)

and thus

�Mi yi

M
� y�

2
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v( )�

� . (A3.11)

Box 5

A1.26 For one-tailed tests, Snedecor and Cochran (1980 p. 119) use

zc� (A3.12)

where P is their value under the null hypothesis and r�number of ‘suc-
cesses’. They use lower-case p’s and q’s for the parameters but we use upper
case to distinguish parameters from estimates. Write

zc�

� , (A3.13)

which is our Eq. A1.26 except that we use c in place of 0.5. For the two-
tailed test (Snedecor and Cochran 1980 p. 119), they replace 0.5 in Eq.
A3.12 above with another quantity, which we call c. If the fractional part, f,
is �0.5, then all of it is subtracted (c�f ); if f�0.5, then the fractional part
of |r�nP | is reduced to 0.5 (i.e., c�f�0.5).

A1.27 Our equation is directly from Cochran, Eq. 3.19.

A1.28 and A1.29 The upper limit is given by Hollander and Wolfe (1973
p. 24) as

PL� , (A3.14)

where B�np. Thus

PL� (A3.15)

� ,
1

1 �
(q �1 / n)f(� / 2|
1,
2)

p

1

1 �
(n � np �1)f(� / 2|
1,
2)

np

B
B � (n �B �1)f(� / 2|
1,
2)

| p � P |
�PQ /n

�
0.5

�nPQ

|np � nP | � 0.5
�nPQ

|r � nP | � 0.5
�nPQ

�(y*
i � y)2

n(n �1)

��Miyi

M
� y�

2
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where

1�2(n�B�1)

1�2(nq�1)


2 �2B

1 �2np. (A3.16)

For the upper limit, we have

PU(n,B)�1�PL(n,n�B), (A3.17)

where the notation for PU means ‘use the formula for PL but substitute ‘n-B’
everywhere B appears’ (D. Wolfe, personal communication). Thus,

PU�1� (A3.18)

�1�

�1� ,

which may be written

PU�1� , (A3.19)

where


1�2(np�1) (A3.20)


2�2nq.

Now let (np�1)/nq�a, so that we have

PU�1� (A3.21)

Combining terms leads to PU�1/(1�1/af ) from which we obtain

PU� (A3.22)

� ,
1

1 �
q

(p �1 / n)F(� / 2|
1,
2)

1

1 �
nq

(np �1)F(� / 2|
1,
2)

1
1 � af

�/2,
1,
2

1

1 � �np � 1
nq �F(� / 2|
1,
2)

1
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n � B � (n � n � B � 1)F(� / 2|2(n � n � B � 1,2(n � B))
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where

1�2(np�1)


2�2nq. (A3.23)

Box 6

Our formula for hypothesis tests is the same as that of Snedecor and
Cochran (1980 p. 89), except that we use Y

�
in place of (�1��2) and we say

the test statistic must be � the tabled values of t rather than defining the test
statistic as t and then saying it has to exceed the tabled values.

Hypothesis tests

For n1�n2, Snedecor and Cochran (1980 Section 6.7) give the ‘pooled’ vari-
ance as 

s2�

� , (A3.24)

and the test statistic as 

t� (A3.25)

Thus, even though they call the variance pooled, it is the same as the
unpooled variance. Also, they give df as 2(n�1) which equals df1�df2. This
shows why Eq. A1.35 applies to hypothesis testing with equal sample sizes.

For n1�n2, Snedecor and Cochran (1980) give (Sec. 6.9)

v(diff.)� �2, (A3.26)�n1� n2

n1n2
�

�
(  X1�  X2) � �

�se2
1 � se2

2

�
(  X1�  X2) � �

�s2
1

n
�

s2
2

n

�
(  X1�  X2) � �

�2
�n

 �1
2
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�2s

1
2

 [s2
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2]

�x2
1 � �x2

2

2(n � 1)
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where �2 is estimated by s2 as

s2� , (A3.27)

and �x1
2�n(n�1)se1

2. This leads immediately to our formula (which admit-
tedly is cumbersome, but uses the standard errors, which we assume the
user will already have calculated). The df are n1�n2�2�df1�df2.

Confidence intervals (A1.32, A1.33) They do not say always to use the non
pooled variance estimate. They only say we might be hesitant to use it if the
means are ‘very different’ and we are computing confidence limits (Section
6.11, Snedecor and Cochran 1980, item no. 2). Their example in Section 6.9
uses the pooled s2 (with n1�n2) for the confidence interval. The variances in
this case were similar (457 and 425).

For unequal variances (Snedecor and Cochran 1980 Section 6.11) they
give the test statistic as

t� (A3.28)

.

This shows that Eq. A1.35 applies to confidence intervals, if variances are
assumed to be unequal. For df they give

df�

� , (A3.29)

which equals our expression.

Box 7

Our equations come mainly from Fleiss (1981) as shown below.

(se2
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Our equation Fleiss’s equation

A1.37 2.5
A1.38 Formula in Table 2.6
A1.39 8.2 and 8.3 (his ‘b�c’�our nsf�nfs)
A1.40 2.14 (independent) and 8.15 (paired)
A1.41 2.13 (except we use n�1 in the denominator.
A1.42 8.14

Most of the equations can also be found in Snedecor and Cochran
(1980), though they use 1/2n in one place as the correction for continuity,
and they use a notation we find harder to follow.

The recommendation about when the large-sample procedure may be
used for confidence intervals is from Fleiss (1981 p. 29). We do not find any
corresponding guideline for paired samples, so we have used the same
guideline for independent and paired data.

Box 8

We used Snedecor and Cochran (1980 pp. 141–2) for the Wilcoxin test
except that we suggest omitting pairs with equal value and thus differences
of 0 (in accordance with Castellan and Siegel, 1988 p. 88) whereas they do
not include this recommendation. Our T for large samples is the same as
theirs (8.6.1 and 8.6.2) except that we substitute their formula for � into �.
Also, we use the Table for values up to 25. We used Snedecor and Cochran
(1980 pp. 144–5) for the Mann-Whitney test.

Box 10

Part D Our K
�,P�

is Snedecor and Cochran’s (1980)(Z
�
�Z

�
)2. We find their

description a little hard to follow, but the examples they give below 6.14.1
may be used to verify the figures we give in the Table.

A1.56 is their Eq. 6.14.4 ‘�2’. Our ‘�2’ comes from their guidelines
below 6.14.4 which recommend increasing the initial value by from 1 to 3
depending on the level of significance and on whether the data are paired.
We used 2 because it is simpler and the sample size guidelines are approxi-
mate anyway.
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